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PREFACE

Computational chemistry methods have become increasingly important in recent
years, as manifested by their rapidly extending applications in a large number
of diverse fields (e.g. computations of molecular structure, properties, the design
of pharmaceutical drugs and novel materials, etc). In part as a result of this
general trend, the size of the systems which can be studied has also increased,
generating even further needs for size increases, since larger molecular systems
show interesting phenomena, important in modern biochemistry, biotechnology, and
nanotechnology. Thus, it is of great importance to apply and further develop com-
putational methods which provide physically sound answers for large molecules at
a reasonable computational cost. An important variety of such approaches is repre-
sented by the linear scaling techniques, that is, by methods where the computational
cost scales linearly with the size of the system [O(N)]. Over the years, satisfactory
linear scaling computational approaches have been developed which are suitable to
study a variety of molecular problems. However, the latest trends also provide hope
that further, substantial breakthrough in this field may be expected, and one might
anticipate developments for which even the early indications have not yet appeared.
This book is a collection of chapters which report the state-of-the-art in many of the
important questions related to the family of linear scaling methods. We hope that it
may give motivation and impetus for more rapid developments in the field.

Pulay reviews plane-wave (PW) based methods for the computation of the
Coulomb interaction, in HF and DFT methods, introduced in order to decrease the
scaling. The author notes that PW methods have not been fully utilized in quan-
tum chemistry, although several groups have shown their advantages. The author
discusses various technical difficulties regarding the applications of PW methods
and compares PW basis sets with atomic basis sets. He further comments on ways
to combine both of them in a single algorithm and discusses reported implementa-
tions and results as well as some of the important problems to be solved in this area
(e.g. improvement of the efficiency of other major computational tasks to match the
performance of the Coulomb evaluation).

Nagata et al. review the fragment molecular orbital (FMO) method, proposed
in 1999 and used to reduce the scaling of MO theories from N3–N7 to nearly
linear scaling. They discuss the implementation of various methods (e.g. RI-
MP2, DFT, MCSCF) within the framework of the FMO method, the formulation
of FMO-ROHF, the interface of time-dependent DFT (TDDFT) with FMO. The
authors review the implementation of CIS in multilayer FMO as well as the
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inclusion of perturbative doubles [CIS(D)] and the inclusion of effective poten-
tials (e.g. model core potentials) due to the environment or inner-shell electrons
into FMO calculations. Application of FMO in molecular dynamics simulations,
energy decomposition analysis, and property calculations (e.g. chemical shifts) are
also discussed.

Saebø reviews some linear scaling approaches based on the second-order Møller-
Plesset (MP2) methods and briefly comments on other, more accurate electron
correlation techniques. He focuses mainly on methods relying on the local cor-
relation method introduced by Pulay and Saebø and developed further by other
co-workers. The RI-MP2 method is discussed, demonstrating that it is an order
of magnitude more efficient than MP2. He reviews the RI-LMP2 method, which
is a combination of the density fitting approach (RI) with the local MP2 method,
providing linear scaling with the size of the system. A new linearly scaling LMP2
approach providing essentially identical results to conventional canonical MP2 is
discussed and applications are presented.

Surján and Szabados review perturbative approaches developed to avoid diago-
nalization of large one-electron Hamiltonians, taking into account that diagonaliza-
tion of matrices scales with the cube of the matrix dimension. The first order density
matrix P is obtained from an iterative formula which preserves the trace and the
idempotency of P. If P is sparse, then the method leads to a linear scaling method.
It is noted that the procedure is useful for geometry optimization or self-consistent
techniques. Electron correlation methods based on the Hartree-Fock density matrix
are also discussed.

Kobayashi and Nakai report on recent developments in the linear-scaling divide-
and-conquer (DC) techniques, that is, the density-matrix-based DC self-consistent
field (SCF) and the DC-based post-SCF electron correlation methods, which they
implemented in the freely available GAMESS-US package. It is shown that the DC-
based post-SCF calculation achieves near-linear scaling with respect to the system
size, while the memory and scratch space are hardly dependent on the system size.
The performance of the techniques is shown by examples.

Mezey reviews the common principles of linear scaling methods as well as the
locality aspects of these techniques. Fundamental relations between local and
global properties of molecules are discussed. The author reviews the Additive
Fuzzy Density Fragmentation (AFDF) Principle and the two, related linear scaling
approaches based on it: the MEDLA, Molecular Electron Density Loge (or Lego)
Assembler method and the ADMA, Adjustable Density Matrix Assembler method.
Mezey notes that the ADMA provides the basis for the Combinatorial Quantum
Chemistry technique, with a variety of applications (e.g. in the pharmaceutical
industry).

Szekeres and Mezey review the role of molecular fragmentation schemes in
various linear scaling methods with special emphasis on fragmentation based on
the properties of molecular electron densities. They discuss various fragmenta-
tion schemes, for example, chemically motivated fragment selection, functional
groups as primary fragments, delocalized fragments, Procrustes fragmentation,
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multi-Procrustes fragmentation with trigonometric weighting. The authors review
computational techniques for the efficient implementation of the above schemes.

Eckard et al. discuss approximations used for the separation of short- and long-
range interactions in order to facilitate calculations of large systems. They focus on
fragment-based (FB) techniques, and review the approximations leading to linear
scaling. In the FB approaches the molecule is divided into two or more parts and the
short- and long-range interactions as well as the interactions between the subsys-
tems are calculated employing different methods (embedding schemes) as it is done
in QM/MM approaches. They review techniques to solve the border region problem,
which arises upon the division of the molecule into subsystems and the result-
ing cutting of covalent bonds. Many properties (e.g. total energies, partial charges,
electrostatic potentials, molecular forces, but also NMR chemical shifts) have been
obtained with the aid of the FB methods. Using the fragment-based adjustable den-
sity matrix assembler (ADMA) method the advantages and disadvantages of the
presented techniques are discussed for some test systems.

Gu et al. review the linear scaling elongation method for Hartree-Fock and
Kohn-Sham electronic structure calculations for quasi-one-dimensional systems.
Linear scaling is achieved by (i) regional localization of molecular orbitals, and
(ii) a two-electron integral cutoff technique combined with fast multipole evalua-
tion of non-negligible long-range integrals. The authors describe the construction
of regional localized molecular orbitals with the resulting separation into an active
region and a frozen region. They demonstrate that reduction of the variational space
does not lead to any significant loss of accuracy. Results for test systems (including
polyglycine and BN nanotubes) are discussed, which show the accuracy and timing
of the elongation method.

Rahalkar et al. review the Molecular Tailoring Approach (MTA), which belongs
to the Divide-and-Conquer (DC) type methods. MTA is a fragment-based linear
scaling technique, developed for the ab initio calculations of spatially extended large
molecules. The authors discuss procedures for the fragmentation of the molecule
and how to judge the quality of fragments. MTA can be used to evaluate the
density matrix, one-electron properties such as molecular electrostatic potential,
molecular electron density, multipole moments of the charge density, the Hessian
matrix, IR and vibrational spectra and accurate energy estimates, to within 1.5 mH
(~1 kcal/mol) of the actual one. The authors discuss application of MTA to proper-
ties of large organic molecules, biomolecules, molecular clusters and systems with
charged centers. This method has been incorporated in a local version of GAMESS
package and has also been interfaced with GAUSSIAN suite of programs.

Neese reviews several algorithms for the exact or approximate calculation of the
Coulomb and Hartree-Fock exchange parts of the Fock matrix. The central thesis of
this chapter is that for most current quantum chemistry applications, linear scaling
techniques are not needed, however, the author adds, if a really big system (e.g.
involving several hundreds of atoms, or with a spatial extent >20–25 Å) must be
studied by quantum chemical methods, then there is no alternative to a linear scaling
technique. As far as the Coulomb part of the Fock/Kohn-Sham matrix is concerned,
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various techniques are discussed including analytical approaches, methods based on
multipole approximation and the resolution of identity or Cholesky decomposition.
Similarly, algorithms for calculating the exchange term are reviewed (e.g. the semi-
numerical and the RI-K approximation). The computations have been performed by
employing the ORCA package.

Rubensson et al. discuss methods to compute electron densities using computer
resources that increase linearly with system size. They focus on the Hartree-Fock
and density functional theories. The authors review multipole methods, linear
scaling computation of the Hartree-Fock exchange and density functional theory
exchange-correlation matrices, hierarchic representation of sparse matrices, and
density matrix purification. They discuss error control and techniques to avoid the
use of the ad hoc selected parameters and threshold values to reach linear scaling.
Benchmark calculations are presented, in order to demonstrate the scaling behaviour
of Kohn-Sham density functional theory calculations performed with the authors’
linear scaling program. It seems that the error control and the distributed memory
parallelization are currently the most important challenges.

Aquilante et al. review methods which employ the Cholesky Decomposition
(CD) technique. A brief introduction to the CD technique is given. The authors
demonstrate that the CD-based approaches may be successfully applied in elec-
tronic structure theory. The technique, which provides an efficient way of removing
linear dependencies, is shown to be a special type of a resolution-of-identity or
density-fitting scheme. Examples of the Cholesky techniques utilized in various
applications (e.g. in orbital localization, gradient calculations, approximate repre-
sentation of two-electron integrals, quartic-scaling MP2) as well as examples of
calibration of the method with respect to various properties (e.g. total energies) are
presented. In the authors’opinion the full potential of the Cholesky technique has
not yet been completely explored.

Korona et al. discuss local methods which are implemented in MOLPRO quan-
tum chemistry package for the description of electron correlation in the ground
and electronically excited states of molecules. The authors review improvements
in the implementation of the density fitting method for all electron-repulsion inte-
grals. It is shown how the linear scaling of CPU time and disc space results from
the local fitting approximations. Extension to open shell systems and the effect of
explicitly correlated terms is discussed and it is shown that they lead to significant
improvement in accuracy of the local methods. They review electron excitations by
EOM-CCSD and CC2 theories as well as first and second-order properties within
the framework of local methods. Some applications are reviewed which show the
efficiency of the discussed techniques.

Authors Panczakiewicz and Anisimov discuss the LocalSCF approach, which
relies on the variational finite localized molecular orbital (VFL) approximation.
VFL gives an approximate variational solution to the Hartree-Fock-Roothaan equa-
tions by employing compact molecular orbitals using constrained atomic orbital
expansion (CMO). A localized solution is attained under gradual release of the
expansion constraints. A number of tests have confirmed the agreement of the Local
SCF results with those obtained by using less approximate methods.
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Niklasson reviews some recursive Fermi operator expansion techniques for the
calculation of the density matrix and its response to perturbations in tight-binding,
Hartree-Fock and density functional theory, at zero or finite electronic temperatures.
It is shown that the expansion order increases exponentially with the number of iter-
ations and the computational cost scales linearly with the system size for sufficiently
large sparse matrix representations, due to the recursive formulation. Applications
are presented to demonstrate the efficiency of the methods.

Zeller reviews a Green function (GF) linear-scaling technique relying on the
Korringa- Kohn-Rostoker (KKR) multiple scattering method for Hohenberg-Kohn-
Sham density functional calculations of metallic systems. The author shows how
linear scaling is achieved in the framework of this approach. The KKR-GF method
directly determines the Kohn-Sham Green function by using a reference system
concept. Applications involving metallic systems with thousands of atoms are pre-
sented and the exploitation of parallel computers for the applications of the KKR-GF
method is discussed.

We would like to take this opportunity to thank all the authors for devoting their
time and hard work in enabling us to complete this volume.

Wrocław, Poland Robert Zaleśny
Athens, Greece Manthos G. Papadopoulos
St. John’s, NL, Canada Paul G. Mezey
Jackson, MS, USA Jerzy Leszczynski
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CHAPTER 1

PLANE-WAVE BASED LOW-SCALING ELECTRONIC
STRUCTURE METHODS FOR MOLECULES

PETER PULAY
Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA,
e-mail: pulay@uark.edu

Abstract: This paper reviews the use of plane-wave based methods to decrease the scaling of the
most time-consuming part in molecular electronic structure calculations, the Coulomb
interaction. The separability of the inverse distance operator allows the efficient calcu-
lation of the Coulomb potential in momentum space. Using the Fast Fourier Transform,
this can be converted to the real space in essentially linearly scaling time. Plane wave
expansions are periodic, and are better suited for infinite periodic systems than for
molecules. Nevertheless, they can be successfully applied to molecules, and lead to large
performance gains. The open problems in the field are discussed.

Keywords: Basis sets, Density functional theory, Molecular orbitals, Plane waves, Quadrature

1.1. INTRODUCTION

In most routine molecular quantum chemistry calculations, for instance in Hartree-
Fock and density functional (DFT) theories, the dominant computational work is
the evaluation of the electron repulsion energy and its matrix elements. This chap-
ter focuses on the efficient evaluation of these quantities, in particular the Coulomb
component, using expansions in plane waves. This reduces the steep scaling of the
electron repulsion terms with molecular and basis set size drastically. Alternative
methods are discussed in other chapters. The main advantage of plane wave
based low-scaling methods over competing methods, for instance the fast multi-
pole method [1, 2] is that they become efficient for modest-sized molecules already;
many alternative methods don’t show significant improvement until large system
sizes. However, their infinite periodic nature is not a natural fit with molecules.

The overwhelming majority of molecular electronic structure calculations use
atomic basis sets, corresponding to the chemists’ notion of a molecule consisting of
atoms. In this method, the unknown molecular orbitals (MOs) ϕi are represented as
linear combinations of atomic-like fixed basis functions χp

1
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ϕi(r) =
∑

p

χp(r)Cpi (1-1)

where r is the position of the electron. The basis functions are often designated
as atomic orbitals (AOs), although they are usually not genuine atomic orbitals. The
unknown coefficients Cpi are determined by minimizing the total energy. In the non-
relativistic case, the ultimate building blocks, the spin-orbitals, can be written as the
products of an orbital and a spin function, usually simply α or β. The main advan-
tage of the atomic basis set representation is its compactness. By using the atomic
nature of the electron distribution, a few hundred basis functions can adequately
describe the MOs of a typical drug-sized molecule. This advantage was essential
when computer memories were measured in kilobytes, rather than Gigabytes but it
is less important now.

Solid state physicists often use a diametrically opposite starting point where the
natural basis functions are plane waves. (For a general reference on plane wave
methods, see [3].) In the first approximation, the presence of atoms in the elementary
cell is neglected. To preserve electrical neutrality, the positive charge of the nuclei
is smeared out evenly in space. In this “jellium” model, the natural basis functions
are plane waves (PWs), conveniently written in complex form as

χ (r) = exp (iagr), (1-2)

using the Euler formula, eix = cos (x) + isin(x). Here g = (gx,gy,gz) is a vector of
integers, and a = 2π/L where L is dimension of the elementary cell. For simplicity,
it is assumed here that L is the same in all three spatial dimensions, although in actual
calculations this condition is fulfilled only for cubic space groups. For molecules,
a box enclosing essentially the whole electron density replaces the elementary cell;
the dimensions are adjusted to the size of the molecule. The factor a ensures that
the plane waves are commensurate with the dimensions of the elementary cell. To
limit the number of plane wave basis functions, the magnitude or the maximum
component of g must be restricted. A plane wave expansion can describe any orbital
or electron density to arbitrary accuracy if the upper limit on g is sufficiently high.
However, the number of plane waves required to describe the sharply peaked core
orbitals is huge, and in practice core orbitals and core electron densities cannot be
adequately represented by plane waves. Even the valence shells of some electroneg-
ative atoms, for instance oxygen, are too compact to be easily represented by plane
waves. The quantity characterizing the cutoff is usually given as the kinetic energy
corresponding to the maximum wave vector, Ecutoff = 2π2(gmax/L)2Eh (atomic unit
of energy; this quantity is often quoted in Rydberg units, 1 Ry = 0.5 Eh). Unless
specifically noted, we will use atomic units in this chapter, i.e., distances are mea-
sured in units of the Bohr radius a0, and energies in Hartrees, Eh. A quantity more
useful than gmax is the grid density, d = 2gmax/L, i.e. the number of plane wave
basis functions per bohr.

Plane wave based methods became popular in the physics community after the
introduction of the Car-Parrinello direct dynamics method [4], for which plane
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wave basis sets are particularly appropriate. A number of plane-wave based density
functional programs have been developed, mainly for the treatment of solid state
problems: CASTEP [5], VASP [6], and Quantum Espresso [7] are three representa-
tive examples. Plane wave based electronic structure programs are most appropriate
to “pure” DFT, i.e., no Hartree-Fock exchange, because including exact (Hartree-
Fock) exchange increases the computational work very much. In addition, to keep
the number of plane wave basis functions reasonable, the core electrons (and in
some cases even the inner valence) have to be represented by alternative means,
treating explicitly only the smoother valence electron distribution. Core charge den-
sities can be replaced by pseudopotentials (effective core potentials), or represented
as frozen cores in an atomic basis set. The latter Augmented Plane Wave (APW)
methods played an important role in solid-state physics [8] but the severe approxi-
mations that they used, and their solid-state orientation made them largely irrelevant
for chemistry which is a science of small energy differences. The modern version
of the augmented plane wave method, the Projector Augmented Wave (PAW) tech-
nique of Blöchl [9], employs only the frozen-core approximation, and can be cast
in a form closely analogous to the “ultrasoft” pseudopotentials of Vanderbilt [10],
as shown by Kresse and Joubert [11]. Even after eliminating the cores, the number
of plane waves required for an accurate representation of the orbitals is large. The
actual number depends on the size and description of the core, and the desired accu-
racy but, for high accuracy, can easily exceed a few million. This causes difficulties
with the optimization of the wavefunction which scales computationally as the cube
of the basis set size.

The periodic nature of the PW basis is appropriate only for 3-dimensional crys-
tals. Lower dimensional systems: layers, polymer chains, and molecules can be
treated by the supercell method, i.e. placing the system in a box sufficiently large
to eliminate the interaction between the system and its periodic images. However,
this leads to inefficiencies because in PW methods, empty space is not free compu-
tationally. An alternative method, based on the truncation of the Coulomb operator,
will be described below. We will not be able to review physics-based, solid-state
oriented PW methods here; there are a number of excellent reviews in the literature.
Rather, we will concentrate on the application of an auxiliary PW basis for the cal-
culation of the Coulomb energy in traditional atomic (in practice Gaussian) basis
set calculations. Such methods were first suggested by Lippert et al. [12], and have
since been implemented in at least three comprehensive programs: Quickstep [13],
see Refs. [12, 14–19]; PQS [20, 21], see Refs. [22–27]; and Q-Chem [28], see Refs.
[29–32]. The first implementation uses the acronyms GPW and GAPW; the latter
two implementations are known as the Fourier Transform Coulomb (FTC) method.
In spite of the promising results published by these groups (see the last section), the
potential of plane-wave based methods has not yet been fully utilized in mainstream
quantum chemistry.

The principal attraction of PW methods in quantum chemistry is that they allow
the low-scaling calculation of the electron repulsion energy which is traditionally
the most expensive part of routine calculations. The electron repulsion energy of
a determinantal (Hartree-Fock) wavefunction can be conveniently written as the
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sum of two terms: the classical Coulomb energy, expressed through the charge
density as

J = 1

2

∫
dr3

∫
dr′3ρ(r)ρ(r′)

∣∣r − r′
∣∣−1 = 1

2

occ∑

i,j

( ii| jj), (1-3)

and the exchange term

K = 1/2

occ∑

i,j

( ij| ij). (1-4)

Here i and j stand for occupied spin-orbitals ψi and ψj, respectively, ρ is the electron
charge density: ρ(r) = ∑occ

i |ψi|2, and the integrals over r and r’ run over all space.
A two-electron integral is defined in general as

(ij| kl) =
∫

dr3
∫

dr′3ψi(r)ψ∗
j (r)ψk(r′)ψ∗

l (r′)
∣∣r − r′

∣∣−1
(1-5)

The Coulomb term is easily visualized as the self-repulsion of the electron cloud
with density ρ. The exchange term has no classical analogue. It arises from the
antisymmetry of the wavefunction required by the Pauli principle.

Common (also called “pure”) DFT replaces the exchange energy K (and usually
also the much smaller correlation energy) by a local or semilocal functional of the
electron density, while in “hybrid” DFT a fraction of the Hartree-Fock exchange,
Eq. (1-4), is retained. This is important in the present context because most low-
scaling methods can be applied readily only to the classical Coulomb term, and are
thus largely restricted to pure DFT methods.

In traditional Hartree-Fock theory, both J and K are calculated by substituting
the expansion of the orbitals by basis functions, Eq. (1-1), in Eqs. (1-3) and (1-4).
This gives equations that contain 4-index AO integrals (pq|rs), and scale formally
with the fourth power of the AO basis set size N. This “integral catastrophy” was
the major hurdle preventing the application of quantum theory to realistic molecular
systems in the early phase of quantum chemistry. The problem resolved itself par-
tially with the dramatic expansion of computer power from 1980 on, because, using
proper thresholding, the basis function products (usually called charge densities) pq
and rs become negligible if the AOs p and q, or r and s are distant. This means that,
for large systems, the number of non-vanishing charge densities grows linearly and
not quadratically with the size of the system, assuming that the type of the basis set is
kept the same. However, the number of necessary two-electron integrals still grows
quadratically with the molecular size because the Coulomb operator, |r − r′|−1, has
long range. Although the steep O(N4) scaling of AO-based MO theory naturally
reduces to O(N2) in the limit of large molecules, it still imposes a stiff limit on the
system size that can be treated with traditional quantum chemistry programs.

Of the two components of the electron repulsion energy, Coulomb and exchange,
the scaling of exchange is reduced further naturally (at least in insulators) by the
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locality of the density matrix [33]. As a consequence, Hartree-Fock exchange should
scale linearly with system size in the asymptotic limit [34–37]. In practice, it is dif-
ficult to reach the asymptotic scaling regime, even for linear molecules. However,
hybrid density functional that use only the short-range component of the electron
repulsion, for instance the HSE functional [38] are comparable in accuracy to func-
tional that use the full exact exchange, and converge faster with system size. Guidon
et al. [19] extended the Quickstep program to include short-range Hartree-Fock
exchange. The exchange terms are calculated in Gaussian basis as in conventional
Hartree-Fock theory. PQS [20, 21] can also use exact exchange but with a significant
loss of efficiency.

Natural scaling reduction does not help if the basis set is increased while the
molecule size is kept constant in AO basis set methods. In this case, the compu-
tational effort to generate and process the 2-electron integrals increases roughly
as O(N4).

1.2. CALCULATION OF THE COULOMB ENERGY IN PLANE
WAVE BASIS

The main advantage of a plane wave basis is that the Coulomb operator is separable
in plane wave basis. The Fourier transform of the inverse distance operator is given
by the Fourier integral

∣∣r − r′
∣∣−1 = (2π2)−1

∫
k−2 exp [ik · (r − r′)]dk3 (1-6)

where k = |k|, and k is a vector in the reciprocal (momentum) space. The integral is
over the full reciprocal space. Representing the infinite periodic charge density by a
plane wave expansion (see Eq. (1-2)),

ρ(r) =
∑

g<gmax

D(g) exp (iag · r) (1-7)

yields the Coulomb potential of the infinite periodic charge density ρ(r) as

V(r) =
∫
ρ(r′)

∣∣r − r′
∣∣−1

dr′ =
(

L2

π

)∑

g

D(g)g−2 exp (iag · r) (1-8)

where we made use of the the orthogonality of plane waves:

∫ ∞

−∞
ei(k−k′)xdx = 2πδ(k − k′), (1-9)

g = |g|, and the factor L2 comes from a−2 = (2π/L)−2. Associated with the recip-
rocal space grid, there is a corresponding real-space grid with the same number
of grid points, and a spacing h = d−1, i.e., the inverse of the reciprocal (momen-
tum) space grid density introduced in the previous section. Using the fast Fourier
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transform (FFT), one can switch from one representation to the other. For quantities
that can be represented exactly in the plane-wave basis, the two representations are
equivalent. The efficiency of the method derives from the ability to perform each
operation in the appropriate representation, i.e., in direct space or momentum space.
Thus the Coulomb potential in the discrete momentum space is simply D(g)g−2 (cf.
Eq. 1-8); its Fourier transform gives the potential V(r) at the real space gridpoints rp.
V(r) is used to calculate the Coulomb energy in real space by numerical quadrature
on the real space grid,

J =
∫

V(r)ρ(r)dr3 ≈
∑

p

V(rp)ρ(rp)w(rp) (1-10)

where rp is a real-space grid point and wp is a quadrature weight; for simple rect-
angular grids, the weights are constants. The summation in Eq. (1-10) is carried out
only in the principal unit cell. The evaluation of the matrix elements of the Coulomb
operator is similar, except that the total charge density is replaced by an elementary
charge distribution, i.e. by the product of two basis functions:

Jpq =
∫
χ∗

p (r)V(r)χq(r)dr3 ≈
∑

p

V(rp)χ∗
p (r)χq(r)w(rp) (1-11)

where χp and χq are (atomic) basis functions.
Neglecting some technical difficulties which will be addressed below, the essence

of the plane-wave (or Fourier space) calculation of the Coulomb energy is to use the
two equivalent representation of the potential and the charge density: on a direct-
space grid with a spacing h = d−1(d = 2gmax/L) in a box of size L, and in
the reciprocal space of the integer vectors g where |g|<gmax. Efficient transforma-
tion between the direct and reciprocal space representations, using the fast Fourier
transform (FFT) technique, is critical to the success of the plane wave method. An
N-point FFT (in one dimension) scales as O(NlogN), i.e., the scaling is only slightly
higher than linear. (The base of the logarithm is not specified here as it is not rele-
vant for the scaling; it can be assumed to be 2 if the number of grid points is a power
of 2.)

Disregarding the complications caused by the presence of compact orbitals and
charge densities, the calculation of the Coulomb energy and matrix consists of the
following steps:

(1) Calculate the electron density on the real-space grid
(2) Use Fast Fourier Transformation (FFT) to obtain a plane wave (reciprocal

space) representation of the charge density, Eq. (1-7), on the plane wave grid
defined by the reciprocal vectors g

(3) Divide values of the charge density in the reciprocal space by g2 to obtain the
Coulomb potential

(4) Transform the potential back to real space, Eq. (1-8), using FFT
(5) Evaluate the Coulomb energy in real space by quadrature, Eq. (1-10)



Plane-Wave Based Low-Scaling Electronic Structure Methods 7

(6) For each pair of atomic orbitals p and q, integrate their product with the potential
to obtain the matrix elements of the Coulomb operator, needed to form the Fock
matrix, according to Eq. (1-11).

The efficiency and scaling of this procedure is determined by three time-critical
steps: the calculation of the electron density (1), the Fast Fourier Transformation
(FFT) steps (2) and (4), and the evaluation of the matrix elements of the J operator,
step (6). The first step can be carried out in two different ways: calculating the
orbital values first, and forming the sum of their squares, or using a density matrix
formalism, ρ(r) = ∑

pqDpqχp(r)χq(r). Without thresholding, both have fairly high

scaling, e.g., the second method scales as O(N3). However, if the basis functions are
local, this scaling reduces to linear. As mentioned above, FFT scales as O(NlogN)
where N is the number of grid points. This is evident for a one-dimensional FFT
but also holds in the two- and three-dimensional case. For a given spatial resolution,
N is proportional to the volume of the system (more precisely, the volume of a box
that contains essentially the whole electron density of the system). In the limit of
large systems, the volume and therefore N is roughly proportional to the number of
atoms, and the scaling is only slightly steeper than linear.

The numerical integration for the evaluation of the Coulomb energy is obviously
linear in the number of the grid points. The calculation of the Coulomb matrix ele-
ments appears at first to have a steeper scaling. However, the usual atomic basis
functions are highly localized, and, for sufficiently large systems, the number of
Coulomb matrix elements exceeding a given threshold is linear in the system size.
If properly implemented, the integration effort is independent of the system size,
depending only on the spatial extent of the basis functions and the grid density, giv-
ing an overall linear scaling. However, this limit is reached only for relatively large
systems.

1.2.1. Technical Difficulties

1.2.1.1. Divergencies

The recipe given above appears straightforward. However, in actual implementa-
tion, a number of technical problems arise. Chief among these is the fact that the
Coulomb potential of an infinite periodic charge density diverges if the lower elec-
trical moments (up to quadrupole), of the elementary cell are non-zero. This is of
course always the case if the electronic charge is considered by itself, without the
cancelling nuclear charges. (A good discussion of the problems with divergence and
conditional convergence, which also arise if the dipole moment of the elementary
cell is non-zero, is given in [39], and will not be repeated here.) The problem is
that the g= 0 component of the density in the reciprocal space, D(0), is non-zero,
resulting in division by 0 in Eq. (1-8). Simply omitting D(0) is physically equivalent
to the jellium model, i.e. to adding a uniform neutralizing positive charge density to
the system which is far from the actual system. Calculating the Coulomb potential
in real space can easily avoid singularities, even for charged systems [40] but this
procedure has quadratic scaling and its accuracy is limited [23].
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An alternative approach is to consider the total (nuclear + electronic) charge,
which has no net charge for neutral systems. The problem here is that the self-
repulsion energy of pointlike nuclei, Eq. (1-10) diverges to infinity. In addition, the
presence of sharp singularities in the potential causes numerical errors in the numer-
ical quadratures. A possible solution [14, 41] is to smear out the nuclear charge, for
instance replacing the pointlike nuclei by positive Gaussian charge distributions,
calculate the Coulomb energy and its matrix elements with the modified charge dis-
tribution, and correct the result for the difference between the smeared-out and real
nuclei. This method is viable, although somewhat involved, and the sharp nuclear
charge distributions are a source of numerical errors. Neither of these methods can
handle ions. This is not a problem in solid-state applications, as a solid should
obviously be electrically neutral, but is a limitation for molecular calculations.

A simpler and more general solution to the divergence problem is to modify
the Coulomb potential, eliminating its infinite range which is the source of diver-
gence. In a purely numerical fashion, this was introduced by Hockney [42, 43].
The Coulomb potential, 1/r, can be simply truncated to zero at r > D. The limit D
should be chosen to exceed the maximum distance between non-negligible charges
in the system. If the periodic repeating box is large enough so that the minimum
distance between non-vanishing charges in neighboring boxes is larger than D then
the spurious Coulomb effect of neighboring boxes vanishes. This requires a box
roughly twice as large as the original box that contains all the charges. The trun-
cated 1/r function has an exact Fourier transform: 4πk−2[1 − cos (kD)] which
differs from the Fourier transform of the infinite-range 1/r function by the fac-
tor in the square bracket. To the knowledge of the current author, this was first
described by Pollock and Glosli [44] but it was not widely known or used, and was
rediscovered several times [23, 45]. An alternative method, introduced by Martyna
and Tuckerman [46], uses the Ewald decomposition of the Coulomb potential in
a long-range and a short-range term, and retains only the latter. While not exact,
this method can be made arbitrarily accurate by choosing proper thresholds. It
has the advantage that there is no discontinuity in the modified Coulomb poten-
tial which generate high frequency components in the reciprocal space and slow
down convergence. Note that there is no strict need for the existence of an analyti-
cal Fourier transform of the modified Coulomb interaction. For instance, a function
v(r) = 1/r if r<D1, p(r) if D1 < r < D2, and zero if r > D2, could be used, in
connection with a tabulated numerical Fourier transform. The function p(r) could
be chosen as a polynomial that makes the function v(r) and its first, second,.. deriva-
tives continuous. A function like this has no simple analytical Fourier transform but
is rigorously zero beyond D2 and is smooth. Its numerical Fourier transform must
be determined only once and can be stored in tabulated form.

The concept of truncated Coulomb potential can be extended from zero-
dimensional molecules (“clusters” in the physics literature) to one- and two-
dimensional systems, i.e. polymers (or wires) and layers (or slabs). The Coulomb
interaction in these systems must be truncated in two dimensions (for polymers and
wires), or one dimension (for layers), and retains its infinite range in the periodic
dimensions. The analytical derivation of the Fourier transform of these potentials
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is tedious but the resulting formulas are quite simple, both for layers [44] and for
polymers. The Ewald decomposition method can be similarly generalized for these
cases [47].

1.2.1.2. Compact Charge Densities

Another obvious difficulty with plane wave expansions is that they can represent
only smooth charge densities at reasonable computational effort. The sharply peaked
core regions must be treated by alternative methods. In programs which use plane
waves directly as basis functions, this usually means that the cores, and sometimes
even the inner valence regions of the atoms must be represented by pseudopotentials
(effective core potentials). Modern pseudopotentials provide accurate representation
of the effect of the core on the valence electrons, and in some cases are preferable
to all-electron treatment because they allow the inclusion of the main relativistic
effects in a non-relativistic program. However, they are obviously inappropriate for
properties that are strongly dependent on the core orbitals. Transition metals are
a particularly difficult problem, as they have incompletely filled compact d or f
shells which must be included in the valence orbital set but are difficult to treat
using plane waves with moderate cutoffs. Electronegative first-row elements (O, F)
likewise have compact valence shells. This problem can be addressed by two tech-
niques: ultrasoft pseudopotentials [48], and the Projector Augmented Wave (PAW)
method of Blöchl [9, 49, 50]. In both methods, fixed atomic orbitals are used to
describe the bulk of the core charge, with plane waves supplying a smooth correc-
tion. Both methods avoid the tedious matching of orbitals on surfaces separating the
cores from the valence region.

Methods which retain atomic basis sets and use plane waves only for the calcula-
tion of the Coulomb terms must similarly divide the charge density into a diffuse and
a compact component [12]. The Coulomb potential of the diffuse component can be
calculated efficiently using a plane wave expansion; for the core part, alternative
techniques must be used. For Gaussians, charge density components, i.e., products
of atomic basis functions, can be classified based on the sum of the exponents of
the Gaussians which largely determines the compactness of the resulting charge
density. (In some programs, three cases are distinguished: products of two diffuse
basis functions, the product of a compact and a diffuse function, and the product of
two compact functions. However, there is no advantage in treating the second and
third cases differently: the product of a compact and a diffuse basis function gives
a compact charge density.) It is worth mentioning that treating compact and diffuse
basis functions separately runs contrary to the idea of contracted Gaussian basis
sets, i.e., using fixed linear combinations of primitive Gaussians as basis functions.
This problem can be easily taken care of by switching to a decontracted (primitive)
representation. Decontracting increases the size of the basis set 1.5–3 times and thus
requires significantly more memory but this has ceased to be a problem on modern
computers.

There are several methods for the calculation of the Coulomb potential origi-
nating from the compact core (and semicore) charges, apart from pseudopotentials
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and the Projector Augmented Wave method, which presume a frozen core density
and are thus not appropriate for phenomena that involve the cores. The simplest
method is to use traditional integral-based algorithms. Because of the highly local-
ized nature of the core orbitals, only a small fraction of the integrals (a few percent
in a moderately sized molecule) involve core orbitals. We have found, however, that
the effort needed to evaluate core Coulomb contributions by this method is compara-
ble to the evaluation of the rest of the Coulomb terms because of the inherently low
efficiency of traditional two-electron integral based algorithms. Other alternatives
are density fitting (DF), also called resolution of identity, and a multipole expan-
sion of the core potential. The situation is simplified by the fact that the charges
involved are sums of largely spherical atomic-like charge densities. This simplifies
both the expansion of the basis set in an auxiliary basis, and the truncation of the
multipole expansion. While neither method is linearly scaling, they should reduce
the computational effort needed for the core electrons sufficiently to make this part
computationally insignificant except in huge calculations.

1.3. PLANE WAVE AND ATOMIC BASIS SETS

1.3.1. Comparison of PW and Atomic Basis Sets

In this section, we compare plane wave basis sets with atomic basis sets. As we shall
see, both have significant advantages and disadvantages. The main advantage of
atomic basis sets is their compactness: a small set of basis functions can adequately
represent an atom in a molecule. Their disadvantages are:

(1) The definitions of basis sets are complex and somewhat arbitrary, leading to a
profusion of competing basis sets, and makes comparing calculations difficult

(2) The formulas for the evaluation of the integrals are complex and computation-
ally expensive

(3) They are not orthogonal, which may lead to near-linear dependence and
numerical problems

(4) The coupling of the basis function centers to the nuclear positions complicates
the evaluation of the forces on the nuclei

(5) The Basis Set Superposition Error (BSSE) introduces unphysical attractive
forces between atoms.

The advantages of plane wave basis sets are

(1) They are simple and regular, controlled by a single parameter, the cutoff energy
or maximum wave vector

(2) They allow a highly efficient evaluation of the Coulomb potential
(3) They are orthogonal, and free from linear dependencies
(4) They are independent of the nuclear positions, simplifying the calculation of

forces on the atoms
(5) They are free of the Basis Set Superposition Error
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These advantages are accompanied by significant disadvantages:

(1) The large number of plane waves makes the optimization of the wavefunction
expensive

(2) The calculation of the exact (Hartree-Fock) exchange is also expensive in a PW
basis

(3) Atomic cores and compact charge densities cannot be represented with a
reasonably sized plane wave basis, and must use auxiliary functions or pseu-
dopotentials

1.3.2. The Best of Both Worlds?

The comparison between plane waves and atomic basis sets suggests that a combi-
nation of both may be more efficient than either one alone. There are two possible
routes:

The first is to use a genuine augmented plane wave basis set, i.e., a basis set
that consists of both plane waves and Gaussians. Plane waves would describe only
the diffuse part of the electron cloud, and Gaussians the inner valence and core
orbitals. In this method, a limited number of plane waves suffices because only
the diffuse basis functions are represented by the plane waves. Most of the prob-
lems with atomic basis sets (overcompleteness and basis set superposition error)
are caused by diffuse basis functions, and a combined basis should eliminate both
while still remaining reasonably compact. A combination as described makes most
sense for accurate large basis set calculations, and there is no reason why it should
be restricted to density functional theory. Configuration-based electron correlation
methods should be feasible, as the basis set size remains modest. As yet, there is
no general implementation of this method except for initial tests for very small
molecules [22], although all tools are available, and it appears a worthwhile goal.

A simpler alternative, introduced by the Parrinello group [12, 14, 15] and imple-
mented in Quickstep [13], PQS [21] and Q-Chem [28] uses simply an atomic
Gaussian basis set. However, the most expensive part of the calculation, the eval-
uation of the Coulomb terms, is carried out in an auxiliary plane wave basis. This
results in a significant speed-up, particularly for large basis sets. However, some of
the undesirable aspects of atomic basis sets, in particular overcompleteness of large
atomic basis sets and its consequence, near linear dependence, and also basis set
superposition error, reappear. The rest of this chapter will deal exclusively with this
second method.

1.4. IMPLEMENTATIONS AND RESULTS

All three implementations (Quickstep, PQS and Q-Chem) of the GAPW/FTC
(Gaussian and Plane Wave or Fourier Transform Coulomb) methods show sig-
nificant, in some cases spectacular speed-ups compared to conventional Gaussian
non-hybrid DFT calculations, particularly for large basis sets. For instance,
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VandeVondele et al. [13] report a DFT pseudopotential calculation on a dinucle-
oside monophosphate crystal with 280 atoms in the unit cell, using a double zeta
plus polarization basis set developed specifically for Quickstep (2,712 basis func-
tions). A single optimization cycle (energy plus forces) on a single CPU took only
6 min, making such large calculations feasible on a desktop computer. Calculation
using over 40,000 basis functions for 1,024 water molecules are reported in
[13]. Unfortunately, our own attempts to use Quickstep were hindered by SCF
convergence difficulties, even on molecules with large bandgaps.

The FTC timings obtained by PQS and Q-Chem are less spectacular but still very
encouraging. These programs use a more conservative strategy and try to match the
total energy of conventional programs to high accuracy, say 10–6 Eh/atom. Such
high accuracy in the total energy is necessary to convince new users about the relia-
bility of the method. However, it is not needed for most problems, as shown by the
accuracy tests of VandeVondele et al. on molecular geometries [13].

All three implementations show clearly that, in order to take full advantage of
the large speed-ups in the Coulomb contribution, it is necessary to accelerate all
other significant parts of the calculation. Both the part of the Coulomb operator that
is calculated in the Gaussian basis, and the evaluation of the exchange-correlation
contribution must be accelerated significantly to match the performance gained by
the improved Coulomb algorithm. This is particularly important for smaller basis
sets where the Coulomb evaluation is less dominant computationally. For instance,
for a series of diamond-like carbon clusters, Füsti-Molnár and Kong [29] obtain a
fourfold speed-up for the Coulomb term over the already very efficient (J-engine+
Continuous Fast Multipoles) algorithm for a diamond-like carbon cluster of 150
atoms, using the 6–311G(d,p) basis set. However, the overall speed-up is only 1.71
because of the overhead from the calculation of the exchange-correlation (69%
of the total time) and diagonalization (7%). The FTC step itself amounts to only
5% of the total calculational time. The diagonalization step, or its equivalent (e.g.,
pseudodiagonalization [51] or Orbital Transformation [52]) becomes important only
for calculations over ∼5,000 basis functions. Such large systems (several hundred
atoms) can be frequently treated by alternative methods, for instance a combination
of quantum mechanical techniques and empirical molecular mechanics (QM/MM)
methods. As the above example shows, the main overhead steps for moderately large
calculations are the exchange-correlation contribution and the Coulomb contribu-
tions that FTC cannot calculate (19% in the above example). The timings obtained
using PQS and shown below agree with this general picture.

Significant effort has been undertaken to improve the computational steps that
are responsible for the non-Coulomb overhead. Quickstep [13] uses a sophisticated
multigrid algorithm for the numerical quadrature. The authors of Q-Chem have also
developed new grids for integrating the exchange-correlation term [30–32].

A technical aspect of GAPW/FTC calculations that is worth mentioning is that
contractions (which typically include basis functions with both high and low expo-
nents) interfere with FTC since only the lower exponent (more diffuse) functions
can be treated by FTC. Either a special decontracted basis set must be used, or the
basis can be decontracted in the program. The second alternative is preferable, as
standard basis sets can be used.
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Table 1-1. Timings (in minutes) and total energies for aspirine, C9H8O4, on a 2 GHz AMD 246 Opteron
processor. The column ERI shows timings calculated using the traditional electron repulsion integral
algorithm. The calculations use slightly decontracted versions of the 6-31G(d,p) and 6-311G(2df, 2pd)
basis sets. Coulomb, XC and Matrix refer to the calculation of the Coulomb operator and energy, the
calculation of the exchange-correlation and miscellaneous (mainly matrix) operations, such as diagonal-
ization, pseudodiagonalization and DIIS. For FTC calculations, the Coulomb timing includes both the
plane wave and the traditional integral time, with the latter dominating for large calculations by about a
factor of 3

6-31G(d,p)-dc (NBF = 295) 6-311G(2df,2pd)-dc (NBF = 555)

Basis set FTC ERI FTC ERI

Coulomb 2.43 3.47 7.72 51.59
XC 1.59 1.74 6.32 6.47
Matrix 0.06 0.04 0.27 0.22
Total 4.08 5.28 14.30 58.62
Energy −648.526478 −648.526479 −648.719612 −648.719612

Tables 1-1, 1-2 and 1-3 show timings and accuracy for B-LYP all-electron
total energy calculations for three molecules of increasing size: aspirin (C9H8O4),
sucrose (C12H22O11) and taxol (C47H51NO14) [23]. Note that the scaling takes its
asymptotic value only for rather large systems in FTC because the box must have a
significant size, say 10 a0 (≈ 5 Å) even for the smallest systems to guarantee that
it contains the whole electron density. The results in the Tables are similar to the
results obtained by Q-Chem. The plane wave method speeds up the calculation of
the Coulomb term very much, over a factor of 30 for the largest molecule and large
basis set. However, the overall speed-up for taxol is only an order of magnitude for
the large basis set, and less than a factor of 4 for the smaller basis because of the
overhead, mainly from the traditional integral calculation and from the evaluation
of the exchange-correlation contributions.

Figure 1-1 shows the scaling of the evaluation of the Coulomb contributions for
polyalanines, n = 2–15. Although the FTC method provides significant speed-up
compared to a traditional calculation, the timing is dominated by the evaluation of
the small fraction of the electron repulsion integrals for the compact basis functions
that cannot be treated by FTC. Replacing the traditional electron repulsion integral
algorithm by one of the alternatives discussed in Section 1.2.1.2, for instance by a

Table 1-2. Timings and energies for sucrose, C12H22O11. See Table 1-1 for explanation

6-31G(d,p)-dc (NBF = 569) 6-311G(2df,2pd)-dc (NBF = 1,080)

Basis set FTC ERI FTC ERI

Coulomb 6.61 20.89 20.69 278.21
XC 5.25 5.73 19.03 19.88
Matrix 0.36 0.29 2.27 1.53
Total 12.22 26.93 42.00 299.76
Energy −1,297.606133 −1,297.606137 −1,298.000427 −1,298.000425
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Table 1-3. Timings and energies for taxol, C47H51NO14. See Table 1-1 for explanation

6-31G(d,p)-dc (NBF = 1,484) 6-311G(2df,2pd)-dc (NBF = 2,860)

Basis set FTC ERI FTC ERI

Coulomb 39.56 255.02 127.78 3,038.50
XC 34.42 56.04 126.19 140.85
Matrix 6.45 5.75 41.49 27.70
Total 80.50 317.00 295.68 3,208.27
Energy + 2,928 −0.615108 −0.615114 −1.442401 −1.442376
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Figure 1-1. The scaling of the Coulomb time with respect to molecular size for a series of polyalanines,
n = 2−15. FTC PW means the plane wave component of the FTC calculation (diffuse densities). FTC
ERI means the remaining (compact) integrals that were calculated using traditional electron repulsion
integrals

multipole expansion, should increase the efficiency of the Coulomb part by almost
an order of magnitude.

The plane wave parts of both Quickstep [12] and PQS [26, 27] have been
implemented in parallel. The factor limiting parallel scaling for a large number of
processors is the parallel three-dimensional Fast Fourier Transform, which includes
the transposition of a large matrix. Therefore, the parallel scaling of plane-wave
methods is limited at this time. However, the inherently high performance of these
methods makes up to a certain extent for the limited parallel scalability.

1.5. OUTLOOK AND PERSPECTIVES

Plane wave based methods for the calculation of the Coulomb term in electronic
structure calculations accelerate the calculation of these terms, usually the most
expensive part of the calculations, by orders of magnitude for large molecules and
basis sets. Unlike some of their competitors, they are surprisingly accurate also for
relatively small systems, and deserve to be more widely used in chemistry-centered
programs.
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The most important problems to solve in this field are listed below.

1. Improve the efficiency of the other major computational tasks, for instance to
formation of the exchange-correlation matrix, to match the performance of the
Coulomb evaluation.

2. Develop improved methods for the calculation of the exact (Hartree-Fock)
exchange.

3. Improve the parallel scaling of the method.
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Abstract: The fragment molecular orbital (FMO) method is a computational scheme applied to the
conventional molecular orbital theories, which reduces their scaling from N3. . . N7 to a
nearly linear scaling, where N is the system size. FMO provides an accurate treatment
of large molecules such as proteins and molecular clusters, and it can be efficiently par-
allelized to achieve high scaling on massively parallel computers. The main purpose of
this chapter is to focus on the derivation of the equations and to provide a concise mathe-
matical description of FMO. A brief summary of the recent applications of FMO is also
given.

Keywords: FMO, FMO3, ESP, HOP, AFO, Green’s function, ESP-DIM, ESP-PC, MP2, Coupled
cluster, DFT, MCSCF, ROHF, Multilayer, TDDFT, CI, CIS, CIS(D), Quantum
Monte-Carlo, Gradient, PCM, EFP, MCP, Linear scaling, Molecular dynam-
ics, PIMD, PIE, IFIE, EDA, PIEDA, LMP2, CAFI, BSSE, Counterpoise, FMO-
MO, FMO-LCMO, FMO/F, FMO/FX, FMO/XF, RESP, NMR, GIAO, CSGT, Multipole
moment, Dynamic polarizability, MCMO, NEO, Drug design, VISCANA, VLS, QSAR,
Parallelization, Protein, Ligand, Enzyme, DNA, Solvent, QSAR, Electrostatic poten-
tial, Many-body, Fragment, Fragment molecular orbital, RHF, Excited state, Open-
shell, Tessera, Cavity, RDM, MO, FILM, Earth Simulator, Energy decomposition
analysis, Atomic charge, Massively parallel

2.1. INTRODUCTION

During recent years there has been a considerable progress in the development
of quantum-mechanical methods aimed at computing large molecular systems. In
addition to the traditional ab initio approaches, which frequently rely upon the
localized molecular orbitals to describe the electron correlation, there has been a
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remarkable development in the methods utilizing in one way or another the idea of
fragmentation [1–11].

Typically, these methods operate with small pieces of the system, well defined
chemically, such as molecules in molecular clusters, or amino acid residues in pro-
teins, and attempt to reduce the high scaling of ab initio methods to linear scaling
(sometimes referred to as O(N)). The fragment molecular orbital (FMO) method
proposed in 1999 [12] is one of such approaches, which has been considerably
developed theoretically as well as applied to a wide variety of systems, including
molecular clusters, proteins, DNA, enzymes, small molecules explicitly solvated
in water droplets, ionic liquids, molecular crystals, zeolites and nanowires. As the
summary of applications and the introductory explanation of FMO have been given
elsewhere [8, 13–17], here we focus on the mathematical derivation of the method,
followed by a brief summary of recent applications.

2.2. FORMULATION OF THE RESTRICTED HARTREE-FOCK
EQUATION

The basic computational scheme of FMO has been described in detail elsewhere
[14, 17], and here we only give it very briefly for completeness. The system is
divided into pieces (fragments) and each fragment calculation is performed with
an ab initio method (such as restricted Hartree-Fock, RHF), in the presence of the
electrostatic field of the remaining fragments, determined by their atomic nuclei and
the electron density distributions. The fragment (monomer) calculations begin with
the field given by some initial guess densities, repeated in a loop self-consistently
with respect to the field dependent upon the fragment densities. This loop is called
the self-consistent charge (SCC) loop (or monomer self-consistent field, SCF), and it
can be accelerated with the direct inversion in the iterative subspace (DIIS) method
[18]. Consequently, fragment pairs (dimers), and, optionally, triples (trimers) are
computed in the fixed field determined in the previous step (see Figure 2-1). The
total properties are computed from those of fragments and dimers (trimers) as shown
below.

2.2.1. Many-Body Expansion

In the FMO method, a molecular system is divided into N fragments. The FMO total
energy is represented as follows [12, 19, 20]:

EFMO2 =
N∑

I

EI +
N∑

I>J

(EIJ − EI − EJ), (2-1)

EFMO3 = EFMO2 +
N∑

I>J>K

{
(EIJK − EI − EJ − EK) − (EIJ − EI − EJ)

−(EJK − EJ − EK) − (EKI − EK − EI)
}
.

(2-2)
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DENS 1 DENS 2 DENS 3
Construction of
ESPs from densities

ENER 1 ENER 2 ENER 3

Did all the energies get self-consistent ?

Convergence test of
monomer energies

NO

YES

SCC loop

MONO 1 MONO 2 MONO 3
Monomer SCF
under ESPs

DIM 12 DIM 13 DIM 23Dimer SCF Dimer ES

DENS 1 DENS 2 DENS 3

Construction of initial densities

Calculation of the total energy

Figure 2-1. Schematic procedure of the FMO energy calculation for a molecule divided into 3 fragments.
DENS I, MONO I and DIM IJ (I, J = 1,2,3) denote monomer density I, SCF calculation for monomer I,
and the calculation for dimer IJ, respectively. The dotted lines represent the electrostatic potential due to
monomer densities. Dimer SCF and dimer ES show that some dimers can be computed ab initio (SCF)
or with an approximation (ES)

The first expression gives the two-body expansion (FMO2) of the total energy E,
the second one adds to it the three-body corrections, in terms of the energies of
fragments EI, their pairs EIJ and, optionally, triples EIJK. The one-body energy,
if defined in the same manner, would have the electrostatic contribution double-
counted [19], however, in some context (e.g., in time-dependent density functional
theory, TDDFT) when energy differences are considered, the one-body properties
(FMO1) are also useful to consider.

In many places below we give explicit expressions for FMO2, and it is straight-
forward to extend them into FMO3. It is important to realise that FMO2 includes
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many-body effects beyond just the two-body interactions. This is accomplished with
the many-body electrostatic interaction explicitly included in all subsystem energies
as shown below.

Equation (2-1) can be rewritten as

EFMO2 =
N∑

I>J

EIJ − (N − 2)
N∑

I

EI , (2-3)

and, similarly for FMO3, using combinatorics (see also [7]). The equation in
Eq. (2-3) holds, however, if all dimer SCF calculations are performed; because
approximations are typically used reducing the number of dimers, the form in
Eq. (2-1) is the most convenient one.

The fragment energies, appearing in Eqs. (2-1) and (2-2) can be written using the
Hamiltonian HX and the wave function |�X〉 for X (X is fragment I, fragment dimer
IJ or fragment trimer IJK), as

EX = 〈�X|HX |�X〉 . (2-4)

To obtain the fragment energy, one has to solve the following Schrödinger
equation,

HX |�X〉 = EX |�X〉 . (2-5)

The explicit form of the fragment Hamiltonian HX is given by

HX =
∑

i∈X

⎡

⎣−1

2
∇2

i +
all∑

C

(
− ZC

|ri − RC|
)
+

all∑

K �=X

∫
ρK(r′)
|ri − r′|dr′

+
∑

j(∈X)>i

1∣∣ri − rj
∣∣

⎤

⎦ + ENR
X ,

(2-6)

where the first term is the kinetic energy of electrons (coordinates given by r), the
second term is the one-electron nuclear attraction potential, the third term is the
potential due to the electron density ρK(r′) of fragment K, and the fourth term is the
two-electron potential within X. The nuclear repulsion energy ENR

X is defined as

ENR
X =

∑

B∈X

∑

A(∈X)>B

ZAZB

RAB
, (2-7)

where Z is the nuclear charge of atoms, and RAB is the distance between atoms A and
B. Note here that the sums over C and K describe the potentials due to fragments
outside X. Indices C and K run over all atoms (whose coordinates are given by R)
and all fragments, respectively. Integrals over r go over the whole space.
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2.2.2. Restricted Hartree-Fock Equation for a Fragment

A single Slater determinant representation of the wave function is a good starting
point to get a more accurate one (such as a correlated wave function). Let us consider
RHF, where the restriction is imposed that each molecular orbital is occupied by two
electrons with α and β spins. In this case, the wave function for X is represented in
the following form,

|�X〉 = 1√
NX !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

φX
1 (r1) φ

X
1 (r1) φX

2 (r1) φ
X
2 (r1) · · · φ

X
NX/2(r1)

φX
1 (r2) φ

X
1 (r2) φX

2 (r2) φ
X
2 (r2) · · · φ

X
NX/2(r2)

φX
1 (r3) φ

X
1 (r3) φX

2 (r3) φ
X
2 (r3) · · · φ

X
NX/2(r3)

φX
1 (r4) φ

X
1 (r4) φX

2 (r4) φ
X
2 (r4) · · · φ

X
NX/2(r4)

...
...

...
...

. . .
...

φX
1 (rNX ) φ

X
1 (rNX ) φX

2 (rNX ) φ
X
2 (rNX ) · · · φX

NX/2(rNX )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (2-8)

where φX
k and φ

X
k are the molecular orbitals (MO) with α and β spins, respectively.

NX is the number of electrons in X, and rk is the position of electron k. These MOs
are expanded in terms of basis functions on X,

φX
k (r1) =

∑

μ∈X

CX
μkχμ(r1), (2-9)

where χμ is the basis function and CX
μk is the MO coefficient. We should note that in

this chapter the Roman (ijkl . . .) and Greek indices (μνρσ · · ·) denote the molecular
orbitals (MO) and the atomic orbitals (AO), respectively.

Substituting the wave function of Eq. (2-8) into the Schrödinger equation of
Eq. (2-5), one obtains the following RHF equation for X,

f X(r1)φX
k (r1) = εX

k φ
X
k (r1), (2-10)

where the orbital energy εX
k is the eigenvalue of the Fock operator f X(r1),

f X(r1) = h̃X(r1) + gX(r1), (2-11)

including the modified one-electron operator h̃X(r1),

h̃X(r1) = hX(r1) + VX(r1), (2-12)

where hX(r1) and VX(r1) are the internal fragment one-electron Hamiltonian opera-
tor and the electrostatic potentials (ESP) due to the nuclei and electron distribution
of other fragments, respectively,
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hX(r1) = −1

2
∇2

1 +
∑

A∈X

(
− ZA

|r1 − RA|
)

, (2-13)

VX(r1) =
all∑

L/∈X

(
− ZL

|r1 − RL|
)
+

all∑

K �=X

∫
ρK(r′)
|r1 − r′|dr′. (2-14)

Unlike h̃X(r1), the two-electron operator gX(r1) is expressed in terms of operators
local to X as

gX(r1) =
NX/2∑

l

(
2JX

l (r1) − KX
l (r1)

)
, (2-15)

where the Coulomb JX
l (r1) and the electron-exchange operator KX

l (r1) are defined as

JX
l (r1) =

∫
dr2
φX∗

l (r2)φX
l (r2)

r12
,

KX
l (r1) =

∫
dr2
φX∗

l (r2)℘12φ
X
l (r2)

r12
,

(2-16)

with the distance between electrons 1 and 2 defined as r12 = |r1 − r2| and ℘12 is
the permutation operator of electrons 1 and 2.

2.2.3. Fragment Energy

Using the above expressions, we derive the fragment energy in Eq. (2-4),

EX = 〈�X|HX |�X〉

=
NX/2∑

i

〈
φX

i

∣∣ h̃X
∣∣φX

i

〉 +
NX/2∑

i

〈
φX

i

∣∣ f X
∣∣φX

i

〉 + ENR
X .

(2-17)

〈
φX

i

∣∣ f X
∣∣φX

i

〉 = 〈
φX

i

∣∣ h̃X
∣∣φX

i

〉 + 〈
φX

i

∣∣ gX
∣∣φX

i

〉

= −1

2

∫
φX∗

i (r1)∇2
1φ

X
i (r1)dr1

+
∫
φX∗

i (r1)
all∑

L

(
− ZL

|r1 − RL|
)
φX

i (r1)dr1

+
∫
φX∗

i (r1)
all∑

K �=X

∫
ρK(r2)

|r1 − r2|dr2φ
X
i (r1)dr1

+
∫
φX∗

i (r1)
NX/2∑

l

(
2JX

l (r1) − KX
l (r1)

)
φX

i (r1)dr1

(2-18)
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= 〈
φX

i

∣∣ hX
∣∣φX

i

〉 + 〈
φX

i

∣∣
all∑

L/∈X

(
− ZL

|r1 − RL|
) ∣∣φX

i

〉 + 2
all∑

K �=X

NK/2∑

k∈K

(
φX

i φ
X
i |φK

k φ
K
k

)

+
NX/2∑

l

[
2
(
φX

i φ
X
i |φX

l φ
X
l

) − (
φX

i φ
X
l |φX

l φ
X
i

)]
,

where the two-electron integral is abbreviated using the chemist’s notation:

(
φX

i φ
X
j |φY

k φ
Y
l

)
=

∫ ∫
φX∗

i (r1)φX
j (r1)φY∗

k (r2)φY
l (r2)

r12
dr1dr2, (2-19)

and the electron density for fragment K defined as

ρK(r) = 2
NK/2∑

k∈K

φK∗
k (r)φK

k (r). (2-20)

In FMO, the total density can be constructed similar to Eq. (2-1) from the
densities of fragments and their pairs,

ρFMO(r) =
N∑

I

ρI(r) +
N∑

I>J

(ρIJ(r) − ρI(r) − ρJ(r)). (2-21)

2.2.4. Expression in Terms of Basis Functions

The RHF equation, Eq. (2-10) can be rederived in terms of basis functions, Eq. (2-9):

FXCX = SXCXεX , (2-22)

where the Fock matrix element is

FX
μν = h̃X

μν + GX
μν . (2-23)

The two-electron integral matrix element GX
μν is represented as

GX
μν =

〈
χμ

∣∣gX
∣∣χν

〉

=
∑

λσ

DX
λσ

[(
χμχν |χλχσ

) − 1

2

(
χμχσ |χλχν

)]
,

(2-24)
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where the density matrix in Eq. (2-20) is defined in RHF as

DX
λσ = 2

occ∑

i

CX
λiC

X∗
σ i . (2-25)

On the other hand, the one-electron Hamiltonian h̃X
μν is composed of

h̃X
μν = hX

μν + VX
μν , (2-26)

where hX
μν is the internal one-electron Hamiltonian matrix element and the external

electrostatic matrix element VX
μν is,

VX
μν =

〈
χμ

∣∣ VX
∣∣χν

〉 =
all∑

K �=X

uK
μν +

all∑

K �=X

υK
μν . (2-27)

The one-electron uK
μν and the two-electron υK

μν terms in Eq. (2-27) are,

uK
μν = − 〈

χμ
∣∣
∑

L∈K

ZL

|r1 − RL|
∣∣χν

〉
, (2-28)

υK
μν =

∑

λσ∈K

DK
λσ

(
χμχν |χλχσ

)
. (2-29)

The fragment energy of Eq. (2-17) can be written in terms of basis functions,

EX = 1

2

∑

μν

DX
μν

(̃
hX
μν + FX

μν

) + ENR
X . (2-30)

An important feature of the FMO method is that the many-body polarization
is included at the monomer fragment level. In other words, the monomer elec-
tron densities are optimized under the electrostatic potentials due to the densities
of all the other fragments until all the densities become self-consistent. On the other
hand, SCF calculation for each fragment pair is done once under the electrostatic
potentials due to the optimized monomer densities.

The fragment energy can be divided into the internal fragment energy and the
external electrostatic potential energy:

EX = E′
X + Tr

[
DXVX]

, (2-31)

where

Tr
[
DXVX] =

∑

μν∈X

DX
μν

⎛

⎝
all∑

K �=X

uK
μν +

all∑

K �=X

υK
μν

⎞

⎠ . (2-32)
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There was some discussion [17, 21], as to whether one should add the exchange
interaction to ESP in Eq. (2-27):

YX
μν = −1

2

all∑

K �=X

∑

λσ∈K

DK
λσ

(
χμχλ|χνχσ

)
. (2-33)

Recently, it was found [22] that when the exchange in Eq. (2-33) is added to ESP,
the resultant FMO/X method has a much worse accuracy, as also reported in [21].
The reason is the fact that the fragment wave functions are not mutually orthogonal,
and thus the interfragment exchange-repulsion is not accounted for (cf the corre-
sponding terms in the pair interaction energy decomposition analysis, PIEDA [23]).
The case of the exchange being useful as a part of ESPs is discussed in Section
2.17.1 below.

Figure 2-2 shows a schematic description [19] of the FMO2 energy, and the FMO
diagram in the case of a 3-fragment system. The sum of monomer fragment energies
causes the double-counting of the ESPs (i.e., each arc is present twice), which can
also be corrected explicitly [5]. By adding the dimer fragment energies into it the
orbital mixing and the electrostatic contributions are balanced properly.

2.2.5. Fragmentation at Covalent Bonds

When dividing the system into fragments requires detaching covalent bonds, an
additional treatment becomes necessary, which is described at great length else-
where [14, 17] and here only summarized briefly. In FMO, typically single bonds

ΔE13 = E13 − E1 − E3

ΔE23 = E23 − E2 − E3

ΔE12 = E12 − E1− E2

E
1

E
2

E
3

EFMO2
 = E1 + E2 + E3 + Δ E12 + Δ E23 + Δ E13

Figure 2-2. FMO diagram for a system divided into 3 fragments. Solid and open squares depict the
occupied and virtual orbitals, respectively. Solid lines represent the orbital mixing in SCF, and the dotted
arcs show the electrostatic potential. In the diagram on the right representing the total FMO2 energy,
each line and arc appears only once
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are detached and the two electrons forming a bond are assigned to one fragment,
and none to the other. The boundary atom in the latter fragment is called the bond
detached atom (BDA). The other atom forming the detached bond is assigned to the
other fragment, and this atom is referred to as the bond attached atom (BAA), i.e.,
schematically, BDA |— BAA, where “—” indicates the detached bond and “|” is the
boundary between the two fragments. In order to describe the detached bond in the
fragment containing the BAA, one adds BDA in a ghost atom fashion and its basis
functions. In order to force the electron density on the BAA fragment to describe
the detached bond rather than fall into, for instance, a core orbital state of the BDA,
restraints are imposed.

In the first (original) approach, hybrid orbital projectors (HOP) are used and the
method is referred to as FMO/HOP. The Fock operator is modified as

f X = h̃X + gX +
∑

k

Bk |θk〉 〈θk| , (2-34)

where Bk is a universal constant equal to 10+6 a.u. (so far in all applications inde-
pendent of k), and θk are the hybrid orbitals centered on the BDA. The sum in Eq.
(2-34) runs over orbitals in all detached bonds involving X. The projection operators
exclude the undesired electronic levels from the variational space. Hybrid orbitals
are generated in advance for a small system (e.g., for C—C bonds one computes the
localized orbitals of CH4, obtaining 1s and four sp3 orbitals on C). Then in the pro-
jection operator on the BDA fragment, one includes the sp3 orbital describing the
detached bond; the operator on the BAA fragment includes the remaining 4 orbitals
(which are projected from the variational space). The hybrid orbitals are basis set
dependent and have to be generated for each basis set.

In the recently developed adaptive frozen orbital (AFO) scheme (FMO/AFO)
[24, 25], in addition to restraining the variational space, one also freezes the occu-
pied MOs describing the detached bonds. This is achieved by precomputing a
small model system containing the bond to be detached and obtaining the localized
orbitals for this bond as well as the remaining orbitals on the BDA. The detached
bond orbital is frozen, and the undesired orbitals are projected out with the Fock
matrix transformation technique [26], where the Fock matrix is transformed into the
MO basis using the model system orbitals (i.e., 1s and four sp3) and their orthogo-
nal compliment (for the full AO space in X), and then the restraints are imposed by
zeroing out off-diagonal matrix elements mixing the frozen orbitals and the rest, as
well as adding the constant B to the matrix elements for the projected out orbitals,
and then transforming back to the AO basis [24].

The model systems are generated on the fly in the initial step of the FMO cal-
culations, and the AFO preparation is completely automatic, so that the input file
preparation is even simpler than for FMO/HOP. In the case of both HOP and AFO,
modeling software Facio [27, 28] can be used to either automatically fragment stan-
dard systems (peptides, nucleotides, saccharides or any combination thereof) or to
detach bonds manually in the graphical user interface otherwise.
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It was found that the HOP scheme works best for strongly polar systems such
as proteins when medium basis sets (double ζ with polarization) are used, whereas
the AFO scheme has a better accuracy in other cases, that is, either when larger
basis sets are used or when there are many close detached bonds. In the HOP
scheme there is no restraint upon the occupied orbitals and the polarization is well
described, where in the AFO scheme the restraints are imposed to freeze the MOs of
the detached bonds. FMO/AFO was applied to the adsorption on zeolites [24] and
the structure optimization of silicon nanowires [25].

2.2.6. Green’s Function

Yasuda et al. [21] reformulated the FMO equation using the cluster expansion of the
many-particle Green’s function (GF). The perturbation expansion of FMO using GF
was given, starting with the electronic state of monomers in FMO as the unperturbed
state. This reformation is significant because GF determines the linear response and
excitation energy. The one-particle Green’s function is defined as

g(jt, is) = ( − i)
〈
�

∣∣T
[
xj(t)x

†
i (s)

] ∣∣�
〉

, (2-35)

where T and � are the time ordering and the exact ground state, respectively, and
xj and x†

i are the annihilation and creation operators, respectively. The limit of the
zero time interval (s → 0+,t → 0−) of g leads to the one and two-particle reduced
density matrices, γ (1-RDM) and Γ (2-RDM), respectively:

γ (j,i) = 〈�| x†
i xj |�〉 (2-36)

�(2)(j1,j2;i1,i2) = 1

2
〈�| x†

i1x†
i2xj2xj1 |�〉 . (2-37)

In FMO, the one (γ ) and two-particle (�(2)) density matrices can be derived from
fragment densities γ I and γ IJ (here we retain the notation of [21]) as

γ =
N∑

I

γI +
N∑

I>J

(γIJ − γI − γJ). (2-38)

�
(2)
DM =

N∑

I

�
(2)
I +

N∑

I>J

(
�

(2)
IJ − �(2)

I − �(2)
J

)
, (2-39)

�(2)
cum = �+ γ ∧ γ , (2-40)

�
(2)
FMO = �(2)

DM + 1

2

N∑

I>J

N∑

K �=I,J

{δγIJ(j1,i1)γK(j2,i2) + γK(j1,i1)δγIJ(j2,i2)} , (2-41)

�
(2)
SCCE = �(2)

cum − (γ − γ0) ∧ (γ − γ0), (2-42)
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� =
N∑

I

�I +
N∑

I>J

(�IJ −�I −�J), (2-43)

and the cumulant �X = �(2)
X − γX ∧ γX , γ ∧ γ = 1/2 {γ (j1, i1) γ (j2, i2) − γ (j1, i2)

γ (j2, i1)}, γ0 = ∑
I γI and δγIJ = γIJ − γI − γJ .

The corresponding energies are EDM = Tr(υγ + w�(2)
DM), Ecum = Tr(υγ +

w�(2)
cum), EFMO = Tr(υγ + w�(2)

FMO) and ESCCE = Tr(υγ + w�(2)
SCCE), where υ

and w are the one- and two-electron integrals, respectively. SCCE is SCC with the
exchange (denoted by FMO/X above), and EFMO, ESCCE and Ecum are the regular
FMO, FMO/X and the FMO-MO [29] energies, respectively. Another important
question addressed by the RDMs is the existence of a wave function corresponding
to the energy expression, which is affected by the orthogonality condition of the
fragment wave functions. Each term in Eq. (2-43) vanishes for RHF.

This formulation can be expanded to the excitation energy, the three-body cor-
rection to the density matrices, and the correlation energy. The 3-body correction to
1-RDM is given by

δγ3−body =
N∑

I>J

N∑

K �=I,J

δγIKPδγKJ , (2-44)

where P = 2S0γ0S0 − S0, S0 is the direct sum of fragment overlap matrices. This
correction has the following features: because of the linked-cluster theorem the cor-
rection is size-extensive and all the quantities in the correction are available from
the pair FMO calculation. A similar correction was derived [21] for 2-RDM. When
these corrections are added to the matrices in Eqs. (2-38) and (2-39), one can obtain
three-body corrections in FMO using the energy definitions above without having to
perform SCF calculations of trimers. The explicit inclusion of trimer terms defined
by FMO3 is important in some systems which are characterized by a high degree of
electron delocalization [30].

2.2.7. Approximations

The FMO method can be combined with approximations by taking advantages of
the local nature of fragments, to further reduce the computational cost and achieve
a nearly linear scaling. As discussed later, the approximations are indispensable to
the FMO3 treatment involving the trimer calculations.

The approximation of the electrostatic potential with point charges (ESP-PC)
replaces the two-electron integral term in Eq. (2-29) by the one-electron integral
with the Mulliken atomic population QA as follows:

υK
μν =

∑

λσ∈K

DK
λσ

(
χμχν |χλχσ

) →
∑

A∈K

〈
χμ

∣∣∣
QA

|r1 − RA|
∣∣∣χν

〉
, (2-45)
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if the closest distance between X and K, RXK exceeds a threshold RESP−PC, i.e.,

RXK ≥ RESP−PC. (2-46)

RXK is defined as follows,

RXK = min
A∈X,B∈K

{ |RA − RB|
WA + WB

}
, (2-47)

where indices A and B run over atoms of X and K, respectively, and WA and WB are
the corresponding van der Waals radii.

The electrostatic dimer (ES-DIM) approximation replaces the dimer fragment
energy with the sum of the monomer energies and the electrostatic interaction
energy,

E′
IJ � E′

I + E′
J + Tr(DIuJ) + Tr(DJuI)

+
∑

μν∈I

∑

λσ∈J

DI
μνD

J
λσ

(
χμχν |χλχσ

) +�ENR
IJ . (2-48)

where �ENR
IJ = ENR

IJ − ENR
I − ENR

J .
The idea in the approximation in Eq. (2-48) can be extended to FMO3, reduc-

ing its computational cost [19]. The trimer IJK calculation can be skipped if the
composite measure of the interfragment distances RIJ, RJK and RIK is larger than
a threshold value. We note that such a calculation is entirely skipped because the
electrostatic approximation in Eq. (2-48) is pairwise additive, and such three-body
correction is identically zero. In order to balance out the ESP approximations, the
FMO3 energy is reformulated as follows [20]:

E =
N∑

I

E′
I +

N∑

I>J

�E′
IJ +

N∑

I>J>K

(
�E′

IJK −�E′
IJ −�E′

IK −�E′
JK

)

+
N∑

I>J

Tr
(
�DIJVIJ)

+
N∑

I>J>K

[
Tr

(
�DIJKVIJK) − Tr

(
�DIJVIJ) − Tr

(
�DIKVIK) − Tr

(
�DJKVJK) ]

,

(2-49)
where

�E′
IJ = E′

IJ − E′
I − E′

J , (2-50)

�E′
IJK = E′

IJK − E′
I − E′

J − E′
K , (2-51)

�DIJ = DIJ − (
DI ⊕ DJ) , (2-52)
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�DIJK = DIJK − (
DI ⊕ DJ ⊕ DK)

. (2-53)

The expression in Eq. (2-49) has the disadvantage of containing both dimer and
trimer ESPs. Due to the nature of the definition of the interfargment distances, the
applications of approximations to the ESP due to a fragment may differ, depending
on whether this ESP is computed for a dimer or a trimer, resulting in an unbalanced
addition of terms in Eq. (2-49). To solve this problem, the blockwise application
of approximations was suggested [20] for the computation of VIJ

μν and the distance
from external fragment L is defined as

R̃IJ,L(μ,ν) =
⎧
⎨

⎩

RI,L μ,ν ∈ I
RJ,L μ,ν ∈ J

RIJ,L μ ∈ I,ν ∈ J or μ ∈ J,ν ∈ I

⎫
⎬

⎭ . (2-54)

And, analogously, for trimers. This approximation enabled a successful use of
ESP approximations in FMO3.

2.3. SECOND ORDER MØLLER-PLESSET PERTURBATION
THEORY

The dispersion energy is indispensable for the treatment of biological molecules.
Especially, the molecular interaction between, for instance, a protein and a lig-
and cannot be estimated accurately without this type of interaction. Second-order
Møller-Plesset perturbation theory (MP2) gives a good description of the dispersion
energy and there has been much effort invested in reducing the computational cost
for MP2, O(N5), which is much larger than that of RHF, O(N3) (N is the system
size).

In FMO, the extension of the Hartree-Fock energy expression to the MP2 level
is [31–34]

EMP2 =
N∑

I

EMP2
I +

N∑

I>J

(
EMP2

IJ − EMP2
I − EMP2

J

)
, (2-55)

where the fragment MP2 energy is

EMP2
X = EX + E(2)

X . (2-56)

E(2)
X is the second-order perturbation energy, which for RHF reference is given

by

E(2)
X =

occ∑

i≥j∈X

(2 − δij)
vir∑

rs∈X

(φiφr|φjφs)
[
2(φiφr|φjφs) − (φiφs|φjφr)

]

εi + εj − εr − εs
. (2-57)
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The most time and memory-consuming part in MP2 is the transformation of two-
electron AO integrals into the MO basis,

(φiφr|φjφs) =
∑

μνλσ∈X

CX
μiC

X
νrCX

λjC
X
σ s

(
χμχν |χλχσ

)
. (2-58)

2.3.1. MP2 Implementations

Quantum-chemical program package GAMESS-US [35, 36] has two parallelized
closed-shell MP2 implementations, by Fletcher et al. [37] and Ishimura et al. [38]. In
the former, the transformation to the MO integrals in Eq. (2-58) is made by distribut-
ing the arrays for the occupied pairs ij between nodes with the use of the one-side
communication provided by the distributed data interface (DDI) [39].

In the other implementation, one uses the AO shell units to reduce the dimension
of the two-electron integrals transformation. The procedure is depicted in Figure 1
of Ref. [38]. The outermost loop M of the AO shells is dynamically distributed
between nodes. Then for the two outer AO shells, Λ and Σ one transforms the two
indices of the two-electron integrals and stores the data of o2sn/2 in memory of
each node, where o is the number of the occupied MOs, s is the number of basis
functions in the AO shell and n is the total number of basis functions. This leads to
a significant reduction in necessary memory compared with that in the conventional
scheme (on3). At the end of the third transformation, o2υn/2 data are stored on disk.
After storing the third-index transformed integrals, the loops of occupied MO pairs
ij are statically distributed into nodes, because the amount of the data is the same for
each node. The loops accomplish the fourth transformation with the memory usage
of υn +υ2.

Practically, the main difference between them is that for the DDI-MP2 one has
to store all MO-based two-electron integrals (O(N4)) in shared memory, which is
impractical for large fragments, while the alternative implementation takes little
memory and stores the integral on disk, which works very well if a local disk is
present on each node and is problematic otherwise.

2.3.2. Using Resolutions of the Identity in MP2

MP2 based on the resolutions of the identity (RI) is an approximate, but reasonably
accurate scheme with a moderate computational cost. The implementation of the
RI-MP2 method in FMO is discussed by Ishikawa et al. [40] and we summarize it
briefly. As mentioned above, the critical step of MP2 is given in Eq. (2-58), and
it is taken care of by RI-MP2. The two-electron AO integrals in Eq. (2-58) can be
rewritten as

(
χμχν |χλχσ

) �
∑

PQ

(χμχν |χP)V−1
PQ(χQ|χλχσ ), (2-59)

with the application of RI,
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Î =
∑

PQ

|χP)V−1
PQ(χQ| (2-60)

where VPQ = (
χP|χQ

)
is the Coulomb metric. Eq. (2-59) is used in Eq. (2-58) to

reduce its scaling.
The equality of Eq. (2-59) holds only if the operator Î is expanded in terms of the

products of the two basis functions. In practice, auxiliary basis functions |χP) are
determined by minimizing the following equation for atoms except hydrogen [41]:

δRI = 1

4

∑

irjs

(〈
φrφs||φiφj

〉 − 〈
φrφs||φjφi

〉
RI

)2

εr − εi + εs − εj
, (2-61)

with respect to the exponents present in the expansion of the auxiliary basis set χP

over primitives.
〈
φrφs||φiφj

〉 = (φrφi|φsφj) − (φrφj|φsφi).

2.4. COUPLED-CLUSTER THEORY

The coupled-cluster (CC) theory is often considered the golden standard of accu-
racy, but it is also very time-consuming. In the application of CC to FMO [42], we
use the same energy expression as in MP2:

ECC =
N∑

I

ECC
I +

N∑

I>J

(
ECC

IJ − ECC
I − ECC

J

)
, (2-62)

where ECC
X is the CC energy of X.

Various levels of CC methods have been developed with the compromise between
the accuracy and the computational cost. The coupled cluster with singles and dou-
bles (CCSD) [43] can be expanded to include the triples correction, i.e., CCSD(T)
[44], which has been widely used.

Recent development in the CC method is remarkable both in the computational
performance and the accuracy. Olson et al. [45] have developed a parallel CCSD(T)
algorithm. The completely renormalized coupled cluster (CR-CC) methods [46]
can describe systems with some open shell character, suitable to study chemical
reactions.

2.5. DENSITY FUNCTIONAL THEORY

The density functional theory (DFT) extends the Hartree-Fock method to include
the electron correlation via an addition to the Hamiltonian of a density dependent
functional. The implementation of FMO-DFT [18, 47] is straightforward,
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EDFT =
N∑

I

EDFT
I +

N∑

I>J

(
EDFT

IJ − EDFT
I − EDFT

J

)
, (2-63)

where

EDFT
X = 2

occ∑

i∈X

〈
φX

i

∣∣∣∣

(
−1

2
∇2

)∣∣∣∣φ
X
i

〉
+

∫
�X(r)ρX(r)dr +

∑

K �=X

∫
�K(r)ρX(r)dr

+Exc
[
ρX(r)

] + ENR
X .

(2-64)

In Eq. (2-64), the set of potentials �Y (r) due to the nuclear charges and electron
densities is described as

�Y (r) =
∑

A∈Y

(
− ZA

|r − RA|
)
+

∫
ρY (r′)
|r − r′|dr′, (2-65)

and Exc[ρX(r)] is the electron exchange-correlation energy.
The corresponding Kohn-Sham equation is

⎛

⎝−1

2
∇2 +�X(r) +

∑

K �=X

�K(r) + υxc(r)

⎞

⎠∣∣φX
i

〉 = εX
i

∣∣φX
i

〉
, (2-66)

where υxc(r) is the electron-exchange correlation potential.
There are many DFT functionals available. B3LYP [48] is perhaps the most

famous functional frequently used in general applications. The long range correc-
tion [49] is found to improve the description of charge transfer in DFT. Recently,
many new functionals: M06 [50], M08 [51], revTPSS [52] etc have been developed.

2.6. MULTICONFIGURATION SCF

Although DFT and MP2 include the dynamic electron correlation beyond the
Hartree-Fock approximation, they are still single reference methods breaking down
when several configurations are important, in which case such electronic states can
be described with multiconfiguration SCF (MCSCF).

In the current implementation of MCSCF in FMO [53], the MCSCF wave func-
tion can be used for only one fragment; all the other fragments are treated by RHF.
MCSCF wave function is used also for the dimers containing the MCSCF fragment.
For far separated dimers, the ES dimer approximation (see Eq. 2-48) may be applied
in the same way as in FMO-RHF; one of monomer densities may be replaced with
the MCSCF density. The ESPs in Eq. (2-29) are generated using the MCSCF or
RHF density depending on the fragment.



34 T. Nagata et al.

2.7. OPEN-SHELL TREATMENT

A special case of MCSCF is known as the restricted open shell Hartree-Fock method
(ROHF), which is based on a single open-shell configuration. While one can of
course use MCSCF to perform ROHF calculations as well, but it is much more
efficient to develop a special ROHF code, which is nearly the same in terms of the
computational cost as the closed shell RHF method. FMO-ROHF was developed
for both the two and three-body expansions [54] and it can be used for an arbitrary
multiplicity, capable of treating radicals and excited states in large systems.

The formulation of FMO-ROHF is similar to that of FMO-MCSCF, i.e., a single
fragment is designated as the open shell fragment, while other fragments are treated
as closed shell, consequently, dimer and trimer calculations are performed at the
open shell level if they contain the open shell fragment, and as closed shells other-
wise. A particular benefit of developing a special method for ROHF is the ability to
perform correlated calculations at the MP2 and CC levels. There are several kinds
of open shell MP2 and CC, and for FMO so far the Z-averaged perturbation the-
ory [55] and completely renormalized CC(2,3) method [56, 57] were implemented,
respectively.

2.8. MULTILAYER APPROACH

In the multilayer FMO (MFMO) [58], each fragment is assigned to a layer, and
more important fragments are put to a higher layer treated with a better level of
theory. MFMO is designed to significantly reduce the computational cost while
retaining high accuracy for the relevant part of the system. The MFMO energy can
be written as

E =
M∑

Li=1

⎧
⎨

⎩

N∑

I∈Li

⎡

⎣ELi
I +

M∑

Lj=Li

N∑

J=I+1,J∈Lj

(
ELi

IJ − ELi
I − ELi

J

)
⎤

⎦

⎫
⎬

⎭ , (2-67)

where indices Li and Lj run over M layers. ELi
X are the energies in Eq. (2-17) com-

puted at the level of layer i and the sum over J in Eq. (2-67) assumes that fragments
are numbered in the increasing order of layers. Alternatively, Eq. (2-67) can be
written as

E =
N∑

I

ELI
I +

N∑

I>J

(
ELIJ

IJ − ELIJ
I − ELIJ

J

)
, (2-68)

where LI is the layer to which fragment I belongs and LIJ = min(LI , LJ). For the
given layer Li, the ESPs used for the computation of ELi

X are constructed as follows:
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VX(Li)
μν = −

all∑

K �=X

〈
χμ

∣∣∣
∑

A∈K

ZA

|r1 − RA|
∣∣∣χν

〉
+

all∑

K �=X

∑

λσ∈K

DK (̃LK )
λσ

(
χμχν |χλχσ

)
, (2-69)

where the first term on the right hand side of Eq. (2-69) is not changed from

Eq. (2-28) and the second term is obtained from the density, DK (̃LK )
λσ of layer

L̃K = min (LK ,Li).
An MFMO calculation starts by converging the densities of all N fragments in

SCC (at the level of layer 1), followed by the dimer calculation at the same level for
those dimers where at least one fragment is in layer 1. Consequently, the basis set
and wave function for layer 2 are used; the densities of fragments assigned to layer
1 are frozen, and all others are optimized followed by dimer calculations for those
dimers where at least one fragment is in layer 2 and the other is in layer 2 or higher;
and so on if more layers are present.

The notation for MFMO is to list all wave functions in the increasing order of
layers, as in FMO-RHF:MP2 (layer 1: RHF, layer 2: MP2). If necessary, basis sets
can be specified: FMO-RHF/6-31G∗:MP2/6-311G∗∗. MFMO has been used so far
for FMO-based MP2, MCSCF, CI and TDDFT (having RHF as the lower layer), as
well as for open-shell MP2 and CC as the two layers. If either the wave function or
the basis set is the same in all layers, they can be omitted for brevity in the symbol,
e.g. FMO-MCSCF/cc-pVDZ:cc-pVTZ. The use of molecular mechanics is under
development [59], and a conceptually multilayer approach was taken to describe
the crystal field by point charges in the study of electronic excitations in solid state
quinacridone [60].

2.9. EXCITED STATES

Photochemical processes have attracted much attention in recent years, requiring
to describe electronic excited states. The photosynthesis, for instance, involves an
excitation process, leading to the efficient harvesting of the energy from the sun.
Also, excited states determine the structure of measured spectra in spectroscopy
and frequently determine the path of chemical reactions.

2.9.1. Time-Dependent DFT

Time-dependent DFT (TDDFT) is a method to study excited states at the low
computational cost. Chiba et al. [61–63] interfaced it with FMO. Similarly to FMO-
MCSCF, only one fragment M is described by TDDFT. The total energy of an
excited state in FMO-TDDFT, E∗ can be written as

E∗ = E∗
M +

N∑

I �=M

(E∗
MI − E∗

M − E0
I ) +

N∑

I �=M

E0
I +

N∑

I>J(�=M)

(E0
IJ − E0

I − E0
J ), (2-70)
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where EX
∗ is the energy of the excited state (X = M or MI), and E0

X (X = I, or
IJ) is the energy of the ground state (of X). The excitation energy ω is obtained by
subtracting the ground state energy from the excited state energy as follows:

ω = E∗ − E0 = ωM +
∑

I �=M

(ωMI − ωM), (2-71)

where ωM = E∗
M − E0

M and ωMI = E∗
MI − E0

MI . Eq. (2-71) describes the two-body
FMO (FMO2-TDDFT), while the neglect of the second term on the right hand side
gives the one-body FMO (FMO1-TDDFT) excitation energy.

To obtain the excitation energy ωX (X=M or MI), one has to solve the following
non-Hermitian eigenvalue equations:

(
AX BX

BX AX

)(
xX

yX

)
= ωX

(
1 0
0 −1

)(
xX

yX

)
, (2-72)

where vectors xX and yX represent excitation and de-excitation components of the
electronic density change, respectively, and

AX
riσ ,sjσ ′ = δrsδijδσσ ′

(
εX

rσ − εX
iσ ′

) + KX
riσ ,sjσ ′ , (2-73)

BX
riσ ,sjσ ′ = KX

riσ , jsσ ′ . (2-74)

In Eqs. (2-73) and (2-74) σ and σ ′ are the spin indices, and ε is the Kohn-Sham
molecular orbital energy. The explicit form of KX is

KX
abσ ,pqσ ′ =

(
φX

aσφ
X
bσ |φX

pσ ′φ
X
qσ ′

)
− cxδσσ ′

(
φX

aσφ
X
pσ |φX

bσ ′φ
X
qσ ′

)
+ f xc

abσpqσ ′ , (2-75)

where f xc
abσpqσ ′ is the Hessian matrix element of the exchange-correlation energy

functional υxc with respect to the electron density in the adiabatic approximation,

f xc
abσpqσ ′ =

δ2υxc

δρσ (r1)δρσ ′(r2)
, (2-76)

and cx is a mixing parameter of the HF exchange integral in hybrid functionals.
The FMO-TDDFT energy gradients were implemented by Chiba et al. [64] The

gradient expression of the excitation energy is given by (a is an atomic coordinate)

∂E∗

∂a
= ∂E0

∂a
+ ∂ω

∂a
. (2-77)

The first term on the right hand side of Eq. (2-77) is the energy gradient for the
ground state at the DFT level. The second term is the excitation energy gradient of
FMO-TDDFT.
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2.9.2. Configuration Interaction

In ab initio MO theory, the configuration interaction with singles (CIS) is the the-
oretically and computationally simplest formalism to treat low-lying excited states.
An implementation of CIS in multilayer FMO was made by Mochizuki et al. [65],
followed by the inclusion of perturbative doubles (CIS(D)) [66–68]. Typically, only
one fragment is put into the higher (CI) layer, although some use was made of the
CI pair corrections to determine the influence of the environment [69].

The CIS wave function for fragment M is expanded in terms of the Slater
determinants in which occupied MO i is replaced with virtual MO r as

∣∣∣�CIS
M

〉
= U1

∣∣∣�0
M

〉
=

∑

ir

br
i

∣∣�i→r
M

〉
, (2-78)

where the operator U1 generates the combination of substituted determinants asso-
ciated with the amplitudes br

i from the reference HF state
∣∣�0

M

〉
of fragment M. The

corresponding CIS eigenvalue problem is

HM

∣∣∣�CIS
M

〉
= ωCIS

M

∣∣∣�CIS
M

〉
, (2-79)

where ωM is the excitation energy and

HM = HM − EM . (2-80)

EM is the FMO fragment HF ground state energy. One can obtain the excitation
energy by solving the eigenvalue problem of Eq. (2-79).

The summary of CIS(D) is as follows. The ground state MP2 wave function of
fragment M is described as

∣∣∣�MP2
M

〉
= T2

∣∣∣�0
M

〉
= 1

4

∑

ijrs

ars
ij

∣∣∣� ij→rs
M

〉
, (2-81)

where the operator T2 generates the double substituted Slater determinant
∣∣∣� ij→rs

M

〉

(or the spin-adapted function) with the corresponding MP2 amplitudes ars
ij ,

ars
ij = −

〈
�

ij→rs
M

∣∣∣ Ṽ
∣∣∣�0

M

〉

εr + εs − εi − εj
. (2-82)

and Ṽ is the perturbation potential (i.e., the two-electron interaction). The final form
of the CIS(D) excitation energy is represented as
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ω
CIS(D)
M = ECIS(D)

M − EMP2
M

= − 1
4

∑
ijrs∈M

(
uij→rs

M

)2

εr+εs−εi−εj−ωCIS
M

+ ∑
ir∈M

br
iυ

r
i ,

(2-83)

where

uij→rs
M =

vir∑
t∈M

[〈
φrφs||φtφj

〉
bt

i − 〈φrφs||φtφi〉 bt
j

]

+
occ∑

k∈M

[〈
φkφr||φiφj

〉
bs

k −
〈
φkφs||φiφj

〉
br

k

]
,

(2-84)

υr
i = 1

2

∑

jkst∈M

〈
φjφk||φsφt

〉 [
bs

i a
tr
jk + br

j ats
ik + 2bs

j a
rt
ik

]
. (2-85)

Note that we used the physicist’s notation for the two-electron integrals in Eqs.
(2-84) and (2-85) (also see Ref. [66]). While CIS typically overestimates the excita-
tion energies by 1 eV or more [65], due to the lack of the electron correlation (CIS
may be viewed as RHF of excited states), CIS(D), which is like MP2 for excited
states, shows much improved results [70].

2.10. QUANTUM MONTE-CARLO

The Monte-Carlo simulation is a powerful tool for evaluating the multidimensional
integral by sampling the integrand statistically and averaging the sampled values. In
the variational Monte-Carlo (VMC) method [71], the total energy is transformed as
follows:

EV =
∫
�∗

T(R)H�T(R)dR∫
�∗

T(R)�T(R)dR
=

∫ |�T(R)|2 [
�T(R)−1H�T(R)

]
dR

∫ |�T(R)|2 dR
≥ E0, (2-86)

where �T is the trial wave function and R= (r1,r2, · · · ,rN) the set of the coordi-
nates of the electrons.

The probability distribution is defined as

P(R) = |�T(R)|2
∫ ∣∣�T(R′)

∣∣2
dR′ . (2-87)

After M steps (the choice of coordinates Rm is driven by P(Rm)), one has the
following expectation value:

EV ≈ 1

M

M∑

m=1

EL(Rm), (2-88)

where

EL = �T(R)−1H�T(R). (2-89)
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The FMO many-body expansion (2.1) is applied straightforwardly to the energy
in Eq. (2-88) [72].

2.11. ENERGY GRADIENT

In this section, we introduce the derivation of the FMO energy gradients, i.e., the
first derivatives of the energy with respect to nuclear coordinates. The first derivation
and implementation of the FMO energy gradients were done by Kitaura et al. [73],
and the energy derivatives for the electrostatic dimer approximation (see Eq. 2-48)
were obtained by Fedorov et al. [59]. Nagata et al. [74] improved the accuracy of the
FMO gradient by adding the contributions from the point charge derivatives (for the
point charge approximation to ESP) (see Eq. 2-45). Komeiji et al. [75] developed
the FMO3 gradient including the ESP derivatives.

2.11.1. Derivatives of the Internal Fragment Energy

To derive the FMO energy gradient, we consider the FMO2 total energy expression
in Eq. (2-49),

E =
N∑

I

E′
I +

N∑

I>J

(E′
IJ − E′

I − E′
J) +

N∑

I>J

Tr(�DIJVIJ), (2-90)

where the internal energy E′
X is

E′
X =

∑

μν∈X

DX
μνh

X
μν +

1

2

∑

μνλσ∈X

[
DX
μνD

X
λσ − 1

2
DX
μλDX

νσ

] (
χμχν |χλχσ

) + ENR
X .

(2-91)

Note that the electrostatic potentials VI due to monomer fragments do not emerge in
Eq. (2-90).

The differentiation of the internal fragment energy E′
X with respect to nuclear

coordinate a leads to

∂E′
X

∂a = ∑
μν∈X

DX
μν

∂hX
μν

∂a + 1
2

∑
μνλσ∈X

[
DX
μνD

X
λσ − 1

2 DX
μλDX

νσ

]
∂(χμχν |χλχσ )

∂a

+ ∑
μν∈X

∂DX
μν

∂a hX
μν + 1

2

∑
μνλσ∈X

∂
[
DX
μνDX

λσ− 1
2 DX

μλDX
νσ

]

∂a

(
χμχν |χλχσ

) + ∂ENR
X
∂a .

(2-92)

The set of the density matrix derivative terms in Eq. (2-92) can be rewritten with
the internal Fock matrix in MO basis F′X

mi,

∑
μν∈X

∂DX
μν

∂a
hX
μν +

1

2

∑
μνλσ∈X

∂

[
DX
μνD

X
λσ − 1

2
DX
μλDX

νσ

]

∂a

(
χμχν |χλχσ

)

= 4
occ∑
i∈X

occ+vir∑
m∈X

Ua,X
mi F′X

mi,

(2-93)
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where the derivative of the MO coefficient CX
μi is expanded in terms of the

unknowns, Ua,X
mi as [76]

∂CX
μi

∂a
=

occ+vir∑

m∈X

Ua,X
mi CX

μm, (2-94)

and

F′X
mi = hX

mi +
occ∑

j∈X

[
2
(
φX

mφ
X
i |φX

j φ
X
j

)
−

(
φX

mφ
X
j |φX

j φ
X
i

)]
. (2-95)

It is convenient to transform Eq. (2-93) for the later derivation,

4
occ∑
i∈X

occ+vir∑
m∈X

Ua,X
mi F′X

mi = −2
occ∑

i,j∈X
Sa,X

ji F′X
ji + 4

occ∑
i∈X

vir∑
r∈X

Ua,X
ri (FX

ri − VX
ri )

= −2
occ∑

i,j∈X
Sa,X

ji F′X
ji − 4

occ∑
i∈X

vir∑
r∈X

Ua,X
ri VX

ri ,
(2-96)

where we used FX
ri = 0 and the relation arising from the orthonormality of the

molecular orbitals [76],

Sa,X
ij + Ua,X

ij + Ua,X
ji = 0, (2-97)

is used with the definition

Sa,X
ij =

∑

μν∈X

CX∗
μi

∂SX
μν

∂a
CX
νj. (2-98)

We collect the unknown terms and define U
aX,Y

as

U
aX,Y = 4

occ∑

i∈X

vir∑

r∈X

Ua,X
ri VY

ri . (2-99)

Finally, we have the derivative of the internal fragment energy:

∂E′
X

∂a
= ∑
μν∈X

DX
μν

∂hX
μν

∂a
+ 1

2

∑
μνλσ∈X

[
DX
μνDX

λσ −
1

2
DX
μλDX

νσ

]
∂

(
χμχν |χλχσ

)

∂a

−2
occ∑

i,j∈X
Sa,X

ji F′X
ji + ∂ENR

X

∂a
− U

aX,X
.

(2-100)
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2.11.2. Differentiation of the Density Matrix

The differentiation of the electrostatic potential energy in Eq. (2-90) with respect to
nuclear coordinate a is

∂

∂a
Tr(�DIJVIJ) =

∑

μν∈IJ

∂�DIJ
μν

∂a
VIJ
μν +

∑

μν∈IJ

�DIJ
μν

∂VIJ
μν

∂a
. (2-101)

The first term on the right hand side of Eq. (2-101) can be transformed further:

∑
μν∈IJ

∂�DIJ
μν

∂a
VIJ
μν = −2

∑
μν∈IJ

WIJ
μν

∂SIJ
μν

∂a
+ 2

∑
μν∈I

WI
μν

∂SI
μν

∂a

+2
∑
μν∈J

WJ
μν

∂SJ
μν

∂a
+ U

aIJ,IJ − U
aI,IJ − U

aJ,IJ
,

(2-102)

where

WX
μν =

1

4

∑

λσ∈X

DX
μλVIJ

λσDX
σν . (2-103)

Collecting the unknown terms in Eqs. (2-100) and (2-102),

U
a = −

N∑
I

U
aI,I −

N∑
I>J

(U
aIJ,IJ − U

aI,I − U
aJ,J

)

+
N∑

I>J
(U

aIJ,IJ − U
aI,IJ − U

aJ,IJ
)

= −
N∑
I

U
aI,I +

N∑
I>J

(U
aI,I + U

aJ,J
) −

N∑
I>J

(U
aI,IJ + U

aJ,IJ
)

= −
N∑
I

U
aI,I +

N∑
I>J

(U
aI,I(J) + U

aJ,J(I)
)

= −
N∑
I

U
aI,I +

N∑
I

U
aI,I = 0,

(2-104)

where the definition,

U
aX,X(Y) = 4

occ∑

i∈X

vir∑

r∈X

Ua,X
ri

(
uY

ri + υY
ri

)
, (2-105)

is used. U
a

in Eq. (2-104) is equal to zero only if the ESP-PC approximation is used
to all or none of ESPs, otherwise the relation holds approximately.

2.11.3. Differentiation of the Electrostatic Potential

The second term on the right hand side of Eq. (2-101) leads to
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∑

μν∈IJ

�DIJ
μν

∂VIJ
μν

∂a
=

∑

μν∈IJ

�DIJ
μν

⎛

⎝
all∑

K �=IJ

∂uK
μν

∂a
+

all∑

K �=IJ

∂νK
μν

∂a

⎞

⎠ . (2-106)

Since the two-electron integral terms contain the density matrix of fragment K
(see Eq. 2-29), the last term on the right hand side of Eq. (2-106) has the following
form:

∂υK
μν

∂a
=

∑

λσ∈K

DK
λσ

∂
(
χμχν |χλχσ

)

∂a
+

∑

λσ∈K

∂DK
λσ

∂a

(
χμχν |χλχσ

)
. (2-107)

Substituting Eq. (2-107) into Eq. (2-106) and then taking only the density
derivative term leads to

∑
μν∈IJ

�DIJ
μν

all∑
K �=IJ

∑
λσ∈K

∂DK
λσ

∂a

(
χμχν |χλχσ

)

= 4
∑
μν∈IJ

�DIJ
μν

all∑
K �=IJ

occ+vir∑
m∈K

occ∑
i∈K

Ua,K
mi

(
χμχν |φmφi

)

= −2
all∑

K �=IJ

∑
μν∈K

�XK(IJ)
μν Sa,K

μν

+4
all∑

K �=IJ

∑
μν∈IJ

�DIJ
μν

vir∑
r∈K

occ∑
i∈K

Ua,K
ri

(
χμχν |φrφi

)
,

(2-108)

where

�XK(IJ)
μν = 1

4

∑

λσ∈K

DK
μλ

⎡

⎣
∑

ζη∈IJ

�DIJ
ζη

(
χζχη|χλχσ

)
⎤

⎦ DK
σν . (2-109)

2.11.4. Differentiation of the Approximated Electrostatic Potential Energy

The two-electron terms of the electrostatic potential energy under the ESP-PC
approximation can be written using atomic populations QA as

∑
μν∈IJ

�DIJ
μν

all∑
K �=IJ

υK
μν �

∑
μν∈IJ

�DIJ
μν

RIJ,K<RESP−PC∑
K �=IJ

∑
λσ∈K

DK
λσ

(
χμχν |χλχσ

)

+ ∑
μν∈IJ

�DIJ
μν

RIJ,K≥RESP−PC∑
K �=IJ

∑
A∈K

〈
χμ

∣∣ QA|r−RA|
∣∣χν

〉
,

(2-110)

Since the non-approximated term, i.e., the first term on the right side of Eq. (2-110)
is derived in the previous subsection, we focus on the second term. That is,
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∂

∂a

∑

μν∈IJ

�DIJ
μν

RIJ,K≥RESP−PC∑

K �=IJ

∑

A∈K

〈
χμ

∣∣ QA

|r − RA|
∣∣χν

〉

=
∑

μν∈IJ

�DIJ
μν

RIJ,K≥RESP−PC∑

K �=IJ

{∑

A∈K

〈
∂χμ

∂a

∣∣∣∣
QA

|r − RA|
∣∣χν

〉

+
∑

A∈K

〈
χμ

∣∣ QA

|r − RA|
∣∣∣∣
∂χν

∂a

〉
+

∑

A∈K

〈
χμ

∣∣ QA
∂ |r − RA|−1

∂a

∣∣χν
〉

+
∑

A∈K

〈
χμ

∣∣ ∂QA

∂a

1
|r − RA|

∣∣χν
〉}

+
∑

μν∈IJ

∂�DIJ
μν

∂a

RIJ,K≥RESP−PC∑

K �=IJ

∑

A∈K

〈
χμ

∣∣ QA

|r − RA|
∣∣χν

〉
.

(2-111)

The last two sums include the unknown Ua term; the latter sum,

∑

μν∈IJ

∂�DIJ
μν

∂a

RIJ,K≥RESP−PC∑

K �=IJ

∑

A∈K

〈
χμ

∣∣ QA

|r − RA|
∣∣χν

〉
, (2-112)

just replaces the two-electron integral term of Eq. (2-101). The former sum, which
includes the derivative of the atomic Mulliken population QA, can be further
modified as

∑

μν∈IJ

�DIJ
μν

RIJ,K≥RESP−PC∑

K �=IJ

∑

A∈K

〈
χμ

∣∣ ∂QA

∂a

1

|r − RA|
∣∣χν

〉

=
∑

μν∈IJ

�DIJ
μν

RIJ,K≥RESP−PC∑

K �=IJ

∑

A∈K

〈
χμ

∣∣
∑

λ∈A

∑

σ∈K

DK
λσ

∂SK
σλ

∂a

1

|r − RA|
∣∣χν

〉

−1

2

∑

μν∈IJ

�DIJ
μν

RIJ,K≥RESP−PC∑

K �=IJ

∑

A∈K

〈
χμ

∣∣
∑

λ∈A

∑

σρς∈K

SK
λσDK

σρ

∂SK
ρς

∂a
DK
ςλ

1
|r − RA|

∣∣χν
〉

+2
∑

μν∈IJ

�DIJ
μν

RIJ,K≥RESP−PC∑

K �=IJ

∑

A∈K

〈
χμ

∣∣
∑

λ∈A

∑

σ∈K

occ∑

i∈K

vir∑

r∈K

(
CK
λiC

K
σ r + CK

λrCK
σ i

)
Ua,K

ri SK
λσ

|r − RA|
∣∣χν

〉
.

(2-113)
To obtain the last term of Eq. (2-108) or (2-113), one must solve the time-

consuming CPHF equations for Ua. In the current implementation, this term is sim-
ply neglected in the calculation [74], in a compromise between the computational
cost and the accuracy.
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2.12. EFFECTIVE POTENTIAL MODELS

Additional effective potentials due to the environment or inner-shell electrons can
be included into FMO calculations. In this section, we describe the polarizable con-
tinuum model (PCM) [77], effective fragment potentials (EFP) [78] and model core
potentials (MCP) [79]. While the former two methods are applied to describe the
solvent effects on the solute treated with FMO, the latter is designed to compute
systems containing heavy atoms. Methodologically, all three methods are similar in
presenting an additional term to the one-electron Hamiltonian.

2.12.1. Polarizable Continuum Model

The polarizable continuum model (PCM) can describe solvent effects by represent-
ing the solvent as polarizable continuum [80]. Briefly, a cavity surrounding the
solute molecule is created in the continuous dielectric medium (representing the
solvent). The cavity is made as a union of atomic spheres divided into pieces (fre-
quently, triangular portions) called tesserae, each of which has its own point charge,
called the apparent surface charge (ASC). The inclusion of the solvent effect to
FMO is made by adding a one-electron Coulomb interaction contribution WX into
the fragment Fock matrix,

F̃X
μν = FX

μν + WX
μν , (2-114)

where FX
μν is the Fock matrix element in vacuum. The potential WX

μν exerted by the
solvent upon the solute has the following form:

WX
μν = −

NT∑

i

qiw
i
μν , (2-115)

where NT is the total number of tesserae, whose charges are qi and wi
μν describes

the one-electron electrostatic interaction of the tessera charge and the solute,

wi
μν =

〈
χμ

∣∣ 1

|r − Ri|
∣∣χν

〉
. (2-116)

The electrostatic potential V exerted on the cavity (the size of vectors V, VI and
VIJ is NT) by the solute is

V =
N∑

I

VI +
N∑

I>J

(VIJ − VI − VJ). (2-117)

The contribution VX is composed of the potentials due to the electron density and
the nuclei in X,

VX = VX(e) + VX(n), (2-118)
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where

VX(e)
i = −

∑

μν∈X

(DX
μνwi

μν), (2-119)

VX(n)
i =

∑

α∈X

Zα
|Rα − Ri| . (2-120)

The charges q are obtained by solving the following equation:

Cq = −V

where C is the geometric matrix (NT ×NT ) including the prefactor ε/(ε−1) follow-
ing the notation of Ref. [81], where ε is the dielectric constant of the solvent. The
interaction energy G between the FMO solute and PCM solvent is represented as

G = 1

2
VTq = −1

2
VTC−1V. (2-121)

The FMO/PCM total energy is obtained by adding G and Gcdr into the internal solute
FMO energy EFMO

EFMO/PCM = EFMO − 1

2
VTC−1V+Gcdr, (2-122)

where Gcdr is the term describing parametrized values of the cavitation, disper-
sion and repulsion energies (the former gives the amount of the energy necessary
to create a cavity in the solvent occupied by the solute, the latter two describe the
corresponding solute-solvent interactions).

The FMO/PCM energy is calculated at various levels, denoted as FMOn
/PCM[m] (n≥m). The former number stands for the n-body expanded FMO energy,
and the latter means that the electrostatic potential of Eq. (2-117) is truncated up
to the m-body contribution. For instance, FMO2/PCM[1] uses the first term of
Eq. (2-117) for the monomer calculations as well as the dimer calculations, i.e.
the electrostatic potential V = ∑N

I VI is updated during SCC and then used in
the dimer calculations. For FMOn/PCM[2], however, the electrostatic potential has
the form of Eq. (2-117) and the FMO2 calculation should thus be repeated with
the updated V until the total energy converges. Because FMOn/PCM[2] is time-
consuming, FMOn/PCM[m(l)] (n≥l>m) was proposed [77]. In this scheme, first the
m-body expansion of the potential V is adopted to get the ASCs self-consistently
and then the ASC is computed using the l-body expanded V only once.

In the FMO/PCM energy gradient [81], the derivatives of G in Eq. (2-121) or the
second term on the right hand side of Eq. (2-122) with respect to nuclear coordinate
a are obtained,

∂G

∂a
= 1

2

∂VT

∂a
(q + q̂)+ 1

2
q̂T ∂C
∂a

q, (2-123)
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where

q̂ = −
(

C−1
)T

V. (2-124)

Originally, the derivatives of Gcdr were computed numerically (this term does
not depend upon the electronic density, but only on the parameters given by the
solvent atom types and the cavity shape) and now there are analytic derivatives as
well [82].

2.12.2. Effective Fragment Potential

In contrast to PCM, the EFP method is applied to the discrete solvent. We devel-
oped a hybrid scheme of FMO and EFP, the FMO/EFP method [78]. In this scheme,
the potentials representing the solute and explicit solvent interactions, are added to
Eq. (2-26) for subsystem X, composed of the Coulomb, polarization, and
the remainder term (that is, charge transfer plus the electron exchange-
repulsion):

VEFP
X = Vcoul

X + Vpol
X + Vrem

X . (2-125)

The Coulomb potential acting on X is represented using the Stone’s multipole
expansion [83]:

Vcoul
X =

NCoul∑
C

(− qC

rC
−

x,y,z∑
a
μC

a F̂a(rC) − 1

3

x,y,z∑
ab
�C

abF̂′
ab(rC)

− 1

15

x,y,z∑

abc

 C
abcF̂′′

abc(rC) · · ·),
(2-126)

where index C runs over the NCoul expansion points of the whole solvent system
(usually atoms and bond midpoints), and rC = |r − RC| is the distance between
electron in X and point C. μC

a , �C
ab and  C

abc are the dipole, quadrupole, octupole
moments at C, respectively. F̂a(rC) = −(a − aC)/r3

C, F̂′
ab(rC) and F̂′′

abc give the
electric field due to the QM charge, the field gradient and the field second derivative
operators, respectively. To improve the point multipole model accounting for the
overlapping electron densities, the first term on the right hand side of Eq. (2-126)
can be replaced with

−qC

rC
→ (1 − βC exp [ − αCr2

C])

[
−qC

rC

]
, (2-127)

where αC and βC are fitting parameters [84].
The remainder potential between FMO and EFP fragments is as a one-electron

operator,
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Vrem
X =

Nrem∑

m

∑

i∈X

Vrem(m,i), (2-128)

where m and i run over the EFP remainder expansion points and the electrons in X,
respectively, and Nrem is the total number of remainder expansion points. For water
acting as solvent, the ab initio electron exchange-repulsion plus charge transfer
contributions are fitted to Gaussian functions of V rem(m,i) for water dimer [85].

The polarization energy of EFP is represented by the induced dipoles,

Epol = −1

2

Npol∑

i

(
μi − μ′

i

) · Ftot
i , (2-129)

where Npol is the total number of the EFP polarizable points, which are taken to be
the centroids of the localized MOs of an effective fragment. The induced dipoles are
obtained using the relations:

μi = αiFtot
i , (2-130)

μ′
i = αT

i Fμi . (2-131)

αi and αT
i are the polarizability tensor and its transpose, respectively.

The total field at polarizable point i is due to the QM part of subsystem X, Fai
i

(where ai stands for ab initio, i.e., QM), EFP multipoles (Fefp
i ) and the induced

dipoles (Fμi ),

Ftot
i = Fai

i + Fefp
i + Fμi . (2-132)

The field due to the FMO fragment X and the field due to the induced dipole
are further divided into the electron and nucleus terms, and those due to the dipoles
induced by X and the EFP,

Fai
i = 〈�X| f̂

el,X
i |�X〉 + Fnuc,X

i , (2-133)

and

Fμi = Fμ,X
i + Fμ,EFP

i , (2-134)

respectively.
Unlike the Coulomb and the remainder potentials in Eq. (2-125), the induced

dipole is influenced by the ab initio density, and should be optimized self-
consistently. To do this, the Lagrange multipliers are introduced. The modified SCF
equation is
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⎡

⎣H′
X − 1

2

Npol∑

i

(
αiFtot

i + αT
i Ftot

i − αT
i Fμi

) · f̂
el,X

i

⎤

⎦ |�X〉 = WX |�X〉 , (2-135)

and the total electronic fragment energy is,

EX = WX + 1

2

Npol∑
i

(
αT

i Ftot
i − αT

i Ftot
i

) · 〈�X | f̂
el

i |�X〉

−1

2

Npol∑

i

αi 〈�X | f̂
el,X

i |�X〉 ·
(

Fnuc,X
i + Fefp

i

)

−1

2

Npol∑

i

(
αiF

nuc,X
i + [

αi − αT
i

]
Fμ,X

i

)
·
(

Fnuc,X
i + Fμ,X

i + Fefp
i + Fμ,EFP

i

)

−1

2

Npol∑

i

(
αiF

efp
i + [

αi − αT
i

]
Fμ,EFP

i

)
·
(

Fnuc,X
i + Fμ,X

i

)
,

(2-136)
where

H′
X = HX + Vcoul

X + Vrem
X . (2-137)

The polarization energy between EFPs,

Epol
EFP−EFP = −1

2

Npol∑

i

(
αiF

efp
i + [

αi − αT
i

]
Fμ,EFP

i

)
·
(

Fefp
i + Fμ,EFP

i

)
, (2-138)

is added into the FMO/EFP energy expression.

2.12.3. Model Core Potential

MCP replaces the particle treatment of some (core) electrons by a potential,
retaining Nv explicit (valence) electrons. The MCP Hamiltonian is constructed in
FMO-MCP [79] as

HMCP,X =
Nv∑

i∈X

⎡

⎣hMCP,i +
Nv∑

i>j∈X

1∣∣ri − rj
∣∣

⎤

⎦ +
∑

B∈X

∑

A(∈X)>B

Zeff
A Zeff

B

RAB
, (2-139)

where the one-electron potential modified for MCP is,
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hMCP,i = −1

2
∇2

i − ∑
L∈X

Zeff
L|ri−RL|[

1 +
nL,α∑

k

AL,ke(−αL,k|ri−RL|2) + |ri − RL|
nL,α∑

k

BL,ke(−βL,k|ri−RL|2)

]

+
∑

L∈X

NL,c∑

c

BL,c
∣∣ψL,c

〉 〈
ψL,c

∣∣ ,

(2-140)

where the nuclear charge ZA is replaced by the effective nuclear charge, Zeff
A =

ZA − NA,c and NA,c is the number of core electrons on atom A. L runs over all
atoms. Parameters AL,k, αL,k, BL,k and βL,k are fitted from all-electron calculations
when MCP is generated. The last term on the right hand side of Eq. (2-140) is the
projection operator that shifts the core orbitals

∣∣ψL,c
〉
; it has the same form as the

operator used for the bond detachment in FMO, cf Eq.(2-34). Some atoms can be
treated without using MCP, in which case the Hamiltonian is trivially modified, cf
Eq. (2-6).

Model core potentials are often parametrized to reproduce high level relativistic
calculations, and allow one to perform accurate calculations of systems contain-
ing heavy atoms, for instance, hydrated mercury ions and platinum-containing
compounds [79].

2.13. SCALING

The question of scaling of computational methods is not a very simple one. The
label “linear scaling” can be attached with ease without sufficient justification. In
many cases the systems used to validate the claim of linear scaling are linear them-
selves, that is, they look like a wire. The absence of the three-dimensional effects
can provide the necessary condition for the linear scaling in the methods, which may
not be well discussed.

The intrinsic difficulty in the issue of scaling appears to be in the almost
inevitable mixture of scaling regimes, caused by the complicated many-step nature
of computational algorithms. In other words, in practice one can find both linear
and quadratic scaling parts in a method, for instance, if pairwise distances are to
be computed, that alone scales as a square of the system size. In addition, there are
other complications such as the use of thresholds and a switch of the approxima-
tions, whose efficiency and scaling depend upon the system size N, for instance, in
the region of small N the scaling of two-electron integrals is N4, but using screening
at large N reduces this cost to nearly quadratic.

Finally, even when “manifestly” an algorithm breaks down into N sections, then
there may be other issues such as the number of iterations to reach convergence
depending upon N or the cost of parallel operations (e.g., global sums) taking more
work with respect to N than linear scaling implies. Frequently, there is a dominant
part of the algorithm which suppresses other higher scaling aspects, and it may be
sufficient in practice if it is linear scaling. With a different N regime the scaling can
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change. Although one can aim at “very large N” when discussing the scaling, infinite
N are never used in practice, and the scaling of the whole complex algorithm is thus
almost a metaphysical issue (debated at times with ardent zeal), although discussing
the scaling of some mathematically well-defined part of an algorithm can certainly
be perfectly appropriate.

There is, however, a practical way to estimating the effective scaling, as observed
for some specific system and for some specific system size region. This, however,
complicates the matters further (perhaps more than is often realized), because then
another very complicated factor is brought in, which is the computer. The efficiency
of the use of memory including cache and the intrinsic parallelisation in modern
CPUs also depend very considerably upon the system type and size. Thus, in our
opinion, the question of scaling is not very well defined in most practical cases.

As far the scaling of FMO is concerned, we described it as “nearly linear” [31,
42], demonstrating it by calculating a number of systems which are both linear and
globular in shape, and justifying it theoretically from the mathematical grounds [17].
We point out that this is what is observed for “typical” regime of applying FMO,
that is, systems sufficiently large so that the approximations reduce the number of
the most computationally demanding SCF calculations of monomers and dimers to
a value proportional to N, which prevails over other higher scaling parts (e.g., the
calculation of the interfragment distances, N2).

2.14. MOLECULAR DYNAMICS

Molecular dynamics (MD) is an important tool to study protein folding and enzyme
reaction in the field of biochemistry. Newton’s equation of motion, in which FMO
can be used to compute force F acting upon atom A, can be represented as [86]

mA
d2rA

dt2
= FA = −∇AEFMO. (2-141)

Here a problem arises; as the FMO energy gradient is not fully analytic. The
first MD test calculations were done by Komeiji [87], where the validity of FMO-
MD was shown with the proper fragmentation and time step. Mochizuki et al.
[88] extracted the structures of hydrated formaldehyde obtained from the FMO-
MD simulation and then the CIS(D) calculations were carried out for 400 structures
to investigate the statistical effect for the lowest n-π∗ excitation energy. The aver-
aged excitation energy was in good agreement with the corresponding experimental
energy. Sato et al. [89] reported on the SN2 reaction of hydrated CH3N2

+ using
FMO-MD. Komeiji et al. [90] implemented the blue moon ensemble and performed
dynamic fragmentation [75] to describe proton transfers in water solvent.

Ishimoto et al. [91, 92] developed the FMO Hamiltonian algorithm (FMO-HA),
which is another approach for the MD simulation. The important feature of FMO-
HA is that the geometries in the simulation are rarely trapped at local minima, which
improves sampling.

For light atoms, however, the coupling between electrons and protons may
be important, and in the path integral MD (PIMD) [93] it is considered via
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the partition function in the path integral representation, containing the Born-
Oppenheimer electronic energy. The latter can be computed with FMO, resulting
in FMO-PIMD [94].

2.15. ENERGY DECOMPOSITION ANALYSES

Because FMO manipulates with subsystems, e.g., monomers and dimers, one can
define the pair interaction energies (PIE) between fragments, denoted also by IFIE
(interfragment interaction energies). It is particularly easy to define the bulk value of
the PIEs. To do this, it is convenient to look at the FMO energy expression in terms
of the internal energies, Eq. (2-90), given for RHF, combined with the correlation
energy contribution (e.g., the MP2 correlation energy). PIE between fragments I and
J can be defined as

�EIJ = (E′
IJ − E′

I − E′
J) + Tr(�DIJVIJ) + (Ecorr

IJ − Ecorr
I − Ecorr

J ). (2-142)

The meaning of the three contributions is as follows. The first term, given by
the difference of the internal energies is the “internal” PIE, or the interaction of the
electronic states of I and J in the field of other fragments but with the explicit effect
of the field subtracted (the implicit effect is present via the global polarization).
The second term given by the trace is the interaction of the external field with the
charge transferred between I and J (as given by the differential density matrix�DIJ).
Loosely speaking, it is the explicit coupling of the internal PIE and the external field
(i.e., ESP). This second term is not equal to the charge transfer energy, some part
of which is included in all terms in Eq. (2-142). The third term arises in correlated
methods (i.e., MP2 and CC); in DFT the correlation is included into the internal
energies (the first term) and the third term is zero. This term in correlated methods
describes the dispersion (or van der Waals) interaction between the fragments I and
J, polarized by the field.

It is important to realize that the polarization is included in (a) the internal
monomer energies (since the electronic state of monomers is computed in the polar-
izing external field, ESP), (b) the electrostatic component of PIEs. As shown below,
to define the polarization, one should introduce the free state, against which the
polarization is measured. PIEs in general include: the attractive component of the
polarization, the electrostatic, exchange-repulsion, charge transfer and dispersion
interactions.

It should be noted that PIE between connected fragments in FMO (i.e., between
which there is a detached covalent bond) is large (for C-C bonds on the order of
15 a.u.), because interactions in BDA are divided into two fragments. Such PIE
values can be used directly to study the change of PIE in some process (a chemical
reaction) or a BDA correction can be applied [23].

The above discussion pertains to the ground state, and one can also analyze the
contributions of fragment to the excitation energies (Eq. 2-71), in the TDDFT [62,
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63] and CIS [69] context. At present, only bulk values of pair corrections to the
excitation energies can be obtained.

2.15.1. Pair Interaction Energy Decomposition Analysis

Although the bulk pair interaction energies defined in Eq. (2-142) are already quite
useful and have been taken advantage of in many if not most FMO applications (e.g.,
[95]), it is desirable to define components outlined above. This is accomplished by
the interfacing of the Kitaura-Morokuma energy decomposition analysis (EDA) [96]
into FMO, resulting in the PIE decomposition analysis (PIE+EDA=PIEDA) [23].
PIEDA allows a very detailed study of the interaction energy components and their
couplings (e.g., the coupling of the polarization and the dispersion), and here we
only give a very basic outline of the method.

Pair interaction energies are decomposed as

�EIJ = �EES
IJ +�EEX

IJ +�ECT+mix
IJ +�EDI

IJ , (2-143)

where �EES
IJ , �EEX

IJ , �ECT+mix
IJ and �EDI

IJ are the electrostatic (ES), exchange-
repulsion (EX), charge transfer and higher order terms (CT+mix) and dispersion
(DI), respectively.

The polarization is divided into two contributions, the destabilization energy
(the difference between the internal energy of the polarized state and the free state
energies; that is, this component is obtained from E′

I rather than �EIJ), and the sta-
bilization energy, extracted as a part of the energy of the interfragment electrostatic
interaction. For the fragments connected by the detached bonds, the definition of
the free state is somewhat artificial, and in this case one often chooses not to extract
the polarization components, but rather to look at the pair interaction energies of the
polarized fragments. However, if two systems are compared (e.g., reactants and tran-
sition state), then one can look at the internal energies of fragments E′

I and consider
the difference in the destabilization polarization.

2.15.2. Configuration Analysis for Fragment Interaction and Fragment
Interaction Analysis Based on Local MP2

The components of PIEDA apply to the bulk PIEs. It is, however, often desirable to
consider contributions from some subunits of fragments, such as functional groups.
The configuration analysis for fragment interaction (CAFI) was developed [97] on
the basis of localized orbitals, whereby one can extract some part of the stabiliza-
tion polarization and charge transfer energies on the basis of orbital pairs of two
fragments. By plotting the localized orbitals, one can identify the functional groups
associated with contributions.

To supply the dispersion component to CAFI, Ishikawa et al. [98, 99] combined
FMO with the local MP2 (LMP2) method [100] to analyze the dispersion interaction
between localized orbitals. The correlation part of the interaction energy between
fragments I and J is given by
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�Ecorr
IJ = Ecorr

IJ − Ecorr
I − Ecorr

J . (2-144)

In the fragment interaction analysis based on local MP2 (FILM), one replaces
�Ecorr

IJ with the values from LMP2, �Ẽcorr
IJ , represented in terms of orbital pair

correlation energies,

�Ẽcorr
IJ =

occ∑

i(∈I)≥j(∈J)

εij. (2-145)

For instance, if the orbital pairs are σ and π , the corresponding εij represents
the CH-π interaction [99]. It should be noted that there sometimes arises a problem
in the orbital localization and the assignments of orbitals in dimer IJ to the either
monomer. It was argued [98] that the definition in Eq. (2-145) has a much decreased
BSSE (see below). The values in Eqs. (2-144) and (2-145) can be considerably
different for these reasons.

