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XV

Preface

Filters, especially analog filters, are employed in many different systems that
electrical engineers embark upon to design. Even many signal processing systems
that are apparently digital, often contain one or more analog continuous-time
filters either internally or as interface with the real-time world, which is analog in
nature. This book on analog filters is intended as an intermediate-level text for a
senior undergraduate and/or an entry-level graduate class in an electrical/electronic
engineering curriculum. The book principally covers the subject of analog active
filters with brief introductions to passive filters and integrated circuit filters. In the
class of active filters, both continuous-time and sampled-data filters are covered.
Further, both voltage-mode and current-mode filters are considered. The book is
targeted at students and engineers engaged in signal processing, communications,
electronics, controls, and so on.

The book is not intended to be an extensive treatise on the subject of analog
filters. The subject of (analog) electrical filters is very vast and numerous authors
have written excellent books on this subject in the past. Therefore, the question
that naturally arises pertains to the need for yet another book on analog filters.

The subject of analog filters is so fascinating that there is always room to introduce
the subject with slightly different orientation, especially one that is directed toward
certain class of practitioners in the field of electrical engineering. This book exploits
the existing wealth of knowledge to illustrate practical ways to implement an analog
filter, both for voltage and current signals. Use of currents for signal processing
has been a popular subject during the last two decades, and in this respect the book
touches on a modern viewpoint of signal processing, relevant to analog filters. In
particular, the concept of transposition and its usefulness in obtaining in a very
simple manner a current-mode filter from a voltage-mode filter, or vice versa, is
presented for the first time in this book. Even though this concept was developed
in 1971 itself, its practical use came only after the advent of IC technology, and
hence this concept did not receive much attention in earlier books.

This book has been written with a young practicing engineer in mind. Most of
the engineers now have to work between deadline dates and have very little time
to plunge into the details of theoretical work to scoop up the practical outcome;
namely, the usable device such as the needed filter. Thus, the subject of filters
has been introduced in this book in a systematic manner with as much theoretical
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XVI Preface

exposure as is essential to be able to build a filter in question. Ample references
have been cited to aid the reader in further exploration of the detailed theoretical
matter, if the reader is interested. Most of the theoretical material presented in
the book has been immediately illustrated via practical examples of synthesis and
design, using modern numerical and circuit simulation tools such as MATLAB
and SPICE. These tools are now easily available to an electrical engineer (either a
student or a practitioner), so the user of the book will feel very close to the practical
world of building the filter at hand.

In the era of computers, building analog filters could involve simple use of several
software programs downloaded from the Internet and obtaining the required
hardware components for the filter to be designed. The authors, however, expect
that there are some inquisitive minds who want to know the why and how behind
the working and implementation of the filters. Thus, the book attempts to infuse
some understanding of the elegant mathematical methods behind the synthesis of
a filter, and ingenious applications of these methods toward the implementation
of the filter. The expected background knowledge on the part of the reader of this
book is some basics related to circuit theory, electronics, Laplace transform, and
z-transform. These topics are covered in most of the modern electrical engineering
curricula within the span of the first two years of study.

Although this book is more compact than many other books on analog filters
in the market, we still feel that the material in this text book cannot be covered
satisfactorily over the span of the usual three-and-a-half month-long session
pursued by most academic institutions in the Western world. For a one-term
undergraduate course, material in Chapters 2–6 can be taught at a reasonable
pace. Similarly, for a graduate class over a similar term, Chapters 5–9 may be
covered. It is expected that a graduate student would be able to learn the materials
in Chapters 2–4 by himself/herself, or that he/she has the required background
earned previously from an undergraduate course in analog filters. In those schools
where a two-semester course is available at the undergraduate level, the material
in the whole book can be easily covered in detail.

Plenty of exercise problems have been added at the end of each chapter. The
problems are carefully coordinated with the subject matter dealt with in the body
of the pertinent chapter. These could be used by the students to profitably enhance
their understanding of the subject. Some of the more challenging problems could
be assigned as projects, by the instructor. The authors strongly feel that a course
given by using this text book must be accompanied by one or more projects, so that
the student develops the practical skill involved in designing and implementing an
analog filter.

The authors wish to gratefully acknowledge the contributions made by numerous
students upon whom the material has been tested over the past several years of
teaching at Concordia University. The authors would like to thank their respective
wives, Sucheta and Leela, for their patience and understanding during the course



Preface XVII

of writing this book. They also sincerely extend their thanks to Anja Tschörtner for
her patience and cooperation while waiting for the final manuscript.

Montreal, Canada R. Raut
January 2010 M. N. S. Swamy
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BLI bilinear integrator
BLT bilinear transformation
BP band-pass
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1

1
Introduction

Electrical filters permeate modern electronic systems so much that it is imperative
for an electronic circuit or system designer to have at least some basic under-
standing of these filters. The electronic systems that employ filtering process are
varied, such as communications, radar, consumer electronics, military, medical
instrumentation, and space exploration. An electrical filter is a network that trans-
forms an electrical signal applied to its input such that the signal at the output
has specified characteristics, which may be stated in the frequency or the time
domain, depending upon the application. Thus, in some cases the filter exhibits a
frequency-selective property, such as passing some frequency components in the
input signal, while rejecting (stopping) signals at other frequencies.

The developments of filters started around 1915 with the advent of the electric
wave filter by Campbell and Wagner, in connection with telephone communication.
The early design advanced by Campbell, Zobel, and others made use of passive
lumped elements, namely, resistors, inductors, and capacitors, and was based on
image parameters (see for example, Ruston and Bordogna, 1971). This is known
as the classical filter theory and it yields reasonably good filters without very
sophisticated mathematical techniques.

Modern filter theory owes its origin to Cauer, Darlington, and others, and the
development of the theory started in the 1930s. Major advancements in filter theory
took place in the 1930s and 1940s. However, the filters were still passive structures
using R, L, and C elements. One of the most important applications of passive
filters has been in the design of channel bank filters in frequency division multiplex
telephone systems.

Introduction of silicon integrated circuit (IC) technology together with the
development of operational amplifiers (OAs) shifted the focus of filter designers in
the 1960s to realize inductorless filters for low-frequency (voice band 300–3400 Hz)
applications. Thus ensued the era of active-RC filters, with OA being the active
element. With computer-controlled laser trimming, the values of the resistances
in thick and thin film technologies could be controlled accurately and this led to
widespread use of such low-frequency (up to about 4 kHz) active-RC filters in the
pulse code modulation (PCM) system in telephonic communication.

Owing to the difficulty in fabricating large-valued resistors in the same
process as the OA, low-frequency filters could not be built as monolithic
devices. However, the observation that certain configurations of capacitors and
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2 1 Introduction

periodically operated switches could function approximately as resistors led to
the introduction of completely monolithic low-frequency filters. The advent of
complementary metal-oxide semiconductor (CMOS) transistors facilitated this
alternative with monolithic capacitors, CMOS OAs, and CMOS transistor switches.
The switched-capacitor (SC) filters were soon recognized as being in the class of
sampled-data filters, since the switching introduced sampling of the signals. In
contrast, the active-RC filters are in the category of continuous-time filters, since
the signal processed could theoretically take on any possible value at a given time.
In the SC technique, signal voltages sampled and held on capacitors are processed
via voltage amplifiers and integrators. Following the SC filters, researchers
soon invented the complementary technique where current signals sampled
and transferred on to parasitic capacitances at the terminals of metal-oxide
semiconductor (MOS) transistors could be processed further via current mirrors
and dynamic memory storage (to produce the effect of integration). This led to
switched-current (SI) filtering techniques, which have become popular in all-digital
CMOS technology, where no capacitors are needed for the filtering process.

In recent times, several microelectronic technologies (such as Bipolar, CMOS,
and BiCMOS), filter architectures, and design techniques have emerged leading
to high-quality fully integrated active filters. Moreover, sophisticated digital and
analog functions (including filtering) can coexist on the same very large-scale
integrated (VLSI) circuit chip. An example of the existence of several integrated
active filters in a VLSI chip is illustrated in Figure 1.1. This depicts the floor plan
of a typical PCM codec chip (Laker and Sansen, 1994).

Together with the progress in semiconductor technology, new types of semi-
conductor amplifiers, such as the operational transconductance amplifier (OTA),
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Figure 1.1 A typical VLSI analog/digital system floor plan.



Introduction 3

and current conveyor (CC) became realizable in the late 1970s and onwards. This
opened up the possibility for implementation of high-frequency filters (50 kHz to
∼300 MHz) in monolithic IC technology. An OTA can be conveniently configured
to produce the function of a resistor and an inductor, so that usual high-frequency
passive LCR filters can be easily replaced by suitable combinations of monolithic
OTAs and capacitors leading to operational transconductance amplifier capacitor
(OTA-C) (or gm-C) filters. Introduction of CCs in the 1990s encouraged researchers
to investigate signal processing in terms of signal currents rather than signal
voltages. This initiated activities in the area of current-mode (CM) signal process-
ing and hence CM filtering, even though the idea of realizing current transfer
functions goes back to the late 1950s and the 1960s (Thomas, 1959; Hakim, 1965;
Bobrow, 1965; Mitra, 1967, 1969; Daggett and Vlach, 1969). In fact, a very simple
and direct method of obtaining a current transfer function realization from that of
a voltage transfer function employing the concept of transposition was advanced as
early as 1971 by Bhattacharyya and Swamy (1971). Since for CM signal processing,
the impedances at the input and output ports are supposed to be very low, the
attendant bandwidth can be very large. Modern CMOS devices can operate at
very low voltages (around 1 V direct current (DC)) with small currents (0.1 mA
or less). Thus, CM signal processing using CMOS technology entails low-voltage
high-frequency operation. The intermediate frequency (IF) ( fo ∼ 100 MHz) filter in
a modern mobile communication (global system mobile, GSM) system has typical
specifications as presented in Table 1.1. The required filters can be implemented
as monolithic IC filters in the CM, using several CC building blocks and integrated
capacitors.

Considering applications in ultra wideband (∼10–30 GHz) communication sys-
tems, monolithic inductors (∼1–10 nH) can be conveniently realized in modern
submicron CMOS technology. Thus, passive LCR filter structures can be utilized
for completely monolithic very wideband electronic filters. Advances in IC technol-
ogy have also led to the introduction of several kinds of digital ICs. These could be
used to process an analog signal after sampling and quantization. This has led to
digital techniques for implementing an electronic filter (i.e., digital filters), and the
area falls under the general category of digital signal processing (DSP).

As the subject of electrical/electronic filter is quite mature, there are a large
number of books on this subject contributed by many eminent teachers and
researchers. The current book is presented with a practical consideration, namely,
that with the advent of computers and the abundance of computer-oriented courses
in the electrical engineering curricula, there is insufficient time for a very exhaustive
book on analog filters to be used for teaching over the span of one semester or

Table 1.1 Magnitude response characteristics of an IF filter.

Frequency fo ± 100 kHz fo ± 800 kHz fo ± 1.6 MHz fo ± 3 MHz fo ± 6 MHz
Attenuation (dB) � 0.5 � 5 � 10 � 15 � 30
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two quarters. The present book is, therefore, relatively concise and is dedicated to
current concepts and techniques that are basic and essential to acquire a good initial
grasp of the subject of analog filters. Recognizing the popularity of courses that are
amenable to the use of computer-aided tools, many circuit analysis (i.e., SPICE)
and numerical simulation (i.e., MATLAB) program codes are provided in the body
of the book to reinforce computer-aided design and analysis skills. The present
book is very close to the practical need of a text book that can be covered over the
limited span of time that present-day electrical engineering curricula in different
academic institutions in the world can afford to the subject of analog filters. Toward
this, the subject matter is presented through several chapters as follows.

Chapter 2 presents a review of several network analysis methods, such as the
nodal, loop, and indefinite matrix techniques, as well as a method for analyzing
constrained networks. One- and two-port networks are defined and various methods
of representing a two-port and the interrelationships between the parameters
representing a two-port are also detailed. The analysis methods are illustrated by
considering several examples from known filter networks.

Chapter 3 introduces several concepts such as impedance and frequency scal-
ing, impedance transformation, dual (and inverse) two-port networks, reversed
two-ports, and transposed networks. Some useful network theorems concerning
dual two-ports and transposed two-ports are established, and their applications
to singly and doubly terminated networks are considered. Also, the transposes
of commonly used active elements are given. Various approximation techniques
for both the magnitude and phase of a filter transfer function, as well as fre-
quency transformations to transform a low-pass filter to a high-pass, band-pass, or
band-reject filter are also presented in this chapter. Several MATLAB simulation
codes are presented.

Chapter 4 presents passive filter realization using singly terminated as well as
doubly terminated LC ladder structures. Synthesis of all-pole transfer functions
using such ladders is considered in detail.

Chapter 5 introduces the subject of designing second-order filters with active
devices and RC elements. The active devices employed are the OAs and the
OTAs. Both the single-amplifier and multiamplifier designs are presented. The
sensitivity aspect is also discussed. The chapter concludes with a brief introduction
to the devices and passive elements that are available in typical microelectronic
manufacturing environments. The objective is to provide a modest orientation to
the designers of active-RC filters toward IC filter implementation.

Chapter 6 deals with the subject of SC filters. The concept of the equivalence of
R and the classical switched-C is refined by introducing the notion of sampled-data
sequence and z-transformed equations. Parasitic-insensitive second-order filters
are discussed. Filters based on unity-gain buffer amplifiers are also presented.
Techniques to utilize the common continuous-time circuit elements (i.e., trans-
mission lines) to simulate the operation of an SC network are introduced. The
principles are illustrated using SPICE simulation.

High-order filter realization using active devices and RC elements is presented in
Chapter 7. The knowledge base developed through Chapters 3–6 is now integrated



Introduction 5

to illustrate several well-known techniques for high-order active filter implementa-
tion. Inductance simulation, frequency-dependent negative resistance technique,
operational simulation, cascade method, and multiloop feedback methods are
discussed. Implementations of high-order continuous-time filters using OAs and
OTAs, as well as SC high-order filters using OAs are illustrated.

Chapter 8 deals with the subject matter of CM filters. This technique of filtering
has been of considerable interest to researchers in the past two decades. The basic
difference between, voltage-mode (VM) and CM transfer functions is highlighted
and several active devices that can process current signals introduced. Derivation
of CM filter structures from a given VM filter structure using the principles of dual
networks and network transposition, are illustrated. In particular, the usefulness of
the transposition operation in obtaining, in a very simple manner, a CM realization
for a given VM realization (or vice versa) is brought out through a number of
examples. Implementations of CM transfer functions using OAs, OTAs, and CCs
are presented. SI filtering technique is also introduced in this chapter.

Chapter 9 introduces the concepts and techniques relevant to implementation
of IC continuous-time filters. The cases of linear resistance simulation using
MOS transistors, and integrator implementation using differential architecture are
illustrated. Second-order integrated filter implementations using OAs and OTAs
are considered. The chapter ends with two design examples for IC implementation:
(i) a low-voltage differential wideband OTA-C filter in CMOS technology and (ii)
an approach toward an IF filter for a modern mobile communication (GSM)
handset.

The book ends with three appendices that contain several tables for the approx-
imation of filter functions, as well as for implementation of the filter functions
using LCR elements. It is expected that once the filter transfer function is known,
or the specific LCR values for a high-order filter are known, the designer can use
the knowledge disseminated throughout the book to implement the required filter
using either discrete RC elements and active devices, or using the devices available
in a given IC technology. A MATLAB program for deriving the design curves for
Bessel–Thomson (BT) filters up to order 15 is also included.
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2
A Review of Network Analysis Techniques

In this chapter we deal with some basic background material related to linear net-
work analysis and its applications with reference to realization of continuous-time
analog filters. The guidelines for writing network equations using nodal and
loop analysis methods are presented. The concept of network function is intro-
duced, followed by the basic theory of two-port networks. Various nonreciprocal
two-port elements such as the controlled sources, impedance converters, and
impedance inverters are introduced. Analysis of general multinode networks
using indefinite admittance matrices (IAMs), as well as the analysis of con-
strained networks, is presented in detail. Several applications of these network
theoretic concepts are discussed. Finally, realization of a few second-order filters
is illustrated using popularly known building blocks, such as the OAs, OTAs,
and CCs.

2.1
Transformed Impedances

It is well known that the time domain integro-differential equations for lumped
linear time-invariant networks (i.e., networks containing linear circuit elements
like R, L, and C, linear-controlled sources such as voltage-controlled voltage
source (VCVS), voltage-controlled current source (VCCS), current-controlled
current source (CCCS), and current-controlled voltage source (CCVS)) can
be arranged in a matrix form: w( p)x(t) = f (t) (Chen, 1990) where w( p) is an
impedance/admittance matrix operator containing integro-differential elements,
x(t) is the unknown current/voltage variables (vectors), and f (t) are the source
voltage/current variables (vectors). The p-operator implies p = d/dt and 1/p = ∫ dt.
If we take the Laplace transform on both sides, we would obtain a matrix equation
W(s)X (s) = F(s) + h(s), where W(s), X (s), and F(s) are the Laplace transforms
of w(t), x(t), and f (t), and h(s) contains the contributions due to the initial
values. On inserting s = jω one can get the frequency domain characterization
of the system. The above sequence of operations is, however, rather lengthy
and impractical. A more efficient technique is to characterize each network
component (R, L, and C) in the s-domain including the contribution of the

Modern Analog Filter Analysis and Design: A Practical Approach. Rabin Raut and M. N. S. Swamy
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40766-8
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IL(s)

IC (s)

VC (s)

VL(s)

sL

−

− +
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+

−

LiL (0_)
nC (0_)
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1
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+
− s

Figure 2.1 Transform represen-
tation of (a) an inductor and (b)
a capacitor.

initial conditions and formulate the network equations. Impedance elements so
expressed are transformed impedances and the network becomes a transformed
network. Characterizations for transformed basic network elements are discussed
below.

For ideal voltage or current sources, the transformed quantities are simply
the Laplace transforms (e.g., Vg(s), Ig (s)). For the i−v relation across a resis-
tor, one can write either VR(s) = IR(s) R or its dual IR(s) = VR(s)/R. Thus, there
are two characterizations (viz., an I mode and a V mode) for each element.
The particular choice depends upon which of these, I(s) and V(s), is the inde-
pendent variable. In loop analysis, I(s) is considered the independent variable.
Similarly, in nodal analysis, the nodal voltage V(s) is considered the independent
variable.

Figures 2.1a and 2.1b give the transform representations of an inductor and a
capacitor, respectively. These representations are derived from the i−v relationships
for an inductor L and a capacitor C. For an inductor L, since vL(t) = L diL

dt , after taking
Laplace transform, one obtains VL(s) = sLIL(s) − LiL(0−). Similarly, for a capacitor
C, since vC(t) = 1

C

∫ t
0 iCdt + vC(0−), on taking Laplace transform, one gets VC(s) =

IC (s)
sC + vC (0−)

s . An alternate set of representations may be obtained by rewriting

the above equations as IL(s) = 1
sL VL(s) + iL(0−)

s and IC(s) = sCVC(s) − CvC(0−). The
corresponding representations are shown in Figures 2.2a and 2.2b, respectively.
In loop analysis, the models given in Figures 2.1a and 2.1b should be used, while
in nodal analysis, the representations given in Figures 2.2a and 2.2b should be
used.

VC (s)

IC (s)
IL (s)

VL (s) iL (0_) 1
sC

CnC (0_)
sL

s

(a) (b)

+ +

−−

Figure 2.2 Alternate transform representations of (a) an inductor and (b) a capacitor.
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2.2
Nodal Analysis

In nodal analysis, a voltage source in series with an element should be trans-
formed into a current source with a shunt element by employing the source
transformation. This will reduce the number of nodes and also make the analysis
more homogeneous in that we have to deal with only node voltages and current
sources (independent or dependent), which are the principal variables in nodal
analysis. It may be recalled that the nodal system of equations is represented
by the matrix equation Y(S)V(S) = J(S), where Y(S) is the admittance matrix,
V(S) is the node voltage vector, and J(S) is the current source vector. The given
network has to be converted to a network with transformed impedances with
model representation for inductances and capacitances as shown in Figures 2.2a
and 2.2b.

If a voltage source feeds several impedances in a parallel connection, E-shift
technique (Chen, 1990) is to be used before embarking on the source transformation
operation. In the following steps, a systematic procedure to set up the nodal matrix
equation is given.

Step 1. Identification of the sources: Identify all dependent and independent
sources. These are to be included initially as elements of the vector J(s).

Step 2. Set up the matrix elements:
a. yii is the sum of the admittances connected to the node i.
b. yij is the negative of the admittances connected between the node pair

(i, j).
The above two sets of elements are to be included in the Y(s) part of the
matrix equation Y(s)V(s) = J(s).
c. The kth row element in J(s) is the sum of the current sources connected

to node k, taken to be positive if the source is directed toward and
negative when directed away from the node. These are to be included
in the J(s) part of the matrix equation Y(s)V(s) = J(s).

Step 3. In J(s), decode the dependent current sources in terms of the node
(voltage) variables, that is, elements of V(s).

Step 4. Transpose the quantities obtained in Step 3 to the other side and allocate
them to appropriate locations in the Y(s) matrix.

2.3
Loop (Mesh) Analysis

In this technique, one has to begin with the equivalent circuit by using series model
versions of the transform impedances for the inductors and capacitors. Further,
all current sources are to be converted to equivalent voltage sources with series
impedances using the source transformation (Thevenin’s theorem). If a current
source exists with no impedance in parallel, I-shift technique (Chen, 1990) is to be
used before applying the source transformation. It may be recalled that the loop
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system matrix equation has the form Z(s)I(s) = E(s), where Z(s) is the impedance
matrix, I(s) is the loop current vector, and E(s) is the loop voltage vector.

In the following steps, a systematic procedure to set up the loop matrix equation
is given.

Step 1. Identification of sources: Identify all the voltage sources (independent
and dependent) to be initially included as elements of the E(s) vector.

Step 2. Identify the loop impedance matrix operator elements and loop voltage
source vector:
a. Self-loop impedance zii is the sum of all impedances in the loop i.
b. Mutual-loop impedance zij is the impedance shared by loop i and loop

j. If the currents in loops i and j are in the same direction, zij is taken
with a positive sign. On the other hand, if the currents in loops i and j
are in opposite directions, it is taken with a negative sign.

c. The element ei in the loop source vector E(s) is the algebraic sum of all
the voltage sources in loop i. The components are taken with a positive
sign if a potential rise occurs in the direction of the loop current.
If a potential drop takes place in the direction of the loop current,
the voltage element is taken with a negative sign. We thus have the
preliminary form Z(s)I(s) = E(s).

Step 3. In E(s) found above, express the dependent sources in terms of the loop
current variables (i.e., elements of I(s)).

Step 4. Transpose the dependent components of E(s) to the other side and allocate
the associated coefficients to proper location of the Z(s) matrix.

Example 2.1. Figure 2.3a shows the AC equivalent circuit of a typical semicon-
ductor device such as a bipolar junction transistor (BJT). Develop the loop matrix
formulation for the network.

Figure 2.3b shows the equivalent circuit redrawn after taking Laplace transforma-
tion and applying source transformation to the VCCS of value gmV(s). The currents
I1 and I2 are the loop currents. Applying the suggested steps, one gets[

R1 + R2 0
0 R3

][
I1(s)

I2(s)

]
=
[

Vs(s)

−gmV(s)R3

]
(2.1)

+ +

_

R2
R2

R1 R1

R3
R3+I1(s)

I2(s)

(a) (b)

+
−

+
−

−

−v (t)vs(t ) Vs(s)
gmv(t) gmV (s)R3

V (s)

Figure 2.3 (a) Circuit with a voltage source for loop anal-
ysis. (b) Circuit reconfigured for loop analysis using matrix
formulation.
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(a) (b)

R1

R3

R1

R1 R2
CR2

VsIs = sC

Cv1(0_)
vs(t )

V1(s) V2(s)

v1(t )
v2(t )

+

−

+

−gmv1(t )

Is(s) 1

gmV1(s)

R3+
−

Figure 2.4 (a) Circuit with a voltage source for nodal anal-
ysis. (b) Transformed network for using nodal analysis using
matrix formulation.

But, V(s) = I1(s)R2. On substituting and bringing it to the left side, one gets[
R1 + R2 0
gmR2R3 R3

][
I1(s)

I2(s)

]
=
[

Vs(s)

0

]
(2.2)

Equation 2.2 is the loop matrix formulation for Figure 2.3a.

Example 2.2. Figure 2.4a shows a circuit with a voltage source. Develop the nodal
matrix formulation for the network.

Figure 2.4b shows the equivalent circuit redrawn after applying source trans-
formation to vS(t) and transforming the network using the representation for
a capacitor as shown in Figure 2.2b. Since admittances are to be used, letting
G = 1/R for the conductance, one can write[

G1 + G2 + sC 0
0 G3

][
V1(s)

V2(s)

]
=
[

Is(s) + Cv1(0−)
−gmV1(s)

]
(2.3)

where Is(s) = G1VS(s). On substituting and bringing V1(s) to the left side, the final
formulation becomes[

G1 + G2 + sC 0
gm G3

][
V1(s)

V2(s)

]
=
[

Vs(s)G1

0

]
+
[

Cv1(0−)

0

]
(2.4)

It is observed that Eq. (2.4) is in the form W(s)X (s) = F(s) + h(s).

2.4
Network Functions

If we study the relationships developed in connection with nodal and loop analyses,
we discover a general format, namely, W(s)X (s) = F(s) + h(s), where W(s) can
be either an admittance or an impedance matrix, X (s) a nodal voltage vector
or a loop current vector, F(s) the vector of independent sources, and h(s) the
vector of initial conditions. Using this equation, one can easily arrive at X (s) =
W−1(s)F(s) + W−1(s)h(s). The first part of the solution on the right-hand side (RHS)
is the complete solution if the initial values were zero (i.e., h(s) = 0). This is called
the zero (initial)-state response. The second part of the solution on the RHS is the
complete solution if the forcing functions were zero (i.e., F(s) = 0). This is known
as the zero-input or natural response.
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A network function is defined with regard to the zero-state response in a network
when there is only one independent voltage/current forcing function (driving
function) in the network. It is the ratio of the Laplace transform of the zero-state
response in a network to the Laplace transform of the input. The input could be a
voltage (or current) across (or through), and similarly the output response could be
a voltage (or current) across (or through) a pair of nodes.

Consider a linear time-invariant network under zero–initial state conditions.
Then, the network function (also called system function) is defined as

Laplace transform of the output response

Laplace transform of the input

Depending upon the location of the pair of nodes, we have different network
functions. If the two pairs of nodes corresponding to the input and the response
are physically coincident, we talk of driving point impedance (DPI) or driving point
admittance (DPA). If the pairs of nodes are distinct (one of the nodes may be
common between the pairs), then we can define (i) a voltage transfer function
(VTF), (ii) a current transfer function (CTF), (iii) a transfer impedance (transimpedance)
function (TIF), and (iv) a transfer admittance (transadmittance) function (TAF).

2.5
One-Port and Two-Port Networks

2.5.1
One-Port Networks

A pair of terminals such that the current entering one of the terminals is the same
as the current leaving the other is called a one-port. Figure 2.5 shows a one-port
or a two-terminal network. This one-port can be characterized by two network
functions depending on whether the input is a current or a voltage, in which case
the response is a voltage or a current, respectively. The ratio of the response to
the input are respectively called the driving point impedance and the driving point
admittance. Symbolically, these are given by

Zin(s) = V(s)

I(s)
and Yin(s) = I(s)

V(s)
(2.5)

Of course, Zin(s) = 1/Yin(s).

N

I1

I1

1

1′

V1

+

−

Figure 2.5 A one-port network.
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N

1

1′

2

2′

I2

I2

I1

I1

V2V1

+

−

+

−

Figure 2.6 A two-port network.

2.5.2
Two-Port Networks

A two-port network has two accessible terminal pairs; that is, there are two pairs of
terminals that can be used as input and output ports. The study of two-port network
is very important, as they form the building blocks of most of the electrical or
electronic systems. Figure 2.6 shows a general two-port and the standard convention
adopted in designating the terminal voltages and currents.

There are a number of ways of characterizing a two-port. Of the four variables
V1, I1, V2, and I2, only two can be considered independent variables and the other
two as dependent variables. Hence, in all, we have six different ways of choosing
the independent variables (there is a seventh set of choice, leading to scattering
parameters characterization, which is defined analogous to those in transmission
line theory, and is not considered here). Here, we define three of these sets of
choices, leading to three sets of matrix parameter descriptions. These will be of
great utility in the context of this book.

2.5.2.1 Admittance Matrix Parameters
If I1 and I2 are chosen as the independent variables, then we characterize the
network N by the equations

[
y11 y12

y21 y22

][
V1

V2

]
=
[

I1

I2

]

or

[y]
[

V1

V2

]
=
[

I1

I2

]
(2.6)

The four admittance parameters may be determined by using the relations y11 =
[I1/V1]|V2=0, y12 = [I1/V2]|V1=0, y21 = [I2/V1]|V2=0, and y22 = [I2/V2]|V1=0. Since
V1 = 0, V2 = 0 implies AC short circuit conditions, the parameters y11, y12, y21, and
y22 are often referred to as short circuit admittance parameters, and the matrix [y] is
called the short circuit admittance (or simply the admittance) matrix of the two-port.
The AC equivalent circuit model (i.e., equivalent to the network inside the black
box) associated with the above set of equations is shown in Figure 2.7.
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V1

I1

y11

y12V2

y21V1

y22

+

−

V2

I2
+

−

Figure 2.7 Equivalent circuit model for
two-port admittance matrix.

2.5.2.2 Impedance Matrix Parameters
If V1 and V2 are chosen as the independent variables, then the two-port may be
characterized by[

z11 z12

z21 z22

] [
I1

I2

]
=
[

V1

V2

]
or

[z]
[

I1

I2

]
=
[

V1

V2

]
(2.7)

where the parameters z11, z12, z21, and z22 may be determined by the equations
z11 = [V1/I1]|I2=0, z12 = [V1/I2]|I1=0, z21 = [V2/I1]|I2=0, and z22 = [V2/I2]|I1=0.
Since I1 = 0, I2 = 0 implies open (to AC) circuit conditions, the parameters
z11, z12, z21, and z22 are called open circuit impedance parameters, and [z] the open
circuit impedance matrix (or simply, impedance matrix) of the two-port. It is obvious
from Eqs. (2.6) and (2.7) that

[y] = [z]−1 (2.8)

The AC equivalent circuit model is shown in Figure 2.8.

2.5.2.3 Chain Parameters (Transmission Parameters)
If we consider V2 and I2 as the independent variables, then we may write[

V1

I1

]
=
[

A B
C D

] [
V2

−I2

]
or
[

V1

I1

]
= [a]
[

V2

−I2

]
(2.9)

The matrix [a] is called the chain matrix or transmission matrix of the two-port. The
parameters A, B, C, and D are called the chain or transmission parameters. Note that
−I2 instead of I2 is used to imply a current flowing outward at port 2. It is seen that
the parameters A, B, C, and D may be defined as

1

A
= V2

V1

∣∣∣∣
I2=0

,
1

B
= −I2

V2

∣∣∣∣
V2=0

,
1

C
= V2

I1

∣∣∣∣
I2=0

,
1

D
= −I2

I1

∣∣∣∣
V2=0

(2.10)

I1 I2

V1

+
+

−

V2

+

−
− +

−

z11 z22

z12I2 z21I1
Figure 2.8 Equivalent circuit
model for two-port impedance
matrix.
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A and C are measured under open circuit conditions, while B and D are measured
under short circuit conditions. Further, A and D are ratios of similar physical
quantities, while B has the unit of an impedance and C has the unit of an
admittance. In fact, 1/A is the forward open circuit voltage gain, 1/D is the forward
short circuit current gain, 1/B represents the forward transconductance, and 1/C
is the forward transimpedance function.

Similarly, we may define hybrid matrices [h] and [g], as well as reverse chain
matrix [ã] by the following relations:[

V1

I2

]
=
[

h11 h12

h21 h22

] [
I1

V2

]
= [h]
[

I1

V2

]
(2.11)

[
I1

V2

]
=
[

g11 g12

g21 g22

] [
V1

I2

]
= [g] [ V1

I2

]
(2.12)

and [
V2

I2

]
=
[

A B
C D

] [
V1

−I1

]
= [α]
[

V1

−I1

]
(2.13)

It can be easily established from Eqs. (2.9) and (2.13) that

[α] = 1
AD − BC

[
D B
C A

] [
V1

−I1

]
(2.14)

2.5.2.4 Interrelationships
Since the [y], [z], [a], [g], [h], and [α] matrices are all different characteristics of the
same network, it is obvious that these parameters are related. We give in Table 2.1
these relationships for [z], [y], and [a] matrices, since these are more commonly used
in practice. The network N is said to be reciprocal if y12 = y21 (hence, z12 = z21 and
determinant [a] = �a = AD − BC = 1); otherwise it is said to be nonreciprocal.

Table 2.1 Interrelationships among [z], [y], and [a] parameters of a two-port network.

Matrix [y] [z] [a]

[y]
[

y11 y12

y21 y22

] ⎡
⎣ y22

�y
−y12
�y

−y21
�y

y11
�y

⎤
⎦

⎡
⎣

−y22
y21

−1
y21

−�y
y21

−y11
y21

⎤
⎦

[z]

⎡
⎣ z22

�z
−z12
�z

−z21
�z

z11
�z

⎤
⎦

⎡
⎣ z11 z12

z21 z22

⎤
⎦

⎡
⎣ z11

z21
�z
z21

1
z21

z22
z21

⎤
⎦

[a]

⎡
⎣ D

B
−�a

B

−1
B

A
B

⎤
⎦

⎡
⎣ A

C
�a
C

1
C

D
C

⎤
⎦ [

A B
C D

]

�z = z11z22 − z12z21, �y = y11y22 − y21y12, �a = AD − BC.
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I1 →

V1

+

−

← I2

V2

+

−
[a]1 [a]2 [a]n

Figure 2.9 A cascade of two-port networks.

The different two-port characterizations are useful to obtain the overall de-
scription of a complicated two-port which may be made up of several two-ports.
For example, when two two-ports are connected in series, [z] matrices are use-
ful, since the overall [z] matrix becomes equal to the sum of the constituent
[z] matrices. Similarly, [y] matrices are useful when two-ports are connected in
parallel, and chain matrices are employed when two two-ports are connected in
cascade. Readers interested in more details may refer to Moschytz (1974). Here,
we consider an example of a cascade connection since it is quite common in
practice.

Consider a number of two-ports connected in cascade, as shown in Figure 2.9.
By identifying the terminal voltage and current variables in adjacent blocks, it
becomes immediately clear that the overall chain matrix of the cascade is given by
[a] = [a]1[a]2 . . . [a]n.

2.5.2.5 Three-Terminal Two-Port Network
One of the most important types of two-ports is the three-terminal two-port, wherein
the input and output ports have a common terminal as shown in Figure 2.10. A
practical example is an OA used as an inverting amplifier.

2.5.2.6 Equivalent Networks
Two one-port networks are said to be equivalent if their DPIs are the same.
Similarly, two two-ports are said to be equivalent if their [y] (or [z], or [a]) matrices
are the same. The concept of equivalent networks can be extended to networks with
more than two-ports. An example follows.

The two one-ports shown in Figure 2.11a,b are equivalent, since the DPI of either
of the networks is equal to unity.

2.5.2.7 Some Commonly Used Nonreciprocal Two-Ports
A nonreciprocal two-port can be modeled using the four basic controlled sources,
namely, the VCVS, CCCS, VCCS, and CCVS. The corresponding equivalent circuit
models for ideal controlled sources are shown in Figures 2.12a–2.12d.

I1 I2

+

−

V1

N1 +

−

V2

2

3

→ →

Figure 2.10 A three-terminal two-port network.
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1

1

1 1 1

(a) (b)

z1 = 1→ z1 = 1→≡

Figure 2.11 (a) A one-port
with DPI of 1 �. (b) An equiv-
alent one-port with same DPI
as in (a).

1

1′

1

1′

1

1′

2

2′

2

2′

(a) (b)

(c) (d)

I1 I2 I1

I1I2

V2

μV1

I1

V1 V1

+
+

+ +

−

1

1′

I1 I2 I1

I1I1 I2

V1
V2

gV1 V1

+ + +

− − −

−

− −

2

2′

I2

I2

r I1 V2

+
+

−

−

2

2′

I2

aI1

I2

V2

+

−

Figure 2.12 Controlled sources: (a) VCVS (I1 = 0, V2 = μV1,
(b) CCCS (V1 = 0, I2 = −αI1), (c) VCCS (I1 = 0, I2 = −gV1),
and (d) CCVS (V1 = 0, V2 = rI1).

The above models are all ideal, since all the input, output, and feedback
impedances are assumed to be either zero or infinite. The two-port parameters
of the ideal controlled sources are listed in Table 2.2. It is observed that except
for the VCCS, the admittance matrix does not exist for the other ideal sources,
even though the chain matrices do exist for all of them. However, it should be
mentioned that the [y] matrices do exist for all these sources if they are nonideal
(i.e., when the input and output impedances are added), which anyway is the case
in practice.

Some of the common active two-ports that are used in many complex electronic
circuits are the (i) impedance converters (both positive and negative types) and (ii)
impedance inverters (both positive and negative types). The two-port parameters
of these devices are also listed in Table 2.2. The impedance converter is said
to be a positive impedance converter (PIC) if K1 K2 > 0, and a negative impedance
converter (NIC) if K1 K2 < 0. Further, the NIC is called a current-inverting negative
impedance converter (CNIC) if K1 > 0 and K2 < 0, while it is called a voltage-inverting
negative impedance converter (VNIC) if K1 < 0 and K2 > 0. In addition, if K1 = 1
and K2 = −1, the NIC is called a unity-gain current-inverting negative impedance
converter (UCNIC), and when K1 = −1 and K2 = 1, the NIC is called a unity-gain
voltage-inverting negative impedance converter (UVNIC). Similarly, if G2/G1 > 0, the
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Table 2.2 [z], [y], and [a] parameters for some nonreciprocal two-ports.

Nonreciprocal two-port [z] [y] [a]

VCVS – –
[

1/μ 0
0 0

]

VCCS –

[
0 0
g 0

] [
0 1/g
0 0

]

CCVS
[

0 0
r 0

]
–

[
0 0

1/r 0

]

CCCS – –
[

0 0
0 1/α

]

Impedance converter – –

[
K1 0
0 K2

]

Impedance inverter (II)
[

0 −1/G1

1/G2 0

] [
0 G2

−G1 0

] [
0 1/G1

G2 0

]

impedance inverter is called a positive impedance inverter (PII) and if G2/G1 < 0, it
is called a negative impedance inverter (NII).

2.6
Indefinite Admittance Matrix

The IAM presents a powerful method of analyzing electrical networks. The advan-
tage of such a method is that it does not require the setting up of network equations
to obtain a network function.

Consider the n-terminal N of Figure 2.13 where N is a linear time-invariant
network with zero initial conditions.

Let Ik(k = 1, 2, . . . , n) be the current injected into node k, whose voltage with
reference to some external node, assumed to be the ground node, is Vk. Then, such

a network has the property (by Kirchoff ’s current law, KCL) that
n∑

k=1
Ik = 0. The

N

← I1

← I2

← In +Vn

+V2

+V1

Figure 2.13 An n-terminal network.
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network N can be characterized by the nodal matrix equation⎡
⎢⎢⎢⎢⎣

I1

.

.

.

In

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

y11 . . . y1n

.

.

.

yn1 . . . ynn

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

V1

.

.

.

Vn

⎤
⎥⎥⎥⎥⎦ or [I] = [Y ]N [V ] (2.15)

The matrix [Y ]N is called the indefinite admittance matrices of N, since no definite
node in the whole network is considered as the reference node. The matrix elements
yij can be calculated using the relation yij = Ii|Vj=1,Vm=0,m �=j. Hence, the coefficient
yij is the current that flows into the node i when all the nodes except for jth node
are grounded and a unit voltage (AC signal) is applied at node j.

The IAM has the following properties:

1) The IAM [Y ]N is singular, and the sum of the elements of any row or any
column is zero.

2) If any terminal is grounded, then the admittance matrix of order (n − 1) of the
resulting network is obtained by deleting the corresponding row and column in
[Y ]N . This no longer a singular matrix. This now becomes a definite admittance
matrix or the conventional nodal admittance matrix (NAM).

3) When two terminals (i.e., nodes) are shorted, the elements of the corresponding
rows are added together, and so also the elements of the corresponding columns
to form a new row and a new column. The dimension of the matrix is reduced
by unity and the resulting matrix becomes the IAM of the new network.

4) The IAM of order n can be obtained from the NAM of order (n − 1) by adding
a row and a column such that in the new matrix, the sum of the elements of
every row and of every column is zero.

5) A row and a column of zeros correspond to an isolated node. Hence, any n-node
network may be treated as an m-node (m > n) network by adding (m − n) rows
and columns of zeros to [Y ]N .

6) If the mth terminal of an n-node network, with an IAM [Y ]N , is suppressed
(i.e., Im = 0), then the new network N∗ has an IAM [Ŷ ]N∗ which is of the order
(n − 1) and whose elements are given by

ŷkl =

∣∣∣∣ ykl ykm

yml ymm

∣∣∣∣
ymm

(2.16)

7) It may be noted that if [Y ]N is an NAM, then [Ŷ ]N∗ is also an NAM.
8) The IAM of a number of n-node networks connected in parallel is obtained by

adding the IAMs of the individual n-node networks.
9) For an n-node network consisting of only one-port elements, the IAM is

obtained in a simple manner. The element yii is obtained as the sum of
the admittances connected to node i, while the element yij is obtained as the
negative of the sum of all the admittances connected exclusively between nodes
i and j.

For details one may refer to Moschytz (1974).
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2.6.1
Network Functions of a Multiterminal Network

Consider a multiterminal network, where we assume that the current Ikl flows
into node k and gets out of node l and that all the other currents are zero.
Hence,

Ikl = Ik − Il (2.17)

Also, let Vij be the voltage between nodes i and j, that is,

Vij = Vi − Vj (2.18)

Then, it can be shown that the transfer impedance zij
kl is given by (Moschytz, 1974)

zij
kl = Vij

Ikl
= sgn(k − l) × sgn(i − j)

ykl
ij

yl
l

(2.19)

where

=ykl
ij (−1)i+j+k+lMkl

ij ,

=yl
l Ml

l ,

=Mkl
ij minor obtained from the IAM [Y ]N by deleting the kth and lth rows, and

ith and lth columns,
=Ml

l minor obtained from the IAM by deleting the lth row and lth column, and

Sgn(x) = 1, if x > 0, and −1, if x < 0.

Also the DPI between the nodes k and l is given by

zkl = Vkl

Ikl
= ykl

kl

yl
l

(2.20)

Finally, the VTF between the nodes (i, j) and (k, l) is given by

Tij
kl = Vij

Vkl
= sgn(k − l) × sgn(i − j)

ykl
ij

ykl
kl

(2.21)

Example 2.3. Obtain the admittance matrix of the bridged-T circuit shown in
Figure 2.14, using the method of IAM.

Since the given circuit consists of only one-ports, it is easy to write the IAM
directly using property number 8 of an IAM.

1 2 3 4

[Y ]N =

⎡
⎢⎢⎣

Y1 + Y4 −Y4 −Y1 0
−Y4 Y2 + Y4 −Y2 0
−Y1 −Y2 Y1 + Y2 + Y3 −Y3

0 0 −Y3 Y3

⎤
⎥⎥⎦
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1 2
3

4

Y4

Y1

Y3

Y2

Figure 2.14 A bridged-T network.

Since node 4 is taken as reference node, we may cancel the fourth row and fourth
column. Then the corresponding definite admittance matrix of the circuit with
node 4 as ground is

1 2 3

[Y ]N∗ =

⎡
⎢⎣

Y1 + Y4 −Y4 −Y1

−Y4 Y2 + Y4 −Y2

−Y1 −Y2 Y1 + Y2 + Y3

⎤
⎥⎦

Since we need the short circuit admittance matrix of the bridged-T two-port with
terminals (1, 4) as input and terminals (2, 4) as output, node 3 is to be suppressed.
Hence, we use Eq. (2.16) to obtain the two-port [y] matrix description

[y] =

⎡
⎢⎢⎢⎢⎢⎣

∣∣∣∣∣
Y1 + Y4 −Y1

−Y1 YS

∣∣∣∣∣
∣∣∣∣∣

−Y4 −Y1

−Y2 YS

∣∣∣∣∣∣∣∣∣∣
−Y4 −Y2

−Y1 YS

∣∣∣∣∣
∣∣∣∣∣

Y2 + Y4 −Y2

−Y2 YS

∣∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎦

1

YS

=
[

Y1(Y2 + Y3) + YSY4 −(Y1Y2 + Y4YS)

−(Y1Y2 + Y4YS) Y2(Y1 + Y3) + Y4YS

]
1

YS

where

YS = Y1 + Y2 + Y3

Example 2.4. In this example, we consider a circuit which consists not only of
one-ports but also a two-port, which does not possess a [y] matrix. The technique
of IAM can still be applied to such a case. Consider the network in Figure 2.15a
which makes use of a CNIC to realize the transfer function V2/V1.

This structure was proposed by Yanagisawa (1957) to realize VTFs. It is seen
that the CNIC has no [y] matrix, but has only the chain matrix [a], and hence an
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IAM cannot be found directly for this element. For this purpose, we introduce two
resistors of values +1 and −1 � in series, as shown in Figure 2.15b. Now we can
consider the CNIC and the +1 � resistor in cascade, and find the overall chain
matrix. Using this chain matrix, we can determine the associated [y] matrix of this
subnetwork Na as shown with dotted line boundary in Figure 2.15b. This matrix
shown as [y]Na in Figure 2.15c can be derived as

[a]Na = [a]CNIC [a]1 � =
[

1 0
0 −1

] [
1 1
0 1

]
=
[

1 1
0 −1

]

Hence,

4 3

[y]Na =
[−1 1

−1 1

]
4
3

The network of Figure 2.15c can be decomposed into two subnetworks as shown
in Figure 2.15d,e, where the former corresponds to the one-ports of Figure 2.15c,
and the latter to the two-port Na.

We may write the IAM of Figure 2.15d as

1 2 3 4 5

[Y ]R =

⎡
⎢⎢⎢⎢⎣

Y1 + Y2 −Y2 0 −Y1 0
−Y2 Y2 + Y4 − 1 1 0 −Y4

0 1 −1 0 0
−Y1 0 0 Y1 + Y3 −Y3

0 −Y4 0 −Y3 Y3 + Y4

⎤
⎥⎥⎥⎥⎦

(2.22)

Also,

3 4 5

[Y ]Na =
⎡
⎣ 1 −1 0

1 −1 0
−2 2 0

⎤
⎦ 3

4
5

(2.23)

Adding rows and columns of zeros corresponding to nodes 1 and 2 in [Y ]Na , and
adding it to [Y ]R, we get the overall IAM for Figure 2.15e as

1 2 3 4 5

[Y ]N =

⎡
⎢⎢⎢⎢⎣

Y1 + Y2 −Y2 0 −Y1 0
−Y2 Y2 + Y4 − 1 1 0 −Y4

0 1 0 −1 0
−Y1 0 1 Y1 + Y3 − 1 −Y3

0 −Y4 −2 2 − Y3 Y3 + Y4

⎤
⎥⎥⎥⎥⎦
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Considering node 5 as the reference node, the NAM of the network N is given by
(deleting column 5 and row 5 from [Y ]N)

1 2 3 4

[y]N =

⎡
⎢⎢⎣

Y1 + Y2 −Y2 0 −Y1

−Y2 Y2 + Y4 − 1 1 0
0 1 0 −1

−Y1 0 1 Y1 + Y3 − 1

⎤
⎥⎥⎦

Considering now node 4 as an internal node, that is suppressing node 4 using Eq.
(2.16), the admittance matrix reduces to

1 2 3

[y]N =

⎡
⎢⎢⎢⎢⎢⎣

(Y1 + Y2)(Y1 + Y3 − 1) − Y2
1

Y1 + Y3 − 1
−Y2

Y1

Y1 + Y3 − 1
−Y2 Y2 + Y4 − 1 1

− Y1

Y1 + Y3 − 1
1

1

Y1 + Y3 − 1

⎤
⎥⎥⎥⎥⎥⎦

Suppressing the internal node 3 now, we get the two-port admittance matrix

1 2

[y]N =
[

(Y1 + Y2)(Y1 + Y3 − 1) −(Y1 + Y2)

Y1 − Y2 (Y2 − Y1) − (Y3 − Y4)

]

Hence, the VTF of the network is given by

V2

V1
= − y21

y22
= Y2 − Y1

(Y2 − Y1) − (Y3 − Y4)

2.7
Analysis of Constrained Networks

The IAM technique needs special modifications to be applied to controlled sources
such as a VCVS, since the [y] matrix does not exist, and we need to add positive-
and negative-valued elements at an appropriate location in the circuit, as done in
the previous example. We shall now introduce the method of constrained network
that does not need such a special arrangement.

The case of constrained network implies existence of a specific relationship
between the voltage and current variables at two distinct nodes in a network. If this
relationship is known, a certain technique can be used in the matrix I−V equation
set to simplify the mathematical analysis. When a VCVS, such as an OA, exists in a
network, the computation of the admittance matrix can be simplified considerably,
by using the constraint equation. Consider that there is an OA connected between
nodes i, j, and k in a system with n nodes, as shown in Figure 2.16. The I−V
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A

Vi

Vj

Vk

i

j

k+

−

Figure 2.16 A differential-input voltage amplifier such as
an OA.

equations at the different nodes can be described in the following form using
admittance matrix elements:

I1 = y11V1 + y12V2 + · · · + y1iVi + y1jVj + y1kVk + · · · + y1nVn

I2 = y21V1 + y22V2 + · · · + y2iVi + y2jVj + y2kVk + · · · + y2nVn

...

Ii = yi1V1 + yi2V2 + · · · + yiiVi + yijVj + yikVk + · · · + yinVn

Ij = yj1V1 + yj2V2 + · · · + yjiVi + yjjVj + yjkVk + · · · + yjnVn

Ik = yk1V1 + yk2V2 + · · · + ykiVi + ykjVj + ykkVk + · · · + yknVn

...

In = yn1V1 + yn2V2 + · · · + yniVi + ynjVj + ynkVk + · · · + ynnVn (2.24)

The constraint equation is

Vk = (Vi − Vj)A

or

Vi = Vj + Vk
A

On substituting the above constraint relation in the set of I−V equations given by
Eq. (2.24), one gets

I1 = y11V1 + y12V2 + · · · + (y1i + y1j)Vj + (y1k + y1i

A
)Vk + · · · + y1nVn

I2 = y21V1 + y22V2 + · · · + (y2i + y2j)Vj + (y2k + y2i

A
)Vk + · · · + y2nVn

...

Ii = yi1V1 + yi2V2 + · · · + (yii + yij)Vj + (yik + yii

A
)Vk + · · · + yinVn

Ij = yj1V1 + yj2V2 + · · · + (yji + yjj)Vj + (yjk + yji

A
)Vk + · · · + yjnVn

Ik = yk1V1 + yk2V2 + · · · + (yki + ykj)Vj + (ykk + yki

A
)Vk + · · · + yknVn

...

In = yn1V1 + yn2V2 + · · · + (yni + ynj)Vj + (ynk + yni

A
)Vk + · · · + ynnVn

(2.25)

On examining the above, one can find that the node voltage Vi has got substi-
tuted by other node voltages. In matrix operation, this means that the column i
corresponding to the voltage Vi has got discarded. Since node k is the output node
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of a voltage amplifier (VCVS), the current Ik is dependent solely on the networks
connected to the output. Hence, this is not an independent variable and can be
discarded in further manipulation of the matrix equation. Thus, application of the
method of constraint involves the following steps.

Consider the admittance matrix description of the unconstrained part of the
network (i.e., without considering the OA element); denote this to be [y]UC.

1) Add to the element of column j, the element in column i, where i and j are the
input nodes of the OA.

2) Add to the element of column k, (1/A) times the element in column i, k being
the output node of the OA.

3) Discard column i (or column j).
4) Discard row k.

The resulting matrix is the constrained [y], the [y] matrix of the constrained
network.

Let us now consider some important cases.

Case 1: Infinite-gain differential-input OA
In this case, the gain A → ∞, and hence we may obtain the [y] of the
constrained network by adding the columns corresponding to i and j (i.e., the
input nodes of the OA), and deleting the row k (corresponding to the output
node of the OA) in the unconstrained matrix [y]UC.

Case 2: Single-input infinite-gain OA
In many instances node i is grounded, in which case Vi = 0, and A → ∞.
Hence, we may obtain the [y] of the constrained network by discarding row
k, and column j in [y]UC. It should be noted that there is no row or column
corresponding to the node i.

Case 3: Single-ended (input) finite-gain OA
Let the OA be of finite gain K and let Vi be the single-input node to the
OA. Then Vk = KVi. Also, there is no row or column corresponding to the
node j, which is now grounded. Hence, we may obtain the [y] matrix of
the constrained network by simply adding K times the column k to the
column i, and then deleting the row and column corresponding to node k.

Example 2.5. Consider the OA-based network shown in Figure 2.17. Find its VTF
Vo/Vi.

1 2 3 4

[y]UC =

⎡
⎢⎢⎣

ya + yc −ya −yc 0
−ya ya + yb 0 −yb

−yc 0 yc + yd 0
0 −yb 0 yb

⎤
⎥⎥⎦

1
2
3
4

(2.26)
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Figure 2.17 An OA used as an
infinite-gain differential voltage amplifier.

Hence,

1 2 4

[y] =
⎡
⎣ ya + yc −(ya + yc) 0

−ya ya + yb −yb

−yc yc + yd 0

⎤
⎦ 1

2
3

(2.27)

Then,

V4

V1
= Vo

Vi
=

∣∣∣∣∣ −ya ya + yb

−yc yc + yd

∣∣∣∣∣∣∣∣∣∣ ya + yb −yb

yc + yd 0

∣∣∣∣∣
= ybyc − yayd

yb(yc + yd)
(2.28)

Example 2.6. For the network of Figure 2.18, find the VTF Vo/Vi.
Letting Gi = 1/Ri, i = 1, 2,

1 2 3 4

[y]UC =

⎡
⎢⎢⎣

G1 −G1 0 0
−G1 G1 + G2 + sC3 + sC5 −sC3 −G2

0 −sC3 G4 + sC3 0
0 −G2 0 G2

⎤
⎥⎥⎦ (2.29)

Since V4 = KV3,

1 2 3

[y] =

⎡
⎢⎣

G1 −G1 0

−G1 G1 + G2 + s(C3 + C5) −(sC3 + KG2)

0 −sC3 G4 + sC3

⎤
⎥⎦ (2.30)
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1
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R1
C3

C5 R4

Vo

R2

Vi

Figure 2.18 An OA used as a
finite-gain single-input voltage
amplifier.

Then,

V3

V1
=

∣∣∣∣ −G1 G1 + G2 + s(C3 + C5)
0 −sC3

∣∣∣∣∣∣∣∣ G1 + G2 + s(C3 + C5) −(sC3 + KG2)
−sC3 G4 + sC3

∣∣∣∣
= sG1C3

s2C3C5 + sC3(G1 + G2 + G4 − KG2) + sG4C3 + G4(G1 + G2)
(2.31)

Since Vo = V4 = KV3 andV1 = Vi, we get

Vo

Vi
= V4

V1
= sKG1C3

s2C3C5 + sC3(G1 + G2 + G4 − KG2) + sG4C3 + G4(G1 + G2)
(2.32)

2.8
Active Building Blocks for Implementing Analog Filters

Several semiconductor building blocks can be used as the active element for
implementing an analog filter. Some examples are (i) OA, (ii) OTA, (iii) CC, and
(iv) COA (current operational amplifier) . The OA behaves basically as a VCVS, the
OTA as a VCCS, while the CC and COA behave as a CCCS. It is possible to use
any of these active devices and several passive-RC components to realize active-RC
filters. If the function of R is simulated by additional active device(s), the entire
filter becomes implementable in a monolithic IC technology.

2.8.1
Operational Amplifier

An OA is perhaps the most widely used active device that has been employed to
implement active-RC filter networks. In the ideal form, an OA has infinite input
resistance, zero output resistance, and an infinite voltage gain. The device basically
works as a VCVS. In practice, these ideal values are never achieved. But practical
devices are quite often good enough to produce reasonably accurate transfer
functions. Since a VCVS is a linear network element, the principles of linear
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Figure 2.19 An OA used as (a) a summing invert-
ing voltage amplifier, (b) a summing inverting inte-
grating voltage amplifier, and (c) a lossy inverting
integrating voltage amplifier.

network analysis apply. Using superposition principle one can realize summing
amplifiers and summing integrators with an OA and several RC components.
Consider Figures 2.19a and 2.19b, which depict a summing amplifier and summing
integrator respectively, realized using ideal OAs.

In the above, the voltages V1, V2, . . . are assumed to be available from voltage
source nodes. Since an OA behaves as a VCVS, the output node of an OA appears
like a voltage source. Thus, any one of the V1, V2 voltages could be derived from
the output of the OA. When this is done in practice, we say that a feedback
(negative) is being applied. Thus, in Figure 2.19b, if we label Vo = Vo1 and make
V2 = Vo1, we get Vo1 = − 1

sCR1
V1 − 1

sCR2
Vo1, which leads to the transfer function

Vo1
V1

= − R2
R1

1
1+sCR2

. This is the transfer function of a lossy integrator circuit as shown

in Figure 2.19c.
It may be noted that by providing a feedback, a rational function of s has been

generated. In principle, by combining ideal integrators, lossy integrators, and
summing amplifiers, a frequency-selective transfer function of any high order (>1)
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Figure 2.20 Use of an OA-based (inverting) integrator and
(inverting) amplifier in realizing a second-order active-RC
filter.

can be generated. Consider the case of realizing a second-order filter function as
shown in Figure 2.20.

To analyze the system, one can proceed as follows: using nodal equations at
nodes 1, 2, and 3, respectively, we get

Vo1 = − V1

sC1R1
− Vo1

sC1R2
− Vo3

sC1R3
, Vo3 = −R6

R5
Vo2, and Vo2 = − Vo1

sC2R4

On substitution for Vo3 and Vo2, one finally gets

Vo1

V1
= −N(s)

D(s)
(2.33)

where

N(s) = R6

R5

s

R1R4C1C2
, D(s) = s2 + s

C1R2
+ R6

R5

1

R3R4C1C2

The above represents a VTF T(s) = Vo1/V1, of the form As/(s2 + Bs + C). If we
let s = jω and use suitable values for the RC elements, the plot of the magnitude
response in terms of frequency ω rad s−1 will appear like a band-pass filter function.
This serves as an example of implementing a band-pass filter using an OA as the
active device.

2.8.2
Operational Transconductance Amplifier

The OTA functions as a VCCS, so that the significant transfer characteristic is the
output short circuit small signal current to input small signal voltage (Schaumann,
Ghausi, and Laker, 1990). If the output is terminated in a finite resistance, a VTF
can be easily realized. OTAs can be easily configured to function as a driving point
resistance and thus OTA-based filters may dispense with the use of any lumped
resistances. This opens up the potential for implementing fully monolithic analog
filters. The usual symbol and an associated AC equivalent network for an OTA are
shown in Figures 2.21a and 2.21b.
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Figure 2.21 An operational transconductance amplifier
(OTA): (a) schematic symbol; (b) AC equivalent circuit of
an ideal OTA.
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Figure 2.22 An OTA-based second-order filter.

Consider Figure 2.22 which presents the schematic of an OTA-based second-order
filter.

At node 1, sCV1 = −gm1Vo, and at node 2, gm2V1 + gm3(Vi − Vo) = sCVo. From
these two relations, we get

Vo

Vi
= sgm2C

s2C2 + sgm3C + gm1gm2
(2.34)

V1

Vi
= −gm1gm2

s2C2 + sgm3C + gm1gm2
(2.35)

Vo/Vi represents the VTF of a second-order band-pass filter and V1/Vi that of a
low-pass filter. This shows the potential of implementing a filtering function using
OTAs.

2.8.3
Current Conveyor

A CC functions as a CCCS and in combination with RC elements can produce
a frequency-dependent transfer function (Sedra and Smith, 1970). The schematic
symbol of a CC is shown in Figure 2.23, and its input–output relations are given



32 2 A Review of Network Analysis Techniques

CCII
Y

X

Z

iX →

iY (= 0) →

← iZ

Figure 2.23 The schematic symbol of
a type 2 current conveyor (CCII).

by ⎡
⎢⎣

iY

vX

iZ

⎤
⎥⎦ =
⎡
⎣ 0 0 0

1 0 0
0 ±1 0

⎤
⎦
⎡
⎣ vY

iX

vZ

⎤
⎦ (2.36)

The matrix relations imply that the X,Y terminals act like a virtual short circuit
(as is in an OA), while the X, Z terminals function like a current mirror. It is
possible to arrange Iz = ±kIX , where k is a constant. The CC with positive current
mirroring is named as positive current conveyor type 2 (CCII+) and the CC
with negative current mirroring is termed as a negative current conveyor type 2
(CCII–). The symbol II represents CC type 2, which has been established as a more
popular and practical device.

If one considers the network with a CCII– of current gain factor k (Figure 2.24),
it will be possible to establish by analysis, that a low-pass CTF is realized.

Note that VX = VY = 0. Then KCL at the input node gives

IX = IS + sCV1

At node Z,

IZ = sCV2 + G(V2 − V1) = kIX

where G = (1/R). Substituting for IX and rearranging, we get

(sC + G)V2 − (G + ksC)V1 = kIS (2.37)

At the output node

(V1 − V2)G + V1G + V1sC = 0 (2.38)

X

Y
Z CCII−

C

C

R

R

V1
V2

← IXIZ = kI X
↓

↓

Is

Io

Figure 2.24 A negative
CCII-based low-pass current
transfer function filter.
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Equation (2.38) gives

V2 = V1(sC + 2G)/G (2.39)

Substituting for V2 from Eq. (2.39) into Eq. (2.36), we have

V1
sC + 2G

G
(sC + G) − V1(G + ksC) = kIs (2.40)

Finally, noting that Io = V1G, one arrives at the current-mode transfer function

Io

Is
= kG2/C2

s2 + (3 − k)(G/C)s + G2/C2
(2.41)

Equation (2.41) represents a second-order low-pass filter transfer function in terms
of current signals. The above derivation establishes that a filtering function can be
implemented using a CC device.

Practice Problems

2.1 Consider the ladder network with component values as shown in
Figure P2.1. Derive the transfer function for the voltage ratio VL/Vs.

2.2 Find the VTF of the ladder filter shown in Figure P2.2.
2.3 Consider the network shown in Figure P2.3 that uses ideal OAs. (a) Find

the chain matrix of the network and show that it corresponds to that of an
impedance converter. (b) If a load ZL is connected at port 2, what will be the
input impedance at port 1? (c) If Y1 = Y2 = Y3 = G, Y4 = sC, and ZL = RL

what is the input impedance at port 1?

Vs

Rs
RL VL

L2 L4

C1
C3

+ +

−−

C1 = 0.0114 F
L4 = 136 H

Rs = 1
RL = 1

C3 = 0.0134 FL2 = 217 H

Figure P2.1

+

− −−
+H2

3

F
3
4

H2
1

1 ΩVs VL
+

Figure P2.2
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Figure P2.4

2.4 Assuming that the OA is ideal, show that the VTF of the active-RC network
of Figure P2.4 is given by

Vo(s)

Vi(s)
= K/(C1C2R1R2)

s2 + s

[
1

C2R1
+ 1

C2R2
+ 1

C1R2
− K

C1R2

]
+ 1

C1C2R1R2

where

K = 1 +
(

R4

R3

)

2.5 For the network, shown in Figure P2.5, with a VCVS of gain K, find an
expression for the VTF, V2(s)/V1(s).

2.6 For the network of Figure P2.6, show that the VTF is given by

V2(s)

V1(s)
= Ks2

s2 + s

[
1

C1R2
+ 1

C3R4
+ 1

C1R4
− K

C1R2

]
+ 1

C1C3R2R4
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Figure P2.5
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−
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Figure P2.6

If R2 = R4 = 1 �, C1 = C3 = 1F, what value of K will make the coefficient
of the ‘‘s’’ term in the denominator equal to 1.414?

2.7 The network of Figure P2.7 represents a low-pass filter. Derive the expression
for the VTF of the network using the method of constrained networks. The
OA is ideal.

2.8 Assuming the OA to be ideal, for the band-pass network shown in Figure
P2.8, verify that the VTF is given by

V2(s)

V1(s)
= sG1C3

s2C3C4 + sG5(C3 + C4) + G5(G1 + G2)

Note that G1, G2, and G5 are conductances.
2.9 Consider the second-order filter network (Ackerberg and Mossberg, 1974)

implemented using three OAs, and shown in Figure P2.9. Assuming that
the OAs are identical and that each has a finite gain A, show that the VTF,

+

−
V1

++

−

−

V2

R1
R4

R3

C2

C5

A = ∝

Figure P2.7
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Vo2(s)/Vi(s) is given by

Vo2

Vi

=
− 1

rR

1

rR2
+

⎛
⎜⎜⎝

1

R
+ 1

R2

A
+
(

1 + 1

A

)(
1

R1
+ sC1

)⎞⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

sC2

r1

1

r2
+

1
r2

+ 1
r1

A

+
1

r
+ sC2

A

⎞
⎟⎟⎟⎟⎟⎟⎠

2.10 Consider the circuit of Figure P2.10, which is fed from a current source.
Each OA has a finite gain A. Show that the current transfer function (CTF),
Io/Ii2, is given by
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Io

Ii2
=

− 1

rR

1
rR2

+
(

1
Ar

+
(

1 + 1
A

)(
1

R1
+sC1

))
⎛
⎜⎜⎜⎜⎜⎜⎝

sC2

r1

1

r2
+

1

r2
+ sC2

A

+
1

r1
+ 1

r2

A

⎞
⎟⎟⎟⎟⎟⎟⎠

2.11 Using the ideal small signal model for each OTA in Figure P2.11, derive
that

Vo = gm2gm5VA − sgm4C1VB + s2C1C2VC

s2C1C2 + sgm3C1 + gm1gm2

2.12 Figure P2.12 shows a twin-Tee network frequently used in connection with
design of equalizers. Write a subset of two-port parameters which could be
used very easily to derive the overall two-port parameters of the system.
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Using the overall two-port parameters of the system, derive an expression
for the voltage transfer function V2/V1.

2.13 Solve Problem 2.12 using the method of indefinite admittance matrix (IAM).
2.14 (a) Derive the chain matrix [a] for the circuit of Figure P2.14, which employs

two OTAs. Show that it corresponds to a PII. (b) Show that the driving point
impedance Z1 = V1/I1 is given by YL/gm1gm2, where ZL is the load connected
at port 2. (c) If ZL corresponds to that of a capacitor C, find the equivalent
element seen at port 1 and its value.

2.15 Suggest a circuit for an NII using OTAs. Use the knowledge you have gained
from solving Problem 2.14.

2.16 Show that the circuit of Figure P2.16 realizes a CNIC. What is the input
impedance at port 1, if a load ZL is connected at port 2?

2.17 Show that the forward VTF Vo2(s)/Vi(s) of Problem 2.9 is the same as the
reverse CTF Io/Ii2 of Problem 2.10, when the OAs are ideal. Observe that
the two circuits are the same except that the input and output terminals of
each of the OAs are interchanged in the two circuits.
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3
Network Theorems and Approximation of Filter Functions

In the previous chapter, we considered different methods of analyzing electrical
circuits containing passive and active elements, and discussed various ways of
characterizing a two-port network, which is extremely useful in understanding filter
design. In this chapter, we introduce some general network theorems that are useful
in filter design. This is followed by magnitude and phase approximations for the
synthesis of the filter function. The ideal frequency response characteristic of a filter
assumes brick-wall characteristics with abrupt jumps at the transition between the
passbands (PBs) and stopbands (SBs). In reality, such a response is not achievable.
Instead, filter designers contend themselves by attempting to approximate the
idealized characteristics with some special mathematical functions, which very
closely match the ideal brick-wall characteristics. By doing so, some of the idealness
is sacrificed, but the approximation functions lead to the realization of filters using
real components. This part of the filter design is known as the task of approximation.
For magnitude approximation, the cases of maximally flat, Chebyshev (CHEB), and
elliptic functions are discussed. For phase approximation, Bessel–Thomson (BT)
approximation is introduced.

3.1
Impedance Scaling

Consider a linear time-invariant (LTI) n-port network N. Let N contain one-port
elements as well as two-port elements. This has been assumed for the sake of
simplicity, but the results to be established are true even if the subnetworks are
n-port networks. From Chapter 2, we know that we can write the IAM of the n-port as

[I] = [Y ]N [V ] (3.1)

Let us multiply all the one-port impedances and the impedance matrices of the
internal two-ports by a constant positive value k. It is clear that as a consequence,
all the one-port admittances as well as the [y] matrices of the internal two-ports are
multiplied by (1/k). Hence, Eq. (3.1) becomes

[I] = (1/k)[Y ]N [V ] (3.2)

Modern Analog Filter Analysis and Design: A Practical Approach. Rabin Raut and M. N. S. Swamy
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40766-8
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It is seen from Eqs. (2.20) and (2.21) that the DPI between the nodes q and l also
get multiplied by the same factor k, whereas the VTF between the node pairs (i, j)
and (q, l) is unaltered. This process is known as impedance scaling. It is very clear
that impedance scaling by a factor of k is equivalent to changing a resistor of value
R to kR, an inductor of value L to another inductor of value kL, and a capacitor
of value C to another capacitor of value C/k. We will see what happens to various
types of internal two-ports a little later.

3.2
Impedance Transformation

By applying the same arguments as above, it is obvious that if we multiply all the
internal one-port impedances as well as the two-port [z] matrices by a function
f(s), then the DPIs between any two nodes k and l will also be multiplied by f(s),
while the VTF between the pairs (i, j) and (k, l) will be unaffected. We shall call the
operation of multiplying the internal impedances or impedance matrices by f(s) as
impedance transformation by f(s) (Swamy, 1975). Since most of the time we will be
dealing with two-port networks, let us assume that we are dealing with a two-port,
which consists of one-ports and two-ports as subnetworks. Let its chain matrix be
denoted by[

V1

I1

]
=
[

A B
C D

] [
V2

−I2

]
(3.3)

It is clear that as a consequence of the impedance transformation, an internal
resistor or inductor gets multiplied by f(s), while the capacitor gets divided by f(s).
Let us see what happens to an internal two-port, which is represented by its chain
matrix as[

aj
] = [ Aj Bj

Cj Dj

]
(3.4)

where Aj, Bj, Cj, and Dj are, in general, functions of s. In view of the interre-
lationships between the chain and [z] matrices of two-ports, the consequence of
the impedance transformation is to render the chain matrix of the transformed
network to be

[a′] =
[

A Bf (s)
C/f (s) D

]
(3.5)

while the chain matrix of the internal two-port becomes[
a′

j

]
=
[

Aj Bjf (s)
Cj/f (s) Dj

]
(3.6)

Thus, if the network consists of VCVS or CCCS, these elements will remain
as VCVS or CCCS with the same voltage or current amplification factor under
impedance transformation. Using Eq. (3.6), we may similarly find the transformed
elements for the other two-port elements listed in Table 2.1.
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K = 2.9

R1 = 1 Ω R2 = 1 Ω

C1 = 2 F

C2 = 2 F

K+

− −
V1 V2

+

Figure 3.1 An active-RC filter
using one OA.

Let us see what has been the effect on the overall two-port of impedance
transformation by f(s) (or scaling by a factor k). We can conclude the following
using Eq. (3.5):

1) Driving point and transfer impedances are multiplied by f(s).
2) Driving point and transfer admittances are multiplied by 1/f(s).
3) The open circuit VTF (1/A) is unaltered.
4) The short circuit CTF (1/D) is unaltered.

Example 3.1. Figure 3.1 shows an active-RC filter using one OA. Determine the
transfer function (TF) V2/V1 and hence the nature of the filter. Determine the
value of the element if R1 is chosen as (scaled to) R1 = 1 k�. Also find the new TF.

It can readily be seen that

Tv = V2

V1
= K/C1C2R1R2

s2 + s
[

1
C1

(
1

R1
+ 1

R2

)
+ (1 − K)/C2R2

]
+ 1

C1C2R1R2

Since C1 = C2 = 2 F, R1 = R2 = 1 �, and K = 2.9

V2

V1
= Tv = 2.9/4

s2 + 0.05s + 0.25

Hence, the given network is a low-pass (LP) filter. If now R1 is scaled to 1 k�, the
impedances are all scaled by 1000, but not K. Hence, the capacitive impedances
are multiplied by 1000. In other words, the capacitor values are divided by 1000.
Hence, the new element values are

R1 = R2 = 1 k �, C1 = C2 = 2 MF, K = 2.9

Also since the voltage TF is unaltered by impedance scaling, the value of the new
TF is still the same as before.

Example 3.2. Figure 3.2 shows a normalized filter working into a 1 � load
resistance. Obtain the system function V2/I1. Find the filter corresponding to a
100 � load resistance. Find the new system function.
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I1

C1 = 1 F C3 = 1 F

1 Ω

L2 = 1 H +

V2

−

Figure 3.2 An LC filter with a normalized load resistance of 1 �.

1/100 FI1

2000 H

1/100 F

V2

100 Ω

+

−

Figure 3.3 The LC filter corresponding to that of Figure 3.2 for a load of 100 �.

The system function given by V2/I1 = Z21 is

Z21 = 1

s3C1L2C3 + s2L2C1 + s (C1 + C3) + 1
= 1

2s3 + 2s2 + 2s + 1

To obtain the filter corresponding to a 100 � resistance at the load we perform the
following scaling:

R∗
i = 100Ri = 100 �, L∗

2 = 100L2 = 200 H, C∗
1 = C∗

2 = 1

100
F

Hence,

Z∗
21 = 100Z21 = 100

2s3 + 2s2 + 2s + 1

The scaled circuit is shown in Figure 3.3.

3.3
Dual and Inverse Networks

3.3.1
Dual and Inverse One-Port Networks

It is well known that if two one-port RLC networks N1 and N2 have their impedances
z1 and z2 related by

z1z2 = K (3.7)
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then N1 and N2 are said to be inverses of each other with respect to K. If the
network N1 is a planar one-port network, it is also known that we can obtain N2 by
obtaining the topological dual of N1 by the ‘‘dot window’’ technique (Swamy and
Thulasiraman, 1981) and associating an impedance of ziD to the ith branch of N2

such that

ziziD = K (3.8a)

or

ziD = Kyi (3.8b)

where zi is the impedance of the corresponding ith branch in N1. It may be noted
that the unit of K is ohms square. When N2 is obtained from N1 in this way, N2

is known as the dual of N1 w.r.t. K. (If K = 1, the two networks are simply known
as duals of each other). Hence, a resistor R in N1 would become a resistor of value
K/R1 in N2, an inductor of value L would become a capacitor of value L/K in N2

and a capacitor C in N1 would become an inductor of value KC in N2.
If K = f (s), a function of s, then we call N2 the generalized dual of N1 w.r.t. f (s)

(Mitra, 1969). N1 is not restricted to be an RLC network. Of course, the individual
elements in the two networks are also correspondingly generalized duals of each
other w.r.t. f (s). When f (s) = K/s, the network N2 is called the capacitive dual of N1

and is useful in RC-active synthesis where we would like to obtain one RC-active
network from another (an ordinary resistive dual, f (s) = K, would convert an RC
network to an RL network). In this book, we do not make a distinction between
duals and inverses, and simply call them as duals, even if we do not obtain the
duals topologically.

3.3.2
Dual Two-Port Networks

It is possible to extend the generalized dual concept for a planar two-port network
consisting of one-ports and three-terminal two-ports as internal elements, wherein
the dual is topologically obtained from the original two-port (Swamy, Bhusan, and
Bhattacharyya, 1974). However, it is not done so here, but the generalized dual or
generalized inverse is defined through the two-port chain matrix (Swamy, 1975).
Let N be an LTI 2-port network with a chain matrix

[a] =
[

A B
C D

]
(3.9)

We define ND to be the generalized dual (or generalized inverse) of N w.r.t. f (s) if
the chain matrix [a]D of ND is related to [a] as

[a]D =
[

D Cf (s)
B/f (s) A

]
(3.10)

As in the case of one-ports, if f (s) = 1/s, we call the dual as the capacitive dual. It is
obvious that the dual of the dual is the original network. Now, using Table 2.1, we



46 3 Network Theorems and Approximation of Filter Functions

can show that

[z]D = f (s)
[

y11 −y12

−y21 y22

]
(3.11)

Hence, the VTF and CTF are given by

Tv(s) = V2

V1
= − y21

y22
= (z21)D/f (s)

(z22)D/f (s)
= (z21)D

(z21)D
= (TI)D (3.12)

TI(s) = −I2

I1
− y21

y11
= (z21)D/f (s)

(z11)D/f (s)
= (z21)D

(z11)D
= (TV)D (3.13)

Thus, we have the following properties:

1) The open circuit voltage TF TV of N is the same as the short circuit current TF
(TI)D of ND and vice versa, that is,

TV = (TI)D , (TV)D = TI (3.14)

2) The DPIs z11 and z22 of N are f (s) times the driving point admittances y11 and
y22, respectively, of ND and vice versa, that is,

(z11)D = f (s)y11, (z22)D = f (s)y22; z11 = f (s)
(
y11
)

D ,

z22 = f (s)
(
y22
)

D
(3.15)

3) The transfer impedances z12 and z21 of N are −f (s) times the transfer admit-
tances y12 and y21, respectively, of ND and vice versa, that is,

(z12)D = −f (s)y12, (z21)D = −f (s)y21; z12 = −f (s)
(
y12
)

D
,

z21 = −f (s)
(
y21
)

D (3.16)

The property (1) above is particularly useful in obtaining a CTF realization from a
known VTF realization. Using the definition of the generalized dual, the following
results can easily be established.

Theorem 3.1. The generalized dual of a cascade of networks w.r.t. f (s) is the cascade of
the generalized duals w.r.t. f (s), that is,[

N1 N2 · · · Nm

]
D

= [N1]D [N2]D · · · [Nm]D (3.17)

Theorem 3.2. The generalized dual ZD of a series (shunt) element of impedance Z is
a shunt (series) element of impedance f(s)/Z. Thus, Z ZD = f(s), that is, the one-ports
Z and ZD are themselves generalized duals of each other. Figure 3.4 illustrates these
operations.

Example 3.3. Obtain the capacitive dual of the RC ladder structure shown in
Figure 3.5a.
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zD = f (s) /z
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YD

1=

Figure 3.4 Series and shunt elements and their generalized duals.
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C1 C2 Cn
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(b)

+
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C1 C2 l2
CnI1

R1 R2 Rn

Figure 3.5 (a) An RC ladder
network and (b) its capacitive
dual.

Using the results of Theorems 3.1 and 3.2, it is easily seen that the capacitive
dual is another RC ladder as shown in Figure 3.5b. It may be verified that the open
circuit VTF of the RC ladder (Figure 3.5a) is the same as the short circuit CTF of
the RC ladder of Figure 3.5b.

3.4
Reversed Networks

Consider a two-port network N whose [z] matrix is given by

[z] =
[

z11 z12

z21 z22

]
(3.18)

The reversed network NR is obtained by reversing the roles of the input and outputs
in N. Hence, the z matrix of the reversed network is

[zR] =
[

z22 z21

z12 z11

]

Hence, from Table 2.1, we have that the chain matrix of the reversed network is

[aR] = 1

AD − BC

[
D B
C A

]
(3.19)

If the network is reciprocal, AD − BC = 1.



48 3 Network Theorems and Approximation of Filter Functions

3.5
Transposed Network

Consider a two-port network N with its impedance matrix given by [z]. Bhattacharyya
and Swamy (1971) defined the two-port network having an impedance matrix that
is the transpose of [z] as the transposed network (Bhattacharyya and Swamy, 1971),
or simply the transpose of N, and denoted it by NT. Denoting the impedance and
admittance matrices of NT by

[
zT
]

and
[
yT
]
, we thus have

[
zT
] = [z]T and

[
yT
] =

[y]T . Correspondingly, the chain matrix
[
aT
]

of NT is related to the chain matrix [a]
of N by

[
aT
] = 1

AD − BC
[a] (3.20)

This definition could be of course extended to n-ports (Bhattacharyya and Swamy,
1971). It is clear that for a reciprocal network, since z12 = z21, the transpose
is itself. It can be shown that if the network N consists of one- and two-port
elements, the transposed network NT can be obtained from N by replacing the
internal nonreciprocal two-ports by their transposes and leaving the one-ports and
reciprocal two-ports unaltered (Bhattacharyya and Swamy, 1971).

If we now denote the reversed transpose of N by (NT)R, then the chain matrix of
(NT)R is given by

[
aT

R

] = [D B
C A

]
(3.21)

We can use the above relation to determine the transposes of the various nonre-
ciprocal two-ports. The reversed transposes of the various nonreciprocal two-ports
(including the controlled sources) are listed in Table 3.1.

From Table 3.1, we observe that the transpose of a VCVS is a CCCS with its
input and output ports reversed and with a current gain equal to the voltage gain
of the VCVS, and vice versa. Also, the transpose of an impedance inverter, a
VCCS or a CCVS, is itself with input and output ports reversed. Thus, we can very
easily construct the transpose of a given network with one-ports and two-ports as
subnetworks using Table 3.1.

From the above analysis, the following important conclusions can be drawn:

1) The driving point functions of NT are the same as those of N.
2) The forward open circuit VTF of a network N is the same as the reverse short

circuit CTF of its transpose NT , and vice versa.
3) The forward transfer impedance (admittance) of N is the same as the reverse

transfer impedance (admittance) of NT , and vice versa.

It should be noted again that if N is reciprocal, NT
R is nothing but NR, the reversed

network of N. Thus given a network N, we can obtain three other networks,
namely, the dual ND, the reversed transpose NT

R , and N = (NT
R

)
D = (ND)T

R. The
interrelationships between these four networks are pictorially shown in Figure 3.6
along with their chain matrices (Swamy, Bhusan, and Bhattacharyya, 1976).
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Table 3.1 Reversed transposes of some of the common two-port elements.

Two-port
element N

[a] Chain matrix of N [aT
R ] Chain

matrix of NT
R

Reversed transpose of element
N

VCVS

[
1
μ

0

0 0

]

μ = voltage gain

[
0 0
0 1

μ

]
CCCS of gain μ

CCCS

[
0 0
0 1

α

]
α = current gain

[ 1
α

0
0 0

]
VCVS of gain α

VCCS

[
0 1

g

0 0

]

g = transconductance

[
0 1

g

0 0

]
VCCS of transconductance g

CCVS
[

0 0
1
r 0

]
r = transresistance

[
0 0
1
r 0

]
CCVS of transresistance r

Impedance
converter

[
K1 0
0 K2

] [
K2 0
0 K1

]
Another impedance converter

Impedance
inverter (II)

[
0 1

G1
G2 0

] [
0 1

G1
G2 0

]
Same impedance inverter as N

Reversed transposed

Reversed transposed
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=a

D

T
R= (ND)

aD

=
A

f (s)

Cf (s)
B
D

a

aR
T =
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T

Figure 3.6 Interrelationships among N, ND, NT
R , and N = (NT

R

)
D = (ND)T

R .

As a consequence, we see that

1) The open circuit VTFs (short circuit CTFs) of N and N are identical. Hence, N
and N are alternate structures for a VTF or a CTF.

2) The open circuit VTFs (short circuit CTFs) of ND and NT
R are identical.

3) The open circuit VTF (CTF) of N and N is the same as the CTF (VTF) of ND

and NT
R .
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4) The DPIs of N and NT are the same.
5) The DPIs of ND and NT

R are the same.

3.6
Applications to Terminated Networks

Lossless networks terminated by resistors, either at one end or at both ends, are used
in communication systems to couple an energy source to a load. The design of loss-
less ladder networks is considered in detail in any text book on passive network syn-
thesis (see, for example, Van Valkenburg, 1960; Weinberg, 1962). It has been shown
(Temes and Mitra, 1973) that when the ladder is designed properly, the first-order
sensitivities of the magnitude of the TF to each of the inductors and capacitors are
zero at the frequencies of maximum power transfer, and further that they remain
low in the intermediate frequencies throughout the PB. In this section, we consider
the applications of dual, transposed, and dual-transposed networks in doubly ter-
minated networks. Similar results can be obtained for singly terminated networks.

A general coupling network may be excited by a voltage source or a current
source, which may be nonideal. Further, the network may be working into an
arbitrary load. Such a situation can be represented by the network of Figure 3.7a or
b, and is known as a doubly terminated network.

For the network of Figure 3.7a, the suitable specifications are

TV (s) = V2

Vs
= RL

ARL + B + CRsRL + DRs
(3.22)

and

Y21(s) = −I2

Vs
= 1

ARL + B + CRsRL + DRs
(3.23)

while for the network of Figure 3.7b, the suitable specifications are

TI(s) = − I2

Is
= Rs

ARL + B + CRsRL + DRs
(3.24)

and

Z21(s) = V2

Is
= RsRL

ARL + B + CRsRL + DRs
(3.25)

Thus, if we know how to realize a rational function H(s), say, as the TV (s) of a
doubly terminated network with a load resistance RL and source resistance RS, then

Rs

RL
ISV2 Rs RL

I1 I2 I1 I2

NVS N

+

−

V2

+

−

(a) (b)

Figure 3.7 Doubly terminated networks fed by (a) a voltage source and (b) a current
source.
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Figure 3.8 Doubly terminated networks (a) N, (b) ND, (c) NT
R , and (d) N = (ND)T

R .

the designs for TI(s), Y21(s), and Z21(s) are directly obtained. Equations (3.22–3.25)
may also be used in the case of singly terminated networks.

Let us denote RSRL by R and assume without loss of generality that RL = 1, since
we can always scale the impedances for any other load resistance. Consider the
networks of Figures 3.8a–3.8d, where ND is the dual of N w.r.t. f (s) = R, NT

R is
the reversed transpose of N, and N = (ND)T

R. The TF of these structures may be
obtained using Eqs. (3.22–3.25) as

T(a)
V (s) = 1

R
T(b)

V (s) = 1
R

T(c)
V (s) = T(d)

V (s) = H(s) (3.26)

where

H(s) = 1

(A + B) + R (C + D)
(3.27)

Thus, if we know how to synthesize a given H(s) as the TV (s) of the structure of
Figure 3.8a and obtain the two-port N, then three other realizations may be found
for H(s) using ND, NT

R , and N. It should be noted, however, that the source and
load conditions are the same for Figures 3.8a and 3.8d, and again for Figures 3.8b
and3.8c. Further, source and load resistances for the former networks are the load
and source resistances for the latter. Hence (Swamy, 1975),

1) Figures 3.8a and 3.8d show alternate structures realizing H(s) as a voltage TF
with a load of 1 � and a source of R�, and one may be obtained from the
other.

2) Figures 3.8b and 3.8c show alternate structures, but have a load of R� and a
source of 1 �; further these structures may be directly obtained from that of
Figure 3.8a.
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3.7
Frequency Scaling

Consider a general LTI network N. If we change the complex frequency s to s/b, b
being a constant, it is clear that in any of the system functions, whether it be the TIF
Z21(s), the TAF Y21(s), the VTF TV (s), or the CTF TI(s), the frequency s is changed
to s/b. Hence, whatever was the magnitude or phase of a system function F(s) at a
frequency ω, the new system function F(s/b) would have the same magnitude and
phase at the frequency ω/b, that is, the frequency has been scaled by a factor 1/b.
Such an operation is called frequency scaling by the factor 1/b. As a consequence of
the frequency scaling, it is clear that an inductance of value L and a capacitor of value
C would now have reactances of sL/b and 1/(sC/b), respectively. Thus, these will
become, respectively, an inductor of value L/b and a capacitor of value C/b, while
a resistor will remain unchanged. It is also seen that the ideal controlled sources
also remain unaltered. Frequency scaling is used to obtain the response of a given
filter in a given frequency band scaled up or down to a different frequency band.

Example 3.4. The Sallen and Key structure of Figure 3.1 realizes the LP TF

V2

V1
= TV (s) = 2.9/4

s2 + 0.05s + 0.25

According to the standard notations for a second-order filter, namely,

TV (s)
∣∣
LP = HLP �2

p

s2 + (ωp/Qp)s + ω2
p

the above filter has a pole frequency ωp = √
0.25 = 0.5.

(a) Find the TF if ωp is to be 1000 rad s−1.
(b) If in addition, we want to use 1 K resistors in the circuit, how is the TF altered.

Also, how do the values of the components change in the LP structure?
Solution: (a) The frequency scaling factor is b = 1000/0.5 = 2000. Hence, s is

changed to s/2000 in the expression for TV (s), giving the new TF to be

T ′
V (s) = (2.9/4)(2000)2

s2 + 0.05(2000)s + 0.25(2000)2

This does not alter the values of the resistors, but the capacitance values become
0.001.

(b) If all the resistors have to be 1 K, we have to scale all the impedances
by the factor a = 1000. Since impedance scaling does not alter a VTF, the TF
remains T ′

V (s). However, the new values of the components are R1 = R2 = 1000 �

and C1 = C2 = 1 pF, with the gain K = 2.9 of the voltage amplifier remaining
unchanged.

3.8
Types of Filters

Filters are categorized depending on the type of filtering function that they perform.
If the primary consideration is the magnitude or attenuation characteristic, then
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we classify them as LP, high-pass (HP), band-pass (BP), and bandstop (BS) or
band-reject (BR). However, if our main concern is the phase or delay specification,
then the type of filters are all-pass (AP) and delay equalizers. In all these cases, the
TF to be realized is of the form

H(s) = N(s)

D(s)
= k

sm + · · · + a1s + a0

sn + · · · + b1s + b0
, m ≤ n (3.28)

An LP filter is to pass low frequencies from DC to a desired frequency ωc, called
the cutoff frequency, and to attenuate frequencies beyond the cutoff. An ideal LP
filter would have a magnitude for H

(
jω
)

that is constant from zero to ωc and zero
beyond ωc. The frequency band from DC to ωc is called the passband. However,
such a brick-wall characteristic is impossible to realize in practice, and the LP filter
specifications are always given in terms of its cutoff frequency ωc, an SB frequency
ωs, maximum loss (Ap) allowed in the PB, and minimum SB attenuation (As). The
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Figure 3.9 Typical specifications of (a) an LP filter,
(b) an HP filter, (c) a BP filter, and (d) a BR filter.
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frequency range from ωc to ωs is termed the transition band (TB) (see Figure 3.9a). An
ideal HP filter passes all frequencies beyond the cutoff frequency ωc and attenuates
all frequencies below it. However, a practical HP filter is characterized in a way
similar to the LP filter in terms of an SB frequency and a maximum PB loss (see
Figure 3.9b). A BP filter passes a finite band of frequencies bounded by two cutoff
frequencies ωc1 and ωc2, and attenuates all frequencies below ωc1 and those above
ωc2. The attenuations in the two SBs may be different, as well as the widths of the two
TBs (see Figure 3.9c). A BR filter attenuates a finite band of frequencies bounded
by two cutoff frequencies ωc1 and ωc2, and passes all frequencies below ωc1 and
those above ωc2. Thus, a BR filter has two PBs and the attenuations in the two PBs
may be different; also the widths of the two TBs may be different (see Figure 3.9d).

Sometimes we need a filter which has a null at a particular frequency; such filters
are called null or notch filters. Apart from these filters, we also have gain equalizers
that are used to shape the gain versus frequency spectrum of a given signal. For
audio signal processing, phase is not as important as the magnitude of the TF.
However, it is very important in the case of video signal processing. The phase
distortion causes a variable delay. In such a case, an AP filter is used for phase
correction or to provide delay equalization. An AP is one for which the magnitude
of the TF is constant, whereas its phase is a function of frequency.

3.9
Magnitude Approximation

The specifications for a filter, whether it be a LP, HP, BP, or BR, are given in
terms of the PB, TB, and SB regions as well as in terms of the loss requirements
in the PB and the SB. The magnitude approximation problem consists of finding
a suitable magnitude function, whose magnitude characteristics satisfy the given
specifications, and which is realizable in practice. We first consider the approxima-
tion problem for a LP filter, and then introduce frequency transformations so that
we can design HP, symmetrical BP, or BR filters for a given set of specifications.
For an LP filter, these specifications are usually given in terms of (i) the maximum
loss in the PB, Ap, in decibels (dB), (ii) the PB edge (i.e., cutoff ) frequency, ωc, in
radians per second (rad s−1), (iii) the loss in the SB, As, in decibels, and (iv) the SB
edge frequency, ωs, where the loss is at least As decibels, as shown in Figure 3.9.
Without loss of generality, we assume that the cutoff frequency for the LP filter is 1
rad s−1, since we can always employ frequency scaling to convert it to an LP filter of
any given cutoff frequency. Such an LP filter is called the normalized LP filter, and
we shall denote the magnitude response of such a normalized filter by

∣∣HN
(

jω
)∣∣.

In the ideal case,
∣∣HN
(

jω
)∣∣ = 1 in the PB (0 ≤ ω ≤ 1) and zero in the SB (ω > 1).

One can define the characteristic function K(s) of the filter to be such that∣∣K( jω)
∣∣2 = 1∣∣HN( jω)

∣∣2 − 1 (3.29)

Thus,
∣∣K( jω)

∣∣2 → 0 in the PB and
∣∣K( jω)

∣∣2 → ∞ in the SB. The magnitude

approximation principle assumes that
∣∣K( jω)

∣∣2 remain less than or equal to ε2 in
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the PB, where ε is a small number. Similarly in the SB,
∣∣K( jω)

∣∣2 approximates to a
value greater than or equal to δ2, where δ is a very large number. In the PB, the loss
Ap in decibels is related to the number ε as follows:

Ap = 10 log
1∣∣HN( jω)
∣∣2

so that

ε2 = ∣∣K( jω)
∣∣2 = 1∣∣HN ( jω)

∣∣2 − 1 = 100.1Ap − 1

Hence,

ε =
√

100.1Ap − 1 (3.30)

By similar reasoning, we arrive at

δ =
√

100.1As − 1 (3.31)

It must be noted that now onwards ω is the normalized angular frequency,
normalized w.r.t. ωc. Similarly, ωs is the normalized SB edge frequency, i.e.,
ωs = ωa/ωc, where ωa is the given SB edge frequency

3.9.1
Maximally Flat Magnitude (MFM) Approximation

Assuming the function K(s) to be

K(s) = εsn (3.32)

we get from Eq. (3.29)∣∣Hn( jω)
∣∣ = 1√

1 + ε2 ω2n
(3.33)

Expanding the RHS of the above expression, we have∣∣Hn( jω)
∣∣ = 1 − ε2 1

2
ω2n + ε4 3

8
ω4n − ε6 5

16
ω6n + · · · (3.34)

It is clear from Eq. (3.34) that the first (n − 1) derivatives of
∣∣Hn( jω)

∣∣ are zero at ω

= 0 (i.e., at DC), and further that
∣∣Hn(0)

∣∣ = 1 from Eq. (3.33). Thus, the slope is as
flat as can be made since K(s) was chosen as the nth-order polynomial. This is why
Eq. (3.33) is called maximally flat magnitude (MFM) approximation for the LP filter.

At the edge of the PB, the frequency is ωc = 1, and ε2 = ( 100.1Ap − 1). Also, at
the SB frequency ωs, ( 100.1As − 1) = ε2 ω2n

s . Hence, the minimum order of the
MFM filter necessary to meet the specifications is given by

n = log η

2 log ωs
(3.35a)

where

η = 100.1As − 1

100.1Ap − 1
(3.35b)

If n is not an integer, the next higher integer value is chosen.
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One of the important special cases of the MFM approximation is the Butterworth
approximation, which is obtained by choosing ε = 1. It is seen in this case that at
the PB edge, the magnitude of the Butterworth filter is always 0.707, that is, 3 dB
down from its DC (ω = 0) value, irrespective of the order of the filter.

3.9.1.1 MFM Filter Transfer Function
It is clear from Eq. (3.33) that the TF HN (s) will be an all-pole function. Assuming
the denominator of HN (s) to be D(s), we have∣∣HN(s)

∣∣2 = 1

D(s)D(−s)
(3.36)

Since the poles of HN(s) have to be in the left half (LH) of the s-plane for stability,
we associate the LH plane poles to HN (s) and the right-half ones to HN (−s). Now
extending the MFM approximation given by Eq. (3.33) to the s-domain, we get∣∣HN(s)

∣∣2 = 1

1 + ε2(−s2)n
(3.37)

Hence, we associate the LH plane roots of

1 + ε2(−s2)n = 0 or ε2ns2n = (−1)n+1 (3.38)

with the poles of D(s). The roots of Eq. (3.38) are complex and are given by

sk = ε
−1
n exp

(
j
2k + n − 1

2n
π

)
k = 1, 2, . . . , 2n (3.39)

where we have used the fact that exp( jπ ) = −1. These roots are all uniformly

located on a circle of radius ε
−1
n ; hence, for a Butterworth filter approximation, they

are all uniformly located on the unit circle. Denoting the poles of the MFM filter by
pk, and associating the LH plane roots of Eq. (3.39) with pk, we get the poles to be

pk = ε
−1
n exp

(
j
2k + n − 1

2n
π

)
k = 1, 2, . . . , n (3.40)

The denominator D(s) of the normalized MFM filter is given by

D(s) =
∏

k

(s − pk) (3.41)

For Butterworth filters, the polynomial D(s) for various values of n is tabulated in
Appendix A, and these polynomials are called Butterworth polynomials.

Example 3.5. Derive the TF for an MFM filter with a PB loss of 3 dB at 10 kHz and
an attenuation of at least 100 dB at f ≥ 100 kHz.

It is clear that Ap = 3 dB, As = 100 dB, ωc = 2π × 104 rad s−1, and ωs = 2π ×
105 rad s−1. Using these values in Eq. (3.35) we obtain the order of the filter as
n = 5. Since the PB loss is 3 dB, it is obvious that it corresponds to a Butterworth
filter. Hence, we can use Appendix A to obtain the Butterworth polynomial of
degree 5, which will be the denominator of the normalized Butterworth filter of
order 5. Thus, the normalized TF is

HN(s) = 1
(s + 1)(s2 + 0.618s + 1)(s2 + 1.618s + 1)

(3.42)
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desired filter around the PB edge. (c) The overall
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The next task is to derive the frequency-denormalized filter TF H(s) by frequency
scaling:

H(s) = HN

(
s

ωc

)

=
9.7967 × 1023

[(s + 6.2842 × 104)(s2 + 3.8835 × 104 s + 3.9488 × 109)
×(s2 + 1.0166 × 105s + 3.9488 × 109)]

The response of the normalized filter as well as that of the required Butterworth
filter, obtained using MATLAB program, is depicted in Figures 3.10a–3.10c, and
the MATLAB program for the magnitude response of the normalized filter is
provided in Program 3.1, while that for the denormalized filter is provided in
Program 3.2.

Program 3.1 MATLAB code for the normalized Butterworth filter of Example 3.5

%MATLAB program listing for HN(s), 5th order Butterworth Filter
w=logspace(-1,1);
s=0+w*i;b=[0,0,0,0,0,1];a=[1,3.2361,5.2361,5.2361,3.2361,1];
h=freqs(b,a,w);amag=abs(h);
y=20*log(amag);subplot(2,1,1),semilogx(w,y);
end

Program 3.2 MATLAB code for the denormalized Butterworth filter of Example 3.5

%MATLAB program listing for |H(s)|, 5th order Butterworth
Filter
pi=3.14159;
fc=1E4;
fs=1E5;
n=2*pi*fc;% to be used for frequency scaling factor
b6=n^5;
a1=1.0;a2=3.2361*n;a3=5.2361*n^2;a4=5.2361*n^3;a5=3.2361*n^4;
a6=b6;
b=[0,0,0,0,0,b6];a=[a1,a2,a3,a4,a5,a6];
r1=1.1;
r2=1.1*(fs/fc);
np=100; % number of points in the graph
df=(r1*fc)/np;% this will show response up to 1.1 times the
passband
% edge frequency
df=(r2*fc)/np;% this will show re-
sponse up to 11.1 times the passband
% edge frequency, i.e., beyond the given stopband edge
frequency
for n=1:(np+1)
w=(n-1)*2*pi*df;
s=0+w*i;
anum=b6;
denm=a1*s^5+a2*s^4+a3*s^3+a4*s^2+a5*s+a6;
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tfs=anum/denm;
amag=abs(tfs);
y(n)=20*log10(amag);
f=w/(2*pi);
x(n)=f;
end;
plot(x,y)
grid
end

Example 3.6. Repeat the previous problem, but for a PB loss of only 1 dB, with all
the other specifications remaining the same.

Using Eq. (3.35) for n, one finds n = 5.29. Hence, we choose n = 6. Further
for Ap = 1 dB, ε = 0.50885. Thus, ε−1/n = 1.11918. An examination of Eq. (3.40)
shows that the poles of the MFM filter for a given n for any value of ε are the
same as those of the Butterworth filter of order n, except that they are multiplied
by ε−1/n. We shall first use the table of Butterworth functions for n = 6 to obtain
the denominator polynomial as

DB(s) = s6 + 3.8637s5 + 7.4641s4 + 9.1416s3 + 7.4641s2 + 3.8637s + 1

(3.43)
In order to get the D(s) for Ap = 1 dB, we substitute ε1/ns = 0.8935s in place of s
in DB(s) given by Eq. (3.43). Hence, the denominator polynomial for the required
MFM filter is given by

D(s) = DB(0.8935s)

and the normalized MFM by HN(s) = 1/D(s). The MFM filter required to satisfy the
given specifications is obtained by frequency scaling of HN (s), as was done before
in the previous problem by scaling s → s/(2π × 104). The final TF is given by

H(s) = 1

0.82695 × 10−29s6 + 0.22468 × 10−23s5 + 0.30523 × 10−18s4

+ 0.26288 × 10−13s3 + 0.15094 × 10−8s2 + 0.54943 × 10−4s + 1

The magnitude response plot, obtained from MATLAB code, is shown in
Figures 3.11a and 3.11b, and the MATLAB code listing is given in Program 3.3.

Program 3.3 MATLAB code for the magnitude response of the LP filter of Example 3.6

%MATLAB program listing for |H(s)| of Example 3.6
pi=3.14159;
eps=0.50885;
mord=6;
an=[1,3.8637,7.4641, 9.1416, 7.4641, 3.8637, 1];
bn=[ 0,0,0,0,0,0,1];
scf=eps^(1/mord);
a1=an(1)*scf^mord;
a2=an(2)*scf^(mord-1);
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a3=an(3)*scf^(mord-2);
a4=an(4)*scf^(mord-3);
a5=an(5)*scf^(mord-4);
a6=an(6)*scf^(mord-5);
a7=an(7)*scf^(mord-6);
fc=1E4;
fs=1E5;
r1=1.1;
r2=1.1*(fs/fc);
n=2*pi*fc;
b7=n^6;
a1=a1; a2=a2*n; a3=a3*n^2; a4=a4*n^3; a5=a5*n^4; a6=a6*n^5;
a7=b7;
b=[0,0,0,0,0,0,b7];a=[a1,a2,a3,a4,a5,a6,a7];
np=100; % number of points
df=(r1*fc)/np;% use this for response up to around the pass-
band edge frequency
% df=(r2*fc)/np; % use this for the overall response
for n=1:(np+1)
f=(n-1)*df;
w=(n-1)*2*pi*df;
f=w/(2*pi);
s=0+w*i;
anum=b7;
denm=a1*s^6+a2*s^5+a3*s^4+a4*s^3+a5*s^2+a6*s+a7;
tfs=anum/denm;
amag=abs(tfs);
y(n)=20*log10(amag);
x(n)=f;
end;
plot(x,y)
grid
end

3.9.2
Chebyshev (CHEB) Magnitude Approximation

The response of the MFM filter is very good around ω = 0 and for large values of
ω. However, in the neighborhood of the cutoff frequency, the selectivity is not very
good. This is so because we chose

∣∣K( jω)
∣∣2 to be just ε2 ω2n, all of whose zeros

are at ω = 0. However, if we chose it to be a polynomial ε2f (ω2) where f (ω2) had
a number of zeros spread out in the PB, then the response would have ripples in
the PB, and the performance would improve. For this purpose, in this section we
assume

∣∣K( jω)
∣∣ = εCn(ω), where Cn(ω) is the nth-order CHEB polynomial, defined

as

Cn(ω) = cos(n cos−1 ω) (3.44)

It can be shown that these polynomials satisfy the recurrence relation (Van
Valkenburg, 1960)

Cn+2(ω) = 2ωCn+1(ω) − Cn(ω) with C0(ω) = 1, C1(ω) = ω (3.45)
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Figure 3.11 (a) Magnitude response of the MFM LP filter
of Example 3.6 in the neighborhood of the PB edge. (b) The
overall response.

We can easily prove the following properties of Cn(ω):

1) The zeros of Cn(ω) are given by

ωk = cos{(2k − 1)π/2n}, k = 1, 2, . . . , n (3.46)

and thus, all the n zeros of the polynomial are real, distinct, and located in
−1 ≤ ω < 1.

2) Cn(ω) is an even function for even n and an odd function for odd n.
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3)
∣∣Cn( jω)

∣∣ ≤ 1 in −1 ≤ ω ≤ 1.
4) Cn(1) = 1.
5)
∣∣Cn(ω)

∣∣ is monotonically increasing for |ω| > 1.
6) For |ω| > 1, Cn(ω) can be written as

Cn(ω) = cosh(n cosh−1
�) = 1

2

[
(ω +
√

ω2 − 1)n + (ω +
√

ω2 − 1)−n
]

(3.47)

A few of the CHEB polynomials are given in Appendix A. Substituting
∣∣K( jω)

∣∣ =
εCn(ω) in Eq. (3.25), we get the magnitude of the TF for CHEB approximation to be

|HN ( jω)|2 = 1
1 + ε2C2

n(ω)
(3.48)

From the properties of Cn(ω) listed above, we can conclude the following properties
regarding

∣∣HN( jω)
∣∣:

1)
∣∣HN(0)

∣∣ = 1 if n is odd and is 1/
√

1 + ε2 if n is even.
2)
∣∣HN( j1)

∣∣ = 1/
√

1 + ε2 for all n, that is, the magnitude of the CHEB function
is always 1/

√
1 + ε2 at the edge of the PB.

3)
∣∣HN( jω)

∣∣ oscillates with equal-ripple throughout the PB between 1 and
1/

√
1 + ε2.

4) The number of peaks and troughs of the response within the PB is equal to the
order n.

5)
∣∣HN( jω)

∣∣monotonically decreases to zero for |ω| > 1.

The responses for n = 2 and 3 with ε = 0.5089 are shown in Figure 3.12, and the
MATLAB program listing for LP CHEB filter of orders 2 and 3 is given in Program
3.4.

Program 3.4 MATLAB program code for LP CHEB filter of orders 2 and 3

%CHEB filter response
ep=.5089;
for n=1:300
w(n)=0.01*n;
if n<101
a2(n)=cos(2*acos(w(n)));
a3(n)=cos(3*acos(w(n)));
else
a2(n)=cosh(2*acosh(w(n)));
a3(n)=cosh(3*acosh(w(n)));
y1(n)=1/(1+ep^2*a2(n)^2);
y2(n)=1/(1+ep^2*a3(n)^2);
end;
grid
plot(w,y1,’b.’,w,y2,’r--
’);% blue dots ,order=2, red dashes, order=3)
xlabel(’Normalized frequency’)
ylabel(’..m=2,--m=3’)
end
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Figure 3.12 Magnitude response of the normalized CHEB
filter for n = 2 and 3 with ε = 0.5089.

Given the parameter Ap in decibels, we can find the ripple factor ε using

ε =
√

100.1Ap − 1 (3.49)

Also, at the edge of the SB, that is ωs, the loss in decibels is As. Hence,

−As = 10 log 1/[1 + ε2C2
n(ωs)]

Using Eqs. (3.47) and (3.49), we get the order of the filter, n, to be the lowest integer
when

n ≥ cosh−1 √
η

cosh−1
ωs

(3.50a)

where

η = 100.1As − 1

100.1Ap − 1
(3.50b)

An alternate approximate expression is (Schaumann, Ghausi, and Laker, 1990)

n ≥ ln
√

4(100.1As − 1)/ε2

ln(ωs +√ω2
s − 1)

(3.51)

3.9.2.1 CHEB Filter Transfer Function
Just as in the case of the MFM approximation, we start with

D(s)D(−s) = 1 + ε2C2
n(ω)

where ω = s/j, and obtain the roots of 1 + ε2C2
n(ω) = 0, and associate the LH plane

roots with those of the poles of D(s). The above equation can be rewritten as

cos{n cos−1(−js)} = ± j/ε (3.52)
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The roots of the above equation can be shown to be sk = σk ± jωk, where

σk = − sinh α sin
(

2k − 1

2n

)
π , ωk = cosh α cos

(
2k − 1

2n

)
π

k = 1, 2, . . . , n (3.53a)

and

α = (1/n) sinh−1(1/ε) (3.53b)

It is readily seen from Eq. (3.53) that the real and imaginary parts of sk satisfy the
relation

σ 2
k

sinh2
α

+ ω2
k

cosh2
α

= 1 (3.54)

Equation (3.54) shows that the roots of D(s) D(−s) all lie on an ellipse with
semimajor axis of length cosh α and semiminor axis of length sinh α. Since the
poles of HN(s) are the left half plane (LHP) zeros of D(s) D(−s), we see that the
poles of the CHEB TF are on the ellipse. Further, the TF HN(s) is given by

HN(s) = 1

2n−1ε

1∏
k

(s − pk)
= 1/(2n−1ε)

sn + bn−1sn−1 + · · · + b1s + bo
(3.55)

where

pk = − sinh α sin
(

2k − 1
2n

)
π ± j cosh α cos

(
2k − 1

2n

)
π ,

k = 1, 2, . . . , n (3.56)

and the factor 2n−1ε appears in the denominator of HN(s), since the highest term
ωn in Cn( ω) has a coefficient of 2n−1ε. For different values of ε and n, there are
tables available giving the denominator polynomial in Eq. (3.55) (Christian and
Eisermann, 1977; Weinberg, 1962; Zverev, 1967). For some values of ε and n, these
are listed in Appendix A.

Example 3.7. Obtain the TF for the CHEB LP filter, which has a PB loss ripple of
0.5 dB up to 3 kHz and a minimum attenuation of 60 dB at 30 kHz.

The specifications for the normalized CHEB filter are Ap = 0.5 dB, As =
60 dB, ωc = 1, and ωs = 30/3 = 10. Hence, from Eqs. (3.49) and (3.51), we have
ε = 0.3493 and n = 3. Referring to the tables for CHEB filter for ε = 0.3493 and
n = 3, we get the denominator in Eq. (3.55) to be

(s + 0.6264)(s2 + 0.626s + 1.142) = s3 + 1.253s2 + 1.535s + 0.716

Hence, the normalized CHEB LP TF according to Eq. (3.55) is

HN(s) = 1/(23−1)(0.3493)

s3 + 1.253s2 + 1.535s + 0.716

Now, we apply frequency scaling as s → s/(2π )(3)(103) to obtain the TF H(s)
realizing the specifications of the problem. Thus (using a MATLAB program), we
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get

H(s) = 7.1572 × 1027

(0.1493 × 1016s3 + 3.5265 × 1019s2 + 8.1434 × 1023s

+ 7.1599 × 1027)

The associated MATLAB program is given in Program 3.5.

Program 3.5 MATLAB code for H(s) of Example 3.7

%normalized to denormalized TF derivation
m=3;
ep=.3493;
den=’(s^3+1.253*s^2+1.535*s+.716)’;
pi=3.14159;
snew=’s/(2*pi*3e3)’;
ys=subs(den,snew);
ys2=inverse(ys);
ys3=simplify(ys2);
x1=1/(2^(m-1)*ep);
ys4=symmul(ys3,x1)
end

Figures 3.13a and 3.13b illustrate the magnitude responses of HN( jω) and H( jω),
respectively, derived using MATLAB program.

3.9.3
Elliptic (ELLIP) Magnitude Approximation

In Sections 3.9.1 and 3.9.2, we have dealt with all-pole LP filters, whose magnitude

square functions were of the form |HN( jω)|2 = H2

1+|K( jω)|2 , where |K( jω)|2 was either

ε2 ω2n as in the case of MFM, or ε2 C2
n(ω) as in the case of the CHEB approximation.

The all-pole functions do not have zeros at finite frequencies, but have all their
zeros at infinity. If we substitute a rational function, ε2 R2

n(ω) for |K( jω)|2, then
the TF HN(s) will have zeros at finite frequencies in addition to poles at finite
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Figure 3.13 Magnitude responses of (a) the normalized
and (b) the desired Chebyshev filter of Example 3.7.
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frequencies. As far as the frequency response is concerned, this characteristic leads
to a higher selectivity feature for a given order ‘‘n’’ of the rational function Rn(ω),
compared with the selectivity obtained in case of MFM or CHEB approximating
functions of the same order ‘‘n.’’ For hardware design, this implies that less number
of components will be needed to implement the filtering function. However, the
mathematical complexity of the function is greatly increased.

When this rational function has the characteristic of a CHEB-type function, the
TF will have ripple characteristics both in the PB and in the SB. Approximating
the filter specifications with such a function that has poles and zeros at finite
frequencies will introduce ripples in the PB as well as in the SB, and such an
approximation is known as elliptic magnitude approximation for the filter TF, and the
filter itself is called an elliptic LP filter (Huelsman, 1993). The magnitude-squared
function for elliptic approximation is given by

|HN ( jω)|2 = H2

1 + ε2R2
n(ω)

(3.57)

where the CHEB rational function Rn(ω) is represented by

Rn(ω) =
{

M
n/2∏
k=1

ω2 − ω2
pk

ω2 − ω2
zk

for n even (3.58a)

=
⎧⎨
⎩Mω

(n−1)/2∏
k=1

ω2 − ω2
pk

ω2 − ω2
zk

for n odd (3.58b)

where

ωpk
ωzk

= ω2
s (3.58c)

The following points may be noted regarding |HN( jω)|:
1) The PB is defined for 0 ≤ ω ≤ 1. The constants M are chosen so that in this

region 0 ≤ R2
n(ω) ≤ 1.

2) The values ω = ωpk
at which R2

n(ω) = 0 represent the PB peaks at which
|HN ( jω)| = H.

3) In the PB, the values of ω at which R2
n(ω) = 1 correspond to the PB valleys at

which |HN(jω)| = H/
√

1 + ε2.
4) The SB is defined as ω ≥ ωs. In this region, the minimum value of R2

n(ω) is
R2

stop, where R2
stop ≥ η = [(100.1Aa − 1)/(100.1Ap − 1)].

5) In the SB, at values of ω = ωzk
, R2

n(ω) approaches infinity so that |HN( j )|
approaches zero. These frequencies are therefore called the transmission zeros
of the TF.

6) In the SB, at frequencies where R2
n(ω) = R2

stop, the attenuation corresponds to
the SB peaks, and at these frequencies |HN( jω)| has a minimum attenuation
of As decibels.

Figure 3.14 shows a plot representing a typical elliptic magnitude approximation
function.
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Figure 3.14 A typical elliptic magnitude approximation function.

As with the MFM and CHEB function approximations, we need to determine
the order n of the function Rn(ω). For this purpose, we first calculate from the
specifications,

η = 100.1As − 1

100.1Ap − 1
(3.59a)

Then, we let

u(η) = 1

16η
(1 + 1

2η
) and v(ωs) =

√
ωs − 1

2(
√

ωs + 1)
(3.59b)

Then, the order n is given by (Huelsman, 1993)

n = F(u)F(v) (3.60a)

where

F(x) = 1

π
ln(x + 2x5 + 15x9) (3.60b)

Once the value of n is obtained, one can obtain the TF of the elliptic filter by
using tables, which are available in many books on filter design (Huelsman, 1993;
Schaumann, Ghausi, and Laker, 1990; Zverev, 1967; Christian and Eisermann,
1977). Explicit expressions are available to calculate the coefficients of the elliptic
filter, given the specifications of the desired LP filter (Antoniou, 2006). For a few
cases, the TFs of the elliptic filter are given in Appendix A.

Example 3.8. Consider the following specifications. PB edge frequency fc =
1000 Hz, Ap = 3 dB, SB edge frequency fs = 1300 Hz, As = 22 dB. Find the
minimum order of the LP filters satisfying these specifications using (i)
MFM approximation, (ii) CHEB approximation, and (iii) elliptic (ELLIP)
approximation.

Using Eqs. (3.35), (3.50), and (3.60), we can derive the orders to be nMFM =
10, nCHEB = 5, and nELLIP = 3. Clearly, the elliptic approximation provides the same
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frequency response selectivity with a substantially lower order of implementation.
A MATLAB code to perform the calculations is given in Program 3.6. Once the
order of the filter is known, we can get the complete TF for the elliptic filter using
tables.

Program 3.6 MATLAB code to calculate the orders of the filters in Example 3.8

%Filter order calcul
ap=3;as=22;fc=1000;fa=1300;
ws=fa/fc;
d=(10^(.1*as)-1)/(10^(.1*ap)-1);
%MFM approximation
nmfm=(log10(d))/(2*log10(ws))
%CHEB approximation
dr=sqrt(d);
ncheb=(acosh(dr))/acosh(ws)
%Elliptic approximation
cd=(1/(16*d))*(1+1/(2*d));
dws=(sqrt(ws)-1)/(sqrt(ws)+1);
dws=dws/2;
x1=(1/pi)*log(cd+2*cd^5+15*cd^9);
x2=(1/pi)*log(dws+2*dws^5+15*dws^9);
nelp=x1*x2
end

3.9.4
Inverse-Chebyshev (ICHEB) Magnitude Approximation

As the name suggests, in this approximation, the response in the PB is monotonic
while the response in the SB has equal ripples, which is the inverse of what
happens in a CHEB filter, and hence the approximation is called Inverse-Chebyshev
(ICHEB) approximation. Such characteristics will usually produce somewhat infe-
rior selectivity relative to the CHEB approximation because of the resemblance of
the PB response to MFM approximation in the PB. Higher selectivity in magnitude
characteristic, however, is attended to with large fluctuations in the phase and
delay characteristics of the filter through the TB. Thus, in ICHEB, the delay char-
acteristic will have less fluctuation as the signal frequencies traverse through the
PB to the SB. Hence, filters with ICHEB characteristics are preferred in situations
where small delay variations are important, such as in video or data transmission
(Schaumann, Ghausi, and Laker, 1990).

In ICHEB approximation, the magnitude-squared function of the normalized LP
filter has the form

|HN ( jω)|2 = ε2C2
n(1/ω)

1 + ε2C2
n(1/ω)

(3.61)

It can be shown (Huelsman, 1993) that the CHEB and ICHEB approximation
functions have the same order for same set of loss parameters (Ap and As) and
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same SB to PB edge frequency ratio. The ICHEB approximation function can be
directly obtained from the CHEB approximation function by using the relation

|HICHEB
N ( jω)|2 = 1 − |HCHEB

N ( j/ω)|2 (3.62)

It should be observed that the cutoff frequency of the ICHEB filter is no longer at
ω = 1, but is the beginning of the SB.

3.10
Frequency Transformations

Frequency transformations are used to synthesize HP, BP, BR, and other filters
from a normalized LP filter. The synthesis of lossless LP filter networks, whose
magnitude specifications are approximated by different types of functions such as
Butterworth, CHEB, and elliptic, has been treated in detail by many of the authors
dealing with passive filter design (Weinberg, 1962; Chen, 1964), and the element
values are readily available in the literature (Huelsman, 1993; Weinberg, 1962;
Christian and Eisermann, 1977; Zverev, 1967). Thus, the frequency transformations
are very useful in obtaining realizations for the HP, BP, and BR filters from those
of the LP filters. The motivation behind a frequency transformation is to find a
function F(s) such that the PB of the LP filter is transformed into the PB of the
required filter, and, at the same time, to have the SB of the original LP filter
transformed into the SB of the required filter.

3.10.1
LP to HP Transformation

Consider a normalized LP filter HNLP(S) for which the cutoff frequency is normal-
ized to unity. Consider the transformation

S(= j �) → ωc

s
(3.63a)

or equivalently

� → −ωc

ω
(3.63b)

Then, it is very clear that whatever be the magnitude at – � in the LP filter, the same
would be the magnitude at ωc/ω for the transformed filter. Since the magnitude
characteristic is symmetric with respect to �, we see that the PB of the latter filter
would be from ωc to infinity and the SB from DC to ωc. Thus, the transformed
filter would correspond to a HP filter with cutoff frequency at ωc, TB from ωc/�s to
ωc, and PB for ωc > 1, with PB ripple and SP attenuation being unchanged. In fact

HHP(s) = HNLP (ωc/s) (3.64)

It is also clear that if the LP filter has been realized by RLC elements, then the HP
filter is realized from the LP filter just by replacing inductors by capacitors and vice
versa. The actual element values are given in Table 3.2.
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Table 3.2 Frequency transformations and transformed elements.

Normalized
LP filter

Corresponding
HP filter

Corresponding BP filter Corresponding BR filter

HLP(s) HHP(s) = HNLP (ωc/s) HBP(s) = HNLP

(
s2+ω2

0
Bs

)
HBR(s) = HNLP

(
Bs

s2+ω2
0

)

Li
⇒

Li wc1
BLB = Li

Li w
2
oCB = B

Le = BLi

BLiCe = 1

w2
o

Cj

⇒
1/Cjwc

Cj wo
2L′

B = B

BC′
B = Cj

wo
2C ′

e = BCj

BCjL ′
e = 1

From the above discussion, it is clear that given a set of specifications Ap, As, ωc,
and ωs for an HP filter, we can convert the specifications to that of a normalized LP
filter by using Eq. (3.63a). The corresponding specifications of the LP filter would
then be Ap, As, �c = 1, and �s = ωc/ωs. We can then approximate this LP filter
by any of the approximations considered in Section 3.9 and obtain the LP TF. The
corresponding HP TF is then obtained using Eq. (3.64). To illustrate this, let us
consider the following example.

Example 3.9. Derive the TF for a HP filter with a −3-dB frequency of 100 kHz and
an attenuation of at least 100 dB for f ≤ 10 kHz. Use MFM approximation method.

In this case, ωc = 2π (105) rad s−1 and ωs = 2π (104) rad s−1
. Hence, �s =

ωc/ωs = 10 and �c = 1. Further Ap = 3 dB and As = 100 dB. These specifications
are the same as that of the normalized LP considered in Example 3.5. Thus, the TF
of the normalized LP filter is

HNLP(S) = 1

(S + 1)(S2 + 0.618S + 1)(S2 + 1.618S + 1)
(3.65)

Applying the LP to HP transformation (Eq. (3.64)), that is, changing S → (2π ×
105)/s, we get the TF of the required HP filter to be

HHP(s) = 6.25 × 1027s5

(3.1416 × 1015 + 5 × 109s)(4.9348 × 1031 + 4.854 × 1014s
+ 1.250 × 109s2)(3.9478 × 1031 + 1.0166 × 1015s + 109s2)
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3.10.2
LP to BP Transformation

Consider the transformation

S → s2 + ω2
0

Bs
(3.66)

on an LP filter given by HLP(s), where S = j� and s = jω are the complex
frequencies for the LP filter and the transformed filter. Then, we have on the
imaginary axes,

� = −−ω2 + ω2
0

Bω
(3.67)

It is seen that the frequency � = 0 is mapped to the point ω = ω0. Also, the cutoff
frequencies �c = ±1 map to the points ωc2 and ωc1, where ωc2 and ωc1 satisfy the
equation

ω2 ± Bω − ω2
0 = 0 (3.68)

From these it can be shown that

B = ωc2 − ωc1, ωc2ωc1 = ω2
0 (3.69)

Hence, the transformation (Eq. (3.66)) converts a normalized LP filter into a BP
filter with lower and upper cutoff frequencies at ωc1 and ωc2, with a bandwidth
B and with the center frequency of the PB at ω0, which is the geometric mean
of its lower and upper cutoff frequencies. The TF of the BP filter is given by

HBP(s) = HLP

(
s2 + ω2

0

Bs

)
(3.70)

It is to be observed that the BP filter that we obtain by this transformation is always
symmetric, in the sense that the upper and lower SBs have the same attenuation
requirement and the center frequency is always the geometric mean of the upper
and lower cutoff frequencies. The quality factor of the BP filter is defined as

Q = ω0

B
(3.71)

It may also be verified that the frequencies ωs1 and ωs2 corresponding to the
SB edges of the BP filter satisfy the relation ωs1 ωs2 = ω2

0, and further that
ωs2 − ωs1 = B �s, where �s corresponds to the SB edge of the LP filter. Table 3.2
shows how the inductors and capacitors in the LP filter are transformed in
the BP filter. It may be mentioned that the above method can be adapted to
nonsymmetrical BP requirements, if need be (see Example 3.10).

From the above discussion, it is clear that we can obtain the TF of a symmetrical
BP filter for a given set of specifications, Ap, As, B = ωc2 − ωc1, ωs1, ωs2, (where ωc2

ωc1 = ωs1 ωs2 = ω2
0), by using the following steps.
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1) Obtain the specifications of the corresponding normalized LP filter:

Ap, As, �c = 1, �s = (ωs2 − ωs1)/B = (ωs2 − ωs1)/(ωc2 − ωc1)

2) Approximate the normalized LP filter using one of the approximations consid-
ered in Section 3.9.

3) Then, the required BP TF is obtained by using the LP–BP transformation
given by Eq. (3.70).

We now illustrate this by an example.

Example 3.10. Given that ωc1 = 430 rad s−1, ωc2 = 600 rad s−1, ωs1 = 350 rad s−1,
ωs2 = 700 rad s−1, Ap = 0.5dB, As = 40 dB, find the BP filter TF. CHEB approxi-
mation is to be used.

It is clear that for this set of specifications, ωc1ωc2 = 258 000 and ωs1ωs2 = 245 000;
thus, ωc2ωc1 = ωs1ωs2 is not satisfied. However, by choosing ω′

s1 = 368.571, we can
satisfy the condition ωc2ωc1 = ω′

s1ωs2 = (507.937)2, thus making ω0 = 507.937. The
change we have made for ωs1 has not in any way changed the conditions of the PB
and SB requirements, but only reduced the TB on the lower side. This is illustrated
in Figure 3.15.
(a) The specifications of the corresponding normalized LP filter are

Ap = 0.5 dB, As = 40 dB, �c = 1, �s = (ω′
s1 − ωs1)/(ωc2 − ωc1) = 1.95

(b) To approximate the above LP filter by CHEB, we use Eq. (3.50b) to calculate

η = 100.1As − 1

100.1Ap − 1
= 81946.62

We now calculate the required value of n, the order of the filter, using Eq. (3.50a)

n ≥ cosh−1 √
η

cosh−1
�s

= 4.703

Hence, we choose n = 5.

SB1

As

PB

TB2

Ap

As

SB2

dB
H

(j
w

) TB1

350 430 600 700

368.57

ws1 wc1 wc 2 ws 2

w (rad s−1) →

Figure 3.15 Characteristics of the BP filter of Example 3.10.
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Now, using the tables for the CHEB function with Ap = 0.5 dB, we get ε = 0.3493,
and the TF for the normalized LP filter to be

HLP(S) = 1

2n−1ε

1

D(S)
= 1

24(0.3493)

1

D(S)

where

D(S) = S5 + 1.1725S4 + 1.9374S3 + 1.3096S2 + 0.7525S + 0.1789

(c) We now obtain the TF of the required BP filter by using the LP–BP transfor-
mation given by Eq. (3.70), that is, by changing S → (s2 + ω2

0)/(Bs), where ω0 =
507.937 and B = ωc2 − ωc1 = 170. The details are left to the student.

3.10.3
LP to BR Transformation

In a similar way it can be shown that the transformation

S → Bs

s2 + ω2
0

(3.72)

transforms a normalized LP filter into a BR filter with PB from DC to ωc1 and ωc2

to infinity, the rejection bandwidth being B = ωc2 − ωc1 and the center frequency
of the rejection band being ω0 which again is the geometric mean of ωc1 and ωc2.
Thus,

HBR(s) = HNLP

(
Bs

s2 + ω2
0

)
(3.73)

Also, Table 3.2 shows how the inductors and capacitors in the LP filter are
transformed in the BR filter.

It should be mentioned that the order of the BP or the BR filter will always be
double that of the normalized LP filter in view of the nature of LP to BP or LP to
BR transformation.

3.11
Phase Approximation

Magnitude characteristic of a filter is important in cases where the signal perception
does not depend critically on the phase of the processed signal. This is the case,
for example, in voice communication. This is because human ear is insensitive
to small errors in the phase of the received signal. However, for digital and
video signals, phase relations among the various frequency components are to
be carefully preserved for faithful reproduction. In such applications, the phase
characteristics of the filter assume importance.
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3.11.1
Phase Characteristics of a Transfer Function

The phase function associated with a signal is easily recognized by considering
the phasor representation for a time-varying signal. Thus, in polar coordinates
V = VM exp(−jϕ) represents a signal of magnitude VM having a phase delay of ϕ

radians. For a system, such as a filter, the frequency-dependent TF can be similarly
expressed in polar form with a magnitude part and a phase part. The magnitude
approximation problem discussed earlier is associated with this magnitude part.
An understanding about the phase part can be obtained by writing the TF in the
form

H( jω) = N( jω)

D( jω)
= m1( jω) + jn1( jω)

m2( jω) + jn2( jω)
(3.74)

where m1 and n1 are the even and odd parts (i.e., terms involving even and
odd powers in ω) of N(ω), and m2 and n2 are the even and odd parts of D(ω).

The magnitude of H(jω) is given by
√

(m2
1 + n2

1)/(m2
2 + n2

2), while the phase angle
is given by φ( jω) = arctan(n1/m1) – arctan(n2/m2). Using basic trigonometric
identities, φ( jω) can be expressed as

φ( jω) = arctan
[

n1m2 − n2m1

m1m2 + n1n2

]
(3.75)

In phase approximation problems, this phase function φ( jω) will be required to
have a desirable characteristic.

3.11.2
The Case of Ideal Transmission

For digital/video signals, the goal of signal processing is very different from the
concept of frequency-selective filtering (i.e., rejection of certain frequencies relative
to other frequencies). The signal transmission has to be ideal, that is, the magnitude
can be changed only by a constant factor K irrespective of the frequency, and there
can only be a constant delay in time so that the relative timing (phase) among the
various frequency contents of the signal remains unchanged. Analytically, if f (t)
is a given signal, the processed signal can be f (t) = K f (t − to), where to is a fixed
delay. Taking Laplace transform and setting s = jω, the processed signal would
be F′( jω) = K F ( jω)exp(−jωto). Thus the transfer characteristic of the processing
function is required to be H( jω) = F′( jω)/F( jω)= K exp(−jωt0). Since exp (−jωto)
represents only a delay, the TF H( jω) has a magnitude equal to K, which implies an
AP characteristic in the frequency domain. The phase ϕ = −ωto implies a constant
delay τ = to. The phase is a linear function of frequency ω leading to a constant
delay in the time domain.
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3.11.3
Constant Delay (Linear Phase) Approximation

From the above discussion, it is clear that the phase characteristic of the filter which
preserves the time domain shape of the signal has to be such that a constant delay
to the signal is produced. In practice, it will be required that this delay be constant
for as large a range of ω as possible. Hence, the problem reduces to the synthesis
of a filter TF with maximally flat delay characteristic, or H(s) = K exp(−τ s). This
problem was solved by Thomson (1949), who showed that the filter TF in such
cases can be approximated by

H(s) = Bn(0)

Bn(y)
(3.76)

where Bn(y) is the Bessel polynomial of order n in the normalized frequency
variable y = sτ , τ being the delay of signal propagation through the filter. This
filter function is known as the Bessel–Thomson (BT) filter. We now derive the TF
(Eq. (3.76)) approximating H(s) = K exp(−τ s). Letting y = sτ , we can write the
normalized TF of the filter to be

H(y) = 1

cosh(y) + sinh(y)
= 1/(sinh y)

1 + (cosh y)/(sinh y)
(3.77)

Using power series expansions for the hyperbolic functions, we have

cosh y = 1 + y2

2!
+ y4

4!
+ · · · (3.78)

sinh y = y + y3

3!
+ y5

5!
+ · · · (3.79)

Expanding
(
cosh y/ sinh y

)
by continued fraction expansion,

cosh y

sinh y
= 1

y
+ 1

3

y
+ 1

5

y
+ · · ·

(3.80)

and truncating the expansion after n terms, we can rewrite the TF in the form

H(y) = co

Bn(y)
(3.81)

where co is chosen such that H(0) = 1 (i.e., DC gain = 1) and

Bn(y) = cnyn + cn−1yn−1 + · · · + c1y + co (3.82)

Higher the value of n, closer will be the phase characteristic to the ideal situation
of constant delay. The coefficients cn in Bn(y) are given by

ck = (2n − k)!

2n−kk!(n − k)!
, k = 0, 1, 2, . . . , n (3.83)
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Using Eq. (3.83), it can be shown that Bn(y) satisfies the recurrence relation

Bn(y) = (2n − 1)Bn−1(y) + y2Bn−2(y) with B0(y) = 1 and B1(y) = y + 1

(3.84)
which can be used to find the higher-order polynomials. Note that the form of H(y)
shows that it has an all-pole LP characteristic, where y is the normalized complex
frequency, y = sτ.

3.11.4
Graphical Method to Determine the BT Filter Function

Determination of the BT TF for a given set of magnitude and delay approximations is
easily carried out using two sets of curves, which show the magnitude attenuation
and percentage delay error as functions of the normalized frequency ω = �τ o,
where τo is the desired delay (in seconds) and � is the radian frequency over
which the magnitude and delay specifications are to be satisfied. Figures 3.16a and
3.16b present several of these graphs. Filter orders up to 15 are included. MATLAB
program listings associated with these graphs are presented in Appendix B.

Example 3.11. Consider the case of producing a multidimensional image from
a TV signal by delaying it by 70 ns and superimposing on the master signal. The
bandwidth of the TV image signal is 4.5 MHz. The magnitude error should not
exceed 1.5 dB and the delay error should be within 1%.

Since the bandwidth for the signal is 4.5 MHz, consider the normalized
frequency variable �τ0 = p = 2π × 4.5 × 106 × 70 × 10−9 = 1.98. From the
magnitude attenuation set of graphs, we find that for attenuation of 1.5 dB and
with p = 1.98, one requires an order n = 6 (approximately). From the delay error
set of graphs, the corresponding value is n = 4. So, a conservative design strategy
will be to choose n = 6. This will ensure a magnitude attenuation of no more than
1.5 dB and a delay error of less than 1%. Thus, the BT filter function will be

H(y) = B6(0)

B6(y)
(3.85)

Using Eq. (3.84) repeatedly, we get

y6 + 21y5 + 210y4 + 1260y3 + 4725y2 + 10395y + 10395

Hence,

H(s) = 10395

y6 + 21y5 + 210y4 + 1260y3 + 4725y2 + 10395y + 10395
(3.86)

where

y = sτo = 70 × 10−9s



3.12 Delay Equalizers 77

0 0.5 1 1.5 2 2.5 3 3.5 4
0

1

2

3

4

5

6
M

ag
ni

tu
de

 e
rr

or
 (

dB
)

n = 3

5

4

6 7
8 910

11
12

13

14 15

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

%
 D

el
ay

 e
rr

or

n = 3 5 6 7 8 9
10

11
12

13

14
15

4

(a)

(b) Normalized frequency

Normalized frequency

Figure 3.16 (a) Magnitude error in decibels and (b)
percentage delay error, as functions of the normalized
frequency.

3.12
Delay Equalizers

In practical signal processing, one, however, requires some frequency selectivity
(especially to guard against noise) together with a constant delay feature in order to
preserve the ideal transmission property. This can be achieved by cascading an AP
network (such as a BT filter discussed above) with a frequency selective network
such as an LP or a BP filter. The AP network, however, need not have a phase
characteristic as φ(ω) = −ωτo. Instead, its phase characteristic should be such that
the overall phase function φ(ω) of the AP network and the frequency-selective
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network together is φ(ω) = φAPN + φFSN = −ωτ0. Thus, φAPN should be adjusted
to work with φFSN so that the overall φ(ω) becomes a linear function of the radian
frequency ω. Such special AP networks are known as delay equalizers. When the
frequency-selective network is an external physical channel, such as a telephone
or a coaxial line, the characteristics of the AP network are to be adjusted in an
adaptive way with changing characteristics of the frequency-selective network to
meet the criterion of linear phase characteristic. Such an equalizer is known as
adaptive delay equalizer. Numerical computations are extensively used to derive the
characteristics of delay equalizers. Hardware implementation of delay equalizers
may be facilitated using logical computations via a microprocessor.

Practice Problems

3.1 Consider the Sallen–Key LP filter shown in Figure P3.1, where R1 = (1/3)
�, R2 = 1 �, C1 = C2 = 1 F, and K = 2. (a) Find the transfer function of
the LP filter as well as its ωp and Qp. (b) Apply the LP to HP transformation
s → (1/s) to obtain the corresponding HP function, and the corresponding
filter structure. Find the values of the different components. (c) Transform
all the impedances in the HP structure so obtained by the impedance

+

V1

R1 R2

C1

K

C2

−

+

V2

−

Figure P3.1

V1

I1 →
+

−

V2

V1 V2

← I2

I1 → ← I2

+

+ +

−
− −

z

N

zD

ND

(a) (b)

Figure P3.2
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V1 C1

R1 R2

C2

V2

I1 → ← I2

+ +

− −

Figure P3.3

transformation z∗(s) = (1/s) z(s). What is the resulting transfer function?
Also, show the resulting filter structure with its component values. (d) What
are the ωp and Qp values of the resulting filter? (Note: This example shows
that an OA-RC LP filter can be converted to an OA-RC HP filter by a simple
replacement of resistors by capacitors and vice versa without changing the
OA. This is also called the RC:CR transformation (Mitra, 1969) and is useful
in deriving HP structures from LP structures realized using VCVS (or CCCS)
and RC elements.)

3.2 Consider the two-ports shown in Figures P3.2a and b, where the
three-terminal two-ports N and ND, as well as the one-ports z and zD are
duals of each other w.r.t. f(s). Show that in such a case, the two-ports
themselves are duals of each other w.r.t. f(s).

3.3 Using the result of Problem 3.2, find the capacitive dual of the twin-T
network of Figure P3.3.

3.4 Consider the cascade network N, as shown in Figure P3.4, which consists of
a cascade of a unity-gain VCVS, a series resistor rm, and a unity-gain CCCS.
(a) Evaluate the overall chain matrix of N, and hence show that the overall
network N corresponds to a VCCS of transadmittance gm = 1/rm. (b) Find
ND, the dual of the network N, w.r.t. f(s) = rmrn, by applying Theorems 3.1
and 3.2 and show that it corresponds to a CCVS of transresistance rn. (c)
Show that the transpose of N is nothing but a VCCS of transadmittance gm,
but with its input and output ports reversed. (d) Show that the transpose of
ND, that is, (ND)T, is nothing but a CCVS of transresistance rn, but with its
input and output ports reversed.

VCVS
μ = 1

CCCS
a = 1

rm

V1 V2

I1 → ← I2
+

− −

+

Figure P3.4
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1 2
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−

V 1
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−

V 2

Figure P3.6

3.5 (a) Show that a cascade of a VCCS of transadmittance gm followed by CCVS
of transresistance rn corresponds to a VCVS of gain (rm/rn). (b) Show that
if the positions of the VCVS and the CCVS are reversed in (a), then the
cascaded network would correspond to a CCCS of gain (rm/rn).

3.6 Consider the network N shown in Figure P3.6, where the chain matrix of the
unity-gain current inversion type negative impedance converter (UCNIC)

is given by
[

1 0
0 −1

]
. (a) Show that the open circuit VTF is given by

V2
V1

= Y1−Y2
(Y1−Y2)+(Y3−Y4) . (b) Obtain the network NT

R corresponding to N, and
find its short circuit CTF. (c) Obtain the network ND corresponding to N and
find its short circuit CTF. (d) Finally, obtain the network N = (NT

R

)
D = (ND)T

R

and find its open circuit VTF. (Note: The structures N and N were proposed
by Yanagisawa (1957) as alternate structures for realizing VTFs, while the
structures NT

R and ND were proposed by Thomas (1959) to realize CTFs
(Mitra, 1969). As one can see, using the concepts of duals, transposes, and
dual transposes, they are all mutually related.)

3.7 Derive the transfer function of a maximally flat LP filter which has an
attenuation of 25 dB at f = 4fc where fc is the −3 dB frequency. Repeat the
case when fc is the −1 dB frequency.

3.8 Find the transfer function of a Butterworth LP filter with fc = 103 Hz and
where the attenuation increases at 25 dB per octave.

3.9 An LP filter is required to meet the following specifications: (i) maximum
flat PB in 0 ≤ f ≤ 8 kHz, (ii) maximum loss in PB, Ap = 1 dB, and (iii)
minimum SB attenuation, As = 15 dB at 12 kHz. Find the transfer function
for the filter.

3.10 Find the transfer function of an LP filter such that (i) the PB is equiripple
with Ap = 0.5 dB in 0 ≤ f ≤ 6 kHz and (ii) monotonic SB with As ≥ 30 dB
for f > 15 kHz.

3.11 Find the transfer function of an HP filter that has (i) an equiripple PB for
f > 15 kHz with Ap = 0.5 dB and (ii) a monotonic SB for f < 7.8 kHz with
As = 35 dB.

3.12 Find the Chebyshev LP filter function which has 0.5-dB loss ripple in the PB
and 60 dB per decade attenuation increase in the attenuation band.
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3.13 Find the transfer function of an all-pole BP filter with maximally flat PB to
meet the following specifications: (i) Ap < 1 dB in 15 kHz ≤ f ≤ 20 kHz. (ii)
As > 40 dB for f ≤ 8.6 kHz and f ≥ 35 kHz.

3.14 Find the BR filter transfer function which satisfies (i) equiripple PB with
Ap = 1 dB in f ≤ 40 kHz and f ≥ 100 kHz and (ii) monotonic SB with As ≥
15 dB for f ≥ 50 kHz, and f ≤ 80 kHz.

3.15 Repeat Problem 3.7 where the PB is equiripple with Ap < 1 dB.
3.16 (a) Find the required order for an elliptic function, which has a cutoff

frequency of ωc = 1 rad s−1, with ωs/ωc = 1.2, Ap = 0.5 dB, and As = 45 dB.
(b) What will be the corresponding orders for MFM and CHEB function
characteristics?

3.17 A sixth-order MFM filter has Ap =1 dB. What will be the exact attenuation
for ω = 10ωc, where ωc is the LP band-edge frequency?

3.18 Find the elliptic filter transfer function which satisfies the following spec-
ifications: Ap = 1 dB in the PB 0 ≤ ω ≤ 1 rad s−1, As ≥ 46 dB in the SB
ω > 1.

3.19 Find an all-pole LP transfer function which has an attenuation <3 dB up to
ω = 1000 rad s−1 and the delay is maximally flat at τ o = 2.5 ms with a delay
error of less than 3% up to ω = 700 rad s−1.

3.20 Find an AP function with constant delay of 300 μs. The delay error must be
no greater than 1.5% up to f = 4.0 kHz.
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4
Basics of Passive Filter Design

As mentioned in Chapter 3, lossless networks terminated by resistors at one or
both ends are usually used in communication circuits to couple energy source to
a load. A general coupling network may be excited by a voltage or current source,
which may be ideal or nonideal. Further, the network may be working into a load
which is finite, zero, or infinite. All these situations may be represented by the
arrangements shown in Figures 3.7a and 3.7b. Such a network is called a doubly
terminated network. It is called a singly terminated network if (i) RS = 0 in Figure 3.7a
or RS = ∞ in Figure 3.7b, or (ii) RL = 0 in Figure 3.7a or RL = ∞ in Figure 3.7b.
Before we consider the realization of terminated lossless networks, we deal with
some general properties of singly terminated networks, similar to what was done
with doubly terminated networks in Section 3.6.