2.16. BASIS SET SUPERPOSITION ERROR

Basis set superposition error (BSSE) leads to the overestimation of the molecular
interactions when an incomplete basis set is applied in the MO method. Therefore,
attempts to remove it have been in the mainstream of research for several decades.
The most famous and widely used scheme is the counterpoise (CP) method by
Boys et al. [101] In the CP scheme, the intermolecular interaction of the molecular
complex IJ consisting of subsystems I and J can be calculated as

�ECP = EIJ − ẼI − ẼJ , (2-146)

where the tilde means that the energies are obtained with the basis set of the complex
IJ using ghost atoms. The value of BSSE can also be defined as

�EBSSE = �ECP −�E, (2-147)

where �E is the conventional intermolecular interaction energy:

�E = EIJ − EI − EJ . (2-148)

The CP scheme can be applied to the interfragment interaction energy in
Eq. (2-142) [79, 102]. �EBSSE was computed [102] from the energies appearing
in Eq. (2-147) in vacuum (i.e., without the usual ESP in FMO), and thus left room
for improvement. Alternatively, Kamiya et al. [103] developed a method which is a
particular case of FMO with the ESP-PC approximation for all ESPs. We note that
the CP correction is controversial and it was argued that it does not systematically
improve the results [104].
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2.17. PROPERTY CALCULATIONS

2.17.1. Definition of Molecular Orbitals

In some cases it is desirable to construct molecular orbitals of the whole system.
The FMO-MO approach was suggested by Inadomi et al. [29, 105], where the Fock
matrix of the whole system is constructed from the density in Eq. (2-21) and then is
diagonalized only once to yield the resulting molecular orbitals. If the total energies
or improved MOs are desirable, one can do one more SCF iteration for the whole
system. This approach shares many problems of conventional ab initio methods,
such as the need to diagonalize a large matrix, although they are somewhat reduced
because the number of SCF iterations is 1–2 and the initial guess is quite reasonable
(the FMO total density).

Sekino et al. [106] suggested taking the union of the monomer MOs and showed
that this method produces fairly good orbitals and their energies, although it was
later found [22] that especially the virtual orbitals can be inaccurately described in
this case, and thus the very important property, the gap between the highest occu-
pied MO (HOMO) and the lowest unoccupied MO (LUMO) is difficult to obtain
accurately.

In the FMO-based linear combination of molecular orbital method (FMO-
LCMO) [107], the total Fock matrix F in the basis of a selected set of MO i(I)
is computed and diagonalized,

Fi(I),i′(I) =
∑

J �=I

FIJ
i(I),i′(I) − (N − 2)

∑

I

FI
ii′ , (2-149)

Fi(I),j(J) = FIJ
i(I),j(J), (2-150)

where the Fock matrix of dimer IJ is expanded in terms of monomer MOs,

FIJ
k(K),l(L) =

∑

ij∈IJ

〈
φK

k |φIJ
i

〉
FIJ

ij

〈
φIJ

j |φL
l

〉
, (2-151)

and using the Fock matrix of X in its own MO basis,

FX
ii′ = εX

i δii′ . (2-152)

one can further simplify Eqs. (2-150) and (2-151).
Unlike FMO-MO, the construction of the Hamiltonian matrix in FMO-LCMO is

limited to a subset of the MO space, as one can see in Eq. (2-149), where indices
i and i′ run over a desired subset of orbitals (frequently, a few orbitals around the
HOMO-LUMO gap in each fragment).

Alternatively, the FMO/F [22] method was suggested, where the total Fock
matrix FFMO/F is constructed from the monomer FI and dimer FIJ matrices, and
diagonalized once.
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FFMO/F =
N∑

I

⊕FI +
N∑

I>J

⊕ [
FIJ − (FI ⊕ FJ)

]
. (2-153)

The symbol ⊕ here indicates the direct matrix summation, that is, adding the
block matrix contributions (e.g., FI) into the appropriate blocks of the total matrix
FFMO/F.

It was found that adding the exchange post factum works best, i.e., after the deter-
mination of the fragment densities in the presence of ESPs without the exchange,
it is added afterwards following Eq. (2-33) to the conventional Fock matrix in
FMO, Eq. (2-23), resulting in the FMO/FX method. The other alternative, using
the exchange both in SCF and in the total Fock matrix construction (FMO/XF) fails
to work for the same reason as FMO/X, as described above.

2.17.2. Molecular Electrostatic Potential and Fitted Atomic Charges

Atomic charges is the important property extensively used in many ways. The
molecular electrostatic potential has been also widely used in particular, in biochem-
istry to explain the affinity of ligands, see e.g., [108]. The electrostatic potential at
position r due to nuclear charges of all atoms and the total electron density ρFMO(r′)
in Eq. (2-21) can be written as

VFMO(r) =
all∑

A

ZA

|r − RA| −
∫
ρFMO(r′)
|r − r′| dr′. (2-154)

The atomic charges qA are fitted to minimize the deviations of VFMO(Ri) in
Eq. (2-154) to the electrostatic potential (ESP) Vi of the atomic charges at point i:

Vi =
∑

A

qA

|Ri − RA| , (2-155)

where the points i are chosen on some grid surrounding the system and frequently
some additional restraints are imposed, producing restrained ESP (RESP) charges
[109] within the FMO formalism [110, 111].

2.17.3. Nuclear Magnetic Resonance

Recently, the resolution of nuclear magnetic resonance (NMR) spectroscopy has
improved so that the structure of biological molecules can be determined with an
accuracy similar to that of X-ray crystal structure resolution. NMR shifts are often
used for the validation of structures; for example, one can optimize the structure
with an ab initio method, compute the NMR shifts and compare them to the experi-
mental measurements. FMO can be used [112, 113] to calculate the chemical shifts
of biomolecules in combination with the gauge-including atomic orbital (GIAO)
[114, 115] or continuous set of gauge transformations (CSGT) [116].

The chemical shifts δ are given by
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δ = σ 0 − σ iso

1 − σ 0
× 106 ≈

(
σ 0 − σ iso

)
× 106, (2-156)

where σ iso = Tr(σ )/3 is the absolute isotropic shielding constant and the reference
standard σ0. In the GIAO method the magnetic shielding tensor σ is given by the
second derivatives of the energy with respect to the magnetic moment of nucleus
and the external magnetic field B,

σαβ = ∂2E

∂μα∂Bβ
. (2-157)

In the CSGT method, the magnetic tensor is expressed in terms of the induced
current density as

σαβ = − 1

cB

∫
drN

[
rN × j(1)

β (rN)/r3
N

]

α
, (2-158)

where j(1)
β (rN) is the induced first-order current density and rN is the position vector

of electron from nuclear N.
In either case, one has to solve CPHF equations to determine the values of shifts.

The GIAO method requires the computation of the ESP in FMO in the basis of
GIAO, which is tedious, whereas in the case of CSGT only the regular ESP is nec-
essary. There were two different approaches taken to compute the NMR shifts in
FMO: (a) the synthetic FMO1-NMR approach [112], where the shifts are computed
for the atoms located in the middle of connected dimers (i.e., away from the bond
detachment points), combining the results from two fragmentations shifted rela-
tively to each other, and (b) the regular FMO2-NMR approach [113], where shifts
are computed in the many-body FMO expansion.

2.17.4. Multipole Moments and Dynamic Polarizabilities

The calculation of dipole, quadrupole or higher order momenta in FMO is straight-
forward.

Mμ =
N∑

I

MI
μ +

N∑

I>J

(MIJ
μ − MI

μ − MJ
μ). (2-159)

where Mμ is the μ component of a multipole moment M (e.g., the x-element of the
dipole moment d). The dipole moments were very extensively used in the valida-
tion tests establishing the accuracy of FMO (e.g., [19, 31, 47, 53]), and quadrupole
moments were also computed for FMO-DFT [106].

The polarizability is a measure of response of a dipole to the external field that
can be described by perturbation theory. It is important because it plays a crucial
role in the properties of the low-laying excited states. To obtain the polarizability,
one has to solve the following CPHF equations [117] similar to those for TDDFT
(see Eq. 2-72),
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(
AX − ω1X BX

BX AX + ω1X

)(
N+
μ

N−
μ

)
= −VX

μ, (2-160)

where N is the response vector, V is the electric field perturbation vector with μ =
x,y,z, and the A and B are very similar to those in TDDFT,

AX
ri,sj = δrsδij

(
εX

r − εX
i

)
+ 2

(
φX

r φ
X
i |φX

s φ
X
j

)
−

(
φX

r φ
X
s |φX

i φ
X
j

)
, (2-161)

BX
ri,sj = 2

(
φX

r φ
X
i |φX

j φ
X
s

)
−

(
φX

r φ
X
j |φX

i φ
X
s

)
. (2-162)

αX
μν = 2(N+

μ ,N−
μ ) · VX

ν . (2-163)

The polarizability tensor is computed in the FMO formalism [117] as

αμν =
N∑

I

αI
μν +

N∑

I>J

(αIJ
μν − αI

μν − αJ
μν). (2-164)

2.17.5. Nuclear Wave Function

The multicomponent molecular orbital method (MCMO) was developed by
Tachikawa et al. [118–120] to treat the nuclear quantum phenomena. Ishimoto
et al. [121] combined MCMO with FMO and discussed the geometrical relaxation
induced by the H/D isotope effect. The Hamiltonian in Eq. (2-6) is modified as

HX =
M∑

T∈X

NT∑
i∈T

{
− 1

2mT
∇2

i +
NT∑

j∈T<i

Z2
T∣∣ri − rj

∣∣ +
NA∑
A

ZTZA

|ri − RA|

+
all∑

K �=X

∫
ρK(r′)
|ri − r′|dr′

⎫
⎬

⎭ +
M∑

(S∈X)<T

NT∑

i∈T

NS∑

j∈S

ZiZj

|ri − rj| ,
(2-165)

where T and S run over M types of particles (electron, proton and deuteron), while
particles are labelled i and j. mT and ZT are the mass and charge of T-th type of par-
ticle, respectively. A denotes heavy atoms, whose number is NA. The corresponding
wave function is regarded as the product of the wave functions of all particles,

|�X〉 = |!A〉 |!B〉 · · · |!M〉 . (2-166)

Alternatively, one can consider the full quantum-mechanical treatment of protons
in the nuclear-electronic orbital (NEO) method [122], where specifically, NEO-
RHF, NEO-DFT and NEO-MP2 were interfaced with FMO. In the FMO-NEO
calculation, two types of RHF equations are obtained for electrons and quantum
nuclei. The modification of NEO equations is made for the external ESPs due to
FMO, whereby some nuclear charges in Eq. (2-28) are replaced by the density dis-
tributions (derived from the nuclear wave function), i.e., those terms are moved from
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Eq. (2-28) to Eq. (2-29). The additional contributions to ESPs for electrons υe
μν and

quantum nuclei υn
μν (cf Eq. 2-29) are thus defined by

υe
μν =

all∑

K �=X

∑

λσ∈K

Dn,K
λ′σ ′

(
χ e
μχ

e
ν |χn

λ′χ
n
σ ′

)
, (2-167)

υn
μ′ν′ =

all∑

K �=X

∑

λσ∈K

De,K
λσ

(
χn
μ′χn

ν ′ |χe
λχ

e
σ

)
, (2-168)

where Dn,K
λ′σ ′ = ∑NK

n
i∈X Cn,K

λ′i Cn,K∗
σ ′i and De,K

λσ are the nuclear and electronic density
matrices obtained from the corresponding orbital coefficients C, respectively. χe

μ

and χn
μ′ are the basis functions for electrons and quantum nuclei, respectively. NK

n
is the number of quantum nuclei for fragment K.

For the covalent bond fragmentation, the contribution from nuclear orbitals are
negligible, because the nuclear orbitals are much more localized than MOs. The
localized feature of the nuclear obitals allows some ways to neglect the nuclear-
nuclear exchange and the nuclear correlation effects, but the strong electron-proton
correlations necessitate the explicitly correlated geminal treatment [123].

2.17.6. Drug Design

Visualized cluster analysis of protein-ligand interaction (VISCANA) was developed
for the virtual ligand screening (VLS) based on FMO [124], useful for docking
simulations. The dissimilarity of interfragment interactions (PIE) between the two
ligand compounds I and J is expressed by

dIJ =
N∑

K

(�EIK −�EJK)
2 , (2-169)

where K runs over residues of the target protein.
On the other hand, one can define the protein-ligand interaction energy table in

the matrix form by arranging the appropriate PIE values as

⎛

⎜⎜⎜⎝

�Eligand1,1 �Eligand1,2 · · · �Eligand1,N
�Eligand2,1 �Eligand2,2 · · · �Eligand2,N

...
...

. . .
...

�EligandL,1 �EligandL,2 · · · �EligandL,N

⎞

⎟⎟⎟⎠ , (2-170)

where L is the number of ligands and N is the number of amino acid residues of
the protein. The order of ligand compounds is sorted by a hierarchical clustering
procedure.

The quantitative structure-activity relationship (QSAR) method is a powerful tool
for drug design. Yoshida et al. [95] developed a QSAR scheme taking advantage of
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the properties from FMO calculations (atomic charges, interfragment interaction
energies etc) as descriptors and successfully applied it to the complexes of HIV-1
protease with a few inhibitors. Fischer et al. [125] used atomic charges from FMO
to improve scoring functions. QSAR circumvents the difficulties in a fully ab initio
calculation of biological activities by fitting parameters, which connect the activities
with the computed descriptors for several experimentally measured ligands and then
the activity of new substances can be predicted using the prefitted parameters from
the properties computed by FMO.

2.18. MASSIVELY PARALLEL COMPUTERS

In 2006, FMO was applied to the photosynthetic reaction center of blastochloris
viridis containing 20,581 atoms (1,398 fragments) at the RHF/6-31G(d) level [126].
The calculation was performed using GAMESS on the P-32 subsystem of the AIST
Super Cluster and took 86.8 hours on 300 nodes (600 CPUs), taking advantage of the
generalized DDI (GDDI) [127]. Ikegami et al. [69] discussed the fragment excita-
tion energies of the chromophore in the electrostatic potentials due to the monomer
fragment densities of the surrounding protein cage at the CIS level.

Mochizuki et al. [128] adapted ABINIT-MP program to the parallel vector super-
computer, the Earth Simulator. The integral transformation in Eq. (2-58) vectorized
using DGEMM, which was found to accelerate the computation by the factor of 6
relative to DAXPY and DDOT. The FMO-MP2 calculations were done for the com-
plex of hemagglutinin protein (HA) with the antibody, which contains 14,086 atoms
(911 fragments), taking 91.4 min with 2,048 vectorized processing units (VPUs)
and 53.4 min with 4,098 VPUs.

2.19. RECENT APPLICATIONS

Driven by the physical nature of a particular problem, one can choose an appropri-
ate model to perform calculations. An increasing number of researchers including
experimentalists have used FMO for the practical applications [13]. Tada et al.
[129] analyzed interfragment interactions at the active site of Gelsolin with FMO-
MP2/6-31G∗, Sawada et al. [130] studied the solvated structure of the helical
oligosaccharide heparin at the FMO/PCM/6-31G∗ level.

There is also considerable interest in the application of FMO to photochemical
phenomena involving excited states: Taguchi et al. [131] reported FMO-CIS(D)/6-
31G∗ calculations of the excitations in red fluorescent proteins while Tagami et al.
[70] applied FMO-CIS(D)/6-31G to the spectra of bioluminescent luciferases.
Kistler et al. [132] used FMO-MCSCF/cc-pVDZ:cc-pVTZ to compute the solva-
tochronic shifts of explicitly solvated uracyl and cytosine.

Influenza is one of the most contagious diseases in the world and several groups
[133, 134] applied FMO to its studies; Takematsu et al. [134] computed the complex
having more than 14,000 atoms quantum-mechanically at the FMO-MP2/6-31G∗
level. He et al. [135] applied FMO-MP2/PCM/6-31G∗ to the protein folding and
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reported that the dispersion dominant protein can reproduce the energy-based scor-
ing function correctly using MP2 as well as the Lenard-Jones dispersion potential
with the proper parameters. Nagase et al. [136] studied the binding of urokinase-
type plasminogen activator (uPA) with uPA receptor (which is deeply related to the
cancer spreading) using FMO-MP2/6-31G.

Nakamura et al. elucidated the reaction mechanism of L-2-haloacid dehalogenase
from Pseudomonas sp. YL (L-DEX YL) catalyzing the hydrolytic dehalogenation of
L-2-haloalkanoic acids using MD and FMO-MP2/6-31G [137]. Halogenated com-
pounds are widely used, but cause environmental pollution and health problems due
to their toxicity. The complex structure of L-DEX YL with L-2-chloropropionate
(2-CPA) in explicit water solvent was determined using MD, followed by FMO-
MP2/6-31G calculations to analyze the pair interactions. It was found that the
enzyme activity of L-DEX YL correlates with the pair interactions between residues
and molecules at some stages of the reaction.

2.20. SUMMARY

In this chapter, we have mainly discussed the FMO method from a mathematical
point of view and briefly introduced recent applications of FMO. The computa-
tional schemes are frequently interusable, for example, MCP can be combined with
EFP. The combination of various levels such as PCM realizes a multiscale physical
approach, where quantum-chemical description is used with a continuum model for
solvation.

In the multiscale approach, the FMO method can be used in chemically important
molecular regions, in which the electronic treatment is required. On the other hand,
the EFP method can be applied to the explicit solvent molecules around the FMO
region. PCM can be added to describe to the bulk solvent surrounding both the
FMO and EFP molecules. This type of multiscale approach is promising, because
the moderate change of interactions in borders would be naturally described with
the significant reduction of computational cost. The FMO method developed by a
number of research groups is expected to be useful in studying various practical
problems.
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Abstract: All traditional methods for electron correlation share a steep power law dependence on
the molecular size. This high scaling prohibits the use of these methods to large systems
in spite of the very impressive advances in computer technology over the past decades.
Clearly, this problem cannot be solved with improvements of computers alone, and new
methods reducing the power law scaling to one or near one must be developed. In this
chapter some linear of low scaling methods for electron correlation will be reviewed.
The focus will be on the linear scaling MP2 methods, but other more accurate correla-
tion methods will also be briefly discussed. In addition, the very efficient RI-MP2 will
be discussed even though the high power law scaling of conventional MP2 has not been
reduced. A discussion of the RI-MP2 method has been included since it is perhaps an
order of magnitude more efficient than other efficient MP2 methods. The RI or den-
sity fitting approach has now been combined with the local correlation method, and the
RI-LMP2 method exhibits linear scaling with the size of the system. Most of the meth-
ods discussed herein are based on the local correlation method introduced by Pulay and
Saebø in the early eighties and developed further by Schütz, Werner and co-workers. The
topic was reviewed in 2002 and this review will focus on the more recent advances in
this field. A new linearly scaling LMP2 approach yielding essentially identical results
to conventional canonical MP2 will be described, and MP2 calculations with around
5,000 contracted basis functions have been performed without density fitting using this
approach.

Keywords: Electron correlation, Møller-Plesset perturbation theory, Local correlation, Linear scaling

3.1. INTRODUCTION

Over the past decades we have witnessed tremendous advances in computer tech-
nology, and this trend is expected to continue in the future. It has been suggested that
an increase in computer power of a factor of 1,000 should be expected every decade
in the foreseeable future. However, improvements in computer technology alone are
not sufficient to make conventional methods for electron correlation applicable to
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large systems. Conventional methods for electron correlation share a steep power
law dependence with the size of the system and assuming a sixth-order scaling
shared by many commonly used methods for electron correlation, an increase in
computer power of a factor of 1,000 will only allow study of systems about three
times larger than one could study with today’s hardware. The only way computa-
tional chemists can take full advantage of the advances in computer technology, and
move quantum chemistry into new and exciting areas of science, is by reducing the
high power-law scaling of conventional quantum mechanical methods.

As pointed out decades ago, this steep computational scaling is also unphysical
[1–4] and it is the result of the use of delocalized canonical orbitals. Electron cor-
relation should asymptotically be more efficient that SCF since the latter method
is dominated by long-range Coulomb type interactions while electron correlation
effects are relatively short ranged, and the only way the steep computational depen-
dency can be reduced or eliminated is by exploring the localized nature of electron
correlation.

The local correlation method was introduced in the early eighties by Pulay and
Saebø. This method will be referred to as the Pulay-Saebø local correlation method
[1–5]. Several other groups have contributed to the field, and the topic has been
reviewed by us [6–8] and by Carter and Walter [9]. References to local correlation
approaches developed before 2001 can be found in Ref. [6–8]. As discussed in our
2002 review [8] many groups have contributed to this field including Friesner [10],
Ayala and Scuseria [11], Carter [12, 13], Head-Gordon [14], and Schütz, Werner,
and coworkers [15–22].

The first implementation of the local correlation method was designed for corre-
lation methods beyond MP2 and provided no savings at the MP2 level [2, 4, 5]. It
was implemented for several common correlation methods like MP2 [5], MP3 [5],
MP4(SDQ) [3, 5], CI-SD [2], ACCD [23], and CEPA-1 [2] and CEPA-2 [2], and
variational CEPA [24] and it provided quite significant computational savings for
medium sized systems [25–27]. Unfortunately, the computational resources avail-
able ∼25 years ago only allowed applications on medium sized systems. The local
correlation method was also introduced roughly at the same time as vector machines
became readily available and the size of the calculation that could be performed
was often limited by disk space. This stimulated a semi direct implementation of
the local correlation method [6, 28]. Clearly, the advantages of the local correla-
tion approach become greater the larger the system, and in some respect the local
correlation method was introduced too early, since with the computational facilities
available at the time did not allow employment of the method to the large system
for which the method was designed.

This situation changed dramatically during the following decades both with
respect to computer technology and new computational algorithms, and this resulted
in a renaissance of local correlation methods in the late nineties and early two
thousands. Several groups developed low-scaling methods for electron correlation
[9–27] and the majority of these methods were based on the original Pulay Saebø
method. Most of these methods were discussed in the earlier review of this topic
[8]. Werner, Schütz and coworkers have provided very significant contributions to
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the local correlation method. They have achieved linear or near linear scaling for
LMP2 [15, 16], LCCSD [17–19] and LCCSD(T) [20–22] where the L means that
the method is formulated in terms of localized orbitals.

As the title of this chapter implies, linear or low-scaling methods for electron
correlation will be reviewed with emphasis on the simplest correlation method,
MP2. In Section 3.2 we will give a brief review the orbital invariant formulation
of Møller Plesset perturbation theory [3], since this is needed for description of the
methods. In Section 3.3 the local correlation method [2–5, 8] and the two different
methods for restricting the dimension of the virtual space will be discussed [2, 4,
5, 8, 29]. In Section 3.4 recent low scaling methods will be discussed, including
the ‘full accuracy’ LMP2 method by Saebø and Pulay [29] as well as methods
based on the resolution of identity approximation [30, 31], RI-MP2 [32–40]. Even
though the high power law scaling of conventional MP2 has not been eliminated in
RI-MP2, it is probably the most efficient MP2 approach at least for medium sized
systems. Recently, the RI-MP2 method has been combined with the local MP2
approach yielding essentially linear scaling with respect to the size of the system
and significantly better scaling with the size of the basis set compared to other MP2
methods [40].

3.2. ORBITAL INVARIANT FORMULATION OF MØLLER PLESSET
PERTURBATION THEORY

The focus of this chapter is linear scaling MP2 methods and the only way the formal
O(N5) scaling can be reduced is by formulating the MP2 energy expression in terms
of local quantities like localized orbitals or directly in terms of atomic orbitals. For
reference, we will begin with a brief review of the orbital invariant formulation of
MP2. This method was initially implemented by Saebø and Pulay in 1986 using
localized orbitals [3]. Analytical gradients using this formulation have been imple-
mented by Saebø and coworkers [41] and by Werner, Pulay and coworkers for local
MP2, LMP2 [42]. Throughout this paper i, j, k,.. are used to describe occupied
orbitals and a,b,c,.. to describe virtual orbitals. Furthermore, Greek letters μ, ν, λ, σ

are used for atomic orbitals.
Møller Plesset perturbation theory [43] was first cast in a formulation suited for

computer implementation in the late seventies by Bartlet and Purvis [44], and Pople
and coworkers [45]. In the original MO formulation, the energy formula is quite
simple, and using the spin-adapted generator state formalism [3, 46] the MP2 energy
expression is:

EMP2 = −
∑

i≥j

(2 − δij)
∑

ab

Kab
ij (2Kab

i − Kab
ji )/(εa + εb − εi − εj) (3-1)

The ε’s are orbital energies, and Kij is the internal exchange matrix for pair (i,j) for
which the element (a,b) is the integral

Kab
ij = ( i,a| j,b) =

∫∫
i(1)a(1)1/r12j(2)b(2)dτ1dτ2 (3-2)
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where r12 is the distance between electron 1 and 2. The main computational task
for calculating the MP2 energy in the canonical formulation as well as in the local
formulation, is to generate the integrals in MO basis. This is formally a O(N5) pro-
cedure regardless of the type of orbitals used. The use of localized (internal) orbitals
has several potential advantages, and if insignificant contributions are omitted from
the calculation it yields a better scaling than a canonical formulation. However,
when localized orbitals are used, the energy formula, Eq. (3-1), cannot be used
since the denominator is a sum of orbital energies, which are only defined in terms
of canonical orbitals. This problem can be solved by two approaches, the orbital
invariant formulation of Møller Plesset perturbation theory introduced by Pulay and
Saebø [3, 4] and the Laplace transform of the energy denominator introduced by
Almlöf and Häser [47–49].

In the spin adapted generator state formulation [46] of the self-consistent electron
pair theory the pair amplitudes, collected in matrices Tij, are determined from the
equation:

Rij = Kij + FTijS + STijF −
∑

k
S(fikTkj + fkjTik)S = 0 (3-3)

F is the Fock-matrix, S the overlap matrix and fki are the non-diagonal Fock-matrix
elements, which are non-zero when non-canonical orbitals are used. These introduce
coupling between the pair-coefficients and Eq. (3-3) has to be solved iteratively. All
matrices in Eq. (3-3), represented with capitals letters, are defined in a projected
AO basis (p,q). The projection makes the AOs used to describe the virtual space
orthogonal to the occupied space. The projection of the matrices is illustrated below
for the internal exchange matrix:

Kpq
ij = (p,i| j,q) =

∑

μλ

Pμp Kμλ
ij Pλ q (3-4)

and the projection matrix P is defined by:

P = I − 1/2DS (3-5)

where I is the unit matrix, D is the doubly-occupied density matrix. All matrices in
Eq. (3-5) are in the original (unprojected) AO basis.

Once the pair amplitudes have been determined by solving Eq. (3-3) iterativily,
the MP2 energy can be calculated from the formula:

EMP2 = −
∑

i≥j

(2 − δij)
∑

pq

Kpq
ij (2Tpq

ij − Tpq
ji ) =

∑

i≥j

eij (3-6)

The energy formula, Eq. (3-6), expresses the correlation energy as a sum of phys-
ically meaningful contributions, pair energies. It should also be noted that Eq.
(3-6) yields exactly the same energy as the canonical formulation unless additional
approximations are introduced.
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As mentioned, Almlöf and Häser proposed a Laplace-transform of the energy
denominators [47–49] as an alternative approach to theory to eliminate the energy
denominators in non-canonical formulations of Møller Plesset perturbation theory.
The Laplace transform technique has been used in an effective MP2 method devel-
oped by Ayala and Scuseria [11], and the method was discussed in our earlier
review [8].

3.3. LOCAL CORRELATION

The Pulay Saebø local correlation method employs localized internal orbitals while
the virtual space is described directly in AO basis. This provides two sources of
computational savings:

1) The contribution to the correlation energy from pairs of distant localized orbitals
can either be neglected or approximated.

2) The virtual space is described by a subset of the atomic basis set.

3.3.1. Pair Selection

As mentioned, the local correlation method provides two sources of computational
savings. The only way the power law scaling of MP2 or other methods for electron
correlation can be reduced is by limiting the number of configuration included in
the calculation. This is difficult when canonical orbitals are used since in a canoni-
cal formulation the number of correlated pairs scales quadratically with the size of
the system (n*(n + 1)/2) where n is the number of correlated orbitals). One almost
trivial way to reduce the configurational space, shared by most local correlation
methods, is the neglect of pair correlation between pairs of distant localized orbitals
and this represents the most important source of computational savings for large
systems provided by localized orbitals. When localized orbitals are used the pairs
can be divided into groups and each group of pairs is treated computationally dif-
ferent. Pair selection is an essential part of all linearly scaling schemes for electron
correlation and this will be discussed in more details in Section 4 below.

3.3.2. Reduction of the Virtual Space

The second source of computational savings provided by the use of localized cor-
related orbitals is the reduction of the dimension of the virtual space. This can
be achieved by expressing the virtual space in terms of local quantities either by
using localized virtual orbitals or by expressing the virtual space directly in AO
basis which are normally localized on the atoms. The Pulay Saebø local correlation
method as well as methods developed by the Stuttgart group (Werner, Schütz and
coworkers) [15–22, 40] use the AO approach mainly because virtual orbitals do nor-
mally not localize as well as the occupied ones. Some of the early local correlation
methods used localized orbitals for both the occupied and virtual spaces and these
methods were discussed briefly in an earlier review [8].
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There are two philosophically different methods to select the AOs to describe the
virtual space for a particular pair of localized orbitals. Both approaches have their
advantages and disadvantages and these will be discussed below. The first approach
that will be described is the method used in the original formulation of local cor-
relation by Saebø and Pulay, and this approach was also adopted by the Stuttgart
group.

When a standard localization method, like the Boys [50] or Pipek-Mezey [51]
localization method, is used most internal orbitals localize into core orbitals, lone-
pairs, and bicentric bonds. This means that most internal orbitals are localized on
either one or two atoms. Subsets, D(i), of the atomic orbitals, called domains, are
assigned for each correlated orbital i. For diagonal pairs, (ii), D(i) is used as to
describe the virtual space while for non-diagonal pairs, (ij), the union of the two
domains D(i) U D(j) is used. In the initial implementation of the local correlation
program the local domains were assigned as follows: For lone-pairs D(i) consisted
of all valence AO for the atom on which the lone pair was localized, and for bicentric
bonds D(i) consisted of all valence AOs for the two atoms involved. Core orbitals
were normally not correlated mainly due to the lack of proper basis functions when
standard basis sets were used. This scheme was later refined and made automatic by
Boughton and Pulay [52], and essentially the same selection method was also used
in later implementations and by the Stuttgart group. The local domains generated
by the Boughton-Pulay scheme are based on numerical criteria, and allowed for
contributions from close neighbors and imperfect localization. Clearly, there are
many systems where some of the orbitals are delocalized over several atoms, but
this will not introduce a big problem since it only results in larger local domains for
these particular delocalized orbitals, and the relatively small local domains could be
retained for the remaining well localized correlated orbitals of the system.

The dimension of the virtual space defined this way is independent on the size of
the system but it does depend on the basis set. We have demonstrated that when basis
sets appropriate for electron correlation calculations are used 95–99% of the pair
correlation energy is recovered using this scheme [4, 5, 7, 8] The main advantage
with this approach is the efficiency since using these relatively small subspaces of
the virtual space yields very significant computational savings for large systems.
Since the local domains are independent on the size of the system the approach
also scales linearly with the size of the system for large systems, at least for the
part of the program that depends on the dimension of the virtual space (LMP2-
iterations). The error introduced to the correlation energy is significant (∼1%), but
very systematic. It has also been argued by us and others that at least a large part of
the difference in correlation energy between conventional methods and with a type
of local basis described above can be attributed to basis set superposition errors of
the full (canonical) case. In fact, one of the earliest local correlation like methods
was introduced not with the motivation of computational savings but to eliminate
basis set superposition errors in studies of weakly interacting systems [53].

In the second approach, which we have called ‘full accuracy’ LMP2, the dimen-
sion of the virtual space is determined by purely numerical means and all significant
contributions to the MP2 energy are retained [29] This scheme yields results that
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are within a few micro-Hartrees of the results using the conventional canonical for-
mulation. There are obvious computational advantages in knowing the AOs that
are contributing to the correlation energy prior to the calculation, but the main dif-
ference between this approach and methods using pre-selected local domains, is
that the dimension of the local domains are significantly larger. The ‘full accuracy’
LMP2 scheme is therefore more accurate, but also more expensive than the meth-
ods introduced by the Stuttgart group. The error is much smaller but also more
random than in the first approach, and the error cannot be attributed to basis set
superposition errors. The advantage is, obviously, that the method yields results that
are practically identical to conventional MP2 results, and thus does not introduce a
new model chemistry. The ‘full accuracy’ LMP2 method will be described in more
detail in Section 3.4 below and the discussion will include some recent advances in
the treatment of distant pairs.

3.4. RECENT LINEARLY SCALING MP2 METHODS

In this section some of the recent advances in the field will be discussed. Most of the
linearly scaling methods for electron correlation were developed in the late nineties
or early two thousands and advances that were not included in our 2002 review on
this topic will be discussed in this section. We will first discuss the ‘full accuracy’
LMP2 method introduced by Saebø and Pulay. The treatment of the strong pairs in
this method is described in Ref. [29] and also discussed in our earlier review [8].
Weak pairs have now been included in the ‘full accuracy’ LMP2 method and the
method will be discussed below.

3.4.1. Full Accuracy Local MP2

This method exhibits linear scaling with the size of the system, but it is less efficient
than methods based on the Boughton Pulay selection scheme. The main advantage
of this approach is that the results are essentially identical to the conventional canon-
ical MP2 results. Conventional MP2 and most of the low-order scaling schemes
developed in other groups are dominated by the integral transformation part, trans-
forming electron repulsion integrals from AO basis to MO basis. This is not the
case for our approach, and the reason for this is that we are not using pre-selected
local domains. Our domains are determined from purely numerical criteria, retaining
essentially all significant contributions to the correlation energy.

For any low-order scaling scheme designed for very large systems it is essential
that all parts of the program exhibit this low-order scaling and we will describe the
various steps of our method and explain how linear scaling is achieved in each step.
Linear scaling with respect to the number of calculated two-electron integrals was
achieved by adopting the prescreening procedure suggested by Rauhut et al. [54]. A
test density matrix Dmax in which the (μ,λ) element contains the maximum value
of the product of MO coefficients for all pairs included in the transformation (see
below) is constructed prior to the transformation and integrals are only calculated
when
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(μν|λυ)∗Dmax(ν,λ) > threshold (3-7)

In Eq. (3-7) (μ,ν|λ,σ) is an estimate of the absolute value of the integral. This
procedure reduces the number of calculated integrals in LMP2, and the integral cal-
culation exhibits a near linear scaling with the size of the system. Interestingly, this
pre-screening scheme can also be applied to conventional canonical MP2 since AO
integrals with negligible contribution to the MP2 energy are negligible regardless of
the formulation. We have implemented a similar prescreening in our canonical MP2
program, and it provides significant savings in CPU time without loss of accuracy
[55, 56].

With conventional localization methods only a few MO coefficients for a given
MO are large in a large, well localized, system. The remaining coefficients are not
negligible; however, most of them do not exceed 10–4 in magnitude. The contri-
bution to the internal exchange matrix, Kij, from an AO integral is the integral
multiplied by a product of two MO coefficients and the majority of the contributions
are therefore negligible, and only a small fraction of the contributions needs to be
calculated. To take advantage of this effectively, the coefficients must be processed
in order of decreasing magnitude and this is achieved by sorting the MO coefficients
prior to the calculation. The local basis for each pair (ij) is also determined during
the integral transformation, essentially as all AOs contributing significantly to the
external exchange matrix Kij [29].

As mentioned above, the local domains constructed this way are quite large often
around 300 projected AOs (PAO) with a decent basis set, and the ‘full accuracy’ of
this scheme is obtained on the expense of reduced efficiency compared to other
methods, however, the linear scaling is still retained.

3.4.1.1. Pair Selection

The most important source of computational savings for large systems provided by
localized orbitals is the neglect of pair correlation for pairs of very distant local-
ized orbitals. The pair correlation energy decreases very rapidly with the distance
between the orbitals (approximately with the inverse sixth power), and the major-
ity of the pairs of a large system do not contribute significantly to the correlation
energy. Several different criteria could be used to determine which pairs of localized
orbitals that should be included in the calculation, but regardless of the particu-
lar criterion chosen, the pairs included in the calculation will only grow linearly
with the size of the system; and only the number of negligible pairs will grow
quadratically. The asymptotic scaling of the method is therefore not affected by the
pair-selection criteria but of course the criterion is very important for the efficiency
of the approach.

The magnitude of the pair correlation energy for a non-diagonal; pair is estimated
by using the dimensionless quantity Eij [29]:

Eij = Cr3
i r3

j /d
6 (3-8)
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where ri is the orbital radius of localized orbital i, and d is the distance between the
two orbital centers, and C is a constant related to the HOMO-LUMO gap. Equation
(3-8) corresponds to London’s formula for dispersion interaction between two
systems, and the estimate Eij depends both on the distance and the degree of local-
ization of the two orbitals. The quantity Eij is calculated for all non-diagonal pairs
prior to the calculation (diagonal pairs are obviously always strong and included
in the calculation) and based on the value of Eij the pairs are divided into three
groups, strong, weak, and negligible pars. This partitioning of the pairs is somewhat
different from that of the Stuttgart group, and as advocated by Hetzer et al. [16],
it is probably useful to introduce a fourth category, distant pairs, in particular for
methods beyond MP2. In the ‘full accuracy’ LMP2 approach the strong pairs are
calculated as described above and all significant contributions are included. Test
calculations with all pairs treated this way yield correlation energies that differ only
by a few μ-Hartrees from the canonical result.

Furthermore, the negligible pairs are simply omitted from the calculation. For a
large system most pairs are in fact negligible and this represents the most important
saving provided by localized orbitals. On the other hand, since the number of neg-
ligible pairs is very large in large systems, their collective contribution may not be
insignificant. In our current implementation an estimate of the contribution from the
neglected pairs, calculated using Eq. (3-8) is added to the MP2 energy for the strong
and weak pairs. The result below for (glycine)50 show that 92% of the pairs are
neglected and the estimated collective contribution to the correlation energy from
these pairs is less than 0.01%.

Physically, there is a large difference between strong and weak pairs. Strong pair
correlation, which includes intrapair correlation, and correlation between neigh-
boring localized orbitals that overlap significantly, is dominated by short-range
interactions. Weak pair correlation is dispersion attraction between non-overlapping
charge densities, and its magnitude is much smaller. The number of both strong and
weak pairs scales linearly with the size of the system. This is obvious for strong
pairs but it is also true for weak pairs since the number of weak pairs is limited by
the fact that the pair correlation energies decrease rapidly with the distance between
the orbitals, asymptotically as d–6 where d is the distance between the centers of
the localized orbitals. Therefore only orbitals within a certain distance of each other
contribute significantly to the correlation energy. For one-dimensional (chain-like)
systems the number of weak pairs is similar or slightly larger than the number of
strong pairs while for two or three-dimensional systems, the number of weak pairs
is usually much larger than the number of strong pairs.

In our preliminary implementation, we used a fixed domain for a given occupied
orbital, regardless of its pair partner, i.e. whether it was participating in a strong
or weak correlation. We also used symmetrical pair domains (unions of orbital
domains) as described above. Thus our pair domains became quite large. The num-
ber of basis functions in a pair domain depends on the basis set but typically the
number of projected atomic orbitals (PAO) is around 300. As a result, most of the
computational effort was spent in the iterative cycles of Eq. (3-3) involving the weak
pairs, in spite of their modest contribution to the correlation energy. Compared
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to our highly efficient canonical MP2 [55, 56], the local MP2 program was only
significantly faster if weak pairs were omitted when applied to medium sized sys-
tems. Its main advantage was that it could be applied to very large systems without
introducing additional approximations, such as density fitting (see below).

The solution to this problem is to treat the weak pairs different from the strong
ones and this is justified by the physical difference between the two types of pairs
as discussed above. Treating the weak pairs with full accuracy is wasteful and,
increases the expense of the method significantly, and it is obvious that the large
local basis sets used in our preliminary implementation are not required for the
distant pairs. A more efficient solution is to exploit the physical nature of weak cor-
relation as dispersion energy between distant, non overlapping orbitals to reduce the
size of the virtual space. We have demonstrated that a relatively small number of
well-chosen MOs are sufficient to accurately describe weak pairs. The details will
be described in a forthcoming paper [57]. It is shown that a small MO basis, pos-
sibly as small as 5–10 orbitals, determined individually for each localized internal
orbital, is capable of describing essentially all dispersion interaction in the virtual
space. These orbitals are referred to as the dispersion basis and a different set of vir-
tual orbitals are needed for each localized occupied orbital. The MOs for describing
the virtual space for weak pairs, or dispersion orbitals, can be constructed simply
by determining the orbitals in the virtual space that maximizes the square of the
transition dipole (or higher moments) components. The number of MOs required
depends on the distance between the orbitals. At long distances three dispersion
orbitals corresponding to the three dipole moment components is sufficient and at
shorter distances higher moments and thus more orbitals will be required.

The new treatment for weak pairs has been implemented as an addition to the
“full accuracy” LMP2 program reported earlier [29]. The pairs of localized orbitals
are initially partitioned into strong, weak, and negligible pairs as described above.
The strong pairs are treated as described in Ref. [29]. This part was also described
in our earlier review on this topic and the details will therefore not be repeated here,
and we will only describe the strategy for the new (and unpublished) treatment of
weak pairs. As mentioned above, the details will be provided in a forthcoming paper.

3.4.1.2. Implementation

The MO bases for all weak are constructed and written to external storage before
the integral transformation. In our current implementation, the virtual space for each
weak pair is described with 32 MOs, and each weak pair has its own MO basis. The
MO matrix for a single pair is formally N × 32 matrix where N is the number of
basis functions. The transformation of a single T or K from AO to MO basis is thus
formally a 32 N2 procedure, and since the number of K’s and T’s, or the number of
weak pairs included, increases linearly with the system, the transformation exhibits
a formal cubic scaling with the size of the system. However, in the spirit of the local
correlation method, only a small fraction of the AOs are needed to describe these
MOs, and in analogy with the treatment of the strong pairs AOs with insignificant
contribution to the correlation energy are neglected by creating local bases for the
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orbital matrices and thus reducing their dimensions from N× 32 to L× 32 where L
is independent of the size of the system. For large systems L is only a small fraction
of N for example for (glycine)50 (Table 3-1) N is 3,118 while the average value of L
is only 263. This reduces the scaling of the transformation of the internal exchange
matrices from AO to the dispersion basis and vice versa basis from cubic to linear.

The first half-transformation is carried out for all strong and weak pairs as
described in Ref. [29], and a two phase Yoshimine bin sort [58] yields internal
exchange matrices Kij in AO basis. If ij is a weak pair this matrix is transformed
to dispersion basis and written to external storage. The disk space needed for these
matrices is only nwp∗322 words (nwp=number of weak pairs) representing less
than 1% of the total disk-space requirement for a calculation on a large system.
The transformation itself scale as 32∗nwp∗L2 as discussed above and since nwp
increase linearly with the size of the system and L is independent of the size of the
system this transformation will exhibit linear scaling. Calculations of the second and
third terms of Eq. (3-3) are trivial when the canonically orthogonalized symmetrical
MO basis is used since F is simply the diagonal matrix of eigenvalues and S in the
identity matrix in the dispersion basis.

The major part of the calculation of the residuum matrices is the calculation of the
coupling terms, the last term in Eq. (3-3) with the summation over correlated orbitals
k. In a LMP2 calculation there are four different types of coupling terms contribut-
ing to a given residuum matrix: Contributions from strong pairs to the residuum for
strong pairs, contribution from weak pairs to the residuum for strong pairs, contribu-
tion from strong pairs to the residuum for weak pairs, and contributions from weak
pairs to the residuum for weak pairs. These types of contributions will be referred
to as strong-strong, strong-weak, weak-strong and weak-weak contributions, respec-
tively. The algorithm for evaluation of the strong-strong contributions was described
in Ref. [29] and only the latter three types will be described here.

The amplitudes for weak pairs are stored in the small MO basis. For the weak-
weak and weak-strong interactions, the amplitudes Tkj and Tik have the same
dimensions (32×32), however, each weak pairs has its own MO basis and these
amplitudes must be transformed to a common AO basis. The common AO basis
is not the full AO basis but a relatively small subset which is different for differ-
ent pairs. After the summation of k is completed, the results are contracted to the
MO basis for the weak pair ij for weak-weak interactions, or the local AO basis for
the strong pair ij for weak-strong contributions. The strong-weak contributions are
calculated essentially the same way the strong-strong contributions, as described
in Ref. [29]. The only difference in that the final contribution is contracted the
dispersion basis for the weak pair ij rather than the local (AO) basis for strong
pair ij.

As discussed in Ref. [29] and [8], the multiplication with S can either be carried
out inside the loop over orbitals k in local dimension or once outside the loop in
a somewhat larger dimension. Both algorithms were tested in our original version
of the LMP2 program, and at least for long chain-like molecules where significant
overlap between all the local bases in the sum exists, multiplication with S outside
the loop is preferred. However, as pointed out by Schütz et al. [15] multiplication
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inside the loop is more efficient for large three-dimensional systems. As discussed
earlier, both algorithms exhibit a low order or near linear scaling with the size of the
system.

The amplitudes for all pairs are updated according to Eq. (3-9):

Tab
ij ← Tab

ij − Rab
ij /(εa + εb − εi − εj) (3-9)

For the strong pairs (a,b) is a temporary, pair adapted, MO basis, and the details are
described in Ref [29]. For the weak pairs the updating is performed directly in the
small dispersion basis where εi and εj are the Coulson energies for localized orbitals
i and j, respectively and εa and εb are the eigenvalues of the Fock-matrix in the small
dispersion basis. Thus the computational effort for updating the amplitudes as well
as calculation of the pair energies for the weak pairs is insignificant. In addition, the
weak pairs converge faster than the strong ones, and calculation of strong-weak and
weak-weak interactions can thus be omitted in the last couple of LMP2 iterations.

The treatment of weak pairs described above has been implemented with our
LMP2 program which is part of the PQS suite of programs [59]. Examples describ-
ing both accuracy and scaling will be included in our forthcoming paper which will
also include a detailed discussion of thresholds and a theoretical justification of the
approach [57].

3.4.1.3. Results

The examples discussed below are calculations on rod-shaped poly-glycines. The
reason for choosing these systems as tests systems is, obviously, that for these ‘one-
dimensional’ systems the onset of linear scaling starts for much smaller systems that
it would for two or three dimensional systems. It should be pointed out, however,
that for large systems of all shapes only the number of neglected pairs will grow
quadratically with the size of the system while both the number of strong and weak
pairs will grow linearly with the size of the system. The LMP2 scheme will thus
ultimately exhibit linear or near linear scaling for molecules of all shapes.

We have chosen the series (glycine)30, (glycine)40, and (glycine)50 to illus-
trate efficiency and scaling. The results for this series are shown in Table 3-1. It
should be noted that the onset of linear scaling starts for much smaller systems.
For the poly-glycine series near linear scaling started around (glycine)13, and for
(glycine)13 and larger poly-glycine chains the program exhibited near linear scal-
ing with the size of the system both with respect to elapsed time and disk-space
requirements.

From the results in Table 3-1 it can be seen that one of the main advantages
of the LMP2 scheme is the very modest disk-space requirements and (glycine)50
with 3,118 contracted basis functions and 554 correlated orbitals required less than
15 GB of disk-storage. The results in Table 3-1 demonstrate the linear growth of
strong and weak pairs with the size of the system. The disk-space requirements
also scale linearly with the size of the system while the elapsed times exhibit a low
and near linear scaling. All calculations in Table 3-1 were performed using a single
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Table 3-1. Scaling of the parameters of local LMP2 calculations for a series of poly-glycinesa,b

Number of (Glycine)30 (Glycine)40 (Glycine)50 Scaling1 Scaling2

Contracted functions 1,878 2,498 3,118
Correlated orbitals 334 444 554
Strong pairs 3,533 4,713 5,893 1.00 1.00
Weak Pairs 3,609 4,859 6,109 1.03 1.03
Neglected pairs 48,803 89,218 141,733 2.10 2.07

Disk Storage in GB 8.6 11.5 14.6 1.01 1.07

Elapsed times in minc

1-st half transformation 138 216 307 1.56 1.58
LMP2-iterations 126 174 219 1.12 1.03
Total LMP2 309 458 613 1.37 1.31

Energies (Hartrees)

–E(MP2) strong 17.6074904 23.4133737 29.2192614
–E(MP2) weak 0.029756 0.039835 0.049913
–E(MP2) total 17.6386548 23.4551220 29.2715935

aGeometries: rod-shaped poly-glycines terminated as zwitter ions.
b6-31G∗ basis set using spherical harmonic (5-component) d functions.
Scaling1 of a quantity Q is log(Q40/Q30)/log(40/30) where Q40 and Q30 are the values in the (glycine)40
and (glycine)30 calculations, respectively. Scaling2 is the analogous quantity for (glycine)50/(glycine)40.
cCPU times are identical to elapsed times when rounded to whole minutes.

2.80 GHz Intel Xeon-EP Nehalem processor. The calculations in Table 3-1 were
carried out using the 6-31G∗ basis. This basis set is too small for accurate MP2
calculations and, if possible, basis set of triple zeta plus polarization quality (or
larger) should be used. We have also performed a calculation on (glycine)30 using
the more realistic cc-pvtz basis set. This MP2 calculations with 4,918 contracted
basis functions is one of the largest MP2 calculations reported to date and the total
elapsed time for this MP2 calculation was about 108 h on a single 2.80 GHz Intel
Xeon Nehalem processor.

3.4.1.4. Future Work

At the moment, only a single processor implementation of the ‘full accuracy’ LMP2
has been completed, and the method will only be useful when analytical gradients
as well as parallelization of the program has been completed. Analytical gradients
have been implemented for canonical MP2 and this is included in the PQS-program
[59] using the orbital invariant formulation [3, 41]. Werner, Pulay and coworkers
have also implemented analytical gradients for LMP2 using the same formalism
[42]. The algorithm for calculation of analytical gradients has been worked out in
detail and a large part of the work has already been completed. Parallelization of the
program is also relatively straight forward. PQS alerady has a very efficient parallel
implementation of canonical MP2 [56] and the strategy for parallelization of the
LMP2 program will be essentially identical to the strategy used for canonical MP2.
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3.4.2. RI-MP2 Methods

As demonstrated above linear scaling can be achieved for local correlation method,
but, depending on the particular local correlation approach applied, linear scaling is
achieved only for quite large systems in particular for three-dimensional systems.
Another problem is that electron correlation calculations require large atomic basis
sets and since the dimension of the local domains increase with the size of the basis
set, local correlation methods still has a close to a forth order dependence on the
number of basis functions.

This has limited the use of the local correlation methods, and the majority of MP2
calculations on large systems reported in the literature, are performed using the so-
called RI-MP2 approach [32–40]. This approach is also referred to as auxiliary basis
set expansion or density fitting approach. Werner and coworkers suggested [40] the
name density-fitting or DF-MP2 for this method but the name RI-MP2 is still used
by most authors. RI-MP2 is more efficient than conventional MP2, in particular for
large systems. However, the formal O(N5) scaling of conventional MP2, has not
been eliminated in RI-MP2, even though the pre-factor is much smaller compared
to conventional MP2. The only reason this approach is included in a chapter on
linear scaling correlation method is that DF-MP2 scheme has now been combined
with the local correlation approach and in the DF-LMP2 or RI-LMP2 approach [40]
and in the DF-LMP2 approach the asymptotic scaling is reduced to near O(N) for
large systems.

The basic idea of the RI or density fitting approach is that four-index two-electron
integrals are approximated by two three-index integrals by expanding the electron
charge densities in linear expansion of AOs or auxiliary basis sets. The pseudospec-
tral approach by Friesner [10] and Carter [60] is based on similar ideas. These
methods were briefly discussed in our earlier review and will not be discussed
here. Auxiliary basis expansions were first introduced by Boys and Shavitt [61]
and early work in this field was reviewed by van Alsenoy in 1988 [62]. Auxiliary
basis expansions have been used for many different ab initio methods but only the
RI-MP2 methods will be discussed here. The RI-MP2 method was first introduced
by Feyereissen et al. [30, 32]. These authors also introduced the name resolution of
the identity, and this name is still in use today in spite of the fact that other authors
have used more descriptive names like auxiliary basis approximation and density fit-
ting approximation. The term resolution of identity originates from the expression
of the identity matrix, I, in an orthonormal basis |A):

I =
∑

A

|A ) (A| (3-10)

If Eq. (3-10) is inserted into an electron repulsion integral, this can be written as:

( μν|λσ ) =
∑

A

(μνA)( A|λσ ) (3-11)
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where (μνA) is a three index overlap integral and (A|λσ ) is a three index two-
electron integral. Equation (3-11) is exact if the auxiliary basis set |A) is complete
in the space of the pair (μν). In reality, the auxiliary basis is incomplete and Eq.
(3-11) then is an approximation called the resolution of identity approximation.

The MP2 energy expression in the canonical formulation can be obtained simply
by substituting Eq. (3-11) into Eq. (3-2):

EMP2 = −∑
i≥j

(2 − δij)
∑
ab

(ia| jb)[2(ia| jb)( ja| ib)]/(εa| εb − εi − εj)

≈ − ∑
i≥j

(2 − δij) ∑
ab

∑
A

(iaA)(A| jb)

× ∑
B
{2(iaB)(B| jb) − (jaB)(B| ib)}/(εa + εb − εi − εj)

(3-12)

where A and B represent the auxiliary basis set. As mentioned, this approximation
introduces an error, and by minimizing this error the two electron integrals used in
the RI-MP2 method and the MO integral (Kij)a,b (Eq. (3-2)) is approximated as:

Kab
ij = (ia| jb) ≈

∑

A

HA
iaHA

jb (3-13)

where

HA
ia =

∑

B

( ia|B) (B|A)−1/2 (3-14)

The auxiliary or fitting basis sets are of course important for the accuracy of the
RI-MP2 approach and optimal basis sets have been developed by Ahlrichs [33, 63]
and others [34–37]. Normally, atom centered Gaussian basis sets are used and in
the first implementation of RI-MP2 the same basis set was used both as atomic and
auxiliary basis. In order to obtain sufficiently accurate results the auxiliary basis set
must be somewhat larger than the atomic basis set. The ratio between the number
of auxiliary basis functions and the size of the atomic basis set is normally between
1.5 and 4 [31].

The RI-MP2 approach is very efficient and since it has been implemented in most
of the widely used, commercially available, program packages it has been widely
used and MP2 calculations on systems with about 200 atoms and more that 4,000
basis functions have been reported [39]. For medium-sized molecules the efficiency
compared to conventional MP2 is about an order of magnitude, and with proper
choice of fitting basis functions the RI-approximation is also quite good with errors
smaller than other errors in MP2 calculations with standard basis sets [40]. However,
the formal O(N5) scaling of conventional MP2 has not been eliminated.

Clearly, for sufficiently large systems the ‘full accuracy’ LMP2 approach will
be more efficient than RI-MP2. The crossover point depends on the shape of the
system since LMP2 is more efficient for rod-shaped (one-dimensional) systems
than for two- and three-dimensional systems. Determination of the cross-over point
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would require benchmark calculations using both the LMP2 and RI-MP2 programs,
and even though RI-MP2 programs have been implemented in several commer-
cially available software packages, license agreements normally prohibits direct
comparison with other programs.

3.4.3. Local RI-MP2

The RI-MP2 methods is clearly not a linearly or low scaling method with respect to
the molecular size, and the reason a discussion of this methods has been included
in this chapter is that due to the small pre-factor it is much more efficient than most
low-scaling MP2 methods, at least for medium size systems. Another reason is that
the RI-MP2 approach has now been combined with the local correlation method
and the RI-LMP2 or DF-LMP2 method developed by Werner and coworkers [40]
exhibits the same low order scaling with the molecular size as other methods based
on the local correlation approximations. In the DF-LMP2 method pre-selected local
domains as discussed above are used. It was demonstrated that the error introduced
by the RI-approximation was negligible, significantly smaller than the error intro-
duced by restricting the dimension of the virtual space. Analytical gradients for
DF-LMP2 [64] has also been implemented and density fitting is now available for
all local correlation methods included in the MOLPRO program [65], e. g. LCCSD,
LCCSD(T).

3.5. CONCLUSIONS

The steep power-law dependence on the size of the system shared by all conven-
tional methods for electron correlation prohibits application of these methods to
large molecular systems. This steep dependence is also unphysical and electron
correlation for large systems should be less expensive than Hartree-Fock since the
contributions contributing to the correlation energy are short ranged compared to
SCF which is dominate by long ranged Coulomb type interactions. Perhaps the only
way this steep dependency can be eliminated is by a local approach where the cor-
relation energy is expressed in terms of localized quantities like localized orbitals or
directly in atomic orbitals.

The local correlation method by Pulay and Saebø from the early eighties was
probably introduced too early since the computational facilities available at that time
did not allow application of the method to the large system it was designed for. In
addition, the introduction of vector machines around that time, temporarily reduced
the need for low scaling methods. A decade later this situation had changed and it
lead to a renaissance of local correlation methods in the mid to late nineties and
early twenties. Most of these advanced were discussed in our earlier review of the
topic. However, we have improved our “full accuracy” LMP2 method in particular
with respect to the treatment of distant pairs and this method exhibit linear scaling
without any significant loss of accuracy. MP2 calculations on systems with more
than 200 atoms and about 5,000 contracted basis functions have been performed
using this method.
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The introduction of RI-MP2 practically eliminated, at least temporarily, the need
for low scaling MP2 methods in spite of the fact that the formal O(N5) scaling has
not been reduced. The most promising methods for the future are the combinations
of density fitting with local correlation methods as pioneered by the Werner, Manby,
and Knowles [40, 66]. However, the errors introduced by the local domains used to
describe the virtual space, used in these methods are significant and the combination
of density fitting with the “full accuracy” LMP2 method would be efficient approach
without a significant reduction of accuracy.
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CHAPTER 4

PERTURBATIVE APPROXIMATIONS TO AVOID MATRIX
DIAGONALIZATION
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Laboratory of Theoretical Chemistry, Institute of Chemistry, Eötvös University, H-1518, Budapest,
Hungary, e-mail: surjan@chem.elte.hu; szabados@chem.elte.hu

Abstract: With the aim of developing linear-scaling methods, we discuss perturbative approaches
designed to avoid diagonalization of large matrices. Approximate molecular orbitals can
be corrected by perturbation theory, in course of which the Laplace transformation tech-
nique proposed originally by Almløf facilitates linear scaling. The first order density
matrix P corresponding to a one-electron problem can be obtained from an iterative
formula which preserves the trace and the idempotency of P so that no purification pro-
cedures are needed. For systems where P is sparse, the procedure leads to a linear scaling
method. The algorithm is useful in course of geometry optimization or self-consistent
procedures, since matrix P of the previous step can be used to initialize the density matrix
iteration at the next step. Electron correlation methods based on the Hartree-Fock density
matrix, without making reference to molecular orbitals are commented on.

Keywords: Linear scaling, Density matrix, Laplace-transform, Idempotency conserving iteration

4.1. INTRODUCTION

Computational effort required by diagonalization of matrices scales cubicly with
the matrix dimension. In quantum chemistry, one often meets problems for which
the dimension is so large that explicit diagonalization, even with the aid of mod-
ern computers, is prohibitive. In electron correlation calculations, if configuration
interaction (CI) is used, the dimension of the Hamiltonian matrix shows a factorial
dependence on the system size (number of electrons/basis functions). This area was
therefore the first where Lanczos-type iterative methods were applied, where one or
more eigenvectors of the matrix are sought by acting with the matrix on a trial vec-
tor repeatedly. A disadvantage is that it may be difficult to obtain eigenvectors more
than a few. Quantum chemical applications to the CI problem became revolution-
ized when the action of the Hamiltonian on the trial vector was directly formulated,
so that the huge Hamiltonian matrix was never explicitly constructed (“direct CI”
see Ref. [1]), and when the iterative procedure was accelerated by diagonalizing
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the small matrices of the Hamiltonian in the iterative subspace (Davidson’s
technique [2]).

In standard one-electron theories the diagonalization of a one-electron
Hamiltonian (Fockian, Kohn-Sham matrix or a simple Hückel Hamiltonian) is
required. Albeit these have much smaller size as compared to CI matrices (their
dimension being simply the basis set size), large molecular systems or nanostruc-
tures may induce serious computational difficulties making it necessary to avoid
explicit matrix diagonalization.

In this paper, we shall review two approximation approaches which avoid the
explicit diagonalization of large one-electron Hamiltonians. The Hamiltonian may
either be a one-electron operator by construction (Hückel, tight-binding) or may
emerge from theories that start with the many-electron Hamiltonian and arrive to an
effective one-electron operator (Hartree-Fock, Kohn-Sham) via appropriate approx-
imation steps. The formulae we are going to discuss are applicable in both cases.

The literature of density matrix calculation without making reference to molec-
ular orbitals is huge. We mention Green-function techniques [3, 4], numerical
minimization procedures [5–9], divide and conquer algorithms [10–12], renormal-
ization group techniques [13, 14], using the sign matrix of the Hamiltonian [15].
Reviews Refs. [16, 17] may also be consulted for getting an orientation in the field.
Here, we do not aim to review all the above methods. Rather, we detail two per-
turbative schemes developed in our laboratory, discussing only the closely related
approaches. We shall also elaborate procedures that step beyond the one-electron
model and aim the calculation of electron correlation based on the density matrix
obtained at the one-electron level.

4.2. PERTURBATIVE ENERGY ESTIMATION USING LAPLACE
TRANSFORM

Let us assume that we have a large molecular system, defined over a basis set of
atomic orbitals (AOs)

{
χμ

}
, and an approximate set of molecular orbitals (MOs)

{φi}. On approximate MOs we mean a set of occupied and virtual orbitals selected
by chemical intuition, which do not exactly obey the Brillouin theorem. An example
is, for a system of two or more interacting nanosystems, the ensemble of the MOs
of the isolated subsystems. If the interaction is not too strong, it can be conveniently
handled by perturbation theory (PT), leading to the second order formula

E(2) = −
occ∑

i

virt∑

k

WikWki

εk − εi
, (4-1)

with i, k being MO indices and ε are the respective zero-order one-particle energies.
If the number of MOs is very large, computation of the above formula, espe-
cially evaluation of the effective matrix elements Wik, is time consuming. The main
difficulty is that matrix W in the approximate one-particle MO set is usually not
sparse. Expanding the MOs ϕ as linear combinations of AOs χ :
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ϕi =
∑

μ

Ci
μ χμ, (4-2)

one might attempt to transform Eq. (4-1) to the original basis of site-centered AOs.
However, substituting (4-2) into (4-1) alone is not useful from the computational
point of view, since the energy denominator prevents one to perform the summation
over MO indices k and i independently.

An ingenious idea for factorizing the energy denominator in PT was proposed by
Almlöf [18, 19], who applied the identity

1

εk − εi
=

∞∫

0

e−sεk esεi ds, (4-3)

which is the formula for the inverse Laplace transformation of (1/x), with x standing
for the energy denominator. The integral is convergent if the energy gap between
the occupied and virtual states, εk − εi, is positive. This idea has been applied to the
evaluation of electron correlation energy with considerable success [19–21].

Substituting identity (4-3) into (4-1) and using that Wik = 〈ϕi|W|ϕk〉, we get the
expression

E(2) =
∞∫

0

e(s) ds (4-4)

with

e(s) =
∑

μνλσ

tμν f p
νλ(s) tλσ f h

σμ(s), (4-5)

where tμν = 〈χμ|W|χν〉 is the effective hopping interaction between localized sites,
and we have introduced the notations for the s-dependent energy-weighted density
matrices

f p
νλ(s) =

virt∑

k

e−sεk Ck
νC

k
λ

f h
σμ(s) =

occ∑

i

e sεi Ci
μCi

σ .

(4-6)

Since matrix t, in contrast to W, is extremely sparse in several applications, a very
fast evaluation of Eq. (4-5) is possible at the price of a quadrature (4-4). This obvi-
ously facilitates an O(n) treatment for large systems if the number of nonzero t and
f matrix elements grows linearly with the system size.

As an illustration of the sparseness, we present elements of the Hückel density
matrix of carbon nanotubes in Figure 4-1 as a function of the distance between sites
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Figure 4-1. Elements of the density matrix obtained at the Hückel level, for finite size carbon nanotubes.
A (11, 9) tube is taken as a prototype for a “semiconducting tube”, a (10, 10) tube was computed to
illustrate a “metallic tube”

μ and ν. Apparently there is an exponential decay in the case of a semiconducting
tube (note the logarithmic scale). Obviously, the same behaviour is inherited by
energy weighted density matrices f p(s) and f h(s). For these systems calculation of
the interaction energy may bring a considerable time gain if exploiting sparsity when
multiplying matrices according to Eq. (4-5). Gap-less systems, like the case of a
metallic tube shown if Figure 4-1 show a different behaviour. For these systems
density matrix elements hardly decay with the distance, hence matrix multiplication
in Eq. (4-5) remains formally proportional to N3.

The appealing feature of Eq. (4-5) is that only the site-site interaction matrix
t depends on the relative position of the interacting partners, while the energy-
weighted density matrices are solely characteristic to the zero-order (noninteracting)
subsystems. These, therefore, should be evaluated just once when scanning the inter-
action energy surface. In addition, if the subsystems happen to be identical (cf. a
molecular crystal), one can make use of the fact that their matrices f p and f h are the
same. All of this may result in orders-of-magnitudes saving in computational time,
if the second order energy E(2) is to be evaluated at many points in configuration
space, provided that the structure of interacting partners is kept rigid.

We illustrate this idea on the example of interacting carbon nanoclusters treated
at the Hückel-level. Each carbon atom is considered as a site, and an effective one-
electron-per-site model is used with the Hamiltonian

Ĥ =
∑

A

ĤA +
∑

A<B

∑

μ∈A

∑

ν∈B

tμν (a†
μaν + h.c.). (4-7)
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Table 4-1. Maxima and minima on the interaction energy surface of a C60
molecule advancing and rotating within a piece of a (10,10) carbon nan-
otube. The face of the C60 as seen looking from the tube end is indicated
as table heading. Rotation of C60 is performed around the C10 axis of the
nanotube.

Maxima [eV] –9.05 –9.12 –9.12
Minima [eV] –9.33 –9.23 –9.17
Largest barrier [eV] 0.28 0.12 0.05

Here A runs over the subsystems (in Table 4-1 e.g. A= 1 is the C60 molecule, A= 2
is the (10,10) nanotube), ĤA is the Hamiltonian of the isolated subsystem A, while
tμν are the inter-system hopping matrix elements for which we take tμν = −t0Sμν
with the overlap integral Sμν between Slater type carbon 2pz orbitals with an expo-
nent of ζ=2.895 Å−1 oriented normally to the molecular surface. (Intermolecular
Hückel Model, IMH) [22]. The spirit of the model is similar to that of Stafström’s
[23–25]. Similar models were also applied recently to DWNTs [26, 27].

Solution of the model involves the following steps: (i) the in vacuo Hamiltonians
HA are diagonalized separately for both monomers and the energy-weighted density
matrices f h and f p of Eq. (4-6) are saved; (ii) the inter-system hopping interaction is
computed in second order via (4-4) and (4-5); (iii) to describe non-hopping effects,
a van der Waals type 6–12 site-site potential is added to the interaction energy with
A6 = 25.667 eV and A12 = 154,447.9 eV. (The above values of parameters t0, ζ , A6
and A12 were obtained by fitting to results of ab initio calculations on small systems.)

The time requirement for calculating the interaction energy of a pair of aligned
pieces of semiconducting carbon nanotubes is presented in Figure 4-2. For about
1,500 sites the calculation time of second order PT are similar by ordinary means –
Eq. (4-1) – and by the Laplace transformed expression – Eq. (4-4). However
Eq. (4-1) shows a more drastic increase in computation time with system enlarge-
ment if compared with the application of Laplace-transformed denominators in
Eq. (4-4).

Formula (4-4) has been applied successfully for the exploration of interaction
energy surfaces of weakly interacting nanoclusters like bundles of tubes [28] and
double wall nanotubes [29]. Here we present the characteristics of the interaction
energy hypersurface of a fullerene molecule encapsulated within a (10,10) nan-
otube. Relative position of the fullerene and the tube was varied by fixing the tube
and pulling and rotating the C60 molecule till a grid of all non-equivalent geome-
try points were produced. A 2 dimensional cross-section of the interaction surface
is plotted in Figure 4-3 for illustration. Here the energy is given as a function of
the position of the fullerene and the angle of its rotation around the tube axis. To
characterize the hypersurface in numerical terms, energy minima and maxima are
collected in Table 4-1 for three specific orientations of the C60 molecule, i.e. when
it shows either a 6-membered ring, a 5-membered ring or an apex atom towards the
tube end. Based on Figure 4-1 and Table 4-1 we may state that the energetic barriers
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Figure 4-2. Calculation time spent on computing the interaction energy by the intermolecular Hückel
model for aligned pairs of finite size carbon nanotubes

Figure 4-3. Interaction energy of a C60 molecule and a piece of a (10,10) nanotube, as a function of the
relative orientation of the interacting partners. The fullerene is encapsulated within the tube. Position of
C60 within the tube is measured on axis x, rotation angle of C60 around the tube axis is varied on axis
y. Axes x and y span 2.5Å and 72o respectively while the vertical axis z spans 0.28 eV. The nanotube is
kept fixed

to overcome when dragging a fullerene molecule encapsulated in a nanotube along
the tube axis range from a few hundredth to a few tenth of an electronvolt. If fol-
lowing the minimum energy path, the molecule would rotate when advancing in the
tube.

In concluding, factorization of energy denominators of second order perturbation
theory in combination with the application of effective Hamiltonians may result in
several orders of magnitude saving of computational work. The key idea is that if
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one describes the interaction between two or more subsystems with an effective
Hamiltonian at many points in the configuration space, the most demanding part of
the computations (namely, the construction of the energy weighted density matri-
ces (4-6)) should be performed only once. The condition under which this drastic
simplification is possible is that the interaction should be small enough to justify
a perturbative treatment with rigid monomers. This also involves that the effective
Hamiltonian should be constructed in a way that any overlap between monomers is
neglected at the zero order. Since these conditions are quite general, we hope that
the idea will induce widespread applications in many areas.

4.3. ITERATIVE SEARCH FOR THE DENSITY MATRIX

Several procedures have been proposed which attempt to find the one-electron den-
sity matrix (P) directly, instead of constructing it from the occupied eigenvectors.
A direct search of the density matrix, has to take care of the N-representability con-
ditions [30], which are, at the one-electron level, the hermiticity, the idempotency
and the correct trace of P. While hermiticity and Tr(P) = N can usually easily
be ensured, idempotency is often violated. To restore idempotency P is usually
subjected to purification algorithms [6, 9, 31–33].

We review below a simple iterative formula for P, having the essential feature
of idempotency conservation. That is, if one starts with an idempotent initial guess,
the idempotency of P is exactly preserved during the iteration so that no purification
is needed. The trace of the initial density matrix is also conserved. At convergence,
matrix P is fully N-representable and provides the exact energy corresponding to
one of the exact wave functions of the model Hamiltonian.

Consider an effective one-electron Hamiltonian matrix H, which is the Hückel
Hamiltonian in a noninteracting model or the Fockian in a self-consistent procedure.
The exact density P, as represented in an orthogonal basis satisfies the equation [6]

[H, P] = 0,

which, upon multiplying by P from the right, can be recast to a Bloch-type equation

HP − PHP = 0

or

QHP = 0

where Q = 1 − P is the hole density matrix. This equation is essentially equivalent
to the Brillouin theorem, and can also be derived from the contracted Schrödinger
equation [34]. The latter equation suggests the iterative formula

P
′ = P + η (QHP) (4-8)
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where η is an arbitrary parameter a proper value of which can be selected to facilitate
the convergence of the iteration.

It is easy to see that, at any values for η, both the idempotency (P2 = P) and the
correct trace (Tr P = N) conditions are preserved upon iterating Eq. (4-8). As to the
former property:

(P
′
)2 = P2 + ηPQHP + ηQHPP + η2QHPQHP = P + ηQHP = P

′

where we have used that P2 = P and PQ = 0. The trace is conserved since

Tr P
′ = Tr P + ηTr QHP = Tr P.

The latter equation holds as Tr QHP = Tr PQH = 0.
Apart from idempotency and correct trace, P has to fulfill one further require-

ment: it has to be self adjoint. Based on this, one can prove that Eq. (4-8) cannot
converge to the exact density matrix. The proof is as follows. Assume that start-
ing from an approximate, hermitian one-matrix P0 and the associated hole-matrix
Q0, we have arrived at the exact matrix P by iterating Eq. (4-8). One may realize,
that every new term appearing in course of this iteration bears a leftmost Q0 and a
rightmost P0. Thus the exact one-matrix can be written as

P = P0 + Q0heffP0 (4-9)

where an effective Hamiltonian heff is introduced. Now let us multiply Eq. (4-9) by
P0 first from the left, then from the right, to obtain P0P = P0 and PP0 = P. Taking
the adjoint of this latter equation and utilizing hermiticity of both P and P0, we get
P0P = P which, together with the first of the above two equations involves that
P = P0. Therefore, for an approximate, hermitian P0 we have a contradiction.

The source of the contradiction is clearly that P′, as defined by Eq. (4-8), is not
hermitian and this property is conserved upon iteration. One may correct for this,
realizing that the iteration formula

P
′ = P + η (PHQ)

has also the same trace- and idempotency conserving properties as Eq. (4-8). It,
therefore, facilitates the following double-iteration sequence:

P
′ = P + η (QHP)

P
′′ = P

′ + η (P
′
HQ

′
)

(4-10)

with Q
′ = 1 − P

′
. The above two steps can be combined into one to yield

P
′′ = P + η QHP + η (P + ηQHP)H(Q − ηQHP). (4-11)
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Since both steps of Eq. (4-10) conserve the trace and the idempotency, P′′
has the correct properties, just like P

′
. Moreover, upon convergence, conditions

QHP = 0 and PHQ = 0 are satisfied to a given accuracy, which involves that matrix
P commutes with H. From this, hermiticity of the converged matrix P automatically
follows.

Simple perturbational arguments indicate that hermiticity violation diminishes
upon iteration by Eq. (4-11). If one writes H = h(0) + V where V is small, and one
starts the iteration with some P(0) which is exact with respect to h(0), one can order
the terms coming from the iteration in increasing powers of V. Expanding (4-11) we
can write

P
′′ = P(0) + η [

Q(0)VP(0) + P(0)VQ(0)
]

+ η2
[
Q(0)VP(0)VQ(0) − P(0)VQ(0)VP(0)

]

− η3
[
Q(0)VP(0)VQ(0)VP(0)

]
.

Assuming that the initial density matrix P(0) is hermitian, the two terms in the first
square bracket are adjoints of each other, while the two terms proportional to η2

are themselves hermitian. The only violation of hermiticity may come from the last
term, which is of order 3, and expected to be very small. Further iteration shifts
the violation of hermiticity to higher orders, indicating that non-hermitian terms are
gradually eliminated during iteration.

Mazziotti applied an alternative way of correcting for the hermiticity viola-
tion of Eq. (4-8): he took the hermitian part of QHP [34]. This way however the
idempotency-conserving feature of Eqs. (4-8) or (4-10) is lost and one has to apply
a purification procedure at each iteration step.

We tested Eq. (4-10) against a similar, iterative algorithm used by Németh and
Scuseria [15] which aims to get the sign matrix of the Fockian. Though the lat-
ter often converges much faster, Eq. (4-10) was found to work better for low-gap
systems and metals. In addition, Eq. (4-10) has the advantage over sign matrix itera-
tions that (i) it does not need an a priori estimation of the chemical potential; (ii) its
intermediate results, being idempotent and having the correct trace, give physically
meaningful approximations; (iii) iterations can be started from any good guess, e.g.
from the P matrix of a previous SCF cycle or, in course of a geometry optimization
procedure, from the converged P matrix of a nearby geometry point.

Numerical experience shows that in SCF or geometry optimization procedures,
the sign-matrix iteration is better used at the beginning, while as the density matrix
P gets converged, its refinement is more advantageous by Eq. (4-10).

The proper choice of parameter η is crucial [35]: chaotic behavior of the itera-
tion scheme can be expected for a wrongly selected value, since the mapping shown
by Eq. (4-8) is closely related to the logistic mapping which is a prototype for
chaotic solutions [36]. The sign of η can be determined from the condition that
the energy should decrease. Looking at the first equation in (4-10), we can write
E′ = E + ηTr(QHPH), which tells that the energy change is proportional to η. Thus
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the appropriate sign of η can always arrange the energy to decrease in an elementary
step. This, if the initial P is properly chosen, will ensure that we converge to the
ground state.

In Refs. [37, 38] illustrative applications were presented at the Hückel level as
well as for Hartree-Fock calculations. To determine the magnitude of η, the fol-
lowing strategy was applied. For a physically related small system the best η was
found by numerical experience. As we observed a great universality in the value
η when changing the system size, the same value could be used effectively for the
calculation of the larger system. Using sparse matrix technology, one may easily
perform each individual iteration in a linear scaling manner. we applied a “flexible”
technology, storing only the nonzero elements of all matrices along with two linear
arrays for row and column indices. Standard matrix manipulation routines for this
technology are available [39]. The effectiveness of this approach clearly depends on
the extent of sparsity of the matrices.

In summarizing, we proposed a new iterative solution of the Bloch-type equation
for the first order density matrix of a one-electron model. If the number of electrons
is known, no prior knowledge of the chemical potential is required, and no purifica-
tion transformations are needed since the iteration preserves both the trace and the
idempotency properties of the one-matrix.

4.4. ELECTRON CORRELATION

4.4.1. E2[P] Functional

Having obtained the density matrix by a linear-scaling procedure directly we do
not have a set of molecular orbitals (MOs) in our possession. Standard methods
of electron correlation like usual second order Møller-Plesset (MP2) or coupled
clusters singles doubles rely on a set of occupied and virtual MOs, hence they are
not directly applicable. However, there exist schemes that provide correlation energy
merely from the P matrix.

The origin of such an approach may be the observation that the MP2 energy is
a functional of the Hartree-Fock density matrix [40]. This functional can be explic-
itly constructed by the Laplace-transformed version of the MP2 energy formula.
Resolving the MP2 energy in a way analogous to Eq. (4-4), the s-dependent energy
can be given as [40]

e[2](s) =
−1

2

∑

μνλσ

∑

ρτηκ

Xμρ(s)Yντ (s)Xλη(s)Yσκ (s) (ρτ |ηκ) [(μν|λσ)− (μσ |λν)]
(4-12)

in terms of atomic spin orbitals. In this equation X(s) and Y(s) are energy-weighted
particle and hole density matrices (EWDMs) defined by matrix P as



Perturbative Approximations to Avoid Matrix Diagonalization 93

X(s) = esPF P. (4-13)

and

Y(s) = e−sQF Q. (4-14)

where Q = S−1 − P is the hole density matrix.
If both matrices F and P are sparse, the exponential of their product can be clearly

obtained through the Taylor expansion in a linear scaling manner. The expansion is
expected to be rapidly convergent for small s, while for large s values one may
obtain matrices X, Y by using

ejsPF = [
esPF]j

for integer j, which limits merely the choice of quadrature points in course of the
numerical integration over s.

It is interesting to note that not only the MP2 energy can be considered as a
functional of the HF density matrix. In fact, applying a double resolution, the third
order energy is recast as

E[3] =
∞∫

0

∞∫

0

e[3](s, s′)ds ds′, (4-15)

while the evaluation of the MP4 formula would require a triple integration

E[4] =
∞∫

0

∞∫

0

∞∫

0

e[4](s, s′, s′′)ds ds′ds′′ (4-16)

with an obvious increase of numerical difficulty throughout the quadrature.
Numerical realization of the procedure at order two was performed by Nakai et al.
[41, 42].

4.4.2. The FLMO Approach

Even if the full density matrix is not constructed from a set of MOs, there are sev-
eral ways to construct orbitals based on matrix P. In the frozen localized molecular
orbital (FLMO) approach [43], one obtains localized MOs by projecting atomic
orbitals |χ〉 into the occupied space:

|ϕocc
i 〉 =

∑

μ

(PS)μi |χμ〉.

Similarly, virtuals emerge by projecting AOs with matrix QS. In the FLMO phi-
losophy, AOs of an active site of a large molecule are used for projection, thus the
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resulting MOs will be, to a great extent, localized on that site. These active LMOs
may be used to compute the correlation energy of the fragment. LMOs falling out
of the active site are never explicitly constructed, they serve as a frozen core for the
active part of the correlation energy.

In concluding, we have mentioned two alternatives of calculating electron cor-
relation based on the Hartree-Fock P matrix. One may either express the desired
correlation energy formula in terms of the density matrix, or utilize P to define a
set of molecular orbitals. By the latter approach the number of orbitals, and con-
sequently the calculation time of the correlation energy can be kept under control.
Moreover the orbitals are localized on a preselected region of the molecule. These
features represent an advantageous starting point for future developments towards
efficient calculation of local correlation energies.
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DIVIDE-AND-CONQUER APPROACHES TO QUANTUM
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Abstract: Recently, the authors implemented the linear-scaling divide-and-conquer (DC) quan-
tum chemical methodologies into the GAMESS-US package, which is available without
charge. In this Chapter, we summarized recent developments in the DC methods, namely,
the density-matrix-based DC self-consistent field (SCF) and the DC-based post-SCF elec-
tron correlation methods. Especially, the DC-based post-SCF calculation is considerably
efficient, i.e., its computational time achieves near-linear scaling with respect to the sys-
tem size [O(N1)] and the required memory and scratch sizes are hardly dependent on
the system size [O(N 0)]. Numerical assessments also revealed the reliability of the DC
methods.

Keywords: Divide-and-conquer method, Atomic basis function, Self-consistent field calcula-
tion, Hartree-Fock theory, Density functional theory, Electron correlation, Møller-
Plesset perturbation theory, Coupled cluster method

5.1. INTRODUCTION: HISTORY OF DIVIDE-AND-CONQUER

“Divide each of the difficulties under examination into as many parts as possi-
ble, and as might be necessary for its adequate solution.” This is an excerpt from
“Discourse on Method” by René Descartes, the famous French philosopher regarded
as a founder of modern philosophy. This phrase is none other than the first state-
ment of the divide-and-conquer (DC) approach. The importance of this philosophy
has been universal among almost all sciences, especially computer science. Since
the invention of the merge sort by von Neumann in 1945 [1], the DC method has
been known as the basic strategy for establishing low-scaling efficient algorithms
in the field of computer science, e.g., the fast Fourier transformation, quicksort,
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Karatsuba multiplication, and binary search algorithms (for details on these algo-
rithms, see Ref. [2] for example). In these algorithms, a complicated problem is
divided into two or more (as many as might be necessary for its adequate solution!)
smaller problems and the solutions of the small problems are combined to obtain
the solution of the original problem.

Later on, Yang [3] imported the DC philosophy to the field of the electronic
structure calculations, which is regarded as the pioneer in the development of
linear-scaling self-consistent field (SCF) electronic structure theories [4, 5] as
well as the elongation method of Imamura et al. [6] is. In this original version
of the quantum chemical DC method, the local electronic density distribution
corresponding to each subsystem region is calculated with the molecular orbitals
(MOs) composed of subsystem atomic orbitals (AOs). Then the electronic density
of the entire system is constructed by the weighted sum of the local densities with
the help of a spatial partition function and uniquely defined Fermi level. The first
paper treated only N2 molecule. Soon after, Yang [7] achieved a breakthrough in
the DC method by introducing a buffer region, which reduced the limitation of the
AOs composing subsystem MOs. This made the applicability of the DC method
considerably expand to big molecules [8–10] with a reasonably good accuracy.
Further the density-based DC method can provide the density of states [11] and its
analytical energy gradient [12], was extended to the treatment of solid-state systems
[13] with embedded-cluster calculations, and was derived from the first principle
[14]. It has been extended to the use of the discrete variational method [15] or
real-space grids [16–19]. Furthermore, Ozaki [20] proposed a different framework
that unified DC and his recursion method [21] using Krylov subspace mapping.

Since the density-based DC method only provides the electronic density, its
applications had been limited to pure Kohn-Sham density functional theory (DFT)
[22]. Yang and Lee [23] achieved the second breakthrough in the DC method that
took this limitation away by applying the DC strategy to the one-electron den-
sity matrix (DM) since DM can be constructed from a Hartree-Fock (HF) [24] or
semiempirical MO calculation. This method is related to the Lego approach [25]
or later adjustable density matrix assembler method [26] in the sense of the usage
of the partition matrix instead of the partition function. Yang and Lee mentioned
another advantage of the DM-based DC formalism over the density-based one that
the time-consuming (but still linear-scaling) three-dimensional integrals associated
with the partition function can be avoided.

Its application to the HF calculations, however, has been limited because of
the requirement of the non-local HF exchange computation. Thus Lee et al.
[27] soon applied the DM-based DC method to semiempirical calculations. For
treating biological macromolecules with solvent effects, York et al. [28] imple-
mented the conductor-like screening model (COSMO) to the program and they
have published a lot of results by the DC calculations of biomolecules including
proteins and nucleic acids [29–34]. Dixon and Merz [35, 36] independently devel-
oped a semiempirical DC code. They introduced inner and outer buffer regions
for improving the SCF convergence as well as reducing the energy error [37]
and utilized the Poisson-Boltzmann equation for describing the solvent effect
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[38]. Furthermore, van der Vaart and Merz [39, 40] presented an energy decom-
position scheme of the intra-molecular interaction and solvation energies like
Kitaura-Morokuma analysis [41] within the framework of the DC method, of which
the essence had been presented in the earlier work [28] in part. Another example
of the semiempirical DC calculation is the work by Cabrera-Trujillo and Robles
[42] who applied the method to the calculations of polymerized fullerene clus-
ters. Efficient parallelization schemes of the semiempirical DC method were also
proposed [43, 44].

Another candidate for the DM-based DC method was still DFT. St-Amant and
coworkers [45, 46] firstly applied the DC strategy to the charge density fitting
procedure in the density-fitting DFT implementation [47] for the linear-scaling com-
putation of Coulomb interaction. They soon combined it with DM-based DC-DFT
[48, 49], proposed an efficient parallel algorithm [50], and implemented to the DeFT
program package [51].

Practically, the first implementation and assessment of the DC method includ-
ing HF exchange interaction (i.e., DC-HF and DC hybrid DFT) were done in the
authors’ group [52]. We showed the efficiency and accuracy of the DC-HF and
DC hybrid DFT methods, although we also showed that the larger error of the HF
exchange term derived from the DC approximation survives in the calculations of
delocalized π-conjugated systems [53]. Our ambition, however, was not the devel-
opment of the linear-scaling HF method but of the entirely linear-scaling post-HF
correlation methods based on the DC scheme.

We have proposed two strategies for evaluating the post-HF correlation energy.
The first one [54] uses DM of the entire system obtained from the DC-HF calcu-
lation for evaluating the second-order Møller-Plesset perturbation (MP2) energy by
means of the DM-Laplace MP2 method [55–57]. This post-HF correlation treatment
can be categorized into the domain-free approach that uses a linear-scaling trick of
the standard MP2 formalism for the entire system. The other one [58–61], which
is categorized into the domain-based approach, uses subsystem MOs for evaluating
the correlation energy corresponding to the subsystem. The correlation energy of the
entire system is recognized as the sum of the subsystem correlation energies. In this
approach, we implicitly utilize the idea of the local correlation approach [62, 63],
which insists that the interactions contributing to the electron correlation are short
ranged. Now, the DC SCF and DC-based correlation methods are implemented in
GAMESS-US program package [64–66].

In addition to the DC method described above, many groups have proposed many
other “DC-like” methodologies that partition the system under consideration into
several fragments to obtain the results of the entire system: e.g., fragment MO
(FMO) method [67, 68], molecular fractionation with conjugated caps method [69,
70], systematic molecular fragmentation method [71], molecular tailoring approach
[72, 73], incremental correlation method [74, 75], and cluster-in-molecule approach
[76, 77]. Furthermore, many types of linear-scaling DM construction methods that
rely on the matrix sparsity, instead of dividing into subsystems, have been reported
to date [4, 5, 78–85]. In this Chapter, however, we only focus on the DM-based DC
method originally introduced by Yang and Lee [23] and its extension to the electron
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correlation by the authors. In the following, we first review the theory of the DC
SCF and DC-based correlation method. Next, several examples of DC calculations
are given. Finally, we would like to mention the current stage and future of the large
system calculations using the DC method.

5.2. THEORIES OF DIVIDE-AND-CONQUER METHOD

5.2.1. DC-HF and DC-DFT Theories

5.2.1.1. Formalism

In the DM-based DC method [23, 52], one assumes that each basis function is
connected with an atom in the system under consideration, i.e., a basis function
is simply called an AO. First, the entire system is spatially divided into disjoint sub-
systems, where a set of AOs in subsystem α is denoted by S(α) and the union of
S(α) becomes a set of AOs in the entire system denoted by T:

S(α) ∩ S(β) = Ø ∀α �= β, (5-1)

⋃

α

S(α) = T. (5-2)

From here, this disjoint subsystem is called the central region, which is also known
as the core region in some literatures. To improve the description of the subsystem,
atoms adjacent to the central region, called the buffer region, are taken into consider-
ation when constructing subsystem MOs. A set of AOs corresponding to the buffer
region of subsystem α is denoted by B(α), and the union of the central and buffer
regions of subsystem α is called the localization region, of which a set of AOs is
denoted by L(α):

S(α) ∪ B(α) ≡ L(α). (5-3)

Hereafter, Greek-letter indices {μ,ν,...} refer to AOs, {i, j,...} to occupied MOs,
{a,b,...} to virtual MOs, and {q,r,...} to all MOs. In the DC-HF method, DM of the
entire system D is represented in terms of subsystem DMs Dα:

Dμν ≈ DDC
μν =

∑

α

pαμνDμν =
∑

α

Dαμν , (5-4)

with the following partition matrix pα:

pαμν =
⎧
⎨

⎩

1 for μ ∈ S(α) and ν ∈ S(α)
1/2 for μ ∈ S(α) and ν ∈ B(α), or vice versa
0 otherwise.

(5-5)

When treating a closed-shell ne-electron system for simplicity, the subsystem DM
is given by
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Dαμν = 2pαμν

ne/2∑

i

CμiC
∗
νi = 2pαμν

∑

q

η(εF − εq)CμqC∗
νq. (5-6)

Here, η(x) is the Heaviside step function,

η(x) =
{

1 (x ≥ 0)

0 (x < 0),
(5-7)

and εF is the Fermi level. In the DC approximation, the subsystem DM is con-
structed from subsystem orbitals {ψαq (r)} that are expanded with the local basis
functions {φμ(r);μ ∈ L(α)}:

Dαμν ≈ 2pαμν

MO(α)∑

q

η
(
εF − εαq

)
CαμqCα∗νq , (5-8)

ψαq (r) =
∑

μ∈L(α)

Cαμqφμ(r). (5-9)

Here, {εαq } and {Cαq } are the solutions of the following generalized eigenproblem for
subsystem α,

(
Fα − εαq Sα

)
Cαq = 0, (5-10)

where Fα and Sα are the Fock and overlap matrices of subsystem α that are the
|L(α)| × |L(α)| Hermitian submatrices of the entire Fock and overlap matrices, F
and S.

The Fermi level εF in Eq. (5-8), which is uniquely defined through the entire
system, can be determined by solving the following constraint of the total number
of electrons ne:

ne = Tr
[
DDCS

]
=

∑

α

∑

μ∈L(α)

(DαSα)μμ. (5-11)

To make the solution of Eq. (5-11) exist, a discrete step function η(x) is substituted
with the Fermi function,

fβ (x) = 1

1 + exp ( − βx)
, (5-12)

with inverse temperature parameter β:

Dαμν ≈ 2pαμν

MO(α)∑

q

fβ
(
εF − εαq

)
CαμqCα∗νq . (5-13)
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Then the entire density matrix DDC can be obtained from Eq. (5-4). The constraint
Eq. (5-11) can be reduced by introducing the orbital weight wαq

wαq =
∑

μν∈L(α)

pαμνC
α
μqCα∗νq Sανμ, (5-14)

which is regarded as the maximum occupancy of the orbital q in subsystem α, as
the following:

ne =
∑

α

MO(α)∑

q

fβ
(
εF − εαq

)
wαq . (5-15)

The entire Fock matrix F is constructed in the usual manner: e.g., in the DC-HF
calculation,

Fμν = Hcore
μν +

∑

λσ

DDC
λσ

[
〈μσ | νλ〉 − 1

2
〈μσ | λν〉

]

= Hcore
μν +

∑

α

∑

λσ∈L(α)

Dαλσ

[
〈μσ | νλ〉 − 1

2
〈μσ | λν〉

]
,

(5-16)

with two-electron integral notation of 〈μν| λσ 〉 = ∫∫
μ∗(r1)ν∗(r2)r−1

12 λ(r1)σ (r2)
dr1dr2 and core Hamiltonian matrix Hcore. The Fock-matrix construction of Eq.
(5-16) and the DM construction of Eqs. (5-4) and (5-13) are iterated until con-
vergence, in the same manner as the standard SCF procedure. Finally, the DC-HF
energy is given as

EDC-HF = 1

2

∑

α

∑

μν∈L(α)

Dαμν
(
Hcore
νμ + Fνμ

) =
∑

α

EαDC - HF, (5-17)

where

EαDC-HF = 1

2

∑

μν∈L(α)

Dαμν
(
Hcore
νμ + Fνμ

)
(5-18)

can be recognized as the HF energy corresponding to subsystem α. The schematic
of the DC-HF procedure is summarized in Figure 5-1. The same procedure can be
adopted in the DC-DFT calculation by substituting the Fock matrix of Eq. (5-16) and
the energy expression of Eq. (5-17) with the Kohn-Sham Hamiltonian and energy,
respectively.

There are two time-consuming steps in the DC SCF calculation: (i) solving eigen-
problems (5-10) for all subsystems, and (ii) constructing Fock matrix by Eq. (5-16).
The computational cost of step (i) is O

(|L(α)|3) for subsystem α, which is inde-
pendent on the number of AOs in the whole system |T|. Then the cost for solving
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Figure 5-1. Schematic of the DC-HF procedure

Eq. (5-10) in all subsystems becomes O
(

Nsub max
α

|L(α)|3
)

, where Nsub denotes

the number of subsystems. On the other hand, the cost of step (ii) is reduced to
O

(|T|2) from O
(|T|4) because (μ,ν) and (λ,σ ) in Eq. (5-16) should be in the same

subsystem bases. The standard integral screening and the fast Coulomb [86–91] or
exchange [92–94] schemes will further diminish the computational cost.

5.2.1.2. Acceleration of DC SCF Procedure

Although the DC method has succeeded in evaluating properties of large molecules,
the DC SCF calculation has a problem in its convergence [95]. We have introduced
two acceleration methods for the DC SCF procedure.

The first one [52] is based on the direct inversion in the iterative subspace (DIIS)
method [96, 97]. The conventional DIIS technique accelerates the SCF convergence
by extrapolating several Fock matrices obtained in the SCF process in terms of some
error vectors that vanish in the SCF solution,

FDIIS
n =

n∑

k=1

ckFk. (5-19)
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The usual choice of the error vector of the kth iteration ek is

ek = FkDkS − SDkFk, (5-20)

which is based on the commutation relationship of the Fock matrix and DM in the
SCF solution. Shaw and St-Amant [51] noted that the DIIS technique using the error
vector of Eq. (5-20) partly works even in DC calculations but leads SCF calculation
to oscillating if convergence comes near because slight errors are introduced in the
DM by approximation of the DC method. They indicated that the DIIS technique
should be turned off when SCF is close to convergence. The alternative choice of
the error vectors of

ek = Fk − Fk−1, (5-21)

which is described in the first DIIS paper [96], will also avoid the oscillation.
The extrapolation coefficeients ck in Eq. (5-19) are determined by the least-square
criterion together with the condition that the coefficients add up to 1,

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 −1 −1 · · · −1
−1 B11 B12

−1 B21
. . .

... Bkl
. . .

−1 Bnn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−$
c1
...

ck
...

cn

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1
0
...
0
...
0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (5-22)

Bkl = 〈ek | el〉 , (5-23)

where $ is a Lagrangian multiplier.
We have generalized DIIS to the DC SCF iterations, which is termed DC-DIIS.

We assume the commutation relationships between the subsystem Fock matrix and
DM at the DC SCF convergence. Therefore, the error vector corresponding to
subsystem α is defined as follows:

eαk = Fαk Dαk Sα − SαDαk Fαk . (5-24)

The Fock matrix of each subsystem can be extrapolated as

Fα,DIIS
n =

n∑

k=1

cαk Fαk , (5-25)

where coefficients cαk are determined in the same manner as in the total Fock matrix
case. The DC-DIIS should be turned on only after the maximum element of eαk
becomes sufficiently small after several SCF cycles.
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The second SCF acceleration technique [95] is related to the varying fractional
occupation number (VFON) method realized by temperature-lowering technique
[98]. It is well-known that in standard SCF with finite temperature β, smaller β
(higher temperature) leads to faster convergence. We have found this fact holds
true even in DC SCF. Smaller β in Eq. (5-13), however, makes the energy error
introduced by finite temperature larger. Then we extended the temperature-lowering
technique to DC SCF for improving the convergence with keeping the accuracy.

Although several schemes can be considered for lowering the temperature, we
have proposed to simply set β increasing linearly (+�β per cycle) from an initial
smaller value to the final larger value with respect to the SCF iteration, that is, the
inverse temperature of kth SCF cycle βk is represented as

βk =
⎧
⎨

⎩

βini for k < kini
min [βini + (k − kini)�β,βfin] for kini ≤ k ≤ kfin
βfin for k > kfin,

(5-26)

where βini and βfin are the initial and final values of β, respectively. The β value
changes from the kinith to kfinth SCF cycles. The final energy can be obtained
with βfin that introduces smaller error than with βini. Note that there is no extra
computational cost in the present method.

5.2.2. DC-Based Correlation Theories

5.2.2.1. Density-Matrix-Based Divide-and-Conquer Møller-Plesset
Perturbation

The simplest post-HF correlation theory is the MP2 method. Several groups have
reported that the MP2 correlation energy can be written as the functional of HF
DM [55–57] with the help of the Laplace-transformed representation [99, 100]. We
can thus obtain the MP2 correlation energy from DC-HF DM of Eq. (5-4) although
we cannot obtain the canonical (or even localized) MOs of the entire system in the
DC-HF calculation. This approach is known as the DC-DM MP2 method [54].

The closed-shell MP2 correlation energy is given by using canonical orbitals as
follows:

�EMP2 = −
occ∑

i,j

vir∑

a,b

〈ij | ab〉 [2 〈ab | ij〉 − 〈ba | ij〉]
εa + εb − εi − εj

. (5-27)

This energy can be rewritten by means of the Laplace transformation as

�EMP2 = −
∫ ∞

0
e2(s)ds

≈ −
τ∑

t=1

wte2(st)
(5-28)
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with τ quadrature points {st} and their weights {wt}. The integrand in Eq. (5-28) is
given in AO basis by

l2(st) =
∑

γ δκε

∑

μνλσ

Xt
μγXt

νδY
t
κλYt

εσ 〈κε|γ δ〉 [2 〈μν|λσ 〉 − 〈νμ|λσ 〉]

=
∑

μνλσ

〈
λσ |μν

〉
[2 〈μν|λσ 〉 − 〈νμ|λσ 〉] ,

(5-29)

where Xt and Yt are the energy-weighted DMs of electron and hole, respectively,
and are given by

Xt =
occ∑

i

eεist CiC
†
i = 1

2
exp

(
stS−1F

)
· D = 1

2
exp

(
1

2
stDF

)
· D, (5-30)

Yt =
vir∑

a

e−εast CaC†
a = 1

2
exp

(
−stS−1F

)
· D = 1

2
exp

(
−1

2
stDF

)
· D. (5-31)

D is HF DM of the hole in AO basis,

D = 2
vir∑

a

CaC†
a. (5-32)

The second equalities in Eqs. (5-30) and (5-31) can be derived by only assuming
Roothaan equation for the entire system:

(F − εqS)Cq = 0, (5-33)

and the third equalities by assuming the commutation relationship of FDS = SDF,
idempotency of 1

2 DS, and

D + D = 2S−1. (5-34)

The DC-HF method defines only the electron DM. We have provided two
formalisms for the hole DM, that is,

D tot = 2S−1 − DDC, (5-35)

and

D sub
μν =

∑

α

2pαμν

MO(α)∑

q

fβ
(
εαq − εF

)
CαμqCα∗νq . (5-36)

The numerical results are available in Ref. [54]. Although the DC-DM MP2
method can slightly reduce the computational cost from canonical MP2, its scaling
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becomes O
(|T|3) due to the requirement of matrix exponential evaluations in Eqs.

(5-30) and (5-31). Furthermore, the available correlation energy functional of the
HF DM is only MP2 for the present. Therefore, we moved to the alternative strategy
that is sufficiently faster than the DC-DM MP2 approach.

5.2.2.2. Subsystem-Orbital-Based Correlation Method [58–61]

The DC-HF calculation gives MOs in each subsystem (localization region), {ψαq (r)},
as well as the DM corresponding to the entire system. If occupied and virtual MOs
are clearly distinguished among {ψαq (r)}, the correlation energy corresponding to
localization region α will be obtained straightforwardly. However, the sum of the
correlation energies over all localization regions would be an inappropriate correla-
tion energy of the entire system because localization regions overlap with each other
owing to the existence of the buffer region (a schematic is given in Figure 5-2).
Therefore, the correlation energy that corresponds to the central region should be
extracted. We have accomplished this task by means of the concept of the energy
density analysis (EDA) [101], which have been proposed and developed by the
authors’ group [102–108].

EDA partitions the energy obtained by the HF calculation into atomic contribu-
tions by analogy to Mulliken population analysis [109]. The kinetic energy density
for atom A, for example, is represented as:

EA
kin =

∑

μ∈A

∑

ν

Dμν
〈
ν

∣∣∣−∇2
/

2
∣∣∣μ

〉
=

∑

μ∈A

occ∑

i

Cμi

〈
i
∣∣∣−∇2

/
2
∣∣∣μ

〉
. (5-37)

Figure 5-2. Schematic of the DC-based correlation calculation. The subsystem MOs extend to the buffer
region. Then, the simple sum of the correlation energies obtained in terms of the subsystem MOs leads to
the overlapped counting of the correlation energy. We have solved this issue by evaluating the correlation
energy corresponding to the central region of the subsystem using the idea of EDA
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Note again that each basis function is connected with an atom. In the same man-
ner, the correlation energy can be partitioned into atomic contributions. Generally,
the total correlation energy of a closed-shell system should be represented as the
Nesbet’s formula [110]:

�Ecorr =
occ∑

ij

vir∑

ab

〈ij | ab〉 (2t̃ij,ab − t̃ij,ba
)
, (5-38)

where t̃ij,ab represents an effective two-electron excitation coefficient. By leaving
the last integral transformation undone, one can rewrite the correlation energy as
the sum of the atomic contributions:

�Ecorr =
atom∑

A

⎡

⎣
occ∑

ij

vir∑

ab

⎛

⎝wocc

∑

μ∈A

C∗
μi 〈μj | ab〉

+wvir

∑

λ∈A

Cλa 〈ij | λb〉
)

(
2t̃ij,ab − t̃ij,ba

)
]

≡
atom∑

A

�EA
corr,

(5-39)

where wocc and wvir are the linear-combination parameters, which represent the
weights of occupied and virtual contributions and are constrained by wocc+wvir = 1
to reproduce the total correlation energy.

Using this atomic correlation energy, we can define the approximate correlation
energy corresponding to the central region of subsystem α as

�Eαcorr =
occ(α)∑

ij

vir(α)∑

ab

⎛

⎝wocc
∑

μ∈S(α)

Cα∗μi
〈
μj α

∣∣ aαbα
〉 + wvir

∑

λ∈S(α)

Cαλa
〈
i α j α

∣∣ λbα
〉
⎞

⎠
(

2t̃αij,ab − t̃αij,ba

)
,

(5-40)

where {iα , jα ,...} and {aα ,bα ,...} refer to the occupied and virtual MOs of subsystem
α that have orbital energies smaller than and greater than εF, respectively. t̃αij,ab is
the effective two-electron excitation amplitude for subsystem α, namely, in the MP2
case [58, 60],

t̃αij,ab = − 〈aαbα | iα jα〉
εαa + εαb − εαi − εαj

, (5-41)

and in the coupled-cluster (CC) theory with singles and doubles (CCSD) case [59],

t̃αij,ab = tαi,atαj,b + tαij,ab, (5-42)

where T1 and T2 amplitudes, tαi,a and tαij,ab, are determined by solving the CCSD
equations for the localization region of subsystem α.
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This post-HF procedure is straightforwardly applicable to the DFT calculations
with the double-hybrid exchange-correlation functional like B2PLYP [111] that
mixes MP2-type correlation energy expression to the common DFT correlation
functional. The energy expression for the B2PLYP functional is given by:

Exc = (1 − ax)EGGA
x + axEHF

x + (1 − ac)EGGA
c + ac�EPT2, (5-43)

where EGGA
x and EGGA

c represent generalized gradient approximation (GGA)
exchange and correlation functionals, namely Becke 88 exchange [112] and Lee,
Yang, and Parr correlation [113] functionals, respectively, EHF

x is the HF exchange
energy, and �EPT2 is equivalent to �EMP2 except for using Kohn-Sham orbitals
instead of HF ones. The MP2-type energy term is simply omitted for simplicity in
the SCF procedure, and �EPT2 is evaluated a posteriori. Grimme [111] proposed
the use of ax = 0.53 and ac = 0.27.

Furthermore, this strategy is applicable to wide varieties of correlation theo-
ries even if its energy expression does not accord with Nesbet’s formula. As an
example, we take up the case of the CCSD(T) method [61, 114, 115]. The fourth-
and fifth-order connected triples corrections to the CCSD correlation energy are
represented as

ET[4] =
occ∑

ijk

vir∑

abc

(
4

3
t∗ijk,abc(2) − 2t∗ijk,acb(2) + 2

3
t∗ijk,bca(2)

)
tijk,abc(2)Dijk,abc, (5-44)

EST[5] =
occ∑

ijk

vir∑

abc

(
4

3
z∗ijk,abc − 2z∗ijk,acb +

2

3
z∗ijk,bca

)
tijk,abc(2)Dijk,abc, (5-45)

respectively. The so-called CCSD[T] [115] and CCSD(T) [114] energies are
�ECCSD[T] = �ECCSD +ET[4] and�ECCSD(T) = �ECCSD[T] +EST[5], respectively.
Here,

Dijk,abc = εi + εj + εk − εa − εb − εc, (5-46)

tijk,abc(2) = Pijk,abc

[
vir∑

e

tij,ae 〈bc|ek〉 −
occ∑

m

tim,ab 〈mc|jk〉
]/

Dijk,abc, (5-47)

zijk,abc =
[
ti,a 〈bc|jk〉 + tj,b 〈ac|ik〉 + tk,c 〈ab|ij〉]/Dijk,abc, (5-48)

and Pijk,abc is the three-index symmetrizer, e.g.,

Pijk,abc[Aijk,abc] = Aijk,abc + Ajik,bac + Akji,cba + Aikj,acb + Ajki,bca + Akij,cab. (5-49)

Considering the energy-partitioning scheme for tijk,abc(2)Dijk,abc, which Eqs. (5-44)
and (5-45) have in common, the following correction energy expressions for
subsystem α in the DC calculation can be derived:
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EαT[4] =
occ(α)∑

ijk

vir(α)∑

abc

(
4

3
tα∗ijk,abc(2) − 2tα∗ijk,acb(2) + 2

3
tα∗ijk,bca(2)

)
U[X,Y]α

ijk,abc , (5-50)

EαST[5] =
occ(α)∑

ijk

vir(α)∑

abc

(
4

3
zα∗ijk,abc − 2zα∗ijk,acb +

2

3
zα∗ijk,bca

)
U[X,Y]α

ijk,abc . (5-51)

Here, all elements are evaluated in terms of subsystem MOs as

tαijk,abc(2) = Pijk,abc

⎡

⎣
vir(α)∑

e

tαij,ae

〈
bαcα|eαkα

〉 −
occ(α)∑

m

tαim,ab

〈
mαcα| jαkα

〉
⎤

⎦
/

Dαijk,abc,

(5-52)

zαijk,abc =
[
tαi,a

〈
bαcα | jαkα

〉 + tαj,b
〈
aαcα |iαkα

〉 + tαk,c

〈
aαbα|iαjα

〉]/
Dαijk,abc, (5-53)

Dαijk,abc = εαi + εαj + εαk − εαa − εαb − εαc , (5-54)

and U[X,Y]α
ijk,abc can be obtained by partitioning tαijk,abc(2)Dαijk,abc by EDA. Several dif-

ferent expressions are conceivable for U[X,Y]α
ijk,abc , which are distinguished by X = 0–2

and Y = 0–2 as follows:

U[X,Y]α
ijk,abc = u[X]α

ijk,abc + v[Y]α
ijk,abc, (5-55)

u[0]α
ijk,abc = Pijk,abc

vir(α)∑

e

∑

μ∈S(α)

tαij,aeCαμk

〈
bαcα|eαμ〉

, (5-56)

u[1]α
ijk,abc = Pijk,abc

vir(α)∑

e

∑

μ∈S(α)

tαij,aeCαμe

〈
bαcα |μkα

〉
, (5-57)

u[2]α
ijk,abc = Pijk,abc

vir(α)∑

e

∑

μ∈S(α)

tαij,aeCα
∗
μc

〈
bαμ|eαkα

〉
, (5-58)

v[0]α
ijk,abc = Pijk,abc

occ(α)∑

m

∑

μ∈S(α)

tαim,abCαμk

〈
mαcα|jαμ〉

, (5-59)

v[1]α
ijk,abc = Pijk,abc

occ(α)∑

m

∑

μ∈S(α)

tαim,abCαμj

〈
mαcα|μkα

〉
, (5-60)

v[2]α
ijk,abc = Pijk,abc

occ(α)∑

m

∑

μ∈S(α)

tαim,abCα
∗
μc

〈
mαμ|jαkα

〉
. (5-61)

Then, the DC-CCSD[T] and DC-CCSD(T) energies are expressed as
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�EDC-CCSD[T] = �EDC-CCSD +
∑

α

EαT[4], (5-62)

�EDC-CCSD(T) = �EDC-CCSD[T] +
∑

α

EαST[5], (5-63)

respectively. The authors [61] have also extended to the renormalized CCSD(T)
[R-CCSD(T)] method [116, 117] that can reasonably avoid the divergence of the
dissociation curve in the CCSD(T) method.

5.2.2.3. Dual-Buffer DC-Based Correlation Method

In DC-based correlation calculations, it is known that the correlation-energy error
converges to zero more rapidly with respect to the buffer size than the HF-energy
error. Because the computational costs for the correlation energy calculations are
generally higher than those for HF, the DC-based correlation calculation can be
accelerated with keeping its accuracy by adopting larger and smaller buffers for
the HF and correlation calculations, respectively. The procedure of this dual-buffer
treatment is as follows [59, 60]:

1 Iteratively solve the DC-HF equations adopting larger buffer region and obtain
converged total DM and HF energy. This process can be substituted with any
accelerated HF methodologies that can provide DM and HF energy, or even with
standard HF.

2 Solve the DC-HF equations in subsystems with smaller buffer regions once for
all and obtain subsystem MOs. The Fermi level, which is required to separate
occupied and virtual MOs, may (or may not) be redefined from the constraint of
Eq. (5-15).

3 Perform the DC-based correlation calculation by using subsystem MOs deter-
mined at step 2 and obtain the correlation energy.

5.3. ASSESSMENTS OF DIVIDE-AND-CONQUER METHOD

5.3.1. Implementation

We have implemented the above DC methodologies into the GAMESS-US program
package [64–66]. The capabilities of the DC program are summarized in Figure 5-3.
All methodologies discussed in Section 5.2 except for DC-DM MP2 are (or will be)
available from GAMESS January 2009 version. The DC-CC codes were developed
based on the CC program of Piecuch and coworkers [118]. A parallel implemen-
tation of the DC-MP2 method has been finished with and without the distributed
data interface (DDI) technology [119] in GAMESS. Developments of more effi-
cient parallel codes for the DC methodologies using group DDI (GDDI) [120] are
in progress.
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Figure 5-3. Capabilities of the DC program in GAMESS. All methods are available from January 2009
version except for the methods in italic which will be incorporated in the next version

The other notable features in this DC implementation are the followings:

1. Central regions can be defined manually or automatically based on cubic grid.
2. Buffer region can be specified manually or automatically as the union of the

spherical regions centered at atoms consisting of the central region.
3. DC extended Hückel DM is applicable as an initial guess.
4. DC Fock construction is compatible with parallel linear-scaling fast multipole

method (FMM) [88] implemented in GAMESS.
5. Restart option is available for DC-based correlation methods.

We will show several valuable examples of the DC calculations for assessing its
efficiency and accuracy in the following subsections. In the DC SCF calculations,
the inverse temperature parameter of the Fermi function β in Eq. (5-13) was fixed to
125.0 a.u. (2526 K) unless otherwise noted. In the post-SCF correlation calculations,
chemical core orbitals were frozen. As a comprehensible example, we often use the
polyene chain system CnHn+2, which is one-dimensional but modestly difficult test
system for fragmentation methods because of the delocalized character of electrons.
We adopted C2H2 (or C2H3 for the edges) group as a central region and treated
several adjacent C2H2 (or C2H3) as corresponding buffer region, namely the left and
right buffer regions in the DC-HF and correlation calculations were up to CnHF

b
HnHF

b(
or CnHF

b
HnHF

b +1

)
and Cncorr

b
Hncorr

b

(
or Cncorr

b
Hncorr

b +1
)
, respectively (see Figure 5-4).

In practice, one can adopt the union of the spheres centered at atoms consisting in
the central region as the buffer region. This choice will be useful for dynamically
selecting the adequate buffer region during geometry optimization and dynamics
simulation processes.



Divide-and-Conquer Approaches to Quantum Chemistry 113

Figure 5-4. Schematic of the central and buffer regions in the DC calculations of polyene chain system
CnHn+2. The x and y axes that are referred to in the quadrupole moment calculation are given together

5.3.2. DC SCF

5.3.2.1. Buffer-Size Dependence

First, we show the buffer-size dependence of the absolute HF energy error in the
DC-HF calculations of a polyene chain C60H62 in Figure 5-5. The energy error is
defined by EDC − Econv through this chapter. The correlation consistent polarized
double-zeta (cc-pVDZ) basis set [121] was adopted. The energy error introduced by
the DC approximation decays quasi-exponentially with respect to the buffer size.
In this system, 1 mHartree or less energy error can be accomplished for nHF

b ≥ 12.
It was found that the DC SCF method can reproduce the conventional SCF energy
with the buffer region of appropriate size and that the systematic improvement of
the accuracy of the method is possible.

Next, we show the accuracy of the molecular properties. Table 5-1 gives the
electrostatic quadrupole moment Q of a polyene chain C30H32 calculated by DC-HF
and DC-B3LYP [122, 123] methods with cc-pVDZ basis set. Here, the x and y axes
are defined in Figure 5-4 and the z axis is the main axis of the D2h symmetry of the
molecule. The quadrupole moment becomes a constant tensor through the system

Figure 5-5. Buffer-size dependence of the absolute energy error of polyene chain C60H62 obtained by
DC-HF/cc-pVDZ calculation
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Table 5-1. Electrostatic quadrupole moment Q (in Buckinghama) of polyene chain C30H32 calculated
by DC-HF and DC-B3LYP methods with cc-pVDZ basis set. The z axis is the main axis of the D2h
symmetry and x and y axes are given in Figure 5-4. The elements that are not given in this table are
zero

Qxx Qyy Qzz Qxy

nHF
b HF B3LYP HF B3LYP HF B3LYP HF B3LYP

6 31.01 29.64 17.29 11.68 –48.30 –41.32 –1.05 1.56
8 20.58 22.40 22.54 15.40 –43.12 –37.80 –0.49 1.66
10 17.92 18.84 23.84 17.16 –41.76 –36.00 –0.30 1.81
12 16.88 16.78 24.36 18.20 –41.24 –34.98 –0.22 1.91
Conv. 16.22 13.53 24.69 19.82 –40.91 –33.35 –0.18 2.00

a1 Buckingham = 3.33564 × 10−40 C·m2.

and satisfies Qxx + Qyy + Qzz = 0 by its symmetry. The elements of the tensor
that are not given in Table 5-1 are zero. As the buffer-size increases, the quadrupole
moments obtained by both DC-HF and DC-B3LYP calculations converge to the
values obtained by conventional calculations, which are listed at the bottom of the
table. The DC calculation reproduces the sign of Qxy, which differs between HF
and B3LYP results. Comparing the difference between conventional and nHF

b = 12
results, DC-B3LYP gives slightly larger error than DC-HF because the small band
gap derived from the DFT calculation leads to the contamination of virtual orbitals
in DM and introduces large temperature error. However, it was found that the DC
SCF calculations sufficiently reproduce not only total energy but also one-electron
properties obtained by the conventional calculations.

Even in the large system calculation, the MOs of the entire system (especially
frontier MOs) give important information such as the reaction site. For instance,
in the FMO method, two schemes for obtaining the frontier MOs have been pro-
posed [124, 125] with an extra computation. Although the DC calculation cannot
offer the canonical MOs for the entire system, it can provide the electron density
corresponding to each MO. In the closed-shell conventional HF case, the DM corre-
sponding to the kth MO (that is, the MO having the kth lowest orbital energy) can be
expressed as:

Dμν,k = 2CμkC∗
νk = Dμν (εk) − Dμν(εk−1), (5-64)

where

Dμν(ε) = 2
∑

q

η(ε − εq)CμqC∗
νq, (5-65)

and it clearly reads D(εF) = D. This scheme can be extended to the DC-HF
calculation as the following:

Dμν,k ≈ DDC
μν (εk) − DDC

μν (εk−1), (5-66)
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DDC
μν (ε) =

∑

α

2pαμν
∑

q

fβ (ε − εq)CμqC∗
νq. (5-67)

The orbital energy corresponding to the kth MO of the entire system, εk, can be
determined by solving the following equation that is analogous to Eq. (5-11):

2 k = Tr [D(εk)S] , (5-68)

where the left-hand side represents the number of occupiable electrons up to the
kth MO.

Figure 5-6 shows the electron density maps corresponding to highest occupied
MO (HOMO) and lowest unoccupied MO (LUMO) obtained by DC and conven-
tional HF calculations of a polyene chain C30H32 with cc-pVDZ basis set. The
DC-HF orbital density fairly reproduces the HF orbital density, although the DC-
HF orbital gives theoretically meaningless negative density around orbital nodes in
the small buffer (nHF

b = 6) calculation. It is notable that the cost of the computation
needed for evaluating orbital density, which is only the determination of εk and εk−1
from Eq. (5-68), is negligibly low.

5.3.2.2. System-Size Dependence of the Computational Cost

The efficiency of the DC calculations were assessed by means of the central pro-
cessing unit (CPU) time. Figure 5-7 shows the CPU times for (a) solving SCF
equations for all subsystems, Eq. (5-10), and (b) forming Fock matrix, Eq. (5-16),
in the first SCF iteration of DC-HF calculations of polyene chains CnHn+2. The
times in the conventional HF calculations are also shown for comparison. Here, we
used 6-31G∗∗ basis set [126]. An Intel Pentium4/3.20 GHz processor was used on

Figure 5-6. HOMO and LUMO density maps of polyene chain C30H32 obtained by (DC-)HF/cc-pVDZ
calculations
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Figure 5-7. System-size dependence of CPU times for (a) solving SCF equation(s) and (b) forming Fock
matrix in the first SCF iteration of polyene CnHn+2 calculations at (DC-)HF/6-31G∗∗ level of theory. An
Intel Pentium4/3.20 GHz processor was used on a single node. The buffer size was fixed at nHF

b = 12.

Both with and without FMM option data are presented for (b)

a single node. The buffer size was fixed at nHF
b = 12. For the Fock matrix con-

struction, the results with FMM option in GAMESS [88] are shown together. It is
clear that the DC method reduces the computational times of both SCF solution
and Fock formation procedures especially for large systems. For example, in the
calculation of C150H152, the times of DC calculations were 4.2 and 2.2–2.7 times
faster than those of conventional ones for (a) and (b), respectively. According to the
scaling analysis by the double-logarithmic plot, the times of (a) scale with O(n3.2)
and O(n1.3) for conventional and DC-HF calculations, and those of (b) scale with
O(n2.8), O(n1.6), O(n2.3), and O(n1.1) for conventional, conventional/FMM, DC,
and DC/FMM calculations, respectively. The combination of DC and FMM works
quite well because of the sparseness of DC-HF DM and achieves the linear-scaling
computational time.

The system-size dependence of the accuracy of the DC calculations was dis-
cussed elsewhere [52]. In summary, the energy error linearly increases with respect
to the system size for homogeneous systems such as the polyene chain, i.e., the
energy error per atom is fairly constant. This behavior is preferable for examining
the relative stability of isoelectronic systems.

5.3.3. DC-Based Post-SCF Correlation Calculation

5.3.3.1. Buffer-Size Dependence

In the DC-MP2 and DC-CCSD calculations, the parameter wocc (or wvir) deter-
mining the ratio of occupied and virtual contributions in the subsystem correlation
energy changes the results. Then, the parameter dependence of the correlation
energy error was assessed in the DC-MP2 method. Figure 5-8 shows the buffer-
size dependence of the correlation energy error from the canonical MP2 energy
in the DC-MP2/cc-pVDZ calculation of a polyene chain C60H62. The horizontal
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Figure 5-8. Buffer-size dependence of MP2 correlation energy error (in mHartree) in the DC-MP2/cc-
pVDZ calculation of polyene chain C60H62. Up-triangle, down-triangle, and circle symbols correspond
to (wocc,wvir) =(1, 0), (0, 1), and (0.5, 0.5), respectively

axis represents the HF and correlation buffer size, i.e., nHF
b = ncorr

b = nb. Vertical
stripes represent the ranges of the correlation energy for 0 ≤ wocc ≤ 1. Up-
triangle, down-triangle, and circle symbols correspond to (wocc,wvir) = (1,0),
(0,1), and (0.5,0.5), respectively. Because wocc (or wvir) is a linear energy coef-
ficient, the energy obtained with (wocc,wvir) = (0.5,0.5) locates at the midpoint
between (wocc,wvir) = (1,0) and (0,1). As the buffer size increases, the energy
errors rapidly decrease for both (wocc,wvir) = (1,0) and (0,1). On the contrary, these
differ for small buffer case (nb = 6); the error for (wocc,wvir) = (1,0) is signifi-
cantly smaller than for (wocc,wvir) = (0,1). Because the occupied MOs are generally
more localized than the virtual MOs, the local correlation energy evaluated by par-
titioning an occupied MO will behave more properly than that by partitioning a
virtual MO. We have assessed this type of the parameter dependence for CCSD in
Ref. [61] and obtained similar tendency. In the following calculations, we adopted
(wocc,wvir) = (1,0).

Next, we assessed the efficiency of the dual-buffer DC-based correlation scheme
in the calculations of a polyene chain C60H62 at DC-MP2/cc-pVDZ level. Figure 5-9
shows the correlation buffer-size dependences of the user CPU time (solid line) and
MP2 energy error from canonical MP2 result (dashed line). HF buffer-size was fixed
at nHF

b = 12. Calculations were performed with an Intel Pentium4/3.0 GHz proces-
sor on a single node. The time for the DC-HF calculation is included. The results
of nHF

b = ncorr
b = 12 correspond to the original DC-MP2. The computational cost

can drastically be reduced from the original DC-MP2 by adopting small-size corre-
lation buffer, e.g., the time for ncorr

b = 6 is 10.9 times faster than for ncorr
b = 12. On

the other hand, the energy errors for 6 ≤ ncorr
b ≤ 12 are less than 1.4 mHartree

(0.87 kcal/mol), which sufficiently achieve the chemical accuracy. The detailed
discussions on the accuracy and efficiency of the dual-buffer DC-based correlation
method are given in Ref. [60].
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Figure 5-9. Correlation buffer-size dependences of the user CPU time (in min) and MP2 energy error (in
mHartree) in the dual-buffer DC-MP2/cc-pVDZ calculation of polyene chain C60H62 with nHF

b = 12.

Calculations were performed with an Intel Pentium4/3.0 GHz processor on a single node

5.3.3.2. Relative Energy

In practical calculations for chemical phenomena, the relative energies are usu-
ally important rather than the total energies. The isomerization energy is a good
indicator for assessing the relative energy. We chose the polyhydroacene molecule
(Figure 5-10) as the isomer of the polyene. In the calculations of polyenes, the buffer
sizes we adopted were nHF

b = 14 and ncorr
b = 8. In the calculations of polyhy-

droacenes, we adopted C4H4 (or C6H4 for the center, C4H6 for the edges) group
depicted in Figure 5-10 as a central region and treated three and five adjacent C4H4
(or C6H4 or C4H6) units as corresponding HF and correlation buffer regions.

Table 5-2 gives the total energies of CnHn+2 (n = 68, 148; polyhydroacenes and
polyenes) and the isomerization energies from polyhydroacene to polyene evalu-
ated by DC-HF, MP2, the spin-component scaled MP2 (SCS-MP2; Ref. [127]), and
B2PLYP calculations with 6-31G∗∗ basis set. For n = 68, the energies obtained
from canonical calculations are also listed and the isomerization energy differences
between DC and canonical results are in parentheses. The isomerization energy
varies according to the methodologies, supposedly because of the fixed geome-
try. However, the differences between DC and canonical isomerization energies are
less than 1.65 kcal/mol. In addition, the isomerization energy per carbon atom is a

Figure 5-10. Structure of polyhydroacene CnHn+2. The dashed lines separate the central region
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good indicator for assessing the scalability of the method. In the B2PLYP case, for
instance, the values for n = 68 and 148 become 3.911 and 3.894 kcal/mol, respec-
tively. In all methods in the table, the differences of the isomerization energy per
carbon atom between n = 68 and 148 are less than 0.6%. Thus, the present method
can achieve chemical accuracy by adopting the buffer region of sufficient size.