4.1
Singly Terminated Networks

Various possible situations in singly terminated networks along with the specifica-
tions necessary to realize them are tabulated in Table 4.1. The arrangement shown
in (a) in the table corresponds to a case where the voltage source has negligible
internal resistance, while that in (b) to a situation where the current source has
infinite internal resistance. An example of the latter is the output from a field
effect transistor, while for the former case, it is the output from an OA. The
two network arrangements shown in (c) are equivalent in view of Thevenin’s and
Norton’s theorems, a similar statement holding true for the two networks in (d).
The arrangement in (c) corresponds to the case when the source resistance is finite
and the output is connected to a device or network whose impedance is so small
that it is virtually a short circuit. Finally, the arrangement in (d) applies when the
source resistance is finite and the output is connected to a device or network that
essentially is an open circuit; an example of such a situation is when the output is
fed to an OA. It can be shown by elementary analysis of the above arrangements
that

T (a)
V (s) = Y (a)

21 (s) = 1

A + B
(4.1)
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Table 4.1 Various arrangements of singly terminated
networks and the corresponding specifications in terms
of the chain parameters of the network.

Network Suitable specification

I 1

Vs = V1 V2

+

−
RL = 1N

I2

+
−

(a)

VTF = T (a)
V (s) = V2 (s)

V1 (s)

TAF = Y(a)
21 (s) = − I2 (s)

V1 (s)

⎫⎪⎬
⎪⎭ = 1

A + B

I 1

Is = I1 V2

+

−
RL = 1N

I2

(b)

CTF = T(b)
I (s) = − I2 (s)

I1 (s)

TIF = z(b)
21 (s) = V2 (s)

I1 (s)

⎫⎪⎬
⎪⎭ = 1

C + D

Vs IsN

Rs = 1

Rs = 1

I1

I2 I2I1

+
− N

(c)

CTF = T(c)
1 (s) = − I2 (s)

Is (s)

TAF = Y(c)
21 (s) = − I2 (s)

Vs (s)

⎫⎪⎬
⎪⎭ = 1

B + D

VS V2 ISN

Rs = 1

Rs = 1

I1

I2 I2I1

+
− N

(d)

+

−
V2

+

−

VTF = T(d)
V (s) = V2 (s)

Vs (s)

TIF = Z(d)
21 (s) = V2 (s)

Is (s)

⎫⎪⎬
⎪⎭ = 1

A + C

T (b)
I (s) = Z(b)

21 (s) = 1

C + D
(4.2)

T (c)
I (s) = Y (c)

21 (s) = 1

B + D
(4.3)

T (d)
V (s) = Z(d)

21 (s) = 1

A + C
(4.4)

where TV (s) and TI(s) correspond to the VTF and the CTF, respectively, Y21(s) to
the TAF and Z21(s) to the TIF. These are tabulated in Table 4.1. It is seen from this
table that there are only four different specifications that may be assumed for a
singly terminated network, and these are T (a)

V (s), T (b)
I (s), T (c)

I (s), and T (d)
V (s). We will

now show that if we know how to realize T (a)
V (s), then the other three functions may

be synthesized directly from the realization of T (a)
V (s) using the concepts of ND, NT

R ,
and N, introduced in Chapter 3.
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Let us assume that we know how to synthesize the network N of (a) in Table 4.1
for a given VTF T(a)

V , that is, T(a)
V = 1

A+B . Now suppose that the network N in (b) of
the table is replaced by its dual (Nb)D w.r.t. f (s) = 1. Since it is known that if

[a] =
[

A B
C D

]
(4.5)

then

[aD] =
[

AD BD

CD DD

]
=
[

D Cf (s)
B/f (s) A

]
=
[

D C
B A

]
(4.6)

resulting in(
T(b)

I

)
D

= 1

CD + DD
= 1

A + B
= T(a)

V (4.7)

Thus, if the specification given is the CTF with a load resistor RL = 1 �, we can
first synthesize the network N of (a) in Table 4.1, realizing the desired specification
as the VTF T (a)

V . The reason for this is that most of the times, the specifications are
given in terms of a VTF realization and there exist many methods dealing with the
realization of a VTF. Once the network N is found, its dual ND can be found and
used in the structure of (b) in Table 4.1 to realize the given system function as a
CTF. Similarly, given a T (c)

I , it may be first realized as the T (a)
V of (a) in Table 4.1

and the corresponding network N found; then the NT
R of this network is used as the

two-port in the structure of (c) to obtain the desired T(c)
I . Finally, it can be shown

that a given T(d)
V may be realized by first realizing the specifications as the T(a)

V

of (a) and the corresponding network N found; then, N = (NT
R

)
D

= (ND)T
R of this

network is used as the two-port in the structure of (d) to get the desired T(d)
V .

We will first concentrate on the realization of an LP filter in a singly terminated
form using only LC elements for the coupling network, wherein we assume the LP
filter is an all-pole function (that is, all the zeros of the filter are at infinity). Once we
have realized an LP filter, we know how to transform an LP filter to an HP, a BP, or
a BR filter by using appropriate frequency transformations (see Chapter 3). Hence,
we assume that the specifications of the given filter (LP, HP, BP, BR) have been
transformed to that of the associated normalized LP filter, and that the normalized
LP filter specifications have been approximated using Butterworth, Chebyshev, or
Bessel–Thomson approximations, all of which lead to an all-pole transfer function.

Since we are dealing with ladder structures containing only LC elements, whether
these structures are singly or doubly terminated, let us first consider some basic
properties of such networks.

4.2
Some Properties of Reactance Functions

A network that consists of only LC elements is called a reactance network. Consider
a reactance one-port network and let ZLC(s) be its DPI. Since the real part of



86 4 Basics of Passive Filter Design

ZLC( jω) = 0, ZLC(s) must be a ratio of an even polynomial n(s) to an odd polynomial
m(s), or vice versa. A very fundamental property of a reactance network is that
it is lossless, and hence does not dissipate any energy. Hence, all the poles of
the DPI of such a network must be on the imaginary axis; otherwise, the impulse
response would contain decaying factors. For a similar reason, the zeros of a
reactance function (which are the poles of the DPA function) should also be on the
imaginary axis. Thus, the DPI ZLC(s) (or its DPA YLC(s) = 1/ZLC(s)) is of the form

ZLC(s) = n(s)

m(s)
or ZLC(s) = m(s)

n(s)
(4.8)

It can be shown that a reactance function, that is, the DPI or the DPA of a reactance
network, has the following properties (Van Valkenburg, 1960; Weinberg, 1962):

1) A reactance function is the ratio of an even to odd polynomial or vice versa.
2) The degrees of the numerator and denominator polynomials differ exactly by

unity.
3) The zeros and poles lie on the imaginary axis, alternate, and are simple with

positive residues at its poles.
4) The slope of dX (ω)/dω is positive, where X (ω) = (1/j)Z( jω).

The impedance ZLC(s) or its inverse YLC(s) can be realized by Cauer networks
either by successively removing the pole at infinity or the pole at the origin using
continued fraction (CF) expansion around s = ∞ or s = 0, respectively. They are
respectively called Cauer-I and Cauer-II forms of realization of ZLC(s) (or YLC(s) as
the case may be). We illustrate these forms through the following example.

Example 4.1. Find the Cauer-I and Cauer-II forms for the reactance function
given by

ZLC(s) = (s2 + 1)(s2 + 4)

s(s2 + 2)
(4.9)

We first obtain the Cauer-I form by a CF expansion of ZLC(s) around s = ∞ as
follows:

s3 + 2s) s4 + 5s2 + 4 (s ←− inductor, L = 1H

s4 + 2s2

3s2 + 4) s3 + 2s (s/3 ←− capacitor, C = 1/3F

s3 + 4
3

s

2
3

s
)

3s2 + 4
(9

2
s ←− inductor, L = 9

2
H

3s2
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4
) 2

3
s
(1

6
s ←− capacitor, C = 1

6
F

2

3
s

−−
Thus,

ZLC(s) = s + 1
1

3
s + 1

9

3
s + 1

1

6
s

(4.10)

The above ZLC(s) may be realized in the Cauer-I form as shown in Figure 4.1a.
The Cauer-II form is obtained by CF expansion of ZLC(s) around s = 0 and is given
below.

2s + s3) 4 + 5s2 + s4 (2/s ←− capacitor, C = 1/2F

4 + 2s2

3s2 + s4) 2s + s3
(2

3
s ←− inductor, L = 3/2H

2s + 2

3
s3

1
3

s3) 3s2 + s4 (9
s

←− capacitor, C = 1/9F

3s2

s4) 1

3
s3 (1

3
s ←− inductor, L = 1/3H

1
3

s3

−−
Hence,

ZLC(s) = 2

s
+ 1

2

3

1

s
+ 1

9

s
+ 1

1

3

1

s

(4.11)

ZLC(s) ZLC(s)

(a) (b)

1/3 F 3/2 H 3 H1/6 F

1 H 9/2 H ½ F 1/9 F

Figure 4.1 Realization of ZLC(s) of Example 4.1: (a) Cauer-I form and (b) Cauer-II form.
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RS 1

1′

2

2′

RL
VS

Z1

Z2 Z4

Z3

+
−

Figure 4.2 A doubly terminated lossless ladder network.

The corresponding Cauer-II realization is shown in Figure 4.1b.

Now consider a doubly terminated lossless ladder as shown in Figure 4.2, driven
by a voltage source. It is noted that the conclusions we are going to be drawing
with such a ladder are equally true when the ladder is driven by a current source
or when the ladder is singly terminated. It is obvious that there is no transmission
from port 1 to port 2, if and only if one of the series arms is an open circuit or one
of the shunt arms is a short circuit. That is, the zeros of transmission, which are
the zeros of the transfer function, are nothing but the poles of the series elements
and the zeros of the shunt elements.

Since we are going to be dealing with ladder network realization of LP all-pole
filters in singly or doubly terminated form, it is clear that all the series elements
should be inductors and the shunt elements be capacitors, as all the zeros of the
transfer function are at infinity. If LP to HP transformation is employed to convert
the LP filter into an HP filter, it is known from Table 3.2 (see Chapter 3) that
the inductors become capacitors and vice versa. Thus, in the HP filter, all the
capacitors would be in the series arms and the inductors in the shunt arms,
thereby producing all the transmission zeros at the origin. When the LP to BP
transformation is applied to convert an LP filter into a BP filter, then each series
arm L is converted to a series combination of an L and a C, while each shunt arm C
is transformed to a parallel combination of a C and an L. Hence, the n transmission
zeros at infinity for the LP filter are converted into n transmission zeros at s = 0
and n transmission zeros at s = ∞. This is due to the fact that at s = ∞, the n
inductors in the series arm become open circuits along with the n capacitors in the
shunt arms becoming short circuits, while at s = 0, the n capacitors in the series
arm become open circuits along with the n inductors in the shunt arms becoming
short circuits.

We now consider the design of a singly terminated lossless ladder realizing an
LP filter.

4.3
Singly Terminated Ladder Filters

Consider a lossless ladder network terminated in a load of 1 �, as shown in
Figure 4.3, and let ZLC(s) be the DPI looking into the network N at port 1. This
network can be driven by a voltage or a current source. In the former case, the
appropriate specification would be the VTF TV(s) = V2(s)/V1(s), V1 being the
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V1 V21 Ω
+

−

+

−
1′ 2′

1 2
I1 I2

ZLC(s)

Lossless
network

N

Figure 4.3 A singly terminated lossless
network.

driving voltage, while in the latter case the appropriate specification would be the
TIF, Z21(s) = V2(s)/I1(s), I1 being the driving current. Let us first consider the case
of the realization of a VTF. Using Eq. (3.22), and letting Rs = 0 and RL = 1, we get

TV (s) = V2(s)

V1(s)
= 1

A + B
(4.12)

where

[a] =
[

A B
C D

]
(4.13)

is the chain matrix of N. Using the interrelations between the chain matrix [a] and
the short circuit admittance matrix [y], we can rewrite Eq. (4.12) as

TV (s) = 1

− y22
y21

− 1
y21

= −y21

1 + y22
(4.14)

The transfer function to be realized is of the form

H(s) = k

sn + a1sn−1 + · · · + a0
= k

D(s)
(4.15)

since we are assuming H(s) to be an all-pole function. Also, D(s) is known to be a
strictly Hurwitz polynomial; that is, all its zeros are in the LH of the s-plane. We
may rewrite H(s) as

H(s) = k

m(s) + n(s)
=

k
n(s)

1 + m(s)
n(s)

(4.16)

where m(s) and n(s) are the even and odd parts of D(s). It is known that if D(s)
is strictly Hurwitz, then m(s)/n(s) is a reactance function (Van Valkenburg, 1960).
From Eqs. (4.14) and (4.16) we have

TV (s) = −y21

1 + y22
= H(s) =

k
n(s)

1 + m(s)
n(s)

(4.17)

Thus,

−y21 = k

n(s)
, y22 = m(s)

n(s)
(4.18)

Any realization of y22 will automatically realize the poles of y21, since the poles are
determined by the network determinant and is the same for all the [y] parameters;
hence, we can concentrate on realizing y22 in such a way that all the transmission
zeros for TV (s) are realized at s = ∞. This means that the ladder should have all
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the inductors in the series arms and capacitors in the shunt arms. Hence, Cauer-I
form is utilized to realize y22, which is a reactance function. Since y22 is being
realized, we have to start at port 2 of N (i.e., at the load end) and move left towards
port 1. If the degree of m(s) = 1 + degree of n(s), then the CF expansion around
s = ∞ will lead to a term like αs as the first term. Since y22 is an admittance, αs
will correspond to a capacitor of value α in the shunt arm of the ladder at port 2.
However, if the degree of m(s) = degree of n(s) – 1, then we have to invert and start
the division with n(s)/m(s) to obtain the CF expansion around s = ∞. Since we are
now dealing with (1/y22), the quotient of the first division, βs, will correspond to an
inductor of value β, in the series arm of the ladder at port 2.

Since the ladder realization involves a single inductor in the series arm and a
single capacitor in the shunt arm, the CF expansion will lead to exactly n elements.
The last element must always be an inductor (in the series arm) and cannot be a
capacitor in the shunt arm, since it would be shorted while computing y22. Finally,
the 1-� load resistor is inserted at port 2 to complete the realization of H(s) as the
VTF of the structure of Figure 4.3. The constant k in Eq. (4.15) can be determined
by evaluating H(0), that is, the value of the VTF at s = 0. If H(s) corresponds to a
normalized LP filter with a cutoff of 1 rad s−1, then frequency scaling is used to
obtain the required cutoff frequency. Once we have realized H(s) as the VTF of a
singly terminated ladder with voltage as the source, then from the discussion of
Section 4.1, we know how to realize H(s) for the other arrangements of the singly
terminated networks.

We now illustrate the procedure we have discussed with the following example.

Example 4.2. Realize the transfer function given by

H(s) = k

2s4 + 2s3 + 6s2 + 5s + 2
= k

D(s)
(4.19)

as the VTF of a singly terminated lossless ladder with a load of 100 �. Determine
the value of k.

From Eq. (4.19), we see that m(s) = 2s4 + 6s2 + 2 and n(s) = 2s3 + 5s. Since the
degree of m(s) = 1+ degree of n(s), we perform the CF expansion of m(s)/n(s)
around s = ∞ to realize y22. The CF expansion is as follows:

2s3 + 5s) 2s4 + 6s2 + 2 (s ←− capacitor, C = 1F

2s4 + 5s2

s2 + 2) 2s3 + 5s (2s ←− inductor, L = 2H

2s3 + 4s

s) s2 + 2 (s ←− capacitor, C = 1F

s2

2) s (
1
2

s ←− inductor, L = 1
2

H

s

−
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(a)

+

−
V1

+

−
V21 F

2 HH
1
2

1 F 1 Ω

y22

(b)

+

−
V1

+

−
V20.01 F

200 H50 H

0.01 F 100 Ω

Figure 4.4 Realization of H(s) of Example 4.2 when (a) RL = 1 � and (b) RL = 100 �.

Hence, the realization of H(s) is as shown in Figure 4.4a. At s = 0, all the
inductors are short circuits and the capacitors are open circuits, and hence,
V2/V1 = 1 = H(0) = (k/2); thus k = 2. Since the given termination is 100 �, we
now scale all the impedances by 100 �, which of course will not alter the transfer
function. The scaled network is shown in Figure 4.4b.

Example 4.3. The function H(s) = k

s3 + 2s2 + 2s + 1
represents a third-order nor-

malized LP Butterworth filter function. Realize H(s) by a singly terminated network
when the network is driven (a) by an ideal voltage source and (b) by an ideal
current source, the terminating load resistance being 1 �. (c) If the load resistance
is 100 � and the cutoff frequency of the filter is 100 rad s−1, find the corresponding
realizations.

(a) In this case, m(s) = 2s2 + 1 and n(s) = s3 + 2s. Since the degree of m(s) < the
degree of n(s), we have to perform the CF expansion on n(s)/m(s) around s = ∞ to
realize (1/y22). The CF expansion is as follows:

2s2 + 1) s3 + 2s
( s

2
←− inductor, L = 1

2
H

s3 + 1

2
s

3

2
s
)

2s2 + 1
(4

3
s ←− capacitor, C = 4

3
F

2s2

1
) 3

2
s
(3

2
s ←− inductor, L = 3

2
H

3

2
s

−
The realization of H(s) as a VTF with RL = 1 � is shown in Figure 4.5a. The

value of k = 1, since H(0) = 1.

(b) As discussed in Section 4.1, we may now realize the given H(s) at the TIF,
Z21(s), of a singly terminated network driven by an ideal current source by simply
replacing the network N by ND, and the corresponding realization is shown in
Figure 4.5b.

(c) If the terminating resistance is changed to 100 �, we shall use impedance
scaling. Thus scale all L → 100L and all C → C/100.

If the cutoff frequency is 100 rad s−1, that is, ωc = 2π × 100 rad s−1, then fre-
quency scale all L → L/(2π × 100), and all C → C/(2π × 100).
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3/2 H 1/2 H 4/3 H

4/3 F 3/2 F 1/2 F
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1 2 2
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+
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(a) (b)

Figure 4.5 Realization of H(s) of Example 4.3 when driven
by (a) an ideal voltage source and (b) an ideal current
source, with RL = 1 �.
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Figure 4.6 Realization of the BP filter of Example 4.4.

We may also realize H(s) as a singly terminated network with open circuit or
short circuit at the output and driven by a nonideal voltage or current source using
the results of Section 4.1; this is left to the reader to pursue.

Example 4.4. Design a third-order Butterworth BP filter with a center frequency
ω0 = 106 rad s−1 and Q = 10 for a load of 1 k �, when the network is driven by a
voltage source.

In Example 4.3, we have designed a normalized third-order Butterworth LP filter
for RL = 1 �. We convert this LP filter to the given BP filter by using the LP to
BP transformation (see Section 3.10). In our case, B = (ω0/Q) = 105. Hence, each
inductance L in the LP filter is to be replaced by an inductance (L/B) in series
with a capacitance B/(ω2

0L), and each capacitance C in the LP network replaced
by an inductance B/(ω2

0C) in parallel with a capacitance (C/B). Making these
replacements and scaling the impedances by a factor of 1000, we get the required
BP filter as shown in Figure 4.6.

Extensive tabulated results are available for singly terminated LC ladder filters
corresponding to a cutoff frequency of 1 rad s−1 and a termination of 1 �. Some
of these are included in Appendix C. We, therefore, conclude the discussion on
singly terminated LC ladder filters and consider the subject of doubly terminated
LC ladder filters.

4.4
Doubly Terminated LC Ladder Realization

When the voltage or current source is not ideal and the load is finite and nonzero,
we have the situation of a doubly terminated lossless ladder network. Such an
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Figure 4.7 A doubly terminated lossless network driven by
(a) a voltage source and (b) a current source.

arrangement is either the type shown in Figure 4.7a or b. It is observed that the
VTF, TV = V2/VS, and the TAF Y21 = −I2/VS in Figure 4.7a, as well as the CTF TI =
−I2/IS and the TIF Z21 = V2/IS, are all proportional to one another. Hence, without
loss of generality, we assume the situation of Figure 4.7a and realize the given filter
function as the VTF V2/VS. In a doubly terminated network, the performance is
judged by the amount of power delivered to the load as compared to the maximum
power that can be delivered by the source. We know that the maximum power is
delivered if the load impedance is the complex conjugate of the source impedance.
In the case of pure resistances, it means RS = RL; otherwise, maximum power is
not delivered. The maximum power that the source can deliver is

Pmax =
∣∣VS( jω)

∣∣2
4RS

(4.20)

while the power delivered to the load is

PL =
∣∣V2( jω)

∣∣2
RL

(4.21)

We now define the transmission coefficient t(s) as

∣∣t( jω)
∣∣2 = PL

Pmax
= 4

RS

RL

∣∣V2( jω)
∣∣2∣∣VS( jω)
∣∣2 = 4

RS

RL

∣∣H( jω)
∣∣2 (4.22)

Hence,

t(s)t(−s) = 4
RS

RL
H(s)H(−s)

or

t(s) = 4
RS

RL
H(s) (4.23)

The reflection coefficient ρ(s) is defined as∣∣ρ( jω)
∣∣2 + ∣∣t( jω)

∣∣2 = 1 (4.24)

Let the input impedance looking into the port 1 with the load in place be Zin(s). If
Zin( jω) = Rin + jXin, then the power delivered to the input terminals of N is Rin∣∣I1( jω)

∣∣2. Since N is lossless, the power delivered to the load is also Rin

∣∣I1( jω)
∣∣2.

Hence,

Rin

∣∣I1( jω)
∣∣2 =
∣∣V2( jω)

∣∣2
RL

(4.25)
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Therefore,

Rin

∣∣VS( jω)
∣∣2∣∣RS + Zin( jω)
∣∣2 =
∣∣V2( jω)

∣∣2
RL

(4.26)

or

∣∣H( jω)
∣∣2 =
∣∣V2( jω)

∣∣2∣∣VS( jω)
∣∣2 = RLRin∣∣RS + Zin( jω)

∣∣22 (4.27)

Substituting Eq. (4.27) in Eq. (4.22) we get

∣∣t( jω)
∣∣2 = 4RSRin∣∣RS + Zin( jω)

∣∣2 (4.28)

Hence, from Eqs. (4.24) and (4.28) we have

∣∣ρ( jω)
∣∣2 = 1 − 4RSRin∣∣RS + Zin( jω)

∣∣2 = (RS + Rin)2 + X2
in − 4RSRin∣∣RS + Zin( jω)
∣∣2

=
∣∣RS − Zin( jω)

∣∣2∣∣RS + Zin( jω)
∣∣2 (4.29)

Equation (4.29) is satisfied if

ρ(s) = ±RS − Zin(s)

RS + Zin(s)
(4.30)

Hence, the DPI Zin(s) is given by

Zin(s)

RS
= 1 ± ρ(s)

1 ∓ ρ(s)
(4.31)

Thus, there are two possible solutions for the normalized DPI, Zin(s)/RS. Darlington
(1939) has shown that these normalized DPIs can always be realized by lossless
networks terminated in a resistance, and that these two one-port networks are duals
of each other.

Thus, the problem of synthesis of a doubly terminated lossless network consists
of first finding

∣∣t( jω)
∣∣2 from the given H(s), and then finding Zin(s)/RS and realizing

it as a lossless two-port terminated in a resistor RL. It is enough to get one realization
for Zin(s)/RS, since the other realization is the dual of the first realization.

It is seen from Eq. (4.23) that the zeros of H(s) are those of t(s). Hence, if we are
considering an all-pole LP function, then all the zeros are at infinity and the lossless
two-port N will have inductors for all the series elements and capacitors for all the
shunt elements. For an all-pole LP filter (such as the Butterworth or Chebyshev),
we will then have

H(0) = RL

RS + RL
(4.32)

Thus, if the given function H(s) is of the form

H(s) = k

D(s)
= k

sn + an−1sn−1 + · · · + a1s + a0
(4.33)
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then, from Eqs. (4.32) and (4.33),

H(0) = k

a0
= RL

RS + RL
(4.34)

If the terminations are equal, that is, RS = RL, then from Eq. (4.34), k is constrained
to be

k

a0
= RL

RS + RL
= 1

2
(4.35)

The above condition assumes that H(0) = Hmax as in the case of Butterworth filter
or a Chebyshev filter of odd order. If Hmax does not occur at ω = 0, like in the case
of a Chebyshev filter of even order, then we require

H( jω) ≤ Hmax for all ω (4.36)

and k has to be adjusted appropriately. This is why a Chebyshev filter of even
order cannot be realized with equal terminations. Table 4.2 gives the systematic
steps for the realization of an all-pole normalized LP filter with equal termination,
normalized to 1 �.

Table 4.2 Various steps to be followed to design an all-pole doubly terminated LP filter.

Given the normalized transfer function H(s) of an all-pole LP function (for example, MFM,
CHEB, or BT) in the form of Eq. (4.33), and the source and load resistances:
↓
Find the value of k using Eq. (4.35)
↓
Derive |Hn( jω)|2 using Eq. (4.33)
↓
Find |t( jω)|2 using Eq. (4.22)
↓
Find |ρ( jω)|2 using Eq. (4.24)
↓
Derive ρ(s), from ρ(s)ρ(−s) = |ρ( jω)|2, such that the poles of ρ(s) are all in the LH of the
s-plane; note that the zeros are not restricted to the LH of the s-plane
↓
Obtain the normalized DPI, Z′

in(s) = Zin(s)/RS, using Eq. (4.31)

↓
Choose one set of signs in Eq. (4.31) and express Z′

in(s) as a ratio, N(s)/D(s)

↓
Expand N(s)/D(s) in a CF around s = ∞ to obtain Cauer-I form realization for Z′

in(s)

↓
Then, the required normalized LP filter is obtained by driving this terminated network by a
voltage source with a source resistance of 1 �, as shown in Figure 4.7a
↓
Impedance scale the filter so obtained by RS.
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If the target filter is an LP filter with a PB edge frequency ωc, we need to apply
frequency scaling to the components as L → Ln/ωc and C → Cn/ωc, where Ln and
Cn are the components in the normalized filter. If the target filter is not an LP
filter, we need to derive the associated normalized LP filter transfer function by
the methods illustrated in Chapter 3. One has to work according to the steps given
in Table 4.2 to derive the LC network corresponding to the normalized LP filter
transfer function. To realize the prescribed filter network, one then takes recourse
to the component transformation relations as provided in Chapter 3 (Table 3.2,
Section 3.10). Let us now consider a few examples.

Example 4.5. For the normalized Butterworth filter of order 3, obtain a doubly
terminated LC ladder realization assuming RS = RL = 1 �.

We know that for n = 3, the transfer function H(s) is given by

H(s) = k

D(s)
= k

s3 + 2s2 + 2s + 1

Since RS = RL, we have from Eq. (4.35) that k = (1/2). Hence, from Eq. (4.22) we
have ∣∣t( jω)

∣∣2 = 4
∣∣H( jω)

∣∣2 = 4
1

4

1∣∣D( jω)
∣∣2 = 1

1 + ω6
(4.37)

Hence,∣∣ρ( jω)
∣∣2 = 1 − 1

1 + ω6
= ω6

1 + ω6

Therefore,

ρ(s)ρ(−s) = (s3)(−s3)
(s3 + 2s2 + 2s + 1)(−s3 + 2s2 − 2s + 1)

ρ(s) = s3

(s3 + 2s2 + 2s + 1)
= s3

D(s)
(4.38)

Hence from Eq. (4.31), we have

Zin(s) = 2s3 + 2s2 + 2s + 1

2s2 + 2s + 1
(4.39a)

or

Zin(s) = 2s2 + 2s + 1

2s3 + 2s2 + 2s + 1
(4.39b)

It is seen that the two realizations we get using Eqs. (4.39a) and (4.39b) will be
duals of each other w.r.t. 1 �2. Expanding Zin(s) given by Eq. (4.39a), by CF around
s = ∞, we get

Zin(s) = s + 1

2s + 1
s+ 1

1

(4.40)

Hence, Zin(s) can be realized by the ladder network N terminated in RL = 1 �, as
shown in Figure 4.8a. The required third-order Butterworth filter is realized with
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Zin(s) Z in(s)
N ND

(a) (b)

Vs Vs

1 H

2 H

2 F 1 F 1 F
1 H

Rs
Rs

RL
RL

1

1′

1

1′

2

2′

2

2′
+
−

+
−

Figure 4.8 (a) Realization of the Butterworth filter of
Example 4.5. (b) Alternate realization, which is the dual of
the network of (a).

k = (1/2) as the VTF V2(s)/VS(s). Had we started with Eq. (4.39b) and realized it
in Cauer-II form, we would have realized the VTF by the network of Figure 4.8b,
which is nothing but the dual of that of Figure 4.8a w.r.t. 1 �2.

Example 4.6. Consider a LP Butterworth filter network with PB edge at 1590 Hz and
an attenuation of 40 dB at 4000 Hz. Given that Rs = RL = 100 �, find a realization
of the filter using an equally terminated LC ladder structure.

From the specifications (Ap = 3 dB, Aa = 40 dB, fc = 1590 Hz, fs = 4000 Hz),
one derives the order of the filter as n = 5. Then, from the table of standard
Butterworth functions (Appendix A), the normalized transfer function is

H(s) = 1

s5 + 3.2361s4 + 5.2361s3 + 5.2361s2 + 3.2361s + 1
= k

D(s)
(4.41)

From Eq. (4.35), we see that k = (1/2). For a fifth-order BUT function, we know
that

|H( jω)|2 = 1

1 + ω10

Hence,∣∣t( jω)
∣∣2 = 4

∣∣H( jω)
∣∣2 = 4

1

4

1∣∣D( jω)
∣∣2 = 1

1 + ω10

or

|ρ( jω)|2 = 1 − |t( jω)|2 = ω10

1 + ω10
(4.42)

Therefore,

ρ(s) = s5

D(s)
(4.43)

Then, the normalized input impedance function Zin(s) (i.e., with RS = 1 �) is

Zin(s) = 1 + ρ(s)

1 − ρ(s)

= 3.2361s4 + 5.2361s3 + 5.2361s2 + 3.2361s + 1

2s5 + 3.2361s4 + 5.2361s3 + 5.2361s2 + 3.2361s + 1
(4.44)

Since the degree of the denominator is greater than the degree of the numerator,
we expand 1/Zin(s) by CF around s = ∞. The details are shown below. Only the
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coefficients of s j ( j = 5, 4, 3, 2, 1) are shown. The realized element values are shown
by the side of the associated quotients.

3.2361, 5.2361, 5.2361, 3.2361, 1) 2, 3.2361, 5.2361, 5.2361, 3.2361, 1(0.618s → capacitance C = 0.618F

2, 3.2361, 3.2361, 2, 0.618

− − − − − − − − − − − − − − − − − − − − − − −
2, 3.2361, 2.618, 1)3.2361, 5.2361, 4.2361, 1.618(1.618s → inductance L = 1.618H

3.2361, 5.2361, 4.2361, 1.618

− − − − − − − − − − − − − − − − − − − − − − − − −
1, 1.618, 1)2, 3.2361, 2.618, 1(2s → capacitance C = 2 F

2, 3.2361, 2

− − − − − − − − − − − − − −
0.618, 1)1, 1.618, 1(1.618s → inductanceL = 1.618H

1, 1.618

− − − − − − − − − − − −
1)0.618(0.618s → capacitance C = 0.618F

0.618

− − − − − − − − − −
0

The normalized LP filter ladder network obtained is shown in Figure 4.9a. An
alternate realization would be one where the reactance two-port is replaced by its
dual two-port, and is shown in Figure 4.9b.

For terminations of 100 � at each side and a PB frequency of ωc = 2π (1590) ∼=
104 rad s−1, the denormalized LC networks can be obtained by the substitutions
C → Cn/(104.100) = Cn/(106) and L → Ln(100)/(104) = Ln/(102), where Cn and Ln

are the components in the normalized filter networks. The denormalized filters are
shown in Figures 4.10a and 4.10b.

Rs = 1 Ω

RS = 1 Ω

1.618 H

0.618 H 0.618 H 0.618 H

0.618 F

1.618 F 1.618 F

vs

VS V2

0.618 F RL = 1 Ω

RL = 1 Ω

2 F

1.618 H

+
−

+
−

+

−

(a)

(b)

Figure 4.9 (a) Realization of the normalized Butterworth
filter for Example 4.6. (b) Alternate realization.
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vs

Rs = 100 Ω

Rs = 100 Ω

0.618 μF

1.618 μF
1.618 μF

0.618 μF

16.18 mH

6.18 mH 6.18 mH 6.18 mH

16.18 mH

2 μF RL = 100 Ω

RL = 100 Ω

(a)

V2

(b)

+
−

+
−

+

−

Figure 4.10 (a) Realization of the Butterworth filter for the
specifications of Example 4.6. (b) Alternate realization.

We now consider the case of unequal terminations using the example of a
third-order Butterworth filter.

Example 4.7. (a) Realize the third-order Butterworth filter of Example 4.5, with
terminations of RS = 1 � and RL = 4 �. Find the value of the gain k.

(b) Realize the same transfer function when the source and load resistances are
reversed, and find the corresponding value of k.

(c) Obtain alternate realizations for the above two networks, and find the
corresponding value of k.

Solution: (a) In this case, we have from Eq. (4.35) that

k

a0
= RL

RS + RL
= 4

5
⇒ k = 4

5
(4.45)

Hence, from Eqs. (4.22) and (4.24), we have∣∣ρ( jω)
∣∣2 = 1 − ∣∣t( jω)

∣∣2 = 1 − 4
RS

RL

∣∣H( jω)
∣∣2

= 1 − 4
1

4

(4/5)2

1 + ω6
= ω6 + (9/25)

ω6 + 1
(4.46)

Therefore,

ρ(s)ρ(−s) = P(s)P(−s)
D(s)D(−s)

= (s3 + 0.6)(−s3 + 0.6)

(s3 + 2s2 + 2s + 1)(−s3 + 2s2 − 2s + 1)
(4.47)

There is more than one choice for P(s), since there is no restriction that the zeros
of P(s) have to be in the LHS of the s-plane, as those of D(s). Choosing P(s) =
(s3 + 0.6), we get

ρ(s) = P(s)

D(s)
= (s3 + 0.6)

(s3 + 2s2 + 2s + 1)
(4.48)

Hence from Eq. (4.32),

Z′
in(s) = Zin(s)

RS
= 1 + ρ(s)

1 − ρ(s)
= 2s3 + 2s2 + 2s + 1.6

2s2 + 2s + 0.4
(4.49)
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Zin(s) N

RS = 1 Ω

RS = 4 Ω

RL = 4 Ω

RL = 1 Ω

F
4

4 H

5 H

4 H 1 H1 H
5

V2
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(a)

(b)

F
4
1

1 F

ND w.r.t. f (s) = 4

1

1 2

2′1′

1′

2

2′
−
+

−
+

+

−

V2

+

−

RS = 1 Ω

RL = 4 Ω
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(d)

F
4
1

1 F

N = (ND)R
T

1 2
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+ V2

+

−
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R

RS = 4 Ω

RL = 1 ΩF
4
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1

1′

2

2′
−
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Figure 4.11 Various doubly terminated structures realizing
a third-order Butterworth filter. (a) RS = 1 �, RL = 4 �, (b)
RS = 4 �, RL = 1 �, (c) alternate realization for (a), and (d)
alternate realization for (c).

which can be realized by a Cauer-I form ladder network N terminated in a 4-�
resistor. The complete realization of the third-order Butterworth filter is shown in
Figure 4.11a.

(b) We know from Chapter 3 that if the ladder network N is replaced by its dual
network ND w.r.t. f (s) = RS RL = 4 �2, we realize the same VTF H(s) with k = (1/5),
but with RS = 4 � and RL = 1 �. This realization is shown in Figure 4.11b.

(c) Again from Chapter 3, we also know that we get two more realizations through
NT

R and (ND)T
R. However, since N is a reciprocal network, NT is nothing but N

itself. Hence, the realizations corresponding to NT
R and (ND)T

R may be obtained
very easily from the realizations of Figures 4.11a and 4.11b and these are shown
in Figures 4.11c and 4.11d, respectively. It is seen, as explained in Chapter 3,
that realizations shown in Figures 4.11a and 4.11d are alternate structures with
RS = 1 � and RL = 4 � (with k = (4/5)) while those in Figures 4.11b and 4.11c are
alternate structures realizing the same VTF (with k = (1/5)), but with RS = 4 �

and RL = 1 �; that is, with the source and load terminations reversed. It should be
noted that the former networks have a higher value of k compared to that of the
latter two networks. A higher k value implies a higher gain at DC.

Just as in the case of the singly terminated LC ladder filters, extensive tables
are available in the literature, giving the component values for doubly terminated
LC ladder filters realizing Butterworth, Chebyshev, and other types (Christian and
Eisermann, 1977; Zverev, 1967; Weinberg, 1962). Some of these are included
in Appendix C. It should also be noted that closed-form solutions exist giving
the component values for Butterworth and Chebyshev LP filters (Chen, 1986;
Schaumann, Ghausi, and Laker, 1990).

Practice Problems

4.1 Synthesize using LC elements, a third-order Butterworth filter to work into a
load of 1 � and excited by (a) an ideal voltage source and (b) an ideal current
source.
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4.2 Design a third-order Butterworth filter excited by a voltage source having an
internal resistance of 50 �, if the filter is to be connected to an ideal OA. The
input impedance of the OA can be assumed to be infinite.

4.3 Design an LC all-pole LP singly terminated filter with Butterworth response
having fc = 1 kHz and which produces an attenuation of 25 dB per octave in
the SB. The load resistance is 100 �.

4.4 Design an LC all-pole LP singly terminated filter with an equiripple PB
having Ap = 0.5 dB up to fc = 6 kHz and a monotonic SB with Aa ≥ 30 dB
for f ≥ 15 kHz. The termination resistance is 1 �.

4.5 Design a singly terminated LC HP filter having an equiripple PB with
Ap = 0.5 dB for fc ≥ 15 kHz and a monotonic SB for f ≤ 7.8 kHz with Aa ≥
35 dB.

4.6 Synthesize using LC elements, a CHEB LP filter of order 3 with 0.5 dB ripple
in the PB. The load terminations are 100 � each.

4.7 Consider a CHEB LP filter of order 4 with a PB ripple of 1 dB. Synthesize
the LC ladder filter for double termination with Rs = 1 �.

4.8 Consider a CHEB LP filter of order 5 with passband ripple of 0.5 dB.
The passband extends from DC to 1.2 kHz. The loss at 1.92 kHz is 23 dB.
Synthesize the LC ladder filter.

4.9 Consider the LC ladder realization of a BP filter with Butterworth magnitude
response. The passband edges are fp1 = 1578 Hz and fp2 = 3168 Hz. The
loss is 40 dB at f ≥ 5 kHz and at f ≤ 1 kHz. The termination resistances are
RL = Rs = 100 �. Synthesize the filter.

4.10 Obtain an LC ladder to be inserted between a source resistance of 1 � and a
load resistance of 2 � given that

∣∣t( jω)
∣∣2 = k

ω4 + 1

Using the concepts of dual, transpose, and dual transpose, find an alternate
structure realizing the same

∣∣t( jω)
∣∣2. Also, find structures realizing the same∣∣t( jω)

∣∣2, but with a source resistance of 2 � and a load resistance of 1 �.
Find the corresponding value of k.

4.11 Design an LP elliptic filter that has a maximum of 1 dB attenuation in the PB
of DC to 1000 rad s−1 and a minimum of 33 dB attenuation in the SB, with
SB edge being at 2000 rad s−1. The filter should have equal terminations of
1000 � at the two ends.
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5
Second-Order Active-RC Filters

Classically, the field of active filters arose out of a desire to realize filters without
having to use inductances for low-frequency applications where the inductance is
required to have a large value. Such large values implied large physical space, cost,
and poor reliability. In the early 1960s, some innovative researchers came up with
the desired alternative, that is, filters having no inductances.

In this chapter, we introduce second-order voltage-mode filters involving re-
sistances, capacitances, and active devices. One of the advantages of realizing
second-order active filters (also known as biquadratic filters) is that a general filter of
a higher order can be designed by cascading a number of second-order ones, with
an addition of a bilinear filter, if need be. In a voltage-mode system, the transfer
function of interest is the ratio of the output voltage to the input signal voltage
applied to the system. The active devices are usually voltage amplifiers (such as
the OAs), OTAs, and CCs. We first introduce standard second-order transfer func-
tions. The network theoretic background for realization of a frequency-selective
network, such as a filter, using an active device embedded in an array of pas-
sive elements containing only resistances and capacitances is presented next. A
general network containing a single-voltage amplifier and passive elements that
can realize a biquadratic transfer function is then presented. This is used to il-
lustrate the realization of several second-order filters using a single finite- or an
infinite-gain voltage amplifier. The discussion is continued to realizations using
several infinite-gain voltage amplifiers. Sensitivity considerations are introduced
and several low-sensitivity second-order filters are presented. Second-order filters
using OTA are considered next. The case of the frequency-dependent gain of an OA
is considered and its effect on the realization of a second-order filter is discussed.
Technological considerations regarding hardware implementation of the filters
are presented at the end of the chapter. Before we present the realization of the
second-order filters, we first briefly introduce some of the simple building blocks
realizable using an OA and then discuss some general properties of second-order
filters.

Modern Analog Filter Analysis and Design: A Practical Approach. Rabin Raut and M. N. S. Swamy
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40766-8
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5.1
Some Basic Building Blocks using an OA

In Chapter 2, we discussed how an OA could be used as a summer or integrator.
There are a number of other simple building blocks, including bilinear filters,
which are useful in the study of higher-order filters using OAs. These are tabulated
in Table 5.1; these may be easily derived using the model of an ideal OA introduced
in Chapter 2 and are left to the reader to derive them.

5.2
Standard Biquadratic Filters or Biquads

A second-order transfer function of the form

H(s) = N(s)

D(s)
= b2s2 + b1s + b1

s2 + a1s + a0
(5.1)

is called a biquadratic function. Even though, in general, the poles and zeros may
lie on the negative real axis, we will assume them to be complex conjugates, since
poles and zeros on the negative real axis can be realized using passive-RC circuits
(Van Valkenburg, 1960). In such a case, we may express

H(s) = N(s)
D(s)

= H0
(s + z)(s + z∗)

(s + p)(s + p∗)
= H0

s2 + (ωz/Qz)s + ω2
z

s2 + (ωp/Q p)s + ω2
p

(5.2)

where

ω2
z = (Re z)2 + (Im z)2, Qz = ωz/2Re(z) (5.3a)

ω2
p = (Re p)2 + (Im p)2, Q p = ωp/2Re(p) (5.3b)

and H0 could be positive or negative. ωp and Q p are called the pole frequency and
pole Q ; sometimes ωp is called the undamped natural frequency since there will be
resonance at s = jωp, if the s-term is not present in the denominator of Eq. (5.2).
The poles are given by

p1,2 = − ωp

2Q p
± j

ωp

Q p

√
4Q2

p − 1 (5.4)

It is clear that, in order to have complex poles, Q p > 0.5. For a highly selective
filter, Q p should be large, that is, the real part of the poles should tend to zero, and
hence the poles will be close to the imaginary axis. The following properties can be
observed from Eqs. (5.2) and (5.3):

1) The dc gain is [H0(ω2
z/ω

2
p)].

2) The gain at ω = ∞ is |H0|.
3) The maximum value of |H( jω)| occurs approximately at ωp if Q p � 1. This is

particularly true if ωz � ωp or ωz � ωp; otherwise, it is slightly moved away
from ωp.

4) The minimum value occurs at approximately ω = ωz for Qz � 1.
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Table 5.1 Some basic building blocks using an OA.

Operational amplifier circuit Transfer function Remarks

A
V1

V2

R1

R2

−

+

V2
V1

= − R2
R1

Inverting voltage
amplifier

B

V1

V2

R2

R1

−

+

V2
V1

= 1 + R2
R1

Noninverting
voltage amplifier

C

V1

V2

−

+
V2
V1

= 1 Voltage follower
(unity gain
voltage amplifier)

D Vo

R1

V1

V2

Vn

Rn

R2

R

+

−
Vo = −R

n∑
i=1

Vi
Ri

Inverted summer

(continued overleaf )
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Table 5.1 (continued).

Operational amplifier circuit Transfer function Remarks

E Vo

R1

R2

R4

R3

V1

V2 +

− Vo = R4
R1

×
R1+R2
R3+R4

V2 − R2
R1

V1

Differential
summer

F V1

V2

R

C

+

−

V2
V1

= − 1
RCs

Inverting lossless
integrator

G V1
R1

R2

V2

C

+

−

V2
V1

= − (1/R1)
(1/R2)+Cs

Lossy integrator

H V1

V2

R1

C2

C1

R2

+

−

V2
V1

= − R2+(1/C2 s)
R1+(1/C1 s)

Bilinear transfer
function with a
negative gain
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Table 5.1 (continued).

Operational amplifier circuit Transfer function Remarks

I

R1
V1

V2

C2

C1

R2

+

−

V2
V1

= − C1
C2

×
s+(1/R1C1)
s+(1/R2C2)

Bilinear transfer
function with a
negative gain

J R2
R1

C1

V1

V2

−

+

V2
V1

=
[
1 + R2

R1

]
×[

s+1/(R1+R2)C1
s+1/(R1C1)

] Bilinear transfer
function with a
positive gain

K

V2

C2

R2
R1

V1

+

− V2
V1

=[
s+{1+(R2/R1)}/(C2R2)

s+1/(R2C2)

] Bilinear transfer
function with a
positive gain

5) Q p is a measure of the sharpness of the maximum.
6) Qz is a measure of the sharpness of minimum value.

These will become clearer when we sketch the magnitude response of the
different types of filters. By choosing suitable values for the coefficients b0, b1,
and b2, that is, the positions of the zeros of H(s), we can obtain different types of
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Table 5.2 Standard biquadratic transfer functions.

Type of filter N(s)

Low-pass (LP) Hoω
2
p

Band-pass (BP) Ho(ωp/Qp)s
High-pass (HP) Hos2

All-pass (AP) s2 − (ωp/Qp)s + ω2
p

Notch Ho(s2 + ω2
n)

Note: For all filters,
V2(s)
V1(s) = H(s) = N(s)

D(s) , withD(s) = s2 + (ωp/Qp)s + ω2
p

biquadratic filters or biquads. These are listed in Table 5.2. It is seen that, except
for the AP filter, the zeros are all on the imaginary axis and hence, Qz = ∞.

The meaning of ωp and Q p will become more clear when we consider a BP filter
of the form

HBP(s) = Ho
(ωp/Q p)s

s2 + (ωp/Q p)s + ω2
p

(5.5)

At s = jωp,

|HBP( jω)| = |H0| (5.6)

Let us find the frequencies ω1 and ω2, where |HBP( jω)| is (1/
√

2) times that at the
peak value, namely, |H0|; then,

|HBP( jω)|2 = |H0(ωp/Q p)ω|2
(ω2

p − ω2)2 + (ωp/Q p)2ω2
= 1

2
|H0|2 (5.7)

From the above, we get

ω2 − ω2
p = ±(ωp/Q p)ω (5.8)

Solving Eq. (5.8) and taking the positive roots ω1 and ω2 for ω, we get

ω1ω2 = ω2
p and ω2 − ω1 = (ωp/Q p) (5.9)

If ω2 − ω1 is defined as the bandwidth (BW) of the BP filter, we then have

Q p = ωp

BW
= ωp

ω2 − ω1
(5.10)

Thus, Q p and BW are inversely related and hence, the higher the Q p, the narrower
the BW of the filter. The nature of the magnitude response of the BP filter is shown
in Figure 5.1. Even though we cannot relate the BW in the same way as in a BP
filter, the peak values for the LP and HP filters also increase with increasing value
of Q p. As for the notch filter, depending on whether ωz > ωp, ωz < ωp, or ωz = ωp,
it is called an LP notch, an HP notch, or a symmetric notch filter. Figure 5.1 shows
the magnitude response for typical biquad LP, HP, BP, and notch filters as well as
the magnitude and phase response for the AP filter.
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(a)

(c)

Ho

Ho

Ho

wp

w1

w1 w2 = wp
2

w2wp

wp

w w

ww

wM
wp wM

1−1/(2Qp
2)wM = wp 1−1/(2Qp

2)wM = wp /(b)

Qp

wpBW =

Ho Qp

Ho Qp

2

1
Ho

(d)

Hnotch( jw)

Qp

wp
BW = 

Ho

2

1
Ho

(e)

HAP(jw)

HBP( jw)

HLP( jw) HHP( jw)

Ho

0

 

−2π 

Phase

Magnitude
−π

wnotch = wp

Figure 5.1 Magnitude response of (a) an LP, (b) an HP,
(c) a BP, and (d) a notch filter. (e) Magnitude and phase
responses of an AP filter.

5.3
Realization of Single-Amplifier Biquadratic Filters

As mentioned earlier, a passive network consisting of only resistors and capacitors
has all its poles on the negative real axis, and hence cannot have complex poles.
Therefore, a passive-RC network cannot give rise to a frequency-selective transfer
function. Imbedding an active device such as a voltage amplifier with a gain K
in a passive-RC network, however, opens up the possibility of realizing a transfer
function with complex poles. Consider the network of Figure 5.2, where a voltage
amplifier of gain K is connected in a feedback structure with the three-port
passive-RC network. Using the admittance parameters of the three-port network
and the principle of constrained network analysis (see Chapter 2), the VTF can be
expressed as

V2(s)
V1(s)

= −Ky31(s)
y33(s) + Ky32(s)

(5.11)
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1
Passive RC

network

23
K

V3

+

−

V2

+

−

V1

+

−

Figure 5.2 A general single-amplifier second-order filter configuration.

KY1

Y2

Y3

Y4Y5

Y6

V1

+

−
V4

+

−
V3

+

−
V2

+

−

Figure 5.3 A specific single-amplifier biquad.

In Eq. (5.11), y31 and y32 are the short circuit TAFs and y33 is the short circuit DPA
at port 3 of the passive network. While these functions cannot have poles in the
complex plane, the gain K can be suitably adjusted to make D(s) = y33(s) + Ky32(s)
to possess zeros in the complex plane. Thus, the VTF in Eq. (5.11) can have complex
poles. When the real parts of these poles lie in the LH of the s-plane, the VTF can
produce a stable frequency-selective filter function.

A general configuration for producing a biquadratic transfer function using
a single amplifier of finite gain K, popularly referred to as single-amplifier biquad
(SAB) is shown in Figure 5.3. Using the method of analysis of constrained networks
in conjunction with the nodal suppression technique (see Chapter 2), we can show
that the transfer function V2(s)/V1(s) is given by

V2(s)

V1(s)
=

KY1Y3

(Y1 + Y2 + Y5)(Y3 + Y4 + Y6) + Y3(Y4 + Y6) − K{Y6(Y1 + Y2 + Y3 + Y5) + Y2Y3}
(5.12)

Choosing the admittances appropriately, it is possible to realize second-order filters
with LP, BP, and HP characteristics. Filters using a single positive gain (K is positive)
ideal voltage amplifiers are also known as Sallen and Key (SK) filters (Sallen and
Key, 1955).
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K
R1 R3

C2

C4
V2

+

−

V1

+

−

Figure 5.4 Sallen and Key LP filter.

5.4
Positive Gain SAB Filters (Sallen and Key Structures)

5.4.1
Low-Pass SAB Filter

In the general structure of Figure 5.3, if we choose Y1 = G1 = 1/R1, Y2 = sC2, Y3 =
G3 = 1/R3, Y4 = sC4, and Y5 = Y6 = 0, we get the following transfer function,
which is that of an LP filter. Specifically, the transfer function is given by

HLP(s) = V2(s)

V1(s)
= K(G1G3/C2C4)

s2 + s

{
G1
C2

+ G3
C2

+ (1 − K
)G3

C4

}
+ G1G3

C2C4

(5.13)

The schematic of the SAB LP filter is shown in Figure 5.4.
The network elements are related to the filter parameters ωp, Qp, and H0 through

the following design equations:

ωp = 1√
R1R3C2C4

(5.14a)

1

Q p
=
√

R3C4

R1C2
+
√

R1C4

R3C2
+ (1 − K)

√
R1C2

R3C4
(5.14b)

H0 = K (5.14c)

The above equations may be considered as the general design equations. In
a practical case, simplifying assumptions are used to ease the task of design.
The rationale behind such simplification lies in the fact that the general design
equation contains more parameters (more component values) than are required
to satisfy the three conditions given by Eqs. (5.14a)–(5.14c). Hence, some of these
components can be assigned suitable values. Depending upon the simplifications,
several alternative design equations may be arrived at. Consider the following
design strategies.

Case 1: Equal-capacitor, gain of 2 design
It is given that K = 2. Let C2 = C4 = C. Then the design Eqs. (5.14a)–(5.14c)
lead to

R1 = R3Q2
p, R3 = 1/(Q pωpC) and H0 = K = 2 (5.15)

The advantages of this design are that the capacitors are of equal value and
the gain K = 2 can be obtained using equal resistances (see Table 5.1). In
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IC technology, it is easier to maintain ratios of capacitors or resistors more
accurately than to maintain their absolute values precisely. However, the
disadvantage is that the spread in the resistor value is rather large for large
Q p, since the ratio of the resistors is Q2

p. Also, observe that gain at ω = 0 is
always 2. Let us consider an example.

Example 5.1. Design an LP filter with a pole Q of 4 and a pole frequency of 104 rad
s−1, using the above design procedure.

The transfer function of the LP filter is given by

HLP(s) = H0

ω2
p

s2 +
(

ωp
Q

)
s + ω2

p

(5.16)

where the values of ωp and Qp are given by ωp = 104 rad s−1 and Qp = 4, respec-
tively. From Eq. (5.15), we see that R1 = 16R3, C = 1

{4(104)R3} , K = 2, and hence

H0 = 2. Assuming R3 = 1 �, we get R1 = 16 � and C = 25 μF. Impedance scaling
by 1000, we have the component values as

R3 = 1 k�, R1 = 16 k�, C1 = C2 = 0.025 μF, and K = 2.

Case 2: Equal-resistor and equal-capacitor design
Let R1 = R3 = R and C2 = C4 = C. This leads to the design equations

C = 1/(Rω2
p) and K = 3 − (1/Q p) (5.17)

The advantage of this design is the resistor as well as the capacitors are of
equal value, but it should be noted that the value of the gain K is dependent
on Q p.

Example 5.2. Design an LP filter for the same specifications as those in Example
5.1 using the above design equations.

Using Eq. (5.17), we get

C2 = C4 = C = 1/(108R), K = 3 − ( 14 ) = 2.75

Choosing R = 100 �, we get the component values to be

R1 = R3 = 100 �, C2 = C4 = 100 pF and K = 2.75

Case 3: Unity-gain design
Hence, K = 1. Let

m = C4/C2 and n = R3/R1. (5.18a)
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Hence, from Eqs. (5.14a) and (5.14b), we get

R1C2 = 1√
mn

1

ωp
(5.18b)

1

Q p
=
√

m

n
(n + 1)

Solving the above equation, we get

n =
(

1
2mQ2

p
− 1
)

± 1
2mQ2

p

√
1 − 4mQ2

p (5.18c)

For n to be real,

m ≤ 1
4Q2

p
(5.18d)

There are two solutions for n, and it is easy to see that they are reciprocals of
each other, giving the same ratio for the resistors.
In this case, since K = 1, the gain can be achieved with a very high degree
of accuracy by a voltage follower circuit (see Table 5.1). In addition, it saves
two resistors (the ones used to obtain K). However, this design has the
disadvantage of a large spread in capacitor values, since their ratio is Q2

p .

Example 5.3. Design the LP filter for the specifications given in Example 5.1 using
the above design procedure.

In this case, the design equations are given by Eqs. (5.18a)–(5.18d). From
Eq. (5.18d), m ≤ (1/64) = 0.0156. Choosing m = 0.001, we get from Eq. (5.18c),
n = 0.0329 or 30.397. Hence from Eq. (5.18b), R1C2 = (5.7357) × 10−4. If we
choose C2 = 0.1 μF, then C4 = 100 pF and R1 = 5.746 k�. Hence, R3 = 174.7 k�

and K = 1.

5.4.2
RC:CR Transformation

Consider a biquadratic LP filter of pole frequency ωp realized using an active-RC
network. If we now apply the LP to HP filter transformation (see Chapter 3),
namely, s → ω2

p/s, then the LP filter of pole frequency ωp would be transformed
to a biquadratic HP filter having the same pole frequency ωp; also, a capacitor of
C Farads would be transformed into an inductor of value (1/ω2

pC) Henries, while a
resistor of value R � would remain the same. Since we are avoiding inductors, and
trying to realize filters by active-RC networks, this would not be useful. However,
if we now perform an impedance transformation (see Chapter 2) on the new HP
network, where every impedance z(s) is transformed into another impedance of
value (1/s) z(s), then the transfer function of the HP filter will not be affected
provided the active element is a VCVS or a CCCS; however, a resistor of value R �

would become a capacitor of (1/R) Farads and an inductor of value (1/ω2
pC) Henries
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Table 5.3 RC:CR transformation and the transformed elements.

The original transfer function Transformed transfer function

H(s) H(ω2
p/s)

ΩR F1/R

FC

1 / (wp
2C) Ω

VCVS VCVS (unaltered)

CCCS CCCS (unaltered)

would become a resistor of value (1/ω2
pC) �. Thus, the resulting HP filter would

then again be an active-RC filter using the same active elements as those in the
LP filter. The combination of the frequency transformation s → ω2

p/s followed by
the impedance transformation z(s) → (1/s) z(s) on the resulting network is also
called the RC:CR transformation (Mitra, 1967, 1969), and is useful in converting an
active-RC LP filter to an active-RC HP filter; it is noted that this is true only if the
active element is a VCVS such as an OA, or a CCCS such as a current conveyor
or a current OA. It does not hold good for an RC filter realized using OTAs. The
RC:CR transformation and its effect on an active-RC filter using a VCVS or a CCCS
is shown in Table 5.3.

As an application, consider a biquad active-RC filter designed using a VCVS. Let
its transfer function be

HLP(s) = H0

ω2
p

s2 +
(

ωp
Q p

)
s + ω2

p

(5.19)

By applying the RC:CR transformation, we get the transfer function

H0
s2

s2 +
(

ωp
Q

)
s + ω2

p

(5.20)

which can be readily seen as a biquad HP filter. Let us illustrate the procedure by
the following example.

Example 5.4. Design an HP SAB filter with a pole Q of 4 and a pole frequency of
ωp = 104 rad s−1

.

In Example 5.2, we have already designed an LP filter for the same specifications
using the circuit of Figure 5.4, the transfer function being given by Eq. (5.16). One
set of design values that we obtained were

R1 = R3 = 100 �, C2 = C4 = 100 pF and K = 2.75
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−
V1
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−

C1
∗ C3

∗

R2
∗

R4
∗

Figure 5.5 The HP filter obtained from Sallen and Key LP filter by RC:CR transformation.

Applying the RC:CR transformation, we get the transfer function

HLP(s) = H0
s2

s2 + (104/4)s + ω2
p

(5.21)

whose realization is shown in Figure 5.5. The component values are given by

C∗
1 = C∗

3 =
(

1
R1

)
= 10−2F, R∗

2 = R∗
4 =
(

1
ω2

pC2

)
= 1

10210−10 = 100 �,

K = 2.75

Impedance scaling by 104, we get

C∗
1 = C∗

3 = 1 μF, R∗
2 = R∗

4 = 1 M�, and K = 2.75

5.4.3
High-Pass Filter

We could, of course, have obtained the HP filter in the form given by Eq.
(5.20) directly from the structure of Figure 5.3 by letting Y1 = sC1, Y3 = sC3, Y2 =
(1/R2), Y4 = (1/R4), Y5 = Y6 = 0. The HP filter circuit along with the values for ωp

and Q p in terms of the components R2, R4, C1, C3, and K, as well as a set of design
equations, are given in Table 5.4.

5.4.4
Band-Pass Filter

By letting Y1 = (1/R1), Y2 = (1/R2), Y3 = sC3, Y4 = (1/R4), Y5 = sC5, Y6 = 0 in
Figure 5.3, we get the SK BP filter. The BP filter along with the values of ωp and
Q p in terms of the component values, as well as a set of design equations, is given
in Table 5.4.

5.5
Infinite-Gain Multiple Feedback SAB Filters

In the previous sections, we have considered biquads designed using a finite gain
amplifier. In this section, we consider a class of biquads that use a single OA as
an infinite-gain voltage amplifier. We will see later that these biquads have lower
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Figure 5.6 A general structure of an infinite-gain multiple feedback SAB filter.

sensitivities (i.e., variations of ωp and Q p with respect to changes in the values
of the passive components) than the SABs considered in the previous sections.
However, we will also see that the element spread will be large, thus resulting in
its use only for low-Q filters. Figure 5.6 shows the general form of an infinite-gain
multiple feedback (IGMFB) SAB filter.

Using the method of analysis of constrained networks (see Chapter 2), we can
show that the VTF, V2/V1, is given by

H(s) = V2

V1
= − Y1Y4

Y5(Y1 + Y2 + Y3 + Y4) + Y2Y3
(5.22)

By choosing suitable values for the admittances in Eq. (5.22), we can generate LP,
HP, and BP filters.

LP filter : Choose Y1 = G1, Y2 = sC2, Y3 = G3, Y4 = G4, Y5 = sC5 (5.23)

HP filter : Choose Y1 = sC1, Y2 = G2, Y3 = sC3, Y4 = sC4, Y5 = G5 (5.24)

BP filter : Choose Y1 = G1, Y2 = G2, Y3 = sC3, Y4 = sC4, Y5 = G5 (5.25)

where Gi = (1/Ri) is the conductance. Comparing H(s) for the above three filters
with the standard biquad transfer functions listed in Table 5.2, we can determine
the values of H0, ωp, and Q p for each of these filters in terms of the various R’s and
C’s. These are listed in Table 5.5 along with a set of design equations, which one
can use to design an LP, HP, or BP filter. The values of the components determined
using these design equations will have to be impedance scaled to bring the values
to practically acceptable range.

5.6
Infinite-Gain Multiple Voltage Amplifier Biquad Filters

In the early era of active-RC filters, the OAs were expensive and hence attention was
paid toward SAB designs. With the advancement in semiconductor technology, the
OAs became more affordable. It was found that realizations of second-order filters
using several OAs lead to a simpler implementation procedure and lend to addi-
tional desirable features, such as reducing total capacitance, enabling easy tuning
procedure, and reduced sensitivity to component tolerances. In this section, we
present several cases of biquad filter realization using multiple infinite-gain voltage
amplifiers. The voltage amplifiers are in practice realized from high-gain OAs.
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5.6.1
KHN State-Variable Filter

This filter is named after the originators Kerwin, Huelsman, and Newcomb
(KHN), and has very low sensitivities, good performance, and flexibility. It is called
a state-variable filter, since state-variable methods of solving differential equations
is used in the realization. This is best understood by taking the example of an LP
filter and getting a state-variable realization for the same. Consider the standard LP
filter function given by

V2(s)

V1(s)
= H0a0

s2 + a1s + a0
(5.26)

This can be written as

V2(s) = (H0a0)/s2

1 + ( a1
s

)+ ( a0
s2

)V1(s)

If we let

Va(s) = 1

1 + ( a1
s

)+ ( a0
s2

)V1(s) (5.27)

then

V2(s) = H0a0

s2
Va(s) (5.28)

If we now take inverse Laplace transforms of Eqs. (5.27) and (5.28), we get

va(t) = v1(t) − a1

∫
va(t)dt − a0

∫ {∫
va(t)dt

}
dt (5.29)

and

v2(t) = H0a0

∫ { ∫
va(t)dt

}
dt (5.30)

In system theory, va(t) = ẍ(t),
∫

va(t)dt = ẋ(t), and
∫{∫ va(t)dt}dt = x(t) are called

state variables, and hence this kind of a filter realization is termed a state-variable
realization. It is easy to interpret Eqs. (5.29) and (5.30) by state-variable realization,
as shown in Figure 5.7.

The block diagram shown in Figure 5.7 can be easily converted to an OA–RC
circuit by using the OA as an integrator, and is shown in Figure 5.8. This circuit is
known as the Kerwin–Huelsamn–Newcomb state-variable filter (Kerwin, Huelsman
and Newcomb, 1967).

For the two integrators in Figure 5.8, we have

Vo3 = − 1
sR2C2

Vo2 and Vo2 = − 1
sR1C1

Vo1 (5.31)

For the differential summer

Vo1 = −R6

R5
Vo3 + R4

R3 + R4

R5 + R6

R5
V1 + R3

R3 + R4

R5 + R6

R5
Vo2 (5.32)
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V1(s) Va(s) V2(s)

a1

−a0 H0a0

− −
Va(s)

1
s

−

Va(s)1−
s2

Figure 5.7 State-variable realization of the LP filter given by Eq. (5.26).

_

+

_

+

_

+
V1

Vo1
Vo2

Vo3

R1

R5

C1
C2

R2

R4

R3

R6

Figure 5.8 KHN state-variable filter.

From Eqs. (5.31) and (5.32), we can show that

Vo3

V1
=
[

1+R6/R5
1+R3/R4

]
1

R1R2C1C2

D(s)
(5.33)

Vo2

V1
= −
[

1+R6/R5
1+R3/R4

]
s

R1C1

D(s)
(5.34)

and

Vo1

V1
=
[

1+R6/R5
1+R3/R4

]
s2

D(s)
(5.35)

where

D(s) = s2 + s

R1C1

1 + R6/R5

1 + R4/R3
+ R6/R5

R1R2C1C2
(5.36)

It is observed that the KHN state-variable filter can be used as an LP, BP, or HP
filter depending on where the output is taken. It is also seen that the LP and HP
outputs are noninverting, while that of the BP is inverting. The parameters ωp
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and Q p of the filters are related to the network components as follows:

ωp =
√

R6/R5

R1R2C1C2
(5.37)

1

Q p
= 1 + R6/R5

1 + R4/R3

√
R5R2C2

R6R1C1
(5.38)

However, the value of H0 for the three filters is different and is given by

H0(LP) = 1 + R6/R5

1 + R3/R4

R5

R6
(at ω = 0) (5.39a)

H0(BP) = −R4

R3
(at ω = ωp) (5.39b)

H0(HP) = 1 + R6/R5

1 + R3/R4
(at ω = ∞) (5.39c)

Example 5.5. Design a BP filter with Qp = 10 and ωp = 103 rad s−1, using the
KHN biquad structure.

Equations (5.34), (5.37), (5.38), and (5.39b) show that there are eight variables
(Ri, i = 1, . . . , 6 and C1, C2), while there are only two specifications. Hence, we
have sufficient flexibility in assigning arbitrary values to six of the components. An
examination of Eqs. (5.37) and (5.34) reveals that the ratio R4/R3 occurs only in
the expression for Qp. Therefore, we determine this to satisfy the value of specified
Qp. We now assume that R1 = R2 = R, C1 = C2 = C, and R5 = R6 = Rx . Then we
have two simple expressions for ωp and Qp:

ωp = 1
RC �⇒ R = 1

ωpC (5.40)

1
Q p

= 2
1+(R4/R3) �⇒ R4 = (2Q p − 1)R3 (5.41)

Assuming C = 1 F, we get R = 10−3 �. Impedance scaling by 10−8, we have
C = 0.01 μF, R1 = R2 = R = 100 k�. Further, since for R3, R4, R5, and R6, only
the ratio (R6/R5) = 1 and (R4/R3) = 19 are important, we can choose them to be
R5 = R6 = R3 = 1 k�, and R4 = 19 k�. The value of H0, given by Eq. (5.39b), is
H0 = −(R4/R3) = −19. It is noted that the same circuit gives LP and HP outputs
at Vo1 and Vo3 for which H0 = (2Q p − 1)/Q p, that is, H0 = 1.9.

5.6.2
Tow–Thomas Biquad

If one examines the KHN biquad, one finds that the signal is fed at only one node
of the system, while filters of different characteristics (viz., LP, HP, and BP) are
obtained at distinct output nodes. Such a system is commonly referred to as a
single-in, multi-out (SIMO) system. In contrast, there could be a system where the
input signal is fed to several nodes in the system while only one node delivers the
desired output. Filters of different characteristics are obtained by special choice of
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R1 r
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Figure 5.9 The Tow–Thomas universal biquad structure.

Table 5.6 Tow–Thomas universal biquad generating various filters.

Filter type Component values Remarks

LP C1 = 0, R1 = R3 = ∞,
R2 = R

H0

H0 is the gain at ω = 0

BP (+ve gain) C1 = 0, R2 = R3 = ∞,
R1 = Qp

H0
R

H0 is the gain at ω = ωp

BP (−ve gain) C1 = 0, R1 = R2 = ∞,
R3 = Qp

|H0 | r
H0 is negative and is the gain
at ω = ωp

HP C1 = H0C,
R1 = R2 = R3 = ∞

H0 is the gain at ω = ∞

Notch C1 = H0C,

R1 = R3 = ∞, R2 = ω2
p

ω2
n

R
H0

H0 is the gain at ω = ∞ and
ωn is the notch frequency

AP C1 = H0C, R1 = ∞,
R2 = R

H0
, R3 = Qp

H0
r

H0 is the flat gain for all ω

Note: For all cases, R4 = Q pR, R = 1
ωpC ; C and r are arbitrary.

the several input nodes. This system is known as multi-in, single-out (MISO) system.
In Figure 5.9 we present a MISO biquad, originally due to Tow and Thomas (Tow,
1968, 1969; Thomas, 1971a, 1971b; Sedra and Smith, 1970, 2004).

The VTF, Vo/Vi, of Figure 5.9 is given by

Vo

Vi
=

C1
C s2 + 1

RC

[
R

R1
− r

R3

]
s + 1

R2RC2

s2 + 1
R4C s + 1

R2C2

(5.42)

Design guidelines for various standard filters are presented in Table 5.6.
Since all the five standard biquad filter functions are available, the Tow–Thomas

structure may be considered to be a universal biquad filter structure. A second
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Figure 5.10 The Fleischer–Tow universal biquad structure.

structure that has similar potentials, but which does not use a capacitor (i.e., C1),
in the feed-forward path is presented next.

5.6.3
Fleischer–Tow Universal Biquad Structure

The schematic in Figure 5.10 presents the Fleischer–Tow biquad structure, which
follows the MISO topology (Fleischer and Tow, 1973).

It can be shown that the transfer function of the Fleischer–Tow biquad structure
is

Vo

V1
= − (R8/R6)s2 + (1/R1C1)[R8/R6 − (R1R8/R4R7)]s + R8/(R3R5R7C1C2)

s2 + (1/R1C1)s + R8/(R2R3C1C2R7)
(5.43)

By suitable choice of input nodes, we can generate the various types of filters and
these are tabulated in Table 5.7. In view of this, the Fleischer–Tow biquad is also a

Table 5.7 Fleischer–Tow universal biquad generating various filters.

Filter Component Remarks
type values

LP R4 = R6 = ∞, R5 = Ra
|H0 | H0 is negative and is the gain at ω = 0

BP R5 = R6 = ∞, R4 = Qp
H0

Ra H0 is the gain at ω = ωp

HP R5 = ∞, R4 = Qp
|H0 | Ra, R6 = R

|H0 | H0 is negative and is the gain at ω = ∞
Notch R4 = Qp

|H0 | Ra, R5 = ω2
p

ω2
n

1
|H0 | Ra, R6 = R

|H0 | H0 is negative and is the gain at ω = ∞ and
ωn is the notch frequency

AP R4 = Qp
2|H0| Ra, R5 = Ra

|H0 | , R6 = R
|H0 | H0 is negative and is the flat gain for all ω

Note: For all cases, it is assumed that R2 = R3 = Ra , R7 = R8 = R, C1 = C2 = C, Ra = 1
ωpC , and

R1 = QpRa ; R and C being arbitrary
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universal biquad structure, and the pole frequency and pole Q are given by

ωp =
√

R8/R2R3C1C2R7 and ωp/Qp = 1/R1C1 (5.44)

5.7
Sensitivity

Sensitivity is a measure of the variability of the performance of a filter as a result
of changes in the values of the components and in the characteristics of the active
device(s) used to implement the filter. Such changes may occur due to aging,
manufacturing tolerances, environmental (i.e., temperature and power supply)
variations, and so on. In the previous sections, we have discussed several different
architectures for the realization of a second-order active-RC filter. There are many
more structures that have been proposed in this area and an interested reader may
consult the additional references (Ghausi and Laker, 1981; Schaumann, Ghausi,
and Laker, 1990; Schaumann and Van Valkenburg, 2001; Chen, 1986) provided at
the end of this book. Sensitivity is one of the aspects that can be used to compare
the various filter structures with regard to their robustness toward changes in the
component values and the characteristics of the active devices used to implement
the filters. Various researchers have aimed their efforts toward minimizing such
sensitivity and thereby have come up with novel filter structures. In the following,
we shall introduce the basic definition of sensitivity and illustrate the use of this
definition by considering some known filter structures.

5.7.1
Basic Definition and Related Expressions

The sensitivity of a function Y with respect to a parameter (or a variable) x is
denoted by SY

x and is defined as

SY
x = % change in Y

% change in x
= �Y

�x
= dY/Y

dx/x
= d(ln Y)

d(ln x)
(5.45)

If Y is a function of several variables, Y = f (x1, x2, . . . , xn), then the sensitivity of Y
w.r.t. xi is given by

SY
xi

= ∂Y/Y

∂xi/xi
= ∂(ln Y)

∂(ln xi)
(5.46)

In the above, the symbol ∂ implies the partial derivative. Specifically, a sensitivity
of 1/2 means that a 5% change in x would bring a 2.5% change in Y. A sensitivity
of −1/2 means that a change of +5% in x would cause a change of −2.5% in Y.
Several identities that are useful in calculating the sensitivity for complex functional
relations are listed in Table 5.8.

In general, the filter parameters, such as ωp, will depend upon several components
that are used to implement the filter. In such cases, the concept of total differential
is applicable. Thus, if the characteristic F of the filter depends upon several
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Table 5.8 Some basic sensitivity formulas.

Sensitivity Equivalent expression

SkY
x , k is a constant SY

x

S
Y1Y2
x S

Y1
x + S

Y2
x

S
Y1/Y2
x S

Y1
x − S

Y2
x

SY
1/x −SY

x

S1/Y
x −SY

x

SaYn
x nSY

x

SY
x SY

z Sz
x

parameters (i.e., constituent components) x1, x2, . . . , xn of the filter, we can write

F = ψ(x1, x2, . . . , xn); then, dF =
n∑

i=1

∂F
∂xi

dxi. Accordingly, the relative change in F

for all the constituent component variations will be

dF

F
=

n∑
i=1

∂F

∂xi

dxi

F
=
∑

SF
xi

dxi

xi
(5.47)

Thus, the sensitivities with respect to the individual components xi need to be
calculated.

Example 5.6. Consider the SK LP filter of Section 5.4.1 with the following
expressions concerning the pole frequency and pole Q:

ωp = 1/
√

R1R3C2C4, ωp/Q p = 1/R3C4 + 1/R1C2 + 1/R3C2 − K/R3C4

To calculate S
ωp
R1

, we can proceed with

ln(ωp) = −(1/2) ln R1 − (1/2) ln R3 − (1/2) ln C2 − (1/2) ln C4.

Taking the partial derivative with respect to R1, we get ∂ωp/ωp = −(1/2)(∂R1/R1).
Thus,

S
ωp
R1

= ∂ωp/ωp

∂R1/R1
= −(1/2) (5.48a)

It can be similarly shown that

S
ωp
R3

= S
ωp
C2

= S
ωp
C4

= −(1/2) (5.48b)

To evaluate the sensitivity of Qp, one can start with Q p = ωp/P, where P = 1/R3C4 +
1/R1C2 + 1/R3C2 − K/R3C4. Then, the sensitivity of Qp, say, with respect to R1,

can be expressed as S
Q p
R1

= S
ωp
R1

− SP
R1

. From the previous results, S
ωp
R1

= −(1/2).
Now, ∂P/∂R1 = −(1/R1C2)(1/R1). Hence,

SP
R1

= ∂P/P

∂R1/R1
= −(1/P)(1/R1C2)

= −(Q p/ωp)(1/R1C2) = −(Q p/R1C2)
√

R1R3C2C4 = −Q p

√
R3C4/R1C2.
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Thus,

S
Q p
R1

= −(1/2) + Q p

√
R3C4/R1C2. (5.49)

The sensitivities of Qp with respect to other parameters can be similarly calculated.
It is noted that the sensitivity of Qp is proportional to Qp. So, for a high-Q filter,
the SK structure will have a large sensitivity for the pole Q. This information
is important in deciding if one should adopt this architecture or not when the
specifications demand for a design with a high Qp value.

One can consider the clue that the above expressions provide toward a design
with low sensitivity to component variations. Thus, in an ideal situation, we

would like to make S
Q p
R1

equal to zero. Considering the expression of S
Q p
R1

above,
we see that one has to adjust the components R1, C2, R3, C4 to achieve 0 =
−(1/2) + Q p

√
R3C4/R1C2, that is, 1/2 = Q p

√
R3C4/R1C2. Since Qp and ωp are

dependent on the R,C components, achieving the above condition may be quite
challenging, if not impossible. However, the above discussion simply provides a
clue for an approach toward a low-sensitivity design for a specific case.

5.7.2
Comparative Results for ωp and Qp Sensitivities

In Table 5.9, we present three different biquad filter structures with expressions
for the ωp and Qp sensitivities. The structure in (a) is the SK LP SAB filter of
Section 5.4.1, (b) is the IGFMB LP filter of Section 5.5, and (c) corresponds to
the KHN state-variable filter. A discussion regarding the relative merits of the
structures for low-sensitivity design follows.

The entries in Table 5.9 can be used to draw a comparison among the filter
structures in (a)–(c) in that table. We have already noted that the network in the
SK filter of (a) has a high sensitivity for Qp. For the IGMFB filter shown in (b), the
expressions for Qp sensitivities with respect to the resistances R1, R2, R3, and Qp are
multiplied by factors that are less than 1/Qp; hence, the products are less than 1.
Thus, the Qp sensitivities of the IGMFB filter is less than those in the SK filter.
So, the IGMFB filter of (b) in Table 5.9 should be preferred to that of (a) for a low
Qp-sensitivity design. For the KHN state-variable filter of (c), all the sensitivities are
less than unity. This reveals the superiority of the state-variable filter structure, when
a low-sensitivity design is required. In particular, the Qp sensitivities with respect to
R5 and R6 could be made zero if R5 and R6 are made equal. In general, state-variable
filters have low sensitivity. However, they require more number of active devices
and network elements (especially resistances), which may add to the cost.

5.7.3
A Low-Sensitivity Multi-OA Biquad with Small Spread in Element Values

In Figure 5.11, we present a multi-OA general biquad filter network proposed by
Mikhael and Bhattacharyya (1975). The sensitivities of ωp, ωz, Qp, and Qz to the
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Figure 5.11 Mikhael–Bhattacharyya multiple amplifier biquad structure.

passive components are all less than unity. The network uses both the inverting
and noninverting inputs of the OA. The transmission zeroes are realized with
feed-forward resistive network. For a given pole Q, the spread in the resistance
values (using equal capacitance values) is proportional to only Q1/2, while most
other biquad structures require resistance spreads of the order of Q or Q2.

The transfer functions for the two most useful output terminals, assuming ideal
OA, are

V1

Vs
=
{

s2
[

G1

(
1 + G4

G9

)
− G2G3

G9

]
+ s

G3G7G8

G9C1

+ G7G10

C1C2

[(
1 + G4

G9

)
G5 − G3G6

G9

]}/
D(s) (5.50)

V3

Vs
=
{

s2G1 + s
G7G8

G9C1

[(
1 + G2

G7

)
G3 − G1G4

G7

]

+ G7G10

C1C2

[(
1 + G2

G7

)
G5 − G4G6

G7

]}/
D(s) (5.51)

where Gi = 1/Ri, and

D(s) = s2(G1 + G2) + s
G7G8

G9C1
(G3 + G4) + G7G10

C1C2
(G5 + G6) (5.52)

Thus,

ωp =
√

G7G10

C1C2

G5 + G6

G1 + G2
and Q p = R3R4R8

R9(R3 + R4)

√
R7C1(R1 + R2)(R5 + R6)

R6R10C2R1R2R5

(5.53)

For details regarding this circuit, we refer the reader to Mikhael and Bhattacharyya
(1975).
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5.7.4
Sensitivity Analysis Using Network Simulation Tools

In Section 5.7.1, we have dealt with finding analytical expressions for the sensitivity
functions for a given filter network. When numerical values are required, one can
plug in appropriate element values in the pertinent expression to arrive at the
numerical value. If, however, the analytical expressions are not readily available,
network simulations tools such as SPICE, PSpice, or HSPICE can be used to
arrive at the numerical value of the sensitivity. In such a case, the component with
respect to which the sensitivity is required can be assigned a variable parameter
value and the filter performance function (such as ωp and Qp) can be evaluated as
a function of this variable parameter. The sensitivity value can then be calculated
by using the results (i.e., postprocessing) of pertinent simulations. Figure 5.12
shows the schematic of a fourth-order Chebychev BP filter realized using a cascade
of two biquadratic filters. Each biquad is realized using the multiple feedback
infinite-gain amplifier configuration, as discussed in Section 5.5 of this chapter.
We are interested in evaluating the sensitivity of the center frequency ωo of the filter
with respect to the resistance R16 whose nominal value is 6.34 k�. The variation
in the value of R16 is assumed to be 10%. Thus, its value could lie between 5.71
and 6.97 k�. In a typical network simulation using PSpice, one can assign R16

as a variable parameter with values such as 5.71, 6.34, and 6.97 k�. The center
frequency of the BP response can be evaluated as a function of this parameter and
thereafter the ratio �ωo/ωo

�R16/R16(nominal) can be calculated. This ratio is the sensitivity
of the center frequency ωo with respect to R16. A plot of the variation of ωo as
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Figure 5.12 Schematic of a fourth-order filter using a cascade of two biquad filters.
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Figure 5.13 Variation of the center frequency ωo of the BP
filter of Figure 5.12 as a function of the resistor R16.

a function of the variable parameter R16 obtained from the Pspice simulation is
presented in Figure 5.13.

5.8
Effect of Frequency-Dependent Gain of the OA on the Filter Performance

Until now, we have assumed the OA used to realize the filters as ideal. It is
well known that a practical OA is far from ideal. The open-loop gain is finite
and changes with frequency. Since the filter is a frequency-selective device, the
frequency-dependent gain of the OA can have a considerable impact on the
performance of an active-RC filter. In this section, we present an analytical
technique to take care of the frequency-dependent gain of an OA used as a building
block for a filter. The technique will be illustrated by considering the case of a
biquadratic filter.

5.8.1
Cases of Inverting, Noninverting, and Integrating Amplifiers Using an OA with
Frequency-Dependent Gain

5.8.1.1 Inverting Amplifier
Consider the amplifier shown in Figure 5.14. Application of KCL leads to

(Vi − Vx)G1 = (Vx − Vo)G2
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R2

A
Vi Vx

Vo

R1

+

−

Figure 5.14 An inverting voltage amplifier whose gain is a
function of the OA finite gain A.

But, Vx = −Vo/A. Substituting this in the above equation, we get ViG1 =
−Vo

[
G2 + G1+G2

A

]
.

The amplifier voltage gain then becomes

K− = Vo

Vi
= − G1

G2 + 1
A (G1 + G2)

= Ko
1

1 + 1
A

(
1 + R2

R1

)
or

K− = Ko
1

1 + K1
A

(5.54a)

where Ko = −R2/R1 is the inverting amplifier gain when the OA has the ideal
open-loop gain of infinity; K1 is the gain of the noninverting amplifier realized with
an ideal OA.

5.8.1.2 Noninverting Amplifier
Figure 5.15 presents the noninverting amplifier using an OA of gain A. The KCL
equations VxG1 + (Vx − Vo)G2 = 0 and Vx(G1 + G2) = VoG2x(G1 + G2) = VoG2

together with Vo = A(Vi − Vx) will lead to

K+ = Vo

Vi
= G1 + G2

G2

1

1 + 1
A

G1+G2
G2

Finally, since Gi = 1/Ri, we have

K+ = K1
1

1 + K1
A

(5.54b)

A

Vi

Vx

Vo

R1

R2

+

−

Figure 5.15 A noninverting voltage amplifier whose gain is
a function of the OA finite gain A.
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where K1 is the gain of the noninverting amplifier with ideal OA.

5.8.1.3 Inverting Integrating Amplifier
Following methods similar to the above, one can derive the gain of an inverting
integrating amplifier realized with an OA of gain A, as

T(s) = Vo(s)

Vi(s)
= TI(s)

1

1 + 1
A (1 − TI(s))

(5.55)

where TI(s) = − 1
sCR , the integrator gain function with an ideal OA.

From the above derivations, it is clear that when the OA has a frequency-
dependent gain A = A(s), all the gain functions K−, K+, and T(s) become frequency
dependent to a certain degree. One can therefore use, in general,

K− = K0M1(ω) exp(−jφ1)

K+ = K1M2(ω) exp(−jφ2) (5.56)

T( jω) = TI( jω)M3(ω) exp(−jφ3)

In the above, the explicit natures of the M and φ functions will depend upon the
specific model used to represent the frequency-dependent gain A(s) of the OA.
Thus, with an integrator model for A(s), that is, A(s) = ωt/s, s = jω, one can derive

M1(ω) = 1√
1 + (K1ω/ωt)2

= M2(ω), φ1(ω) = tan−1
(

K1ω

ωt

)
= φ2(ω), and

M3(ω) = 1√
1 + (ω/ωt)2

, φ3(ω) = tan−1
(

ω

ωt

)
(5.57)

In the above, ωt is the gain-bandwidth (GB) value of the OA. In deriving M3 and
φ3, the assumption 1/(ωtCR) � 1 has been used.

The technique to analyze an active filter realized with an OA that has a
frequency-dependent gain function involves (i) identification of the basic mode
of operation of the OA in the filter (i.e., inverting or noninverting amplifier or inte-
grating amplifier) and then (ii) employing the pertinent gain function as discussed
in Sections 5.8.1.1–5.8.1.3 and summarized in the form presented in Eq. (5.56).
The technique is illustrated by considering a specific case.

5.8.2
Case of Tow–Thomas Biquad Realized with OA Having Frequency-Dependent Gain

Consider Figure 5.16, which shows the Tow–Thomas filter in its basic form.
By inspection, we can understand that OA 1 and 2 are functioning as inverting
integrators and OA 3 is working as an inverting amplifier.

Considering the OA to be ideal, one can write the following equation for the
signal V2:

V2 = − Vs

sC1R4
− V2

sC1R1
− V1

sC1R3
(5.58a)
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Figure 5.16 The Tow–Thomas filter in its basic form.

But

V1 = − r2

r1
Vx and Vx = − 1

sC2R2
V2 (5.58b)

Now, considering the frequency-dependent gain function of the OA, we rewrite the
above equation as

V2 = − Vs

jωC1R4
M3 exp(−jφ3) − V2

jωC1R1
M3 exp(−jφ3)

− V1

jωC1R3
M3 exp(−jφ3) (5.59a)

But

V1 = − r2

r1
M1 exp(−jφ1)Vx and Vx = − 1

jωC2R2
V2M3 exp(−jφ3) (5.59b)

In the above, we have assumed that all the OAs are identical. M1, M3, φ1, and φ3

have the same significance as explained in Eq. (5.56). Writing Ko = (r2/r1) and
collecting all terms involving V2 on one side, we have

V2

[
1 + M3 exp(−jφ3)

jωC1R1
+ Ko

−ω2C1R3C2R2
M2

3M1 exp(−j(2φ3 + φ1))
]

= − Vs

jωC1R4
M3 exp(−jφ3) (5.60)

On further simplification, we get the transfer function, V2(jω)/Vs(jω) = N(jω)/D(jω),
where

N( jω) = − jω

C1R4
M3 exp(−jφ3) (5.61a)

D( jω) = −ω2 + jω

C1R1
M3 exp(−jφ3) + Ko

C1C2R2R3
M2

3M1 exp(−j(2φ3 + φ1))

(5.61b)

In order to find the pole frequency and pole Q under this new condition, one has
to expand D(jω) by writing exp(jx) = cos(x) + jsin(x). Then,

D( jω) = −ω2 + ωM3

C1R1
sin(φ3) + KoM2

3M1

C1C2R2R3
cos(2φ3 + φ1) + j

[
ωM3

C1R1
cos(φ3)

− Ko

C1C2R2R3
M2

3M1 sin(2φ3 + φ1)
]

(5.62)
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When ω equals the pole frequency ω̂p, one must have Re(D( jω)) = 0. The new pole
frequency is obtained by solving the quadratic equation in ω

0 = −ω2 + ωM3

C1R1
sin(φ3) + KoM2

3M1

C1C2R2R3
cos(2φ3 + φ1) (5.63)

If the GB of the OA is very large (20 times or more) compared to the ideal pole

frequency ωp =
√

Ko
C1C2R2R3

, one can expect the phase angles φ1 and φ3 to be small.

Then, approximately

ω̂p
∼= ωpM3

√
M1 cos(2φ3 + φ1) (5.64)

The new pole frequency will thus be smaller than the nominal (i.e., with ideal OA)
pole frequency ωp. To find the new Qp →Q̂p, we recall that the coefficient of s = jω
term in D(s) of the standard biquadratic transfer function is ωp/Qp. Then, in Eq.
(5.62), we have to pay attention to the imaginary part of D(s), since this could be
put in the form

jω

[
M3

C1R1
cos(φ3) − Ko

ωC1C2R2R3
M2

3M1 sin(2φ3 + φ1)
]

and be related to jω

(
ω̂p

Q̂p

)
. Again, in case of an ideal OA, ωp/Qp = 1/C1R1. Thus,

ω̂p

Q̂p

= ωp

Q p
M3 cos(φ3) − ω2

pM2
3M1 sin(2φ3 + φ1)

ω
(5.65)

The above leads to (assuming ω ∼= ωp)

Q̂p
∼= ω̂p

(ωp/Q p)M3 cos(φ3) − ωpM2
3M1 sin(2φ3 + φ1)

(5.66)

Finally, using the ratio of ω̂p/ωp from Eq. (5.69), we get

Q̂p = Q p
M3
√

M1 cos(2φ3 + φ1)

M3 cos(φ3) − Q pM2
3M1 sin(2φ3 + φ1)

(5.67)

Equation (5.67) indicates that the new pole Q (i.e., Q̂p) could become higher than the
ideal (i.e., with ideal OA) Qp if the denominator becomes less than the numerator.
This is known as Q-enhancement caused due to the frequency-dependent gain
function of the OA. Further, Q̂p can even become negative if the denominator
in Eq. (5.67) becomes negative. A negative pole Q implies a positive real part for
the poles of the second-order filter. A positive real part will produce an unstable
system. Thus, when the OA has a frequency-dependent gain, the pole Q will
in general show an increase from the nominal value and the system may even
become unstable when the filter requires a high Qp design and if the GB of the
OA is not substantially higher than the nominal pole frequency ωp.

A rule of thumb for avoiding the above degradations due to a finite,
frequency-dependent gain of the OA is to choose an OA whose GB is at least 20
times higher than the design ωp. Further, before embarking on the design task,
one must estimate the enhancement in the value of Qp by employing Eq. (5.67).
A known model for the OA gain function A(s) has to be used for this purpose.
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Example 5.7. Consider the design of a second-order filter using the architecture
shown in Figure 5.16. Assume the model A(s) = ωt/s for the OA gain function,
where ωt = 2π × 106 rad s−1 is the GB value of the OA. The design goals are as
follows: a nominal ωp of 2π × 50 × 103 rad s−1 and a Qp of 10. Calculate the ωp

and Qp values that can be realized under this case.
We can use Eq. (5.57) to calculate the values of M1, M3, φ1, and φ3. We shall

assume that Ko = 1. Then K1 = 2. Now we can find M3 = 0.99875, M1 = 0.99503,
cos(2φ3 + φ1) = 0.9801, sin(2φ3 + φ1) = 0.1983, and cos(φ3) = 0.9987. These values,
when substituted in Eqs. (5.64) and (5.67), give f̂p = ω̂p/2π = 49.315 kHz and
Q̂p = −1.08793. This reveals that the realized pole frequency (49.315 kHz) will be
slightly less than the nominal pole frequency fp of 50 kHz. It also shows that the
realized Qp will be negative, implying that the system might oscillate after being
designed.

If the design is revised for a lower Qp value, say, Qp = 2, the above calculations
will produce Q̂p = 3.297. This shows an enhancement in the Qp value from 2 to a
value of 3.297.

5.9
Second-Order Filter Realization Using Operational Transconductance Amplifier (OTA)

OTAs accept voltage signals at the input, as in OAs. Unlike OA, the output
resistance of an OTA is very high (100 k� or more) and hence at the output it
behaves more like a current source. Thus, the OTA produces a current signal as
response to a voltage signal at its input. Hence, the name transconductance. If the
output of an OTA is terminated in a high resistance, a large signal voltage can
be produced at the output and hence the OTA can also be made to function as a
voltage amplifier. An OTA can be configured to produce several special network
response functions, similar to the OA. Hence, an OTA can be conveniently used to
produce frequency-selective transfer functions such as a second-order filter. A few
examples of these have been considered in Chapter 2. The symbol for an OTA is
shown in Figure 5.17a and the AC equivalent circuit is shown in Figure 5.17b. In
Figure 5.17a, the terminal marked Vc (or Ic) represents a control terminal that can
be used to change the transconductance value gm of the OTA. Table 5.10 presents
several building blocks and networks realizable with OTAs, including special

Out
Out

In +

In
In −

OTA

Vc(or, Ic)

gm(V+−V−)

Io

Vsup−

Vsup+

V+ V+

V−

V−

(a) (b)

Figure 5.17 (a) The symbol for an OTA and (b) equivalent circuit of an OTA.
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Table 5.10 Building blocks and network elements realizable
using OTAs (Geiger and Sanchez-Sinencio, 1985; Su, 1996).

Network Function Comment

A

Zin

_

gm
+

Zin = 1
gm

Grounded resistance of 1
gm

�. If the input and ground
terminals are reversed, we
get a negative resistance of

1
gm

�

B

Zin

gm1

gm2

+

+

gm1 = gm2 =
gm

Zin = 1
gm

Floating resistance of 1
gm

�.

If the input and ground ter-
minals are reversed, we get
a negative floating resistance
of 1

gm
�

C

Vi Vo

CL

gm
−

+
Vo
Vi

= gm
sCL

Voltage integrator

D

Ci

Ii

Io

 

 

gm
−

+

↓

→ Io
Ii

= gm
sCi

Current integrator

E

C

Vi

VOgm2

+

−gm1

−

+ Vo
Vi

= gm1
sC+gm2

Lossy voltage integrator
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Table 5.10 (continued).

Network Function Comment

F
Vi

VOgm2

+

−gm1

−

+
Vo
Vi

= gm1
gm2

Voltage amplifier

G

V2

V1

.

.

.
Vn

VO

gmn
−

+

gm2
−

+

gm1
−

+

gm2

+

−
Vo =

1
gm

n∑
i=1

gmiVi

Weighted summer

H
Vi

C1

C2

Vo
gm1

−

+

gm2
+

−

Vo
Vi

=
sC1+gm1

s(C1+C2)+gm2

First-order section

I

Zin ZL

gm1
−

+

gm2
−

+

Zin =
1

gm1gm2
1

ZL

Grounded positive imped-
ance inverter. If ZL is a ca-
pacitor of C Farads, then Zin

reflects a grounded inductor
of value C/(gm1gm2) H.

J

Zin
ZL

gm1
−

+

gm3
−

+

gm2
−

+

gm2 =
gm3Zin =

1
gm1gm2

1
ZL

Floating positive impedance
inverter. If ZL is a capacitor
of C Farads, then Zin reflects
a grounded inductor of value
C/(gm1gm2) H.
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network elements such as a gyrator, FDNR, and so on. These building blocks
and functional elements can be conveniently utilized to produce fully monolithic
continuous-time filters using an available IC technology. In the ac equivalent
circuit, the OTA has been assumed as ideal, that is, with an infinite input resistance
and an output resistance. Also, it is assumed that no parasitic capacitances are
present.

5.9.1
Realization of a Filter Using OTAs

On examining the networks in Table 5.10, one may appreciate that an OTA can be
converted to a resistance by simply connecting the output to the input (entries A,
B in Table 5.10). This is the same principle as that used to implement an active
resistance from a BJT or MOS transistor. Thus, the RC-active filters realized with
OAs can now be realized using capacitors, OTAs connected as resistors, and OTA
connected as a voltage amplifier. This gives rise to what is popularly known as
OTA-C filters or gm − C filters. It may also be noted that since an OTA and a capacitor
are easily available in an IC technology, OTA-C filters easily render themselves
to monolithic realizations. It should be noted that OTA-C filters can be designed
to work at frequencies of the order of tens of hundreds of megahertz; they are
physically small and consume low power.

5.9.2
An OTA-C Band-Pass Filter

Consider Figure 5.18a, whose equivalent circuit is shown in Figure 5.18b.
KCL at node b gives

(Vi − Vb)sC1 − gm1Vo = 0 (5.68)

and KCL at node a gives

gm2Vb − gm3Vo = VosC2 (5.69)

Eliminating Vb from the above two equations, we have the VTF Vo(s)/Vi(s) to be

Vo(s)

Vi(s)
= sgm2C1

s2C1C2 + sgm3C1 + gm1gm2
(5.70)

This represents a BP filter. On comparing with the standard biquadratic transfer
function (Table 5.2), we can identify

ωp =
√

gm1gm2

C1C2
,

ωp

Q p
= gm3

C2
, therefore Q p =

√
C2

C1

√
gm1gm2

gm3
(5.71)

It should be noted that in an OTA-C filter the design parameters are the capacitance
C (an electrical element) and gm (a network function). The gm has to be realized by
using appropriate electrical control voltage or current signals.
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Figure 5.18 An OTA-C BP filter; (a) schematic, (b) AC equivalent circuit.

5.9.3
A General Biquadratic Filter Structure

Figure 5.19a presents a structure, which can be used to realize any of the five
standard biquadratic transfer functions. It consists of five OTAs. The analysis can
be carried out by considering the AC equivalent circuit shown in Figure 5.19b. By
inspection, we have

iC1 = gm5VA − gm1Vo (5.72a)

Vx = iC1

sC1
= gm5VA − gm1Vo

sC1
(5.72b)

KCL at node Vy leads to

gm2Vx + gm4VB − gm3Vo = sC2(Vo − VC) (5.73)

Substituting for Vx from Eq. (5.77b), and simplifying, we get

Vo = s2VC + (gm4/C2)sVB + (gm2gm5/C1C2)VA

s2 + (gm3/C2)s + (gm1gm2/C1C2)
(5.74)

Comparing the denominator of Eq. (5.79) with the standard biquadratic form, we
get

ωp =
√

gm1gm2

C1C2
,
ωp

Q p
= gm3

C2
(5.75a)
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Figure 5.19 (a) A universal biquad filter using five OTAs and (b) equivalent circuit of (a).

and

Q p = 1
gm3

√
gm1gm2C2

C1
(5.75b)

On examining Eq. (5.74), it is obvious that, by appropriately choosing the signal
voltages VA, VB, or VC, we can realize different transfer functions. Thus

For an LP filter: choose VB = VC = 0 (5.76)

For an HP filter: choose VA = VB = 0 (5.77)

For a BP filter: choose VA = VC = 0 (5.78)

For a notch filter: choose VB = 0, VA = VC (5.79)

For an AP filter: choose VA = VB = VC = Vi, gm1 = gm5, and gm2 = gm4.

(5.80)

5.10
Technological Implementation Considerations

In the early stages of active-RC filters, the filters were made using OAs and discrete
RC elements mounted together on a printed circuit board (PCB). As the impetus
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toward miniaturization gained momentum, hybrid technology was adopted for the
implementation of active-RC filters.

In hybrid technology, the OA dies and the discrete components are bonded in
a single package. Special materials and techniques are used to implement the
resistances and capacitances. In thick film technique, resistances are prepared
from a paste of conducting particles and glass, deposited on an insulating surface.
The physical sizes can be a lot smaller than that of the discrete resistances. The
sheet resistance of a thick film paste ranges between 1 �/square and 10 M�/square
(Chen, 1995). Thus, a large range (0.5 � to 1 G�) of resistances can be realized.
The tolerance (20–30%) and the temperature coefficient (50–100 ppm/◦K) of the
resistances are, however, rather large. The tolerance could be greatly reduced in
thin film technology, where the resistances are made from thin films of metal
alloys deposited on an insulating surface (i.e., glass). Thin film circuits are much
smaller than thick film circuits. The available resistance range is, however, smaller.
The sheet resistance value is of the order of 10–200 �/square, leading to a nominal
resistance value ranging from 10 � to 10 M�. The temperature coefficient of
resistance (TCR) is of the order of 15–150 ppm/◦K and the absolute tolerance is
typically between 5 and 10%. To obtain high nominal resistance, the resistive layer
is specially shaped by laser trimming. This process, however, increases the cost of
production of the resistance. Capacitances are also available in hybrid technology,
but mostly resistances using either thick- or thin film techniques have been used
in hybrid technological production of an active-RC filter.

Advancements in semiconductor process IC technology leading to on-chip OTA
devices opened up the possibilities of implementing an active filter entirely on
a monolithic substrate. In this respect, it is useful to know about the R and C
elements as are available in a given IC technology. Brief discussions on these
follow.

5.10.1
Resistances in IC Technology

In its simplest form, a resistance is formed by a rectangular layer of semiconduc-
tor material, with a specified sheet resistance (resistance per square). The total
resistance is equal to the number of squares multiplied by the sheet resistance.
For a resistance of large value, an economy in substrate area can be achieved
by adopting a serpentine (meandered) structure. An accurate estimation of the
resistance requires use of conformal mapping technique.

5.10.1.1 Diffused Resistor
Usually, the diffusion layers in a transistor process can be used to implement
resistors. Thus, in a BJT process, the base, emitter, or collector diffusion can be
employed to build resistors. The most preferred one is the base-diffused resistor.
A typical geometry and the electrical model are shown in Figure 5.20 (Grebene,
1984). For good matching tolerance, a large width should be used for the diffusion
layer. Base-diffused resistors with 50-μm resistor width can achieve a matching
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Figure 5.20 (a) Cross section and (b) electrical circuit model of a typical diffused resistor.

tolerance of ±0.2%. The sheet resistance ranges between 100 and 200 �/square.
The TCR ranges between 1500 and 2000 ppm/

◦C.

5.10.1.2 Pinched Resistor
To obtain a relatively high value of the sheet resistance (and, hence, to build a
resistor of high value with less area), the base diffusion area is pinched, leading
to pinched diffused resistors. The sheet resistance that can be realized falls in the
range of 2–10 k�/square. The pinching is obtained, for example, by diffusing an
n+ diffusion layer over a p-type base diffusion. The emitter diffusion greatly reduces
the effective cross section (i.e., pinches) of the p-type resistor, thereby raising its
sheet resistivity. Figure 5.21 shows a geometrical sketch of a p-type base pinched
resistor. The process tolerance is very poor, ranging to a maximum of ±50%.

5.10.1.3 Epitaxial and Ion-Implanted Resistors
Large values of resistance can also be obtained by using low doping concentration
that forms the bulk of the resistor. Thus, an epitaxial resistor uses the bulk
resistance of the n-type epitaxy in the BJT process. The p-type base diffusion can be

pp
p base

p substrate
n+  buried

Epitaxial n

Resistor contacts

n+  emitter
Pinched area

Figure 5.21 Cross section of a typical pinched resistor.
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Epi contact
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Figure 5.22 Cross section of (a) epitaxial and (b) ion-implanted resistors.

used to pinch the cross section of the epitaxial resistor, thereby leading to a pinched
epitaxial resistor. For an epi thickness of 10 μm and a doping concentration of 1015

donor atoms per cubic centimeter, an effective sheet resistance of 5 k�/square
can be obtained. The TCR value for epitaxial resistor is rather high, being of the
order of 3000 ppm/

◦C.
An ion-implanted resistor can be built using a very thin layer of implant

(0.1−0.8 μm), which leads to a very high value of sheet resistivity compared to that
of the ordinary diffused resistors. Commonly used impurities are the p-type boron
atoms. A sheet resistance of 100–1000 �/square can be obtained. The matching
tolerance is very good, being typically within ±2%. The TCR is controllable
to ±100 ppm/

◦C. Figures 5.22a and 5.22b, respectively, show the geometrical
structures of epi and ion-implanted type of resistors.

5.10.1.4 Active Resistors
Active resistance implies resistance obtained from active devices, that is, transistors.
Considering the I–V characteristics of well-known active devices, that is, BJT and
MOS transistors, one can easily see that the devices exhibit the behavior of a
resistance in certain areas of the I–V characteristics. For the BJT, it is the saturation
zone, while for the MOS it is the linear zone. This is illustrated in Figure 5.23.

The advantages of an active resistance compared with a passive semiconductor
resistance are twofold: (i) the available resistance can be very large without requir-
ing large area of the substrate and (ii) the value of the resistance can be changed

IC

IC ID

ID

VCE VDS(a) (b)

Figure 5.23 Current–voltage characteristics of (a) BJT
and (b) MOS transistors pertaining to implementation of
resistors.
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Figure 5.24 Active resistor (a) with a single MOS transistor
and (b) with MOS transistors in differential configuration.

by a control voltage or current. In the modern MOS and CMOS technology, MOS
transistors working in the linear region are frequently used to produce a resistance.
Considering the N-type metal-oxide semiconductor (NMOS) transistor in
Figure 5.24a, the instantaneous (i.e., AC plus DC) drain–source current, assuming
operation in the linear (ohmic) region, can be modeled by the level = 1 equation:

iD = Kn[2(VC − vS − VThn)(vD − vS) − (vD − vS)2] (5.81)

In the above, Kn is the transconductance parameter, VThn is the threshold
voltage, and VC is the DC control voltage applied to the gate of the NMOS
transistor. The operation of the transistor is in the linear (ohmic) region so that
vD − vS ≤ VC − vS − VThn is true. The drain–source conductance is given by ∂iD

∂vDS
and the associated resistance (RMOS) is the inverse of this value. Since in an MOS
transistor, Kn is proportional to the width-to-length ratio (W/L) of the transistor, it
is clear that RMOS is inversely proportional to W and, hence, by choosing a narrow
width transistor, a large RMOS can be realized. In the differential configuration of
Figure 5.24b, the nonlinear term in RMOS gets cancelled out and one can derive
the differential resistance value as

R = 1

μnCox (VC − VThn)

(
L

W

)
= Rsh

(
L

W

)
, where Kn = 1

2
μnCox

(
W

L

)
(5.82)

With μnCox = 25 μA V−2 and VC − VThn = 1 V, a value Rsh = 40 k� can be
realized.

5.10.2
Capacitors in IC Technology

Capacitor structures available in monolithic form include pn junction, MOS,
and polysilicon capacitors. Silicon dioxide or silicon nitride sandwiched between
two layers of doped (n- or p-type) silicon forms the basis of capacitors in a
typical IC technology. These, however, need extra masking steps. More naturally
occurring capacitors are formed between semiconductor junctions, for example, in
BJT process technology. In any case, typical values are very small (viz., 0.05–0.5
pF/mil2) (Grebene, 1984) and values larger than 10 pF are not practical because of
the large substrate area consumed.
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5.10.2.1 Junction Capacitors
Application of a reverse bias across a semiconductor junction results in a depletion
layer that is devoid of mobile carriers. The situation closely resembles two parallel
plates separated by a dielectric of width equal to the width of the depletion area. The
area of the parallel plate is the total junction area. A typical analytical expression
for the capacitance per unit area takes the form C = Cxo/(1 + V/Vt)

n, where Cxo is
the zero bias capacitance (per unit area), Vt is the built-in junction potential, and
the exponent n is dependent on the profile of the junction transition. This changes
between 1/2 and 1/3, as the transition contour changes from a step junction
to a linearly graded junction. As in a semiconductor resistor, a capacitor built
using a semiconductor process is far from ideal. Thus, it will have few parasitic
components arising out of the properties of the semiconductor layers. In a BJT
process, three capacitors are available (see Figure 5.25), and CBC is mostly used for
practical purposes. CCS is essentially a parasitic capacitance and is not conveniently
measurable. CEB can give relatively high value (0.001 pF/μm2) of capacitance but
has a small breakdown voltage. CBC has a higher break down voltage, but a smaller
value for capacitance (2.3 × 10−4 pF/μm2) compared with CEB (Grebene, 1984).

5.10.2.2 MOS Capacitors
An MOS capacitor is formed between the n+ diffusion (deposited while creating
the channel region) and an aluminum (or polysilicon) layer with a layer of SiO2

deposited (500–1000 Å) in between them. Sometimes, the silicon nitride layer is
used as dielectric because of slightly higher dielectric constant (4–9) than silicon
dioxide (2.7–4.2). A typical cross section and the electrical model are shown in
Figure 5.26 (Grebene, 1984).

p− substrate

n+

np p pn+ (emitter)(base)

Collector
b

(Bipolar transistor)

B
E

C

Substrate

CBC

CCS

CEB

(Electrical model for the junction capacitances)

(a)

(b)

e

Figure 5.25 (a) Cross section of a BJT transistor and (b)
electrical circuit model showing the junction capacitors.
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R

Figure 5.26 Basic MOS capacitor: (a) cross section and (b) electrical circuit model.

It may be noticed that, while C is the desired capacitance, it is invariably associated
with parasitic components like R, Cp, and a diode D.

5.10.2.3 Polysilicon Capacitor

Polysilicon capacitors are conveniently available in metal-oxide semiconductor field
effect transistor (MOSFET) technology, where the gate of the MOSFET transistor is
made of polysilicon material. Figure 5.27a shows a typical structure of a polysilicon
capacitor, where a thin oxide is deposited on top of a polysilicon layer and serves as an
insulating layer between the top-plate metal layer and the bottom-plate polysilicon
layer. The polysilicon region is isolated from the substrate by a thick oxide layer that
forms a parasitic parallel-plate capacitance between the polysilicon layer and the sub-
strate. The equivalent circuit model, which reflects this, is shown in Figure 5.27b.

5.10.3
Inductors

Interest in monolithic inductors has been on the increase with the availability
of submicron CMOS IC technology. Initially, the role of active-RC filters was to
replace the use of inductances. The signal processing case was for low frequencies

Capacitor
contact Polycontact

PolysiliconThinox

SiO2

p substrate

C
R

Cox

Substrate(a) (b)

Figure 5.27 MOS polysilicon capacitor: (a) cross section and (b) electrical circuit model.
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Via

Metal 1
Metal 2

Figure 5.28 Typical layout of a spiral inductor in CMOS IC technology.

(300 Hz to 3.4 kHz) and the inductors usable at these frequencies were too bulky.
As the feature size of the transistors in the IC technology shrunk, the possibilities
of processing high-frequency signals on a monolithic substrate came into play. At
these frequencies (300 MHz and more), the inductors needed are small in value
(nano henries) and can be easily laid out using the metal lines available in a
modern IC technological process. Both rectangular and circular spiral patterns
have been used for signal processing at frequencies of 900 MHz and more (Nguyen
and Meyer, 1990). A typical pattern for a rectangular spiral monolithic inductor
is shown in Figure 5.28 (Chen, 1995). Laying two such independent patterns in
an interleaved way can produce a transformer on a monolithic substrate. Like a
monolithic capacitor, the use of a monolithic inductor is primarily limited by the
substrate area that it will occupy. Practical limits are expected to be around a value
of 10 nH.

5.10.4
Active Building Blocks

5.10.4.1 Operational Amplifier (OA)

OA is the most important and most widely used building block in active filter design
(Geiger, Allen, and Strader, 1990; Johns and Martin, 1997; Baker, Li, and Boyce,
1998). The desired characteristics of an OA, for the design of a filter, are very high
input impedance, high open-loop gain, very wide gain-bandwidth product value,
and very low output impedance. Other important characteristics are low offset
voltage, high common-mode rejection ratio (CMRR) and power supply rejection
ratio (PSRR), high slew rate, low settling time, and large dynamic range. Several
excellent designs of OA have been reported in the literature. Many high-quality OAs
are available as commercial products. Examples are AD648, HA 2600, LM 101, and
μA 741 chips. One typical realization is shown in Figure 5.29. This implementation
uses a 5-μm CMOS process; the transistor dimensions are shown in Table 5.11
(Toumazou, Lidgey, and Haigh, 1990). This OA uses a bias current of 25 mA with
±5 V supply. The open-loop gain is about 73 dB and the GB value is 2.2 MHz. The
first corner frequency (for one-pole model) is at 400 Hz.
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Figure 5.29 A typical realization of an OA (adapted from Toumazou et al., 1990).

Table 5.11 Geometric dimensions of the OA shown in Figure 5.29.

Transistor M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13 M14

W (μm) 120 120 50 50 150 95 150 135 207.5 135 402.5 7.5 7.5 150
L (μm) 7 7 10 10 10 10 10 5 5 5 5 15 5 10

In Fig. 5.29, transistor M14 works like a diode providing the bias current Ibias for
M5 and M7, M8, M9, M6 chain. The PMOS transistors M1 and M2 form the input
differential stages. The current mirror load M3 and M4 convert the differential
signal to a single-ended output. M6 provides additional gain. M8 and M9 provide
for biasing M10 and M11 for class AB operation. The output (Vout) is taken from
the source terminals of M10 and M11, thereby facilitating a low output impedance
condition. The transistors M12 and M13 and the capacitance C form a series RC
feedback path for frequency compensation and stability.

5.10.4.2 Operational Transconductance Amplifier (OTA)
The OTA has gained popularity as a building block for monolithic solution for
implementation of analog filters (Geiger and Sanchez-Sinencio, 1985; Mohan,
2002). In OTA-based implementation, the resistance can be replaced by the OTA
itself, as illustrated in Table 5.9. An OTA closely follows the structure of an OA at its
input, but the low output impedance stage is replaced by a high impedance output
stage. Large open circuit voltage gain is easily available, but low output impedance
is not obtainable. Low output impedance is not essential if the amplifier is driving
a high impedance load, such as a capacitor. Such is the case, for example, in
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Figure 5.30 A typical realization of an OTA (adapted from Geiger et al., 1990).

switched capacitor filters. Several OTA chips are available as commercial product.
The LM13700 chip is one such example. The pertinent transfer function of an OTA
is the small signal (ac) short circuit transconductance. Figure 5.30 shows a typical
OTA network where the popular folded-cascade architecture has been used (Geiger,
Allen, and Strader, 1990). The output stage consists of a cascode current mirror
whose output impedance is very high (100 M� and more). Table 5.12 presents
the geometrical dimensions and DC bias currents in the various transistors. The
transistors M1 and M2 comprise the input differential stage. The loads for these
amplifiers are the common gate stages arranged by transistors M6 and M11.
Since the common gate stage has low input impedance, the differential voltage
gain is compromised, but a large transconductance gain is achieved. The signal
currents in M6 and M11 are passed via the cascode mirror transistors M7–M10.
The differential-output current at the drain nodes of M10 and M11 transistors
produces a large voltage gain across the high output impedance available at this
node.

Table 5.12 Geometric dimensions for the OTA shown in Figure 5.30.

Transistor M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12 M13

W (μm) 15 15 30 30 70 70 15 15 15 15 70 70 30
L (μm) 5 5 5 5 5 5 5 5 5 5 5 5 5
IDC (μA) 5 5 10 10 10 10 5 5 5 5 5 5 10
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OTAs with dual and multiple outputs are also available and have been used in
filter design (Deliyanis, Sun, and Fidler, 1999; Tu et al., 2007; Wang, Zhou, and Li,
2008; Hwang et al., 2008)

5.10.4.3 Transconductance Amplifiers (TCAs)
TCAs have become popular in the last decade for realizing high-frequency wideband
continuous-time filters in monolithic form. The function of a TCA is similar to that
of an OTA, but the TCA does not necessarily follow the architecture of an OTA.
The number of transistors employed to implement a TCA is usually much smaller
than that for an OTA. The transconductance factor in a TCA is also usually smaller
than that available in an OTA. The TCAs provide a low-voltage, low-power solution
toward high-frequency wideband signal processing operation. Figure 5.31 presents
a TCA, which uses eight MOS transistors. Assuming that all the transistors are
operating in saturation and using the square-law model for the transistors, the
expression of the output current is given by (Raut, 1992)

Iout = μPCoxP

(
W

L

)
P

(VC1 − VC2 )(V1 − V2) (5.83)

where μP, CoxP , and (W/L)P are same for all the PMOS transistors. The form of
Eq. (5.83) shows that Iout depends linearly upon both (VC1 − VC2 ) and (V1 − V2)
and thus the transconductor can be used for both linear and nonlinear signal
processing. Applications of the TCAs for a variety of signal processing, including
filtering, have been reported in the literature (Raut, 1993; Raut and Daoud,
1993). It should also be mentioned that some new elements such as the current
differencing transconductance amplifier (CDTA) and the multioutput TCA, have
been introduced recently, and their use in the realization of current-mode filters
has been discussed (Biolek, Hancioglu, and Keskin, 2008; Prasad, Bhaskar, and
Singh, 2009; Tangsrirat, Tanjaroen, and Pukkalamm, 2009).

VC1

VSS

VC2

V1

V2

N-wells

Iout

MP1 MP2 MP3 MP4

Figure 5.31 A typical realization of a TCA (adapted from Raut, © IEEE, 1992).
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Figure 5.32 Current conveyor type II. (a) Symbol represent-
ing CCII. (b) Input-output relationship in matrix form.

5.10.4.4 Current Conveyor (CC)
CCs have become popular in the past decade for implementing current-mode
filters. A CC (Sedra and Smith, 1970) maintains a virtual short circuit at its input
nodes as in an OA. But one of the input nodes of a CC is a low-impedance node. A
signal current injected at this node can be conveyed to the output terminal with a
proportionality factor ±k, where k is a constant and is usually unity. Symbolically,
a CC is represented as shown in Figure 5.32a, and the output–input relationship
is given by a matrix, as shown in Figure 5.32b.

The BJT IC-technology-based AD844 (Analog Devices) has been used by many
researchers to illustrate CC-based filter designs (Sedra and Smith, 2004; Fabre and
Alami, 1995; Abuelma’atti and Shabra, 1966; Mohan, 2002). Good CMOS-based CCs
have also been reported in the literature (Elwan and Soliman, 1996). A dual-output
CC, implemented in a 3-μm CMOS technology, is shown in Figure 5.33 (Minaei,
Kuntman, and Cicekoglu, 2000). The capacitors C are used to stabilize the system.
The signal currents at the gates of M4 and M6 are transported to terminals Z1

and Z2. The output currents at Z1 and Z2 are of opposite phases; therefore, this

M7
200/4

M19
200/4

M18
200/4

M17
200/4

VDD = 5 V

−VSS = −5 V

M20
200/4

M11
400/4

M12
400/4

200/4
M5

200/4
M4

200/4
M13200/4

M8
200/4

M9
200/4

M10
200/4

IB
100 μA

M6

M1

M3

M2

M14

XY
C

C 200/4

200/2

200/4

M16

M15

200/4

200/2

Z2Z1

0.5 pF

0.5 pF

Figure 5.33 A dual-output current conveyor (adapted from Minaei, et al., © IEEE, 2000).
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network can realize the CC function with either polarity. Applications of the CC in
realizing current-mode filters are discussed in Chapter 8.

It should be mentioned that a number of other circuit elements, such as the
current feedback OA, differential current-mode OA, dual-output current OA,
differential difference current conveyors (DDCCII), and fully difference cur-
rent conveyors (FDCCII), have been introduced and their applications in the
current-mode filter design are given (Mohan, 2002; Altun and Kuntman, 2008;
Cheng and Wang, 1997; Toumazou, Lidgey, and Haigh, 1990; Jiraseree-amornkun
and Surakampotorn, 2008; Chang, Soliman, and Swamy, 2007; Soliman, 1996,
1997; Elwan and Soliman, 1996; Chen, 2009a, 2009b; Chiu and Horng, 2007).

Practice Problems

5.1 (a) Design a Sallen–Key biquad to realize the voltage transfer function, H(s) =
H0s2

s2+0.01s+1
. Let C1 = C3 = 1 F and R2 = R4. (b) Using RC:CR transformation,

get the corresponding LP filter.
5.2 (a) Design a Sallen–Key (SK) band-pass biquad with a pole frequency of

1000 Hz, a pole Q of 10, and a peak gain of 4. Use equal element values and
0.01 μ F capacitors. (b) If you use the RC:CR transformation, what kind of a
filter do you obtain? Draw the circuit diagram of the resulting filter and find
the various element values.

5.3 (a) Design an SK BP filter with the voltage transfer function, 600s
s2+600s+3×108 . (b)

If you use the RC:CR transformation, what kind of filter do you obtain? Draw
the circuit diagram of the filter so obtained and find the various element
values.

5.4 Consider Figure 5.3. If Y1, Y2, and Y3 correspond to admittances of resistors,
and Y4 and Y5 to that of capacitors, what kind of filter characteristic does it
realize?

5.5 Assume that R1 = R2 = R3 = 1 � and C4 = 10 F. Determine the values of
C5 and K such that the denominator of the voltage transfer function in
Problem 5.4 above has the form D(s) = s2 + 0.2s + 1.

5.6 Design a second-order Bessel–Thomson (BT) filter using SK architecture.
The filter has a delay of 1 ms at DC. Choose equal-C and equal-R design
strategy. Let C = 1 F.

5.7 Use the infinite-gain multiple feedback single-amplifier biquad (IGMFSAB)
network to design a band-pass filter with fp = 10 kHz and Qp = 10. Assume
equal-capacitor values of 1 nF each.

5.8 Consider the band-pass filter network of Figure P5.8. It combines both
positive and negative feedback around an ideal OA. Find an expression for
the voltage transfer function. Then design the element values to meet the
specifications fp = 10 kHz, Qp = 10, and each of the capacitors is 0.1 μ F.
Limit the resistance value spread to within 100.
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5.9 Design a KHN low-pass biquad such that ωp = 1 rad s−1 and Qp = 20. Use
equal capacitors of 1 F each and R1 = R2 = 1 �. What is the gain of this
filter at DC?

5.10 Design a Tow–Thomas band-pass biquad with ωp = 1 rad s−1, Qp = 15, and
a peak gain of 5. Use equal capacitors of 1 F each.

5.11 Design a Fleischer–Tow high-pass biquad with ωp = 1, Qp = 8, and a flat
gain of 2.

5.12 Design a Fleischer–Tow band-reject biquad withωp = 1, Q = 12, and H(0) =
H(∞) = 1.

5.13 Figure P5.13 is known as the Bainter band-reject biquad (Bainter, 1975).
Derive the transfer function Vo/Vs.
Choosing C1 = C2 = 1 F, derive the set of design equations involving the

resistances R1, R2, . . . , R6 to realize the transfer function, Vo
Vs

= s2+ω2
z

s2+
(

ωp
Q p

)
s+ω2

p

.

5.14 Derive an expression for S
Q p
K for the case where the denominator polynomial

of a filter transfer function has the form D(s) = s2 +
(

ωp
Q p

)
s + ω2

p = (s +
1)2 − Kαs, where α is not a function of K.
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5.15 In Problem 5.9, find the expressions for the Q-sensitivity with respect to the
capacitors.

5.16 In Problem 5.13, find the expressions for Q-sensitivity with respect to the
resistors.

5.17 Use a Sallen and Key low-pass filter structure to realize the transfer function,
V2(s)
V1(s) = H0

s20.5714s+1
with equal-resistance, equal-capacitor assumption. (a) Find

the design values for R, C, and K assuming that the gain K is implemented
with an ideal OA. What will be the value of H0 that will be realized? (b) If the
OA has a frequency-dependent gain with normalized GBn = ωt/ωp = 7.5
and the gain model A(s) = ωt/s, find the network function that will be
actually realized. What will be the resulting values of ωp and Qp? What will be
the numerical value of H0 that is realized? (c) Verify your calculation results
with SPICE (or similar) simulation. For the nonideal OA, you may use the
model shown in Figure P5.17.

5.18 Repeat parts (a)–(c) of Problems 5.17 for an SK band-pass filter design with
the transfer function:

V2(s)

V1(s)
= Hs

s2 + 0.5714s + 1
.

Use equal-R, equal-C design strategy.
5.19 Design a band-pass filter for which the pole frequency is 105 rad s−1 with a

bandwidth of 103 rad s−1. Scale the network so that all the element values
are in a practical range.
(In many of the following problems you may need to use a cascade connection
of second- and first-order systems. Use your discretion.)

5.20 A low-pass filter has the following specifications: fc = 10 kHz, fa =
60 kHz, Ap = 1 dB peak-to-peak ripple, and Aa = 50 dB. Design an active-
RC filter to satisfy the specifications.

Vo

L

R

ssL
RA(s) =

wt=

Vi

Vo

Vi
= A(s)

A = ∞
+

−

Figure P5.17



Practice Problems 155

5.21 A high-pass filter has the specifications: passband from 104 rad s−1 to
infinity. Passband peak-to-peak ripple less than 2 dB. For ω ≤ 2000 rad s−1,
the loss must be greater than 50 dB. Design an active-RC filter to satisfy the
specifications.

5.22 An equiripple band-pass filter is required to satisfy the specifications: (a) The
passband extends from ω = 1000 to 4000 rad s−1. The peak-to-peak ripple
in the passband does not exceed 0.5 dB. (b) The magnitude characteristic
is at least 30 dB down at ω = 12 × 103 rad s−1 from its peak value in the
passband. (c) Design an active-RC filter to satisfy the specifications.

5.23 A band-reject filter has the specifications. (a) The stopband extends from 10
to 100 kHz. (b) The magnitude characteristic is at least 30 dB down from its
peak value at 20 kHz. (c) The peak-to-peak ripple in the passband does not
exceed 1 dB. Design an active-RC filter to satisfy the above specifications.
Use state-variable biquad section(s).

5.24 Using the state-variable biquad, realize a second-order all-pass function
having pole and zero frequency ωp = ωz = 5× 104 rad s−1, and Qp = Qz =
10.

5.25 Figure P5.25 represents a second-order state-variable filter. Provide an
implementation of the filter using two capacitors and three OAs, and several
resistors. The OAs provide the summing operation while the capacitors
produce the integrating function. The signal gains are shown by the letters
a, b, c, . . . by the side of the line branches. Derive an expression for the
voltage transfer function V2/V1.

5.26 Design a normalized Chebyshev second-order low-pass filter with Ap = 2 dB
and a DC gain of 2. Use (a) multiple feedback (infinite-gain OA) structure
and (b) state-variable structure.

5.27 The circuit of Figure P5.27 can produce (Friend, Harris, and Hilberman,
1975) a general biquadratic voltage transfer function V2/V1. Show a design

to obtain V2
V1

= s2−5s+10
s2+5s+10

, which is an all-pass filter function.

V1 V2

a

b

c

d

e

f

−g

−h

s
1−

s
1−

Figure P5.25
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5.28 The A & M filter (Ackerberg and Mossberg, 1974) which can produce both
low-pass and band-pass filter responses depending upon the choice of the
output signal node is shown in Figure P5.28. Show that the band-pass voltage
transfer function is given by

Vo1

Vi
= − s/RC1

s2 + s 1
R1C1

+ r1
C1C2R2rr2

.

5.29 Consider the Filter in Figure P5.28, where the OA has a frequency-
dependant gain function A. Under this condition, show that the low-pass
voltage transfer function is given by

Vo2

Vi
= −

1
rR

1
R2r +
(

1
R + 1

R2
A + (1 + 1

A

) (
1

R1
+ sC1

))( sC2
r1

1
r2

+ 1/r2+1/r1
A

+ 1
r +sC2

A

) .

5.30 A fifth-order normalized low-pass filter can be realized by a cascade of first-
and second-order functions as shown below:

H(s) = H1

s + 1

H2

s2 + 1.61803s + 1

H3

s2 + 0.61803s + 1

A possible design for the system is proposed in Figure P5.30 (Huelsman,
1993). Prove its adequacy or provide an alternative design.
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Figure P5.30

5.31 Figure P5.31 shows the Deliyannis band-pass filter circuit (Deliyanis, 1968;
Friend, 1970) which uses both positive and negative feedback around the
OA. Derive an expression for the voltage transfer function Vo(s)/Vi(s).

5.32 Rederive the voltage transfer function for the system in Figure P5.31,
assuming a nonideal A(s) = ωt

s .
5.33 For the following second-order filter specifications, determine the design

parameters (C and gm values) that need to be implemented for the gm−C
filters. Assuming that the gm is generated from a simple differential pair
in BJT technology (Figure P5.33) with ±5 V power supply system, calculate
the DC power consumption that will be required in each case. (a) An HP
filter with ωp = 2000 rad s−1, Qp = 5, H0 = 3 (gain at infinite frequency).
(b) A BP filter with ωp = 5000 rad s−1, Qp = 10, H0 = 10 (gain at resonant
frequency). (c) An AP filter with ωp = 300 rad s−1, Qp = 3, H0 = 1. (d) An LP
notch filter with ωp = 2000 rad s−1, Qp = 5, H0 = 1, ωz = 3000 rad s−1. (e)
An HP notch filter with ωp = 300 rad s−1, Qp = 5, H0 = 1, ωz = 150 rad s−1.
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+

−

Figure 5.31
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5.34 Determine the voltage transfer functions for each of the OTA-based networks

in Figures P5.34a–5.34c. Note that the gm could be positive or negative

depending upon the input node polarity.

5.35 For the circuit of Figure P5.35, find the transfer function Vo/Vi.
5.36 For the biquad shown in Figure P.5.36, find the transfer functions Vo1

Vi
, Vo2

Vi
,

and Vo3
Vi

. Also, calculate the sensitivities of the pole frequency and pole Q w.r.t.
the various components. (Note: Observe that the total sum of the sensitivities

over all the elements for the pole frequency as well as the pole Q is zero.

This is true for any OTA-C filter (Swamy, Bhusan, and Thulasiraman, 1972)

gm
Vi C1

Vo

C2+

−
gm1

−

+

gm2

+

−

Figure P5.35 A dual-output current conveyor (adapted from Minaei, et al., © IEEE, 2000).
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5.37 Figure P5.37 shows an approximate first-order equivalent model for a
practical OTA operating as a single-ended device. At low frequencies, the
parasitic capacitances can be ignored. Figure P5.37b shows a second-order
filter network built from two OTA devices. Find the voltage transfer function
V2/V1, at low frequencies, assuming (a) ideal OTA and (b) practical OTA.

5.38 A gm − C integrator must be designed for a unity-gain frequency of 9 MHz.
The available transconductor is known to have the parameters gm = 250 μS,
Ci = 0.05 pF, and Co = 0.19 pF (see Figure P5.37a). The DC gain must be
at least 70 dB. (a) Determine the required load capacitor. (b) Determine the
minimum value of output resistance Ro the OTA must have. (c) Verify your
calculations using a network simulation tool (such as SPICE).

5.39 A very large inductor has a series loss resistor of 250 �. This resistance
can be cancelled by a simulated negative resistance. Figure P5.39 shows a
possible strategy to implement a negative resistance with an OTA. What will
be the value of gm needed? Verify your design with a network simulator.

gm −
Ii

Vi
Io

→

←
+

−
↑

Figure P5.39
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5.40 Design and test (by simulation) a first-order low-pass filter with a transcon-
ductance amplifier with gm = 250 μS so that the following specifications are
met: dc gain = 70 dB and unity-gain frequency = 10 MHz.

5.41 Using a cascade of first- and second-order gm –C filter sections, design
and test (by simulation) the following: (a) A third-order low-pass filter
with maximally flat magnitude characteristic, having Ap = 3 dB and DC
gain of 30. (b) A Chebyshev low-pass filter for the specifications: Ap =
0.3 dB, fc = 10 MHz, Aa = 22 dB, and fa = 25 MHz. The DC gain is unity.
(c) A seventh-order Chebyshev high-pass filter with Ap = 1 dB, fp = 15 MHz,
and H(∞) = 4.5 dB. (d) A fifth-order band-pass filter with a Chebyshev
magnitude response having Ap = 0.1 dB, fo = 850 kHz, 0.1 dB bandwidth of
70 kHz, and a center-of-band gain of 25 dB.

5.42 Realize the fifth-order low-pass filter function given by

H(s) = H1(s)H2(s)H3(s)

= k(s2 + 29.22)(s2 + 43.22)

(s + 16.9)(s2 + 19.4s + 20.012)(s2 + 4.72s + 22.522)

as a cascade of three gm−C filters. Test your design with a network simulator.
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6
Switched-Capacitor Filters

In this chapter, we introduce the topic of second-order SC filters. Interest in
SC networks revived in the mid-1970s, because of the potential to implement
low-frequency (voice band) analog filters using a monolithic IC technology (i.e.,
CMOS) (Fried, 1972; Temes and Mitra, 1973; Hodges, Gray, and Brodersen,
1978; Gray and Hodges, 1979; Gregorian and Nicholson, 1979). The possibility
of realizing a resistance, by switching a capacitance to and fro between two
nodes was, however, known even at the time of Sir J. C. Maxwell. In connection
with monolithic realization, the issue that appeared very attractive was that the
values of the resistors and capacitors are inversely related; therefore, a resistance
of high value could be generated by using an on-chip capacitor of small value,
which is attractive for monolithic fabrication since it occupies a small substrate
area.

In the following, we first deal with the equivalence between a resistance and
an SC. The notion of discrete time (i.e., sampled-data) operation is introduced
and several possible transform relations between the frequency in sampled-data
time domain and continuous-time frequency domain are explored (Allen and
Sanchez-Sinencio, 1984). The case of bilinear transformation (BLT) is addressed
in more detail. The situation of parasitic capacitances associated with physical
switches (made from MOS transistors) and capacitors is considered and the
technique of parasitic-insensitive (PI) operation is introduced (Ghausi and Laker,
1981). A simple method of analysis of SC networks (Kurth and Moschytz, 1979;
Vandewalle, DeMan, and Rabey, 1981; Laker, 1979; Hokënek and Moschytz,
1980; Raut and Bhattacharyya, 1984a), using discrete-time and z-transformed
equations, is presented. This is followed by suggesting techniques for analyzing
SC networks using common network analysis tools (for example, SPICE) (Nelin,
1983). The design of a second-order SC filter, using standard structures introduced
by several researchers in this area (Ghausi and Laker, 1981; Fleischer and Laker,
1979; Mohan, Ramachandran, and Swamy, 1982, 1995; Raut, Bhattacharyya, and
Faruque, 1992), is presented next. The potential of realizing high-frequency SC
filters with unity-gain voltage amplifiers as the active building blocks (Raut, 1984;
Fan et al., 1980; Malawka and Ghausi, 1980; Fettweis, 1979a, 1979b) is then
discussed. Some second-order filter structures based on unity-gain amplifiers
(UGAs) are presented.

Modern Analog Filter Analysis and Design: A Practical Approach. Rabin Raut and M. N. S. Swamy
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40766-8
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6.1
Switched C and R Equivalence

Consider Figure 6.1, which shows a capacitor C grounded at one end, and is
switched between nodes 1 and 2 by two nonoverlapping clock signals φ1 and φ2.
Each of the clock signals has a period of T(= 1/fs), and they are so interleaved
in time that they do not overlap with each other. That is, φ2 does not become
ON (i.e., high) until φ1 is completely zero (OFF) and vice versa. When φ1 is
ON, C is connected to a voltage source of value v1 and thus acquires a charge
of Cv1. When φ2 becomes ON, the capacitor C is connected to the voltage v2,
thereby acquiring a charge Cv2. Before φ1 becomes ON again, that is, in the
interval T, the capacitor C has transferred a charge of amount C(v1 − v2) = �Q .
Thus, the rate of charge transfer between nodes 1 and 2 is �Q/T . In the
limit when T → 0 and �Q → 0, the charge transfer rate dq/dt implies a flow
of current i = dq/dt between the nodes 1 and 2. According to Ohm’s law,
if there is a resistance R between nodes 1 and 2, this current would also be
equal to (v1 − v2)/R. Thus, in the case of a very high clock frequency ( fs =
1/T → ∞) and an infinitesimal amount of charge transfer (�Q → 0), one can
assume

C(v2 − v1)/T = (v2 − v1)/R

or

R = T/C = 1/(Cfs) (6.1)

The above equation is the famous equation for the equivalence of a switched C and
a resistance R. It is apparent that with a small value of C (few picofarads) and a
reasonable value of fs (say, tens of kHz), a resistance value of tens of megaohms
can be achieved. This is very desirable for implementing low-frequency filters on
a monolithic substrate using only a small value of capacitance. The SC network
just discussed is known as a toggle-switched-capacitor (TSC) network. Table 6.1
presents few other SC networks with the associated RC equivalent relations (Allen
and Sanchez-Sinencio, 1984).

1 2
f1

f1 f2
f1

f2

T

T

f2

C

Figure 6.1 Toggle-switched capacitor (TSC) with a biphase clock signal.
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Table 6.1 A few SC networks with associated RC equivalences.

Designated name SC network RC equivalence
relation

A Series-switched C

C

+

−

+

−

n1 n2

f1

f2 R = T/C

B Series-shunt switched C +

−

n1
C1

f1 f2

C2

+

−

n2
R = T/(C1 + C2)

C Toggle-switched C
n2

C

n1

f1 f2

R = T/2C

D Differential toggle-switched C n1

f2

f2

f1

C

f1

n2 R = T/4C

6.2
Discrete-Time and Frequency Domain Characterization

The development above has been carried out in an approximate way, assuming that
the clock frequency is very high compared to the signal frequencies. In reality, this
is not true and, hence, it is necessary to use accurate timing information to account
for the transfer of charge between two nodes by an SC connected between these
nodes. The pertinent system of equations then becomes discrete-time equations,
instead of a continuous-time one. The associated frequency domain characterization
is termed discrete or sampled-data frequency domain characterization. Instead of the
conventional continuous frequency variable s = jω, we have to use the sampled-data
frequency variable z = exp( j�T), where F(z) is the z-transform of f (nT) and �

is the sampled-data analog of the continuous-time-domain angular frequency
ω. Depending upon the way the SC network is operated, distinct relationships
between the s and the z variables arise. This, thus, leads to several possible
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transformation relationships between the continuous domain frequency variable
and the sampled-data domain frequency variable. Several of these are illustrated in
the section to follow, by considering the SC equivalent to a continuous-time-domain
RC integrator.

6.2.1
SC Integrators: s ↔ z Transformations

Consider Figure 6.2. In Figure 6.2a, we show an active-RC integrator using an OA;
in Figure 6.2b, a corresponding SC integrator with the resistance replaced by a TSC
resistor is shown. For the RC integrator, the voltage transfer function is unique
and is given by

T(s) = Vo(s)

Vi(s)
= − 1

sRC
(6.2)

The clock signal (Figure 6.2c) φ1 goes ON at instants of time (n − 1)T , nT , . . . ,
and the clock signal φ2 goes ON at instants of (n − 3/2)T , (n − 1/2)T , . . . , so that
each clock signal has a period of T. They do not overlap each other. For sample
data operation, the sampling instants are considered to be coincident with the
instants (n − 3/2)T , (n − 1)T , (n − 1/2)T , . . . , and so on. It has to be understood
that, during the ON period of each clock phase, the network has a specific topology
(i.e., interconnection pattern) and the topology changes as the clock phase alternates
between φ1 and φ2. Thus, Figure 6.3a shows the topology of the network when clock

(a)

+

−
R

C

i

o

(b)

C

C1 +

−

f1 f2

(c)

n −1

n − 3/2 n −1/2 n + 1/2

n

T

T

t /T →

f1

f2

i

o

Figure 6.2 (a) Active-RC integrator, (b) TSC integrator, and
(c) nonoverlapping clock signals.

C

C1 +

−

o

i

C

C1 +

−

(a) (b)

o

Figure 6.3 Configuration of the TSC integrator when
(a) clock signal φ1 is ON and (b) clock signal φ2 is ON.
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φ1 is ON, say at t/T = (n − 1), that is, t = (n − 1)T. At this time, C1 has a voltage
vi(n − 1) across it, while C has a voltage vo(n − 1) across it. Note that, for simplicity,
we are using (n), (n − 1), . . . , to imply the time instants nT, (n − 1)T , . . . , and
so on. The voltage vo(n − 1) is, however, the sampled and held version of voltage
vo(n − 3/2), since it was at this instant of time (i.e., t = (n − 3/2)T) that C happened
to be connected to C1 and was subjected to the charge redistribution operation with
C1. Therefore, vo(n − 3/2)T is like an initial value that is held until t = (n − 1)T.

Similarly, at t = (n − 1/2)T , when φ2 goes ON, the network topology is as shown
in Figure 6.3b. The capacitor C1, being across the input terminals of the OA, is
virtually shorted and hence the charge across it becomes zero. The charge on C
is now Cvo(n − 1/2). At the instant t = nT , the scenario at t = (n − 1)T repeats,
because the time interval is the same as the periodic interval T of the clock
sequence. Thus, over one periodic interval of time T, the following changes occur
in the charges held on the capacitors C and C1.

For C,

�QC = QC(n − 1/2) − QC(n − 1) = Cvo(n − 1/2) − Cvo(n − 1) (6.3a)

For C1,

�QC1 = QC1 (n − 1/2) − QC1 (n − 1) = 0 − C1vi(n − 1) (6.3b)

According to the principle of charge conservation, �QC = �QC1 . Then, from
Eqs. (6.3a) and (6.3b), we can write

Cvo(n − 1/2) − Cvo(n − 1) = 0 − C1vi(n − 1) (6.4)

The above is an equation in the discrete-time domain. To move to the
discrete-frequency domain, we have to apply the z-transform to both sides of the
equation. We must also remember that we are dealing here with the z-transforms
for two distinct sampling sequences. One is due to the clock φ1 and the other is
due to the clock φ2 – both having an identical sampling period T. Assigning the
superscript (1) for the z-transform corresponding to φ1 and the superscript (2) for
the z-transform corresponding to φ2 , we write, from Eq. (6.4):

C
[
Vo(z)
](2)

z−1/2 − C
[
Vo(z)
](1)

z−1 = −C1
[
Vi(z)
](1)

z−1 (6.5)

In the above, we have used the convention that z[v(nT)] = V(z), where z[.] implies
‘‘the z-transform of ’’ [.]. Since, however, we have discussed that vo(n − 1) =
vo(n − 3/2), by taking the z-transform, we can write[

Vo(z)
](1)

z−1 = [Vo(z)
](2)

z−3/2, that is,
[
Vo(z)
](1) = z−1/2 [Vo(z)

](2)
(6.6)

Equation (6.6) is a special relationship between [Vo(z)](1) and [Vo(z)](2) that holds
because of the sample-and-hold relation that is satisfied by the voltage vo(nT). This
kind of relationship may not necessarily hold for Vi, unless we ascribe a similar
sample-and-hold condition for the signal vi(nT).