5.3.3.3. Inhomogeneous System

Homogeneous polyenes and polyhydroacenes we have treated so far might seem to
be easy cases for the DC treatment. There is no problem to treat inhomogeneous but
delocalized systems. We performed the DC-MP2, DC-CCSD, and DC-CCSD(T)
calculations of an inhomogeneous C19FH20N system (Figure 5-11), where one
hydrogen atom and one CH group in the C20H22 polyene chain are substituted with
fluorine and nitrogen atoms, respectively. The central and buffer regions are defined
in the same manner as the homogeneous polyene chain. HF and correlation buffer
sizes were fixed at nHF

b = 12 and ncorr
b = 4, respectively. The 6-31G∗∗ basis set was

adopted. The DC-CCSD(T) calculation was performed with U[0,0]α
ijk,abc partitioning [see

Eq. (5-55)], where the dependence of the DC-CCSD(T) energy on the partitioning
is discussed in Ref. [61].

Table 5-3 shows the DC subsystem energies [i.e., EαDC-HF in Eq. (5-18) and
�Eαcorr in Eqs. (5-40) and (5-63)] for C19FH20N system together with conventional
results. To clarify the inhomogeneity of the system, the DC-HF Mulliken charge
corresponding to each central region is also listed in the table. The total energy
errors from the conventional results are shown in parentheses for HF, MP2, and
CCSD. The subsystem energies (both HF and correlation) vary greatly depending
on the site of the subsystem, e.g., the subsystem α = 4 has large positive charge and
then gives higher HF and correlation energies than the other C2H2 subsystems. By
contrast, the error of the total energy is sufficiently small, namely, 1.2 mHartree or
less. Therefore, the DC-based correlation method is greatly expected to work well
not only for uniform systems but also for inhomogeneous systems.

5.3.3.4. Computational Cost

Finally, we assessed the computational cost of the DC-based correlation calcula-
tions. Figure 5-12 shows the CPU times for DC-MP2, DC-CCSD, and DC-CCSD(T)
calculations of polyene chain systems CnHn+2. Here, we adopted 6-31G basis set
[128]. The buffer size was fixed at nHF

b = 12 and ncorr
b = 4. Calculations were

Figure 5-11. Structure and central regions of the inhomogeneous test system C19FH20N
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Figure 5-12. System-size dependence of CPU times for DC and conventional MP2, CCSD, and
CCSD(T) calculations of polyene chains CnHn+2 with the 6-31G basis set. Calculations were performed
with an Intel Pentium4/3.8 GHz processor on a single node

performed with an Intel Pentium4/3.8 GHz processor on a single node. The time for
the DC-HF calculation is not included. The gradient of this double-logarithmic plot
gives the scaling of each method, which is given in the Figure together. The DC-
based correlation methods drastically reduce the CPU times for MP2, CCSD, and
CCSD(T) calculations, which theoretically scale O(n5), O(n6), and O(n7), respec-
tively, and achieve near-linear scaling [O(n1.2–1.3)] computational cost with respect
to the system size.

The required computational resources (namely, memory and scratch disk sizes)
are the other important elements in assessing the computational cost. Table 5-4
shows the maximum number of CCSD amplitudes Namp and computational
resources required for DC and conventional CCSD/6-31G calculation of a polyene
chain C20H22 with ncorr

b = 2 − 8. The ratios with respect to the conventional CCSD
values are shown in parentheses. The ratios for the required memory size agree with
those for Namp, i.e., the required memory is proportional to Namp, while those for
the required scratch-disk capacity are rather large because of the additional terms
demanded in the DC scheme. The most important thing we should mention is that

Table 5-4. Maximum number of CCSD amplitudes Namp, required computer memory size, and
required scratch-disk capacity for executing DC and conventional CCSD/6-31G calculation of polyene
chain C20H22. The ratios with respect to the conventional CCSD values are shown in parentheses

ncorr
b Largest subsystem Namp

Required
memory (MB)

Scratch disk
(GB)

2 C6H7 1 025 156 (1%) 84 (1%) 2 (1%)
4 C10H11 7 488 432 (6%) 607 (6%) 11 (9%)
6 C14H15 28 095 300 (24%) 2276 (24%) 39 (34%)
8 C18H19 75 768 320 (64%) 6137 (64%) 106 (91%)

Conv. C20H22 118 015 632 (100%) 9649 (100%) 117 (100%)
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the DC-based correlation calculations require approximately equal computational
resources for different lengths of polyene chains if the same buffer size ncorr

b is
adopted. We can conclude that the DC-based post-SCF correlation method must be a
practical technique for accurate calculations of large systems, including delocalized
electronic systems, that costs O(N) computational time and O(N0) computational
resources.

5.4. CONCLUSIONS AND PERSPECTIVES

In this Chapter, we focused on the linear-scaling DM-based DC SCF method firstly
proposed by Yang and Lee [23] and DC-based post-SCF correlation method [MP2,
CCSD, and CCSD(T)] by the authors [58–61]. Both methods utilize the fact in the
quantum chemical calculations that each basis function is connected with an atom
in the considered system. Especially, the DC-based post-SCF method utilizes AO-
based energy partitioning scheme termed EDA [101]. We have implemented these
methods into the GAMESS-US quantum chemistry package [64–66], which is avail-
able without charge. Numerical assessments revealed that the combination of these
methods achieves totally linear-scaling post-SCF correlation calculations with rea-
sonably good accuracy. In this review, we mainly assessed the methods using the
delocalized polyene test systems, not biomolecules or molecular clusters that are
expected to be considerably easier than polyenes because of their localized character
of electrons.

We hope that the present implementation is sufficiently valuable for the accurate
practical calculations of nanomaterials and biomolecules. However, it lacks several
important features for material design and mechanism clarification. Especially, the
followings are our particular interests and several are in progress.

1. The derivation of the analytical energy gradient is one of the most important
tasks for the present-day quantum chemical calculations. The analytical gradient
code will enable the geometry optimization and molecular dynamics simulation
of large systems. Although Yang and Lee [23] have presented the formalism of
the DC-SCF gradient, several preliminary calculations revealed that it has slight
error. Further, no analytical Hessian is available, and no analytical gradient of
the DC-based correlation method has been proposed so far. The developments of
these derivatives will be essential for the practical use of the DC method.

2. There are only few examples of the linear-scaling methods that can deal with
the open-shell systems [129, 130]. It is usually difficult for fragmentation-based
linear-scaling methods to treat delocalized open-shell systems because the num-
bers of electrons and excess spins are indefinite. However, in the DC SCF
method, the definite numbers of electrons and spins in each subsystem would be
needless. Instead, the Fermi level for each spin will determine them (recently, we
have applied the DC method to open-shell systems in the unrestricted HF frame-
work [131]). This method and its extension to the post-SCF correlation method
will become valuable for ab initio treatment of metalloenzymes, biomolecular
radicals, nanomagnets, and so on.
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3. In addition to the static molecular properties, one of which was assessed in
Section 5.3.2.1, the frequency-dependent response properties (i.e., the polar-
izability and hyperpolarizabilities) are also valuable that implicitly have the
information of the electronic excited states and are demanded for optical mate-
rial calculations. Although the linear-scaling static polarizability calculation is
possible by the finite differentiation of the DC energy with respect to the elec-
tric field, no dynamic response calculation scheme based on the DC method
has been proposed (most recently, we have reported the DC time-dependent
HF method [132]). In addition, the DC-based dynamic polarizability calcula-
tion has the potential to effectively search the electronic excitation energies of
the entire system, which correspond to the poles with respect to the frequency. A
linear-response excited-state calculation is also desirable.

4. In the recent computer architecture, the parallelization ratio has become one of
the barometers of the computational efficiency of a method. The DC method
will be suitable for the parallel computation because the only part we need to
gather the results of all subsystems is the determination of Fermi level from Eq.
(5-15) in principle, which only demands the communication of orbital energies
and weights. However, the efficient parallel implementations to the GAMESS
package are undone.

The last thing we would like to introduce again the excerpt from Descartes: “The
long chains of simple and easy reasonings [subsystem calculations]. . . had led me
to imagine that. . . there is nothing so far removed from us as to be beyond our
reach, or so hidden that we cannot discover it.” The improvements in the feature
and computation of the DC method described above will broaden the applications
of the accurate quantum chemical calculations to the wide varieties of the systems,
not only chemical molecules but biological and solid-physical systems.
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Abstract: The Additive Fuzzy Density Fragmentation (AFDF) principle provides the basis for the
linear scaling Adjustable Density Matrix Assembler (ADMA) method, developed for
detailed, ab initio quality macromolecular electron density computations, directed pri-
marily towards protein studies. The same principle is the basis for novel approaches to
the local analysis of electron density fragments, such as functional groups and regions
surrounding reactive centers in various biomolecules. The basic theoretical developments
as well as the implementation of the ADMA and related methods are subject to the condi-
tions represented by the Holographic Electron Density Theorem: in any non-degenerate
ground state, any positive volume local part of the electron density contains the complete
information about the entire, boundaryless molecule. This represents a limitation on the
transferability of molecular fragments, however, by a fuzzy fragmentation, some of the
difficulties can be circumvented. Approximate transferability is a viable option if the rela-
tions between local and global properties are properly taken into account. Specifically,
the interplay between local and global molecular properties, as manifested, for exam-
ple, by symmetry properties and the topological shape constraints on molecular features
has a strong influence on molecular energies. A better understanding of the interactions
between local and global features also leads to fragment-based combinatorial quantum
chemistry approaches. A general framework for such studies can be formulated based
on the insight obtained by macromolecular quantum chemistry computations using the
linear scaling ADMA method.

Keywords: Additive fuzzy density fragmentation principle, Adjustable density matrix assembler
(ADMA), Holographic electron density theorem, Combinatorial quantum chemistry
(CQC), The ADMA-CQC approach, Quantitative shape-activity relations (QShAR)

6.1. INTRODUCTION

In any modelling approach where an additivity principle is used in order to build up
a model of a more complex system from model representations of smaller compo-
nents, the best outcome one can hope for is a linear dependence of the computational
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work on the size of the system. Historically, assuming approximate additivity of
smaller constituent components, the associated linear scaling models of chemistry
were a natural consequence of the limitations on detailed understanding of molecu-
lar structure: it was natural to regard molecules as collections of atoms. Some simple
properties, such as mass, did show both additivity and linear scaling, if the goal was
the computation of the total molecular mass. Major departures form additivity and
linear scaling came when the models used for molecules became more sophisticated.
Molecular electronic structure computations based on the LCAO principle, as mani-
fested, for example, in the population analysis technique of Mulliken [1–4], required
special weighting of components, such as the linear coefficients of atomic orbitals in
a molecular orbital within the LCAO scheme. Even in this approach, the motivation
for the use of models with additivity assumptions and linear scaling properties was
strong: the somewhat artificial concept of atomic charges, which collectively rep-
resent the molecular charge distribution in an additive fashion, summing up to the
total charge of the molecule or ion, was introduced to satisfy the need for a classical
interpretation of the results of quantum chemical studies. Mulliken’s LCAO – MO
approach can also be regarded as the origin of all “divide-and-conquer” type tech-
niques, since the basis is the use of local Hamiltonians of smaller systems leading
to local representations (the atomic Hamiltonians leading to atomic orbitals), and
combining such local representations after some readjustment in order to generate
a molecular representation of the complete system (a readjustment by the optimiza-
tion of coefficients of atomic orbitals within the LCAO representations of molecular
orbitals).

Additive models are conceptually simple, however, for a physically realistic
additive model of complex systems the choice of the components to be added is
non-trivial. If the components themselves are simple, than assuming additivity is
often unrealistic if the goal is to generate a good approximation to the complete sys-
tem, since the interactions between simplistic components are often poorly defined;
on the other hand, if in some skilful representation, component additivity can be
secured to a good approximation, then the components themselves are likely to have
complicated definitions and are difficult to represent properly. Apparently, the two
requirements, the simplicity of the components, and the advantage of an additive
method to combine them at a reasonable level of reliability, in order to form the
model of the large system, often appear contradictory. This has remained the case,
for example, within traditional AO and MO methods, even if by skilful represen-
tations, relying on orthogonality of molecular orbitals, some aspects of additivity
could be recovered [5].

One principal difficulty is the way interactions among the smaller components
are described. As the number n of the interacting components increases, the num-
ber of pair interactions increases as n2, that is, the optimal representation without
ignoring some pair interactions must scale at least quadratically. This is the case
if only pair interactions and no multicenter interactions are considered; for an
inclusion of multicenter interactions, such as the four center integrals of Hartree-
Fock theory [6–14], even quadratic scaling is impossible, unless some simplifying
approximations are employed, beyond those already inherent in the method.
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Such simplifying approximations may be primarily technical, such as those based
on ignoring some multicenter integrals below some threshold value, or some gen-
eral, theoretical principle may be invoked. In fact, in both of the above cases,
the formulation of all simplifying assumptions eventually leading to a linear scal-
ing algorithm can be regarded as involving a distance criterion, either directly, or
indirectly.

6.2. COMMON PRINCIPLES OF LINEAR SCALING METHODS

In many fields where the complexity of the subject studied requires simplifications,
a natural criterion is often used: distance. Sets of objects or objects with parts far
apart are less likely to have strong interactions, and this often allows some form of
simplification, for example, ignoring interactions beyond some distance threshold.

In the case of molecules, the same principle is often applied: various laws of
physics show an inverse square dependence on distance, for example, Coulomb’s
Law, and even more significant is the fact that atomic electron density functions
show an exponential decay by distance.

In fact, whether it is recognized as a guiding principle or it is merely taken as a
technical aspect of the approach, all linear scaling methods of quantum chemistry
are based on a common principle related to distance. Specifically, the problem of the
quantum chemical representation of a large molecule is approached by algorithms
setting direct or indirect distance limits on the interactions considered between
molecular parts, that allows proportionality of the computational work with molec-
ular size. This principle is at work if some thresholds are applied to molecular
integrals, directly or indirectly dependent on distance, or if some fragmentation
scheme is considered, where the size of the fragment itself, and the size of the sur-
rounding region included for the representation of intramolecular interactions are
both involving a distance criterion that determines these two sizes.

6.3. LOCALITY ASPECTS OF LINEAR SCALING METHODS

The importance of distance as a criterion for the level of approximation represented
by a linear scaling quantum chemistry method underlines the role of the concept of
locality. Whereas localized orbitals using various criteria for achieving localization
[15–18] have been used for a long time to interpret the results of quantum chemistry
calculations, they have not provided efficient tools for exploiting another aspect of
localization: the identification of local regions in molecules which can be used in an
efficient way for the development of linear scaling methods. It is natural to expect
that a linear scaling technique, involving distance criteria, may be able to utilize
some specific choices for local regions within extended regions of molecules, yet
most actual linear scaling approaches take a different route. This is certainly the
case if the starting point is a Density Functional approach [19, 20], where the very
origin of the theory, the electron gas model, is better suited for a global representa-
tion, and localization and local features require some simplifications. Utilizing the
simplicity of local Hamiltonians, the typical density functional approaches to linear
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scaling algorithm [21–24], such as the so-called “Divide and Conquer” method
of Yang, does not involve any density functional analogue of orbital localization,
rather a choice of molecular parts to be considered locally, followed by a mutual
readjustment step of local representations.

One may take a deliberate choice of using a set of local molecular regions which
do not necessarily possess any special chemical or physical significance. If in such
an approach the selection of local molecular parts is arbitrary, but it still can provide
the basis for a linear scaling scheme that is successful in reproducing conventional
computational results for smaller molecules, then one may claim that no bias in the
initial assumptions on the relevance of various molecular subdivision can be the
source of any fortuitous agreement between the test results, and this eliminates at
least some of the questions concerning reliability.

6.4. FUNDAMENTAL RELATIONS BETWEEN LOCAL
AND GLOBAL PROPERTIES OF MOLECULES

The interrelations between local and global properties of molecules are encoded
in the molecular electron density. As stated by the Hohenberg–Kohn theorem [25],
the nondegenerate ground state electron density ρ(r) of a molecule determines the
Hamiltonian H of the system within an additive constant, consequently, ρ(r) also
determines all ground state and all excited state properties of the system described
by the Hamiltonian H.

The generalized and concise “constrained search” proof of density functional
theory, as described by Levy [26–28], also provides an elegant proof of the
Hohenberg–Kohn theorem.

Among some of the relevant the consequences of this theorem [29–35], we are
especially interested in the locality problem. Here, following the discussions in
reference [31], we shall consider an alternative argument, a simple, information-
theoretical approach that leads to the actual statement of the Hohenberg–Kohn
theorem.

The conditions for the Hohenberg–Kohn theorem are rather simple, since the
theorem is based on two pieces of information:

(i) the electronic density as a three-dimensional function given in some form;
(ii) the additional knowledge that it is a nondegenerate ground state electron density

of the system under consideration.

The above conditions and the resulting treatment are equally applicable to any
physical system built from nuclei and electrons, however, here we are concerned
with molecules.

Based on this information, and on some elementary assumptions on molecules,
the following statements can be made:

1. A molecule contains only a set of nuclei and an electron density cloud.
2. Since there is no other material present to encode information, all information

concerning the static properties of the molecule must be contained in the nuclear
and electron distributions.



Linear Scaling Methods 133

3. The location and atomic numbers of the nuclei are fully determined by the
nondegenerate ground state electron density ρo(r) of the molecule.

4. Consequently, the nondegenerate ground state electron density ρo(r) contains all
information concerning all static properties of the molecule, including its ground
state energy, and any other molecular properties.

The last statement, statement 4, is actually equivalent to the statement of the
Hohenberg-Kohn theorem for molecules.

By extending the above argument, among the various molecular properties, the
external potential V(r) is also determined by the nondegenerate ground state electron
density ρo(r). Since the ground state electron density ρo(r) determines the molecular
Hamiltonian

H =
∑

V(ri) + T + Vee, (6-1)

consequently, excited state information is also implied by the nondegenerate ground
state electron density. This latter observation suggests that the fundamental con-
straints on linear scaling methods are the same if they are applied to ground state or
to excited electronic states of molecules.

It has been recognized early that the central role of electron density, as estab-
lished by the Hohenberg-Kohn theorem [25] is likely to provide new approaches
to macromolecular quantum chemistry, where the computational methods focus on
electron density, even if the method is not directly based on density functional
theory. However, if any build-up procedure is used for exploiting small molecu-
lar parts in order to build representations of large molecules, the relations between
the whole and the parts of molecular electron densities, governed by the quan-
tum mechanical aspects of localization, may imply constraints on any potential
linear scaling methods. Consequently, studies addressing the problem of relations
between the whole and the parts of electron densities have proven to have special
significance.

In a thorough study, Riess and Munch provided a local version of the Hohenberg-
Kohn theorem for artificial, bounded systems, with definite boundaries [29]. These
authors fully recognized and clearly stated that their result is for closed and bounded
models, whereas real molecules are neither bounded nor closed systems. Some sub-
sequent interpretations of their work have overlooked this limitation, assuming that
their line of reasoning holds for real molecules, in spite of the well-known fact that
treating open, boundaryless systems as if they were closed and bounded may lead
to false statements, just as division by zero may. Nevertheless, the controversy sur-
rounding this question has given motivation to search for relations between local and
global electron density properties in the case of more realistic models of molecules,
not restricted by the closed and bounded conditions.

Some time later, such a relation between local and global properties of elec-
tron densities of real, boundaryless molecules has been established by the proof
of the holographic electron density theorem [30, 31]. This theorem states that for
any real, boundaryless molecule, any small part of the electron density cloud con-
tains the complete information about the whole electron density of the molecule, as
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long as the part has some positive volume. In fact, the positive volume condition is
essential, since a point, a line, or an infinitely thin sheet from the electron density is
not sufficient for complete information storage.

Various consequences of the holographic electron density theorem have been
studied in some detail, concerning the relations between local and global symmetry
properties, its role in potential prediction of both exhibited and latent molecu-
lar properties, such as excited state properties “encoded” in ground state electron
densities, as well as in the special role of the theorem in the mechanism and
reproducibility of molecular recognition [31–35]. The holographic electron density
theorem has special significance in the emerging field of molecular informatics [35].

For the purposes of investigating the constraints represented by the fundamen-
tal properties of molecular electron densities on the development of linear scaling
quantum chemical computational methods, the most important consequence of this
theorem is that no molecular part can ever be perfectly transferable, unless they are
transferred back to the exact location of the molecule they originate from, or if the
new location is related to the old one by perfect symmetry. Consequently, molecular
fragments originating from small molecules can never exactly reproduce fragments
from large molecules.

The impossibility of exact fit of a molecular part into an environment different
from that of its original location also implies that linear scaling quantum chemistry
methods based on combinations of smaller entities cannot be exact, unless highly
elaborate and additional, and no longer linear scaling processes are also included.

Whereas the holographic electron density theorem describes exact relations, for
the exact electron density, the theorem itself does not exclude the possibility for
non-exact, but very high levels of approximations for a molecule building approach
using molecular fragments within some linear scaling framework.

One approach exploiting a high level of approximate transferability even if exact
transferability is impossible, involves a fuzzy set approach [36–37] and a fuzzy elec-
tron density fragmentation and subsequent build-up of a macromolecular electron
density by a linear scaling algorithm. This family of methods involving the AFDF
principle (Additive Fuzzy Density Fragmentation Principle) provided many results
for actual macromolecules, including proteins well over the one thousand atom
size [38–61]. These methods also provide alternatives to a classically motivated
atomic view of molecular pieces [62], extensions of molecular similarity analysis
approaches [63–66] to large molecules, the adaptation of the principles of synthetic
combinatorial chemistry [67–74] to a quantum chemical combinatorial chemistry
approach to molecular design [52, 53, 56], as well as macromolecular generaliza-
tions of molecular reactivity studies in terms of potential energy hypersurfaces [75]
and molecular shape analysis studies [76].

6.5. A FUZZY FRAGMENT APPROACH TO LINEAR SCALING
METHODS

Whereas molecular fragments of various definitions have been used extensively for
both theoretical developments and practical approaches, such as structure activity
relation studies, not all fragmentation schemes are useful as the source of molecular
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pieces or molecular regions involved in linear scaling procedures. The rather natu-
ral, classically motivated subdivision of molecules into molecular parts using cuts
by various surfaces across the molecules, such as the zero-flux surfaces defined in
terms of the density gradient [62], are appealing by their simplicity, however, they
cannot, not even accidentally, correspond to viable building blocks for constructing
larger molecules. As it follows from the Holographic Electron Density Theorem,
each such piece, having sharp boundaries, can fit without a gap or an overlap only
to the very same spot of the very same molecule where it originally belongs; a com-
bination with any other such piece of sharp boundary necessarily leads to two kinds
of mismatches: a geometrical misfit of the pieces, and a misfit by violating the con-
tinuity of the electron density values between the pieces. This is true independently
of the choice of the method used to generate the cuts, whether the cuts are based
on a criterion of zero flux of the density gradient or on some other idea. Using
such surface-bound molecular pieces for constructing models for larger molecules
inevitably leads either to density gaps, or density “doubling”, that is, either to a
100% underestimation of the electron density, or to a nearly 100% overestimation
of the density (note that, due to a mismatch of the electron density values, such over-
laps may lead to slightly less or slightly more that 100% positive error). To make
things worse, this happens in a particularly crucial part of the newly built molecular
model: in the very regions where the pieces supposedly join, that is, in the regions
where one expects the chemically critical bonding between fragments to take place.
Such gaps or density doubling can be corrected only by expensive readjustments of
the density, causing the loss of any linear scaling property that might have been the
motivation for the approach, and also raising serious questions about the reliability
of the method.

Besides the above technical considerations, there is another, more fundamental
reason why such formal molecular pieces with sharp boundaries should be avoided:
the postulates of quantum mechanics, hence the basis of quantum chemistry implies
that such pieces with boundaries are very different from actual electron density
clouds. Real electron densities beyond some threshold show essentially exponential
decay of the density values with distance from the nuclei. A cut, with a discontinu-
ous electron density suddenly becoming zero, where the cutting surface itself shows
zero uncertainty in the position variable while moving across the cut, cannot repre-
sent a realistic model for a viable electron density cloud, since it is in violation of the
Heisenberg relation. This latter limitation by itself does not imply that such models
are not applicable for the purposes of analysing features of electron densities, but a
better model representation may be expected if the building blocks themselves do
not violate some of the fundamental relations of quantum mechanics.

An alternative approach is provided by a fuzzy representation of electron den-
sity pieces, in fact, by generating fuzzy electron density “fragments”, inheriting the
exponential decay feature of real electron densities (or, in practical computations
using Gaussian functions, a composite Gaussian decay imitating an exponential
decay by distance). One may regard this approach as a fuzzy decomposition of
the electron density cloud into fuzzy, overlapping parts which add up to the com-
plete electron density of the molecule originally considered; a smaller cloud of the
fuzzy fragment is “pulled out” from the original larger electron density cloud of the
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complete molecule to be partitioned. If such fuzzy pieces, originating from different
molecules are combined to generate models of new molecules, then no obvious mis-
matches, no density gaps or density doubling will appear. The inevitable inaccuracy
of the fuzzy fragments in their new locations will not cause any large accumulation
of error in any region, and the resulting electron density model will be fully contin-
uous. The numerical inaccuracy of the resulting continuous electron density can be
reduced below any positive threshold by increasing the size of the molecules used
for generating the fuzzy fragments, if these larger molecules contain larger parts
of the macromolecule which is the target of the modelling task where the fuzzy
fragments are to be used.

Two actual algorithms to achieve this goal are described in the next section.

6.6. THE LINEAR SCALING PROPERTIES OF THE MEDLA
AND ADMA METHODS

The two techniques involving the The Additive Fuzzy Density Fragmentation
Principle, or in short, the AFDF Principle [44, 45] is the basis for two, related lin-
ear scaling approaches: the MEDLA, Molecular Electron Density Loge (or Lego)
Assembler method [38–43] and the ADMA, Adjustable Density Matrix Assembler
method [44–61]. From these two, MEDLA is an essentially numerical technique for
the construction of macromolecular electron densities, whereas the more advanced
ADMA method actually constructs a macromolecular density matrix, and also
exploits both the theoretical and computational advantages of the actual knowledge
of this approximate, but “ab initio quality” density matrix.

Following the description and notations given in the original references, here we
shall give only a brief summary of the various steps involved in the actual linear
scaling computation of such a macromolecular density matrix.

Although a similar description can be given for the implementation of the
MEDLA and ADMA methods within a density functional framework, here we shall
discuss primarily a more conventional molecular orbital implementation.

With respect to a given basis set ϕ(K) of atomic orbitals ϕi(r,K) (i = 1,2, . . . ,n),
the electronic density ρ(r,K) of a molecule of nuclear conformation K can be com-
puted at each point r by the Hartree-Fock-Roothaan-Hall SCF LCAO ab initio
method. Using the n × n dimensional density matrix P(ϕ(K)), obtained by such
calculations, the electronic density ρ(r,K) is obtained as

ρ(r,K) =
n∑

i=1

n∑

j=1

Pij(ϕ(K)) ϕi(r,K) ϕj(r,K). (6-2)

Since beyond some threshold the electron density decreases exponentially with dis-
tance from the nuclei, this suggests that an Additive Fuzzy Density Fragmentation
(AFDF) approach can be used for both a fuzzy decomposition and construction of
molecular electron densities. The simplest AFDF method is the Mulliken-Mezey
density matrix fragmentation technique [38, 39], and this is the basis for both the
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Molecular Electron Density Loge Assembler (MEDLA) [38–43] and the Adjustable
Density Matrix Assembler (ADMA) [44–61] macromolecular quantum chemistry
methods.

Following the general Mulliken-Mezey AFDF approach, the set of nuclei of the
molecule M are classified into m mutually exclusive families

f1, f2, . . . , fk, . . . , fm. (6-3)

For each AO basis function ϕi(r,K) and nuclear family fk a membership function
mk(i) is defined:

mk(i) =
{

1 if AO ϕi(r) is centered on one of the nuclei of set fk,

0 otherwise.
(6-4)

One may chose some wij and wji weighting factors fulfilling the condition

wij + wji = 1, wij, wji > 0, (6-5)

then the elements Pk
ij(ϕ(K)) of the n × n fragment density matrix Pk(ϕ(K)) for the

k-th fragment “anchored” to the nuclear family k are given by

Pk
ij(ϕ(K)) = [mk(i) wij + mk(j) wji] Pij (ϕ(K)). (6-6)

The simplest choice for the wij, wji factors within the Mulliken-Mezey AFDF
approach is

wij = wji = 0.5 (6-7)

that follows the principle of the original population analysis scheme of Mulliken.
Based on the above considerations, the k-th additive fuzzy density fragment

ρk(r,K) is defined as

ρk(r,K) =
n∑

i=1

n∑

j=1

Pk
ij (ϕ(K)) ϕi(r,K) ϕj(r,K), k = 1,2, . . .m. (6-8)

A simple substitution shows that the AFDF fragment density matrices Pk(ϕ(K)) as
well as the corresponding fuzzy density fragments ρk(r,K) are exactly additive:

P(ϕ(K)) =
m∑

k=1

Pk(ϕ(K)), (6-9)
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and

ρ(r,K) =
m∑

k=1

ρk(r,K). (6-10)

Using the above fuzzy fragmentation for a small molecule M, only a conventional
Hartree-Fock computation followed by the application of the AFDF approach are
needed to obtain the input information for a detailed study of the shape and the
interactions of various parts and local moieties of molecule M.

On the other hand, if the molecule M is large, then a conventional Hartree-
Fock computation may no longer be feasible, however, the fuzzy electron density
fragments of the large “target” molecule M still can be computed indirectly using
the AFDF approach. This can be accomplished with the aid of smaller “parent”
molecules, containing various parts of the original large molecule.

For each nuclear family fk of M, a small parent molecule Mk can be designed,
where Mk contains the same nuclear family fk with the same local arrangement
and surroundings as is found in the large target molecule M. A fuzzy density frag-
mentation can be carried out for the small parent molecule Mk, resulting in a fuzzy
density fragment ρk(r,K) corresponding to the nuclear set fk, and other, additional
density fragments which are not going to be used for the macromolecular study. By
repeating this procedure for each nuclear family fk of M, the fuzzy fragments

ρ1(r,K), ρ2(r,K), . . . , ρk(r,K), . . . , ρm(r,K) (6-11)

obtained from the set of m small “parent” molecules

M1, M2, . . . , Mk, . . . , Mm, (6-12)

can be combined and used to construct the electron density ρ(r,K) of the large target
molecule M. The fragment densities can also be used for local analysis of various
parts, for example, various functional groups of the macromolecule M.

The first implementation of the simplest version of the AFDF approach was the
MEDLA (Molecular Electron Density “Loge” Assembler, or Molecular Electron
Density “Lego” Assembler) method. This method is based on a numerical elec-
tron density fragment database of pre-calculated, custom-made electron density
fragments ρk(r,K), and a subsequent numerical construction of the molecular elec-
tron density using Eq. (6-10). As it has been verified by detailed tests [38–43], the
MEDLA method generates ab initio quality electron densities for large molecules
near the 6-31G∗∗ basis set level that has been used for the construction of the frag-
ment density databank. Using the MEDLA method, the first ab initio quality electron
densities have been computed for several proteins, including crambin, bovine
insulin, the gene-5 protein (g5p) of bacteriophage M13, the proto-oncogene tyro-
sine kinese protein 1ABL containing 873 atoms and the HIV-1 protease monomer
of 1,564 atoms.

Whereas the MEDLA method resulted in several successful quantum chemical
studies of macromolecules, nevertheless, the MEDLA method also had some draw-
backs: the requirement of a numerical databank and some of the problems associated
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with the grid alignment of combined numerical density data. All these difficulties are
circumvented in a more advanced application of the AFDF approach relying directly
on the fragment density matrices Pk(ϕ(Kk)). This is accomplished by the Adjustable
Density Matrix Assembler (ADMA) method [44–61], generating a macromolecu-
lar density matrix P(ϕ(K)) that can be used for the computation of a variety of
molecular properties besides ab initio quality macromolecular electron densities.

When comparing the two methods in electron density computations, the accu-
racy of the ADMA macromolecular density matrix P(ϕ(K)) corresponds to that of
a MEDLA result of an infinite resolution numerical grid.

Within the ADMA method the construction of the macromolecular density
matrix is the simplest if the fragment density matrices Pk(ϕ(Kk)) obtained from
small parent molecules Mk fulfill the following mutual compatibility requirements:

(a) The local coordinate systems of AO basis sets of all the fragment density
matrices Pk(ϕ(Kk)) have axes that are parallel and have matching orienta-
tions with the axes of a common reference coordinate system defined for the
macromolecule.

(b) The nuclear families used in the fragmentation of both the target and the par-
ent molecules are compatible in the following sense: each parent molecule Mk
may contain only complete nuclear families from the sets of nuclear families
f1, f2, . . . , fk, . . . , fm, present in the large target molecule M. Within each par-
ent molecule additional nuclei, usually H atoms may be involved in order to
provide linkages to dangling bonds at the peripheries of these molecules.

As it has been shown, a simple similarity transformation of a fragment den-
sity matrix Pk(ϕ(Kk)) using a suitable orthogonal transformation matrix T(k) of
the AO sets, and an appropriate choice of nuclear families fk for the various frag-
ments within the macromolecule M and within the “coordination shells” of parent
molecules Mk can always ensure the fulfillment of these conditions.

The outlined AFDF approach enhanced with these mutual compatibility condi-
tions is referred to as the MC-AFDF approach.

In order to organize the interrelations between various orbital indices within
various lists, some notations have been introduced.

The number of AOs in the nuclear family fk of the target macromolecule M is
denoted by nk. For each pair (fk,fk′ ) of nuclear families a quantity ck′k is defined:

ck′k =
{

1, if nuclear family fk′ is present in parent molecule Mk

0 otherwise,
(6-13)

A given AO ϕ(r) is denoted by the symbol ϕb,k′(r) if its serial number b in the AO set

{ϕa,k′(r)}a=1, nk′ (6-14)

of nuclear family fk’ is emphasized. However, the same AO ϕ(r) is denoted by ϕk
j (r),

if its serial index j in the basis set
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{
ϕk

i (r)
}

i
= 1, nPk (6-15)

of the k-th fragment density matrix Pk(ϕ(Kk)) is emphasized, where the total
number of these AOs is nPk ,

nPk =
m∑

k′=1

ck′knk′ . (6-16)

Yet, the same AO ϕ(r) is denoted by ϕy(r) if its serial index y in the AO set

{ϕx(r)}x=1,n (6-17)

of the density matrix P(K) of the target macromolecule M is emphasized, where
for each AO ϕa,k′(r) = ϕk

i (r) = ϕx(r), the index x is determined by the index a in
family k′ as follows:

x = x(k′,a,f) = a +
k′−1∑

b=1

nb, (6-18)

In index x(k′,a,f) the last entry f indicates that k′ and a refer to a nuclear family.
In order to be able to determine the index x from the element index i and serial

index k of fragment density matrix Pk(ϕ(Kk)), three quantities are introduced for
each index k and nuclear family fk′′ for which ck′′k �= 0:

a′k(k′′,i) = i +
k′′∑

b=1

nbcbk, (6-19)

k′ = k′(i,k) = min{k′′ : a′k(k′′,i) ≤ 0}, (6-20)

and

ak(i) = a′k(k′,i) + nk′ . (6-21)

As follows from the above, the AO index x = x(k,i,P) in the density matrix P(K) of
target molecule M depends on indices i and k and can be expressed using index k′
and the function x(k′,a,f)

x = x(k,i,P) = x(k′,ak(i),f), (6-22)

where the last entry P in the index function x(k,i,P) indicates that k and i refer to the
fragment density matrix Pk(ϕ(Kk)).

If one uses only the nonzero elements of each (usually rather sparse) frag-
ment density matrix Pk(ϕ(Kk)), then the macromolecular density matrix P(K) is
assembled by the following iterative procedure,
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Px(k,i,P),y(k,j,P)(K) = Px(k,i,P),y(k,j,P)(K) + Pk
ij(Kk) (6-23)

Since the parent molecules Mk are of limited size, their computation requires com-
puter time that has some upper bound, and the entire procedure depends linearly on
the number of fragments and on the size of the target macromolecule M.

Due to its construction, the macromolecular density matrix P(K) is also a sparse
matrix that simplifies its storage and subsequent computations. Using the macro-
molecular AO basis (that is stored according to a list of appropriate indices referring
to a standard list of AO basis sets), the macromolecular electron density is computed
according to Eq. (6-2). Using the ADMA method, approximate macromolecular
forces and other properties expressible in terms of density matrices can be com-
puted for virtually any molecule, providing a computationally viable approach to
macromolecular quantum chemistry.

6.7. COMBINATORIAL QUANTUM CHEMISTRY BASED
ON LINEAR SCALING FRAGMENTATION

A macromolecular computational method using electron density fragments to build
a model for a large molecule is reminiscent to synthetic methods using smaller struc-
tural units and combining them into a larger structure. It is natural then to consider
such modeling methods in the context of combinatorial chemistry and to regard
these methods as computational realizations of combinatorial quantum chemistry.

The powerful innovation of chemical synthesis called Combinatorial Chemistry,
in its first form applicable to the combinatorial synthesis of large numbers of
molecules, was invented in 1982 by Arpad Furka [67–70]. The idea of using com-
binatorial approaches to the production of very large numbers of molecules from
specific building blocks has revolutionized synthetic chemistry; for some of the lat-
est advances see Refs. [71–74]. It is not an accident that peptide chemistry was so
important in the discovery: the original “portioning – mixing method for the syn-
thesis of combinatorial libraries” by Furka, and subsequent variations on the basic
combinatorial chemistry principle were applied primarily to peptides, using indi-
vidual amino acids as building blocks. Later, these methodologies have also been
adapted to other types of molecules and to a much broader family of potential build-
ing blocks linked up according to some combinatorial patterns. The advances of
combinatorial chemistry and related methods have revolutionized the approaches
used by the pharmaceutical industry for the production and selection of new
molecules for tests and for the optimization of the pharmacological effectiveness
of potential drug molecules.

Although there has been no direct connections, it is an interesting coinci-
dence that within computational quantum chemistry a similar advance has occurred
recently. One of the earliest such developments has occurred with the introduction
of the MEDLA method [38–43], where fuzzy electron density building blocks have
been used within a numerical approach (based on a three-dimensional numerical
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grid) to construct electron densities for macromolecules, such as proteins. By a suit-
able choice of the fuzzy electron density fragments, these building blocks can be
combined in a variety of ways, using combinatorial principles, leading to the con-
struction of a large number of molecular electron densities. The development of
computer technology apparently provides novel options: if the density construction
is carried out using parallel processors, relying on a common fuzzy electron den-
sity fragment database, then the combinatorial construction of the electron densities
of a large number of molecules can be achieved simultaneously. Such a computa-
tional approach is analogous with the synthetic combinatorial chemistry approach.
In fact, this approach is an “in silico” version of the original idea of Furka, and the
fact that there is no need either for “portioning” or “mixing”, provides important
simplifications.

As mentioned above, the MEDLA numerical grid technique was limited to elec-
tron density computations in numerical representations, where the variations in local
grid alignments when combining two or more fuzzy electron density fragments had
disadvantageous effects on the accuracy of the approach. In addition, the MEDLA
approach was sensitive to the resolution of the numerical grid, that was important
not only in visual displays, but in the very construction process of the numerical
electron densities of larger molecules.

The more advanced ADMA (Adjustable Density Matrix Assembler) method
[44–61], achieves the combination of fuzzy electron density fragments by build-
ing first a macromolecular density matrix from the fuzzy fragment density matrices.
In fact, the actual combinatorial step is carried out on the fuzzy fragment density
matrices. This matrix representation has several advantages. First, the electron den-
sity representation is analytical, relying on the macromolecular density matrix and
the associated basis set information, consequently, neither grid alignment problems
nor grid resolution problems of the MEDLA method can occur. In addition, with an
available macromolecular density matrix, many molecular properties beyond elec-
tron density can be calculated, for example, approximate forces acting on individual
nuclei of the macromolecule can also be determined, where these forces are suit-
able for a study of the folding problems in proteins, as well as other conformational
problems in various additional macromolecules..

By the construction of a fragment density matrix databank, the ADMA approach
can be used for the combinatorial selection and subsequent assembly of fuzzy
fragment density matrices, forming approximate density matrices for a large num-
ber of macromolecules, where these macromolecules are related to one another
by some combinatorial reassignment of local molecular fragments. The result-
ing approximate macromolecular density matrices are suitable for both electron
density computations and for the computation of all other properties deter-
mined by density matrices and basis set information. Consequently, the ADMA
method provides a versatile basis for a Combinatorial Quantum Chemistry (CQC)
approach to novel, systematic modeling studies involving large number of macro-
molecules. The computational toolbox of fundamental structural biochemistry
and biotechnology research will be enhanced by this approach, the ADMA-CQC
approach.
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There are three main strategies for taking advantage of the computational aspects
of the Combinatorial Fragment Assembly Approach:

(i) No fragment readjustment of databank entries
If one is interested in a fast and only approximate description of a set of com-
binatorially related target macromolecules, and if there is no need for high
accuracy, than fuzzy density fragments taken from a sufficiently detailed frag-
ment density matrix databank might be used directly. If the databank already
contains several variants for typical density matrices needed for these macro-
molecules, where the fragment variants differ in local nuclear geometries and
coordination shells, then the optimum choice for each fragment density matrix
from the databank, followed by a combinatorial assembly of the required set of
related macromolecules is probably suitable to generate a reasonable approx-
imation of the series of macromolecular density matrices and the associated
molecular properties.

(ii) Fuzzy fragment deformation by nuclear rearrangement
In various cases a somewhat higher accuracy is required, and even the optimum
fragment density matrices taken from the databank are not accurate enough for
the given purpose. In that case the simplest solution is achieved by a simple
readjustment of the optimum density matrices from the databank. The most
advantageous method for this readjustment is the Löwdin Transform method
[48, 57], that converts one density matrix to another one that approximates the
density matrix computed at a slightly different nuclear geometry. The Lowdin
Transform method also has the advantage of ensuring idempotency for the
newly constructed density matrix.

(iii) Fuzzy fragment recalculation using a new, custom made parent molecule
This approach is not only the most accurate but also the most costly, as it
involves a complete recalculation of the fragment density matrix for the actual
nuclear geometry and coordination shell, to match those in the actual target
macromolecule M. One important advantage is the fact that the newly cal-
culated fragment density matrix can be added to the databank, hence it is
potentially also beneficial for a possible future calculation, and makes the data-
bank more applicable on the next occasion, even if one then decides to use
options (i) or (ii).

In conclusion, if a sufficiently detailed fuzzy density fragment databank is
already available, then by chosing the appropriate level of fragment density matrix
selection and readjustment, the ADMA-CQC method is applicable for the rapid gen-
eration of ab initio quality quantum chemical representations of a large number of
macromolecules.

6.8. SUMMARY

Some of the fundamental constraints and some actual realizations of linear scaling
quantum chemical approaches have been reviewed, with special emphasis on the
emerging field of Combinatorial Quantum Chemistry.
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Abstract: The chemical motivation and the role of molecular fragmentation schemes in various
linear scaling quantum chemical computational methods are discussed, with special
emphasis on fragmentation based on the properties of molecular electron densities.
The special significance of functional groups in fragment selection, the concept and
use of delocalized fragments, the “Procrustes Fragmentation” and “Multi-Procrustes
Fragmentation” schemes, and the utility of trigonometric weighting in reducing potential
errors due to the bias introduced by fragment selection are discussed. The special frag-
mentation possibilities implied by the Additive Fuzzy Density Fragmentation Principle,
and their application in the context of the Adjustable Density Matrix Assembler (ADMA)
method are also discussed.

Keywords: Molecular fragments, Functional groups, Delocalized fragments, Procrustes fragmenta-
tion, Multi-Procrustes fragmentation, Trigonometric weighting, Additive fuzzy density
fragmentation principle, Adjustable density matrix assembler (ADMA)

7.1. INTRODUCTION

Most linear scaling methods rely on a threshold for the interactions which are to
be included in the model; often this translates into giving special consideration
to local ranges within molecules. Such local ranges can be regarded as molecular
fragments, hence, fragmentation ideas have important role in various linear scal-
ing approaches. The way these fragments are defined and their actual choices have
important implications on the actual algorithms used and the success of the actual
linear scaling method. Some of the motivation for the development of rational frag-
mentation methods originates from the need for reasonably accurate representations
of electron densities of important biomolecules, such as hemoglobin [1], where the

147
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special role of fairly rigid molecular entities (such as the heme structure) indicates
that compromises may be required between actual, “custom made” fragment selec-
tion approaches, and the considerations of some more general, somewhat overly
optimistic “universal” fragment selection principles.

7.2. CHEMICALLY MOTIVATED FRAGMENT SELECTION

Since the pioneering work of Mulliken, the ultimate fragmentation scheme, atomic
fragmentation, is the basis of many molecular fragmentation schemes within both
the Molecular Orbital and Density Functional formalisms. Mulliken’s LCAO prin-
ciple, leading, for example, to the still very useful Population Analysis techniques
[2–5] reflects both a reductionist and a synthetic approach: using local repre-
sentations, such as Atomic Orbitals, which are eventually combined, or, in fact
synthetized into Molecular Orbitals. The global aspects of electron densities, and
the special conditions constraining, but not invalidating various fragmentation
approaches are well represented by the fundamental relations of Density Functional
theory [6–11], especially by the main theorem relevant to electron densities: the
Hohenberg-Kohn Theorem [6]. According to this theorem the non-degenerate
ground state electron density determines all molecular properties, hence, in a spe-
cial way, also the “best” fragmentation scheme with respect to a physically realistic
computational scheme. Such a scheme must reflect reality even in the following
sense: a technical detail, such as the optimality of fragment selection, must also be
ultimately dependant on the actual electron density.

Of course, there are many other, also chemically motivated fragment selection
possibilities, where groups of atoms within the molecules may be regarded, in the
first approximation, as the fragments. Even in such a case, the interplay between
local features and their global constraints is of great importance. For artificial mod-
els of molecules, confined to a finite and closed range of the three-dimensional
space, Munch and Riess have proved an important result [12] that for such sys-
tems with boundary, any local electron density range of positive volume determines
the electron density within the entire closed and bounded range of space. Although
the authors, Riess and Munch have pointed out themselves that their proof holds
only for closed and bounded models of molecules, hence not for real molecules
which are neither closed systems nor bounded within any finite domain of the
three-dimensional space, nevertheless, this aspect of their work has not always been
correctly interpreted by other researchers.

By applying a four-dimensional transformation of the molecular electron den-
sity to a hypersphere of three-dimensional surface, followed by a step involving a
one-point compactification method, Mezey has proved in a later contribution [13]
that molecular electron densities follow a holographic principle, and the limitation
of the results of Riess and Munch can be circumvented. The resulting Holographic
Electron Density Theorem states: for the non-degenerate ground state electron den-
sity of any molecule, any positive volume local part of the electron density contains
the complete information about the entire molecular electron density, hence, this
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local range contains the complete information about all properties of the entire
molecule [13]. This Holographic Electron Density Theorem can be regarded as
an addition to the Hohenberg-Kohn Theorem [6]; it has several interesting conse-
quences for local symmetry and approximate transferability of molecular fragments
[13–18], and in particular, consequences for molecular fragmentation schemes.

Procedures for molecular fragmentation schemes usually rely on some chemi-
cally motivated principles. Fragments may provide specific insight to functionality,
for example, in a macromolecule like haemoglobin, it is natural to regard the heme
region as one of the fragments, since this region is one that is primarily responsible
for the main function of this protein: catching Oxygen molecules.

In some other instances, chemical motivation appears to provide more fundamen-
tal, or technical conditions.

One condition for a molecular fragmentation approach that provides useful
analogies between molecular fragments and complete molecules is the requirement
for avoiding cuts and sharp boundaries in the fragment generation process. Real
molecules show an eventually exponential decay of the electron density values as
one moves away from the molecular center beyond all the nuclei of the molecule,
and the treatment of fragments within any model can be made more similar to the
treatment of complete molecules if the fragments themselves show a similar, eventu-
ally exponential decay of electron density with distance as the position vector moves
beyond the nuclei, far away from the center of the molecular fragment.

One such fragmentation scheme is the Additive Fuzzy Density Fragmentation
(AFDF) approach [19–22], which may be regarded as a variation of the population
analysis approach of Mulliken [2–5], where the integration step that converts the
individual molecular orbital contributions to electron density into a formal atomic
charge is avoided.

The details of the implementation of this fragmentation approach are described
in the original references and have been reviewed elsewhere, here we shall provide
only a brief summary, primarily for the purposes of specification of notations.

Within the Hartree-Fock-Roothaan-Hall SCF LCAO ab initio scheme, using a
given basis set ϕ(K) of atomic orbitals ϕi(r, K)(i = 1,2, . . . ,n), and the n×n dimen-
sional density matrix P(ϕ(K)), obtained by such calculations, the electronic density
ρ(r, K) of a molecule of nuclear conformation K is given at each point r by

ρ(r,K) =
n∑

i=1

n∑

j=1

Pij(ϕ(K))ϕi(r,K)ϕj(r,K). (7-1)

The set of nuclei of the molecule M are classified into m mutually exclusive families

f1, f2, . . . , fk, . . . , fm. (7-2)

With respect each nuclear family fk, a membership function mk(i) is defined for each
AO basis function ϕi(r,K) as follows:
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mk(i) =
{

1 if ϕi(r) is centered on one of the nuclei of set fk,
0 otherwise.

(7-3)

The elements Pk
ij(ϕ(K)) of the n × n fragment density matrix Pk(ϕ(K)) for the k-th

fragment “anchored” to the nuclear family k are given by

Pk
ij(ϕ(K)) = [mk(i)wij + mk(j)wji]Pij(ϕ(K)), (7-4)

where the wij and wji weighting factors must fulfill the condition

wij + wji = 1, wij, wji > 0, (7-5)

with the simplest choice of
wij = wji = 0.5 (7-6)

leading to the Mulliken-Mezey AFDF approach that follows the spirit of Mulliken’s
original population analysis scheme.

The k-th additive fuzzy density fragment ρk(r,K) is then defined as

ρk(r,K) =
n∑

i = 1

n∑

j = 1

Pk
ij(ϕ(K))ϕi(r,K)ϕj(r,K), k = 1,2, . . .m. (7-7)

As it is easily verified by simple substitution, both the AFDF fragment density matri-
ces Pk(ϕ(K)) and the corresponding fuzzy density fragments ρk(r,K) are strictly
additive:

P(ϕ(K)) =
m∑

k = 1

Pk(ϕ(K)), (7-8)

and

ρ(r, K) =
m∑

k = 1

ρk(r,K). (7-9)

A good approximation to the fuzzy electron density fragments of a large “target”
molecule M can be computed indirectly using the AFDF approach, using smaller
“parent” molecules, containing various parts of the original large molecule.

Specifically, for each nuclear family fk of M, a small parent molecule Mk can
be designed, where Mk contains the same nuclear family fk with the same local
arrangement and surroundings as is found in the large target molecule M. The fuzzy
density matrix fragmentation (7–4) can be carried out for the small parent molecule
Mk, resulting in a fuzzy density fragment ρk(r,K) corresponding to the nuclear set fk,
and other, additional density fragments which are not going to be used for the macro-
molecular study. For each nuclear family fk of M, one may repeat this procedure,
and the fuzzy fragment density matrices,

P1(ϕ(K)), P2(ϕ(K)), . . . , Pk(ϕ(K)), . . . , Pm(ϕ(K)) (7-10)
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as well as the fuzzy density fragments

ρ1(r,K), ρ2(r,K), . . . , ρk(r,K), . . . ,ρm(r,K) (7-11)

obtained from the set of m small “parent” molecules

M1, M2, . . . , Mk, . . . , Mm, (7-12)

can be combined and used to construct good approximations to the macromolecular
density matrix P(ϕ(K)) and the electron density ρ(r,K) of the large target molecule
M. The fragment densities themselves can also be used for local analysis of various
parts of the macromolecule M, for example, studying various functional groups.

The first applications of this Mulliken-Mezey fragmentation scheme [19–22]
within the Hartree-Fock-Roothaan-Hall framework [23–29] were implemented in
the two linear scaling methods: Molecular Electron Density Loge Assembler
(MEDLA) and the Additive Density Matrix Assembler (ADMA) methods [20–
22, 30–38]. The former, numerical method used the computed electron densities
(7-11) directly, the more advanced ADMA method uses the computed density
matrix, Eq. (7-8).

7.3. FUNCTIONAL GROUPS AS PRIMARY FRAGMENTS

Among the chemically motivated fragmentation schemes, one based on the con-
cept of functional groups is of special importance. Traditionally, functional groups
are characterized by nearly identical local structural features and nearly identical
reactivities.

On the other hand, the quantum chemical concept of functional groups [39,40] is
based on the local properties of electron densities. If a set of nuclei within a molecule
is surrounded by an electron density isocontour, then their situation is reminiscent
to that of nuclei of one complete molecule placed near, but not yet in any bonding
arrangement next to another molecule. The combined electron density cloud of the
two molecules must have electron density isocontours which surround all the nuclei
of one molecule, without enclosing any of the nuclei of the second molecule. We
may regard this condition as a sign of some level of “autonomy” of the nuclei and
the surrounding electron density cloud of the first molecule, since the interactions
mediated by the electron density among the set of the nuclei of the first molecule
are stronger than the interactions mediated by the electron density between the two
molecules. The identity and the “autonomy” of the molecules are not yet diminished
to any major proportions by placing the molecules into such a relative position.

The same type of argument can also be used within a single molecule, by con-
sidering parts of molecules where within one part the local interactions are such
that some limited “autonomy” and some “local identity” of the part distinguishes it
from other parts of the molecule. If within a single molecule there exists an electron
density isocontour that separates one set of nuclei form the rest of the nuclei of the
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molecule, then one may regard this set of nuclei and the surrounding electron den-
sity cloud as some entity within the molecule where some level of separate identity
is meaningful. By applying this concept to actual functional groups, the presence
of such isocontours have been confirmed in all the studied instances. Apparently,
functional groups do possess special significance, manifested by some electron den-
sity isocontours indicated by some degree of limited autonomy within the molecule
[39,40]. Note, however, that the above condition also classifies atom groupings as
formal, quantum chemical functional groups even if they are not commonly consid-
ered as such by more conventional organic chemistry considerations. In the extreme
case, most single atoms can be classified as some extreme functional groups, since
in most molecules they do possess electron density isocontours separating their
nuclei from all the other nuclei of the molecule. Of course, individual atoms can
be regarded, even traditionally, as the extreme case of functional groups.

7.4. DELOCALIZED FRAGMENTS

Whereas it makes good sense to chose chemically motivated fragments, such as
functional groups [39,40], the Mulliken-Mezey fragmentation scheme does not
restrict the fragment choices this way, in fact, by selecting nuclear families (7.2)
arbitrarily, the fragmentation scheme remains valid, even if the nuclei in any one
family are such that there are no formal bonds between the corresponding “atoms”
within the molecule. Such examples have been obtained in early applications, for
example, where a bare benzene ring was one of the formal fragments, and five of the
H atoms on the ring as another fragment, where this latter single fragment involved
five, non-connected nuclei from the molecule. Such delocalized fragments provide
considerable flexibility for analysis, and provides direct tools for testing ideas con-
cerning suspected unusual interactions in large molecules. One such problem arises
if one is to study the low density ranges, called “Low Density Glue”, within the inte-
rior of globular macromolecules, such as some proteins. These studies provide some
input to the study of the problem of protein folding. Similarly, the extreme case of
single nucleus families have been also used in early test computations [30–38].

7.5. PROCRUSTES FRAGMENTATION

If purely technical aspects of fragmentations are considered, one extreme approach
involves complete disregard of chemical properties and a fragmentation where
purely geometrical conditions lead to the selection of nuclear families. The sim-
plest of such schemes involves a three-dimensional rectangular grid, with cubic unit
cells, and the selection of nuclear families by simply considering the nuclear clas-
sification provided by this grid. All nuclei falling within one such cube belong to
one family. The main ideas of this approach have been described in ref. [33]. This
approach, enforcing a fragmentation based solely on the location and size of the
cubes of the grid, is reminiscent to the treatment Procrustes used in ancient Greece
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on travellers who crossed his way, and the cubes of the grid are reminiscent to the
famous Procrustes bed he used for truncating his visitors: whatever hangs out, it
is cut.

Whereas this Procrustes fragmentation is algorithmically simple, it is usually far
from optimal if the goal is high accuracy. In the next section we review briefly an
extension of the approach that provides some improvement.

7.6. MULTI – PROCRUSTES FRAGMENTATION
WITH TRIGONOMETRIC WEIGHTING

One enhancement of the accuracy of the Procrustes fragmentation as applied to
ADMA and MEDLA electron densities is based on a method involving multiple
tilings of the 3D space domain containing the target macromolecule, by introducing
eight separate Procrustes partitionings. This approach is called the Multi-Procrustes
approach.

The motivation for this approach is simple: in the process of partially overlap-
ping the fuzzy fragment densities in the target molecule, the electron densities are
rather accurate near the centers of the fragments and the more noticeable errors
are expected at points at the peripheral ranges of each fragment, where the density
contributions from neighboring fragments are approximately the same.

If one considers a rectangular compartmentalization of the nuclei of the target
molecule, such as it is in the Procrustes method, then the errors of the ADMA
and MEDLA densities are expected to be the largest near the boundaries of these
compartments. We should be reminded that these compartment boundaries refer the
partitioning of the nuclei of the molecule into boxes, and the actual electronic clouds
of the fuzzy density fragments themselves have no boundaries, consequently, they
extend beyond the nuclear compartment boundaries.

One approach to further increase the accuracy of the resulting macromolecular
electron densities is to take several, different compartmentalizations of the nuclei,
ensuring that each boundary point of each compartment becomes an interior point
of another compartmentalization, hence a higher accuracy representation is avail-
able for those boundary points as well. Then, by properly weighting and combining
the computed electron densities obtained from different compartmentalizations, a
more accurate overall electron density representation can be computed for the target
macromolecule.

Such an accuracy-enhancing scheme is obtained if eight Procrustes fragmen-
tations are combined by a trigonometric weighting scheme, that ensures proper
scaling for the various contributions. The approach involves an eightfold increase
of the computational work, consequently, just as the ADMA and MEDLA methods
themselves, the method is strictly linear scaling.

The actual Multi-Procrustes three-dimensional tiling approach, involves 23 = 8
different tiling schemes, denoted by A, B, C, D, E, F, G, and H. These compartment
sets A . . .H are chosen in such a way that each boundary point of each compartment
is an interior point of another compartment in another of the eight tiling schemes.
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The edge length of each cube is taken as π. The centers of cubes for the eight
different tilings are given by the vectors

r′u,v,w(i,j,k) = [(i + 0.5u)π, (j + 0.5v)π, (k + 0.5w)π], (7-13)

where these A, B, C, D, E, F, G, and H tilings follow the lexicographic order of
triples

(u, v, w), with the integers u, v, and w fulfilling the condition

0 ≤ u, v, w ≤ 1, (7-14)

for example, the integer triple u = 1, v = 0 and w = 1 corresponds to tiling scheme
F, and where indices i, j, and k refer to the serial numbers of the locations of the
centers of the cubes along the x, y, and z coordinate axes, respectively.

The x, y, and z coordinates of the centers of all the cubes in the eight Procrustes
tiling schemes are given below:

A B C D E F G H
x iπ iπ iπ iπ (i + 0.5)π (i + 0.5)π (i + 0.5)π (i + 0.5)π
y jπ jπ (j + 0.5)π (j + 0.5)π jπ jπ (j + 0.5)π (j + 0.5)π
z kπ (k + 0.5)π kπ (k + 0.5)π kπ (k + 0.5)π kπ (k + 0.5)π

(7-15)
The next step is to carry out an ADMA (or MEDLA) linear scaling computation

of the macromolecule M for each of the eight tiling schemes A . . . H the usual way.
As a result, the eight direct ADMA electron densities by fragment generation

using tilings A, B, C, D, E, F, G, and H are:

ρA(x, y, z), ρB(x, y, z), ρC(x, y, z), ρD(x, y, z), ρE(x, y, z), ρF(x, y, z),
ρG(x, y, z), and ρH(x, y, z), respectively

(7-16)

Using these electron densities, a trigonometric weighting ensures, that each
boundary location of each tile of each tiling scheme contributes by a factor of zero,
whereas each more accurate center location of each tile of each tiling scheme con-
tributes by a factor of 1, with a smooth interpolation for the weights of various
contributions for intermediate locations. The actual trigonometric formula for this
Multi-Procrustes approach is as follows:

ρMP(x,y,z) = ρA(x,y,z)cos2xcos2ycos2z + ρB(x,y,z)cos2xcos2ysin2z
+ρC(x,y,z)cos2xsin2ycos2z + ρD(x,y,z)cos2xsin2ysin2z
+ρE(x,y,z)sin2xcos2ycos2z + ρF(x,y,z)sin2xcos2ysin2z
+ρG(x,y,z)sin2xsin2ycos2z + ρH(x,y,z)sin2xsin2ysin2z

(7-17)

Although the above Multi-Procrustes approach of linear scaling macromolecu-
lar electron density generation requires an approximately eightfold increase in the
computer time needed for the same macromolecule, the weighting scheme ensures
increased accuracy. Note that, the time needed for the step involving the actual com-
bination of electron densities according to Eq. (7-17) is negligible as compared to
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the computer time needed for the actual ADMA or MEDLA computation of indi-
vidual electron densities for each tiling scheme. The approach provides a possible
tool in various applications [41–43].

7.7. SUMMARY

The role of molecular fragmentation principles in linear scaling quantum chemical
approaches, theoretical and practical conditions for their implementation, as well as
computational methods for efficient fragmentation schemes are discussed.
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Abstract: Quantum chemical calculations of very large systems still pose major challenges due
to the formidable scaling behavior of standard methods with system size. Here, we
will describe how the concept of separating short- and long-range interactions can be
used to make such calculations possible nonetheless at least in an approximate way. In
mixed quantum mechanical/molecular mechanical (QM/MM) and fragment-based quan-
tum chemical methods, the local surroundings are considered explicitly whereas other
parts further away are neglected or included with a lower level of theory, e.g. as interac-
tions with point charges. Different methods to combine these two descriptions, so-called
embedding schemes, are outlined. Additionally, the border region problem, how subsys-
tems describable by quantum mechanics can be generated by cleaving and saturating
bonds connecting atoms located in the different regions, and proposed solutions are dis-
cussed. Finally, with the fragment-based adjustable density matrix assembler (ADMA)
method as example, the capacities but also some limitations of the presented approaches
will be presented using different test systems.

Keywords: Fragment-based approaches, Distance dependence, Linear scaling, Embedding
schemes, Border regions, Adjustable density matrix assembler

8.1. INTRODUCTION

Knowledge about the 3D structure (in atomic resolution) and the physico-chemical
properties of proteins as well as protein-protein and protein-ligand complexes is
a precondition for the in-depth understanding of biological processes and rational
manipulation of these. Because of the large size of these molecular systems, the
determination of the structure is a playground of experimental methods like X-ray
crystallography and NMR spectroscopy. But if such structures are available, theo-
retical methods come into play. Beside empirical methods, linear-scaling quantum
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chemical approaches should be considered for the analysis of such systems since
they have, as the name implies, a much better scaling behavior compared to standard
quantum chemical methods and a broader field of application without large param-
eterization compared to e.g. molecular-mechanical force fields. We will concentrate
here on one specific type of linear scaling methods, fragment-based quantum chem-
istry, and describe the approximations leading to linear scaling. Additionally, the
limitations of earlier versions as well as possible workarounds will be discussed.

8.2. SHORT-RANGE AND LONG-RANGE INTERACTIONS

Hartree-Fock theory still plays a dominant role in quantum chemistry, due to its
relative efficiency as well as being a useful reference for methods which include
dynamic electron correlation (except density functional theory). In this theory, the
approximate equivalent of the Hamiltonian, the Fock matrix, consists of the kinetic
energy term of the electrons, the electron-nucleus interaction and the two-electron
interaction matrix G. The calculation of the latter is the most time-consuming
step since it contains the different integrals between any four of all the gaussian
basis functions used in the truncated linear combination of atomic orbitals (LCAO)
expansion series of the atomic (and molecular) orbitals, determined by the basis set
in use. These four-center two-electron integrals cause the formidable scaling behav-
ior of O(n4). In the nowadays mostly applied Kohn-Sham representation of density
functional theory, equivalent considerations result in the same scaling behavior just
by replacing the Fock matrix with the Kohn-Sham matrix, even though scaling of
O(n3) can be obtained by density-fitting approaches [1–3].

For the case of 1s functions (the easiest case in terms of integral evaluation), the
integration of the kinetic terms Tij = 〈ϕi| − 1

2�
∣∣ϕj

〉
yields a distance dependency

roughly (i.e., for sufficiently large electron-electron distances rij) proportional to

r2 · e−qr2
. The electron-nucleus attraction scales with 1

r · e−qe2 · erf(r) while the

matrix elements Gijkl show a distance dependency proportional to 1
r2
ijkl

e−ar2
ij−br2

kl .

The two-electron interaction shows the strongest decrease with increasing distance.
Therefore, for these an approximation by only calculating short range interactions
seems possible and is highly desirable due to the immense number of matrix ele-
ments for large molecules and/or large basis sets. Standard implementations of
Hartree-Fock already use this fact by first approximately evaluating all the inte-
grals and then only fully calculate those which are above a specific cut-off resulting
in a scaling of roughly O(n2 · log n) [4, 5].

Since even the integration of the rather simple interaction between two 1s orbitals
results in the quite complicated derivation of the above distance dependencies, it is
not a trivial task to evaluate the behavior for combinations of functions of higher
angular momentum. Furthermore, one has to estimate the absolute values of all the
interactions for each pair of particles and then decide which of these should be fully
evaluated. Even if there are efficient methods for doing so [6–8], this becomes a too
time-consuming process to be of use for very large systems which limits the use of
pure quantum mechanics in biochemistry or material science.



Approximations of Long-Range Interactions 159

If we make the transition to perfectly localized electrons by replacing the
Gaussian basis functions by Dirac delta functions (the consequences of which
are clearly comprehensible if we let the exponents q,a,b→∞ in the derivation of
the above formula, equivalent to a view from very far away), we end up with
the classical Coulomb interaction terms for the electron-nucleus and electron-
electron interaction, with the specific “roughness” of the Hamiltonian due to the
Gijkl smoothed out. This shows quite clearly that, while one needs to calculate
the exact integrals for all the interactions at short range, it suffices to consider
only the classical Coulomb interactions at long range where the 1/r behavior falls
off significantly slower than the Gaussian functions. The attributes short-ranged
and long-ranged are, of course, subject to discussion and their assignment to the
different types of interactions strongly depends on the desired level of accuracy.
Hierarchical multipole methods [9–16] generate a smooth transition between the
short-range and long-range description. They recursively subdivide a system into
a hierarchy of cells. The particle distributions within a cell are approximated by a
multipole expansion. Since this expansion become increasingly more accurate with
separations, larger cells may be used as the interaction distance increases leading
to a linear-scaling calculation of the Fock matrix when using fast multipole meth-
ods [11, 17–21]. Since this still does not solve the problem of Fock/Kohn-Sham
matrix diagonalization needed in the self-consistent cycles of HF or DFT calcula-
tions, the even stronger approximation may be applied that the electron-electron
interactions are only included up to a specific threshold and from then on they
are only implicitly included, described by Coulomb interactions with atomic point
charges, or are neglected completely. That this approximation still gives reasonable
results is demonstrated by the successful application of mixed quantum mechan-
ical/molecular mechanical (QM/MM) and fragment-based quantum mechanical
methods, of which the latter will be described in more detail in the remaining of
this chapter.

8.3. FRAGMENT-BASED QUANTUM CHEMICAL APPROACHES

As just described, the long-range interactions have to be approximated to make
quantum chemical calculations for large molecules feasible. Here, we will concen-
trate on fragment-based approaches designed for macromolecular calculations. In
these methods, the large molecule is divided into small fragments and independent
quantum chemical calculations are performed on each fragment individually. If the
fragments are of similar size, and thus the computer time needed for each frag-
ment is almost the same, a linear-scaling quantum chemical method can in principle
be obtained due to the fact that the number of fragments scales linearly with the
system size. In this way, Hartree-Fock as well as density functional theory (DFT)
calculations can be performed even for very large systems.

Probably the best-known fragment-based approach is the divide-and-conquer
ansatz by Yang, developed for semiempirical, HF, and density functional theory
methods [22–33]. Only the DFT version will be described here [23, 31], in which
the part of the electron density of a specific fragment, which contributes to the total
electron density of the large system, is calculated according to
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ρk(r) = pk(r) ·
N∑

i

1

1 + e−β(eF−ek
i )

∣∣∣∣∣

N∑

μ

Cμiϕμ(r)

∣∣∣∣∣,

where the atomic orbital coefficients are taken from calculations of small molecules
composed of the fragment and additional surroundings in the same geometric
arrangement as in the macromolecule. pk(r) is a positive weighting function for
the subsystem k. This function has a large value near the fragment k and decreases
with increasing distance to the fragment. In this way, a specific fragment contributes
mainly to the region directly surrounding it exploiting the larger importance of short-
range interactions. The approximated total electron density is defined as the sum of
the electron density of the subsystems, from which the total energy of the system is
calculated according to standard density functional theory:

EKS(ρ) = TS(ρ) +
∫

v(r)ρ(r)dr + EXP(ρ) + 1

2

∫
ρ(r) · ρ(r′)∣∣r − r′

∣∣ drdr′ + VNN

The accuracy of the method compared to the direct calculation of the complete
molecule is determined by the amount of additional parts of the large molecule,
which are included in the fragment calculations, i.e. by the distance up to which
local interactions are included in the calculations of the subsystems.

The second approach, the adjustable density matrix assembler (ADMA)
[34–37] and its predecessor, the molecular electron density loge assemblers
(MEDLA) [38–40], were first introduced in the group of Mezey almost simultane-
ously to divide-and-conquer and then highly improved and extended in our group.
Since the discussion of long-range influences below will be based on this method,
it will be discussed in more detail using the Hartree-Fock level of theory here.
Analogously DFT can be applied [41]. ADMA combines fragment electron den-
sity matrices to approximate the electron density matrix of a large molecule (target
molecule) [34–37]. These fragment density matrices are taken from calculations of
smaller molecules (parent molecules) having a central region as one of the molecu-
lar fragments of the target macromolecule, surrounded by additional regions, called
surroundings in the following discussion, with the same local nuclear geometry as
in the macromolecule. These additional regions are taken within a selected distance
d of the central fragment (see Figure 8-1). Similar to divide-and-conquer, the accu-
racy of the ADMA method is solely controlled by the distance parameter d and,
by using a larger distance parameter, the results of direct quantum chemical calcula-
tions can be approximated with greater accuracy. In addition to the directly included
surroundings, the field-adapted ADMA (FA-ADMA) version [42, 43] approximates
the rest of the target macromolecule with partial charges in the parent molecule cal-
culations. It was shown that the field-adapted approach leads to largely increased
accuracy with a fixed parent molecule size [42, 43].

An ADMA calculation is started with the subdivision of the target molecule into
a set of m mutually exclusive families of nuclei [34–37;42–45]. Standard quan-
tum chemical calculations following the Hartree-Fock-Roothaan-Hall formalism are
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Figure 8-1. Visualization of the fragmentation process: the parent molecule for the red fragment is
defined as all atoms (in green) enclosed by a sphere of predefined radius. All other atoms are neglected
(ADMA) or included as partial charges (FA-ADMA, see below)

performed for the molecular fragments defined by one of these families, the corre-
sponding quantum mechanical surroundings (defined by the distance parameter d),
and eventually also the partial charges at the positions of the rest of the nuclei. The
electron density ρ(⇀r ) of a molecule can be expressed in terms of a basis set of n
atomic orbitals ϕi(⇀r ) (i = 1,2,...,n) used for the expansion of the molecular wave-
function and the density matrix Pij determined for the given nuclear configuration
using this basis set:

ρ(⇀r ) =
n∑

i=1

n∑

j=1

Pij · ϕi(
⇀r ) · ϕj(

⇀r )

Following the additive fuzzy density fragmentation (AFDF) scheme [35, 36], the
local fuzzy electron density fragments for one of the sets of mutually exclusive
families of nuclei denoted by f k, k = 1,...,m can be generated by defining a for-
mal membership function mk(i) which indicates whether a given atomic orbital
(AO) basis function ϕi(⇀r ) belongs to the set of AOs centered on a nucleus of the
family f k.

mk(i) =
{

1 if AO ϕi(⇀r ) is centered on one nuclei of set f k

0 otherwise

Using this membership function, the elements Pk
ij of the density matrix of the kth

fragment are calculated according to the Mulliken-Mezey scheme [35, 36]:

Pk
ij = 0.5 ·

[
mk(i) + mk(j)

]
· Pij

The membership function is designed so that the full and half matrix element value
is used, when both nuclei or only one nucleus belongs to the family f k, respectively.
If both nuclei belong to other families, a value of 0 is taken. The resulting fragment
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electron density matrices can then be summed up to get the total density matrix and
with that the total electron density of the large “target” macromolecule:

Pij =
m∑

k=1

Pk
ij and ρ(⇀r ) =

n∑

i=1

n∑

j=1

m∑

k=1

Pk
ij · ϕi(

⇀r ) · ϕj(
⇀r )

From this, molecular properties, e.g. the total energy of the target molecule, can be
calculated following the standard Hartree-Fock formalism using the renormalized
ADMA approximation of the density matrix [42, 43, 45] instead of the ideal, directly
calculated exact macromolecular density matrix:

EHF = 1

2

n∑

i=1

n∑

j=1

((
Fij + Hcore

ij

)
·

m∑

k=1

Pk
ij

)
+ VNN

with:

Fij = Hcore
ij +

b∑

r=1

b∑

s=1

([
(ij |rs )− 1

2
(is |rj )

]
·

m∑

k=1

Pk
ij

)

Some other methods are based on the same idea as divide-and-conquer and ADMA
and will only be listed here: molecular tailoring approach of Gadre and coworkers
[46, 47], the central insertion scheme [48], and the fragment energy and local-
ized molecular orbital assembler approach [49, 50]. A different combination of the
fragment calculations is applied in the fragment molecular orbital (FMO) method
[51–57]. Here, the electronic energy of the fragments and all pairs of fragments are
combined using the following equation:

E =
∑

I

∑

J<I

(
EIJ − EI − Ej

) +
∑

I

EI

EIJ is the energy of the pair of fragments I und J and EI and EJ the energies obtained
from the single fragment calculations on fragment I and J, respectively. In newer
versions, energy gradients [54], molecule orbitals of the complete molecule [56],
and solvation effects [58] can also be calculated.

Last but not least, we would like to mention that also correlation methods can
profit from a fragment-based description. One such approach is the method of incre-
ments [59–62]. Like the other local correlation methods, the method of increments
starts with localized orbitals obtained from the Hartree-Fock wavefunction. It then
reduces the original correlation problem for the total number of electrons to a sum of
correlation contributions for smaller numbers of electrons, i.e. the correlation energy
is obtained by adding up correlation energy increments in terms of the localized
orbitals and in pairs, triples, . . . of the localized orbitals:
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Ecorr =
∑

I

εI + 1

2

∑

I

∑

J �=I

�εIJ + 1

6

∑

I

∑

J �=I

∑

K �=I∨K �=J

�εIJK + · · ·

All size-extensive correlation methods can be used in this scheme to evaluate the
individual increments. Due to the local character of the orbitals it is also possible to
calculate the increments in finite embedded clusters, which correspond to the frag-
ments and surroundings in the ADMA jargon. FMO calculations taking correlation
effects into account are also possible [63, 64].

8.4. EMBEDDING SCHEMES

If the system is divided into two or more parts and, thus, the short-range and long-
range interactions are described by two different theories as done in QM/MM as
well as fragment-based quantum chemical approaches, the interactions between the
subsystems have to be dealt with in a special way. In the QM/MM literature, these
special treatments are called embedding schemes and we will follow this nomencla-
ture here due to the similarities between QM/MM and fragment-based methods. The
easiest possibility to combine the two parts (QM and MM region in QM/MM and
e.g. fragment plus surroundings and remaining part of the macromolecule in FA-
ADMA) is the mechanical embedding scheme. Here, the QM calculations can be
performed totally independent on one of the parts without taking the other ones into
account, i.e. the calculation is performed on the QM part in vacuo without polariza-
tion due to the MM part (no point charges of the MM part are included as for the later
embeddings). In QM/MM, the QM and MM part interact by a Coulomb potential
between fixed point charges (for both the QM and MM part) and steric interactions
modeled by a van-der-Waals potential according to the force-field philosophy. The
Hamiltonian of the complete system can then be formulated as follows, employing
e.g. a Lennard-Jones potential for the van-der-Waals interactions and partial charges
taken from empirical force-fields:

Heff = HQM + HMM + HQM/MM

with

HQM/MM =
QM∑

i=1

MM∑

j=1

[
qi · qj

rij
+ 4εij

(
σ 12

ij

r12
ij

− σ 6
ij

r6
ij

)]

In fragment-based methods, all interactions (steric as well as electrostatic as there
is no such strict separation between these two types) are calculated for the parent
molecules used in the individual QM calculations. Interactions between different
fragments are included since the atom sets defining the parent molecules overlap
but only as long as the atoms of one fragment are included in the surroundings of
the other fragment. In this way, short-range interactions are fully described by the
high level of theory but the long-range interactions are totally ignored.
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In the electric embedding scheme, molecular parts further away are included
as static point charges in the quantum mechanical calculations. Thus, the electron
density is polarized by these additional parts. This can be described by an effective
QM/MM Hamiltonian:

HQM/MM =
electrons∑

i=1

MM∑

m=1

qm

rim
+

nuclei∑

k=1

MM∑

m=1

[
Zk · qm

rkm
+ 4εkm

(
σ 12

km

r12
km

− σ 6
km

r6
km

)]

The interaction between the partial charges and the electron density as well as
between the nuclei is normally calculated in the QM and the van-der-Waals inter-
action in the MM program. For fragment-based calculations, the application of the
electric embedding is not that straightforward. The question here is how to define
the partial charges. One useful approximation is to also rely here on empirical
force fields and the partial charges defined in these, in which case the long-range
interactions are approximated with a lower level of theory.

In the last and most sophisticated approach, the polarized embedding scheme,
polarization effects for the complete molecule and all interactions are taken into
account. For doing so, polarizable force-fields, which are still subject of ongo-
ing developments, have to be used in QM/MM calculations. Because these force
fields have a much higher computational demand, only a limited amount of stud-
ies have applied polarized embedding up to now. Full polarizability is much more
natural in fragment-based calculations and can be achieved with an iterative, self-
consistent cycle. First, a calculation with the mechanical embedding scheme is
performed. From this, partial charges are computed for the complete molecule
using e.g. Mulliken’s definition of partial charges. Then, each fragment calcula-
tion is repeated including the charges of the additional regions resulting in new
charges. This cycle is terminated if the charges do not change from one iteration to
the next.

8.5. BORDER REGION

But even if one has decided on a specific embedding scheme, the combination of two
regions treated with different theories, where one is a quantum mechanical method,
causes an additional problem for (biological) macromolecules: If the system is
divided into subsystems, the border between these subsystems, almost unavoidably
in biomolecules, cuts through covalent bonds. For the QM calculation, it is not pos-
sible to simply truncate these bonds because this would lead to single-occupied
orbitals and would give strong perturbation of the electronic state. To circumvent
this problem different approaches were designed ranging from capping hydrogen
atoms over specially parameterized atoms or groups of atoms to localized hybrid
orbitals and generalized hybrid orbitals.

In most QM/MM and in almost all fragment-based studies, hydrogen atoms
are added to saturate dangling bonds. One and probably the most important rea-
son for the widespread use of this approach is its striking simplicity. Since the
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Figure 8-2. Example of a fragment with capping hydrogen atoms: the capping atoms are shown in green.
Capping atom 1 replaces the amidic nitrogen, capping atom 2 the Cβ of the side chain, and capping atom
3 the Cα of the next amino acid

hydrogen-capped fragments are normal molecules (see Figure 8-2), any quantum
chemical program can be used for the calculations without modification. Hydrogen
is also a good choice since the electronegativities of carbon and hydrogen are very
similar. Thus, H–C bonds (after adapting the bond length to the standard value) are
reasonable substitutes if the bonds through the border region are limited to unpo-
lar C–C bonds between sp3 carbon atoms. Unfortunately, in contrast to QM/MM
methods, this is not possible for most of the many hundreds to thousands of broken
bonds generated in fragment-based approaches. Another point to consider is that
if partial charges are used to represent the rest of the molecules, the interactions
between the ones replacing neighboring atoms and the capping atom are extremely
strong because of short distances leading to disturbances of the electronic structure.
These unphysical interactions have to be removed by deletion or scaling of selected
atomic charges, charge shifting schemes, or Gaussian blurs.

For better agreement, larger capping groups like CH3 can also be used [65, 66].
The divide-and-conquer and the ADMA approach already take quantum mechani-
cal surroundings into account. Thus, in these cases, larger capping groups are not
of much use since the surroundings are just enlarged by the capping groups and
the border region problem is moved to the capping groups. In contrast, for methods
combining energetic contributions of the fragments and pairs of fragments, e.g. the
FMO method described above, larger capping groups can be very valuable due to
the better description of the fragments and the possibility to subtract their contribu-
tions afterwards. This directly leads to the conjugated caps approach [67, 68]. If a
bond is broken in the fragmentation, each atom of the bond belongs to a different
fragment and caps are added to both atoms in their corresponding fragments. If the
two conjugated caps of a broken bond are combined, a new molecule is generated.
The energies or the electron densities of these fused molecular species, called con-
caps, are then subtracted from the combined fragments in this way removing the
contribution of the caps.
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As another way to use the smallest possible cap, one atom, which is even more
similar to the replaced group than a hydrogen atom, specifically-designed atoms
were proposed. Here, semi-empirical methods have the big advantage that the
Coulomb and resonance integrals can be specifically parameterized for the capping
atoms as done for a long time in the Hyperchem program [69]. In ab initio methods,
the special nature must be encoded in the basis set as effective core potentials (ECP).
E.g. the pseudobond approach, proposed by Zhang et al. [70], uses a fluorine atom
with an adapted ECP to fill the free valence. Zhang [71] then improved on this by
designing a special STO-2G basis set in addition to the ECP for the seven-valence
atom, which was subsequently used in QM/MM simulations [72]. The quantum cap-
ping potential (QCP) [73, 74] combines conventional atom-centered effective core
potentials with a shielding potential that moves all but one valence electron into the
core. Pauli potentials are also used to prevent the unphysical collapse of other atoms
into the QCP atom. Other methods based on the same ideas are the connection-
atom method [75], the effective group potential method [76], the minimum principle
approach [77], and the multi-centered valence electron effective potential [78].

To avoid additional atoms, it is possible to use orbitals replacing either the broken
bond itself or the surrounding of the border atom. These orbitals are not optimized
in the SCF procedure but serve as statically occupied charge distributions with a pre-
defined electron occupation. Even if these approaches are more physically justified,
their implementation in quantum chemical programs needs many modifications and
adaptations of the source code so that they are less often used. Nevertheless, since
especially the generalized hybrid orbitals show very good results, it is probably
worth to invest the time for the additional programming. The earliest method using
localized orbitals was the local self-consistent field (LSCF) method by Rivail and
Naray-Szabo [79–83] originally invented for semi-empirical calculations. In this, a
strictly localized orbital replaces the broken bond (see Figure 8-3), which is opti-
mized in a calculation on a small molecule representing the local surroundings of
the border region and is then kept frozen in the fragment calculation. In the group of
Friesner [84, 85] the same idea was implemented for Hartree-Fock and DFT calcula-
tions. Boys-localized orbitals were parameterized for a number of chemical entities
including the 20 naturally occurring amino acids.

Figure 8-3. Visualization of the local self-consistent field (left) and the generalized hybrid orbital (right)
method to saturate broken bonds between the QM and MM region. In LSCF the bond is replaced by an
orbital, which is kept frozen in the QM calculation. In GHO, the MM atom is replaced by four hybrid
orbitals. One of these, the active orbital, is optimized while the others, the auxiliary orbitals, are kept
constant
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In contrast to all approaches described so far, in the generalized hybrid orbital
(GHO) method [86] the border between the QM and the MM/partial charge region
is placed on the boundary atom B and not in the middle of the broken bond (see
Figure 8-3). For QM/MM calculations, this means that B is a QM as well as a MM
atom and, for fragment-based applications, that B is fully included in the quantum
chemical calculation. This is achieved by constructing an orthonormal set of hybrid
orbitals {ηB, ηX , ηY , ηZ} on this atom. The orbital ηB is the active hybrid orbital,
which replaces the broken bond and is optimized with the orbitals of the QM atoms
in the SCF procedure, and the other three, the auxiliary orbitals, are used to pro-
vide an additional, fixed electron density distribution for describing, combined with
the partial charges, the remaining parts of the molecule not included in the frag-
ment calculation. Besides its good performance in fragment-based calculations (see
below), which would already justify its wider application, an advantage of GHO is
its dependence on only very few parameters compared to the other localized orbitals.

One interesting method, which should be tested for fragment-based approaches,
is the orbital-free effective embedding potential [87, 88]. This local multiplicative
potential can be expressed as a functional of two electron densities: that of the inves-
tigated fragment (ρA) and that of the environment (ρB). Even if the analytic form of
this functional is not known, this potential can be approximated using some explicit
analytical expressions for its kinetic- and exchange-correlation components.

8.6. RESULTS OF FA-ADMA AND GHO-FA-ADMA

In this last section of this chapter, we will show the potential of fragment-based
approaches with the adjustable density matrix assembler (ADMA) as an exam-
ple. ADMA and its extension, the field-adapted ADMA, have demonstrated high
accuracy for a number of physicochemical properties.

As described above, the accuracy of the ADMA method is solely controlled
by the size of the surroundings, i.e. the additional surroundings of the fragment
explicitly included in the fragment quantum chemical calculations. Using a set of
polypeptides and small proteins, for which the results can be directly compared
to the full calculation, ab initio quality could be obtained by varying the distance
parameter determining the size of the surrounding. For the electron density, the
electrostatic potential, and the partial charges according to the Mulliken or Löwdin
definition, very small surroundings of 3 to 5 Å are already sufficient, so that the
ADMA approach can be used for the fast and efficient calculation of these properties
of macromolecules. These results can then e.g. be used as guidance for the devel-
opment and improvement of empirical methods like force fields. Ab initio quality
calculations of dipole moments and especially of energies require larger surround-
ings. For the protein Crambin, chemical accuracy of lower than 1 kcal/mol was only
achieved with 9 Å surroundings. Since the parent molecules for such size of the
surroundings are already very large composed out of a few hundreds of atoms, the
needed computer resources for such calculations are considerable and limit the pos-
sible application. Thus, approaches to reduce the minimal surroundings needed and
to make the ADMA approach more efficient had to be developed.
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The reason why these large surroundings are needed is the complete neglect
of the remaining parts in the fragment calculations. Especially groups with for-
mal charges often occurring in proteins (e.g. arginine or glutamate side chains)
close to the border region polarize the electron density in the target molecule.
These influences should be also included in the parent molecule calculations, which
can be achieved with an electric or even polarized embedding scheme as done in
FA-ADMA. Putting point charges on all atoms not explicitly included in the QM
calculations resulted in an extreme increase in accuracy for highly polar and for-
mally charged molecules (see Figure 8-4). Additionally, the quality of the results
is now less dependent on the properties of the macromolecule. Thus in FA-ADMA
a smaller size of the surroundings, that is, smaller parent molecules, can be used
to obtain a certain degree of accuracy, which results in a much improved perfor-
mance. Regarding the used definition for the partial charges only minor influences
on the results were seen. On the one hand, if Mulliken or Löwdin charges for the
complete molecule are calculated with the FA-ADMA approach in a self-consistent
cycle, polarization effects are included in these charges resulting in a fully polarized
embedding scheme. On the other hand, an easier approach is to take the charges
from a molecular force field like AMBER [89] or CHARMM [90] using the elec-
tric embedding scheme. Then only one FA-ADMA calculation is needed with the
additional advantage that the charges better represent the electrostatic potential.

Figure 8-4. Correlation of the energy error of the FA-ADMA (HF/STO-3g, 5 Å surroundings) with
Löwdin (blue triangles) and Mulliken (red dots) charges as well as the original ADMA approaches
(black squares) with the total energy (in atomic units) for 16 polypeptides [43]. For FA-ADMA a much
smaller error can be seen in almost all cases
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The next step was to improve the description of the border region between
the QM region and the partial charges. As described above, many solutions were
proposed. Two of these, the pseudobond approach of Zhang et al. [91] based on
effective core potentials (ECP) and generalized hybrid orbitals (GHO) by Pu et al.
[86] were tested in the FA-ADMA approach and compared to capping hydrogen
atoms used so far. With pseudobonds reasonable accuracy can be obtained for struc-
tural as well as electronic features [92]. But when they are further optimized to
reproduce specific properties with a higher accuracy, it becomes obvious that the
ECP parameters are highly sensitive to the molecules and the molecular prop-
erties used in the parameterization and the problem of overfitting easily occurs
[92]. Additionally, none of the parameterizations shows significant and consistent
improvement over simple capping hydrogen atoms, despite the simplicity of the
latter approach. It is also questionable if the resulting potentials are physically
meaningful when compared to effective core potentials of first-row elements. In con-
trast, the generalized hybrid orbital (GHO) method [93, 94] has demonstrated very
good transferability from one system to another and gives excellent results for all
properties calculated with the fragment-based approach. Especially, the obtainable
accuracy with reasonable computational demand of intramolecular forces is now
high enough to reliably locally optimize the molecular structures even for large pro-
teins by fragment-based quantum mechanics [94]. Therefore, we would like to see
that the GHO method is implemented in additional quantum chemical programs to
make it accessible to a larger community interested in QM/MM and fragment-based
calculations.

One application which will be pursued intensively in the near future is the quan-
tum chemical calculation of NMR chemical shifts in proteins. We have already
performed preliminary calculations on the trp-cage miniprotein [87]. This eicos-
apeptide (DAYAQWLKDGGPSSGRPPPS) adopts (despite of its small size) a well
defined 3D structure, which was determined by NMR spectroscopy. Therefore, it
is the perfect test example since full quantum chemical calculations are possible,
which can be compared to the experiment as well as to the fragment-based calcula-
tions. This calculation was mainly meant to see if reasonable results can be obtained
with the levels of theory applicable to the AMDA approach. The NMR chemi-
cal shifts were determined with the Gauge-Independent Atomic Orbital (GIAO)
method [95–98] implemented in GAUSSIAN03 [99]. For protons bound to nitro-
gen the calculated chemical shifts differ very much from the experimental ones.
One explanation for that is that the chemical shift of these atoms is highly depen-
dent on minor variances in the hydrogen bonding network. Since no explicit solvent
is present, this network cannot be predicted correctly leading to large deviations
from the experiment of up to 5 ppm for solvent exposed protons. For the other pro-
tons, a reasonable agreement is observed. The inclusion of correlation effects using
B3LYP/6-31g∗ calculations but especially the use of an implicit solvent model (IEF-
PCM [100–102]) additionally improved our results considerably. Taking the NMR
chemical shifts from fragment calculations according to the ADMA approach gave
the first indication that such calculations could be very valuable for large molecules.
With increasing radius of the surroundings better and better agreement with the full
calculations are obtained. Especially the maximum error for 13C chemical shifts
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drops dramatically when going from 5 Å to 6 Å surroundings. Based on the results
presented here, the next step will be the optimization of the fragment-based cal-
culations so that the best agreement with the experiment can be obtained. This
will include the combination of fragment calculations with implicit solvent mod-
els. Additionally, it will be tried if mixed-basis set could be used to decrease the
computational demand and if local optimization of the structures could increase the
accuracy with respect to the experiment.

8.7. CONCLUSION

Since their first introduction almost 20 years ago, fragment-based quantum chemi-
cal approaches have come a long way and are now mature so that they can be used
in real-world problems. A large number of physico-chemical properties, e.g. total
energies, partial charges, electrostatic potentials, molecular forces, but also NMR
chemical shifts, can be obtained in this way with high accuracy for analysis of large
biochemical systems of medicinal interest but also to parameterize more empirical
methods like polarizable molecular force fields. Problems exist in the description of
the border region between the fragments and additional parts of the macromolecule
not included in the fragment. Here, a large number of solutions have been pro-
posed first in the QM/MM methodology and then adapted to fragment-based QM.
With the best of these, which can be easily identified in the fragment-based frame-
work, the additional parts (surrounding) explicitly included in the calculations of
the fragments can be minimized for a given accuracy highly reducing the computa-
tional demand making it acceptable for more and more applications. We therefore
hope and are convinced that such calculations will become standard in the near
future especially if one takes the always increasing computer power available in
high-performance computing facilities but also on the desks of all of us into account.
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Abstract: We present the linear scaling elongation method for Hartree-Fock and Kohn-Sham
electronic structure calculations of either periodic or aperiodic quasi-one-dimensional
systems. Linear scaling is achieved through two key computational features: (1) regional
localization of molecular orbitals; and (2) a two-electron integral cutoff technique com-
bined with quantum fast multipole evaluation of non-negligible long-range integrals. The
accuracy and timing of the method is demonstrated for several systems of interest such as
polyglycine and BN nanotubes. Future developments of both a technical and methodolog-
ical nature are noted including the extension to higher dimensionality as well as higher
level wave function treatments.

Keywords: Elongation method, Linear scaling, Localization method, Quasi-one-dimensional
systems, Cutoff technique

9.1. INTRODUCTION

Quantum chemical calculations have proved to be a reliable and practical tool
for investigating the electronic structure and properties of small and medium-size
chemical species. There is now great interest in extending the methods used in
these calculations to larger systems such as those occurring in materials science
and biochemistry. For these systems, the structure/property under investigation can
sometimes be satisfactorily studied using a small cluster model, but often that is
not the case. The treatment of semiconductors lightly doped with transition metal
atoms is just one of many examples. On the other hand, if the system of interest can
be adequately approximated as having perfect translational symmetry, then crystal
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orbital procedures can be applied. However, in many – if not most – instances the
system of interest cannot be modeled in this manner either. An example is a chain
of variously arranged amino acids that may play an essential role in the catalytic
activity of a particular enzyme.

The major obstacle to treating large systems on the same footing as
small/medium-size molecules arises from the fact that the most frequently used
electronic structure computational algorithms scale in the range from N3 to N7

with the number of electrons, N. Considerable efforts have been devoted in recent
years to exploit locality as a means of reducing the power law. For this purpose one
can take advantage of the fact that electron-electron interactions between spatially
well-separated electron distributions are relatively weak. A number of procedures
for doing so have been developed and, when the system is sufficiently extended in
space, linear scaling can be achieved. One set of methods utilizes a combination of
fragments approach. This set includes the QM/MM [1], “divide and conquer” [2],
“local space approximation” [3], and “fragment molecular orbital” [4] treatments.
The elongation method (EM), which we present in this chapter, is a treatment of the
same general type. It was originally formulated by Imamura, et al. [5] as a Hartree-
Fock (HF) procedure for building up the electronic structure of a large quasilinear
periodic or aperiodic polymer.

The EM is designed to theoretically mimic the experimental polymeriza-
tion/copolymerization process. Thus, a polymer chain is (theoretically) synthesized
stepwise by adding a monomer unit to a starting cluster. Since the monomer unit is
arbitrary any quasilinear structure can be constructed in this manner. Of course, if
the individual monomers are identical, then the stereoregular polymer is obtained.
For pedagogical and illustrative purposes it is sufficient to consider only the latter
case as we have done here. Readers interested in the application to aperiodic and/or
defect structures may refer to Refs. [6] and [7].

Subsequent to its initial presentation, the EM has been generalized so that one
can treat a local interaction with a periodic system in one, two, or three dimensions
(2D or 3D). This includes: (a) a polymer interacting with a small molecule [8]; (b)
a local defect or adsorption at a surface [9]; and (c) an impurity or local lattice
defect in a crystal [10]. Furthermore the Hartree-Fock treatment has been extended
to include Kohn-Sham (KS) DFT [11] as well as MP2. Finally, work is in progress
towards development of a full 2D/3D procedure. A working version of the EM has
been implemented in the GAMESS program package [12]. In comparison with the
other “combination of fragment” methods mentioned here the EM appears to have
advantages with regard to efficiency and/or accuracy.

There are two key computational features of the EM that result in linear scaling
and determine its efficiency and accuracy. They are: (1) the regional localization
scheme [13]; and (2) the two-electron integral cutoff technique which is combined
with a quantum fast multipole method (QFMM) for evaluation of non-negligible
long-range integrals [14]. Figure 9-1 presents a schematic illustration of the EM.
In the next section we describe the construction of regional localized molecular
orbitals with the resulting the separation into an active region and a frozen region.
The orbitals of the frozen region are discarded in the SCF calculation that is carried
out when the monomer is added to the chain. If the size of the active region is
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Figure 9-1. Schematic illustration of the elongation method. M1, M2, . . . is the attacking monomer;
B1 + M1, B2 + M2, is the active region; and A1, A2, are the frozen regions

roughly maintained (with the frozen region increased accordingly), then the size of
the Fock matrix that must be diagonalized will remain roughly the same regardless
of the chain length. The key steps of the elongation method, namely the construction
of regional localized orbitals and solution of the SCF equation for the active space
are provided in Section 9.2. In Section 9.3 a number of examples are presented,
for several different cases, in order to verify that reducing the variational space as
described does not lead to any significant loss of accuracy. Then the technique for
eliminating many two-electron integrals is presented in Section 9.4. This procedure
leads to overall linear scaling as shown by some test calculations in Section 9.5.
Finally, Section 9.6 contains a summary of the EM and prospective extensions of
our procedure.

9.2. THE KEY STEPS OF THE ELONGATION METHOD

In this section we describe the construction of regional localized molecular orbitals
(RLMOs) and their use in the elongation SCF step. The EM begins with the deter-
mination of the Hartree-Fock (HF) or Kohn Sham (KS) canonical molecular orbitals
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(CMOs), ϕCMO, for an appropriate starting cluster (see later). These CMOs, which
are spatially delocalized, are obtained as a linear combination of atomic orbitals
(AOs):

ϕCMO = χAOCCMO
AO (9-1)

where ϕCMO and χAOare row vectors. As shown in Figure 9-1, the CMOs of the
starting cluster are localized into two sets in preparation for interaction with an
attacking monomer. One set consists of localized molecular orbitals (LMOs) located
at the end of the starting cluster that is remote from the point of attack (region A or
frozen region); the other set is located in the active region (region B). The choice
of active and frozen regions will be discussed in the context of specific examples
in Section 9.3. As a general criterion the LMOs of the frozen region must be suffi-
ciently remote from the interaction site that they can be ignored in carrying out the
SCF calculation for addition of the monomer. Obviously, this requires LMOs that
are as strongly localized as possible. In addition, we desire a localization procedure
that is efficient and reliable.

The original localization schemes [5] were based on successive 2 × 2 rotations
of CMOs in a manner similar to the well-known Edmiston and Ruedenberg [15]
procedure. This requires an initial assignment of CMOs to one of the two regions,
which can be problematic for covalently bonded or pi-conjugated systems. That dif-
ficulty was solved by re-expressing the CMOs in terms of hybrid AOs determined
from the original AOs by means of an approach due to Del Re [16]. Although this
yields adequate localization in many cases, Gu et al. [13] have recently developed
a new method that is more efficient and more accurate. Tests on a variety of sys-
tems (see Section 9.3) show that the EM results obtained with this new scheme are
satisfactory, even for highly delocalized systems, as long as the starting cluster is
sufficiently large.

9.2.1. Construction of RLMOs

The RLMO localization scheme relies on the first-order density matrix given by:

DAO = CCMO
AO d CCMO†

AO (9-2)

in the AO basis. Here d is the diagonal occupation number matrix and CCMO
AO is

defined in Eq. (9-1). For a restricted Hartree-Fock wavefunction the occupation
number is 2 for doubly-occupied spatial orbitals and 0 for unoccupied orbitals. With
the aid of the orthonormality condition

CCMO†
AO SAOCCMO

AO = 1, (9-3)

wherein SAO is the AO overlap matrix and 1 the identity matrix, Eq. (9-2) yields the
idempotency relation:
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DAOSAODAO = 2DAO. (9-4)

for an ordinary closed shell system.
Next, we transform from the non-orthogonal AO basis to an orthogonalized AO

(OAO) basis by adopting Löwdin’s symmetric orthogonalization procedure [13],
which keeps the new basis least distorted from the original AOs. The transformation
matrix

X = Vλ1/2V† = X†, (CCMO
OAO = XCCMO

AO ) (9-5)

is obtained by diagonalizing the AO overlap matrix; i.e.V and λ are the eigenvectors
and eigenvalues of SAO. Then the density matrix in the OAO basis becomes:

DOAO = XDAOX† (9-6)

Using Eqs. (9-2) and (9-6), and the fact that X†X = XX† = SAO one can easily
verify that

DOAODOAO = 2DOAO (9-7)

This is the idempotency relation for the density matrix in the OAO basis. As a
consequence, its eigenvalues must be either 2 or 0. Therefore, the eigenvectors
of DOAOcorrespond to orbitals that are either completely occupied or completely
vacant. In addition, the OAO density matrix may be unambiguously partitioned into
diagonal blocks for the frozen region A and active region B. This avoids the poor
localization that was sometimes previously obtained.

The desired RLMOs, which are also simultaneously localized and either com-
pletely occupied or vacant in each region, are obtained in two further steps. In the
first step, a regional orbital (RO) space is constructed by separately diagonalizing the
DOAO(A) and DOAO(B) diagonal sub-blocks of DOAO. This yields a set of eigenvec-
tors that span the RO space. The second step is to perform a unitary transformation
to undo the mixing between the occupied and unoccupied blocks of DRO in such
a way as to preserve the localization as much as possible. The procedure is simi-
lar to the construction of natural bond orbitals (NBOs) but suitably modified and
generalized for localized regional orbitals.

In the first step, the transformation from OAOs to ROs is given by the direct sum
of TA and TB, i.e.

T = TA ⊕ TB (9-8)

where TA and TB are the eigenvectors of DOAO(A) and DOAO(B), respectively. The
eigenvalues may be divided into three sets corresponding to ROs that are approxi-
mately doubly-occupied (value close to 2), singly-occupied (eigenvalue close to 1)
and empty (eigenvalue close to 0). The singly-occupied orbitals in A and B are
hybrid AOs that could be combined to form covalent bonding/antibonding pairs.
In order to maintain localization, however, we adopt the alternative procedure of
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transferring an electron from each singly-occupied orbital of A to the correspond-
ing singly-occupied orbital of B or vice versa, depending upon which region is more
electronegative. We thereby create the ionic pair (A+B–) or (A–B+). For covalently
bonded systems, the localization quality from either choice will be essentially the
same. For a non-bonded system, such as a water chain, there are only either doubly-
occupied or unoccupied orbitals. In terms of T the density matrix in the RO basis is

DRO = T†DOAOT (9-9)

which corresponds to the transformation

CCMO
RO = T†XCCMO

AO . (9-10)

Using Eq. (9-7) and the unitarity condition TT† = T†T = 1, one can verify that

DRODRO = 2DRO (9-11)

Except for orthogonalization tails the ROs given above are completely localized to
region A or region B. However, they are not completely occupied or unoccupied.
Thus, the second, and final, step is to carry out a unitary transformation to remove
the coupling between occupied and unoccupied blocks of DROwhile retaining the
localization as much as possible. This is done using the same Jacobi procedure that
is employed in Ref. [17] to convert NBOs into localized molecular orbitals. If U is
the complete transformation matrix, then the only non-zero elements of

DRLMO = U†DROU (9-12)

will be equal to 2 (cf. Eq. (9-11)) and the resulting RLMO based CMOs will be
given by:

CCMO
RLMO = U†T†XCCMO

AO (9-13)

Finally, the coefficient matrix for transformation from AOs to RLMOs is (replace
ϕCMO in Eq. (9-1) with ϕRLMO)

CRLMO
AO = X−1TU (9-14)

From this point on we set CRLMO
AO = LRLMO

AO in order to emphasize the localized
nature of the transformed orbitals. The RLMOs defined by Eq. (9-14) are com-
pletely occupied or vacant, but are not perfectly localized due to the Jacobi rotations.
Nonetheless they are sufficiently well-localized so that the following elongation step
can be carried out without significant loss of accuracy.
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9.2.2. SCF Elongation Step

For a given suitably large starting cluster, the interaction between the frozen region
and the attacking monomer is minimized (subject to an occupancy constraint) by
using RLMOs. The elongation Hartree-Fock equation is solved self-consistently
in a basis consisting of the RLMOs of the active region and modified CMOs of
the attacking monomer (M). These CMOs are orthogonalized to the entire set of
RLMOs, using the Gram-Schmidt procedure, before proceeding further. In practice,
other choice can be made for the monomer. The SCF solution, then, obtained in the
reduced space and the resulting CMOs are localized into a new frozen region and a
new active region. The new active region is taken to be roughly the same size as the
previous one. This entire procedure is repeated until the desired length is reached.
The important feature of the elongation method is that the Hartree-Fock equation
is solved only for the interactive region instead of the whole system. Each time the
system is enlarged, the size of the interactive region remains essentially the same
and, thus, the CPU required for the elongation SCF step is more or less constant.

Although we have described the basis set for the SCF elongation calculation
we have yet to describe the construction of the Fock matrix for the reduced space
defined by the LMOs assigned to the B1 region together with orthogonalized CMOs
of the monomer M1. The transformation matrix from AOs to this mixed basis maybe
written as:

L(B1 + M1) = L(B1) ⊕ C(M1) (9-15)

Here L(B1 + M1) is a rectangular matrix with as many columns as determined by
the reduced space and as many rows as determined by the full space. In practice,
instead of CMOs, the molecular orbitals of M1 are just a convenient arbitrary set
of orthonormal orbitals. Then, using Eq. (9-15) the Fock matrix in the LMO-CMO
basis obtained through the transformation:

FLMO-CMO
ij (B1 + M1) =

∑

μ

∑

ν

Lμi(B1 + M1)FAO
μν (A1 + B1 + M1)Lνj(B1 + M1)

(9-16)

where is the complete Fock matrix in the AO basis. Whereas the AO basis Fock
matrix is for the whole system, the LMO-CMO basis Fock matrix is restricted to
the interactive region. The overlap matrix in the LMO-CMO basis can be obtained
by the same transformation as employed in Eq. (9-16) for the F matrix. Since the
overlap matrix in the LMO-CMO basis is the unit matrix, the Hartree-Fock equation
for the interactive region becomes:

FLMO-CMO(B1 + M1)U(B1 + M1) = U(B1 + M1)ε(B1 + M1) (9-17)

The dimension of the HF equation in Eq. (9-17) is the size of the interactive region
(B1+M1) instead of the whole space (A1+B1+M1). This is the special feature of the
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elongation method, which accounts for its efficiency and accuracy when combined
with regional localization (already described) and the integral evaluation techniques
described in Section 9.4. In connection with the Hartree-Fock equation, we note
that the contribution of the frozen orbitals is included in the AO basis Fock matrix
of Eq. (9-16). It is important to recognize that the Fock matrix elements coupling
the A1 and M1 blocks will have a negligible effect (as we will see) if these regions
are sufficiently far apart. Moreover, the coupling between the A1 and B1 blocks will
have little influence on the electron density and total energy. This latter statement
follows from the fact that the non-vanishing elements lie entirely within either the
occupied or the vacant space by virtue of the regional localization procedure.

After solving Eq. (9-17), the CMOs of the B1+M1 region are given by the overall
transformation from AOs:

Cμi(B1 + M1) =
∑

j

Lμj(B1 + M1)Uji(B1 + M1) (9-18)

Using these coefficients, the total AO density matrix becomes:

DAO
μν = 2

occ∑

i

Lμi(A1)Lνi(A1) + 2
occ∑

i

Cμi(B1 + M1)Cνi(B1 + M1) (9-19)

Then, the total AO basis Fock matrix may be obtained in the usual manner as:

FAO
μν (A1 + B1 + M1) = Hcore

μν +
∑

λσ

DAO
λσ [(μν |σλ) − 1

2
(μλ |σν)] (9-20)

The AO basis Fock matrix in Eq. (9-20) is used to form the updated LMO-CMO
basis Fock matrix in Eq. (9-16) and the elongation SCF iterations are repeated until
convergence is achieved. The convergence criterion is set so that either the maxi-
mum difference in any density matrix element between the previous iteration and
the current one is less than a given threshold – normally 10–6 – or the difference in
the energy is less than 10–8 a.u.

After the elongation SCF step is converged, the next elongation step is prepared
by localizing the transformation matrix C(B1 + M1) of Eq. (9-18) into two regions,
a new frozen region A2 and a new active region B2. This new active region is
ready to interact with a new attacking monomer M2. In such fashion, the elongation
procedure is continued until the desired length is reached.

9.3. TESTS OF THE ACCURACY OF THE ELONGATION METHOD:
POLYGLYCINE AND CATIONIC CYANINE CHAINS

When a closed-shell oligomer is attacked by a monomer, the reaction corresponds
to “substituting” the terminal capping atom(s) by the monomer (with its capping
atoms removed). This substitution requires deleting the capping atoms from the
Hamiltonian as well as a procedure for replacing the terminal capping atom AO
coefficient(s) in the CMOs of A and B. For the latter purpose we use AOs on the
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Figure 9-2. Illustration of the terminal atom removal

atom of the monomer that participates in the new bond. The choice of corresponding
atomic orbitals is not important because the coefficients are very small for the CMOs
of A and the resulting CMOs of B+M are self-consistently corrected during the
elongation SCF step. Figure 9-2 illustrates the procedure followed in removing the
terminal capping atom(s) of the growing oligomer. For simplicity, we suppose that a
hydrogen atom is to be removed. The AO corresponding to the terminal hydrogen is
first removed from the basis. Consequently, the N×N matrix that gives the transfor-
mation from AOs to LMOs has one less row and becomes a rectangular (N −1)×N
matrix. This makes the LMOs linearly dependent and the orthonormalization con-
dition is no longer fulfilled. The linear dependence in the LMOs must be removed
and the remaining LMOs re-orthonormalized. This can be done by diagonalizing
the overlap matrix for the linear dependent LMOs, that is by following

Y†(L̄†SL̄)Y = δ (9-21)

where S is the AO overlap matrix, L̄ is the transformation matrix after one AO
is removed from the basis, and Y and δ are the eigenvectors and eigenvalues of
L̄†SL̄, respectively. The eigenvectors corresponding to zero or very small value
eigenvalue should be deleted and the re-orthonormalized LMOs are obtained as
L′ = L̄Yδ−1/2. [18]

As fairly strenuous tests of the elongation method we consider two strongly delo-
calized and covalently bonded systems, namely polyglycine and cationic cyanine
chains. The geometry of both systems is depicted in Figure 9-3. RHF/STO-3G total
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Figure 9-3. Geometrical structure of a polyglycine and b cationic cyanines. Reprinted with permission
from Gu et al. [13]. Copyright [2004], American Institute of Physics
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Table 9-1. RHF/STO-3G total energy of polyglycine obtained from conventional calculations and the
elongation energy error �E = Eelg − Ecvl for different size starting clusters (Nst). Reprinted with
permission from

E (total, in a.u.) �E = Eelg − Ecvl (in 10–6 a.u.)

N Conventional Nst = 4 5 6 7 8

4 –856.14997927 0.00
5 –1,060.26460708 0.13 0.00
6 –1,264.37928877 0.38 0.16 0.00
7 –1,468.49397305 0.72 0.43 0.16 0.00
8 –1,672.60867708 1.11 0.79 0.44 0.17 0.00
9 –1,876.72338190 1.55 1.20 0.82 0.45 0.17
10 –2,080.83809595 2.02 1.66 1.24 0.83 0.46
11 –2,284.95281027 2.51 2.13 1.70 1.25 0.84
12 –2,489.06752962 3.02 2.63 2.18 1.72 1.26
13 –2,693.18224908 3.54 3.15 2.68 2.20 1.73
14 –2,897.29697156 4.07 3.68 3.20 2.71 2.21
15 –3,101.41169409 4.61 4.21 3.73 3.23 2.72
16 –3,305.52641858 5.16 4.76 4.27 3.76 3.24
17 –3,509.64114310 5.72 5.31 4.82 4.30 3.78
18 –3,713.75586896 6.28 5.87 5.37 4.85 4.32
19 –3,917.87059484 6.84 6.43 5.93 5.41 4.87
20 –4,121.98532166 7.41 6.99 6.49 5.96 5.42

Gu et al. [13]. Copyright [2004], American Institute of Physics

energies and elongation errors for different size polyglycine starting clusters (Nst)
are presented in Table 9-1. Here Nst ranges from 4 to 8, where Nst counts the num-
ber of (–CO–NH–CH2–) units in the starting cluster. The formula of the starting
cluster with Nst = 4, for example, is CH3-(CO-NH-CH2-)4-H, and the attacking
monomer is H-(CO-NH-CH2)-H. So we have to remove the capping H atoms on the
starting cluster and the attacking monomer according to the procedures described
above. For the case Nst = 4, with one residue in the frozen region and three in the
active region, the elongation energy errors compared to a conventional calculation
are within a maximum value of 7.5 × 10−6 a.u. for up to 20 residues. The error
per unit, �E(N) − �E(N − 1), is plotted versus N in Figure 9-4 for different Nst.
For any given N, the elongation error decreases as the starting cluster size increases,
which is what one might expect. Moreover, the difference between starting clusters
becomes smaller as the starting number of residues increases. In all instances, the
error monotonically approaches a value of roughly 6.0 × 10−7 a.u. This indicates
that the elongation error does not accumulate – it saturates to a small asymptotic
limit as more and more elongation steps are performed.

It is also of interest to see how our scheme is affected by the choice of basis set.
In Table 9-2 RHF/6-31G results from conventional and elongation calculations are
given for polyglycine chains containing up to 12 residues. Using this basis set the
curves analogous to those in Figure 9-4 are non-monotonic and an upper bound on
the error per residue cannot be obtained in the same manner as before. However,
for Nst ≥ 6 the 6-31G basis set error per unit is always much smaller than the
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Figure 9-4. The elongation error per unit with respect to the size of starting cluster for polyglycine at
HF/STO-3G level. Reprinted with permission from Gu et al. [13]. Copyright [2004], American Institute
of Physics

corresponding STO-3G errors. This leads us to believe that an upper bound does
exist for these starting clusters and that it is less than the bound for the smaller
basis. The same may be true for Nst = 5 but not for Nst = 4. This shows in addition,
that a larger starting cluster is required for larger basis sets.

For the model cationic cyanine chains shown in Figure 9-3b there is also a
resonance form where the charge is localized at the right hand end of the chain
and another form with a soliton defect at the center of the chain. These chains
are strongly delocalized and we anticipated that a larger starting cluster would be
required than for polyglycine. Bearing this in mind we considered starting clus-
ters in the range 10 ≤ Nst ≤ 18 for the STO-3G basis (see Table 9-3 as well
as Figure 9-5 and 10 ≤ Nst ≤ 15 for the 6-31G basis (see Table 9-4 as well as
Figure 9-6). For all starting clusters, the initial frozen region contains 13 atoms:
H2N+=CH−CH=CH−CH=CH− with the remainder in the active region. Given a
cyanine containing a fixed number of CH=CH– units, the error per unit decreases

Table 9-2. RHF/6-31G total energy of polyglycine obtained from conventional calculations and the
elongation energy difference �E = Eelg − Ecvl for different size of the starting clusters (Nst)

E (total, in a.u.) �E = Eelg − Ecvl (in 10–6 a.u.)

N Conventional Nst = 4 5 6 7 8

4 –866.98679700 0.00
5 –1,073.69571468 0.33 0.00
6 –1,280.40474591 0.84 0.39 0.00
7 –1,487.11377297 1.57 0.95 0.41 0.00
8 –1,693.82284353 2.42 1.74 0.99 0.42 0.00
9 –1,900.53191219 3.38 2.63 1.82 1.01 0.42
10 –2,107.24100130 4.41 1.48 0.29 0.10 0.02
11 –2,313.95008940 5.50 1.94 0.43 0.16 0.03
12 –2,520.65918886 6.62 2.45 0.58 0.24 0.06
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Table 9-3. RHF/STO-3G total energy of cationic cyanines obtained from conventional calculations and
the elongation energy error �E = Eelg − Ecvl for different size starting clusters (Nst). All energies are
in a.u.

E (total) �E = Eelg − Ecvl

N Conventional Nst = 10 12 14 16 18

10 –907.0294875
11 –982.9678631 2.643E-04
12 –1058.9060880 4.585E-04
13 –1134.8442013 6.290E-04 9.618E-05
14 –1210.7822352 7.748E-04 1.563E-04
15 –1286.7202161 8.963E-04 2.052E-04 3.490E-05
16 –1362.6581659 9.970E-04 2.441E-04 4.839E-05
17 –1438.5961016 1.081E-03 2.749E-04 5.785E-05 1.264E-05
18 –1514.5340365 1.155E-03 3.002E-04 6.476E-05 1.126E-05
19 –1590.4719800 1.223E-03 3.229E-04 7.074E-05 9.739E-06 4.713E-06
20 –1666.4099384 1.289E-03 3.452E-04 7.718E-05 8.761E-06 –1.085E-06
21 –1742.3479152 1.356E-03 3.687E-04 8.504E-05 9.002E-06 –5.577E-06
22 –1818.2859122 1.426E-03 3.945E-04 9.486E-05 1.084E-05 –8.878E-06
23 –1894.2239294 1.500E-03 4.230E-04 1.068E-04 1.435E-05 –1.093E-05
24 –1970.1619663 1.579E-03 4.544E-04 1.207E-04 1.941E-05 –1.178E-05
25 –2046.1000215 1.663E-03 4.887E-04 1.365E-04 2.579E-05 –1.160E-05
26 –2122.0380934 1.751E-03 5.255E-04 1.538E-04 3.319E-05 –1.064E-05
27 –2197.9761805 1.843E-03 5.648E-04 1.725E-04 4.135E-05 –9.121E-06
28 –2273.9142810 1.940E-03 6.062E-04 1.922E-04 5.003E-05 –7.280E-06
29 –2349.8523935 2.040E-03 6.495E-04 2.127E-04 5.903E-05 –5.311E-06
30 –2425.7905166 2.143E-03 6.944E-04 2.339E-04 6.820E-05 –3.360E-06
31 –2501.7286489 2.250E-03 7.408E-04 2.556E-04 7.744E-05 –1.538E-06
32 –2577.6667893 2.359E-03 7.886E-04 2.778E-04 8.670E-05 8.390E-08
33 –2653.6049368 2.471E-03 8.374E-04 3.004E-04 9.590E-05 1.461E-06
34 –2729.5430905 2.584E-03 8.874E-04 3.233E-04 1.050E-04 2.574E-06
35 –2805.4812496 2.700E-03 9.382E-04 3.465E-04 1.141E-04 3.423E-06
36 –2881.4194135 2.817E-03 9.899E-04 3.700E-04 1.231E-04 4.026E-06
37 –2957.3575815 2.936E-03 1.042E-03 3.937E-04 1.320E-04 4.394E-06
38 –3033.2957532 3.056E-03 1.095E-03 4.176E-04 1.409E-04 4.553E-06

Reprinted with permission from Gu et al. [13]. Copyright [2004], American Institute of Physics.

(not unexpectedly) as the size of the starting cluster increases. For a particular start-
ing cluster the error per unit with the 6-31G basis is always largest for the first
elongation step. Then, this error decreases monotonically as the chain is length-
ened. With the STO-3G basis there is an initial decrease in the error per unit as
N increases but, then, for longer chains the error per unit goes through a mini-
mum and increases before ultimately saturating. It is evident, in this case, that the
value for large N depends significantly on Nst. For either basis set, however, the
important point is that, once again, the error does not accumulate as the chain is
elongated; instead it levels off to a fairly small value: on the order of 10–4 a.u. for
Nst = 10 as compared to the energy per –CH=CH– unit of about 77 a.u. It should
also be noted that the limiting error per unit falls off by an order of magnitude
when Nst is increased from 10 to 15. We judge that the results are satisfactory for
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Figure 9-5. Elongation error per unit as a function of Nst versus the number of units cells for cyanines
at STO-3G level. Reprinted with permission from Gu et al. [13]. Copyright [2004], American Institute
of Physics.

Nst ≥ 10. On the other hand, for Nst = 4 the limiting error per residue is on the order
of 10–2 a.u.

So far we have been using the energy as the criterion for the accuracy of our
elongation treatment. It is of interest to examine other properties as well. Thus, for
the cationic cyanines, Mulliken atomic charges computed by the conventional and

Table 9-4. RHF/6-31G total energy of cationic cyanines obtained from conventional calculations and the
elongation energy error�E = Eelg−Ecvl for different size starting clusters (Nst). All energies are in a.u.

E (total) �E = Eelg − Ecvl

N Conventional Nst = 10 11 12 13 14 15

10 –917.9884528
11 –994.8440339 1.773E-04
12 –1071.6994528 3.373E-04 1.064E-04
13 –1148.5547423 4.926E-04 1.989E-04 6.432E-05
14 –1225.4099290 6.382E-04 2.874E-04 1.160E-04 3.899E-05
15 –1302.2650349 7.702E-04 3.687E-04 1.640E-04 6.589E-05 2.361E-05
16 –1379.1200784 8.865E-04 4.402E-04 2.065E-04 8.954E-05 3.555E-05 1.423E-05
17 –1455.9750747 9.870E-04 5.012E-04 2.420E-04 1.088E-04 4.466E-05 1.726E-05
18 –1532.8300368 1.073E-03 5.519E-04 2.705E-04 1.233E-04 5.046E-05 1.796E-05
19 –1609.6849756 1.147E-03 5.938E-04 2.928E-04 1.334E-04 5.315E-05 1.631E-05
20 –1686.5398999 1.212E-03 6.287E-04 3.101E-04 1.401E-04 5.339E-05 1.283E-05

Reprinted with permission from Gu et al. [13] Copyright [2004], American Institute of Physics
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Figure 9-6. Elongation error per unit as a function of Nst versus the number of units cells for cyanines
at 6-31G level. Reprinted with permission from Gu et al. [13]. Copyright [2004], American Institute of
Physics.

elongation methods were compared. Figure 9-7 is a plot of the charge error for the
case N = 20 obtained using the RHF/6-31G basis. The sizes of the starting cluster
for the elongation calculations are Nst = 10 and Nst = 15. From Figure 9-7, one can
see that the magnitude of the maximum charge error and the range of atoms over
which the larger differences occur, both decrease as Nst increases. For Nst = 10 the
maximum charge difference is slightly larger than 0.01e, which we regard as bor-
derline accuracy – i.e. this is the smallest starting cluster that one should use. The
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largest errors are in the vicinity of the border between regions A and B. As noted in
Section 9.2.1, in order to have all ROs approximately doubly-occupied or approxi-
mately empty, we figuratively transfer an electron from each singly-occupied orbital
of region A to the corresponding singly-occupied orbital of region B, which is prob-
ably why the largest errors occur near the border. In contrast, for water chains (same
basis set; Nst = 5) no electron transfer is needed in the localization procedure and the
atomic charges in the conventional and elongation calculations are almost identical
(the maximum difference is less than 10–4e).

At this point a comment about the negative sign of many �E values in the last
column of Table 9-3 is in order. Although we have not yet been able to prove that�E
must be positive (as it would be if the variation principle applied) , it has been our
experience with the closely related Local Space Approximation [3] that whenever
a negative �E occurs it is always traceable to some numerical or algorithmic error.
Thus, in this case it is likely that the very small negative value is associated with
numerical round-off error or incomplete SCF convergence.

For comparison purposes a set of calculations was carried out using the PM3
semiempirical Hamiltonian. As might have been anticipated, the results for the
energy error per –CH=CH– unit, shown in Figure 9-8, are similar to those obtained
using the STO-3G minimum basis set in an ab initio treatment (see Figure 9-5).
Both sets of curves exhibit a minimum at an intermediate chain length. However, in
contrast with the ab initio case, the semiempirical curves do not increase monoton-
ically for larger N but go through a small maximum and converge to the long chain
limit from above rather than below.



190 F.L. Gu et al.

9.4. INTEGRAL EVALUATION TECHNIQUES FOR LINEAR
SCALING CONSTRUCTION OF FOCK MATRIX

In the elongation method the variational space on which the RHF or KS molecular
orbitals are determined remains more or less constant as the size of the molecule
is increased. This is a necessary, but not sufficient, condition to achieve linear
scaling. In addition, the construction of the Fock matrix, or the KS potential,
must scale linearly. For the Fock matrix we have introduced integral evaluation
techniques to accomplish that purpose. In this section these techniques will be
described. There are two steps involved – one is to reduce the number of electron
repulsion integrals (ERIs) that must be determined and the other is to calculate
the remaining small integrals by means of the quantum fast multipole method
(QFMM).