Figures 6.2 and 6.3 indicate that the output vo changes only during the phase φ2,
that is, when C is switched ON to the inverting input terminal of the OA. Therefore,
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we shall maintain Vo(z)(2) as the significant output variable. Then, we rewrite Eq.
(6.5), after using the relation in Eq. (6.6):

CVo(z)(2)z−1/2 − CVo(z)(2)z−3/2 = −C1Vi(z)(1)z−1

Dividing out by z−1/2, we get

CVo(z)(2) − CVo(z)(2)z−1 = −C1Vi(z)(1)z−1/2 (6.7)

Now taking the ratio, we get the z-domain transfer function for (1,2) phase
combination (ignoring the argument z for simplicity):

V
(2)
o

V
(1)
i

= H(1,2) = −C1

C

z−1/2

1 − z−1
(6.8a)

An alternative transfer function could be defined by considering the (1,1) phase
group, that is,

V
(1)
o

V (1)
i

= H(1,1) = −C1

C

z−1

1 − z−1
(6.8b)

An interesting matter is immediately apparent, that is, we have been able to define
two distinct z-domain transfer functions for the SC integrator network, while there
is only one unique transfer function for the associated RC integrator, as given by
Eq. (6.2). Using the equivalence R → T/C1 for the TSC-R equivalence in Eq. (6.8a),
we get

H(1,2) = − T

RC
z−1/2

1 − z−1
(6.9)

We can draw an interesting correspondence between the continuous-time-
domain frequency variable s and the sampled-data domain frequency variable z by
comparing Eq. (6.2) with Eq. (6.9). Thus,

T(s) ↔ H(1,2)

leads to

1

sRC
↔ T

RC

z−1/2

1 − z−1

That is,

s ↔ 1

T

1 − z−1

z− 1
2

or

s ↔ 1

T

(
z

1
2 − z− 1

2

)
(6.10)

The above represents a popular s ↔ z transformation known as lossless digi-
tal integrator (LDI) transformation. One can appreciate the implication of this
transformation by conceptualizing that, if an integrator-based RC-active filter is
converted to an SC filter with the RC integrators (as in Figure 6.2a) replaced by
TSC-C integrators (as in Figure 6.2b), then the transfer function of the SC filter
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in z-domain can be written down from the transfer function of the RC-active
filter simply by replacing ‘‘s’’ by the function of ‘‘z,’’ as given by the s ↔ z
transformation relation Eq. (6.10). It must also be understood that the output of
each SC integrator in the filter must be sampled and transferred to the following
stage in the filter, during the clock phase φ2, so that the transformation in Eq.
(6.10) is applicable. If, on the other hand, the output of each SC integrator in
the filter is sampled during clock phase φ1, the pertinent transformation will
be s ↔ 1

T (z − 1). One can derive this transformation relation by comparing the
transfer function of Eq. (6.2) with the z-domain transfer function given by Eq.
(6.8b). Two other important s ↔ z transformations can be derived by considering
an alternative implementation of a resistance by an SC network, while replacing an
RC integrator with an SC integrator. Table 5.2 presents the various s ↔ z transfor-
mations. For more details regarding the various transformations, one may refer to
Mohan, Ramachandran, and Swamy (1982, 1995) and Allen and Sanchez-Sinencio
(1984).

6.2.2
Frequency Domain Characteristics of Sampled-Data Transfer Function

By now, it is clear that a given continuous-time transfer function H(s), when imple-
mented using SC network, produces a transfer function H(z) in the discrete-time
domain. Corresponding to a given H(s), there could be more than one possible
H(z) because of the presence of more than one clock signal in the SC network.
For frequency domain characterization of H(z), we use the relation z = exp( j�T),
where � is the sampled-data angular frequency. This is identical with the real phys-
ical frequency used to test and simulate a sampled-data system. Since exp( j�T)
is a periodic function, it is obvious that H(z) will be a periodic function. This is
an important distinction between the continuous-time frequency domain transfer
function H(s) and the sampled-data (i.e., discrete-time) frequency domain transfer
function H(z). One may visualize the situation as though the given H(s), when
implemented as an SC filter function, causes H(s) to be modulated in frequency
domain (multiplied in time domain) by the clock frequency fs = 1/T of the clock
signals. Thus, corresponding to an LP |H( jω)|, we get a periodic train for |H(e j�T )|,
which will consist of lobes of |H( jω)| around zero frequency (i.e., DC) and around
±2π fs, ±4π fs, . . . , ±2nπ fs. This is illustrated in Figure 6.4, where fs = 1/T .

H(jw)

wB
w → ← −ΩT

4p −wB
Ω →
wB

H( jw) ↔ H(e j ΩT)

H(e j ΩT)s ↔ z

−
T
2p−

T
2p

T
4p

Figure 6.4 Sampling operation on |H( jω)| and the sampled spectrum |H(e j�T )|.
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From the above, it is clear that in order for the adjacent response lobes in |H(e j�T )|
not to overlap (i.e., alias) with each other, one must maintain ωs = 2π fs ≥ 2ωB,
where ωB is the significant bandwidth in the continuous-time-domain transfer
function H(s). This observation is consistent with the Nyquist rate sampling, as
used in communication systems. In practice, a value of ωs ≥ 8ωB is employed.
When fs is fixed by other system constraints, the bandwidth of the incoming signal
is restricted to a value less than fs/2 by an antialiasing filter. This filter could be
a simple passive-RC section. The band-limited signal is then subjected to the SC
filter system. In cases where a continuous-time response is required, the SC filter
output is smoothened by a continuous-time smoothing or reconstruction filter.
The reconstruction filter must reject all the lobes in |H(e j�T )| beyond the frequency
of ωB. The system diagram is illustrated in Figure 6.5a. Since the antialiasing and
reconstruction filters are simple RC networks, one can consider Figure 6.5b to get
an idea of the frequency response characteristics of such filters. The passband of
these filters must cover frequencies up to ωB. The transition band of the filter will
depend upon the separation of ωs and ωB, specifically on ωs − ωB. As Figure 6.5b
indicates, one must have the TB (≥ ωs − ωB) − ωB = ωs − 2ωB to avoid aliasing
and to obtain a faithful reconstruction of the signal processed by the SC filter
system.

Apart from the periodic characteristic of H(z), there is another interesting char-
acteristic of the sampled-data frequency variable z = exp ( j�T). As the frequency
varies over the range −∝≤ � ≤∝, z moves along the periphery of a circle of unit
radius. Considering the complex frequency variable s = σ + jω and z = exp(sT),
the left-hand side (LHS) of the s-plane (i.e., σ < 0) is mapped into the interior of
the circle of unit radius in the z-plane (i.e., |z| < 1) and the RHS of the s-plane
(i.e., σ > 0) is mapped to the exterior of the unit circle in the z-plane (i.e., |z| > 1).
The jω axis in the s-domain is mapped on to the periphery of the unit circle in the
z-domain (i.e., |z| = 1).

The various s ↔ z transformations shown in Table 6.2 lead to similar charac-
teristics related to H(z) as discussed above. But the accuracy with which the H(z)
associated with a specific H(s) matches the given H(s) and varies with the type of
s ↔ z transformations chosen. The reason is the exponential relationship between
the continuous-time and the sampled-data frequency variables, that is, s and z. Usu-
ally, an optimization algorithm may be required to improve the matching between
a given analog H(s) and the associated sampled-data H(z), which results after
applying a specific s ↔ z transformation. Synthesizing the H(z) corresponding to

Antialiasing
filter SC filter Reconstruction

filterIn Out

fs

T ( jw)

wB ws

(a) (b)
0−ws +wB −wB −wB↑

TB

Figure 6.5 (a) Use of switched-capacitor filters in a prac-
tical system. (b) Frequency response characteristics of the
antialiasing and reconstruction filters.
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Table 6.2 Some well-known s ↔ z transformations.

Transformation Various integrators

s ↔ 1
T

(z1/2 − z−1/2) Lossless digital integrator (LDI)

s ↔ 1
T

(z − 1) Forward difference integrator (FDI)

s ↔ 1

T
(1 − z−1) Backward difference integrator (BDI)

s ↔ 2

T

1 − z−1

1 + z−1
Bilinear integrator (BLI)

Table 6.3 Various steps in the design of an SC filter.

Given Ap, Aa, fp, and fa
↓
Synthesize H(s)
↓
Apply s ↔ z transformation (‘‘prewarp’’ if possible) – see Section 6.3
↓
Derive the corresponding H(z)
↓
Implement H(z) using SC and OA

an SC filter needs the application of one of the s ↔ z transformation relations
to a known H(s), which is derived from the basic specifications for the filter, as
already discussed in Chapter 3. A flow chart regarding this procedure is shown in
Table 6.3.

6.3
Bilinear s ↔ z Transformation

Of the several transformations, the BLT

s ↔ 2

T

1 − z−1

1 + z−1
(6.11)

is very popular because the entire analog frequency range of zero to infinity is
transformed to a range of zero to π/T in the sampled-data frequency. This can be
verified by putting z = exp( j�T) in Eq. (6.11) to get

ω = 2

T
tan

�T

2
(6.12)
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Figure 6.6 Effect of warping due to bilinear
transformation on H(s).

Thus, when ω = 0, � = 0, but when ω = ∞, one gets tan �T
2 = ∞; hence,

� = π/T . This also implies that the response H(z) will be somewhat squeezed
in the sampled-data frequency domain, if H(z) were derived from H(s) by the
application of the BLT. This is known as the warping effect of the BLT. Thus, a
given frequency ωI in the analog domain is squeezed to �I in the sampled-data
domain with �I < ωI. Actually, H(z)|z=exp( j�IT) becomes equal to H(s)|s=jωI . This
is easily illustrated by Figure 6.6.

This warping effect can be compensated by what is known as prewarping the
frequencies of the analog filter. Thus, if ωI is a significant frequency (for example,
the passband edge frequency) in H(s), one can rewrite H(s) with ωI replaced by the
prewarped frequency ω̂I, given by

ω̂I = 2

T
tan
(

ωIT

2

)
(6.13)

The corresponding transfer function may be labeled as H(ŝ) and is known as the
prewarped analog transfer function. After application of the BLT to this new transfer
function H(ŝ), one gets H(z). The frequency �I in H(z) will then, by virtue of the
BLT,

�I = 2

T
tan−1
(

ω̂IT

2

)
= 2

T
tan−1
(

T

2

2

T
tan
[

ωIT

2

])
= ωI (6.14)

which is same as the original frequency of interest. Thus, by prewarping, the effect
of distortion due to the BLT is eliminated at the frequency ωI. If there is more
than one critical frequency in H(s) (for example, the passband edge frequency ωc

and the stopband edge frequency ωa), then the process of prewarping is applied
to all these frequencies before obtaining the prewarped analog transfer function
H(ŝ). Table 6.4 presents the set of biquadratic transfer function expressions in the
sampled-data domain associated with the corresponding analog transfer function
expressions (Raut, 1984), when the BLT is used.

Example 6.1. Consider the second-order BP analog transfer function given

by H(s) = 2027.9s

s2 + 641.28s + 1.0528 × 108
. Obtain the corresponding sampled-data

transfer function H(z) using the BLT. The clock frequency is 8 kHz.
From the given H(s), one can calculate the following:

ωp =
√

1.0528 × 108 = 1.026 × 104, ω p/Qp = 641.28,

Q p = 16, HBP = 2027.9/641.28 = 3.162 → 10 dB
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Table 6.4 Sampled-data filter functions associated with stan-
dard biquadratic filter functions when the BLT is used.

Filter type Analog transfer function Sample-data transfer function

H(s) = N(s)
F1(s)

H(z) = hD
1 + a1Nz−1 + a2Nz−2

1 − a1Dz−1 + a2Dz−2

hD a1N a2N

LP HLPω2
p/F1 HLPω̂2

p/F2 2 1

HP HHPs2/F1 HHPa2/F2 –2 1

BP HBP(ωp/Q p)s/F1 HBP(ω̂p/Q p)a/F2 0 –1

AP HAP[F1 − 2(ωp/Q p)s]/F1 HAPa2D −a1D/a2D 1/a2D

Notch HN (s2 + ω2
n)/F1 HN (a2 + ω̂2

n)/F2 −2(a2 − ω̂2
n)/(a2 + ω̂2

n) 1

Note: a = 2/T , ω̂p = a tan(ωp/a), ω̂n = a tan(ωn/a).
F1 = s2 + (ωp/Qp)s + ω2

p , F2 = a2 + (ω̂p/Qp)a + ω̂2
p .

a1D = 2(a2 − ω̂2
p )/F2, a2D = [a2 − (ω̂p/Qp)a + ω̂2

p ]/F2.

Since fs = 8 kHz, T = 125 μs. Hence,

ω̂p = 2fs tan(ωp/2fs) = 1.1944 × 104, ω̂p/Q p = 746.488

Thus, the prewarped analog transfer function will be

H(ŝ) = HBP(ω̂p/Qp)ŝ

ŝ2 + (ω̂p/Qp)ŝ + ω̂2
p

= 3.162 × 746.488ŝ

ŝ2 + 746.488ŝ + 1.42659 × 108

One can now apply the BL s ↔ z transformation to derive the various coefficients
associated with the sampled-data transfer function H(z). Thus,

hD = 9.192 × 10−2, a1D = 0.5521, a2D = 0.9418

Therefore,

H(z) = 9.192 × 10−2(1 − z−2)
1 − 0.5521z−1 + 0.9418z−2

(6.15)

It may be remarked that one could skip the intermediate step of writing down H(ŝ)
and get to H(z) directly by applying the relations given in Table 6.4.

To calculate the magnitude response, one has to substitute z = exp( j�T) and
assign different values to the frequency variable �. For the problem on hand,
T = 125 μs. The curves in Figure 6.7a depict the magnitude responses correspond-
ing to H( jω) and H(e j�T ), as obtained by the MATLAB program. The listing of
the program is given in Program 6.1. The differences between |H( jω)| (solid line)
and |H(e j�T )| (dotted line) at frequencies other than ωp is due to the fact that the
prewarping has been used at only one frequency, that is, at ωp. If one would rather
choose the −3 dB frequencies of the response function and apply prewarping to
these two frequencies, the derived H(e j�T ) would show a better matching with the
given H( jω).
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Figure 6.7 Illustration of the effects of prewarping:
(a) applied to the center frequency and (b) applied to the
two-band edge frequencies of a band-pass filter.

To accomplish the above task, one first finds out that the bandwidth of the BP filter
is ωp/Qp = 641.28 rad s−1. If ωh and ωl are the higher and lower −3 dB frequencies of
the BP filter, then ωh − ωl = bandwidth = 641.28. The geometric symmetry of a BP
filter dictates that ωh × ωl = ωp

2 = 1.0528 × 108. These give (solving the quadratic
equation), ωh = 1.059 × 104 and ωl = 9.945 × 103. We can now apply prewarping
to these two frequencies. We then get ω̂h = 1.246 × 104, ω̂l = 1.146 × 104, thereby
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giving the prewarped bandwidth ω̂h − ω̂l = 9.995 × 102. Remembering that the
prewarped resonant frequency is now given by ω̂2

p = ω̂h × ω̂l = 1.428 × 108, the

prewarped transfer function will become H′(ŝ) = 3161ŝ
ŝ2+999.5ŝ+1.428×108 . On application

of the BLT, the sampled-data transfer function will be

H′(z) = 0.1219(1 − z−2)

1 − 0.5455z−1 + 0.9229z−2
(6.16)

The curves in Figure 6.7b show the errors er1 = |H( jω)| − |H(e j�T )| (the curve
with +++) and er2 = |H( jω)| − |H′(e j�T )| (the solid line curve) as a function of
frequency. The error in |H′(e j�T )| relative to |H( jω)| is less than that with |H(e j�T )|,
as expected.

Program 6.1 MATLAB code for the magnitude responses of H( jω) and H(e j�T ), and
the error magnitudes

%sampled-data filter
Fs=8e3;
% analog filter response
a=[1 641.28 1.0528e8];
b=[0 2027.9 0];
f=linspace(150,2500,901);
w=2*pi*f;
h=freqs(b,a,w);
mag1=abs(h);
b=[9.192e-2 0 -9.192e-2];
a=[1 -.552 0.9418];
f=linspace(150,2500,901);
w=2*pi*f;
h=freqz(b,a,f,Fs);
mag2=abs(h);
b=[.1219 0 -.1219];
a=[1 -.5455 0.9229];
f=linspace(150,2500,901);
w=2*pi*f;
h=freqz(b,a,f,Fs);
mag3=abs(h);
er1=(mag1-mag2)/3.316;
er2=(mag1-mag3)/3.316;
%plot(w,mag1,’w-’,w,mag2,’w.’)
plot(w,er1,’w+’,w,er2,’w-’)
grid
xlabel(’Freq.(Hz)-->’);
%ylabel(’Magnitude |H(s)|--, |H(z)|..’);
ylabel(’Error er1++, er2--’);
end

6.4
Parasitic-Insensitive Structures

It has already been mentioned that SC filters received considerable attention
because of the potential for fabrication as an IC. In this respect, however, a problem
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arises because of the presence of unwanted capacitances that are invariably present
in an IC structure. Virtually, any two distinct semiconductor layers will have a
capacitance associated with the junction between them. This is true both for the
MOS transistors that are used as switches in an SC network, as well as for the
MOS capacitors that have additional layers of semiconductors as part of the IC
technological process flow. One can consider Figures 6.8a and 6.8b which depict
the typical interlayer capacitances that arise in a MOS transistor and in a double-poly
MOS capacitor (Schaumann, Ghausi, and Laker, 1990) respectively.

For the MOS transistor in Figure 6.8a, the bulk (substrate) is usually connected
to a fixed DC potential so that this node can be considered to be signal ground (AC
ground). The capacitors Cbd1, Cbc1, and Cbs1 can be lumped as parasitic capacitances
CSW at the drain and source ends as shown on the RHS of Figure 6.8a. The
parasitic capacitances (Cgdo, Cgc, Cgso, and Cgb) from the gate to drain, to channel, to
source, and to bulk nodes are responsible for clock feedthrough effects. Similarly,
in Figure 6.8b, the actual design capacitance CR between the two poly layers is
attended by parasitic capacitances such as Cj, Cm from the top plate, and Cb from
the bottom plate. Because of closer proximity to signal ground (i.e., fixed DC
potential), Cb has a higher value than Cj or Cm. The equivalent circuit on the RHS

Connected to DC
(AC ground)

Bulk (substrate)

Cbd1

Cbc1

Cgc

Rd

Cgb

Cgso

Channel

Clock

GateOxide
CgdoDrain
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S
CSWCSW
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Figure 6.8 Parasitic capacitances in (a) an MOS transistor and (b) an MOS capacitor.
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Figure 6.9 (a) A TSC integrator ignoring the parasitic ca-
pacitances. (b) The TSC integrator including the parasitic
capacitances of the MOS switches and MOS capacitors.

of Figure 6.8b presents the situation for a design capacitance CR in a typical MOS
(or CMOS) IC technology.

If we incorporate the above information in a TSC integrator (see Figure 6.9a when
no parasitic capacitances are assumed to be present), where a TSC of value CR1 is
used to replace the resistance and CR2 is the integrating capacitor, the schematic
including the parasitic capacitances will appear as shown in Figure 6.9b. In the
schematic of Figure 6.9b, the switches are replaced with MOS transistors driven by
appropriate clock signals (i.e., φ1 and φ2). Out of the several parasitic capacitances,
those connected to a voltage source node (i.e., Vin, Vout) and those at the virtual
ground input node of the OA can be ignored for signal processing since they
either instantly hold the signal voltages or are at zero signal potential. The parasitic
capacitances that are neither at a voltage source node nor at the virtual ground node
contribute to the charge conservation equation (CCE) during the switching phases
φ1 and φ2. A more simplified schematic obtained by considering only the important
parasitic capacitances is shown in Figure 6.10. It is seen that the switch parasitic
capacitances CSW and the top-plate capacitance Ct of the MOS capacitance CR1

should be taken into consideration when writing the discrete-time equations such
as Eqs. (6.3) and (6.4). This does not pose any theoretical problem, but the practical
problem is the uncertainty about the exact values of the parasitic capacitances.
The values are dependent upon the actual value of the design capacitance as well
as on the layout of the transistors and the MOS capacitors. To save the space on
the substrate, the value of CR (see Figure 6.8b) should be limited to within 10 pF
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Figure 6.10 Simplified schematic of the TSC integra-
tor of Figure 6.9b, showing only the important parasitic
capacitances.

and an uncertain value of the parasitic capacitance, which could in some cases be
as large as 80% of the design capacitance, makes accurate theoretical calculation
rather difficult. This difficulty is overcome by the use of PI–SC networks that
are described below (Gregorian and Nicholson, 1979; Mohan, Ramachandran, and
Swamy 1982; Schaumann, Ghausi, and Laker, 1990).

6.4.1
Parasitic-Insensitive-SC Integrators

In PI-SC integrators, the parasitic capacitance is discharged to signal ground by
the appropriate clock signal, before the design capacitance (i.e., which is replacing
the resistance) acquires a new charge or shares its charge with another capacitor.
Thus, while the parasitic capacitance is present physically, it does not contribute
toward the CCE.

In the following, the switching symbol (wherever used) implies the presence
of an MOS transistor operated by (i.e., driven at the gate terminal) a clock signal
φi(i = 1, 2).

6.4.1.1 Lossless Integrators
Figure 6.11a shows a PI-SC integrator, known as the inverting PI-SC integrator.
Prior to clock phase φ1, the two plates of C1 are discharged to signal ground, thereby
removing all the charges on the parasitic capacitances Cp1 and Cp2. Figure 6.11b
shows a PI-SC integrator known as the noninverting PI-SC integrator.

It may be seen that, in Figure 6.11b, the left-side plate of C2 is charged during φ2,
while the right-side plate and the parasitic Cp2 are discharged to ground. During φ1,
a reverse operation takes place with C2, since the left-side plate (and the parasitic
Cp1) is now grounded, while the right-side plate gets connected to the input of the
OA. Because of this signal reversal, accomplished by reversing the plates of C2, the
system produces a noninverting mode of operation.
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Figure 6.11 Parasitic-insensitive (PI) integrators: (a) loss-
less inverting, (b) lossless noninverting, (c) lossy inverting,
and (d) lossy noninverting.

6.4.1.2 Lossy Integrators
Figures 6.11c and 6.11d show two lossy integrator configurations using PI-
switching schemes. Basically, a lossy integrator is formed by connecting a PI-SC
resistance across the integrating capacitor C2. Both lossless and lossy integrators
are important for active filter realizations. The inverting and noninverting lossy
integrator structures are depicted in Figures 6.11c and 6.11d, respectively. The
capacitor C3 affords the lossy integrator operation.

In the following, we discuss the technique of analysis of PI-SC integrators in a
modular way. The analysis can be used to derive the transfer functions of the PI-SC
integrators, and can be easily extended to more complex SC networks involving PI
features.

6.5
Analysis of SC Networks Using PI-SC Integrators

6.5.1
Lossless and Lossy Integrators

6.5.1.1 Inverting Lossless Integrator
Consider Figure 6.12a, which shows a PI-SC integrator with an input signal vin.
The path for vin is the inverting mode of operation. The signal is switched to the OA
input only during the ON phase of the clock φ1. When the clock signals are either
ON or OFF, the respective network topologies are linear time invariant; hence, the
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Figure 6.12 (a) Inverting lossless PI-integrator and (b) non-
inverting lossless PI-integrator, along with the clock signals.

principle of superposition holds. Considering the discrete-time equation for the
signals vin and vout, the CCE gives

0 − C1vin(n − 1) = Covout(n − 1) − Covout(n − 3/2)

Using the condition vout(n − 3/2) = vout(n − 2), taking z-transform and simplify-
ing, one arrives at

V
(1)
out = −C1

Co

1

1 − z−1
V

(1)
in (6.17)

where V
(1)
out and V

(1)
in are the z-transforms of vout(n) and vin(n) respectively due

to the clock signal φ1. One may note the appearance of the negative sign in
front of (C1/Co) on the RHS of Eq. (6.17) because of the inverting integration
operation. Since vin is processed through C1 without any intermediate delay, and
is connected to the inverting input of the OA, a sign inversion is inevitable. The
term (1 − z−1) in the denominator of the RHS of Eq. (6.17) appears because of
integration by sample-and-hold operation over one full clock period T. Because of
the sample-and-hold operation, we can further derive

V (2)
out = z− 1

2 V (1)
out (6.18)

clock φ2 being nominally one-half period delayed relative to clock φ1. It should be
noted that since Co receives a new packet of charge each time the clock φ1 comes
ON, the signal vout is available in reality during phase 1. Hence, we use V (1)

out as the
primary variable in Eq. (6.17).

If the clock signals in Figure 6.12a are interchanged, we can similarly obtain

V (2)
out = −C1

Co

1

1 − z−1
V (2)

in (6.19)
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and

V
(1)
out = z− 1

2 V
(2)
out (6.20)

6.5.1.2 Noninverting Lossless Integrator
Consider Figure 6.12b, with an input signal vin. Because of the reversal of the plates
of C2 between clock phases, the CCE becomes

0 − (−C2vin(n − 3/2)) = Co
[
vout(n − 1) − vout(n − 3/2)

]
But vout(n − 3/2) is the same as vout(n − 2) sampled to and held on Co. In the

z-transform domain, this implies z− 3
2 V

(2)
out = z−2V

(1)
out, where V

(1)
out is the z-transform

of vout(n) for the clock signal φ1, and V (2)
out is the z-transform of vout(n) owing to

clock signal φ2. Taking z-transform on both sides and relating vout(n − 3/2) with
vout(n − 2) as mentioned above, we get

C2z−3/2V (2)
in = Coz−1V (1)

out − Coz−3/2V (2)
out = Coz−1V (1)

out − Coz−2V (1)
out

where V (2)
in is the z-transform of vin(n) due to the clock signal φ2. Dividing both

sides by z−1 and simplifying, one gets

V (1)
out = C2

Co

z−1/2

1 − z−1
V

(2)
in (6.21)

One may note that since the signal vin in this case is processed for noninverting
integration, there is no negative sign in front of (C2/Co) on the RHS of Eq. (6.21).
Further, since vin is held on C2 during the ON period of φ2 and switched on to
the input of the OA during the ON period of φ1, that is, an interval of T/2 later,
the term z−1/2 appears in the numerator of the RHS of Eq. (6.21). This signifies
one-half period delay in the signal path. The denominator (1 − z−1) in Eq. (6.21)
is a characteristic of the integration and appears in view of the sample-and-hold
operation over a full period T by the integrating capacitor Co. Because of the time
relationship between φ1, and φ2, we can write as before,

V (2)
out = z− 1

2 V (1)
out (6.22)

If the clock signals in Figure 6.12b are interchanged, we can similarly obtain

V (2)
out = C2

Co

z− 1
2

1 − z−1
V (1)

in (6.23)

and

V
(1)
out = z− 1

2 V
(2)
out (6.24)

6.5.1.3 Inverting and Noninverting Lossless Integration Combined
Consider Figure 6.13a, where signal v1 is processed for inverting integration, while
signal v2 is processed for noninverting integration. Equations (6.17) and (6.21) were
derived assuming the presence of only one signal at a time. When both v1 and v2
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Figure 6.13 Parasitic-insensitive (PI) inverting and
noninverting integrators combined: OA input connected to
the signal paths during (a) clock phase φ1 and (b) clock
phase φ2.

are operating simultaneously, one can invoke the superposition principle of linear
time-invariant networks and write

V (1)
o = C2

Co

z−1/2

1 − z−1
V (2)

2 − C1

Co

1

1 − z−1
V (1)

1 (6.25)

In the above, V (y)
x (x = 1, 2 and y = 1, 2) represent the z-transformed variables

pertaining to the signals vx (x = 1, 2) due to the two clock signals φ1 and φ2.
Equation (6.25) represents the z-transformed output signal, when two signals v1

and v2 are fed to the OA input. Notice that, although the two signals are processed
by the clock signals in different ways, they are connected to the input of the OA at
the same time (i.e., clock phase φ1). Since the signals are switched on to the OA
input during clock φ1, the significant output signal Vo is labeled with (1) as the
superscript.

If the clock phases in the paths for v1 and v2 are switched around (see Figure 6.13b)
with the OA input being connected to the signal paths during the clock phase φ2,
we could similarly derive

V (2)
o = C2

Co

z−1/2

1 − z−1
V

(1)
2 − C1

Co

1

1 − z−1
V

(2)
1 (6.26)

Note that, since now the signals are switched to the input of the OA during
the clock signal φ2, the significant signal at the output is recognized as V

(2)
o .

The reader is advised to practice writing down similar equations with other
combinations of clock phasing and signal positioning. It is obvious that the
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above technique can be extended easily to cases with three or more input signal
paths.

6.5.1.4 Lossy PI-SC Integrator
Referring to Figure 6.11c, which depicts an inverting lossy integrator, we can
visualize that the signals vin and vout are switched to the OA input via the PI-SC
elements C1, and C3. We can thus use Eq. (6.17), once for V (1)

in , and then for V (1)
out,

followed by superposition. Hence, we get

V (1)
out = −C1

C2

1

1 − z−1
V (1)

in − C3

C2

1

1 − z−1
V (1)

out (6.27)

The above equation leads to the transfer function

V (1)
out

V
(1)
in

= −C1/(C2 + C3)

1 − C2z−1/(C2 + C3)
(6.28)

The above is an inverting lossy integrator transfer function.
Now, for the circuit of Figure 6.11d, note that vin is sampled in during φ1 but

applied to the OA input during φ2, with a phase reversal across the capacitor C1.
Therefore, we can use Eq. (6.23) for V

(1)
in . Similarly, we can use Eq. (6.19) for V

(2)
out.

Using superposition thereafter, we get

V
(2)
out = C1

C2

z− 1
2

1 − z−1
V

(1)
in − C3

C2

1

1 − z−1
V

(2)
out (6.29)

The above leads to the transfer function of the noninverting lossy integrator

V (2)
out

V
(1)
in

= C1z−1/2/(C2 + C3)

1 − C2z−1/(C2 + C3)
(6.30)

6.5.2
Application of the Analysis Technique to a PI-SC Integrator-Based Second-Order Filter

Consider the Tow–Thomas (TT) biquad structure of Chapter 5 (Figure 5.16) with
R4 = R/k, R3 = R2 = R, R1 = QR, and r1 = r2 = r. This leads to LP and BP filter
realizations using the RC-active filter configuration. The third OA in the TT network
serves to provide a gain of −1. This function can be easily obtained in the SC version
by employing a phase reversed SC network, as used in the noninverting PI-SC
integrator. This technique saves one OA in the SC version, which is presented in
Figure 6.14. Our objective is to derive the z-domain transfer function V (2)

o2 / V (1)
i ,

using the analysis technique discussed above.
In order to apply the analysis technique presented in Section 6.5.1, one needs

to observe that, around the amplifier OA1, the (kC, C1) pair forms an inverting
integrator for the signal vi, the (C/Q, C1) pair forms an inverting integrator for
vo1, and the (C, C1) pair forms a noninverting integrator for vo2. Similarly, for the
amplifier OA2, the pair (C, C2) forms an inverting integrator for the signal vo1.
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Figure 6.14 A second-order switched-capacitor filter using PI integrators.

With the above observations, one can write the following:

V (1)
o1 = −C/Q

C1

1

1 − z−1
V (1)

o1 − kC

C1

1

1 − z−1
V (1)

in + C

C1

z−1/2

1 − z−1
V (2)

o2

V (1)
o1 = −C/Q

C1

1

1 − z−1
V (1)

o1 − kC

C1

1

1 − z−1
V (1)

in + C

C1

z−1/2

1 − z−1
V (2)

o2

On rearranging and substituting A = C/QC1, B = kC/C1, and D = C/C1 in the
above equation, we get

V
(1)
o1

(
1 + A

1 − z−1

)
= − B

1 − z−1
V

(1)
in + D

z−1/2

1 − z−1
V

(2)
o2 (6.31)

For the subnetwork around OA2, we can similarly write

V
(1)
o2 = − C

C2

1

1 − z−1
V

(1)
o1 (6.32)

Writing E = C/C2, and noting that vo2(n − 1/2) = vo2(n − 1), in view of the
sample-and-hold operation of C2, we get

V
(1)
o1 = −1 − z−1

E
V

(1)
o2 (6.33a)

and

V (2)
o2 = z− 1

2 V (1)
o2 (6.33b)

Substituting Eq. (6.33a,b) in Eq. (6.31), we have

V (1)
o2

V (1)
in

= BE

1 + A − (A − DE + 2)z−1 + z−2
(6.34)
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Figure 6.15 (a) PI inverting integrator having signals
switched to the OA input during both the clock phases
(φ1 and φ2). (b) PI noninverting integrator having signals
switched to the OA input during both the clock phases
(φ1 and φ2).

6.5.3
Signals Switched to the Input of the OA during Both Phases of the Clock Signal

Consider Figure 6.15a, which represents this case for two input signals v1 and v2.
One should note that under the present case the condition vo(n − 3/2) = vo(n − 2)
cannot be applied any more. One can write the equations:

−C1v1(n − 1) = Covo(n − 1) − Covo(n − 3/2)

and

−C2v2(n − 1/2) = Covo(n − 1/2) − Covo(n − 1)

On taking the z-transforms and simplifying the above equations, we get

CoV
(1)
out − z−1/2CoV

(2)
out = −C1V

(1)
1 (6.35a)

and

−z−1/2CoV
(1)
out + CoV

(2)
out = −C2V

(2)
2 (6.35b)

One can put the above in the following compact form:[
Co −z−1/2Co

−z−1/2Co Co

][
V (1)

out

V (2)
out

]
= −
[

C1V
(1)
1

C2V (2)
2

]

(6.36)
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In Figure 6.15a, the SC networks are configured to produce an inverting integration
operation. If these are reconfigured to produce a noninverting integration operation
(see Figure 6.15b), one could similarly derive

[−z−1/2Co Co

Co −z−1/2Co

][
V (1)

out

V
(2)
out

]
= z−1/2

[
C1V (1)

1

C2V
(2)
2

]
(6.37)

6.6
Analysis of SC Networks Using Network Simulation Tools

When the network on hand is large and complex, hand analysis becomes very
laborious and prone to errors (Nelin, 1983). The analytical effort becomes even
more complex for SC networks because of the presence of the clock phases,
φ1 and φ2. If one models the MOS switches as voltage-controlled switches, it
will be possible to simulate a given SC network in the time domain, using the
well-known simulation programs such as SPICE, PSpice, HSPICE, and so on. For
frequency domain analysis, however, this approach may be too time consuming
since measurements have to be taken at many frequencies. Assuming the switches
as ideal, however, leads to a simple method of modeling an SC network using
standard components in the simulation routine. These components are ideal delay
lines and voltage amplifiers. The procedure is discussed below.

If one reviews the various z-domain expressions discussed in Section 6.4,
one can conclude that these expressions have the general form: Vout = kVi +
Az−1/2Vo1 + Bz−1Vo2 + . . . , where k, A, and B are constants, Vi, Vo1, and Vo2 are
the z-transformed voltage signals, and z−1/2, z−1, . . . , imply delays by half-a-period,
one full period, and so on. In simulation programs, such as SPICE, a voltage signal
can be modeled as it is, the constant coefficients can be modeled as amplification
(or attenuation) factors, and the delays can be modeled by transmission lines with
a fixed delay. The simulation of the operation of a filter can then be carried out in
the same way as simulating a system of equations in a state-variable filter using
multipliers, adders, and integrators. The technique for the SC filter is illustrated in
the following.

6.6.1
Use of VCVS and Transmission Line for Simulating an SC Filter

Consider the case of a PI inverting integrator transfer function
V

(1)
out

V
(1)
i

= − C1
Co

1
1−z−1 .

Writing the constant A = C1/ Co, we can write V
(1)
out = −AV

(1)
i + z−1V

(1)
out. This is a

simple feedback equation and can be modeled easily by the block diagram shown
in Figure 6.16. This block diagram can be emulated as in Figure 6.17 using ideal
voltage amplifiers (i.e., VCVS) and ideal transmission lines, each with a delay of
one-half period of the clock signal.
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Figure 6.17 Implementing the delay, add, and multiply
operations in Figure 6.16, using standard circuit elements
in a SPICE program.

A systematic procedure to use this simulation technique will involve the following
steps.

1) For the given SC filter, identify the SC subnetworks around each OA and write
down the expressions relating the output voltage variable to the input voltage
variable and the feedback voltage variables, in the form

Vout = kVi + Az−1/2Vo1 + Bz−1Vo2 + . . .

In case of feedback, one of the signals Vo1, Vo2, . . . , will be same as Vo.
2) Use a half-period delay unit as the basic delay block and implement this with

a lossless transmission line having a delay of T/2 (T = full period) isolated by
a unit gain voltage amplifier buffer (i.e., an ideal VCVS of gain 1 or −1). See,
Figure 6.17, for example.

3) Implement ideal VCVS networks with gain values corresponding to the coeffi-
cients in the equation derived in Step 1 above (i.e., k, A, B, . . .).

4) Connect the delay blocks and the VCVS blocks in conformity with the expres-
sion derived in Step 1 above.
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5) Repeat Steps 1–4 for the subnetworks around each OA in the SC filter. Ensure
that the gain blocks have proper polarities with the gain so as to satisfy the
system of equations correctly.

6) Write down the netlist file (or draw the schematic) for the entire network
obtained after Step 5.

7) Run the simulation in accordance with the guidelines of the simulation
program (such as, PSpice) that is available.

Example 6.2. Consider the TT biquad shown in Figure 6.18a. With the values
shown, the filter will have a center frequency of ωo = 1000 rad/s and a Qp of 5. An
SC implementation of the filter using a clock frequency of fs = 10 kHz is shown
in Figure 6.18b. The netlist for simulating the response of the SC filter using the
Pspice program is given in Program 6.2. The simulated frequency response is

Program 6.2 PSpice code for simulation of the response of the SC filter of
Figure 6.18b

**SC filter simulation - TT-BIQUAD, ideal VCVS, switch
.subckt del 1 2 4
***clock period T=0.1ms
e1 3 0 1 2 1
t1 3 0 4 0 zo=50 td=.05m
rt 4 0 50
.ends del
vs 1 0 ac 1
e2 2 0 1 0 .1
r1 2 3 1k
r2 15 3 1k
r3 14 3 1k
r4 10 3 1k
e3 15 0 4 0 .02
e4 14 0 12 0 -1
e5 10 0 9 0 -.1
e6 16 0 9 0 -1
x1 4 0 11 del
x2 11 0 12 del
x3 7 0 8 del
x4 8 0 9 del
r5 3 4 1k
e7 4 0 0 3 1e4
ro1 4 0 1
e8 5 0 4 0 0.1
r6 5 6 1k
r7 16 6 1k
r8 6 7 1k
e9 7 0 0 6 1e4
ac dec 51 10 1k
print ac vm(4) vp(4)
probe
end
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Figure 6.18 (a) Tow–Thomas active-RC second-order filter
and (b) a corresponding SC filter using PI switched-capacitor
integrators.

shown in Figure 6.19a. The time domain response at frequencies of 160, 100, and
200 Hz are shown in Figures 6.19b to 6.19d.

6.7
Design of SC Biquadratic Filters

In the ground-breaking era of SC filtering technique, the existing RC-active
filters were converted to active SC filters simply by using capacitors equiva-
lent to the resistors in the RC structures in accordance with the ideal relation
C = 1/Rfs, where fs is the sampling clock frequency. However, with the knowl-
edge of PI-SC structures and the requirement of using z-transform techniques
for accurate prediction of the behavior of the SC filters, the design techniques
leaned more toward realizing a given z-domain transfer function. Thus, in-
stead of designing an SC filter equivalent to a parent active-RC filter, PI-SC
networks and OAs were interconnected in special ways to realize standard
second-order z-domain transfer functions (i.e., H(z)) such as those shown in
Table 6.5. We now consider a popular structure proposed by Fleischer and Laker
(1979).
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Figure 6.19 Response of the filter of Figure 6.18b
using the technique presented in Section 6.6:
(a) frequency-domain response, and time-domain response
at (b) f = 160 Hz, (c) f = 100 Hz, and (d) f = 200 Hz,
respectively.

6.7.1
Fleischer–Laker Biquad

The biquad in its most general form is shown in Figure 6.20. The switches are
shown as MOS transistors operated by the two-phase clock signals φ1 and φ2

(Fleischer and Laker, 1979; Ghausi and Laker, 1981).
On carefully examining Figure 6.20, one can see that the forward paths (i.e., Vi →

V1 → V2) in the network comprise the capacitors H, G, L, and D around OA1 and A,
I, J, K, and B around OA2. The feedback paths (i.e., backwards from V2) comprise
the capacitors F around OA2 and C and E around OA1. The integrating capacitors
are D and B. One can also figure out that the capacitor pair (H, D) provides
noninverting integration, the capacitor pair (G, D) provides inverting integration,
and the pairs (L, D), (E, D), and (K, B) provide simple voltage magnification (or
attenuation). One can similarly determine the functions of the capacitors A, I, J,
B, and F. Taking into consideration the above facts, one can apply the method of
analysis discussed under Section 6.4 to derive the following second-order z-domain
transfer functions:
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Figure 6.20 Fleischer–Laker SC second-order filter structure.

H2,1(z) = V1

Vi

=
[
zC + E(z − 1)

] [
zI − J + K(z − 1)

]− [zF + B(z − 1)
] [

zG − H + L(z − 1)
]

A
[
zC + E(z − 1)

]+ D(z − 1)
[
zF + B(z − 1)

]
(6.38)

H2,2(z) = V2

Vi
= −A

[
zG − H + (z − 1)L

]+ D(z − 1)
[
zI − J + (z − 1)K

]
A
[
zC + E(z − 1)

]+ D(z − 1)
[
zF + B(z − 1)

]
(6.39)

Considerable simplification can be obtained by assuming the absence of the
capacitors L, K, and F. In that case, one can get from Eq. (6.39),

H2,2(z) = − DI + [AG − D(I + J)
]

z−1 + (DJ − AH)z−2

DB + [A(C + E) − 2DB
]

z−1 + (DB − AE)z−2
(6.40)

It may be remarked that in an SC network transfer function, the various coefficients
(such as hD and a1D) are dependent upon the ratio of the capacitors in the network.
Thus, one may normalize all the capacitors in terms of the integrating capacitors
B and D by setting B = D = 1. On substituting this in Eq. (6.40), it is seen that the
capacitor A remains as a free parameter, which can be chosen arbitrarily. Therefore,
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choosing A = 1, one can get the simplified form for H2,2(z) as

H2,2(z) = − I + [G − (I + J)
]

z−1 + ( J − H)z−2

1 + [(C + E) − 2
]

z−1 + (1 − E)z−2
(6.41)

The example below illustrates the use of the above expressions toward designing a
second-order SC filter.

Example 6.3. Consider the realization of the second-order BP filter of Example 6.1.

The sampled-data transfer function H(z) = 9.192×10−2(1−z−2)
1−0.5521z−1+0.9418z−2 given by Eq. (6.15)

is to be realized using the SC network of Figure 6.20. The simplified network
function given by Eq. (6.41) can be used.

One can reorganize Eq. (6.41) in the form:

H2,2(z) = −I
1 + [G/I − (1 + J/I)

]
z−1 + ( J/I − H/I)z−2

1 + [(C + E) − 2
]

z−1 + (1 − E)z−2

By comparing this with the specified H(z), one can write the design equations:

I = 9.192 × 10−2

G/I − (1 + J/I) = 0

J/I − H/I = −1

C + E − 2 = −0.5521

1 − E = 0.9418

A = B = D = 1 each (6.42)

From the above set, one can immediately get E = 0.0582 and C = 1.3897. Further
G = I + J and J − H = −I. Hence, we have three unknowns, namely, G, J, and H
with only two equations, and therefore we can choose H = 1. Then J = 0.908 and
G = 1. Therefore, the design capacitances are now

A =B =D =1, I =0.09192, E =0.0582, C =1.3897, G =1, H =1, and J =0.908

We have to now focus on the practicality of the design values obtained above. A
given IC technology has a limit on the minimum valued capacitor that can be
reliably produced. If this value is, say 1 pF, the minimum design capacitance value
must be equal or higher than 1 pF. In the above design, the capacitance E = 0.0582
is the capacitance of minimum value. Therefore, we need to use the principle of
impedance scaling by bringing E to the value of 1 pF. Thus, the scale factor is
1/0.0582 pF = 17.182 pF. Multiplying all the capacitors by this factor, the practical
set of design capacitances now become

A = B = D = G = H = 17.182 pF, C = 23.878 pF,

E = 1 pF, I = 1.579 pF, and J = 15.601 pF

Note that there were nine capacitors (eight capacitance ratios) to be designed,
but only five distinct design equations – see Eq. (6.42). Hence, we could make
four free choices. These four choices could be conveniently used to satisfy further
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specifications in the design, such as minimum total capacitance, minimizing the
capacitance spread, equalizing the dynamic range of the two stages, and so on.

6.7.2
Dynamic Range Equalization Technique

Dynamic range equalization implies that the gain levels of the two stages have to
be so adjusted that the maximum output levels of V1 and V2 are equalized while
realizing the specified overall gain level, for example, |V2/Vi| in the case of the
biquad of Figure 6.20 (Ghausi and Laker, 1981). If T2 is the maximum value of the
gain |V2/Vi| over the frequency range of interest, while T1(�= T2) is the maximum
value of the gain |V1/Vi| and if T2 is the desired gain, then T1 should be scaled by
a factor μ = T2/T1, that is, we need to set T1 = T2/μ. If the gains are calculated
in decibels scale, then μ = antilog [(T2 − T1)/20]. For the structure of Figure 6.20,
if T1 is to be scaled by μ without altering T2, the only recourse left is to scale the
capacitors that are connected to the output of stage 1 (i.e., to the node of V1) by
the same scaling factor. These capacitors are D and A. Thus, if the capacitor D
is scaled to D/μ, then the gain T1 will be increased by μ (since the voltage gain
is proportional to 1/D). If at the same time the capacitor A is scaled to A/μ, the
gain |V2/ V1| will be reduced by μ (since for the second stage the voltage gain is
proportional to A), thereby keeping the overall gain T2 unchanged.

After the capacitors are adjusted for equalized dynamic range, impedance (or
admittance) scaling is used, if necessary, to bring the capacitor of minimum value
to be equal to the value allowed by the IC technological process. In order that the
dynamic range adjustment does not get altered, impedance scaling is performed
on the group of capacitors that are incident on the same input node of each of
the active devices (i.e., OAs). Thus, in the case of Figure 6.20 (excluding K, L, F
capacitors), these group of capacitors will be

• Group incident on OA1: (C, D, E, G, H)
• Group incident on OA2: (A, B, I, J).

It may be remarked that the detailed procedure for dynamic range adjustment
is very dependent upon the case on hand, that is, it is specific to the network
being designed. The discussion above provides some general guidelines. Detailed
numerical calculations will be needed followed by careful considerations of the
system level specifications to carry out the actual dynamic range adjustment
procedure for a specific design case on hand.

6.8
Modular Approach toward Implementation of Second-Order Filters

Modularity is very attractive when implementing a system in an IC technology
(Raut, Bhattacharyya, and Faruque, 1992). This makes the artwork for mask
production more efficient and also facilitates the estimation of the substrate space
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that will be required for the implementation. In terms of hardware components,
modularity implies presence of a known number of components associated with
each active device and a repetition of the same interconnection pattern around the
active devices in the path of signal processing. If one puts an additional constraint
of only local connectivity, the resulting structure could be viewed as a systolic array
architecture (SAA), which is considered to be very efficient for implementation of
digital signal processing systems (Kung, 1982; Kuo, 1967). In the following, we
present a modular approach for realizing a second-order SC filter transfer function
in the z-domain. The method uses the technique of signal flow graphs (SFGs) and
relies on the following observations.

1) The basic functions that are required in sampled-data filtering (SC filtering) are
weighted addition, delay, and feedback. These are the same as those required in
a digital filter. In an analog filtering case, the required operations are weighted
addition, integration (or differentiation), and feedback.

2) Since z = exp(j�T), z−k implies a delay of kT or by k periods, since T is the
sampling period. Thus z−1/2 implies a half-period delay and z−1 implies a
full-period delay.

3) The basic function to be carried out in SC filtering is to relate the z-transform
of a voltage signal to the z-transforms of other voltage signals through a
relationship of the form, Vj = aVi + bz−1/2 Vk + cz−1 Vm, that is, a weighted
sum of delayed and direct versions of the voltage signals. In case of a feedback,
it is possible to have Vk = Vj, and so on.

The requirement in three of the above can be very easily appreciated by consid-
ering the SFGs shown in Figures 6.21a to 6.21c.

In Figure 6.21a, the input voltage source Vi, with phases (1) and (2) corresponding
to the clock signals φ1 and φ2, is shown. V

(1)
1 and V

(2)
1 are the voltages at the output

of the first OA at the clock phases φ1 and φ2. A direct gain path between the input
voltage and the output voltage is shown by the branch ti(i = 1, 2, . . .) without a hat.
This represents a delay-free term like a capacitance ratio Ci/Cj in the SC network.
A delay-free edge occurs between voltage nodes operated by the same clock phase
(i.e., φ1 or φ2). A delayed gain path between Vi and V1 is shown as t̂k (k = 1, 2, . . .),
where the hat implies a half-period delay, that is, t̂k = z−1/2tk, where tk is a term
like Ck/Cj in the SC network. Such a path will exist, for example, in the case of a
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noninverting PI-SC integrator, where phase-reversal switching is used at the input
capacitor. It must be noted that only forward paths exist from the input source
node, that is, there cannot be any feedback path between V1 and Vi.

Since in an SC integrator, the possibility of sample-and-hold operation exists,
the delayed gain edges t̂6 and t̂7 are inserted between V

(1)
1 and V

(2)
1 to accommodate

this scenario. Since these two edges join the voltage variables at the same node
(i.e., output of the first OA), they represent simply terms like z−1/2, that is, a delay
by half a period. Since no switched path can precede the input source, only one
delay edge (i.e., t̂3) is inserted between V (1)

i and V (2)
i to take care of the possibility

of a sample-and-hold operation at the input voltage source. The direction of this
edge is arbitrary. Figure 6.21a is the most complete (i.e., most connected) SFG for a
first-order transfer function in the z-domain. This can be verified by the application
of Mason’s gains formula (Kuo, 1967) to derive

V (1)
1

V (1)
i

=
[
t1 + (t2t6 + t3t4t6 + t3t5) z−1

]
[
1 − t6t7z−1

] (6.43)

We can easily see that the elimination of t6 and/or t7 will reduce the above transfer
function to a first-order function. This could be used as a building block to generate,
by cascading, a higher-order polynomial function of z−1. This provides an example
of realizing a finite impulse response (FIR) system. On examining the numerator
of Eq. (6.43), one can observe that there is redundancy in the coefficient of the z−1

term. Thus, one or more edges could be removed and still a first-order transfer
function in the sample data variable z can be realized. Removal of such edges
will generate subgraphs such as the ones shown in Figures 6.21b and 6.21c. Each
of these subgraphs will also produce a first-order transfer function in the form
(a + bz−1)/(c + dz−1). In terms of hardware implementation, removal of the edges
amount to eliminating one or more capacitances in the SC network and will be
preferred for a cost-effective realization.

The first-order SFG can be repeated and two such sections can be cascaded
to generate a second-order transfer function in the z-domain. This is a modular
approach toward implementation of a higher-order transfer function since repeated
use is made of a module like the first order SFG. Since local (i.e., adjacent nodes)
connectivity is allowed, both feed-forward and feedback gain paths are allowed
between the voltage nodes V1 and V2. In an SC filter network, V2 will be the
voltage at the output of the second OA. The general second-order SFG is depicted
in Figure 6.22. One can apply Mason’s gain formula to derive the second-order

transfer function
V

(1)
2 (z)

V
(1)
i (z)

= N(z)
D(z) , where the expressions for D(z) and N(z) are given

by

N(z) = [t1t8 + (t1t9t15 + t1t7t13t15 + t1t7t11 + t2t3t11 + t2t4t8 + t2t3t13t15

+ t5t6t8 + t5t11 + t5t13t15) z−1 + (t2t4t9t15 + t2t4t7t13t15

+ t2t4t7t11 + t2t3t6t9t15 + t5t6t9t15) z−2] (6.44)
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Figure 6.22 Most-connected signal flow graph for a second-order
transfer function.

D(z) =[1 − (t6t7 + t14t15 + t9t10 + t11t12 + t6t8t12 + t7t10t13 + t12t13t15 + t8t10t14

+ t8t10t12t13) z−1 + (t6t7t14t15 + t9t10t11t12 − t7t10t11t14 − t6t9t12t15) z−2]
(6.45)

On examining the various terms associated with the coefficients of z−1 and z−2

in D(z) and N(z), one can clearly see that there are considerable number of extra
terms. Some of these could be discarded and yet a second-order transfer function
obtained. A modular implementation plan should try to maintain equal number of
terms from both the halves of the second-order SFG and a cost-effective realization
should try to minimize the number of such terms. On studying the distribution
of the edges in the two parts (namely, Vi to V1 and V1 to V2) of the SFG very
carefully, one can isolate nine possible groups, which will satisfy the above criteria.
These are shown in Table 6.6 under the column labeled SAA. If one allows
additional feed-forward edges running between nodes Vi and V2, the condition
of local (i.e., adjacent nodes only) connectivity is relaxed. Such a structure can be
named semi-SAA (SEMI-SAA). The corresponding second-order SFG is shown in
Figure 6.23.

Under this condition, we get several extra terms in the numerator functions
compared to that of N(z) in Eq. (6.34). Denoting the new numerator as N(z), one
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Figure 6.23 Signal flow graph with semisystolic architecture
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Table 6.5 Several possible edge groups for SAA and SEMI-SAA implementations.

Edge groups for SAA implementation Edge groups for SEMI-SAA implementation

Group # Subgraph 1 Subgraph 2 Group # Subgraph 1 Subgraph 2

1 1,5,6,7,10 8,9,14,15 10 1,2,5,6,7,10 8,9,14,15,17
2 1,5,6,7,10 8,9,13,14,15 11 1,2,4,6,7,10 8,13,14,15,19
3 1,5,6,7,10,11 8,9,14,15 12 2,5,6,7,10 8,9,14,15,16,17
4 1,2,3,5,6,7,10 8,9,13,14,15 13 2,4,6,7,10 8,13,14,15,16,19
5 1,5,6,10,11 8,9,12,14,15 14 1,2,5,6,7,10 8,9,14,15,19
6 1,2,4,6,7,10 8,9,13,14,15 15 1,2,3,6,7,10 8,9,14,15,18
7 1,2,4,6,7,10 8,13,14,15 16 2,5,6,7,10 8,13,14,15,16,19
8 1,2,3,6,7,10 8,9,13,14,15 17 2,3,6,7,10 8,9,14,15,16,18
9 1,2,3,6,7,10 8,9,14,15 18 1,2,4,6,7,10 8,13,14,15,18

19 1,2,3,6,7,10 8,9,14,15,17
20 2,4,6,7,10 8,13,14,15,16,18
21 2,3,6,7,10 8,9,14,15,16,17
22 1,2,4,6,7,10 8,13,14,15,17
23 1,2,3,6,7,10 8,9,14,15,19
24 2,4,6,7,10 8,13,14,15,16,17
25 2,3,6,7,10 8,9,14,15,16,19

can derive

N(z) = N(z) + (t15t19 + t8t10t19 + t2t15t17 + t2t8t10t17 + t2t18)z−1 (6.46)

Inclusion of these extra terms leads to additional structures that preserve the
modularity feature with minimal number of elements in the SC network. These
structures are listed under column SEM-SAA in Table 6.5. On the whole, we have
25 possible structures for implementing second-order SC filters. The architectures
are very modular and each structure contains a minimum possible number of
elements for practical implementation.

A lookup list of the SAA structures to implement the standard second-order
filters is provided in Table 6.6. An example case is discussed below.

Table 6.6 Possible SAA edge groups for standard
second-order filters.

Filter SAA group # (see Table 6.5)

LP 2,3,4,5
HP 1,2,3,4,5
BP 4,6,7,8,9
AP 1,2,3,4,5
NOTCH 1,2,3,4,5
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Example 6.4. Let us consider the case of implementation of the second-order BP
filter with the following specifications.

Center-of-band gain: 10 dB
Center frequency: 1633 Hz
Pole Q: 16
Sampling clock frequency: 8 kHz.
Use bilinear s ↔ z transformation for the SC filter implementation.

On analyzing the specifications, one can figure out that the analog domain
transfer function of the filter is H(s) = 2027.9s

s2+641.28s+1.0528×108 . On applying the BL
transformation to the two −3 dB frequencies, the prewarped analog transfer
function becomes, H(ŝ) = 3161ŝ

ŝ2+999.5ŝ+1.428×108 . After applying the BL transformation,

the z-domain transfer function becomes H(z) = 0.1219(1−z−2)
1−0.5455z−1+0.9229z−2 . We now

consider realizing this transfer function by using the SAA structure 4 as suggested
in Table 6.5 and listed in Table 6.6.

In SAA group 4, the edges to be considered are t1, t2, t3, t5, t6, t7, t10, t8, t9, t13, t14,
and t15. At this point it will be good to assess the practical implications associated

with the various terms that are to be designed. On considering the SFG, one can
realize that the terms t1, t3, t8, and t13 represent delay-free gains. For implementation
using PI-SC integrators, we need to use inverting integrator networks. So, in
reality, we need to design, say, t1 = −m1, t3 = −m3, t8 = −m8, and t13 = −m13 as
the capacitance ratios. The terms t6 and t7 are delay terms associated with voltage
V1, while t14 and t15 are delay terms associated with voltage V2; the delay is by half a
period. When we set any of these terms equal to unity, it implies a sample-and-hold
operation by half a period. Thus, no extra capacitance is necessary to implement
this case. When any of these terms is assigned a value not equal to unity, the
practical realization will require a feedback path with half-a-period delay. This can
be implemented with a noninverting integrator using PI-SC networks. All terms
associated with half-period delay need to be implemented using PI noninverting
SC integrator networks. Looking at the expressions for N(z) and D(z) in Eqs. (6.44)
and (6.45) and comparing the coefficients of z−1 and z−2 with the coefficients of
the standard form of H(z) (see Table 6.4), we can write, for group 4

hD = m1m8

a1N = 1

hD
[−m1t9t15 + m1m13t7t15 + t2m3m13t15 − m8t5t6 − m13t5t15]

a2N = 1
hD

[−t2m3t6t9t15 + t5t6t9t15]

a1D = t6t7 + t14t15 − t7t10m13 − m8t10t14

a2D = t6t7t14t15 (6.47)

There are only 5 equations, although 12 capacitance ratios have to be designed.
Hence, many free choices are possible. As a first simplification, we shall attempt
to put as many of the edges as possible to have the value of unity. This will
enhance the accuracy for generating the masks for IC production and also lead
toward a small value for the total capacitance area (Ghausi and Laker, 1981). Next,
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when grouped in a product form (i.e., hD = t1t8, a2D = t6t7t14t15), we can make as
many of them equal to one another as possible. This will be desirable for reliable
mask generation and will also lead to the calculation of the filter coefficients
more readily. On the basis of the discussion in the paragraph preceding Eq.
(6.47), we choose t2 = 1, t6 = t7 = 1, t1 = t8 = −m1, t14 = t15. We then get t1 = t8 =
−√

hD = −√
0.1219, = −0.3491, and t14 = t15 =√

a2D = √
0.9229 = 0.9607. The

equations pertaining to a1N , a2N , and a1D then lead to

−m1t14t9 + m1m13t14 + m3m13t14 − m1t5 − m13t5t14 = 0

−m3t9t14 + t5t9t14 = −hD = −0.1219

1 + a2D − m13t10 − m1t10t14 = a1D

Clearly, the next stage of simplification will be to assume t5 = 0. We then have

m13 = m1t9

m1 + m3
, m3t9 = hD√

a2D
, t10 = 1 − a1D + a2D

m13 + m1
√

a2D

We now have m13, m3, t9, and t10 as unknowns, but only three equations. If we
choose m3, we get t9, then we choose m13 to obtain t10. By examining the relations
above, it is clear that the terms are not related to one another in a linear manner. In
such a case, it is advisable to look for a solution, which will minimize the sum of
these terms (i.e., capacitance ratios). This will lead to savings in the substrate area
for monolithic fabrication. By setting y1 = hD/

√
a2D, the sum of these capacitance

ratio terms can be formulated as

S = m3 + y1/m3 + m1y1/
(
m3m1 + m2

3

)+ 1 − a1D + a2D

m1
√

a2D + m1y1/
(
m3m1 + m2

3

)
(6.48)

It may be noted that m1 = −t1 = 0.3491, y1 = 0.1269, 1 − a1D + a2D = 1.3763, and
a2D = 0.9229. A plot of S as a function of m3 is shown in Figure 6.24. There is a
minimum in S for m3 ≈ 0.18 and the minimum value is about 3.1. With this value
for m3, we then get, t9 = 0.705, m13 = 0.4652, and t10 = 1.7192. The complete
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Figure 6.24 Total capacitance versus the parameter m lead-
ing to optimum m for minimum total capacitance design.
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solution is then

t1 = −0.3491, t2 = 1, t3 = −0.18, t5 = 0, t6 = t7 = 1, t8 = −0.3491,

t9 = 0.705, t10 = 1.7192, t13 = −0.4652, t14 = t15 = 0.9607

The SFG associated with this solution is shown in Figure 6.25.
Accordingly, the SC network involving only PI inverting and noninverting

integrators are as shown in Figure 6.26. In the figure, D1, D2, D1, and D2 are
the arrays of switches, as shown on the top part of Figure 6.26. To complete the
design, one has to apply impedance scaling to bring the minimum capacitance
equal to the level allowed by the IC technology on hand. Scaling to equalize the
dynamic range can also be applied, if required.

Example 6.5. Consider the implementation of the design problem in Example 6.3
by using the SAA group 7 network.

In this case, the edges concerned are t1, t2, t4, t6, t7, t10, t8, t13, t14, and t15. Of these,
t1, t8, and t13 are to be implemented using PI inverting integrators. Accordingly,
we set t1 = −m1, t8 = −m8, and t13 = −m13. By comparing with the coefficients
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of the standard sampled-data biquadratic function, we get the following design
equations

t1t8 = m1m8 = hD = 0.1219

m1m13t7t15 − m8t2t4 − m8t2t4t6 = a1N = 0

− t2t4t7m13t15

hD
= a2N = −1

t6t7 + t14t15 − m13t7t10 − m8t10t14 = a1D = 0.5455

t6t7t14t15 = a2D = 0.9229 (6.49)

We assume that t6 = t7 = 1, t14 = t15, t1 = t8, and t2 = 1. This will lead
to t1 = t8 = −0.3491, t4 = 0.2469, t14 = t15 = 0.9607, and t10 = (1 − a1D + a2D)/
(m13 + √

hDa2D). The last relation provides an opportunity for minimizing the
sum t10 + m13. Using elementary calculus, we find the optimum value of m13 to be
0.838. Using this value for m13, one gets t10 = 1.1871. Thus, the complete solution
is

t1 = −0.3491, t2 = 1, t4 = 0.2469, t6 = t7, t10 = 1.1871,

t8 = −0.3491, t13 = −0.838, t14 = t15 = 0.9607

It may be interesting to compare the two designs regarding the total capacitance
needed. This will be proportional to the sum

∑
i

|ti|, where i spans the design edges.

For the design in Example 6.4, this sum is 5.689 units, while for the design in
Example 6.5, the sum is 4.8916. Hence, the solution in Example 6.5 will require
less area for implementation on the IC substrate.

6.9
SC Filter Realization Using Unity-Gain Amplifiers

An ideal unity-gain voltage amplifier has infinite input impedance, zero output
impedance, and a voltage gain of unity between the input and output terminals
(Fan et al., 1980; Malawka and Ghausi, 1980; Fettweis et al., 1980). Since the signal
voltage difference between the input and output is zero, one can conceive of the
presence of a virtual short circuit across the input and output nodes of a unity-gain
voltage amplifier (UGA). In an OA-based SC filter, capacitors are charged to signal
voltages in one clock phase and then are discharged at the next clock phase (in
a system with two clock phases like φ1 and φ2) across the virtual short circuit at
the input of the OA whose noninverting input terminal is grounded. At the same
time, in the integrating capacitor across the input and output of the OA, which is
connected to the same virtual ground node, a redistribution of the charge occurs,
leading to the transfer of charge on to the integrating capacitor. The signal voltage
on the integrating capacitor then attains a new value. This is how the signal is
processed via an array of SCs and non-SCs in an SC network using an OA. Since
a virtual ground exists across the input–output nodes of a UGA, similar signal
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processing should, in principle, be possible using an array of SCs and non-SCs,
and a UGA.

The interest in implementing UGA-based SC filtering arose in view of the
following reasons: (i) A UGA could be implemented with fewer transistors than
those in an OA and thus would require less substrate area and less DC power, and
(ii) since the voltage gain is unity, the resulting bandwidth available will be lot more
than that available in an OA. This will make it possible for the implementation
of SC filters at frequencies higher than that possible with OAs. In the following,
we discuss a few important building blocks based on UGAs. These blocks can be
suitably interconnected to produce a general z-domain transfer function of any
arbitrary order and in particular, of second order.

6.9.1
Delay-and-add Blocks Using UGA

It must be clear by now that that the sampled-data transfer function H(z) has the
same form as the transfer function in a digital filter. The basic building blocks to
implement a digital filter are delay, add, and multiply units. These are also the basic
building blocks for realizing an SC filter transfer function. Figure 6.27a shows the
type-1 delay-and-add block (DA1, in short) implemented using several capacitors
and one UGA. When the clock phase 1 (i.e., φ1) is ON, that is, t = (n − 1)T , the
input signal vi is sampled and held on Cx. The capacitor CIN is charged by the
voltage difference vi(n − 1) − vx. At the same time, the voltage held on C1N from
the previous interval is discharged across the UGA and fed to the input node
marked X. In the next clock interval with half-a-period delay (clock phase φ2 ON),
the signal vi(n − 1) held on Cx is connected to the input of the UGA and the voltage
is stored on C1N. Another half-a-period later, φ1 comes ON and a new value vi(n) is
sampled in on Cx. The CCE at this time will be

CONvo(n) = CIN[vi(n) − vo(n)] + C1Nvi(n − 1) (6.50)

On taking z-transforms on both sides and rearranging, we get

Vout(z) = CIN

CIN + CON
[1 + C1N

CIN
z−1]Vi(z) (6.51)
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f1 f1

f1

(a) (b)

Figure 6.27 Unity-gain amplifier (UGA)-based SC configura-
tions to produce (a) a first-order numerator N(z) and (b) a
first-order denominator D(z).
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Equation (6.51) represents a first-order transfer function in the z-domain with only
a numerator term proportional to 1 + C1N

CIN
z−1.

Considering Figure 6.27b, one can similarly formulate

CID[vi(n) − vo(n)] + C1Dvo(n − 1) = CODvo(n) (6.52)

In this case, C1D stores vo(n) instead of vi(n) as in Figure 6.27a. On taking
z-transforms on both sides and simplifying, we get

Vout(z) = Vi(z)/D(z)

where

1

D(z)
= CID

CID + COD

1

1 − C1D
COD + CID

z−1
(6.53)

Equation (6.53) indicates that the arrangement in Figure 6.26b leads to a transfer
function having only a denominator term, such as D(z). It must be remarked that
the sign associated with the z−1 term in Eqs. (6.41) and (6.43) can be reversed by
interchanging the terminals of C1N and C1D. The network in Figure 6.27b is called
type 2 delay-and-add network (DA2).

From the above, it is apparent that, by combining the DA1 and DA2 networks
suitably, one can generate a rational transfer function of the form N(z)/D(z), where
both N(z) and D(z) are of degree z−1.

6.9.2
Delay Network Using UGA

A delay network using an UGA, several switches and sample-and-hold capacitors
is shown in Figure 6.28. It is easy to see that a signal sampled in phase 2 of the
clock signal on to Cx1 is delayed by two half intervals (i.e., a full period T ) by the
succeeding phases 1 and 2 of the clock signal and appears across the terminals XY.
Thus, vxy is a one-period delayed version of vi. In the z-domain VXY (z) = z−1 Vi(z).
The network in Figure 6.28 will be termed as a D network (D for delay).

vi

CjN (or CjD)
Cx1

Cx 2

1

X
Y

f2 f2
f2

f1

f2

f1

Figure 6.28 UGA-based delay network providing the delay z−1.
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Vi

Vo′

Vo

DA1

DA2

D1

D2

X

X

f1

f1

f1

f1
Y

Y

Figure 6.29 Block diagram realizing a
second-order sampled-data transfer func-
tion using DA1, DA2, and D networks.

6.9.3
Second-Order Transfer Function Using DA1, DA2 and D Networks

Intuitively, it is clear that if one cascades a D network after a DA1 network, one
will be able to produce a second-order numerator function of the form N(z) =
ao + a1z−1 + a2z−2. Similarly, cascading one D network with a DA2 network, one
can generate a denominator function of the form 1/D(z) = 1/[bo + b1z−1 + b2z−2].
Figure 6.29 shows the interconnection that will be needed to produce a general
second-order z-domain transfer function. In this diagram, the DA1, DA2, and D
networks are shown as rectangular blocks, so that the clarity of the interconnection
is not lost. One can derive (Raut, 1984)

H(z) = Vout(z)

Vi(z)
= Vout(z)

V ′
out(z)

V ′
out(z)

Vi(z)
= 1

D(z)
N(z) = hD

1 + a1Nz−1 + a2Nz−2

1 − a1Dz−1 + a2Dz−2

(6.54)
In terms of the labeling of the components in DA1, DA2, and D networks, it can
be shown that (see Table 6.4).

hD = 1
(1 + CON/CIN)(1 + COD/CID)

a1N = C1N/CIN, a2N = C2N/CIN

a1D = C1D/(COD + CID), a2D = C2D/(COD + CID) (6.55)

For a specific design, the values of h1D, a1N, a2N, a1D, and a2D will be known when
the BLT is applied to the given second-order analog filter (i.e., continuous-time)
transfer function (Table 6.4). It is then a simple matter to determine the various
capacitances to satisfy the relations shown in Eq. (6.55). In essence, the design task
in this case is much easier than in the case of OA-based implementation.

6.9.4
UGA-Based Filter with Reduced Number of Capacitances

The realizations proposed above require 7 capacitors for each order of the trans-
fer function, and hence 14 capacitors are required to realize a second-order
transfer function. Using an improved basic network can reduce the total num-
ber of capacitors to only 10. This improved basic block is known as composite
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Figure 6.30 Composite delay-and-add (CDA) network to
produce a UGA-based first-order transfer function.

delay-and-add network (CDA) and is presented in Figure 6.30. Considering the
time instants at t = (n – 1/2)T and t = nT, we can write down the following
CCEs:

Co1vx(n − 1/2) + C2vs(n − 1) + C3vo2(n − 1) = 0 (6.56)

C1
[
vs(n) − vx(n)

]− C1 × 0 + Cs1
[
vx(n) − vx(n − 1/2)

] = 0 (6.57)

After eliminating vx(n − 1/2) from Eqs. (6.56) and (6.57), and taking z-transforms,
one can arrive at the following equations:

V
(1)
o1 = A1V

(1)
s + A2z−1V

(1)
s + A3z−1V

(1)
o2

A1 = C1/ (C1 + Cs1) , A2 = C2Cs1/ [Co1 (C1 + Cs1)] ,

A3 = C3Cs1/[Co1(C1 + Cs1)] (6.58)

In the above, we have assigned the superscript (1) to imply the clock phase φ1 and
we have ignored the explicit notation for the function of the variable z. Equation
(6.55) contains the add, multiply and delay terms, which are basic for generating
a general transfer function in the variable z. It may be noted that the signs of the
coefficients A2 and A3 can be changed simply by interchanging the terminals of
the associated capacitors (C2 and C3) in Figure 6.30.

Figure 6.31 presents the interconnection of two CDA networks to produce a
general second-order transfer function in the z-domain. Omitting the argument z
for simplicity, one can derive the following (Fan et al., 1980).

V (1)
o1 = A1V

(1)
s + A2z−1V

(1)
s + A3z−1V

(1)
o2 (6.59)

V
(1)
o2 = B1V

(1)
o1 − B2z−1V

(1)
o1 + B3z−1V

(1)
s (6.60)
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Figure 6.31 Use of two CDA networks to produce a
second-order sampled-data transfer function.

The above two equations can be combined to yield the transfer function:

H(z) = V
(1)
o1

V
(1)
s

= A1 + A2z−1 + A3B3z−2

1 − B1A3z−1 + B2A3z−2
(6.61)

In the above, the coefficients B1, B2, and B3 are dependent upon the network
capacitances as follows:

B1 = C4/ (C4 + Cs2) , B2 = C5Cs2/ [Co2 (C4 + Cs2)] , B3 = C6Cs2/ [Co2 (C4 + Cs2)]

(6.62)

On comparing with the coefficients of the standard form of H(z) (see Table 6.4),
one can find that

A1 = hD, A2 = hDa1N , A3B3 = hDa2N , B1A3 = a1D, and B2A3 = a2D(6.63)

The shortcoming of the UGA-based realization is that the SC networks used are not
PI. The summing junction happens to be at the input of the UGA, that is, a high
impedance node, and this node is not shorted to ground during any of the clock
signal phases. Thus, the design capacitances should be chosen to be considerably
higher than the highest possible value of the parasitic capacitances. In practice,
optimization programs should be used for careful selection of the various design
capacitances in the presence of top- and bottom-plate parasitic capacitances. Such
designs are known as parasitic tolerant designs (Raut and Bhattacharyya, 1984b).

Practice Problems

6.1 A low-pass filter for an implantable device for medical applications has a
bandwidth of 125 Hz. As the circuit has to be integrated, the largest capacitor
that may be used is 15 pF. Approximately what are the resistor values needed
to realize the required time constants in this low-frequency active-RC filter?
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The filter should be realized as a switched-capacitor circuit, clocked at 100

times the filter’s bandwidth. What is the size of the switched capacitors CR

needed to implement the resistors?

6.2 Perform prewarping for the transfer function H(s) = s2+1.4212×105

s2+1004.2s+6.9833×105 and
derive H(z) using bilinear transform. Use the sampling frequencies of (a)

8 kHz and (b) 128 kHz. Discuss the response characteristics.

6.3 Use the SC filter structure of Figure 6.20 (Section 6.7.1) to realize the low-pass

notch function H(s) = 0.891975s2+1.140926×108

s2+356.047s+1.140926×108 . The sampling frequency is to
be 128 kHz. You can ignore prewarping.

6.4 Synthesize the transfer function of a high-pass sampled-data (switched-

capacitor/digital) filter that has (i) an equiripple passband for f > 15 kHz with

Ap = 0.5 dB and (ii) a monotonic stopband for f < 7.8 kHz with Aa = 35 dB.

You can use bilinear s ↔ z transformation, and a clock frequency of 150 kHz.

What is the attenuation of the synthesized filter function at f = 7.5 kHz?

6.5 For the SC filter network of Figure P6.5 (Ghausi and Laker, 1981), derive the

expression for
V

(1)
2

V
(1)
i

. Assume that the capacitors B = D = 1 pF.

6.6 Derive the z-domain transfer functions given in Eq. (6.40) using the basic

analysis technique presented in Section 6.5.

6.7 Using the approach suggested in Section 6.6, derive a simulation model for

the transfer function in Eq. (6.40).

6.8 Using the structure of Figure 6.20 and a clock frequency of 64 kHz, design

the filters in Problems 6.3–6.5. Apply the BL transformation and prewarping.

Wherever possible, minimize the total sum of the capacitances. Discuss the

response characteristics of the SC filters as compared to the corresponding
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active-RC filters satisfying the same set of specifications. Use necessary
simulation tools and techniques.

6.9 Design the SK band-pass filter with the voltage transfer function as given in
Problem 5.3 using the switched-capacitor technique. Use a clock frequency
of 120 kHz.

6.10 Design the band-pass filter of Problem 5.8 using the switched-capacitor
technique. Use a sampling frequency of 100 kHz.

6.11 Design a high-pass filter with fc = 1.2 kHz, Qp = √
2, and high-frequency

gain of 1 dB. Use a clock frequency of 256 kHz. The largest capacitor must
be less than 20 pF.

6.12 Design a low-pass filter with fc = 3.4 kHz, Qp = 1.3 and dc gain of 0 dB. Use
a clock frequency of 256 kHz. The largest capacitor must be less than 20 pF.

6.13 Use the modular approach of design given in Section 6.8 to derive suitable
SC filter structures, which will satisfy the specifications in Problems 6.3–6.5
above. Apply the BL transformation and a clock frequency of 64 kHz.
Wherever possible, minimize the total sum of the capacitances.

6.14 Design a parasitic-insensitive switched-capacitor version of the second-
order Bessel–Thomson filter with voltage transfer function T(s) =

12×106

s2+6×103s+12×106 . Use bilinear s ↔ z transformation. Use a switched-capacitor
structure and a sampling frequency of your choice. Using a numerical
program, compare the magnitude response of your designed filter with that
of T(s). Use three frequencies for this comparison, namely, f = 0, f = fs/8,
and f = fs/2, where fs is the sampling frequency you have chosen.

6.15 Use the UGA-based structures with DA1, DA2, and D networks to design
the filters specified in Problems 6.3–6.5. Use a minimum capacitance value
of 1 pF.

6.16 Repeat Problem 6.12 employing the UGA-based structure with the CDA
network. Keep the minimum capacitance value of 1 pF. Compare the to-
tal capacitance in each of the designs with the corresponding design in
Problem 6.12.



207

7
Higher-Order Active Filters

In Chapters 5 and 6, we have discussed the analysis and design aspects related
to second-order active filters, covering both continuous-time (active-RC) and
sampled-data (SC) filters. In Chapter 4, we introduced concepts related to syn-
thesis of filters of any order using passive elements. In this chapter, we deal with
realization of filters of order higher than 2 using active devices, resistances, and
capacitances. The signal processing techniques will cover both the continuous-time
and sampled-data domains. In the continuous-time domain, we discuss three ap-
proaches: (i) simulation of passive ladders using active-RC networks, (ii) cascading
second-order filter sections with no feedback, and (iii) cascading second-order
sections with special multiloop feedback or feed-forward techniques. In the
sampled-data domain, we cover analogous approaches with SC networks.

It should be mentioned that the particular choice of realizing a higher-order
filter is based on a number of factors such as sensitivity, simplicity of design,
power dissipation, simplicity of tuning, dynamic range, noise, implementation in
integrated form, and economic considerations.

7.1
Component Simulation Technique

It is common knowledge that filters with good frequency selectivity have to be of
order higher than 2. Classically, LC ladder filters were used to accomplish this. It has
been shown that a doubly terminated lossless LC ladder structure has minimum
sensitivity to component variations in the frequency band of interest (Orchard,
1966). Thus, the performance of LC ladder filters is very reliable and stable. With
the advent of electronic filters, it has become a common practice to replicate the
operation of an LC ladder by means of active filter components to preserve the
same low-sensitivity feature. One approach is to implement the operation of an
inductance using active-RC components, and then replace each L in the LC ladder
by the simulated inductance and expect that the overall filter will behave in the
same manner as the prototype LC filter. This method is very useful in the case
of HP filters, where the inductance is grounded; however, in the case of a filter
like the LP filter, where the inductors are floating, this is not very suitable as it is

Modern Analog Filter Analysis and Design: A Practical Approach. Rabin Raut and M. N. S. Swamy
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40766-8
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difficult to simulate accurately a floating inductor. In such a case, a transformation
is introduced to convert the inductors into resistors; but, in doing so, the capacitors
get converted to ‘‘supercapacitors’’ or ‘‘frequency-dependent negative resistances
(FDNRs),’’ which are then replaced by active-RC circuits (Bruton, 1969, 1980). This
approach of replacing inductors or FDNRs by active-RC circuits is known as the
component simulation technique.

7.1.1
Inductance Simulation Using Positive Impedance Inverters or Gyrators

We recall that an impedance inverter is defined by its chain matrix (see Table 2.2)
as

[a]II =
[

0 1/G1

G2 0

]
(7.1)

Further, it is called a positive impedance inverter or a gyrator if (G2/G1) > 0, and is
represented in Figure 7.1. If, in addition, G1 = G2 = G, then it is called an ideal
gyrator. Since most designs of a gyrator using active elements have a common
ground between the input and the output, we consider only grounded gyrators for
inductor simulation. Consider a grounded gyrator loaded by a capacitor C as shown
in Figure 7.2.

Then, the DPI Zin at port 1 is given by

Zin = V1

I1
= 1

G1G2

(−I2

V2

)
= sC

G1G2
= s

C

G1G2
= sL (7.2)

Thus, a grounded inductor of value L = C/(G1G2) is simulated at port 1. Such
inductors are useful in implementing LC ladder filters, where the inductors are
grounded such as in the case of HP filters. For implementing a filter having floating
inductors, such as in the case of an LP, BP, or BR filter, we need to simulate floating
inductors. This can be achieved by using two gyrators with a grounded capacitor in
between, as shown in Figure 7.3a.

G1

−G1

G2

G2

G2

I1 I2

V1 V2

1/G10

0

0
0

[a] =

[y ] =

+

−

+

−

1

1′

2

2′
Figure 7.1 Symbol, chain matrix,
and [y] of a gyrator.

I1 I2G1G2
1

2

1′
2′

V1
C

Zin Zin

G1G2

C
L =

1

1′

+

−

Figure 7.2 Simulation of a grounded inductor using a gyrator.
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Figure 7.3 Realization of a floating inductor using two matching gyrators.

The chain matrix of the overall two-port is given by

[a] =
[

0 1
G1

G2 0

][
1 0

sC 1

][
0 1

G2
G1 0

]
=
[

1 (sC)/(G1G2)
0 1

]

which is the chain matrix of a series inductor of value L = C/(G1G2). Thus, a
floating inductor of value L = C/(G1G2) is simulated, as shown in Figure 7.3b. It is
important to note that this value is realized under the assumption of two matching
gyrators, as shown in Figure 7.3. If the gyrators are ideal, G1 = G2 = G, then the
floating inductance realized is L = C/G2.

Even though there are many realizations of gyrators using OAs (Antoniou, 1967),
it is much easier to realize a gyrator using OTAs, in view of the fact that the basic
equations governing a gyrator are of the form

I1 = G2V2 (7.3a)

I2 = −G1V1 (7.3b)

which can easily be realized using two OTAs (see Table 5.10, row I); for convenience,
it is shown in Figure 7.4, where G1 = gm1 and G2 = gm2. Thus, if a capacitor is
connected between terminal 2 and ground, then we realize a grounded inductor at
port 1 of value L = C/(gm1 gm2).

Since the admittance parameters of a practical transconductance device will be
functions of frequency, it can be appreciated that an inductance implemented with
a transconductance-based gyrator will likewise be frequency dependent. In reality,
the inductance appears with a small parasitic resistance in series. This resistance
and the inductance exhibit constant values at low frequencies (up to about 10 kHz,
depending upon the device characteristics), but start changing with frequency as

+

+
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_
+

_
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gm 2 gm1
gm1
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I2

V1

+

_

+

_+

_
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1 2

1′ 2′

1

1′ 2′
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Figure 7.4 A grounded gyrator realization using two OTAs.
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Figure 7.5 Actual inductor characteristics produced by a
gyrator implemented with practical semiconductor OTAs:
(a) the real part and (b) the imaginary part of the simulated
inductor.

the signal frequency becomes higher. Typical characteristics of these components,
as a function of frequency, are shown in Figures 7.5a and 7.5b.

A floating inductor can be built using two gyrators as shown in Figure 7.3,
wherein each of the gyrators is realized by using the structure of Figure 7.4,
thus using four OTAs. The floating inductor could also be implemented by using
three OTAs (see Table 5.10, Row J). It should be noted that parasitic components
associated with each practical gyrator, however, makes the floating inductances
close to ideal only for a limited frequency range. In a later section, we consider some
examples of higher-order filter design using the inductance simulation technique
that employs gyrators realized using OTAs.

7.1.2
Inductance Simulation Using a Generalized Immittance Converter

We recall that an impedance converter is governed by its chain matrix of the form
(see Table 2.2)

[a]IC =
[

K1 0
0 K2

]
(7.4)

If K1 and K2 are functions of s, then we call it a generalized immittance (impedance or
admittance) converter (GIC). It is seen that if a load ZL is connected at port 2, then
the DPI Zin at port 1 is given by

Zin = K1(s)

K2(s)
ZL (7.5)

As an illustration of the application of the GIC, we see that, if K1(s) = 1, K2(s) =
1/(Cs), and ZL = RL, then Zin = s(CRL), thus simulating an inductor of value
L = CRL. Similarly, if K2(s) = 1, K1(s) = 1/(C1s), and ZL = 1/(C2s), then Zin =
1/(C1C2s2), which corresponds the impedance of an FDNR.

There are many realizations available for a GIC; however, the circuit that is most
practical, yet very easy to implement, is due to Antoniou (1969) and uses two OAs,
as shown in Figure 7.6. Assuming the OAs to be ideal, the nodes 1, 2, and 4 are all
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Figure 7.6 Antoniou’s generalized immittance converter (GIC) realization using two OAs.

at the same potential, that is,

V1 = V2 = V4 (7.6)

Also, we have

I1 = (V1 − V3)Y1 (7.7a)

I2 = (V2 − V5)Y4 (7.7b)

(V3 − V4)Y2 + (V5 − V4)Y3 = 0 (7.7c)

Substituting Eq. (7.6) in Eq. (7.7a–c) and simplifying, we get

I1 = −Z2Z4

Z1Z3
I2 (7.8)

From Eqs. (7.7) and (7.8), we see that the chain matrix of the circuit of Figure 7.6
is given by[

1 0
0 Z2Z4

Z1Z3

]
(7.9)

Thus, the circuit of Figure 7.6 realizes a GIC with K1(s) = 1 and K2(s) =
(Z2Z4)/(Z1Z3). Thus, if the GIC is terminated by a load ZL at port 2, then
from Eq. (7.5), the DPI at port 1 is given by

Zin = Z1Z3

Z2Z4
ZL (7.10)

If we set Z1 = Z3 = Z4 = ZL = R, and Z2 = 1/sC, we get Zin = sCR2, which
simulates an inductance of value L = CR2. This configuration is known as type-I
GIC. If Z2 and Z4 are interchanged, that is, Z1 = Z2 = Z3 = ZL = R, and Z4 =
1/sC, then the GIC is referred to as type-II GIC. A detailed analysis assuming
practical OAs of finite gain shows that the type-II GIC will simulate an inductance
with a high-quality factor (Schaumann, Ghausi, and Laker, 1990) despite small
mismatches among the OAs.
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It may be mentioned that it is possible to simulate a floating inductor using two
GICs (see Problem 7.1). We now consider the application of the GIC-simulated
inductances through two examples. One is the realization of an HP filter and the
other, the implementation of a coupled-resonator BP filter.

Example 7.1. Implementation of an HP filter: Consider the implementation of an
HP CHEB filter with 1 dB ripple in the PB for f ≥ 1400 Hz. In the attenuation
band, the attenuation should be ≥35 dB for f ≤ 375 Hz. Use the component
simulation technique for the implementation. The filter is doubly terminated in
1 � resistances.

For the given specifications, one can determine the order of the associated
normalized LP filter to be 3 and an LC ladder implementation of the LP prototype
may be obtained by using Appendix C or the methods given in Chapter 4; the
prototype filter so obtained is as shown in Figure 7.7a.

Now applying the LP–HP transformation to covert the LP prototype filter to an
HP filter with a PB edge frequency of 1400 Hz (Table 3.2), one gets the HP ladder
filter as shown in Figure 7.7b. We now replace the two grounded inductances by
GIC-based inductances. The GIC structure for the grounded inductance is shown in
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Figure 7.7 (a) An LP LC ladder filter and (b) the associated
HP filter after LP to HP transformation.
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Figure 7.8 (a) GIC-based grounded inductor, and
(b) complete realization of the HP filter of Figure 7.7b.
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Figure 7.8a. It may be noted that, with the choice of R = 1 � and C = 56.17 μF, the
GIC produces an equivalent inductance of 56.17 μH. The complete implementation
of the HP filter of Figure 7.7b, as an active-RC filter, is shown in Figure 7.8b.

7.1.2.1 Sensitivity Considerations
It was mentioned earlier that the excellent sensitivity characteristics of the prototype
LC ladder are maintained in the active-RC realization, where the inductances of
the HP filter are implemented by GIC networks. This holds true not only for
the prototype resistors and capacitors that appear directly in the active realization,
but also for the elements of the GIC that realize the inductances. If we consider
Eq. (7.4), we can write, in general, Leq = (sC4R1R3RL)/R2. Then, S

Leq
R1,R3,RL,C4

=
1, S

Leq
R2

= −1. Now, if we consider an arbitrary sensitivity, say, Sy, where y is any

usual network function, we can derive that Sy
R1,R3,R5,C4

= Sy
Leq

S
Leq
R1,R3,R5,C4

= Sy
Leq

.

Similarly, Sy
R2

= Sy
Leq S

Leq
R2

= −Sy
Leq . Thus, the absolute value of the sensitivity of any

arbitrary function of the ladder network w.r.t. any of the components simulating
an inductor is the same as the sensitivity to the inductor that is being simulated.

Example 7.2. Implementation of a coupled BP filter: Although Example 7.1 em-
phasizes the effectiveness of the GIC to implement HP LC ladder filters, the
technique can be used conveniently to implement other filter types that have
grounded inductances in their structures. One such case is a coupled-resonator BP
filter, as shown in Figure 7.9a (Huelsman, 1993). This represents a narrow-band
BP filter with a center frequency of 1 rad s−1, a bandwidth of 0.1 rad s−1, and a
maximally flat (Butterworth) magnitude characteristic. The GIC implementation
of the normalized filter is shown in Figure 7.9b.

7.1.3
FDNR or Super-Capacitor in Higher-Order Filter Realization

The inductance simulated by GIC technique is very convenient for replacing
grounded inductances in the LC ladder filters. The implementation is thus very
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Figure 7.9 (a) RLC-based coupled-resonator BP filter and
(b) GIC implementation of the filter in (a).
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effective for HP ladder filters. LP ladder filters have inductances in the series
branches. Thus, the active-RC implementation would require simulating floating
inductances. Floating inductances simulated by gyrator or GIC are not very
attractive because of the complexity and the influence of parasitic components. An
attractive alternative in this case stems from applying the impedance transformation
introduced in Chapter 3 to the elements of the LP LC ladder filter. Thus, if the
impedances of the various elements of a doubly terminated LC ladder are multiplied
by a factor 1/ks, that is,

Zi(s) −→ 1

ks
Zi(s) (7.11)

then a resistor of value R is transformed to a capacitor of value k/R, an inductor of
value L becomes a resistor of value L/k, and a capacitor of value C is transformed into
an element whose impedance is 1/s2kC = 1/s2D, which corresponds to an FDNR
of value −1/ω2kC. This transformation is also known as Bruton’s transformation
(Bruton, 1969, 1980). As already mentioned in Chapter 3, such an impedance
transformation does not affect either a VTF or a CTF. Hence, for any LP filter
subjected to such a transformation, the VTF or CTF will remain unaltered. Thus,
if an LP LC ladder filter is transformed by such a transformation, we will have a
structure consisting of only resistors, capacitors, and FDNRs. An example of an
LP LC ladder and the corresponding structure after the transformation are shown
in Figures 7.10a and 7.10b, where D1 and D2 correspond to FDNRs of values kC1

and kC2. We can realize this as an active-RC filter provided we can implement the
FDNR element using active devices and RC elements.

Antoniou’s GIC described earlier can readily be used to implement the FDNR.
Consider the GIC of Figure 7.6. If we let Z1 = ZL = 1/sCx, and Z2 = Z3 = R and
Z4 = Rx, then, from Eq. (7.10), we see that the DPI at port 1 is given by

Zin = 1

s2C2
xRx

= 1

s2D
(7.12)

where D, the value of the FDNR (or the 1/s2 element), is given by C2
xRx. We could

also have chosen Z1 = Z3 = 1/sCx, Z2 = ZL = R and Z4 = Rx . This would also
give the input impedance at port 1 to be Zin = 1

s2C2
xRx

= 1
s2D

. One may notice that,

in view of the impedance transformation Eq. (7.11), the terminal resistances are
converted to capacitances, thereby breaking the DC path, which, however, must
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Figure 7.10 (a) A doubly terminated LC LP filter and
(b) the same filter after the impedance transformation given
by Eq. (7.11).
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exist in an LP filter. To overcome this problem, the terminal capacitances are
shunted by very high resistances. The values of these resistances are chosen such
that the DC gain of the filter using FDNRs is maintained as closely as possible
to that in the prototype ladder filter (Figure 7.10a). It should be observed that the
FDNR realized above with the GIC is a grounded one and not a floating one. It may
be mentioned in passing that it is possible to obtain a floating FDNR using two
GICs similar to the realization of a floating inductor using two GICs (see Problem
7.1 for the floating inductor realization). Let us now consider the following example.

Example 7.3. Consider the elliptic LP filter with transmission zeros and terminated
in 1 k� resistances – see Figure 7.11. Obtain an active-RC implementation using
the FDNR technique.

Applying an impedance transformation of 1/(ks) with k = 10−6, one can find the
following correspondence between the given network in Figure 7.11 and the new
network elements after applying the FDNR technique.

Rs = 1 k� −→ Cs = k/Rs = 1 nF, L1 = 6.9 mH −→ R1 = L1/k = 6.9 k�,

L2 −→ R2 = 6.49 k�, L3 −→ R3 = 45.55 k�, L4 −→ R4 = 0.94 k�,

L5 −→ R5 = 33.9 k�, RL −→ CL = 1 nF

The capacitors C1 and C2 get transformed into super-capacitors or FDNRs D1

and D2 as follows: C1 → D1 = kC1 = 27.1 × 10−15 → C2
41R41 in the GIC network.

Assuming C41 = 2 nF, we get R41 = 6.78 k�. Similarly, for C2 → D2 = 46.65 ×
10−15 → C2

42R42. With C42 = 1 nF, R42 = 46.65 k�. For the 12.67-nF capacitor,
R43 = 12.67 k� with C43 = 1 nF.

Figure 7.12a shows one of the FDNR networks, which is a subsystem of the
whole filter. The full active-RC implementation is shown in Figure 7.12b.

In Figure 7.12b, the resistances Ra and Rb are inserted to maintain the continuity
in the DC path. Because, for equal termination, the DC gain of the ideal LC filter
would be 1/2, one can design Ra and Rb to satisfy this goal approximately. Thus,
assuming Rb = 1 M�, we can design Ra from the equation

Rb

Ra+R1+R3+R5+Rb
≈ 0.5, with R1 + R3 + R5 =6.9 + 45.55 + 33.9 = 86.35 k�

Hence, Ra = 913.65 k�.
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Figure 7.11 A doubly terminated LC LP filter with transmission zeros.
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Figure 7.12 (a) A typical FDNR subcircuit to be used in the
realization of the LP filter of Figure 7.11 and (b) active-RC
implementation of the of filter of Figure 7.11 using the
FDNR subcircuits.

Another important aspect of this realization is that the input and output terminals
are isolated by unity-gain buffer amplifiers. This is required when the filter serves
as a subsystem in a larger overall system. This is because of the fact that the filter
elements have been altered by impedance transformation but the other parts of
the larger system have not been so altered. Thus, isolation amplifiers are required
to prevent unwanted interaction between the filter elements and the rest of the
system in which the filter is embedded.

7.1.3.1 Sensitivity Considerations
Like the simulated inductor, the FDNR retains the excellent sensitivity properties of
the LP prototype. This is true not only w.r.t. the transformed prototype resistors and
capacitors that appear directly in the active realization, but also w.r.t. the elements
of the GIC that realize the FDNRs. This can be appreciated from the expression for
the super-capacitor D = C1CLR2R4

R3
. Obviously, the sensitivity of D with respect to
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the elements of the FDNR is either +1 or −1. Thus, the sensitivity of any network
function with respect to the elements of the FDNR will be ±1 times the sensitivity
of the same network function to the prototype capacitor that has been transformed
into the super-capacitor.

7.2
Operational Simulation Technique for High-Order Active RC Filters

In the previous sections, we have discussed methods wherein the inductors are
avoided by either simulating these using GICs or converting them into resistors
using an appropriate impedance transformation. In the latter case, however, the
capacitors get converted into super-capacitors (FDNRs), which are then simulated
using GICs. In this section, we present an alternative method for the design of
high-order active filters. Our starting point is still a prototype LC ladder structure.
However, rather than simulating individual inductors or FDNRs in the ladder, we
seek a method to simulate the operation of each section of the ladder (Sedra and
Brackett, 1978; Huelsman, 1993). In this process, we deal with the I–V relations of
each section of the ladder by following the signal flow pattern along the ladder as
a sequence of voltage-to-current and current-to-voltage equations. The method is,
therefore, sometimes known as the signal flow graph or the operational simulation

method. The basic philosophy of this technique is to find an active circuit that
‘‘copies’’ the operation (of the input current or voltage to produce an output voltage
or current, respectively) of an LC ladder prototype filter. Since the I–V equations for
an inductor and a capacitor involve derivatives and integrals with respect to time,
the functions of these elements are conveniently implemented by using active-RC
integrators. Similarly, the KVL equation around a loop and the KCL equation at
a node can be implemented by suitable summing amplifiers. Since in practice
as the signal flows along the system, the signal mode alternates between voltage
and current or vice versa, we can use convenient scaling resistances to convert
the current signals into voltage signals so that only voltage-mode building blocks
(namely, VCVS-based integrators and summers) are used in the implementation.
We illustrate the technique by considering a few representative cases.

7.2.1
Operational Simulation of All-Pole Filters

The design of all-pole active filters, using operational simulation of LC ladder
prototypes, is discussed in detail by Girling and Good (1970). The structure has
been named the leapfrog structure because of the way the schematic of the resulting
network appears. Consider Figure 7.13, which depicts an LC ladder structure.
Since it is an all-pole network, each of the series and shunt arms contains only
one element, either a capacitor or an inductor. The I–V relations for the series and
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+

−

Y5Y3

Z2 Z4 Z6

Y1

Vi

+

−
V2

+

−
V4

+

−
V6

Figure 7.13 Illustration of the formulation of the I − V
equations in an LC ladder, where Yi represents the admit-
tances of the series arms and Zi the impedances of the
shunt arms.

shunt arms can be written in a simple way. Thus,

I1 = (V1 − V2)Y1

I3 = (V2 − V4)Y3

I5 = (V4 − V6)Y5 (7.13)

etc.,

and

V2 = (I1 − I3)Z2

V4 = (I3 − I5)Z4 (7.14)

etc.

Since we intend to use a voltage-amplifier-based implementation, it will be judicious
to convert all the I variables in Eqs. (7.13) and (7.14) to corresponding V variables.
This can be easily done by using a suitable scaling resistance (whose value could
be 1 �). Thus, writing V ′

i for IiR, where R is a scaling resistance, we can reorganize
Eqs. (7.13) and (7.14) as

V ′
1 = (V1 − V2)Y1R

V2 = (V ′
1 − V ′

3)Z2/R

V ′
3 = (V2 − V4)Y3R

V4 = (V ′
3 − V ′

5)Z4/R

V ′
5 = (V4 − V6)Y5R (7.15)

etc.

The expressions in Eq. (7.15) are dimensionless VTFs and hence can be realized
with voltage amplifiers. Since we can have both inverting and noninverting voltage
amplifiers using OAs, we may rewrite some of the expressions in Eq. (7.15) with a
negative sign in front. This way, the implementation can be carried out conveniently
with a continuous chain of OA-based inverting and noninverting amplifiers. Two
possible ways to rewrite the expressions are as follows:
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V ′
1 = (V1 − V2)Y1R

−V2 = (V ′
1 − V ′

3)(−Z2/R)

−V ′
3 = (−V2 + V4)Y3R

V4 = (−V ′
3 + V ′

5)(−Z4/R)

V ′
5 = (V4 − V6)Y5R (7.16a)

etc.

or

−V ′
1 = (V1 − V2)(−Y1R)

−V2 = (−V ′
1 + V ′

3)Z2/R

V ′
3 = (−V2 + V4)(−Y3R)

V4 = (V ′
3 − V ′

5)Z4/R

−V ′
5 = (V4 − V6)(−Y5R) (7.16b)

etc.

A block diagram for implementing the expressions in Eq. (7.16a) is shown in
Figure 7.14. Similarly, Figure 7.15 shows the block diagram for implementing the
expressions in Eq. (7.16b). The name ‘‘leapfrog’’ is apparent from the nature of the
layout of these block diagrams.

7.2.2
Leapfrog Low-Pass Filters

Figure 7.16 shows the schematic of a fifth-order all-pole LP filter. We intend to
implement an active-RC network corresponding to this filter using the leapfrog

Y1R Y3R Y5RR
−Z2 −Z4

−V2 V4

−V3
′

R

V i
′

V1

V5
′

Figure 7.14 Implementation of the I − V relations in
Eq. (7.16a) using voltage summing junctions and normalized
gain functions YiR and –Zi/R.

−Y1R −Y3R −Y5R
R

Z2
R
Z4

−Vi
′ −V5

′V3
′

−V2
V1

V4

Figure 7.15 An alternative implementation based on the
I − V relations in Eq. (7.16b) using voltage summing junc-
tions and normalized gain functions –YiR and Zi/R.



220 7 Higher-Order Active Filters

Rs

RLVs

−

+

Y1 Y3 Y5

L1 L3 L5

C2 C4 Z4Z2

Figure 7.16 Realization of a doubly terminated fifth-order
all-pole LC filter using the method of operational simulation.

structure discussed above. For this, we first identify the impedance and admittance
elements. The scaled VTFs (i.e., Y1R, Z2/R, . . .) assuming R = 1 are as follows:

T1(s) → Y1 = 1/L1

s + Rs/L1

T2(s) → −Z2 = − 1

sC

T3(s) → Y3 = 1

sL3

T4(s) → −Z4 = − 1

sC4

T5(s) → Y5 = 1/L5

s + RL/L5
(7.17)

Of the above transfer functions, T2 and T4 can be realized by conventional inverting
integrators. T3 can be implemented by a noninverting integrator as shown in
Figure 7.17a or a conventional integrator followed by an inverting amplifier of gain
unity. The transfer functions T1 and T5 can be implemented by noninverting lossy
integrators; the noninverting lossy integrator can be realized using an inverting
amplifier followed by an inverting lossy integrator, shown in Figure 7.17b.

In order to make the transfer function in Figure 7.17b to comply with T1,
for example, one has to equate the DC gains 1/Rs = Rx/R, giving Rx = R/Rs.
Similarly, 1/RxCx → Rs/L1, leading to Cx = L1/R. An implementation of the LP
filter of Figure 7.16 using the architecture of Figure 7.14 is shown in Figure 7.18.
In Figure 7.18, the noninverting integrator has been realized as a cascade of an
inverting amplifier and an inverting integrator.

7.2.3
Systematic Steps for Designing Low-Pass Leapfrog Filters

The design procedure for an LP leapfrog filter may be summarized as follows:

1) Design the normalized LP prototype either by using filter tables or by the
methods described in Chapter 4.

2) Select one of the general system diagrams from Figure 7.14 or 7.15.
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Figure 7.18 The leapfrog structure realization for the filter shown in Figure 7.16.

3) Design the inner elements (i.e., excluding the source and load ends) of the
filter using inverting and noninverting integrators and a normalized value of
the scaling resistance R equal to unity.

4) Design the terminal elements using the networks in Figure 7.17a or 7.17b.
5) Perform the necessary frequency and impedance denormalization.

Example 7.4. It is required to realize a third-order Butterworth LP filter with a
cutoff frequency of 1 k rad s−1. The input source has zero resistance.

This case belongs to the class of singly terminated ladder filters. The prototype
ladder is shown in Figure 7.19a. The nominal leapfrog filter structure is shown
in Figure 7.19b. A frequency scaling by 103 and an impedance scaling by 104

will make all the resistances to be equal to 10 k� and all the capacitances to get
multiplied by 10−7.
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Figure 7.19 (a) A third-order low-pass LC filter and
(b) operational simulation of the filter in (a).

7.2.4
Leapfrog Band-Pass Filters

The leapfrog technique discussed above is also applicable to BP filters with zeros at
the origin and at infinity. This includes, for example, a series resonance network in
the series arm and/or a parallel resonance network in the shunt arm of the ladder
filter. Figures 7.20a and 7.20b show these two cases with the corresponding Y and Z
functions. In the intermediate locations of the ladder, we have Ri → 0 and Rj → ∞.

Thus, instead of first-order RC transfer function networks, as was in the case of
an LP filter, we have to use second-order RC-active filter sections in this case to
implement the normalized admittance and impedance functions. The second-order
RC network must have the capability to produce Q p → ∞ as will be required for
R i → 0 or R j → ∞. A Tow–Thomas network with the summing capability at the
input, which will also afford this special condition (namely, Q p → ∞), is shown in
Figure 7.21.

The condition Ri → 0 in Yi(s), and Rj → ∞ in Zj(s) can be realized from this
network by setting R1 = ∞, that is, an open circuit. The leapfrog realization of a
prototype BP filter (Figure 7.22a), using the above biquad as a building block, is
illustrated in Figure 7.22b.

Cj

Ci

Zj (s) =
(1/Cj )s

s2 + (1/RjCj )s + 1/LjCj

Lj

Li

Rj

Ri

(a) (b)

Yi (s) =
(1/Li)s

s2 + (Ri /Li)s + 1/Li Ci

Figure 7.20 (a) A third-order low-pass LC filter and
(b) operational simulation of the filter in (a).
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Figure 7.22 (a) A normalized band-pass filter with series
LCR and shunt LC elements and (b) leapfrog implementa-
tion of the BP filter using the Tow–Thomas biquad, mod-
ules (shown as rectangles).

7.2.5
Operational Simulation of a General Ladder Structure

In Section 7.2, we considered the cases of all-pole LP and BP filters. The ze-
ros of the transfer function were either at DC (zero frequency) or at infinity.
Finite-transmission zeros occur for elliptic filters, stopband filters, and so on. This
implies the presence of a parallel resonant network in the series arm and/or that
of a series resonant network in the shunt arm of the ladder network. In general,
then, we have to consider a series arm as shown in Figure 7.23a and a shunt arm
as in Figure 7.23b.
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(a) (b)

Rp1

Lp1

Cp1

Cp2

Cp2

Cp1

Lp2

Lp2
Lp1 Rp1

Figure 7.23 (a) The series arm and (b) the shunt arm of a general ladder filter.

The series arm admittance is then

Y(s) = 1

Z(s)
= 1

Rp1 + sLp1 + 1

sCp1
+ 1

sLp2 + 1
sCp2

(7.18)

In the above, we have used the suffix p to indicate the elements to be those of the
prototype ladder filter. Similarly, the impedance of the shunt arm is

Z(s) = 1

Gp1 + sCp1 + 1

sLp1
+ 1

sLp2 + 1

sCp2

(7.19)

For operational simulation, we have to find active-RC networks, which can simulate
the above admittance and impedance functions. Of course, as before, we deal with
normalized dimensionless quantities Y(s)Rp and Z(s)/Rp, which can be simulated
as VTFs. By including the normalized resistance Rp in Eqs. (7.18) and (7.19) and
using lower case letters for the normalized quantities, we can write

ty(s) = Y(s)Rp = 1

rp1 + slp1 + 1

scp1
+ 1

scp2 + 1

slp2

(7.20)

and

−tz(s) = −Z(s)
Rp

= − 1

Gp1Rp + sCp1Rp + 1

sLp1
+ 1

(sLp2/Rp) + 1

sCp2Rp

= − 1

gp1 + scp1 + 1

slp1
+ 1

slp2 + 1

scp2

(7.21)

In the above, we have assigned a negative sign in front of the tz(s) function to imply
that this transfer function is going to be realized using an inverting amplifier.
The transfer functions given by Eqs. (7.20) and (7.21) appear formidable, but
the property that an admittance function in the feedback path of an ideal OA
appears inverted in producing the overall closed-loop gain function can be used
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to implement the above transfer functions. For more details, the reader should
consult Schaumann, Ghausi, and Laker (1990) or Schaumann and Van Valkenburg
(2001).

7.3
Cascade Technique for High-Order Active Filter Implementation

In the cascade design technique, second-order RC-active networks (and possibly
one first-order section) are cascaded to generate a higher-order voltage-mode
filter. The method is simple and needs least amount of redesign efforts, because
well-behaved and well-characterized first- and second-order systems are available.
Each first- and/or second-order filter can be tuned independently and the cascade
can be developed in a modular fashion. Of course, this is possible only if each
of the sections does not load the output of the preceding one. This is true if the
output impedance of each section is much lower than the input impedance of the
following section. In this section, we consider the realization of a high-order filter
in voltage mode using OAs. Thus, we may write the filter function in the form

H(s) = a10s + a00

s + b00
�N

i=1
a2is2 + a1is + a0i

s2 + b1is + b0i
= H0(s)�N

i=1Hi(s) (7.22)

The linear term is present only if the filter is of odd order; in the case of an
even-order filter, all the sections are biquad sections. The first-order section can be
designed using one of the circuits given in Table 5.1 (Chapter 5), while the biquads
can be designed using one of the methods discussed in Chapter 5. Let us now
consider an example.

Example 7.5. A fourth-order LP Butterworth filter is required to have a gain of 16
and a cutoff frequency of 1 kHz. Obtain a cascade design using OAs. Use 0.01 μF
capacitors.

We shall consider the realization in terms of the transfer function H(s) =
H1(s)H2(s), where H1(s) = 1

s2 + b11s + b01
and H2(s) = 1

s2 + b12s + b02
. From the Butter-

worth filter function table (Appendix A), we find that for the normalized LP filter
with a cutoff frequency of 1 rad s−1, b11 = 0.766, b01 = 1, b12 = 1.848, and b02 = 1.
We can use a cascade of two Sallen and Key LP filters, each having the structure
as shown in Figure 5.4. For the sake of convenience, the structure is redrawn in
Figure 7.24. The transfer function V2/V1 is given by

V2

V1
= K

1/(R1R2C1C2)

s2 + s

[
1

R1C1
+ 1

R2C1
+ (1 − K)

1

R2C2

]
+ 1

R1R2C1C2

(7.23)

Letting C1 = C2 = 1 F, and comparing Eq. (7.23) with H1(s) = 1
s2 + b11s + b01

, we get

b01 = 1

R1R2
, b11 = 1

R1
+ 2 − K

R2
(7.24)
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Figure 7.24 Sallen and Key LP structure used in the
cascade design of the LP filter of Example 7.5.

Equation (7.24) leads to a quadratic equation in R2. Solving this, we get

R2 =
(

b11 ±
√

b2
11 − 4b01(2 − K)

)/
2b01

For physically realizable R2, one must have [b2
11 − 4b01(2 − K)] ≥ 0. On substituting

for b01 and b11, one arrives at K ≥ 2.1466. Let K = 4 for each SAB section.
Setting K = 4, we get R2 = 1.85 and R1 = 0.541. Choose R4/R3 = 3 to make
K = 1 + R4/R3 = 4.

One can choose R3 and R4 with due considerations for DC offset cancellation.
Consider Figure 7.25, which is the case for DC (capacitors open circuits!). For
ideal OA, vx = vy and for zero offset Ix = Iy. Then, vx

R1+R2
= vy

R3||R4
, leading to

R4 = K(R1 + R2). Then R4 = 4(7.1.85 + 0.54) = 9.56 and R3 = 3.18.
Using a similar procedure for the second stage, we get

R′
2 = 2.613, R′

1 = 0.383, R′
4 = 11.97, and R′

3 = 3.99.

Since K = 4 for each of the stages, the overall gain of the filter is 16 as required.
The above design is for a normalized cutoff frequency of 1 rad s−1 and all capacitors
equal to 1 F. To get an fc = 1 kHz and all C = 0.01 μF, we have to use both
impedance and frequency scaling. An impedance scaling by 108 will make all the
capacitors to be 0.01 μF, while all the resistors will be multiplied by 108. To scale

OA

R4R3

ny

nx
Ix←

←

Iy

R1
R2

+
−

Figure 7.25 DC equivalent of the circuit
in Figure 7.24 for offset voltage calcula-
tion and cancellation.
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to the frequency of 2π × 103 rad s−1 without changing the capacitance values, we
need to divide the resistors by the same factor. Thus, the overall scale factor for
the resistors will be 108/2π × 103 = 1.59 × 104. Hence, the final design values
are

Stage 1: C1 = C2 = 0.01 μF, R1 = 8.59 k�, R2 = 24.42 k�, R3 = 50.56 k�, and
R4 = 152 k�

Stage 2: C1 = C2 = 0.01 μF, R′
1 = 63.44 k�, R′

2 = 41.55 k�, R′
3 = 63.44 k�, and

R′
4 = 190.3 k�.

While cascade design is very straightforward, implementation of high-order
filters using a cascade of biquad sections is usually limited to an order of 8 or less.
The principal reason is that the cascade designs are often found to be too sensitive
to component variations in the PB due to component tolerances in the individual
sections. The fact that the individual biquad sections are relatively decoupled from
each other makes the system design task easier, and the tuning becomes simpler;
but, it makes the control of sensitivity very difficult. This happens because of
absence of any feedback between the individual cascaded sections. Usually, several
trial designs are required to reduce such sensitivities by careful pairing of the poles
and zeros of the given high-order transfer function.

7.3.1
Sensitivity Considerations

It has been found that the sensitivity of a high-order filter to component
tolerances depends upon the frequency range of application and the struc-
ture chosen to implement the filter. The structure determines the expressions
for the pole and zero frequencies and these expressions in turn influence
the sensitivity values. In a standard biquadratic transfer function, the over-
all sensitivity is influenced by the sensitivity due to the numerator minus
the sensitivity due to the denominator terms. The numerator terms are pro-
duced by products of the form (s − zi), where zi is a zero of the transfer
function, and the denominator terms are likewise produced by the products
of the form (s − pj), where pj is a pole of the transfer function. It may be
argued that, if the pole-zero pair (pj, zi) are close to each other, their influ-
ence on the overall sensitivity will tend to cancel each other, thereby leading to
low-sensitivity realization. Thus, one would consider implementing the individual
biquad sections such that each section contains the pole-zero pair that is close
to each other. However, it is not possible to generalize on this argument and
classically rather diverse propositions have been advanced (Ghausi and Laker,
1981).

1) Pair the high-Q poles with those zeros farthest away such that |pi − zi| is
maximum.

2) Pair the high-Q poles with closest zeros such that |pi − zi| is minimum.
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In practice, one has to evaluate the sensitivities for all possible combinations and
ascertain the right kind of pairing, which leads to smallest sensitivity realization.
Quite often, computer-aided optimization will be required.

7.3.2
Sequencing of the Biquads

One of the flexibilities of the cascade realization is that the various biquads
can be cascaded in a variety of sequences, since the overall transfer function is
the product of the individual biquadratic transfer functions. For a moderately
complex filter, we can make a judicious choice. It is recommended that the
LP filter be placed at the front end, which will cause unwanted high-frequency
signals to be attenuated before they reach later sections. Also, it is a good idea
to place an HP filter at the end of the cascade. This will help in removing any
internally generated noise outside the PB reaching the output. Again, one could
make a thorough study of all the possible sequences, and then choose the best
sequence.

7.3.3
Dynamic Range Considerations

The dynamic range is defined by the ratio of the maximum output signal without
causing unacceptable distortion to the minimum detectable signal. The maximum
undistorted signal is determined by the saturation of the active devices (depends
upon the power supply) and the slew rate of the active devices, whichever leads to
a worse-case scenario. The minimum signal level is determined by the noise floor
of the system. A signal below the noise floor cannot be detected. For the maximum
level, all frequencies are to be considered, while for the minimum signal level
only the PB or in-band signals are of primary interest. Active filters typically have
a dynamic range between 70 and 100 dB. In a cascaded system, a good dynamic
range can be achieved if one can arrange the following:

1) The signal level at all frequencies of interest does not become too large in any
section leading to overload of the following sections.

2) The in-band signals do not become too small at any stage and thereby get lost
in the noise.

The above two objectives can be well taken care of if the signal level at the output
of each section is maintained at the same level. This will need planning regarding
the pole-zero pairing, order of cascading, and the choice of gain constants of the
constituent sections.

To describe mathematically, if Sk min is the minimum in-band signal at the output
of the kth section within the PB frequencies and Sk max is the maximum signal level
at the output of the kth section for all frequencies (in-band and out-of-band), the
maximum value of the ratio rj = Sj max/Sj min over all the j = 1, 2, . . . , N sections is
to be minimized.
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For more details concerning pole-zero pairing, sequencing of the biquads,
dynamic range optimization, gain adjustment, and sensitivity considerations, the
reader is referred to Schaumann, Ghausi, and Laker 1990.

7.4
Multiloop Feedback (and Feed-Forward) System

The low sensitivity of ladder filters is ascribable to the existence of tight feedback
between adjacent sections of the filter. This is possible because the adjacent
sections are implemented with passive elements and passive elements possess
the property of bilateralism. In the cascade of active-RC biquad sections, this
bilateralism is lost and the tight feedback is absent. This is the principal reason
for the poor sensitivity performance of a cascaded second-order system. Obviously,
one may conjecture that the inclusion of negative feedback between the cascaded
second-order sections improves the sensitivity performance. This is what is precisely
achieved in multiloop feedback and feed-forward systems involving modules of
first- or second-order active-RC filters. When the desired transfer function is a
high-order symmetrical BP or BR function, multiloop feedback (MLF) realizations
result in low sensitivity, OA-efficient designs. It may be mentioned that the leapfrog
architecture, which has been already discussed in Section 7.2, is a special case of
the MLF implementations.

We now consider some of the MLF realizations using OAs.

7.4.1
Follow the Leader Feedback Structure

The simplest of the MLF structures is the follow the leader feedback (FLF)
structure shown in Figure 7.26, where the transfer functions Ti(i = 1, 2, . . . , n)
may be lossless or lossy integrators, bilinear, or biquadratic functions. When all
the transfer functions are simple integrators, the structure is also known as the
controller canonic structure in system theory and has been used to solve differential
equations using analog computers.

It is easy to see from Figure 7.26 that

KV1 −
[

f0 −
(

f1
Tn

)
−
(

f2
Tn−1Tn

)
+ · · · +

(
fn−1

T2 . . . Tn

)]
V2 =
(

V2

T1 . . . Tn

)
Hence,

V2

V1
= K[(

1
T1...Tn

)
+
(

fn−1
T2...Tn

)
+ · · · +

(
f1
Tn

)
+ f0
] (7.25a)

or

V2

V1
= KT1 . . . Tn

[1 + fn−1T1 + fn−2T1T2 + · · · + f1T1 . . . T1 + f0T1 . . . Tn]
(7.25b)
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It is clear from Eq. (7.25) that the zeros of the transfer function are located at
the zeros of the Ti. Hence, when Ti is a lossless or lossy integrator, then the
denominator of Eq. (7.25) will be a polynomial in s, and hence this structure
can only realize all-pole functions. It is clear that, in order to realize arbitrary
finite-transmission zeros, the various Ti’s have to be, in general, biquads. The
theory is quite complicated when this is the case and has not been considered here.
The interested reader can refer to Laker and Ghausi (1980) and Ghausi and Laker
(1981). We only consider the cases when Ti is a lossless or lossy integrator.

7.4.1.1 Ti = (1/s), a Lossless Integrator
In this case, the structure is as shown in Figure 7.27, where f0, f1, . . . , fn−1 of
Figure 7.26 have been replaced by b0.b1, . . . , bn−1. The corresponding transfer
function is given by

V2

V1
= K

[sn + bn−1sn−1 + bn−2sn−2 + · · · + b1s + b0]
(7.26)

which is an LP transfer function. Of course, by taking the outputs at different
points, we can also get HP and BP transfer functions.

All the integrators used in Figure 7.27 are noninverting ones. Since inverting
integrators are most commonly used in practice, the feedback coefficients have to

T1 T2 Tn
V1 V2

−fn−1

−fn−2

−f1

−f0

K
+

Figure 7.26 Follow the leader feedback structure.

+ 1
s

1
s

1
sV1

−bn−1

−b1

−bn−2

K

snV2 sn−1V2 s2V2 sV2

1
s

V2

−b0

Figure 7.27 FLF structure where each Ti is a lossless integrator.
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be suitably multiplied by ±1 to realize the structure of Figure 7.27 using OAs.
Also, it may be possible to combine the first inverting integrator with an inverted
weighted summing integrator. We illustrate such a realization using a fourth-order
LP filter.

Example 7.6. Realize the fourth-order LP filter given by

H(s) = V2

V1
= K

s4 + b3s3 + b2s2 + b1s + b0
(7.27)

using the FLF structure with lossless inverting integrators.
Equation (7.27) can be rewritten in the form

V1

1/K
−
(

V2

1/b0
+ s2V2

1/b2
+ s4V2

)
+
(−sV2

1/b1
+ −s3V2

1/b3

)
= 0 (7.28)

Equation (7.28) can be realized using four inverting integrators, and two inverting
summing amplifier, as shown in Figure 7.28.

However, if we rewrite Eq. (7.28) as

V1

1/K
−
(

V2

1/b0
+ s2V2

1/b2

)
+
(−sV2

1/b1

)
+
(−s3V2

1/b3
+ −s3V2

1/s

)
= 0 (7.29)

then Eq. (7.29) can be realized with three inverting integrators, one inverting
integrating summer, and one inverting summer, as shown in Figure 7.29.

7.4.1.2 Ti = 1/(s + α), a Lossy Integrator
In this case, we are using lossy integrators in the structure given in Figure 7.26
and Eq. (7.25) reduces to

V2

V1
= K

[(s + α)n + fn−1(s + α)n−1 + fn−2(s + α)n−2 + · · · + f1(s + α) + f0]
(7.30)
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Figure 7.28 FLF realization of the fourth-order LP filter given by Eq. (7.27).
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Figure 7.29 Alternative FLF realization of the fourth-order LP filter given by Eq. (7.27).

Comparing Eq. (7.30) with the all-pole LP transfer function given by Eq. (7.26), we
have

fn−1 = bn−1 − nα

fn−2 = bn−2 − (n − 1)αfn−1 − {n(n − 1)/2}α2

...

f0 = b0 − αf1 − α2f2 − · · · − αn−1fn−1 − αn (7.31)

We may choose a suitable value for α, and find the feedback coefficients
fn−1, fn−2, . . . , f1, and f0, successively from Eq. (7.31), in terms of bn−1,
bn−2, . . . , b1, b0, and α. We can now realize Eq. (7.30) using the structure of
Figure 7.26, wherein the function Ti(s) = 1/(s + α) is realized using lossy integra-
tors. Since we will be using inverting integrators, we have to associate proper signs
to fn−1, fn−2, . . . , f1, and f0 in realizing Eq. (7.30). We illustrate this case for a Butter-
worth filter of order 3. The same procedure could be used for a higher-order filter.

Example 7.7. Realize the third-order LP filter given by

H(s) = V2

V1
= K

s3 + 2s2 + 2s + 1
(7.32)

using lossy integrators of the type −1/(s + 1).
Using Eq. (7.31), we have

f2 = 2 − 3 = 1, f1 = 2 − 4 + 3 = 1 and f0 = 1 − 2 + 2 − 1 = 0

Hence, the given transfer function can be written as

V2

V1
= K

[(s + 1)3 − (s + 1)2 + (s + 1)]
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Figure 7.30 FLF realization of the third-order LP filter given by Eq. (7.32).

The above can be easily realized as shown in Figure 7.30a, wherein each of the
lossy integrators is realized using the inverting integrator shown in Figure 7.30b.

As mentioned earlier, when Ti is a lossless or lossy integrator, then the denomi-
nator of Eq. (7.25) will be a polynomial in s; hence, the structure of Figure 7.26 can
only realize all-pole functions. In order to realize finite-transmission zeros using
this structure, we will have to use biquads as the building blocks for the various Ti

(Laker and Ghausi, 1980; Ghausi and Laker, 1981). However, it is possible to realize
finite-transmission zeros using that structure with lossless or lossy integrators, if
we provide suitable feed-forward paths. This is considered next.

7.4.2
FLF Structure with Feed-Forward Paths

Consider a general nth-order transfer function of the form

H(s) = V2

V1
= [ansn + an−1sn−1 + an−2sn−2 + · · · + a1s + a0]

[sn + bn−1sn−1 + bn−2sn−2 + · · · + b1s + b0]
(7.33)

This can be rewritten as

H(s) = H1(s)H2(s) (7.34)

where

H1(s) = V ′
2

V1
= 1

[sn + bn−1sn−1 + bn−2sn−2 + · · · + b1s + b0]
(7.35)

and

H2(s) = V2

V ′
2

= [ansn + an−1sn−1 + an−2sn−2 + · · · + a1s + a0] (7.36)
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Figure 7.31 Realization of a general nth-order filter func-
tion using lossless integrators in an FLF structure with
feed-forward paths.

The transfer function H1(s) can be realized using the structure of Figure 7.27
(with K = 1), while H2(s) can be realized by adding the outputs at various points in
the structure of Figure 7.27 after multiplying these outputs by appropriate values.
The overall realization of H(s) given by Eq. (7.35) is shown in Figure 7.31. Again, it
should be remembered that, since we are going to be using inverting integrators,
the signs for the various coefficients ai and bi have to be properly chosen. A similar
procedure can be used when lossy integrators are used instead of lossless ones
shown in Figure 7.31.

As an illustration, the realization of a general fourth-order transfer function
given by

H(s) = V2

V1
= a4s4 + a3s3 + a2s2 + a1s + a0

s4 + b3s3 + b2s2 + b1s + b0
(7.37)

is shown in Figure 7.32a using lossless integrators, wherein each of the integrators
is realized using the inverting integrator shown in Figure 7.32b.

7.4.3
Shifted Companion Feedback Structure

We saw in Section 7.1 that by choosing all the Ti’s to be lossy integrators of the
form Ti = 1/(s + α), we could realize an all-pole LP filter given by

V2

V1
= K

[sn + bn−1sn−1 + bn−2sn−2 + · · · + b1s + b0]
(7.38)
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Figure 7.32 Realization of the general fourth-order filter
function given by Eq. (7.37) using the FLF structure with
feed-forward paths shown in Figure 7.31.

by rewriting it as

V2

V1
= K

[(s + α)n + fn−1(s + α)n−1 + fn−2(s + α)n−2 + · · · + f1(s + α) + f0]
(7.39)

where the various fis are give by Eq. (7.31). If we choose

α = bn−1/n (7.40)

then

fn−1 = 0 (7.41)

that is, there is no feedback path from the output of the first integrator. Such a
structure is called the shifted companion feedback (SCF) structure, and is shown
in Figure 7.33. It may be mentioned that, by providing suitable feed-forward paths
from the various points in this structure and adding them at the output as we did
in the case of lossless integrators (see Figure 7.31), it is possible to realize a general
VTF of the form Eq. (7.33) using lossy integrators.
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Figure 7.33 Shifted companion feedback structure.

As an illustration, consider the third-order Butterworth filter given by Eq. (7.32)
and let α = 2/3, then we find from Eq. (7.31) that f2 = 0, f1 = 2/3, and f0 = 7/27.
Hence, we can rewrite Eq. (7.32) as

V2

V1
= K[(

s + 2
3

)3 + ( 23 ) (s + 2
3

)+ 7
27

] (7.42)

This can be realized as shown in Figure 7.34a, wherein each of the lossy integrators
is obtained in the inverting form as shown in Figure 7.34b.
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Figure 7.34 Realization of the third-order Butterworth filter by SCF structure.



7.4 Multiloop Feedback (and Feed-Forward) System 237

7.4.4
Primary Resonator Block Structure

It was mentioned earlier in Section 7.4.1 that the VTF V2/V1 of the structure
Figure 7.26 can have transmission zeros only at the zeros of the various Ti. Hence,
biquads are needed to realize arbitrary finite-transmission zeros for V2/V1. We
also saw in the previous subsections as to how one could realize an all-pole VTF
using lossy integrators for the various Ti. We now show how to realize a high-order
BP filter using the LP to BP transformation in conjunction with the structure of
Figure 7.33.

Let the all-pole LP filter given by

V2

V1
= K

[sn + bn−1sn−1 + bn−2sn−2 + · · · + b1s + b0]
(7.43)

rewritten as

V2

V1
= K

[(s + α)n + fn−1(s + α)n−1 + fn−2(s + α)n−2 + · · · + f1(s + α) + f0]
(7.44)

and realized by the SCF structure of Figure 7.33. Then,

α = bn−1/n and fn−1 = 0. (7.45)

The remaining feedback coefficients fn−2, . . . , f1, f0 can be obtained in terms of
α and the various bi using Eq. (7.31). Now introduce the normalized LP to BP
transformation

s = Q
s2 + 1

s
(7.46)

Then

(s + α) →
(

Q
s2 + 1

s
+ α

)
= Q

s

[
s2 + α

Q
s + 1
]

(7.47)

Hence, each of the lossy integrators in Figure 7.33 is replaced by the second-order
BP filter

s/Q

s2 + (α/Q)s + 1
= (H0/Qp)s

s2 + (1/Qp)s + 1
(7.48)

where Qp = Q/α is the pole Q and H0 = 1/α is the gain at the center frequency
of the second-order BP filter. Each of the BP biquad may be realized by any of
the methods discussed in Chapter 5. Thus, a high-order BP filter may be realized
by coupling a number of identical BP biquads. These identical biquads are called
primary resonant blocks (Hurtig, 1973) and the structure itself the primary resonator
block (PRB) structure. We illustrate the method by the following example.

Example 7.8. Design an eighth-order Butterworth BP filter with a center frequency
of 3000 Hz, a bandwidth of 600 Hz, and gain of unity at its center frequency using
the PRB structure.
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Since an eighth-order Butterworth BP filter is required, we start off with the
fourth-order Butterworth LP filter

HLP(s) = V2(s)

V1(s)
= 1

s4 + 2.613126s3 + 3.414214s2 + 2.613126s + 1
(7.49)

Then, from Eq. (7.40),

α = b3

4
= 0.65329

We can get the values of f2, f1, and f0 using Eq. (7.31) as

f2 = 0.8536, f1 = 0.3838, and f0 = 0.2036.

From the given specifications, the Q of the required eighth-order BP filter is
(3000/600), that is, Q = 5. Therefore, Qp of the PRB is given by (Q/α) = 7.654.

Hence, from Eq. (7.48), the transfer function of the PRB is given by

(H0/Qp)s

s2 + (1/Qp)s + 1
with H0 = 1.5307 and Qp = 7.654

Since the required center frequency is 3000 Hz, the pole frequency for the PRB is
6000 π . Hence, the denormalized transfer function of the PRB is given by

TPRB = (H0/Qp)s

s2 + (1/Qp)s + (6000 π )2
with H0 = 1.5307 and Qp = 7.654

(7.50)

We may use any of the methods discussed in Chapter 5 to design the TPRB given
by Eq. (7.50). Then, the overall realization of the required BP filter is as shown
in Figure 7.35, assuming that each of the PRBs is realized using a noninverting
amplifier.

It should be mentioned that, in addition to structures that we have considered,
there are many other multiple-loop structures such as the modified leapfrog
structure, inverse follow the leader feedback (IFLF) structure, and minimum
sensitivity feedback (MSF) structure. For details, one may refer to Laker and
Ghausi (1980) and Ghausi and Laker (1981).

TPRB

4.9116

2.6155

1.1715

1

1

V1 V2

TPRB TPRB TPRB

−

+

Figure 7.35 Realization of the transfer function of Example 7.8 by the PRB structure.
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7.5
High-Order Filters Using Operational Transconductance Amplifiers

The design of high-order transconductance–C filters proceeds essentially along the
same lines as the design of OA-based high-order filters. Basically, two approaches
can be identified, namely, (i) cascade design and (ii) ladder simulation. In the case
of ladder simulation, one can simulate the inductance as an element or one can
simulate the I − V relations of the ladder arms (i.e., operational simulation).

7.5.1
Cascade of OTA-Based Filters

Cascade of OTA-based second-order filters can be used to realize high-order filters
in the same way as the cascade of OA-based filters. The only important concern
is the high output resistance of an OTA compared with that of an OA. This high
impedance node can combine with the input parasitic capacitance of the following
stage to produce a low-frequency parasitic pole, which would vitiate the desired
transfer function. However, the design capacitance can be adjusted to take care
of this parasitic pole. Since the output of an OTA does not have a low resistance
like an OA, the loading effect of two consecutive OTA stages may be an important
concern. However, as long as the input impedance of an OTA is at least 10 times or
more than the output impedance of the preceding OTA, the effect will be negligible.

7.5.2
Inductance Simulation

OTAs are very well poised for implementing an inductance. It has been already
discussed under Section 7.1.1 that the OTA-based gyrators can be used to implement
both grounded and floating inductances. In Chapter 5 (see Table 5.10), we have
also shown how OTAs can be used to implement various important network
elements like a resistance, an integrator, and a gyrator. This knowledge can be
easily used to implement a high-order LC ladder filter. Figure 7.36a shows a passive
third-order elliptic LP filter with source and load-terminating resistances R1 and R2.
Figure 7.36b shows the filter with the source transformation applied at the input
terminal. Figure 7.36c shows an OTA-based implementation, where the floating
inductance has been simulated by the OTAs numbered 3, 4, 5, and 6 and the
capacitance CL.

7.5.3
Operational Simulation Technique

The procedure follows on the same lines as in the case of the operation simulation
using OAs. We illustrate it by considering the same ladder of Figure 7.36a, which
is shown in Figure 7.37a with the I–V variables labeled on the schematic. The
capacitor C2 is taken into consideration later. The remainder of the ladder can be
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gm1 = gm2 = G1, gm3 = gm4 = gm5 = gm6 = g, CL = g2L, gm7 = G2 ;
gmx is the transconductance of the OTA numbered x.

Figure 7.36 (a) A third-order elliptic low-pass filter, (b) the
filter after source transformation, and (c) realization of the
filter in (b) using a gyrator-based floating inductor.

described by the following equations:

V1 = Is − I2

G1 + sC1
, I2 = V1 − V3

sL2
, and V3 = I2

G2 + sC3
(7.51)

We may write first of the equations in Eq. (7.51) as

V1 = R

R

Is − I2

G1 + sC1
= (R/R1)(Vs) − RI2

R(G1 + sC1)

By letting R = R1 and RI2 = V̂2, the above equation reduces to

V1 = (Vs − V̂2)G

G1 + sC1
(7.52a)

As a consequence, the other equations in Eq. (7.51) become

V̂2 = V1 − V3

sL2/R
= (V1 − V3)

sL2G
= (V1 − V3)G

sL2G2
= (V1 − V3)G

sCL
(7.52b)
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Figure 7.37 (a) Doubly terminated LC third-order ellip-
tic filter. (b) OTA-based implementation of the filter using
operational simulation technique.

and

V3 = V̂2G

G2 + sC3
(7.52c)

where CL = L2G2.
Equations (7.52a) and (7.52c) represent operations of lossy integrators with

differential inputs, while Eq. (7.52b) is an ideal integrator with a differen-
tial input. These operations can be very easily accomplished by differential
OTAs. However, we give here the realization with single-ended OTAs. Fi-
nally, the capacitance C2 is inserted across the V1 and V3 nodes, since the
current through it is equal to (V1 − V3)sC2. The final OTA-based implementa-
tion is shown in Figure 7.37b, where we have used gm1 = gm2 = G1 = 1/R1 =
gm3 = gm4 = gm5 = gm6 = G, and gm7 = G2 = 1/R2, gmx being the transconduc-
tance of the OTA numbered x. A careful scrutiny will reveal that the structures
in Figures 7.36c and 7.37b are indeed the same, but have been arranged in
slightly different ways. As mentioned earlier, the latter structure can be re-
alized using differential-output OTAs and thus economize on the number of
OTAs.
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7.5.4
Leapfrog Structure for a General Ladder

We now consider a general passive ladder structure and show how it can be realized
in a systematic fashion as a leapfrog structure employing OTAs. For illustrative
purposes, we consider a ladder with six elements as shown in Figure 7.38, but the
same procedure can be adopted for any general ladder.

For the ladder network, we may write the I–V relations as

I1 = Y1(Vin − V2) V2 = Z2(I1 − I3)
I3 = Y3(V2 − V4) V4 = Z4(I3 − I5)
I5 = Y5(V4 − V6) Vout = V6 = Z6(I5)

(7.53)

We may rewrite the above equations in the following form so that all the current
variables are converted into equivalent voltage variables:

V ′
1 = Y1

g (Vin − V2) V2 = gZ2(V ′
1 − V ′

3)

V ′
3 = Y3

g (V2 − V4) V4 = gZ4(V ′
3 − V ′

5)

V ′
5 = Y5

g (V4 − V6) Vout = V6 = gZ6(V ′
5)

(7.54)

where

V ′
j = (Ij/g), j = 1, 3, 5 (7.55)

and g is an arbitrary scaling factor. Hence,

V ′
j = Yj

g
(Vj−1 − Vj+1) for odd j (7.56)

Vj = gZj(V
′
j−1 − V ′

j+1) for even j (7.57)

Consider the OTA circuit of Figure 7.39a. It is very easy to see that we have

V ′
j = gmjZ

′
j (Vj−1 − Vj+1) (7.58)

Comparing Eqs. (7.58) and (7.56), we see that (7.56) can be realized by the OTA
circuit of Figure 7.39a provided (Yj/g) = gmjZ′

j , that is,

Z′
j = 1

ggmj

Yj for odd j (7.59)

Vin

I1 Y1 Y3

Z2 Z4 Z6

Y5
V6 = Vout

V2 I3 V4 I5

Figure 7.38 A general passive ladder structure.
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Figure 7.39 OTA structures realizing Eqs. (7.52) and (7.53).

Similarly, it can be shown that the OTA circuit of Figure 7.39b will realize Eq. (7.57)
provided gZj = gmjZ′

j , that is

Z′
j = g

gmj
Zj for even j (7.60)

Thus, the set of I–V relations given by Eq. (7.53), and hence the ladder of
Figure 7.38, can be realized by the leapfrog structure utilizing OTAs, as shown in
Figure 7.40. It is noted that the various Z′

j( j odd or even) are due to R, L, and C
elements, which can be easily realized using OTA-C structures. We now illustrate
the procedure by an example.

Example 7.9. Realize the third-order elliptic LP filter shown in Figure 7.41a by the
leapfrog structure discussed above.

Using the method discussed above, we see that the filter can be realized by the
structure of Figure 7.40, where the various impedances Z′

1, Z′
2, Z′

3, and Z′
4 are given

by Eqs. (7.59) and (7.60). Hence,

Z′
1 = 1

ggm1
G1, Z′

3 = 1

ggm3
(sC3 + 1

sL3
)

Z′
2 = g

gm2

1

sC2
, Z′

4 = g

gm2

1

(G4 + sC4)

Z ′
6Z ′

5Z ′
4Z ′

3Z ′
2Z ′

1

Vin

gm1 gm2 gm3 gm4 gm5 gm6

+

− Vout− − − − −

+ + + + +

Figure 7.40 Realization of the ladder network of Figure 7.38 by a leapfrog structure.
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(b) gmj ( j = 1,2, . . . , 8) = g = gm = G1, gm9 = G4, C ′
3 = g 2

mL3

Figure 7.41 Leapfrog realization of the elliptic filter of Example 7.9.

Let us choose gm1 = gm2 = gm3 = gm4 = g = gm = G1; then the above expressions
become

Z′
1 = R1, Z′

2 = 1

sC2
, Z′

3 = s
c3

g2
m

+ 1

s

(
1

g2
mL3

)
, Y ′

4 = (G4 + sC4)

We see that Z′
1 is a grounded resistor of value R1, while Z′

4 = 1/Y ′
4 is a parallel com-

bination of a grounded capacitor C4 and a grounded resistor R4. The two grounded
resistors R1 and R4 can be easily realized using OTAs of transconductances G1 and
G4, respectively. The impedance Z′

3 is a series combination of an inductor of value
C3/g2

m and a capacitor of value g2
mL3. We have the option of having the inductor or

the capacitor grounded. Even though the former arrangement uses only two OTAs,
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the latter arrangement is preferable since in an IC implementation, it is better to
have grounded capacitors. In such a case, the ungrounded inductor can be realized
using three OTAs and a grounded capacitor (see Table 5.10, Row J). The complete
structure realizing the ladder network is shown in Figure 7.41b.

There are a number of other multiloop structures utilizing OTAs that can be
used to realize a general high-order filter, and the reader is referred to Deliyanis,
Sun, and Fidler (1999) for more details.

7.6
High-Order Filters Using Switched-Capacitor (SC) Networks

In SC filters, we can follow, for high-order filter realization, a scenario similar to that
in the case of continuous filters. Thus, we can build a given high-order filter using
a cascade of second- and first-order SC networks. We can also use second-order
sections in a feedback structure to generate a given z-domain transfer function. We
could use SC integrators and inverters to simulate the operation of a given LC ladder
filter. For efficient realization of a high-order SC filter, which is the counterpart of
a given active-RC filter under bilinear s ↔ z transformation, it is necessary that the
SC integrators that are counterparts of active-RC integrators under bilinear s ↔ z
transformation be available. Bilinear SC integrator configurations that preserve the
PI features, such as the PI inverting and noninverting SC integrators introduced
in Chapter 6, are discussed next.

7.6.1
Parasitic-Insensitive Toggle-Switched-Capacitor (TSC) Integrator

The TSC is one of the earliest configurations of SC networks used to produce an
equivalent resistance. The TSC lost its popularity because of the presence of the
parasitic capacitance at the top plate. In a biphase (i.e., two-phase) clocking scheme,
the effect of this parasitic capacitance on the charge conservation equation cannot
be discarded and hence a PI integrator cannot be built from a TSC. However, if
one takes recourse to a three-phase clocking scheme, it is possible to render the
TSC to a PI network (Bermudez and Bhattacharyya, 1982). The basic network and
the timing diagram of the three-phase clock are shown in Figures 7.42a and 7.42b.
The symbol φ1 ⊕ φ3 in Figure 7.42 represents the logical-or operation between the
clock signals φ1 and φ3.

During the phase when φ3 is ON, the capacitor C1 is charged from the voltage
source V1. During the ON phase of φ2, the top-plate parasitic capacitance is
discharged, while the signal voltage on C1 is reversed, since the bottom plate is
lifted off from the ground (φ1 and φ3 being both off). At clock phase φ3, the bottom
plate of C1 is grounded again, while the top plate of C1 is connected to the virtual
ground input of the OA. The charge transfer on to the integrating capacitor C2

thus becomes PI. If the output is sampled at each period of φ1, the above operation
will lead to a z-domain transfer function (V (1)

o )/(V (1)
1 ) = −(C1/C2)z−1/(1 − z−1).
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Figure 7.42 (a) Parasitic-insensitive toggle-switched-
capacitor (TSC) inverting integrator using a three-phase
clock signal and (b) the clock signals.
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Figure 7.43 Use of TSC inverting integrator to realize a
general bilinear first-order sampled-data transfer function.

By adding a few extra switches and capacitors, as shown in Figure 7.43, a first-order
z-domain transfer function can be obtained.

The expression for the transfer function is

V (1)
o

V (1)
1

= − (C3/C2) + (C4/C2)z−1

1 − (C1/C2)z−1
(7.61)

with the output taken during φ1. Clearly, if we set C1 = C2 and C3 = C4, the
transfer function given by Eq. (5.57) assumes the form

−C3

C2

1 + z−1

1 − z−1

This is in compliance with the bilinear s ↔ z transformation, where the substitu-
tion

s → 2

T

1 − z−1

1 + z−1
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is used. Thus, the network of Figure 7.43 can be used for an SC inverting integrator
implementing bilinear s ↔ z transformation. It may be noted that if C1 and C2

are unequal, while C3 = C4, Eq. (7.61) represents an inverting lossy bilinear SC
integrator.

7.6.2
A Stray-Insensitive Bilinear SC Integrator Using Biphase Clock Signals

A bilinear SC integrator transfer function can be realized with biphase clock signal
using the network shown in Figure 7.44. The transfer function in the z-domain is
given by (Mohan, Ramachandran, and Swamy 1982, 1995) as

V
(2)
o

V (1)
1

= − C1(1 + z−1)

(C6 + C10)(1 − z−1 C10
C6 + C10

)
(7.62)

In arriving at Eq. (7.62), the condition C3 = C1 + C4 is necessary. The above
represents an inverting lossy bilinear integrator. A true bilinear integrator is
obtained when C6 = 0 (i.e., when C6 is absent). By maintaining a sample-and-hold
condition for the input signal, that is, V (2)

1 = z−1/2V (1)
1 , a bilinear integrator can be

obtained with fewer capacitors and switches. This is discussed next.

7.6.3
A Stray-Insensitive Bilinear Integrator with Sample-and-Hold Input Signal

The SC network pertaining to the present case is shown in Figure 7.45 (Knob,
1980). Note that the SC network following the sample-and-hold (S/H) network is
the same as the one discussed in Chapter 6 (Section 6.5.3, Figure 6.15). If we use
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f2 f2
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f1 f1

Figure 7.44 A parasitic-insensitive switched-capacitor using
two-phase clock and realizing an inverting bilinear first-order
sampled-data transfer function.
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Figure 7.45 A parasitic-insensitive switched-capacitor
bilinear integrator with sample-and-hold input signal.