9.4.1. Reducing the Number of ERIs

The elongation treatment starts from a conventional calculation performed on a suf-
ficiently large starting cluster followed by a localization procedure whereby the
CMOs of the starting cluster are localized into A1 and B1 regions. Region B1 is the
orbital space determined by the LMOs that interact significantly with the attacking
molecule M1, while region A1 contains the LMOs that have negligible interac-
tions. In the first elongation step the SCF problem is solved on the space defined
by the LMOs of B1 and the CMOs of the attacking monomer (M1) as shown in
the schematic Figure 9-1. All ERIs are retained in forming the Fock matrix on this
space. The resulting CMOs from solution of the Fock equation are localized into a
new frozen region, A2, and a new active region, B2. The latter is, then, ready to inter-
act with a new attacking molecule, M2. At this point we can check to see whether
some of the ERIs involving AOs centered on atoms in region A1 can be ignored in
constructing the Fock matrix for the active space. The quantity used for this purpose
should be a measure of the coupling between the frozen region A1 and the active

region B2. In the elongation method we use
A1∑
μ

Bn∑
ν

Lμi(A1)SAO
μν Lνj(Bn) to check if

a cutoff can be made or not. If this quantity is smaller than a threshold value (the
default is 10–9), some ERIs involving the AOs that belong to frozen region A1 can
be eliminated in constructing the Fock matrix for the elongation step. In particular,
the ERIs involving 3 or 4 AOs from region A1 can be ignored since they do not
contribute to the Fock matrix in Eq. (9-20) as determined by the reduced density
matrix for the active space. In Figure 9-1 the ERI proceeds without any cutoff since
the cutoff criterion is not met. In fact, it is not until addition of the 5th monomer
that cutoffs are initiated. Subsequently, in each elongation step a new cutoff region
is generated while the remaining frozen region is kept more or less the same size.
Despite the cutoff used to evaluate the Fock matrix for the active region, it is impor-
tant to note that all ERIs must be retained when calculating the total energy of the
system.
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9.4.2. Combination of ERI Cutoff with QFMM Evaluation of Remaining
Small Integrals

The elongation method is faster than a conventional HF calculation as far as the
localization and, especially, the diagonalization steps are concerned. This is not
true, however, for the formation of the Fock matrix. The reduction in number of
ERIs afforded by the cutoff procedure described in Section 9.4.1 helps alleviate this
situation, so that the overall CPU time favors the elongation method. Nonetheless,
the advantage of the latter grows slowly with chain length and our method does not
scale linearly without one further development, namely introduction of the quantum
fast multipole moment (QFMM) [19] method to evaluate small integrals that survive
the cutoff.

The QFMM method for integral evaluation is well-known and will not be
reviewed here. Suffice it to say that the implementation in the Gamess [20] suite
of programs has been successfully modified to include integral cutoffs. The QFMM
divides Coulombic interactions into local and distant contributions. This depends
on the extent parameter that characterizes Gaussian charge distributions. Local
2e-integrals are evaluated explicitly by standard methods, while, the 2e-integrals
with three- or four-atomic indices belonging to cutoff regions are disregarded. All
remaining 2e-integrals are evaluated by the FMM. These are divided into near-field
and far-field sets, again based on an extent parameter. Such a procedure defines a
tree-like hierarchy of boxes. In the elongation method, during the SCF run, the boxes
with charge distributions belonging to cutoff regions are considered as field vectors
for the active region.

9.5. ILLUSTRATIVE LINEAR SCALING CALCULATIONS FOR THE
ELONGATION METHOD WITH ERI CUTOFF AND QFMM
EVALUATION OF REMAINING SMALL INTEGRALS

When the basic elongation method incorporates ERI cutoffs and QFMM evaluation
of remaining small integrals, the entire procedure scales linearly with the size of
the system. Several illustrative calculations are presented in this section to support
this claim. All of these calculations are performed at the HF level of theory using
either an STO-3G or 6-31G basis set. [21] The threshold for the density matrix is
10–6. In order to speed up the SCF convergence, the second-order method for orbital
optimization [22] as adopted. Our calculations were carried out on computer clusters
with 8 nodes for a total of 64 CPUs.

9.5.1. Model Linear Water Chain

For a first demonstration we chose the model system of a linear water chain shown
in Figure 9-9. The cutoff calculation is initiated when the interaction between the
cutoff region and the active region is less than 10–8. Our results for the overall CPU
time of conventional and elongation (with ERI cutoff and QFMM) calculations are
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Figure 9-9. Model linear water chain
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shown in Figure 9-10. It is clear that linear scaling is achieved for both STO-3G
and 6-31G basis sets, and that the elongation method becomes more efficient than a
conventional treatment after about 300 monomer units.

These results also show that linear scaling is achieved only by combining integral
cutoff with and QFMM evaluation of remainong non-local integrals.

9.5.2. Polyglycine

The geometrical structure of polyglycine in its C5 conformation is depicted in
Figure 9-3a. Chains containing from 20 to 150 glycine units were built by the elon-
gation method. In each elongation step the H atom at the growing end of the chain
is removed as is the H atom adjacent to the CO group of the added H-CONH2-CH3
unit. A minimal STO-3G basis set was employed in these calculations. Cutoffs were
implemented when the interaction between the cutoff fragment and the active region
became less than 10–9. Our starting cluster contains 20 glycine units with three dif-
ferent partitions of the polymer, i.e. the size of the frozen region is taken to contain
4, 8, and 10 glycine units.

Table 9-5 collects the total energies of C5 polyglycine clusters obtained by the
conventional and elongation methods, as well as the elongation errors,�E = Eelg−
Ecvl. It is found that the elongation energies reproduce the exact results very well;
the absolute value of �E is no more than 5.0 × 10−7 a.u. Cutoff occurs first for the
cluster with N = 32. The cutoff threshold is a key parameter. When it is set to 10–5,
the error increases to about 10–6 a.u.

The total elongation CPU time is plotted in Figure 9-11 together with the conven-
tional CPU time for reference purposes. One can observe almost linear dependence
for the elongation calculations. However, the curves do not cross until N = 180. This
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Table 9-5. Conventional RHF/STO-3G total energies (a.u.) for C5 conformer of
polyglicine and the energy differences�E = Eelg−Ecvl for Nst = 20. All energies
are in a.u. In the elongation calculations, Nfrozen = 4(10) means four (ten) units
are frozen in the starting cluster

E (total) (in a.u.) �E = Eelg − Ecvl(in 10–7a.u.)

N Conventional Nfrozen=4 Nfrozen=10

40 –8204.27989963 –4.83 1.06
60 –12286.57450490 –4.43 –1.54
80 –16368.86911866 –4.08 –1.10
100 –20451.16374085 –4.19 –0.60
120 –24533.45837184 –4.20 –0.13
140 –28615.75301868 –4.22 –0.21

is due to the large number of intermediate steps. In order to improve that situation
we can increase the size of the added units. For illustrative purposes we have per-
formed additional elongation calculations with eight (filled triangles) or ten (filled
diamonds) glycine units added in each step while simultaneously using eight or ten
frozen units, respectively. These results are also displayed in Figure 9-11. In the
first case, the initial cutoff step occurs for N = 36, whereas, in the second case,
it occurs for N = 40. When the polyglycine is enlarged by eight units, the overall
elongation time is lower than the conventional one after 80 units. Increasing the size
of the building block to ten glycine units slightly reduces the overall CPU time. In
both cases the curve of elongation CPU times versus number of units is essentially
linear.
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Figure 9-11. Total CPU time vs number of units for the conventional and elongation calculations of C5
polyglycine clusters
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9.5.3. Nanotubes

As our third example, we apply the ab initio elongation method to the single-wall
boron nitride (BN) heterostructured nanotubes [23], depicted in Figure 9-12.

If the localization were perfect the elongation method would reproduce exactly
the results of a conventional calculation. However, because chemical bonds are
broken when the nanotube is divided into fragments the quality of the localiza-
tion is at issue. BN nanotubes are usually difficult for methods trying to exploit
the local character of the electronic structure because of their strong delocalized
nature. Therefore, we compare the elongation and conventional results to deter-
mine the accuracy of the elongation method for different BNNTs. In Tables 9-6
and 9-7, we have collected total energies of (4,4) and (6,0) BNNTs at the HF/STO-
3G level for conventional HF, as well as elongation calculations with and without
cutoff +QFMM treatment of non-local ERIs.

For (4,4) or (6,0) BNNTs, the starting cluster contains six units, with one unit in
frozen region, and the whole system is elongated up to 17 units by adding one unit
at a time; the first cutoff step is performed for N = 13 units. The elongation error
with and without cutoffs (� Eelg/atom and � Ecutoff /atom respectively) are defined
in the footnotes to Table 9-6. For the (4,4) BNNT containing 17 units, �Eelg/atom
is 1.9×10−9 au and�Ecutoff/atom is 3.1×10−9 au. For the (6,0) BNNT containing
17 units, the�Eelg/atom and�Ecutoff/atom values are 3.6×10−8. We consider that
these errors are small enough as to be completely negligible.

Figure 9-12. The structures of a (4,4) BN nanotube and b (6,0) BN nanotube. The upper and lower
figures are side and top views, respectively Reprinted with permission from Chen et al. [23]. Copyright
[2009], American Chemical Society
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Table 9-6. The elongation energy error of (4,4) BNNT at the HF/STO-3G level
and the error per atom in each elongation step

Number of units Number of atoms � Eelg/atom a � Ecutoff /atom b

6 112 0.000E+00
7 128 2.312E-10
8 144 4.604E-10
9 160 6.863E-10
10 176 8.983E-10
11 192 1.095E-09
12 208 1.268E-09
13 224 1.429E-09 2.919E-09
14 240 1.571E-09 3.045E-09
15 256 1.696E-09 3.080E-09
16 272 1.811E-09 3.111E-09
17 288 1.914E-09 3.145E-09

Reprinted with permission from Chen et al. [23]. Copyright [2009], American
Chemical Society
a: �Eelg/atom = (Eelg − Ecvl)/number of atoms
b: �Ecutoff/atom = (Ecutoff − Ecvl)/number of atoms

In order to investigate the basis set effect we repeated our calculations (without
cutoff) on the (4,4) BNNT using the 3-21G and 6-31G basis sets. Although the
errors (see Table 9-8) do increase somewhat when using the 3-21 G basis set, they
are still negligibly small. Note that a larger starting cluster (Nst = 10) was needed
for the larger basis sets.

Figure 9-13 shows the total computation time for SCF calculations of (4,4) BN
nanotube against the number of units with Nst = 6 for the STO-3G basis set.

Table 9-7. The elongation energy error of (6.0) BNNT at the HF/STO-3G level
and the error per atom in each elongation step

Number of units Number of atoms � Eelg/atom � Ecutoff /atom

6 156 0.000E+00
7 180 1.463E-09
8 204 4.513E-09
9 228 8.351E-09
10 252 1.246E-08
11 276 1.653E-08
12 300 2.044E-08
13 324 2.409E-08 2.337E-08
14 348 2.747E-08 2.675E-08
15 372 3.059E-08 2.991E-08
16 396 3.346E-08 3.283E-08
17 420 3.610E-08 3.550E-08

Reprinted with permission from Chen et al. [23]. Copyright [2009], American
Chemical Society
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Table 9-8. STO-3G, 3-21G and 6-31G basis sets are employed to obtain errors per atom
introduced by the elongation method for (4,4) BN nanotube. All results are in au

� Eelg/atom

Number of units Number of atoms STO-3G 3-21G 6-31G

6 112 0.000E+00
7 128 2.312E-10
8 144 4.604E-10
9 160 6.863E-10
10 176 8.983E-10 0.000E+00 0.000E+00
11 192 1.095E-09 1.757E-08 0.000E+00
12 208 1.268E-09 3.018E-08 0.000E+00
13 224 1.429E-09 4.141E-08 0.000E+00
14 240 1.571E-09 5.116E-08 -4.169E-13
15 256 1.696E-09 5.975E-08 8.781E-10
16 272 1.811E-09 6.736E-08 1.694E-09
17 288 1.914E-09 6.253E-08 2.558E-09

Reprinted with permission from Chen et al. [23] Copyright [2009], American Chemical Society
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Without cutoff the calculations take somewhat less time than conventional HF, but
when the cutoff technique is applied there is a major reduction and linear scaling is
essentially achieved.

9.6. SUMMARY AND FUTURE PROSPECTS

In this chapter, we have reviewed the elongation method. The accuracy of the
method is illustrated for several examples. When an integral cutoff procedure with
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QFMM evaluation of the remaining integrals is included, linear scaling is achieved.
This has been substantiated by calculations on model water chains, polyglycine, and
BN nanotubes.

Various improvements and extensions are in progress. One technical improve-
ment is to move a carefully selected number of orbitals with long tails from the
frozen region to the active region. In initial tests we find that this can improve
both the accuracy and efficiency of the method. A second technical improvement,
which is easily implemented, will be to add the density for the frozen region to the
active region only after the SCF calculation has converged. Finally, a third techni-
cal improvement, that will be made shortly, is to also use the multipole expansion
method within the cutoff region as well.

The elongation method, as currently constituted, is already suitable for applica-
tion at the Hartree-Fock and Kohn-Sham DFT levels of theory. In principle, the same
general approach can be extended to all ab initio wavefunction treatments. An ini-
tial elongation-MP2 formalism has been implemented for the final chain length and
compared to the standard canonical MP2 approach. [24] Some tests on this elg-MP2
show that it is more efficient than LMP2 with CPU savings from both the Hartree-
Fock and MP2 parts of the calculations. In the future, we plan to ass a step-by-step
MP2 treatment [25] as well as coupled cluster and CI capability.

Based on the achievements of the one-dimensional elongation method, a general-
ized elongation method for two- and three-dimensional systems has been proposed.
[26] In contrast to the original treatment, we add earlier “frozen” units back into the
active region if the interaction subsequently becomes strong. In fact, this same pro-
cedure can also be applied to quasi-1D systems. Initial tests have been encouraging
and work is in progress on the application to large biological systems of interests,
such as proteins and DNA as well as 3D molecular crystals.
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Abstract: Divide-and-conquer (DC) type methods are being actively developed in order to break the
bottleneck of high scaling order of ab initio calculations of large molecules. Molecular
Tailoring Approach (MTA) is one of such early attempts, which scissors the parent molec-
ular system into subsystems (fragments). The properties of these subsystems are stitched
back in order to estimate those for the parent system. Inclusion-exclusion principle from
set theory is incorporated into MTA, which allows accurate estimation of electronic
energy, energy-gradients and Hessian. This Chapter summarizes the algorithm, equations
as well as basic parameters for obtaining an optimal fragmentation for a given molecule.
The fragmentation in MTA is exclusively based on distance-criterion allowing its applica-
tion to a general class of molecules. Further, the versatility of this method with respect to
the level of theory [Hartree-Fock (HF) method, Møller-Plesset second order perturbation
theory (MP2) and Density Functional Theory (DFT)] as well as the basis set is illustrated.
Apart from earlier benchmarks, a few new test cases including geometry optimization of
variety of molecules, benzene clusters, polyaromatic hydrocarbons, metal cluster and a
protein with charged centers are presented in this Chapter.

Keywords: Molecular tailoring approach (MTA), Linear scaling methods, Hartree-Fock (HF)
Theory, Density functional theory (DFT), Møller-Plesset second order perturbation
(MP2) theory, π-conjugation, Large molecules

10.1. INTRODUCTION

Ab initio quantum chemical methods provide a practical means for investigat-
ing the electronic structure and properties of moderate-sized molecules. High-
performance computing hardware and “black box” suits of programs are further
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useful in enhancing the applicability of these methods to large molecular systems.
Consequently, theory is being used not only by theoreticians but also by experimen-
talists. There are several popular packages including GAMESS [1], GAUSSIAN
[2], and TURBOMOL [3] etc. which provide efficient codes for calculating ener-
gies, geometry optimization, spectra calculation at a desired level of theory. Despite
all these developments, the high scaling problem of ab initio methods is inherently
insurmountable. For instance, the basic ab initio method, viz. the Hartree-Fock (HF)
theory scales as O(N4), where N is number of basis functions. Møller-Plesset sec-
ond order perturbation theory (MP2), which accounts for electron correlation to
some extent, scales as O(N5). Thus, the application of ab initio methods is restricted
to systems comprising of few hundreds of atoms. The higher-accuracy versions
of correlated methods viz. coupled cluster (CC), configuration interaction (CI) are
applicable to only few tens of atoms, even with the availability of the powerful
supercomputers today.

Though the formal scaling of HF is O(N4), for spatially extended large
molecules, it scales as O(N3) [4]. Consequently, the memory requirements for HF
calculation for large molecules are moderate and can be handled by the contempo-
rary PC-type hardware. However, DFT with similar scaling as HF is more accurate
method for ground state properties, as it incorporates exchange-correlation func-
tional. It employs electron density as a basic variable with self-consistency built into
Kohn-Sham scheme. Two popular frameworks for exchange correlation function-
als are: local density approximation (LDA) and generalized gradient approximation
(GGA). Hybrid functionals such as Becke-(3 parameter)-Lee-Yang-Parr (B3LYP)
[5], M05, M06 [6] etc. have already become or are becoming popular nowa-
days, in which the correlation contribution is summed up along with a part of
or complete HF exchange. DFT is well-known for providing results at low com-
putational costs, which can be directly compared to experiments. However, it is
difficult to choose a functional according to the molecular system and specific
molecular property under consideration. For instance, B3LYP is reliable [5] for
ground state energies of molecules, while M06, another hybrid functional [6] is
parameterized for transition metals and non-metals. Since the exact form of the
Hohenberg-Kohn functional is not known, there is generally no clear and system-
atic way for improving the results within DFT framework. But in the wave-function
based methods, HF is the foundational method, onto which variational or pertur-
bative improvements of increasing accuracy can be carried out for obtaining more
reliable results. In the former methodology, the higher levels of CC and CI meth-
ods, e.g. CCSD(T) and SDTQ CI, although expensive, exemplify highly accurate
schemes.

The Hartree-Fock procedure being a basic method lacking electron correlation
and higher versions of CC, CI etc. being too expensive to treat large molecules,
MP2 is known to provide an affordable alternative that captures substantial part of
electron correlation energy. But the scaling of O(N5) still renders it impossible to
treat really large systems such as proteins or large water clusters, to name a few.
As an attractive computational alternative, several active groups have been work-
ing on parallelization of HF and MP2 methods on a variety of hardware platforms
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which have become cost-effective during the last two decades or so. The earlier
attempts from our own group [7] included implementation of a parallel algorithm
for electron repulsion integrals and HF method [7a,b]. These efforts in the devel-
opment of parallel codes continued [7c] for effective four-index transformation
within MP2 framework. The efficiency of this architecture-independent method was
demonstrated with dynamic load balance on few hydrocarbons and cytosine which
were considered as ‘large molecules’ at that time! These parallelization methods
aim at exploiting the available low- cost computational resources to the maximum
possible extent. With recent improvement in novel hardware technologies such as
the cell processor and the graphics processing unit (GPU), researchers have mod-
ified the HF algorithm to effectively use the massive computational power offered
by them. Notable of these efforts is the work [8] by Martinez et al. which has now
resulted into a commercially available package [9]. These efforts have pushed the
size of systems that could be handled on a standard PC hardware with commodity
add-ons such as a graphics processor.

Another type of attempt to make possible the treatment of large molecular sys-
tems by ab initio methods is based on approximations such as localization of
molecular orbitals (MO) or neglect of numerically insignificant integrals etc. In a
work reported in 1988, Saebo and Pulay [10] exploited the fact that the occupied
orbitals in almost all ground-state closed-shell molecules can be very well localized.
They demonstrated their method for local correlation treatment of octatetracene
molecule. A linear scaling method termed as local second order Møller-Plesset per-
turbation theory (LMP2) developed in 1999 by Schütz, Hetzer and Werner [11] is
also based on localization of MOs. The impressive performance is achieved here
by using orbital domains for each electron pair and an effective use of prescreening
algorithm in the integral transformations. This method has been benchmarked with
test examples of (Gly)n=1,22,α-(Ala)10, (H2O)n=20−60 and small drug molecules
such as indinavir and paclitaxel. However, the serious limitations of this method are
seen on its application to ‘real-lfe’ 3D systems such as water clusters, in which MOs
are not localized. Molecules containing ∼100 atoms and ∼1000 basis functions can,
in general, be readily subjected to MP2-level geometry optimization, using a black-
box program, with a small computer cluster made of contemporary off-the-shelf
hardware at the time of writing this Chapter. However, due to the inherent N5 scaling
of the MP2 method, on increasing the system size, say to ∼300 atoms, the memory
requirement of the calculation becomes huge (about few hundreds of GB), mak-
ing it impossible to implement. A technique known as Resolution of Identity (RI)
approximation [12-14] is invoked for reducing the effort of MP2 calculation. In this
approximation, linear combinations of atom-centered auxiliary basis functions are
employed for calculating the two-electron integrals and those with negligible mag-
nitude are skipped during calculation. Recent work by Nagase and co-workers [12],
following the earlier studies from other groups [13, 14] has resulted into the devel-
opment of an efficient RI-MP2-based parallel program. Katouda and Nagase [12c]
have recently reported a few benchmarks of their RI-MP2 vis-à-vis the correspond-
ing actual MP2 calculation for single-point energy evaluation. The efficiency and
accuracy of RI-MP2 method critically depend on the auxiliary basis set used. The
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RI-MP2 approximation is seen to reduce the memory requirements of MP2 method
by a factor of ∼2, for the molecular systems studied, when a moderate auxiliary
basis set is employed [12c].

The real spirit of ab initio methods lies in the determination of electronic struc-
ture. This is achieved by geometry optimization of the molecule which normally
requires tens or hundreds of such single point energy-gradient steps and is thus seen
to be the most time-consuming process. This calls for some alternative solution
or modification in ab initio methods for reducing the inherent scaling. As a con-
sequence, a third category of methods for effectively handling large molecules is
coming up and is based on divide-and-conquer strategy. The earliest attempt to solve
this problem, to the best of the authors’ knowledge, was made by Christoffersen
and co-workers [15] using a fragmentation-based algorithm. In this method, a large
molecule is broken up into fragments, which are individually submitted to ab ini-
tio calculation. Admittedly, the calculations reported by Christoffersen et al. were
performed employing a very simple model that represented an electron pair with
just a single floating Gaussian function due to limitations of computational power
available in the early 1970s. However, Christoffersen et al. indeed pioneered the
idea of using fragment calculations for treating the large molecular system within
ab initio framework. This novel idea was successfully implemented for several spa-
tially extended systems of chemical and biological interest. Many years after this
work, another attempt for treating large molecules was reported by Yang et al.
[16–18]. In this method, the electron density of the whole molecule was derived
from the corresponding fragment densities. The method, later named as “Divide
and Conquer” (DC), was tested for polypeptides and large carbon clusters [16–18].
Zhao and Yang reported [18] the first attempt of geometry optimization with their
DC-method within DFT framework. However, the systems tested (a glycine unit and
a glycine-tetrapeptide) in this work contained less than 30 atoms. These DC-based
calculations took more time than the corresponding actual ones. However, more
meaningful test cases reflecting time advantage over the actual calculations could
not be reported at that time probably due to restrictions of hardware resources.

The next of these DC-based methods, named as Molecular Tailoring Approach
(MTA) is being developed in our laboratory in Pune, since 1994. The method has
been incorporated in a locally modified version of GAMESS [1] and also been
interfaced with GAUSSIAN’03 [2]. To begin with, the method was limited to deter-
mining the density matrix (DM) of a spatially extended, large molecule from the
respective fragment DM’s. Such a synthesized DM was employed for enumera-
tion of one-electron properties such as molecular electron density (MED), dipole
moments or molecular electrostatic potential (MESP) [19–21]. These properties,
along with the topography of the corresponding scalar fields, were computed for a
variety of molecular systems, e.g. tocopherol, ZSM-5 silicalite zeolite and a model
polypeptide at HF/6-31G(d,p) level within the MTA framework. A few tests at MP2
level were also performed and led to good results in terms of the accuracy as well
as efficiency.

The method was extended [22, 23] to geometry optimization of large systems
with qualitative estimates of energies at HF, DFT and MP2 levels. The benchmarks
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performed on the chosen systems showed a clear speed-up by factor of 3 or more
over that for the corresponding actual calculation [22, 23]. To the best of authors′
knowledge, this is one of the earliest systematic attempts of geometry optimiza-
tion of large molecules using fragment-based strategy. Further, the method has been
improved for more accurate energy and gradient estimation by adding a flavor of set
theory in terms of cardinality based equations [24]. These new equations were thor-
oughly benchmarked for single point energy-gradient evaluation as well as geometry
optimization. According to this detailed benchmarking studies [24, 25, 26], the
energy estimates of MTA were generally to within 1.5 mH (typically ∼1 kcal/mol,
that can be considered as normally accepted chemical accuracy) of the correspond-
ing actual calculations at the same level of theory and basis. Furthermore, the errors
in numerically significant gradients were also generally small, viz. O(10–3). It was
observed that MTA-based geometry optimization closely follows the path followed
by the actual calculation as shown [24] by a benchmark performed on a zwitte-
rionic system, NH+

3 (CH2)19COO−. Also, another remarkable application of MTA
was demonstrated by the case study of partial geometry optimization performed
[24] on 1prb albumin binding protein consisting of 851 atoms at HF/3-21G level of
theory, followed by a few steps at B3LYP/3-21G (4,635 basis functions). This tech-
nique was recently employed successfully for investigating structures and energetics
of nanotubes of orthoboric acid [26].

In the next step of the development of MTA, it was extended further for Hessian
matrix evaluation and IR spectra calculation [27]. The reliability of the MTA-based
Hessian was established by a comparison with the corresponding actual Hessian for
medium-sized test cases at HF and DFT levels. The RMS deviation in Hessian
matrix elements was O(10–4) for all the test cases examined [27]. Since Hessian
calculation for a large molecule is an expensive and time consuming task, MTA can
be gainfully employed, showing a huge time advantage. For instance, in the case
of (H2O)37, MTA calculation was able to get a time advantage factor of 6.86 over
the corresponding actual Hessian calculation [27]. MTA was further applied for the
determination of vibrational spectra of spatially extended, large molecules for which
the corresponding full actual calculations are not feasible [27].

To this end, the work on MTA, the benchmarks and applications of MTA reported
so far have unequivocally demonstrated that the method is sufficiently accurate
and advantageous for spatially extended large molecules. It has been observed
that MTA-based geometry optimization generally follows a path similar to that
taken by the actual calculation. MTA-based Hessian is reliable enough to per-
form IR-spectrum determination as well as has potential use in faster geometry
optimization. A limited access to the MTA code is available to users through
web-versions viz. WebProp [28] and WebMTA [29]. The algorithm for MTA, frag-
mentation of the system, cardinality-based equations, parameters in MTA which
control the accuracy (R-goodness) and the time advantage factors (Maximum size
of a fragment, Scaling Factor) etc. are discussed in detail in the forthcoming
section.

Another well-established fragmentation-based procedure for treating large
molecules is the fragment molecular orbital (FMO) method, pioneered by Kitaura
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et al. [30] in 1999. The method partitions a molecular system into fragments
(monomers) and uses many-body decomposition energy analysis for estimating the
total energy as given below in Equation (10-1)

E =
∑

EI +
∑

(EIJ − EI − EJ) +
∑

{(EIJK − EI − EJ − EK)

− (EIJ − EI − EJ) − (EJK − EJ − EK) − (EIK − EI − EK)}
(10-1)

Here, EI, EIJ and EIJK represent the one-, two- and three body energies, respectively.
The energy of each fragment (monomer) is calculated in the presence of appropri-
ately defined Coulomb fields of other fragments (monomers). Analytic gradients of
the energy were built into the method in 2004 [31]. However, these were utilized
[32] later for geometry optimization and the results reported in 2007. Benchmarks
for FMO are performed mainly on molecules which are biological in nature viz.
α-helix, β-turn, and extended conformers of 10-, 20- and 40-residue polyalanine.
All the calculations were performed at HF and higher levels of theory employing
3-21G and 6-31G(d) basis sets. Met-enkephalin dimer was taken as a test case for
determination of binding energy at HF/3-21G and 6-31G(d) levels and the errors in
the prediction were 1–3 kcal/mol [32]. Chignolin and an agonist polypeptide of ery-
thropoietin receptor protein were optimized at 3-21(+)G level where the polarization
functions were added only on the anionic groups (–COO–). The RMS deviations in
the geometric parameters are reported as 0.2 Å and 0.5º in terms of bond distances
and angles respectively showing modest accuracy. The most recent applications of
the FMO method include a study of adsorption of toluene and phenol on a faujasite
zeolite [33], a structural and interaction analysis of heparin oligosaccharides [34].

FMO is now a part of GAMESS [1] package and is freely distributed for use.
FMO provides a choice between desired accuracy and the time advantage to the
user by offering two-body (FMO2) and three-body (FMO3) treatments. Clearly,
FMO2 is faster and FMO3 is more accurate among these two. However, FMO3 also
shows some time advantage over the actual calculation. Further control in FMO2
and FMO3 is achieved by the way in which a fragment is defined. For example,
FMO2/2 considers 2-body expansion for 2 molecules/residues per fragment while
FMO3/2 accounts for 3-body expansion with 2 molecules/residues per fragment. In
principle, contributions from n-body terms, n ≤ number of molecules/residues can
be taken into account. For n > 3, the computational effort becomes huge, normally
restricting the value of n to 3 due to practical considerations.

Since FMO is based on many-body analysis, it can be applied to systems
where ‘bodies’ are well-defined. For instance, in case of molecular clusters, each
monomer unit or a group of monomers can be treated as a ‘body’. In the case of
biological systems, amino acid residue(s) can be treated as fragments. However,
one cannot readily use FMO for molecules like capreomycin, taxol, cyclodextrin,
β-carotene etc. Thus, most of the benchmarks and applications of FMO available
were performed on either molecular clusters or biological systems [30–35]. For
this, somewhat restricted class of systems, FMO showed outstanding performance
especially for biomolecules achieving a sub-milihartree accuracy with large time
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advantage over their actual counterparts [35]. FMO estimates for water clusters, on
the other hand, were rather poor. The energy estimates for (H2O)64 by FMO2/2 at
MP2/6-31G(d) and MP2/6-311G(d) were in error by ∼33 mH (∼20 kcal/mol) and
∼87 mH (∼55 kcal/mol), respectively. Despite of the huge time advantage achieved
by FMO2/2, these errors are unacceptable. The errors with FMO3/2 (most accu-
rate amongst the reported) were also much beyond chemical accuracy of 1 kcal/mol
[35]. FMO method produced better results when 6-31G(d) basis set is employed and
the error becomes large when a higher basis set such as 6-311G(d) was used [36].
Yet another constraint of FMO is non-applicability of FMO to calculations employ-
ing diffuse functions throughout for the whole system. It is not possible to handle
diffuse functions, within FMO, on the boundary atoms of the fragments, whenever
a covalent bond is broken during fragmentation of systems (such as polypeptides,
proteins). To the best of our knowledge, one cannot readily perform FMO calcula-
tions using a routine basis set such as 6-31+G(d) for biological systems. Molecular
clusters can, on the other hand, be treated by FMO using diffuse basis functions as
only weak bonds are broken during the process of fragmentation.

Since the last decade, fragment-based methods similar in spirit to MTA and FMO
have come up in which a molecular system is broken into subsystems (fragments)
and the results for the parent system are collated from those of the fragments. A list
of such prototype investigations includes works by Li et al. [37, 38], Zhang et al.
[39], Collins’ systematic fragmentation [40, 41], Bettens et al. [42] and Nakai’s DC
method [43, 44]. Li and co-workers have recently achieved [38] geometry optimiza-
tion with their generalized energy-based fragmentation approach. This approach is
also based on many-body decomposition of energy. They have benchmarked their
method with an (H2O)28 cluster, a polyglycine containing 12 units and a few more
regular systems. The RMS deviations in bond lengths, bond angles and dihedral
angles at HF/6-31G(d) were impressive and fall in ranges 0.0003–0.03 Å, 0.1–2◦
and 0.8–8◦ respectively [38]. Collins’ systematic fragmentation method is based on
combining small functional groups in a molecule as fragments. The estimation of
energy is again based on many-body expansion in terms of fragments [40]. This
method was tested for single point energy-gradient as well as evaluation of second
order derivatives of energy for small- to medium-sized molecules [40, 41]. Bettens
and co-workers have derived their method from Collin’s systematic fragmentation
by incorporating an isodesmic approach into the fragmentation process. The method
was validated [42] with linamarin, cholesterol, taxol and a BN nanotube. Also, most
of the validation has been performed at the B3LYP level, along with a sample cal-
culation performed for cis-3-hexanal at HF, MP2 and MP4 levels as well [42]. In
a recent work on the DC-MP2 method, Nakai and co-workers reported that the HF
procedure requires [44] a larger buffer zone for capturing sufficient accuracy, as
compared to that required for the perturbative correction, E(2). With this in view, a
“dual-level” hierarchical scheme for DC treatment for MP2 method [44] has been
proposed and tested out.

Despite these fast-developing fragment-based methods, geometry optimization
of large molecules at DFT as well as MP2 level still poses a challenge. Moreover,
for the methods based on many-body analysis, the applicability is restricted to
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molecules wherein ‘bodies’ are well-defined. Thus, most of the benchmarks per-
formed for these methods include polypeptides or proteins (where each amino
residue is a body) or molecular clusters, mostly water clusters (where, monomers
can be treated as bodies). Also, among all these methods, applications to real life
test cases are taken up only by MTA and FMO. Unlike FMO, MTA is applicable
to a general class of molecular systems such as taxol, cyclodextrin, water clusters,
boric acid clusters as well as metal clusters [45]. Another noteworthy point about
MTA is that it can be applied successfully to highly conjugated systems such as
β-carotene. The exploratory benchmarks [46] on isomers of heptacene and small
graphene model systems achieved a next step of MTA proving its utility for pol-
yaromatic compounds such as a small model of a graphene sheet. In the literature,
there are no reports describing application of fragment based methods to these two-
dimensional π-conjugated systems and to the best of the authors’ knowledge, MTA
has been applied to such systems [46] for the first time.

10.2. COMPUTATIONAL DETAILS OF MTA

10.2.1. Outline of Algorithm

In this Subsection, the basic methodology of MTA is detailed out including the
algorithm and programming aspects, as well as a number of terms related to MTA.
As mentioned in the previous Section, MTA is a fragment-based linear scaling
technique, which is developed for ab initio treatment of spatially extended large
molecules. The method is integrated with a locally modified version of GAMESS.
An interface with GAUSSIAN, version G03, has also been developed and tested.
The important steps in the MTA algorithm are given below.

(1) The parent molecule under consideration is partitioned into smaller fragments
(termed as main fragments), using automatic or manual fragmentation. Binary-,
ternary- and higher overlaps (whenever applicable) of these main fragments are
generated. These main and overlapping fragments constitute the whole set of
fragments.

(2) Cardinality-based equations are set up for evaluating the energy and its gra-
dients, Hessian etc. of the parent molecule, as per the requirements of the
calculation.

(3) Individual fragments, viz. the main and overlapping fragments, are subjected
to ab initio treatment for energy, gradient, Hessian evaluation (as per the
requirement) using the available subroutines provided within the GAMESS
package [1].

(4) Fragment results (DM, energy, gradient and/or Hessian) are stitched back in
accordance with the cardinality-based equations to estimate those for the parent
system. If it is a geometry optimization job, the estimated gradients are used
to generate the new geometry of the parent system using standard GAMESS
optimizer routine and the above steps are repeated until local minimum/stable
geometry is obtained.
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10.2.2. Fragmentation

The key step in MTA is clearly the fragmentation of the molecule. This is somewhat
subjective step and largely depends on the structure of the molecule. A molecule can
be cut in number of ways, each generating a new fragmentation scheme, making it
difficult to choose the ‘best’ one. But using some basic knowledge of chemistry, a
general fragmentation routine is developed for automating the process. This routine
is a separate routine, which is linked with the locally modified MTA-GAMESS. In
the early phases of development of MTA, this fragmentation algorithm developed
by Babu et al. [22] was based on recursive scheme, which has now been changed to
a new algorithm by Ganesh et al. [23, 24]. This routine first traverses the molecular
graph and builds up the connectivity matrix. Then using this information, it finds
out the sensitive structures viz. multiple bonds and aromatic rings, which are to be
kept intact during fragmentation. Following this, the routine generates the fragments
according to the input parameters (RCUT and MXSZ, described below) specified by
the user. Out of these parameters, RCUT (abbreviation for Radius Cutoff) in units
of Å, is used to generate initial fragments by putting a sphere of radius equal to
RCUT value on each atom in the molecular skeleton. Then in various stages these
fragments are merged into each other based on the common atoms and unneces-
sary fragments are deleted. Fragmentor tries to achieve the R-goodness (see the
forthcoming discussion in Section 10.2.3.1) value equal to RCUT for the final frag-
ments. Maximum allowed size of a fragment (MXSZ) in terms of number of atoms
is another input required by the automatic fragmentation routine. As the name sug-
gests, fragmentation routine tries to restrict the size of main fragments to within this
limit while merging the fragments. It is important to note that RCUT and MXSZ
are used as guidelines by the fragmentator and these may not be strictly followed
due to intricacy of the molecular structure. For instance, input of RCUT = 3.5
and MXSZ = 30 generates 9 main fragments for tocopherol molecule, the largest
of which contains 35 atoms (cf. Table 10-1). A better scheme S2 is obtained by
input RCUT = 3.9 and MXSZ = 48, wherein there are only 3 main fragments
with Rg of 3.9 Å. Some illustrative fragmentation schemes, generated using this
automatic fragmentation code, are given in Table 10-1. Graphical representations
of fragmentation schemes listed in Table-10.1 are depicted in Figure 10-1 for toco-
pherol and cholesterol molecules. Visualization of fragments of water cluster being
difficult in 2 dimensions, a graphical representation of fragments for this system is
not shown.

The fragmentation program also ensures that every atom in the molecule is
present in at least one fragment. Care is taken that unique set of fragments will
be generated for a particular set of RCUT and MXSZ, irrespective of the input order
of coordinates of the molecule. Whenever a covalent bond is scissored, dummy
hydrogen atoms are added to satisfy the valencies of the boundary atoms of the
fragments. These dummy atoms are added at the standard bond lengths of C-H,
N-H etc. depending on which bond is cut. As a special case, for molecular clus-
ters, there is a keyword introduced in this fragmentation routine for breaking only
the weak bonds and to keep all the covalent bonds and the monomers, intact. This
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Table 10-1. Illustration of the parameters RCUT, MXSZ, Rg and SF within MTA for tocopherol, choles-
terol and a water cluster, (H2O)63. Rg values in Å and energies in a.u. See text and Figure 10-1 for details

Input Output Parametersa Energy
Molecule (no. of
atoms)/scheme RCUT, MXSZ Nf, Nav, Nmax Rg, SF MTA Actual

Tocopherol (81)

S1 3.5, 30 9, 29, 35 3.3, 2.9 –1,276.98211 –1,276.98222
S2 3.9, 48 3, 45, 50 3.9, 1.6 –1,276.98221

Cholesterol (74)

S1 3.2, 32 8, 33, 35 2.7, 3.2 –1,124.13094 –1,124.13095
S2 4.1, 52 3, 52, 54 4.1, 2.4 –1,124.13094

Water Cluster (H2O)63 (189)

S1 3.7, 90 7, 82, 90 3.7, 3.0 –4,789.70524 –4,789.70405
S2 4.3, 150 3, 147, 150 4.3, 2.3 –4,789.70445

aNf, Nav and Nmax are the number of main fragments, average size of fragments and size of the largest
fragment respectively. Rg and SF are the R-goodness values and scaling factors of the corresponding
fragmentation schemes.

CholesterolTocopherol 

Figure 10-1. Illustration of fragmentation schemes (S2 from Table 10-1) for tocopherol and cholesterol
f1, f2 and f3 are the main fragments. See text for details

routine is designed to work for any general molecular system; although due to large
diversity in the structures of the molecules, it may not be always possible to pro-
duce the ‘best’ scheme for breaking up a molecule/cluster into a set of fragments.
An option to feed the fragments externally to the MTA has been provided since
it renders flexibility. This manual fragmentation of the molecule can be done with
the aid of MeTAStudio [47], a programmable IDE custom-made for computational
chemists by Ganesh. With MeTAStudio, the user can visualize the molecule and cut
the fragments with a pencil tool. Finally a “key” file for fragments compatible to
MTA code can be exported.
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10.2.3. Assessment of Fragments

After fragmentation, the next important issue is to judge the quality of fragments.
From the vast amount of testing performed, certain parameters viz. R-goodness of
the scheme (Rg), Average Size (Nav) as well as Scaling factor (SF), are defined for
helping the user to anticipate the performance of the scheme. These parameters and
their connection with accuracy and computational cost of the calculation are elabo-
rated below with sample test cases of tocopherol, cholesterol and a water cluster of
63 monomers (cf. Table 10-1).

10.2.3.1. R-Goodness (Rg) Value

The success of any fragmentation-based method lies in mimicking the chemical
environment of each atom in the fragment as accurately as possible to that in the
parent molecule. MTA uses a distance-based criterion for assessing the faithfulness
of this representation of the environment for an atom in each fragment. A sphere
centered on the atom under consideration in a fragment containing that atom is con-
structed and the radius is incremented till it touches an atom which is not present
in that fragment. The radius of the sphere is termed as the atomic Rg value for the
atom in that particular fragment. If an atom is present in more than one fragment, the
maximum of the sphere radii (from all the fragments containing that atom) is taken
as the atomic Rg. This is exemplified in Figures 10-2 and 10-3, wherein fragmenta-
tion schemes of a benzene pentamer and a small model graphene sheet (C56H20) are
depicted. The benzene pentamer is broken into 3 trimers as main fragments (F1, F2
and F3) by manual fragmentation aided by MeTAStudio [47]. An atom (H) marked
by a small square in Figure 10-2 is the atom under consideration. This atom is
present in all the three main fragments. As described above, a sphere with increas-
ing radius is drawn centered on H in each fragment. In fragments F1 and F3, the
sphere touches an atom outside the fragment at 3.9 Å while, in F2, it finds outside
atom at 6.1 Å. The maximum of these radii i.e. 6.1 Å is the atomic Rg for H for
this particular fragmentation scheme. This exercise is repeated for every atom in the
molecule and a list of atomic Rg values is generated. The minimum of these atomic
Rg values is considered as the Rg value of the scheme. Rg of the scheme signifies
that chemical environment of each atom is represented to within a sphere of radius
Rg in at least one fragment. Evidently, higher the Rg value more is the accuracy of
the calculation in general. From the experience gained from the earlier benchmarks,
generally a scheme with Rg value greater than or equal to 4 Å is accurate enough
for normal chemical structures.

Tocopherol and cholesterol being spatially extended molecules, a sub-milihartree
accuracy is readily reached even with small Rg values of 3.3 and 2.7 Å respec-
tively (cf. Table 10-1). For compact or intricate systems such as a water cluster,
a higher Rg value is required for achieving accurate results for the molecular
energy.
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3.9 Å

3.9 Å

6.1 Å

(A)

(B)

(C)

(D)

Figure 10-2. A trimer based fragmentation scheme used for a Benzene pentamer. (A) shows main frag-
ments F1, F2 and F3; The atom (H) under consideration is depicted by a small square; (B), (C) and (D)
show Rg values of 3.9 Å, 6.1 Å and 3.9 Å for H in F1, F2 and F3, respectively. See text for details

10.2.3.2. Average Size of Fragments (Nav) and Scaling Factor (SF)

Average size is the arithmetic mean of sizes of all main fragments in terms of num-
ber of atoms. Scaling factor (SF) is calculated as the ratio of sum of atoms in all the
main fragments to the total number of atoms in the parent molecule. This parameter
has a limited connotation and is to be interpreted along with average and largest size
of fragments. This parameter reflects the computational cost required by the calcu-
lation. For example, if the average size of several fragments in a large molecule
is nearly 75% of the size of the parent molecule, then the MTA-based calculation
may not lead to much time advantage over the actual calculation. Learning from
earlier benchmarks, SF should be within 2 to 5 for achieving substantial decrease
in computational time, provided the average size of fragments is reasonably small.
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Figure 10-3. A fragmentation scheme used for a small model of graphene sheet, C56H20. The main
fragments are f1 and f2. The Rg value of a carbon atom in f2 is illustrated with a circle of radius 3.7 Å

Apart from these, the largest fragment size and uniformity in the sizes of the main
fragments are also important factors for guessing the quality of fragments from the
point of view of the computational cost.

10.2.4. Cardinality Expressions

Based on the above-mentioned parameters, performance of the fragmentation can be
estimated a priori i.e. before performing the fragment calculations. Once a fragmen-
tation scheme is finalized for an MTA-based calculation, the ab initio calculations
are performed on individual fragments (both, main and overlapping). Further, the
results are stitched back as per the cardinality based equations for energy, gradients,
Hessian etc. These equations are based on the inclusion-exclusion principle of set
theory. A general equation for determining energy of the parent molecule from those
of the fragments can be written as [24, 25]

E =
∑

Efi −
∑

Efi∩fj + . . .+ ( − 1)k−1
∑

Efi∩fj∩...∩fk (10-2)

Here, E stands for the MTA-based estimate of the energy of the parent molecule,
Efi denotes the energy of fragment i; Efi∩fj denotes the energy of the binary overlap
of fragments i and j and so on. For instance, the cardinality expression set up in the
case of scheme S2 (cf. Table 10-1 and Figure 10-1) for cholesterol would be:
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E(cholesterol) = Ef 1 + Ef 2 + Ef 3 − (Ef 1∩f 2 + Ef 2∩f 3 + Ef 1∩f 3) + Ef 1∩f 2∩f 3

= Ef 1 + Ef 2 + Ef 3 − (Ef 1∩f 2 + Ef 2∩f 3)
= −777.15987 − 811.83690 − 701.45928 − (− 660.05698 − 506.26813)
= −1124.13094 a.u.

Here, the binary overlap between fragments f1 and f3 is the same as the ternary
overlap between the three main fragments (viz. f1, f2 and f3), but have opposite
signs of cardinalities. Hence, these get cancelled and there is no need to evaluate the
energies of these.

Similar expressions are set up in the case of the gradient or Hessian calculations.

∂E

∂Xμ
=

∑ ∂Efi

∂Xfi
μ

−
∑ ∂Efi∩fj

∂Efi∩fj
μ

+ · · · + ( − 1)k−1
∑ ∂Efi∩fj∩...∩fk

∂Efi∩fj∩...∩fk
μ

(10-3)

Hab =
∑

Hfi
ab −

∑
H

fi∩fj
ab + . . .+ ( − 1)k−1

∑
H

fi∩fj∩...∩fk
ab (10-4)

Terms in Eqs. (10-3) and (10-4) are respectively the first and second order
derivatives of the energy terms, appearing in Eq. (10-2), with respect to nuclear
coordinates, with Hab denoting the element (a, b) of the Hessian matrix. Similar
expression is set up for estimating the density matrix of the parent molecule from
those of fragments.

10.3. CAPABILITIES

In its earlier days, MTA was developed for determining the Density Matrix (DM)
of a large molecule. Further, this DM was employed for evaluating one-electron
properties such as Molecular Electrostatic Potential (MESP), Molecular Electron
Density (MED) and their topographical features, along with values of the multi-
pole moments of the charge density. It was later extended to geometry optimization
based on qualitative estimate of energy and gradients picked from appropriate frag-
ments. The estimation of energy was qualitative. However, it was found that the
path followed by MTA-based optimization was in general, similar to that followed
by the actual conventional calculation. Later, with cardinality guided (CG) expres-
sions, the MTA method was further developed for accurate energy estimates. With
a reasonable fragmentation scheme (with reference to Rg and other parameters dis-
cussed in the earlier sections), MTA produces energy estimates to within 1.5 mH
(∼1 kcal/mol) of the actual one, which can be considered as the normally accepted
chemical accuracy. Also the numerically significant gradients (norms ≥ 10–3) are
generally found to be accurate enough. Also, for the test cases examined, MTA-
based optimization and the actual conventional optimization follow a similar path.
On the same lines of cardinality-based treatment, the Hessian may be patched from
fragments (cf. Eq. (10-4)). Evaluation of Hessian is an expensive step, especially
at DFT and MP2 levels of theory. In DFT, Hessian being numerical, 3N+1 steps
of single-point energy-gradient calculations are required, where N is number of
atoms. For large N, the number of basis functions is also large with a reasonable
basis set. However, though MTA cannot reduce the number of optimization steps,
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it reduces the cost of each step and consequently, the complexity of Hessian calcu-
lation as well. This Hessian is employed for calculating the vibrational frequencies
and intensities. For intensities, the dipole derivative tensors are patched from those
for fragments again based on CG-expressions. The test cases discussed in the present
work are based on cardinality expression and are referred, for brevity, as MTA-
based calculations. As mentioned in the earlier section, MTA-enabled GAMESS is a
locally modified version of GAMESS. A limited access to MTA-enabled GAMESS
is provided to the interested users via web-interfaces, WebProp [28] and WebMTA
[29]. WebProp evaluates one-electron properties and WebMTA carries out a single
point energy-gradient calculation as well as geometry optimization at HF and DFT
(for a limited choice of functionals viz. BLYP, B3LYP). These interfaces accept
geometry inputs from the user, perform MTA-based calculations on the local clus-
ters where MTA-enabled GAMESS is installed and the outputs are sent to the user
via e-mail. In future, it is planned to make these facilities available to the registered
users across the world.

10.4. BENCHMARKS AND APPLICATIONS

10.4.1. Establishing MTA

Before presenting the recent applications of MTA, it is necessary to assure the reader
about the accuracy of the method. For this purpose, we reproduce some of the earlier
benchmarks [25] in which geometry optimization was performed on 4 test cases,
viz. γ-cyclodextrin, taxol, folic acid and β-carotene, at the HF and DFT levels.
Actual single point energy-gradient calculations were performed on a few randomly
selected geometries of these systems in order to assess the accuracy of MTA as well
as to gauge the time advantage achieved by fragmentation. A part of the results from
Ref. [25] are reproduced in Table 10-2. It is evident that for all the cases examined,
the errors in MTA energy estimates are well within 1 mH. MTA calculations are
at least twice as fast as the corresponding actual ones as revealed by the Tr values
shown in Table 10-2. Thus, it can be stated that for any general molecular system,
MTA offers reliable results with less computational time and hardware resources.
The forthcoming subsections present some recent results on molecular clusters as
well as biological systems with charged centers.

10.4.2. HF Level

On thorough benchmarking and validation performed on MTA, the method is seen
to assure a good precision in results on the test systems, typically within limits
of chemical accuracy. Hence, a few exploratory investigations were performed with
MTA on real-life cases, which cannot be treated otherwise. The initial and final ener-
gies of test cases for both MTA as well as actual calculation are given in Table 10-3.
One such study [26] done in collaboration with our laboratory assesses energetics
and stabilization of orthoboric acid nanotubes with different sizes and diameters. In
this work [26], structures composed of 40, 45, 48 and 64 monomers of orthoboric
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Table 10-2. A comparison of the actual and MTA-based energy-gradients for test systems at some
randomly selected geometries. N and Rg are number of basis functions for the parent system and Rg
values of the fragmentation scheme in Å. EMTA and Eact are the MTA-based and actual energies in a.u.
respectively. GRMS is the RMS gradient norm. Tr is the ratio of time taken by the actual calculation to
that for the MTA calculation performed on identical hardware. See text and Ref. [25] for details

System
(Level/Basis) N, Rg

EMTA
(GRMS)

Eact
(GRMS) Tr

folic acid
HF/6-31G(d)

518, 2.2 –1,560.90931
(0.02174)

–1,560.90939
(0.02158)

3.6

β-carotene
HF/6-31G(d)

712, 4.0 –1547.14193
(0.01404)

–1547.14197
(0.01403)

2.1

Taxol
B3LYP/6-31G(d)

1185, 4.0 –2,927.89652
(0.0004)

–2927.89660
(0.0005)

2.3

γ-cyclodextrin
B3LYP/6-31G(d,p)

1480, 4.1 –4,883.54567
(0.0003)

–4,883.54609
(0.0004)

3.1

acid were investigated (cf. Figure 10-4). The structures were completely optimized
at the HF/6-31++G(d, p) level of theory using MTA. It is evident from the results
that boric acid can form regular nanotubes, structurally similar to carbon nanotubes,
assisted by the extensive network of hydrogen bonds. The stability of these tubes
increases due to enhancement in the number of H-bonding interactions with increas-
ing diameter of the tube [26]. An analysis of MESP for a representative case of
nanotube of 40 monomers shows that these nanotubes could favorably react with
polar systems such as water. It is noteworthy that the largest of these calculations
viz. geometry optimization of (H3BO3)64 involved 6,016 basis functions. All these
calculations were performed on a cluster of 8 single core nodes with 1 GB RAM
each. It is not possible to handle the actual calculation of this system using this
hardware configuration.

A small synthetic protein viz. Trp-Cage protein (pdb code: 1L2Y), employed
as a test for the FMO method [35], is taken up next (Figure 10-5). This protein
comprises of 20 amino acid residues and is known as the fastest folding protein
[48]. It has 3 cationic and 2 anionic charge centers and hence, bears an overall unit
positive charge. This protein is subjected to MTA-based geometry optimization at
HF/3-21G level to start with, following subsequently at the HF/6-31G(d) level of
theory. A fragmentation scheme for this system is chosen on the basis of pilot runs,
is discussed in detail in Ref. [36]. This scheme consists of 8 main fragments, with Rg
value 3.9 Å and SF of 3.5. Number of basis functions involved at HF/3-21G level is
1686 while that at HF/6-31G(d) level is 2610 (cf. Table 10-3). During optimization
at HF/3-21G level of theory, the geometry is seen to undergo substantial changes.
Because of this, the Rg value is observed to drop down from 3.9 Å to 3.5 Å during
the course of optimization (cf. Figures 10.5A, B). Its effect can be seen on the energy
accuracy with respect to the actual energy reported in Table 10-3. The error in MTA-
energy is ∼0.9 mH for initial energy, where Rg is 3.9 Å, while for final geometry
(Figure 10-5B), the error is increased to ∼6 mH as the Rg value is 3.5 Å. This
clearly shows how Rg value reflects accuracy as described in earlier subsection.
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Figure 10-4. Nanotubes of orthoboric acid; T40, T48 and T64 comprising of 40, 48 and 64 monomers
respectively. For details, see text and reference [26]

(A) (B) (C)

Figure 10-5. Initial geometry (A) of Trp-Cage 1L2Y protein subjected to MTA-based geometry opti-
mization at HF/3-21G level of theory. The final geometry (B) thus obtained from (A) is further
subjected to MTA-optimization at HF/6-31G(d) level. (C) depicts the final MTA-optimized geometry
at HF/6-31G(d) level

During optimization at HF/6-31G(d), the molecule expands again and the Rg value
goes on increasing. Thus, the error of ∼5 mH (cf. Table 10-3) for initial geometry
(Rg of 3.5 Å) goes down to ∼0.8 mH for final geometry (Rg of 3.8 Å). In view of
this, dynamic fragmentation strategy during geometry optimization needs to be built
into MTA.

MTA-based geometry optimization of this system is performed on a cluster of 7
Core2Quad @ 2.4 GHz with 8 GB RAM each. Distributed mode of MTA is activated
for efficient use of computational resource. Each cycle of optimization took merely
15 min at HF/3-21G level. An intermediate geometry from the HF/3-21G opti-
mization run is further subjected to optimization at HF/6-31G(d) level employing
the same fragmentation scheme. However, 11 machines (Core2Quads of above-
mentioned specification) are used. Each step of optimization took noticeably small
time of ∼55 min for HF/6-31G(d)-level MTA computation. To assure the accuracy
as well as time advantage achieved by MTA, the final optimized geometry at HF/6-
31G(d) level was subjected to the actual single-point energy-gradient evaluation on
the same hardware of 11 Core2Quads. The error in energy of the final geometry is
merely 0.3 kcal/mol. Also the actual single point energy-gradient calculation took
13 h as compared to 55 min of that for the MTA calculation.

The above results show that HF level geometry optimization of a system consist-
ing of a few thousand basis functions can be easily handled with the tool of MTA
employing a cluster of contemporary off-the-shelf PC hardware.
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10.4.3. MP2 Method

Møller-Plesset second order perturbation (MP2) method treats the electron correla-
tion to some extent and is the most affordable post-HF method, albeit with a higher
scaling order viz. O(N5). To examine how far the correlation affects the chemical
environments of atoms in highly conjugated systems, β-carotene has been chosen as
a test case for MTA-based approach. This highly conjugated system is responsible
for the orange color of the carrots. The calculations are performed at MP2/6-
31+G(d) level of theory. Firstly, the initial geometry of β-carotene is subjected to
MTA-based geometry optimization with a scheme of Rg 3.9 Å. This optimized
geometry is taken for further studies. Three fragmentation schemes (S1, S2 and
S3) are created which have Rg values 3.5, 4.6 and 6.2 Å respectively. Clearly, S1 is
a poor scheme while S3 is the best scheme among the three. MTA-based geometry
optimizations are performed employing these three schemes independently. These
calculations involve 872 basis functions, for which it is not possible to perform the
actual calculation on identical hardware. Thus, the results of S1, S2 and S3 are com-
pared with a scheme S4 having Rg value 7 Å instead of actual results. The initial and
final energy-gradients for all the schemes are reported in Table 10-4. A comparison
clearly shows that as the Rg value increases, the results become more accurate. As
expected, S1 has produced results which are in error of ∼5 mH. Clearly, for such
a highly conjugated scheme Rg of 3.5 Å is inadequate. The energies of S2 are in
error by ∼1 mH, in acceptable range, while the best scheme S3 shows a submili-
hartree accuracy. However, a reasonable accuracy for gradients is achieved even by
the moderate scheme S2. Thus, it can be concluded that a moderate scheme may
be employed for geometry optimization, since it provides reliable enough gradients.
This will speed up the process as moderate scheme would give more CPU-time
advantage. Final few steps of optimization may be performed with better fragments
to ensure reliability of energy as well as gradients.

A study of growth patterns of benzene clusters has recently been investigated
with MTA [49]. Since dispersion effects are important in this investigation, the
calculations are performed at the MP2 level employing 6-31++G(d, p) basis set.
Starting from many possible structures of benzene tetramers, clusters are grown up
to benzene heptamers and a few prototype octamers. These clusters are constructed
by employing MESP-guided cluster building method discussed in Ref. [45, 50]. All

Table 10-4. Energies and RMS gradient norms (in a.u.) of initial and MTA-
optimized geometry of β-carotene with fragmentation schemes S1, S2, S3 and S4
at MP2/6-31+G(d) level of theory. Rg values are in Å. See text for details

Scheme (Rg) Initial Energy (RMS norm) Final Energy (RMS norm)

S1 (3.5) –1,552.47242 (0.00070) –1,552.47282 (0.00009)
S2 (4.6) –1,552.47650 (0.00383) –1,552.47660 (0.00008)
S2 (6.2) –1,552.47797 (0.00223) –1,552.47803 (0.00016)
S4 (7.0) –1,552.47746 (0.00329) –1,552.47833 (0.00017)
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the clusters are fragmented into sets of trimers, as shown in the illustrative frag-
mentation in Figure 10-2. The density matrices of these fragments are patched as
per the cardinality-guided expression similar to Equation (10-2) in order to get the
density matrix (DM) for the parent molecule. This final DM is employed for MESP
calculation using INDPROP [51] suit of programs developed in our laboratory.

The starting geometries of benzene tetramers are subjected to MTA-based geom-
etry optimization. The growth of a representative tetramer is discussed here. The
most stable (T) of the tetrameric structures studied, is depicted in Figure 10-6, in
which a maximum number of T-shaped interactions is clearly noticed. The tetramer
T is used for generating the starting structure of benzene pentamer (P) by adding
a new benzene monomer at the appropriate position and subjecting P to MTA-
based geometry optimization. The suitable position for adding the ensuing benzene
monomer is decided with the aid of MESP-guided method [45, 50] and the cluster is
built up further. A representative example is shown in Figure 10-6, wherein MESP
isosurfaces at –0.031 a.u. for pentamer P are depicted. The addition of new benzene
unit at an appropriate position, guided by this isosurface, to generate the correspond-
ing hexamer is exemplified. A hexamer (Hx) generated from P was further grown to
a heptameric structure Hp (cf. Figure 10-6) in similar way. The study points out that,
T-shaped interactions are somewhat more preferred as compared to parallel shifted
interactions and structures incorporating a larger number of T-shaped interactions
are hence generated on optimization of the clusters.

In the investigation of benzene oligomers, all the clusters are scissored into
trimeric fragments manually with help of MeTAStudio [47]. It is possible to treat
tetramers at MP2 using moderate basis set 6-31G(d) by conventional actual calcula-
tion. However, from pentamer onwards, the memory requirement is seen to increase
drastically making the actual calculation very difficult. Also, with 6-31++G(d,p)
basis set, even tetramer is very difficult to treat with the conventional method. In
contrast, with the powerful tool of MTA, the memory requirement of any n-mer,
n = 4–8, or even higher, is exactly identical as all of them are broken up into
trimers! More explicitly, memory requirements for actual calculation on a trimer,
tetramer, pentamer, hexamer, and a heptamer at MP2/6-31++G(d,p) level, as esti-
mated by GAMESS package are 5, 16, 38, 79 and 146 GB respectively. In contrast,
with MTA-enabled GAMESS, any of these clusters requires only 5 GB of RAM for
all the calculations.

To ensure the accuracy of the trimer-based calculation, some test calculations
are performed on tetramers at MP2/6-31G(d) level. MTA energy for T comes out
to be -925.85722 a.u. An actual calculation performed on the same geometry using
Gaussian’03 [2] package yields an energy value of –925.85714 a.u. The small mag-
nitude of error of 0.1 mH in MTA calculation can be attributed to the fact that a
fragmentation scheme used for T includes all 2-body and 3-body interactions. In
higher clusters with 5 to 7 monomers, it is not possible to include all 2 and 3-body
interactions in MTA calculation. However, care is to be taken during fragmentation
so as to capture the prominent ones of those. Thus, even though the error introduced
in MTA-energy while geometry optimization is relatively higher (∼2–3 mH), the
calculation at least becomes feasible. Also, accurate estimation of MTA energy can
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Figure 10-6. (A) MTA-optimized structures of tetramer (T), pentamer (P), hexamer (Hx) and heptamer
(Hp) of benzene. (B) MESP isosurfaces for pentamer (P) at –0.031 a.u. Ensuing benzene monomer is
added near the deepest minimum of MESP. See text for details

be easily achieved for the final optimized geometry by adding contributions of the
missing 2 and 3-body interaction terms (denoted by �Eij and �Eijk) as per many
body analysis of energy [52]. This is demonstrated for the case of the hexamer Hx.
As observed from Table 10-5, total missing 2-body contribution (�2b) is significant
as compared to total missing 3-body contribution (�3b). The MTA-estimate for Hx
for the final optimized geometry turns out to be –1,389.18621 a.u. after applying the
correction instead of -1,389.18422 a.u. without correction.
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Table 10-5. Energetics of MTA-optimized benzene hexamer, Hx. List of missing
2- and 3-body terms, denoted by Mij and Mijk respectively, and their two body
(�Eij) and three body (�Eijk) contributions (all values in a.u.) for a trimer-based
fragmentation scheme of benzene hexamer Hx. Total contribution due to missing
2-body and 3-body interactions are denoted by�2b and�3b respectively. Refer to
Figure 10-6 for numbering of benzene units. See text and Table 10-3 for details

Final Energy Efinal –1,389.18422

Mij �Eij Mijk �Eijk

13 –0.00044 123 +0.00017
14 0.00000 124 –0.00026
15 –0.00074 125 –0.00003
24 –0.00090 134 +0.00009
35 –0.00015 135 –0.00002

136 +0.00031
145 –0.00015
146 +0.00020
156 –0.00006
234 –0.00004
235 +0.00005
245 +0.00001
246 –0.00008
345 +0.00012
356 –0.00007

(�2b) –0.00223 (�3b) +0.00024
Final corrected energy =

Efinal +�2b +�3b
–1,389.18621

Another attempt for testing MTA at MP2 level is made on a small model
graphene sheet viz. C56H20 (cf. Figure 10-3). This is a part of the studies recently
reported from our laboratory [46]. This system is optimized at MP2 level employ-
ing 6-31G(d) basis set. The calculation involves 880 basis functions. The memory
requirement for each energy-gradient step is ∼155 GB when a conventional actual
calculation is performed, while that for just single point energy is ∼44 GB. Since
actual optimization is not possible on the available hardware, the accuracy of MTA-
based energy is compared to actual energy of the final geometry. It is evident that
the memory requirements and the computational cost at MP2 level are substan-
tially reduced by MTA. Thus, it clearly demonstrates the feasibility of attempting
an MTA-based treatment for the actual calculation that is otherwise not possible.

10.4.4. DFT Framework

It is a well known fact that DFT provides reasonably accurate, yet low cost com-
putational methodology for correlated systems. There is contemporary interest in
studying large carbon clusters, fullerenes and graphenes due to their applications
in preparation of novel materials. In view of this an exploratory study of some car-
bon compounds has been performed [46] using MTA within DFT framework. No
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such attempt of application of DC-methods to two-dimensional π-conjugated sys-
tems has so far been reported in the literature. We have developed a methodology
for geometry optimization of one- and two-dimensional π-conjugated systems [46].
Small graphene model system, viz. C56H20 is chosen for MTA-based calculation at
B3LYP/6-31+G(d) level. MTA optimization is performed in two steps, initially with
poorer fragmentation scheme with small Rg value followed by a better fragmenta-
tion scheme with higher Rg value. The final MTA-energy is in somewhat larger
error (∼13 mH). However, the geometry produced by MTA matches well with
that produced by the conventional actual optimization. The error in MTA energy
is probably due to conjugation and cooperative effects which MTA is unable to cap-
ture. Therefore, in order to get the correct energy of the MTA-based final geometry,
actual single point energy calculation is performed. The actual single point energy
of MTA-optimized geometry for C56H20 is -2,145.04607 a.u. which is in error of
1.15 mH with respect to the actual final optimized energy [46]. The time advantage
factor (on 5 parallel Pentium IV machines) for this system comes out to be 1.95.
The detailed geometry analysis of the MTA optimized and actual final optimized
geometry shows a typical average deviation of 0.0047 Å for C–C bond lengths and
0.0001 Å for C–H bond lengths [46]. In this work [46], this method is extended to
larger graphene model system C150H30 at B3LYP/6-31G level.

Nano-sized cluster materials are recent experimental targets, since they exhibit
size dependent chemical and physical properties. MTA has also been applied for
building and optimization of atomic and molecular clusters. A locally modified
version of MTA-enabled Gaussian’03 is a combination of Gaussian’03 suit of
program, fragmentation from MTA and optimizer from GAMESS package. In
this version, fragments are generated by MTA code, and fed to Gaussian’03 for
calculation. The gradients generated by Gaussian’03 are patched by MTA pro-
gram and fed to GAMESS optimizer in order to generate a new geometry. We
have applied this MTA-enabled Gaussian’03 for geometry optimization of Li92
cluster at B3LYP/6-31G, which was previously built with the aid MESP of Li72
cluster [45].

10.5. COMMENT ON SCALING OF MTA

The benchmarks reported in the previous subsections clearly show that MTA is suc-
cessful in reducing the scaling problem of ab initio methods. However, it would
be worth to discuss and reason out the extent to which the scaling problem can be
overcome with the tool of MTA. Time advantage factor clearly demonstrates the
reduction in complexity of a particular calculation. Time advantage factor achieved
by MTA is governed mainly by two aspects viz. the level of theory chosen and the
type of molecular system under consideration. Consider the order of an ab initio
method to be p, so that the complexity of the calculation is O(Np), where N is the
number of basis functions for a particular molecule. After applying MTA to the
molecule under consideration, let there be m fragments of comparable size, each
containing n basis functions on an average. The computational cost of the MTA
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based calculation would thus be proportional to m.np as against the cost of the
actual conventional calculation being proportional to Np. For n << N, MTA pro-
vides advantage over the actual calculation. It is clear that as the power p for the level
of theory increases, MTA would offer higher time advantage factors. This aspect is
evident from a recent study [46]. To make this point lucid, advantages achieved by
MTA are demonstrated with a case study of benzene hexamer calculation at HF
and MP2 theory employing 6-31G(d) basis set. An actual calculation of benzene
hexamer at HF/6-31G(d) level of theory takes ∼6 min on 2 Core2Quad machines
@ 2.4 GHz with 8 GB RAM each while the corresponding MTA calculation takes
∼5 min on the same hardware. When the same actual and MTA based calculations at
MP2/6-31G(d) level of theory on the identical hardware the time taken by the actual
and MTA calculations is about 236 and 18 min respectively. Evidently the time
advantage factor achieved by MTA at MP2 level i.e. 13 is far more, as expected,
than the factor of 1.2 attained at the HF level. This may be attributed to the inherent
scaling of the HF and MP2 methods.

Further, the structural intricacy and the spatial extent of molecular system can
influence the time advantage factor that can be achieved by MTA. As described
in the computational details, MTA uses R-goodness parameter to ensure the accu-
racy of the calculation. If the spatial extent of the molecule is large, the required
R-goodness is achieved with smaller fragments. Thus, for linear systems such as
β-(ALA)n, (H3BO3)n etc. MTA offers time advantage factors in the range 8–10
[36]. However, for intricate systems such as α-(ALA)n the same drops down to 2–3.
Also for the compact structures such as water clusters, to achieve the required R-
goodness value, larger fragments are needed, resulting into very little time saving.
However, it may be anticipated that MTA will show its usefulness for a water cluster
containing few hundreds of units, where the actual calculation is not possible at all.

Thus, generally one can expect optimum performance of MTA for large and
spatially extended systems at higher levels of theory.

10.6. CONCLUDING REMARKS

A versatile fragmentation method is required for ab initio treatment of large
molecules. The diverse test cases presented in this Chapter clearly demonstrate that
the molecular tailoring approach (MTA) just fits the bill. An attractive attribute of
MTA is its applicability at any level of theory including HF and post-HF meth-
ods (such as MP2) as well as DFT. In principle, the method can be applied with
no restriction on the use of any of the popular basis sets. It has been pointed out
by Kohn [53], that the interactions in spatially extended molecular systems are
“near-sighted” under certain conditions. Fragmentation-based methods exploit this
property although the constant chemical potential condition may not be rigorously
satisfied. Another advantage attributed to technical structure of MTA is its com-
patibility with any package/suit of ab initio methods. The automatic fragmentation
routine of MTA and scripts for enabling distributed mode are written independently.
Thus, given any ab initio package to run in the backend which actually performs



Molecular Tailoring 223

calculations on individual fragments, a simple script for patching energies and gra-
dients etc. can be written to complete the MTA process. This has been demonstrated
in a recent work [36], in which, a small coupler script is written to perform MTA-
driven IMS-MP2 and RI-MP2 calculations. This program is benchmarked on some
polypeptides, molecular clusters and a small protein.

Apart from these technical aspects, the accuracy and time advantage factors
achieved by MTA are noteworthy. In general, a chemical accuracy of 1 kcal/mol
(1.5 mH) is achieved by MTA for the cases examined. MTA-based gradients being
fairly reliable, geometry engendered by MTA-based optimization is similar to that
resulting from the corresponding actual one. For most of the systems, MTA offers
a time advantage factor of at least 2 over the actual conventional calculation. It
is observed that this factor may enhance up to 10 or more if the spatial extent
of the molecular system is large enough. Also, the applications presented in this
Chapter show utility of MTA for diverse molecular systems. These include large
organic molecules, biomolecules and molecular clusters as well as systems with
charged centers. The method of molecular tailoring exploits large spatial extent of
the molecules. The MTA methodology is in the spirit of the “nearsightedness prin-
ciple” of Kohn [53]. No further extraneous artifacts such as re-hybridization, point
charges etc. are as yet used.

With the emerging success of MTA, there are some areas requiring improve-
ment. Currently, the application of MTA is restricted only to closed shell systems,
which needs to be extended to open shell ones. Also the MTA-driven geometry opti-
mization process requires some improvements, as in the existing algorithm default
optimizer from GAMESS package is used. The fact that the MTA-based Hessian
calculation is economical than the actual one, it can be utilized towards Hessian-
based optimization to speed up the process. Further, the existing fragmentation has
been written for general molecules and does not consider any special features of
a particular class of molecules. Thus, the specialized automatic fragmentation rou-
tines could be gainfully developed for biological systems such as 1L2Y, α-helical
structures etc. For effectively handling molecular clusters, a utility for adding miss-
ing 2 and 3 body contributions needs to be developed. To add further value to its use,
MTA should be combined with newer and faster ab initio codes and other existing
packages apart from GAMESS and Gaussian.

In brief, it can be said that the method now stands on a firm footing. With further
value addition, it has a potential to be a valuable tool for taking up some grand
challenge problems in chemistry, physics and biology.
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CHAPTER 11

SOME THOUGHTS ON THE SCOPE OF LINEAR SCALING
SELF-CONSISTENT FIELD ELECTRONIC STRUCTURE
METHODS
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Physikalische und Theoretische Chemie, Universität Bonn, D-53115 Bonn, Germany,
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Abstract: In this chapter a number of algorithms are described for the exact or approximate calcu-
lations of the Coulomb and Hartree-Fock exchange parts of the Fock matrix. Arguments
in favor of efficient approximations without linear scaling behavior are presented if the
goal of the investigation is to solve typical every day computational chemistry problems.
“Everyday computational chemistry problems” are, in this context, understood as involv-
ing molecules with up to about 100 or 200 atoms. In particular, it is important to test
new algorithms with respect to their efficiency in conjunction with basis sets and integral
thresholds that are appropriate for actual application work. Some numerical examples for
efficiency and accuracy of the methods that are discussed are provided.

Keywords: Linear scaling, Fock matrix, Self-consistent field, Density fitting, Cholesky decomposi-
tion, Numerical integration, Pseudospectral approximations

11.1. INTRODUCTION

In the early 1980s Jan Almlöf revolutionized electronic structure theory through the
introduction of integral direct methods. Almlöf showed that it is possible to bypass
the integral storage bottleneck by recomputing electron-electron repulsion integrals
whenever they are needed [1]. In retrospect this proposal was highly courageous
because repulsion integral evaluation always strongly dominated the computational
effort for molecular self-consistent field (SCF) calculations and the prospect of
repeating this step Niter times (typically Niter ∼ 10–20) did not seem to be attrac-
tive. However, as Almlöf showed, recursive Fock matrix builds and pre-screening
techniques allow one to skip more and more integral batches as the calculation
is approaching convergence. The prescreening techniques were improved through
the rigorous bounds developed by Häser and Ahlrichs [2] and more recently were
further refined by Ochsenfeld and co-workers [3].
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It is evident that for large molecules there is a linear number of non-negligible
basis function products ϕμ(r)ϕν(r) that need to be considered. However, the elec-
trostatic interaction integrals between the significant charge distributions, (μν| κτ ),
are only decreasing as the inverse effective distance between the centers of the
charge distributions and hence there is an asymptotically quadratic number of
non-negligible electron-electron repulsion integrals in large systems.

The two electron contribution to the Fock matrix (Fμν ) consists of Coulomb (Jμν)
and exchange (Kμν) parts:

Jμν =
∑

κτ

Pκτ (μν| κτ ) (11-1)

Kμν =
∑

κτ

Pκτ (μκ| ντ ) (11-2)

Pμν =
∑

i

cμicνi (11-3)

(cμi being the molecular orbital coefficients and i refers to occupied spin orbitals).
Via Kohn’s conjecture one assumes that the decay of the density matrix elements
Pμν is exponential with respect to the distance between the centers of basis func-
tions ϕμ(r) and ϕν (r) as long as the system behaves like an insulator’ (i.e. has a
sufficiently large HOMO-LUMO gap). Assuming the validity of Kohn’s conjec-
ture the asymptotic scaling of the Coulomb matrix is quadratic with system size
while the exchange matrix is linearly scaling. A numerical example is shown in
Figure 11-1 for a (gly)15 chain. Consistent with Kohn’s conjecture, the values of
the density matrix drop roughly exponentially with the distance between the orbital

Figure 11-1. Logarithmic plot of the shell contracted density matrix P(K, L) = max (|P(k, l)| , k ∈ K, l ∈
L) versus the distance of the centers of the two orbital shells. The density is a converged RHF density for
(gly)15 with the SV basis set
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centers – but with a fairly small decay constant (several authors have provided such
plots earlier, e.g. [4]). Hence, a distance where the density matrix elements are con-
sistently smaller than 10–10 is only reached after well above 25 Å. Consider a large
two-center Coulomb integral (AA|BB) that decays just as RAB

–1 and is thus typi-
cally not smaller than 0.01 Eh even in large molecules. To the exchange matrix this
integral class contributes as KAB ← (AA|BB)PAB. If the Fock matrix pre-screening
threshold is on the order of 10–10 Eh, which is certainly required if one wants to
obtain an energy correct to at least 10–6 Eh and one does not want to interfere with
SCF convergence, this estimate indicates that linear scaling cannot set in before the
molecule has an extension of more than 25 Å. This situation becomes more favor-
able in later SCF iterations since the difference density matrices quickly become
much smaller and pre-screening becomes more effective. However, the numerical
error tends to accumulate and care is required to not spoil convergence by pre-
screening. This issues have been carefully discussed by Häser and Ahlrichs [2] (see
also the more recent discussion [5]).

The 1990s have seen enormous development activities directed towards devel-
oping SCF methods that are linearly scaling with respect to their memory, disk
and CPU requirements. Again, Jan Almlöf was at the forefront of these develop-
ments [6].

Almlöf recognized early on, that the computation of the Coulomb and exchange
matrices are rather different in their computational requirements and the types of
integrals that contribute. He then reasoned that it might well be beneficial to calcu-
late these contributions separately making use of the most efficient approximations
that are available for each term.

Subsequently, most of the efforts were concentrated towards the efficient compu-
tation of the Coulomb term that, owing to its less favorable scaling, was supposed
to dominate the computation time. In particular, fast multipole based methods were
developed that allowed for the linear scaling computation of Jμν [7–9]. Somewhat
less effort was directed towards the exchange term since it is naturally (almost)
linear scaling. To achieve actual linear scaling in the exchange formation, how-
ever, requires a careful program organization to avoid quadratic prescreening steps
[10–12]. With the increasing popularity of density functional theory, a third major
computational term, the calculation of the exchange-correlation contribution to
the Kohn-Sham matrix, emerged. However, it quickly became evident, that the
numerical quadrature required to evaluate this term is not difficult and can be
straightforwardly organized in a linear scaling fashion [13].

Following the excitement that arose about linear scaling HF and DFT methods,
further efforts were directed towards integral-direct, linear scaling wavefunction
based electron correlation methods. These methods are discussed elsewhere in this
volume.

Today, highly optimized program packages are abundant that allow for direct HF
and DFT calculations on large molecules, including entire proteins (e.g. ref [14]
reports calculations with up to 11,650 atoms and 67,204 basis functions) These
developments in linear scaling electronic structure theory are highly useful and very
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impressive. Nevertheless, a survey of the applied computational chemistry literature
reveals that the number of application studies that heavily rely on linear scaling
techniques is somewhat limited. Since ultimately, theoretical methods should be
developed to be used in actual applications rather than being an end in themselves, it
appears appropriate to critically ask what the requirements of computational chem-
istry are and in which respect further developments could or should be directed.
Thus, the present chapter is devoted to the discussion of efficient algorithms for
contemporary electronic structure calculations at the SCF level. However, as will
be discussed in the concluding section, the points being made apply to correlated
wavefunction based calculations even more than to the SCF case.

11.2. LINEAR SCALING VERSUS PREFACTOR

Obviously, in the field of algorithm and method design different researchers have
grossly different point of views. Hence, without any claim of generality or universal
acceptance, it is attempted here to discuss some points that we have found to be
important during our own development efforts that are being closely coordinated
with large-scale computational chemistry applications.

In discussing these subjects, the point of view is taken that approximate meth-
ods are acceptable as replacements for rigorous implementations as long as they are
robust. This means that the errors introduced are so small that they – within rea-
sonable limits – do not affect the outcome of the calculations. What is meant by
“reasonable” depends on the context. Typically, one would regard errors of less
than 1 kcal/mol in energy differences or 1 pm in bond distances as sufficiently
small that they can be ignored relative to other sources of error in the calculations.
Furthermore, if one wants to obtain a result that reflects the theoretical method rather
than basis set incompleteness artifacts, one has to perform actual computational
chemistry studies with sufficiently large basis sets. For HF and DFT calculations
this implies at least at triple-zeta basis set with at least one set of polarization func-
tions. For correlation calculations at least three sets of polarization functions (e.g.
2d1f set on main group atoms).

The central hypothesis of this chapter is, that for most present day computational
chemistry applications linear scaling electronic structure methods are not required
and that it is usually more useful to look for approximate methods that minimize the
prefactor.

The arguments in favor of this unconventional view may be summarized as
follows:

1. The ultimate goal of an efficient electronic structure method is to minimize the
turnaround (e.g. wall-clock) time required to complete a given study. In this
respect it is immaterial what the formal scaling of the employed methods is.
Much of the linear scaling literature at least implicitly implies short turnaround
times because of linear scaling. However, the formal scaling does not prove any-
thing about the actual computational efficiency – linear scaling simply implies
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that asymptotically such methods are more efficient than non-linear scaling
approaches. Thus they are only potentially efficient. Yet, the break-even point in
terms of molecular or basis set size may be much beyond the actual application
that one might envision.

2. Linear scaling methods are typically being tested in conjunction with basis sets
that are being too small to be useful for actual computational chemistry appli-
cations. For example, MP2 calculations with the 6-31G∗ basis set are not very
useful for application studies. The break-even point between linear scaling meth-
ods and methods that minimize the prefactor occurs much later if adequate basis
sets are being used.

3. Linear scaling methods heavily rely on sparsity in order to avoid the computation
of negligible quantities. For this sparsity to exist, the systems need to have a
certain spatial extension. Very many of the molecules presently being studied by
the computational chemistry community simply do not fall in the size regime
where the thresholding is effective enough to lead to significant savings.

4. If the systems eventually become large enough, there is no doubt that linear scal-
ing approaches are the only feasible choice if a quantum mechanical treatment
of the entire system is desired. However, large systems are typically flexible
and have many local minima on their potential energy surfaces. Thus one typi-
cally would need to study many geometries, not just a few isolated single point
calculations.

5. One may ask whether it is always necessary to study a system consisting of hun-
dreds of atoms fully quantum mechanically? In very many cases, it is appropriate
to treat a truncated cluster model of perhaps 100–200 atoms quantum mechani-
cally, or – at higher sophistication – resort to QM/MM approaches. The valid
question of how to benchmark QM/MM calculations has been addressed for
example by Thiel and co-workers as documented in recent reviews [15, 16].

6. Making use of sparsity requires the presence of logic in the innermost loops in
order to screen out negligible quantities. This, however, interferes with code opti-
mization since the CPU has to wait for the outcome of the sparsity test before
further actions can be taken. For example, a matrix multiplications performs
up to fifty times more efficiently if a highly optimized, vendor provided BLAS
library is used compared to what one is able to code in a high level language
such as Fortran or C. This implies, that screening for sparsity becomes prefer-
able over brute force multiplication if less than about 2% of the contributions
are significant. This situation changes continuously with new hardware develop-
ments. For example, matrix multiplications proceed on the latest generation of
graphics cards up to 10 times faster than in the main CPU. Thus, methods that
are dominated by large scale matrix multiplications are immediately accelerated
by this factor while a similar speedup is much more difficult to obtain with pre-
screening based approaches. Some of the efficiency can be restored, however,
with blocked matrix algebra [17, 18].

7. Prescreening necessarily introduces a certain level of numerical noise in the
results. This numerical noise becomes larger as the systems get larger. Hence,
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one has to use tighter and tighter thresholds as the system size increases and this
greatly adds to the computational cost. Linear scaling studies that have been per-
formed (on e.g. a single Fock matrix build) with integral thresholds of 1e-4–1e-7
Eh are somewhat suspicious in this respect since one would not be able to obtain
SCF convergence for large molecules with such cut-offs.

All of the points discussed above are derived from actual experience in computa-
tional chemistry applications. They are not meant to distract from the beauty and
elegance of linear scaling approaches. As mentioned above, there is no doubt that
in the long run, if systems of hundreds of atoms are to be treated quantum mechan-
ically, there will be no substitute for linear scaling methods. However, today the
molecules or cluster models often contain 50–200 atoms and much larger molecules
can be studied with QM/MM approaches. In this very significant domain of quan-
tum chemistry – in particular in conjunction with large and accurate basis sets –
methods that minimize the prefactor of the calculations are competitive with or
superior to linear scaling approaches. This will be illustrated below with some
examples.

A strategy that would seem to suggest itself on the basis of this discussion is to
first optimize the prefactor of a given computational task and then to try to linearize
it but without compromising the efficiency of the underlying algorithm.

One important point in discussing algorithms is the nature of the numerical error
that is being introduced. There are several possibilities of why a given result devi-
ates from the exactly computed one. First, there may be random numerical noise, for
example introduced by the direct SCF procedure. If too much numerical noise accu-
mulates then the SCF procedure will no longer converge and computed forces will
be unacceptably inaccurate. Hence, numerical noise must be kept small, certainly
below a level of 10–6 Eh in actual applications. A different kind of error is obtained
by numerical approximations to the matrix elements that occur in the treatment.
These approximations frequently lead to well controlled errors that are systematic
and will hence tend to cancel upon taking energy differences or calculating forces.
Such systematic errors may be tolerable at the level of 10–3 Eh or a little more,
provided that error cancellation in taking energy differences is systematic enough
such that predicted energies are accurate to the target precision of about 1 kcal/mol.
Smooth errors also do not lead to problems in the computation of forces. Experience
indicates that methods that involve an auxiliary basis set tend to have very
smooth errors while methods that involve real space grids have less smooth errors.
This should be taken into account upon judging the numerical results presented
below.

11.3. SELF CONSISTENT FIELD ALGORITHMS

In the following, several algorithms for computing the Coulomb- and exchange parts
of the Fock or Kohn-Sham matrix are discussed and compared. Throughout semi-
local basis sets are assumed. Techniques based on plane waves are outside the scope
of this chapter.
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11.3.1. Coulomb Term

11.3.1.1. Improved Analytical Evaluation

As mentioned in the introduction, the standard of way of computing the Coulomb
matrix is:

Jμν =
∑

κτ

Pκτ (μν| κτ ) (11-4)

Here P is the one-particle density matrix and

(μν| κτ ) =
∫∫

ϕμ(r1)ϕν(r1)ϕκ (r2)ϕτ (r2)

|r1 − r2| dr1dr2 (11-5)

is an electron-electron repulsion integral (ERI) over real basis functions {ϕ}. In the
McMurchie-Davidson (MD) method [19], the basis function products that appear in
Eq. (11-5) are expanded in a linear combination of Hermite Gaussian functions. In
an abbreviated notation this expansion can be written [20]:

ϕA
μ(r)ϕB

ν =
∑

p

Eμνp $
P
p (r) (11-6)

$P
p (r) =

(
∂

∂Px

)px
(
∂

∂Py

)py
(
∂

∂Pz

)pz

exp
(
−(α + β)(r − P)2

)
(11-7)

where the E’s are the (scaled) expansion coefficients, the $’s are the Hermite
Gaussians, α and β are the exponent of the primitive Gaussians. The subscript index
p has been used as a compound index containing the three summation variables px,
py, pz involved in the summation over Cartesian components. The basis functions are
attached to centers A and B respectively while the Hermite Gaussians are centered
at a point P along the line joining centers A and B:

P = 1

α + β (αRA + βRB) (11-8)

Excellent publications that describe the details of this approach to ERI evaluation
are available [20]. The ERI becomes:

(μν| κτ )
∑

p

Eμνp

∑

q

( − 1)qEκτq Rpq (11-9)

where Rpq is the ERI over Hermite Gaussian functions and the contraction of Rpq

with the E’s can be regarded as a Hermite to Cartesian Gaussian back transforma-
tion. Constant factors like products of contraction coefficients are assumed to be
absorbed in the definition of the E’s and the R’s. Both sets of intermediates are eas-
ily generated from recursion relations [19, 20]. Thus, the standard approach to the
Coulomb matrix can be written as:
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Jμν =
∑

κτ

Pκτ
∑

p

Eμνp

∑

q

( − 1)qEκτq Rpq (11-10)

Explicit reference to integral contraction and transformation to spherical harmonic
Gaussian functions and summation of primitive Gaussians are suppressed for
simplicity although they are of course executed in actual computer codes.

Since the MD algorithm naturally decouples the coordinates of the two electrons
and the density matrix does not connect the two electrons in the Coulomb matrix
construction as well, it becomes evident that the standard approach involves a large
number of redundant operations in the innermost loops. Almlöf first suggested to
form the density in the Hermite Gaussian basis [21]:

Xq =
∑

κτ

( − 1)qPκτEκτq (11-11)

Since the number of significant basis function products only grows as O(N), the
computation of the vector X and its storage requirements are negligible. In the sec-
ond step the vector Xmay be contracted with the Hermite basis ERI’s to yield the
vector Y:

Yp =
∑

q

RpqXq (11-12)

Finally, in the third step the Coulomb matrix is formed by contraction of the Hermite
Coulomb “matrix” Y with the Hermite expansion coefficients of the bra as:

Jμν =
∑

p

Eμνp Yp ( 11-13)

This is essentially the method proposed by Ahmadi and Almlöf [21]. Variations
of the same theme have been reported by Schwegler and Challacombe, Shao and
Head-Gordon (“J-engine”) [22] and ourselves (“Split-J”) [23].

The main differences in the algorithms probably concern the generation of the
integrals Rpq and their contraction with the Hermite density Xq in the rate limiting
step of the algorithm. In our implementation, an efficient evaluation is obtained by
using hand-optimized expressions for most shell pair combinations (all shell pairs
with lμ + lν + lκ + lτ ≤ 6) and direct formation of the contraction of Rpq with Xq
without any further intermediate quantities. This approach is devoid of short loops
or logic which would spoil computational efficiency, allows for extensive common
subexpression elimination and uses no additional central memory. For higher angu-
lar momenta the computational overhead due to nested loops is not a major factor
and the general recursion relations to form Rpq perform well. Compared to the stan-
dard algorithm, a substantial amount of overhead, namely the generation of the E
coefficients and the contraction with the Hermite integrals, has been removed from
the innermost loops. Although not explicitly shown, the transformation to spherical
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harmonic Gaussian functions is also done outside the innermost loops in contrast to
the standard algorithm

Up to an order of magnitude increase in computational speed has been reported
with this algorithm compared to the conventional algorithm despite the fact that
no approximation has been introduced [22]. In our hands, the advantages of the
improved algorithm are smaller but still significant (vide supra).

11.3.1.2. Multipole Approximations

Multipole approximations are important in treatments of large molecules because
they allow for a computationally cheap treatment of the long-range interactions that
result from the Coulomb part of the electron-electron repulsion while maintaining
numerical equivalence to the approximation free calculation [7–9]. The general mul-
tipole expansion between two charge distributions ρa(r) and ρb(r) can be obtained
as a special case of the bipolar expansion:

1

|ra − rb − R| =
∑

la

∑

lb

l<∑

m=l<

dm
lalb

rla
a rlb

b

Rla+lb+1 Sm
la (r̂a)Sm

la(r̂b) (11-14)

where ra = |ra| , rb = |rb| and R = |R|. The vectors ra and rb are measured relative
to the centers of the corresponding charge distributions. The symbol r̂a refers to the
angular variables of ra and the Sm

l are real spherical harmonics (l< is the smaller of
la and lb). The equation is valid under the condition ra + rb < R which is satisfied if
the centers of the two charge distributions are sufficiently well separated and there
is no charge penetration. The constant dm

lalb
is given by:

dm
lalb

= 4π

(2la + 1)(2lb + 1)

(la + lb)!( − 1)la+m

√
(la + m)(lb + m)(la − m)(lb − m)

(11-15)

Thus, if ρa(r1) is centered at the origin and ρb(r1) at R then their repulsion becomes
in the large R limit:

Eab =
∫∫

ρa(r1)ρa(R + r2)

|r1 − r2 − R| dr1dr2 =
∑

la

∑

lb

l<∑

m=l<

dm
lalb

Qa
la,mQb

lb,m

Rla+lb+1
(11-16)

where Qa
la,m and Qb

lb,m are proportional to the multipole moments of ρa and ρb:

Qa
la,m =

∫
rla Sm

la (r̂)ρa(r)dr (11-17)

The benefit of the multipole approximation is that it leads to a complete separation
of the two charge distributions. Thus the scaled multipole moments Qa

la,m for each
charge distribution can be precomputed and stored and the multipole interactions
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can be evaluated with much lower computational effort than the corresponding
analytic two electron integrals.

The Coulomb matrix then contains two parts – a short range part of charge dis-
tributions which penetrate significantly and where the multipole interaction is not
valid and a long-range contribution that can be handled via the multipole expansion.
In this case a further speedup of the calculation is possible if the density is summed
into the multipoles before the multipole interaction is actually calculated.

The question of the division between the long range and the short range imme-
diately arises since this does not only depend on the separation of the charge
distribution centers but also on their size that is determined by the exponents of
the basis functions involved. The conditions under which the multipole expansion is
allowed (the “MAC”) and the penetration is negligible (the “PAC”) has been exten-
sively studied by Challacombe, Scuseria and others [9]. Both the MAC and the PAC
have to be of low computational cost in order to lead to real advantages in actual
calculations. Their implementation in terms of a sophisticated tree search algorithm
has led to efficient formation of the Coulomb matrix with observed linear scaling
for large molecules.

11.3.1.3. The RI Approximation

The so-called “resolution of the identity” (RI) approximation is one of the earliest
approximate methods to compute the Coulomb term. It was invented by Baerends
and co-workers in the framework of density functional theory (DFT) [24] with a
similar, independent suggestion due to Whitten [25]. The proposal consists of fitting
the electron density to an auxiliary basis set. This reduced the two-electron integral
calculation to two- and three-index integrals and reduces the formal scaling of the
calculation by an order of magnitude. The physical content of the approximation was
carefully analyzed by Dunlap et al. [26, 27] Vahtras, Almlöf and Feyereisen made
an important contribution by showing that the most accurate fitting is obtained by
minimizing the self-repulsion of the residual [28].

The method proceeds by expanding each charge distribution ρμν(r) =
ϕμ(r)ϕν(r) in terms of an atom centered auxiliary basis set {η}:

ρμν (r) ≈
∑

P

cμνP ηP(r) (11-18)

The expansion coefficients cμνP can be determined in a variety of ways. However,
for the approximation of two electron terms Vahtras et al. have shown that the
most accurate approximation is obtained by minimizing the self repulsion of the
residual [28]:

R ≡
∫∫ {

ρμν (r1) −
∑

P

cμνP ηP(r1)

}
1

|�r1 − �r2|

⎧
⎨

⎩ρμν(r2) −
∑

Q

cμνQ ηQ(r2)

⎫
⎬

⎭ dr1dr2

(11-19)



The Scope of Linear Scaling SCF Electronic Structure Methods 237

If the three index repulsion integrals (μν|P) are collected in the vector tμν , the two
index repulsion integrals (P|Q) in the matrix V and the expansion coefficients in
the vector cμν , the solution is obtained as:

cμν = V−1tμν (11-20)

Any two electron integral can then be approximated by:

(μν| κτ ) ≈
∑

PQ

cμνP cκτQ VPQ (11-21)

=
∑

PQ

tμνP V−1
PQtκτQ (11-22)

=
∑

P

(μν| P̄)( P̄
∣∣ κτ ) (11-23)

where:

(μν| P̄) =
∑

Q

V−1/2
P (μν|Q) (11-24)

In the form Eq. (11-23) the approximation formally looks like as if a reso-
lution of the identity has been inserted between the bra and the ket in a given
electron-electron repulsion integral which gives the method its name. Werner and
co-workers have argued in favor of the name “density fitting” instead [29, 30]. Using
the approximation, Eq. (11-23), for an element of the Coulomb matrix:

JRI
μν ≈

∑

P

(μν|P)
∑

Q

V−1
PQ

∑

κτ

Pκτ (κτ |Q)

︸ ︷︷ ︸
gQ︸ ︷︷ ︸

Pp

(11-25)

The calculation of the Coulomb term in the RI approximation involves the evalu-
ation of the three-index repulsion integrals to form the intermediate gQ, the solution
of the linear equation system to obtain the auxiliary basis density PP and finally a
second evaluation of the three index repulsion integrals to form JRI

μν . The approxi-
mation reduces the formal scaling of the Coulomb term from O(N4) to O(N3). For
large systems the scaling will tend towards O(N2), similar to the exact treatment
of J. However, the prefactor of the RI approximation is much smaller than for the
exact computation because: (a) provided that the number of auxiliary basis functions
is not larger than 2–3 times the number of basis functions, there is an order of mag-
nitude fewer three-index than four-index ERIs, (b) the three-index ERIs are much
more efficiently evaluated because they are simpler than four-index ERIs (c) owing
to the much smaller number of three-index ERIs calculations can often be done in
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an integral conventional mode or with pre-computed three-index ERIs in high-speed
memory [31, 32].

As shown by Ahlrichs and co-workers, the solution of the linear equa-
tion system is best done via the Cholesky decomposition of the V-matrix
[31, 32]. Even for 10,000 auxiliary basis functions this step takes a negligible
amount of computer time if the most efficient library routines are used for this
task.

Provided the auxiliary basis set {η} is of sufficient quality and small enough size,
up to two or almost three orders of magnitude in computation time can be saved with
the RI approximation [31, 32]. Fortunately efficient and accurate auxiliary basis sets
for different qualities of the orbital basis set {ϕ} have been developed by Eichkorn
et al. [31, 32] They have been shown to yield errors of less than 0.1 mEh per atom
in DFT calculations. As a rule of thumb these auxiliary basis sets are two to three
times larger than the orbital expansion bases. More recently Weigend has reinves-
tigated the auxiliary basis set problem and has developed improved and accurate
Coulomb fitting bases for essentially the entire periodic table (error < 0.01 mEh
per atom) [33]. Noteworthy is that the ratio of basis functions to auxiliary basis
functions decreases with increasing quality of the orbital basis. For quadruple-zeta
quality orbital bases, the Coulomb fitting bases are even smaller than the orbital
basis this leading to very large advantages of the RI approximation relative to the
exact analytical evaluation [33].

The angular moment requirements of the auxiliary basis set can be understood
from the expansion of the one center charge distributions ϕA

μϕ
A
ν . For angular momen-

tum lmax in the orbital basis the auxiliary basis should have functions up to l = 2lmax
in order to be able to describe all multipole moments of the orbital basis accurately.
In practice it is found that auxiliary bases up to l = 3 − 4 for first and second
row atoms and l = 4 − 6 for transition metals are found to give accurate results.
Other strategies for the construction of auxiliary basis sets have been reported in
the literature but none have been as systematic as the work of Eichkorn et al. and
Weigend.

A favorable feature of the fitting procedure as outlined above is that it is varia-
tional [26, 27, 34], i.e. the approximate Coulomb energy is an upper bound to the
exact Coulomb energy. This is helpful in assessing the error caused by the approxi-
mation and is helpful in the development of new auxiliary basis sets. Another feature
of the approximation is that it does not conserve the total number of electrons. A
large body of evidence accumulated in thousands of applications proves that the
errors in structures, relative energies and other properties due to the RI-J approxima-
tion are much smaller than the errors inherent in the present day density functional
(provided that appropriate fitting bases are employed) and can be safely disregarded
for chemical applications.

Sierka and Ahlrichs have developed a multipole-accelerated version of the RI-J
algorithm (MARI-J) and have proven its efficiency [35]. However, they also pointed
out that the investigated systems have to be very large in order for the MARI-J
method to lead to substantial computational savings relative to the original RI-J
method.
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11.3.1.4. The Split-RI-J Approximation

It is clearly possible to use the Ahmadi-Almlöf idea to improve on the performance
of the RI approximation. This was first discussed by the present author [23] and later
re-discovered by Head-Gordon et al. who also developed a linear scaling version of
the RI-J algorithm [36].
The three center ERI’s can be written in the spirit of the MD algorithm as:

(μν|P) =
∑

p

EP
p

∑

q

(− 1)qEμνq Rpq (11-26)

where the auxiliary basis function ηP has also been expanded in terms of Hermite
Gaussians. Formally Eq. (11-26) corresponds to a four center ERI in which the
fourth (unnormalized) primitive Gaussian has an exponent of zero. Again, it is clear
that the computation of the Intermediate gQ and the matrix JRI

μν (Eq. 11-25) with
such an algorithm must be inefficient due to the unnecessary Hermite Gaussian to
Cartesian Gaussian transformations in the innermost loops. The RI algorithm can
therefore be rewritten as:

Xq =
∑

κτ

PκτEκτq (− 1)q (11-27)

Yp =
∑

q

RpqXq (11-28)

gQ =
∑

p

EQ
p Yp (11-29)

After formation of the vector g, the linear equation set is solved using the Choleksy
decomposition of V and the Coulomb matrix is completed by the following three
steps:

Tp =
∑

Q

EQ
p dQ (11-30)

Uq =
∑

p

RpqTp (11-31)

JRI
μν =

∑

q

(− 1)qEμνq Uq (11-32)

All computational steps are straightforward and short loops that would significantly
add to the overhead can be completely avoided. This algorithm has been termed
“Split-RI-J” since the computation of the Coulomb matrix has been split into several
parts [23]. The most expensive steps are the contractions of the Hermite ERI’s with
the vectors X and T in Eqs. (11-28) and (11-31) which will tend to O(N2) for large
systems. However, the prefactor for the evaluation of the Split-RI-J approximation
to the Coulomb matrix is much smaller than for the exact evaluation as will be
discussed below.
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In conclusion some straightforward manipulations allow one to move the expen-
sive steps of the ERI evaluation in the Coulomb matrix and RI-approximation
outside the innermost loops. The intermediate quantities no longer contain the
ERI’s themselves but instead the density and electron repulsion operator in the
intermediate Hermite basis. The back transformation to the orbital basis and the
transformation of the density into the Hermite basis can then be executed outside
the rate determining loops of the program and high efficiency can be achieved.

11.3.1.5. Cholesky Decomposition Techniques

A method that shares many features with the RI methodology is the Cholesky
decomposition of the two-electron integral supermatrix. As was shown early on
by Bebe and Linderberg [37], the two-electron integrals can be written in terms of
Cholesky vectors:

(μν| κτ ) =
M∑

P=1

LμνP LκτP (11-33)

where M is the number of Cholesky vectors. If there are N basis functions, the
maximum number of Cholesky vectors is M = N(N+1)/2. However, many of these
vectors are essentially zero and can be neglected such that the number of surviving
vectors is on the order of, perhaps, 2–4 N. The technique has been pioneered by Bebe
and Linderberg [37] and has been further developed by Simons and co-workers [38].
In modern electronic structure theory, the approach has been revived by Koch and
co-workers [39] and has since then seen many implementations into major electronic
structure packages such as Dalton or MOLCAS [40–49].

Once the Cholesky vectors are available (and stored on disk), they can be used
in an exactly analogous way as the orthogonalized RI integrals (μν| P̄). This means
that a very efficient Coulomb matrix formation is possible.

The Cholesky vectors are determined by an iterative procedure. One first cal-
culates the standard exchange integrals for each charge distribution μν and sets

Lμνμν =
√

(μν|μν) (11-34)

These integrals are sorted into decreasing order and each charge distribution is
assigned an address aμν . Then for eachμν one calculates the matrix Iμνκτ = (μν| κτ )
for charge distributions κτ with aκτ > aμν and sets:

Lμνκτ = 1

Lμνμν

⎛

⎝(μν| κτ ) −
aμν−1∑

P=1

LμνP LκτP

⎞

⎠ (11-35)

followed by:

(μν|μν) ← (μν|μν) − Lμνκτ (11-36)
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for aκτ > aμν . After all (μν|μν) < δ, where δ is a threshold, the process can be
stopped.

There are several attractive features about the Cholesky approach: (a) the method
does not require an auxiliary basis set that must be matched with the orbital basis;
(b) the set of Cholesky decomposed charge distributions is, in a sense, the most com-
pact auxiliary basis possible; (c) the method can reach arbitrary precision relative to
the canonical calculation.

Thus, provided that the Cholesky vectors can be obtained efficiently and their
storage is not problematic (which will be the case up to a few thousand basis
functions), the procedure is computationally attractive. One potential efficiency bot-
tleneck might be the iterative determination of the Cholesky vectors that requires
the generation of the traditional four index integrals over basis functions, which may
become expensive for accurate and highly polarized basis sets. One possible solu-
tion to this problem is to only consider charge distributions κτ of one-center nature.
This defines the 1C-CD approach advocated more recently [42]. The efficiency
of the Cholesky decomposition and RI approaches has been compared recently
by Weigend, Kattanneck and Ahlrichs who found timing advantages for the RI
algorithm [50]. Nevertheless, the Cholesky approach has a number of attractive
properties and will certainly play an important role in the future.

11.3.1.6. Fully Numerical Approximations

Another way to approximate the two electron terms in the Fock matrix comes
from the combination of a numerical integration scheme with multipole expansions.
Consider an element of the Coulomb matrix:

Jμν =
∫
ϕμ(r)ϕν(r)VC(r)dr (11-37)

where the potential VC(r) due to the charge distribution ρ(r2) at point r is:

VC(r) =
∫

ρ(r2)

|r − r2|dr2 (11-38)

In a fully numerical integration scheme the Coulomb matrix element will be
approximated by:

JFN
μν ≈

∑

A

∑

g

Aϕμ(rg)ϕν(rg)VC(rg)wa
g (11-39)

The sum A is over all atoms in the molecule and the superscript indicates that the
integration points rg with weight wA

g belong to atom A. Likewise the potential is
approximated as:

VC(r) ≈
∑

B

∑

g′

ρ(rg′)∣∣∣r − rg′
∣∣∣
wB

g′ (11-40)
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The great convenience gained by the numerical integration scheme is that the poten-
tial is naturally divided into atomic contributions. This allows one to define a
“near-field” contribution which consists of those atoms that are close to the point
r and a “far-field” contribution consisting of the atoms that are far away. The exact
criterion for establishing what is meant by “far away” remains to be specified. The
near-field contribution should be treated accurately. However, the far-field contribu-
tion can be approximated by developing the denominator in a Taylor series around
the position rg′ = RB of atom B:

1∣∣∣r − rg′
∣∣∣
= 1

|r − RB| +
r − RB

|r − RB|3
= (rg′ − RB) + . . . (11-41)

Inserting this expansion gives:

VC(r) ≈
∑

B

⎧
⎪⎨

⎪⎩
1

|r − RB|
∑

g′
ρ(rg′)w

B
g′ +

r − RB

|r − RB|3
∑

g′
ρ(rg′)(rg′ − RB)wB

g′ + . . .

⎫
⎪⎬

⎪⎭
(11-42)

=
∑

B

{
qB

|r − RB| +
(r − RB) �μB

|r − RB|3
+ . . .

}
(11-43)

Here qB is the charge assigned to atom B by the numerical integration scheme
and �μB is the dipole moment of the same atom. In effect one has removed the
dependence of the potential on the numerical integration grid in the far-field and
instead obtained a multipole expansion of the far-field interactions. If this multi-
pole expansion is truncated at an appropriate order and the far-field is sufficiently
conservatively defined the method should be accurate. In DFT calculations the elec-
tron density at each grid point is available from the exchange-correlation integration
and the multipole moments for each atom can be precomputed before entering the
loop that determines the Coulomb matrix. The size of the numerical integration grid
grows only linearly with the size of the system and the number of significant func-
tions per grid point becomes rapidly constant due to the fast decaying nature of
Gaussian basis functions. Thus the far-field contributions scales essentially linearly
with the system size except for a small quadratic component that arises from the
evaluation of the multipole interactions. A similar approach is indeed taken in the
ADF program and has been demonstrated to show near linear scaling [51–53].

However, the direct numerical integration over the Coulomb singularity leads
to somewhat slow convergence with the grid size. Hence, an alternative approach
is based on the solution of the Poisson equation on the grid. This also leads to
a fully numerical algorithm for the Coulomb potential and the Coulomb matrix.
Appropriate algorithms have been developed by Dickson and Becke [54] and Delley
[55]. Dickson and Becke used this method to construct a basis set free DFT program
while Delley’s DMOL program is based on numerical basis functions. The latter
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program is commercial and therefore difficult to benchmark. However, available
evidence indicates that the code is highly efficient and competitive with the fastest
alternative approaches.

The leading ideas are readily appreciated. As indicated above, one first starts by
dividing the density into atomic contributions through the assignment of the grid
points to “parent” atoms. The density around each atom is then expanded in the
multipole components in spherical coordinates:

ρA(r,θ ,φ) =
∑

lm

ρ
(A)
lm (r)Sl

m(θ ,φ) (11-44)

with the radial function being obtained by:

ρ
(A)
lm (r) =

∫
Sl

m(θ ,φ)ρ(A)(r,θ ,φ) sin θdθdφ (11-45)

The expansion must be terminated at a given maximum angular momentum Lmax
that is related to the size of the grid. The procedures of Dickson and Becke and
Delley differ somewhat in this respect. One then aims at solving the single center
Poisson equation:

∇2V(A)
C (r) = −4πρ(A)(r) (11-46)

for the single center Coulomb potential V(A)
C (r). This is best approached by

expanding the potential in spherical coordinates as:

V (A)
C (r,θ ,φ) =

∑

lm

r−1U(A)
lm (r)Sl

m(θ ,φ) (11-47)

Insertion into the Poisson equation then yields an equation for the unknown radial
functions U(A)

lm :

d2U(A)
lm (r)

dr2
− l(l + 1)

r2
U(A)

lm (r) = −4πρlm(r) (11-48)

This equation can be efficiently solved by numerical standard methods. This yields
the radial functions at the radial grid points assigned to atom A. The total Coulomb
potential is then reconstructed as:

VC(r) =
∑

A

V (A)
C (r) (11-49)

If this potential is evaluated at a grid point that, say, belongs to atom B, the
contributions coming from atoms A �= B must be obtained by interpolation.
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11.3.1.7. Semianalytic and Pseudo-Spectral Approximations

An obvious alternative to the completely numerical approximation described above
is to evaluate the integrals that occur in the potential analytically. This, again, essen-
tially restricts the method to Gaussian basis sets for which the required integrals can
be efficiently calculated. For the Coulomb matrix elements one obtains:

Jμν ≈
∑

A

∑

g

AwA
gϕμ(rg)ϕν(rg)

∑

κτ

PκτAκτ (rg) (11-50)

with:

Aκτ (rg) =
∫
ϕκ (r2)ϕτ (r2)∣∣rg − r2

∣∣ dr2 (11-51)

The A integrals are simply nuclear attraction type integrals that can be efficiently
evaluated over Gaussian basis functions using standard techniques. This mixed
numerical/analytical approach is the essence of Friesner’s pseudospectral method
that is implemented in the commercial program Jaguar [56–61]. Semi-numerical
integration techniques have also been pursued by Termath and Handy [62] and by
Van Wüllen [63]. However, it appears that this technique is more beneficial for the
treatment of the exchange than of the Coulomb term. Details will be provided below.
Using:

Xμg = w1/2
g ϕμ(rg) (11-52)

The semi-numeric Coulomb approximation can be written as:

Jμν ≈
∑

g

XμgXνgJg (11-53)

with:

Jg =
∑

κτ

PκτAκτ (rg) (11-54)

It appears to be possible in a straightforward manner to combine the semi-numeric
and density fitting strategies through the sequence:

Fνg =
∑

μ

PμνXμg (11-55)

Pg =
∑

ν

FνgXνg (11-56)

gP ≈
∑

g

AP(rg)Pg (11-57)
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PP =
∑

Q

V−1
PQgq (11-58)

Jg =
∑

P

AP(rg)PP (11-59)

Jμν ≈
∑

g

XμgXνgJg (11-60)

One might anticipate savings from this treatment compared to the original pseudo-
spectral or analytic RI methods for the Coulomb matrix but an implementation is so
far not available.

11.3.1.8. A Numerical Comparison

In order to provide some feeling for the approximations discussed above, some
actual calculations are reported. Unfortunately, the methods described above are not
all implemented in any single electronic structure code and hence a fair comparison
is very difficult. The comparison is therefore restricted to the algorithms available
in the ORCA program.

As a first calculation, a medium size organic molecule, cocaine, is considered
with a variety of basis sets. Such molecules are of typical size for many contem-
porary applications of quantum chemistry. It is obvious that the RI-J approximation
is much more efficient than the (exact) Split-J algorithm (Table 11-1). Interestingly,
the best strategy for this type of application is to store the three index integrals. On
present day computers this is even efficient for almost 2,000 basis functions (leading
to about 12 GB of stored integrals). The advantages of the RI-J algorithm over the
conventional integral direct algorithm increase with the quality of the orbital basis
set. Speedups of up to a factor of almost 220 are found. Thus, extremely efficient
“pure” DFT calculations are possible on the basis of this algorithm. The total wall
clock time to complete the largest calculation with a quadruple-zeta basis set and
1,884 basis functions is only 35 min on a single CPU. It is unlikely that a multipole
based algorithm with exactly calculated near-field integrals would even be nearly
competitive with the timings achieved by the RI-J algorithm.

Secondly, the efficiency of the approaches is compared for a large molecule,
Vancomycine (176 atoms). With a modest basis set, def2-SV(P) this molecule is
described by ∼1,500 basis functions. In this case, the Coulomb formation and the
numerical XC integration that together account for the Fock matrix formation in RI-
DFT calculations take less time than steps like diagonalization or the integration grid
setup. Thus, highly efficient calculations are also possible on large molecules (200
atoms or more) despite the lack of linear scaling. Once more, the integral conven-
tional algorithm proved to be the most efficient variant. This changes for larger basis
sets. With the more accurate def2-TZVP(-f) basis (that has a 2d polarization set on
non-hydrogens and 1p on hydrogens), there are ∼2,900 basis functions (and 5,778
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Table 11-1. Comparison of different algorithms for the formation of the Coulomb matrix. Timings (in
sec for 15 Coulomb matrix builds) are given for calculations on the cocaine molecule with different
basis sets. In parenthesis the speedup to the traditional integral direct Coulomb formation is given

Def2-SV(P) 6-31G∗ 6-311G(d, p) Def2-TZVP(-f) Def2-TZVPP Def2-QZVPP

NBAS 350 350 522 654 976 1,884

Exact-J 921 986 2,772 9,084 28,881 271,892
Split-J 513 (1.8) 632 (1.6) 1,603 (1.7) 4,206 (2.2) 22,618 (1.3) 226,576 (1.2)
RI-J (direct) 94 (9.8) 101 (9.8) 155 (17.9) 321 (28.3) 1,346 (21.5) 39,081 (7.0)
RI-J (semi-direct) 58 (15.9) 60 (16.4) 117 (23.7) 191 (47.6) 319 (90.5) 1,795 (151.5)
RI-J (conv) 27 (34.1) 27 (36.5) 63 (44.0) 99 (91.8) 271 (106.6) 1,243 (218.7)
Split-RI-J 62 (14.9) 67 (14.7) 110 (25.2) 164 (55.4) 374 (77.2) 38,591 (7.0)

Single CPU of a MacPro 3.1; operating system OS X 10.5, 2 quad-core Intel XEON 3.0 GHZ CPUs that
have 12 MB level 2 cache

auxiliary functions). In this case, the conventional RI-J calculation drops in effi-
ciency due to the large I/O penalty (about 46 GB of integrals are stored in this case).
Here, the Split-RI-J algorithm is the most efficient choice. Nevertheless, up to about
2,000 basis functions, the integral conventional RI-J algorithm is very attractive
(Table 11-2).

11.3.2. Exchange Term

If the exchange term is computed by the integral direct SCF method, already Almlöf
[64] has shown that there is only a linear scaling number of contributions to the
Fock matrix, provided that Kohn’s conjecture holds that the density matrix elements
decay exponentially with distance [65]. While this seems to imply that the HF-
exchange is inherently linearly scaling, there still is a quadratically scaling pre-
screening step that becomes computationally recognizable in large calculations. In
practice, one typically observes a scaling around N1.5. Perfectly linearly scaling
exchange algorithms that proceed via traditional two-electron repulsion integrals
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Table 11-2. Comparison of different algorithms for a RI-BP86 DFT calculation
on Vancomycine. Timings (in sec for 18 Coulomb matrix builds) are given.
In parenthesis the speedup relative to the traditional integral direct Coulomb
formation is given

Def2-SV(P) Def2-TZVP(-f)

NBAS 1,572 2,886

Exact-J 33,364 –
RI-J (direct) 2,657 (12.6) 8,697
RI-J (semi-direct) 1,671 (20.0) 8,657
RI-J (conv) 855 (39.0) 14,897
Split-RI-J 1,811 (18.4) 5,657
XC integration 229 1,447
Diag+DIIS 473 945
Grid generation 303 317

Single CPU of a MacPro 3.1; operating system OS X 10.5, 2 quad-core Intel XEON
3.0 GHZ CPUs that have 12 MB level 2 cache

have consequently been developed [4, 10]. The only drawback of these procedures
is that the calculations are still costly. Note also that the algorithm by Ochsenfeld
[10] fully exploits the permutational symmetry of the electron-electron repulsion
integrals while that of Challacombe [4] does not and consequently leads to late
crossovers with the standard direct SCF algorithm.

The ORCA package has for almost a decade featured a variant in which the
Coulomb term is treated by the RI-J algorithm and the exchange is computed via
a standard direct SCF treatment (this was called RIJONX [66] and was frequently
used in application studies [67–69]; However, RIJONX is an unfortunate name since
the exchange treatment is not based on a genuine O(N) procedure. Hence, this is
now referred to as RIJDX; DX = “Direct Exchange”). Even for the largest sys-
tems that have been treated so far with several hundred atoms, the time to compute
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the exchange term strongly dominates the computation time despite its favorable
scaling.

Inspired by the success of the RI-J approximation, several attempts have been
made to approximate the HF exchange by similar fitting techniques. Initially, the
results of Kendall and Früchtl et al. in the framework of the NWChem program
indicated that efficiency can indeed be gained in this way [70]. This could not be
confirmed in later attempts by the present author [71]. Weigend developed an RI-X
algorithm (termed RI-K) that proceeded by large scale matrix multiplications and
scaled as O(N4) [72]. It has been shown to be efficient for compact molecules treated
with large and accurate basis sets [72]. Polly et al. used the concept of “fitting-
domains” to arrive at a linear scaling RI-X algorithm [73]. More recently, further
efforts have been reported by Head-Gordon and co-workers [74] as well as by Lindh
et al. [75] who used the closely related Cholesky decomposition technique. In both
cases speedups relative to the conventional implementation were obtained but the
algorithms were not linearly scaling.

As discussed above, Friesner’s pseudo-spectral methods consist of a semi-
numeric approximation to the two-electron integrals [56–58, 60, 61, 76]. From
the resulting factorization considerable speedups can be realized for both the
Coulomb and the exchange term. The actual computational machinery, as real-
ized in the Jaguar code, is highly sophisticated and acknowledged to be efficient
[59–61, 76–79]. In order to realize the full potential of the pseudospectral method,
the computational algorithms have been optimized for specific basis sets [59, 61,
77–79].

11.3.2.1. Semi-numerical Approximations: Pseudospectral
and Chain of Spheres

The semi-numerical approximation to the exchange term can be written as follows:

Kμν ≈
∑

g

Xμg

∑

τ

Aντ (rg)
∑

κ

PκτXκg (11-61)

Here the index “g” refers to grid points rg and:

Xκg = w1/2
g κ(rg) (11-62)

Thus, the first integration (over the coordinates of electron 1) is carried out numeri-
cally and the second one (over the coordinates of electron 2) analytically. Note that
this destroys the Hermitian character of the two-electron integrals. Eq. (11-61) is
perhaps best evaluated in three steps:

Fτg = (PX)τg (11-63)

Gνg =
∑

τ

Aντ (rg)Fτg (11-64)
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Kμν = (XG+)μν (11-65)

As such the equations are very similar to the pseudo-spectral method extensively
developed and discussed by Friesner and co-workers since the mid 1980s and com-
mercially available in the Jaguar quantum chemistry package. The main difference
at this point is that instead of Xκg there appears a least-square fitting operator Qκg
in Friesner’s formulation. As Friesner has pointed out, the evaluation of Eq. (11-61)
scales as O(N3) [56–58]. A potentially linear scaling version of Eqs. (11-63–11-65)
is presented below.

The COSX algorithm. In order to arrive at an efficient implementation of the
semi-numerical exchange treatment, we have developed an algorithm that we have
termed the “chain of spheres exchange” (COSX) treatment [80]. The basic idea is
simple and consists of constructing small “chains” of shells of basis functions that
give non-negligible contributions to the exchange matrix (within the cut-off Thresh
of the direct SCF procedure). Negligible contributions arise either from negligi-
ble differential overlap between pairs of basis functions or from negligible density
matrix elements. Two basis functions that are connected by differential overlap
are said to be linked by an “S-junction” and pairs that are connected by a den-
sity matrix element are said to be linked by a “P-junction”. Finding non-negligible
S-junctions is achieved by surrounding each contracted basis function by a sphere
outside of which the absolute value of the basis function is considered to be negli-
gible (in practice typically < BFCut = 10–10). For valence basis functions of first
row-atoms, the spheres typically have a radius of ∼3 Å [80]. Given the spheres, one
can construct for each basis function a list of partners with a significant S-junction.
Asymptotically, the list is of constant length for each given basis function. Likewise,
one constructs for each basis function a list of partners with significant P-junctions
that is expected to become asymptotically constant as long as Kohn’s conjecture
holds. Furthermore, taking advantage of the fact that the exchange matrix is linear
in the density, the second and later SCF iterations are done with the difference den-
sity rather than the full density, which greatly diminishes the number of significant
P-junctions. The calculation of the intermediate Fτg proceeds via a BLAS level 3
matrix multiplication of the rectangular matrices Xκg and Pκτ , both restricted to
the list of non-negligible basis functions for a given grid point. In the rate limiting
step, the analytical integrals Aντ (rg) are calculated and are immediately contracted
with Fτg to give Gνg. Finally, the contribution to the exchange matrix is calculated
via another BLAS-level 3 operation in which the matrices Xμg and Gνg are con-
tracted. More details are found in the original publication. Since all matrices used
in the intermediate steps are asymptotically of constant size, the entire algorithm
is expected to scale linearly with system size. The thresholding procedure is con-
servative and the accuracy of the approximation is only determined by the size and
quality of the integration grid. The efficiency of the algorithm is directly propor-
tional to the number of grid points and the efficiency of the code for the analytic
integrals.

Scaling with basis set angular momentum. It is interesting to analyze the com-
putational effort for this method with respect to basis sets that only consist of basis
functions with angular momentum L. Friesner and co-workers had already reported
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that their speedup over conventional algorithms is increasing for more extended
basis sets [61]. If one focuses on the MD integral algorithm a two-electron integral
is calculated as shown in Eq. (11-9). There, the loops over p and q are all of a length
proportional to L3 such that the overall scaling of the integrals is O(L10) and this
carries over to the exchange matrix as well. By contrast, in the pseudo-spectral and
COSX algorithms, the steepest scaling intermediate (with respect to L) is Gνg that
shows an O(L5) behavior. Thus, it is evident that once the higher angular momentum
basis functions start to dominate the computational effort the advantages of the semi-
numeric algorithms over the conventional treatments become very large. In practice
this already occurs for the popular triple-ζ basis sets with 2d1f polarization sets on
the heavy atoms and 2p1d on the hydrogens (e.g. TZVPP, or 6-311G(2df,2pd)).

Comparison between COSX and pseudo-spectral methods. In order to arrive
at the smallest possible grids, Friesner et al. have implemented a number of
sophisticated numerical methods [56–61, 76]. Foremost, in order to realize a truly
pseudo-spectral method (as opposed to the semi-numerical treatment pursued here)
it is necessary to introduce a least squares fitting operator Qκg that replaces Xκg

in the second basis function of the bra. Note that this even breaks the permutation
symmetry of the basis function product in the bra. In order to evaluate this operator
it is furthermore necessary to introduce a set of “dealiasing” functions that supple-
ment the orbital basis set. The set of dealiasing functions is, however, specific for
each orbital basis set and must be carefully optimized in order to obtain accurate
results [56–61, 76]. It is then necessary to carefully analyze the orbital basis set in
terms of short-range and long-range components in order to not destroy the locality
that is inherent in Xκg [61]. Secondly, Friesner and co-workers have chosen to cor-
rect for the errors of the PS method by computing parts of the integrals (one-center,
two-center and even part of the three-center integrals) by analytical means [61].
As they rightly point out, this has to be done in a careful way in order to not add
significantly to the computation time. It does, however, take some of the favorable
L-scaling inherent in the semi-numerical method away. Finally, Friesner et al. have
carefully optimized different grids and have developed specific iterative schemes in
which different grids are used in different SCF cycles in order to further increase the
efficiency of their algorithm. In our work, we do not want to deal with the intricacies
of dealising functions, basis set dependent integration grids or geometry dependent
integral corrections. All of this complicates the implementation of gradients and
presumably leads to high code complexity including more complex parallelization.
Thus, in ref [80], we accepted to pay the price of somewhat larger integration grids
and have demonstrated robustness and computational efficiency.

The combination of the COSX exchange algorithm with the RI-J approximation
for the Coulomb term is called RIJCOSX and will be used below.

11.3.2.2. The RI-K Algorithm

In the RI-K approximation [72], the calculation of the exchange matrix proceeds as:

Xi
μP =

∑

ν

cνi(μν|P) (11-66)
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Yi
μP =

∑

Q

V−1/2
PQ Xi

μQ (11-67)

KRI−JK
μν ≈

∑

iP

Yi
μPYi

νP (11-68)

If properly organized all three steps can be done as matrix multiplications making
use of the extremely high efficiency of the basic linear algebra subroutine (BLAS)
level 3 library functions that are available for all modern computers. Since the mem-
ory requirements for the intermediate quantities scale cubically with molecular size
it will often be necessary to perform the calculation in batches and generate the
three-index integrals repeatedly. Alternatively, one can store the RI integrals on
disk and re-read them continuously. The same algorithm can, of course, be real-
ized on the basis of the Cholesky decomposition technique. In fact, Lindh et al.
have reported a Cholesky based exchange algorithm that scales as O(N2) [46]
and Head-Gordon et al. have developed a RI exchange method that has the same
scaling [74].