Eq. (6.36) and solve for V (1)
o , we get

V (1)
o = −C1V

(1)
1 + C2z−1/2V

(2)
2

Co(1 − z−1)
(7.63)

In the context of Figure 7.45, V2 = V1. Then, by invoking the S/H condition that is,
V

(2)
1 = z−1/2V

(1)
1 , the above expression will lead to an inverting bilinear integrating

function. A true bilinear function is obtained if C1 = C2. It may be noted that, if
C1 = C2 is assumed, then the bilinear transfer function can be obtained by using
only one capacitor (i.e., C1), which is switched at a rate twice the clock rate of
the S/H network. This will result in the saving of one capacitor and two switches
(Knob, 1980).

An example of a high-order SCF implementation using cascading approach is
considered next.

7.6.4
Cascade of SC Filter Sections for High-Order Filter Realization

In the cascade approach, the first step involves the application of the prewarping
to get the prewarped s-domain transfer function. Then, we apply the s ↔ z
transformation to determine the H(z) to be synthesized. The next step is to
decompose the H(z) so determined into a product of first- and second-order
sections. Suitable SC networks are then obtained to realize these constituent
sections. The last step will be to put these sections in a cascade.

Example 7.10. We intend to realize an SC LP filter satisfying the following
specifications (Schaumann and Van Valkenburg, 2001):

PB attenuation Ap ≤ 0.9 dB, for 0 ≤ f = fp = 3.3 kHz
Stopband attenuation Aa≥ 22 dB for f ≥ 4.5 kHz
The clock frequency is fc = 32 kHz
The first step will be to apply the prewarping formula ω̂ = 2fc tan ω

2fc
, to get the

new critical frequencies ω̂p = 2π × 3420.5 rad s−1 and ω̂a = 2π × 4817.6 rad s−1.
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In order to keep the order of the filter as low as possible, we choose the elliptic
approximation.

We then calculate α1 = 10−(0.9/20) = 0.9, α2 = 10−(22/20) = 0.08, and ωs =
4817.6/3420.5 = 1.41. On examining the tables of elliptic filter transfer func-
tions in Appendix A, we can select a third-order transfer function with
α1 = 0.9, α2 = 0.077, and ωs = ω̂a

ω̂p
= 1.40. This will meet the PB specification, and

will exceed the selectivity required in the stopband. The frequency normalized
prewarped transfer function is

T(s) = 0.2745(s2 + 2.41363)

(s + 0.63584)(s2 + 0.36139s + 1.04183)
(7.64)

After denormalizing with respect to ω̂p = 2π × 3420.5 rad s−1 and applying the
bilinear s ↔ z transformation formula, we arrive at the z-domain transfer function

T(z) = 0.0779(1 + z−1)(1 − 1.1442z−1 + z−2)

(1 − 0.6481z−1)(1 − 1.4247z−1 + 0.8041z−2)
(7.65)

The cascadable sections then can be chosen as

T1(z) = 0.176
1 + z−1

1 − 0.6481z−1
(7.66)

and

T2(z) = 0.443
1 − 1.1442z−1 + z−2

1 − 1.4247z−1 + 0.8041z−2
(7.67)

In the above, we have chosen 0.0779 as 0.176 × 0.443 so that each of T1 and T2

has a gain of nearly 1 at DC (i.e., z−1 = 1). The first-order transfer function calls
for a bilinear function in z−1. This can be obtained, for example, by employing the
bilinear integrator described in Section 7.6.2 (Figure 7.44). In order to realize T1(z)
as in Eq. (7.66), one can set C1 = 1 pF, C6 = 2 pF, and C10 = 3.86 pF. Further,
C3 = C1 = 1 pF, and C4 = 0 (i.e., C4 absent).

For the second-order section, we can use, for example, the network discussed
in Chapter 6 (Figure 6.20), which is redrawn in Figure 7.46. The capacitors L and
K have been set to zero and capacitors D, A, and B have been set equal to C′ in
Figure 7.46. The transfer function T2(z) is, in this case, given by (see Eq. (6.39) in
Chapter 6)

V2

Vi
= − I + z−1(G − I − J) + z−2(J − H)

C′ + F + z−1(E + C − F − 2C′) + z−2(C′ − E)
(7.68)

Equation (7.68) can be rewritten in the form

V2

Vi
= I

C′ + F

1 + z−1 G−I−J
I + z−2 J−H

I

1 + z−1 E+C−F−2C′
C′+F

+ z−2 C′−E
C′+F

(7.69)

By comparing with the coefficients of T2(z), we get

I

C′ + F
= 0.443,

G − I − J

I
= −1.1442,

J − H

I
= 1 (7.70)
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Figure 7.46 A switched-capacitor network for realization of
a general second-order sampled-data transfer function.

E + C − F − 2C′

C′ + F
= −1.4247,

C′ − E

C′ + F
= 0.8041

In the above, there are five equations but eight unknowns. We shall simplify the
situation by assuming E = 0 (i.e., E capacitor absent) in Figure 7.46, and H = 0.
Then, using the expressions in Eq. (7.70), we get

J = I, G = 0.8558I, F = 0.2436C′, C = 0.4718C′, I = 0.5509C′.

The minimum valued capacitor is F. If we want to make F = 1 pF, then C′ = 4.1 pF.
Subsequently, I = J = 2.26 pF, C = 1.93 pF, G = 1.93 pF. Thus, all the capacitors
are designed. Putting Figures 7.43 and 7.46 in cascade completes the design. The
output of T2 (i.e., V2 in Figure 7.46) is to be sampled at phase φ1. It may be noted
that, in the realization of T2(z), the capacitors ( J,H), (C,F), (G,I) can share the
switches, thereby saving few MOS transistor switches.

7.6.5
Ladder Filter Realization Using the SC Technique

A given ladder filter network can be designed by a corresponding SC network in
the same manner as is done for the active-RC implementation. To begin with,
one needs the transfer function of the ladder filter together with the LC ladder
structure. Since in the sampled-data domain, prewarping plays an important role,
the necessary prewarping formula has to be applied to the s-domain transfer
function and the consequent modifications in the coefficients of the transfer
function need be reflected in the values of the LC ladder structure. This second
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ladder structure, which can be named as the prewarped ladder filter, is the one
which has to be adopted for implementation as an SC filter network. An alternative
method to obtain the prewarped ladder will be to work from the prewarped transfer
function and then develop the ladder network elements by the methods discussed in
Chapter 4.

An important step that will be encountered in simulating the series and shunt
arms of the ladder is the implementation of the associated integrators in the
sampled-data domain. We have seen that, in the continuous-time domain, the
integrators are either ideal or lossy RC-active integrators. We have to use simi-
lar integrators implemented with active SC network elements. The sampled-data
domain integrators built with SC elements should conform to the same s ↔ z
transformation as pertinent to the prewarping formula used before. From our
knowledge of several popular s ↔ z transformations that are being used in relating
the continuous-time domain and sampled-data domain filters, we can infer that
the resulting SC integrators will have the form N(z)/D(z) where N(z) and D(z) will
contain, in the most general case, terms involving z−1 and z−1/2 in the sample data
domain variable z = exp( j�T) as introduced in Chapter 6. A particular case will be
an SC integrator with bilinear transfer function pertinent to the bilinear s ↔ z trans-
formation. The PI bilinear SC integrators discussed in Sections 7.6.1 and 7.6.2 will
be useful for the implementation of the active SC equivalent to the LC ladder filter.

Practice Problems

7.1 Consider a GIC network N, whose chain matrix is given by[
1 0
0 z2z4

z1z3

]
=
[

1 0
0 1

F(s)

]

(a) What is the chain matrix of the network NR obtained by reversing the
terminals of the input and output?
(b) Consider the network shown in Figure P7.1. Show that if F(s) = s, then
we realize a floating inductor L of value L = R.

(c) Choose a set of values for z1, z2, z3, and z4 in Antoniou’s GIC so that
F(s) = s.
(d) If F(s) = 1/s2, show that we realize a floating FDNR D. Find its value in
terms of R.
(e) Choose a set of values for z1, z2, z3, and z4 in Antoniou’s GIC so that
F(s) = 1/s2

GIC
N

GIC
NR

1

1′

2

2′

R

Figure P7.1
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7.2 Design a GIC-based third-order HP filter with a Butterworth magnitude
characteristic and a 3-dB frequency of 10 kHz. Use a doubly terminated
network with terminations of 1 � each. In the final filter, all the capacitors
should have a value of 1 nF.

7.3 Design a fourth-order singly terminated HP filter with a Butterworth mag-
nitude characteristic. The terminating resistance should have a value of
1000 �. The 3-dB frequency is 500 Hz. The resistors in the GIC network
should be equal to 10 k� each.

7.4 Design an FDNR realization for a third-order Butterworth LP voltage transfer
function. The prototype normalized filter should have equal 1 � termina-
tions. In the final realization, the bandwidth should be 1000 rad s−1 and all
the capacitors should have the value of 0.1 μF.

7.5 Using the FDNR technique, design a fourth-order LP Butterworth voltage
transfer function. The cutoff frequency should be 5 kHz and the prototype
source and load resistors should have a value of 500 �. All the resistors in
the FDNR sections should be 7500 �.

7.6 Use the leapfrog method to design a filter having a fifth-order LP Butterworth
characteristic. The cutoff frequency should be 1 k rad s−1. All resistors should
have a value of 10 k�.

7.7 A leapfrog filter is shown in Figure P7.7. Find the voltage transfer function
for the filter. Assume C = 10−8 F and R = 104 �.

7.8 Find a leapfrog realization of a normalized fourth-order BP function with a
maximally flat magnitude characteristic, a center frequency of 1 rad s−1, and
a bandwidth of 1 rad s−1. Use a doubly terminated lossless ladder filter as a
prototype filter. Each of the terminating resistors is 1 �.

+_

+ _

+_

+_

R R

R

R

R

R

R

R

R

2/C

2/CC−

+

V1

−

+

V2

Figure P7.7
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7.9 Use the PRB technique to design a normalized fourth-order BP filter with a
center frequency of 1 rad s−1, a bandwidth of 0.1 rad s−1, and a Butterworth
magnitude characteristic. The gain at resonance should be unity. Use the
infinite-gain SAB second-order filters as the building blocks.

7.10 Design a sixth-order BP filter using the PRB technique. Start with a
third-order Butterworth LP network function. The resulting BP structure
should have a gain of 2 at the normalized center frequency of 1 rad/s. The
bandwidth should be 0.1 rad/s. Make the coefficient a1 = 0. Do not realize
the individual second-order sections; just indicate their parameters, namely,
Qp and Ho. Let Rf = 1 and draw the overall configuration showing the values
of the resistors.

7.11 Consider Problems 4.4–4.8 in Chapter 4. For each one, show an active-RC
realization using any of the techniques you have learnt in this chapter.
Verify your work using network simulation. You may use the subcircuit of
any standard commercial OA (such as μA 741 or LM741) available in the
simulation database.

7.12 Use operational simulation to design an eighth-order CHEB low-pass filter
with 0.1 dB maximum ripple in the passband 0 ≤ f ≤ 128 kHz. The prescribed
load resistor is 1450 �. Verify your design using a simulation tool. You may
use LM741 or similar OA available in the simulation tool.

7.13 The LC ladder implementation of a Bessel–Thomson filter with D = 30 μs
delay and ≤1% delay error of 13 kHz is shown in Figure P7.13. The filter
has less than 2-dB attenuation in f ≤ 110 kHz. Realize the network using the
operational simulation method. Verify the design using simulation.

7.14 The circuit of Figure P7.14 is the LC ladder implementation of a BP filter
with a 1.7 dB equiripple passband in 10 kHz ≤ f ≤ 18 kHz. The mini-
mum stopband attenuation is 42 dB for f > 26 kHz. Produce an active-RC
implementation using operational simulation method.

7.15 Figure P7.15 shows a band-reject filter, which has equal-ripple passbands in
f ≤ 80 kHz and f ≥ 180 kHz with Ap|max = 1 dB. The stopband attenuation
is Aa|min = 20 dB over 100 kHz ≤ f ≤ 150 kHz. Implement the network
using operational simulation technique.

7.16 Consider a fourth-order Chebyshev LP filter with a passband from 0 to 1
rad s−1, with αp = 1 dB and a dc gain of unity. Realize this filter by an FLF
structure. Show how you can get a HP output.

ns

Rs = 120 Ω

RL = 120 Ω

0.6894 mH1.6434 mH

0.2326 μF 0.0806 μF 0.02 μF+
−

Figure P7.13
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7.17 Realize the transfer function

H(s) = V2

V1
= a4s4 + a3s3 + a2s2 + a1s + a0

s4 + b3s3 + b2s2 + b1s + b0

by an FLF structure with feed-forward paths, but using lossy integrators of
the form −1/(s + α).

7.18 Figure P7.18 shows an LC ladder network. Design the network using a
suitable OTA-C structure. You may consider floating inductor simulation
using OTA.

7.19 Produce OTA-C-based implementations for Problems 7.2, 7.3, 7.6, 7.8−7.15.
Verify the designs using a suitable network simulation tool. You may use
LM 13 700 for a practical OTA.

7.20 Design a fourth-order switched-capacitor LP filter with a Butterworth
magnitude characteristic, a cutoff frequency of 1 kHz, and a clock frequency
of 100 kHz. Choose the minimum capacitance of 1 pF.

2.5
2.596

116.6

18.22 13.56

2.
5

0.377

67.75 31.68

2.791

(kΩ, pF, μH)

Figure P7.18
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8
Current-Mode Filters

The advancements in IC technology together with the demand for smaller and
low-power devices have ushered in the era of IC filters. While the initial goal
of microminiaturization was to produce filters for audio frequency applications,
the focus has progressively changed toward higher-than- audio frequency filters.
The advent of submicron IC technological processes (0.5 μm and smaller) has
facilitated realization of filters in the VHF frequency band (30–300 MHz) (Raut
and Guo, 1997). Together with higher frequency of operation, reduction in the
power consumption by the various electronic devices has also been of concern
to present-day researchers. In view of this, attention is being paid toward signal
processing in terms of currents rather than voltages. This new type of signal
processing is known as current-mode signal processing.

It can be easily appreciated that CM signal processing will lead to higher
frequency of operation, since the signal current is delivered into a small (ideally
short circuit) load resistance. The parasitic pole due to such a small resistance
(pole frequency being inversely proportional to the resistance) will be very high and
hence, a high-frequency signal can be processed without substantial impairment
due to the presence of such a high-frequency parasitic pole. In this chapter, we
first introduce the basic principles of CM signal processing. Realization techniques
for second-order CM filters using several CCs (Sedra and Smith, 1970) will be
presented next. This will be followed by presenting techniques that can be used
to convert an existing voltage-mode (VM) filter to a CM filter using generalized
duals (GDs) and transposes; thus, the wealth of knowledge that already exists in
the classical area of VM filters can be readily and efficiently used. The discussion
will then continue with SI filters, the analog of SC filters for CM signal processing.

8.1
Basic Operations in Current-Mode

8.1.1
Multiplication of a Current Signal

The magnification or attenuation (i.e., multiplication by a constant) of a current
signal is one of the fundamental operations required in CM filtering. Several

Modern Analog Filter Analysis and Design: A Practical Approach. Rabin Raut and M. N. S. Swamy
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40766-8
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alternatives exist to achieve this operation and a few of these are now briefly
discussed.

8.1.1.1 Use of a Current Mirror
A current mirror is the simplest device that can be used to multiply a current signal
by a constant. The ideal mirror will function like a CCCS with zero input resistance
and an infinite output resistance. This is depicted in Figure 8.1. In a CMOS IC
technology, the multiplication value is proportional to the ratio of the area of the
MOS transistor at the output to the area of the MOS transistor at the input. If
we consider a simple CMOS current mirror as shown in Figure 8.2a, with its AC
equivalent circuit as shown in Figure 8.2b, the current signal transfer ratio at low
frequency will be given by

Io

Ii
= gmn2 + gmp2

gmn1 + gmp1 + gdp1 + gdn1
(8.1)

The condition of zero input resistance (inversely proportional to the sum gmn1 +
gmn2 + gdp1 + gdp2) and infinite output resistance (inversely proportional to gdp2 +
gdn2) are seldom achieved in practice. Special circuit configurations are used to
achieve conditions close to these ideal ones.

I i → ← Ai I i

Figure 8.1 A current-controlled current
source (CCCS).
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I i → I i →← Io ← Io

MP1

MN1 MN2

MP2

+

−

(a) (b)

Figure 8.2 (a) Current mirror using CMOS transistors and
(b) its AC equivalent circuit, where gdni, gdpi , i = 1, 2 are
conductances.
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8.1.1.2 Use of a Current Conveyor
The functional characteristic of a CC has been introduced in Chapter 5. CCII
(Sedra and Smith, 1970) has become popular for practical applications since the
1990s (Toumazou, Lidgey, and Haigh, 1990). The schematic for a CCII and the
matrix showing its terminal i–v relationships are repeated here for convenience
(Figure 8.3).

According to the relation iz = ±ix, the CCII is further categorized as positive (+)
and negative (−) CCII, that is, CCII+ and CCII–. Figures 8.4a and 8.4b show the
schematics of typical positive and negative gain CCs implemented in CMOS IC
technology (Toumazou, Lidgey, and Haigh, 1990). Figure 8.4c shows how a CCII+
and a CCII– can be used to multiply a current signal by a constant value.

±1

=
iz

vx

iy vy

ix
vz00

001

000

CCII z
x

y

iy →

i x → ← i z

(a) (b)

Figure 8.3 (a) Symbol of a CCII and (b) i–v relations of the CCII.

VDD VDD

Y Z

X

VSS VSS

ix →
Y

X

ix →← iz

+

−
A

+

−
A

(a) (b)

= ix

Z

← i z
= − i x

I i →

Io →

(c)

R1

R2

X

Y Z

CCII
(+/−)

Io = (±) I i

R2

R1

Figure 8.4 (a) Implementation of a CCII–, (b) implemen-
tation of a CCII+, and (c) a current multiplier using CCII–.
(a) and (b) taken from Toumazou, Lidgey, and Haigh 1990.
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8.1.1.3 Use of Current Operational Amplifier
A COA acts in the same way on the current signals as an OA acts on a voltage signal.
It ideally approaches the characteristics of a CCCS. Thus, the input resistance needs
to be small while the output resistance is required to be very high. Similarly, the
short circuit current gain is required to be high. A COA typically uses a cascade of a
transimpedance amplifier (for low input resistance) followed by a transconductance
amplifier (for high output impedance). Figure 8.5 shows the schematic of a tunable
COA implemented in CMOS technology. The input is applied to the common-gate
MOS amplifier stages of a transimpedance amplifier (Bruun, 1994) followed by
a tunable transconductance stage (Assi, Sawan, and Raut, 1996). The circuit has
been implemented using differential-in differential-out (Bruun, 1991) topology
in a 0.8-μm BiCMOS IC technology. A summary of the simulated response
characteristics is presented in Table 8.1. More details can be found in Assi, Sawan,
and Raut (1997).

I IN1 →

I IN2 →

IB1 IB3

IB2

IB1

IB2

VSSVDD

VDD
VREF

IOUT2

IOUT1

IB3

VG1

M1 M2

M4

M3M2

VG1

M1

M4 M5

M5

M3

M6 M8

M10
M11

M9 M7

Figure 8.5 A tunable COA implemented in CMOS technology.
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Table 8.1 Simulated response of the tunable COA of Figure 8.5.

Gain (voltage controllable) 70–96 dB
Output current (peak-to-peak) 280 μA
GBW 145 MHz
Supply voltages VDD = −VSS = 1.5 V
Power consumption <0.5 mW

8.1.2
Current Addition (or Subtraction)

Current addition is obtained by simply connecting the paths on to a single node.
For subtraction, the pertinent current signal has to be reversed before subjecting
to addition. Crossing the wire is the conventional technique for reversing the
current. Figure 8.6 presents a typical circuit for achieving this operation in CMOS
IC technology (Toumazou, Lidgey, and Haigh, 1990).

8.1.3
Integration and Differentiation of a Current Signal

A simple current integrator is depicted in Figure 8.7a. The current Ii from an ideal
source forms a voltage across the capacitor C. The OTA with a transconductance
gm converts this voltage to a current at the output.

The transfer characteristic, in the ideal case, is given by

Io = gm

sC
Ii (8.2)

If the input current source has a finite resistance Ri = 1/ Gi, and the output is not
a short circuit (for small signal), that is, RL �= 0, then the response characteristic

VDD

VSS

VSS

VDD

ix → ← iz = −ix

Figure 8.6 Implementation of
the reversal of a current signal.
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gm

gm
C

I i → I i →Io
C

(a) (b)

↓
Io

↓

+
−

A simple current
 integrator

An alternative current
integrator

Figure 8.7 Integration of a current signal.

I i →

Ii →

R

C

Io
C

MN1 MN2 MN3

MP1 MP2 MP3

(a) (b)

↓

Io

↓

Figure 8.8 Current differentiator using (a) RC elements and (b) CMOS transistors.

will be that of a lossy integrator:

Io

Ii
= gmRo

Ro + RL
.

1

Gi + sC
(8.3)

where Ro is the output resistance of the transconductor.
A better alternative for the CM integrator is shown in Figure 8.7b. Since the

current source Ii feeds to the virtual ground terminal of the OA, the effect of the finite
value of Gi will be insignificant. For finite Ro and RL, the transfer relation is given by

Io

Ii
= gmRo

Ro + RL
.

1

sC
(8.4)

A CM integrator can also be obtained using a CCII+ or a CCII–; these are shown
in Table 8.2.

A basic differentiator network for current signal is shown in Figure 8.8a. The
product RC should be ideally zero for perfect differentiation. An IC version in
CMOS technology is shown in Figure 8.8b.

Considering finite transconductances of the MOS transistors, the transfer
characteristic equation is given by

Io

Ii
= k

sC/Gm1

1 + sC(Gm1 + Gm2)/Gm1Gm2
(8.5)

In the above, Gm1 is the equivalent input conductance of the (MP1, MN1) transistor
pair, Gm2 that of the (MP2, MN2) transistor pair, and k is the current mirroring ratio
between the pairs (MP3, MN3) and (MP2, MN2). We have ignored the parasitic
capacitances of the MOS transistors in deriving Eq. (8.5).
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8.2
Current Conveyors in Current-Mode Signal Processing

8.2.1
Some Basic Building Blocks Using CCII

In Section 8.1.1, it has been shown how CCII+ and CCII– can be used as current
signal multiplying devices. Some examples of signal processing operations using
CCII are presented in Table 8.2.

8.2.2
Realization of Second-Order Current-Mode Filters

In the following sub-sections, we discuss several cases of implementation of
second-order CM filters using CCs.

8.2.2.1 Universal Filter Implementation
Since a CC can transport current signals, it can be used together with passive-RC
components to realize CM transfer functions in the same way as an OA is used
to produce VM transfer functions. Figure 8.9 presents a universal CM filter with
a single input and three outputs. The configuration uses both CCII+ and CCII–

Z CCII−
Y

X

R3

Z CCII+

CCII−

CCII+

Y

X

R2

R4

C2
C1

R6 R7

R5

R8

R1

Y

X
Z

I i

Y

X

Y

Y

X

X

Z CCII+

CCII−

Z

Z

Y

X
CCII+ Z

Ihp Ibp
Ilp

Figure 8.9 A universal second-order CM filter implemented with CCII+ and CCII–.
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as the active building blocks. The three primary transfer functions are given by
(Chang, 1993), with Gi = 1/Ri(i = 1, 2, 3, . . .):

Ihp

Ii
= s2C1C2G6

s2C1C2G1 + sC1G2G4 + G3G4G5
(8.6)

Ibp

Ii
= −sC1G4G7

s2C1C2G1 + sC1G2G4 + G3G4G5
(8.7)

Ilp

Ii
= G4G5G8

s2C1C2G1 + sC1G2G4 + G3G4G5
(8.8)

By connecting the Ihp and Ilp outputs, we get the notch filter response. Similarly,
by adding the three outputs and assuming G6 = G1, G7 = G2, and G8 = G3, we get
an AP characteristic (Senani, 1992). The pertinent transfer functions are

Inotch

Ii
= s2C1C2G6 + G4G5G8

s2C1C2G1 + sC1G2G4 + G3G4G5
(8.9)

Iap

Ii
= s2C1C2G1 − sC1G2G4 + G3G4G5

s2C1C2G1 + sC1G2G4 + G3G4G5
(8.10)

The pole frequency ωp and Qp the pole Q are given by

ωp = (G3G4G5/C1C2G1)1/2

Q p = (1/G2)(G1G3G5C2/C1C4)1/2 (8.11)

It may be noted that the ωp and Qp are tunable by adjusting R3 and R2, in that order.
The CCs can be implemented using commercial OAs such as, LF356N, followed
by current mirrors composed of transistor arrays (CA3096AE).

8.2.2.2 All-Pass/Notch and Band-Pass Filters Using a Single CCII
Figure 8.10 shows a CM AP/notch and BP filter using a single negative gain CCII.
The network needs two grounded capacitors, and (at most) four resistors. The CTF

I i →
Io →

R1

R6

C4

C5R2

R5

X

Y

CCII− Z

Figure 8.10 All-pass, band-pass, and notch filters using a single CCII–.
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is given by (Chang, 1991)

Io

Ii
= s2G1C4C5 + s(G1C4C5 + G1G2C5 − G2G6C4) + G1G2G5

(G1 + G2)[s2C4C5 + s(G5C4 + G2C5) + G2G5]
(8.12)

The BP case arises on selecting G1 = 0 (i.e., R1 open circuit). The notch filter
realization is possible with G6 = (C4G5G1 + C5G2G1)/G2C4, and the AP filter is
realized by the choice G6 = 2(C4G5G1 + C5G2G1)/G2C4. The pole frequency ωp

and the pole Q are given by

ωp =
√

G2G5

C4C5
,

1

Q p
=
√

C4G5

C5G2
+
√

C5G2

C4G5
(8.13)

8.2.2.3 Universal Biquadratic Filter Using Dual-Output CCII
A dual-output current conveyor type 2 (DOCCII) is a more versatile building block
than a single-output CCII and an implementation using CMOS technology has
already been given in Figure 5.33. The operation of a DOCCII is described by the
matrix equation⎡

⎢⎢⎣
Vx

Iy

Iz1

Iz2

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
1 0 0 0
k 0 0 0

⎤
⎥⎥⎦
⎡
⎢⎢⎣

Ix

Vy

Vz1

Vz2

⎤
⎥⎥⎦ (8.14)

If k = 1, then DOCCII+ is defined and if k = −1, then DOCCII– is defined.
Four DOCCII+ configured as in Figure 8.11 can function as a universal CM

biquadratic filter (Minaei, Kuntman, and Cicekoglu, 2000). Analysis of the circuit
leads to

Io1

Iin
= −y2y4/�,

Io2

Iin
= −y4y5/�,

Io3

Iin
= −y3y5/� (8.15a)

where

� = y4y6 + y3y5 − y1y4 (8.15b)

Suitable selection of the admittance elements y1, y2, . . . , y6 will lead to realization of
several second-order filters. Choosing y1 = 0, y2 = G2, y3 = sC3, y4 = G4, y5 = sC5,
and y6 = G6 + sC6 will lead to

Io1

Iin
= −(G2G4/C3C5)/�,

Io2

Iin
= −s(G4C5/C3C5)/�,

Io3

Iin
= −s2/�

(8.16a)

where

� = s2 + (G4C6/C3C5)s + (G4G6/C3C5) (8.16b)

The above equations represent, respectively, an LP, a BP, and an HP filter. By
adding the outputs Io1 and Io3 and making G2 = G6, one can get a regular notch
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Figure 8.11 A universal second-order CM filter using dual-output current conveyors.

filter. The pole frequency and pole Q are given by

ωp =
√

G4G6

C3C5
, Q p = 1

C6

√
C3C5G6

G4
(8.17)

It is seen that ωp and Q p can be tuned orthogonally by adjusting grounded passive
elements. It is also readily seen that the sensitivity of Q p w.r.t. G2 as well as that of
ωp w.r.t. C6 and G2 are zero, that of Q p w.r.t. C6 is −1, while the magnitudes of the
sensitivities of ωp and Q p w.r.t. the remaining passive elements are 0.5. Thus, the
sensitivities w.r.t. the passive elements are not greater than unity.

8.3
Current-Mode Filters Derived from Voltage-Mode Structures

As mentioned earlier, the IC technology has made CM signal processing an area
of immense interest. However, it should be pointed out that the concept of CM
filters itself is not new and goes back to the 1950s when Thomas (1959) proposed
structures for realizing CTFs using voltage- and current-inverting NICs.

The concept of deriving a CM structure from a VM one goes back historically to
1971, when Bhattacharyya and Swamy (1971) introduced the concept of network
transposition, whereby given a network N with an admittance matrix [y], one could
easily convert it to another network NT whose admittance matrix is the transpose
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of [y]. They also derived the transposes of standard two-port elements such as the
controlled sources, impedance converters, and impedance inverters. Their basic
intention was to obtain a structure realizing a CTF, which is identical to the VTF
of a given VM structure, as well as to obtain alternate structures for DPIs. They
also pointed out that the transpose was essentially the same as the adjoint network
of Director and Rohrer (1969), who had defined the latter two years earlier in
connection with the calculation of sensitivities. Swamy, Bhusan, Bhattacharyya
(1974, 1976) also defined generalized duals (GDs) and generalized dual transposes
(GDTs), and gave a graphical method of obtaining the GD for a two-port network
consisting of one-ports and three-terminal two-ports as subnetworks. Some of this
material has been treated in Chapters 2 and 3. It is only after the advent of IC
technology, have these ideas become useful. In the late 1980s and early 1990s,
Roberts and Sedra, unaware of these ideas, resuggested the use of adjoints in
obtaining a network whose CTF is the same as the VTF of a network realized using
OAs (Roberts and Sedra, 1989, 1992). Later, Carlosena and Moschytz presented
the concept of nullor representation of the active devices to arrive at a CTF from a
given VTF (Carlosena and Moschytz, 1993). They specifically addressed the case of
VM to CM conversion by considering VCVS (or OA)-based VM filters (Moschytz
and Carlosena, 1994).

It was shown in Chapter 3 that if the chain matrix of a given network N is

[a]N =
[

A B
C D

]
(8.18)

then the chain matrix of the reversed transposed network NT
R , obtained by trans-

posing N and reversing the input and output ports of the transposed network, is
given by

[a]
NT

R
=
[

D B
C A

]
(8.19)

Also, the chain matrix of the GD network ND has been defined in Chapter 3 as

[a]ND
=
[

D Cf (s)
B

f (s) A

]
(8.20)

where f(s) is an arbitrary function of s. It is seen from Eqs. (8.18), (8.19), and (8.20),
and as already pointed out in Chapter 3, that the CTF of NT

R as well as that of ND

is the same as the VTF of N. Thus, we can derive two structures for the CTF from
that of a VTF through the GD and transposition operations.

In the next two sections, we will deal with the transformation of a VM filter N to
a CM filter using the GD and transposition operations.
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8.4
Transformation of a VM Circuit to a CM Circuit Using the Generalized Dual

To illustrate the procedure, let us consider the simple circuit of Figure 8.12a, which
realizes the first-order VTF given by

Vout

Vin
= K(G1 + sC1)[

G1 + (1 − K)G2
]+ s
[
C1 + (1 − K)C2

] (8.21)

Vin Vout

R1 N1 N2

R2

C1

C2

K
1

3

2

4

1
3

2

4

(N1)D (N2)D1
3

2

4

R2

C2

3 2

4

KinI outI

1 2

4

R1 R2

C1 C2

I in IoutK

Iout = KI in

Dual of OA
of gain K

(a) (b)

(c) (d)

(e) (f)

Figure 8.12 (a) A first-order VM circuit us-
ing a voltage amplifier (VA) of gain K; (b)
the circuit in (a) being considered as a cas-
cade of two three-terminal two-ports; (c)
dual of the network in (b); (d) (N2)D, the

capacitive dual of the network N2; (e) cur-
rent amplifier (CA) of gain K, the capacitive
dual of a VA of gain K; and (f) the dual of
the VM circuit shown in (a).
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The circuit of Figure 8.12a can be thought of as a cascade of two networks N1 and
N2, as shown in Figure 8.12b. We know from Theorem 3.1 that the GD of a cascade
of two-ports is the cascade of the GDs of the individual two-ports; hence, we may
find the GD of the circuit of Figure 8.12b to be as shown in Figure 8.12c. From
Theorem 3.2, we have the result that the GD of a series element of impedance z(s)
is a shunt element of impedance f(s)/z(s). If we now choose f (s) = 1/ s, (i.e., if we
take the capacitance duals), we see that (N1)D is nothing but a shunt element of
impedance z1D = (1/ s)(G1 + sC1) = (1/sR1) + C1; thus, z1D is the impedance of a
shunt element consisting of a series combination of resistor of C1 � and a capacitor
of R1 farads. Further, from the result of Problem 3.2, we see that (N2)D is the
capacitive dual of the VA of gain K in series with the dual of R2 and C2 in parallel.
This is shown in Figure 8.12d. Now, the chain matrix of a VA of gain K is given by[ 1

K 0
0 0

]

Hence, using Eq. (8.20), the capacitive dual of the VA has the chain matrix[
0 0
0 1

K

]

which is nothing but a CA of gain K, which is symbolized as shown in Figure 8.12e.
Thus, the dual of the given network is as shown in Figure 8.12f.

From this very simple example, we can observe the following:

1) The dual of an RC-VA circuit can be obtained as an RC-CA circuit by employing
the capacitive dual.

2) The active element, namely, the VA, which was grounded in the original
network, has become a floating active element in the dual network. This
is due to the fact that the dual of the feedback arm in the original cir-
cuit appears in series with the active element in the dual network. This is
always the case in that whenever we have a feedback path for the active
element in the original network, the grounded active element is converted
to a floating dual active element in the dual network. This makes the ap-
proach of obtaining CM circuits from VM circuits using GDs not a very
attractive one for implementation in IC technology, in view of the atten-
dant influence of parasitic capacitances and enhancement of common-mode
noise.

3) If the active element in the original circuit is an OTA of transconductance gm

or a operational transresistance amplifier (OTRA) of transresistance r, then
their respective GD elements would be an OTRA of transresistance f(s)gm

and an OTA of transconductance r/f(s), respectively. If f(s) is chosen as 1/s
to make sure that the passive-RC network part is converted into another RC
network, then the transadmittances of the OTAs and the transimpedances
of the OTRAs in the dual network are no longer resistive in nature, and
become capacitive. On the other hand, if f(s) is chosen as unity so as to make
the transadmittances of the OTAs and the transimpedances of the OTRAs
in the dual network to be resistive in nature, then the passive resistor and
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capacitor elements would be transformed into resistors and inductors in the
dual network. Thus, the GD is not beneficial for use in obtaining CM filters
from VM filters if we have active elements such as OTAs, OTRAs, or impedance
inverters.

Hence, the GD does not play an important role in converting VM circuits to
CM circuits. We will next consider the application of transposition in deriving CM
circuits from VM circuits.

8.5
Transformation of VM Circuits to CM Circuits Using Transposition

We saw in Chapter 3 that the transpose of any given network N can be very
simply obtained by replacing the nonreciprocal subnetwork of N by its respective
transpose. It was also seen that the transpose of a VCVS is nothing but a CCCS
with its input and output ports reversed and whose current gain is the same as
the voltage gain of the VCVS. Hence, for any circuit N that has been designed
using finite gain VAs, we may obtain its transpose NT by simply replacing each
of the VAs in N by a CA of the same gain, but with its input and output ports
interchanged. Then, the reverse CTF of the transposed network is identical to the
forward VTF of the original network and vice versa. It should also be noted that the
corresponding sensitivities of the CTF and VTF w.r.t. the various elements would
be the same.

The importance of the transpose is particularly apparent in the case of circuits
that employ OTAs. Since the transpose of a VCCS is itself with its input–output
ports reversed, when a network N containing OTAs is transposed, the resulting
network will also consist of only OTAs (i.e., no new active element is necessary).
It is obvious that similar results hold good for any VM network designed using
OTRAs.

The single-input single-output relationship between the VTF of a VM circuit
and the reverse CTF of its transpose can be extended easily to multiport networks.
Consider a network N consisting of (n + m + 1) terminals with n input ports and m
output ports realizing a VTF matrix [Tv ]. We can easily find its transpose NT using
the procedure outlined above. Then the roles of the input and output ports are
reversed in the resulting network (i.e., the m output ports and the n input ports in
N now become the m input and n output ports respectively). Then the CTF matrix
[Ti] of this m-input n-output port network is the same as [Tv ]T . Interested readers
can refer to Bhattacharyya and Swamy (1971) for the proof. We will later take an
example to illustrate the usefulness of this result.

Finally, it should be emphasized that the transpose (or adjoint) operation is
useful for not only deriving structures for CTFs, but also for obtaining alternate
structures for driving point functions as well as for transfer impedance and transfer
admittance functions.
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8.5.1
CM Circuits from VM Circuits Employing Single-Ended OAs

As mentioned earlier, the transpose of a VCVS of gain A is a CCCS of gain A
with its input and output ports interchanged. For an infinite-gain OA (A → ∞), its
transpose is a COA of infinite gain. This is symbolically shown in Figure 8.13.

We now illustrate the method of obtaining CM circuits from OA-based VM
circuits. We first take the case of a filter that employs a finite gain VA (which can
be realized using an OA), and then two filters that employ infinite-gain OAs.

8.5.1.1 CM Biquads Derived from VM Biquads Employing Finite Gain Amplifiers
Consider the LP Sallen and Key VM structure of Figure 5.4, shown as Figure 8.14a
for convenience. We know from Eq. (5.13) that its VTF is given by

Vo

Vi
=

K(G1G3)

C2C4

s2 + s

{(
G1

C2

)
+
(

G3

C2

)
+ (1 − K)

(
G3

C4

)}
+ G1G3

C2C4

(8.22)

One can easily obtain the transpose by replacing the OA of gain K by a COA of
gain K with its ports reversed and leaving the other elements intact. The resulting
CM circuit is shown in Figure 8.14b. It can easily be verified that the reverse short
circuit CTF of Figure 8.14b is the same as the forward VTF given by Eq. (8.22).

Similarly, it can be shown that the type 1 and type 2 sensitivity-compensated
active networks proposed by Daggett and Vlach (1969) for CTF and VTF are, in
fact, transposes of each other.

Vi

VoA A

I i = 0

Ii

Vi = 0

Io

−

+ (A → ∞)

(A → ∞)(a) (b)

Figure 8.13 (a) An infinite-gain OA and (b) its transpose, a COA of infinite gain.

Vi IiVoR1 R1 R3R2

C4

C2 C2

C4

K K

Io

(a) (b)

Figure 8.14 (a) Sallen and Key LP VM filter and (b) its
corresponding CM filter obtained using transposition.
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8.5.1.2 CM Biquads Derived from VM Biquads Employing Infinite-Gain Amplifiers
Consider the general VM single-OA biquad of Figure 5.6, which is redrawn as
shown in Figure 8.15a for the sake of convenience. It can be shown that the VTF
of Figure 8.15a is given by

Tν (s) = Vo

Vi
= −Y1Y3

[Y5 (Y1 + Y2 + Y3 + Y4) + Y2Y3] + 1
A

× [(Y1 + Y2 + Y4) (Y3 + Y5) + Y3Y5]
(8.23)

As A → ∞, the above reduces to

Tν (s) = Vo

Vi
= −Y1Y3

[Y5 (Y1 + Y2 + Y3 + Y4) + Y2Y3]
(8.24)

We can easily get the transpose of the VM circuit by replacing the OA in the circuit
by a reversed COA of infinite gain as shown in Figure 8.15b.

We can verify that for the transposed network, the reverse CTF, Ti(s), is the same
as the VM VTF, Tv(s) given by Eq. (8.24). It should be pointed out that A → ∞
only in theory. In practical situations, A is large but finite, and is a function of the
complex frequency s. Hence, in order to study the behavior of Tv(s) or Ti(s) under
practical conditions, one has to substitute the appropriate expressions for the gain
A(s) for the OA or the COA, as the case may be.

The same procedure can be used to transpose any VM circuit that employs mul-
tiple OAs with infinite gain. For example, if one considers the VM Fleischer–Tow

A

A → ∞

A → ∞

Vi

Io

Vo

Y1

Y1

Y2

Y3

Y5

Y4

Y2

Y4

Y3

Y5

A
Ii

−

+

(a)

(b)

Figure 8.15 (a) A single-amplifier VM general biquad and (b) its transpose.
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C1
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R1

R4 R6

R7
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R2
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R5

Io

Ii
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Figure 8.16 Transpose of the Fleischer–Tow VM biquad.

biquad of Figure 5.10, one can easily obtain the corresponding CM structure by sim-
ply replacing the OAs by reversed COAs of infinite gain, as shown in Figure 8.16.
It can be verified that the CTF of the CM circuit is the same as the VTF of the
original, as given by Eq. (5.47).

8.5.2
CM Circuits from VM Circuits Employing OTAs

8.5.2.1 VM Circuits Using Single-Ended OTAs
If one of the input terminals of the OTA (see Figure 5.17) is grounded, say
the negative terminal, then the OTA and its equivalent circuit are as shown in
Figure 8.17. Its admittance matrix is

[y]N =
[

0 0
−gm 0

]

Hence, the admittance matrix of its transpose is

[y]TN =
[

0 −gm

0 0

]

Va
Va VC

Va Vc

Vcgm
gmgmVa gmVa

gmVa

+
+

+

−

Ia = 0
Ic

(a) (b) (c)

Figure 8.17 (a) and (b) Symbols for an OTA whose
positive terminal is grounded, and (c) its AC equivalent cir-
cuit.
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Va

Vb

Va

Vb

Vc

Vc

T

gm

gmVa

gmVb

gmVc

gmVc

Vc

Vc
T

+

gm
−

gm

−

gm
+

(a)

(b)

Figure 8.18 (a) OTA with its negative input terminal
grounded and its transpose (b) OTA with its positive input
terminal grounded and its transpose.

which corresponds to nothing but the original OTA with its input and output ports
interchanged. Similarly, if the positive input terminal of the OTA is grounded,
then the corresponding transpose would be itself with its input and output ports
interchanged. These are symbolically shown in Figure 8.18. Thus, the transpose of
a single-ended OTA is itself and is not a new element. This is particularly useful
since the same element can be used for both the VM and CM circuits.

As an example (Swamy and Raut, 2002), consider the VM gm-C BP filter
employing single-ended OTAs (Ghausi and Laker, 1981), as shown in Figure 8.19a.
The corresponding CM filter can readily be obtained using transposition and is
shown in Figure 8.19b. It is easily verified that the VTF of the former and the
reverse CTF of the latter are indeed the same and are given by (Senani, 1992)

Vo

Vi
= Io

Ii
= sC1gm2

s2C1C2 + sC1gm3 + gm1gm2
(8.25)

Vi Vo
Io

C1 C2

C2C1

gm1

Ii

(a) (b)

+

gm2 gm3

gm2

gm1

+ −

+

+

gm3
−

Figure 8.19 (a) VM gm-C BP filter employing single-ended
OTAs and (b) the corresponding CM filter (transpose of the
circuit in (a)).
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Obviously the sensitivities of the pole frequency and pole Q of both the VTF and
CTF are the same w.r.t. the various parameters.

We now consider an example of obtaining a CTF matrix from a network realizing
a VTF matrix (Swamy and Raut, 2002). Figure 8.20 shows a general VM biquad
structure that realizes LP, BP, and HP functions depending on whether the input is
VA, VB, or VC (Geiger and Sanchez-Sinencio, 1985). This structure can be considered
as a three-input single-output network realizing the VTF matrix [Tv] given by

Vo = [Tν ]

⎡
⎣ VA

VB

VC

⎤
⎦ = 1

D(s)

[
gm2gm5 sC1gm4 s2C1C2

]⎡⎣ VA

VB

VC

⎤
⎦ (8.26a)

C2
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Vc

C1

VBVA

gm1

gm5
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IA

Ii

−

+

gm1 C1 C2

Ic

−
gm2

gm3
+ −

gm4

+
gm5

+

gm2

gm4

gm3
+

+

−

(a)

(b)

Figure 8.20 (a) A three-input single-output VM biquad
structure realizing LP, BP, and HP functions and (b) its
transpose, a single-input three-output CM biquad structure.
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where

D(s) = s2C1C2 + sC1gm3 + gm1gm2 (8.26b)

The transpose of the given network is as shown in Figure 8.20b. This is a
single-input three-output network realizing the CTF matrix [Ti] = [Tv ]T . Thus, the
CM filter realizes the CTF matrix⎡

⎢⎣ IA

IB

IC

⎤
⎥⎦ = 1

s2C1C2 + sC1gm3 + gm1gm2

⎡
⎢⎣ gm2gm5

sC1gm4

s2C1C2

⎤
⎥⎦ Ii (8.27)

This realization is the same as the one given by Senani (1992).

8.5.2.2 VM Circuits Using Differential-Input OTAs
In the above section, we derived CM circuits from VM circuits that employ
single-ended OTAs. We now consider the transformation of VM circuits employing
differential-input single-output (DISO) OTAs to CM circuits. For this, we first derive
the transpose of a DISO-OTA, as shown in Figure 8.21a.

The [y] of the differential-input OTA is given by⎡
⎣ IA

IB

IC

⎤
⎦ =
⎡
⎣ 0 0 0

0 0 0
−gm gm 0

⎤
⎦
⎡
⎣ VA

VB

VC

⎤
⎦ (8.28)

Hence,

[y]T =
⎡
⎣ 0 0 −gm

0 0 gm

0 0 0

⎤
⎦ (8.29)

Thus, in the transposed element, the current–voltage relations are

IA = −gmVC, IB = gmVC, IC = 0 (8.30)

Thus the transpose of a DISO-OTA is a single-input dual-output (SIDO) OTA; it
is symbolically shown as in Figure 8.21b. A SIDO-OTA can be obtained by simply

VA
IA

IB

ICVB

gm VC

gmVC

gmVC

VC
VB

VC

VA

gmVC

VCgm

+

− gm

+
+

gm
−

gm

+

−

(a) (b) (c)

Figure 8.21 (a) A DISO-OTA, (b) its transpose, a
SIDO-OTA, and (c) a realization of a SIDO-OTA.
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applying a current replica in a standard OTA. A simple realization using two
single-ended OTAs is shown in Figure 8.21c. Using the transpose of a DISO-OTA,
we can easily derive CM circuits from VM circuits that employ such OTAs. We
illustrate this with two examples.

Example 8.1. SIDO-OTA universal CM filter: Consider the VM DISO-OTA univer-
sal filter shown in Figure 8.22a (Deliyanis, Sun, and Fidler, 1999). It can be shown
that the VTF of this circuit is given by

Tν (s) = Vo

Vi
= gmY2Y4

D(s)
(8.31a)

where

D(s) = (Y1Y2 + Y2Y3 + Y3Y1) (Y4 + Y5) + (Y1Y5 + Y2Y5 + gmY2
)

Y4

(8.31b)

By replacing the DISO-OTA by its transpose, we get the CM filter shown in
Figure 8.22b, proposed by Al-Hashimi and Fidler (1988). It can easily be shown
that the CTF Ti (s) = Io

Ii
is given by

Ti (s) = Io

Ii
= gmY2Y4

D (s)

which is the same as the Tν (s) of the original network. Various filters such as LP,
BP, and HP second-order filters can be obtained by appropriately choosing the
values of the various admittances.

Example 8.2. Leapfrog structure: As a second example, we consider the derivation
of the CM leapfrog structure from that of a VM leapfrog structure. Consider the
ladder network of Figure 7.38. The realization of this ladder for its VTF using
DISO-OTAs is shown in Figure 7.40 and is redrawn as Figure 8.23 for convenience.
The various impedances Z′

1, Z′
2, . . . , Z′

6 in Figure 8.23 are related to the series
and shunt passive impedances Z1, Z2, . . . , Z6 of the ladder of Figure 7.40 by the
relations

Z′
j = 1

ggmj

1

Zj
, for j = 1, 3, 5 (8.32a)

Vi Y5 Y3 Y1 Y5 Y3 Y1

Ii
Y2Y4Y4 Y2

Vo
Io

gm

−

+ gm

−
+

+

(a) (b)

Figure 8.22 (a) A universal VM filter using a DISO-OTA,
(b) its transpose, the CM counterpart of the circuit given
in (a).



8.6 Derivation of CTF Structures Employing Infinite-Gain Single-Ended OAs 279

z1′ z2′ z3′ z4′ z5′ z6′
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Figure 8.23 VM leapfrog structure for the ladder network of Figure 7.48 using OTAs.
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Figure 8.24 Transpose of Figure 8.23, the corresponding CM leapfrog structure.

and

Z′
j = 1

gmj
Zj, for j = 2, 4, 6 (8.32b)

Since these elements are unchanged in the transpose and only the DISO-OTAs
are replaced by their transposed elements, which are SIDO-OTAs, the CM leapfrog
structure can readily be drawn, as shown in Figure 8.24. The CTF Io

Ii
of the CM

structure is the same as the VTF of the VM structure of Figure 8.23.

Thus, any VM structure that is realized using OTAs can easily be transformed to
derive corresponding CM structures that also use OTAs. In this connection, it is to
be noted that the various canonical structures derived for CM structures (Sun and
Fidler, 1995) and for VM structures (Sun and Fidler, 1997) are simply transposes of
one another (Tang, 2004). Even though the subject matter of this book is on filter
design, we would like to point out that transposition can also be used to obtain
alternate structures for oscillators from known oscillator structures (Bhattacharyya,
Sundaramurthy, and Swamy, 1981; Swamy, Raut, and Tang, 2004; Tang, 2004).
We next consider the application of transposition in conjunction with the concept
of nullors to obtain structures for CTFs that employ single-ended OAs from VM
circuits realized using single-ended OAs.

8.6
Derivation of CTF Structures Employing Infinite-Gain Single-Ended OAs

In Section 8.5.1, we gave a method of transforming VM circuits using single-ended
OAs into CM circuits; however, the CM circuits need to use COAs of infinite
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gain. We will now show, using the principle of nullors along with the concept of
transposes, how to derive structures for CTFs that utilize infinite-gain OAs from
VTF structures that also employ infinite-gain OAs (Raut, Swamy, and Tian, 2007).

Consider a structure N that uses ideal single-ended OAs for the realization of a
given VTF. Since an ideal OA can be considered as an ideal VCVS of infinite gain,
we may replace the VCVSs by their nullor equivalents. We now use the fact that
the nullor equivalent of an ideal CCCS is exactly the same as that of the ideal VCVS
(Bruton, 1980). Hence, we can replace each of the OAs in the VTF structure by an
ideal CCCS, and the VTF realized by the resulting structure N′ is the same as that
of N. If we now transpose the VTF structure N′ to obtain [N′]T, then each of the
CCCSs in N ′ would be replaced by a VCVS (infinite-gain OA) with its input and
output ports reversed. Utilizing the property of a transposed network, we see that
the reverse CTF of [N ′]T is the same as the VTF of N. Since all the passive elements
in N are unchanged during these operations, it is clear that the CTF structure
is obtained simply by reversing the input–output ports of the OAs. We will now
illustrate the usefulness of this result by the following examples.

8.6.1
Illustrative Examples

8.6.1.1 Single-Amplifier Second-Order Filter Network
Consider the SAB VM filter using an ideal OA (an ideal VCVS), as shown in
Figure 8.25. The VTF of this network is given by

Vo

Vi
= − Y3Y4

Y1Y2 + Y2Y3 + Y1Y3 + Y1Y4
(8.33)

If we now replace the ideal VCVS by its nullor equivalent, and use the fact that
the nullor equivalents of all the four ideal controlled sources are the same, we can
replace the ideal VCVS in Figure 8.25a by an ideal CCCS to obtain the VM circuit
using a CCCS, as shown in Figure 8.25b (where A tends to infinity), whose VTF
should be the same as that of the circuit of Figure 8.25a. In fact, it can easily be
verified that this is true.

If we now take the transpose of the circuit of Figure 8.25b, we get the circuit
shown in Figure 8.26, whose reverse CTF would be the same as the VTF of that of

Vi

Vi

Vo

Vo

Y4 Y3

Y1

Y2

Y4 Y3

Y2

Y1

Va

A = ∞ A → ∞
−

+

(a) (b)

I
AI

Figure 8.25 (a) A single-amplifier VM filter using an ideal
OA and (b) its nullor equivalent using a CCCS.



8.6 Derivation of CTF Structures Employing Infinite-Gain Single-Ended OAs 281

Io

IiY4 Y3

Y1

Y2

A = ∞
−

+

Figure 8.26 Circuit obtained
from Figure 8.25a with its CTF
same as that of the VTF of the
latter.

Figure 8.25b, that is, the same as that of Figure 8.25a. It can indeed be verified that
the reverse CTF Io/Ii of the CM filter of Figure 8.26 is given by

Io

Ii
= − Y3Y4

Y1Y2 + Y2Y3 + Y1Y3 + Y1Y4
(8.34)

As mentioned earlier, the circuit of Figure 8.26 could have been obtained directly
from the VTF circuit of Figure 8.25a by simply turning around the input and output
ports of the VCVS.

8.6.1.2 Tow-Thomas Biquad
The Tow–Thomas VM filter NV , employing three OAs is shown in Figure 8.27. Its
VTF is given by

Vo

Vi
= −

C1

C
s2 + 1

RC

(
R

R1
− r

R3

)
s + 1

C2RR2

s2 + 1

CR4
s + 1

C2R2

(8.35)

The corresponding CTF network NC can be obtained directly by reversing the
input/output ports of each of the VCVS elements in Figure 8.27, and is shown in
Figure 8.28. It can be verified that the reverse CTF of this circuit is given by

Io

Ii
= −

[
C1

C
s2 + 1

CR

(
R

R1
− r

R3

)
s + 1

C2RR2

]

s2 + 1

CR4
s + 1

C2R2

(8.36)

which is the same as the VTF of the VM filter of Figure 8.27

Vi

VoR1

R4

C1

C

−

+
A = ∞ −

+
A = ∞ −

+
A = ∞

R

C

R2
R3

r

r

Figure 8.27 Tow–Thomas VM filter N employing three OAs.
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Figure 8.28 Filter whose CTF is the same as the VTF of Figure 8.27.

8.6.1.3 Ackerberg and Mossberg LP and BP Filters
As a final example, consider the Ackerberg and Mossberg filter, which can produce
both LP and BP filter responses depending upon the choice of the output signal
node, as shown in Figure 8.29 (Ackerberg and Mossberg, 1974). The two VTFs of
the A & M filter are

Vo1

Vi
= − s/RC1

s2 + s
1

R1C1
+ r1

C1C2R2rr2

(8.37a)

and

Vo2

Vi
= −

r1

C1C2Rrr2

s2 + s
1

R1C1
+ r1

C1C2R2rr2

(8.37b)

Figure 8.30 shows the corresponding CTF network NC obtained directly from the
VM filter by reversing the input/output ports of each of the VCVS elements in

Vi R

R1

C1

+

−
A = ∞

−

+
A = ∞

−

+
A = ∞

r2

r

Vo1 Vo2

R2

C2

r1

Figure 8.29 Ackerberg and Mossberg filter realizing LP and BP functions.
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R2

r1

r2

Vc+

−

+
− Ii 2Va+

−

Ii1
Io

Vb

A = ∞

A = ∞

A = ∞

Figure 8.30 Filter whose CTFs are the same as the LP and BP VTFs of Figure 8.29.

Figure 8.29. It can easily be shown that the two CTFs are given by

Io

Ii2
= −

r1

C1C2Rrr2

s2 + 1

R1C1
s + r1

C1C2rr2R2

with Ii1 = 0 (8.38a)

and

Io

Ii1
= −

1

RC1
s

s2 + 1

R1C1
s + r1

C1C2rr2R2

with Ii2 = 0 (8.38b)

which are, respectively, the same as the VTFs (Vo2/V1) and (Vo1/V1) of the VM
filter of Figure 8.29.

Thus, we can obtain a CTF (VTF) filter from a VTF (CTF) filter that employs
three-terminal ideal VCVSs by simply reversing the input/output terminals of
each of the VCVSs in the latter. Similarly, we can conclude that if the VTF (CTF)
filter consisted of only three-terminal CCCS elements, then we can obtain the
corresponding CTF (VTF) filter by simply reversing the input/output terminals of
the CCCSs in the former.

8.6.2
Effect of Finite Gain and Bandwidth of the OA on the Pole Frequency, and Pole Q

The analysis in the previous section has been made under the assumption of
ideal passive components and ideal active devices (i.e., ideal OAs). However, it is
important to study the effect of the nonideal characteristics of the active device.
Since the active device used is the OA, one important deviation from its ideal
characteristic arises because of the limited amplifier bandwidth. We now analyze
the effect of finite bandwidth on the pole frequency and pole Q factor of the CTF
filter and compare them with those of the corresponding VTF filter.

The analytical procedure is demonstrated for a multi-OA filter, namely, the
A & M three-OA biquad. For the A & M filter shown in Figure 8.29, let us assume
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that each OA has a gain A. Then, the LP and BP VTFs are given by

Vo2

Vi
= − (1/rR)

DV (s)
(8.39)

and

Vo1

Vi
= −

1

R

⎛
⎜⎜⎝

1

r
+ sC2

A
+

sC2

r1
1

r2
+ 1/r2 + 1/r1

A

⎞
⎟⎟⎠

DV (s)
(8.40)

where

DV (s) = 1
R2r

+
( 1

R + 1
R2

A
+
(

1 + 1
A

)(
1

R1
+ sC1

))⎛⎝ 1
r + sC2

A
+

sC2
r1

1
r2

+ 1/r2+1/r1
A

⎞
⎠

(8.41)

The LP and BP CTFs for the filter shown in Figure 8.30 are obtained as

Io

Ii2
= − (1/rR)

DI(s)
(8.42)

and

Io

Ii1
= −

1
R

⎛
⎜⎜⎝

1

R2
+ 1

r1

A
+

sC2

r1

1

r2
+ 1/r2 + sC2

A

⎞
⎟⎟⎠

DI(s)
(8.43)

where

DI(s) = 1

R2r
+
(

1

Ar
+
(

1 + 1

A

)(
1

R1
+ sC1

))⎛⎜⎜⎝
1

R2
+ 1

r1

A
+

sC2

r1
1

r2
+ 1/r2 + sC2

A

⎞
⎟⎟⎠

(8.44)

To evaluate the performance of the VM and CM filter, we use the one-pole model
for the gain of the OA,

A = A(s) = Ao

1 + s

ωp

(8.45a)

where ωp is the pole frequency. For frequencies ω � ωp, we may assume

A = A(s) ≈ Aoωp

s
≈ ωt

s
(8.45b)

where ωt ≈ Aoωp is the unity-gain bandwidth of the OA. We further assume that

R = R2 = r = r1 = r2, C1 = C2 = C, R1 = QoR (8.46a)
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and

ωo � ωt (8.46b)

where ωo and Qo are the pole frequency and pole Q of the filter. With the above
assumptions, and approximating s3 = −ω2

o s, s5 = ω4
o s, we may simplify DV(s) and

DI(s). This leads to

Pole-frequency deviation of the VTF: δV = ωoa − ωo

ωo
≈ −3ωo

2ωt
(8.47)

Pole- frequency deviation of the CTF: δI = ωoa − ωo

ωo
≈ −
(

2ωo

ωt
+ ωo

2Qoωt

)
(8.48)

Pole-Q deviation of the VTF: ηV = Qoa − Qo

Qo
≈ ωo

2ωt
(8.49)

Pole-Q deviation of the CTF: ηI = Qoa − Qo

Qo
≈ ωo

2Qoωt
(8.50)

where ωoa and Qoa are the realized values. Simulation results and calculations
show that the performances of the CTF and VTF filters match very well, especially
when the pole frequency of the filter is far smaller than that of the OA unity-gain
bandwidth (Raut, Swamy, and Tian, 2007).

8.7
Switched-Current Techniques

In an SC system, signal voltages are sampled, converted to charge packets by
the capacitors, and then reconverted to voltages by redistribution of the charges
among a different set of capacitors. Existence of linear capacitors is necessary for
processing the voltage signals in an SC system. In an SI system, the presence of
linear capacitors is not needed. A current signal injected into a node develops a
voltage on the parasitic capacitance at that node and is then transferred back to a
current at another node by the simple current mirroring principle. Since switching
is used, the current mirrors are named differently, that is, current copiers and
dynamic current mirrors. Except for this difference, the operations in the SI
systems are similar to those in SC systems and require similar building blocks
such as addition, subtraction, multiplication, and delay. Like the SC systems, the
SI system is attractive for implementation in an IC technology (Mohan, 2002). The
operations of these basic building blocks in an SI system are discussed below. We
will consider realizations using MOS and CMOS transistors.
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8.7.1
Add, Subtract, and Multiply Operations

Consider the current mirror system shown in Figure 8.31. The inputs nodes marked
+ and – have low resistances because of the diode-connected transistors. They
receive bidirectional input currents representing positive and negative signals, and
hence, the input transistors are biased by currents I to ensure forward conduction
(Hughes, Macbeth, and Pattullo, 1990). The output transistors M4 and M5 have a
width-to-length ratio (or the aspect ratio), W/L, that is α times that of the input
transistors M2 and M3. In the following, the notation 1 : α implies an aspect ratio
of 1 : α between the input and output transistors. Other output transistors may be
included with other aspect ratios to produce a fan out capability.

Both the inputs are current summing nodes and it is easily seen that
io = α(

∑k
j=1 ipj −

∑l
j=1 inj).

In the above, and what follows, the upper case letters I, J, . . . , are used to signify
DC bias values, while the lower case letters i, j, . . . , are used to signify the signal
currents.

8.7.2
Switched-Current Memory Cell

Figures 8.32 and 8.33 show two possible memory cells. Clock phases φ1 and φ2

are defined by nonoverlapping voltages and it is assumed that the switches turn on
when their control voltage is high. The circuit of Figure 8.32 is a simple current
mirror with the switch S separating its input and output transistors. On phase φ2

switch S is closed and both the oxide capacitances Cox1 and Cox2 are charged to Vgs,
where

Vgs = VT +
√√√√( I + i

μCox1
2

W
L

)

i p1

ip2

ipk

in1

VDD

VSS

in 2

inl

io

I
↓

I
↓

(+) (−)

M1 M3

M2

M4

M5

1 : a

1 : a 1:

Figure 8.31 Current summing and differencing employing CMOS current mirrors.
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Figure 8.32 SI memory cell type 1.
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Figure 8.33 SI memory cell type 2.

By normal current mirror action io = −αi, and the current io is available simulta-
neously with the input sample. On phase φ1, switch S opens and isolates the input
from the output. A voltage close to Vgs is held on Cox2 and sustains a current close
to –αi at the output.

The arrangement in Figure 8.33 can achieve memory within a single transistor
M1. On phase φ2, M1 is diode connected and conducts a current I + i and as before,
Vgs is stored on the oxide capacitance. On phase φ1, M1 maintains its current I + i,
and hence, io1 = −i. To achieve scaling by a factor α, an extra output stage (M2) can
be used to make io2 = −αi. As M1 is used alternately as an input diode and output
transistor, io1 is available only during phase φ1. Output current io2 is available for
the whole period as with the other memory cell.
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8.7.3
Switched-Current Delay Cell

The memory cells of the type shown in Figure 8.32 can be used to produce a
unit delay. This will need a cascode of an NMOS and a PMOS transistor. The
arrangement is shown in Figure 8.34.

The NMOS is clocked on phase φ2 and the PMOS memory on phase φ1. During
phase φ2 (the end of the (n − 1)th period), the input current i(n − 1) together with
the bias current I enters the input diode of the NMOS memory cell. During phase
φ1 (the start of the nth period), this current is stored in the NMOS memory, fed to
the PMOS memory and, since switch S2 is closed, a current io(n) equal to i(n − 1)
flows in the output. The input current, i(n), does not propagate to the PMOS
memory on this phase as switch S1 is open. On the next phase, φ2, io(n) is sustained
at the value i(n − 1), so the output clearly is the input signal delayed by one clock
period.

8.7.4
Switched-Current Integrators

Figure 8.35 shows a simple SI integrator. It is formed from a delay circuit with
two output stages weighted α and β, the output from the β weighted transistors
being fed back to the input summing node. The signal, io, from the α weighted
transistors is the integrator output signal. The system operates as described below.
The output signal is established as soon as S2 closes at the beginning of phase
φ1 and is held until the end of phase φ2. Thus, it covers a time span of one clock
period (duration of φ1 plus duration of φ2).

At the onset of φ2, the (n – 1)th clock period, the output signal is i0(n − 1) and
the value of if is (β/α)io(n − 1). The input current is i1(n − 1) and the total current
in M1 is

I1 = I + i1(n − 1) + (β/α)io(n − 1) (8.51)

i

I
↓

I
↓

M1

S1

S2

f2

f1

Cox

io

VDD

VSS

Figure 8.34 SI delay cell.
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1 : b a
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Figure 8.35 A simple SI integrator.

Since the switch S1 is closed, I2 = I1. During the subsequent phase φ1, the switch S2

is closed, the currents i1, io, and if change to i1(n), io(n), and βio(n)/α respectively.
However, since S1 is open, I2 remains at its previous value, and since now S2 is
closed, it is mirrored on to the α and β transistors as I3 and I4. Thus,

I4 = αI1 = α

[
I + i1(n − 1) + β

α
io(n − 1)

]
(8.52)

and

io(n) = I4 − αI = αi1(n − 1) + βio(n − 1) (8.53)

On taking the z-transform, we get

H1(z) = Io(z)/I1(z) = αz−1

1 − βz−1
(8.54)

where, I(z) represents the z-transform of i(n).
The above corresponds to an integrator associated with the forward Euler map-

ping between the analog and sampled-data domains, that is, s → (1 − z−1)/Tz−1.
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i oI1
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b

b

a

a

VDD

VSS

Figure 8.36 SI integrator with backward Euler mapping.
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If β = 1, the integrator becomes a lossless integrator. Otherwise, the integrator is
a lossy one.

In Figure 8.36 we show an integrator, which corresponds to a backward Euler
mapping, that is, s → (1 − z−1)/T . This is achieved by applying the input signal i2
to the summing node at the input of the PMOS memory. In this case, it can be
readily shown that

io(n) = βio(n − 1) − αi2(n) (8.55)

On taking z-transform and simplifying, we get

H2(z) = Io(z)
I2(z)

= − α

1 − βz−1
(8.56)

If β = 1, the integrator is lossless.
The integrator of Figure 8.37 has its input current, i3, connected to the summing

node of the NMOS memory on phase φ2 and to the summing node of the PMOS
memory on phase φ1. We can show that

io(n) = βio(n − 1) − α[i3(n) − i3(n − 1)] (8.57)

Expressed in the z-domain, we get

H3(z) = Io(z)

I3(z)
= −α

1 − z−1

1 − βz−1
(8.58)

This corresponds to the damped integration of the differential-input signal, i3(n) −
i3(n − 1). With β = 1, H3(z) = −α, and hence, the input signal is merely scaled
and inverted.

8.7.5
Universal Switched-Current Integrator

The universal SI integrator can be obtained by combining the various operations
as discussed in connection with the integrators in Figures 8.35–8.37. Figure 8.38
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Figure 8.37 A lossy SI integrator building block.
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Figure 8.38 A universal SI integrator.

shows the universal SI integrator structure. For simplicity, the substrate terminals
of the individual MOS transistors have not been shown in the diagram. The
input current signals are weighted by factors α1, α2, and α3 prior to application to
the integrator system. This can be achieved by additional current mirror circuits
preceding the integrator. By superposition,

io(n) = βio(n − 1) + α1i1(n − 1) − α2i2(n) − α3[i3(n) − i3(n − 1)] (8.59)

On taking z-transforms

Io(z) = α1
z−1

1 − βz−1
I1(z) − α2

1

1 − βz−1
I2(z) − α3

1 − z−1

1 − βz−1
I3(z) (8.60)

From Eq. (8.60), we see if i2 = −i1 = i, i3 = 0, and α1 = α2 = α3 then

H(z) = Io(z)

I(z)
= α

1 + z−1

1 − βz−1

This corresponds to the bilinear s ↔ z transformed lossy (with β �= 1) or lossless
(with β = 1) SI integrator.

The SI integrators discussed above are good for illustrative purposes only and
should be replaced by more accurate systems to reduce the effects due to the
threshold voltage and gain mismatch, finite output impedance (due to rds), junction
leakage, clock feedthrough, and so on. These problems have been addressed in the
literature (Hughes, Bird, and Macbeth, 1989) and should be consulted for reliable
system implementation in an IC technology.

8.8
Switched-Current Filters

Design of an SI filter is carried out in almost the same way as that of an SC filter.
In SC filters, the coefficients of the transfer function can be related to the ratio of
the capacitances. Similarly, in an SI filter the coefficients of the transfer function
are related to the ratio of the area of the MOS transistors acting as current mirrors
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Figure 8.39 A generic SC network.

(or copiers). The preliminary phase of the design involves the same steps as the
design of an SC filter (see Chapter 6). Since the SI filters are successors of SC
filters, it is often convenient to start off the design of the SI filter from an associated
SC filter, serving as the prototype. Once the SC filter structure is known, the SC
integrators are simply replaced by corresponding SI integrators, one for one, to
evolve the complete SI filter. To recapitulate, we consider a generic SC network
(Figure 8.39) containing inverting and noninverting integration and a simple gain
function. In Figure 8.39, the clock phases 1 and 2 are designated by numbers 1 and
2 respectively. Using the principle of analysis of SC networks, we can write

V
(1)
o = A1

z−1/2

1 − z−1
V (2)

1 − A2
1

1 − z−1
V (1)

2 − A3V (1)
3 − A4

1

1 − z−1
V (1)

o (8.61)

If V1 is sampled in phase 1 and held thereafter, V (2)
1 = z−1/2V (1)

1 . On collecting
V (1)

o terms together, and simplifying, we finally get

V (1)
o = α1

z−1

1 − βz−1
V (1)

1 − α2
1

1 − βz−1
V (1)

2 − α3
1 − z−1

1 − βz−1
V (1)

3 (8.62)

where

α1 = A1

1 + A4
, α2 = A2

1 + A4
, α3 = A3

1 + A4
, and β = 1

1 + A4
(8.63)

On comparing the terms in Eq. (8.62) with those in Eqs. (8.54), (8.56), and (8.58),
we can easily understand that a noninverting integration path in the SC network
will correspond to an SI integrator of the type shown in Figure 8.35 (forward Euler).
Similarly, it can be shown that an inverting integrator path in the SC network will
correspond to an SI integrator of the type shown in Figure 8.36 (backward Euler)
and an unswitched capacitor path will correspond to the differential SI integrator
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shown in Figure 8.37 for the case of β = 1. We can thus build the entire SI filter
network by associating an appropriate SI integrator with each of the integrating
paths in the prototype SC filter network. The design procedure is now demonstrated
with a simple example.

Example 8.3. We now consider the design of the second-order analog BP filter with

a transfer function given by H(s) = 2027.9s

s2 + 641.28s + 1.0528 × 108
, considered earlier

in Example 6.1. Using a clock frequency of 8 kHz, the sampled-data transfer func-
tion, under bilinear transformation and prewarping, becomes (see Example 6.1)

H(z) = 9.192 × 10−2(1 − z−2)
1 − 0.5521z−1 + 0.9418z−2

As a first step, the design has to be implemented using SC networks. Using the
structure of Figure 6.20, a possible SC filter design is as shown in Figure 8.40 (see
Example 6.3).

The capacitance values are

A =B =D =1, I = 0.09192, E = 0.0582, C= 1.3897, G = 1, H = 1, and J = 0.908

Upon examining the SC network around OA1, we see that the capacitors G and C
correspond to inverting integration, the capacitor H to a noninverting integration,
and E to a simple phase inversion. Similarly for OA2, the capacitors A and J
correspond to noninverting integration, and capacitor I to an inverting integration.