Formally the calculation of the Coulomb term scales as O(N3) and that of the
RI-K exchange term as O(N4). Prescreening of negligible three-index integrals
reduces the Coulomb term to O(N2) while sparsity is not exploited in the RI-K
exchange approximation which remains at O(N4) scaling.

The requirements for the auxiliary basis sets are modest for the Coulomb part
but more stringent for the exchange part. Ahlrichs, Weigend et al. have developed
suitable basis sets for either Coulomb alone [31–33] or simultaneous Coulomb and
exchange fitting [72, 81].

11.3.2.3. Performance of RIJCOSX

In order demonstrate the efficiency and accuracy of the RIJCOSX approximation in
“real-life applications” we have studied a test set of 26 medium sized molecules in
the range 15–174 atoms and up to ∼2,000–4,000 basis functions (Table 11-3) [80].

The data in Table 11-3 demonstrate that the RIJDX approximation provides
speedups of less than a factor of two and introduces an error that is always negative.
This makes sense of course, since the RI-J approximation always underestimates
the true Coulomb energy. The mean error is ∼0.5 kcal/mol and only for molecules
as large as Vancomycin (176 atoms) exceeds 1 kcal/mol.

The RIJCOSX approximation is similarly accurate but shows errors that are
either positive or negative. The trend is to errors of positive sign for more extended
basis sets. Importantly, the error remains small for extended basis sets up to TZVPP.
For the very flexible QZVP basis set we have preferred to revert to a 302 point
final grid and in this case the absolute errors remain very small. This is presumably
due to the high angular momentum basis functions in the quadruple-ζ basis set that
requires more accurate angular grids for an accurate enough numerical integration
to be obtained. There tends to be a cancellation of errors from the RI-J and COSX
approximations such that the mean absolute RIJCOSX (0.27 kcal/mol) errors are
smaller than the RIJDX ones (0.46 kcal/mol).
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The speedups observed for RIJCOSX range from moderate for small basis sets
such as def2-SV(P) (factors of 1–5) and become spectacularly large for extended
basis sets such as TZVPP and QZVP (up to a factor of 60). Thus, the RIJCOSX
approximation is highly attractive for fast and accurate calculations on large
molecules. Note that the largest calculation reported in Table 11-3 involved ∼4,200
basis functions and was completed in ∼1.5 days on a single CPU.

11.3.2.4. Comparison of COSX and RI-K

In order to compare the efficiency of the RI-JK and RIJCOSX approximations cal-
culations were carried out with a number of basis sets on glycine helices (gly)2,
(gly)4 and (gly)8 [83]. The results reproduced in Table 11-4 show some interesting
features:

(1) The absolute error of the two methods is similar and both reproduce the canon-
ical results within the chemical accuracy of ∼1 kcal mol–1. Interestingly, both
methods show the largest errors for the smallest basis set (def2-SVP). However,
the error of the RI-JK approximation is always positive while that of the
RIJCOSX approximation can have either sign. The error of the RI-JK approx-
imation is therefore seen to be more smooth and energy differences will be
slightly more accurate. However, both methods yield errors that are smaller
than the typical uncertainties in computational chemistry applications that are
due to errors in the structures, the treatment of the environment, the intrinsic
errors in density functionals or the basis set incompleteness errors.

(2) Both approximations perform best for large and accurate basis sets. As dis-
cussed earlier [80], this is related to the much better scaling of the two
approximations with the highest angular momentum in the basis set. In the
standard calculation of four index integrals this scaling is 16/9L10 + . . . for
the McMurchie-Davidson algorithm [19]. In the case of RI-JK this reduces to
2/9L9 + . . . due to the three-index nature of the electron-electron repulsion
integrals. In COSX the scaling is even reduced to O(L6) [80].

(3) For the small (gly)2 molecule, the RI-JK approximation is more efficient
than RIJCOSX, for (gly)4 the performance of both approximations is com-
parable while for (gly)8 RIJCOSX performs better. This result is, of course,
not unexpected due to the less favorable scaling of RI-JK compared to
RIJCOSX. However, low-order scaling variants of RI-JK can and have been
developed [73].

(4) This behavior is typical and not affected by the choice of Glycine chains as
the test systems. For example, for cholesterol – a more or less 2 dimensional
molecule – the times required for RI-JK and RIJCOSX for a RHF calculation
with the def2-TZVP basis set (74 atom, 1,144 basis functions) require 16,900
sec (RI-JK) and 7,300 sec (RIJCOSX), in line with the (gly)n results. The total
energies differ by only 0,3 mEh.

Recently the efficiency of the RI-JK and RIJCOSX approximations to the calcula-
tion of the Fock matrix was examined and illustrated by some test calculations.
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The comparison reveals that both approximations are efficient and accurate while
their performance is overall comparable. For large-scale calculations on smaller
molecules RI-JK is probably preferable while RIJCOSX is the method of choice
for larger molecules. Several points are noted:

(1) RI-JK achieves its efficiency through the formulation of the density matrix in
the MO basis. This implies that for other exchange type matrices, for exam-
ple those that arise in electric and magnetic linear response calculations, the
approximation is less beneficially employed. In this respect RIJCOSX, that
is formulated entirely in the AO basis, is the more general technique for
simultaneously approximating Coulomb and exchange type contributions.

(2) For spin unrestricted calculations the cost of the RI-JK method doubles since
the rate limiting step is the first contraction of the MO coefficients with the
three-index integrals. This is not true for the COSX approximation where the
rate limiting step is the calculation of the Aνκ (rg) integrals which is independent
on the number of spin cases.

(3) Energy derivatives are more readily and more efficiently formulated in the
RIJCOSX approximation compared to RI-JK [80].

(4) RI-JK requires much more main memory than RIJCOSX due to the structure
of the intermediate quantities. Thus, if memory becomes limiting many passes
through the integral list may be necessary in RI-JK with concomitant penalties
in the overall performance. However, this is not much of an issue if about 4 GB
of main memory are available.

(5) Since RI-JK is dominated by matrix multiplications it will strongly bene-
fit from the latest hardware developments where matrix operations can be
extremely efficiently performed on graphics cards. This will further increase
the attractiveness of RI-JK.

In our opinion, both, the RI-JK and RIJCOSX approximations are attractive tools in
quantum chemistry. Their efficiency, accuracy, robustness and availability is proven.

11.4. DISCUSSION

In this chapter some contemporary algorithms for the calculations of the Coulomb
and Exchange contributions to the Fock matrix were described and discussed. It has
been emphasized that highly efficient calculations with essentially saturated basis
sets are possible on molecules in the range of up to 200 atoms even with algorithms
that do not show linear scaling. The most efficient combination appears to be the RI-
J method for the Coulomb term combined with the COSX semi-numerical method
for the exchange term (thus defining RIJCOSX). Depending on the basis set and the
system, this method is 10–200 times faster than the standard algorithms if no HF
exchange is present and 2–60 times faster if the HF exchange is to be computed.
The advantages increase with increasing quality of the basis set. Unfortunately, the
Hartree-Fock exchange term is still the by far most expensive part of the Fock matrix
construction and more efficient algorithms for it need to be found in the future.
However, already the algorithms described here will often significantly outperform
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linear scaling methods. Thus, the point of view is taken that linear scaling is not an
end in itself and should not be mistaken to automatically imply computational effi-
ciency. In fact, linear scaling methods heavily rely upon the sparsity that originates
from the spatial extension of molecules. However, true sparsity (to the level of 10–10

in the density matrix elements) only sets in for fairly large molecules with a spatial
extent >20–25 Å that are not uniformly in the focus of contemporary theoretical
investigations. In our opinion, the final proof of usefulness of a given algorithm is
its performance in today’s real-life chemical applications, irrespective of what the
formal scaling might be.

If one considers that models with 50–100 atoms are very often sufficient to solve
chemical problems or to model the quantum region in a QM/MM calculation, it
may well be argued that even today focusing development efforts on algorithms that
reduce the prefactor of the calculation is a good choice. It is equally evident that
for even larger molecules one eventually has to resort to linear scaling algorithms.
However, when one considers the break even point between linear scaling and non-
linear scaling algorithms a fair comparison must involve: (a) the use of integral
neglect thresholds that lead to actually converged and accurate SCF energies and (b)
the use of basis sets that are of sufficient quality to ensure that the chemical problem
at hand can actually be successfully addressed. In our opinion, a significant number
of linear-scaling development publications fall short of providing a realistic perspec-
tive for actual chemical applications because they are either done with insufficiently
large basis sets or too loose integral neglect thresholds. The basis set issue might
not be particularly pressing in SCF calculations because acceptably good results are
often already obtained with singly polarized double-zeta quality basis sets. It does
become, however, a significant issue in correlation calculations where basis sets
of at least doubly- or triply polarized triple zeta quality are mandatory for chem-
ically meaningful results. A point in case is the recent development of the local
pair-natural orbital coupled pair and coupled cluster methods (LPNO-CEPA and
LPNO-CCSD) that can be applied to molecules of significant size with meaningful
basis sets while not exploding in their computational cost [84, 85]. These methods
are not even nearly linear scaling but will outperform other local correlation meth-
ods if the requirements of accurate correlation energies and sufficiently saturated
basis sets are met to equal extents by the competing algorithms.

For the future it appears to be a promising strategy to first optimize the prefactor
of a given algorithm and then to try to linearize it but without compromising the
inherent computational efficiency of the original approach.
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CHAPTER 12

METHODS FOR HARTREE-FOCK AND DENSITY
FUNCTIONAL THEORY ELECTRONIC STRUCTURE
CALCULATIONS WITH LINEARLY SCALING PROCESSOR
TIME AND MEMORY USAGE
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1Division of Scientific Computing, Department of Information Technology, Uppsala University,
SE-751 05 Uppsala, Sweden
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Abstract: We discuss algorithms that can be used to calculate electron densities using computer
resources – memory and processor time – that increase only linearly with system size.
We focus on the Hartree-Fock and density functional theories and calculations using
Gaussian basis sets. However, many of the approaches discussed here are applicable
also for other methods and for any local basis. Particular attention is directed towards
error control and how to avoid the use of the ad-hoc selected parameters and thresh-
old values often associated with computational approximations employed to reach linear
scaling. The discussed aspects include multipole methods, linear scaling computation of
the Hartree-Fock exchange and density functional theory exchange-correlation matrices,
hierarchic representation of sparse matrices, and density matrix purification. The arti-
cle also describes how these different parts are put together to achieve linear scaling for
the entire Hartree-Fock or density functional theory calculation, controlling errors in the
self-consistent field procedure by considering rotations of the occupied subspace.

Keywords: Density functional theory, Density matrix purification, Multipole
approximations, Parametrized minimization, Sparse matrix, Two-electron integrals

12.1. INTRODUCTION

In recent years, there has been great interest in electronic structure calculations for
which the computational cost increases only linearly with system size [1–3]. Many
methods have been developed that appear to cover all aspects required to indeed
perform linear scaling calculations. Despite that, a substantial breakthrough of lin-
ear scaling methods is a long time in coming. There may be several reasons for this,
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but one important aspect is that typical linear scaling implementations are parame-
terized with a number of threshold values and parameters that are not easily selected
for someone who is not well acquainted with the code. These threshold values and
parameters are used to govern the accuracy and efficiency of approximations that
are needed to reach linear scaling. Ideally, parameters that control approximations
should be set automatically so that the level of accuracy that is needed at each stage
of the calculation is reached. We discuss in this article how such control of the accu-
racy can be obtained. Another aspect that has often been overlooked is the memory
usage. The focus has mostly been on achieving linear scaling in time. In this arti-
cle we share our experiences from the development of Ergo, a research quantum
chemistry program for Hartree-Fock and Kohn-Sham density functional theory cal-
culations which uses processor time and memory that both scale only linearly with
system size [4, 5]. We are not aware of any other program with linearly scaling
memory usage throughout the entire code. Initially, the development of Ergo was
part of the PhD thesis works by two of the authors. This article builds in part on
those authors’ recent dissertations [6, 7].

This article is organized as follows: In the following section, Section 12.2, we
discuss the self-consistent field procedure as used in a linear scaling electronic
structure calculation. An overview of the different steps involved is given, along
with a description of how error control can be achieved by considering desired and
erroneous rotations of subspaces occurring in the computational procedures.

A general discussion about four-center Gaussian integral evaluation is given in
Section 12.3. In particular, this section explains how the computational complexity
can be reduced from O(n4) to O(n2). When the complexity is to be reduced to O(n),
Coulomb and exchange matrix evaluations must be treated separately. Linear scaling
evaluations of the Coulomb and exchange matrices are considered in Sections 12.4
and 12.5 respectively. Linear scaling evaluation of the exchange correlation matrix
using numerical integration is discussed in Section 12.6. In Section 12.7, it is dis-
cussed how errors due to computational approximations in the Coulomb, exchange,
and exchange-correlation steps can be controlled using an extrapolation scheme.

Section 12.8 discusses different ways to construct the density matrix, both algo-
rithms based on energy minimization and polynomial expansion methods. We argue
that among these methods, density matrix purification is preferable since it can
deliver good performance while errors are strictly controlled. The storage and
manipulation of sparse matrices, used not only in density matrix purification but
also in intermediate steps throughout the calculation, is described in Section 12.9.

A set of benchmark density functional theory calculations on peptide helix
molecules is presented in Section 12.10. Finally, a few concluding remarks are given
in Section 12.11.

12.2. THE SELF-CONSISTENT FIELD PROCEDURE

Electronic structure calculations at the Hartree-Fock and Kohn-Sham density func-
tional theory levels are usually performed using the so-called self-consistent field
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(SCF) procedure. In the self-consistent field procedure, two steps are used repeat-
edly; (1) construction of the Fock/Kohn-Sham matrix for a given electron density
(D → F) and (2) calculation of the density matrix for the resulting potential
(F → D). These two steps are repeated until convergence:

D1 −→ F2 −→ D2 −→ F3 −→ D3 −→ · · · . (12-1)

The electron density at a given time during this optimization is completely described
by the so-called occupied subspace, the space spanned by the eigenvectors of F that
correspond to occupied orbitals [8]. The self-consistent field procedure can be seen
as a sequence of rotations of the occupied subspace:

D1 −→ D2 −→ D3 −→ · · · , (12-2)

where Di is the occupied subspace of Fi and Di. A rotation occurs every time a new
Fock/Kohn-Sham matrix is constructed. In the calculation of the density matrix, no
rotation would occur if exact arithmetics were used. Before we discuss what happens
when approximations and erroneous rotations are introduced, we will describe the
different steps of the computational procedure.

12.2.1. Overview of a Linearly Scaling Program

In this article, we focus mainly on calculations where the electron density is
expanded in a set of n basis functions {φk(r)} built up by combinations of
polynomials and Gaussian functions centered at the nuclei of the molecule;

φ(r) = p(r − r0)
∑

i

βie
−αi(r−r0)2

. (12-3)

Here r0 is the center of a nucleus and p(r) is a polynomial function of the Cartesian
coordinates r = (x,y,z). These basis sets, which are commonly referred to as
Gaussian type linear combination of atomic orbital (GT-LCAO) basis sets or simply
Gaussian basis sets, are extensively discussed in Ref. [9]. In the following, a vector
notation

!T (r) = [φ1(r) φ2(r) . . . φn(r)] (12-4)

is used for the set of basis functions. In Algorithm 1 we give an example of how the
main structure of a linear scaling self-consistent field program can look in practice.
The sequence of steps illustrated in Algorithm 1 summarizes how a Hartree-Fock or
Kohn-Sham density functional theory calculation is carried out in the Ergo quantum
chemistry program [4]. Ergo is a research quantum chemistry program that we used
to demonstrate many of the methods described in this article. It uses Gaussian basis
sets to compute electron densities with linearly scaling processor time and memory
usage. The Ergo code has also been used as a testing ground to develop some linear
response methods scaling linearly in time.
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Algorithm 1 Overview of self-consistent field program

1: Read molecule and basis set information from input files.
2: Compute overlap matrix S.
3: Compute inverse factor Z such that ZTSZ = I.
4: Compute one-electron Hamiltonian matrix H1.
5: Generate starting guess density matrix DS.
6: for i = 1, 2, . . . do
7: Compute new Coulomb matrix J.
8: Compute new Hartree-Fock exchange matrix K.
9: Compute new Kohn-Sham exchange-correlation matrix Vxc.

10: Compute energy E = Tr (DS H1) + 1/2 Tr (DS (J+α K)) + Exc.
11: Compute new Fock/Kohn-Sham matrix FS = H1 + J + αK + Vxc.
12: Compute matrix FS DSS – SDS FS (needed for DIIS [10, 11]).
13: Compute F̃S as a linear combination of new and previous Fock/Kohn-Sham matrices.
14: Compute F⊥ = ZT F̃S Z.
15: Compute new density matrix D⊥ from F⊥.
16: Compute DS = Z D⊥ ZT.
17: end for

The matrix operations needed in several of the above steps (matrix – matrix mul-
tiplication, matrix addition, matrix trace) are performed using sparse matrix algebra.
This allows for linear scaling provided that the matrix sparsity is such that the num-
ber of non-zero elements per row does not increase with system size. In practice this
is usually the case for non-metallic molecular systems.

We will now comment on the different steps and introduce some notation.

– Step 2: The overlap matrix

S =
∫

R3
!(r)!T (r)dr. (12-5)

The overlap matrix can easily be constructed directly in sparse form given the
locality of the basis functions. The number of non-negligible contributions
scales linearly with system size.

– Step 3: The inverse factor Z is needed for the congruence transformations in
Steps 14 and 16. The inverse factor can be computed using inverse Cholesky
decomposition [12, 13] which is very efficient for small systems. However,
for the Cholesky approach it is difficult to achieve linear scaling while keep-
ing errors strictly controlled. An alternative technique is the recursive inverse
factorization method [14].

– Step 4: The one-electron Hamiltonian matrix depends only on the basis set
and positions of the nuclei;

H1 = −
∫

R3
!(r)

∇2!T (r)

2
dr −

∫

R3
!(r)

∑

A

ZA

|rA − r|!
T (r)dr. (12-6)
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Here ZA and rA are the charge and position respectively of atom A. For the
first term in (12-6), linear scaling is easily achieved by making use of the
locality of the basis functions. For the second term, describing the Coulomb
attraction between electrons and nuclei, linear scaling is achieved using mul-
tipole descriptions of groups of charges in essentially the same way as for the
Coulomb matrix, see Section 12.4.

– Step 7: The Coulomb matrix

J = 2
∫

R6

!(r1)!T (r2)DS!(r2)!T (r1)

|r1 − r2| dr1dr2. (12-7)

This step is discussed in Section 12.4.
– Step 8: The Hartree-Fock exchange matrix

K = −
∫

R6

!(r1)!T (r2)DS!(r1)!T (r2)

|r1 − r2| dr1dr2. (12-8)

This step is discussed in Section 12.5.
– Step 9: The Kohn-Sham exchange-correlation matrix

Vxc =
∫

R3
!(r)

∂F
∂ρ

∣∣∣∣
ρ=ρ(r)

!T (r)dr (12-9)

where
∫
F(ρ)dr is the energy functional which in (12-9) for simplicity is

assumed to be only density dependent. This step is discussed in Section 12.6
where also gradient dependent energy functionals are discussed.

– Step 11: The Fock/Kohn-Sham matrix consists of one-electron (H1) and two-
electron (J, K, Vxc) contributions. In case of a Hartree-Fock calculation,
Vxc = 0, Exc = 0, and α = 1. In case of a pure Kohn-Sham calculation,
α = 0. For so-called hybrid functionals, Vxc and Exc are both nonzero and
0 < α ≤ 1.

– Step 13: Usually, some convergence enhancing schemes are used to accelerate
and hopefully even ensure convergence, see Refs. [15, 16] for recent reviews.
In the Ergo quantum chemistry program either damping [17, 18] or direct
inversion in the iterative subspace (DIIS) [10, 11] is used to generate F̃S as a
linear combination of new and previous Fock/Kohn-Sham matrices.

– Step 14: We denote by FS and F⊥ the Fock/Kohn-Sham matrix before and
after this congruence transformation, respectively.

– Step 15: The density matrix D⊥ is calculated from the occupied invariant
subspace of F⊥, usually the subspace that corresponds to its nocc smallest
eigenvalues, where nocc is the number of occupied orbitals, see Figure 12-1.
The F → D step is discussed in Section 12.8.

– Step 16: We denote by D⊥ and DS the density matrix before and after this
congruence transformation, respectively.
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Figure 12-1. Schematic illustration of eigenvalues corresponding to the occupied and unoccupied
subspaces of the Fock/Kohn-Sham matrix F

12.2.2. Erroneous Rotations

In practice, both the D → F and F → D steps are carried out approximately in order
to reduce the computational effort. Computational approximations such as Cauchy-
Schwarz screening of integrals and truncated multipole expansions are frequently
used, as described in Sections 12.3 and 12.4. Consequently, a distorted subspace
D̃i+1 is obtained instead of Di+1 when Fi+1 and Di+1 are computed from Di. That
is, an erroneous rotation

Di+1 ��� D̃i+1 (12-10)

happens together with the desired

Di → Di+1 (12-11)

rotation, see Figure 12-2. Note that in exact arithmetics, Di+1 is the occupied sub-
space of both Fi+1 and Di+1. The approximate D̃i+1 is the occupied subspace of
Di+1 only, but contains erroneous rotations coming from both the Di → Fi+1 and
Fi+1 → Di+1 steps.
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Di

D i+1

˜Di+1

Figure 12-2. When computational approximations are used, erroneous rotations (���) distort the desired
rotation (−→) so that a perturbed subspace D̃i+1 is obtained instead of the Di+1 subspace

12.2.3. Controlling Erroneous Rotations

The erroneous rotations of the occupied subspace should be small compared to the
desired self-consistent field rotations. A rotation of a subspace can be measured by
the largest canonical angle between the original and rotated subspaces. The largest
canonical angle θ is defined as the largest acute angle between any vector in the
first subspace and the closest vector in the second subspace. Consider a matrix A,
where for example A = F or A = D, and its approximation Ã = A + E. Assume
that the eigenvalues of A are separated in two groups, corresponding to two sub-
spaces, as in Figure 12-1. Assume also that the gap ξ (the HOMO-LUMO gap in
case of A = F) between the two groups is larger than ‖E‖2. Then, it can be shown
that

sin θ ≤ ‖E‖2

ξ − ‖E‖2
. (12-12)

Moreover, in case A and Ã are projections onto the subspaces in question,

sin θ = ‖E‖2. (12-13)

This means that controlling the erroneous rotation of an approximation amounts to
knowing the band gap and controlling the norm of the error matrix. See Ref. [8] for
a more thorough discussion. It should be noted that (12-12) and (12-13) are written
in terms of any unitary-invariant norm in Ref. [8].

Controlling erroneous rotations is particularly important in linear scaling self-
consistent field calculations where approximations to reduce the computational
complexity are frequently employed. In the following sections we will discuss such
approximations. We will also discuss methods to improve error control along the
lines above.
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12.3. INTEGRAL EVALUATION

In a Hartree-Fock or Kohn-Sham density functional theory calculation, much com-
puter time is spent on the task of computing a new Fock/Kohn-Sham matrix for
a given density matrix. Much of the work comes down to evaluating two-electron
integrals of the type

(pq|rs) =
∫

R6

φp(r1)φq(r1)φr(r2)φs(r2)

|r1 − r2| dr1dr2. (12-14)

There are very many such integrals; if all of them are computed explicitly, the num-
ber of integrals that must be evaluated is n4, where n is the number of basis functions.
Fortunately, there are ways to reduce the needed computational effort. There is some
symmetry to take advantage of: it follows from (12-14) that (pq|rs) = (qp|rs) =
(pq|sr) = (rs|pq) etc., so that if all four indexes are different, there are eight inte-
grals having the same value. This means that the number of unique integrals is about
1
8 n4. For large systems, it is possible to reduce the number of integrals that need to
be computed even more, provided that localized basis functions are used.

12.3.1. Primitive Gaussian Integrals

When Gaussian basis functions of the form (12-3) are used, each two-electron
integral (pq|rs) can be expressed as a sum of primitive integrals of the type

∫

R6

�A(r1)�B(r2)

|r1 − r2| dr1dr2 (12-15)

where

�A(r) = (x − xA)iA (y − yA)jA(z − zA)kA e−αA(r−rA)2
(12-16)

�B(r) = (x − xB)iB(y − yB)jB(z − zB)kBe−αB(r−rB)2
. (12-17)

At this level, each primitive distribution �A is determined by its exponent αA, its
center coordinates rA = (xA,yA,zA), and the three integers iA, jA and kA.

Primitive integrals of the type (12-15) can be efficiently computed using the
recurrence relations of the McMurchie-Davidson scheme. A thorough explanation
of this scheme is given by Helgaker et al. in Ref. [9].

12.3.2. Screening

In this section, the concept of screening is used in the context of integral evalua-
tion. What is meant by screening in this context is something like “neglect of small
contributions”. As seen from (12-7) and (12-8), the elements of the Coulomb and
Hartree-Fock exchange matrices are sums in which each term is of the form

Dab(pq|rs) (12-18)
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where Dab denotes the matrix element (a,b) of the density matrix DS. Now, if it is
known that |Dab| < ε1 and that |(pq|rs)| < ε2, then the contribution to the result
matrix is surely smaller than ε1ε2. The idea of integral screening is to systematically
estimate bounds on |Dab| and |(pq|rs)| and use that information to skip evaluation of
|(pq|rs)| whenever it is known that the resulting contribution would be smaller than
some threshold value τ .

12.3.3. Cauchy-Schwarz Screening

The Schwarz inequality, also known as the Cauchy-Schwarz inequality, is very
useful for providing bounds on two-electron integrals [19]:

|(pq|rs)| ≤ √
(pq|pq)

√
(rs|rs) (12-19)

The quantity
√

(pq|pq) associated with a pair of basis functions φp(r) and φq(r) is
therefore of interest. Let Dmax be the largest absolute density matrix element, and let
Cmax be the largest Cauchy-Schwarz factor

√
(pq|pq) among all pairs of basis func-

tions. Then a limit for the largest possible contribution to the Coulomb or exchange
matrix from a particular basis function pair pq is given by DmaxCmax

√
(pq|pq).

Therefore, once Dmax and Cmax are known, many basis function pairs can be
neglected; it makes sense to create a list of all non-negligible basis function
pairs. When Gaussian basis functions of the type (12-3) are used, the number of
non-negligible basis function pairs will scale as O(n), thanks to locality of basis
functions. Using such a list of non-negligible basis function pairs as a starting point,
all non-negligible integrals (pq|rs) can easily be computed with O(n2) complexity.

12.3.4. The Coulomb and Exchange Matrices

In the previous section, it was discussed how the formal O(n4) scaling can be
improved to O(n2) while still considering all contributions to the Coulomb and
exchange matrices on an equal footing. Further improvements can be made if one
takes into account the way that density matrix elements are combined with the
two-electron integrals. This differs between the Coulomb contribution J and the
exchange contribution K, see (12-7) and (12-8):

Drs(pq|rs) (Coulomb) (12-20)

Drs(pr|qs) (exchange) (12-21)

Therefore, when attempting to improve the scaling beyond O(n2), it is helpful to
use separate algorithms for the two contributions J and K. In the case of J, one
can exploit the fact that pairs of basis functions together with the corresponding
density matrix elements can be seen as charge distributions for which simplified
descriptions can be generated. In the case of K, improved scaling can be achieved if
density matrix elements decay with the distance between the corresponding basis
functions, as is normally the case for non-metallic systems. More details about
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Coulomb matrix construction using multipoles will be given in Section 12.4, and
exchange matrix construction is discussed in Section 12.5.

12.4. COULOMB MATRIX CONSTRUCTION

This section gives a brief description of how and why the scaling of the Coulomb
matrix construction step can be improved using multipole expansions. For a more
detailed discussion of the implementation of Coulomb matrix construction in the
Ergo program, see Ref. [20].

The Coulomb matrix is essential in all self-consistent field quantum chemistry
calculations: it is needed in Hartree-Fock as well as in Kohn-Sham density func-
tional theory, for both pure and hybrid functionals. This section focuses on how
multipole approximations can be used to accelerate the computation of the Coulomb
matrix. The Coulomb matrix J is given by

Jpq = 2
∑

rs

Drs(pq|rs). (12-22)

Taking into account the expression (12-14) for the two-electron integrals (pq|rs),
this can be rewritten as

Jpq = 2
∫

R6

φp(r1)φq(r1)
∑

rs Drsφr(r2)φs(r2)

|r1 − r2| dr1dr2 = 2
∫

R6

φp(r1)φq(r1)ρ(r2)

|r1 − r2| dr1dr2

(12-23)
where ρ(r) is the electron density

ρ(r) =
∑

rs

Drsφr(r)φs(r). (12-24)

This means that the Coulomb matrix element Jpq can be interpreted as follows: Jpq

is the Coulombic repulsion energy of an electron whose spatial distribution is given
by φp(r)φq(r), due to the total charge distribution ρ(r) of all electrons.

To efficiently evaluate Coulomb matrix elements Jpq it is useful to have
two things precomputed. Firstly, a list of non-negligible basis function products
φp(r)φq(r), as described in Section 12.3.3. Secondly, a description of the density
ρ(r) that allows one to evaluate repulsion from a group of charges that are far away,
without considering interactions of individual pairs of charges. Such a description
of ρ(r) can be created using multipole expansions, as discussed in the following
section.

12.4.1. Multipole Approximations

The Fast Multipole Method (FMM) was originally developed for calculation of
the interaction between classical point charges [21, 22]. Later, much research has
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been devoted to the application of multipole approximations in quantum chemistry
[23–34]. The basic idea is that a group of charges that are close to each other can be
described by a multipole expansion, which includes enough information to accu-
rately evaluate the Coulomb repulsion between that group of charges and some
other charge that is well separated from the group. This allows Coulomb interac-
tion to be calculated without taking into account each individual charge separately,
thus reducing the computational effort. A hierarchy of groups of charges is used,
so that larger groups of charges can be used at long distances. This gives improved
scaling.

When multipole approximations are applied in quantum chemistry with Gaussian
basis functions, the “charges” are no longer point charges but instead Gaussian
charge distributions arising from products of basis functions. Groups of such charge
distributions are then described by multipole expansions.

So what is a “multipole expansion”? It is a list of numbers called “multipole
moments”, each multipole moment giving the weight of one particular contribution
to the expansion. The simplest part is the monopole contribution. Then there are
three dipole contributions, one for each coordinate direction. Higher order contribu-
tions correspond to more complicated multipoles; quadrupoles, octopoles, etc. See
Figure 12-3 for an illustration. The expansion must be truncated at some expansion
order, chosen so that the desired accuracy is maintained.

Each Coulomb matrix element Jpq is computed as a sum of a near-field (NF) part
and a far-field (FF) part:

Jpq = JNF
pq + JFF

pq (12-25)

The near-field part JNF
pq is computed by explicit evaluation of the integrals (pq|rs),

while the far-field part JFF
pq is computed as

JFF
pq = 2

∑

i

∫
φp(r1)φq(r1)ρi(r2)

|r1 − r2| dr1dr2 (12-26)

where the sum is taken over all far-field groups of charges, each with electron den-
sity ρi(r). Each term in the sum (12-26) is computed using a truncated multipole
expansion of the density ρi(r):

Figure 12-3. Multipole moments
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∫
φp(r1)φq(r1)ρi(r2)

|r1 − r2| dr1dr2 ≈ qT
pqTqi (12-27)

Here, T is the multipole interaction matrix, and qpq and qi are the multipole expan-
sions (i.e. vectors of multipole moments) for the basis function pair pq and the
density ρ i respectively.

Using (12-27), the interaction between the basis function pair pq and a large part
of the electron density can be evaluated at once, saving lots of work compared to the
alternative of explicitly computing all needed integrals (pq|rs). By using a hierarchy
of spatial boxes, one can make sure that larger groups of charges are used at longer
distances, see Figure 12-4.

To compute the whole Coulomb matrix J, a large number of interactions of the
type (12-27) must be evaluated, and each vector of multipole moments q can be
reused many times. The multipole moments (components of the vector q) describing
a charge distribution ρ(r) are computed as

qk =
∫
ρ(r)fk(r − rc)dr (12-28)

where rc is the center point chosen for the multipole expansion. The functions fk(r)
are the real regular solid harmonics [9, 33]. The functions of zeroth, first, and second
order are as follows:

Figure 12-4. Schematic picture of the hierarchy of boxes used to compute the Coulomb matrix element
Jpq. Multipole descriptions of the electron density are used for boxes marked with M, while interaction
with boxes marked with X are treated by explicit evaluation of the corresponding two-electron integrals
(pq|rs)
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f5(r) = 1
2

√
3(x2 − y2)

f2(r) = x f6(r) =
√

3xz
f1(r) = 1 f3(r) = y f7(r) = 1

2 (3z2 − r2)
f4(r) = z f8(r) =

√
3yz

f9(r) =
√

3xy

(12-29)

Thus, the first multipole moment is simply the total charge: q0 = ∫
ρ(r)dr. Higher

order moments involve polynomials of increasing degrees.
In principle, infinitely high order of multipole moments is needed for an

exact description of a general charge distribution ρ(r). However, when evaluat-
ing Coulomb interaction at long distances, the higher order moments become less
important as the distance increases. At very long distances, the monopole contri-
bution (total charge) is the only thing that matters. At intermediate distances, the
interaction is well described using a truncated multipole expansion, where only
the lower-order moments are included. This is the reason why truncated multipole
expansions are so useful for Coulomb interactions: by computing only the lower-
order multipole moments qk, we are extracting the most relevant information about
the charge distribution ρ(r).

The multipole interaction matrix T in (12-27) depends on the separation vec-
tor (�x,�y,�z) between the interacting multipoles [9]. Therefore, T must be
re-evaluated many times. Both the computation of T and the subsequent contrac-
tion with multipole moments (12-27) become very time-consuming if a high order
of multipole moments is used. Therefore, much efficiency can be gained by choos-
ing as low multipole expansion order as possible for each interaction. On the other
hand, when truncated multipole expansions are used to describe the electron den-
sity, this approximation introduces errors. An important aspect is therefore how the
order of multipole expansion can be selected dynamically, depending on the needed
accuracy in each part of the Coulomb matrix computation [20].

12.5. EXCHANGE MATRIX CONSTRUCTION

The Hartree-Fock exchange matrix is needed in both Hartree-Fock and hybrid
Kohn-Sham density functional theory calculations. This section contains a brief
discussion of how and why linear scaling can be achieved in exchange matrix
construction. The exchange matrix K is given by

Kpq = −
∑

rs

Drs(pr|qs). (12-30)

Note the difference in the order of indexes compared to the Coulomb matrix.
There has been much research devoted to efficient computation of the exchange
matrix [35–42]. In particular, the so–called LinK algorithm [38, 40] has been very
successful and is now used in several quantum chemistry codes. Some details
about the exchange matrix evaluation in the Ergo code, including memory usage
considerations, can be found in Ref. [5].
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Figure 12-5. Schematic illustration of how the basis function products φp(r)φr(r) and φq(r)φs(r) are
coupled through the density matrix element Drs in the exchange matrix evaluation

With the assumption that any density matrix element Drs is negligible when
the corresponding basis functions are far enough apart, and recalling the expres-
sion (12-14) for the two-electron integrals (pq|rs), one can understand why linear
scaling is possible for the exchange by considering the contribution Drs(pr|qs). For
such a contribution to be non-negligible, the following conditions must be met (see
Figure 12-5):

• The basis functions φp(r) and φr(r) must be close enough to each other so that the
product φp(r)φr(r) is non-negligible.

• The basis functions φq(r) and φs(r) must be close enough to each other so that the
product φq(r)φs(r) is non-negligible.

• The basis functions φr(r) and φs(r) must be close enough to each other so that the
density matrix element Drs is non-negligible.

But then all four basis functions φp,φq,φr, and φs must be close to each other!
So, for a particular density matrix element Drs, the number of non-negligible
exchange matrix contributions Drs(pr|qs) that must be evaluated is constant (inde-
pendent of system size) for large enough systems. Provided that the number of
non-negligible density matrix elements scales linearly with system size, the num-
ber of non-negligible contributions Drs(pr|qs) needed for the construction of the
exchange matrix K also scales linearly with system size.

In order to compute the exchange matrix K in a linear scaling fashion, one must
predict the size of contributions Drs(pr|qs) without explicitly computing them. Also,
one must be able to skip many contributions at once, without performing work to
estimate the size of each individual contribution. This can be done by precomputing
the basis function products φp(r)φq(r) and sorting them according to their size as
measured by the Cauchy–Schwarz measure

√
(pq|pq). Given such a sorted list of

basis function products, it is possible to skip many exchange matrix contributions
at a time. This is one of the key ideas used to improve the scaling of the exchange
matrix calculation step.

12.6. THE EXCHANGE-CORRELATION MATRIX

The Kohn-Sham formulation of density functional theory allows one to formulate
the framework for density functional theory calculations in a way similar to the
Hartree-Fock framework with two important modifications. Hartree-Fock exchange
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is scaled down or entirely removed. Instead, an exchange-correlation term is added
to the energy and a corresponding contribution is added to the Fock matrix. A
Fock matrix with an exchange-correlation contribution is traditionally called a
Kohn-Sham matrix.

The exchange-correlation energy Exc within the local-spin-density approxima-
tion (LSDA) is given by

Exc =
∫

R3
F(ρα(r),ρβ (r))dr. (12-31)

LSDA assumes that the non-local exchange and correlation contributions are negli-
gible or cancel out. It also separately considers electron densities with spin up and
down. These densities are the same in the special case of closed shell calculations.
Practical density functional theory calculations in chemistry demand that a non-local
correction is made, giving rise to the so-called Generalized Gradient Approximation
(GGA). In this approximation, the exchange-correlation energy is still given by an
integral over all space, but the contribution to Exc at each point depends not only on
the electronic density but also on its gradient. For simplicity, the rest of this section
is restricted to the LSDA case. However, the Ergo program [4] implements both
LSDA and GGA.

Matrix elements of the exchange-correlation matrix under the LSDA approxima-
tion are expressed as

Vxc;pq =
∫

R3
vxc(r)φp(r)φq(r)dr, vxc(r) =

∑

σ=α,β

∂F
∂ρσ

∣∣∣∣
ρσ=ρσ (r)

(12-32)

where Vxc;pq denote the elements of the exchange-correlation matrix Vxc.
In contrast to the integrals encountered in calculations of Coulomb repulsion

and Hartree-Fock exchange, exchange-correlation integrals cannot be expressed in
a compact analytical form. Instead, the exchange-correlation energy Exc and the
matrix elements Vxc;pq are computed using numerical integration over a grid:

Exc =
∑

i

wiF(ρα(ri),ρβ (ri)), (12-33)

Vxc;pq =
∑

i

wivxc(ri)φp(ri)φq(ri). (12-34)

The choice of grid point locations ri and associated grid weights wi determines the
quality of the grid. The electron density at a given grid point ri is computed by
contracting the density matrix DS with basis functions evaluated at ri:

ρ(ri) =
∑

pq

Dpqφp(ri)φq(ri). (12-35)
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The calculation of the exchange-correlation matrix formally scales cubically with
system size. The scaling can be reduced to linear if basis function screening is
implemented. The numerical grids used in calculations traditionally make use of
the atomic structure of the molecule to distribute the grid points and choose the
weights [43] but hierarchical adaptive grids have been devised as well [44].

12.6.1. Numerical Grids

Traditionally, the entire integration grid is constructed as a union of atomic grids,
with grid weights wi adjusted in the overlapping regions [45]. Atomic grids are
constructed as outer products of Lebedev grids for angular integration [46] and
Gauss-Chebychev radial grids. Alternative methods have been proposed as well
[47]. The weights in overlapping regions are adjusted using Becke partitioning or
its variants [48, 49]. Smooth switching functions used in the Becke partitioning
process in principle stretch out infinitely. This makes the partitioning process scale
cubically with system size. In practice, the right choice of multiplication order used
in the grid weight scaling process can make the effort per atom roughly independent
of the system size. Other partitioning schemes like SSF [49] choose the partitioning
function in a way that allows for trivial screening of atoms far away from the grid
point associated with the weight being adjusted.

While such grids are well established, the existence of overlapping regions in
multi-atom systems introduces errors that are difficult to control. The high accu-
racy that is possible for integration of densities or exchange-correlation potentials
for spherically symmetric systems like atoms cannot be realized in such cases. The
complication of overlapping regions makes the error increase by several orders of
magnitude. A grid construction method that in principle allows for integration of
the electron density up to any accuracy is the so-called hierarchical cubature (HiCu)
[44]. The disadvantage of this scheme is that it generates larger grids for low- and
medium-precision integrations as compared to schemes employing atomic grids
with space partitioning.

12.6.2. Evaluation of Sparse Exchange-Correlation Potential Matrix

The evaluation of the exchange-correlation matrix as given by (12-34) formally
follows the scheme shown in Algorithm 2. An efficient implementation of that
algorithm must fulfill a few conditions:

Algorithm 2 Numerical integration algorithm for computation
of the exchange-correlation matrix.

1: for each (p,q) giving rise to a nonvanishing Vxc;pq do

2: Vxc;pq: = ∑grid
i ωi υxc(ri)φp (ri)φq (ri)

3: end for
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1. Matrix element magnitudes |Vxc;pq| are estimated in advance so that memory
for Vxc;pq < τ is not allocated and the sum contributing to that element is not
computed. Here, τ is a preselected threshold for matrix elements.

2. Terms vxc(ri), φp(ri), and φq(ri), contributing to several matrix elements, are not
unnecessarily recomputed.

Depending on the amount of available memory and other considerations, the
operations in Algorithm 2 may be performed in a different order. If memory con-
straints were not present, we could perform the operations as shown in Algorithm 3.
This simple algorithm has significant memory requirements. The sparse matrix
B needs to be available during the entire integration process. Let us consider
for example a system with 10,000 atoms, with 10,000 grid points per atom, and
where on average 50 basis functions are non-vanishing at a grid point. In that
example, the matrix B would require approximately 60 GB of memory if stored
in the compressed sparse row format. One way to reduce the memory demand
is to process the grid points in batches. The Ergo implementation follows that
approach.

Algorithm 3 Linearly scaling numerical integration algorithm for construction of the
exchange-correlation matrix.

1: Compute a sparse matrix B with elements Bki = φk (ri) of basis functions φk evaluated at grid
points ri.

2: Compute ρ(ri) by contracting the sparse density matrix D with sparse B on each side: ρ(ri) =∑
pq Bpi Dpq Bqi.

3: Use ρ(ri) to compute υxc;i = υxc (ri) and store the result.
4: Compute the exchange-correlation matrix by performing a matrix scaling and a sparse

matrix-matrix multiplication: Vxc;pq = ∑
i Bpi wi υxc;i Bqi.

At the time of grid generation, grid points are collected in spatial cells. For each
cell, we find the basis functions that overlap with that cell. This data is important
with respect to both accuracy and performance. A too cautious estimation may
result in a dramatic increase in calculation time. On the other hand, a too sloppy
criterion for determination of basis functions relevant for a given cell will inad-
vertently affect the calculation accuracy. The list of non-vanishing basis functions
allows us to predict which exchange-correlation matrix elements may have non-
zero values and to determine an exchange-correlation matrix sparsity pattern. This
pattern in turn permits preallocation of the resulting exchange-correlation matrix
Vxc;pq so that individual contributions computed later can be added quickly with-
out need to reallocate data. The numerical integration is then performed one cell
at a time. For each cell, we follow Algorithm 3 with the exception that the par-
tial contributions computed according to this algorithm are accumulated for all
cells.
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12.7. ERROR CONTROL IN FOCK AND KOHN–SHAM MATRIX
CONSTRUCTIONS

When a contribution J, K, or Vxc to the Fock or Kohn-Sham matrix is computed
approximately, controlling the error in the occupied subspace amounts to knowing
the band gap and controlling the Euclidean norm of the error matrix, as explained
in Section 12.2. As seen in Sections 12.4, 12.5, and 12.6, modern algorithms to
construct Coulomb, exchange, and exchange-correlation matrices typically employ
one or several threshold values controlling the accuracy.

In the following we will use the notation

E = X̃ − X (12-36)

for the error matrix, where X ∈ {J,K,Vxc} and X̃ is the corresponding approximate
matrix obtained when small contributions are neglected. Given a requested accuracy
εreq, the computations of J, K, and Vxc should ideally use as little computational
resources as possible while

‖E‖2 < εreq. (12-37)

Strict, practically useful bounds for the overall error are hard to come by since the
error in each matrix element is made up of many small contributions that may or
may not cancel each other out. For Vxc, the type of grid used for the numerical
integration affects the accuracy in a non-trivial way.

However, when the error in J or K is observed by looking at the norm of the
whole error matrix rather than at its constituent parts, it can be seen that the error
behaves predictably and that the norm of the error matrix ε is related to the threshold
value τ as ε = cτα [50]. This relation can be utilized to achieve error control using
an extrapolation scheme.

We regard the constructions of the matrices J and K as black boxes that take
the density matrix D and a threshold parameter τ as input, see Figure 12-6. An
appropriate threshold value can be obtained by the following procedure illustrated
in Figure 12-7. (1) Perform three low accuracy computations using threshold values
τ ref, τ 1, and τ 2 to obtain three matrices Xref, X1, and X2. (2) Compute error matrices
for X1 and X2 using Xref as reference: E1 = X1 − Xref and E2 = X2 − Xref. Then, a
threshold value that gives the desired accuracy can be selected by extrapolation, see
Figure 12-7.

This approach has been successfully applied to Coulomb and exchange matrix
constructions [50]. An advantage is that existing codes can be used without mod-
ification, as long as the accuracy is governed by a single parameter τ . In the case
of a Kohn-Sham density functional theory calculation, the use of hierarchical adap-
tive grids [44] allows the accuracy of the numerical integration needed for Vxc to be
controlled by a single continuous parameter. Therefore, one can expect that a similar
extrapolation scheme can be used for the exchange-correlation matrix Vxc as well.
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τ

X̃D

Figure 12-6. Constructions of Coulomb and exchange matrices can be regarded as black boxes where a
threshold value τ and the density matrix D are taken as input. The black box returns the matrix X̃ which
is either J̃ or K̃

τ1 τ2τrefτ

‖E1‖2

‖E2‖2

εreq

Figure 12-7. Schematic figure that illustrates the accuracy as a function of threshold value and how an
appropriate threshold value τ can be selected by extrapolation. Both the x-axis and the y-axis are given
in logarithmic scale. First, three low accuracy calculations are performed using threshold values τ ref,
τ1, and τ2. Using the most accurate of these calculations as reference, error matrices E1 and E2 can be
computed. Taking the norms of these error matrices, we obtain two points on the line and can, given a
desired accuracy εreq, select an appropriate threshold value τ by extrapolation

12.8. DENSITY MATRIX CONSTRUCTION

One of the key operations in Hartree-Fock and Kohn-Sham density functional theory
calculations is to construct the density matrix D⊥ for a given Fock or Kohn-Sham
matrix F⊥, Step 15 of Algorithm 1. For ease of notation, in this section we drop the
subscript ⊥ and simply write D and F for D⊥ and F⊥, respectively.

The density matrix D is the matrix for projection onto the occupied invariant sub-
space X of F. This subspace is spanned by the eigenvectors of F that correspond to
the nocc smallest eigenvalues, see Figure 12-1. Therefore, it is possible to construct
the density matrix via a diagonalization of F:

FCX = CX$X =⇒ D = CX CT
X . (12-38)
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Here CX is a n×nocc matrix that contains the eigenvectors that span X and$X is a
diagonal nocc × nocc matrix with the corresponding eigenvalues. The time needed to
perform this operation generally grows cubically with system size. Also, standard
diagonalization schemes usually make much effort to obtain accurate eigenvectors.
Here, we want an accurate representation of the occupied invariant subspace but
do not care about individual eigenvectors; any orthonormal basis QX for X would
suffice. Several methods to obtain such a basis without direct diagonalization have
been proposed, often based on Krylov subspace iterations [51, 52].

In a linear scaling method, QX would need to be sparse. Many possible choices of
QX exist of which most are likely to be dense. The most difficult part for any method
to efficiently construct a representation of the occupied subspace with O(n) mem-
ory and time usage is to bring about sparsity while controlling errors. In this section
we will consider methods that employ the density matrix to represent the occupied
subspace. Together with careful approaches to bring about sparsity, it is at least with
some of these methods possible to control the error in the occupied subspace. The
aim of solving the eigenvalue problem in (12-38) is not always to obtain a repre-
sentation of the occupied subspace. Therefore methods have been developed that
avoid the full solution of (12-38) but that do not return the density matrix. Examples
include methods to estimate the distribution of eigenvalues [53] and methods to
compute a subset of physically relevant eigenvectors, usually in a window around
the band gap [54, 55].

Here we focus on self-consistent field calculations where a representation of the
whole occupied invariant subspace is needed to compute a new Fock/Kohn-Sham
matrix. We consider two classes of methods: energy minimization and polyno-
mial expansion methods. These methods generate a representation of the occupied
subspace in terms of the density matrix D without need for computation of any
orthonormal basis QX for X . The methods rely on sparse matrix – matrix multipli-
cation. Therefore, linear scaling in time and memory is possible provided that the
matrices can be kept sufficiently sparse.

12.8.1. Energy Minimization

The correct density matrix D minimizes

Tr[DF] (12-39)

under the constraints D = D2 (hereinafter the idempotency condition) and Tr[D] =
nocc (hereinafter the trace condition) [56]. The idea of energy minimization methods
is to find a functional based on (12-39), somehow taking the constraints into account,
and apply some minimization scheme such as the conjugate gradient method or
Newton’s method [57].

12.8.1.1. First Attempts

Li, Nunes, and Vanderbilt suggested to handle the idempotency condition by replac-
ing the density matrix in (12-39) with its so-called McWeeny-purified version,
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and the trace condition by shifting the Fock/Kohn-Sham matrix with the chemical
potential μ [58]. This results in the functional

 LNV(D) = Tr[(3D2 − 2D3)(F − μI)]. (12-40)

Later Millam and Scuseria eliminated the need to know the chemical potential by a
modification of the LNV functional [59];

 MS(D) = Tr[(3D2 − 2D3)F] + μ(Tr[D] − nocc). (12-41)

In this method the initial density matrix is chosen to have correct trace. The trace
condition is then satisfied throughout the minimization by choosing μ so that the
trace of the gradient ∇ MS(D) is equal to zero in each step. Similar methods were
presented by Daw [60] and Challacombe [61].

Provided that the idempotency condition is satisfied, both the functionals above
properly take the trace condition into account. The problem, however, is that the
desired solution is not a global minimum because of the way the idempotency con-
dition is handled. It is easy to construct a matrix that gives a lower functional value
than the desired density matrix. As a consequence one has to be careful during the
optimization and make sure not to leave the stable region.

12.8.1.2. Parametrized Minimization

The idempotency problem can be avoided by use of an exponential parametrization
of the density matrix. Given an approximate density matrix Di that fulfills the trace
and idempotency conditions, a new density matrix that fulfills the conditions as well,
can be expressed in terms of an antisymmetric matrix X [62];

Di+1 = eXDie
−X . (12-42)

Once again we modify (12-39) by inserting our expression for the density matrix
and obtain the functional

 (X) = Tr[FeXDie
−X]. (12-43)

After improving X according to the used optimization scheme, for example by taking
a step in the gradient direction, an improved density matrix Di+1 is given by (12-42).
Equation (12-42) can be evaluated using the so-called Campbell-Baker-Hausdorff
expansion [9];

eXDie
−X = Di + [X,Di] + 1

2! [X,[X,Di]] + 1

3! [X,[X,[X,Di]]] + . . . (12-44)

where

[A,B] = AB − BA. (12-45)
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Exponential parametrization was used in Refs. [63–65]. This is a conceptu-
ally appealing way of dealing with the idempotency and trace conditions. There
are however some difficulties that need to be addressed when the exponential
parametrization is applied. For example, it seems difficult to know how many terms
of the expansion (12-44) to use. If too few terms are included, the conservation of
idempotency could be lost. For this reason, an ad-hoc restriction of the step length,
i.e. the magnitude of X, was used in Ref. [65]. If many terms are included, idempo-
tency could anyway be lost due to accumulating errors in the recursive evaluation.
Furthermore, it is unclear how sparse the matrix X is and whether that sparsity has
to be enforced by truncation of small matrix elements, and what impact that would
have on accuracy and convergence.

12.8.2. Polynomial Expansions

The density matrix can be defined using the step function

D = f (F) = θ (μI − F) (12-46)

where

θ (x) =
{

0 if x < 0
1 otherwise

(12-47)

is the Heaviside step function. By applying the step function f(x), eigenvalues cor-
responding to the occupied and virtual invariant subspaces of F are mapped to 1
and 0 respectively. At first impression the discontinuity at μ may discourage any
attempt to approximate this function by a polynomial expansion. However, in cases
when there is a gap between the occupied and virtual parts of the eigenspectrum,
the density matrix can be accurately computed without high resolution of the step;
a polynomial p(x) that varies smoothly between 0 and 1 in the gap may be used
[66, 67], see Figure 12-8. We will discuss two different ways to construct such a
polynomial p(x): Chebyshev expansion and iterative density matrix purification.

︸ ︷︷ ︸

Occupied
︸ ︷︷ ︸

Virtual

1

0

HOMO

LUMO

μ

Figure 12-8. Schematic picture illustrating mapping by the step function f(x) (solid line) of eigenvalues
corresponding to occupied and virtual subspaces respectively. A function p(x) (dashed line) that varies
smoothly between 0 and 1 may be used to approximate f(x). The only requirement on p is that it maps all
eigenvalues to their desired values of 0 and 1
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Chebyshev (θ) Chebyshev (FD) Chebyshev−Jackson (θ)

N = 35

Figure 12-9. Chebyshev approximations of the Heaviside step function (θ ) using N = 35 Chebyshev
polynomials. Left: Chebyshev expansion of the Heaviside step function. Center: Chebyshev expansion of
the Fermi-Dirac function (FD) with β = 50. Right: Chebyshev expansion of the Heaviside step function
using the Jackson damping factors

12.8.2.1. Chebyshev Expansion

The Heaviside step function can be approximated by a truncated Chebyshev expan-
sion. Straightforward application of the Chebyshev expansion leads, however, to
Gibbs oscillations and errors that spread over the entire interval, see Figure 12-9. A
possible remedy is to replace the Heaviside function with some function that varies
smoothly between 0 and 1 in the HOMO-LUMO gap [67–70]. One choice is the
Fermi-Dirac function

1

1 + e−β(μ−F) (12-48)

where β depends on the HOMO-LUMO gap; the smaller the HOMO-LUMO gap
is, the larger β is needed. In this way the oscillations are reduced, as seen in
Figure 12-9. However, the convergence towards 0 and 1 is anyway slow and purifi-
cation, discussed in the following section, is often needed to get the eigenvalues
sufficiently close to their desired values of 0 and 1 [70].

An alternative way to reduce the oscillations is to use some Gibbs damping
factors in the Chebyshev expansion [71]. In the rightmost function depicted in
Figure 12-9 the so-called Jackson kernel [71] has been used to reduce the oscil-
lations. While the oscillations have been successfully damped, a disadvantage with
the Jackson kernel is that the slope at the inflexion point is smaller.

12.8.2.2. Density Matrix Purification

Another way of constructing a polynomial p(x) to approximate the step function, as
depicted in Figure 12-8, is to iteratively apply low-order polynomials that push the
eigenvalues towards 0 and 1 until convergence. Usually this is done by an initial lin-
ear transformation f0 that maps the eigenvalues of F into the [0, 1] interval, followed
by application of a sequence of polynomials fi, i = 1,2, . . . with fixed points at 0
and 1:
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X0 = f0(F)
Xi = fi(Xi−1)

. (12-49)

Already in 1956, McWeeny suggested to use the polynomial x2(3 − 2x) to refine
matrices that are roughly idempotent [56]. During the last decade researchers have
realized that purification transforms similar to the McWeeny polynomial can be
used to improve the computational complexity of the entire F → D step. In 1998,
Palser and Manolopoulos presented two purification algorithms that both fit into
the general scheme of (12-49) [72]. In the first one, referred to as grand-canonical
purification, f0 is such that the occupied and virtual parts of the eigenspectrum of
X0 end up in the [0.5, 1] and [0, 0.5] intervals respectively. After that, the McWeeny
polynomial is used to push eigenvalues to their desired values. Because of the fixed
point at 0.5, the chemical potential μ is conserved throughout the iterations. Palser
and Manolopoulos also propose canonical purification which does not require
knowledge of the chemical potential for the initial transformation. This method con-
serves the trace instead of the chemical potential; the initial transformation makes
sure that X0 has the correct trace instead of correct chemical potential. After that,
the polynomials are chosen such as to conserve the trace while pushing eigenvalues
towards 0 and 1.

Subsequent to the work by Palser and Manolopoulos, a number of purification
algorithms have been proposed [73–78]. Most of these proposals focus on finding
polynomials that optimize the convergence of eigenvalues. Significant improve-
ments were also made in this respect. The main difficulty with purification lies,
however, in preserving the occupied subspace throughout the iterations when small
matrix elements are removed to maintain sparsity.

Among the proposed purification polynomials, we would like to recommend
the use of the so-called trace-correcting purification polynomials x2 and 2x − x2

suggested by Niklasson [73]. Using these low order polynomials is advantageous
because only a single matrix multiply is needed in each iteration. This simpli-
fies error control and reduces the need to store intermediate matrices [79]. How
to control errors is further discussed in Section 12.8.3.

12.8.2.3. Polynomial Evaluation

The Chebyshev expansion and density matrix purification methods construct in dif-
ferent ways a high order polynomial that approximates the step function in (12-46).
A polynomial like the Chebyshev expansion can be efficiently evaluated using the
method proposed by Paterson and Stockmeyer [80]. With this method, a polynomial
of order 25 can, for example, be evaluated with 8 matrix – matrix multiplications.
Although this represents a significant improvement compared to straightforward
evaluation, iterative construction of polynomials as in density matrix purifica-
tion is much more efficient. By recursive application of low order polynomials,
the polynomial degree increases exponentially with the number of matrix – matrix
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Figure 12-10. Comparison of two different ways to approximate a step function: Chebyshev expansion
and purification methods. The methods have been allowed to use 20 matrix – matrix multiplications each.
This gave a polynomial degree of 121 for the Chebyshev expansion and 220 = 1,048,576 for the purifi-
cation method. The solid lines show the result for purification. The purifying polynomials x2 and 2x− x2

have been applied. The dotted lines show the result for a Chebyshev-Jackson approximation of the step
function using the Paterson-Stockmeyer polynomial evaluation method. (a) A step function f(x) approx-
imated by a Chebyshev-Jackson expansion pCJ(x) (dotted lines) and purification pP(x) (solid lines). The
right figure shows a closeup of the step. (b) Absolute errors (|f (x) − pX(x)|) of the two step function
approximations, Chebyshev-Jackson (X=CJ, dotted lines) and purification (X= P, solid lines), depicted
in Panel (a)

multiplications. By repeated application of x2 one can for example generate a poly-
nomial of order 2m with only m multiplications. The difference between the two
methods is illustrated in Figure 12-10.

12.8.3. Accuracy

Some problems are inherently more difficult than others, regardless of the com-
putational method used to solve them. Therefore, the accuracy of a solution to a
problem does not only depend on the algorithm used to solve the problem but also
on the problem itself. In the following we will first consider the so-called condition
number of the F → D problem and then analyze the forward error.

12.8.3.1. Conditioning

A problem is said to be well-conditioned if its solution is insensitive to perturbations
in the input data. In other words, for a well-conditioned problem, a small change
in the input results in a small change in the exact solution. A condition number
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associated with a problem is a measure of the conditioning of the problem. A prob-
lem with low condition number is well-conditioned whereas a problem with high
condition number is ill-conditioned. For the problem of computing a new density
matrix for a given Fock matrix, the condition number can be defined as

κF = lim
h→0

sup
A:‖A‖2=‖F‖2

‖D(F + hA) − D(F)‖2

h
. (12-50)

Here, we used the notation D(F) for the exact density matrix corresponding to a
given Fock/Kohn-Sham matrix F. In Ref. [79] it is shown that

κF = ‖F‖2

ξ
(12-51)

where ξ is the size of the HOMO-LUMO gap. It is well-known that problems with
small HOMO-LUMO gaps, arising for example from metallic systems, are difficult
to solve. Equation (12-51) gives a mathematical explanation to these difficulties; as
ξ → 0, κF → ∞. If the HOMO-LUMO gap vanishes, the problem does not even
have a unique solution. Because of (12-51), we expect all density matrix construc-
tion methods to run into difficulties as ξ decreases. The difficulties may just become
manifest in different ways. Density matrix purification, for example, will for small
gaps require more iterations to converge and tighter threshold values to conserve the
occupied subspace. This is thoroughly discussed in Ref. [79]. In energy minimiza-
tion methods small gaps are likely to result in shallow minima which will make the
convergence of for example the conjugate gradient method more sensitive to pertur-
bations. In some cases, however, a small HOMO-LUMO gap should be regarded as
a sign of a modeling problem for the studied molecular system. For example, incor-
rect protonation in protein molecule studies can lead to small gaps and difficulties
to converge the whole self-consistent field procedure.

12.8.3.2. Forward Error Analysis

Error analysis can be carried out in different ways. The natural way is to analyze
the difference between the computed result and the exact solution. This difference
is sometimes referred to as the forward error. The backward error is the smallest
possible change in input for which the exact solution is equal to the approximate
solution of the original problem. In other words, the backward error is obtained by
analyzing which problem the algorithm actually solved. Here, however, we shall
focus on the forward error. Let D denote the exact density matrix corresponding to
the Fock/Kohn-Sham matrix F and let D̃ denote the approximate matrix obtained by
the applied algorithm. The forward error can be defined as

ε = ‖D̃ − D‖2. (12-52)

In Ref. [79], the forward error of density matrix purification is analyzed and schemes
to control the forward error are proposed. A key in the analysis is to distinguish
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between errors in the occupied invariant subspace X̃ of D̃ and errors in eigenvalues.
The forward error is separated into two parts;

‖D̃ − D‖2︸ ︷︷ ︸
≡ε

≤ ‖D̃ − PX̃ ‖2︸ ︷︷ ︸
≡ελ

+‖PX̃ − D‖2︸ ︷︷ ︸
≡ε�

, (12-53)

where PX̃ denotes the matrix for orthogonal projection onto the subspace X̃ . The
first norm on the right hand side, ελ, measures only deviations of the eigenvalues
of D̃ from 0 and 1, and the second norm on the right hand side, ε�, measures only
errors in the occupied subspace; recall that D is the matrix for projection onto the
subspace X . In density matrix purification, ελ is expected to be large in the early
iterations and decrease as the polynomial expansion approaches a step function.
The subspace error, ε�, is small in the early iterations but grows as the purification
proceeds. Note also that (12-53) gives a natural convergence criterion; as soon as
the forward error is dominated by ε�, it is time to stop the purification process since
no further progress can be made.

The separation of the forward error given by (12-53) is likely to be useful also
for error and convergence analysis in other density matrix methods. In particular,
the parameterized energy minimization is likely to benefit from such an analysis. In
this class of methods, the subspace error is expected to decrease over the iterations
whereas the error in eigenvalues is expected to be small. The parameterized energy
minimization is in a way opposite to density matrix purification: In purification, one
tries to move the eigenvalues to their desired values while conserving the occupied
subspace. In parameterized energy minimization, one tries to rotate the occupied
subspace while conserving the eigenvalues.

12.8.4. Density Matrix Construction in Ergo

In the Ergo program, linear scaling density matrix construction is performed using
the density matrix purification method described in Ref. [79]. This purification
method employs the trace correcting purification polynomials x2 and 2x − x2. The
most important feature of the purification scheme presented in Ref. [79] is that
removal of small matrix elements is performed in such a way that the accuracy
in the occupied subspace is strictly controlled, as was briefly discussed in the previ-
ous section. Thus, the F → D step can be performed with linear scaling processor
time and memory usage while controlling erroneous rotations occurring in each
self-consistent field iteration as was envisioned in Section 12.2.

12.9. SPARSE MATRIX REPRESENTATIONS

Sparsity in matrices and efficient access to nonzero matrix elements are imperative
for the efficiency of the algorithms discussed in the previous sections.

Each element in the Fock/Kohn–Sham matrix F, the overlap matrix S, and the
density matrix D corresponds to two basis functions centered at two atom centers
of the molecule, see Figure 12-11. The magnitude of a matrix element generally
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Figure 12-11. Each matrix element corresponds to two basis function centers, usually located at atom
centers. Hence, each element is associated with a distance between two atoms

depends on the distance between the two atom centers; if the distance is large, the
corresponding matrix element is likely to be of small magnitude. If small matrix
elements are removed, we can take advantage of the matrix sparsity that appears
for extensive molecular systems. However, the removal of small matrix elements
is an approximation which can introduce significant errors, if not done carefully.
As discussed in Section 12.2, errors incurred by approximations can be seen as
erroneous rotations of the occupied subspace.

Two questions should be addressed when sparse matrix representations are used
in self–consistent field calculations: (1) How to remove small matrix elements while
being in control of the occupied subspace? (2) How to store and operate on only
nonzero matrix elements with high performance?

12.9.1. How to Select Small Matrix Elements for Removal

We wish to remove small matrix elements that contribute little to the overall accu-
racy. More precisely, we would like to remove elements in such a way that we are
in control of errors in the occupied subspace. Removal of small matrix elements
(herein often referred to as truncation) can be seen as a perturbation E of the original
matrix X so that the matrix after truncation

X̃ = X + E. (12-54)

It is not obvious when a matrix element should be considered to be negligible.
One popular approach has been to remove all elements that correspond to an inter-
atomic distance larger than some predefined cutoff radius [58, 64, 65, 69, 70, 72,
81]. If matrix elements are grouped into submatrices, each submatrix corresponds
to two groups of atoms. In this case, the submatrix is dropped if the shortest dis-
tance between the two groups is greater than the predefined cutoff radius. Another
approach to remove small elements is to drop all matrix elements below some pre-
defined threshold value [59, 63, 82]. If elements are grouped into submatrices, a
submatrix is dropped when its norm is below the threshold [61, 74]. Unfortunately,
a direct relation between threshold value and accuracy in the occupied subspace has
not been known for any of these methods. We recall from Section 12.2 that control-
ling the occupied subspace amounts to controlling some unitary–invariant norm of
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the error matrix and knowing the HOMO–LUMO gap [8]. In Ref. [83] we argue
that the Euclidean norm is a suitable choice of unitary–invariant norm and propose
Euclidean norm based truncation schemes. In these methods, small matrix elements
are removed while ensuring that

‖E‖2 ≤ τ (12-55)

where the threshold value τ should be chosen based on the HOMO–LUMO gap and
the desired accuracy in the occupied subspace, see (12-12).

12.9.2. How to Store and Access Only Nonzero Elements

After removal of small matrix elements according to the previous section, we hope-
fully have a matrix with many zero matrix elements. The best possible data structure
for a sparse matrix depends on several factors such as the number of nonzero ele-
ments, the nonzero pattern, and the algorithms used to access the elements. If the
matrix has many nonzero elements per row that lie close to each other, it can be
advantageous to use a blocked data structure. Often, data locality can be improved
by permuting the rows and columns of the matrix.

12.9.2.1. Permutations for Data Locality

The matrices that occur in Hartree–Fock and Kohn–Sham calculations with
Gaussian basis sets often have thousands of nonzero elements per row [5, 84]. The
matrices are to be regarded as semi-sparse rather than sparse. For this reason, a
blocked sparse data structure is usually employed where nonzero matrix elements
are grouped into submatrix blocks. The use of a blocked data structure can signif-
icantly increase the performance of matrix operations. However, grouping nonzero
matrix elements into submatrices without loosing sparsity is only possible if the
nonzero elements are neighbors. In Figure 12-12, the nonzero patterns of two matri-
ces with 50% nonzero elements each are depicted. The figure shows that for the
same sparsity level, the data locality can be quite different. In this case, however,

Figure 12-12. This figure illustrates how permutations of matrix rows and columns can result in
improved data locality. Each dot corresponds to a nonzero matrix element. The left matrix has perfect
non–locality in the sense that no nonzero matrix element is an immediate neighbor of another nonzero
matrix element. In the right matrix the data locality has been dramatically improved by a permutation of
the rows and columns of the left matrix
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the left matrix can be transformed to the right matrix by a permutation of its rows
and columns.

The distance–magnitude relation described earlier in this section can be used
to achieve data locality in the overlap, Fock/Kohn–Sham, and density matrices.
Challacombe grouped basis functions belonging to the same atom and formed in
this way atom blocks [61]. Later, it was recognized that the performance in subma-
trix operations, using standard dense matrix linear algebra libraries [85–88], could
be improved if basis functions belonging to several neighboring atoms were grouped
into larger multi–atom blocks [81]. With atom or multi–atom blocks, the block size
cannot be chosen at will. Therefore, the use of a uniform block size was suggested
in Ref. [13]. This means that basis functions centered on the same atom are not
restricted to be in the same block. Using a uniform block size makes it easier
to tune the block size with respect to the performance of a dense matrix library.
Alternatively, one can tune small dense matrix operations for a single given block
size.

Approaches that are not explicitly based on the distance–magnitude relation also
exist. In Ref. [14], for example, the matrix is seen as the connection matrix for a
weighted network. This allows for network theory to be used to find community
divisions of the network which correspond to a permutation and block partitioning
of the matrix.

12.9.2.2. Data Structures

In the Ergo quantum chemistry program, a hierarchic sparse matrix data structure
is used for numerical linear algebra [13]. This data structure consists of a hierarchy
of matrices where the matrices at the upper levels consist of lower level hierarchic
matrices. At the lowest level a simple column wise dense matrix data structure is
used. Sparsity is utilized by not storing or operating on parts of the hierarchy that
contain only zero elements. At higher levels the implementation of routines such as
matrix-matrix multiplication is straightforward, at the lowest level the program can
be linked to some optimized dense linear algebra library.

The main advantage with the hierarchic data structure is that new algorithms are
easy to develop and implement. Another advantage is that matrix symmetry can
easily be exploited, giving a speedup close to 2 for many operations. Hierarchic
data structures have previously been used to reduce cache misses in dense matrix
operations, see for example Ref. [89]. Whereas an improved cache hit rate may be a
positive side effect of the data structure proposed in Ref. [13], our main motivation
for using a hierarchy is to utilize sparsity in an efficient and transparent manner.

12.10. BENCHMARKS

In this section, results from a set of benchmark calculations are presented, in order
to demonstrate the performance and scaling behavior of Kohn-Sham density func-
tional theory calculations performed with the Ergo program. The molecular systems
used in these tests are glutamic acid-alanine helix molecules of increasing length.
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Becke’s half-and-half exchange functional with the LYP correlation functional
(BHandHLYP) [90] was used, with the 3-21G and 6-31G∗∗ basis sets.

The calculations were run on an HP ProLiant DL140 G3 computer with dual Intel
Xeon E5345 2.33 GHz Quad Core processors with 4 MB Level 2 cache and 32 GB
of shared memory, running the Linux CentOS 5 operating system. The Ergo source
code was compiled using the Intel C++ compiler version 10.1 and linked to the Intel
Math Kernel Library version 9. In order to reduce the memory usage, data such as
sparse matrices and grid points for numerical integration were stored on scratch disk
space when not needed.

The glutamic acid-alanine helix molecule files were generated using the “build
sequence” function in the Spartan program [91], with the alpha helix option selected.
We refer to these systems as [GluAla]n where n is the number of repeating glutamic
acid-alanine units.

In our implementation of the hybrid Kohn-Sham density functional theory self-
consistent field method, there are several parameters that affect the accuracy and
computational cost of different parts of the calculation: threshold values for the
truncation of matrices (τM), density matrix purification (τP), Coulomb matrix con-
struction (τ J), and exchange matrix construction (τK), as well as several parameters
for the grid used in the exchange-correlation integration: the radial integration
threshold (τ r) and the angular integration order (Nang). In general, we follow Ref.
[45] and use radial T2 quadrature with M4 mapping of r, giving 34 radial integration
points for carbon atoms. For angular integration, we use Lebedev grids of order 29,
pruning them when necessary for small r. This grid has in total 6,428 grid points per
carbon atom.

The truncation of matrices is done so that the norm of the error matrix is smaller
than τM, except for the truncations of matrices inside the density matrix purification
routine. Density matrix purification is done as described in [79], with the requested
accuracy in the occupied subspace set to τP. In the Coulomb and exchange matrix
routines, contributions to result matrix elements are neglected if they are smaller
than τ J and τK, respectively. In the calculations reported here, we used τJ = τK =
10−7 for Coulomb and exchange matrix construction, and τM = 10−6 and τP =
10−5.

Figure 12-13 shows the total wall time needed to complete the whole electronic
structure calculation using the 3-21G basis set, including all initialization such as
the one-time computation of the core Hamiltonian matrix, Cholesky decomposition
to get an inverse factor Z of the overlap matrix, etc. The total wall times for the
6-31G∗∗ calculations were five to six times longer for all system sizes. Timings for
one SCF cycle, broken down into the different parts, are shown in Figure 12-14.

The most time-critical parts of the code are threaded, using OpenMP for the
matrix operations and POSIX threads for parts of the Coulomb and exchange
matrix construction steps as well as the exchange-correlation numerical integration.
However, some parts of the code are not threaded. In particular, a preparatory step
needed before the exchange matrix computation is serial. This part is denoted as
“Exchange prep” in Figure 12-14. Clearly, that part should also be threaded in order
to make efficient use of a multicore computer system. Instead of the ideal speedup
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Figure 12-13. Density functional theory BHandHLYP/3-21G calculations on glutamic acid-alanine
helix systems of varying size. Total wall times for the whole calculations. This includes all parts,
including one-time computation of overlap and core Hamiltonian matrices and evaluation of the inverse
Cholesky factor, see Algorithm 1

of 8 for an 8-core computer, in these benchmark calculations the threading gave an
overall CPU time vs wall time ratio of around 5.5.

When comparing the timings in Figure 12-14 it should be noted that the thresh-
old values were chosen ad-hoc; the errors from computational approximations in
the different parts are probably not well balanced. In order to not waste computa-
tional resources, the threshold values should be selected so that the different parts
contribute equally to the error in the occupied subspace as outlined in Ref. [8].
However, that has not yet been implemented in the Ergo program, making it diffi-
cult to do a fair comparison of the performance of different parts of the code. The
irregularities in the exchange-correlation integration timings probably result from a
too conservative determination of the exchange-correlation matrix sparsity pattern.

The peak virtual memory usages for the 3-21G and 6-31G∗∗ calculations are
shown in Figure 12-15. The plotted memory usage is the virtual memory usage as
reported by the operating system. The virtual memory usage is an upper limit on
the amount of actual resident memory used by the program. The final data point
in Figure 12-15(a) shows that the peak virtual memory usage actually went down

�

Figure 12-14. Density functional theory BHandHLYP calculations on GluAla helix systems of
varying size using the basis sets 3-21G and 6-31G∗∗. Timings for the different parts of self-
consistent field cycle 4. F → D: Density matrix purification including congruence transformations.
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Figure 12-14. (continued) XC: Evaluation of the exchange-correlation matrix. Coulomb: Evaluation of
the Coulomb matrix. Exchange: Evaluation of the exchange matrix. Exchange prep: Preparation for the
exchange matrix evaluation, see the text. Other: Intermediate steps such as evaluation of the FDS − SDF
commutator needed for DIIS and other matrix operations. (a) Basis set 3-21G. (b) Basis set 6-31G∗∗
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Figure 12-15. Density functional theory BHandHLYP calculations on GluAla helix systems of varying
size using the basis sets 3-21G and 6-31G∗∗. Peak virtual memory usage as reported by the operating
system. The decrease in virtual memory usage when going from 57,604 to 67,204 basis functions for
the 3-21G case is likely due to the operating system reorganizing the memory as the memory usage
approaches the amount of physical memory available. (a) Basis set 3-21G. (b) Basis set 6-31G∗∗
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as compared to the previous system size. This effect is likely due to the operating
system reorganizing the memory as the memory usage approaches the amount of
physical memory available.

HOMO-LUMO gaps (band gaps) for the 3-21G calculations are plotted in
Figure 12-16. The computed HOMO-LUMO gaps for the larger GluAla systems
are around 2.5 eV. For the 6-31G∗∗ basis set, the computed HOMO-LUMO gaps
for the larger GluAla systems are around 2.8 eV. Note that these values are strongly
dependent on the amount of Hartree-Fock exchange included in the chosen hybrid
density functional. The BHandHLYP functional used here includes 50% Hartree-
Fock exchange. A lower fraction of Hartree-Fock exchange, as in the popular
B3LYP functional, would result in much smaller HOMO-LUMO gaps. Hartree-
Fock calculations on these GluAla helixes give HOMO-LUMO gaps of around
7 eV [5].

The largest calculation we could treat with the 3-21G basis set on the used com-
puter system was [GluAla]448, C3584N896O1792H5378, corresponding to 67,204 basis
functions. The largest system for 6-31G∗∗ was [GluAla]192, C1536N384O768H2306,
corresponding to 49,162 basis functions. For the 3-21G case, the starting guess
was taken as a projection of the density from a previously converged Hartree-Fock
STO-2G calculation. The smallest 3-21G calculations up to around 10,000 basis
functions converged in 8 SCF iterations, while the larger ones needed 9 iterations.
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Figure 12-16. Density functional theory BHandHLYP/3-21G calculations on GluAla helix systems of
varying size. HOMO-LUMO gaps. It seems that the HOMO-LUMO gap for long helices converges to
around 2.5 eV. However, this value is strongly dependent on the density functional, see the text
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The converged 3-21G densities were then used as starting guesses for the 6-31G∗∗
calculations. Each 6-31G∗∗ calculation converged in 7 SCF iterations.

By comparison to calculations with tighter thresholds to achieve higher accuracy,
we have found that the choices of threshold values used in these benchmarks give
errors in total energies smaller than 2 × 10−5 Hartree/atom for the studied systems.

12.11. CONCLUDING REMARKS

Our experiences from development of the Ergo program show that linear scaling
Hartree-Fock and Kohn-Sham density functional theory calculations are indeed pos-
sible, not only in theory but also in practice. A whole electronic structure calculation
can thus be performed using computational resources – both time and memory – that
scale only linearly with the size of the studied molecular system.

Because of the many computational approximations employed in this kind of
calculations, they have so far employed a large number of parameters that affect the
performance and accuracy. This has limited the usefulness of these methods. In this
article we have discussed ways to remedy this problem by automatic selection of
threshold values. Such automatic selection procedures have so far only partially
been included in the Ergo code, but we plan to implement it fully in the near
future. This would not only increase the usefulness of the code for users who are
not familiar with the internal workings of the linear scaling algorithms used, but
also allow more efficient calculations since balanced accuracy throughout the code
would reduce the redundant use of computer resources.

Another important future aspect is parallelization. The linear scaling algorithms
discussed here are relatively straightforward to parallelize for shared memory com-
puter architectures, but for distributed memory the task of parallelization is more
challenging. Although pioneering work in this respect has been done [34, 92,
93], we are not aware of any complete parallel implementation of a linear scaling
Hartree-Fock or hybrid Kohn-Sham density functional theory method. Aside from
the issue of error control, we consider distributed memory parallelization as the most
important challenge for the future.

REFERENCES

1. Goedecker S (1999) Rev Mod Phys 71:1085
2. Bowler DR, Miyazaki T, Gillan MJ (2002) J Phys Condens Matter 14:2781
3. Wu SY, Jayanthi CS (2002) Phys Rep 358:1
4. Rudberg E, Rubensson EH, Sałek P Ergo (2009) Version 2.0: a quantum chemistry program for

large scale self-consistent field calculations. www.ergoscf.org
5. Rudberg E, Rubensson EH, Sałek P (2008) J Chem Phys 128:184106
6. Rubensson EH (2008) Matrix algebra for quantum chemistry. PhD thesis, Department of Theoretical

Chemistry, Royal Institute of Technology, Stockholm
7. Rudberg E (2007) Quantum chemistry for large systems. PhD thesis, Department of Theoretical

Chemistry, Royal Institute of Technology, Stockholm
8. Rubensson EH, Rudberg E, Sałek P (2008) J Math Phys 49:032103
9. Helgaker T, Jørgensen P, Olsen J (2000) Molecular electronic-structure theory Wiley, Chichester



Methods for Hartree-Fock and Density Functional Theory 299

10. Pulay P (1980) Chem Phys Lett 73:393
11. Pulay P (1982) J Comput Chem 3:556
12. Benzi M, Kouhia R, Tuma M (2001) Comput Meth Appl Mech Eng 190:6533
13. Rubensson EH, Rudberg E, Sałek P (2007) J Comput Chem 28:2531
14. Rubensson EH, Bock N, Holmström E, Niklasson AMN (2008) J Chem Phys 128:104105
15. Lea Thøgersen (2005) Optimization of densities in Hartree-Fock and density-functional theory,

Atomic orbital based response Theory, and Benchmarking for radicals. PhD thesis, Department of
Chemistry, University of Aarhus, Aarhus

16. Kudin KN, Scuseria GE (2007) Math Model Num Anal 41:281
17. Zerner MC, Hehenberger M (1979) Chem Phys Lett 62:550
18. Cancès E, Le Bris C (2000) Int J Quantum Chem 79:82
19. Häser M, Ahlrichs R (1989) J Comput Chem 10:104
20. Rudberg E, Sałek P (2006) J Chem Phys 125:084106
21. Greengard L, Rokhlin V (1987) J Comput Phys 73:325
22. Schmidt KE, Lee MA (1991) J Stat Phys 63:1223
23. Panas I, Almlöf, J, Feyereisen, MW (1991) Int J Quantum Chem 40:797
24. Panas I, Almlöf J (1992) Int J Quantum Chem 42:1073
25. White CA, Johnson BG, Gill PMW, Head-Gordon M (1994) Chem Phys Lett 230:8
26. White CA, Head-Gordon M (1994) J Chem Phys 101:6593
27. Challacombe M, Schwegler E, Almlöf J (1995) J Chem Phys 104:4685
28. Challacombe M, Schwegler E (1997) J Chem Phys 106:5526
29. White CA, Johnson BG, Gill PMW, Head-Gordon M (1996) Chem Phys Lett 253:268
30. Strain MC, Scuseria GE, Frisch MJ (1996) Science 271:51
31. Choi CH, Ruedenberg K, Gordon MS (2001) J Comput Chem 22:1484
32. Sierka M, Hogekamp A, Ahlrichs R (2003) J Chem Phys 118:9136
33. Watson MA, Sałek P, Macak P, Helgaker T (2004) J Chem Phys 121:2915
34. Gan CK, Tymczak C, Challacombe M (2004) J Chem Phys 121:6608
35. Schwegler E, Challacombe M (1996) J Chem Phys 105:2726
36. Burant JC, Scuseria GE (1996) J Chem Phys 105:8969
37. Schwegler E, Challacombe M, Head-Gordon M (1997) J Chem Phys 106:9708
38. Ochsenfeld C, White CA, Head-Gordon M (1998) J Chem Phys 109:1663
39. Schwegler E, Challacombe M (1999) J Chem Phys 111:6223
40. Ochsenfeld C (2000) Chem Phys Lett 327:216
41. Lambrecht DS, Ochsenfeld C (2005) J Chem Phys 123:184101
42. Aquilante F, Pedersen TB, Lindh R (2007) J Chem Phys 126:194106
43. Murray CW, Handy NC, Laming GJ (1993) Mol Phys 78:997
44. Challacombe M (2000) J Chem Phys 113:10037
45. Treutler O, Ahlrichs R (1995) J Chem Phys 102:346
46. Lebedev VI, vychisl, Zh (1975) Mat mat Fiz 45:48
47. Lindh R, Malmqvist PA, Gagliardi L (2001) Theor Chem Acc 106:178
48. Becke AD (1988) J Chem Phys 88:2547
49. Stratmann RE, Scuseria GE, Frisch MJ (1996) Chem Phys Lett 257:213
50. Rudberg E, Rubensson EH, Sałek P (2009) J Chem Theory Comput 5:80
51. Sankey OF, Drabold DA, Gibson A (1994) Phys Rev B 50:1376
52. Bekas C, Kokiopoulou E, Saad Y, SIAM J (2008) Matrix Anal Appl 30:397
53. Drabold DA, Sankey OF (1993) Phys Rev Lett 70:3631
54. Wang LW, Zunger A (1994) J Chem Phys 100:2394
55. Gao B, Jiang J, Liu K, Wu Z, Lu W, Luo Y (2007) J Comput Chem 29:434
56. McWeeny R (1956) Proc R Soc London Ser A 235:496



300 E.H. Rubensson et al.

57. Heath MT (1997) Scientific computing: an introductory survey. McGraw-Hill, Singapore
58. Li XP, Nunes RW, Vanderbilt D (1993) Phys Rev B 47:10891
59. Millam JM, Scuseria GE (1997) J Chem Phys 106:5569
60. Daw MS (1993) Phys Rev B 47:10895
61. Challacombe M (1999) J Chem Phys 110:2332
62. Helgaker T, Larsen H, Olsen J, Jørgensen P (2000) Chem Phys Lett 327:397
63. Dyan A, Dubot P, Cenedese P (2005) Phys Rev B 72:125104
64. Larsen H, Olsen J, Jørgensen P, Helgaker T (2001) J Chem Phys 115:9685
65. Shao Y, Saravanan C, Head-Gordon M, White CA (2003) J Chem Phys 118:6144
66. Goedecker S, Colombo L (1994) Phys Rev Lett 73:122
67. Goedecker S, Teter M (1995) Phys Rev B 51:9455
68. Baer R, Head-Gordon M (1997) J Chem Phys 107:10003
69. Bates KR, Daniels AD, Scuseria GE (1998) J Chem Phys 109:3308
70. Liang W, Saravanan C, Shao Y, Baer R, Bell AT, Head-Gordon M (2003) J Chem Phys 119:4117
71. Silver RN, Roeder H, Voter AF, Kress JD (1996) J Comput Phys 124:115
72. Palser AHR, Manolopoulos DE (1998) Phys Rev B 58:12704
73. Niklasson AMN (2002) Phys Rev B 66:155115
74. Niklasson AMN, Tymczak CJ, Challacombe M (2003) J Chem Phys 118:8611
75. Holas A (2001) Chem Phys Lett 340:552
76. Mazziotti DA (2003) Phys Rev E 68:066701
77. Xiang HJ, Liang WZ, Yang J, Hou JG, Zhu Q (2005) J Chem Phys 123:124105
78. Pino R, Scuseria GE (2002) Chem Phys Lett 360:117
79. Rubensson EH, Rudberg E, Sałek P (2008) J Chem Phys 128:074106
80. Paterson MS, Stockmeyer L, SIAM (1973) J Comput 2:60
81. Saravanan C, Shao Y, Baer R, Ross PN, Head-Gordon M (2003) J Comput Chem 24:618
82. Maslen PE, Ochsenfeld C, White CA, Lee MS, Head-Gordon M (1998) J Phys Chem A 102:2215
83. Rubensson EH, Rudberg E, Sałek P (2009) J Comput Chem 30:974
84. Rubensson EH, Rudberg E, Sałek P (2007) Proceedings of PARA’06, Springer LNCS 4699:90
85. Gotoblas. http://www.tacc.utexas.edu/resources/software/#blas
86. Automatically tuned linear algebra software (ATLAS). http://mathatlas.sourceforge.net/
87. Intel math kernel library (Intel MKL). http://www.intel.com/cd/software/products/asmo-na/eng/

307757.htm
88. AMD core math library (ACML). http://developer.amd.com/cpu/libraries/acml/Pages/default.aspx
89. Elmroth E, Gustavson F, Jonsson I, Kågström B (2004) SIAM Rev 46:3
90. Becke AD (1993) J Chem Phys 98:1372
91. Spartan’02 (2002) Molecular modeling package by Wavefunction, Inc.
92. Challacombe M (2000) Comp Phys Commun 128:93
93. Bowler DR, Miyazaki T, Gillan MJ (2001) Comp Phys Commun 137:255



CHAPTER 13

CHOLESKY DECOMPOSITION TECHNIQUES
IN ELECTRONIC STRUCTURE THEORY

FRANCESCO AQUILANTE1, LINUS BOMAN2, JONAS BOSTRÖM3,
HENRIK KOCH2, ROLAND LINDH4, ALFREDO SÁNCHEZ DE MERÁS5,
AND THOMAS BONDO PEDERSEN6

1 Department of Physical Chemistry, Sciences II, University of Geneva, 1211 Geneva 4, Switzerland,
e-mail: francesco.aquilante@gmail.com
2 Department of Chemistry, Norwegian University of Science and Technology, N-7491 Trondheim,
Norway, e-mail: linus.boman@chem.ntnu.no; henrik.koch@chem.ntnu.no
3 Department of Theoretical Chemistry, Chemical Center, University of Lund, S-221 00 Lund, Sweden,
e-mail: Jonas.Bostrom@teokem.lu.se
4 Department of Quantum Chemistry, Uppsala University, SE-751 20, Uppsala, Sweden,
e-mail: roland.lindh@kvac.uu.se
5 Instituto de Ciencia Molecular, Universitat de València, ES-46071 Valencia, Spain,
e-mail: sanchez@uv.es
6 Department of Chemistry, Centre for Theoretical and Computational Chemistry, University of Oslo,
Blindern, N-0315 Oslo, Norway, e-mail: t.b.pedersen@kjemi.uio.no

Abstract: We review recently developed methods to efficiently utilize the Cholesky decompo-
sition technique in electronic structure calculations. The review starts with a brief
introduction to the basics of the Cholesky decomposition technique. Subsequently,
examples of applications of the technique to ab inito procedures are presented. The
technique is demonstrated to be a special type of a resolution-of-identity or density-
fitting scheme. This is followed by explicit examples of the Cholesky techniques used
in orbital localization, computation of the exchange contribution to the Fock matrix,
in MP2, gradient calculations, and so-called method specific Cholesky decomposition.
Subsequently, examples of calibration of the method with respect to computed total ener-
gies, excitation energies, and auxiliary basis set pruning are presented. In particular, it is
demonstrated that the Cholesky method is an unbiased method to derive auxiliary basis
sets. Furthermore, details of the implementational considerations are put forward and
examples from a parallel Cholesky decomposition scheme is presented. Finally, an out-
look and perspectives are presented, followed by a summary and conclusions section. We
are of the opinion that the Cholesky decomposition method is a technique that has been
overlooked for too long. We have just recently started to understand how to efficiently
incorporate the method in existing ab initio programs. The full potential of the Cholesky
technique has not yet been fully explored.
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R. Zaleśny et al. (eds.), Linear-Scaling Techniques in Computational Chemistry and Physics, 301–343.
DOI 10.1007/978-90-481-2853-2_13, C© Springer Science+Business Media B.V. 2011



302 F. Aquilante et al.

Keywords: Cholesky decomposition, Reduced scaling, Low-rank tensor approximation, Inner
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13.1. INTRODUCTION

The application of electronic structure methods to large molecular systems using
accurate basis sets is limited due to the steep computational scaling many of
the methods encounter. The evaluation of two-electron integrals has turned out
to be a major bottleneck in most of these methods. Although many different
schemes have been devised for calculating two-electron integrals, for instance
McMurchie-Davidson, Rys quadrature and Obara-Saika schemes, the algorithms
are still demanding, especially for two-electron integrals that contain orbitals with
high angular momentum. The altogether best approach to reduce the computational
time used for calculating two-electron integrals is to reduce the number of integrals
that need to be calculated. The first step in these developments is to avoid calcu-
lating integrals that are zero or small and give small contributions to the properties
we are calculating. This has led to the development of the so-called linear scaling
methods and they have proven highly efficient for small basis sets. Linear scaling
formalisms have been developed by many groups. However, these algorithms cur-
rently only work efficiently for large systems in very small basis sets. When more
accuracy is needed larger basis sets are essential and for these cases the resolution of
identity (RI) method [1–8] has been used to reduce the computational effort. The RI
method has worked very well for the calculation of the Coulomb contribution to the
Fock matrix [9–18], but the exchange contribution is much more difficult to com-
pute with the same benefits [15, 19–22]. We shall discuss these problems in more
detail. Another complication using the RI method is that the accuracy of the results
is not easily controlled as the approach typically uses atom-centered pre-optimized
auxiliary basis sets. The argument found in the literature is that the error due to the
incompleteness of the auxiliary basis is smaller than the basis set error speaks in
favor of the RI method. However, care should be exercised as size-extensive prop-
erties cannot be used to extrapolate to the basis set limit if the errors are larger than
the accuracy of the extrapolation procedures.

In this review we report on different approaches similar to the RI method that
avoids the use of pre-optimized auxiliary basis sets. We simply determine the
auxiliary basis using the decomposition developed by Commandant André-Louis
Cholesky (1875–1918) and published by Commandant Benoît in 1924 [23]. The
idea to apply the Cholesky decomposition (CD) to the two-electron integral matrix
was first suggested by Beebe and Linderberg [24] more than thirty years ago.
The CD is the only numerical procedure known to the authors that can remove
the zero or small eigenvalues of a positive semi-definite matrix without calculat-
ing the entire matrix. This makes the procedure truly unique and the possibilities
to obtain tremendous computational savings are apparent. Just consider the two-
electron integral matrix. In the limit of a complete basis the number of integrals
will scale as N4, but the number of non-zero eigenvalues scales as N in the limit
of a complete basis (N is the size of the basis). Despite this, the CD does not
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seem to have received much attention in the quantum chemistry community. There
are notable exceptions, especially the developments by Røeggen and co-workers
who have used the Cholesky decomposition of the two-electron integrals in the
implementation of geminal models [25–30]. The use of the CD in connection with
the calculation of derivative integrals has been discussed by O’Neal and Simons
[31]. More recently, Koch, Sánchez de Merás and Pedersen [32, 33] have developed
an implementation of the CD of the two-electron integrals aiming at large scale
applications. The decomposition was shown to give large savings for large basis sets
with a variety of theoretical methods: Hartree-Fock (HF), density functional theory
(DFT), second order Møller-Plesset perturbation theory (MP2), and the second-
order approximate coupled cluster model (CC2) [34]. These implementations in
the DALTON program has formed the basis for many computational developments
and applications [35–43]. The CD strategy has subsequently been implemented
in the MOLCAS program [44] for multiconfigurational methods (multiconfigura-
tional self-consistent field (MCSCF) [45] and multiconfigurational second-order
perturbation theory (CASPT2) [46]) as well as scaled opposite spin MP2 [47] and
coupled cluster (CC) methods [44]. The MOLCAS implementation has been cru-
cial for a number of further developments and applications [21, 48–69]. Røeggen
and Johansen [30] were the first to report a parallel implementation of the CD that
shows a practically linear scaling with the number of compute nodes. The future
use of CD based methods depends on the ability to evaluate geometrical deriva-
tives of the molecular energy. In contrast to the numerical approach by O’Neal and
Simons [31], analytic energy derivatives based on CD have been discussed recently
by Aquilante et al. [52]. The CD is still perceived to be a rather complicated proce-
dure. The aim of this chapter is to demonstrate that CD is a very rich tool and finds
many practical applications in electronic structure theory.

The use of the RI representation of the two-electron integral matrix is some-
times referred to as density fitting (DF). Both these acronyms, RI and DF, are
somewhat misleading. The density fitting community often anchors the method
in the 1973 paper by Whitten [1] on integral approximations, whereas the RI ter-
minology is mostly a descendent of the work by Almlöf and Feyereisen [7, 8].
The most correct description would probably be to denote them as inner pro-
jection methods. The concept of inner projections was introduced into quantum
chemistry by Löwdin in his 1967–1971 landmark papers on perturbation theory
[70, 71]. The CD is a powerful method to determine the optimal basis in the inner
projection.

We start our review with some general mathematical considerations regarding the
CD. This is then followed by Section 13.3 discussing several of our recent applica-
tions of the method in electronic structure theory. Section 13.4 is devoted to accuracy
calibration and implementation aspects are discussed in Section 13.5. The chapter
ends with our outlooks and conclusions.

13.2. MATHEMATICAL BACKGROUND

In April 1924 a paper [23] by Commandant Benoît was published summarizing
some handwritten notes dated in Vincennes on December 2nd 1910 by André-Louis
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Cholesky. Commandant Cholesky had developed a method to solve the systems
of linear equations appearing in the compensation of geodesic networks, using a
particular lower-upper (LU) decomposition [72] of a symmetric positive definite
matrix M

Mx = LLTx = b (13-1)

where the matrix M has been decomposed in the product of a lower triangular matrix
with strictly positive diagonals, L, and its transpose. With such decomposition, the
solution of the linear system is trivial by Gauss elimination in a two-step procedure:
Solve first Ly = b for y, and then LTx = y for x.

Cholesky decomposition is easily understood as an iterative procedure where in
each iteration a Cholesky vector LJ

p is being subtracted from the updated matrix,

M(n+1) = M(n) − LJ(LJ)T (13-2)

which remains positive definite at all steps in the process. Note that M(0) = M.
Convergence is achieved when the residuals in the diagonal elements are smaller
than a predefined threshold, τ . The original matrix can be approximated to almost
arbitrary accuracy as

M ≈
K∑

J=1

LJ(LJ)T (13-3)

with Cholesky vectors defined according to

LJn
i = M(n)

iJ√
M(n)

JJ

(13-4)

The Cholesky vectors constitute the columns of the L matrix and, therefore, in order
to obtain the required lower triangular form, one needs to carry out the decompo-
sition in such a way that the selected M(n)

JJ is always the first non-zero diagonal
element in the matrix. For the sake of numerical stability of the algorithm, it is often
preferable to choose as pivoting element the maximum diagonal element in each
step of the procedure

M(n)
JJ = max

i

(
M(n)

ii

)
(13-5)

Consequently, while the CD of a positive definite matrix is unique, there can be
different sets of Cholesky vectors depending on the ordering in which the diagonal
elements are selected. At any rate, this does not cause any additional difficulty, as
the different vector sets span the same subspace. Moreover, the super-matrix of two-
electron integrals Mαβ,γ δ = (αβ | γ δ) is positive semi-definite and the CD exists,
but is in general not unique.
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The reason why CD is a valuable tool in electronic structure calculations lies
in the fact that it provides an efficient way of removing linear dependencies in a
given matrix. As a matter of fact, CD can eliminate the zero or almost zero eigen-
values of a matrix without computing the whole matrix, but only calculating the
complete diagonal as well as the columns of the decomposed diagonal elements.
For a strictly positive matrix, the number K of Cholesky vectors equals the dimen-
sion of the matrix N. However, for a positive semi-definite matrix, K is smaller than
N, N − K being the number of linear dependencies. As a simple example, let us
consider the following matrix

A =
⎛

⎝
a c αa + βc
c b αc + βb
αa + βc αc + βb α2a + β2b + 2αβc

⎞

⎠ (13-6)

in which, obviously, the third column is a linear combination of the first two. When
A is decomposed, we obtain only two Cholesky vectors

A = 1√
a

⎛

⎝
a
c

αa + βc

⎞

⎠(
a c αa + βc

) 1√
a

+

⎛

⎜⎜⎝

0√
b − c2

a

β

√
b − c2

a

⎞

⎟⎟⎠
(

0
√

b − c2

a β

√
b − c2

a

) (13-7)

At this point, it is important to recall that the updated matrix remains positive def-
inite only when exact arithmetic is used, but this property can be lost if round-off
errors are significant. That is, round-off errors might cause matrices, which formally
should be positive semi-definite, to have a slightly negative definite part. This is, for
instance, the case for the two-electron integral matrix [32], which in practice limits
the accuracy of the CD to about 10−12; still, this is more than enough for practi-
cal applications. For matrices that are better conditioned, such as the orbital energy
denominators appearing in many-body perturbation theory (MBPT) calculations, it
is possible to reach machine precision (i.e. 10−16) in a straightforward manner [73].

To further illustrate the removal of linear or near-linear dependence by Cholesky
decomposition, consider a positive definite operator M̂(r1,r2) with the following
matrix representation in a real basis {φi(r)},

Mij =
∫ ∫

φi(r1)M̂(r1,r2)φj(r2)dr1dr2 ≡ (
φi | φj

)
(13-8)

The positive definite operator is here assumed to be a two-electron operator such as
the Coulomb operator M̂(r1,r2) = |r1 − r2|−1, or the attenuated Coulomb operator
M̂(r1,r2) = A(|r1 −r2|)|r1 −r2|−1 (A is a strictly positive function; e.g., a Gaussian
function or complementary error function). It could also be the Dirac delta function
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M̂(r1,r2) = δ(r1−r2). Now, even if the operator is positive definite the matrix repre-
sentation may be positive semi-definite or nearly so. This occurs whenever the basis
is linearly dependent in the metric defined by the operator M̂(r1,r2). As discussed
above, CD of a positive semi-definite matrix leads to a number of Cholesky vectors
which is smaller than the dimension of the matrix. The pivoting procedure defined
by Eq. (13-5) leads to the concept of the Cholesky basis, which is defined as the
subset of the basis set for which the corresponding diagonal elements give rise to
Cholesky vectors. We use hJ to denote members of the Cholesky basis. Performing
a modified Gram-Schmidt orthonormalization in the M̂-metric of the Cholesky basis
leads to the orthonormal Cholesky basis

QJ = NJ

(
hJ −

J−1∑

K=1

QK(hJ | QK)

)
(13-9)

where the normalization constant is given by

NJ =
[

(hJ | hJ) −
J−1∑

K=1

(hJ | QK)2

]− 1
2

(13-10)

and the matrix elements (· | ·) are defined in Eq. (13-8). We can now show that the
Cholesky vectors can be expressed in terms of the orthonormal Cholesky basis as
[49, 52, 58]

LJ
i = (φi | QJ) (13-11)

This implies that CD can be used to remove linear dependence in a given basis using
any positive definite metric. The original matrix can then be expressed as an inner
projection in two equivalent ways

(φi | φj) = ∑
J

(φi | QJ)(QJ | φj)

= ∑
IJ

(φi | hI)M̃
−1
IJ (hJ | φj)

(13-12)

where M̃−1
IJ = (M̃

−1
)IJ and

M̃IJ = (hI | hJ) (13-13)

Alternatively, we may expand the linearly dependent basis in the Cholesky basis

φi =
∑

J

CJ
i hJ (13-14)

and obtain yet another equivalent expression
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(φi | φj) =
∑

IJ

CI
i M̃IJCJ

j (13-15)

The expansion coefficients are determined by a least-squares fitting (in the M̂-
metric), leading to the equations

∑

I

CI
j M̃IJ = (φj | hJ) (13-16)

from which the coefficients can be computed. Using that the matrix M̃ is the sub-
block of M which is represented exactly by the CD, these fitting equations can be
recast as [58]

∑

I

CI
j LJ

I = LJ
j (13-17)

providing a relation between fitting coefficients and Cholesky vectors.
We close this section by showing an important property of the CD that is rarely

discussed in standard textbooks on linear algebra. The decomposition of a projection
operator gives orthonormal Cholesky vectors [48], such that an incomplete decom-
position is again a projection operator. Consider a projector P and the projection on
the complement Q = 1 − P, such that P2 = P and Q2 = Q. In the complete basis
{| n〉} of finite or infinite dimension we have the resolution of identity

∑

n

| n〉〈n |= 1 (13-18)

and the matrix representations that we assume real

Pnm = 〈n | P | m〉 = Pmn
Qnm = 〈n | Q | m〉 = Qmn .

(13-19)

The first Cholesky vector

L1
n = 〈n | P | 1〉〈1 | P | 1〉−1/2 = Pn1P−1/2

11 (13-20)

is easily seen to be normalized. The second Cholesky vector

L2
n =

(
Pn2 − P2

12

P11

)(
P22 − Pn1P12

P11

)−1/2

(13-21)

is also normalized
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∑

n

(L2
n)2 =

(
P22 − P2

12

P11

)−1 ∑

n

(
P2n − P1nP12

P11

)(
Pn2 − Pn1P12

P11

)
= 1

(13-22)
and orthogonal to the first Cholesky vector

∑

n

L1
nL2

n = P−1/2
11

(
P22 − P2

12

P11

)−1/2 ∑

n

P1n

(
Pn2 − Pn1P12

P11

)

= P−1/2
11

(
P22 − P2

12

P11

)−1/2 (
P12 − P11P12

P11

)
= 0

(13-23)

An induction proof is now straightforwardly completed. As P and Q are orthogonal
projectors, i.e. PQ = 0, any incomplete decomposition of P and Q give Cholesky
vectors that are orthonormal. We shall apply this property in Section 13.3.3 to
localize occupied and virtual orbitals.

13.3. APPLICATIONS

In this section we give a number of examples of the use of the CD technique in
ab initio methods. These examples include the approximate representation of two-
electron integrals, of course, but also other aspects such as orbital localization and
quartic-scaling MP2.

13.3.1. Connection Between Density Fitting and Cholesky Decomposition

Although Beebe and Linderberg [24] noted that the CD technique was an inner
projection approximation and Vahtras and co-workers [8] noted that the so-called V
approximation in their integral approximation scheme is “an inner projection similar
to the Beebe-Linderberg approximation” this has never been explicitly demonstrated
and exploited. In this section we will clearly demonstrate that the CD method
implicitly generates an auxiliary basis, the orthonormal Cholesky auxiliary basis,
which in some respects is no different from those used in standard DF methods.
The connection between DF and CD is discussed in detail in the recent review by
Pedersen, Aquilante, and Lindh [58].

As discussed in the previous section, the CD procedure is nothing but a mod-
ified Gram-Schmidt orthonormalization procedure applied to the positive definite
molecular super-matrix, (αβ | γ δ) and includes in a pivoting algorithm the original
atomic orbital (AO) product functions γ δ one by one into the orthonormalization
procedure. Let us use this order index, J, to denote a particular AO product as hJ,
the parent Cholesky auxiliary basis. The CD procedure contains the two elements —
orthogonalization and normalization. The orthonomalized Cholesky auxiliary basis,
QJ, is defined by Eq. (13-9) with the normalization constant given by Eq. (13-10).

We note that the parent Cholesky auxiliary basis {hJ} and the orthonormal
Cholesky auxiliary basis {QJ} span the same space and that for the latter, by virtue
of design, the molecular super-matrix is trivially expressed as (QJ | QK) = δJK .
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This equivalence now allows us to express the approximated two-electron integrals
using the DF formalism in two equivalent ways (the first two lines of the equation),

(αβ | γ δ) = ∑
JK

(αβ | hJ)G−1
JK (hK | γ δ)

= ∑
JK

(αβ | QJ)G̃−1
JK (QK | γ δ)

= ∑
J

(αβ | QJ)(QJ | γ δ)
(13-24)

where GJK = (hJ | hK) and G̃JK = (QJ | QK) = δJK . The last step is a trivial conse-
quence of the orthonormal Cholesky auxiliary basis and leads us to the identification
of the Cholesky vectors as

LJ
αβ = (αβ | QJ) (13-25)

which, apart from a slightly different notation, is identical to Eq. (13-11). We have
now established that the CD approach indirectly form a particular auxiliary basis to
be used within the DF formalism. This auxiliary basis is similar in many respects to
the standard available DF auxiliary basis sets. However, there are three major dif-
ferences. First, the orthonormal Cholesky auxiliary basis is in principle a two-center
type of auxiliary basis. This allows us to, with a single parameter, control the error
of the approximated integrals to an arbitrary accuracy, while it also presents some
challenges in the calculation of analytic gradients. This problem has been resolved
with the atomic CD procedure [49, 62], in which accurate analytic gradients can
be expressed with a reduction of accuracy of the approximated integrals that is of
no practical consequence [52]. Second, the Cholesky auxiliary basis set is always
a subset of the full product space. Third, the auxiliary basis set is a set of (prod-
uct) basis functions ordered with respect to their significance in the reproduction
of the two-electron integrals, i.e. the set can be further truncated on-the-fly in a
screening scheme with complete control of the accuracy. That is, it is a compact
and efficient auxiliary basis set. Normally, DF auxiliary basis sets are improved by
ad hoc uncontraction or addition of primitive Gaussians. This procedure does not
control that the additional functions are completely within the space of the original
product basis, and can in this way be wasteful. Rather, the quality of the extended
DF auxiliary basis sets are checked in subsequent test calculations based on energy
criterions (see for example Refs. [74–76]). To summarize, there are good arguments
why the CD auxiliary basis sets, in the parent or orthonormal form, are the optimal
general auxiliary basis sets. Benchmark results that support this view are presented
in Section 13.4.

13.3.2. One-Center CD Auxiliary Basis Sets

In contrast to conventional RI or DF schemes, the CD procedure generates auxil-
iary basis sets which in general are of two-center type. This allows the standard
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CD technique applied to the two-electron integral, which we denote Full-CD, to
approximate the conventional result to any degree of accuracy with the adjustment
of a single threshold parameter. However, the two-center character of the Full-CD
auxiliary basis set makes it difficult to formulate a general analytic expression for
derivatives of the two-electron integrals with respect to the nuclear coordinates. As
the geometry changes, the set of Full-CD auxiliary basis functions changes as well
which may introduce discontinuities on the potential energy surface of the order of
magnitude of the decomposition threshold. A brute force way to control this would
of course be to reduce the threshold to the extent that this feature is of no practical
significance. However, for larger CD thresholds the problem remains. Having estab-
lished the connection between CD and RI/DF techniques in Section 13.3.1 we can
solve this problem in a pragmatic way. For RI/DF techniques analytic expressions
for gradients have already been derived and is a consequence of the strict one-center
type of auxiliary basis sets used in these techniques – the auxiliary basis set is not a
function of the molecular geometry. Still with these limitations the RI/DF approach
has been shown to provide an approximation with reasonable accuracy. The ques-
tion which follows at once is “Can a CD procedure be used to generate meaningful
one-center type auxiliary basis sets?”.

In a series of papers, methods for one-center type of CD auxiliary basis sets
have been described [49, 58, 62] The first paper developed the one-center CD (1C-
CD) and the atomic CD (aCD) auxiliary basis sets. Both of these methods are
straightforward modifications of the Full-CD procedure. In the 1C-CD approach
only one-center product functions are allowed to enter the Cholesky basis [49].
Thus, a one-center auxiliary basis set is constructed which for all practical purposes,
though not strictly, is invariant to the molecular geometry. This is, however, strictly
the case for the aCD approach [49] in which the auxiliary basis set is generated from
a decomposition of the separate atomic blocks of the molecular two-electron integral
matrix. For these two types of auxiliary basis set one remaining deficiency in com-
mon with Full-CD and in difference to standard RI/DF auxiliary basis sets remains:
a rather large set of primitive Gaussians is used. The so-called atomic compact CD
(acCD) auxiliary basis sets [62] offer a significant reduction of these primitive sets
without significant loss of accuracy. The hallmark of the acCD procedure is that in
the atomic CD procedure the set of primitive Gaussian products itself is subject to
a Cholesky decomposition and that the remaining functions are fitted to produce an
accurate representation of the parent aCD auxiliary basis set. This compact represen-
tation of the aCD auxiliary basis set introduces significant reduction of the primitive
space and speeds up the computation of two- and three-center two-electron integrals
when the acCD auxiliary basis sets are used in the RI/DF procedure (see Figure 13-1
for a representation of the reduction of the primitive product space in the case of an
all-electron atomic natural orbital valence basis set for technetium). In addition, it
should be noted that these new one-center auxiliary basis sets are constructed on the
fly. That is, with these new procedures, the need for auxiliary basis set libraries is
a feature of the past and that RI/DF calculations now can be performed directly for
any existing or future valence basis set. The accuracy of the one-center CD auxiliary
basis sets is discussed in Section 13.4.
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Figure 13-1. Progression of the primitive set of technetium in a the valence ANO-RCC s-shell and
corresponding b aCD-4 and c acCD-4 auxiliary basis sets. The decimal logarithm of the Gaussian
exponent is reported on the horizontal axes (reproduced with the permission of AIP)

Finally, we point out a unique feature of the aCD and acCD auxiliary basis
sets. Since the auxiliary functions span the same space (within the decomposition
threshold) as the one-center atomic orbital product functions that are to be fitted,
only auxiliary functions on the same center as the product functions are needed to
produce an accurate fit [62]. That is, the fitting of one-center atomic orbital prod-
ucts becomes increasingly local as the threshold is decreased. This feature of the
atomic CD sets implies that local density fitting can be performed without the use
of less accurate short-range metrics such as the overlap or attenuated Coulomb met-
rics discussed by Jung et al. [77]. The situation is different for two-center atomic
orbital products where two-center auxiliary functions are needed to obtain an inher-
ently local fit with the accurate long-range Coulomb metric [58]. As discussed in
[58], it is possible to get an accurate local two-center fit with a minimum amount
of two-center auxiliary functions, namely exactly those that are needed to make
the auxiliary set complete (within the decomposition threshold) in the subspace
of interest. These observations pave the way for truly local density fitting where
each approximate atomic orbital product function is represented in exactly the same
way in any molecule: the fit becomes transferable and thus free from (auxiliary)
basis set superposition errors. By the same token, this approach eliminates the
size-extensivity errors uncovered by Werner and Manby [78] with the explicitly
correlated DF-MP2-R12 method.

To illustrate the locality of the atomic CD sets, we follow Jung et al. [77] in
considering a simple model problem. Suppose that we wish to fit a spherical unit-
charge density sT using two identical auxiliary basis functions s1 and s2, which
are also spherical unit-charge densities. While s1 is centered at the same point as
sT, s2 is a distance r away. We now seek the coefficients c1 and c2 such that the
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approximation |sT ) ≈ c1|s1) + c2|s2) is the best possible in a least-squares sense.
This is achieved by solving the fitting equations

[c1 c2]

[
A B
B A

]
= [C D] (13-26)

where A = (s1|s1) = (s2|s2), B = (s1|s2) = (s2|s1), C = (s1|sT ), and D = (s2|sT ).
The solution is given by

c1 = C

A
− B

A

AD − BC

A2 − B2
(13-27)

c2 = AD − BC

A2 − B2
(13-28)

showing that, in general, there is a non-vanishing contribution to the fit from the dis-
tant auxiliary function s2. The central question is whether this contribution decays
sufficiently fast to allow a local fit involving the function s1 only. For large distances
r, we have [77]

B → r−1 (13-29)

D → r−1 (13-30)

and therefore

c1 → C

A
(13-31)

c2 → A − C

A2

1

r
(13-32)

This shows that c2 is a slowly decaying function of the distance, making the fitting
procedure inherently nonlocal. However, using the Cholesky approach to auxiliary
basis functions for this simple model system, we have s1 = sT and therefore C = A
and D = B. Hence, regardless of the distance r, Eqs. (13-27) and (13-28) become

c1 = 1 (13-33)

c2 = 0 (13-34)

showing that the fit is manifestly local. Fitting a single function using itself as auxil-
iary basis is silly, of course, but the example underlines the importance of choosing
the auxiliary basis such that it spans the same space, or very nearly so, as the func-
tions to be fitted. Not only will the fit be more accurate, it will render the long-range
decay of the fitting coefficients irrelevant [62]. More general discussions, theoret-
ical as well as through numerical examples, of this inherent locality can be found
in [58, 62].
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13.3.3. Orbital Localization Using Cholesky Decomposition

A key ingredient needed for state of the art electronic structure methods to be effi-
cient is the sparsity of the molecular orbital (MO) coefficient representation of the
density matrix. Sparsity is in this context the property of an array to have relatively
few, and usually scattered, large elements. Due to the invariance of HF theory with
respect to unitary transformations among the occupied (or virtual) orbital space,
an infinite number of such representations are possible. Of course, sparsity of the
MO coefficients does not necessarily imply that the resulting orbitals are local-
ized. Locality carries the notion of spatial extent of an object, which in this case
indicates that the orbitals are confined to few neighboring atoms. Orbital local-
ity implies a degree of sparsity in the MO coefficients but not vice versa. Several
localization schemes have been developed for choosing a unitary transformation
of the molecular orbitals. Among the most common are the Boys [79], Edmiston-
Ruedenberg [80], and Pipek-Mezey [81] procedures, which are all formulated as
an optimization problem where a localization functional is maximized with respect
to rotations among the orbitals. The orbital localization thus becomes an iterative
procedure. An alternative approach to obtain localized orbitals is provided by the
Cholesky decomposition of the AO density matrix [48]. This Cholesky localiza-
tion has several computational advantages over the standard schemes and also some
unique features. First, Cholesky decomposition is a numerically stable and fast algo-
rithm that can be made linear scaling for matrices with linear scaling number of
non-zero elements [82]. Second, being a non-iterative procedure, complicated opti-
mization techniques are not needed. Third, as no initial orbitals need to be given, the
procedure is particularly well suited for determining local MOs directly from den-
sity matrix-based HF theory. Fourth, it is the natural choice for obtaining localized
orbitals to be used in connection with the local-K exchange screening discussed in
Section 13.3.4.

In addition to local occupied orbitals, Cholesky decomposition of ad hoc defined
density-type matrices can produce local MOs spanning the virtual space, as required
by linear-scaling wave function-based electron correlation models. In particular,
the corresponding Cholesky MOs are reasonably localized even though they are
orthonormal by construction (since the density is a projector, see also Section
13.2). The convenience of using orthonormal orbitals for the virtual space instead
of the usual (redundant) projected AOs could increase in the future the popular-
ity of Cholesky localization techniques – probably the only orbital localization
scheme that works for both occupied and virtual orbitals, with and without sym-
metry, and produces very quickly localized orbitals directly from the parent density
matrix.

As mentioned above, the HF energy is invariant under any unitary transformation
that preserves the mutual orthogonality between the occupied and virtual subspaces.
The underlying reason is that the density matrix

Dαβ =
occ∑

i

CαiCβi (13-35)
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where the matrix C contains the molecular orbital coefficients and i denotes occu-
pied MOs, is indeed invariant under rotations of the occupied orbitals. Similarly, the
virtual density-like matrix

DV
αβ =

(
S−1 − D

)

αβ
=

virt∑

a

CαaCβa (13-36)

where S is the overlap matrix in the AO basis and a denotes virtual MOs, is invariant
under rotations of the virtual orbitals. Both D and DV matrices are positive semi-
definite, their ranks being the number of occupied and virtual orbitals, respectively.
It is possible to Cholesky decompose each of these matrices selecting only those
diagonals that correspond to atomic orbitals centered on atoms belonging to a pre-
defined set of active centers defining a subsystem [43]. Once the decomposition is
done in the reduced subspace, the residual matrix is still positive semi-definite and
can, therefore, be decomposed without any restriction. In this way, we obtain an
active set of orbitals, occupied and virtual, orthogonal to an inactive set that is elim-
inated, i.e. kept frozen, in the subsequent correlation treatment. Alternatively, one
can also decompose completely the two density matrices on an atom-by-atom basis,
thus obtaining a set of orthonormal MOs that span the same subspace as the canoni-
cal Hartree-Fock set. When the decomposition is completed, the active orbital space
is selected from the atomic centers forming the subsystem. Either way, we obtain a
localized MO basis spanning a reduced space located on the subsystem. If orbital
energies are required, the Fock operator may be diagonalized in the active space.

The great advantage of using a small subsystem space is to concentrate the com-
putational effort where it is in fact required. Indeed, many molecular properties
are essentially local in character and, thus, it is reasonable to assume that only
the atoms in the neighborhood of a specific site, the subsystem, significantly con-
tribute to the considered property. In Figure 13-2 we represent the orbital spread
[83] of the Cholesky orbitals in C10H2 compared to that of the canonical Hartree-
Fock orbitals. It is easily verified that the procedure is able to localize the molecular
orbitals, although augmentation ( depicted in the right part) introduce a larger degree
of delocalization.

For the calculation of intermolecular interaction energies, we start by noting that
the canonical Hartree-Fock molecular orbitals are not well suited for this purpose
(see Figure 13-3). In fact, they are spread out along the entire organic unit, but
have very small components in the vicinity of the interaction area. Thus, the largest
amplitudes will give virtually zero contribution to the calculated interaction. On the
other hand, the Cholesky orbitals are concentrated in the area of interest. The inter-
action energy has been calculated for several active spaces and using double zeta
correlation consistent basis sets [84]. The smallest subsystem is formed by the neon
atom, the CH2=CH– group in front of it and a [3s3p2d1f1g] set of bond functions
[85] located at the center of the line connecting the neon atom and the C=C dou-
ble bond. In each successive space an additional CH2 unit is attached. Our results
are depicted in Figure 13-4. This is a very complicated problem, as the interaction
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Figure 13-2. Histogram of orbital spreads of canonical (above) and Cholesky (below) molecular orbitals
for C10H2 with cc-pVDZ (left) and aug-cc-pVDZ (right) basis sets. The abscissa denotes the orbital
spread in atomic units and the ordinate the number of molecular orbitals (both occupied and virtual)
containing the spread for a step of 0.25 a.u.

is completely described by weak dispersion forces, and augmented basis sets are
required. As discussed above, augmentation introduces some delocalization, imply-
ing that rather large subsystems are needed to get meaningful results. However, if
the interaction is calculated according to

ΔEMP2/CCSD(T) = ΔEact
CCSD(T) −ΔEact

MP2 +ΔEexact
MP2 (13-37)

the convergence towards to the exact value is fast and almost uniform, making it
feasible to get accurate results using very reduced spaces.

13.3.4. The LK Algorithm

The use of the Cholesky representation of the two-electron integrals, as proposed
by Beebe and Linderberg [24] and extended by Koch and co-workers [32], does not
always yield a satisfactory performance for SCF calculations involving the evalu-
ation of HF-exchange. For large molecules (>100 atoms) and compact basis sets,
standard integral-direct algorithms are by far the fastest. The quartic scaling of the
evaluation of the exchange Fock matrix K quickly downgrades the capacity of the
straightforward Cholesky and DF SCF implementations [19, 32] for electron-rich
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Figure 13-3. Complex octene-neon: HOMO (left) and LUMO (right) in the canonical (above) and
Cholesky (below) molecular orbital basis

Figure 13-4. Interaction energy (in cm−1) for the neon-octene complex using cc-pVDZ (left) and aug-
cc-pVDZ (right) supplemented with midbond functions. The horizontal axis represents the number of
CH(n) groups in the active space

(many occupied orbitals) systems and large basis set. Particularly unpleasant is the
dependence of the computational costs on the number of occupied orbitals, as this is
not the case for integral-based SCF algorithms. Polly et al. [20] were the first to pro-
pose an alternative algorithm for computing the exchange Fock matrix in DF-based
SCF with reduced scaling. Although asymptotically linear scaling, this procedure
does not yield bounded errors — therefore the accuracy of the result cannot be
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controlled solely on the basis of energy thresholds. As discussed previously, it is
exactly this error control that makes the Cholesky approximation extremely appeal-
ing. Consequently, an alternative solution to this “exchange problem” that could
maintain the prime characteristic of the method was proposed by some of the present
authors [21]. This approach, called Local K or simply LK algorithm is general in the
sense that it does not involve a priori assumptions about the size of the system or
the nature of its electronic structure. Only the short-range character of the exchange
interactions is required for the screening to be effective.

In order to implement an efficient and also error bounded screening on the contri-
bution of a molecular orbital i to the matrix elements of K, the LK algorithm makes
use of the following chain of inequalities

|Ki
αβ | = |(αi | βi)| ≤

∑

γ δ

|Cγ i||(αγ | βδ)||Cδi|

≤
∑

γ δ

|Cγ i||D1/2
αγ D1/2

βδ ||Cδi| = Yi
αYi
β

(13-38)

where Dαβ = (αβ | αβ) are the (exact) diagonal elements of the two-electron

matrix in AO basis and the i-th vector Yi has elements Yi
α = ∑

γ D1/2
αγ |Cγ i|. Clearly,

the vector Yi will be sparse whenever the corresponding MO coefficient vector Ci

represents a localized orbital. Experience shows that the use of Cholesky orbitals,
described in Section 13.3.3, mediates perfectly between the need for a fast local-
ization (to be performed at each SCF cycle) with that of a sufficient sparsity in the
resulting Y vectors.

It is important to notice that in deriving the inequalities Eq. (13-38) we have
only used the fact that the two-electron integral matrix in AO basis is positive semi-
definite and therefore satisfies the Schwarz inequality. Whenever the contribution to
the exchange Fock matrix from a certain number m of Cholesky vectors has been
computed, the inequalities can be applied in the very same way to the remainder
matrix. In practice this means that the Y vectors can be computed using updated
integral diagonals, namely

D̃αβ = Dαβ −
m∑

J=1

(LJ
αβ)2 (13-39)

Due to the inner projection nature of the Cholesky decomposition, these updated
integral diagonals are guaranteed to remain nonnegative. Most importantly, the num-
ber of significant elements D̃αβ will decrease, since more and more Cholesky vectors
have already contributed to the exchange Fock matrix. The details of the LK screen-
ing are presented and extensively discussed in in the original paper [21]. A sketch
of the shell-driven LK algorithm is shown in Figure 13-5. (A shell is defined as a set
of atomic orbital basis functions on a given center with the same angular momen-
tum.) The need to perform an MO half-transformation of the Cholesky vectors,
formally as expensive as the build of K, is tackled by employing estimates based
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Figure 13-5. A sketch of the LK algorithm. For a given occupied orbital i, MY(i) is defined as the
maximum element of the vector Y(i) defined in Eq. (13-38), and ML(i) is a list of contributing shells of
basis functions
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Figure 13-6. Timings for the construction of the exchange Fock matrix for linear alkanes using standard
Cholesky, LK-Cholesky and integral-direct. Decomposition threshold δ = 10−4 and cc-pVTZ basis set

on the Frobenius norm of the resulting matrices. The exploitation of the permu-
tational symmetry of the two-electron integrals, as well as the shell pre-ordering,
represent some of the key features for the efficiency of the screening. By the nature
of the method, the accuracy of the LK screening is absolutely reliable and can be
controlled by the choice of the screening thresholds. Moreover, the LK screening
is indeed capable of reducing the scaling of the evaluation of the exchange Fock
matrix from quartic to quadratic. In Figure 13-6, we can see an example of what
that means in terms of performances in Cholesky SCF calculations: with LK it is
now possible to perform HF wavefunction optimizations faster than with integral-
direct algorithms. Currently, the LK screening is used in MOLCAS for any type
of Fock matrix build based on Cholesky vectors. We also stress the importance
of the speedup achieved for CASSCF calculations, as documented in the original
implementation paper [45]. Here, as an example, we will only report the perfor-
mances of the LK-CASSCF algorithm for some of the systems described in Ref.
[59]. These systems are important intermediates in the reaction of O2 with a Cu(I)-
α-Ketocarboxylate, and the accurate evaluation of the singlet-triplet splitting in each
species is essential to the understanding of the mechanism of activation of molec-
ular oxygen by copper coordination complexes [60]. With atomic natural orbital
(ANO) basis sets of double-ζ quality, we are in a range of about 280–450 con-
tracted Gaussian basis functions, depending on the system (point group symmetry
not employed). In this range, the time spent to generate the DF-vectors is only a
small fraction of the total time for any choice of the Cholesky basis (Full-CD, aCD,
etc.), which also has no significant effect on the time required by the subsequent
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steps. The following timings refer always to wall-time observed on an architec-
ture of the type Intel(R) Xeon(TM) 3.20 GHz with 8 GB RAM and employing the
MOLCAS software. For a typical calculation with 300 basis functions, about 2.5 h
are required for computing and storing the conventional two-electron integrals. The
subsequent CASSCF wavefunction optimization of the singlet ground state takes
about 38 minutes per iteration, for an active space of (12-in-12). Using acCD-4, the
vector generation is performed in only 3 min, and 3.4 min per iteration are required
in the LK-CASSCF step. Considering that with the present CASSCF optimizer in
MOLCAS an average of 100 iterations are needed for converging the wavefunc-
tion, the observed speed-up for the overall calculation is nearly a factor 12. Moving
towards 450 basis functions, the conventional calculations can hardly be afforded
due to the large disk-space requirements. With 437 basis functions, the acCD-4 vec-
tor generation goes up to 8 min, whereas the LK-CASSCF time per iteration stays
within 4 minutes. Already with this relatively small basis set, the overall speed-
up compared to the conventional calculation is nearly of two orders of magnitude.
Speed-up for larger basis sets is difficult to measure, as the conventional calculation
becomes impossible.

We close this section with a final remark. There is not a single notion in the LK
algorithm that could distinguish between a Cholesky or any other DF representation
of the integrals. In other words, the LK screening is a simple, accurate and general
solution to the exchange problem.

13.3.5. Quartic-Scaling MP2

In MP2 theory, the need for the set of integrals (ai | bj), where i, j and a,b label
occupied and virtual orbitals, respectively, makes the conventional calculation a
fifth-order process. Using Cholesky or DF, we can compute the same set of integrals
as follows

(ai | bj) =
∑

J

LJ
aiL

J
bj (13-40)

where LJ
ai are the MO-transformed Cholesky or DF vectors. The MO transfor-

mation of these vectors is not the bottleneck of the calculation. With O and V
denoting, respectively, the number of occupied and virtual orbitals and M the num-
ber of Cholesky vectors, it requires ∼ ON2M operations, while the evaluation of
Eq. (13.40) has a computational cost of ∼ O2V2M. Compared to the conventional
∼ ON4 computational requirement, the smaller prefactor allows substantial speed-
ups. The evaluation of the integrals from Eq. (13-40) is particularly well suited for
canonical MP2 calculations, since in this case they can be computed on-the-fly in a
batched loop, used to evaluate the energy contribution and never stored on disk [32].
Comparatively, in the Cholesky-based CASPT2 method [46] there is a possibility to
avoid the evaluation of the corresponding (ai | bj)-type integrals and reformulate
the method directly in terms of Cholesky vectors. However, the existing MOLCAS
implementation of CASPT2 still goes through the evaluation of such integrals as in
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Eq. (13-40) and stores them on disk. Nonetheless, the present implementation makes
possible CASPT2 calculations otherwise beyond the capabilities of the conventional
implementation [51, 53–55, 57, 59, 60]. This is achieved because it bypasses com-
pletely the AO integral storage bottleneck and also because it produces the needed
MO integrals at reduced computational cost and input-output overheads.

Let us analyze in more detail the formal scaling of MP2. The question is whether
or not the approach adopted so far in Cholesky and DF (closed-shell) MP2 is the
best possible. We shall demonstrate that it is not, and that the scaling of the method
can be reduced from fifth to fourth order, with an algorithm that is also perfectly
parallelizable. This is achieved by performing the Cholesky decomposition of the
MP2 amplitude matrix (with minus sign), namely

−tai,bj = (ai | bj)

εa − εi + εb − εj
=

m∑

K=1

RK
aiR

K
bj . (13-41)

The Cholesky decomposition algorithm applied to this matrix requires ∼ OVm2

operations plus the evaluation of m columns of the matrix t. The necessary two-
electron integrals can be computed using Cholesky or DF representations as in
Eq. (13-40). It is crucial to understand how the value of m scales with system size.
Although the matrix t has a quadratic-scaling dimension (OV), its effective rank m
scales only linearly with the size of the system. In fact, it is easy to realize that m is
bounded by a linear scaling quantity, nrM, where nr is the number of Cholesky vec-
tors needed for an exact decomposition of the orbital energy denominator matrix. It
is known that this number is very small and, more importantly, independent of the
size of the molecule [73]. Therefore the effective rank of t scales linearly with the
system size.

We can now write the expression for the closed-shell canonical MP2 energy as
follows

E2 =
m∑

K=1

∑

aibj

RK
aiR

K
bj[2(ai | bj) − (aj | bi)]

=
∑

αβγ δ

�αβ,γ δ[2(αβ | γ δ) − (αδ | γβ)]
(13-42)

where

�αβ,γ δ =
m∑

K=1

RK
αβRK

γ δ (13-43)

and RK
αβ are the elements of the back-transformed Cholesky vectors of the ampli-

tudes. It is possible to show thatΘ is a sparse matrix [86]. Together with the sparsity
of the AO two-electron integrals, this implies that for large systems an efficient
screening is possible in order to reduce the costs for the evaluation of E2. In fact,
by applying the Schwarz inequality to both Θ and the integrals, we can show that
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the exchange-type term can be computed with an effort that is asymptotically linear.
However, due to the fact that Θ needs to be computed from its Cholesky represen-
tation, most likely this step becomes quadratic scaling with a low prefactor. In the
same way, the Coulomb-type term will require a cubic scaling effort.

In order to efficiently implement Eq. (13-42), the exact AO two-electron inte-
grals need to be computed in a direct fashion and not from their Cholesky or DF
representation. The reason for that is the possibility to achieve efficient paralleliza-
tion of the code. The Cholesky decomposition of t can be performed separately on
each node without any communication. The amplitude matrix t will be different on
each node and corresponds to a partial contribution to the (ai | bj) integrals, which
is computed from MO transformed Cholesky vectors distributed among the nodes.
On the other hand, since the evaluation of the AO two-electron integrals is at most
a quadratic step, it can be performed by each node without jeopardizing the overall
efficiency of the calculation. Indeed, since the matrix on each node is only a par-
tial contribution to the total matrix, the application of the Schwarz inequality will
result in the evaluation of an even smaller (and different) set of AO integrals on each
node. Aquilante and Pedersen [47] have shown an application of a simplified form
of this algorithm for the evaluation of the Coulomb-type term only (namely, scaled
opposite spin (SOS) MP2).

13.3.6. Calculation of Molecular Gradients

The calculation of the forces acting on the atomic nuclei of molecules is a bread-
and-butter task of quantum chemistry. Knowledge of the atomic forces makes it
possible to study molecular geometries, such as equilibrium structures and transition
states, and is also needed for molecular dynamics simulations. Atomic forces are
defined as (minus) the first derivatives of the total electronic energy with respect to
nuclear positions. Higher-order energy derivatives with respect to nuclear positions
are needed for the calculation of harmonic force constants and vibrational frequen-
cies (second derivatives), anharmonic force constants (third derivatives), and so on.
In order to compute atomic forces and higher-order derivatives we must be able
to calculate derivatives of the two-electron integrals. Since CD of the two-electron
integrals is a numerical procedure, defining analytic derivatives of Cholesky vectors
is non-trivial.

O’Neal and Simons [31] have proposed a procedure in which the undifferentiated
and differentiated integrals are considered as elements of an extended positive semi-
definite matrix, which is Cholesky decomposed. Owing to the fact that most of the
first derivative atomic orbital product functions belong to the space spanned by the
undifferentiated products, only a modest increase in the number of Cholesky vectors
is observed in comparison to the undifferentiated case. Combining this approach
with the method specific CD technique (Section 13.3.7) could provide a viable path
to reduced scaling evaluation of atomic forces.

An alternative analytic approach was recently proposed by Aquilante, Lindh,
and Pedersen [52]. It is based on the connection between CD and DF discussed in
Section 13.3.1. The first derivative of Eq. (13-24) can be written as
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(αβ | γ δ)(1) =
∑

J

CJ
αβ (γ δ | hJ)(1) +

∑

J

(αβ | hJ)(1)CJ
γ δ −

∑

JK

CJ
αβG(1)

JKCK
γ δ

(13-44)
where

CJ
αβ =

∑

K

G−1
JK (αβ|hK) (13-45)

and all derivatives are to be evaluated at the nuclear geometry of interest. This
expression solely involves derivative integrals that can be evaluated analytically.
While Eq. (13-44) takes into account the explicit geometry-dependence of the aux-
iliary basis functions, any implicit geometry-dependence is neglected. This means
that Eq. (13-44) is exact for any auxiliary basis set whose composition is inde-
pendent of molecular geometry. This is a significant difference as compared to the
approach suggested by O’Neal and Simons which has an accuracy depending on the
CD threshold.

Predefined auxiliary basis sets are composed of atom-centered functions, which
are used regardless of the molecular geometry. Hence, predefined auxiliary basis
sets only contain explicit geometry-dependence, making Eq. (13.44) exact for this
case [74, 87–91]. Cholesky auxiliary basis sets are generally more complicated. The
molecular two-electron integral matrix is a function of geometry. Consequently, its
decomposition varies with molecular geometry. In particular, this means that the
composition of the Cholesky auxiliary basis set, i.e. the set of linearly indepen-
dent product functions singled out by the decomposition, varies with geometry. It
is, however, reasonable to assume that the Cholesky auxiliary basis set composi-
tion is invariant under infinitesimal changes in molecular geometry, making Eq.
(13-44) a good approximation. The test calculations reported by Aquilante, Lindh,
and Pedersen [52] have not revealed problems associated with the use of Eq. (13-44).
On the contrary, it was found that the accuracy (relative to conventional calcula-
tions) of equilibrium structures can be controlled by adjusting the decomposition
threshold [52].

13.3.7. Method Specific Cholesky Decomposition

Although the CD of the two-electron integral matrix has proven to be very useful in
the determination of molecular properties of small to medium-sized molecular sys-
tems, there are still several limitations. The major drawback of standard CD comes
from the fact that integrals actually not needed are nonetheless calculated. In most
cases the goal is not the exact determination of the two-electron integral matrix, but
the calculation of some expression such as

E =
∑

αβγ δ

Vαβ (αβ | γ δ)Vγ δ =
∑

pq

VpMpqVq =
∑

pq

Zpq (13-46)

where a characteristic matrix Z is implicitly defined. Instead of directly decompos-
ing the matrix M
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Mpq =
∑

J

LJ
pLJ

q +�pq (13-47)

such that all elements of the residual matrix Δ are smaller than a predetermined
threshold τ , it is normally more efficient to decompose the characteristic matrix Z,
as in this way the screening introduced by V is taken into account. Alternatively, we
can understand this decomposition considering a positive semidefinite matrix whose
dimension is twice that of M

(
VpMpqVq VpMps

MrqVq Mrs

)
=

∑

J

(
KJ

p

LJ
r

)(
KJ

q

LJ
s

)T

=
∑

J

⎛

⎜⎝
Vp

MpJMJq

MJJ
Vq Vp

MpJMJs

MJJ
MrJMJq

MJJ
Vq

MrJMJs

MJJ

⎞

⎟⎠

=
∑

J

(
VpLJ

pLJ
qVq VpLJ

pLJ
s

LJ
r LJ

qVq LJ
r LJ

s

)

(13-48)

The off-diagonal block of the matrix in Eq. (13-48) enters in the expression of the
gradient of the energy E

Gp = 2
∑

q

MpqVq = 2
∑

J

LJ
p

∑

q

LJ
qVq + 2

∑

q

�pqVq (13-49)

where the error terms are either zero (�pq = 0) or bound by the inequality

|�pqVp| = |Vp�pqVq|
|Vp| ≤ |Vp�ppVp|1/2|Vq�qqVq|1/2

|Vp|

= �1/2
pp |Vq�qqVq|1/2 ≤ �1/2

pp T1/2

(13-50)

Therefore, the threshold of the decomposition also controls the error in the gradient.
Moreover, the double dimension matrix illustrates that if we are only interested in
the off-diagonal block, we can keep track of the two diagonals in Eq. (13-48) and
choose different thresholds for each block.

The usefulness of the previous discussion becomes apparent when taking into
account that the functional in Eq. (13-46) has the form of a variety of matrix con-
tractions that appear in electronic structure computations. In particular, it is related
to the calculation of the Coulomb and the exchange terms in Hartree-Fock and DFT
calculations [40]. We start by what we denominate Coulomb decomposition. The
calculation of the Coulomb term in conventional direct SCF methods scales as N4

in the limit of a complete basis and as N2 in the limit of a large system if the density
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scales linearly with the system size. In contrast, the standard CD scales as N3 in both
limits (due the scaling of the decomposition itself).

The Coulomb energy is

EC =
∑

αβγ δ

Dαβ (αβ | γ δ)Dγ δ (13-51)

and thus, according to our previous discussion, the characteristic matrix is

MC
αβ,γ δ = Dαβ (αβ | γ δ)Dγ δ (13-52)

which can be Cholesky decomposed to give

MC
αβ,γ δ =

∑

J

LJ
αβLJ

γ δ =
∑

IJ

Dαβ (αβ | I)S−1
IJ (J | γ δ)Dγ δ (13-53)

where we have expressed the CD in an inner product [70, 71] form to emphasize
its relationship with the RI method, as discussed in Sections 13.2 and 13.3.1. The
matrix S has elements SIJ = (I | J) where I and J denote functions of the Cholesky
basis. The decomposition might eventually be carried out in a reduced space — say,
the atomic orbitals centered on a particular atom — to get a smaller Cholesky basis.
Once the Cholesky vectors have been computed, the Coulomb energy is evaluated
very easily

EC =
∑

J

⎛

⎝
∑

αβ

LJ
αβ

⎞

⎠
2

(13-54)

The Coulomb Fock operator can be calculated in terms of the auxiliary basis or in
terms of the CD of S = KKT

FC
αβ = 2

∑

IJ

(αβ | I)S−1
IJ (J | γ δ)Dγ δ = 2

∑

IJ

(αβ | I)K−1
JI

∑

γ δ

LJ
γ δ (13-55)

Due to the screening of high angular momentum functions in SCF and DFT meth-
ods, the number of Cholesky vectors required to compute the energy given by
Eq. (13-54) becomes constant in the limit of a complete basis and therefore the
global scaling is N2. The scaling of the Fock operator is also N2 in the limit of a
complete basis, but the scaling can become linear if we only calculate the elements
with one occupied index and one general, as required for optimizing the energy.
In the limit of a large system, the decomposition of the characteristic Coulomb
matrix should scale quadratically in the integral calculation and cubically in the
decomposition since the number of Cholesky vectors increases linearly.

The exchange contribution is very difficult to calculate with the RI and CD meth-
ods [19, 21] since using the vectors from standard CD of the two-electron integral
matrix formally shows quartic scaling. Local density fitting [15, 20, 22] can reduce
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the scaling but pays the price of loosing strict error control. Recently, Aquilante
et al. [21] showed that it is possible to contract the density with the Cholesky vec-
tors with only quadratic scaling, although the global procedure still scales as N3

because of the scaling of the CD itself. As a matter of fact, the savings derived from
the use of the standard CD are a consequence of the fact that the decomposition
needs to be done only once, while a direct SCF method needs several calculations
of the two-electron integrals. Therefore, it is very convenient to apply a specific
decomposition-based technique to calculate the exchange. With opposite signs, the
exchange energy and the Fock matrix read

EX =
∑

αβγ δ

Dαγ (αβ | γ δ)Dβδ (13-56)

FX
αβ =

∑

γ δ

(αγ | βδ)Dγ δ (13-57)

The product of densities entering in Eq. (13-56) is an element of the Kronecker
product of the density matrix times itself and therefore its rank is the number of
kl-pairs, i.e., O(O + 1)/2, O being the number of occupied orbitals. Therefore, the
direct decomposition of a matrix with elements Dαγ (αβ | γ δ)Dβδ does not imply
any saving as the number of kl-pairs easily becomes larger than the numerical rank
of the two-electron matrix. We turn our attention, then, to the exchange Fock oper-
ator, which — after Cholesky decomposing the one-electron density matrix — is
written as

FX
αβ =

∑

γ δk

Ck
γ (αγ | βδ)Ck

δ (13-58)

where, as previously shown by us [48], the orbitals Ck are localized. The former
expression defines a characteristic matrix for the so-called Exchange-k algorithm

Mk
αβ,γ δ = Ck

β (αβ | γ δ)Ck
δ =

∑

J

kLJ
αβ

kLJ
γ δ (13-59)

Let us recall that the Exchange-k algorithm builds up a localized auxiliary basis
for each occupied orbital and therefore O decompositions of this kind are required
for each calculation of the Fock operator in the SCF process. However, in many
cases the localized orbitals have a significant overlap and, thus, it is more efficient
to use a common auxiliary basis obtained from the decomposition of a composed
characteristic matrix

Ω =
⎛

⎜⎝
Ck
β (αβ | γ δ)Ck

δ · · · Ck
β (αβ | κλ)Cl

λ

...
...

Cl
ν(μν | γ δ)Ck

δ · · · Cl
ν(μν | κλ)Cl

λ

⎞

⎟⎠ (13-60)
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Since the orbitals Ck are localized, they make the characteristic matrix local in the
limit of a large system and, consequently, the auxiliary basis becomes independent
of the system size and the scaling becomes linear. On the other hand, as only two
indices are screened, large basis sets will make the pre-factor larger. As the error
in the energy is quadratic in the norm of the gradient, i.e. the Fock operator, the
decomposition threshold needs not be very small if we are only interested in the
energy.

Once the decomposition is carried out, the contribution of each localized orbital
to the exchange Fock operator may be evaluated according to

Fk
αγ =

∑

J

kHJ
α

kHJ
γ =

∑

J

⎛

⎝
∑

β

kLJ
αβ

⎞

⎠
(

∑

δ

kLJ
γ δ

)
(13-61)

where we have implicitly defined the kHJ vector. In practice, it is sufficient to
decompose simply the two-electron integral matrix, but doing the screening on the
diagonal elements on the basis of the characteristic matrices above.

As we have seen, in the Exchange-k decomposition only two indices are
screened. It is also possible to screen the four indices of the two-electron integral
while keeping the linear scaling in the computation of the exchange term in the
Fock operator, but at the price of increasing the number of decompositions. This is
the basic idea of the Exchange-kl algorithm, which can be derived from the expres-
sion of the exchange energy in Eq. (13-56) after decomposing the density matrices:

DαγDβδ =
∑

k

Ck
αCk

γ

∑

l

Cl
βCl

δ =
∑

kl

Dkl
αβDkl

γ δ (13-62)

This resorting of the density elements motivates the new characteristic matrix
Mkl
αβ,γ δ

EX =
∑

kl

∑

αβγ δ

Mkl
αβ,γ δ =

∑

kl

∑

αβγ δ

Dkl
αβ (αβ | γ δ)Dkl

γ δ (13-63)

The decomposition of this matrix gives a localized auxiliary basis for each kl-pair
of occupied orbitals. Therefore, the linearity with the molecular size of the scaling
is kept, but the number of decompositions scales in a quadratic manner. Therefore,
the method is in general not appropriate for compact systems with a high num-
ber of electrons. Parallel to the Exchange-k algorithm, in many cases the overlap
among the different orbital pairs makes it more efficient to consider a composed
characteristic matrix similar to that in Eq. (13-60). While the exchange energy may
be directly evaluated in terms of the Cholesky vectors from the decomposition of
Mkl
αβ,γ δ , the Fock matrix with one occupied index can be calculated by adding all

the pair contributions in terms of the auxiliary basis denoted by I and J
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FX
αk =

∑

l

Fl
αk =

∑

βγ δl

Cl
β (αβ | γ δ)Dkl

γ δ

=
∑

IJβl

Cl
β (αβ | I)S−1

IJ

∑

γ δ

(J | γ δ)Dkl
γ δ

(13-64)

The two approaches to compute the exchange discussed so far suffer from the fact
that several decompositions are required. To eliminate this disadvantage, but loosing
the linear scaling with the system size, it is possible to add the transition exchange
densities into a single exchange density matrix

DX
αβ = N

∑

kl

Dkl
αβ = N

∑

kl

Ck
αCl
β (13-65)

where N is a normalization constant that can be chosen in several ways, which
actually correspond to different thresholds in the decomposition. For instance, the
normalization with respect to the number of electrons Ne, such that

∑

αβ

〈φα | φβ〉DX
αβ = 1 (13-66)

is achieved by choosing N as 2/Ne. This is a convenient normalization constant for
compact systems since (Ne/2)2 terms enter the exchange energy, but in the large
system limit only (Ne/2) terms enter and, thus, taking N as

√
2/Ne is more appro-

priate. It is even possible to take N simply as unity. In the Exchange(n) algorithms
(where n is an integer indicating the different normalizations according to n = 1:
N = 1, n = 2: N = √

2/Ne, n = 3: N = 2/Ne) the characteristic matrix can be
found by considering the matrix

 =

⎛

⎜⎜⎝

Dkl
αβ (αβ | γ δ)Dkl

γ δ · · · Dkl
αβ (αβ | κλ)Dk′l′

κλ

...
...

Dk′l′
μν (μν | γ δ)Dkl

γ δ · · · Dk′l′
μν (μν | κλ)Dk′l′

κλ

⎞

⎟⎟⎠ (13-67)

and we observe that the sum of the diagonal elements is precisely the exchange
energy. Accordingly, we suggest to decompose the characteristic matrix

Mαβ,γ δ = DX
αβ (αβ | γ δ)DX

γ δ , (13-68)

to get the auxiliary basis. The scaling of such decomposition is the same as the
standard CD, but the pre-factor is significantly smaller.

To illustrate the performance of the method, we present in Tables 13-1 and
13-2 the number of Cholesky vectors, i.e. the number of auxiliary basis functions,
required to fit the Coulomb and the Exchange contributions for some model systems
in the Hartree-Fock method. For the sake of comparison, recall that preoptimized
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Table 13-1. Number of Cholesky vectors for water and benzene for Coulomb, Exchange(3) , and
standard Cholesky decomposition for different basis sets, where N denotes the number of basis
functions. The normalization used in the Exchange(3) decomposition is 2/Ne. The number of vectors
is presented both using the converged SCF density and the density from the Hückel guess. The
decomposition threshold is 10−8

Coulomb Exchange(3)

Basis N Converged Hückel Converged Hückel CD

Water
aug-cc-pVDZ 41 66 45 94 73 414
aug-cc-pVDZ 41 66 45 94 73 414
aug-cc-pVTZ 92 67 47 130 77 984
aug-cc-pVQZ 172 77 62 134 108 1,750
aug-cc-pV5Z 287 71 89 135 201 2,839
aug-cc-pV6Z 443 70 110 144 342 4,268
aug-cc-pV7Z 643 89 197 259 849 5,779

Benzene
aug-cc-pVDZ 192 324 242 326 264 2,000
aug-cc-pVTZ 414 305 220 442 394 4,108
aug-cc-pVQZ 756 299 283 577 454 6,867

Table 13-2. Number of Cholesky vectors for different decompositions for an alpha helix glycine
chain using aug-cc-pVDZ basis set, where N denotes the number of basis functions.The normaliza-
tion used in the Exchange(1) and Exchange(2) decompositions are 1 and

√
2/Ne, respectively. The

decomposition threshold is 10−8 for Coulomb and Exchange(1–2) decompositions and 10−4 for
Exchange-k decomposition

Nr. glycines N Coulomb Exchange(1) Exchange(2) Exchange-k CD

1 160 258 736 534 1,524 1,792
2 279 469 1,213 771 3,034 3,071
3 398 688 1,850 1,145 4,562 4,345
5 636 1,132 3,033 1,752 8,054 6,899

10 1,231 2,264 6,262 3,361 18,730 13,195
14 1,707 3,177 8,606 4,311 27,589 −
20 2,421 4,545 12,601 5,994 40,804 −
25 3,016 5,665 15,954 7,369 51,687 −
30 3,611 6,815 − 8,346 62,690 −

standard RI auxiliary basis sets normally contain around 2–4 times the number of
basis functions.

13.4. CALIBRATION OF ACCURACY

Several sets of benchmark calculations have been performed in order to establish
the accuracy of the Cholesky auxiliary basis sets. In these benchmark papers the
accuracy has been assessed as a function of the CD threshold, the AO basis set qual-
ity, the wave function model, variations of the CD auxiliary basis set generation and
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the impact of auxiliary basis set pruning. In the first investigation Aquilante et al.
[49] compared Full-CD, 1C-CD, and aCD auxiliary basis sets with pre-optimized
auxiliary basis sets using the test set of Baker and Chan [92]. Results with respect
to total energies and activation energies at the HF, DFT and MP2 level of approx-
imation were analyzed. In a second study the 118 closed shell molecules of the
G2/97 test set [93] and a small set of 7 transition metal containing elements of the
MLBE21/05 database [94] were used to investigate the accuracy of the CD aux-
iliary basis sets [61]. In this benchmark, accuracies for total energies and dipole
moments were presented in association with the HF, DFT and MP2 methods using
several AO basis sets. This study also included assessments of the acCD auxiliary
basis sets. Finally, in the third study, Boström et al. [69] assessed the accuracy with
respect to the CASSCF/CASPT2 vertical excitation energies of 196 valence states
of the test suite by Schreiber et al. [95] and 72 Rydberg states of 3 small organic
systems. Below we give a brief summary of the findings.

13.4.1. Accuracy of Total Energies

The accuracy of total energies are presented in all of the above mentioned bench-
mark articles. Aquilante et al. [49] compared on-the-fly CD auxiliary basis sets with
the pre-optimized RI-J [76] and RI-C [75] auxiliary basis sets, claiming that the
former in contrast to the latter does not show a bias towards a specific quantum
chemical method. The additional approximation introduced in the 1C-CD and aCD
were also claimed to be negligible. The subsequent benchmark study by Boström
and co-workers [61] confirmed these findings. Figure 13-7 shows Full-CD accu-
racy assessments in combination with the HF, MP2, DFT(BLYP) and DFT(B3LYP)
models. Similar accuracies were observed independently of the quantum chemi-
cal model, supporting the claim that the CD auxiliary basis sets are unbiased. The
accuracies were also seen to improve with tighter CD thresholds. For Full-CD the
improvement was almost linear in these log-log-plots. A saturation effect could be

Figure 13-7. Mean absolute errors, μ, in kcal/(mol·electron) of the total energy associated with the Full-
CD auxiliary basis set as a function of the Cholesky threshold, τ , in au for different AO basis sets, Each
panel shows the result for a specific quantum chemical method
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Figure 13-8. Mean absolute errors, μ, in kcal/(mol·electron) of the total energy associated with the HF
wave function model vs the Cholesky threshold, τ , in au for different AO basis sets, Each panel shows
the result for a specific CD auxiliary basis set

observed for the 1C-CD and atomic CD methods (shown in Figure 13-8) as the
CD threshold was reduced. This was especially noted for AO basis sets of lower
quality. It was generally found that the higher the quality of the AO basis set, the
better the accuracy of the auxiliary basis set, this is particularly true for the aCD
and acCD auxiliary basis sets. It was also observed that there is no significant dif-
ference between the aCD and acCD auxiliary basis sets. In general, an error of
0.01 kcal/(mol·electron) was found to be associated with a CD threshold of 10−4

au. Studies on a few transition metal complexes and additional properties as the
dipole moments, and results presented for total CASPT2-energies of ground and
excited states further support these findings.

13.4.2. Accuracy of Vertical Transition Energies

In the study by Aquilante et al. [49], the accuracy of activation energies were
reported. A favorable cancellation of errors was observed in the computed activa-
tion energies corresponding to a reduction by a factor of 2–3 as compared to total
energies. In a subsequent benchmark study [69] on CASPT2 vertical excitation
energies, optimal with respect to error cancellation, a reduction of the error of
roughly one order of magnitude was observed (see Figure 13-9).

Just as for total energies a dependence upon the AO basis set is present, favoring
CD auxiliary basis sets generated in connection with higher quality AO basis sets.
In Figure 13-9 it is demonstrated that the errors at the CASSCF and CASPT2 lev-
els of theory for all practical purposes are similar. Just as for the G2/97 test it was
observed that the Full-CD error decays almost exponentially whereas the gains in
moving to smaller thresholds are less pronounced for the acCD and aCD auxiliary
basis set. It was also noticed that the difference between the aCD and acCD approx-
imations is insignificant and that the auxiliary basis set pruning gives an acceptable
additional error. Computing excitations to Rydberg states can be challenging and
special primitive functions are often added to the AO basis sets to correctly describe
their diffuse character. To accommodate this, pre-optimized auxiliary basis sets are
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Figure 13-9. Mean absolute errors, μ, in eV of the vertical transition energies for the ANO-RCC-VTZP
AO basis set at the CASSCF (left panel) and CASPT2 (center panel) level of theory and in total CASPT2
energies (right panel) as a function of the Cholesky threshold, τ , in au, the CD auxiliary basis set, and
auxiliary basis set pruning

normally augmented with primitive auxiliary basis functions to maintain the accu-
racy established for valence excited states. In the CD auxiliary basis set, however, no
special care is needed as long as the parent AO basis set used to generate it is prop-
erly augmented for the purpose. The trend observed for valence states was shown to
hold for Rydberg states as well.

Qualitative results from benchmarking vertical transition energies showed that a
CD threshold of 10−3 yields average errors smaller than 0.01 eV in all but some
of the Full-CD cases and a CD threshold of 10−4, as recommended for absolute
energies above, will lower this to around 0.001 eV and even better in some cases.

13.4.3. Auxiliary Basis Set Pruning

In the study by Boström and co-workers[61] it was noted that the accuracy asso-
ciated with the atomic CD auxiliary basis sets was better than necessary and that
additional reductions of the basis set could be possible without too severe reduction
in the accuracy. A method to prune the auxiliary basis set by skipping some higher
angular momentum functions (denoted SHAC), a concept originally introduced by
Eichkorn et al. [74], has been presented together with the loss of accuracy in uti-
lizing SHAC on a small subset of 24 G2/97 molecules. The results using pruned
auxiliary basis sets were also presented alongside the full aCD and acCD results
in the CASSCF/CASPT2 benchmark paper. We note that the method of pruning in
the study of Boström and co-workers is different from and slightly more sophisti-
cated than the one used in the study by Aquilante et al. [49] In the latter the pruning
is done after the atomic CD, while in the former the pruning it is done before the
atomic CD.

A rather uniform loss of about one order of magnitude in accuracy (see
Figure 13-10) was observed while using the pruned auxiliary basis set to calculate
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Figure 13-10. Mean absolute errors, μ, of the total MP2 energy in kcal/(mol·electron) evaluated with
the aide of an aCD auxiliary basis set as a function of the Cholesky threshold, τ , in au, the AO basis set
and auxiliary basis set pruning. The dashed lines represents results using auxiliary basis set pruning

relative energies. This can generally be afforded while still maintaining accuracies
almost as good as, or in some cases better, than with Full-CD. For total energies the
trend is not as clear, but pruning might still be a viable alternative, at least for high
quality AO basis sets.

13.5. IMPLEMENTATIONAL ASPECTS

Cholesky decomposition of a positive semi-definite matrix M is often based on the
assumption that the matrix can be stored in memory. This is a reasonable assump-
tion for a number of matrices such as the atomic orbital overlap matrix for which
the number of nonzero elements scales linearly with system size (number of atoms).
In such cases, the Cholesky decomposition can be performed in linear-scaling time
[82]. In many cases, however, the matrix can not be stored in memory. For exam-
ple, the entire molecular two-electron integral matrix can be stored in core only for
the smallest basis sets and molecules. In addition, the semi-definite nature implies
that only a fraction of the matrix columns is needed to decompose the matrix to
a prescribed accuracy specified by the decomposition threshold. An out-of-core
(matrix-direct) algorithm is clearly needed. Using τ to denote the decomposition
threshold, an out-of-core algorithm for the decomposition of a positive semi-definite
matrix M can be summarized as follows:

1. Get diagonal elements of the matrix:

Dp = Mpp

D(1)
max = maxp Dp

2. Compute reduced set of significant diagonal elements:

L(1) =
{

p
∣∣∣d

√
D(1)

maxDp > τ ,d ≥ 1

}
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3. Initialize vector counter: N = 0.
4. Initialize counter: i = 0
5. While D(i+1)

max > τ :

a. Update counter: i = i + 1
b. Compute smallest diagonal that may be treated:

D(i)
min = max

(
sD(i)

max,τ
)

, s ≤ 1

c. Compute set of qualified diagonals:

Q(i) =
{

q
∣∣∣q ∈ L(i),Dq > D(i)

min

}

d. Get matrix columns corresponding to qualified diagonals:

Mpq, p ∈ L(i),q ∈ Q(i)

e. Subtract contributions from previous vectors:

�pq = Mpq −
N∑

J=1

LJ
pLJ

q, p ∈ L(i),q ∈ Q(i)

f. Compute largest diagonal among qualified:

Qmax = max
q∈Q(i)

D(i)
q

g. Initialize counter: j = 0
h. While j < dim

(
Q(i)

)
and Qmax > D(i)

min:

i. Update counters: j = j + 1, J = N + j
ii. Assign Cholesky basis function hJ to [q]J , the index corresponding to

Qmax
iii. Calculate Cholesky vector:

LJ
p = Q−1/2

max �p,[q]J , p ∈ L(i)

iv. Update:

�pq ← �pq − LJ
pLJ

q, p ∈ L(i),q ∈ Q(i)

Dp ← Dp −
(

LJ
p

)2
, p ∈ L(i)

Qmax = maxq∈Q(i) Dq

i. Update vector counter: N = N + j
j. Compute largest diagonal:
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D(i+1)
max = max

p∈L(i)
Dp

k. Compute reduced set of significant diagonal elements:

L(i+1) =
{

p
∣∣∣d

√
D(i+1)

max Dp > τ ,d ≥ 1

}

Due to the subtraction step (point 5 e), the computational effort is cubic with respect
to the dimension of the reduced set (point 2). This implies that the decomposition
of the entire molecular two-electron integral matrix scales cubically with the size
of the system. As discussed above, the decomposition of the characteristic matrices
appearing in method-specific Cholesky decomposition can be done in quadratic or
linear time, depending on the characteristic matrix.

In addition to the decomposition threshold τ , two input parameters are used in
this algorithm: the screening damping d ≥ 1 (points 2 and 5k) and the span fac-
tor s ≤ 1 (point 5 b). The screening damping ensures that matrix elements with
values below the decomposition threshold have a nonzero Cholesky representation.
For decomposition of two-electron integrals, we choose the damping according to
d ≈ 109τ for thresholds above 10−8 and d = 1.0 for lower thresholds. The span
factor modifies the pivoting by allowing diagonals to be treated even if the value
of the diagonal element is not the largest. It has been introduced in order to mini-
mize the overhead that may be involved in fetching the columns (point 5 d) as well
as to minimize the I/O operation necessary for the subtraction (point 5 e) in cases
where the Cholesky vectors can not be stored in core. This is normally the case
when decomposing two-electron integrals. For two-electron integrals we choose the
span factor as s = 0.01, i.e. diagonals that are at most 100 times smaller than the
largest diagonal may be treated. Since two-electron integrals in the atomic orbital
basis are usually computed in shell quadruples, i.e. a subblock of the integral matrix
where each of the four atomic orbital indices belongs to a given atomic shell, the
span factor allows us to make use of more computed integrals than just the column
corresponding to the largest diagonal. This, in turn, minimizes the potentially huge
number of integral recalculations that would result from strict pivoting. In order
to keep the dimension of the set of qualified diagonals (point 5c) at a reasonable
level, it is further restricted to contain at most 100 diagonals. For two-electron inte-
gral decompositions, these are chosen from the shell pairs containing the largest
diagonals.

The decomposition time is dominated by the subtraction step (point 5 e) in most
cases, although the fetching of integral columns may be equally time-consuming.
The latter is the case, e.g., for two-electron integral evaluations involving basis sets
with a very large number of primitive Gaussian functions. The main bottleneck of
the subtraction step is reading the previous vectors from disk, which is needed when
available memory is insufficient to store the vectors in core. Two approaches have
been implemented to circumvent the I/O bottleneck: a distributed parallel algorithm
and a two-step algorithm.
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In a parallel execution, the elements of the the reduced sets (points 2 and 5k)
are distributed among the processes. Each process fetches the corresponding rows
of the matrix (point 5d) and performs the subtraction of previous Cholesky vectors
(point 5e). This requires that the Cholesky vector elements corresponding to the set
of qualified diagonals (LJ

q in point 5e) are broadcast from the process holding them.
This design ensures that the memory requirement per process is minimized and that
Cholesky vector I/O can be avoided by increasing the number of computational
nodes (thus increasing available memory).

The two-step algorithm, as the name indicates, proceeds in two steps. In the first
step, the algorithm outlined above is used to obtain the Cholesky basis (assuming
that the matrix is a finite basis set representation of an operator) such that

MIJ =
∑

K

LK
I LK

J

Note that this is exact regardless of the chosen decomposition threshold. The only
modification of the algorithm is that reduced sets (points 2 and 5k) are computed
according to

L(i) =
{

p
∣∣∣Dp > τ

}

That is only those diagonals that may give rise to Cholesky vectors are retained. In
the second step, complete Cholesky vectors are computed according to

LJ
p = (

LJ
J

)−1/2

[
MpJ −

J−1∑

K=1

LK
p LK

J

]

where MpJ denotes element p of the column corresponding to Cholesky vector J.
By driving the calculation of full Cholesky vectors with a loop over (blocks of) row
indices p, I/O is avoided if the vector components corresponding to the Cholesky
basis, LK

J, can be stored in core. If they can not be stored in core, the I/O bottleneck
is not removed but significantly reduced. The two-step algorithm can fairly easily
be parallelized. The parallel algorithm discussed above can be utilized for the first
step, while the loop over row indices in the second step can be parallelized.

In order to illustrate the performance of these algorithms, as implemented in
the MOLCAS program package [44], we consider the Cholesky decomposition of
the molecular two-electron integral matrix for the three units of 3-butylthiophene
shown in Figure 13-11. The atomic orbital basis sets cc-pVTZ and cc-pVQZ corre-
spond to a total of 1,270 and 2,457 basis functions, respectively, for this system. The
two-electron integral matrix thus contains approximately 326×109 and 4,559×109

elements. Using a single processor on a 2.66 GHz Intel Xeon X5355 Quad Core with
1,900 Mb memory, the Cholesky decomposition of the cc-pVTZ integral matrix
with a threshold of 10−4 au requires 10.5 h wall time. The Cholesky vectors
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Figure 13-11. System consisting of 3 units of 3-butylthiophene

require 12.4 Gb storage and the CPU time of 1.8 h clearly indicates the I/O bottle-
neck alluded to above. Using the two-step algorithm, the total decomposition time
reduces to 1.2 h wall time and 0.8 h CPU time. Though not entirely removed, the
I/O bottleneck is significantly reduced. Using the parallel one-step algorithm for the
cc-pVQZ basis set with the same decomposition threshold (10−4 au), the speedup
(in terms of wall time) is given in Figure 13-12. The speedup is measured for 8, 16,
32, 64, 128, and 256 processors relative to the calculation on 4 processors. All pro-
cessors are of the above mentioned type connected with Infiniband and 1,900 Mb
memory is used on each processor. The Cholesky vectors require 73.5 Gb storage.
The calculation on 4 processors requires 70.2 h wall time/32.1 h CPU time, whereas
the calculation on 256 processors requires 1.1 h wall time/1.0 h CPU time. These
timings show that a major advantage of parallel execution is the reduction of I/O.

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

S
pe

ed
up

Ncpus

3BTP cc-pVQZ

Actual
Ideal

Figure 13-12. Parallel speedup for the cc-pVQZ decomposition
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Running the same decomposition with the serial two-step algorithm takes 29.8 h
wall time/9.3 h CPU time with 1,900 Mb memory and 8.3 h wall time/6.4 h CPU
time with 15,200 Mb memory. Comparing to the timings of the parallel one-step
algorithm, it is clear that optimal performance would be achieved by parallelizing
the two-step algorithm. This is an on-going project.

Finally, it is worth mentioning that the first step in the two-step algorithm can
be regarded as computation of the Cholesky basis to be used with the density fit-
ting approach. The timings for this step are therefore of interest. With the cc-pVTZ
basis set, generation of the Cholesky basis requires 9.5 min wall time/7.1 min CPU
time, whereas the cc-pVQZ basis set requires 4.7 h wall time/1.3 h CPU time with
1,900 Mb memory and 1.2 h wall time/1.1 h CPU time with 15,200 Mb memory on
a single processor.

The calculation of integrals in the CD procedure is in practice not different from
that of an ordinary two-electron integral driver. The only significant difference is in
the respect that the CD algorithm is expressed in terms of specific basis functions,
whereas the most efficient two-electron integrals implementations and algorithms
derive their efficiency in not treating the basis functions one at the time but rather
to compound all basis functions of a center and with the same total angular momen-
tum into a single entity – a shell. Hence, efficient modern computer codes compile
integrals in batches of shell quadruples. This is in conflict with the CD procedure
and would, if not handled or considered, make the program compute a significant
number of integrals in vain. The effect is of particular significance for generally
contracted basis functions (so-called ANO basis set) as compared to the segmented
basis sets. The so-called span factor has been introduced to reduce this loss and is
of particular importance when dealing with basis sets of the ANO type. In common
to a traditional two-electron code a CD implementation requires the standard set of
pre-computed intermediates to be computed. After that the CD procedure requires
the two electron integral code to be able to compute a shell quadruple on demand
and in any order. This is ensured with some minor modifications to any existing
integral code to introduce the required modularity of the code.

13.6. OUTLOOK AND PERSPECTIVES

As we have demonstrated in the previous sections, CD is a valuable tool to con-
trol the accuracy and associated computational effort with only a single threshold
parameter. The advantage using a decomposed form of the two-electron integrals is
not apparent in all cases. For instance, using this integral representation in coupled
cluster models does not lead directly to lower scaling expressions.

An essential solution to this problem is to perform method specific decomposi-
tion (Section 13.3.7), such that the auxiliary basis sets are tailor-made for a given
model or even a particular term. As was shown in the previous section, the actual
construction of the basis is the smallest part of the calculation. The scaling of the
subsequent contractions will benefit from the reduced size as compared to any pre-
optimized procedure. In some cases the basis becomes practically constant (e.g. for
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the Coulomb energy) and these reductions are almost impossible to obtain using
pre-optimized auxiliary basis sets.

Another solution is to exploit the inherent locality of the Cholesky basis
(Section 13.3.2) to design a trivially linear-scaling density fitting algorithm which
retains the unbiased (i.e., non-method specific) nature and complete error control of
full CD [58, 62]. Compared to method specific CD, the local approach will require
more auxiliary basis functions (since it is unbiased) but it will be the same auxiliary
functions that are used for all contributions (Coulomb, exchange, dynamical and
static correlation).

In the limit of large basis, CD is clearly favored as one may save the Cholesky
vectors in compact form and in this way save expensive recalculation of two-
electron integrals. One should remember that, in the complete basis set limit, the
number of two-electron integrals scales as N4 and to treat 10,000 atomic orbitals
will result in roughly 10,000 TByte of two-electron integrals to be processed. This
calls for even more compact treatment of the two-electron integrals beyond the 3N3

to 8N3 scaling attainable by the full CD. The ultimate goal is an N2 scaling in the
limit of a complete basis, and we have already made significant progress in this
direction.

The development of correlated methods such as coupled cluster and CASPT2 for
energy, gradient and response properties will be needed in order to take full advan-
tage of the developments presented in this chapter. Subsystem based methods are
becoming very important in quantum chemistry as the need for accurate electronic
structure methods for larger systems is increasing. Techniques based on CD will
play a central role in these developments.

13.7. SUMMARY AND CONCLUSIONS

In this review we have presented the original scheme behind Cholesky decomposi-
tion [23] of positive semidefinite matrices, which can be considered a special type of
Gram-Schmidt orthonormalization or as a special case of LU factorization. In partic-
ular, a point is made that the iterative procedure, controlled with a single parameter,
completely removes linear dependencies by eliminating zero or near-zero eigenvec-
tors in a controlled manner. Hence, the CD procedure can be considered an effective
way to represent large matrices in a compact manner. The CD procedure has in the
past been considered a purely numerical procedure used mainly, if not exclusively,
for solving positive definite linear equations. In 1977, however, the CD procedure
was introduced as a tool for simplifying the handling of two-electron integrals in
quantum chemistry by Beebe and Linderberg [24].

For a number of cases, we demonstrate how the CD procedure may be applied
to the methods of electronic structure theory. We show that the CD procedure is
a special type of resolution-of-the identity or density-fitting scheme. This connec-
tion is of particular importance, since it provides an analytic view of CD. From this
point of view, it becomes possible to derive, with some limitations, analytic expres-
sion for gradients and higher-order derivatives with respect to nuclear geometry. We
furthermore demonstrate that the CD procedure forms a reliable and accurate tool
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for constructing one-center auxiliary basis sets to be used in the RI/DF formalism.
The CD procedure can also be applied to the one-particle occupied density and the
virtual pseudo-density matrix to obtain localized MOs (Cholesky MOs) in an effec-
tive non-iterative fashion. The Cholesky MOs are instrumental for an effective and
fast computation of the exchange contribution to the Fock matrix, the LK algorithm.
Special versions of the CD MO localization scheme allow the generation of active
orbitals to be used in correlation treatments. The use of these orbitals has demon-
strated considerable reduction of the computational effort in the evaluation of, for
example, intermolecular interaction energies at the MP2 and CCSD(T) levels of the-
ory. Yet another use of the CD procedure is demonstrated in quartic-scaling MP2.
Here the CD procedure is applied directly to the MP2 amplitude matrix. Combined
with efficient prescreening, this yields a canonical MP2 approach scaling as N4.
Finally, we provide yet another case in which the CD procedure is applied to give
dramatic reduction as compared to a conventional implementation. In method spe-
cific CD, the two-electron integrals are not treated alone but are combined with
density matrices such that the resulting Cholesky basis is tailored to accurately rep-
resent the contribution (Coulomb or exchange) of interest. This leads to what we
have coined Coulomb decomposition and three different Exchange decompositions.
It is demonstrated that the method specific CD procedure leads to dramatic savings
as compared to the standard CD procedure applied to the two-electron integrals.

We present results from calibration calculations in which the statistical accuracy
of the CD procedure is studied. These assessments are investigated for total ener-
gies for a range of wave function models and density functional theory, as well as
for vertical excitation energies at the CASSCF and CASPT2 levels of theory. The
benchmark calculations were performed for various sets of valence and CD auxil-
iary basis sets. Accuracies for total energies associated with CD thresholds of 10−4

au where found to be of 0.01 kcal/(mol · electron) and for excitation energies the
corresponding accuracy was found to be 0.001 eV on average. Furthermore, these
studies verify that CD (full as well as atomic) is an unbiased, highly accurate alter-
native to pre-optimized auxiliary basis sets, albeit at the price of a slightly larger
number of auxiliary basis functions. For Full-CD basis sets the Cholesky threshold
gives complete control of the accuracy. A good compromise of speed and accuracy
is obtained using a threshold of 10−4 in connection with absolute energies. For rel-
ative energies a reduction in error due to favorable cancellation of errors have been
observed and for vertical excitation energies this might even allow for a threshold of
10−3 to be used in most cases. For high quality basis sets, pruning gives a significant
reduction in auxiliary basis set size with an affordable loss of accuracy. Moreover,
the special type of atomic CD auxiliary basis sets, the so-called atomic compact CD
(acCD), comes with significant reduction of the number of primitive functions in
the auxiliary basis set at virtually no loss of accuracy.

Towards the end of this review, details of the implementational aspects of the
CD method are presented. Techniques are presented which take into considera-
tion the fact that the computer representation of numbers is not infinitely accurate.
In addition, the fact that effective two-electron integral computation is done in
shell-quadruples – a procedure which is not perfect for a straightforward CD
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implementation – is considered and compromises are suggested. Finally, a scheme
of efficient implementation of a parallel CD procedure is presented together with
benchmark results which demonstrate encouraging speed-up with up to 256 CPUs.

Finally an outlook and perspective of the CD method in ab initio quantum chem-
istry is presented. The authors take the view that the CD procedure offers several
advantages in reducing the scaling of well-known quantum chemical methods. To
fully exploit CD techniques, however, further work has to be done with respect to
implementation.

To conclude, it is our opinion that the CD technique is a much overlooked method
that holds a great potential in the field of quantum chemistry. We hope that the
current flux of papers on CD technique has changed this general attitude – to our
knowledge to this date (February 2010) there has been published in total 22 papers
with respect to the CD technique in quantum chemistry, 16 of these over the last
three years. We are convinced that the CD procedure has much more to offer if we
look more carefully for opportunities.
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CHAPTER 14

LOCAL APPROXIMATIONS FOR AN EFFICIENT AND
ACCURATE TREATMENT OF ELECTRON CORRELATION
AND ELECTRON EXCITATIONS IN MOLECULES
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Abstract: Local methods for the description of electron correlation in ground and electronically
excited states of molecules, as implemented in the MOLPRO system of ab initio pro-
grams, are reviewed. Recent improvements in the performance of the local method
resulting from an implementation of the density-fitting technique for all electron-
repulsion integrals are discussed. Local fitting approximations lead to linear scaling of
CPU time and disk space with molecular size, and allow for a significant increase of
the size of molecules and basis sets that can be treated by the local MP2, CCSD, and
CCSD(T) ab initio methods. Recent extensions of these methods to open-shell systems,
as well as the inclusion of explicitly correlated terms are described. It is demonstrated that
the latter lead to a drastic improvement of the accuracy of local methods. A local treat-
ment of electron excitations within the EOM-CCSD and CC2 theories, as well as a local
description of first- and second-order molecular properties are also discussed. Finally, we
present some illustrative applications of the outlined methods.

Keywords: Local correlation, Coupled cluster, Local CCSD, Local CC2, Density fitting, Explicit
correlation

14.1. INTRODUCTION

The accurate treatment of electron correlation in large molecules is one of the
major challenges in theoretical chemistry. In the first place, this requires the selec-
tion of an appropriate method and a sufficiently complete basis set. The method
is determined by the definition of the wave function and the way in which the
wave function parameters are optimized, e.g. Hartree-Fock (HF), second-order
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Møller-Plesset perturbation theory [1] (MP2), configuration interaction with single
and double excitations (CISD), coupled cluster theory [2] with single and double
excitations [3] (CCSD), CCSD with a perturbative treatment of triple excitations [4]
[(CCSD(T)], higher-order coupled cluster methods with full inclusion of triple and
quadruple excitations [5–9] (CCSDT, CCSDTQ), or full configuration interaction
(FCI) [10]. All these many-electron wave functions are constructed from antisym-
metrized products of one-electron functions called molecular orbitals (MOs), which
in turn are linearly expanded in a basis of atomic orbitals (AOs). Normally, Gaussian
type orbitals (GTOs) are used as a basis. Each method has an intrinsic accuracy
(compared with exact results or experiments), which is reached only for a complete
(infinitely large) basis set. For a given finite basis set, the best possible result is
obtained with FCI. The difference between the results for finite and complete basis
sets for a given method is called basis set incompleteness error or simply basis set
error. Thus, the aim is to use a method with the smallest possible intrinsic error in
combination with a basis set that minimizes the basis set error. Sometimes, basis
set and intrinsic errors partially compensate each other, which may yield a good
result for the wrong reason. Even though this is formally undesirable, computational
chemistry often relies on such error compensations, since experience has shown that
they may be quite systematic.

Unfortunately, the computational cost rises very steeply with the quality of the
method and the size of the basis set. Typically, the cost rises with the fourth power of
the number of basis functions NAO per atom, but the error in the correlation energy
decreases only with 1/NAO. Even more severe is the fact that the CPU time scales
steeply with molecular size1 N , i.e., tcpu ∝ N n, and the exponent n increases with
the computational level, e.g., n = 5,6,7,8,10 for MP2, CCSD, CCSD(T), CCSDT,
and CCSDTQ, respectively. This means that for CCSD(T) the CPU time increases
by 2 orders of magnitude if the molecular size is doubled. For CCSDTQ, the time
increases formally by a factor of 1,024. Thus, there is a scaling wall that cannot be
overcome even with the largest supercomputers.

Pictorially, one can summarize the above problems by the scheme in Figure 14-1,
where on one axis ab initio methods with an increasing complexity are presented,
while on the second axis basis sets with improving quality are displayed. If we add
a third axis denoting the molecular size, we get a full picture of the main challenges
of nonrelativistic quantum chemistry, i.e., one has to move along all three directions
(method, basis, size) simultaneously in order to achieve the “chemical heaven”. As
explained above, the computational cost rises steeply in each direction.

A major goal of current research in theoretical chemistry is therefore to reduce
the bottlenecks in all three directions as far as possible and to climb up closer
towards the “chemical heaven”. For example, the convergence of the energy with
the size of the basis set can be dramatically improved (without much additional
cost) by including terms into the wave function that depend explicitly on the inter-
electronic distances rij. In recent years great advances have been made in making

1 The molecular size can be measured by e.g. the number of atoms or the number of correlated electrons.
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Figure 14-1. A pictorial description of the main challenge of the nonrelativistic computational chemistry

such explicitly correlated methods efficient, numerically stable, and applicable to
quite large systems (see, e.g., [11–13] and references therein; reviews can be found
in [14] and in another recent volume of this series [15, 16]). Some of these develop-
ments will be discussed in Section 14.2.5. The scaling of the cost with the size of the
basis set can be reduced by using density fitting approximations for the evaluation
and transformation of the two-electron repulsion integrals (ERIs). These methods
will be introduced in Section 14.3. And the steep scaling of the computational
resources with molecular size can be reduced by local approximations, which are the
main subject of this article. The basis for such approximations is the fact that, in non-
metallic systems, the correlation energy is a short-range effect that decreases with
r−6

ij . Thus, by using a local orbital basis, one can systematically neglect the correla-
tion of distant electrons. The steep cost-scaling of conventional methods is mainly
due to the fact that traditionally the many-electron wave functions have been con-
structed using canonical HF orbitals, which are very delocalized over the molecule
and do not allow to exploit the locality of electron correlation.

Unavoidably, the introduction of approximations can cause additional errors. For
example, the use of density fitting approximations introduces an additional basis
set error, depending on the size of the auxiliary fitting basis used. Normally, this
error is very small and negligible. Much more severe can be errors caused by local
approximations. On the one hand, these can be due to approximations in the wave
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function ansatz (e.g. neglect of distant pairs or restricting excitations to domains),
which affect the intrinsic accuracy of the computational model. On the other hand,
local approximations can also be made in the density fitting approach or by neglect-
ing small terms in the coupled cluster equations. These approximations are of more
technical nature and should be kept negligibly small. It is therefore very important to
benchmark new methods and approximations extensively in order to establish their
accuracy and reliability.

In the current article, we restrict ourselves to MP2 and CCSD(T) on the method
axis for describing ground electronic states. Provided the electronic structure is well
described by single reference methods (i.e., the Hartree-Fock determinant strongly
dominates the wave function), CCSD(T) has an excellent intrinsic accuracy (about
5 kJ/mol for energy differences), and has become a “golden standard” in computa-
tional quantum chemistry for small molecules. Our aim is to extend the applicability
of this method in the other two directions as far as possible, using a combina-
tion of local aproximations, the density fitting technique, and explicit correlation
approaches. Furthermore, we will consider the calculation of electronic excita-
tion energies using local variants of the equation-of-motion CCSD (EOM-CCSD)
method (see e.g. Refs. [17–19]) and the simpler CC2 model [20]. These meth-
ods provide an adequate treatment (by which we understand errors of 0.2–0.3 eV)
for states which are well described by the excitation of a single electron from the
electronic ground state.

14.2. LOCAL TREATMENT OF ELECTRON CORRELATION

The basic quantities for the construction of single reference ab initio meth-
ods beyond the one-determinantial level (i.e. HF theory) for singlet states are
spin-summed orbital replacement operators Êai

Êai = ηα†
a η

α
i + ηβ†

a η
β
i , (14-1)

where ησi and ησ†
a are spin-orbital annihilation and creation operators for σ = α or

β, respectively. Here and in the following the labels i,j,k,l will denote orbitals that
are occupied in the HF reference determinantΦ0 and a, b, c, d represent unoccupied
(virtual) orbitals. The replacement operators Êai can be used to define contracted
single-, double-, and higher excitation operators,

T̂1 =
∑

ia

ti
aÊai,

T̂2 = 1

2

∑

ijab

Tij
abÊaiÊbj,

(14-2)

where tia and Tij
ab are the cluster amplitudes for single and double excitations. In

coupled cluster theory the wave function is represented as

ΨCC = eT̂Φ0, (14-3)
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with the cluster operator T̂ defined as a sum T̂ = T̂1 + T̂2 + . . .. Normally, T̂ is
truncated at a certain excitation level; e.g., in CCSD theory T̂ = T̂1 + T̂2.

The number of singles, doubles and triples amplitudes scales as N 2, N 4, and
N 6, respectively, with the molecular size N . As already mentioned in the introduc-
tion, the number of elementary floating point operations grows even more steeply,
thus strongly limiting the maximum size of molecules that can be treated with a
given method using an acceptable amount of computer resources. On the other hand,
the local character of electron correlation in molecules has been known since long
time, and attempts to exploit this in order to reduce the computation time date back
more than 40 years. The first really successful and general scheme of localization
approximations was proposed by Pulay [21] and implemented by Sæbø and Pulay
for MP perturbation theories and the coupled-electron pair approximation (CEPA)
[22, 23]. Their approach has been later generalized for local closed-shell CCSD
and CCSD(T) theories by Werner et al. [24–33]. For these methods, linear scal-
ing of the CPU time and disk space with molecular size has been achieved. Local
methods have been also introduced and tested for properties other than the energy,
like first-order properties and gradients [34–36], static second-order properties [37,
38], and other response properties [39]. More recently, local methods have been
extended for computing electronic excitation energies using local EOM-CCSD [40]
and (time-dependent) local CC2 response theories [41–44]. Furthermore, extensions
to open-shell systems and combinations of local and explicitly correlated methods
are currently in progress and will be briefly reviewed in this article. Local correlation
methods for periodic systems (to describe surfaces and crystals), which have been
developed over the past few years in the context of the CRYSCOR project [45–48],
have just been reviewed recently in another book [49] and are therefore not further
discussed here.

The locality of electron correlation has also been exploited by several other
research groups. Examples are the AO-based methods described by Maslen and
Head-Gordon [50], Scuseria and Ayala [51] and Auer and Nooijen [52], the di-
and triatomic in molecule schemes of Maslen and Head-Gordon et al. [53–55],
and the local coupled cluster doubles algorithms of Subotnik, Head-Gordon et al.
[56–60]. Chwee et al. proposed a linear-scaling multireference singles and dou-
bles configuration interaction approach based on local truncation schemes coupled
with integral prescreening [61]. It should be noted, however, that this method is not
size-consistent, and therefore a linear scaling scheme is of limited use. An efficient
local CEPA approach has recently been described by Neese et al. [62, 63], who
use pair natural orbitals combined with the density fitting technique for evaluating
the integrals. Another class of methods divides the molecule into smaller subsys-
tems for which the CCSD equations are solved separately. This was first proposed
in the work of Förner et al. [64] and refined by Li et al. [65]. The latter “cluster-
in-molecule” (CIM) approach was recently generalized for the CCSD, CCSD(T),
and CC(2,3) models [66]. Related to this is the divide-and-conquer implementa-
tion of the CCSD(T) by Flocke and Bartlett [67, 68] based on natural localized
hybrid orbitals. In these methods, each localized orbital is associated to one of
the subsystems, and the contributions to the correlation energy of each localized
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occupied orbital are summed up. Another, related approach has been described by
Friedrich and Dolg et al. [69–73], who use the incremental scheme originally pro-
posed by Stoll [74] to sum up the correlation energy contributions of the fragments.
Naturally, these methods scale linearly with molecular size, but the problem of these
approaches is that the individual fragments must overlap, and this may cause a
considerable computational overhead. The full review of all these developments is
beyond the scope of this contribution.

In general, two steps lead to linear scaling of local methods: (i) reduction of
the configurational space available for excitation operators, and (ii) exploitation of
the sparsity of excitation amplitudes resulting from the step (i) in devising efficient
computational algorithms for a correlated approach under study. We will now pro-
ceed with a description of both steps. For historical reasons we will concentrate
on the closed-shell ground state, although most ideas are directly transferable to
open-shells and to excited states. The problems specific for open-shell molecules
will be outlined in Section 14.2.4, and those for excited states will be described in
Section 14.5.

14.2.1. Local Approximations in the Electronic Ground State

The canonical HF orbitals are usually delocalized over the whole molecule.
Therefore, as an introductory step to almost all local methods, the HF orbitals must
be localized. In the procedure introduced by Pulay [21–23] the occupied orbitals
are localized by using one of the available localization algorithms, while the vir-
tual local orbitals are constructed from atomic orbitals (AOs) by projecting them
against the occupied orbital space. It should be emphasized that since the local-
ization is just a rotation of orbitals, separately within occupied and virtual orbital
spaces, the results obtained with the local sets of occupied and virtual orbitals are
identical to those retrieved with canonical orbitals, as long as the method is invari-
ant with respect to transformations within the occupied and virtual orbital spaces (in
the virtual space, the non-orthogonality of the projected orbitals must of course be
taken into account). The localization of orbitals alone does not offer any computa-
tional advantage over methods utilizing the canonical set of HF orbitals. Quite on the
contrary, in most cases it somewhat increases the cost of calculations and the com-
plexity of computer codes. For example, the local MP2 equations must be solved
iteratively, since in the local basis the Fock matrix is not diagonal.2 The localization
of orbitals offers, however, a suitable framework for applying approximations which
will eventually lead to linear scaling methods.

The localization of the occupied orbitals can be performed according to one of
the well-known localization criteria, like the Pipek and Mezey (PM) localization
scheme [76], or the Boys procedure [77]. Alternatively, also natural localized molec-
ular orbitals [78] (NLMOs) can be used [67, 79]. The PM localization as well as the
NLMO scheme keep the separation of σ and π orbitals in planar molecules [80]

2 The iterative solution of LMP2 equations can be avoided if the Laplace transform is applied to the
energy denominator, see Ref. [75] and Section 14.5.2.3.
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and are therefore the preferred localization methods. The PM algorithm minimizes
the number of atoms at which the occupied orbitals are localized. The natural local-
ization scheme constructs LMOs which closely resemble atomic natural orbitals or
natural bond orbitals. The advantage of the latter scheme is that it is more stable with
respect to basis set variations than the PM localization [79]. In particular, it also
yields well localized orbitals if diffuse basis functions are present. In such cases
the PM localization sometimes fails to produce well localized orbitals, unless the
contributions of diffuse basis functions are eliminated in the localization criterion.

The localized occupied orbitals φi can be expressed in the atomic orbital (AO)
basis χμ by a rectangular transformation matrix L (NAO × Nocc)

φi =
NAO∑

μ=1

χμLμi. (14-4)

The external (virtual) orbital space is spanned by projected atomic orbitals (PAOs)
(labeled by the indices p,q,r,s, . . .):

φPAO
p = P̂φAO

p , (14-5)

where P̂ projects out the contributions of the occupied space,

P̂ = 1 −
Nocc∑

i=1

|φi〉〈φi| (14-6)

so that 〈φPAO
p |φi〉 = 0 for all i,p. In general, the atomic orbitals φAO

p can be

represented in the AO basis by a block-diagonal matrix CAO

φAO
p =

∑

μ∈A

χμCAO
μp . (14-7)

Each non-zero block of the coefficient matrix CAO corresponds to one centre and
therefore each PAO can be uniquely assigned to a centre as well. In principle, the
choice of the atomic orbitals is arbitrary. However, for numerical reasons, it is advis-
able to remove PAOs that correspond to core orbitals. This is because the MOs which
correspond to core orbitals very strongly overlap with the corresponding AOs, and
thus the norms of the PAOs resulting from such AOs become very small. It is there-
fore advantageous to use AOs that separate the core orbitals well from the valence
orbitals. The best choice are the canonical AOs. If generally contracted basis sets are
used, like the correlation consistent basis sets of Dunning [81], the canonical core
and valence orbitals are represented by individual contracted basis functions. One
can then project the basis functions directly, in which case CAO becomes the unit
matrix. The use of generally contracted basis functions is therefore recommended
for local correlation methods.



352 T. Korona et al.

In the AO basis, the PAOs are represented by a coefficient matrix P,

φPAO
p =

NAO∑

μ=1

χμPμp, (14-8)

with

P = (1 − LL†SAO)CAO = CvC†
vSAOCAO, (14-9)

where the rectangular (NAO × Nvirt) coefficient matrix Cv represents the canonical
virtual orbitals, and SAO is the overlap matrix between the basis functions χμ. Thus,
the PAOs can be obtained by a transformation

Q = C†
vSAOCAO (14-10)

from the canonical virtual space. Note that this matrix is rectangular (Nvirt × NAO)
and the NAO PAOs are non-orthogonal and linearly dependent. Their overlap
matrix

S = P†SAOP (14-11)

has Nocc zero eigenvalues. The linear dependencies in the PAO set are removed for
individual domains [24, 82], as will be outlined in Section 14.2.2.1.

14.2.1.1. Domain Construction

In the local approch of Pulay and Sæbø [22, 23], which has been adopted and refined
in our work, single excitations from a given LMO φi are restricted to a subset of
PAOs (called an orbital domain [i]) which are spatially close to the dominant part
of φi. Double excitations from a pair of LMOs φi and φj are allowed only to a
pair domain [ij] which is a union of the corresponding orbital domains [i] and [j].
Domains for triple excitations can be defined analogously [28, 29].

The quality of the local wave functions depends crucially on the proper choice
of the orbital domains. In order to select them automatically, two procedures are
implemented in MOLPRO [33]: originally and by default, a modification of the
method proposed by Boughton and Pulay [80] (BP) is utilized. More recently, a
new method has been developed in which the domains are determined on the basis
of natural population analysis (NPA) [79]. It has been shown that this scheme is
more stable with respect to basis set variations than the BP method. It can be used
with PM LMOs as well as with NLMOs.

In both methods for domain selection we assume that all AOs are atom-centered.
The construction of PAOs (see Eq. (14-5)) ensures a one-to-one correspondence
between AOs and PAOs, which means that each PAO can be attributed to an indi-
vidual atom. A domain always contains all PAOs at a given subset of atoms, and
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thus the problem of defining the domain is reduced to finding an appropriate subset
of atoms for a given φi.

In the BP method this subset is selected for an LMO φi by the following
procedure: first the atoms are ordered according to decreasing Löwdin orbital
charges [83]

z(i)
A = 2

⎡

⎣
∑

μ∈A

(S1/2
AOL)μi

⎤

⎦
2

. (14-12)

Initially, all atoms are added to the domain which have charges larger than 0.5.
Next, the so-called completeness check of Boughton and Pulay [80] is performed
by computing the quantity

f (φ′i) = min
∫

(φi(r) − φ′i(r))2dr, (14-13)

where (φ′i) is an approximation to the orbital φ′i built only from AOs belonging
to the already selected atoms. Expansion coefficients of the approximate orbitals
are optimized by minimizing the functional f, which leads to a simple set of linear
equations. If (φ′i) is still larger than some prescribed threshold δ, the next atom from
the ordered list is added, until the inequality f (φ′i) < δ is fulfilled. The default
values for δ are 0.020, 0.015, and 0.010, respectively, for the cc-pVDZ, cc-pVTZ,
and cc-pVQZ correlation consistent basis sets of Dunning [81]; the same values
can also be used for the corresponding augmented aug-cc-pVnZ basis sets.3 The
procedure can be refined by additional criteria. For example, atoms are not added to
the domain if the Löwdin atomic charge is smaller than a certain threshold (e.g. 0.03
for H atoms and 0.01 for other atoms). Furthermore, symmetry equivalent atoms are
always treated on equal footing.

In the NPA method natural charges [84] are computed for each atom and orbital.
These charges are much more stable with respect to basis set variations than the
Löwdin (or Mulliken) charges, and can be used directly to select the domains [79].
It is recommended to include all atoms into a domain which have charges larger or
equal to 0.03–0.05; the domain sizes are then comparable to those obtained with the
BP procedure [79].

Typically, the standard orbital domains obtained by one of the above methods
contain only a few atoms: one for lone pairs, two for isolated bonds, and 3−4
for conjugated bonds. In highly symmetrical systems the localization may not be
unique, e.g. for benzene the localized π orbitals can freely rotate in the ring, without
affecting the localization criterion. In order to make the correlation energy invariant
with respect to such rotations of the π orbitals, the domains of these orbitals can be

3 In MOLPRO, the threshold TBP = 1 − δ is used, i.e. 0.980, 0.985, and 0.990 for double, triple, and
quadruple zeta basis sets.
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merged into one. Numerical studies show that such domain merging is useful when-
ever two orbital domains overlap by more than one atom (this is usually the case
in conjugated systems), and the domain merging can be performed automatically in
such cases. The dimension of orbital domains selected according to these criteria is
independent of the size of the molecule, and depends linearly on the size of the AO
basis per atom.

The restriction of excitations to domains causes a certain error in the correlation
energy; this is denoted domain error. This error becomes smaller with increasing
basis set and increasing domain sizes. Typically, for a triple-zeta basis and stan-
dard domains, the domain error amounts to 1% of the canonical correlation energy
obtained with the same basis and method. In order to recover a larger fraction of the
correlation energy, it is sometimes useful to extend the orbital domains by an addi-
tional shell of atoms. Such cases involve, e.g., studies of the reaction mechanisms
[85] or molecular properties [37]. Domain extensions can be performed according
to distance or connectivity criteria. When a distance criterion is used, all atoms
are added which are within a certain distance from at least one atom belonging to
the considered LMO. Alternatively, one can use connectivity criteria and add all
atoms which are separated by a maximum number of bonds from any atom in the
domain [82]. This has the advantage that it takes into account the longer bond dis-
tances when the molecule contains heavier atoms. The connectivity matrix, which
holds the minimum number of bonds by which two given atoms are separated, can
be determined automatically on the basis of atomic radii and atomic distances. Two
atoms are considered to be connected if their distance is smaller than the sum of their
atomic radii multiplied by 1.2. Typically, if the standard domains are augmented by
the next neighbours, 99.8–99.9% of the canonical correlation energy is recovered.
It should be noted, however, that such domain extensions considerably increase the
computational cost, since the CPU time increases with the third (LMP2) or fourth
[LCCSD(T)] power of the domain sizes.

Another problem, which has been discussed in the literature, is the fact that the
domains may change as a function of geometry, and this causes steps on potential
energy surfaces [56, 85, 86]. In most cases this problem can be avoided by determin-
ing the domains at one structure and then keeping them fixed. In particular, this is the
method of choice when computing properties that require only relatively small dis-
placements, like in calculations of gradients or hessians by finite differences. It has
been found that the choice of the geometry at which the domains are determined has
very little influence on optimized equilibrium geometries and vibrational frequen-
cies [85]. In geometry optimizations, the domains are frozen once the step-length or
gradient falls below a certain threshold. This is similar to density-functional theory
(DFT) calculations, in which the grid has to be frozen. Note that analytical energy
gradients are always well defined, since they are computed using the domains at the
reference structure.

A more severe problem arises when one needs to compute energy differences
between structures which have a different electronic structure, for example reaction
barriers. An unbalanced choice of domains at the two structures may lead to signif-
icant errors in the energy difference. It is then advisable to merge the domains of
the two (or more) structures and use the merged ones along the whole reaction path.
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This can be done automatically. In LCCSD(T) calculations it is important that not
only the domains are frozen but also the pair classes (see next section). A detailed
discussion with examples of such cases can be found in Ref. [85].

By the introduction of local domains the number of singles and doubles ampli-
tudes for a given orbital or orbital pair becomes independent of the molecular size.
However, the number of all pairs (ij) still scales quadratically with N . The next step
is to reduce the number of pairs, so that overall the number of doubles amplitudes
scales linearly.

14.2.1.2. Classification of Orbital Pairs

In order to reduce the number of pairs one can use the fact that the pair correlation
energies εij decrease quickly with the distance between the orbitals i and j. We there-
fore classify the pairs according to the distances or number of bonds between the
two orbitals. The definition of the orbital distances and connectivities was already
defined in the previous section. Note, however, that the distances used for deter-
mining the pair classes are always based on the standard domains. Thus, domain
extensions do not affect the pair classes. However, if overlapping orbital domains
are merged (for example in benzene), the merged domains are used to determine the
classes. If domains from two or more structures are merged, the smallest distance
for any given pair of atoms is used to determine the pair classes.

In our methods we normally distinguish strong, close, weak, and very distant
pairs. Typically, in strong pairs the two orbital domains share at least one atom.
Close pairs are separated by 1 or 2 bonds, weak pairs by 3–7 bonds, and very distant
pairs by 8 bonds (≈15 a0) or more. The very distant pairs are completely neglected.
The remaining number of pairs and amplitudes scales linearly with molecular size,
which is the prerequisite for achieving linear scaling of the CPU time and other
computational resources. All surviving classes are normally fully included in LMP2,
i.e., the LMP2 is independent of all distance criteria except for the one defining the
neglected pairs.4 Independent of the parameters used for classifying the pairs, the
number of pairs in each class scales asymptotically linearly with molecular size.
Summarizing, local approximations in pair lists (P) and in orbital domains lead to
the following modified form of Eq. (14-2):

T̂1 =
∑

i

∑

r∈[i]

tirÊri,

T̂2 = 1

2

∑

ij∈P

∑

rs∈[ij]

Tij
rsÊriÊsj ,

(14-14)

with a considerably reduced number of spin-adapted configuration state functions
(CSFs).

4 Optionally, in LMP2 one can introduce as a further class called “distant pairs”, for which the
two-electron integrals are approximated by multipole approximations [25, 27]. However for LCCSD
calculations this saves little time and is not recommended. This approximation will therefore not be
further discussed in the current article.
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The distinction of strong, close, and weak pairs comes into play only in
LCCSD(T) calculations. Strong pairs are fully included in the LCCSD(T), and their
amplitudes are optimized at the LCCSD level. Typically, they account for more
than 90% of the correlation energy. The amplitudes of the close and weak pairs
are taken from the initial LMP2 calculation and then kept fixed. The amplitudes
of the weak pairs are neglected in the LCCSD residuals for the strong pairs, i.e.
they are only used to compute the LMP2 contribution to the correlation energy. The
close pair amplitudes, however, are taken into account. In the LCCSD part, they are
(optionally) included in the amplitude equations for the strong pairs. As will be out-
lined later, this is possible with relatively little extra cost and significantly improves
the accuracy (in particular in LCCSD(T)-F12 calculations). If the close pair ampli-
tudes are neglected in the LCCSD, the pair energies of the strong pairs are usually
overestimated. This was the case in earlier versions of our program and turned out
to improve the accuracy due to a partial compensation of the domain error when
medium size basis sets were used. However, this fortuitous error compensation does
not work well for large basis sets (quadruple zeta or larger). Even more problematic
are explicitly correlated calculations, in which the basis set and domain errors are
almost fully removed (cf. Section 14.2.5). In these cases it is important to minimize
the error caused by the pair approximations in order not to spoil the overall accuracy.
In some cases this means that the strong and close pair classes must be extended to
achieve the very high intrinsic accuracy of this method (cf. Section 14.6).

In the local perturbative triples (T) correction, the triples of LMOs i,j,k are
neglected unless (i) all three pairs of LMOs belong to strong or close pairs, and
(ii) at least one pair is a strong pair [28, 29]. Furthermore, the strong and close pair
amplitudes are taken into account in the triples residual. This will be discussed in
Section 14.2.3.

14.2.1.3. Correlation Regions

The concept of pair approximations discussed in the previous section can be
extended by correlating only that part of the molecule that is chemically relevant
[87]. Each LMO or group of LMOs, together with their associated domains, can be
viewed as a subsection of the system and can be individually treated at a specific
level of theory. A lower level method, e.g., local second-order Møller-Plesset per-
turbation theory (LMP2), can be applied to a large part of the molecule or the whole
system, and a higher level method, e.g. LCCSD(T), to a smaller subset of LMOs.
This is in the same spirit as molecular mechanics/quantum mechanics (QM/MM)
hybrid schemes or QM/QM coupling schemes as, e.g., the IMOMO model [88] or
the more general ONIOM model [89]. In contrast to these schemes, however, in
local region calculations it is not necessary to split the molecule into parts, and one
set of HF orbitals is used for the whole system. It has been found that quantities
like reaction energies converge quickly with the size of the region that is treated at
highest level. Typically, only the atoms that are directly involved in the reaction and
their direct neighbours need to be included in the definition of the high-level region.
A larger environment is treated by LMP2, and the rest of the molecule remains
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uncorrelated. This leads to O(1) scaling of the computational cost for the correla-
tion calculation, i.e., the CPU time and other resources do not change if, e.g., a side
group is added or changed far from the reaction centre. The remaining bottleneck
is then the HF calculation. But this means that high-level correlated calculations
are possible for systems of the same size as can be done with hybrid DFT methods
(including exact exchange). Examples and more details about the definition of the
regions can be found in Ref. [87].

14.2.2. Exploiting Localization in Program Algorithms

14.2.2.1. Solving the Amplitude Equations

The amplitudes tip and Tij
pq can be determined by solving the amplitude equations for

the method under consideration. For LMP2 these are linear and can be written as

Rij
pq ≡ 〈 Φ̃pq

ij |[F̂,T̂2]|Φ0〉 + 〈Φ̃pq
ij |Ĥ|Φ0〉 = 0 ∀p,q ∈ [ij], (14-15)

where F̂ is the closed-shell Fock operator

F̂ =
∑

rs

Êrsfrs, (14-16)

frs = hrs +
∑

j

[2(rs|jj) − (rj|sj)]. (14-17)

Here and in the following the “chemical notation” is used for the electron-repulsion
integrals, i.e.,

(pq|rs) =
∫

dr1

∫
dr2φ

∗
p (r1)φq(r1)r−1

12 φ
∗
r (r2)φs(r2). (14-18)

We also assume that the orbitals are real. The projection functions Φ̃ ij
pq and the

corresponding singly excited configurations Φ̃p
i are defined as

Φ̃
p
i = 1

2
Êpi|Φ〉, (14-19)

Φ̃
pq
ij = 1

6
(2ÊpiÊqj − ÊqiÊjp)|Φ0〉. (14-20)

In contrast to the canonical case, these equations must be solved iteratively, since the
Fock matrix is non-diagonal in the basis of LMOs and PAOs. Since for optimized
HF orbitals the Brillouin condition fip = 0 is satisfied there are no single excitations
in the first-order wave function. As mentioned before, these equations are solved for
all pairs ij (i ≥ j) except for the neglected very distant pairs.

In local coupled cluster theory the amplitudes of the singles and of the strong
pair doubles are obtained by solving amplitude equations



358 T. Korona et al.

ri
p ≡ 〈Φ̃p

i |e−T̂ ĤeT̂ |Φ0〉 = 0 ∀i, ∀p ∈ [i],

Rij
pq ≡ 〈Φ̃pq

ij |e−T̂ ĤeT̂ |Φ0〉 = 0 ∀ij ∈ Ps, ∀p,q ∈ [ij], (14-21)

where Ps is the list of strong pairs (i ≥ j), and the PAO indices p,q are restricted
to the corresponding domains. Both restrictions strongly reduce the computational
effort as compared to canonical CCSD, in which all pairs i ≥ j and all virtual
orbitals p,q are considered. However, the explicit form of the equations is somewhat
complicated by the non-orthogonality of the PAO basis. Furthermore, the sparse
block structure of the amplitude matrices Tij

pq must be taken into account. This will
be discussed in the following section. The cluster operator T̂ contains all strong and
(optionally) close pairs. The amplitudes of the latter are taken from the initial LMP2
and kept fixed. Weak pairs are entirely neglected in the LCCSD equations.

The amplitudes of the strong pairs are optimized by solving Eq. (14-21) itera-
tively. Note that the number of equations equals the number of amplitudes to be
determined. In each iteration first the residuals ri

p and Rij
pq are calculated. In order

to update the amplitudes it is necessary to transform them from the non-orthogonal
PAO basis into a pair-specific pseudo-canonical orthogonal basis (denoted in the
following by indices a,b)

ri
a =

∑

p∈[ii]

W(ii)
pa ri

p, (14-22)

Rij
ab =

∑

pq∈[ij]

W (ij)
pa Rij

pqW(ij)
qb . (14-23)

The transformation matrices W(ij)
pa are obtained by solving the projected Fock

equations

f(ij)W(ij) = S(ij)W(ij)e(ij), (14-24)

where f(ij) and S(ij) are the Fock and overlap matrices, respectively, in the basis of
the PAOs of the domain [ij], and e(ij) is a diagonal matrix holding the orbital ener-
gies ε(ij)

a . Due to the fact that the PAO basis is redundant, the overlap matrix S(ij)

may have zero or very small eigenvalues. These are removed using singular value
decomposition.5 Thus, the resulting transformation matrices W(ij)

pa may be rectan-
gular with fewer columns (a) than rows (p). In most cases, however, there are no
redundancies in individual domains. The amplitude updates are computed as

5 Another possibility of removing linear dependencies consists in eliminating individual basis functions
from the domains. In this case the functions which have the largest coefficients in the eigenvectors of S(ij)

corresponding to small eigenvalues are removed. However, this is less satisfactory since it is sometimes
difficult to select the deleted functions so that the symmetry of the molecule is not disturbed and that the
wave function remains invariant to rotations of the molecule.
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Δtia = − ri
a

ε
(ii)
a − fii

, (14-25)

ΔTij
ab = − Rij

ab

ε
(ij)
a + ε(ij)

b − fii − fjj
. (14-26)

Finally, these are back-transformed into the PAO basis

Δtip =
∑

a∈[ii]

W(ii)
pa Δtia, (14-27)

ΔTij
pq =

∑

ab∈[ij]

W (ij)
pa ΔTij

abW(ij)
qb , (14-28)

and added to the previous amplitudes. Convergence of this process can be improved
by solving in each LCCSD iteration the LMP2-like linear equations

0 = ri
p + 〈Φ̃p

i |[F̂,ΔT̂1]|Φ0〉, (14-29)

0 = Rij
pq + 〈Φ̃pq

ij |[F̂,ΔT̂2]|Φ0〉. (14-30)

In case of canonical orbitals, these reduce to the simple update formula (14-26); with
localized orbitals, the off-diagonal Fock matrix elements fik are non-zero and the
equations must be solved iteratively (microiterations) in the same way as described
above. It is sufficient to perform at most 2 microiterations per LCCSD macroitera-
tion in order to speed up convergence. A further improvement can be achieved by
applying in the macroiterations the DIIS (direct inversion of the iterative subspace)
[90] procedure. Overall, the convergence of solving the LCCSD equations is then
almost identical to the standard canonical case. Typically, 8–10 iterations are needed
to converge the energy to microhartree accuracy.

Using the converged amplitudes (strong pairs from LCCSD, close and weak pairs
from LMP2) one obtains the LCCSD correlation energy as

E = 2
∑

i

∑

r∈[i]

firtir +
∑

ij

∑

rs∈[ij]

C̃ij
rsK

ij
rs. (14-31)

where

Cij
rs = Tij

rs + ti
rt

j
s, (14-32)

C̃ij
rs = 2Cij

rs − Cij
sr, (14-33)

and the exchange integrals Kij
rs in Eq. (14-31) are defined as

Kij
rs = (ri|sj). (14-34)
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The Fock matrix elements fir vanish if fully optimized HF orbitals are used
(Brillouin theorem), and then the first term in Eq. (14-31) does not contribute.

14.2.2.2. Residuals and Summations

When the explicit form of Eq. (14-21) is derived for the local case, two com-
plications arise. First, the PAOs are nonorthogonal, which results in additional
multiplications by the S matrix (defined by Eq. (14-11)) in the residual equations.
Secondly, the sparse form of the amplitude vectors ti

p and matrices Tij
pq must be taken

into account. This is essential for reducing the computational cost and to achieve lin-
ear cost scaling with molecular size. The explicit form of the residual equations has
been presented elsewhere [24, 30] and will be not repeated here. These equations
are most conveniently expressed in terms of matrix/vector operations, where each
matrix or vector is specified by LMO labels (superscripts), and the matrix elements
(subscripts) correspond to PAOs. For example, the amplitudes Tij

pq and residuals

Rij
pq are considered as matrices with elements pq ∈ [ij], i.e., [Tij]pq = Tij

pq and

[Rij]pq = Rij
pq, respectively. Note that Tij

rs = Tji
sr, and therefore only the amplitudes

for i ≥ j need to be stored. Similarly, the two-electron integrals can be ordered
in matrix form, e.g., [Jkl]pq = (kl|pq) (Coulomb operators) and [Kkl]pq = (pk|lq)
(exchange operators) for integrals with two LMO and two PAO labels. In the fol-
lowing, we will distinguish integrals with zero to four external (PAO) labels, and for
simplicity these will be denoted 0-external, 1-external, . . ., 4-external integrals.

In order to achieve linear scaling, all summations over PAOs in the residual
equations should be limited to domains, and only amplitude matrices of strong
and (optionally) close pairs contribute in the residual equations. For simplicity, we
assume in the following that only amplitudes of strong pairs are included; this does
not change any of the conclusions. As an example let us analyse one selected term
of the LCCSD doubles residual [30]

Rij = . . .+
∑

k

S(2Tik − Tki)(Kkj − 1

2
Jkj). (14-35)

Here S is the overlap matrix of the PAO basis, cf. Eq. (14-11). Since in Eq. (14-35)
both pairs (ij) and (ik) are strong, both j and k must be close to i, and therefore the
number of (kj) pairs is independent of the molecular size. Therefore, the total num-
ber of all matrices Kkj needed for the construction of all local Rij residual matrices
depends asymptotically linearly on N . Since the pair lists are known a priori, it is
possible to create operator lists for the Kkj and Jkj matrices (the so-called K- and
J-lists) and to restrict the computation of integrals only to those which are really
necessary in the LCCSD calculation.

We now examine the matrix multiplications in Eq. (14-35) in more detail. Writing
out the indices explicitly we can immediately see that all summations over PAOs are
restricted to domains
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Rij
pq = . . .+

∑

k

∑

r,s∈[ik]

Spr(2Tik
rs − Tik

sr)(Kkj
sq −

1

2
Jkj

sq) ∀p,q ∈ [ij], (14-36)

and therefore it is clear that the total computational effort for this term scales linearly
with molecular size. We still have the choice in which order the summations are
executed. One can either do the multiplication by S for each k, as shown above.
This yields the smallest possible dimensions in each matrix multiplication, but the
multiplication with S is done repeatedly. Note that for each k a different subblock
of S is needed, and these blocks are extracted from the full S before doing the
actual matrix multiplication. Thus, in the local algorithms we need lots of gather
and scatter operations, but these are simple and efficient since we always deal with
blocks of matrices. Alternatively, we could move S out of the sum over k

Rij
pq = . . .+

∑

r∈[i]U

Spr

⎡

⎣
∑

k

∑

s∈[ik]

(2Tik
rs − Tik

sr)(Kkj
sq −

1

2
Jkj

sq)

⎤

⎦ ∀p,q ∈ [ij]. (14-37)

Now the intermediate in the square brackets is formed first. Since for each k the
range of r is determined by a different domain [ik], the number of rows of the inter-
mediate corresponds to the number of PAOs in the union of all domains [ik] for a
fixed i. This space is specific for each orbital i and is called the united pair domain
[i]U. Since all k are close to i, it follows that the PAO label r must also be close to i,
and therefore the dimensions of the united domains are independent of the molecular
size, though considerably larger than the dimensions of the individual pair domains.
Thus, in the second algorithm we have less matrix multiplications, but the ones with
S have larger dimensions. Still, the number of floating point operations scales lin-
early with molecular size. The relative computational effort of the two algorithms
depends on the definition of the strong pair list and the size of the domains. In most
cases, the second one is more efficient.

Similar arguments can be used for all other terms in Eq. (14-21). Finally, it
turns out that for a given (kl) it is sufficient to calculate Jkl

pq for pq ∈ [kl]J ,
where [kl]J denotes a J-operator domain. Similarly, for the exchange matrices we
have Kkl

pq with pq ∈ [kl]K . The K-operator domains [kl]K are usually larger than
the J-operator domains since there are more types of interactions involving the
K-operators. Furthermore, in extended molecules the K-list is always larger than
the J-list. The K-operators are also needed in the LMP2, and therefore all weak
pairs must be included in the K-list.

From the considerations presented above it is clear that dimensions of the K- and
J-operator domains are independent of N , although they can be substantially larger
than the pair domains. Since the number of matrices Jkl and Kkl scales linearly with
N , the total number of integrals with two LMO and two PAO labels scales linearly
with N as well. Thus, not only the CPU time but also the disk space scales linearly.
However, in our current implementation there is a small part of the memory require-
ment that scales quadratically, since we need a few full matrices, e.g., the overlap
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matrix in the PAO basis, and some scratch matrices for accumulating intermediates.
This has never been a bottleneck so far.

Most other summations involving 0-, 1-, and 2-external integrals can be treated in
a similar way as presented above. For all important terms linear scaling is achieved
without any additional approximations beyond the definition of the strong pair list
and the domain for each pair. In fact, for the local coupled electron pair approx-
imation (LCEPA) and local quadratic configuration interaction (LQCISD) this is
exactly true for all terms involving the doubles amplitudes. However, the singles
residual contains some terms which do not scale linearly unless interactions of dis-
tant singles are neglected [30]. Furthermore, in the LCCSD case there are a few
non-linear terms where summations over LMO labels are not bound by pair labels.
For example, in the following contribution to the doubles residual

Rij
rs = . . .− 2

∑

kl

∑

tu∈[lj]

SrtT
lj
tuSus

∑

p∈[k]

tk
p(pk|li), (14-38)

there is no restriction in the range of the index k in the integral (pk|li). However, the
orbitals φk and φp are spatially close (since φp belongs to the domain of φk), and
therefore the orbital product φp(r1)φk(r1) describes a charge distribution close to the
domain [k]. Because one of these two orbitals is virtual and the second one occupied,
the lowest-order contribution to this charge distribution is a dipole. Similarly, the
orbitals φi and φl are close to each other (recall that (ij) and (lj) are strong pairs with
one common index), so their product φi(r2)φl(r2) describes a charge distribution
which is also well confined in space. In the worst case (l = i) this distribution
contains a monopole (a charge), therefore an R−2 distance dependence is expected
for the integral (pk|ii). Integrals with l �= i will decay with R−3. Here R is defined
as the minimum distance between φk and φi or φl. Although this decay is quite
slow, it will nonetheless allow to achieve linear scaling for extended molecules by
neglecting these integrals if R is larger than a certain threshold. The error introduced
by this approximation is very small.

A similar R−2 decay is observed for a 3-external counterpart of Eq. (14-38),

Rij
rs = . . .+ 2

∑

tu∈[ij]

SrtT
ij
tu

∑

v∈[k]

tk
v(vk|us), (14-39)

which is part of terms involving the so-called G(E) operator

[G(E)]rs =
∑

ku

[2(rs|ku) − (rk|us)]tku. (14-40)

Without further approximations, this operator is needed in the full PAO basis; it
can be evaluated like a Fock matrix, but this leads to quadratic scaling of the com-
putational cost. As will be demonstrated later, this spoils the overall linear scaling
and becomes dominant for extended molecules. We found that making approxima-
tions in this term can cause quite large errors, and may even lead to convergence
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problems. However, a closer inspection shows that the terms in Eqs. (14-38) and
(14-39) have opposite sign and cancel to a large extent. Numerical experiments
have shown that it is possible to neglect the terms involving G(E) together with
the ones in Eq. (14-38) (and a similar exchange term) completely. The error caused
by this approximation, which restores linear scaling, is quite small; in particular, it
is much smaller than the difference of the LCCSD and LQCISD correlation energies
(in LQCISD these terms are all absent). For a more extensive discussion of all terms
in the coupled cluster equations we refer to Ref. [30].

To conclude this section, we note that in most practical applications for medium
size molecules linear scaling is not of highest importance. There are some terms
in the LCCSD equations which can be made linear, but this causes considerable
overhead for smaller systems. An example is

Rij = . . .+ STij
∑

kl

LklTlkS (14-41)

with Lkl = 2Kkl − Klk. Since there is no link between the labels ij and kl one
would formally need Lkl

rs for all r, leading to quadratic scaling of the number of
such integrals. However, it is straightforward to show that these integrals decrease
exponentially with the distance between k or l and r [30], and therefore interactions
of pairs (ij) and (kl) that are distant from each other can be neglected. Still, a lin-
ear scaling algorithm would require to perform all matrix multiplications for each
(ij) and (kl) individually. On the other hand, the intermediate

∑
kl LklTlk could be

precomputed once (accumulated in a full matrix). One could then either multiply
this from the right with S once, leading to a (very) small contribution with cubic
(N 3) scaling, or carry out the multiplication with S separately for each ij, leading to
quadratic scaling. Thus, there are cross-over points below which it may be more effi-
cient to use an algorithm that scales quadratically or even cubically. In our current
program we attempt to minimize the overall cost for applications with up to about
50 atoms. Except for very large systems this version is faster than the original linear
scaling program described in Ref. [30], even though linear scaling is not enforced
for all terms.

14.2.2.3. Terms with 4-External Integrals

In LCCSD theory 4-external electron-repulsion integrals appear only in the doubles
residual and in form of contractions with the amplitudes

Rij
rs = . . .+ [K(Cij)]rs = . . .+

∑

tu∈[ij]

(rt|su)Cij
tu, (14-42)

where Cij
tu is defined in Eq. (14-32), and K(Cij) are the so-called external exchange

operators [91, 92]. In the local approximation all four indices r,s,t,u correspond to
PAOs in the same domain [ij], and therefore the number of transformed integrals
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(rt|su) needed for the calculation of one Rij matrix is independent of the molecu-
lar size. Since the amplitude labels ij are the same as of the residual, the external
exchange operators are only needed for strong pairs. Thus, the computational effort
and the number of 4-external integrals are independent of the number of close pairs
that are included in the residual. The same is true for the contributions of the 3-
external integrals (in this case it requires the neglect of some interactions between
close pairs and singles, but this causes a negligible error). Thus, the inclusion of
close-pair amplitudes in the residuals only affects the number of 0–2 external inte-
grals and therefore only leads to a moderate increase of the CPU time. On the other
hand, the accuracy is significantly improved.

From the above it is clear that the number of required 4-external integrals scales
linearly with molecular size. The problem is that many strong pair domains overlap,
and therefore the same integrals contribute to different pairs. It would therefore be
wasteful to compute them for each pair individually. An efficient integral-direct pro-
cedure for calculating the minimum number of required 4-external integrals for Eq.
(14-42) has been described in Ref. [32]. It is based on the fact that always all PAOs
at a given centre are included in a domain. Thus, for a given pair (ij), the set of inte-
grals (rt|su) can be represented by a much smaller set of four centres (RS|TU) (here
centres are denoted by capital letters). By generating for each strong pair a list of all
centre quadruplets, and then taking the union of all these, one obtains a list of centre
quadruplets representing the minimum number of integrals needed. Obviously, the
number of such centre quadruplets also scales linearly with molecular size. This list
is used to derive the actual integral transformation and the evaluation of the K(Cij)
from these integrals. Efficient density-fitting techniques to generate these integrals
will be outlined in Section 14.3.

14.2.3. Perturbative Triple Excitations

The calculation of the perturbative (T) energy correction for triple excitations is
complicated by the fact that in the local basis the Fock matrix is not diagonal, and
therefore the perturbation equations have to be solved iteratively. This makes it nec-
essary to store the triples amplitudes, and even if domain approximations are made
and the triples list (ijk) is restricted, the computational expense may be large. As
mentioned before, the triples domains [ijk] are taken to be the union of the orbital
domains [i], [j], and [k]. The triples list is restricted so that the pairs (ij), (ik), or (jk)
are strong or close, and at least one of these is strong. The inclusion of the close
pair amplitudes, which are taken from the initial LMP2, is important for achiev-
ing a sufficient accuracy [29]. As in the LMP2, the couplings due to the PAO-PAO
block of the Fock matrix can be eliminated by transforming each triples residual
to a pseudo-canonical basis, in complete analogy to the update procedure described
in Section 14.2.2.1. Then only couplings by the occupied-occupied off-diagonal
elements fij remain. By neglecting these, the triples correction can be computed
non-iteratively without storing the triples amplitudes. This is very efficient and has
been denoted (T0)-approximation [28, 29]. In the majority of all applications carried
out so far, this approximation works very well. In cases of doubt, one can perform
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one iteration [(T1)-approximation], which is still possible without keeping all triples
amplitudes in memory [29]. A full iterative local triples program is also available
[29]. Even iterative triples approximations beyond (T), such as CCSDT-1b, have
been implemented and scale linearly with molecular size [31].

14.2.4. Open-Shell Local Correlation Methods

The closed-shell LMP2 and LCCSD theories can be generalized for open-shell sys-
tems in a rather straightforward way, and local LRMP2 (local spin-restricted MP2)
and LUCCSD (local spin-unrestricted coupled cluster theory) have recently been
implemented [93]. These methods are based on high-spin ROHF (restricted open-
shell HF) reference functions. There are a few subtleties that should be mentioned
here. First, there are two options to generate the local orbital basis: one can either
localize the doubly and singly occupied orbitals separately, since the ROHF refer-
ence function is invariant with respect to unitary transformations within these orbital
subspaces. Alternatively, one can localize the α- and β-spin orbitals separately. The
former option has the advantage that a single set of localized orbitals and a single
set of orbital domains results, and these can be used for all spin-orbital excitations.
However, it may happen that the few open-shell orbital(s) cannot be well localized.
In particular, if there is only a single open-shell orbital (doublet states), there is no
freedom for localization at all; the open-shell ROHF orbital may then be more or
less localized, depending on the molecule under consideration. The second option
(separate localization of α- and β-spin orbitals) often leads to better localization
and smaller domains, but since the resulting two sets of LMOs are different, this
option requires more transformed integrals and separate orbital domains for α- and
β-spin. As will be demonstrated in Section 14.6, the efficiency of both possibilities
is comparable, but the second option is often somewhat more accurate. In particular,
it will be more suitable for non-iterative perturbative triples approximations, which
are currently under development in the Stuttgart group.

Similarly, one can either generate different sets of PAOs for α and β spin, or use
the α-spin ones for all excitations (here we assume that the open-shell orbitals are
occupied with α-spin electrons). In the latter case, the domains for β-spin excitations
need then to be augmented by the open-shell ROHF orbitals. This is certainly much
more efficient than using different sets of PAOs; in particular, for LUCCSD(T) one
needs only one set of 4-external orbitals and two sets of 3-external integrals (if α-
and β-spin orbitals are localized separately).

In the open-shell theories, we use spin-orbital excitation operators êαri = ηα†
r η

α
i

and êβri = ηβ†
r η

β
i rather than the spin-free orbital excitation operators Êri. We there-

fore have different amplitudes for α- and β-spin excitations, and the T̂1 and T̂2
cluster operators take the form

T̂1 =
(α)∑

ri

t̃irêαri +
(β)∑

ri

t̄irêβri, (14-43)
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T̂2 = 1

4

(α)∑

rsij

T̃ ij
rsê
α
riê
α
sj +

1

4

(β)∑

rsij

T̄ ij
rsê
β
riê
β
sj +

(α)∑

ri

(β)∑

sj

Tij
rsê
α
riê
β
sj, (14-44)

where T̃ ij
rs = −T̃ ji

rs = −T̃ ij
sr = T̃ji

sr. Similar permutational symmetries hold for the
pure β-spin amplitudes T̄ ij

rs. However, the αβ-amplitudes Tij
rs have no permutational

symmetries. Thus, there are about 3 times as many unique amplitudes and equa-
tions as in the closed-shell case. The corresponding coupled cluster equations for
canonical orbitals can be found in Refs. [94, 95]. For the local case they have to be
transformed into the PAO basis. Formally, this simply requires to multiply with the
S matrix wherever an amplitude PAO label is not connected with an integral label.
The structure of the resulting equations is very similar to the closed-shell case, and
all conclusions about the scaling behaviour remain valid.

In the open-shell case the ROHF reference wave function is not an eigenfunction
of the standard UMP2 zeroth-order Hamiltonian

Ĥ(0) =
∑

ij

fijêij +
∑

ab

fabêab +
∑

ia

fai(êai + êia), (14-45)

where the summations are over spin-orbitals (both spins). The reason is that the
Brillouin theorem does not hold for ROHF wave functions, and the Fock-matrix
elements fai are not zero (note that here and in the rest of Section 14.2.4 r,s in frs

correspond to spin-orbital labels, while in Eq. (14-17) orbital labels are used). This
prevents the application of simple Rayleigh-Schrödinger perturbation theory. This
problem can be circumvented by using a projected Fock operator

ĝ = ôf̂ ô + (1 − ô)f̂ (1 − ô), (14-46)

where ô = ∑
i |i〉〈i| projects onto the occupied space. This leads to a simplified

zeroth-order Hamiltonian

Ĥ(0) =
∑

ij

fijêij +
∑

ab

fabêab. (14-47)

Now the ROHF determinant is an eigenfunction of this operator, and it is straight-
forward to apply an UMP2-like perturbation theory, which uses ROHF reference
functions [96, 97]. It should be noted, however, that single excitations must be
included. This method is usually referred to as RMP2, even though it is not strictly
spin-adapted.6

6 A strictly spin-adapted theory can be obtained by projecting out the spin-contamination as described
for partially spin-restricted coupled cluster theory in Ref. [94]; the differences of the results to standard
RMP2 are usually negligibly small.
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14.2.5. Explicitly Correlated Local Correlation Methods

The very slow convergence of the correlation energy with the size of the AO basis
set is due to the inability of expansions of orbital products (Slater determinants) to
describe the wave function cusp for r12 → 0 properly. Perhaps even more important
is an accurate description of the correlation hole for small and medium values of the
inter-electronic distances r12. This can be strongly improved by adding terms to the
wave function that depend explicitly on r12 and allow to satisfy the wave function
cusp conditions exactly. Unfortunately, the straightforward inclusion of such terms
leads to extremely numerous many-electron integrals, and for a long time this has
prevented the development of explicitly correlated methods that can be applied to
larger molecules.

In 1985 Kutzelnigg made two important suggestions [98]: first, he proposed to
augment the conventional wave functions just by one explicitly correlated term for
each pair, rather than to construct the whole wave function using only r12-dependent
functions, as was the case in many of the earlier theories. Secondly, he proposed to
approximate the many-electron integrals by resolution of identities (RIs); the three-
and four-electron integrals can then be split into sums of products of two-electron
integrals. The first so-called R12-methods were implemented by Kutzelnigg and
Klopper [99–104]. In these methods the RIs were approximated by the AO basis
(standard approximation), and in order to obtain numerically accurate results very
large AO basis sets were still needed. Thus, the basis set problem now occurred in
another context. This problem was solved in 2002 by Klopper and Samson [105],
who implemented the first MP2-R12 method in which an auxiliary basis set was
used for the RI. This was further improved by the complementary auxiliary basis set
(CABS) approach of Valeev [106], in which the RIs are represented by the union
of the AO basis and an auxiliary basis. The CABS approach is particularly impor-
tant for the development of explicitly correlated coupled cluster theories, both for
numerical and theoretical reasons. A further very important finding was that the
replacement of the linear r12 correlation factor [107, 108], as used in the early theo-
ries of Kutzelnigg and Klopper, by a short-range non-linear function F12(r12) leads
to much better results and numerical stability. Several different functional forms
were tested [109], and it turned out that a simple Slater function

F12(r12) = − 1

γ
e−γ r12 , (14-48)

as originally proposed by Ten-no [107] works at least as well as other choices. This
has now become the standard in so-called F12-methods. In most cases, the Slater
function is approximated by a linear combination of Gaussians, since this simplifies
the evaluation of the integrals.

A detailed presentation of the theory of explicitly correlated MP2 and coupled
cluster methods is beyond the scope of the current article. We refer to a recent
review in this series [15], in which the explicitly correlated canonical MP2-F12
and CCSD(T)-F12 methods for closed-shell [11, 110, 111] and open-shell [11, 112]
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systems as implemented in MOLPRO are described in detail and discussed in the
context of other methods. Reviews of other authors can be found in [14, 16]. Here
we focus on explicitly correlated local methods [12, 13, 113–115], which do not
only improve the basis set convergence, but also reduce the domain error in local
correlation methods.

14.2.5.1. The LMP2-F12 and LCCSD(T)-F12 Wave Functions

The doubly-excited cluster operator used in the MP2-F12 and LCCSD(T)-F12
theories is defined as

T̂2 = 1

2

⎡

⎣
∑

ij∈Pw

∑

rs∈[ij]

Tij
rsÊriÊsj +

∑

ij∈Pc

complete∑

α,β

T ij
αβ ÊαiÊβj

⎤

⎦ , (14-49)

with
T ij
αβ =

∑

kl

〈αβ|Q̂ij
12F12|kl〉Tij

kl. (14-50)

The operator T̂1 and the first part of T̂2 are the same as in standard LCCSD, cf. Eq.
(14-14), and the bracket notation 〈αβ|..|kl〉 denotes, as usual, a two-electron integral
in which the labels α and k correspond to the first electron and the labels β and l –
to the second electron. In LMP2-F12, the pair list Pw includes all strong, close, and
weak pairs, while in LCCSD only strong and optionally close pairs are included
(cf. Section 14.2.1.2). The second part in T̂2 contains the explicitly correlated terms.
Formally, this can be viewed as an externally contracted expansion of double exci-
tations in a complete basis set (denoted by indices α, β). Normally, it is sufficient
to include strong and close pairs, as indicated by the list Pc. The amplitudes Tij

kl
can either be optimized or determined from the wave function cusp conditions [107,
116–118] and kept fixed:

Tij
kl =

3

8
δikδjl + 1

8
δjkδil. (14-51)

This hardly affects the accuracy and has the advantage that no extra amplitude equa-
tions have to be solved for these parameters. F12 is the correlation factor defined in
Eq. (14-48) where the parameter γ is typically chosen to be 1 a−1

0 . Finally, Q̂ij
12 is a

strong orthogonality projector:

Q̂ij
12 = (1 − ô1)(1 − ô2) −

∑

cd∈[ij]

|cd〉〈cd|, (14-52)

where ô = ∑
i |i〉〈i| projects onto the occupied space and the index indicates the

coordinates of the electron on which it acts. The projector is needed to keep the
explicitly correlated terms strongly orthogonal to the HF reference function and the
conventional single and double excitations. In contrast to the canonical case, Q̂ij

12
is pair specific [12, 115], since the conventional double excitations are restricted to
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domains. The indices c,d in Eq. (14-52) denote an orthonormal set of orbitals that
span the domain [ij] (cf. Section 14.2.2).

The use of the pair-specific projectors has two important advantages. First, it
reduces the number of necessary integrals and makes it possible to devise linear
scaling algorithms [12]. Secondly, the double excitations into virtual orbitals outside
the domain [ij] are not entirely excluded as in standard local correlation methods,
but for a pair ij implicitly approximated by

ΔT̂2 =
∑

ij∈Pc

∑

rs/∈[ij]

F̄ij
rsÊriÊsj, (14-53)

where F̄ij
rs = ∑

kl〈rs|F12|kl〉Tij
kl. This means that instead of fully optimized ampli-

tudes Tij
rs the fixed matrix elements F̄ij

rs are used. These terms are implicitly taken
into account by the F12 treatment and they correct very successfully for the domain
error [12, 13, 115].

In the LCCSD(T)-F12 method [13], certain approximations are made in order
to keep the extra computational effort as small as possible. In particular, we use
the F12a method [11, 111], in which in the LCCSD-F12 equations all terms
are neglected that require multiple RI approximations. The only remaining term,
which describes the most important couplings between the explicitly correlated
and conventional configurations, is independent of the RI basis. Furthermore, we
apply the so-called approximation 3∗A, in which exchange terms are neglected
and the extended Brillouin condition (EBC) is used, i.e. the Fock-matrix elements
frx between orbitals in and outside the orbital basis are assumed to be zero [105,
110]. Despite these approximations very high accuracy can be achieved. Some
examples will be presented in Section 14.6. For further details of the theory and
implementation we refer to the original publications [11–13, 111] and our recent
review [15].

14.3. DENSITY FITTING

The local approximations reviewed so far allow to lower the scaling of the MP2,
CCSD, and CCSD(T) methods with respect to the molecular size. However, an
important aspect that has not been yet discussed is the evaluation and transformation
of the two-electron integrals. Since for large systems the integrals in the AO basis
cannot be stored, they have to be computed and used on-the-fly. A detailed descrip-
tion of the algorithms for such integral-direct transformations is beyond the scope
of the present article, and we refer to our previous papers for details [26, 30, 32,
119]. Here we only note that based on screening techniques and suitable test densi-
ties it is possible to achieve linear scaling in all transformation steps. It is important
to note that such test densities can be only constructed if the domains are known in
advance.

Unfortunately, despite linear scaling, the prefactor of these integral-direct meth-
ods is high. It grows at least with the fourth power of the orbital basis size per atom.
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In practice, it might even be worse since the expense per integral increases with the
number of high angular momentum functions in the basis set.

These bottlenecks can be very strongly reduced by means of the density fitting
(DF) technique. DF approximations are widely used in electronic structure theory.
Originating from DFT [120–122] their usage spreads today from HF, [123–126]
MP2, [127–131] CC2 [132], MP2-F12 [108, 110, 112, 133], up to CCSD [134,
135], DFT-SAPT [136, 137], and SAPT(CC) [138, 139]. The overall scaling of the
computational effort for conventional methods with respect to system size is not
affected by standard DF, but it significantly reduces the prefactor. Furthermore, for
two-electron integrals involving just two external indices it reduces the scaling with
respect to the basis set size per atom from formally quartic to cubic. This leads to
enormous savings in calculations with large basis sets. If density fitting is combined
with local approximations, linear scaling can be achieved. This was first shown for
the calculation of the exchange contribution in HF [125] and local MP2 [131]; it
has more recently been extended to MP2-R12 [133] and LMP2-F12 [12, 113, 114].
Furthermore, as a first step towards a fully density fitted LCCSD(T) implementation,
a linear scaling DF algorithm to evaluate the 4-external integrals in LCCSD was
presented already in 2004 [135]. Meanwhile this approach has been extended to
treat all integral classes in LCCSD(T) and LCCSD(T)-F12 calculations by density
fitting. It leads to dramatic savings in calculations for large molecules, in particular
if larger basis sets are used.

14.3.1. Local Density Fitting in LMP2

In LMP2 one only needs the 2-external exchange integrals Kij
rs = (ri|sj). These can

be written as an integral over two one-electron charge distributions ρri and ρsj

(ri|sj) =
∫

dr1

∫
dr2 ρri(r1)r−1

12 ρsj(r2), (14-54)

ρri(r1) = φr(r1)φi(r1). (14-55)

The idea of density fitting is to expand the one-electron densities in an auxiliary
basis

ρri(r) = φr(r)φi(r) ≈
∑

A

dri
AχA(r) = ρ̄ri(r). (14-56)

Here the auxiliary basis functions will be labelled by capital letters A,B,C,D.
Normally, standard Gaussian basis functions are used. The fitting coefficients dri

can be obtained by minimizing [121, 122]

Δri =
∫

dr1

∫
dr2

[ρri(r1) − ρ̄ri(r1)] [ρri(r2) − ρ̄ri(r2)]

r12
. (14-57)
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This leads to

dri
B =

∑

A

(ri|A)[J−1]AB or
∑

B

JABdri
B = Jri

A , (14-58)

Kij
rs =

∑

B

dri
B (B|sj) =

∑

AB

(ri|A)[J−1]AB(B|sj) , (14-59)

where

JAB =
∫

dr1

∫
dr2

χA(r1)χB(r2)

r12
, (14-60)

Jri
A ≡ (ri|A) =

∫
dr1

∫
dr2

φr(r1)φi(r1)χA(r2)

r12
. (14-61)

If the MOs are expanded in a basis of GTOs {χμ}, the 3-index integrals in the MO
basis are obtained by a two-step transformation of the 3-index integrals (μν|A) in
the AO basis

(μi|A) =
∑

ν

Lνi(μν|A), (14-62)

(ri|A) =
∑

μ

Pμr(μi|A). (14-63)

According to the Gaussian product theorem, the size of an integral (μν|A)
decreases exponentially with the square of the distance between the basis functions
χμ and χν , and therefore the number of non-negligible integrals scales asymptot-
ically as O(N 2). In canonical DF-MP2 calculations, in which the occupied and
virtual orbitals are delocalized and no sparsity can be exploited, the first and second
transformation steps scale as O(N 3) and O(N 4), respectively. Solving the linear
equations (14-58) also behaves as O(N 4). The assembly step (Eq. (14-61)) scales
as O(N 5) and by far dominates the total computational cost in calculations for
large molecules. However, all the four steps described above require simple matrix
multiplications, and can be performed very efficiently on modern computers. This
leads to a low prefactor for the algorithm, and despite the O(N 5) scaling quite large
molecules (about 40 non-hydrogen atoms) can be handled.

The local approximations have a most profound effect on the assembly step
in DF-LMP2: since the number of pairs (ij) scales linearly, and the number of
r,s is independent of the molecular size, the computational effort for this step
(Eq. (14-59)) is dramatically reduced from O(N 5) in the canonical case to just
O(N 2). Moreover, since the PAOs r must be within a finite range of the LMOs
i and j, one needs only those transformed 3-index integrals (ri|A) with r in the
united pair domain of the associated orbital i. This domain comprises all PAOs
that belong to any pair domain [ij] in which orbital i occurs. For large molecules,
the size of the united pair domains also become independent of the molecular size,
and therefore the number of integrals (ri|A) scales only as O(N 2). This reduces
the computational effort for solving the linear equations (14-58) from O(N 4) to
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O(N 3). Finally, since the occupied orbitals i are now local, the number of half-
transformed integrals (μi|A) scales only as O(N 2). Using prescreening techniques,
the first and second half transformations (Eqs. (14-62) and (14-63)) should then
scale only as O(N 2). Thus, without further approximations in the fitting basis, the
bottleneck for large molecules will be to solve the linear equations in Eq. (14-58).
We note that it is numerically more accurate to solve the linear equations (e.g., using
LU-decomposition) rather than to invert the J-matrix.

Linear scaling of all steps can be achieved by using domains also for the fitting
basis. The reasoning behind this approximation is that the charge distributions ρri

are local, and therefore a subset of fitting functions spatially close to this distribution
should be sufficient to represent them. This means that we use for each LMO φi a
different fitting domain [i]fit of functions χA. In order to minimize the error of this
approximation, one has to use the robust fitting formula [131, 135, 140–142]

Kij
rs ≈

∑

A∈[i]fit

dri
A Jsj

A +
∑

B∈[j]fit

Jri
B dsj

B −
∑

A∈[i]fit

∑

B∈[j]fit

dri
A JABdsj

B . (14-64)

The fitting coefficients dri
B are obtained by solving the linear equations

∑

B∈[i]fit

JABdri
B = JA

ri (∀A ∈ [i]fit). (14-65)

Since asymptotically the sizes of the fitting domains [i]fit as well of the united pair
domains r ∈ [i]U are independent of the molecular size, the effort for solving the
linear equations is proportional to the number of correlated LMOs i; this leads to
linear scaling or even O(1) scaling if only a region of orbitals is correlated (cf.
Section 14.2.1.3). It is easy to see that also the other steps scale linearly. However,
since the linear equations have to be solved for each LMO, there is an overhead for
small molecules. Local fitting approximations are therefore only useful for extended
molecules.

14.3.2. Local Density Fitting in LCCSD(T)

In LCCSD theory all classes of integrals are needed, i.e., 0-external to 4-external.
The 2-external exchange integrals Kkl

rs = (rk|ls) (rs ∈ [kl]K) are computed as
described above for LMP2. The 0- and 1-external integrals can be obtained in the
same way with very little extra cost. Since for LCCSD the operator lists kl and oper-
ator domains [kl]K are much larger than in the LMP2 case [30], it is usually not
useful to enable local fitting – the cross-over point to linear scaling occurs quite
late, and for medium size calculations the overhead exceeds the savings.

The 2-external Coulomb integrals Jij
rs = (rs|ij) are first computed in the AO basis

as

Jij
μν ≡ (μν|ij) =

∑

A

(μν|A)dij
A, (14-66)
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where dij
A are the fitting coefficients obtained in the generation of the 0-external

integrals. The coefficients dij
A are kept in memory. The outermost loop runs over

blocks of μ ≥ ν, and for each block the 3-index integrals

(μν|A) =
∫

dr1

∫
dr2χμ(r1)χν(r1)r−1

12 χA(r2) (14-67)

are computed and contracted on-the-fly with the fitting coefficients. Since for each
of these blocks the index ij runs fastest, the resulting integrals (μν|ij) are sorted
into the final order (ij runs slowest). In the last step the integrals are transformed
into the PAO basis before being written to disk. Currently, for these integrals local
fitting is not implemented. However, despite the fact that without local fitting the
algorithm scales (in the asymptotic limit) cubically, the CPU time for this part of
the transformation is quite short and has never been a bottleneck in the calculations.

As the 0–2 external integrals, the 3- and 4-external integrals are generated by
utilizing density fitting. The 3-external integrals (rs|kt) occur in various terms
involving contractions with the singles amplitudes, e.g.

∑
t∈[j] (rs|kt)tjt, and with

double amplitudes
∑

st∈[ij] (rs|kt)Cij
st, as well as in the expression of the perturba-

tive triples correction. The range of indices r,s,t for each LMO k is independent
of the molecular size can be determined in advance (3-ext domains). Thus, in the
asymptotic limit, the number of these integrals scales linearly with molecular size. A
detailed description of the definition of the 3-ext domains can be found in Ref. [30].

The 4-external integrals (rt|su) just appear in the external exchange operators
K(Cij) (cf. Eq. (14-42)) which contribute only to the doubles residual for pair (ij).
Since the four indices of (rt|su) always belong to the same domain, this set of inte-
grals is significantly more compact than the 3-external integral set, in spite of the
additional virtual orbital index.

In the following we outline our algorithm for the 4-external integrals, for which
local fitting is most useful. Local fitting for the 3-external integrals proceeds along
similar lines. However, since the 3-external domains are quite extended, the savings
are smaller than in the 4-external case, and the cross-over point to the standard
non-local fitting method occurs only for larger molecular sizes.

As for the 2-external exchange operators, local fitting makes it necessary to use
the robust 3-term fitting expression

(rs|tu) ≈
∑

A∈[RS]

drs
A Jtu

A +
∑

B∈[TU]

Jrs
B dtu

B −
∑

A∈[RS]

∑

B∈[TU]

drs
A (A|B)dtu

B , (14-68)

or the symmetric two-term formula [135]

(rs|tu) ≈ 1

2

⎡

⎣
∑

A∈[RS]

drs
A Jtu

A +
∑

B∈[TU]

Jrs
B dtu

B

⎤

⎦ . (14-69)
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A comparison of the performance of the symmetric and robust formulae for the 4-
external integrals can be found in table 1 of Ref. [135]. A ∈ [RS] represents an
auxiliary fitting function confined to a fit domain [RS]. This domain is related to the
charge distributions of the orbital products φPAO

r (r)φPAO
s (r), where r and s denote

functions located at the centres R and S, respectively. Thus, the fitting domains
are specific to centre pairs. drs

A are the fitting coefficients obtained by solving the
following equations for each centre pair RS

∑

B∈[RS]

(A|B)drs
B = Jrs

A , ∀A ∈ [RS]. (14-70)

Since this implies that the indices A,B,r,s refer to functions that are spatially close,
the computational effort scales linearly with molecular size. In the case that full
fitting domains are used (non-local fitting), all terms in Eqs. (14-68) and (14-69)
are identical, yielding the usual one-term expression of density fitting. For fur-
ther details of the algorithm and the choice of the fitting domains we refer to
Ref. [135].

14.4. LOCAL PROPERTIES OF FIRST AND SECOND ORDER

Molecular properties calculated from canonical linear response (LR) CCSD theory
or its time-dependent (TD) variant for dynamic properties [17, 143, 144] are not
very sensitive to the relaxation of orbitals caused by the perturbation. Numerical
experience shows that orbital-nonrelaxed and relaxed dipole moments and static
dipole polarizabilities are quite similar to each other. The explanation of this fact is
based on the recognition that the exp (T̂1) operator already accounts for most of the
orbital rotations [145].

The situation is different if local approximations are introduced. Since the sin-
gle excitations are restricted to domains, they cannot account well for the orbital
relaxation. In contrast to the canonical case it is therefore essential to include orbital
relaxation effects explicitly in calculations of first- and second-order properties. In
a benchmark study of Korona et al. [37] dipole moments and static dipole polariz-
abilities were computed using LCCSD for 16 molecules. It was found that with
standard domains the average absolute errors of orbital-relaxed LCCSD relative
to the canonical calculations amount to 1.6% for dipole moments and 0.5% for
polarizabilities. With extended domains these errors were reduced to 0.9 and 0.3%,
respectively.

It should be noted, however, that the explicit inclusion of orbital relaxation in
LR-CC theory is not advisable for dynamic properties [143], since an artificial set
of poles (resulting from the TD-HF equations) is introduced in this way for real
frequencies. The problem of computing accurate dynamic second-order properties
using local wave functions requires more investigations.
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14.4.1. Analytical Energy Gradients for Local Wave Functions

Local gradients have been so far implemented for the LMP2 [34, 36] and LQCISD
[35] methods. Additionally, local static second-order properties have been imple-
mented for the LMP2 method [38]. As discussed above, only orbital-relaxed
variants of local properties produce valuable results. The most effective local gra-
dient method available so far is the density-fitted LMP2 gradient implementation
described in Ref. [36].

The derivations of the LMP2 and LQCISD gradients described in Refs. [34, 35]
use the interchange technique of Handy and Schaefer [146] to replace the depen-
dence on the first-order orbital (and amplitude, in the case of LQCISD) response by
corresponding Z-vectors. This is very important, since the number of sets of equa-
tions to be solved then becomes independent of the number of perturbations. The
application of the interchange technique is somewhat obscure though, a much more
natural way is to set up an appropriate energy Lagrangian [143, 147], containing all
the required equations of the non-variational wave function parameters to be ful-
filled (like the Brillouin and locality conditions for the orbitals, and the amplitude
equations in the LQCISD case) as constraints. The Lagrangian is required to be
stationary with respect to all wave function parameters (including the multipliers);
the latter correspond exactly to the elements of the Z-vectors of the interchange
technique, but appear immediately and much more naturally. The derivation of the
formalism of the density-fitted LMP2 gradient described in Ref. [36] follows this
second strategy and is very briefly laid out in the following.

For the LMP2 case no multipliers corresponding to the LMP2 amplitude equa-
tions have to be determined. It is a simple task to show that the orbital-unrelaxed
MP2 Lagrangian (which includes the MP2 amplitude equations as a constraint) is
equivalent to the Hylleraas functional,

E2 = 2〈Φ0|Ĥ|Φ1〉 + 〈Φ1|Ĥ(0) − E(0)|Φ1〉, |Φ1〉 = T̂(1)
2 |Φ0〉, (14-71)

with the multipliers being identical to the contravariant amplitudes. For the closed-
shell case we have Ĥ(0) ≡ F̂ with F̂ defined in Eq. (14-17) and E(0) = 〈Φ0|F̂|Φ0〉
(for a definition of Ĥ(0) for the open-shell case see Eq. (14-47)). The orbital-
relaxed LMP2 Lagrangian is then the Hylleraas functional E2, augmented by the
Brillouin (fai = 0), localization (rij = 0), and orthonormality conditions for the
orbitals, i.e.,

L = E2 +
∑

i>j

zloc
ij rij +

∑

ai

zaifai +
∑

pq

xpq[C†SAOC − 1]pq. (14-72)

Equation (14-72) is written in a semi-local (localized occupied, canonical vir-
tual MOs) orbital basis, i.e. C = L||Cv, where the ‖ sign means that two
matrices are glued together. This mixed representation makes the orthonormality
condition particularly simple. The amplitudes can be transformed from local PAOs
to canonical virtuals according to
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Tij
ab =

∑

rs

QarTij
rsQ

†
sb (14-73)

with the transformation matrix defined in Eq. (14-10). Note that the transformation
specified in Eq. (14-73) connects local and “canonical” amplitudes which eventually
live in different vector spaces; the true canonical amplitudes are only obtained if
no truncations to excitation domains are introduced. For a detailed discussion of
transformation relations between the canonical orbital space and the local redundant
orbital subspaces we refer to Ref. [75].

Differentiation of the Lagrangian (cf. Eq. (14-72)) with respect to orbital varia-
tions yields equations for the multipliers zloc

ij , zai, and xpq, which can be decoupled

from each other (see Ref. [36] for details). The equations to be solved for the zloc
ij and

zai are the coupled perturbed localization (Z-CPL) and coupled perturbed HF (Z-
CPHF) Z-vector equations of the interchange technique, but now straightforwardly
obtained. The Z-CPL equations must be solved before the Z-CPHF equations since
the r.h.s. of the latter depends on the zloc

ij . Finally the xpq, which depend on both the

zloc
ij and the zai, are calculated directly afterwards (no iterative scheme is needed to

get the xpq).
Due to the stationarity of the Lagrangian (Eq. (14-72)), its derivative with

respect to the perturbations (which is identical to energy gradient) is just the partial
derivative with respect to these perturbations. It can be written in the form

Lq = Eq
2 = E(q)

2 +
∑

ai

zaif
(q)
ai +

∑

i>j

zloc
ij r(q)

ij +
∑

pq

xpq[C†Sq
AOC]pq , (14-74)

and evaluated immediately after all the multipliers are determined. In Eq. (14-74)
the subscript (q) indicates that the corresponding quantity is evaluated as usually, but
with the AO integrals hμν , (μν|ρσ ), (SAO)μν replaced by the corresponding deriva-
tive AO integrals hq

μν , (μν|ρσ )q, and (Sq
AO)μν , respectively. Equation (14-74) can

be rearranged such that all terms to be contracted with a certain derivative integral
type are collected into a single term, yielding finally for the total (HF plus LMP2)
gradient

[EHF + E2]q =
∑

μν

(dμνh
q
μν + Xμν(S

q
AO)μν ) + 1

2

∑

μνρσ

Dμν,ρσ (μν|ρσ )q. (14-75)

Here, the effective one- and two-particle density matrices dμν and Dμν,ρσ , as well
as the quantity Xμν = [CxC†]μν are introduced. For a detailed definition of these
objects we refer to eqs. (38), (43), and (44) of Ref. [36]. Dμν,ρσ consists of two
parts, the non-separable correlation part, which is essentially the back-transform of
the local MP2 amplitudes into the AO basis, and the separable HF part. The back-
transformation is actually one of the most expensive steps of conventional (non-
local) MP2 gradient calculations.

A key feature of the density-fitted LMP2 gradient described in Ref. [36] is the
consequent use of density fitting, also for the HF part [125]. Therefore, unfactorized



Local Correlation 377

two-electron derivative integrals (μν|ρσ )q never appear. In fact, the only 4-index
quantity in the present DF-LMP2 implementation is the compact set of local ampli-
tudes Tij

rs. This set is half-contracted with the related fitting coefficients to form the
3-index key quantity

VA
ir =

∑

j

∑

s∈[ij]

T̃ ij
rsd

js
A , (14-76)

immediately after the preceeding LMP2 energy calculation, i.e., at the very begin-
ning of the gradient step. Analogous key quantities appear also in density-fitted
LCC2 and time-dependent LCC2 response theory (cf. Eq. (14-90) below). The con-
traction of the non-separable part of the two-particle density matrix with the 4-index
electron repulsion derivative integrals of Eq. (14-75) now simplifies to

ΔEq
2 = 4

∑

A

∑

μν

(μν|A)qVA
μν − 2

∑

AB

Jq
AB

∑

i

∑

r∈[i]U

VA
irdir

B , (14-77)

with VA
μν representing the VA

ir quantity back-transformed to the AO basis, and [i]U
denotes the united pair domain introduced after Eq. (14-37). Hence, instead of a
4-index transformation, just a two-index back-transformation is required, and just
3- and 2-index (rather than the usual 4-index) electron repulsion derivative integrals
are needed in the subsequent contraction.

The density-fitted LMP2 gradient program has also been parallelized in a simple
way, based on a shared-files approach (the scratch files containing integrals and
amplitudes reside on a common shared file system). It is an efficient workhorse to
produce optimized geometries of extended molecular systems at the level of local
MP2. Since the correlation component of the gradient is not more expensive than
the related density-fitted HF part, optimizations at the LMP2 level are also feasible,
whenever they are feasible at the corresponding HF level.

14.5. LOCAL METHODS FOR EXCITED STATES

In EOM-CCSD theory the mth electronic excited wave function Ψ m is generated
from the ground state CCSD wave function by an operator R̂m

Ψ m = R̂meT̂Φ0, where R̂m = R̂m
0 + R̂m

1 + R̂m
2 . (14-78)

This operator has the same structure as the cluster operator T̂ in the CCSD ground-
state wave function. Therefore, at a first glance, all approximations applied before
to develop a local approach for the ground state can be directly transferred to treat
excited states. In reality, the situation is much less comfortable. The reason for this
will be clear if we compare the importance of single and double excitations in the
operators R̂m and T̂ . For the ground-state wave function of CCSD theory, exp (T̂)Φ0,
the T̂ operator corrects the existing HF reference Φ0, so the norm of this operator is
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an order(s) of magnitude less than 1. Additionally, a relative importance of double
excitations is larger than that of singles, since in the MP expansion of the CC wave
function the single excitation operators appear for the first time in the second-order
wave function. This means that in the development of local methods an accurate
treatment of T̂2 is crucial for a proper account of the electron correlation, while T̂1
can be treated more approximately.

For excited states dominated by the promotion of a single electron from the
ground state7 the relative importance of single and double excitations is reversed.
The R̂m operator creates a wave function which has a small (if any) overlap withΦ0,
so the norm of R̂m is of the order of 1, and in particular the norm of the R̂m

1 operator
is usually well above 0.9. Double excitations contained in R̂m

2 should be, however,
included, since errors resulting from a neglect of R̂m

2 can be of order of 1 eV (see the
configuration interaction singles (CIS) [148] method, which is equivalent to coupled
cluster singles – CCS – for the excitation energies).

Also the MP analysis of the second-order dynamic properties of time-dependent
CCSD theory (TD-CCSD) accentuates the difference in the relative importance of
single and double substitutions for the ground-state and perturbed excitation oper-
ators. For example, the perturbed singly-excited operator appears already in zeroth
order of MP theory (double excitations are of first order). Knowing that excitation
energies of TD-CCSD (and EOM-CCSD) theory are poles of the TD-CCSD linear
response function, calculated with the neglect of orbital relaxation, one might expect
a large influence of local approximation on the quality of these poles. Fortunately,
using a pilot implementation of the local EOM-CCSD method [40], it has been
shown that the problem is not so acute as it could be feared, and that for low-lying
excited states it is possible to construct local excitation spaces which are sufficient
to reproduce nonlocal excitation energies with a good accuracy.

14.5.1. Local EOM-CCSD

In EOM-CCSD theory [19] the excitation energy ωm is obtained by solving the
following equation

[e−T̂ ĤeT̂ ,R̂m]Φ0 = ωmR̂mΦ0, (14-79)

where the wave function of the m-th excited state is given in Eq. (14-78) and T̂ is
the CCSD cluster operator. In practice the Davidson method generalized to non-
symmetric matrices [149, 150] is used to solve Eq. (14-79) iteratively, and the main
computational effort – similarly to the ground-state case – goes into the calculation
of residuals, which should be equal to zero for converged R̂m and ωm

7 Only electronic states dominated by single excitations can be obtained reliably with EOM-CCSD for
molecules containing more than 2 electrons. Electronic states dominated by double excitations are also
formally available, but their accuracy is questionable.
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vi
p =〈Φ̃ i

p|
(
[e−T̂ ĤeT̂ ,R̂m] − ωmR̂m)|Φ0〉 ∀i ∈ o, ∀p ∈ v,

Vij
pq =〈Φ̃ ij

pq|
(
[e−T̂ ĤeT̂ ,R̂m] − ωmR̂m)|Φ0〉 ∀i ≥ j ∈ o, ∀p,q ∈ v. (14-80)

It is worth to notice that in the EOM-CCSD approach several excited states can be
obtained at the same time.

As outlined above the main challenge of the local methods for excited states is
a proper description of single excitations. Contrary to the ground state, one cannot
assume any longer that excitations are limited to PAOs that are spatially close to
the LMOs, from which the excitation takes place (a prominent example are charge-
transfer states). In fact, calculations of excitation energies using standard domains
and pair lists from LCCSD yield a very poor description of excited states, even
for the lowest ones (the excitation energies are worse than in CIS) [151]. A simple
extension of all orbital domains by neighbouring atoms might help for a few lowest
valence states, but eventually this brute force method will fail for efficiency reasons.
It turns out that in order to select more precisely the appropriate orbital domains, the
local EOM-CCSD (LEOM-CCSD) method should be state-selective, since for one
particular state it is easier to adapt the excitation space appropriately.

14.5.1.1. Local Excitation Space in LEOM-CCSD

Since in EOM-CCSD theory only states dominated by single excitations are of prac-
tical interest, it is legitimate to assume that the main features of these states are
already described at the level of some simpler theory, like CIS. If the CIS wave
function bears the main characteristics of the exact function (i.e. to which regions of
a molecule goes the main part of the excitation etc.), one can select a priori orbital
domains that are specific for the excited state of interest. Practically this is done by
an analysis of the excitations from a given LMO φi in the corresponding CIS wave
function Ψ m

CIS. This can be represented by an excitation into a single orbital

φ∗i =
∑

a

ci
aφa, (14-81)

where ci
a are the expansion coefficients from Ψ m

CIS. The squared norm of φ∗i has a
meaning of a weight of the excitation from a given LMO (the sum of all weights
is one). LMOs are divided into important and unimportant ones for a given excited
state m, based on their contribution to the excitation. The LMOs are ordered accord-
ing to their decreasing weights, then a set of important orbitals is created in such
a way that LMOs are added as long as the sum of weights of included LMOs is
smaller than some prescribed number κe (usually κe = 0.9975). The normalized
orbitals from Eq. (14-81) (which can be thought of as natural virtual orbitals –
NVO – for a given excitation) are utilized in the Boughton-Pulay procedure for cre-
ating excitation orbital domains, i.e. the orbital φ∗i replaces the old localized φi in
Eq. (14-13). The excitation domain for the orbital φi (denoted as [i]∗) is a union of
the orbital domain [i] for the ground state and the part resulting from the Boughton-
Pulay procedure for the corresponding NVO. The latter part is added for important
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LMOs only. The possibility of excitations into the ground-state orbital domain [i]
allows for a relaxation of the hole remaining after the excitation from φi and makes
it possible to minimize the electron repulsion after the excitation on a given molecu-
lar fragment took place. The excitation space for singles in LEOM-CCSD is always
larger that for the underlying LCCSD method, reflecting the fact that the singles
contribution in the excitation operator R̂m is responsible for the main part of the
excitation energy.

An appropriate treatment of double excitations is nonetheless an indispensable
part of the LEOM-CCSD approach. Similarly to the ground-state case the pairs (ij)
are divided into classes and the excitations are allowed to the union of the excitation
domains [i]∗ and [j]∗ only. A division into strong and weak EOM-CCSD pairs is
performed, and only excitations from strong pairs are allowed. The usual selection
criteria for the EOM-CCSD strong pairs are the following: either the pair should be
diagonal, or (i) at least one LMO in a pair should be important, and (ii) the distance
of these two LMOs should be less than some prescribed value (the distance between
two LMOs is defined as described in Section 14.2.1.1).

14.5.1.2. Treatment of T̂2 in Local EOM-CCSD

The energies of the excited states in EOM-CCSD theory are obtained from a diag-
onalization of the similarity-transformed Hamiltonian e−T̂ ĤeT̂ projected on singly
and doubly excited CSFs, denoted here collectively as μ. An important feature of
EOM-CCSD is the decoupling of the excitation part of the matrix representation of
the similarity-transformed Hamiltonian from the reference determinant. This relies
on the fact that the elements Vμ = 〈Φ̃μ|e−T̂ ĤeT̂ |Φ0〉 of this matrix are equal to
zero for converged CCSD amplitudes (μ denotes here symbolically indices for sin-
gle or double excitations). In the space composed of the reference determinant Φ0
and excited CSFs, |q〉〈q| = |Φ0〉〈Φ0| ⊕ |μ〉〈μ| we therefore have

〈q|e−T̂ ĤeT̂ |q〉 =
(
〈Φ0|e−T̂ ĤeT̂ |Φ0〉 〈Φ0|e−T̂ ĤeT̂ |μ〉

0 〈μ|e−T̂ ĤeT̂ |μ〉

)
, (14-82)

so that only the 〈μ|e−T̂ ĤeT̂ |μ〉 part of Eq. (14-82) needs to be diagonalized in order
to obtain energies of excited states. However, since domains and pair lists for the
LEOM-CCSD and LCCSD methods are usually not identical, there will be nonzero
residual elements Vμ for μ which are present in the excitation space for LEOM-
CCSD, but absent in LCCSD. One obvious remedy to this problem is a recalculation
of the T̂ operator in the LEOM-CCSD space. However, this approach has two major
drawbacks: first, this procedure should be repeated for each excited state, leading to
an increase of the computational cost; secondly, the LCCSD correlation energy will
slightly change from one excited state to another. Therefore, a simpler procedure
has been devised in order to approximately counterweight double excitations in R̂m

and T̂ operators: in the local EOM-CCSD calculation we include LMP2 amplitudes
for those pairs (ij), which are strong in local EOM-CCSD, but weak in LCCSD.
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We have found that this method allows for a proper balance of these two operators
without a substantial increase of the computational cost.

Since the structure of EOM-CCSD residual equations is similar to that for the
ground-state case, most arguments related to lowering of the computational effort
applies also for this case. Some notable differences include the relative importance
of some types of integrals, e.g. the 2-external Coulomb integrals should be treated
on the same footing as the 2-external exchange integrals, since both appear in the
main, CIS-like, term of the residual equations [152]. Moreover, if for some excited
state the excitation is well localized in one part of a molecule, the number of strong
excited pairs may be even independent of N (provided that the requirement to
include all diagonal pairs is lifted). In practice, since excited domains are often
much larger than orbital domains, such an ideal situation is rarely observed.

14.5.1.3. State-Specific Character of Local EOM-CCSD

The small space constructed during the Davidson iterations is created first by mak-
ing initial guesses for the excited states and then by calculating updates in each
iteration from the energy-weighted residuals. This space contains approximations
not only for the desired state, but represents to some extent several other excited
states. In the LEOM-CCSD method these states, which are not very well described
in the local excitation space tailored for a particular state, are usually shifted to
higher energies. It often happens that a state, which is energetically lower than
the state under consideration in the canonical EOM-CCSD theory, is represented
so poorly in the local space, that the order of excited states in the small Davidson
space is changed. In order to locate the selected state, a root-homing algorithm [153]
has been implemented by a modification of the nonsymmetric Davidson iterative
method. In this algorithm the overlap of the eigenvectors of the small Davidson
space with the sample vector (usually the CIS vector) is calculated in each iteration
and the vector with the largest overlap is selected for an update.

14.5.2. Local CC2 Response Theory

The CC2 model [20] is the simplest CC-type method which can be applied in the
framework of time-dependent CC response theory. It is appropriate to describe
electronic excited states which are dominated by single promotions of an electron
from the ground state. The computational scaling of CC2 is similar to MP2, but –
opposite to MP2 – the CC2 formalism allows for an unambigous formulation of
molecular properties. In particular, excitation energies are defined as poles of the
TD-CC2 linear response functions, while transition moments can be retrieved from
their residua [143].

A density-fitted version of CC2 response (DF-CC2, also called RI-CC2), utiliz-
ing density-fitting techniques for an approximate calculation of ERIs, allows to treat
excited states of medium-size molecules (containing about 25 non-hydrogen atoms)
[132, 154, 155]. Despite density-fitting the DF-CC2 method has some parts of the
code which still scale as O(N 5). In order to lower the scaling behaviour of the CC2
model local approximations can be introduced.
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In CC2 the singly-excited operator T̂1 is treated as a quantity of the zeroth MP
order [20]. A strong support for such a “privileged” treatment comes from MP the-
ory (the high second MP order of the T̂1 operator is a result of a fulfillment of the
Brillouin’s theorem (fia = 0) by the HF reference determinant, while the response to
any one-particle perturbation operator gives a contribution already in the zeroth MP
order). Since (as already noted) inclusion of explicit orbital-relaxation constraints
into the time-averaged second-order CC2 Lagrangian would lead to additional spu-
rious poles in the linear response functions, it is much preferable to let exp (T̂1)
taking over this role. Consequently, in the local CC2 (LCC2) response formalism
[41–44] local approximations are applied to doubly-excited operators only, while
single excitations remain unrestricted, like in the canonical case.

Equations for the CC2 model are most easily described in terms of a dressed

Hamiltonian operator ̂̂H, which is defined as exp ( − T̂1)Ĥ exp (T̂1). For the local
case the CC2 equations take the form

〈μ1|̂̂H + [̂̂H,T̂ loc
2 ]|Φ0〉 = 0,

〈μloc
2 |̂̂H + [F̂,T̂ loc

2 ]|Φ0〉 = 0, (14-83)

and

ARm = ωmMRm, LmA = ωmLmM, (14-84)

for ground and excited states, respectively, where A is the LCC2 Jacobian,

Aμiνj =
⎛

⎝ 〈μ1|[̂̂H,τ̂ν1 ] + [̂̂H,τ̂ν1 ],T̂ loc
2 ]|Φ0〉 〈μ1|[̂̂H,τ̂νloc

2
]|Φ0〉

〈μloc
2 |[̂̂H,τ̂ν1 ]|Φ0〉 〈μloc

2 |[F̂,τ̂ν loc
2

]|Φ0〉

⎞

⎠ , (14-85)

and M the metric matrix (in the canonical space the latter equates to the identity
matrix). The τ̂νi symbols denote one- or two-particle excitation operators for i =
1,2, respectively. Even though no a priori local approximations are imposed on the
singles (such that the nominal scaling of the singles terms is O(N 4)), the locality of
the orbital basis still leads to a lower asymptotic scaling due to prescreening in the
calculation of the individual singles terms. In practical examples, an overall scaling
around O(N 2) was observed.

14.5.2.1. Configurational Space for LCC2 Response

As in all other local methods described here, LMOs and PAOs are utilized to span
occupied and virtual orbital spaces, respectively. Since in LCC2 no local approxi-
mations are introduced for single excitations, ground-state orbital [i] and excitation
orbital [i]∗ domains are created only for the purpose of defining pair domains [ij]
and [ij]∗ for double excitations, which are as usual formed as a union of the corre-
sponding orbital domains. These domains can be further modified if necessary (vide
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infra). For the ground state, the orbital domains and the hierarchy of orbital pairs
(ij) are constructed on the base of spatial vicinity criteria, similarly to the LMP2
case (the pairs are called strong in this case if the interorbital distance is smaller
than 10 bohr and only such pairs are considered in ground-state CC2 calculations).
Orbital excitation domains for a given excited state are initially constructed using
the same procedure as in LEOM-CCSD (see Ref. [40] and Section 14.5.1). In this
way the quality of the LCC2 calculation is determined by an initial guess of the
domains and pair lists. In Ref. [42] a refinement of the orbital excitation domains
has been proposed, which is based on an analysis of coupled-perturbed localization
equations. This domain extension has been necessary in order to improve the local
treatment of CC2 first-order properties. A more robust way of adapting pair domains
[43] is based on a Löwdin-like analysis of the yet-unconverged Rii

pq amplitudes of a
given excited state (in the following we skip the superscript numbering the excited
state), i.e. diagonal parts of the doubly-excited amplitudes (where i denotes an LMO,
p,q are calculated in the unrestricted orbital basis). Since in the local CC2 response
method only double amplitudes are treated locally, this approach allows to estab-
lish the domains from an analysis of the object which is to be approximated. The
construction of such domains is only possible in case of the Laplace-transformed
formulation of LCC2 (vide infra). Rii

pq is a 3-index object and its calculation for the

CC2 case then is not expensive despite its O(N 4) formal scaling, since the quantity
can be calculated with very rough approximations, like fewer integration points in
the Laplace transform and large prescreening thresholds. To this end a quantity di

A,
defined as

di
A =

∑

p∈[A]

∑

qrr′s
S1/2

pq Rii
qrSrr′R

ii
r′sS

1/2
sp , (14-86)

is constructed, which condenses the information about the distribution of the exci-
tation for the LMO i among the atoms A of the molecule. Based on

∑
A di

A a set of
important orbitals is determined in analogy to the LEOM-CCSD case (but usually a
more tight parameter κe = 0.999 is utilized). Then the BP procedure is performed,
see Eq. (14-13), where ϕi and ϕ′i represent, for a given excited state, the whole dou-
ble excitation from the LMO i for untruncated and truncated domains of diagonal
double amplitudes, respectively, i.e.

ϕ′i(r) =
∑

rs∈[ii]∗
φr(r)φs(r)Rii

rs. (14-87)

The domains obtained on the basis of the analysis of the diagonal part of doubles
amplitudes are denoted Laplace domains.

It should be stressed that as a consequence of the domain refinement several
additional steps apart from the calculation of the next residual should be performed.
Since these steps are quite expensive, it is important to reduce the number of such
domain re-specifications to a necessary minimum. The additional operations after
each of these refinements comprise a modification of the data specifying domains
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and pair lists. It should also be mentioned that some intermediates cannot be precal-
culated before the LCC2 iterations if domain modifications are enabled, even if they
formally do not depend on R̂m

2 (or alternatively, they have to be calculated in the full
orbital space). After the domains and the pair list are altered, the old vectors from
the Davidson trial space are still expressed with reference to the old local excitation
space and thus should be projected onto the new configurational space. Usually,
domain refinement is carried out only as part of the Davidson refreshment proce-
dure.8 Hence, the domain change is performed together with the Davidson refresh if
the analysis of the approximate excited states indicates large shifts of the excitations
in comparison to the initial local configurational space, i.e., if the overlap between
the first Davidson basis vector for a particular state and the actual approximation of
that state falls below a certain threshold (usually 0.5).

After the excitation domains are known, double excitations from LMO pairs φi

and φj are divided into strong and weak, and only excitations from strong pairs are
allowed. The strong pair list in the LCC2 case consists of two groups of pairs: the
first group comprises all pairs between important orbitals (regardless their interor-
bital distance), and the second group is composed of pairs, which have at least one
unimportant LMO. The additional restriction applied to the pair (ij) from the second
group is that a interorbital distance should be smaller than a prescribed threshold
(usually 5 bohr). Since the number of important LMOs for a given excited state is
independent of the molecular size, the number of strong pairs is governed by the
second group which scales linearly with N . The dimensions of the pair domains
are independent of the size of the molecule, so finally the number of doubly-excited
configurations grows like O(N 1). Single excitations are not restricted in LCC2, so
their number scales as O(N 2). However, for sizes of molecules which can be treated
by LCC2, single excitations so far do not constitute any bottleneck.

14.5.2.2. Notes on the Implementation of DF-LCC2 Response

An efficient formulation of the CC2 equations is based on dressed operators. The
dressed electron-repulsion integral is calculated according to the equation

(vw|̂xy) =
∑

μνρσ

(μν|ρσ )Λp
μvΛ

h
νwΛ

p
ρxΛ

h
σy, (14-88)

where Λp and Λh are modified matrices of MO coefficients,

Λp = [L||(P − Lt†
1S], Λh = [(L + Pt1||P], (14-89)

and v,w,x,y denote general indices (LMOs and PAOs). These matrices, where t1
denotes the NAO × Nocc matrix of the singles amplitudes, are rectangular with the

8 The Davidson refreshment procedure consists of a selection of the best approximation for a desired
vector and the removal of all other vectors from the small Davidson space. It is usually performed when
the dimension of this space reaches some maximum allowed value.
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dimensions NAO × (NAO + Nocc). In DF-LCC2 the 4-index integrals are replaced
by Eq. (14-68). In the present DF-LCC2 program local fitting domains (see Section
14.3.1) are not yet implemented, so further improvements of the scaling properties
can still be expected within this approach.

An efficient utilization of DF requires that a proper factorization of the LCC2
equations is achieved. The complete working equations for DF-LCC2 are given in
Ref. [41] (for right eigenvectors of the Jacobian) and Ref. [42] (for left eigenvectors
and first-order properties, including transition moments). Here we only briefly anal-
yse one representative term of the residual equations from the former paper. One of
the most expensive parts of the product

∑
ν2

Aμ1ν2 Uν2 (where Uν2 is a doubles basis
vector spanning the Davidson subspace) is the term

WA
ip =

∑

kq

(2Uik
pq − Uik

qp)dA
kq, (14-90)

where dkq
A is defined according to Eq. (14-58). Without localization the cost of the

calculation of this intermediate scales as O(N2
AONfitN2

occ), i.e., with the fifth power
of N . The localization of the double amplitudes reduces this scaling to O(N 2),
since the number of strong pairs scales linearly with N , while the dimension of the
[ik]∗ domains is independent of N . Furthermore, after introducing local fit domains
O(N ) scaling can eventually be achieved.

14.5.2.3. Laplace-Transform LCC2 Response

The canonical equations for the CC2 residuals can be rewritten [132] by utilizing the
Löwdin partitioning technique in such a way that any storage of double amplitudes
is avoided. The cost of this approach is the introduction of an effective Jacobian in
the singly-excited space, which is dependent on the unknown excitation energy for
the excited state under consideration,

Aeff(ωm)μ1ν1 = Aμ1ν1 +
∑

μ2

Aμ1μ2 D(ωm)−1
μ2

Aμ2ν1 ; Aeff(ωm)rm
1 = ωmrm

1 , (14-91)

where μn denotes the n-fold excitation index. In this approach the diagonal form of
the doubles-doubles Jacobian block Aμ2ν2 ≡ δμ2ν2�μ2 is utilized. The key quan-
tity in Eq. (14-91) is the diagonal matrix D−1(ωm) containing energy denominators
shifted by the (approximate) excitation energy ωm of the mth excited state

D(ωm)−1
μ2

= − 1

Δμ2 − ωm
= − 1

εa + εb − εī − εj̄ − ωm
, (14-92)

where ī,j̄ denote the canonical occupied orbital indices. The utilization of Eq.
(14-91) within the initial formulation of the LCC2 response method [41, 42] is
not possible because of the nondiagonal character of the Fock matrix in the local
basis. However, recently [43, 44, 75] this obstacle has been circumvented by the
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utilization of the Laplace transform (LT) for energy denominators [156, 157]. The
LT identity 1/x = ∫ ∞

0 exp (− xt)dt is applied to Eq. (14-92), then the integration
over t is replaced by the numerical integration with points tq and weights wq of the
quadrature (usually just a few nq points are sufficient in the numerical quadrature)

1

Δμ2 − ωm
=

∫ ∞

0
e−Δμ2 teω

mtdt ≈
nq∑

q=1

wqe−Δμ2 tq eω
mtq . (14-93)

The replacement of the energy denominator by the product of exponents depen-
dent on a single orbital index opens the possibility for a factorization of the
expressions containing this quantity. In particular, Eq. (14-93) serves as a spring-
board to develop a fast and robust multi-state LT-DF-LCC2 method. After Eq.
(14-93) is inserted into Eq. (14-91) the canonical orbitals from μ2 = (ī j̄ab) can
be back-transformed to the local basis of LMOs and PAOs by the utilization of the
appropriate transformation/projection matrices [43, 75]. These matrices have the
form

Xo
ij(q) =

∑

ī

W̄†
iī

exp ((εī − εF)tq + 1

4
ln |wq|)W̄īj,

Xv
pq(q) =

∑

a

Q†
pa exp (( − εa + εF)tq + 1

4
ln |wq|)Qaq,

Yv
pq(q) =

∑

rs

VprXv
rs(q)V†

sq,

(14-94)

and can be shown to be sparse [75]. Here, W̄ is the usual unitary transformation
matrix specified by the chosen localization criterion which transforms from the
canonical occupied orbitals to LMOs, whereas Q transforms from canonical virtual
orbitals to PAOs. Although not shown explicitly in Eq. (14-94), V corresponds to a
pseudo-inverse of the corresponding block of the PAO overlap matrix, as used for
local double excitations. The result of the multiplication of Aeff by the right vector
rm has the form

∑

ν1

Aeff
μ1ν1

rm
ν1

=
∑

ν1

Aμ1ν1rm
ν1
−

∑

ipjq

∑

krls

Aμ1 ipjq

nq∑

q

sgn(wq) exp (ωmtq)

× Yv
pr(q)Yv

qs(q)
(∑

ν1

Arksl ν1 rm
ν1

)
Xo

ki(q)Xo
lj(q).

(14-95)

Once the effective Jacobian has been expressed in the local quantities, the usual
approximations can be performed to the local configurational space for doubles.
Note that since the double part of the LCC2 excitation vector does not enter the small
Davidson space and is calculated on-the-fly while obtaining the effective Jacobian,
a treatment of several local states simultaneously (each with its own local double
space!) becomes easily possible. In many cases such a possibility greatly improves
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the convergence of the Davidson iterations. The absence of double CSFs in the
Davidson space greatly facilitates the tuning of the domains (in fact, the domain
refinement as described above is implemented in the framework of the LT-DF-LCC2
response method only).

For the calculation of transition strengths and (orbital-unrelaxed) first-order prop-
erties of the excited states further equations have to be solved [42, 44]. Apart from
the right and left eigenvectors of the Jacobian, Rm, Lm, the Lagrange multipliers
Λ and Λm for ground and excited state are needed for the first-order properties.
Another set of multipliers M̄

m
(ωm) is needed for the transition strengths S0m

XY , which
are calculated as the individual residuals of the linear response function 〈〈X;Y〉〉ωY ,

S0m
XY = lim

ωY→ωm
(ωY − ωm)〈〈X;Y〉〉ωY . (14-96)

The multipliers M̄
m

(ωm) satisfy the linear equation system

0 =
∑

νj

M̄m
νj

(ωm)
(
Aνjμi + ωmMνjμi

) +
∑

νj

FμiνjR
m
νj

(14-97)

(the matrix F is the second derivative of the time-averaged second-order CC2
Lagrangian with respect to the Fourier components of the first-order amplitudes).
All these equations including the last one (apart from the right eigenvalue prob-
lem yielding Rm) involve left trial vector × Jacobian vector-matrix products.
Fortunately, the Laplace transform can be applied also here. For simplicity we just
consider here the case with the most simple r.h.s., i.e., the equations specifying the
Lagrange multipliers for the ground state. These satisfy the linear equation system

−ημi =
∑

νj

Λνj Aνjμi , where ημi = 〈Φ0|[̂̂H,τ̂μi ]|Φ0〉. (14-98)

After the LT is applied the equation above transforms into

−ημ1 =
∑

ν1

Λν1 Aν1μ1 −
∑

ijpq

∑

klrs

( nq∑

q=1

sgn(wq)Xo
ki(q)Xo

lj(q)

× (
ηipjq +

∑

ν1

Λν1 Aν1 ipjq
)
Yv

pr(q)Yv
qs(q)

)
Arksl μ1 .

(14-99)

The quantity in parenthesis is the negative of the doubly-excited part of Λ. It is cal-
culated on-the-fly and stored for later use in the last iteration. A similar treatment is
straightforwardly possible for other doubly-excited operators appearing in the defi-
nitions of CC2 first-order properties and transition strengths, including Eq. (14-97)
(cf. eq. (22) in Ref. [44]).

Finally, a few words about the quality of local approximations for the CC2
case are appropriate. The agreement with the canonical reference shows that the
excitation energies agree usually within 0.1 eV, which is a satisfactory result (the
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systematic errors resulting from the approximate treatment of double excitations and
the neglect of triple and higher excitations in CC2 are of order of 0.3 eV). On the
other hand, the dipole moments and oscillator strengths in the LCC2 are sometimes
obtained with an error of 10% or more, in particular if they are small. The situation
somewhat improves if domains are extended [42]. Nevertheless some more work is
needed for further improvements along this direction.

14.6. EXAMPLE APPLICATIONS

In this section we will first briefly summarize previous applications of our local cor-
relation methods for electronic ground states. All results that have been published so
far refer to closed-shell systems. Only very recently, LRMP2 and LUCCSD meth-
ods have been implemented (cf. Section 14.2.4). First results obtained with these
methods will be presented in Section 14.6.5. Another recent development is the
LCCSD(T)-F12 method, in which the local and explicit correlation approaches are
combined (cf. Section 14.2.5). Some representative results will be shown in Section
14.6.6. Finally, we will present some typical applications for electronically excited
states.

14.6.1. Equilibrium Structures, Vibrational Frequencies, and Other
Molecular Properties

We will start with the discussion of properties characterizing molecules at their
equilibrium structures. Geometry optimizations can be carried out using analytic
gradient methods, which have first been implemented for LMP2 [34], and later also
for LQCISD (local quadratic configuration interaction) [35]. A more efficient imple-
mentation of LMP2 gradients using density fitting [36] is also available. Optimized
equilibrium structures obtained with local methods are in excellent agreement to
those obtained with their canonical counterparts. Typically, bond lengths are slightly
longer, which has been attributed to reduced intramolecular basis set superposition
errors (BSSE) in the local calculations [34–36].

A problem which has often been discussed in the literature [56, 85, 86] is the
fact that the domains may change as function of the geometry. This can lead to
discontinuities on potential energy surfaces. The easiest way to avoid this problem
is to freeze the domains (cf. Section 14.2.1.1). It has been found that optimized
structures are very insensitive to the choice of domains, and therefore it is uncritical
at which geometry they are selected and frozen [85].

The impact of local approximations on vibrational frequencies has been studied
in a number of papers [158–162]. In most cases, the effect of local approximations is
small. However, for some modes, e.g., out-of-plane vibrations of mono-substituted
benzenes such as phenol, benzaldehyde, and fluorobenzene, striking differences of
over 40 cm−1 between the frequencies obtained with local and canonical MP2 meth-
ods were found, and in all cases the LMP2 values were in better agreement with
experimental values [161]. Overall, the errors of LMP2 frequencies were smaller
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and more systematic than the MP2 ones [158, 161]. This was attributed to the
reduced BSSE in the local calculations.

In the absence of analytical second derivatives harmonic vibrational frequencies
can only be computed by finite differences of gradients. The calculation of the gradi-
ents for different displacements can be easily parallelized [162]. Using the efficient
DF-LMP2 gradient method [36] it is then possible to compute harmonic vibrational
frequencies for rather large molecules, e.g. testosteron using the cc-pVTZ basis
set [161]. Furthermore, many-dimensional potential energy surfaces can be auto-
matically generated and used to compute accurate anharmonic frequencies, even
using the LCCSD(T0) method [162]. The most important outcome of this study
was that local correlation methods (with frozen domains) can safely be used for the
calculation of larger fractions of multi-dimensional potential energy surfaces; fur-
thermore, it was shown that the non-iterative (T0) approximation works well in such
calculations.

Other properties such as dipole moments and dipole polarizabilities [37] have
already been discussed in Section 14.4 and will not be repeated here. We note that a
pilot implementation of a GIAO-LMP2 method for the calculation of NMR chemi-
cal shifts has also been presented [163]. Test calculations showed that the deviations
between GIAO-LMP2 and GIAO-MP2 are small, e.g., for 13C typically less than
1 ppm, and that the GIAO-LMP2 approach holds great promise for application to
larger molecules.

14.6.2. Reaction Energies and Conformational Energies

In contrast to equilibrium properties, the choice of the domains can have a signifi-
cant impact on reaction energies, since the electronic structure and the domains may
differ in the reactants and products. In some cases it may require some experimen-
tation to achieve a balanced treatment. Normally, the domain error is very similar at
the LMP2 and LCCSD levels. The recommended approach is therefore to test the
domain approximation by comparing MP2 and LMP2 results before carrying out
the much more expensive LCCSD(T) calculations. The accuracy can usually be sig-
nificantly improved by adding the MP2-LMP2 energy difference to the LCCSD(T)
results.

Nevertheless, a well defined computational model is difficult to establish. This is
certainly the most severe disadvantage of local correlation methods, even though it
often happens that due to the reduction of BSSE local methods yield better results
and faster convergence with the quality of the basis set than canonical methods.
However, in cases where BSSE helps to improve the accuracy, the opposite can be
true as well. These effects have been discussed in detail in a previous review [82].

Extensive studies of reaction energies [38, 82, 131] have shown that on the aver-
age the accuracy of reaction energies obtained with CCSD(T) and LCCSD(T0) as
compared to experiment is not much different when triple-ζ basis sets are used.
Often the basis set error is larger than the error due to local approximations.
If larger basis sets are used and one aims at higher accuracy, the domain error
becomes more important. It can then be reduced by extending the domains [38,
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82, 131], but, as already mentioned in Section 14.2.1.1, this strongly increases the
computational cost.

A much better very recent solution to this problem is to combine local and explic-
itly correlated methods (cf. Section 14.2.5). This simultaneously reduces the domain
and basis set errors to an almost negligible amount and makes it possible to compute
accurate reaction energies for quite large systems. Some examples will be presented
in Section 14.6.6.

Local methods have also been used to study conformational energies of 95 con-
formers using MP2 and LMP2 methods and correlation consistent basis sets ranging
from double-ζ to augmented quintuple-ζ quality [164]. It was found that both
methods yield quite similar results, and the differences between MP2 and LMP2
decrease systematically with increasing basis set. Due to reduced intramolecular
BSSE effects, the LMP2 results converge more slowly to the basis set limit for most
of the smaller systems. However, for larger peptides, the BSSE has a very large
effect on the energy difference between extended and helical structures, leading to a
very strong basis set dependence of the canonical MP2 results. It was demonstrated
for alanine octapeptides that the basis set error exceeds 30 and 20 kJ/mol, respec-
tively, if augmented double-ζ and triple-ζ basis sets were used. On the other hand,
the LMP2 results were only slightly affected by the basis set size, and even with
augmented double-ζ basis sets reasonably accurate results were obtained.

14.6.3. QM/MM Calculations of Reaction Barriers in Enzymes

Another application of the LCCSD(T0) method was the accurate calculation of acti-
vation barriers (enthalpies and free energies) in enzymes, using QM/MM methods.
The first such calculations were carried out for chorismate mutase (CM) [165] and
p-hydroxybenzoate hydroxylase (PHBH) [165, 166]. In these studies the conver-
gence of the results with respect to all parameters (basis set, local approximations)
in the calculations were systematically studied. The calculations turned out to be
difficult since the electronic structure at the barriers were quite different from the
reactants. By comparing MP2 and LMP2 results it was found that the best approach
to obtain balanced results is to merge the domains at both structures, using proce-
dures described in Ref. [85]. Furthermore, the distance criterion for selecting close
pairs had to be significantly increased over the default values in order to get a con-
verged triples contribution to the barrier height. It should be stressed, however, that
these applications are at the limit of what is possible with single-reference methods;
the correlation effects are huge: the LCCSD(T) the barriers are reduced by a factor
of two as compared to the HF results, and about one third of this effect is due to the
triples. Nevertheless, excellent agreement (within 1–2 kcal/mol) with experimen-
tal values was achieved for both systems (obtained by taking the average of 10–15
snapshots).

It is noteworthy that accurate results for PHBH were also obtained using the
region approach, i.e., by correlating only a small part of the system near the reactive
site. Details of these calculations can be found in Ref. [87].
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Recently, LMP2 and LCCSD(T0) QM/MM calculations of energy and free
energy barriers for acetaldehyde conversion in aldehyde oxidoreductase were car-
ried out [167]. Relative energies were computed for various stationary points along
three different reaction pathways. The LCCSD(T0) results were found to be in qual-
itative agreement with DFT/B3LYP results. For some barriers, however, both MP2
and LMP2 yielded unreasonably high energies. This has been attributed to prob-
lems in the description of the Mo = S bond. It was suspected that the Mo(VI) →
Mo(IV) transition, with a developing Mo d2-configuration, could introduce some
multireference character that is not captured at the MP2 level.

An interesting application of LCCSD(T0) to transition state theory of polar reac-
tions in solution has recently been published by Harvey [168]. In this work it was
concluded that accurate ab initio calculations are now possible for systems with
50–100 atoms, but the prediction of rate constants remains still difficult. This may
be due to the remaining intrinsic error of the local coupled cluster method and to
deficiencies in the continuum solvent models applied.

14.6.4. Intermolecular Interactions

A very successful area of applications of local correlation methods is the calcula-
tion of intermolecular interaction energies. If a calculation of the local interaction
energy is performed, intermolecular orbital pairs are recognized automatically and
treated as strong pairs, independent on the interorbital distance. Since local methods
remove (to a large extent) intermolecular BSSE effects by construction, the applica-
tion of the counterpoise correction [169] is not recommended in the supermolecular
calculations. It was found that uncorrected LMP2 results are in close agreement with
CP corrected MP2 ones [24, 170, 171]. This is particularly useful for geometry opti-
mizations and has for example been used to optimize the geometry of water clusters
[171] and to determine an improved water potential [172]. More recently, stacking
interactions in the benzene dimer [173] and other systems [174–177] were exten-
sively studied using the LMP2 and LCCSD(T0) methods. It can be also noted that
with the DF-LCC2 approach it is possible to obtain virtually BSSE-free interaction
energies of excited-state noncovalent complexes. In one of the first works devoted
to this problem, Ref. [178], it has been confirmed that the elimination of the BSSE
by the local principle holds also for excited states (see table I from Ref. [178]).

We can also note that the local character of the LMOs and PAOs makes it possible
to split the correlation contributions to interaction energies into various parts, like
intramolecular, ionic, dispersion, and exchange-dispersion [171]. However, it should
be stressed that the two last contributions do not correspond to the identically named
components of symmetry-adapted perturbation theory of intermolecular interac-
tions [179]. This partition has been used to study and analyse aurophilic [180] and
other metallophilic interactions [181, 182]. Related energy analyses have also been
described by other authors [183, 184]. In addition, this classification is very useful
to understand the origins for the BSSE elimination in the local interaction energy.
To proceed with the explanation let us place the interacting molecules sufficiently
far from each other, so that the effect of polarization of one interacting molecule



392 T. Korona et al.

(A) by another (B) can be neglected and therefore one can assume that the set
of occupied orbitals for the composite molecule AB is just the union of occupied
orbitals of A and B. It is easy to see that the definition of local domains prevents
the inclusion of double excitations from the occupied orbitals of A, such that one
or both electrons are excited to the orbital domain of B (excitations of ionic and
doubly-ionic types, respectively). On the other side, “mixed” double excitations
from one occupied orbital of A and one occupied orbital of B are not restricted,
so e.g. the excitations from A to B are allowed, giving rise to the excitation classes
mentioned above. Ionic and doubly-ionic excitations, which are missing in the local
wave function, are mainly responsible for the BSSE in canonical wave functions
and are (approximately) eliminated by the counterpoise correction.

The DF-LMP2 gradient program [36] can also be applied to DF-SCS-LMP2
(spin-component scaled LMP2 [185]), which often gives better results for dis-
persion interactions than MP2. One very recent application of this program is
a mixed model potential/QM geometry optimization of the aniline (An) dimer
and trimer [186]. The model potential, adapted on-the-fly to QM energies, served
to perform a global search on the potential energy surfaces of An2 or An3, in
order to locate approximately possible structures for the minima. Afterwards, the
energetically lowest rough geometries were optimized using the DF-SCS-LMP2
method, employing the aug-cc-pVDZ and aug-cc-pVTZ AO basis sets. The orbital
domains were specified at large distances and kept unchanged during the optimiza-
tion of the dimer and trimer geometries. Several local minima could be identified,
which differ by a few kcal/mol. The global minimum of the dimer corresponds
to a head-to-tail NH-π arrangement of the two monomers, with both monomers
being nearly equivalent. Its interaction energy as found by DF-SCS-LMP2 amounts
to 7.2 kcal/mol, which agrees rather well with the DFT-SAPT estimate [186] of
7.7 kcal/mol. The lowest trimer geometry, on the other hand, features two direc-
tional NH-N hydrogen bonds. In contrast to the dimer the three chromophores are
clearly non-equivalent. As a consequence, three different electronic origins might
be visible in the absorption spectrum (provided that corresponding stable min-
ima exist for the excited state(s) and the related Franck-Condon factors are large
enough).

14.6.5. Open-Shell Local Coupled Cluster Calculations

In this section we present preliminary results using the new implementation of open-
shell local RMP2 and UCCSD methods [93]. To test the accuracy of these methods
we have computed ionization potentials (IPs) for molecules containing 2–78 atoms.
Some of the larger molecules are shown in Figure 14-2. It is expected that IPs are
sensitive to local approximations, since the neutral and ionic states must be treated
in a balanced way. Furthermore, since the number of electrons changes, electron
correlation effects are significant.

The IPs have been computed at the optimized LMP2 equilibrium structures of
the closed-shell molecules. In all calculations the cc-pVTZ basis set (without d-
functions on hydrogen atoms) has been used. The PM method has been utilized to
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Figure 14-2. Structures of some larger molecules

localize the orbitals, and the domains and pair classes were obtained using default
parameters (TBP = 0.985, Rvd = 15a0.) Table 14-1 shows the results obtained with
canonical and local RMP2 methods. In the latter case, the two options for orbital
localization described in Section 14.2.4 have been compared: in LRMP2(sd), the
orbitals are localized within the closed- and open-shell orbital subspaces, while in
LRMP2(ab) they are localized separately for α and β spin-orbitals. It is found that in
both cases the differences between the canonical and local methods are very small;
the mean absolute deviations are only 0.034 and 0.023 eV, respectively, for the (sd)
and (ab) variants. Despite the fact that the domains are usually smaller in the (ab)
variant, it yields in nearly all cases more accurate results. It is very satisfying to find
that the errors do not increase with molecular size.
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Figure 14-3. Total CPU times for DF-HF and DF-LRMP2 calculations of polyvinyl fluoride radicals.
The cc-pVDZ basis set has been used

Figure 14-3 shows the total CPU times (in seconds on Opteron 2380 2.5 GHz
processor) of DF-HF and DF-LRMP2 calculations for polyvinyl fluoride chains with
a radical position at one end. The DF-HF results are shown with and without local
fitting. As expected, the local fitting approximation (LDF) improves the scaling and
strongly reduces the CPU time for the large systems, both for HF and for LRMP2.
The DF-LRMP2 calculations take much less time than the DF-HF. If LDF is used
they show nearly linear scaling behaviour. The computational effort and scaling is
very similar for the (ab) and (sd) variants, and therefore the (sd) timings are not
shown.

Figure 14-4 demonstrates the scaling of the CPU times for the DF-LUCCSD(sd)
method. In this case the times per iteration are shown. The computational effort
for LUCCSD is strongly dominated by the calculation of the G(E) operators (see
Eq. (14-40)). Currently, these operators are still computed without local fitting, and
therefore there is significant potential for improvement. All remaining terms in the
residual take very little time and scale linearly with molecular size. Thus, approx-
imations which make it possible to neglect G(E) would be very useful. However,
such approximations have not yet been implemented and tested for the open-shell
LUCCSD method.

In Table 14-2 we present a comparison of ionization potentials computed using
UCCSD and LUCCSD. In this case the canonical UCCSD calculations are only
possible for the small systems. The results are very similar to the LRMP2 case: the
differences between the canonical and local results are uniformly small, and again
the (ab) scheme is somewhat more accurate. The effect of weak pair approximations
in the LUCCSD method is also demonstrated: if only strong pairs are included in
the LUCCSD and the remaining close and weak pairs are treated by LRMP2, the
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Figure 14-4. CPU times per iteration for DF-HF and DF-LUCCSD calculations polyvinyl fluoride
radicals. The cc-pVDZ basis set has been used

errors are approximately twice as large as in the LUCCSD calculation with all pairs.
However, the differences to the canonical values are still small; for the (ab) scheme
the mean absolute and maximum errors amount to just 0.032 and 0.068 eV, respec-
tively. Further more extensive benchmarks of the open-shell methods are currently
in progress and will be presented elsewhere.

Table 14-2. Ionization potentials (in eV) obtained with canonical and local UCCSD methods. The devi-
ations from the canonical values are given in parenthesis. The cc-pVTZ basis set (without d-functions
on hydrogen atoms) has been used

Strong pairs All pairs

Molecule UCCSD LUCCSD(sd) LUCCSD(ab) LUCCSD(sd) LUCCSD(ab)

HCl 12.542 12.544 (0.001) 12.544 (0.001) 12.544 (0.001) 12.544 (0.001)
H2O 12.443 12.433 (−0.010) 12.433 (−0.010) 12.433 (−0.010) 12.433 (−0.010)
HCHO 10.723 10.761 (0.038) 10.753 (0.030) 10.732 (0.009) 10.726 (0.003)
NH2NH2 8.190 8.197 (0.007) 8.192 (0.002) 8.159 (−0.030) 8.173 (−0.016)
CH3NH2 9.502 9.536 (0.033) 9.546 (0.043) 9.490 (−0.012) 9.490 (−0.012)
CH3CHO 10.493 10.551 (0.058) 10.544 (0.051) 10.505 (0.012) 10.501 (0.008)
CH3OCH3 9.983 10.057 (0.074) 10.051 (0.068) 10.002 (0.020) 9.993 (0.011)
C2H5OH 10.632 10.665 (0.033) 10.658 (0.026) 10.603 (−0.029) 10.613 (−0.019)
CH3CH2CH3 11.908 11.989 (0.081) 11.949 (0.042) 11.874 (−0.033) 11.884 (−0.023)
CH2CHCHCH2 9.154 9.222 (0.068) 9.201 (0.047) 9.119 (−0.035) 9.122 (−0.032)

Mean absolute error 0.040 0.032 0.019 0.014
Maximum error 0.081 0.068 −0.035 −0.032
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14.6.6. Explicitly Correlated Local Coupled Cluster Calculations

In this section the reduction of the basis set and domain errors by the explicit correla-
tion treatment will be demonstrated [187]. All calculations employ fixed amplitudes
(Eq. (14-51)), and the correlation factor was chosen to be γ = 1.0a−1

0 . The
triples correction was generally computed with the non-iterative (T0) approxima-
tion. Table 14-3 shows statistical data for a set of 50 reactions involving closed-shell
molecules only. This is the same set as used in Ref. [11], except that 4 reactions
involving only very small molecules have been omitted. All calculations have been
done with the VTZ-F12 basis set of Peterson [188]; as RI basis and for Coulomb
and exchange fitting in the DF-HF calculation we used the cc-pVTZ/JKFIT basis
sets of Weigend [124], while in the density fitting of all other integrals the aug-
cc-pVTZ/MP2FIT basis sets of Weigend [130] were employed. The orbitals were
localized by the PM procedure. In order to improve the localization, the contribu-
tions of the most diffuse function of each angular momentum have been removed
from the localization criterion.

The table shows the maximum (max) and root mean square (rms) deviations from
conventional CCSD and CCSD(T) extrapolated complete basis set (CBS) estimates,
obtained by fitting the correlation energy obtained with two basis sets to the formula
En = ECBS + An−3. In most cases, the aug-cc-pV5Z (n = 5) and aug-cc-pV6Z
(n = 6) basis sets were used in the extrapolations. For some reactions involving
larger molecules the calculations with the aug-cc-pV6Z basis were not possible, and
in these cases the aug-cc-pVQZ (n = 4) and aug-cc-pV5Z basis sets were used (cf.
Ref. [11]). For the local LCCSD-F12 and LCCSD(T0)-F12 calculations three cases
are compared: in the first case, only strong pairs are included in the LCCSD-F12; in
the second case also close pairs were included (these are all pairs in which the two
orbitals i and j are separated by 1 or 2 bonds), but the amplitudes of these pairs were
determined at the MP2 level and kept fixed in the LCCSD-F12 calculations. In the
last case all pairs were fully optimized in the LCCSD(T0)-F12 calculation.

Table 14-3. Maximum and root mean square deviations of total LCCSD-F12 and LCCSD(T0)-F12
reaction energies (in kJ/mol) from CCSD or CCSD(T) extrapolated basis set limits for a benchmark set
comprising 50 reactions of smaller molecules.a All F12 results include the CABS-singles correction of
the Hartree-Fock energy

LCCSD LCCSD(T) LCCSD-F12 LCCSD(T)-F12

Pairs in LCCSD max rms max rms max rms max rms

Strong 17.2 4.5 19.5 5.0 3.7 0.9 3.8 1.0
Strong+closeb 19.8 4.6 22.6 5.1 2.1 0.5 3.5 0.9
All 19.8 4.6 22.6 5.1 2.0 0.5 3.5 1.0
Canonical 12.2 3.3 12.1 3.3 2.9 0.6 2.2 0.5

a The reactions and CBS reference values can be found in Ref. [11]. In most cases the aug-cc-pV5Z and
aug-cc-pV6Z basis sets have been used in the extrapolations.
b Close pair amplitudes optimized by MP2 and kept fixed.
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The following conclusions can be drawn from the results: (i) Without explicit
correlation and with all pairs, the LCCSD and LCCSD(T0) results are slightly less
accurate than their canonical counterparts (as compared to the canonical CBS val-
ues). However, if only strong pairs are included in the LCCSD, the accuracy looks
better than for the canonical case, but this is due to an error compensation between
the domain error and the error caused by neglecting close pairs in the LCCSD. (ii)
In the explicitly correlated calculations, the inclusion of close pairs is essential to
obtain high accuracy. In this case the above mentioned error compensation is not
possible any more, since the domain error is largely removed. (iii) The errors of the
CCSD-F12 and LCCSD-F12 results are reduced by one order of magnitude as com-
pared to the corresponding calculations without explicitly correlated terms. There
is no significant difference in the accuracy of the canonical and local F12 results,
i.e., the basis and domain errors are both removed in the LCCSD-F12 calculations.
(iv) Excellent and comparable results are also obtained with the CCSD(T)-F12 and
LCCSD(T0)-F12 methods; here the improvement is somewhat smaller, since the
(T) correction is not directly affected by the F12 treatment, and therefore a basis set
error remains in the triples correction. The quite similar performance of the canoni-
cal and local methods indicates that the (T0) approximation has no significant effect
on the accuracy. The rms error relative to the canonical CCSD(T)/CBS results is still
just 1 kJ/mol.

Next we investigate five reactions involving medium size and larger molecules.
The reactions are shown in Figure 14-5 and the results are presented in Table 14-4.
In these cases it is still possible to obtain MP2/CBS reference values, but corre-
sponding CCSD or CCSD(T) calculations are not feasible. Thus, we can only check
the local results by comparing LMP2-F12 and MP2/CBS values. It is likely, how-
ever, that the LCCSD and LCCSD(T0) results are of similar accuracy. Comparing
the MP2 and MP2/CBS results shows the basis set error, while comparison of the
MP2 and LMP2 values shows the domain error. For example, the basis set error is
quite large for reaction II, while the domain error is particularly large for reaction V.
In all cases, however, are the MP2-F12, LMP2-F12, and MP2/CBS results in close
agreement. This demonstrates that both the basis set as well as the domain errors
are eliminated to a large extent. As expected, the differences between the LMP2 and
LMP2-F12 results on the one hand, and of the LCCSD(T0) and LCCSD(T0)-F12
ones on the other hand are very similar. This indicates that the basis set and domain
errors are removed to a similar extent in the LCCSD(T0)-F12 method. A more
extensive investigation of the effect of pair approximations on the LCCSD(T0)-F12
results is in progress and will be published elsewhere.

14.6.7. Excited States

The quality of the local approximations to the electronic excitations has been exten-
sively tested in Refs. [40–44]. It turns out that with an appropriate selection of the
local excitation space and the underlying ground-state space the errors in excitation
energies for valence states are usually below 0.05 eV. For details of these tests we
refer to the above mentioned references.
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Figure 14-5. Five reactions involving medium sized and large molecules with up to 61 atoms. I is one
possible step in the synthesis of biotin. II represents the functionalization of an adamantane cage at
a tertiary C-atom. Reaction III shows the synthesis of amantadine which is used in the treatment of
the Parkinson disease. In IV the testerone molecule is modified to make it more lipophilic for a longer
retention time in the body tissues. V represents the last synthetic step to yield androstendione

As an illustrative example for an application, we present results from calculations
performed for the 3-(5-(5-(4-(bis(4-(hexyloxy)phenyl)thiophene-2-yl)thiophene-2-
yl)-2-cyanoacrylic acid (D21L6), an organic sensitizer for solar-cell applications
which was synthesized and measured in Ref. [189]. The D21L6 sensitizer shows an
absorption maximum in the visible region at 2.71 eV with a high molar extinction
coefficient, which arises from a π → π∗ charge transfer (CT) transition, where
electron density is shifted down the chain containing the two thiophene groups.
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Table 14-4. Total reaction energies (in kJ/mol) for 5 reactions involving medium sized and large
molecules. All F12 results include the CABS-singles correctiona of the Hartree-Fock energy. The corre-
lation factor was chosen as γ = 1.0a−1

0 . The MP2/CBS values were extrapolated,b all other calculations

used basis sets of triple-ζ qualityc

ID MP2 LMP2 MP2-F12 LMP2-F12 MP2/CBS LCCSD(T) LCCSD(T)-F12

I −116.7 −120.0 −114.6 −114.6 −113.1 −126.9 −121.1
II −90.7 −90.7 −68.9 −68.3 −70.2 −98.6 −76.1
III 49.1 45.9 48.6 47.0 49.5 42.3 43.2
IV −26.2 −21.3 −19.4 −18.2 −19.2 −26.6 −23.7
V 29.6 16.8 20.3 19.2 19.6 20.8 23.5

I C8H16N2O2S + COCl2 → C9H14N2O3S + 2 HCl.
II C10H16 + SO2Cl2 → C10H15Cl + SO2 + HCl.
III C12H16NOF3 + H2O → C10H17N + CF3COOH.
IV C19H28O2 + C2H5COCl → C22H32O3 + HCl.
V C25H32O4 → C19H26O2 + C6H4(OH)2.
a CABS-singles corrections: I: 0.94, II: 2.63, III: −0.33, IV: 0.89, V: −2.16.
b Basis sets for extrapolations: I–III: AVQZ/AV5Z; IV: AVTZ/AVQZ; V: VQZ, O = AVQZ/V5Z,
O = AV5Z. AVnZ and VnZ, n = T ,Q,5 are the abbreviations for aug-cc-pVnZ and cc-pVnZ basis
sets, respectively.
c Basis sets: I–III VTZ-F12; IV: AVTZ, V: AVTZ,H=VTZ.

Weaker peaks appear around 3.5–3.6 and 4.1–4.3 eV (cf. figure 1 in Ref. [189]).
The D21L6 comprises 98 atoms and 262 correlated electrons.

In the context of the present work excitation energies, oscillator strengths, and
orbital-unrelaxed first-order properties of the lowest six excited states of the D21L6
molecule have been calculated using the LT-DF-LCC2 response method. Due to
the CT character (over significant distances) of some of the excited states, the TD-
DFT method is bound to fail for this system. The LT-DF-LCC2 calculations were
performed with adaptive pair domains, based on the diagonal parts of the doubly-
excited amplitudes (this has been denoted as Laplace domains in Ref. [43], cf.
Section 14.5.2.1). For the Laplace integration three quadrature points were used,
which turned out to be sufficient in previous studies [43]. The cc-pVDZ basis was
employed as AO basis set.

Table 14-5 lists excitation energies, along with the norms of the dipole differ-
ence vectors and the oscillator strengths. Plots of the density differences (excited vs.
ground state density) are displayed in Figure 14-6 for the S1 and S3 states, respec-
tively. The spectrum is dominated by the S1 π → π∗ transition, which can be seen
from the examination of the oscillator strengths in Table 14-5. The large change in
the dipole moment (from 2.62 to 9.78 a.u.) indicates that S1 has substantial CT char-
acter. As can be seen from Figure 14-6, the electron density is indeed shifted down
the chain containing the two thiophene units, as was anticipated in the experimental
paper [189]. The vertical excitation energy of 2.74 eV is in excellent agreement with
the experimentally measured absorption band (2.71 eV), certainly to a large extent
due to a fortuitous error cancellation.
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Table 14-5. Excitation energies, properties and timings (in minutes) (7 CPUs, Intel(R) Xeon(R) CPU
X5560 @ 2.80 GHz) for the D21L6 molecule

State Char. ωa
∣∣δμm

∣∣b f c rd
D t(Uij

rs)e t(WP
ir)f t(vi

r)g t(iter)h

S1 CT 2.737 7.349 1.348 6.5% 7.7 2.9
S2 CT 3.541 4.802 0.086 16.9% 17.9 6.2
S3 local 3.668 0.075 0.051 16.9% 16.7 6.2 19.9 141.9
S4 CT 3.909 5.480 0.260 11.7% 12.7 4.5
S5 local 4.188 1.049 0.023 13.5% 14.9 5.2
S6 local 4.262 1.870 0.120 13.5% 16.1 5.9

a Excitation energies ω in eV.
b Norms (in a.u.) of the dipole difference vectors.
c Oscillator strength (length gauge); f = 2

3ω(S0m
XX + S0m

YY + S0m
ZZ ).

d Ratio of the sizes of the local vs. canonical doubles vectors.
e Elapsed time for calculation of the doubles vector, eq. (22) in Ref. [43].
f Elapsed time for calculation of WP

ir , Eq. (14-90).
g Elapsed time for calculation of vi

r (only multi-state part), eq. (19) in Ref. [43].
h Elapsed time for one Davidson iteration.

The S2 state also has CT character, while the S3 is a locally excited state (cf. the
dipole moment changes in Table 14-5 and Figure 14-6 for the case of the S3 state).
Both states, i.e., notably also the locally excited S3, have rather small oscillator
strengths in comparison to S1. S4 again is a CT state, while S5 and S6 are both
locally excited states. The oscillator strengths of S4 and S6 are larger than those of
S2 and S3, but still much smaller than that of S1. The transition to the locally excited
S5 state has the smallest oscillator strength, i.e., is only about half as intense, as the
transition to the weak S3 state. It can be anticipated that the Franck-Condon factors
are larger for transitions to locally excited – than to CT states. This increases the
overall intensities of the former compared to to the latter and relativizes somewhat
the picture just drawn, based solely on the electronic oscillator strengths.

Table 14-5 also compiles the ratios rD (local vs. canonical) of the number of
elements of the doubles part of the Jacobian eigenvectors, which range between 7
and 17% for the individual states. Finally, representative timings are given for some
key steps of the calculation, which was run on 7 cores of an Intel(R) Xeon(R) CPU
X5560 @ 2.80 GHz. A typical Davidson iteration involving all six states takes about
2.4 hours, which makes it possible to investigate molecules of this complexity within
a reasonable amount of time at a level clearly superior to TD-DFT.

14.7. OUTLOOK

We have presented the current state of research of the local correlation methods
as implemented in the MOLPRO program. Linear scaling LMP2 and LCCSD(T)
methods are available since quite long time for closed-shell ground electronic states.
Recently, this has been extended to open shell systems. Currently, DF-LRMP2 and
DF-LUCCSD methods with high-spin ROHF reference functions are functional,
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S1 π π∗ charge transfer state→

locally excited stateS3 π π∗→

Figure 14-6. Differential densities (with isovalue ± 0.0015) for states S1 and S3 of the D21L6 molecule.
Red areas show an increase, blue a depletion of density relative to the ground state

and perturbative triple excitations for open-shell systems are under development.
Furthermore, efficient DF-LCC2 methods for the calculation of excitation energies
in large molecules have been developed and applied.

It has been demonstrated that calculations for ground and excited states of
molecules with about 100 atoms are now feasible, using triple zeta or even bet-
ter basis sets. Local methods have been successfully applied to a large variety of
problems, including calculations of equilibrium geometries, harmonic and anhar-
monic frequencies, reaction energies, conformational energies, reaction barriers
in enzymes and in solution, dipole and transition moments as well as dipole
polarizabilities.
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Until recently, the main limitation of the accuracy of local coupled cluster calcu-
lations has been the domain error, in particular if energy differences of molecules
with different electronic structure were considered. This problem has now been
largely removed by the combination of local and explicit correlation methods. In
the new LCCSD(T)-F12 method the errors due to both the domain approximation
and basis set incompleteness are reduced to a size that is smaller than the expected
intrinsic accuracy of the CCSD(T) method. So far, this very promising method is
available only for closed-shell ground states, but extensions to open-shell systems
are under development.

A remaining challenge is the application of accurate local correlation methods to
large transition metal clusters, which are of great importance in catalysis and bio-
chemistry. In many cases single reference methods are not appropriate to treat such
systems. Therefore, the development of efficient local multireference correlation
methods is one of our goals for future research.
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2. Čížek J (1966) J Chem Phys 45:4256
3. Purvis GD III, Bartlett RJ (1982) J Chem Phys 76:1910
4. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479
5. Kállay M, Surján PR (2000) J Chem Phys 113:1359
6. Kállay M, Surján PR (2001) J Chem Phys 115:2945
7. Kállay M, Szalay PG, Surján PR (2002) J Chem Phys 117:980
8. Hirata S (2003) J Phys Chem A 107:9887
9. Olsen J (2000) J Chem Phys 113:7140

10. Knowles PJ, Handy NC (1984) Chem Phys Lett 111:315
11. Knizia G, Adler TB, Werner HJ (2009) J Chem Phys 130:054104
12. Adler TB, Werner HJ, Manby FR (2009) J Chem Phys 130:054106
13. Adler TB, Werner HJ (2009) J Chem Phys 130:241101
14. Klopper W, Manby FR, Ten-no S, Valeev EF (2006) Int Rev Phys Chem 25:427
15. Werner HJ, Adler TB, Knizia G, Manby FR (2010) In: Cársky P, Paldus J, Pittner J (eds) Recent

progress in coupled cluster methods. Springer, Heidelberg, p 573
16. Tew DP, Hättig C, Bachorz RA, Klopper W (2010) In: Cársky P, Paldus J, Pittner J (eds) Recent

progress in coupled cluster methods. Springer, Heidelberg, p 535
17. Monkhorst HJ (1977) Int J Quantum Chem Symp 11:421
18. Sekino H, Bartlett RJ (1984) Int J Quantum Chem Symp 18:255
19. Stanton JF, Bartlett RJ (1993) J Chem Phys 98:7029
20. Christiansen O, Koch H, Jørgensen P (1995) Chem Phys Lett 243:409
21. Pulay P (1983) Chem Phys Lett 100:151
22. Saebø S, Pulay P (1985) Chem Phys Lett 113:13
23. Pulay P, Saebø S (1986) Theor Chim Acta 69:357
24. Hampel C, Werner HJ (1996) J Chem Phys 104:6286
25. Hetzer G, Pulay P, Werner HJ (1998) Chem Phys Lett 290:143
26. Schütz M, Hetzer G, Werner HJ (1999) J Chem Phys 111:5691
27. Hetzer G, Schütz M, Stoll H, Werner HJ (2000) J Chem Phys 113:9443
28. Schütz M, Werner HJ (2000) Chem Phys Lett 318:370



404 T. Korona et al.

29. Schütz M (2000) J Chem Phys 113:9986
30. Schütz M, Werner HJ (2001) J Chem Phys 114:661
31. Schütz M (2002) J Chem Phys 113:8772
32. Schütz M (2002) Phys Chem Chem Phys 4:3941
33. Werner HJ, Knowles PJ, Manby FR, Schütz M, Celani P, Knizia G, Korona T, Lindh R,

Mitrushenkov A, Rauhut G, Adler TB, Amos RD, Bernhardsson A, Berning A, Cooper DL,
Deegan MJO, Dobbyn AJ, Eckert F, Goll E, Hampel C, Heßelmann A, Hetzer G, Hrenar T,
Jansen G, Köppl C, Liu Y, Lloyd AW, Mata RA, May AJ, McNicholas SJ, Meyer W, Mura ME,
Nicklass A, Palmieri P, Pflüger K, Pitzer R, Reiher M, Shiozaki T, Stoll H, Stone AJ, Tarroni R,
Thorsteinsson T, Wang M, Wolf A (2010) Molpro, version 2010.1, a package of ab initio programs.
http://www.molpro.net

34. El Azhary A, Rauhut G, Pulay P, Werner HJ (1998) J Chem Phys 108:5185
35. Rauhut G, Werner HJ (2001) Phys Chem Chem Phys 3:4853
36. Schütz M, Werner HJ, Lindh R, Manby FR (2004) J Chem Phys 121:737
37. Korona T, Pflüger K, Werner HJ (2004) Phys Chem Chem Phys 6:2059
38. Pflüger K (2008) Thesis, University of Stuttgart
39. Russ NJ, Crawford TD (2004) Chem Phys Lett 400:104
40. Korona T, Werner HJ (2003) J Chem Phys 118:3006
41. Kats D, Korona T, Schütz M (2006) J Chem Phys 125:104106
42. Kats D, Korona T, Schütz M (2007) J Chem Phys 127:064107
43. Kats D, Schütz M (2009) J Chem Phys 131:124117
44. Kats D, Schütz M (2010) Z Phys Chem 224:601
45. Pisani C, Busso M, Capecchi G, Casassa S, Dovesi R, Maschio L, Zicovich-Wilson C, Schütz M

(2005) J Chem Phys 122:094113
46. Maschio L, Usvyat D, Pisani C, Manby FR, Casassa S, Schütz M (2007) Phys Rev B 76:075101
47. Maschio L, Usvyat D (2008) Phys Rev B 78:073102
48. Usvyat D, Maschio L, Pisani C, Schütz M (2010) Z Phys Chem 224:441
49. Schütz M, Usvyat D, Lorenz M, Pisani C, Maschio L, Casassa S, Halo M (2010) In: Manby FR

(ed) Accurate condensed-phase quantum chemistry. Taylor and Francis Group, Abingdon, p 29
50. Maslen PE, Head-Gordon M (1998) Chem Phys Lett 283:102
51. Scuseria GE, Ayala PY (1999) J Chem Phys 111:8330
52. Auer AA, Nooijen M (2006) J Chem Phys 125:024104
53. Maslen PE, Head-Gordon M (1998) J Chem Phys 109:7093
54. Lee MS, Maslen PE, Head-Gordon M (2000) J Chem Phys 112:3592
55. Maslen PE, Dutoi AD, Lee MS, Shao YH, Head-Gordon M (2005) Mol Phys 103:425
56. Subotnik JE, Head-Gordon M (2005) J Chem Phys 123:064108
57. Subotnik JE, Sodt A, Head-Gordon M (2006) J Chem Phys 125:074116
58. Sodt A, Subotnik JE, Head-Gordon M (2006) J Chem Phys 125:194109
59. Subotnik JE, Sodt A, Head-Gordon M (2008) J Chem Phys 128:034103
60. Subotnik JE, Head-Gordon M (2008) J Phys Condens Matter 20:294211
61. Chwee TS, Szilva AB, Lindh R, Carter EA (2008) J Chem Phys 128:224106
62. Neese F, Hansen A, Liakos DG (2009) J Chem Phys 131:064103
63. Neese F, Wennmohs F, Hansen A (2009) J Chem Phys 130:114108
64. Förner W, Ladik J, Otto P, Čížek J (1985) Chem Phys 97:251
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CHAPTER 15

THE LINEAR SCALING SEMIEMPIRICAL LOCALSCF
METHOD AND THE VARIATIONAL FINITE LMO
APPROXIMATION

ARTUR PANCZAKIEWICZ AND VICTOR M. ANISIMOV
FQS Poland, 30-538 Krakow, Poland, e-mail: a.panczakiewicz@fqs.pl; v.anisimov@fqs.pl

Abstract: When dealing with large biological systems speed determines the utility of the com-
putational method. Therefore in order to bring quantum-mechanical (QM) methods
to computational studies of biomolecules it is necessary to significantly reduce their
resource requirement. In this light semiempirical QM methods are particularly encourag-
ing because of their modest computational cost combined with potentially high accuracy.
However, even semiempirical methods are frequently found to be too demanding for typ-
ical biological applications which require extensive conformational sampling. Significant
speed up is obtained in the linear scaling LocalSCF method which is based on the vari-
ational finite localized molecular orbital (VFL) approximation. The VFL provides an
approximate variational solution to the Hartree-Fock-Roothaan equation by seeking the
density matrix and energy of the system in the basis of compact molecular orbitals using
constrained atomic orbital expansion (CMO). Gradual release of the expansion con-
straints leads to determination of the theoretically most localized solution under small
non-orthogonality of CMOs. Validation tests confirm good agreement of the LocalSCF
method with matrix diagonalization results on partial atomic charges, dipole moment,
conformational energies, and geometry gradients while the method exhibits low com-
puter memory and CPU time requirements. We observe stable dynamics when using the
LocalSCF method.

Keywords: CMO, Linear scaling, LMO, NDDO method, Normalization condition, Orthogonality
condition, QM MD, SCF method, VFL approximation

Abbreviations

AM1 Austin model 1
AO Atomic orbital
B3LYP Becke 3-term correlation, Lee-Yang-Parr exchange functional
CC Coupled cluster
CI Configuration interaction
CMO Constrained expansion molecular orbital
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CPU Central processing unit
DFT Density functional theory;
HF/6-31G∗ Hartree-Fock method using Pople 6-31G∗ basis set
HOF Heat of formation
LMO Localized molecular orbital
LocalSCF Local self consistent field
MD Molecular dynamics
MO Molecular orbital
MP2 Second-order Moller-Plesset perturbation theory
NDDO Neglect of diatomic differential overlap
NPT Constant number of particles, pressure, and temperature
NVE Constant number of particles, volume, and energy
NVT Constant number of particles, volume and temperature
PBC Periodic boundary condition
PM3 Parametric method 3
PM5 Parametric method 5
QM Quantum mechanics
RAM Random access memory
SBP Spherical boundary potential
SCF Self-consistent field
VFL Variational finite localized molecular orbital approximation

15.1. INTRODUCTION

Application of quantum-mechanical (QM) methods to biological problems is a long
standing goal in simulation science. Solving this problem would bring multiple
advancements to computational biology including the expansion of the range of
biological applications to bond breaking and formation processes and the increase
in general physical accuracy. The advanced physical model of the QM methods
provides a necessary precondition for that.

Significant progress has been made in reducing the computational cost of various
QM methods due to the development of linear scaling algorithms [1, 2]. However
the obtained performance is still insufficient to deal with biological macromolecules.
Therefore approximate QM methods are necessary in order to bring the QM method-
ology to the forefront of biomolecular modeling on equal or comparable footing
with classical force fields.

In the hierarchy of QM methods semiempirical methods based on neglect of
diatomic differential overlap (NDDO) represent the lowest and the fastest level of
theory. Their approximate nature and high speed are the two core factors which
make them particularly attractive for biological applications. For instance, the
chemically accurate hybrid density functional theory (DFT) methods, e.g. B3LYP,
have thousand-fold performance overhead over semiempirical methods. This perfor-
mance bottleneck makes impossible to treat real-size biological systems in presence
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of explicit solvent. Therefore targeting large molecular systems having inherently
dynamic character will require versatile QM methods beyond the performance
capabilities of the current ab initio and DFT methods.

Another important aspect of biomolecular simulation is the ability of the selected
method to accurately describe condensed phase phenomena. Since all currently
accessible non-empirical QM methods (e.g. Hatree-Fock, DFT, and MP2) are not
sufficiently accurate for liquid simulations due to missing or insufficient treatment
of electron correlation it requires introducing optimized parameters in order to com-
pensate for the deficiency of the level of theory. Semiempirical QM methods provide
the necessary solution in the form of their tunable parametric framework. In this
regard they are not much different from classical force fields. However being formu-
lated on the quantum-mechanical platform semiempirical methods add an important
additional level of physics into the treatment of atomic interactions over the classical
mechanics models.

Despite of the computational advantage of the semiempirical theory, it alone is
also insufficient to open the door to biological simulations. Since the pioneering
work of Karplus and co-workers [3] biological macromolecules have long been
recognized as dynamic entities governed by thermal motions. For the latter to be
properly accounted one has to use molecular dynamics (MD). This requirement
imposes serious performance restrictions on applicability of high levels of theory.
Clearly, additional steps beyond replacing matrix diagonalization by linear scaling
algorithms are necessary in order to gain additional computational performance.
Recognizing this problem prompted the authors to introduce the variational finite
localized molecular orbital approximation (VFL) [4, 5].

15.2. THEORY

15.2.1. Linear Scaling Problem

According to the quantum-mechanical theory the complete description of the molec-
ular system is included in the wave function of the system, which can be found by
solving Schrödinger equation. Since straight forward solution of the Schrödinger
equation cannot be made for systems of chemical interest, various levels of approx-
imate solutions are introduced. Historically, Hartree-Fock-Roothan approximation
[6–8] provided the first practically useful approach to QM description of molec-
ular systems. In this fundamental method the single-determinant wave function
[6] is constructed from 1-electron molecular orbital functions (MO) describing the
energy of a single electron in the average field created by all other electrons and
nuclei in the system.[6] The MOs are in turn represented by a linear combination
of hydrogen-like atomic orbitals (AO) following the Roothaan-Hall approximation
[7, 8]. Variationally minimizing the linear coefficients of AOs in their MO expansion
leads to determination of the molecular wave function.

The Roothaan-Hall approximation to the Hartree-Fock method introduced the
important concept of basis set. The type of AOs, their number per atom, and their
analytical form are known as basis set. Minimal basis set conceptually originates
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from hydrogen atom solution of the Schrödinger equation. By analogy, one assigns
hydrogen-like 1s, 2s, 2px, 2py, 2pz, etc. atomic orbitals to non-hydrogen atoms.
Semiempirical methods utilize valence-electron approximation, thus incorporating
inner shells into a parametric core. This leaves 4 valence AOs 2s, 2px, 2py and
2pz as the basis for atoms of the second row. Since the concept of basis primar-
ily serves the numerical purposes of providing variational degrees of freedom more
sophisticates basis sets have been introduced such as split-valence bases in which
valence AOs are expanded in a linear combination of several functions having
independent exponents. Extending the basis splitting process to infinity virtually
leads to a complete basis set which provides the Hartree-Fock energy limit. Since
Hartree-Fock-Roothaan is a variational method, using a finite basis set provides an
upper-bound energy estimation to the theoretical energy limit. Expanding the size
of the basis will naturally improve the accuracy of the approximation.

Unfortunately Hartree-Fock method provides incomplete description of electron
correlation effects, therefore seeking Hartree-Fock limit is not going to improve
sufficiently the quality of the wave function. A solution is provided by DFT, post-
Hartree-Fock (MP2, CI, CC), and semiempirical methods. The latter, which are of
primary concern in this article, use fitting to experimental data in order to avoid
otherwise extremely computationally expensive mathematical operations.

Since semiempirical methods are based on the Hartree-Fock-Roothaan theory
they experience similar scalability problems as the Hartree-Fock-Rothaan method
yet of obviously lesser severity due to the NDDO approximation. Particularly
semiempirical methods scale quadratically in memory storage and cubically in
CPU-time with the number of atomic orbitals in the matrix diagonalization step
of self-consistent field (SCF) calculations.

Another important part of scalability problem in QM methods is efficient
handling of long-range Coulomb interactions. In semiempirical methods these cal-
culations scale quadratically in memory storage and CPU time. Solving this problem
is mandatory in order to achieve linear scaling calculations. Since the efficient treat-
ment of long-range Coulomb interactions has been achieved in the Fast Multipole
Method (FMM) [9] we do not need to worry about this part and instead will focus
on the matrix diagonalization problem only.

Several powerful algorithms have recently been developed for the semiempirical
framework providing linear scaling alternative to matrix diagonalization [10–12].
The methodological importance of these methods warrants their brief analysis.

It is apparent that the unfavorable scaling of conventional QM methods has
the origin in the naturally delocalized character of MOs. Indeed, following the
Roothaan-Hall method each MO is expanded over the entire AO-space represented
by all atoms in the system thus leading to full delocalization of MOs over the entire
system. To combat the delocalization and the inherent unfavorable scaling of the
conventional SCF algorithm one needs to reformulate the Hartree-Fock-Roothaan
equations in terms of local interactions.

A remarkable approach is to replace MOs by localized molecular orbitals (LMO)
and to seek the final density matrix in terms of LMOs [10]. Since LMOs consume
lesser space than delocalized MOs and have fewer variational degrees to optimize
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the LMO approach provides valuable memory saving and performance improve-
ment over the use of delocalized MOs when dealing with large systems. This elegant
idea has been proposed by Stewart and implemented in MOZYME method [10]. In
it Jacobi rotations are performed on Fock matrix constructed in the basis of LMOs.
The occupied-virtual LMO rotations are carried out to reduce the Fock matrix to
block-diagonal form via orthogonalization of occupied to virtual LMOs. Inside the
occupied-occupied and virtual-virtual blocks the orthogonalization is not required.
During the SCF procedure the LMOs quickly reach the saturation point of about 150
atomic centers and after that they remain roughly constant in size. Since the number
of LMOs depends linearly on the number of atoms in the system the method is lin-
ear scaling. The small size of LMOs is the determining factor of high performance
of the MOZYME method. The main computational overhead in MOZYME comes
from slow convergence of the LMO tails.

Another insightful linear scaling approach is presented by the divide-and-
conquer method [13] as implemented by Merz and co-workers in semiempirical
DivCon program [11]. It utilizes a different powerful resource which can be cat-
egorized as a constrained compartmentalization. In this method the entire system
is divided on fixed-size compartments which are small enough to be treated via
matrix diagonalization. Each part enclosing a group of closely positioned atoms
can be viewed as a fixed-size container carrying its own partial density matrix
self-consistently optimized in the electric field created by other compartments.
Iteratively walking through the list of compartments one can eventually reach the
self-consistency point. The full density matrix of the system is assembled from the
compartments density matrices. Because the number of compartments is propor-
tional to the number of atoms in the system the method is linear scaling. The main
computational cost in the divide-and-conquer method comes from diagonalization
and iterating over the large number of compartments. Increasing the compartment
size reduces the iteration cost but increases the cost of diagonalization. Reducing the
compartment size reduces diagonalization cost but increases the cost of iterations.
Assuming that the compartment size is optimized to maximize the computational
performance one obtains the theoretical limit of performance of the method.

15.2.2. VFL Approximation

Despite remarkable improvement in performance of QM methods due to the linear
scaling formulations the sheer size of biological macromolecules demands faster
computations than the linear scaling within the Hartree-Fock-Roothaan framework
can provide. A different strategy is necessary in order to further speed up QM
calculations. Such approach was proposed by Anikin et al. [4] by suggesting an
additional approximation on the top of the Hartree-Fock-Roothaan method and
which is termed variational finite localized molecular orbital (VFL) approximation
(Figure 15-1) [5].

If in the original Roothaan-Hall formulation the density matrix is expressed in
the basis of completely delocalized MOs, in contrast to that, the VFL approximation
provides a method to compute approximate density matrix in the basis of compact
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Figure 15-1. Hierarchy of QM approximations toward modeling larger systems

or constrained molecular orbitals (CMO). In VFL the CMO expansion over AOs
is fixed and does not change during SCF. Finding the energy and density matrix
under the constrained AO expansion is the purpose of the VFL approximation.
For example, one may constrain CMO expansion to 5 atomic centers and, based
on the VFL approximation, still will be able to variationally determine the density
matrix and energy corresponding to such constraint. Obviously, the density matrix
constructed under such stringent conditions will deviate significantly from the true
density matrix, but important step to realize is the availability of such solution. This
opportunity is advantageously utilized in the linear scaling LocalSCF method, which
will be discussed in a separate section.

Before starting the derivation of the VFL equations it might be helpful to dis-
cuss the concept of CMOs in a greater detail. Since CMOs have limited expansion
over AO space they are similar in this aspect to LMOs. However, the distinctive
moment of the comparison is that LMO expansion changes during SCF while CMO
expansion remains fixed, because it is constrained. The constraint can be trivially
implemented by using gradient-based SCF optimization of linear coefficients of
CMOs. The non-trivial part is how to maintain orthogonalization and normalization
requirements for CMOs.

Normalization counts the number of electrons assigned to MOs. Its numerical
value must be unit per MO; any deviation from the unit value will indicate a charge
loss or its creation from nowhere leading to computational data making no phys-
ical sense. The other property of MOs, the orthogonalization requirement, stems
from the concept of independent degrees of freedom like normal vectors i, j, k in
the Cartesian coordinate system. If the degrees of freedom are dependent, this is
a non-orthogonal case. It is not possible in general to manipulate with dependent
variables so the non-orthogonality has to be accounted by employing the inverse
overlap matrix.

Orthogonality of MOs can also be obtained via diagonalization but the latter can
be applied only when MOs share same AO space, like for example in the divide-
and-conquer method. This is not the case of CMOs each having individual AO
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expansion; hence, diagonalization is entirely inapplicable in the present circum-
stances. The possible alternative could be to work with non-orthogonal CMOs but
such solution is not very appealing because of high computational cost of manipula-
tion with inverse overlap matrix. Therefore we need to find the way to keep CMOs
orthogonal at lesser computational expense.

To maintain orthogonality of CMOs during SCF procedure we can utilize a
well-known concept of perturbation theory stating that if we know an approxi-
mate solution of the target function and its expansion series in vicinity of that
point, then there is a mathematically certain way to improve the initial solution.
Correspondingly, if the non-orthogonality of CMOs is small, it can be viewed as
a perturbation in the vicinity of the density matrix P(0) = C∗Ct constructed from
orthogonal CMOs, where C is matrix of linear coefficients of CMOs and Ct its trans-
pose. Next, we can expand the energy of the system, E, into pertubation (Taylor)
series around P(0)

E [P] = E [P(0)] + ∂E/∂P · [P − P (0)] + 1/2 · ∂2E/∂P2 · [P − P (0)]2 + . . .
(15-1)

The unknown final density matrix, P, has the following form considering the general
case of non-orthogonality of CMOs

P = C · S−1 · Ct (15-2)

where, S is overlap matrix between CMOs. Under the condition that non-
orthogonality of CMOs is small the S−1 matrix can also be expanded in Taylor
series while neglecting second and higher order terms:

S−1 = I − (S − I)+ . . . (15-3)

where, I is diagonal unit matrix. Combining Eqs. (15-2) and (15-3) one can obtain

P − P(0) ≈ C · [I − (S − I)] · Ct − P(0) = −C · (S − I) · Ct (15-4)

This provides the opportunity to solve Eq. (15-1). Under the condition of small non-
orthogonality we may neglect the second- and higher-order terms in Eq. (15-1) and
compensate the missing parts via a penalty term. This produces energy function
which approximately maintains orthogonality of CMOs and which is tolerant to
small residual non-orthogonality between CMOs:

E ≈ E [P(0)] + ∂E/∂P · [P − P(0)] + W · [S − I]2 (15-5)

where, W is a penalty matrix, taken for simplicity as a constant.
Now when orthogonality is properly handled the remaining problem is to ascer-

tain normalization of CMOs during the SCF iterations. This is also a non-trivial
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problem considering that CMOs become interdependent due to the normaliza-
tion requirement and all CMOs have to be determined simultaneously rather than
separately. Conventionally linear coefficients of CMOs can be determined under
normalization constraints imposed by the cumbersome method of Lagrange mul-
tipliers. Although powerful it is a time consuming procedure. Therefore in order
to keep computations at maximum speed we are going to handle the normaliza-
tion constraints via a computationally efficient approximation. Targeting this goal
Anikin et al. [4] suggested an elegant solution to incorporate the normalization con-
straints into the SCF procedure via variational optimization of generalized degrees
of freedom instead of directly manipulating with the linear coefficients of CMOs.
These degrees of freedom, R, are formulated in such way so their variation does not
break the normalization of CMOs. It can be shown that when CMO variation δψi
is orthogonal to the old (before SCF) CMO ψold

i the resulting ψnew
i (after SCF) is

automatically normalized in the first order of perturbation theory.

ψnew
i = ψold

i + δψi (15-6)

δψi =
∑

μ

Riμ ·
(
ϕμ − Ciμ · ψold

i

)
(15-7)

here ϕμ is atomic orbital.
From

〈
ψold

i

∣∣∣ δψi

〉
= 0 (15-8)

it follows that

〈
ψnew

i

∣∣ ψnew
i

〉 ≈ 1 (15-9)

It means that any variation δψi, which is orthogonal to its parent, ψold
i , and

which minimizes the energy of the system, also preserves the CMO normalization.
Correspondingly we can vary coefficients R in order to minimize the energy without
the fear of breaking the normalization of CMOs. Optimization of matrix coefficients
R is performed by using a steepest descent gradient minimization procedure.

Rnew
iμ = Rold

iμ − α · ∂E
/
∂Riμ (15-10)

where α is a small constant. Now when ψnew
i are determined we can deduce linear

coefficients of the CMO by using the standard Fourier approach:

Ciμ = 〈
ψnew

i

∣∣ ϕμ
〉

(15-11)

The Eqs. (15-5) and (15-7) summarize the VFL approximation. Since VFL is a vari-
ational method the incomplete CMO expansion will lead to upper energy bound
according to the theory. Obviously, the larger the expansion the closer the result will
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be to the conventional Hartree-Fock-Roothaan solution. Molecular properties com-
puted under complete AO expansion would be entirely equivalent to those obtained
using canonical MOs. In analogy with the Roothaan-Hall approximation in ab initio
methods, which leaves the choice of basis set to the user, the VFL approximation
applies no restrictions on the choice of CMO expansion and we are free to choose
any non-redundant expansion that suits the task. Once we are concerned with deter-
mining the smallest CMO expansion while getting the energy and density matrix as
close as possible to the conventional matrix diagonalization we enter the territory of
the linear scaling LocalSCF method.

15.2.3. LocalSCF Method

The LocalSCF approach to finding the localized solution to the Hartree-Fock-
Roothaan method is based on perturbation expansion of the energy of the system
in vicinity of the known approximate density matrix as expressed by Eq. (15-1).
Pertaining to LocalSCF, the approximate density matrix, P(0), is the result of the
VFL SCF computation. Despite both the LocalSCF method and VFL approxima-
tion rely on perturbation theory, they employ it to achieve different goals. The VFL
approximation is concerned with determining the density matrix of the system in the
basis of constrained CMOs. In turn the LocalSCF method uses perturbation theory
in order to gradually lift the expansion constraints aiming to reach the true density
matrix while minimally changing the CMO expansion.

The LocalSCF solution to the density matrix is sought iteratively. Having P(0) as
a starting point we can get improved density matrix P(1), which we can substitute
then instead of P(0) and repeat the procedure, each time coming closer to the true
Hartree-Fock-Roothaan density matrix, P. This process logically connects the path
from the density matrix P(0) to P determined on different AO expansions. It is
almost like starting an ab initio calculation from STO-3G basis set initially applied
to all atoms in the system and finishing the calculation with various parts of the
system carrying locally 3–21G or 6–31G basis sets. Of course, this analogy should
not be understood literally, but to portray the technical difficulty in deciding on the
optimal basis set for each part of a large and complex molecular system.

The expansion procedure in the LocalSCF method assures the energy conver-
gence under gradual release of the CMO expansion constraints. Since the optimal
expansion of CMOs is to be determined, one can conveniently initiate computations
from an initial guess of 2- and 1-center CMOs corresponding to covalent bonds
and lone-pairs of the molecular system under study. The VFL SCF procedure can
refine the linear coefficients of these CMOs thus producing the density matrix P(0).
Now we need to improve this density matrix by choosing a better CMO expansion.
This step is central to the LocalSCF method. Having the density matrix P(0) fully
relaxed incorporates in it all the information necessary to determine the best possible
expansion for individual CMOs, which P(0) is constructed from. LocalSCF identi-
fies the best expansions based on energy criterion, which is estimated according to
the first-order perturbation correction
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E ≈ E(0)+ (
∂E(0)

/
∂Riμ

) · dRiμ (15-12)

where E(0) is energy of the system before expansion, E is estimated energy after
expansion of CMO i on AO μ, and Riμ is the generalized variational degree of
freedom of the considered AO [5].

On the technical side the computer program first creates the list of adjacent AOs
for each CMO according to the distance criterion to the already present atomic
centers in the CMO. This list represents potential directions for expansion. Then
each new AO in the list is tested on the possible energy gain using Eq. (15-12) and
only those AOs are retained which produce the energy improvement greater than
a threshold value. Such test is carried out for each CMO independently. Then the
selected AOs with zeroed linear coefficients are added to the corresponding CMOs.
Next the expanded CMOs are subjected to the VFL SCF procedure to relax the
energy of the system and to determine new density matrix. The CMO expansion
and VFL SCF steps are repeated until the energy of the system is converged. If the
expansions are not rushed and performed by one AO at a time and immediately fol-
lowed by VFL SCF relaxation of linear coefficients the resulting density function
will closely approach the true Hartree-Fock-Roothaan density matrix of the sys-
tem while being constructed from the CMOs having the theoretically smallest AO
expansion.

According to validation tests [14] the energy of the system in LocalSCF method
converges when CMOs acquire about 30 atomic centers on average. Obviously
CMOs in LocalSCF all have different sizes because the expansion decision depends
on the local environment of each CMO. At this point atomic partial charges, dipole
moment, conformational energies, and geometry gradients are well converged in
comparison with the result of the conventional matrix diagonalization calculation
[14]. After LocalSCF CMOs reach the saturation point of 30 atomic centers the
method becomes linear scaling.

Now having reviewed the technical aspects of the proposed algorithm we can
compare the LocalSCF method with other linear scaling techniques formulated in
the framework of MO theory. First and the foremost limitation of the conventional
linear scaling methods is that they have little control over the localization process.
Typically the degree of localization can be controlled by adjusting various cut-
offs and thresholds. However this is a dangerous approach potentially leading to
uncontrollable numerical errors. This problem is resolved in the LocalSCF method
offering full control over the localization process. Instead of adjusting cut-offs the
LocalSCF method offers the mechanism of adjustable SCF constraints in the form
of tunable CMO expansion. Correspondingly, we can make CMOs shorter or longer
and see what effect it produces on the energy and other physical properties of the
system. The VFL SCF procedure variationally adjusts the resulting density matrix
to the available CMO expansion space thus always finding the best possible density
matrix under the given expansion constraint.

Besides stressing the differences it might be additionally illuminating to note
the conceptual similarities between the LocalSCF and other linear scaling meth-
ods. For instance, one can draw parallels between LocalSCF CMOs and MOZYME
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LMOs. They both represent limited expansion over atomic centers. Next, one may
spot a similarity between the CMO expansion constraints and the compartment
size constraints employed in the divide-and conquer method. Having these parallels
established one may see clearer what kind of conceptual improvement the LocalSCF
method actually brings.

As an improvement over the MOZYME the constrained AO-expansion char-
acter of CMOs in LocalSCF eliminates the problem of weakly determined LMO
tails. The result can immediately be seen in improved stability of SCF conver-
gence in LocalSCF. As an improvement over the divide-and-conquer method the
LocalSCF brings the idea of customization of compartment size to the level of indi-
vidual CMOs. This leads to drastic reduction in the necessary computer memory.
Finally one more analogy can be portrayed. The LocalSCF method and the VFL
approximation redefine the large-scale molecular problem in terms of controlled
AO expansion. This is reminiscent of using different basis sets in ab initio methods.
However, this time the extent of MO expansion over atomic centers is itself a vari-
able parameter which explains the notion that VFL is an approximate extension of
the Roothaan-Hall method (see Figure 15-1).

Since LocalSCF is an approximate method, its main strength of using compact
CMOs is also its main weakness. According to validation tests [14] LocalSCF
underestimates the heat of formation (which is the analog of potential energy in
semiempirical methods) by 5–10 kcal/mol per 1,000 atoms. No such problem exists
in MOZYME which operates with larger LMOs. The conservative expansion proce-
dure of LocalSCF trained to keep CMOs as compact as possible takes too much CPU
time to reach the 150-center AO expansion, making such computation impractical.
However reaching this goal may not be entirely necessary, because biological simu-
lations are primarily concerned with relative energy differences, which are typically
more accurate.

Additional limitation of the LocalSCF method is related to the condition of reach-
ing the state of saturated CMO expansion, i.e. when CMO expansion stabilizes
versus adding new AO to the existing expansion and to removing the least contribut-
ing AO from the existing expansion. There are two practically important different
saturation conditions, one, taking place when dealing with a rigid-geometry sys-
tem, and the second condition existing when the system is subjected to geometry
changes.

When atoms are fixed in space their position uniquely determines the final result
of the CMO expansion. The situation of moving atoms brings additional factors
influencing the expansion process. This condition is partially present in geometry
optimization calculations but it is mostly distinctive in molecular dynamics simu-
lations. The moving atoms find themselves in a constantly changing neighborhood
forcing their CMOs to additionally grow in size vs. the rigid geometry calculation.
For instance, in liquid simulations (solvent) molecular fragments can travel on sub-
stantial distances in space visiting different parts of the macromolecular system at
different time moments. The mobile molecular units carry in their CMOs the atomic
orbitals of those atomic centers which they visited some time ago along the simula-
tion path but which no longer satisfy the proximity test. This requires periodically
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inspecting the CMO expansion and deleting those atomic centers which no longer
make a sensible energetic contribution to the given CMO.

What we have in the end is the constantly fluctuating expansion space of the
CMOs associated with labile molecular fragments. The processes of CMO growth
and compactization eventually reach a dynamic equilibrium resulting in the density
matrix which cannot be reproduced in a rigid geometry computation started from the
same structure snapshot. In this we have a new phenomenon pertaining to molecular
dynamics and geometry optimization jobs in LocalSCF calculations which carry a
history of CMO expansion/compactization. As a consequence, single-point energy
calculation performed on the final structure after geometry optimization is done
would report a less favorable energy of the system than the geometry optimiza-
tion job came up with. To avoid such confusion LocalSCF dumps density matrix
to a computer file after each geometry change. Obviously, single-point calculation
restarted from the saved density matrix would produce exactly the same energy as
the value reported in the geometry optimization job or molecular dynamics step.

Taking into account this important difference it is necessary to avoid a potential
mistake in attempting to compare the energy taken from a rigid geometry calculation
with the energy obtained from a flexible geometry calculation. The only sensible
energy comparison would correspond to “rigid with rigid” and “flexible with flexi-
ble” modes. Similarly in MD simulations the snapshot energies have to be all taken
either from the MD output or all recomputed for rigid geometry snapshots extracted
from the MD trajectory. Alternatively, one may save the density matrix for each
trajectory snapshot to ensure the consistency between the sing-point and dynamic
calculations.

15.2.4. SCF Convergence Criteria

In the LocalSCF computer program the SCF calculation otherwise known as single-
point calculation is a complex hierarchical procedure (see Figure 15-2). It consists
of two iterative levels – micro-SCF and macro-SCF. Each of them is controlled by
its own set of convergence criteria.

15.2.4.1. Micro-SCF Iterations

The micro-SCF computations perform gradient optimization of linear coefficients of
CMOs using the VFL SCF procedure under constrained CMO expansion. The linear
coefficients of CMOs are optimized iteratively. During the micro-SCF iterations
the algorithm checks five termination criteria. Unless specifically mentioned it is
enough to satisfy any one of the termination criteria in order to finish the micro-SCF
iterations.

First termination criterion, dQthr, monitors the change in diagonal elements of
the density matrix between iterations. Since in the semiempirical theory the diagonal
elements of the density matrix correspond to atomic charges the current termi-
nation criterion actually checks the maximum change in atomic charges between
the two consecutive iterations. The SCF procedure will stop when the maximum
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Figure 15-2. Schematic representation of SCF calculation in LocalSCF

change drops below the value of the parameter dQthr set to 0.0003 electron units by
default.

Second termination criterion, gELMax, looks after the maximum component of
the derivative of the energy of the system over generalized variational degrees of
freedom, R, corresponding to individual LMO coefficients. This condition will be
satisfied when the derivative drops bellow gELMax set to 0.002 eV/Å by default.

∣∣∂E
/
∂Riμ

∣∣ < gELMax (15-13)

Third termination criterion, grNorm, watches for the gradient norm to become
smaller than the grNorm parameter set to 0.0005 eV/Å by default.

∥∥∂E
/
∂R

∥∥ < grNorm (15-14)

Fourth termination criterion, dEStop, will be satisfied when the energy change
between two successive micro-iterations drops below the default threshold value
of 0.0001 kcal/mol. The purpose of this criterion is to terminate micro-SCF itera-
tions when the energy change becomes negligibly small but gradient tests are still
not satisfied.



422 A. Panczakiewicz and V.M. Anisimov

�Etotal < dEStop (15-15)

The dQthr and gELMax termination criteria are always on guard regardless of the
computation mode. However, the grNorm and dEStop criteria are applied to starting
geometry only referred to as single-point calculation. Since the gELMax criterion
is more difficult to satisfy than the grNorm and dEStop, it automatically implies
that the calculations involving geometry optimization and molecular dynamics will
be executed under tighter SCF convergence criteria, which is necessary in order to
ensure sufficient accuracy of geometry gradients.

Fifth micro-SCF convergence criterion, which is hardcoded, fulfills the role of
a fault tolerant switch. The micro-SCF iterations will be stopped if the maximum
value of the overlap matrix in the basis of molecular orbitals Sij (i �=j) exceeds the
value of 0.07. Normally the overlap integrals should be an order of magnitude
smaller. If this cannot be satisfied during the micro-SCF iterations their continu-
ation makes no sense. If this happens the program will exit the micro-SCF iterations
and seek help in the CMO expansion procedure.

15.2.4.2. Macro-SCF Iterations

The VFL SCF procedure and the CMO expansion step jointly define a macro-SCF
iteration loop (see Figure 15-2). In the begin of the calculation the initial guess
CMOs have too short expansion so applying the VFL micro-SCF iterations to them
can not produce the final density matrix. The CMOs need to be expanded using the
LocalSCF algorithm and then again subjected to the VFL micro-SCF iterations in
order to refine their linear coefficients. The macro-SCF convergence criteria deter-
mine how many such repetitive cycles of VFL SCF and CMO expansion will be
necessary to determine the total energy and density matrix with desirable accuracy.

The outcome of the CMO expansion at the given macro-SCF step depends on
the expansion criterion, ThrDer1, which is a threshold parameter for derivative of
the energy of the system over the variational parameter R corresponding to a linear
coefficient of AO. The CMO expansion on a new atomic center will be accepted
when the expansion gradient for that center is greater than 0.04 eV, which is a default
value. Choosing smaller value for the ThrDer1 parameter will result in admitting
more atomic centers to the CMO thus quickly increasing its size, and hence, the
memory requirement and calculation time. On the other hand, a larger ThrDer1
value may equally produce a negative effect of too slowly growing CMOs and too
slowly converging density matrix.

Additional parameter controlling the process of CMO expansion is orthogonality
criterion, SijCrt. The algorithm tolerates small non-orthogonality between CMOs.
This does not deteriorate quality of the computational results but facilitates faster
calculations. The non-orthogonality of CMOs is not supposed to exceed the SijCrt
value set to 0.001 by default. In case this criterion is exceeded the problematic CMO
will be subjected to an additional cycle of expansion which will improve its orthog-
onality to other CMOs. Requesting a smaller non-orthogonality threshold than the
default value improves the density matrix. However, setting too small value for the
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SijCrt parameter may lead to a negligible improvement in the energy but quickly
raising computational demand.

Final decision to stop the macro-SCF iterations depends on comparison of the
energy change between two consecutive macro-iterations against dEEStop param-
eter. The macro-SCF iterations will be continued until the energy change between
the CMO expansions drops bellow dEEStop value set to 0.5 kcal/mol by default.

15.2.5. Quantum-Mechanical Molecular Dynamics

Refocusing the target of QM calculations from small molecules to large systems
brings new challenges besides of dealing with the increased number of basis func-
tions. Due to their internal flexibility biomolecules possess huge number of local
energy minima and, as a result, the detailed knowledge of the electronic structure of
a single local minimum provides insufficient information to predict physical proper-
ties of the macromolecule. Therefore geometry optimization developed as the major
computational approach in quantum chemical studies of small molecules becomes
insufficient when dealing with macromolecules. Henceforth, switching from small
molecules to very large systems results not only in the increase in the number of
atoms but also brings in the requirement to perform extensive conformation sam-
pling of biomacromolecules so the expected physical properties of the system can
be obtained as a statistical average along the dynamics trajectory. As a result, tar-
geting the feasibility of QM calculation of biological macromolecules goes far
beyond reaching the linear scaling regimen but requires additional drastic reduc-
tion in computational cost in order to enable molecular dynamics simulations at
QM level.

A molecular system evolving in time has electronic and nuclear degrees of
freedom to account for. In the original Schrödinger equation the movement of all
electrons and atomic nuclei in the system is described via single wave function.
However considering a significant disparity between the masses of electron and pro-
ton with the ratio of 1,836 in favor of proton it is reasonable to decouple the motion
of electrons and atomic nuclei thus reducing the complexity of the original equation.
This is the essence of the Born-Oppenheimer approximation laying the foundation
of the modern QM methods.

Based on the Born-Oppenheimer approximation we can assume atomic nuclei in
biomolecule moving according to the classical Newton dynamics while modeling
the electron density by quantum mechanical wave function adiabatically adjusting
it to the instantaneous nuclei configuration. This is called SCF dynamics. In contrast
to the classical mechanics MD where the potential energy function is also treated at
classical level, the QM MD uses QM level of theory to compute potential energy of
the system. This brings additional accuracy to the computational model vs classical
approach due to the more fundamental description of electrostatic interactions.

In majority of the technical aspects, except the calculation of the potential
energy and geometry gradients, QM MD relies on the same mathematical appara-
tus originally developed for classical force field MD [15]. In it molecular dynamics
trajectory is a result of numerical time integration of the Newton equation
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Fi = mir̈i (15-16)

where Fi is the total force acting on atom i; mi is atomic mass; and r̈i is acceleration.
Force is determined as negative gradient of the energy, E, over atomic coordinate
vector, ri

Fi = −∂E
/
∂ri (15-17)

Giving the initially static atoms a kick in the form of randomly oriented velocities
initiates the dynamics. After the initial perturbation subsides and the system relaxes
from the internal geometric strain it eventually reaches the thermal equilibrium. This
marks the begin of the production run after which one can start saving the dynamics
trajectory for subsequent analysis. From now on the dynamics can run forever in the
absence of non-conservative forces assuming that the computer code is free from
accumulation of numerical errors.

15.3. VALIDATION

15.3.1. Linear Scaling

Scalability of the LocalSCF method was tested on protein structures 1G5A (9,896
atoms), 1HZH (20,462 atoms), 3E2P (61,504 atoms), and 1AON (119,574 atoms)
downloaded from the protein databank [16]. These particular proteins were selected
based on their roughly doubling number of atoms along the series. The largest
selected protein contains a representative number of atoms which is quite exceeding
the average number of atoms typically targeted by classical force fields. Since the
purpose of the test is to demonstrate linear scalability of the LocalSCF method and
its actual resource requirement any other set of proteins would work equally well.
Using real proteins in the test provides realistic estimation of what to expect from
the computational method in practical applications.

The downloaded proteins were cleaned up by removing solvent molecules
and adding hydrogen atoms. The protonation state of titratable amino acids was
determined at physiological pH. Since these are model gas-phase calculations no
counter-ions were added to the systems. Single-point LocalSCF [17] calculations
(LocalSCF ver 2.0 Rev 2007.08.27 EM64T) were performed under default program
settings on Intel Core 2 Duo 3.0 GHz, 4 GB RAM desktop working under Linux
(Ubuntu 9.04) operating system. Long-range Coulomb interactions were treated
via FMM method [18]. Plot of CPU time and required memory over number of
atoms are presented in Figures 15-3 and 15-4 for PM3 [19] and PM5 [20, 21]
Hamiltonians.

These data show remarkable linear scaling capability of LocalSCF both for CPU
time and memory. Single-point calculation of the largest considered protein (GroEL-
GroES chaperonin complex; PDB id 1AON) required 1.6 GB RAM and took 2 h
and 10 min. Thus semiempirical QM calculations of such and even larger biological
systems are now readily affordable on desktop computers. The accuracy of the linear
scaling algorithm will be discussed in a separate section.
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Figure 15-3. LocalSCF scaling of CPU time over number of atoms for PM3 and PM5 Hamiltonians

Additional degree of speed up can be obtained via utilization of multiple pro-
cessing capabilities of the modern computer hardware. To test parallel scalability
of LocalSCF program we took GroEL-GroES chaperonin complex. Calculations
were performed using AM1 [22] Hamiltonian; exchange interactions were neglected
beyond 6 Å distance; CMO expansion threshold derivative ThrDer1 was set to
0.05 eV; the maximum gradient tolerance gELMax was set to 0.05 eV. Long-
range electrostatics was treated via FMM method using default program settings.
Calculations were performed on a symmetric multiprocessor architecture SGI Altix

Figure 15-4. LocalSCF scaling of required memory over number of atoms for PM3 and PM5
Hamiltonians
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Figure 15-5. Scalability of parallel LocalSCF calculation of GroEL-GroES chaperonin complex

3,700 computer equipped with Intel Itanium2 1.5 GHz CPUs and 256 GB RAM,
running under GNU Linux. Calculation time was measured for 5 cycles of all-atom
geometry optimization and the speedup factor as a function of the number of utilized
CPUs is presented in Figure 15-5.

Considering the general complexity of parallelization of quantum-mechanical
codes the presented scalability is quite satisfactory. The scalability is almost linear
up to 8 processors and shows less efficient CPU utilization when the number of
processors reaches 16. After that point adding more processors to the job is likely
not going to further speedup the calculation in the present software implementation.

15.3.2. Accuracy of the Linear Scaling Algorithm

The linear scalability of the LocalSCF method is a direct consequence of using
CMOs in contrast to delocalized MOs employed in conventional SCF methods.
Although the individual CMOs have different size in terms of their AO expan-
sion, they are significantly shorter than conventional MOs and less extended than
MOZYME LMOs. This fact may raise a concern how reliable are the computa-
tional results obtained on such short CMOs and from the LocalSCF calculations in
general?

To study this matter we performed gas-phase AM1 calculations of proinsulin
(PDB id 1EFE) protein containing 60 amino acids and representing the system of
1,034 atoms. This is a large system for running semiempirical matrix diagonaliza-
tion calculations but still affordable as fitting into 1 Gb memory limit so calculations
on this system by using MOPAC program [20] would not be too difficult. The pro-
tonation state of the titratable amino acids was determined at pH=7 and resulted in
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the total charge of +1 electron units for the protein. The protein consists of 6 posi-
tively charged amino acids (ARG, LYS) and 5 negatively charged amino acids (ASP,
GLU). The two histidines present in the protein were modeled in neutral state. The
original protein structure was designated as conformation A. The conformation B
was obtained by rotating sidechain of TYR26 by 30 degrees toward the hydrophobic
protein core.

TYR26 is located at the boundary of the hydrophobic core of proinsulin and
has sufficient rotational degree of freedom which won’t create unfavorable short
contacts to other amino acids due to the applied sidechain rotation. At the same
time the proximity of TYR26 to other amino acids will make the conformational
change in TYR26 sidechain visible on potential energy profile of the protein. By
introducing this small conformational perturbation to TYR26 sidechain we model
energetically accessible structural changes which protein samples during the course
of molecular dynamics simulation. Now we want to know how well the energy
difference between the two protein conformations as computed by matrix diagonal-
ization will be reproduced by the linear scaling LocalSCF method and its underlying
VFL approximation. The structurally different parts of the overlaid conformations
A and B are displayed in Figure 15-6 with the rest of the systems hidden from the
view.

Matrix diagonalization calculations of the two protein conformations were per-
formed by using MOPAC with default settings. Initial attempts to perform MOPAC

Figure 15-6. The structurally different parts of overlaid conformations A and B of proinsulin. The A
(native) conformation is shown in gray. The B conformation having TYR26 sidechain rotated by 30
degrees toward protein hydrophobic core is shown in black
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SCF calculations were unsuccessful due to convergence problems. As our com-
putational practice demonstrates, gas-phase matrix diagonalization calculations of
proteins having high content of ionizable amino acids (ARG, LYS, GLU, ASP) show
systematic convergence problems. These problems worsen with the increasing num-
ber of ionized amino acids in the system and with the increasing number of atoms,
and are related to insufficient quality of the generic initial guess. Therefore the den-
sity matrix computed by the final LocalSCF method had to be supplied as an initial
guess to the MOPAC jobs. After that MOPAC jobs converged in 9 SCF iterations.
Using final LocalSCF density matrix as initial guess made the MOPAC calculation
looking artificially faster than it would be in the normal case when starting from the
generic initial guess. Therefore MOPAC calculation time was projected to 50 SCF
iterations in order to obtain a more realistic time estimate. Although the number 50
is based on a pure guesswork its value is absolutely unimportant because even for the
absolutely artificial case of MOPAC converging in 9 iterations the LocalSCF compu-
tation would still be faster by factor of 10 than the superficial matrix diagonalization
(see Table 15-1).

LocalSCF calculations were performed in two modes. One was performed with
default program settings, as discussed above, and the second one with tight SCF con-
vergence criterion. These calculation modes are denoted in Table 15.1 with labels
def and acc, respectively. In the accurate mode all the SCF parameters except for the
diagonal density matrix elements (dQthr) were intentionally set to such small val-
ues so these conditions cannot be satisfied. This forced the VFL SCF micro-iteration
convergence to the remaining criterion of dQthr= 0.0003 electron units. The num-
ber of CMO expansion steps was limited to 5 and the expansion criterion thrDer1
was set to the negligibly small value of 10–8. In the factual absence of the energy
criterion all the possible CMO expansions found by the proximity criterion were

Table 15-1. Comparison of LocalSCF in default (def) and accurate (acc) modes with
matrix diagonalization (MOPAC) on proinsulin conformations A and B using AM1
Hamiltonian

Property MOPAC LocalSCF (def) LocalSCF (acc)

HOFa, kcal/mol −4,509.82 −4,498.29 −4,509.27
Econf

b, kcal/mol −8.78 −8.83 −8.78
�Qa,c, a.u. N/A 0.004 0.004
Dipole momenta, D 241.45 239.55 239.44
�Gradienta,d, kcal/(mol∗Å) N/A 0.34 0.04
MO sizea,e 1,034 23 85
Memorya, MB 1,061 25 30
CPU timef, s 5,652 46 123

aConformation A.
bEconf = HOFA – HOFB.
cRoot mean square difference in atomic charges using MOPAC charges as reference.
dRoot mean square difference in geometry gradients using MOPAC gradients as reference.
eAverage size of MOs by the number of atomic centers in their AO expansion.
fMOPAC calculation time is projected to 50 SCF iterations.
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accepted. We also tightened the orthogonality criterion to 10–8 and increased the
cut-off for exchange interactions and for the product of Fock matrix with CMOs to
20 Å.

For the analysis of accuracy of the LocalSCF method we selected heat of for-
mation (HOF), conformational energy, partial atomic charges, dipole moment, and
geometry gradients, with the results summarized in Table 15-1. As it was men-
tioned before, LocalSCF in default mode underestimates the absolute value of
heat of formation. In this example the heat of formation is underestimated by
11.53 kcal/mol. However, all other properties are reasonably well reproduced in the
default calculation mode. The conformational energy, partial atomic charges and
dipole moment are in good agreement with the corresponding matrix diagonaliza-
tion results. Satisfactory agreement is also obtained for geometry gradients with root
means square difference of only 0.34 kcal/(mol∗Å).

The LocalSCF CMOs in proinsulin, when obtained in default mode comprise
23 atomic centers on average. For comparison the size of delocalized MOs in the
matrix diagonalization calculation of proinsulin is 1,034 atomic centers. The use of
short CMOs in LocalSCF is the primary reason for underestimation of the absolute
value of the heat of formation. Since absolute energy values are of limited use in
biomolecular calculations and because the relative properties are accurately repro-
duced, the default settings in LocalSCF represent a reasonable balance of accuracy
vs. performance. The most significant advantage of the obtained speedup is making
feasible QM MD calculations of large systems, which will be discussed in a separate
section.

The LocalSCF method does not preclude the user from accessing the matrix diag-
onalization energy limit. In the situations when absolute value of energy or highly
accurate geometry gradients are needed one can resort to somewhat larger CMOs.
The computational results corresponding to such (accurate) mode are presented in
Table 15-1. In the accurate mode the average CMO size grew up to 85 atomic cen-
ters. This immediately improved the agreement in the absolute value of heat of
formation from 11.53 to 0.55 kcal/mol. Similarly the root mean square difference
in geometry gradients dropped from 0.34 to 0.04 kcal/(mol∗Å). This is obtained at
the cost of 2.7-times slower calculations than the default LocalSCF mode, which is
acceptable considering very high performance of the method. The calculation time
of the accurate LocalSCF mode is still better by the factor of 46 in comparison to
the matrix diagonalization calculation. This is a remarkable speed up considering
the fact that the system consisting of 1,034 atoms is quite small by biophysical stan-
dards. Since the LocalSCF method is linear scaling the level of speed up will be
even more impressive when going to real-size biological systems encountering tens
of thousands of atoms.

The performed validations tests using just two protein conformations do not suffi-
ciently evaluate the conformational energy profile of the protein. Although running
LocalSCF calculations over an extensive set of protein snapshots is a trivial mat-
ter, there are obvious technical difficulties in collecting the reference data using
matrix diagonalization due to high computational cost of such calculations. As a
compromise, we performed a validation test on 20 proinsulin conformations [14].
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In contrast to the use of a completely dry protein as in the above calculations the
new computations included 100 water molecules placed in vicinity of the ionized
residues of the proinsulin. This greatly improved stability of the QM calculations.
Indeed, zwitter-ionic forms of amino acids are unstable in gas-phase resulting in
artificially high polarization making meaningless such QM calculations. Attempts
to relax gas-phase structure by means of QM calculation produce a number of com-
putational artifacts, including disruption of covalent bonds due to hydrogen atom
abstraction by anionic centers. Our experience of applications of QM methods to
biological systems suggests that proteins in gas-phase cannot have the same ioniza-
tion state as they have in water. This is not a limitation of the QM methods but rather
a valuable lesson. It shows the limits of the classical mechanical models where the
notion of protein ionization state originally came from.

According to the performed calculations on the 20 proinsulin snapshots, AM1
and PM3 conformational energy differences were 0.41 and 0.29 kcal/mol, respec-
tively [14]. Dipole moment differences were within 0.1 Debye in both cases. The
RMS difference on partial atomic charges was about 0.0003 electron units. The
obtained better agreement with the matrix diagonalization data in comparison to
our previous tests should be attributed to the water solvation of ionized protein sites
and to the use of slightly better SCF convergence criteria.

Now when the general performance and accuracy of the LocalSCF method have
been sufficiently established on the relatively small system consisting of a thousand
of atoms we may consider performing validation tests on larger systems. Since in
typical biomolecular simulation the simulation box often consists of tens of thou-
sands of atoms we need to prepare a comparable system by the number of atoms. For
that purpose we placed proinsulin in a water box with the walls extending on at least
10 Å in each direction from the nearest protein atom. The system was neutralized by
adding a chloride counterion. 20 snapshots of this system consisting of 20,058 atoms
were generated using classical force field MD [14]. Since running matrix diagonal-
ization on such large system is beyond the reach of the readily available computer
hardware, the reference data were obtained by running LocalSCF calculation while
treating all Coulomb integrals explicitly. Since such calculation scales quadratically
with the number of atoms it cannot be used in massive calculations. However, high
accuracy of this computation mode and relatively low computational demand make
it suitable to generate the reference data to test the quality of the faster LocalSCF
calculation modes.

For large systems the LocalSCF program includes the capability to treat long-
range Coulomb interactions via the linear scaling FMM method. For the system of
20,058 atoms the FMM provides 9-fold speed up when using AM1 Hamiltonian.
Total memory requirement is 256 and 283 MB when using AM1 and PM3
Hamiltonians, respectively. Since the modern desktop computers are equipped
with gigabytes of memory we have sufficient room to treat hundreds of thou-
sands of atoms at QM level on a commodity computer using the LocalSCF
method.

Following is a brief analysis of the obtained results for the 20,058 atoms’ sys-
tem. The accuracy of calculation of partial atomic charges still remained high with
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the root mean square difference of 0.0016 electron units for AM1 and 0.0003 for
PM3 Hamiltonian. The difference in dipole moment increased to 1.1 and 0.2 Debye
for AM1 and PM3, respectively, with PM3 again showing better numerical agree-
ment with the reference data. More noticeable differences were accumulated in
conformational energy. AM1 showed 5.4 kcal/mol difference while PM3 resulted
in 1.9 kcal/mol difference against the reference data. Although reaching a bet-
ter numerical accuracy in conformational energy would be desirable the obtained
values are still quite satisfactory considering that the comparable MOZYME calcu-
lations gave 25.5 and 23.8 kcal/mol differences for AM1 and PM3 Hamiltonians,
respectively.

Overall, the QM energy calculations of the 20,058 atoms system taking only
about 1 h of a single-processor time make feasible massive exploration of biological
problems based on QM principles. This marks a turning point on the front line of
biological simulations where for a long time only classical mechanics methods were
practically affordable.

15.3.3. Validation of QM Molecular Dynamics

Making feasible all-atom quantum-mechanical calculations of large molecular sys-
tems is an important step toward better understanding the physics of biological
macromolecules. The all-QM approach to biological systems is particularly impor-
tant in the light of recent studies showing significant differences between classical
mechanical and QM description of electrostatic interactions [23]. The charge trans-
fer effects, which are omitted in the classical mechanics model, influence the
structural dynamics profile of biomolecules and must be taken into account when
targeting the accurate picture at atomic resolution. The net amino acid charges deter-
mined from QM MD trajectory show their dependence on particular amino acid
environment. This disagrees with the practice of assignment of unified unit charges
to amino acids in classical mechanics, based on mean field approximation. Such
unification is a sound approach when dealing with isotropic bulk liquids where
the mean field approximation has a solid theoretical ground but becomes prob-
lematic for biomolecules which are highly anisotropic systems. The fixed-charge
electrostatic model and the mean field approximation average out important atom-
istic details, which are anisotropic by definition, and uncovering which is the sole
purpose of biomolecular simulations.

The global character of charge transfer also places certain limits on the range of
applicability of hybrid QM/MM schemes representing a rapidly growing theoretical
approach to biomolecular simulation [24]. To account for charge transfer effects the
entire macromolecular system including protein and solvent should be treated at
QM level.

The feasibility of treating large systems entirely at QM MD level is an important
advantage of the LocalSCF method. Though, this is still largely unexplored area.
There is no sufficient information on how large systems can be treated at QM MD
level and what length of simulation time can be approached. These questions will
be addressed although at limited degree in the present article.
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Figure 15-7. Schematic representation of the half-shoulder spherical boundary potential. The energy due
to the potential is shown by dashed line. It is zero inside the sphere of radius of 10 Å and has harmonic
shape outside the droplet walls

For the purpose of this study we built a spherical water droplet having the radius
of 10 Å. This system contained 144 water molecules or 432 atoms. To prevent the
water molecules leaving the droplet due to their kinetic energy during the dynamics
run we added a half-shoulder harmonic spherical boundary potential (SBP) with
force constant of 10 kcal/(mol∗Å). The SBP potential has zero value inside the
sphere of the radius of 10 Å while it gently pushes back the water molecules attempt-
ing to cross the spherical boundary. The potential is applied to non-hydrogen atoms
only in order to minimize its influence on rotational degrees of freedom of water
molecule. The schematic picture of the SBP potential is given in Figure 15-7.

Using the droplet model to represent water solvation has obvious disadvantages
over the use of periodic boundary condition (PBC). However the SBP model is
simple to implement and it is computationally more attractive than the PBC model.
This is the reason why we selected the SBP model for validation of the following
QM MD calculations.

The water droplet can be simulated using various types of dynamics. First in
the list is constant volume – constant energy NVE molecular dynamics, generating
microcanonical ensemble of configurations. NVE is the simplest form of molecu-
lar dynamics, which can be obtained by direct solution of the Newton second law
equations separately written for each dynamic particle in the system Eq. (15-16).
It describes a closed system so no mass or heat exchange with the environment is
possible. Since the particles are bound by potential forces that keep them sticking
together the volume occupied by the system remains constant during the simulation
after reaching the equilibrium state. Though, strictly speaking the rigorous definition
of volume requires the presence of walls, like in PBC conditions. No mechanism is
available in the NVE dynamics to maintain constant temperature of the system. The
NVE Hamiltonian (H) consists of kinetic (K) and potential (U) energy terms each
being a function of N particles having coordinates r
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H = K
(
rN) + U

(
rN)

(15-18)

The microcanonical ensemble generated by NVE dynamics is not consistent with
experimental measurements which are typically performed at constant tempera-
ture condition. Therefore practically more useful is isochoric-isothermic molecular
dynamics, abbreviated as NVT, which keeps temperature fluctuating around the tar-
get value, T0. The most popular scheme to achieve temperature stabilization while
generating a canonical ensemble is the Nose-Hoover algorithm [25] which extends
the Hamiltonian by adding a virtual degree of freedom, s, associated with thermostat
(aka thermostat coordinate), and which is considered as a dynamic variable

H = 1

2

N∑

i

mi(s · ṙi)
2 + U

(
rN) + 1

2
Qṡ2 + (3 N + 1)kBT0 ln(s) (15-19)

where Q is a thermostat coupling parameter (aka thermostat mass), kB is
Boltzmann’s constant. In this equation the particle velocities (determining tempera-
ture) are scaled by the parameter s at each time step and the degree of coupling of
the real particles with the thermostat is determined by the parameter Q.

With the NVT dynamics and uniform velocity rescaling it may happen that
due to accumulation of numerical errors the thermostat may start redirecting the
kinetic energy from high-frequency modes to the rigid-body rotation and translation
degrees of freedom of the droplet, which are not coupled to the internal degrees of
freedom of the systems. When happened it would break the momentum conservation
thus leading to the “flying ice cube” problem [26]. This is a serious problem when
attempting hundreds of picoseconds long NVT simulation of a droplet system under
SBP boundary condition. To avoid such problem one would need to apply thermo-
stat equations to internal velocities which provide an explicit mechanism to maintain
momentum conservation. Working with internal velocities vs. real ones brings addi-
tional computational overhead. A simpler solution is to resort to Langevin dynamics
given by the modified Newton equation

mir̈i = −∂E
(
rN

)

∂ri
− γimiṙi + R(t)

√
2miγikBT0 (15-20)

where R(t) is an uncorrelated Gaussian distribution with zero-mean, and γ i time-
independent friction parameters. The random collisions of the real atoms with
imaginary solvent molecules eliminate the possibility for an unphysical kinetic
energy distribution over the degrees of freedom. It also introduces solvent viscosity
into the dynamic equations. Langevin dynamics is a popular method of choice when
dealing with molecular clusters in the absence of PBC conditions. On the negative
side of the Langevin dynamics is its time-irreversible and non-deterministic charac-
ter but its numerical stability and the simple way to account for the solvent viscosity
outweigh the deficiencies.

Correspondingly we performed 1 ns Langevin dynamics of the water droplet
under the SBP condition. During the simulation the temperature was maintained at
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300 K and the friction parameter was set to 10 ps–1. The dynamics equations were
integrated with the timestep of 1 fs. No constraints were applied to bonds involving
hydrogen atoms. First 100 ps of the simulation were considered as equilibration
while the remainder of the trajectory was saved for analysis. QM simulations were
performed using PM5 Hamiltonian. The 1 ns QM MD simulation took 20 days to
run on two cores of an Intel Core 2 Duo 3.0 GHz desktop.

The volume of the system was computed based on the sphere radius defined by
the most distant oxygen atom from the center of the sphere. During the simulation
the volume of the droplet oscillated around the average value of 4,955.10 Å3. This
corresponds to water density of 0.85 g/cm3 which, as we can see, is underestimated
by PM5.

Important indicator of stability of the simulation method is conservation of the
virial of the system. In the presence of only conservative forces, which is our case,
the following relation known as the virial theorem must hold

2〈K〉 + 〈U〉 = 0 (15-21)

The potential energy of the water droplet, U = Uint +Uext, has internal and external
components. The internal term is as follows

Uint =
∑

i

Fint,i · ri = −
∑

i

∂E

∂ri
· ri (15-22)

where E is the computed QM energy, Fint,i is internal force acting on particle i due
to other particles. The external component of the potential energy is created by the
SBP potential

Uext = k0

2

∑

i

( |ri| − R0)2 when |ri| > R0; otherwise Uext = 0 (15-23)

Fext = −∇Uext = −k0

∑

i

(
1 − R0

|ri|
)
· ri (15-24)

where R0 is the radius of the sphere where the restraining force is initiated; Fext is
external force with the force constant k0; ri is atomic coordinate vector. Equation
(15-23) and (15-24) assume the origin of the coordinate system being placed at the
center of mass of the droplet.

The plot of virial of the system along dynamics trajectory is displayed in
Figure 15-8.

Trajectory average of the virial gives the value of –0.6 kcal/mol, which is very
close to the expected value of zero thus pointing to stable dynamics.

Having defined the volume of the system we can compute internal pressure inside
the droplet based on the virial expression [27, 28]



The Linear Scaling Semiempirical LocalSCF Method 435

Figure 15-8. Conservation of virial during PM5 MD simulation of water droplet

P = ρkBT + 1

3V

〈
∑

i

Fi · ri

〉
(15-25)

where ρ is number density of particles; kB is Boltzmann’s constant; V is volume of
the droplet; Fi is total force acting on particle i due to other particles and soft walls.
Equation (15-25) can be rewritten in terms of kinetic and potential energy of the
droplet

P = 1

3V
(2 K + U) (15-26)

Averaging over the dynamics trajectory gives the pressure value of 5.7 atm, which is
relatively close to the normal pressure of 1 atm. Using a larger system would make
the pressure determination more reliable.

Since the SBP boundary condition introduces distinct volume one may use it to
derive a true constant temperature-pressure NPT dynamics. Following the standard
approach [29] it is possible to consider volume as another dynamic variable and for-
mulate the corresponding dynamic equations. However, exploring this venue goes
beyond the limits of the current article.

15.4. CONCLUDING REMARKS

Linear scaling LocalSCF method provides a valuable alternative to matrix diagonal-
ization when dealing with large molecular systems. It shows about 50-fold speedup
over matrix diagonalization already on such small system as 1,034 atoms proinsulin.
As a result, QM calculations of hundreds of atoms systems can be readily conducted
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on commodity computers. Validation tests confirm good accuracy of the linear
scaling computations on partial atomic charges, dipole moments, conformational
energies and geometry gradients.

The most significant value of the linear scaling LocalSCF method is the feasi-
bility of running QM MD of biological systems thus advancing the computational
biophysics beyond the fixed charge approximation. The presented spherical bound-
ary potential is a computationally economical approach for explicit treatment of
water in QM biomolecular dynamics. The 1 fs integration time step makes feasible
accumulating hundreds of picoseconds or even nanosecond long trajectories on the
modern hardware by utilizing parallel processing capabilities.

The performed water dynamics using PM5 Hamiltonian showed the need to fur-
ther improve the condensed phase properties of water. The accumulated speedup due
to the linear scaling LocalSCF method provides the necessary technical means to
succeed in such effort and to move on with the development of accurate biologically
oriented semiempirical Hamiltonians.
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CHAPTER 16

DENSITY MATRIX METHODS IN LINEAR SCALING
ELECTRONIC STRUCTURE THEORY

ANDERS M. N. NIKLASSON
Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; Applied
Materials Physics, Department of Materials Science and Engineering, Royal Institute of Technology,
SE-100 44 Stockholm, Sweden, e-mail: amn@lanl.gov

Abstract: We review some recursive Fermi operator expansion techniques for the calculation of
the density matrix and its response to perturbations in tight-binding, Hartree-Fock, or
density functional theory, at zero or finite electronic temperatures. Thanks to the recursive
formulation, the expansion order increases exponentially with the number of iterations
and the computational cost scales only linearly with the system size for sufficiently large
sparse matrix representations. The methods are illustrated using simple models that are
suitable for small numerical experiments.

Keywords: Eigenvalue problem, Electronic structure theory, Density functional theory, Density
matrix, Linear scaling

16.1. INTRODUCTION

Computational materials science, chemistry and biology, are rapidly being trans-
formed by a quest for accuracy, speed, and reduced complexity. The development is
driven by the continuous increase of available computer capacity, where traditional
techniques become obsolete when they fail to fully utilize improved processing
power. The bottle neck is the scaling of the arithmetic cost with the number of
atoms. Typically, the cost of first principles calculations that are based on tight-
binding, Hartree-Fock [1], or density functional theory [2, 3], scales with the cube,
O(N3), of the system size N. To increase the number of atoms by a factor of 10
therefore requires an improvement of the computational capacity by a factor of
1,000. Only by reducing the scaling of the arithmetic cost is it possible to take
full advantage of increased processing power. A new computational paradigm has
therefore emerged in electronic structure theory, where no significant part of a cal-
culation is allowed to increase more than linearly, O(N), with the system size. The
linear scaling paradigm holds the promise of a revolution in atomistic simulation,
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Figure 16-1. A computational forecast of reduced complexity O(N) algorithms for electronic structure
calculations. Linear scaling electronic structure theory in large scale calculations will increase in impor-
tance as the computational capacity continuos to improve in comparison to conventional O(N3) methods

allowing reliable large scale calculations involving millions of atoms that are based
directly on the first principles of quantum mechanics. The high expectations are
clearly seen in the recent developments of high-performance linear scaling elec-
tronic structure codes such as Siesta, Conquest, FreeON, Ergo, Latte, Open-MX,
Femteck, and Onetep [4–11].

Looking at a computational forecast, it is easy to predict that only methods that
can maintain efficiency with increased processing power will be of interest in future
large-scale first principles simulations. Figure 16-1 shows the schematic picture of
the required computer capacity as a function of system size. With the current capac-
ity, most linear scaling algorithms has an advantage, but for self-consistent density
functional or Hartree-Fock based O(N) methods, this advantage is still fairly small
because of the large computational prefactor associated with most linear scaling
algorithms. However, as the trend in computational development continuos, with
cheaper and faster processors, the importance of linear scaling electronic structure
theory will become paramount, regardless of prefactor complexity.

Probably one of the first practical methods in linear scaling electronic structure
theory goes back to the Green’s function recursion method by Haydock [12–14]
based on the pioneering work of Lanczos [15]. However, it was not until over
a decade later [16–30] when linear scaling electronic structure theory became a
more independent discipline of broader general interest. There are several excel-
lent reviews of linear scaling methods [31–36]. The purpose of this chapter is to
present a fairly recent class of recursive Fermi-operator expansion methods for the
solution of the quantum mechanical eigenvalue problem [28, 30, 37, 38, 39–44]
that are based on, or related to, density matrix purification [28, 45] or the corre-
sponding sign-matrix methods [37, 46, 47]. In contrast to Chebyshev or Green’s
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function expansion schemes [21, 22, 26, 48, 49] these methods do not allow a gen-
eral operator expansion, instead they are tailored specifically only for the Fermi
function at finite electronic temperatures or the corresponding step function at zero
temperatures. The recursive Fermi operator expansion methods reviewed in this
chapter provide a very rapid convergence, similar to fix point iterations used for
solving non-linear equations, and they have a linear scaling cost for non-metallic
systems with a fairly small prefactor also for three-dimensional structures. They
have been implemented as stand alone techniques or as options in a number of dif-
ferent self-consistent linear scaling electronic structure codes, such as FreeON [6],
Ergo [50, 51], Latte [8], Siesta [42], and Conquest [5]. The recursive Fermi opera-
tor expansion approach also forms the basis of a density matrix perturbation theory
[52] that can be used as an efficient O(N) alternative to Rayleigh-Schrödinger or
Green’s function perturbation theory for the calculation of static response properties
[53–57]. Apart from the recursive Fermi operator expansion methods there are a
number of alternative O(N) techniques based on constrained functional minimiza-
tion with respect to the density matrix [17, 18, 29, 58–60] or the wavefunctions
[19, 20, 23, 61–66]. These methods will not be discussed here.

The computational tasks in first principles electronic structure theory can gen-
erally be divided in two parts: (a) the construction of the effective single-particle
Hamiltonian, i.e. the Fockian or the Kohn-Sham Hamiltonian, and (b) the solution
of the single-particle eigenvalue problem. Thanks to the efficiency of the fast Fourier
transform [67, 68], fast multipole methods [69–72], quantum chemical tree-codes
[73, 74], and reduced complexity schemes for exchange calculations [75–78], the
Hamiltonian can be calculated, using localized basis-set representations, with a cost
that scales only linearly with the system size for sufficiently large problems. The
second part, the eigenvalue problem, is less straightforward to solve within O(N)
complexity and a broad variety of different approaches exist that are more or less
efficient for different systems. The linear scaling ability can here be analyzed from
Kohn’s concept of nearsightedness [58, 79]. An electronic system at elevated elec-
tronic temperatures, or with a gap, can be described by Wannier functions that decay
exponentially as a function of interatomic distance [80, 81]. At each point in space,
only the contribution inside some system-size-independent local interaction zone
has to be included in the electronic description. Because of this electronic local-
ity the complexity of the solution scales only linearly with the system size, which
allows, at least in principle, calculations of the solution, defined by the eigenvalue
problem, which scale only linearly with the total number of atoms. For metallic
systems the Wannier functions decay only algebraically and the localization is effec-
tively lost. It should be noted that using local interaction zones through an ad hoc cut
and paste or divide an conquer approach often leads to a very slow convergence with
the size of the local zones and to uncontrolled errors, in particular for complex non-
homogeneous materials. By using special tailored boundary conditions of the local
interaction zones, it is possible to reduce the errors [25, 82, 83, 84]. However, instead
of using a “cut and paste” approach, the matrix sparsity of operator representations
within a local basis set can be explored. If only matrix elements above some thresh-
old tolerance are included, which is set by, for example, the requirement of rigorous
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matrix norm errors [85–87], efficient linear scaling complexity can be reached for
Fermi operator expansion methods in which sparse matrix-matrix operations, such
as additions and multiplications [88], can be performed in O(N) within a well con-
trolled accuracy. This is the basic approach followed by the methods reviewed in
this chapter.

16.2. THE EIGENVALUE PROBLEM

The key electronic structure problem addressed in this chapter is the quantum
mechanical eigenvalue equation,

Hvi = εivi, (i = 1,2, . . . ) (16-1)

which determines the electronic solution. Here H is the effective single-particle
Hamiltonian matrix in tight-binding, Hartree-Fock, or density functional theory,
with matrix elements

Hi,j =
∫

drφi(r)

(
−1

2
∇2 + U(r)

)
φj(r), (16-2)

where − 1
2∇2 is the kinetic energy operator and U(r) is an effective single-particle

potential [89]. U(r) is typically determined by the electronic density as well as the
external nuclear potential. This leads to the requirement of a self-consistent solution
that can be found by an iterative procedure, where the Hamiltonian is constructed
and the eigenvalue problem is solved repeatedly. The column eigenvectors vi have
components {vi(j)}N

j=1 with eigenvalues εi. Throughout this chapter we will assume

that the underlying basis-set representation, {φi(r)}N
i=1, is local and orthogonal. In

the case of, for example, a nonorthogonal Gaussian basis set representation, it is
easy to transform the generalized eigenvalue problem to the orthogonal standard
form [90] using the inverse Cholesky or Löwdin factors, Z, of the overlap matrix,

Si,j =
∫

drφi(r)φj(r). (16-3)

In a nonorthogonal (no) representation the eigenvalue problem, Eq. (16-1), has the
general form,

Hnovno
i = εiSvno

i . (16-4)

By using the inverse factorization of S, where

ZTSZ = I, (16-5)

the general nonorthogonal eigenvalue problem can be transformed by the congru-
ence transformation [94],
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ZTHnoZZ−1vno
i = εiZTSZZ−1vno

i . (16-6)

With H = ZTHnoZ and vi = Z−1vno
i the standard eigenvalue problem in Eq. (16-1)

is recovered. The inverse Cholesky factors can be calculated in a number of dif-
ferent ways such that the cost scales only linearly with system size for sufficiently
large sparse problems [91–98]. In this chapter we assume that Si,j = δi,j or that a
congruence transformation has been performed.

Solving the eigenvalue problem in Eq. (16-1) by a conventional diagonaliza-
tion method [90] usually has a computational cost that scales O(N3). Because of
the expensive cubic scaling of the arithmetic cost a straightforward diagonaliza-
tion for the solution of the eigenvalue equations is thus prohibitively expansive for
large quantum problems. A key observation behind most linear scaling electronic
structure schemes is that the individual eigenvalues and eigenvectors in Eq. (16-1)
are not needed. In fact, typically, only the sum of the occupied eigenvalues (the
single-particle band structure energy),

Es =
∑

i∈occ

εi, (16-7)

and the density,

n(r) =
∑

i∈occ

|�i(r)|2, (16-8)

are required, where the electronic eigenfunctions �i(r) are given from the basis
functions and the eigenvectors, i.e.

�i(r) =
∑

j

vi(j) φj(r). (16-9)

This observation leads to a tremendous simplification. In particular, the single-
particle density matrix,

P =
∑

i∈occ

vivT
i , (16-10)

or its real space representation

P(r,r′) =
∑

i∈occ

�i(r)�(r′) =
∑

k,l

Pk,lφi(r)φl(r′), (16-11)

provides a very useful tool for most calculations. For example, once the density
matrix is known, the electron density is determined by the diagonal part of the real
space representation,

n(r) = P(r,r), (16-12)
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and the single-particle energy is given by the matrix trace,

Es = Tr[PH] =
∑

i∈occ

εi. (16-13)

As will be discussed in this chapter, the density matrix can be constructed from
a Fermi operator expansion of the Hamiltonian without calculating the individual
eigenvalues and eigenfunctions. By exploiting quantum locality, which gives rise
to sparse matrix representations of the density matrix in a local basis, efficient elec-
tronic structure calculations can be performed, which have a computational cost that
scales only linearly with the system size. Density matrix formalism has become a
key ingredient of linear scaling electronic structure theory.

16.3. QUANTUM LOCALITY AND DISORDER

Electronic locality or nearsightedness, which manifests itself in sparse matrix rep-
resentations of the density matrix in a local basis set, is a key feature necessary for
most O(N) methods. There are a number of studies of the locality of the electronic
solutions in materials, which can be measured by the localization of the density
matrix P(r,r′) as a function of interatomic separation [48, 79, 80, 99–102]. Two dif-
ferent types of underlying localization mechanisms are usually discussed: (a) the
formation of a gap at the chemical potential and, (b) fractional occupation of the
single-particle states at finite electronic temperatures. These two mechanisms of
electronic localization have been discussed rather extensively in a number of arti-
cles and reviews. In molecular systems the existence of a gap is the most important
property for localization since the electronic temperature then typically has very lit-
tle effect. However, there is a third localization mechanism that has received little
attention in connection to linear scaling electronic structure theory. The third mech-
anism is localization due to disorder. This mechanism, which in its strong limit
is related to the famous Anderson localization proposed over 50 years ago [103],
is fairly easy to illustrate. Let’s start with a simple periodic one-dimensional free
electron Hamiltonian matrix,

H = −1

2

⎛

⎜⎜⎜⎜⎜⎝

−2 1 0 0 . . . 1
1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
...

...
...

...
. . .

...
1 0 . . . 0 1 −2

⎞

⎟⎟⎟⎟⎟⎠
. (16-14)

This Hamiltonian yields a density matrix at Te = 0 that has a slow algebraic decay.
By introducing a random perturbation of the diagonal elements,
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R =

⎛

⎜⎜⎜⎝

r1,1 0 0 0 . . .
0 r2,2 0 0 . . .
0 0 r3,3 0 . . .
...

...
...

...
. . .

⎞

⎟⎟⎟⎠ , (16-15)

where ri,i are uniformly distributed random values in the interval [−1, 1], it is
possible to create the perturbed Hamiltonian

H′ = H + αR. (16-16)

The amount of disorder is controlled by the size of α. If α = 0 the density matrix has
a free electron behavior, whereas a localization occurs for values of α above some
threshold. Disorder automatically provides an intrinsic decoherence of the quantum
state to a more localized “classical” density matrix. The effect may be understood
from the perspective of phase cancellation. The perturbation creates random phase
shifts in the wavefunctions, which lead to cancelations of their long-range decay
through destructive interference. In numerical experiments, the localization from
randomness is a simple and practical way to construct Hamiltonians, which have
localized density matrices that can be calculated with O(N) complexity. Figure 16-2
shows the decay of the density matrix elements for the one-dimensional free elec-
tron Hamiltonian, Eq. (16-14), with 400 states of which 30 are occupied. For the
free electron density matrix the magnitude of the matrix elements have a slow alge-
braic long-ranged asymptotic decay, which is typical for metals. If the random noise
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Figure 16-2. The decay of the density matrix elements for the one-dimensional free electron
Hamiltonian, Eq. (16-14), with 400 states of which 30 are occupied, with the diagonal noise term in
Eq. (16-15) for α = 0 or 0.125 in Eq. (16-16)
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with α = 0.125 is introduced, we find an exponential decay, which provides a local-
ized “nearsighted” solution. The number of non-zero matrix elements above some
small numerical threshold will therefore only scale linearly with the system size.
This linear scaling property also holds for three-dimensional structures, though the
number of non-zero elements per matrix row will be larger. As pointed out pre-
viously, quantum locality and matrix sparsity is often critical for efficient linear
scaling calculations, which in practice limits the O(N) Fermi operator expansion
methods discussed in this paper to non-metallic materials and local basis set rep-
resentations. For metallic systems, sufficient locality is in practice reached only at
extreme temperatures.

16.4. FERMI OPERATOR EXPANSION

The Hamiltonian and the density matrix at zero electronic temperature, Te = 0, can
be expanded in their spectral decompositions,

H =
∑

i

εivivT
i (16-17)

and

P =
∑

i

θ (μ0 − εi)vivT
i . (16-18)

Here θ is the Heaviside step function and μ0 is the chemical potential, which sep-
arates the occupied states from the unoccupied. From Eqs. (16-17) and (16-18) we
find that the density matrix is given as a matrix function of the Hamiltonian,

P = θ (μ0I − H), (16-19)

where I is the identity matrix. Often a specific electronic occupation, Nocc, is
required, which is given by the trace of the density matrix,

Tr[P] = Nocc. (16-20)

This canonical condition can be fulfilled by adjusting the chemical potential μ0 such
that it correctly separates the right number of occupied states from the unoccupied.
In the more general case, at finite electronic temperatures, Te ≥ 0, the step function
in Eq. (16-19) is replaced by the Fermi-Dirac function,

P =
[
eβ(H−μ0I) + I

]−1
, (16-21)

where β = 1/(kBTe). Thus, the density matrix can be calculated by a Fermi operator
expansion, either at Te = 0, for integer occupation of the states, or at Te > 0,
for fractional occupation. An artificial electronic temperature of a few 1,000 K is
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sometimes included in molecular dynamics simulations. The temperature smearing
of the electronic occupation also helps to improve the self consistency convergence
when parts of a system is metallic.

The Fermi operator expansion approach is probably the most straightforward way
of calculating electronic structure properties that is able to avoid a full solution of the
Hamiltonian eigenvalue problem. By utilizing nearsightedness, which, as discussed
above, manifests itself in terms of the exponential decay of P(r,r′) as a function of
|r − r′|, reduced complexity scaling can be achieved. Because of nearsightedness,
both the Hamiltonian and the density matrix will be sparse for non-metallic mate-
rials in a local basis set representation. The number of nonzero matrix elements
above some numerical threshold then scales only linearly with the number of atoms
for sufficiently large problems. By exploring this matrix sparsity, the density matrix
can be constructed directly from the Hamiltonian through an expansion of the Fermi
function of H, with a computational cost that scales only linearly with the system
size. The only essential operations needed are basic matrix-matrix or matrix-vector
multiplications, additions and subtractions. These can all be performed with linear
scaling complexity for sufficiently large sparse matrices [88, 104–106]. In the recur-
sive Fermi operator expansion non-zero off-diagonal matrix elements will propagate
throughout the calculation and create fill in that reduces matrix sparsity, in particu-
lar after each matrix-matrix multiplication. By applying thresholding it is possible
to keep the matrix sparse also for complex three dimensional structures within well
controlled error bars [40, 85–87].

16.4.1. Chebyshev Expansion

Some of the first linear scaling Fermi operator expansion methods were based on
the Chebyshev expansion of the the Fermi function [21, 26, 27, 107–109], where
the density matrix is given by the serial expansion,

P = c0T0(H) + c1T1(H) + c2T2(H) + · · · . (16-22)

The ci coefficients are determined from the condition that

(eβ(x−μ0) + 1)−1 ≈ c0T0(x) + c1T1(x) + c2T2(x) + · · · . (16-23)

The Hamiltonian must be rescaled such that its eigenvalues are in the interval on
convergence, [−1, 1]. The Chebyshev polynomials Ti(H) can be constructed from
the recurrence relation

Ti+1(H) = 2HTi(H) − Ti−1(H), (16-24)

where

T0(H) = I, (16-25)
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and

T1(H) = H. (16-26)

Only sparse matrix-matrix or matrix-vector operations are needed, which all can be
performed with linear scaling complexity and in parallel for sufficiently large sparse
systems. Another major advantage with the Chebyshev expansion is its numerical
stability and its reduced size of Gibbs oscillations that occurs at any finite poly-
nomial expansion order, especially at low electronic temperatures. The technical
problem with Gibbs oscillations can be reduced further by including damping that
modifies the values of the expansion coefficients, ci, as in the kernel polynomial
method [26, 110]. The Chebyshev method is a grand canonical expansion for a
constant chemical potential μ0, which has to be known in advance or be adjusted
iteratively through multiple expansions to give a density matrix P that has a given
electronic occupation within a canonical ensemble.

16.4.2. Green’s Function Expansion

The Chebyshev Fermi operator expansion is a fast and efficient technique that can
be applied also to very large problems. However, sometimes very high-order poly-
nomials are needed, which is computationally expensive. For this case Goedecker
proposed a rational Fermi operator expansion [22], which constructs the density
matrix from a complex contour integration of the Green’s function,

G(zi) = (H − ziI)−1, (16-27)

for a discrete set of numbers zi along some path in complex plane. The density
matrix is given by the serial expansion

P =
∑

i

wiG(zi), (16-28)

where wi and zi are determined from

(eβ(ε−μ0) + 1)−1 ≈
∑

i

wi

ε − zi
. (16-29)

The Green’s functions G(zi) can be calculated using iterative matrix solvers that
can utilize matrix sparsity in matrix-matrix or matrix-vector operations to achieve
linear scaling complexity in the computational cost for sufficiently large sparse
systems. To achieve a specific occupation of P additional optimization of μ0 is
required.

Related Green’s function expansion methods that are combined with the concept
of local interaction zones have been developed for a number of linear scaling elec-
tronic structure schemes, e.g. [12, 24, 25, 49, 82, 111, 112, 83], of which some can
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handle even fairly complex metallic problems such as embedded nanoclusters and
substitutional alloys.

16.4.3. Recursive Fermi-Operator Expansion at Te > 0

The Green’s function and Chebyshev Fermi operator expansion techniques pre-
sented above are based on serial expansions of the Fermi function. Alternatively,
the density matrix at finite electronic temperatures can be constructed by a recursive
Fermi operator expansion [41] in m steps,

P =
[
eβ(H−μ0I) + I

]−1 ≈ fm(fm−1( · · · f0(H) · · · )). (16-30)

In contrast to most of the Fermi-operator or Green’s expansions, of which there are
many flavors [21, 27, 48, 49, 107, 113–117], the recursive expansion in Eq. (16-30)
leads to a very high-order approximation in only a few number of iterations. Here
we will use a recursive Fermi-operator expansion based on the Pade’ polynomial

fn(x) = x2/[x2 + (1 − x)2] (16-31)

in Eq. (16-30) for n > 0 [41]. The function is shown in Figure 16-3. It is smooth and
monotonically increasing for x ∈ [0,1]. After an initialization of the Hamiltonian,
where

X0 = f0(H) = 1

2
I − (H − μ0I)β/22+m, (16-32)

the recursive Pade’ expansion,

0 0.5 1
x

0

0.5

1

f(
x)

f(x) = x2/[x2 + (1–x)2]

f(x) = x

Figure 16-3. The Pade’ expansion polynomial, Eq. (16-31), used in the Fermi operator expansion
scheme in Eq. (16-38)
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Xn = X2
n−1/[X

2
n−1 + (I − Xn−1)2], n = 1,2, . . . ,m (16-33)

provides a very efficient Fermi operator expansion in the calculation of the tempera-
ture dependent density matrix P. The recursive Fermi operator expansion is derived
from the approximation of the matrix exponential [118],

ex = (
ex/n)n =

(
ex/(2n)

e−x/(2n)

)n

, (16-34)

which after a first order Taylor expansion gives

ex = lim
n→∞

(
2n + x

2n − x

)n

. (16-35)

Inserting this expression in the Fermi function gives the recursive expansion after a
few algebraic manipulations [41, 44].

The problem of finding the chemical potential μ0 in Eq. (16-30) such that the
correct occupation is achieved,

Tr(P) = Nocc, (16-36)

can be solved by a Newton-Raphson optimization using the analytic derivative of
the density matrix with respect to μ0,

∂P
∂μ0

= βP(I − P). (16-37)

The recursive Fermi operator expansion of the temperature dependent density
matrix, which automatically finds the chemical potential by a Newton-Raphson
optimization [41, 44], is given by the following algorithm:

m = Number of recursive iterations
β = 1/(kBTe)
μ0 = Initial guess ofμ0
while Occupation Error > Tolerance

X0 = 1
2 I − (H − μ0I)β/22+m

for n = 1 : m
solve [X2

n−1 + (I − Xn−1)2]Xn = X2
n−1

end
P = Xm

Occupation Error = |Tr(P) − Nocc|
μ0 = μ0 + [Nocc − Tr(P)]/Tr[βP(I − P)]

end.

(16-38)
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Figure 16-4. The convergence error of the grand canonical Fermi operator expansion (inner loop of
Eq. (16-38)) as a function of the number of recursion steps m for a Hamiltonian with 400 uniformly
distributed eigenvalues in the interval [−2, 2]. The chemical potential μ0 = −1 without any optimization

The outer loop for the Newton-Raphson optimization of μ0 should be straightfor-
ward to apply also in Chebyshev or Green’s function expansions.

In the recursive Fermi-operator expansion algorithm in Eq. (16-38), a system
of linear equations arising from the Pade’ polynomials in Eq. (16-33) is solved in
each iteration. The numerical problem is well-conditioned and symmetric positive
definite, where the solution from the previous cycle Xn−1 typically is close to Xn. A
linear conjugate-gradient solver is therefore very efficient [41]. The Fermi operator
expansion algorithm can be formulated based on matrix-matrix operations and does
not require a diagonalization of the Hamiltonian. It is therefore possible to reach a
reduced complexity O(N) scaling of the computational cost as a function of system
size if linear scaling sparse matrix algebra is used.

The algorithm is rapidly convergent and the number of recursive iterations can
often be kept low with m < 10. Thanks to the particular smooth form of the
Pade’ polynomial, Gibb’s like oscillations for finite expansion orders are avoided.
Figure 16-4 shows the convergence properties as a function of the number of recur-
sion steps m for a Hamiltonian with 400 uniformly distributed eigenvalues in the
interval [−2, 2]. The expansion was performed within a grand canonical ensem-
ble with a fix chemical potential μ0 = −1, which corresponds to the inner part
of the expansion algorithm in Eq. (16-38), without the additional Newton-Raphson
optimization.

16.4.4. Recursive Fermi-Operator Expansion at Te = 0 by Purification

The recursive Fermi operator expansion in Eq. (16-38) can be used also at Te = 0,
however in this limit, where the Fermi function becomes equivalent to the Heaviside
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step function, there exist other more efficient schemes that are based on the idea
behind density matrix purification [28, 45] or the corresponding sign-function
expansion [47, 119]. A density matrix at Te = 0 is idempotent, i.e.

P = P2, (16-39)

because of the “pure” integer occupation, with all eigenvalues being either 0 or
1. This means that the zero temperature density matrix acts as a projector on the
occupied subspace. McWeeny [46] used this idempotency criterion to numerically
improve an approximate density matrix, P̃, to a more pure ensemble, P, through
“purification”,

P = fMcW(̃P) = 3P̃
2 − 2P̃

3
. (16-40)

It is easy to see how the McWeeny purification improves the idempotency from the
graph in Figure 16-5. Eigenvalues close to 0 or 1 will be projected toward the fix
points at 0 and 1. By iteratively repeating the McWeeny purification the eigenvalues
successively get closer to the fix points. Similar ideas for spectral projections have
been used to construct matrix sign functions, with the only significant difference
that the eigenvalues of the sign matrix are at −1 and 1 instead of 0 and 1. Palser
and Manolopolous used the idea behind McWeeny purification to construct the zero
temperature density matrix from the Hamiltonian with linear scaling complexity
[28]. This was performed either in a grand canonical or a canonical ensemble, i.e.
with a fix chemical potential or with a predefined occupation.
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Figure 16-5. The McWeeny purification polynomial with stationary fix points at x = 0 and x = 1. The
McWeeny purification, Eq. (16-40), provides a spectral projection moving eigenvalues close to 0 or 1
toward the fix points at 0 and 1
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16.4.4.1. Grand Canonical McWeeny Purification

In the grand canonical McWeeny purification scheme by Palser and Manolopolous
[28], the Fermi operator expansion at Te = 0 is given recursively,

P = θ (μ0I − H) = . . . (fMcW ( . . . fMcW(f0(H)) . . . )) . . . , (16-41)

with the initial normalization

X0 = f0(H) = α 1

2
(μ0I − H) + 1

2
I, (16-42)

where

α = min{(εmax − μ0)−1,(μ0 − εmin)−1}. (16-43)

Here εmax and εmin are estimates of the highest and lowest eigenvalues of H. These
estimates of the spectral bounds can be calculated using, for example, Gersgorin
circles or a couple of Lanczos iterations. In the initialization, Eq. (16-42), the
Hamiltonian eigenvalue spectrum, {εi}, is rescaled to the interval of convergence, [0,
1], in reverse order with the highest (unoccupied) eigenvalue close to 0 and the low-
est (occupied) eigenstate close to 1. The chemical potential is shifted to the inflection
point of the purification polynomials, i.e. μ0 → 1/2. After this normalization, the
McWeeny polynomial,

Xn+1 = 3X2
n − 2X3

n, (16-44)

gradually projects the eigenvalues toward 0 for the unoccupied and toward 1 for the
occupied states, thereby creating a successively more “purified” approximation of
the density matrix. At convergence,

P = lim
n→∞ Xn, (16-45)

and the density matrix is idempotent, i.e. P = P2. The scheme is rapidly con-
vergent with the polynomial expansion order increasing exponentially with the
number of iterations. Only sparse matrix-matrix operations are needed, which can
be performed with O(N) scaling. Each iteration requires two sparse matrix-matrix
multiplications, which is the most expensive part of the calculation. After 30 multi-
plications (15 iterations) the polynomial expansion order is 315, i.e. over 14 million.
The McWeeny polynomial is a continuously increasing function in [0, 1] and there
are no Gibbs oscillations occurring because of finite order truncations. As in the
Chebyshev expansion scheme, this method also requires prior knowledge of the
chemical potential μ0.
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16.4.4.2. Canonical McWeeny Purification

In general, the exact location of the chemical potential μ0 is unknown and we need
to iteratively adjust μ0 such that the correct required occupation is achieved within
a canonical ensemble, for example, by using the Newton-Raphson scheme in the
outer loop of the algorithm in Eq. (16-38). In a canonical generalization Palser and
Manolopolous [28] modified the McWeeny polynomial such that the trace is con-
served in each purification step. In this way, the extra step of adjusting the chemical
potential is avoided. First the Hamiltonian is normalized to the interval [0, 1] with
the trace set to the correct value,

X0 = f0(H) = α(μ̄I − H) + (Nocc/N)I, (16-46)

where

α = N−1 min

(
Nocc

εmax − μ̄ ,
N − Nocc

μ̄− εmin

)
, (16-47)

and

μ̄ = Tr[H]/N, (16-48)

such the Tr[X0] = Nocc. Thereafter, trace conserving canonical purification is
performed with

Xn+1 =

⎧
⎪⎨

⎪⎩

(1+cn)X2
n−X3

n
cn

, cn ≥ 1/2,

(1−2cn)Xn+(1+cn)X2
n−X3

n
1−cn

, cn < 1/2,

(16-49)

where

cn = Tr[X2
n − X3

n]

Tr[Xn − X2
n]

. (16.50)

In each purification step the trace is conserved and at convergence the density
matrix is idempotent with the correct occupation. The rather expensive additional
adjustment of the chemical potential is thus avoided.

The canonical purification scheme is a highly efficient technique that typically
has a rapid convergence without requiring any prior knowledge of the chemical
potential. Only matrix-matrix operations are needed in each iteration. In comparison
to alternative O(N) method, such as the constrained functional minimization by Li,
Nunes and Vanderbildt, and Daw [17, 18], the canonical purification is simple, fast
and robust [43, 120]. However, at low or high partial occupation, i.e. when Nocc/N is
close to 0 or 1, the canonical purification scheme is fairly slow to converge [28, 30].
The 3rd order McWeeny polynomial is also less optimal, since, for example, a 4th
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order polynomial can be calculated with the same number of matrix-matrix multipli-
cations, which would lead to a faster increase of the expansion order. Higher-order
generalizations of the McWeeny polynomial has therefore been suggested [30, 38,
121, 122]. Unfortunately, using higher-order polynomials requires additional inter-
mediate memory storage, which can be a limiting factor in large scale calculations.

16.4.4.3. Occupation Correcting Fermi Operator Expansion

To avoid the problems with a slow convergence at low or high partial occupation
and the suboptimal order of the McWeeny purification polynomial, Niklasson pro-
posed a simplified approach to the Fermi operator expansion at Te = 0 [30]. Instead
of using the 3rd order McWeeny polynomial or its modifications and higher-order
generalizations, a set of two 2nd order spectral projection polynomials are applied,

f (x) =
{

x2,
2x − x2.

(16-51)

This set of functions are shown in Figure 16-6. A fix combined set of these polyno-
mials, either (2x− x2)2 or (2x2 − x4), had previously been used by Mazziotti [39] to
improve idempotency between iterations in a variational optimization for the calcu-
lation of the density matrix [17, 18]. Two important observations can be made about
the spectral projection polynomials in Eq. (16-51): (a) any recursive combination of
the two polynomials expands the step function for x ∈ [0,1], i.e.

θ (μ0 − x) = lim
n→∞ fn(fn−1( · · · (f0(x) · · · )), (16-52)
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Figure 16-6. The 2nd order Fermi operator expansion polynomials used by Niklasson in the occupation
correcting Fermi-operator expansion at Te = 0 [30]
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with the step μ0 ∈ [0,1], and b) the trace of a matrix with all eigenvalues εi ∈ [0,1]
is modified by the polynomials such that

Tr[X2] ≤ Tr[X],

Tr[2X − X2] ≥ Tr[X].
(16-53)

From these two observations it is easy to construct an efficient Fermi operator
expansion for Te = 0 [30]. Start with a normalization of the Hamiltonian,

X0 = f0(H) = εmaxI − H
εmax − εmin

, (16-54)

which rescales the eigenvalue spectrum of H in reverse order in [0, 1], with the low-
est occupied states close to 1 and the highest unoccupied states close to 0. Thereafter
the density matrix is given by P = limn→∞ Xn, where

Xn+1 =
{

X2
n, if A,

2Xn − X2
n, if not A.

(16-55)

With the condition A chosen properly, the step function is expanded at the same time
as the eigenvalues are projected toward 1 or 0 such that the required occupation is
given at convergence. As the condition A we may use, for example,

A: |Tr[X2
n] − Nocc| < |Tr[2Xn − X2

n] − Nocc|. (16-56)

This simply means that the expansion sequence is chosen to project the eigenvalues
such that the occupation is improved after each iteration. A variety of alternative
conditions can also be applied. At convergence the density matrix is idempotent
with the correct occupation. Only one sparse matrix-matrix multiplication per iter-
ation is required, which reduces intermediate memory requirements and provides a
very rapid convergence. After 30 multiplications the polynomial expansion order is
over one billion. As an efficient convergence criteria we may use the change in the
occupation, i.e. the idempotency error,

|Tr[Xn+1 − Xn]| = |Tr[Xn(I − Xn)]|, (16-57)

between every second iteration. Figure 16-7 shows the expansion after 8 alternating
iterations starting with x2 and Figure 16-8 shows the propagation of the eigenvalues
as a function of iterations.

16.4.4.4. Occupation Resetting Fermi Operator Expansion

As an alternative to canonical McWeeny purification, where the occupation is con-
stant, and to the 2nd order occupation correcting Fermi operator expansion, where
the occupation reaches the correct value only at convergence, a third approach was
developed [40, 43]. In this case the occupation is allowed to fluctuate in some steps,
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Figure 16-7. The approximate step function in the recursive 2nd order Fermi-operator expansion after 8
iterations

but is reset to the correct value in other iterations. In the trace-resetting purifica-
tion scheme by Niklasson, Tymczak and Challacombe [40], a pair of 4th order
purification polynomials are used,

F(x) = x2(4x − 3x2),

G(x) = x2(1 − 2x + x2),
(16-58)
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Figure 16-8. The propagation of the eigenvalue spectrum in the recursive 2nd order occupation cor-
recting Fermi-operator expansion as a function of iterations or matrix–matrix multiplications is shown.
If X2 is used the eigenvalues move toward 0 and if 2X − X2 is applied the eigenvalues increase until
convergence is reached at the fix points at 0 and 1. The alternating recursive expansion is reflected in the
oscillatory behavior of the spectrum
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Figure 16-9. Combinations of trace (occupation) resetting purification polynomials

that are shown in Figure 16-9. After an initialization that transforms the eigenvalue
spectrum of H in reversed order in [0, 1],

X0 = (εmaxI − H)/(εmax − εmin), (16-59)

a combination of the two polynomials,

Xn+1 = fn(Xn) = F(Xn) + γnG(Xn), (16-60)

where

γn = (Nocc − Tr[F(Xn)]) /Tr[G(Xn)], γn ∈ [0,6], (16-61)

can be used to expand the step function. After each iteration the trace of Xn+1 is
automatically set to the required occupation, Nocc. However, this trace setting mech-
anism is possible only within a limited range of γn ∈ [0,6]. With an unrestricted γ n,
fn(Xn) may map eigenvalues of Xn outside of the interval [0, 1], which could lead to
instabilities. In this case, i.e. when γ n in Eq. (16-61) is out of bound, the 2nd order
occupation correcting projection polynomials in Eq. (16-55) are applied, such that

Xn+1 =
{

X2
n, if γn < 0,

2Xn − X2
n, if γn > 6.

(16-62)

In this step the trace of Xn+1 is no longer conserved. However, toward convergence
γn ∈ [0,6] and the occupation is always reset to the correct value.

An advantage with the trace resetting scheme above, compared to the 2nd order
occupation correcting purification scheme, is the ability to deal with degeneracy
and fractional occupation. Figure 16-10 shows the modified Fermi expansion for
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Figure 16-10. Convergence of trace (occupation) resetting purification for a system with a fractional
occupation of 30.25

a Hamiltonian with 100 uniformly distributed eigenvalues in [0, 1] with the frac-
tional occupation Nocc = 30.25. At convergence, an additional step is automatically
formed for the last fractionally occupied state at 0.25. The same convergence for
fractional occupation can also be achieved with the canonical scheme by Palser and
Manolopolous. The occupation resetting Fermi operator expansion has the same
rapid convergence as the 2nd order occupation correcting expansion scheme, but
the calculation of the 4th order polynomials requires more intermediate memory
storage in the calculation.

16.4.5. Convergence and Accuracy

In a number of tests of linear scaling methods the efficiency of different tech-
niques have been analyzed simply by running examples for various materials
systems. Without a detailed analysis this is not always very useful. Figure 16-11
and Figure 16-12 show the energy convergence of two different examples (A and
B) based on the same model systems for the canonical Fermi operator expansion
scheme by Palser and Manolopolous (PM) and the 2nd order occupation correcting
expansion by Niklasson. As a simple model system we used the Hamiltonian

H = −1

2

∂2

∂x2 + α sin (βx), (16-63)

with periodic boundary conditions. Both examples clearly show that the error is
well controlled by a simple threshold τ below which all matrix elements are set to 0
after each matrix-matrix multiplication in order to preserve sparsity. By reducing the
matrix threshold τ the error is systematically reduced, similar to the change of the
numerical accuracy by a modification of the machine precision. An important fea-
ture is that the error is stable even when the calculation proceeds beyond the point
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Figure 16-11. Example A: Energy convergence for the canonical Fermi operator expansion scheme by
Palser and Manolopolous (PM) and the 2nd order occupation correcting expansion by Niklasson. All
matrix elements below the numerical threshold τ were set to 0 after each matrix–matrix multiplication
to improve sparsity
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Figure 16-12. Example B: Energy convergence for the canonical Fermi operator expansion scheme by
Palser and Manolopolous (PM) and the 2nd order occupation correcting expansion by Niklasson. All
matrix elements below the numerical threshold τ were set to 0 after each matrix–matrix multiplication
to improve sparsity

of convergence. The fluctuations seen in the energy for the 2nd order expansion
scheme are due to the alternating choice of the projection polynomials. Most of the
oscillations have been removed by showing only every second iteration. In exam-
ple (A), Figure 16-11, the 2nd order expansion method seems superior to the PM
scheme, since the computational cost is only about half and the accuracy is slightly
better. In example (B), Figure 16-12, the computational cost has increased for the
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2nd order expansion method, whereas it is about the same for the PM scheme. The
overall converged accuracy is improved compared to example (A). Without a more
detailed analysis it would not be clear which method actually is the better for yet
another system. The differences can be understood mainly from two factors: (a)
the size of the gap and (b) the relative filling, i.e. the occupation factor Nocc/N. In
example (A) the occupation factor is 10%, whereas it is 50% in example (B), which
also has a substantially smaller gap. As mentioned above, the canonical PM scheme
is significantly slower in the case of high or low occupation factors when the trace
conserving purification polynomials become close to linear [28, 30]. At around 50%
occupation the PM and the 2nd order schemes have a very similar performance. The
higher general accuracy of example (B) is due to the fact that the smaller gap gives
rise to a less localized system. This means a lower matrix sparsity and that more
matrix elements are included in the expansion, which here leads to a higher accu-
racy. Comparing the converged accuracy between the PM and the 2nd order scheme
is difficult, because in the two different expansions a slightly different number of
small matrix elements are removed for the same threshold value. Removing more
matrix elements gives a sparser representation with faster calculations, but the accu-
racy is lower. Instead of the simple thresholding performed here, the more accurate
and well-controlled adjustable threshold strategies that recently have been proposed
by Rubensson et al. can be performed [85–87].

Figure 16-13 shows an example of the convergence for a single water molecule
using a hybrid Hartree-Fock DFT functional and a Gaussian basis set, with or with-
out the simple thresholding. Even for a small molecule with a full final density
matrix does the thresholding affect the accuracy, since elements tend to be smaller
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Figure 16-13. Energy convergence for a single water molecule (PBE0/6-31G∗) for the canonical Fermi
operator expansion scheme by Palser and Manolopolous (PM) and the 2nd order occupation correcting
expansion by Niklasson. All matrix elements below the numerical threshold τ were set to 0 after each
matrix–matrix multiplication
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during the initial expansion. Without thresholding the accuracy is of the same order
as given by an “exact” diagonalization.

The Fermi operator expansion order required for a given accuracy is dependent
on the inverse gap, such that a small gap needs a higher-order Fermi operator expan-
sion. For the Chebychev expansion the number of iterations necessary to reach
a given accuracy is inversely proportional to the gap [107], whereas the required
number of iterations for the recursive schemes scales only with the logarithm of the
inverse gap [30]. The efficiency in the limit of small gap systems is determined by
the derivative of the expansion polynomial at the inflection point that separates the
occupied eigenvalue spectrum from the unoccupied part [30], which seems to favor
a Pade’ form of the expansions polynomials.

The main source of the error in a recursive Fermi operator expansion scheme
is in general not the approximate nature of the step function or the Fermi function
expansion, i.e. the eigenvalue distribution, but the accumulated commutation error,

[H,P] = HP − PH, (16-64)

which never is exactly zero because of numerical thresholding or other errors. The
commutator reflects the error in the underlying wavefunctions and excludes errors
due to an inexact eigenvalue distribution. Figure 16-14 shows an example of the
convergence of the idempotency error (Error(n) = Tr[Xn(I − Xn)]) vs. the accumu-
lation of commutation error (Error(n) = ||[H,Xn]||2) for the single water molecule
using the hybrid Hartree-Fock DFT functional with a Gaussian basis set. The idem-
potency error is very well controlled and the commutation error increases initially
but reaches a constant value when the expansion reaches idempotency [40].
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Figure 16-14. The idempotency (Idem.) convergence and commutation error accumulation (Com.) for
a single water molecule (PBE0/6-31G∗) using the canonical Fermi operator expansion scheme by Palser
and Manolopolous (PM) and the 2nd order occupation correcting expansion by Niklasson. All matrix
elements below the numerical threshold τ were set to 0 after each matrix–matrix multiplication
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16.4.6. Iterative Refinement Techniques

If an approximate solution for the density matrix P̃ is given, either from a previous
self-consistent field cycle or from an approximate calculation with a large numeri-
cal threshold, there are at least three options to improve the solution: (1) adjust or
rescale P̃ to fulfill, for example, idempotency and the correct occupation, (2) use P̃
as an initial guess in a variational approach to optimize the density matrix, or (3)
simply recalculate a new density matrix from scratch using a sufficient numerical
accuracy.

16.4.6.1. Adjusting and Rescaling

Let X0 = P̃. Thereafter the occupation correcting purification can be used:

Xn+1 =
{

X2
n, if A,

2Xn − X2
n, if not A.

(16-65)

As condition A we can use Eq. (16-56). Alternative purification based on the
original McWeeny polynomial can of course also be applied, where

Xn+1 = 3X2
n − 2X3

n. (16-66)

The purification schemes above will converge quickly if the approximate P̃ is close
to idempotency. On the other hand, if P̃ is too far away from idempotency, with some
eigenvalues to far below 0 or above 1, the purification approach may diverge. Other
alternatives to improve the approximate density matrix include a simple rescaling
P̃ → αP̃ or a constant shift P̃ → P̃ + αI to adjust to the required occupation.
Notice that the purification, rescaling, or shifting only adjust the eigenvalues of P̃.
Commutation errors are not affected.

16.4.6.2. Variational Optimization

If P̃ has the correct trace and is idempotent the purification or rescaling above will
not give any improvements. If the main cause of the error is a non-vanishing com-
mutation, [H,̃P] �= 0, a more complex improvement besides the adjustment of the
eigenvalue spectrum is needed. In this case the source of the error is due to the
particle-hole hole-particle transitions [121, 39],

G = P̃HQ̃ + Q̃HP̃, (16-67)

where Q̃ = I − P̃ is the virtual (hole) density matrix. Only if P̃ commutes with H,
would G vanish. By adjusting X0 = P̃ with G, the approximate density matrix Xn+1
can iteratively be improved,

Xn+1(λ) = Xn + λGn. (16-68)
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The approach assumes that P̃ and Q̃ are projectors and idempotent. Between each
iteration a purification step as in Eq. (16-65) is therefore needed. The key prob-
lem in this approach is to calculate the optimal values of λ. Using a small constant
value of λ may work, but it could lead to a slow convergence, or in the worst case
to divergence. If the minimization of the single particle energy, i.e. some form of
Tr[HXn+1(λ)], is used to find the optimal value of λ, under the condition of approx-
imate idempotency as in the constrained functional minimization approach by Li,
Nunes and Vanderbildt, and Daw [17, 18], the penalty functional approach by Kohn,
Haynes and Payne [58, 59], or the “curvy-step” method by Helgaker et al. [29, 60,
123], the cost of calculating the optimal value of λ is fairly high. If P̃ is too far
away from the exact solution, the variational optimization approaches may lead to
instabilities, because of non-linearities in the idempotency constraints.

16.4.6.3. Recalculation

Probably the easiest and most straightforward approach to improve P̃ is simply to
perform a full recalculation using, for example, the occupation correcting Fermi
operator expansion. In the case of a commutation error it is hard to beat a full recal-
culation with a recursive Fermi operator expansion method, which requires less
intermediate memory and relative few matrix-matrix multiplications compared to
a variational optimization, even when its initial guess is good. At finite electronic
temperatures there are probably no practical alternatives.

16.5. LINEAR SCALING DENSITY MATRIX PERTURBATION
THEORY

The recursive Fermi-operator expansion approach provides a very efficient frame-
work for calculating the density matrix response due to time independent pertur-
bations in the Hamiltonian [52]. This density matrix perturbation theory can be
formulated without including individual eigenfunctions and eigenvalues and has the
ability to reach linear scaling complexity for sufficiently large sparse matrix prob-
lems. The linear scaling density matrix perturbation theory is a very efficient and
surprisingly simple alternative to Rayleigh-Schrödinger or Green’s function pertur-
bation theory for the calculation of static response properties with a fix chemical
potential. Linear scaling density matrix perturbation theory can be used in a number
of applications, for example, calculating static polarizabilities [124] and hyperpo-
larizabilities [54], the Born effective charge and the optical dielectric constant for
crystals [54], spin-spin coupling constants, and analytic force gradients [125]. A
number of alternative formulations for reduced complexity calculations of the den-
sity matrix response, including frequency dependent properties, have also recently
been developed, which are given through iterative solutions of Sylvester-like equa-
tions [123, 126–131]. Linear scaling calculation of frequency dependent properties
through the real-time evolution of the nonadiabtic response is also an interesting
alternative [132–135].



Density Matrix Methods in Linear Scaling Electronic Structure Theory 465

16.5.1. Density Matrix Response by Recursion

If the time-independent Hamiltonian H is expanded in a perturbation parameter λ,

H(λ) = H(0) + λH(1) + λ2H(2) + · · · , (16-69)

the corresponding adiabatic density matrix response expansion at Te = 0 is given by

P(λ) = P(0) + λP(1) + λ2P(2) + · · · , (16-70)

where

P(m) = 1

m!
∂m

∂λm
θ [μI − H(λ)]|λ=0. (16-71)

The problem of calculating the derivative over the step function for non-commuting
perturbations in H can be solved through the recursive expansion of the step func-
tion. In each recursion step the perturbations are kept up to some specific order. With
the recursive sequence of intermediate, approximate density matrices,

Xn(λ) = X(0)
n + λX(1)

n + λ2X(2)
n + · · · , (16-72)

the updated approximate response matrices are given by

X(m)
n+1 = 1

m!
∂m

∂λm
fn[Xn(λ)]|λ=0, (16-73)

where fn(Xn) are the recursive Fermi operator expansion polynomials. In the second
order occupation correcting expansion, this sequence is generated recursively from

X(m)
n+1 = X(m)

n + σn

[
X(m)

n −
m∑

i=0

X(i)
n X(m−i)

n

]
, (m = 0,1,2, . . . ). (16-74)

Here σn = ±1 depending on the condition A, which can be chosen to minimize the
error in occupation of the updated approximation of the density matrix, i.e.

σn =
{
+1 if |Tr[X(0)

n
2
] − Nocc| > |Tr[2X(0)

n − X(0)
n

2
] − Nocc|,

−1 else.
(16-75)

The initial set of normalized intermediates {X(m)
0 } is determined by Eq. (16-73) for

the initial normalization in Eq. (16-54), such that

X(m)
0 = 1

m!
∂m

∂λm

[
εmaxI − H(λ)

εmax − εmin

]
|λ=0, (16-76)
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At convergence it is easy to see that the recursive sequence in Eq. (16-74) fulfill the
generalized idempotency conditions,

P(0)P(0) = P(0)

P(0)P(1) + P(1)P(0) = P(1)

P(0)P(2) + P(2)P(0) + P(1)P(1) = P(2)

· · · ,

(16-77)

that are given from finite order truncations of

P(λ)2 = P(λ). (16-78)

The occupation is given by Tr[P(0)] = Nocc and Tr[P(i)] = 0 for i > 0. Also the
important commutation relations:

[
P(0),H(0)] = 0

[
P(0),H(1)] + [

P(1),H(0)] = 0
[
P(0),H(2)] + [

P(2),H(0)] + [
P(1),H(1)] = 0

· · · ,

(16-79)

can be shown to be fulfilled throughout the recursive iterations. These are the finite
order generalizations of

[P(λ), H(λ)] = 0. (16-80)

By using the identity matrix I as a perturbation, the recursive density matrix
perturbation theory above can be used to calculate derivatives of the approximate
step function. Figure 16-15 shows the recursive approximation of the Heaviside

0 0.2 0.4 0.6 0.8 1
x

–1

–0.5

0

0.5

1

f(
x)

θ(x–0.5)

θ(1)(x–0.5)

θ(2)(x–0.5)

θ(3)(x–0.5)

Figure 16-15. The recursive approximation of the Heaviside step function and its first three derivatives
(rescaled) as approximated by 10 iterations with the second order occupation correction perturbation
scheme, Eq. (16-74)
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step function θ (x − 0.5) and its first three rescaled derivatives, θ (n)(x − 0.5) (n =
1,2,3), after 10 iterations, using the second order perturbation scheme in Eq. (16-74).
The Hamiltonian is here simply a diagonal matrix with a uniform distribution of
eigenvalues in [0, 1]. The functions are smooth, without any oscillatory Gibb’s errors
in the step function approximation. This is particularly important in the calculations
of the derivatives that otherwise would show significant errors.

The perturbation scheme above includes time-independent perturbations only at
zero temperatures around a fix chemical potential. This grand canonical perturba-
tion approach works well for non-metallic materials that have gaps and when the
perturbation does not cause any states to cross the chemical potential. Higher-order
canonical perturbation theory at finite temperatures, which would allow states to
cross the Fermi level, is more complicated, involving free energies with an entropy
dependent response. A separate article will be published elsewhere [136].

16.5.2. Calculating Response Properties From the n + 1 and 2n + 1 Rules

The density matrix perturbation theory can be used to calculated the adiabatic
response functions of a quantum observable, A, to any order in the perturbation
parameter λ,

〈A(λ)〉 = Tr[A(λ)P(λ)] = a(0) + λa(1) + λ2a(2) + · · · . (16-81)

The expansion of the energy,

E(λ) = Tr[H(λ)P(λ)] = E(0) + λE(1) + λ2E(2) + · · · , (16-82)

can be calculated using the “n + 1” density matrix response formula

E(m) =
m∑

j=1

j

m
Tr[P(m−j)H(j)]. (16-83)

Here the energy response of order m = n + 1 is calculated from density matrix
derivatives of order n and lower. For particular lower order expansions, when only a
first order perturbation is included, i.e. when

H(λ) = H(0) + λH(1), (16-84)

more efficient expression have been derived analogous to Wigner’s 2n + 1 rule [52,
55, 137–139]:

E(1) = Tr[P(0)H(1)], (16-85)

E(2) = 1

2
Tr[P(1)H(1)], (16-86)

E(3) = Tr[(P(1)P(0) − P(0)P(1))P(1)H(1)], (16-87)
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E(4) = 1

2
Tr[((2I − P(0))P(2)P(0)P(1) − P(0)P(1)P(2)(I + P(0)))H(1)]. (16-88)

16.5.3. Example

To illustrate the density matrix perturbation theory we may use an example with the
model Hamiltonian,

H(λ) = H(0) + λH(1), (16-89)

where

H(0) = −1

2

∂2

∂x2
+ Va(x), (16-90)

and

H(1) = λ[Vb(x) − Va(x)]. (16-91)

The potentials Va(x) and Vb(x) are given by two shifted Gaussians,

Va(x) = −e−(x−xa)2
, (16-92)

Vb(x) = −e−(x−xb)2
, (16-93)
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Figure 16-16. The potentials Va(x) and Vb(x), Eqs. (16.92) and (16.93), are shown in the upper panel.

In the lower panel the densities, n(0)
a,b(x) = P(0)

a,b(x,x), calculated for λ = 0 and λ = 1, together with the

expanded density derived from the perturbation theory, n(m)(x) = P(m)(x,x) are shown
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as shown in the upper panel of Figure 16-16. The kinetic energy operator is given by
the finite difference scheme in Eq. (16-14) with periodic boundary conditions. The
total number of states N = 100 with Nocc = 5 occupied states. The density n(0)

b (x)
for the exact solution at λ = 1 is shown in comparison to the first order expansion
n(0)

a (x) + n(1)(x) as well as the fifth order expression, na(x) + ∑5
i=1 n(i)(x), which is

more or less identical to the exact solution.
The recursive linear scaling density matrix perturbation theory can also be used

to calculate local perturbations to “infinite” order [52], which allows an exact cut
and past approach, where weakly interacting molecular subsystems can be cal-
culated separately and thereafter be glued together by the perturbation scheme.
This approach may enable highly efficient parallel calculations of large composite
nanosystems. The effects of local perturbations could also be calculated using the
recursive perturbation scheme. This avoids, for example, calculating small energy
changes as differences between total energies of large systems.

16.6. SUMMARY

In this chapter we have reviewed some recursive Fermi operator expansions methods
for the calculation of the density matrix and its response in linear scaling electronic
structure theory. Thanks to the recursive formulation these methods have a rapid
convergence, where the expansion order increases exponentially with the number of
operations. The recursive formulations can be used both for finite and zero temper-
ature expansions and can be performed with a cost that scales only linearly with the
system size for sufficiently large sparse matrix representations.

The linear scaling paradigm in electronic structure theory, where no significant
part of a calculation is allowed to grow more than linearly with the system size,
is a great challenge that typically requires more than efficient computer science. It
often demands physically motivated insights or reformulations of the basic quantum
description. Thanks to these requirements, linear scaling theory is a rich field that
may provide novel spin-offs also in other areas of research.
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CHAPTER 17

LINEAR SCALING FOR METALLIC SYSTEMS BY THE
KORRINGA-KOHN-ROSTOKER MULTIPLE-SCATTERING
METHOD

RUDOLF ZELLER1

1 Peter Grünberg Institut and Institute for Advanced Simulation, Forschungszentrum Jülich GmbH,
D-52425 Jülich, e-mail: ru.zeller@fz-juelich.de

Abstract: A Green function (GF) linear-scaling technique based on the Korringa-Kohn-Rostoker
(KKR) multiple scattering method is presented for Hohenberg-Kohn-Sham density func-
tional calculations of metallic systems. Contrary to most other methods the KKR-GF
method does not use a basis-set expansion to solve the Kohn-Sham equation for the
wavefunctions, but directly determines the Kohn-Sham Green function by exploiting a
reference system concept. An introduction to the KKR-GF method is given and it is
shown how linear-scaling is obtained by the combined use of a repulsive reference sys-
tem, which leads to sparse matrix equations, iterative solution of these equations and
a spatial truncation of the Green function in the sense of Kohn’s principle of near-
sightedness of electronic matter. The suitability of the technique for metallic systems
with thousands of atoms is illustrated by model calculations for large supercells and its
usefulness for computing on massively parallel supercomputers is discussed.

Keywords: Condensed matter, Electronic structure, Metallic systems

17.1. INTRODUCTION

In the last decades Hohenberg-Kohn-Sham density functional theory [1, 2] has
emerged as a powerful tool for the quantum mechanical description of chemical and
physical properties of materials. Instead of the many electron wavefunction den-
sity functional theory uses the electronic density as the basic variable and provides
single-particle equations to determine this density. In spite of this considerable sim-
plification systems with many atoms still present a serious computational challenge
if standard techniques are used to solve the single-particle equations because the
computing time increases proportionally to the third power of the number of elec-
trons in the system. In recent years considerable effort has been spent to develop
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algorithms for density functional calculations which avoid this bottleneck in several
or all parts of the computer codes.

Most of these sophisticated algorithms are based on a locality principle which is
valid in density functional calculations for local properties that are affected insignif-
icantly by long range potential contributions. For instance, the density in neutral
systems is such a property that can be calculated accurately if long range potential
contributions are neglected. Then ideally one can expect for systems large enough
that the computational effort scales linearly with system size because the density
around each atom can be calculated separately so that the total effort scales with the
number of atoms.

One of these algorithms which has been developed recently in our institute in
Jülich will be introduced in this chapter and its usefulness will be discussed and
illustrated. The algorithm based on the KKR-GF method was intended initially for
metallic systems, but can be used also for systems with bandgap as semiconductors
and insulators. The KKR-GF method solves the single-particle density-functional
equations for all electrons including the tightly bound core electrons without the
need of a pseudopotential approximation. Its particular strength is its applicability
to non-periodic situations, for instance to solve the embedding problem of impurity
atoms in bulk crystals and atoms or cluster of atoms on surfaces or at interfaces.
Because the KKR-GF method is not so widely known,1 it will explained in some
detail, particularly emphasizing the characteristic differences between a Green func-
tion and a wavefunction formalism. It will be shown how sparse matrix equations
can be obtained by a screening transformation, that these matrix equations can be
solved by iteration in highly parallel manner, how the locality principle can be used
by truncating the Green function for large distances and that linear scaling can be
obtained for the computational effort. A model system will be presented for the
investigation of the effects of iteration and truncation on accuracy of calculated
total energies. The model system is also used to study how large the system must
be so that linear scaling with its large prefactor is more advantageous than standard
KKR-GF calculations with cubic scaling.

17.2. PRELIMINARIES

Here the main equations of density functional theory are introduced, linear scal-
ing strategies are explained and the particular problem with metallic systems is
discussed.

17.2.1. Density Functional Theory

Density functional theory provides a mapping of the interacting many electron
system with external potential vext(r) to an auxiliary non-interacting system with
potential veff (r) such that the ground-state electron densities of both systems are
identical. The effective potential can be written as

1 A relatively recent description of important issues can be found in [3].
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veff (r) = vext(r) + e2
∫

∞
n(r′)

|r − r′|dr′ + vxc[n(r)](r) , (17-1)

where the infinity sign indicates integration over all space. The second term on
the right hand side of (17-1) is the classical Coulomb potential due to the elec-
tron density n(r) and the last term is the exchange-correlation potential defined as
a density functional vxc[n(r)] for which approximations exist in various degree of
sophistication. The electron density for the auxiliary non-interacting system can be
calculated as

n(r) = 2
∑

i

|ϕi(r)|2 (17-2)

from normalized Kohn-Sham wavefunctions (orbitals) ϕi(r), which obey a single-
particle Schrödinger equation

[
−∇2

r + veff (r)
]
ϕi(r) = Eiϕi(r) . (17-3)

To simplify the appearance of the equations in this chapter Rydberg atomic units
�

2/2m = 1 will be used and only equations for non-spin-polarized systems will be
given. The generalization to spin-polarized (magnetic) systems is straightforward.
Thus for a system with N electrons the density (17-2) is calculated by a finite sum
over the N/2 orbitals with lowest values of Ei and spin degeneracy is taken into
account by the factor 2.

Because the effective potential is defined by the density and the density depends
by (17-2) and (17-3) on the effective potential, the density functional equations
(17-1–17-3) must be solved in a self-consistent manner. Self-consistency is usually
achieved by iteration. Starting from an initial guess for the density one calculates
the effective potential by (17-1), solves for the orbitals by (17-3), calculates a new
density by (17-2), chooses a judicious combination of the densities as input for the
next iteration and iterates until input and output densities of one iteration cycle agree
sufficiently well. For large systems the self-consistent solution requires very large
computer resources, not only because the equations must be solved repeatedly, but
also because they are expensive to solve for systems with many atoms if standard
solution techniques are used with their cubically scaling computational effort.

17.2.2. Linear Scaling Strategies

Usually, during self-consistency iterations the calculation of the orbitals (17-3) is
more time consuming than calculation of density (17-2) and effective potential
(17-1). If the orbitals are calculated in standard manner by using an expansion in
a set of basis functions, an algebraic eigenvalue problem must be solved, where the
matrix to be diagonalized has a dimension proportional to the number of atoms.
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Compared to the O(N3) work2 to solve the eigenvalue problem, the calculation
of density and classical Coulomb potential require only O(N2) work. The calcu-
lation of the exchange-correlation potential vxc[n(r)] can be even less demanding,
for instance the work scales as O(N) for the local density approximation (LDA) or
the quasi-local generalized gradient approximation (GGA).

In this chapter only the problem to obtain linear scaling for the treatment of
(17-2) and (17-3) will be considered assuming that the problem for the Coulomb
potential is solved, for instance by multigrid, wavelet or fast multipole methods.
Although multigrid and wavelet methods eventually can be used to obtain linear
scaling for (17-2) and (17-3), most of the recently developed linear scaling algo-
rithms are based on a locality principle for the density which was formulated by
Kohn et al. [4, 5]. It is valid, for instance in density functional calculations, for local
properties as the density that do not depend on the potential far away.

The locality principle or the nearsightedness of electronic matter as it has been
called by Kohn means that in systems without long range electric fields (and for
fixed chemical potential) the density change at a point r0, which is caused by a
potential change in a finite region far away (outside a sphere with radius R around
r0), is small and decays to zero if R increases to infinity. As a consequence it should
be possible to determine the density around an atom from the potential in a large
enough local region surrounding this atom, whereas the potential outside this region
is neglected.

The concept of nearsightedness is exploited directly in divide and conquer
approaches [6, 7]. Here one calculates the density by a standard method for a local
region, which contains the atoms of interest and enough surrounding buffer atoms
so that the potential outside the buffer region can be neglected. The effort obvi-
ously scales linearly because the system can be decomposed into O(N) parts treated
independently. The calculated densities are then patched together and calculation of
the effective potential (17-1), which anyhow usually requires only an insignificant
part of the computing time, is treated in the normal way. The number of atoms, for
which the calculated density is used, can be chosen as one as in the locally self-
consistent multiple scattering (LSMS) method [8] and in the locally self-consistent
Green function (LSGF) method [9, 10], which are based on the KKR and the related
linear muffin-tin orbital (LMTO) method, or as more than one as in the original
method of Yang [6]. It has been discussed in detail by Smirnov and Johnson [11]
that for metallic systems the size of the buffer region puts limitations on the accu-
racy that can be achieved. In principle the accuracy can be increased with larger
buffer regions, but the cost is high because the effort increases with the third power
of the number of atoms in the buffer region. Thus additional techniques to accelerate
the calculations are needed.

Because O(N3) steps in the calculation of the orbitals mainly arise from the extent
of the orbitals over the entire system and/or from their necessary orthogonalization,
the obvious idea is to avoid these steps by calculating directly the density matrix

2 The symbol O(Nα) denotes as usual an increase proportional to Nα for large values of N.
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ρ(r,r′) = 2
∑

i

ϕ0i (r)ϕi(r′) (17-4)

from which the density n(r) = ρ(r,r) immediately follows.
In the density matrix the nearsightedness of electronic matter is observable as a

decay of ρ(r,r′) with increasing distance |r − r′|. The decay is exponential in sys-
tems with bandgap and algebraic in metals. However, because nearsightedness alone
is not enough for an efficient linear scaling method, usually three other key fac-
tors are exploited in density matrix based linear scaling algorithms. Localized basis
functions are used to obtain sparse matrices in the basis set representation of the
Hamiltonian, iterative solution techniques are applied to exploit sparse matrix oper-
ations and efficient parallelization is intended for use of supercomputers. Efficient
parallelization is particularly necessary because linear scaling methods with their
large overhead are more advantageous than cubically scaling methods only for sys-
tems containing hundred or thousands of atoms. This system size makes the use of
massively parallel supercomputers indispensable.

17.2.3. Metallic Systems

Metallic systems present a significant challenge for the development of linear scal-
ing techniques. One problem is that the density matrix (17-4) does not decay
exponentially as in insulators or semiconductors, but only algebraically as

ρ(r,r′) ∼ cos (kF|r − r′|)
|r − r′|2 (17-5)

and is thus less nearsighted in metals than in insulators and semiconductors. To
solve this problem it has been suggested to apply an artificial temperature T �= 0
to the electron system, because temperature introduces an exponential factor into
the density matrix decay. For example, for the free electron gas, which is a simple
metallic system, the density matrix behaves for large distance |r − r′| as [12, 13]

ρ(r,r′,T) ∼ cos (kF|r − r′|)
|r − r′|2 exp ( − γ |r − r′|) , (17-6)

where kF is the Fermi wave vector and γ is proportional to T/kF . Here the important
question (which will be answered to some extent in the model study in Section
17.4.4) is whether the exponential decay caused by temperature is large enough for
temperatures which are reasonably small so that reliable results can be calculated.
Another problem for metallic systems is the missing gap between occupied and
unoccupied states so that an unambiguous choice of the states contributing to the
density matrix is nontrivial. Nevertheless, some success of linear scaling techniques
has already been reported for metallic systems [14, 15].
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17.3. THE KKR-GF METHOD

The KKR method was introduced for solution of the single-particle Schrödinger in
crystals with periodic potential by Korringa [16] in 1947 and by Kohn and Rostoker
[17] in 1954. The method was originally formulated and understood within multiple
scattering theory [18] which describes the interference of electron waves scattered
at potentials centered at the atomic positions. In this theory the solution of the
Schödinger equation (17-3) is decoupled into two parts. First the solution is found
for single-scattering events at the potentials around each atomic site and then the
multiple scattering problem is solved with the constraint that the incident wave on a
site is determined by the sum of the outgoing waves at all other sites. In this sense
the method is even older as quantum mechanics, since it was already introduced by
Lord Rayleigh [19] in 1892 in his paper “On the influence of obstacles arranged
in rectangular order upon the properties of a medium”, where he studies the con-
ductivity for heat or electricity in two or three dimensions in a uniform medium
interrupted by cylindrical or spherical obstacles.

A historical handicap for the KKR method was the belief that the method is valid
only for situations where the potential is spherical within non-overlapping muffin-
tin spheres around each scattering site and zero in the interstitial region between
the spheres. The belief that this restriction is necessary was caused by the origi-
nal derivation of the KKR method in a multiple scattering picture, where a wave
is scattered at obstacles and freely propagates between them. The property of free
propagation was used to reexpand outgoing waves from scattering sites into incom-
ing waves at other sites. This multiple scattering picture obviously breaks down if
the scattering events are not clearly separated so that a scattering event at one site
is not finished before the wave enters the scattering region at another site. A break-
through for the KKR method was the demonstration by several authors3 in the 1980s
that the assumption of free propagation between scattering events is not necessary to
derive the KKR equations. Later it also was demonstrated that the full potential KKR
method leads to calculated total energies and forces, which are as accurate as they
are calculated by other density functional methods (see Section 17.3.4), and now it
is commonly accepted that the full potential KKR method is valid for potentials of
general shape.

Another handicap of the original wavefunction formulation was the computa-
tional complexity caused for the KKR method. To determine the eigenvalues Ei in
(17-3) it was necessary to find the zeros of a determinant of a matrix which depends
in a highly non-linear fashion on the relevant variables. To find O(N) eigenvalues
required to calculate many determinants each with O(N3) effort. The overall O(N4)
scaling made the original KKR method quite uncompetitive compared to basis set
methods with O(N3) scaling. Here another breakthrough was provided by the Green
function formulation of the KKR method, which reduces the work to the solution of
linear equations with O(N3) effort.

3 An elementary derivation using a Green function formalism as presented below is given in [20].
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17.3.1. Properties of the Green Function

Since the 1960s and 1970s the KKR method is understood as a technique to deter-
mine directly the classical [21, 22] Green function for the Kohn-Sham equation
(17-3). This Green function, which should not be confused with the single-particle
Green function of many-body theory, is defined as the solution of

[
−∇2

r + veff (r) − E
]

G(r,r′; E) = −δ(r − r′) (17-7)

with the boundary condition G(r,r′; E) → 0 for |r − r′| → ∞. Obviously (17-7)
is more complicated than the corresponding wavefunction equation (17-3). On the
other hand the Green function is more powerful, for instance it can be used to solve
the embedding problem of defect atoms in infinite bulk crystals [3, 23, 24] and to
obtain the linear scaling algorithm presented below.

In (17-7) the energy E is a complex variable and as function of this variable the
Green function is an analytical function4 except for singularities on the real energy
axis. Here the Green function can have poles corresponding to discrete eigenvalues
of the Hamilton operator Ĥ = −∇2

r +veff (r) and branch cut singularities correspond-
ing to the continuous spectrum. In principle, the Green function can be obtained by

G(r,r′; E + iε) =
∑

i

ϕ0i (r)ϕi(r′)
E + iε − Ei

+
∫ ∞

−∞
ϕ0(r; E′)ϕ(r′; E′)

E + iε − E′ dE′ (17-8)

from the eigenfunctions of the Hamilton operator, which are determined by (17-3).
In this spectral representation the sum is over the discrete eigenstates and the integral
is over the continuous eigenstates. The lower limit of this and subsequent energy
integrals is chosen usually as minus infinity, actually it depends on the material and
is finite because the spectrum of the Hamilton operator Ĥ is bounded from below.
From (17-8) and the identity

lim
y→0+

1

x + iy
= P

1

x
− iπδ(x) , (17-9)

where P denotes the principal value, one can deduce that the Green function is
connected with the density matrix ρ(r,r′) by

ρ(r,r′) = − 2

π
Im

∫ EF

−∞
G(r,r′; E + iε)dE (17-10)

4 For an elementary introduction to classical Green functions and their analytical properties the textbook
of Economou [21] is a good source.
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and with the density n(r) = ρ(r,r) by

n(r) = − 2

π
Im

∫ EF

−∞
G(r,r; E + iε)dE . (17-11)

Here the Fermi level EF must be determined by the condition that the density n(r)
integrated over all space gives the required number of electrons, which for instance
in neutral systems must agree with the sum of the atomic numbers. The local density
of states within in a volume V can be calculated from the Green function as

ρV (E) = − 2

π
Im

∫

V
G(r,r; E + iε)dr . (17-12)

In (17-8) and (17-10), (17-11) and (17-12) the notation E + iε means that the
integrals are along the real axis, E is real and ε is a small real positive quantity
chosen to avoid the Green function singularities on the real axis. Note that ε → 0+
gives results which differ from the ones obtained by ε → 0− because branch cut
singularities lead to different side limits as discussed in [21].

17.3.2. Calculation of the Green Function

For the calculation of the Green function neither the defining equation (17-7) nor
the spectral representation (17-8) is convenient. Standard techniques for partial dif-
ferential equations are difficult to apply for the numerical solution of (17-7) because
the source term δ(r − r′) diverges for r → r′. The problem for the application of
the spectral representation (17-8) is that all (in principle, infinitely many) eigenfunc-
tions must be calculated because the weight of their contribution only slowly decays
inversely proportional to energy. It is much more convenient to use the concept of
reference systems and to transform (17-7) into an integral equation

G(r,r′; E) = Gr(r,r′; E) +
∫

∞
Gr(r,r′′; E)

[
veff (r′′) − vr(r′′)

]
G(r′′,r′; E)dr′′

(17-13)
or by changing the order of Gr and G in the integrand into the integral equation

G(r,r′; E) = Gr(r,r′; E) +
∫

∞
G(r,r′′; E)

[
veff (r′′) − vr(r′′)

]
Gr(r′′,r′; E)dr′′ .

(17-14)
Here Gr is the Green function and vr the potential of a reference system. The equiva-
lence of (17-7) and (17-13) can be verified by applying the operator −∇2

r +vr(r)−E
on both sides of (17-13) from the left and using that the reference Green function Gr

satisfies (17-7) if the effective potential is replaced by the reference potential. The
equivalence of (17-7) and (17-14) can be verified similarly by applying the operator
−∇2

r + veff (r) − E on both sides of (17-14) from the left.
The concept of reference Green functions can be used to find the Green function

of a complicated systems successively from Green functions of simpler systems.
For instance, the Green function for adsorbate atoms on a surface can be calculated
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by starting from the Green function of free space, where the reference potential
v0(r) vanishes, calculating first the Green function of an ideal bulk crystal using its
three-dimensional periodicity, then calculating the Green function of a crystal with a
surface using two-dimensional periodicity and finally using the surface Green func-
tion as reference Green function for the adsorbate system. In each step the region,
where the potential changes, is exactly embedded in a simpler system and the inte-
gral equation is restricted in space to the region, where the potential changes. In this
way all interactions, for instance between the adsorbate atoms and the substrate are
included and the use of substitute geometries as supercells or clusters is avoided.

The essential problem in the numerical application of (17-13) or (17-14) is to
find a useful representation for the Green function, which depends on two points in
space and on energy, which together are seven variables. Here multiple scattering
theory provides the key idea to obtain such a representation. In multiple scattering
theory the reference system is free space with vanishing potential v0(r) = 0. The
Green function for free space is analytically known and given by

G0(r,r′; E) = − 1

4π

exp (i
√

E |r − r′|)
|r − r′| (17-15)

which is symmetric in the space variables G0(r,r′;E) = G0(r′,r; E). It can be written
(see appendix) in an almost separable from as

G0(r,r′; E) =
∞∑

L

HL(r>; E)JL(r<; E) , (17-16)

where HL(r; E) and JL(r; E) are products of spherical Hankel functions of the first
kind and spherical Bessel functions with real spherical harmonics. The symbols r>
and r< mean that r> is the vector r or r′ with larger length and r< the one with
smaller length. The sum in (17-16) converges slowly if the vectors r and r′ have
large lengths. Thus it cannot be used for the numerical purpose to solve (17-13)
or (17-14) in entire space. In multiple scattering theory the problem arising from
the large length of r or r′ is solved by dividing space into a collection of space-
filling non-overlapping cells and by introducing cell-centered coordinates by the

replacement r → Rn + r and r′ → Rn′ + r′ as schematically shown in Figure 17-1.
Usually the cell centers Rn are chosen at the nuclear positions where the Coulomb
potential diverges.

By use of the addition theorem of spherical Hankel functions (see Appendix) the
free space Green function in cell-centered coordinates can be written in the form

G0(r + Rn, r′ + Rn′ ; E) = δnn′
∞∑

L

HL(r>; E)JL(r<; E)

+
∞∑

LL′
JL(r; E)G0,nn′

LL′ (E)JL′(r
′; E).

(17-17)
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Figure 17-1. Schematic view of the partitioning into cells with Rn and Rn′ denoting cell centers and r
and r′ cell-internal coordinates

In this expression the variables r and r′ are restricted to the cells around Rn and Rn′

and thus are vectors with small length.
For the validity of the KKR-GF method the crucial discovery was that the Green

function for a general potential can be expressed in analogy to (17-17) as5

G(r + Rn,r′ + Rn′ ; E) = δnn′
∞∑

L

Sn
L(r>; E)Rn

L(r<; E)

+
∞∑

LL′
Rn

L(r; E)Gnn′
LL′ (E)Rn′

L′ (r
′; E).

(17-18)

The Green function matrix elements Gnn′
LL′(E) can be calculated from the Green func-

tion matrix elements of the reference system (denoted by an upper index r) by

Gnn′
LL′(E) = Gr,nn′

LL′ (E) +
∞∑

n′′L′′L′′′
Gr,nn′′

LL′′ (E)�tn
′′

L′′L′′′ (E)Gn′′n′
L′′′L′ (E) . (17-19)

Here �tn
L′′L′′′(E) is a difference of single-cell t matrices determined from potential

and reference potential restricted to cell n. For numerical calculations the infinite
angular momentum sums in (17-18) and (17-19) must be truncated to a finite number
of terms. Usually values l ≤ lmax = 3 are used. In (17-19) this leads to matrices with
dimension N(lmax + 1)2 which is determined by lmax and the number N of atoms.
The matrix Δt has not two, but one site index n′′ indicating that it is block diagonal,

5 Several different notations have been used in the historical development of the KKR-GF method. In this
chapter the most concise one introduced in [25] is used.
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all t matrix elements which couple different sites vanish. The equations to calculate
t matrices and single-scattering wavefunctions Rn

L(r; E) and Sn
L(r; E) are given in

Appendix.
It is here important to realize that the KKR expression (17-18), which solves

(17-7) for the classical Green function of the Kohn-Sham equation (17-3), couples
different atomic sites only through the Green function matrix elements (17-19) and
that these elements do not depend on the cell-internal coordinates r and r′. First this
means that all other quantities as t matrices and single-scattering wavefunctions can
be calculated independently for each cell with a naturally linear scaling effort and
in a perfect parallel manner. Second this means that a better spatial resolution in the
cells with finer radial meshes for r and r′ increases the effort to solve the single-
cell equations which scales linearly, but not the effort to solve the matrix equation
(17-19) which scales cubically. Thus the KKR-GF method can considered as a two-
scale approach where one first uses a fine radial resolution around the atoms and
then on an atomic scale solves a linear algebra problem (17-19).

17.3.3. Complex Energy Integration

Whereas in wavefunction methods the density is calculated as a sum (17-2) over
Kohn-Sham orbitals, in the KKR-GF method the density is calculated as an integral
(17-11), which in cell-centered coordinates can be written as

n(r + Rn) = − 2

π
Im

∫ EF

−∞
G(r + Rn,r + Rn; E + iε)dE . (17-20)

Here the integration is along the real energy axis in the limit ε → 0+. In principle,
this integral can be evaluated by calculating the Green function for a suitable set of
energy mesh points. In practice however, this integration is difficult because near
the real energy axis the Green function is as strongly structured as typical density
of states which can be expected from the relation (17-12) between Green function
and density of states. For an efficient evaluation of (17-20) it is important to use
that G is an analytical function of E, if E does not coincide with singularities on the
real E axis, so that (17-20) can be evaluated by contour integration [26] in the upper
half plane. A useful contour, where away from the real axis all structures of the
Green function are broadened by the imaginary part of E, is schematically shown in
Figure 17-2.

On the contour special care is needed near the end point EF which is real so that
a finer mesh of energy points should be used there. An elegant way to avoid the real
valued end point EF and to construct a physically motivated set of mesh points on the
vertical part of the contour at EF is to use the finite-temperature density functional
formalism [27]. Then (17-20) is replaced by

n(r + Rn) = − 2

π
Im

∫ ∞

−∞
f (E − EF ,T)G(r + Rn,r + Rn; E)dE , (17-21)
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Figure 17-2. Integration contour in the complex energy plane with mesh points indicated by crosses.
The points vertically above EF are the Matsubara energies and the unequally spaced points on the lines
of the contour are Gaussian integration points. The thick line along the real axis indicates the original
integration of path of (17-20)

where the upper bound of the integration is now infinity and f (E − EF , T) is
the Fermi-Dirac function for chemical potential EF and temperature T. The hor-
izontal part of the contour can now be shifted to large values of ImE provided
that the residues at the poles of the Fermi-Dirac function are taken into account
[28]. The poles of the Fermi-Dirac function (the Matsubara energies) are at Ej =
EF + (2j − 1)iπkBT for all integer values of j and the one closest to EF in the upper
half plane is at iπkBT . A convenient contour starts on the negative real energy axis
in the energy gap above the core and below the valence states and goes to infin-
ity parallel to the real energy axis with distance 2JπkBT from the real axis, where
J denotes the number of Matsubara energies at which the residues must be calcu-
lated. Note that on the horizontal part of the contour the Fermi-Dirac function has
the same values as on the real axis because the Fermi-Dirac function is periodic
with period 2iπkBT . Because both the Green function and the Fermi-Dirac func-
tion are rather smooth on the contour, the contour integration error for total energies
can be made smaller than 10−7 meV with about 30–50 mesh points (including the
number of Matsubara energies used). Since the contour in Figure 17-2 includes
only contributions of valence states, the contributions of core states must be added
separately.

In a certain sense the introduction of the Fermi-Dirac function in (17-21) is sim-
ilar to the broadening concept usually introduced to improve the Brillouin zone
sampling. Note however that the broadening along the horizontal part of the contour
is much larger than in conventional broadening schemes and the contributions of the
residues at the Matsubara energies are exactly taken into account.

17.3.4. Total Energy and Forces

In density functional theory the total energy is given as a functional Etot[n(r)] of the
density n(r), which can be written as

Etot[n(r)] = Ts[n(r)] +
∫

V
n(r)vext(r)dr + EH[n(r)] + Exc[n(r)] , (17-22)
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where V is either the volume of the lattice unit cell in infinite periodic systems
(then Etot is defined as the total energy per unit cell) or the volume of all space
in real space calculations. In (17-22) the second term on the right hand side is
the contribution arising from the external potential provided by the nuclei, EH is
the classical electron-electron interaction (Hartree energy) and Exc the exchange-
correlation functional. These three terms are calculated in the usual way from the
density n(r). The first term Ts is the kinetic energy functional of non-interacting
electrons, which can be calculated either directly from the Green function by

Ts[n(r)] = − 2

π
Im

∫

V

[∫ EF

−∞
lim

r′→r
∇2

r G(r,r′; E + iε)dE

]
dr (17-23)

or more conveniently from the density of states (17-12) as

Ts[n(r)] =
∫ EF

−∞
EρV (E)dE −

∫

V
n(r)veff (r)dr . (17-24)

The total energy functional (17-22), which is extremal against charge conserving
density variations, can be generalized into the functional

Ẽtot[n(r)] = Etot[n(r)] − EF

[∫

V
n(r)dr − N

]
(17-25)

which is extremal also if the density variations do not conserve charge. The gen-
eralization is important, for instance for impurity calculations [29] where charge
neutrality cannot be guaranteed since the fixed Fermi level is determined by the
host crystal, and also convenient for the model study below because self-consistency
iterations for the large supercells are not necessary.

Total energies calculated by the full potential KKR-GF method exhibit compara-
ble accuracy as total energies calculated by other density functional methods. This
has been shown, for instance, for lattice constants and bulk moduli of metals and
semiconductors in benchmark calculations [3, 30] both by the KKR-GF and the full
potential linear augmented plane wave (FLAPW) method which is generally con-
sidered as one of most accurate methods for density functional calculations. The
differences between these two methods are rather small if the calculations with both
methods are done with sufficiently high accuracy.

The calculation of forces is rather straightforward [31] in the KKR-GF method
because the Hellmann-Feynman theorem [32, 33] can be applied. The derivative of
(17-22) with respect to the atomic position Rn is the force Fn on the nucleus given
by

Fn = −∂Etot

∂Rn −
∫

V

δEtot

δn(r)

∂n(r;Rn)

∂Rn dr . (17-26)

Here the first term (evaluated at constant density) is the Hellmann-Feynman force
caused by the electric field of all electrons and all other nuclei. The second term
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describes a correction if the Kohn-Sham equations are solved only approximately.
It vanishes for the exact solution because then the derivative δEtot/δn(r) is a con-
stant equal to EF and the derivative of

∫
V n(r)dr = N is zero. In the full potential

KKR-GF method contributions of the valence electrons to the correction term are
rather small because an almost exact solution is obtained except for approximation
by the angular momentum cutoff. Because the core electrons are treated usually in
spherical approximation, their contributions must be corrected leading to an “ionic”
Hellmann-Feynman theorem [34] which can be written as

Fn = −Zn ∂vM(r)

∂r

∣∣∣∣
r=Rn

−
∫

n
nc(r)

∂veff (r)

∂r
dr , (17-27)

where the first term contains the nuclear charge Zn and the electrostatic Madelung
potential vM(r) and the correction term [31] contains the core density in cell n and
the derivative of the effective potential.

The reliability of force calculations within the full potential KKR-GF method
has been demonstrated by calculating displacements around defect atoms and by
calculating phonon dispersion curves. For impurities in Cu and Al, where the size
difference of impurity and host atoms induces displacements of the surrounding host
atoms, good agreement was found [31] for the displacement calculated by minimiza-
tion of the calculated total energy or by the condition of zero forces. Comparison
[31, 35] of the calculated displacements with measured ones obtained by extended
x-ray absorption fine structure (EXAFS) experiments shows good agreement in
trend and value within the experimental error bars. Displacements in semiconduct-
ing materials are usually larger because of the more open structures. In calculations
for donor-acceptor pairs in Si and Ge equilibrium positions calculated by the full-
potential KKR-GF method are essentially the same as the ones obtained by a
pseudopotential method [36] and electric field gradients calculated at the displaced
positions for Cd-donor pairs are found in good agreement to measured ones [37].
Phonon dispersion curves can be calculated also successfully by the full-potential
KKR-GF method [3, 38]. The dynamical matrix is obtained from force constants
calculated at six shells of neighbour atoms around a central displaced atom. Whereas
the phonon dispersion curves for Al [3] are good agreement with experiment, the
ones for Fe [38] are not so good probably caused by inadequacy of the used LDA
exchange-correlation potential.

17.3.5. Temperature Error

Whereas a finite temperature is usually introduced as a device to improve the
Brillouin zone sampling, for the linear scaling algorithm presented below an elec-
tronic temperature T �= 0 is of crucial importance for the convergence of the applied
iterative solution techniques. For higher temperature the convergence is faster but
the temperature error also increases according to

Etot(T) = Etot(0) + α2T2 + α4T4 + ... . (17-28)
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Here terms with odd order in T vanish because the derivative of the Fermi-Dirac
function is an even function. It has been pointed out by Smirnov and Johnson [11]
that too large temperature can lead to unacceptable results, particularly for mag-
netic systems. Therefore it would be nice if the quadratic term in (17-28), which
has the largest contribution for small T, could be eliminated. The obvious idea, cal-
culations for two different temperatures and elimination of the quadratic term by
subtraction, is not useful because very large numbers must be subtracted requir-
ing such high accuracy that no gain can be expected. In the KKR-GF method
the numerical subtraction of large numbers is avoided by using an appropriate
linear combination of two Fermi-Dirac functions for different temperatures. For
instance f̃ (E − EF , T) = (9f (E − EF , T) − f (E − EF , 3T))/8 leads exactly to
Ẽtot(T) = Etot(0) − 9α4T4 + ... where the T2 term is eliminated.

The improvement is illustrated for the elemental metals Cu and Pd in Figure 17-3,
where the symbols indicate the results calculated with the T2 and T4 schemes. Below
T = 1600 K the results calculated with the T4 scheme are considerably better than
the ones for the T2 scheme. The results in Figure 17-3 are very similar to the results
shown in Ref. [39] which were obtained by a linear combination of Fermi-Dirac
functions for T and 2T. The choice 3T used here seems to be more advantageous
because the Matsubara energies for 3T are a subset of the ones for T. No additional
residues must be calculated and no new point EF + 2iπkBT relatively near to the
real axis is introduced compared with Ref. [39]. Note that the subtraction of two
Fermi-Dirac functions leads to a function which changes sign along the horizontal
part of the integration contour. However, contrary to the difficulty, which negative
occupancies represent for basis set methods, in the KKR-GF method the sign change
is easily treated in the construction of integration rules [39].

It should be realized that the good fits seen in Figure 17-3 require very accu-
rate self-consistency convergence, highly accurate contour integration and a very
dense k point mesh for the Brillouin zone integration. Otherwise additional T
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Figure 17-3. Difference ΔEtot(T) = Etot(T) − Etot(0) as function of temperature for the T2 (solid
symbols) and T4 (open symbols) broadening schemes. The lines are fits to the data points from T = 200 K
to T = 2400 K for Cu and from T = 200 K to T = 1200 K for Pd. They were fitted with two parameter
according to ΔEtot(T) = α0 + α2T2 or ΔẼtot(T) = α0 + α4T4
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dependencies due to inaccuracies arise and good fits are impossible. For the results
displayed in Figure 17-3 the averaged error between input and output potentials of
the last self-consistency iteration was smaller than 10−9 Ryd, the contour integra-
tion error for the total energy was smaller than 10−8 Ryd and 5,984 sampling points
were used in the irreducible part of the Brillouin zone for simple cubic unit cells with
four atoms. (Note that these simple cubic cells are the building blocks for the large
supercells used in Section 17.4.4.) Sampling with 19,600 points gave results which
are indistinguishable from the ones in Figure 17-3. Such high accuracy would be
too expensive for large systems and thus the easy elimination of the T2 term, which
is possible in the KKR-GF method without more work, is rather important.

17.4. LINEAR SCALING IN THE KKR-GF METHOD

It was explained above that in KKR-GF method a considerable part of the computa-
tions, the solution of the single-scattering equations around each atom with accurate
spatial resolution, scales linearly and can be parallelized easily. Only the matrix
equation (17-19) requires cubically scaling work.

One strategy to arrive at linear scaling is the divide and conquer approach with
use of the KKR-GF method to calculate the density in the local regions containing
the considered atoms as it is done in the locally self-consistent multiple scattering
(LSMS) method [8]. Recently capability and high parallel efficiency of such an
approach has been demonstrated in an ab initio computation of the free energy of
a nanoscale Fe system of 1,024 atoms [40] using the LSMS method together with
Wang-Landau sampling [41]. A performance with 1.836 Petaflop/s was achieved on
223,232 cores of the Cray XT5 system Jaguar in Oak Ridge and the Gordon Bell
Price 2009 was awarded for this work.

However, as explained in Section 17.2.2, the use of nearsightedness alone as used
in a divide and conquer approach seems to be not enough to obtain a highly accurate
linear scaling method. The advantages of sparse matrix representations and iterative
solution techniques should also be exploited. The KKR-GF linear scaling algorithm
developed over the last two years in Jülich achieves this goal by a tight-binding
transformation for (17-19) and by using the quasi-minimal residual method [42, 43]
for the iterative solution. How this is done in practice is explained below as well as
how truncation of the Green function at large distance leads to linear scaling.

17.4.1. Repulsive Reference System

In the standard KKR-GF method with free space as reference system the Green
function matrix elements decay slowly with distance between sites Rn and Rn′ . The
slow decay of matrix elements arises from the slow decay of the free space Green
function with distance |r − r′| which is observable in (17-15) if the imaginary part
of

√
E is small. In 1984 Andersen and Jepsen [44] realized that in the limit E → 0

the Green function matrix elements of the reference system (which are called also
structure constants) could be made short-ranged by a screening transformation that
was the foundation of the very efficient tight-binding linear-muffin-tin-orbital (TB-
LMTO) method. Later Andersen et al. [45] realized that screening is possible also
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for the energy dependent structure constants (which is another name for the Green
function matrix elements) of the KKR method and invented the screened KKR
method which because of its relation to the TB-LMTO method also is called the
tight-binding (TB) KKR method. The problem to devise a generally useful recipe to
calculate the energy dependent screened structure constants was then solved by the
concept of a repulsive reference system [46] and the similar concept of a background
hard sphere solid [47] that is applied in the third generation MTO method.

The physical motivation for a repulsive reference system is simple to understand
if one considers the free space Green function (17-15) for negative real values of
E. Then the free space Green function decays exponentially with distance |r − r′|
associated with exponentially small Green function matrix element G0,nn′

LL′ (E) if the

distance between sites Rn and Rn′ is large. Since the zero of energy E is arbitrary,
it can be changed by adding the same constant to E and veff (r) in (17-3) or (17-7)
and calculations with exponentially decaying Green function matrix elements are
possible, at least in principle. The problem with a constant potential of the necessary
height of a few Ryd is a large increase of the numerical effort because the angular
momentum convergence becomes less rapid. This is mainly caused by the necessity
to use a spherical harmonic like expansion for a potential with a large discontinuous
step at the complicated non-spherical cell boundaries.

Instead of using a reference system with a uniformly shifted potential a more
useful reference system, which does not destroy the good angular momentum con-
vergence, is obtained by applying the shift only within non-overlapping spheres
around the atomic positions Rn. A reference system with exponentially decaying
matrix elements [46], which can be calculated accurately with moderate effort,
consists of an infinite array of repulsive potentials confined to non-overlapping
muffin-tin spheres and a zero potential in the interstitial region between the spheres
(as shown in Figure 17-4). Because the KKR-GF method also works for pro-
jection potentials acting only on selected angular momentum components, the

Figure 17-4. Schematic view (in two dimensions) of a repulsive reference system with muffin-tin
potentials of constant height. Reprinted from Ref. [48]
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t matrix contributions of the reference system can be set to zero for l > lmax with-
out introducing any approximation and with maintaining the angular momentum
convergence of the physical system.

Application of first-order perturbation theory indicates that eigenstates are
shifted to higher energy by an amount which is given by the product of potential
strength and volume filling. Actually the shift of the eigenstates shows a saturation
effect [46], for instance in a face-centered-cubic lattice sites with volume filling of
74% the lowest eigenstate is at 0.7 Ry for potentials of 1 Ry height, at 1.35 Ry for
potentials of 2 Ry height and a 2.25 Ry for potentials of 4 Ry height. These values
refer to a constant projection potential with lmax = 3. Non-constant or infinite repul-
sive projection potentials in the spheres could be used similarly without affecting the
good angular momentum convergence.

The Green function matrix elements of a repulsive reference system can be
obtained straightforwardly in real space by solving

Gr,nn′
LL′ (E) = G0,nn′

LL′ (E) +
∑

n′′L′′L′′′
G0,nn′′

LL′′ (E)tr,n′′
L′′L′′′ (E)Gr,n′′n′

L′′′L′ (E) , (17-29)

where tr denotes the reference t matrix. Due to the rapid decay of Gr,n′′n′
L′′′L′ (E) with

distance |Rn′′ − Rn′ |, only a finite number of sites n′′ appreciably contribute to the
sum over n′′ in (17-29) and the contribution of more distant sites can be neglected.
With this neglect (17-29) is a matrix equation of dimension Ncl(lmax + 1)2 which
for each site n′ can be solved independently. Here Ncl is the number of sites in the
cluster of repulsive potentials used around site Rn.

The influence of the neglect on calculated total energies, lattice constants and
bulk moduli has been investigated in Ref. [49] for the metals Al, Cu and Pd as
typical examples for simple, noble, and transition metals. The results were obtained
both by the traditional and the TB-KKR method with an angular-momentum cutoff
lmax=3. If a cluster of only nearest-neighbor atoms (Ncl = 13 sites) is used to
calculate the Green function matrix elements of the repulsive reference system, the
error for the total energy is already less than 50 meV per atom. If larger cluster are
used, the error rapidly decreases, for Ncl = 55 the error is below 1 meV and for
Ncl = 225 below 1 μeV. Typical errors for lattice constants and bulk moduli are
of the order of 0.2 pm and 1 GPa, if potentials on central, nearest and next-nearest
neighbor sites (Ncl = 19) are used, and 0.01 pm and 0.05 GPa for Ncl = 79.

Although the real space calculation of the short range Green function matrix ele-
ments of the repulsive reference system is already a simplification compared to the
usually cumbersome Ewald procedure necessary for periodic systems, the crucial
advantage in the TB-KKR method is that in (17-19) exponentially small elements
of the reference Green function matrix can be neglected. This has the consequence
that this matrix becomes a sparse matrix and solution techniques for sparse systems
of linear equations can be applied.

This feature has been and is extensively used for systems consisting of layers
with two-dimensional periodicity as multilayers, surfaces, interfaces, finite slabs,
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or half-infinite crystals, where two-dimensional Fourier transformation directly
yields band matrices with small bandwidth. This leads to efficient O(N) algorithms
already for small number of layers as demonstrated for the TB-KKR method in Ref.
[48]. Note that here the essentially one-dimensional problem obtained by Fourier
transformation leads to linear scaling.

For two- or three-dimensional systems the TB-KKR Green function method also
leads to banded matrices, however the bandwidth increases as O(N1/2) or O(N2/3)
and band matrix algorithms lead to O(N2) or O(N7/3) scaling. With appropriate
sophisticated reordering of atoms by algorithms as Cuthill-McKee, minimum degree
or nested dissection the work may be reduced to O(N3/2) and O(N2), but only for
very large values of N. Therefore, it seems to be much easier to solve (17-19) by
iteration which directly leads to O(N2) scaling as explained below.

It is here important to point out that the sparsity introduced by the artificial aux-
iliary reference system is not caused by the nearsightedness of the physical system.
It is also important to point out that the transformation is exact and that the resulting
tight-binding KKR method works for all kind of materials with or without bandgap.

17.4.2. Iterative Solution

If for large systems direct solution methods for linear equations become unfeasi-
ble because of the cubically scaling computational work and because of memory
requirements, iterative solver must be applied. The iterative solution of the KKR
matrix equation (17-19) has been applied before [50, 51]. For systems with up
to 2048 atoms Smirnov and Johnson [51] found that the computational effort is
reduced to O(N2+ε) with ε between 0.0 and 0.2 which means almost quadratic scal-
ing. For the larger systems studied below it will shown that true O(N2) scaling can
be achieved.

The equation for straightforward iteration of (17-19) can be written as

Gi+1,nn′
LL′ (E) = Gr,nn′

LL′ (E) +
∑

n′′L′′L′′′
Gr,nn′′

LL′′ (E)Δtn
′′

L′′L′′′(E)Gi,n′′n′
L′′′L′ (E) , (17-30)

where i is the iteration index and Gi is the approximation for the Green function
after iteration i. An important feature of (17-30) is that each atom n′ (and each
angular momentum component L′ and each E mesh point on the contour) can be
treated independently. Therefore iterative solution in the KKR-GF method is ideally
suited for parallel computing with hundreds or thousands of processors. The inde-
pendent treatment of each atom is in the spirit of the divide and conquer approach
discussed above, however, whereas the divide and conquer approach usually implies
an approximation due to the neglect of potential contributions from the outside of
the buffer region, here the independent treatment is exact provided that the iterations
have converged. The computational work in (17-30) consists of matrix vector mul-
tiplications where the matrix has N(lmax + 1)2 rows and each row has Ncl(lmax + 1)2

non-zero elements. Thus for one site n′ and one angular momentum index L′ the
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work scales as NitNclN(lmax + 1)4 and for all n′ and L′ as NitNclN2(lmax + 1)6,
where Nit is the number of iterations averaged over all sites and angular momentum
components. This work is smaller than the work for direct solution, which is pro-
portional to N3(lmax + 1)6, provided that the product NitNcl is smaller than N which
gives a rough estimate of the crossover value for N above which iterations are more
advantageous than direct solution.

Unfortunately, straightforward iteration of (17-30), which corresponds to Born
iteration in scattering theory, usually diverges, in particular near the real energy axis
where singularities of the Green function obviously prevent convergence. For com-
plex values of E, which are used in the contour integration to obtain the density,
convergence for the iterative solution can be achieved, if straightforward iteration is
replaced by judicious mixing of input and output Green function matrix elements
obtained by (17-30). Here Anderson mixing [52], which can be related to Broyden’s
second method [53], can be used successfully [54]. A disadvantage of this mixing
scheme is that the required memory increases with iteration number since infor-
mation of all previous iterations is used and must be kept. It seems that standard
iterative solvers for linear equations with lower memory requirements are more suit-
able. With the substitutions A = 1−Gr(E)Δt(E), X = G(E) and B = Gr(E) equation
(17-19) can be written as AX = B, which is the standard form for linear equations.
Here A is the so-called TB-KKR matrix, which for complex E has complex eigen-
values so that only some of the standard iterative solvers can be applied. As in earlier
work [50, 51] the quasi-minimal-residual (QMR) method [42, 43] was found to be
very suitable.

For the solution of (17-19) Anderson’s mixing and the QMR method gave con-
vergent results for all systems studied so far. In particular, the QMR method in
its transpose free form seems to be rather robust within the KKR-GF method.
Starting from a zero vector as initial guess, the relative residual norm almost always
decreases during the QMR iterations and any desired accuracy could be obtained.
In a study [54] for Cu and Pd supercells with 16,384 atoms in face-centered-cubic
geometry it was observed that the error of the calculated total energy decreases at
least as fast as the specified tolerance criterion for the relative residual norm ||r||
and that about a fixed number of QMR iterations is needed to reduce the error by
one order of magnitude. The total energy error is a few meV per atom, if the bound
for the residual norm is set at ||r|| = 10−3 and a few tenths of meV for ||r|| = 10−4.
This indicates that for accurate total energies only moderate accuracy of the QMR
iterations is required.

17.4.3. Green Function Truncation

Because of the auxiliary repulsive reference system (17-19) can be solved iteratively
by sparse matrix techniques with a computing effort that scales quadratically with
system size. The question at this points is how nearsightedness can be exploited to
achieve an even better scaling. Note that the quadratic scaling was obtained without
assuming any property of the physical system, it arises in the KKR-GF method only
by the choice that the reference system is repulsive. Contrary to that nearsightedness
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is a property of the physical system. To understand how nearsightedness can be
applied in the KKR-GF method it is useful to consider the connection between the
Green function and the finite-temperature density matrix

ρ(r,r′,T) = − 2

π
Im

∫ ∞

−∞
f (E − EF,T)G(r, r′; E)dE (17-31)

which is a generalization of (17-10). From this relation and the property that the
Green function decays faster for energies E with larger imaginary part, it is clear
that the decay of ρ(r,r′,T) for large distances is mainly determined by the decay of
G(r, r′; EF + iπkBT) at the first Matsubara energy. Thus small values of the finite-
temperature density matrix for large distances |r − r′| corresponds to small values
of the Green function for similar distances and, because the single-scattering wave-
functions in (17-18) are only multiplicative factors, to small values of the Green

function matrix elements Gnn′
LL′ .

If small Green function matrix elements are set to zero outside a truncation region
containing Ntr atoms around the considered atom, only O(NtrN) elements are non-
zero in the Green function matrix compared to O(N2) non-zero elements without
truncation. This reduces the computational effort by a factor Ntr/N if multiplication
with zero elements is avoided by appropriate storage techniques. The total effort
necessary for all sites is then proportional to NitNclNtrN. This number increases lin-
early with N for large systems because Ncl and Ntr are fixed and Nit approaches
a constant value for large N (see Section 17.4.5). The resulting equations are very
similar to the ones in LSMS divide and conquer approach, however, as a conse-
quence of the repulsive reference system and the iterative solution, here the work
increases proportionally to NitNclNtrN whereas it increases in the LSMS method
as O(N3

trN) much faster with increasing size of the region where physical potential
is not neglected. Another difference between the linear scaling algorithm proposed
here and the LSMS method is the potential used outside of the truncation region.
Here it is the potential of the reference system and in the LSMS method it is set to
zero.

17.4.4. Model Study

The two key questions for the usefulness of a linear scaling algorithm are: how is
the accuracy affected by the size of the truncation region and how many atoms are
needed so that despite of its overhead the linear scaling algorithm is more advan-
tageous than standard methods with cubic scaling. To study these issues it would
be desirable to have a model system with the following properties. The system
should be metallic, large enough so that the effects of the Green function trunca-
tion can be assessed and simple enough so that the computer resources for the study
are reasonably small. The model systems chosen here, large supercells consisting
of identical atoms arranged on the positions of a face-centered-cubic lattice, satisfy
these properties as discussed below. It is also desirable if accurate benchmark results
without truncation are available. For the present KKR-GF linear scaling algorithm
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benchmark results are particularly easily obtained because of the clear separation
between the calculation of single-scattering quantities and and the solution of the
matrix equation (17-19). Only the matrix equation is affected by truncation or iter-
ation, the single-scattering quantities are calculated exactly in the same manner in
linear scaling or standard calculations.

The supercells were constructed from simple cubic unit cells with four atoms
by repeating the small cells 32 times in all three space directions. They contained
4 × 323 = 131,072 atoms arranged according to the face-centered-cubic geometry
of the elemental metals Cu and Pd. If these large metallic supercells are treated in
a standard way by basis set expansions, the number of eigenstates to be calculated
would be 131,072 times the number of valence electrons per spin at each sampling
point in the Brillouin zone. Obviously the calculation of 720,896 eigenstates for Cu
or 655,360 eigenstates for Pd would require enormous computer resources. In the
KKR-GF method it is straightforward to utilize the fact that all atoms in the super-
cells are equivalent. To study the effects of truncation and iteration only the density
for one atom in the supercell must be calculated. This represents an enormous reduc-
tion of the computational effort compared to realistic systems with inequivalent
atoms. Actually, the model study only requires one processor, for instance of a desk-
top computer, whereas systems with many inequivalent atoms require the power of
supercomputers.

To assess the error for the total energy it is necessary to calculate the total energy
of the supercells without truncation. Because all atoms are equivalent, such a calcu-
lation is feasible, however, it would require about 7 GB of storage for the non-zero
elements of the sparse reference Green function matrix and the self-consistent deter-
mination of the effective potential and the total energy would be rather expensive.
Here the concept of equivalent k point meshes (explained in Ref. [55]) is of great
help. The Brillouin zone (BZ) integration for the periodically repeated supercells,
here done with one special point in the irreducible part of the BZ zone chosen as
k = (1/4,1/4,1/4) in units of the reciprocal lattice constant, gives results for the
on-site blocks of the Green function (and thus for the density, the self-consistent
potential and the total energy) which are exactly identical to the ones obtained by
calculations for the small cubic unit cell containing four atoms, if 5,984 k points in
the irreducible part of the BZ zone are used for the small cell.

Some details of the calculation were as follows. The lattice constant of super-
cells was chosen as 11.568 nm for Cu and 12.447 nm for Pd which is 32 times
the experimental lattice constant. The repulsive potentials in the reference system
had a height of 8 Ryd and clusters with Ncl = 13 atoms were used to calculate the
matrix elements of the reference Green function. The LDA in Vosko-Wilk-Nusair
parametrization [56]) was used for the exchange-correlation potential and the points
on the energy contour were chosen such that the complex energy integration did not
lead to larger errors than 10−7 meV for the calculated total energies.

The truncation regions were constructed by using more and more neighbour
shells around the central atom so that always one more shell was included in
the close-packed (110) direction. The smallest truncation region included two and
the largest truncation region eighteen neighbour atoms in that direction leading to
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Table 17-1. Error per atom (in meV) for the total energy as function of the number of atoms in the
truncation region for three temperatures T = 400, 800 and 1,600 K for large Cu and Pd supercells

Ntr ΔECu
400 ΔECu

800 ΔECu
1,600 ΔEPd

400 ΔEPd
800 ΔEPd

1,600

55 65.4 54.8 39.0 109.4 112.5 118.1
177 1.3 0.8 −4.9 35.2 33.2 24.6
381 −1.1 −3.2 −6.4 −2.7 −1.2 −4.2
767 0.0 −2.4 −5.5 9.7 10.7 9.1

1,289 −1.1 −2.5 −3.4 −2.1 −2.0 0.3
2,093 3.4 3.0 2.9 −2.0 −3.4 −3.1
3,055 3.0 2.6 2.6 2.8 2.6 1.7
4,321 2.5 1.8 1.7 0.0 1.2 1.7

Ntr values between 55 and 34,251. The calculated total energy error is shown in
Table 17-1 for small and in Figure 17-5 for large truncation regions for three dif-
ferent temperatures T = 400, 800 and 1,600 K. For the small truncation region
with 55 atoms the error can be as large as 0.1 eV (comparable errors were found in
Ref. [11]), whereas it is smaller than 2 meV for truncation regions with more than
a few thousand atoms. With increasing size of the truncation region the error can
be made as small as wanted [39, 54]. Note that the errors displayed in Table 17-1
and Figure 17-5 contain a small contribution arising from the choice ||r|| = 10−4

as tolerance criterion for the relative residual norm in the QMR iterations, whereas
the previous results in Refs. [39, 54] were obtained with ||r|| = 10−8 and are thus
slightly better.

The errors shown in Figure 17-5 illustrate that higher temperature is not very
useful for the calculation of better total energies, at least not for truncation regions
with less than 10,000 atoms. This indicates that the zero-temperature algebraical
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Figure 17-5. Error per atom for the total energy as function of the number of atoms contained in the
truncation region. Solid and open squares are for T = 800 and 1,600 K, diamonds for T = 400 K. The
lines, which connect the results for T = 800 K, serve as guide for the eye
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decay of the Green function (and density matrix) dominates the additional exponen-
tial decay caused by temperatures small enough such that according to Figure 17-3
not too large total energy deviations are introduced.

17.4.5. Scaling Behaviour

For applications of the KKR-GF linear scaling algorithm it is important for which
system size it becomes competitive to standard KKR-GF calculations. Obviously
one can expect that the crossover size will be reached for relatively large systems and
that it depends on the accuracy which one tries to achieve. The results presented here
were obtained using a tolerance criterion for the relative residual norm of ||r|| =
10−4 which gives a total energy accuracy that seems to be sufficient for practical
purposes. Instead of using supercells of different size the scaling behaviour can be
studied also by using one supercell (here with 131,072 atoms) and varying the size
of the truncation region in the supercell. In [54] it was studied how the number of
QMR iterations for the energy point closest to the real energy axis increases with
system size. It is probably more meaningful to consider sum of the number Nmv

of matrix vector products necessary for all points on the integration contour. The
total effort proportional to NmvNclNtrN must be compared to the effort proportional
NEN3 for direct solution in the standard KKR-GF method, where NE is number of
energy points on the contour.

Results for Nmv averaged over the (lmax + 1)2 = 16 angular-momentum com-
ponents are shown in Figure 17-6 for different temperatures. The values of Nmv
increase with increasing truncation region and can be fitted to an exponential
behaviour of the form

Nmv = N∞
mv − α exp

( − γN1/3
tr

)
. (17-32)
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Figure 17-6. Total number (summed over all energy points) of matrix-vector multiplications averaged
over the 16 angular momentum components as function of the number Ntr of atoms contained in the
truncation region. The lines are fitted to an exponential behaviour as described in the text. The open and
solid squares are for T = 800 K and T = 1,600 K, the diamonds for T = 400 K
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with three temperature dependent parameters N∞
mv, α and γ where the constant N∞

mv
determines the estimated number of matrix vector products needed for infinitely
large systems. Note that N1/3

tr is proportional to the radius of the truncation region.
Figure 17-6 clearly shows that the necessary number of matrix vector multipli-
cations increases approximately inversely proportional to temperature so that the
computational effort considerably decreases for higher temperature. For an efficient
parallelization over the energy integration points on the contour, which is used in
the Jülich KKR programs since many years [57], it is useful to know how the con-
tributions to Nmv are distributed over the energy points. It was found that about 30,
40 and 50% of the work is required at the first Matsubara energy for T = 1,600 K,
T = 800 K and T = 400 K.

For small systems the O(N2) scaling iterative solution is less favourable than the
O(N3) scaling direct solution because of the different prefactors NmvNcl and NE. The
crossover size can be estimated by N = NmvNcl/NE, which shows for T = 400 K,
T = 800 K or T = 1,600 K that for more than about 500, 400 or 300 atoms iterative
solution becomes more favourable. However, issues of computational implemen-
tation are not included in these numbers. Direct solution usually exploits efficient
matrix operations, whereas matrix vector operations are used in the parallel iterative
solution, but iterative solution requires less communication on distributed mem-
ory computers because no large matrices must be stored. The speedup for iterative
solution, estimated as NNE/NmvNcl, is shown in Figure 17-7 using the calculated
numbers Nmv from Figure 17-6. Note that the truncation of the Green function to
obtain linear scaling does not introduce any overhead. For example, if a truncation
region with a thousand atoms is sufficient, the speedup shown in Figure 17-7 should
multiplied by the number of atoms in the system divided by thousand illustrating
the gain which can be achieved by linear scaling for large systems with thousands
of atoms.
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Figure 17-7. Estimates for the speedup obtainable by iteration compared to direct solution. The solid
and open squares are for T = 800 K and T = 1600 K, the diamonds for T = 400 K
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17.5. CONCLUSIONS AND OUTLOOK

It was shown that the KKR-GF method can be used successfully for accurate
density-functional calculations for large metallic systems with linear-scaling com-
putational effort. The key factors for the success are: (1) the clear separation in the
KKR method between quantities, which are calculated with fine spatial resolution
around the atoms with naturally linear scaling effort, and the combination of these
atomic quantities by a linear matrix equation, (2) the generation of sparse matri-
ces by use of a repulsive reference system, (3) finite temperature complex energy
integration for the density, (4) robust iterative solutions by the QMR method and
(5) high parallel efficiency because the work is almost perfectly decomposed with
respect to the atoms.

It was estimated that iterative solution can become more advantageous than direct
solution for metallic systems with more than a few hundred atoms and that linear
scaling can be used for accurate total energy calculations for metallic systems with
more that a few thousand atoms. These estimates are based on the present expe-
rience. It can be expected by a variety of techniques that iterative solution can be
made faster and truncation more efficient. For instance, it seems that for large dis-
tance mostly the l = 0 angular momentum components are required in the Green
function matrix of the physical system so that already for shorter distances than
used so far elements with l > 0 can be neglected leading to more zero elements
in the Green function matrix. Instead of starting from zero vectors as done now,
the iterations may be started from a good estimate either obtained by extrapolation
along the energy contour or from the previous self-consistency cycle. Investigation
of these issue is in progress as well as investigation of several preconditioners to
accelerate the iterative solution.

It should be remarked finally that the linear scaling KKR-GF algorithm is not
restricted to non-relativistic systems. It can be extended straightforwardly to solve
the Dirac equation so that relativistic effects can be studied in large systems. It
should also be remarked that the linear scaling KKR-GF algorithm gives access to
spatial and energy resolved quantities as the local density of states, whereas density
matrix based methods usually provide only integrated quantities as the total energy.
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APPENDIX

By using Gegenbauer’s addition theorem [58] for Hankel functions the free space
Green function can be written in an almost separable form as
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G0(r, r′; E) = −i
√

E
∞∑

l=0

m=l∑

m=−l

h(1)
l (r>

√
E)jl(r<

√
E)Ylm(r̂)Ylm(r̂′) , (17-33)

where the individual terms are products of r dependent and r′ dependent func-
tions. Here Ylm, h(1)

l and jl are real spherical harmonics, spherical Hankel functions
of the first kind and spherical Bessel functions. Expression (17-33) is in a sepa-
rated form with respect to the angular variables r̂ = r/r and r̂′ = r′/r′. For the
radial variables separation is not complete because of the restriction r<= min (r,r′)
and r>= max (r, r′) and thus (17-33) is called semi-separable. Often a shorthand
notation is introduced by using a combined index L = lm and by defining prod-
ucts of Hankel and Bessel functions with real spherical harmonics by HL(r; E) =
−i

√
Eh(1)

l (r
√

E)Ylm(r̂) and JL(r; E) = jl(r
√

E)Ylm(r̂). Then (17-33) can be written
in a more compact form as

G0(r, r′; E) =
∞∑

L

HL(r>; E)JL(r<; E) , (17-34)

where r> is the vector r or r′ with larger length and r< the one with smaller length.
The multiple-scattering expression (17-17) for the Green function in cell-centered
coordinates is then obtained by using the addition theorem of spherical Hankel
functions in the form

HL(r + Rn − Rn′ ; E) =
∞∑

L′
G0,nn′

LL′ (E)JL′(r; E) , (17-35)

which is valid for r < |Rn−Rn′ |, with the free space Green function matrix elements

G0,nn′
LL′ (E) = 4π (1 − δnn′)

∑

L′′
il−l′+l′′CLL′L′′HL′′(R

n − Rn′ ; E) . (17-36)

Here δnn′ indicates that the free space Green function matrix elements vanish for

Rn = Rn′ and CLL′L′′ are Gaunt coefficients defined as

CLL′L′′ =
∫

4π
YL(r̂)YL′ (r̂)YL′′(r̂)dr̂ (17-37)

which vanish for l′′ > l + l′ so that the sum in (17-36) contains a finite number of
terms.

In the past confusion for the validity of the full-potential KKR-GF method was
caused by the spatial restrictions necessary in (17-34) and (17-35). The restriction

r < |Rn − Rn′ | necessary in (17-35) means that the distance from the center of a
cell to the point farthest away on the boundary of this cell must be smaller than
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the distance between centers of adjacent cells. This restriction is not serious, it
can always be satisfied if necessary by introducing additional cells not occupied
by atoms (empty cells). The restriction for the arguments in Hankel and Bessel
functions in (17-33) and (17-34) means that (17-35) can be applied directly only

for r > r′, whereas for r < r′ it must be used for HL(r′ − Rn + Rn′ ; E). This
makes the double sum in (17-17) conditionally convergent and convergent results
are only obtained if L and L′ are put to infinity in correct order. The spatial restric-
tion has also imposed doubt on the validity of the Green function expression (17-18)
for general potentials. It is however elementary to show [20, 25] that (17-18) with
appropriately defined quantities directly follows from expression (17-17) if all sums
are restricted to a finite number of terms. For practical calculations the question
of convergence for high angular momentum contributions seems to be unimportant
as the good agreement of calculated total energies and forces with those obtained
by other density functional methods and experiment illustrates (see Section 17.3.4).
Mathematically, convergence has been demonstrated for the so-called empty lattice
with a constant non-zero potential [59] and more generally for the full potential by
rather sophisticated techniques [20, 60].

The regular and irregular single-scattering wavefunctions Rn
L(r; E) and Sn

L(r; E)
are defined by integral equations

Rn
L(r; E) = Jn

L(r; E) +
∫

n
G0(r,r′; E)vn

eff (r′)Rn
L(r′; E)dr (17-38)

and

Sn
L(r; E) =

∑

L′
βn

LL′ (E)HL′ (r; E) +
∫

n
G0(r,r′; E)vn

eff (r′)Sn
L(r′; E)dr , (17-39)

where the matrix

βn
LL′ (E) = δLL′ −

∫

n
Sn

L(r; E)vn
eff (r)JL′ (r; E)dr (17-40)

is defined implicitly by the irregular wavefunctions. The single-cell t matrix is
defined by

tn
LL′(E) =

∫

n
JL(r; E)vn

eff (r)Rn
L′ (r; E)dr . (17-41)

Details about the numerical treatment of the single-cell equations (17-38), (17-39),
(17-40) and (17-41) can be found in [61, 62].

In periodic systems the atomic positions can be written as Rn = Rμ + sm where
Rμ denotes lattice vectors and sm positions of the atoms in the unit cell. Then
(17-19) has the form
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Gμm,μ′m′
LL′ (E) = Gr,μm,μ′m′

LL′ (E) +
∞∑

μ
′′m′′L′′L′′′

Gr,μm,μ′′m′′
LL′′ (E)�tm

′′
L′′L′′′ (E)Gμ

′′m′′,μ′m′
L′′′L′ (E),

(17-42)
where due to the translational lattice invariance the t matrix difference does not
depend on μ and the Green function matrix elements depend only on the differ-

ence vector Rμ − Rμ
′
. The infinite sum over μ′′ can be treated by lattice Fourier

transformation

Gmm′
LL′ (k; E) =

∞∑

μ

Gμm,μ′m′
LL′ (E)e−ik(Rμ−Rμ

′
) (17-43)

and an analogous equation for the reference Green function matrix elements.
Because of the translational invariance the index μ′ in (17-43) can be chosen
arbitrarily, for instance as μ′ = 0. After Fourier transformation the equation

Gmm′
LL′ (k; E) = Gr,mm′

LL′ (k; E) +
∞∑

m′′L′′L′′′
Gr,mm′′

LL′′ (k; E)�tm
′′

L′′L′′′(E)Gm′′m′
L′′L′ (k; E) ,

(17-44)
which has the same form as (17-19), must be solved at a set of k points in reciprocal
space. The results are used to approximate

Gμm,μ′m′
LL′ (E) = 1

ΩBZ

∫
Gmm′

LL′ (k; E)eik(Rμ−Rμ
′
)dk , (17-45)

the Fourier transformation back to real space, by a sampling procedure. Here ΩBZ
is the volume of the Brillouin zone and only elements with μ = μ′ and m = m′ are
needed for the density.
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