OA1
+

_

OA2+

_A

B

C

D

EG

H

I

J

Vi

V1
V2

f1

f2

f2

f1

f1

f1f1

f1

f1

f2

f2f1

f2

f2f2

f2

f2

f2 f2

f2

f1

f1

f1 f1

Figure 8.40 A standard building block for a second-order SC filter.
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Using the standard analysis procedure for SC filter circuits, we can write (note:
φ1 → phase (1), φ2 → phase (2)):

V (1)
1 = − 1

1 − z−1
V

(1)
i + z− 1

2

1 − z−1
V

(2)
i − 1.3897

1 − z−1
V

(1)
2 − 0.0582V

(1)
2 (8.64)

and

V
(1)
2 = z− 1

2

1 − z−1
V

(2)
1 − 0.09192

1 − z−1
V

(1)
i + 0.9081z− 1

2

1 − z−1
V

(2)
i (8.65)

Using the sample-hold conditions on Vi and V1 (i.e., V
(2)
i = z−1/2V

(1)
i , V

(2)
1 =

z−1/2V
(1)
1 ), we can rewrite the above equations as:

V
(1)
1 = −V

(1)
i − 1.3897

1 − z−1
V

(1)
2 − 0.0582V

(1)
2 (8.66)

and

V (1)
2 = z−1

1 − z−1
V (1)

1 − 0.09192
1 − z−1

V (1)
i + 0.9081z−1

1 − z−1
V (1)

i (8.67)

The first and third terms in Eq. (8.66) can be implemented by the SI integrator
of Figure 8.37 (with β = 1), the second terms in Eqs. (8.66) and (8.67) by the
integrator of Figure 8.36 (with β = 1), while the first and third terms of Eq. (8.67)
can be implemented by the integrator of Figure 8.35 (with β = 1). The signal input
to these integrators will, however, be current signals ii, i1, and i2 analogous to Vi,
V1, and V2 in Figure 8.40.

Practice Problems

8.1 Derive the [z] of the current – controlled voltage source (CCVS) built using
CCII and shown in row H in Table 8.2.

8.2 Derive the [y] of the negative impedance inverter (NII) built using CCII and
shown in row K in Table 8.2.

8.3 Consider the CM filter shown in Figure P8.3 (Elwan and Soliman, 1996).

(a) Show that the CTF
(

Io1
Ii

)
gives an LP output

Io1

Ii
= 1

C1C2R1R2s2 +
(

C2R1R2

R

)
s + 1

while the CTF
(

Io2

Ii

)
gives a BP output

Io2

Ii
= − C2R1s

C1C2R1R2s2 +
(

C2R1R2

R

)
s + 1

(b) Find the pole Q and the pole frequency of the filters and their sensitivities
w.r.t. the various passive elements.
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Z −Y

X Z+

Z +Y

X Z−

R
CCII CCII

I 01 I02

C1 C2R1
R2

Ii

Figure P8.3

(c) Also, find the absolute value of the gain of the BP filter at its pole
frequency.

8.4 Find the capacitive dual of the circuit of Figure 5.3 and show that its CTF is
the same as the VTF of the original circuit, as given by Eq. (5.12).

8.5 Find the transpose of the circuit of Figure 5.3 and show that its reverse CTF
is the same as the VTF of the original, as given by Eq. (5.12).

8.6 Consider Problems 5.2 and 5.3. Find the corresponding CM design for each
case using transposition. Verify your design using a CAD tool.

8.7 Consider Problems 5.10–5.13. Provide a current-mode alternative design for
each case. Verify your design using a CAD tool.

8.8 The Tow–Thomas VM filter NV employing three infinite-gain OAs is shown
in Figure 8.27.
(a) Show that its VTF is given by

Vo

Vi
= −

C1

C
s2 + 1

RC

(
R

R1
− r

R3

)
s + 1

C2RR2

s2 + 1

CR4
s + 1

C2R2

(b) Find the corresponding CTF network NC that also uses infinite-gain OAs
and show that its CTF is the same as the VTF of the VM filter.

8.9 Find the transpose of the circuit of Figure P5.35, and find the expression for
the reverse CTF of the transpose. Show that this CTF is the same as the VTF
of the circuit of Figure P5.35.

8.10 The biquad shown in Figure P5.36 may be considered to be a single-input
three-output network. Find the transpose of this circuit that will be a
three-input single-output network. Find the CTF matrix of the transpose
network. How is this matrix related to the VTF matrix of the original
network?

8.11 (a) Show that the three-input four-output VM network of Figure P8.11a
proposed in Sanchez-Sinencio, Geiger, and Nevarez-Lozano, (1998) and the
four-input three-output CM network of Figure 8.11b proposed in Sun and
Fidler (1996) are transposes of each other (Tang, 2004).
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8.12 Figure P8.12 shows a doubly terminated third-order Butterworth ladder LP
filter with load and source resistances of 1 � each.
(a) Obtain a leapfrog structure simulating the ladder for realizing Tν (s) = Vo

Vs
using OTAs with gm = 50 μ�; the cutoff frequency of the simulated LP filter
should be 5 MHz.
(b) Using this leapfrog structure, obtain the corresponding CM leapfrog
structure.

8.13 Consider Problems 6.2 and 6.3. Provide an SI design for each case.
8.14 Consider Problems 6.9–6.12. Provide an SI design for each case.
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9
Implementation of Analog Integrated Circuit Filters

In the preceding chapters, we have discussed various topics including the mathe-
matical background, basic theoretical approach, and analysis and design techniques
related to analog filters. With the advancement in semiconductor technology
(especially, submicron CMOS process), the trend of implementation of filters has
moved toward microminiaturization. Historically, the first step in the scenario was
to eliminate bulky inductors. In the 1960s, this was achieved by using active-RC
techniques which employ hybrid IC technology. In the 1970s, SC technique facili-
tated the implementation of analog filters using monolithic CMOS IC technology.
While the early goal was to use this technique for filters at low frequencies (less
than 30 kHz), presently with the availability of submicron (less than 1 μm gate
length) CMOS, and metal-semiconductor field-effect transistor (such as the gallium
arsenide field-effect transistor), technologies, completely integrated circuit filters in
the tens to hundreds of megahertz range have become possible. Switched-current
techniques do not even need any capacitances to implement the filter. Again,
with the availability of small on-chip inductors and the goal for implementing
high-frequency monolithic filters, the notion of eliminating inductors is being
discarded nowadays. Thus, while the basic principles of design of analog filters
have not changed, the platform on which these are built as actual hardware has
undergone progressive changes toward IC technology.

In this chapter, we introduce the basic principles of implementation of IC analog
filters. The thrust is now toward elimination of even the resistors, which are
essential elements in active-RC filters, the reason being the requirement of a large
substrate area for a large-valued resistor. For the same reason, large capacitors
are also to be avoided. In most cases, only transistors and small-valued capacitors
are to be employed. The active devices, such as OA, OTA, and CC, are of course
built from transistors, so that the entire filter can be implemented through a given
IC technology. If large-valued R or C becomes essential, special electronic circuit
techniques that are amenable to the IC environment are to be used. One such
technique is to multiply the value of an element by utilizing the Miller effect. While
saving active devices (OAs) was the motto during the era of hybrid-RC-active filters,
OA and other active devices are used liberally to constrain the implementation to
the platform of IC technology. In an IC technology, transistors and hence active
devices such as OA, OTA, and CC are readily available and quite often lead to

Modern Analog Filter Analysis and Design: A Practical Approach. Rabin Raut and M. N. S. Swamy
Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
ISBN: 978-3-527-40766-8
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a saving of substrate area. The price paid is, however, somewhat increased DC
power consumption. With the invention of various low-voltage and low-power
techniques, together with the advent of current-mode techniques, the overall power
consumption could be kept quite low despite the deployment of an increased
number of transistors and active devices. In what follows, we briefly mention the
active devices that are available in an IC technology. We discuss considerations
related to the implementation of resistance and capacitance in a typical CMOS IC
technology. Examples of analog filter implemented in a known IC technology are
provided at the end.

9.1
Active Devices for Analog IC Filters

In Chapter 5, we have introduced the principal active devices that may be used to
implement analog filters. These are OAs, OTAs, and CCs. For IC filter implemen-
tation, the same devices can be used. The emphasis is on devices with a large linear
range of operation, wide bandwidth, and low-power consumption. Implementation
of such special devices is the subject of analog IC design and shall not be pursued
here. The interested reader may refer to several excellent books that are available
on this subject (Geiger, Allen, and Strader, 1990; Gray and Meyer, 1993; Laker
and Sansen, 1994; Johns and Martin, 1997; Baker, Li, and Boyce, 1998). For a
preliminary design of the filter, the active device is assumed to have ideal charac-
teristics. For high-performance design, the nonidealities of the active device are to
be considered, and most often, the analysis and redesign are carried out with the
aid of numerical and network simulation programs, such as MATLAB and SPICE.

9.2
Passive Devices for IC Filters

The passive devices are capacitors, resistors, and switches. The principal consid-
erations are linearity of operation, good absolute accuracy in the design values,
low sensitivity to process variations, and small substrate area requirement. In
IC environment, it is difficult to hold the absolute values of R and C with good
accuracy, but tracking the ratio of the values can be far more accurate. Hence, it is
preferable to realize network functions as a ratio of component values, to ensure
better accuracy.

9.2.1
Resistance

In Chapter 5, we have already discussed the various possible forms of semiconductor
resistances that can be used in an IC environment. For filter design, the resistances
are mostly realized from transistors, since they occupy small area and the value
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Figure 9.1 An MOSFET resistance (MOS-R) with parasitic
capacitances. (a) Symbol and (b) equivalent circuit.

of the resistance can be controlled. In CMOS technology, the MOSFET operating
in the linear region functions as an excellent resistance with values between few
hundred ohms to few kilo ohms. The resistance value is nonlinearly dependent
upon the ohmic drop across the transistor, and special techniques have been
proposed to reduce the nonlinearity. The nonlinearity can be appreciated from the
I–V equation of the MOSFET, shown in Figure 9.1a, with the equivalent circuit in
Figure 9.1b (Laker and Sansen, 1994). The capacitances shown in broken lines are
parasitic capacitances. The gate-control voltage VC can be used to tune the value
of the realized resistance. The I–V equation for an NMOS is given by (Laker and
Sansen, 1994).

iDS = β

[
(VC − VT )(vD − vS) − 1

2
{(vD)2 − (vS)2}

]
(9.1)

where
β = μCox(W/L)

μ = electron mobility in the channel,

L = length of the channel,

W = width of the channel,

Cox = gate capacitance per unit area, and

VT = threshold voltage of the MOSFET (i.e., the minimum voltage by which
VC is greater than vD and vS for the device to operate in the triode
region).

Typically VT is about 1 V or less and μCox is about 100 μA V−2 or more. For small
signal applications, vD − vs � VC − VT and

iDS = β(VC − VT )(νD − νS),

or
vD − vS

iDS
= RA = 1

β(Vc − VT )
= (L/W)

μCox(Vc − VT )
(9.2)
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Figure 9.2 Floating linearized MOSFET resistors with
(a) balanced input signals and (b) arbitrary input signals.

For linearity over a broader range of vDS, special arrangement is required. Two
such configurations (Tsividis, Banu, and Khoury, 1986; Ismail, Smith, and Beale,
1988) are shown in Figures 9.2a and 9.2b, along with the values of the resistances
realized.

It should be noted that the source ends of the transistors are returned to the
same signal potential. Further, in Figure 9.2a, the input signal is required to be
balanced differential. In Figure 9.2b, the realized resistance RA is a differential
resistance. Thus, these will be employed in the realization of filters, where such
special signaling conditions exist.

9.2.2
Switch

A transistor can be easily used as a switch by feeding a large positive (negative)
signal at the base relative to the emitter for an npn-BJT (for a pnp-BJT), or at the
gate relative to the source for an NMOS (for a PMOS). When the switching signal
is high, the transistor has a low resistance RON between the collector and emitter
terminals in the BJT, or between the drain and the source of the MOSFET. When
the switching signal is low, the transistor is cut off and the OFF resistance, ROFF,
becomes very high. For linear circuits and systems, such as a filter, it is desirable
that the switch operates linearly for a wide range of signal voltage across it. In this
respect, MOS devices are preferred in analog filters. Figures 9.3a–9.3c show the
schematic and the equivalent circuits for a typical MOSFET switch under OFF and
ON conditions. The parasitic capacitances, ever present and important in an IC
environment, are shown by broken lines. These produce undesirable effects like
nonlinear distortion and clock feedthrough to the signal paths and the DC bias
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Figure 9.3 MOSFET switch with parasitic capacitances.
(a) Symbol, (b) OFF state, and (c) ON state.

lines. The clock feedthrough to the signal path produces a small DC offset voltage.
The ON resistance is dependent upon the level of the clock signal, proportional to
the length L and inversely proportional to the width W of the MOSFET. In SC filter
applications, RON is to be chosen so that RONCTmx � T/2, where T is the clock
period and CTmx is the sum of the highest design capacitance and the associated
parasitic capacitance. This will ensure complete transfer of charge during a fraction
of the ON period of the clock signal.

9.3
Preferred Architecture for IC Filters

An important problem in the IC environment is the coupling of noise signal
from nearby circuit nodes and especially from the neighboring digital subsys-
tems in an analog–digital mixed-mode VLSI system. Such noise signals constitute
common-mode signals, which affect all nearby signal nodes. One way to reduce
(or eliminate) the effect of such signals would be to subtract such signals with-
out, however, affecting the strength of the primary information-bearing signal.
This is very conveniently achieved by using differential architecture in analog
system implementation. Apart from canceling the common-mode noise, differen-
tial signaling provides other advantages such as canceling even-order harmonics,
doubling the signal swing, and so on. The price paid, however, is doubling of the
number of components (i.e., doubling of the substrate area), doubling of the DC
power consumption, and doubling of the noise power contribution. The source
signal should be available in a balanced differential mode. For systems that are
very sensitive to power and/or cost, differential architecture may not be a preferred
approach. Conventional single-ended structures are to be used in such cases.

9.3.1
OA-Based Filters with Differential Structure

The method to derive a differential architecture from a given single-ended OA-based
structure consists of the following steps (Schaumann, Ghausi, and Laker, 1990):
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1) Form a mirror-image of the nominal single-ended structure about a plane
through the ground node.

2) Divide the gain of all the active devices by 2.
3) Change the sign of the gain, the signs at the terminals, and the terminal signals

in all the mirrored active elements.
4) Merge the resulting pair into a single balanced differential-in, differential-out

(DIDO) device. The common ground node remains concealed as a common-
mode plane.

To illustrate the procedure, we will consider the case of the inverting
OA-integrator assuming the OA to be ideal with infinite open-loop gain. The
various steps involved are shown in Figures 9.4a–9.4d. The input–output relation
in a DIDO voltage amplifier is depicted in Figure 9.4e.

It should be noticed that, in the differential structure, both the inverting and
noninverting integrator outputs are available. Hence, if in the original single-ended
structure a unity-gain inverting amplifier is used to get a noninverting integrator,
then in the differential structure, the unity-gain inverting amplifier is redundant
and is replaced by cross-coupling of the dual outputs. This is illustrated in
Figures 9.5a–9.5c considering a noninverting integrator circuit.

9.3.1.1 First-Order Filter Transfer Functions
In Chapter 5 (Table 5.1), we introduced several structures to realize first-order
transfer functions using an OA. Some of the structures can be readily converted to
the differential form, adopting the guidelines discussed above. This is illustrated
in Table 9.1, wherein linearized MOS resistors (see Figure 9.2a) are used.

9.3.1.2 Second-Order Filter Transfer Functions
The technique of implementing first-order differential structures can be easily
extended to differential structures around OAs, implementing second-order filter
functions. In the early era of active-RC filters, SAB filters were popular because of
the savings on the cost of the active device (viz., the OA). With the progress in the
IC technology, this consideration is discarded in favor of the flexibility, tunability,
and versatility afforded by multi-OA-architecture filters based on state-variable re-
alizations. However, it should be mentioned that the SAB structures, especially the
Sallen and Key unity-gain LP filters, still find use in antialiasing and reconstruction
filters for active SC filters.

Figure 9.6a depicts a typical Tow–Thomas second-order filter network using
three OAs, and RC elements (see Chapter 5). The outputs VBP and VLP are given
by

VBP

Vi
=

S
R1C1

s2 + s
R1C1

+ 1
R2R3C1C2

(9.3)

and

VLP

Vi
=

1
R2R4C1C2

s2 + s
R1C1

+ 1
R2R3C1C2

(9.4)



9.3 Preferred Architecture for IC Filters 305

Ground plane

A A/2

Vi

R

C

Vi

Vi

ViVo Vo

Vo

Vo

Vo

−Vo

−Vo

R

R

C

C

Ground plane

+

R

C

C

R

Vi

Vi −

Vi +

Vo
+

Vo
−

−Vi

−Vi

R

R

C

C

(a)

(b)

(c)

(e)

(d)

A/2

Vo
+ = (Vi

+ − Vi
−)2

A

Vo
− = − (Vi

+ − Vi
−)2

A

Vo
+ − Vo

− = A (Vi
+ − Vi

−)

−
+

+

−
+

+

A/2
+

+

+

+

−

A/2
−

+

−A/2
−

−
+

−

−

+

+
−

−
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and the terminal signals in the mirrored cir-
cuit, (d) merging the mirror images, and (e)
input–output equations of a differential-in,
differential-out (DIDO) amplifier of gain A/2.

A differential version of the same is given in Figure 9.6b. In the differential structure,
crossing of the wire technique is used to accomplish the function of sign inversion.
Thus, the OA used simply for sign inversion (viz., the inverting amplifier) is not
required, as mentioned previously. Figure 9.6c shows the corresponding MOS-R C
structure using the linearized MOS-R of Figure 9.2a.
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Similar structures can be developed for the various OA-based second-order RC
filters introduced in Chapter 5.

9.3.2
OTA-Based Filters with Differential Structures

A single-ended OTA-based structure can be easily converted to the differential form
by following a procedure similar to that used for OA-based structures. Since OTAs
are used in conjunction with capacitors to implement a filtering function (i.e.,
OTA-C filters or gm –C filters), it is necessary to know how to derive the differential
structure for a capacitor (grounded or floating) used in a single-ended OTA-C filter.
The procedure is as follows:

1) Form a mirror-image of the nominal single-ended structure about a plane
through the ground node.

2) Change the signs of the gains (i.e., gm’s), the signs at the terminals, and the
signs of the signals attached to all the mirrored OTAs.

3) Change each grounded capacitor C to 2C.
4) Leave all the floating capacitors unchanged.
5) Merge the resulting pair with inverting and noninverting gains into a single

balanced DIDO OTA.
6) Any two equal-valued grounded capacitors running off from a pair of nodes

may be merged into one floating capacitor of one-half the value of either of
the grounded capacitors, and connected between the same pair of nodes. The
trade-off is a reduction in the substrate area versus an increased influence of
the parasitic capacitances.

9.3.2.1 First-Order Filter Transfer Functions
Table 9.2 shows examples of differential structures corresponding to some of
the OTA-based first-order transfer functions previously introduced in Chapter 5
(Table 5.10).

For purposes of illustration, the various steps involved in converting the
single-ended OTA-based lossy integrator (Row C of Table 9.2) to the corresponding
differential structure are shown in Figures 9.7a–9.7d. It may be mentioned that
both Figures 9.7c and 9.7d are valid differential structures.

As explained in connection with SC filters (Chapter 6), an integrated capacitor
is invariably associated with parasitic capacitances to ground from both the top
and the bottom plates (Figure 6.8b, Chapter 6). In the structure of Figure 9.7c, the
parasitic capacitance from the bottom plate (shown with curved line in Figure 9.8a)
can be grounded, while in Figure 9.7d, it is not possible. If a floating capacitor,
such as in Figure 9.7d, must be used to save the substrate area, then the capacitor
C can be laid out as a parallel combination of two capacitors, each of value C/2,
with the bottom plates inverted relative to each other, as indicated in Figure 9.8b
(Schaumann and Van Valkenburg, 2001). This will preserve the symmetry and
balance of the differential configuration.
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Figure 9.7 Various steps involved in deriving
the differential structure for the lossy integrator
of Table 9.2. (a) Mirroring around the ground
plane, (b) changing the signs of the signals, ter-
minals, and of the gm’s in the mirrored OTAs,
(c) merging the mirrored parts, and (d) re-
placing the grounded capacitors by a floating
capacitance in the merged structure.

In IC implementation of OTA-C (or, gm –C) filters, parasitic capacitances as
discussed above are to be carefully considered while creating the design capacitor
layouts and the design capacitance values need to be compensated to account for
the extra capacitances arising out of the parasitic components.

9.3.2.2 Second-Order Filter Transfer Functions
We now present an example of converting a single-ended OTA-C filter that provides
both the LP and BP functions (Schaumann and Van Valkenburg, 2001). Figure 9.9a
presents the single-ended OTA-C filter and Figure 9.9b depicts the differential
version. The LP transfer function is given by

Vo

V1
= gm1gm3

s2C1C2 + sC2gm2 + gm3gm4
(9.5)
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Figure 9.9 (a) Single-ended second-order filter with OTAs
and (b) the corresponding differential version.

and the BP function by

V2

V1
= −sC2gm1

s2C1C2 + sC2gm2 + gm3gm4
(9.6)

To take note of the parasitic elements in the differential version, we must recognize
that each OTA has parasitic capacitances at its input and output, and a finite output
resistance. For simplicity, we assume that all the OTAs in Figure 9.9a have the
same values for these parameters, and designate them by Ci, Co, and ro. In this case,
the capacitor C1 will be in parallel with 3ro, 3Co (due to the OTAs with gm1, gm2, gm4),
and 2Ci (due to OTAs with gm2, gm3), while the capacitor C2 will be in parallel with
ro, Co, and Ci. The parasitic components will lead to the equivalent admittances

sC1 → s(C1 + 3Co + 2Ci) + 3go = sC1eff + 3go, sC2 → s(C2 + Co + Ci) + go

= sC2eff + go
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where go = 1/ro. As a result, the transfer function expression also changes. In
particular, the denominator expression becomes

s2C1eff C2eff + s[C2eff (gm2 + 3go) + C1eff go] + gm3gm4 + gm2go + 3g2
o .

The capacitance compensation technique, discussed under the case of the
first-order transfer function realization, can be adopted for the second-order
transfer function as well. Thus, the design capacitance C1 can be created (i.e.,
laid out by the IC fabrication tool) as C′

1 = C1 − 3Co − 2Ci. To eliminate the
effect of the parasitic resistance ro, negative resistance insertion technique
can be used (Szczepansky, Jakusz, and Schaumann, 1997; Patel and Raut,
2008).

9.4
Examples of Integrated Circuit Filters

9.4.1
A Low-Voltage, Very Wideband OTA-C Filter in CMOS Technology

We first present the design of a low-voltage, fully differential, very wideband OTA-C
filter using a 0.18-μm CMOS technology (Li and Raut, 2003). The filter is of order
6, with a CHEB response having 1-dB ripple through the passband of 2–400 MHz.

The task of design starts with choosing an OTA with a good performance in
terms of bandwidth, output resistance, dynamic range and the transconductance
value measured relative to DC power consumption, and semiconductor wafer area
required for implementation. To compare the overall performance of several OTAs,
the following metric is used:

Si|i=1,2,3,.. = gmi + BWi + DRi + Roi

PDC
+ gmi + BWi + DRi + Roi

A

where the numerator symbols gmi, BWi, DRi, and Roi represent the transcon-
ductance, bandwidth, dynamic range, and output resistance, respectively, and the
denominator symbols PDC and A represent the DC power and wafer area, respec-
tively. Obviously, the ith OTA with the highest value of Si will be the best candidate
to be employed.

According to the above criterion, the OTA shown in Figure 9.10 is used (Szczepan-
sky, Jakusz, and Schaumann, 1997) for the design of the filter. Multiple-loop
feedback topology discussed in Section 7.4.1 is used for the implementation. The
overall system is shown in Figure 9.11. This exploits the differential configuration
which is preferred for IC filter implementation. It should be observed that the struc-
ture of Figure 9.11 is nothing but the differential version of the FLF single-ended
structure of Figure 7.26, with n = 3 and T1(s) = T2(s) = T3(s) = T(s). The amplifier
in Figure 9.11 performs the summation of the signals and corresponds to the
summer in Figure 7.26. As a consequence, the transfer function of the structure of
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Figure 9.11 is given by

H(s) = Vout

Vin
= − K(T(s))3

1 + F1T(s) + F2(T(s))2 + F3(T(s))3
(9.7)

where K = RFo
Rin

and Fi = RFo
RFi

, i = 1, 2, 3.

The following procedure is now followed for the design of the required BP filter.
From the specifications for the BP filter to be designed, the filter band-edges are

at 2 and 400 MHz; hence, we can determine the system Q to be

Q = ω0

BW
=
√

2(400)

400 − 2
= 0.071 (9.8)

For a sixth-order CHEB BP filter, the corresponding normalized CHEB LP transfer
function is (see Appendix A)

HN(s) = 0.491

s3 + 0.988s2 + 1.238s + 0.491
(9.9)

As was done in Section 7.4.1 earlier, we first assume the transfer function T(s)
of each of the blocks in Figure 9.10 to be that of a lossless integrator, that is,
T(s) = 1

s+α
. Then from Eq. (9.7), we have

H(s) = K

(s + α)3 + F1(s + α)2 + F2(s + α) + F3
(9.10)

Following the procedure in Section 7.4.1, we now compare Eq. (9.10) with Eq. (9.9)
to obtain the following relations:

K = 0.491

F1 = 0.988 − 3α

F2 = 1.238 − 2F1α − 3α2 (9.11)

and

F3 = 0.491 − F2α − F1α
2 − α3

It is clear from Eq. (9.11) that α is arbitrary. Depending on the value of α, we
can get the values of F1, F2, andF3. For example, if α = 0.45 then F1 = −0.362,
F2 = 0.9563, and F3 = 0.0429. For α = 0.25, the corresponding values are 0.238,
0.9315 and 0.2276. The negative value for F1 implies that crossing the wire technique
is to be employed in the differential structure to achieve a reversal of the associated
gain value. It should be pointed out that if α is chosen as 0.988/3, then F1 = 0,
that is, there is no feedback path F1 corresponding to the case considered in
Section 7.4.3. The lossy integrator T(s) = 1

s+α
can be implemented by a differential

OTA-structure of the type shown in Table 9.2. Then, Figure 9.11 would realize the
LP filter given by Eq. (9.9).

Now, we introduce the LP to BP transformation

s → Q
s2 + 1

s
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Then,

(s + α) → (Q s2 + 1

s
+ α
) = Q

s

(
s2 + α

Q
s + 1
)

(9.12)

Hence, each of the lossy integrators in the square boxes in Figure 9.11 is replaced
by the normalized second-order transfer function

TN(s) = s/Q

s2 + (α/Q)s + 1
= s/(Qpα)

s2 + (1/Qp
)

s + 1
=

(
H0/Qp

)
s

s2 + (1/Qp)s + 1
(9.13)

where Qp = Q
α

is the pole Q and H0 = 1
α

is the gain at the center frequency of each
of the second-order BP filters.

Now for the desired BP filter, Q has already been found to be 0.071. Choos-
ing α to be 0.45, we have already calculated F1, F2, and F3 to be −0.362, 0.9563,
and 0.0429. Also, each of the individual second-order BP filters has a value of
Qp = Q

α
= 0.158, and the value of the gain at the center frequency is given by

H0 = 1
α

= 2.22. We now apply frequency scaling to the normalized BP trans-
fer function TN(s) by letting s → s

ωp
, where ωp = 2π

√
800 = 177.7 × 106 rad s−1.

Thus, the denormalized transfer of each of the second-order BP filters is
given by

T(s) =
H0(

ωp
Qp

)s

s2 + (
ωp
Qp

)s + ω2
p

(9.14)

where H0 = 2.222, Qp = 0.158, and ωp = 177.7 × 106 rad s−1. We may realize each
of these biquad BP filters by the OTA-based structure of Figure 9.9b. This is redrawn
here for convenience as Figure 9.12. The BP transfer function T(s) of the structure
of Figure 9.12 is given by

T(s) = V2

V1
= sC2gm1

s2C1C2 + sC2gm2 + gm3gm4
(9.15)

The center frequency, the pole Q, and the gain at the center frequency are
given by

ωp =
√

gm3gm4
C1C2

, Qp = 1
gm2

√
gm3gm4C1

C2
, H0 = gm1

gm2
(9.16)

For implementing the system in an IC technological process, one may choose C1

and C2 in the range 1–10 pF. Choosing C1 = C2 = 2 pF and setting gm3 = gm4,
one can determine the values of gm1, gm2, gm3, and gm4 from Eq. (9.16) to be
gm3 = gm4 = 355.4 μ�, gm2 = 2249 μ� and gm1 = 4997 μ�.
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Table 9.3 Attenuation characteristics of the BP filter considered.

Frequency fo to fo ± 100 kHz fo ± 800 kHz fo ± 1.6 MHz fo ± 3 MHz fo ± 6 MHz

Attenuation (dB) ≤0.5 ≥5 ≥10 ≥15 ≥30

In order to implement the complete filter using OTA-based biquads, cer-
tain special arrangements are necessary. Since an OTA ideally behaves like a
VCCS, and since H(s) represents a VTF, each OTA-based biquad (as shown in
Figure 9.12) has to be followed by a voltage buffer circuit to present a low out-
put impedance to the following biquad section. For the differential configuration
of Figure 9.11, each T(s) consists of the biquad in Figure 9.12 with a pair of
buffer circuits, one at each of the differential outputs. Similarly, the summing
block in Figure 9.11 consists of a differential OTA appended with voltage buffer
circuits.

The sixth-order filter has been implemented using the above considerations in a
0.18-μm CMOS technology, and for more details the reader is referred to (Li and
Raut, 2003).

9.4.2
A Current-Mode Filter for Mobile Communication Application

We now present the case of a high-frequency, high-Q BP filter implemented
using a BiCMOS technological process (Fabre et al., 1998). The filter can be used
as an intermediate frequency filter in GSM cellular telephones. The attenuation
characteristics for the BP for mobile communication application are shown in
Table 9.3, where fo is the center frequency of the BP filter. For GSM application,
we assume fo to be 85 MHz.

9.4.2.1 Filter Synthesis

To design the BP filter for the specifications of Table 9.3, we may consider the
corresponding normalized LP filter for which ωc = 1, ωs = 6000

100 = 60, Ap = 0.5 dB

and Aa = 30 dB. If a MFM approximation (see Chapter 3) is used, the order of the
normalized LP filter becomes two. For the pass-band loss of 0.5 dB (i.e., ε = 0.3493,
the MFM approximation, following the procedure used in Example 3.6 (Chapter 3),
Appendix, and the LP to BP transformation, leads to the frequency denormalized
BP transfer function given by

H(S) = 0.45209 × 1013

s4 + 30069s3 + 0.57047 × 1018s2 + 0.85768 × 1024s + 0.81357 × 1035
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Figure 9.13 Theoretical magnitude response of H(s).

If the above function is realized as a cascade of two BP filter functions, the transfer
function can be written as (using MAPLE program)

H(s) = T1(s)T2(s)

= 21262s

s2 + 15056s + 0.28604 × 1018

21262s

s2 + 15013s + 0.2844 × 1018
(9.17)

The above expressions represent two BP filters in cascade with

ωo1 = 0.53483(109), ωo2 = 0.53331(109), Q1 = Q2 = 355.22,

Ho1 = 1.4122, Ho2 = 1.4162 (9.18)

where, Ho1, Ho2 are the gains at the BP center frequencies. A plot of the magnitude
response of the transfer function is shown in Figure 9.13. It may be observed
that the attenuation in the stop band exceeds the given specification. This is very
desirable in practice.

An implementation of the filter using a BiCMOS technological process has been
reported in Fabre et al. (1998). Some details about the approach followed therein
are given below.

9.4.2.2 Basic Building Block
The basic building block used for the implementation is a controlled CCII+
(CCCII+), as shown in the transistor level schematic of Figure 9.14a. The
BJT devices in the BiCMOS process are used in the signal path to preserve
high-frequency operation, while several MOS transistors are used to provide
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Figure 9.14 (a) Schematic of the CCCII+ in BiCMOS tech-
nology, (b) its symbol, and (c) equivalent circuit for AC op-
eration. (adapted from Fabre et al., © IEEE, 1998.)
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Figure 9.15 Block diagram for grounded inductance imple-
mentation. (adapted from Fabre et al., © IEEE, 1998.)
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Figure 9.16 Generation of a nega-
tive resistance.

the control bias current Io. The bias current can be changed to adjust the
characteristics of the CCCII+. The CCCII+ is shown in its symbolic form
in Figure 9.14b and the AC equivalent model is depicted in Figure 9.14c.
The small signal resistance looking into the X terminal is approximately
(from basic BJT principle) VT/2Io = Rx, and the signal voltage difference
vxy = ixRx.

9.4.2.3 Inductance and Negative Resistance

The CCCII+ can be configured to realize a grounded inductance, or a grounded
resistance (positive or negative). These concepts have already been presented
in Chapter 8. The associated configurations using the CCCII+ are shown in
Figures 9.15 and 9.16. The equivalent circuit model for the realized inductance,
together with the parasitic resistances, is shown in Figure 9.17. The negative
resistance shown in Figure 9.16 can be used to compensate for the parasitic
resistances in Figure 9.17.

9.4.2.4 Second-Order Elementary Band-Pass Filter Cell

Figure 9.18 shows the BP elementary cell realized with the CCCII+ building blocks.
The CCCII+ blocks numbered as (1) and (2) realize the imperfect inductor with
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Figure 9.17 CCCII+ based inductance with parasitic
resistances due to the two CCCII+ devices.
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Figure 9.18 Second-order BP filter cell. (adapted from Fabre et al., 1998.)

the capacitor C1. The capacitor C2 is the resonating capacitor for the LC BP circuit.
The conveyor numbered (3) produces a negative resistance to compensate for the
parasitic resistance in the imperfect inductor. The resistance R4 and the conveyor
(4) form the output-current-sensing subsystem with an overall gain (Iout/Iin) close
to unity at the center frequency fo. The transfer function of the filter circuit is given
by

Iout(s)

Iin(s)
=

(
Rx1Rx2C1
R4+Rx4

)
s

1 +
(

Rx1Rx2C1
Req

)
s + (Rx1Rx2C1C2)s2

(9.19)

where

1
Req

=
[

1
Rx1

+ 1
Rx2

+ 1
R4 + Rx4

− 1
Rx3

]
(9.20)
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The filter parameters are then designable according to

ωo = 1√
Rx1Rx2C1C2

,

Q = Req√
Rx1Rx2

√
C2

C1
,

and

Ho = Req

Rx4 + R4
(9.21)

It can be seen that the above filter affords ωo-tuning by varying Rx1or Rx2 (which are
controllable by the associated bias currents Io1 and Io2), and Q-tuning by adjusting
Req (by the bias current Io3 or by varying R4). The parameters of the BP filter cells
(namely, C1, C2, Rx1, Rx2, . . . ) are to be designed to match the coefficients of the
transfer functions, T1(s) and T2(s), given by Eq. (9.17). For further details one may
refer to the work of Fabre et al. (1998).

Practice Problems

9.1 For the Bainter band-reject biquad of Problem 5.13 of Chapter 5, find the
corresponding differential structure and evaluate its VTF Vo

Vs
.

9.2 For the OTA-biquad shown in Figure P5.36, find the corresponding differ-
ential structure and determine the VTFs Vo1

Vi
, Vo2

Vi
, and Vo3

Vi
.

9.3 Consider Problems 5.20–5.23, as well as the specifications of the filters in
Problem 5.33. Provide an integrated circuit design solution for each case.
You may choose any of the following strategies: (a) MOS-R C solution
with CMOS OA, (b) OTA-C solution with CMOS OTA, or (c) SC solution
in CMOS technology. Assume that the capacitor values are to be less
than 20 pF in IC technology. For a CMOS technological process, you may
assume that μCox = 100 μA V−2, |VTH| = 0.8 V, VDD = | − VSS| = 2.5 V.
The feature size (i.e., minimum value of W or L of the MOSFET) of the
process can be taken as 0.5 μm. Verify your designs using appropriate CAD
simulation programs.
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Appendix A

A.1
Denominator Polynomial D(s) for the Butterworth Filter Function of Order n, with
Passband from 0 to 1 rad s−1

Table A.1 gives the coefficients ai of the denominator polynomial D(s) of a Butter-

worth filter, where D(s) = sn + a1sn−1 + a2sn−2 + · · · + an−1s + an, while Table A.2

gives the polynomial D(s) in factored form for n up to 6. For more extensive

tables up to order 10, please refer to Weinberg (1962), Schaumann, Ghausi, and

Laker (1990), Schaumann and Van Valkenburg (2001), Su (1996), and Huelsman

(1993).

Table A.1 Coefficients of the polynomial D(s) for a Butterworth filter function.

n a1 a2 a3 a4 a5 a6

2 1.4142 1
3 2.0000 2.0000 1
4 2.6131 3.4142 2.6131 1
5 3.2361 5.2361 5.2361 3.2361 1
6 3.8637 7.4641 9.1416 7.4641 3.8637 1

Table A.2 Denominator D(s) in factored form for a Butterworth filter function.

n D(s)

1 s + 1
2 s2 + √

2s + 1
3 (s + 1)(s2 + s + 1)
4 (s2 + 0.765s + 1)(s2 + 1.848s + 1)
5 (s + 1)[(s + 0.3090)2 + 0.95112][(s + 0.8090)2 + 0.58782]
6 [(s + 0.2588)2 + 0.96592][(s + 0.7071)2 + 0.70712][(s + 0.9659)2 + 0.25882]
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Table A.3 Coefficients of the polynomial D(s) for a Chebyshev filter function.

Passband ripple Ap N a1 a2 a3 a4 a5 a6

0.5 dBε = 0.3493 1 2.863
2 1.425 1.516
3 1.253 1.535 0.716
4 1.197 1.717 1.025 0.379
5 1.1725 1.9374 1.3096 0.7525 0.1789
6 1.1592 2.1718 1.5898 1.1719 0.4324 0.0948

1.0 dBε = 0.5089 1 1.965
2 1.098 1.103
3 0.988 1.238 0.491
4 0.953 1.454 0.743 0.276
5 0.9368 1.6888 0.9744 0.5805 0.1228
6 0.9282 1.9308 1.2021 0.9393 0.3071 0.0689

2.0 dBε = 0.7648 1 1.308
2 0.804 0.637
3 0.738 1.022 0.327
4 0.716 1.256 0.517 0.206
5 0.7065 1.4995 0.6935 0.4593 0.0817
6 0.7012 1.7459 0.8670 0.7715 0.2103 0.0514

A.2
Denominator Polynomial D(s) for the Chebyshev Filter Function of Order n, with
Passband from 0 to 1 rad s−1

Table A.3 gives the coefficients ai of the denominator polynomial D(s) of a Cheby-
shev filter, where D(s) = sn + a1sn−1 + a2sn−2 + · · · + an−1s + an, while Table A.4
gives the polynomial D(s) in factored form for n up to 6 and for three val-
ues of the passband ripple Ap. For more extensive tables up to order 10 and
for other values of Ap, refer to Weinberg (1962), Schaumann, Ghausi, and
Laker (1990), Schaumann and Van Valkenburg (2001), Su (1996), and Huelsman
(1993).

A.3
Denominator Polynomial D(s) for the Bessel Thomson Filter Function of Order n

Table A.5 gives the coefficients ai of the denominator polynomial D(s) of a
Bessel–Thomson filter, where D(s) = sn + a1sn−1 + a2sn−2 + · · · + an−1s + an,
while Table A.6 gives the polynomial D(s) in factored form for n up to
6. For more extensive tables up to order 10, refer to Weinberg (1962),
Schaumann, Ghausi, and Laker (1990), and Schaumann and Van Valkenburg
(2001).
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Table A.4 Denominator D(s) in factored form for a Chebyshev filter function.

Passband ripple Ap n D(s)

0.5 dBε = 0.3493 1 s + 2.863
2 s2 + 1.425s + 1.516
3 (s + 0.626)(s2 + 0.626s + 1.142)
4 (s2 + 0.351s + 1.064)(s2 + 0.845s + 0.356)
5 (s + 0.3623)[(s + 0.1120)2 + 1.01162][(s + 0.2931)2 + 0.62522]
6 [(s + 0.0777)2 + 1.00852][(s + 0.2121)2 + 0.73822][(s + 0.2898)2 + 0.27022]

1.0 dBε = 0.5089 1 s + 1.965
2 s2 + 1.098s + 1.103
3 (s + 0.494)(s2 + 0.490s + 0.994)
4 (s2 + 0.279s + 0.987)(s2 + 0.674s + 0.279)
5 (s + 0.2895)[(s + 0.0895)2 + 0.99012][(s + 0.2342)2 + 0.61192]
6 [(s + 0.0622)2 + 0.99342][(s + 0.1699)2 + 0.72722][(s + 0.2321)2 + 0.26622]

2.0 dBε = 0.7648 1 s + 1.308
2 s2 + 0.804s + 0.637
3 (s + 0.402)(s2 + 0.369s + 0.886)
4 (s2 + 0.210s + 0.928)(s2 + 0.506s + 0.221)
5 (s + 0.2183)[(s + 0.0675)2 + 0.97352][(s + 0.1766)2 + 0.60162]
6 [(s + 0.0470)2 + 0.98172][(s + 0.1283)2 + 0.71872][(s + 0.1753)2 + 0.26302]

Table A.5 Coefficients of the polynomial D(s) for a
Bessel–Thomson filter with a normalized delay of 1 s at DC.

n a1 a2 a3 a4 a5 a6

1 1
2 3 3
3 6 15 15
4 10 45 105 105
5 15 105 420 945 945
6 21 210 1260 4725 10395 10395

Table A.6 Denominator D(s) in factored form for a
Bessel–Thomson filter with a normalized delay of 1 s at DC.

n D(s)

1 s + 1
2 s2 + 3s + 3
3 (s + 2.322)(s2 + 3.678s + 6.460)
4 (s2 + 5.792s + 9.140)(s2 + 4.208s + 11.488)
5 (s + 3.6467)[(s + 3.3520)2 + 1.74272][(s + 2.3247)2 + 3.57102]
6 [(s + 4.2484)2 + 0.86752][(s + 3.7356)2 + 2.62632][(s + 2.5159)2 + 4.49272]
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Table A.7 Parameters of a second-order elliptic function H(s) = H s2+ao
s2+b1s+bo

.

α1

ωs 0.7 0.8 0.9 0.99 Coefficients

2.0 0.597 566 0.761 953 1.09 079 1.70 530 b1

0.748 566 0.889 100 1.21 614 3.39 116 bo

7.46 410 7.46 393 7.46 410 7.46 437 ao

0.070 208 0.095 295 0.146 639 0.449 766 H = α2

1.6 0.568 640 0.716 947 0.942 467 1.21 673 b1

0.780 727 0.923 621 1.24 863 3.01 139 bo

4.55 831 4.55 842 4.55 832 4.55 836 ao

0.119 892 0.162 086 0.246 530 0.654 022 H = α2

1.3 0.507 505 0.622 959 0.766 598 0.658 076 b1

0.835 122 0.975 687 1.27 415 2.34 888 bo

2.76 980 2.76 981 2.76 982 2.76 972 ao

0.211 054 0.281 803 0.414 008 0.839 569 H = α2

1.1 0.372 652 0.428 498 0.457 760 0.244 714 b1

0.916 613 1.03 128 1.23 375 1.63 605 bo

1.71 409 1.71 409 1.71 408 1.71 394 ao

0.374 317 0.481 308 0.647 782 0.945 011 H = α2

A.4
Transfer Functions for Several Second-, Third-, and Fourth-Order Elliptic Filters

The transfer function coefficients for several second-, third-, and fourth-order
elliptic filters are given in Tables A.7–A.9, respectively, for a range of passband
edge and stopband edge attenuations (α1 = 10−Ap/20, α2 = 10−As/20), and stopband
to passband edge ratio ωs. For more extensive tabulation, one may refer to
Schaumann, Ghausi, and Laker (1990) and Huelsman (1993).
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Table A.8 Parameters of a third-order elliptic function H(s) = H s2+a1
(s+p)(s2+b11s+b10)

.

α1

ωs 0.7 0.8 0.9 0.99 Coefficients

1.6 0.334131 0.429765 0.595349 1.29096 p
0.243387 0.306340 0.404241 0.641363 b11

0.875469 0.925798 1.03480 1.62210 b10

3.22360 3.22359 3.22359 3.22359 a1

0.090743 0.123426 0.191108 0.649595 H
0.021308 0.028976 0.044840 0.150824 α2

1.4 0.353124 0.455659 0.635840 1.44703 p
0.222806 0.278406 0.361387 0.514156 b11

0.890734 0.938912 1.04183 1.55605 b10

2.41363 2.41362 2.41363 2.41363 a1

0.130318 0.177253 0.274453 0.932875 H
0.036758 0.049969 0.077236 0.254634 α2

1.2 0.395725 0.514269 0.729373 1.84049 p
0.181717 0.223182 0.278588 0.308389 b11

0.919159 0.962023 1.05044 1.41484 b10

1.69962 1.69962 1.69962 1.69962 a1

0.214008 0.291087 0.450785 1.53210 H
0.077873 0.105649 0.162349 0.488077 α2

1.1 0.448812 0.588202 0.850207 2.38157 p
0.139154 0.167009 0.197936 0.164793 b11

0.945461 0.981243 1.05130 1.27550 b10

1.37033 1.37031 1.37031 1.37031 a1

0.309657 0.421193 0.652271 2.21688 H
0.136715 0.184503 0.279160 0.702853 α2
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Table A.9 Parameters of a fourth-order elliptic function H(s) = H (s2+a1)(s2+a2)

(s2+b11s+b10)(s2+b21s+b20)
.

α1

ωs 0.8 0.9 0.95 0.99 Coefficients

1.3 0.574 306 0.779 239 0.983 063 1.48 067 b11

0.326 332 0.428 090 0.563 827 1.07 349 b10

1.87 204 1.87 203 1.87 203 1.87 203 a1

0.139 842 0.182 294 0.218 409 0.277 321 b21

0.962 302 1.00 947 1.06 699 1.23 958 b20

8.09 589 8.09 589 8.09 613 8.09 589 a2

0.016 576 0.025 661 0.037 702 0.086 921 H = α2

1.2 0.589 557 0.799 091 1.00 707 1.49 416 b11

0.363 967 0.479 903 0.637 238 1.23 106 b10

1.57 240 1.57 240 1.57 240 1.57 242 a1

0.120 623 0.155 159 0.182 889 0.218 090 b21

0.969 765 1.01 180 1.06 243 1.20 610 b20

6.22 423 6.22 422 6.22 421 6.22 434 a2

0.028 851 0.044 651 0.065 716 0.150 187 H = α2

1.1 0.611 017 0.822 969 1.02 740 1.43 445 b11

0.442 216 0.587 138 0.785 841 1.52 732 b10

1.29 041 1.29 041 1.29 090 1.29 092 a1

0.088 880 0.111 155 0.126 428 0.132 384 b21

0.981 121 1.01 394 1.05 200 1.14 901 b20

4.34 613 4.34 581 4.34 973 4.34 993 a2

0.061 824 0.095 443 0.139 862 0.309 376 H = α2

1.05 0.621 079 0.825 168 1.00 616 1.24 184 b11

0.532 447 0.709 059 0.949 099 1.76 639 b10

1.15 363 1.15 363 1.15 362 1.15 362 a1

0.062 131 0.075 144 0.081 657 0.073 511 b21

0.989 514 1.01 374 1.04 043 1.09 961 b20

3.31 250 3.31 240 3.31 238 3.31 266 a2

0.110 293 0.169 268 0.245 492 0.503 140 H = α2
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B.1
Bessel Thomson Filter Magnitude Error Calculations (MATLAB Program)

%BT filter magnitude error calculations h = ck;

nj = 1; end;

for n = 3:15; % if loop ends

nn = n-2; % BT polynomial is calculated

% as an iterative sum

for m = 1:45 bsum = blast +ck *x ^k1;

% variable of the BT polynomial is set blast = bsum;

y = 0.1 *m; end;

x = 0 +y *i; % k-loop ends

% calculations pertaining to ck begins bsum = blast;

n2 = 2 *n; % the BT transfer func value for a

% given ‘n’ and ‘x’ calculated

n1 = n +1; hs = h /bsum;

blast = 0; hsm = abs(hs);

for k = 1:n1 hsdb = -20 *log10(hsm);

k1 = k-1;% k1 goes from 0 to n ax(m) = y;

k2 = n2-k1;% means 2n-k1, k1 from 0 to n ay(nn,m) = hsdb;

k3 = n-k1;% means n-k1, k1 from 0 to n end;

% (2n-k1) ! loop begins %m-loop ends

fac1 = 1; end;

for l1 = 1:k2 % n-loop ends

facx = fac1 *l1; kk = linspace(1,13,13)

fac1 = facx; plot(ax,ay(kk,:),’w’)

end;% (2n-k1) ! loop ends axis([0 4.5 0 6])

faca = fac1; grid

%(n-k1) ! loop begins xlabel(’normalized frequency -->’)

fac2 = 1; ylabel(’magnitude error in dB’)

for l2 = 1:k3 text(1.8,4.5,’n = 3’)

(continued)
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facy = fac2 *l2; text(2.4,4.5,’4’)

fac2 = facy; text(2.6,4,’5’)

end;%(n-k1) ! loop ends text(2.9,3.8,’6’)

facb = fac2; text(3.1,3.7,’7’)

%k ! loop begins text(3.3,3.5,’8’)

fac3 = 1; text(3.5,3.4,’9’)

for l3 = 1:k1 text(3.6,3.3,’10’)

facz = fac3 *l3; text(3.7,3.1,’11’)

fac3 = facz; text(4.0,3.4,’12’)

end;%(k1 !) loop ends text(4.1,3.2,’13’)

facc = fac3; text(3.9,2.7,’14’)

%ck is computed text(4.1,2.6,’15’)

ck = faca /(facb *facc *2 ^k3); end

If k = = nj

%(contd. On next column)

B.2
Bessel Thomson Filter Delay Error Calculations (MATLAB Program)

%BT filter delay calculations kev = kev-1;

% variable of the BT polynomial is set else

for nn = 1:13; bod = bodl-ck *(i) ^k *x ^k1;

n = nn +2; bodl = real(bod);

% m-loop begins odp = odpl-k1 *ck *(i) ^k *x ^(k1-1);

for m = 1:100 odpl = real(odp);

x = 0.1 *m; kev = kev +1;

% calculations pertaining to Ck begins end

n2 = 2 *n; % if-else loop ends

n1 = n +1; end

bevl = 0; bodl = 0; % k-loop ends

evpl = 0;odpl = 0; x1 = bevl;

Kev = 1; x2 = evpl;

% k-loop begins y1 = bodl;

for k = 1:n1 y2 = odpl;

k1 = k-1;% k1 goes from 0 to n anum = x1 *y2-y1 *x2;

k2 = n2-k1;% means 2n-k1, k1 from 0 to n den = x1 ^2 +y1 ^2;

k3 = n-k1;% means n-k1, k1 from 0 to n der = anum /den;

% (2n-k1) ! loop begins er = (1-der) /der;

fac1 = 1; ax(m) = x;

for l1 = 1:k2 ay(nn,m) = er *100;

facx = fac1 *l1; End

fac1 = facx; % m-loop ends

end;% (2n-k1) ! loop ends res1 = ax;

faca = fac1; res2 = ay;

%(n-k1) ! loop begins end

(continued)
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fac2 = 1; % n-loop ends

for l2 = 1:k3 ax = res1;

facy = fac2 *l2; ay = res2;

fac2 = facy; plot(ax,ay,’w-’)

end;%(n-k1) ! loop ends axis([0 10 0 5])

facb = fac2; grid

%k ! loop begins xlabel(’normalized fequency -->’)

fac3 = 1; ylabel(’% delay error’)

for l3 = 1:k1 text(0.8,4.3,’n = 3’)

facz = fac3 *l3; text(2,4.3,’4’)

fac3 = facz; text(2.8,4.3,’5’)

end;%(k1 !) loop ends text(3.8,4.3,’6’)

facc = fac3; text(4.8,4.3,’7’)

%ck is computed text(5.7,4.3,’8’)

ck = faca /(facb *facc *2 ^k3); text(6.6,4.3,’9’)

% even part of BT polynomial is text(7.3,4.1,’10’)

calculated as an iterative sum

If kev = = 1 text(8.1,3.9,’11’)

bev = bevl +ck *(i) ^k1 *x ^k1; text(9,3.7,’12’)

bevl = real(bev); text(9.5,1.7,’13’)

evp = evpl +k1 *ck *(i) ^k1 *x ^(k1-1); text(9.5,.4,’14’)

evpl = real(evp); text(9.5,.1,’15’)

%(contd. On next column) end
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Appendix C

C.1
Element Values for All-Pole Single-Resistance-Terminated Low-Pass Lossless
Ladder Filters

In this section, we present the element values for all-pole LP single-resistance-
terminated lossless ladder filters with Butterworth, Chebyshev, and Bessel– Thom-
son approximations. Figures C.1a and C.1b correspond to voltage-driven structures
for even- and odd-order filters, respectively, while Figures C.1c and C.1d to
current-driven structures for even- and odd-order filters, respectively. The element
values for several orders are given in Table C.1 for the Butterworth and Chebyshev
filters, and Table C.2 for the Bessel–Thomson filter. For other values of n and
ripple factors, one may refer to Weinberg (1962) and Huelsman (1993).

C.2
Element Values for All-Pole Double-Resistance-Terminated Low-Pass Lossless
Ladder Filters

In this section, we present the element values for all-pole LP double-resistance-
terminated lossless ladder filters with Butterworth, Chebyshev, and Bessel–
Thomson approximations. Figures C.2a and C.2b correspond to structures for
even- and odd-order filters, respectively, while c and d are alternate structures for
even- and odd-order filters, respectively. The element values for several orders are
given in Table C.3 for the Butterworth and Chebyshev filters, and Table C.4 for
the Bessel–Thomson filter. For other values of n and ripple factors in the case of
Chebyshev filters, one may refer to Weinberg (1962) and Huelsman (1993).
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Figure C.1 Low-pass single-resistance-terminated lossless
all-pole ladder filters; (a) voltage-driven, even-order, (b)
voltage-driven, odd order, (c) current-driven even-order, (d)
current-driven odd order.

Table C.1 Element values for singly terminated lossless
Butterworth and Chebyshev filters (bandwidth normalized to
1 rad s−1).

Order n C1 L2 C3 L4 C5 L6

Butterworth filter
2 0.7071 1.4142
3 0.5000 1.3333 1.5000
4 0.3827 1.0824 1.5772 1.5307
5 0.3090 0.8944 1.3820 1.6944 1.5451
6 0.2588 0.7579 1.2016 1.5529 1.7593 1.5529

Chebyshev filter (0.5 dB ripple)
2 0.7014 0.9403
3 0.7981 1.3001 1.3465
4 0.8352 1.3916 1.7279 1.3138
5 0.8529 1.4291 1.8142 1.6426 1.5388
6 0.8627 1.4483 1.8494 1.7101 1.9018 1.4042

Chebyshev filter (1.0 dB ripple)
2 0.9110 0.9957
3 1.0118 1.3332 1.5088
4 1.0495 1.4126 1.9093 1.2817
5 1.0674 1.4441 1.9938 1.5908 1.6652
6 1.0773 1.4601 2.0270 1.6507 2.0491 1.3457

n L′
1 C′

2 L′
3 C′

4 L′
5 C′

6
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Table C.2 Element values for singly terminated
Bessel–Thomson filter with a delay of 1 s at DC.

Order n C1 L2 C3 L4 C5 L6

2 0.3333 1.0000
3 0.1667 0.4800 0.8333
4 0.1000 0.2899 0.4627 0.7101
5 0.0667 0.1948 0.3103 0.4215 0.6231
6 0.0476 0.1400 0.2246 0.3005 0.3821 0.5595

n L′
1 C′

2 L′
3 C′

4 L′
5 C′

6

Ln′ L3′ L1′

Cn′ −1

Cn′ Cn C3 C1

L2Ln′ −1
Ln−1L3′ L1′

C2′

C2′
1

(a) (b)

(d)

Ln

1R

1

(c)

1/R R

Cn−1 C3 C1

L2
1/R

1

Figure C.2 Low-pass double-resistance-terminated lossless all-pole ladder filters.

Table C.3 Element values for doubly terminated lossless
Butterworth and Chebyshev filters (bandwidth normalized to
1 rad s−1).

n C1 L2 C3 L4 C5 L6 C7

Butterworth filter
2 1.4142 1.4142
3 1.0000 2.0000 1.0000
4 0.7654 1.8478 1.8478 0.7654
5 0.6180 1.6180 2.0000 1.6180 0.6180
6 0.5176 1.4142 1.9319 1.9319 1.4142 0.5176

Chebyshev filter (0.5 dB ripple)
3 1.5963 1.0967 1.5963
5 1.7058 1.2296 2.5408 1.2296 1.7058
7 1.7373 1.2582 2.6383 1.3443 2.6383 1.2582 1.7373

Chebyshev filter (1.0 dB ripple)
3 2.0236 0.9941 2.0236
5 2.1349 1.0911 3.0009 1.0911 2.1349
7 2.1666 1.1115 3.0936 1.1735 3.0936 1.1115 2.1666

n L′
1 C′

2 L′
3 C′

4 L′
5 C′

6 L′
7
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Table C.4 Element values for singly terminated
Bessel–Thomson filter with a delay of 1 s at DC.

Order n C1 L2 C3 L4 C5 L6

2 1.5774 0.4226
3 1.2550 0.5528 0.1922
4 1.0598 0.5116 0.3181 0.1104
5 0.9303 0.4577 0.3312 0.2090 0.0718
6 0.8377 0.4116 0.3158 0.2364 0.1480 0.0505

n L′
1 C′

2 L′
3 C′

4 L′
5 C′

6

L1

L2′

C2′
C3′

C4′
C1′

L4′

Ln′

Cn′ −1

Ln′−1

Cn′ −1

Cn′

L3 Ln−1

L n−1

Cn−1

Cn

C2
C4

L2 L4

1

1/RL

RL

1/RL

For n Even For n Odd

For n Even For n Odd

Ln

1

RL

(a)

(b)

Figure C.3 Elliptic LP double-resistance-terminated lossless filter structures.

C.3
Element Values for Elliptic Double-Resistance-Terminated Low-Pass Lossless
Ladder Filters

In this section, we present the element values for elliptic LP double-resistance-
terminated lossless ladder filters. Figure C.3a shows the structures for both even-
and odd-order filters while Figure C.3b gives alternate structures for the filters.

Table C.5 provides element values for odd orders (3 and 5) and for even order (4)
for the case when the response at infinite frequency is forced to zero by adopting a
modified expression for the even order transfer function. In this transfer function,
the denominator is of degree n while the numerator degree is forced to be n − 2.
In this case, the load and source resistances are equal with a value of 1 � each. The
modified elliptic function has the form
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HN(s) =
Hc

n/2∏
i=2

(s2 + �2
i )

a0 + a1s + · · · + an−1s + ansn
(C.3.1)

More details on this are available in Huelsman (1993).
Table C.6 provides alternate set of element values for even orders (4 and 6),

where the modified elliptic transfer function has the same form as in Eq. (C.3.1),
but the values of �i are slightly different. The source and load resistances for this
alternate case are unequal with Rs = 1 �.

In each of these tables only two values are used for Ap, namely, 0.1 and 1.0 dB.
For a more exhaustive set of tables, refer to Huelsman (1993).
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plications. AEÜ-Int. J. Electron. Commun.,
62, 239–244.

Antoniou, A. (2006) Digital Signal Processing:
Signals, Systems and Filters, McGraw-Hill.

Antoniou, A. (1967) Gyrators using
operational amplifiers. Electron. Lett., 3,
350–352.

Antoniou, A. (1969) Realization of gyrators
using operational amplifiers and their use
in RC-active network synthesis. Proc. Inst.
Elec. Eng., 116, 1838–1850.

Assi, A., Sawan, M., and Raut, R. (1996)
A new VCT for analog IC applications.
Proc. Eighth International Conference on
Microelectronics, Cairo, pp. 169–172.

Assi, A., Sawan, M., and Raut, R. (1997)
A fully differential and tunable CMOS
current mode opamap based on

transimpedance-transconductance tech-
nique. Proc. IEEE 40th Midwest Symp.
Circuits and Systems, Sacramento, pp.
168–171.

Bainter, J.R. (1975) Active filter has stable
notch, and response can be regulated.
Electronics, 48, 115–117.

Baker, R.J., Li, H.W., and Boyce, D.E. (1998)
CMOS Circuit Design, Layout and Simula-
tion, IEEE Press.

Bermudez, J.C.M. and Bhattacharyya,
B.B. (1982) Parasitic insensitive
toggle-switched capacitor and its appli-
cation to switched-capacitor networks.
Electron. Lett., 18, 734–736.

Bhattacharyya, B.B. and Swamy, M.N.S.
(1971) Network transposition and its
application in synthesis. IEEE Trans.
Circuit Theory, CT-18, 394–397.

Bhattacharyya, B.B., Sundaramurthy, M.,
and Swamy, M.N.S. (1981) System-
atic generation of canonic sinusoidal
RC-active oscillators. IEE Proc. Part G, 128,
114–126.

Biolek, D., Hancioglu, E., and Keskin,
A.U. (2008) High-performance
current-differencing transconductance
amplifier and its application in precision
current-mode realization. AEÜ-Int. J.
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Index

a
Åckerberg-Mossberg biquad see under biquad
active building blocks 28, 41, 147, 161, 265
active devices 4, 5, 28, 103, 124, 126, 143,

191, 192, 207, 214, 228, 268, 283, 299, 300,
304

active resistor see under resistor
active RC filters 1, 4, 28, 30, 43, 103, 217,

221, 223, 299, 304
adjoint network 268
admittance matrix 9, 13, 15, 18
alias 168
All-pass filter 53, 108, 155, 265
all-pole function 4, 56, 65, 85, 89, 230, 233
all-pole filter 88, 217
anti-aliasing filter 168
analog filters 4, 7, 28, 30, 148, 161, 299,

300, 302
Antoniou’s GIC 209, 210, 214, 251
approximation 4, 5, 41
– magnitude see magnitude approximation
– phase see phase approximation
– constant-delay see constant delay

approximation

b
band-pass filter 30, 31, 115, 138, 154–157,

160, 172, 206, 222, 265, 321
band-reject filter 4, 53
band-stop filter see band-reject filter
bandwidth 3, 71, 73, 76, 108, 168, 172, 285,

314
Bessel polynomial 75
Bessel-Thomson (BT) filters 5, 75–77, 328,

329, 333–335, 339, 340
bilinear transformation see under

transformation
biquadratic filter 103–105, 187–178–189, see

also biquads and second order filters

biquadratic function 104, 199, 229
biquads 103–105, see also biquadratic filters

and second order filters
– Åckerberg-Mossberg 156, 282
– Fleischer–Tow 123, 273, 274
– KHN see under KHN state variable filter
– Mikhael-Bhattacharyya 126
– single amplifier 109–117
– Tow-Thomas 121, 132, 223, 281
brick-wall characteristics 41, 53
Bruton’s transformation see under

transformation
Butterworth approximation see under

magnitude approximation
Butterworth filter 56, 58, 59, 91, 95, 96, 99,

100, 232, 236, 237, 327, 337, 338, 339

c
capacitive dual 45–47, 79, 269, 270, 295
cascade 16, 23, 46, 129, 193, 202, 220, 225,

227, 228, 229, 239, 245, 248, 250, 258, 270,
319

Cauer networks 86–88, 90, 95, 97, 100
CCII see Current conveyor II
CCCS see Current controlled current source
CCVS see Current controlled voltage source
chain matrix 14–16, 42, 45–49, 89,

208–211
chain parameters 14
Chebyshev approximation see under

magnitude approximation
Chebyshev filter 65, 95, 328, 329, 337, 338,

339
clock feed-through 174, 291, 302
clock frequency 162, 163, 167, 187
CMOS 2, 3, 5, 144, 147, 264, 266, 285, 318,

323
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component simulation 207–209, 211–213,
215

component transformation 96
constant delay approximation 75–77
constrained networks 4, 7, 24–27, 110, 117
continued fraction (CF) expansion 86, 87,

90, 91
continuous-time domain 207, 251
continuous-time filters 2, 5, 138, 150
controlled sources 7, 16, 17, 24, 48, 52, 268,

280
current controlled current source (CCCS)

7, 16, 17, 18, 28, 31, 42, 48, 49, 79, 80, 113,
114, 256, 258, 262, 271, 272, 280, 283

current controlled voltage source (CCVS)
7, 16, 17, 18, 48, 49, 79, 80, 262, 294

current conveyor II (CCII) 3, 7, 31, 32, 114,
151, 257, 261–266, 294, 320–322

controlled currect conveyor II (CCCII) 114,
319–322

current amplifier 261, 269, 270, 271
current copier 285
current mirror 32, 149, 256, 285, 287, 291
current OA 114, 151
current-mode (CM) filters 3, 33, 150,

255–294, 345–347
current transfer function (CTF) 3, 12, 32,

36, 43, 46, 47, 48, 49, 52, 80, 84, 85, 93,
214, 265, 267, 268, 271, 272, 273, 274, 275,
276, 278, 279, 281, 282, 283, 284, 285

current transfer function (CTF) matrix 271,
276, 277, 295

CTF matrix see current transfer function
(CTF) matrix

cut-off frequency 53, 54, 60, 69, 90, 91, 92,
221, 225, 226

d
D-network 201, 202
delay 53, 54, 68, 74, 75
delay and add 200–203
delay equalizers 53, 55, 77
differential architecture 5, 303
differential structure 303–307, 310–312,

316, 323
differential input OTA 277
diffused resistor see under resistor
digital filters 3, 192, 200
discrete-time equations 163, 175, 178
differential-input single-output (DISO)-OTA

277–279
doubly-terminated LC ladder 4, 92–100,

214

doubly-terminated network 50, 51, 83, 93,
252

driving point admittance 12, 86, 110
driving point function 48, 271
driving point impedance (DPI) 12, 42, 46,

50, 86, 94, 208, 210, 211, 214, 268
dual one-port 44, 45
dual networks 5, 44, 45, 270, 271, also see

capacitive, resistive and generalized duals
dual transpose 50
dual two-port 4, 45, 47, 49, 50, 51, 79, 85, 94,

97, 100, 269, 270, 271, also see capacitive
dual

dynamic current mirrors 285
dynamic range equalization 147, 191, 198,

207, 228, 229, 314

e
elliptic approximation see under magnitude

approximation
elliptic filter 67, 68, 223, 249, 330, 311, 332
epitaxial and ion-implanted resistors 143
equivalent networks 16, 30
equal-ripple (equi-ripple) 62

f
feature size 147, 323
feed-forward technique 122
FDNR 208, 211, 213–217, 250, 252, 253
filter functions 5, 41, 122, 304, 319
floating inductor 208–210, 212, 215
Fleischer–Tow see under biquad
forward open circuit voltage gain 15
forward short circuit current gain 15
forward transconductance 15
frequency-dependent negative resistor see

FDNR
frequency domain characterization 7, 163,

167
frequency scaling 51, 62, 64, 96
frequency transformations see under

transformation
– low-pass to band-pass see under

transformation
– low-pass to high-pass see under

transformation
– low-pass to band-reject (bandstop) see under

transformation

g
gain-bandwidth (GB) product 132, 134, 147,

284, 285
– effects of finite GB of an OA 283
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generalized dual 45, 46, 47, 49, 255, 268, 269,
also see dual two-ports and capacitive dual

generalized immittance converter 210, 211
general network theorems 41
gm-C filter see OTA-C filter
grounded inductance 212, 321
gyrator 138, 208–210, 214, 239, 255, 263

h
high-pass filter 4, 53, 108, 115, 160
higher order active filters 207–251
Hurwitz polynomial 89
hybrid technology 141

i
ideal operational amplifier (OA) 101, 105,

128, 131, 132, 134, 224, 226, 280
immittance 210, 211
impedance converter 7, 17, 18, 33, 49, 80,

210, 268
impedance inverter 7, 17, 18, 48, 49, 138, 208,

263, 268, 271, 294, see also gyrator
impedance matrix 11, 14, 15, 48
impedance scaling 41–43
impedance transformation see under

transformation
indefinite admittance matrix (IAM) 18–23,

39, 41
inductance simulation 5, 208, 210, 239
integrators
– ideal 241
– inverting 30, 181, 183, 184, 196, 220, 231,

233, 234, 246, 247, 292
Lossy 29, 106, 177, 181, 220, 221, 230, 231,

233, 260, 308, 310, 312, 316
Noninverting 181, 183, 196, 220, 304, 306
inverse Chebyshev approximation see under

magnitude approximation
inverse follow the leader feedback (IFLF)
– structure 238
inverse network 44, 45, see also dual two-port

network

k
KHN state variable filter 119–121, 127, 128

l
ladder filter 33, 101, 212, 214, 215, 222, 224,

239, 245, 250–252
leapfrog structure 217, 220, 221, 242, 243,

278, 279, 297
linear phase approximation see constant delay

approximation
linear phase 75, 78

loop analysis 7–11
lossless digital integrator (LDI)
– transformation see under transformation
lossless integrator 106, 177, 179, 230, 290,

307, 316
lossless (LC) ladder filter 50, 88, 90, 92, 100,

207, 208, 212, 213, 214, 217, 245, 250,
337–341

lossless ladder simulation 207, 212,
213–216, 217–225, 239–245, 250

lossless network 80, 83, 89, 93, 94
lossy integrator 29, 106, 177, 181, 220, 230,

231, 233, 260, 308, 310, 312, 316
inverting 29, 106, 177, 181, 220, 221, 232,

233, 236, 308
Noninverting 177, 181, 186, 220
low-pass (LP) filter 4, 31, 33, 35, 154–156,

160, 204, 206, 240, 253, 337, 340
low-pass to band-pass transformation see

under transformation
low-pass to high-pass transformation see

under transformation
low-pass to band-reject (bandstop)
– transformation see under transformation

m
magnitude approximation 54–69
– Butterworth 56
– Chebyshev 60–65
– – maximally flat magnitude (MFM)

55–60
– elliptic 65–68
– inverse Chebyshev 68
MATLAB 4, 5, 58, 59, 64, 65, 68, 76, 171,

173, 300
maximum power transfer 50
mesh analysis see loop analysis
Mikhael-Bhattacharyya biquad see under

biquad
mimimum sensitivity feedback structure

238
MFM approximation see under magnitude
approximation
modified leap-frog (MLF) structure

238
modular approach 191–194
monolithic inductor 3, 147
MOS switch 175, 184
MOS capacitor 144–146, 175
multi-in single-output (MISO) system

122, 123
multiple amplifier biquad 117–128
multiple feedback 5, 207–237
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n
negative impedance converter (NIC) 17, 18
– current inverting 17, 21, 22, 80, 263, 267
– voltage inverting 17, 267
negative impedance inverter (NII) 17, 18,

263, 294
network function 7, 12, 18, 138, 139, 154,

190, 213, 217
network transposition see transposition
nodal analysis 8, 9, 11
noise signal 303
nonreciprocal network 7, 15, 16, 18, 48, 271
nodal admittance matrix 18, 19
noninverting amplifier 131, 132, 238
notch filter 55, 140, 265, 266
– highpass notch 108, 109, 157
– lowpass notch 108, 109, 157
– symmetric 108, 109
null filter see notch filter
nullator 268, 279, 280

o
one-pole model 147, 184
one-port network 12, 16, 44, 45, 85, 94
OA see operational amplifier
open circuit impedance parameters 14
operational amplifier 24–26, 28, 29, 30,

105–107, 147, 148, 258
operational simulation technique 5, 217,

219–224, 239, 241, 253
operational transconductance amplifier

(OTA) 2, 30, 31, 135, 139, 149, 239,
241, 243

OTA-C filters 5, 138, 139, 159, 310,
312, 314

p
parasitic capacitances 2, 138, 145, 159, 161,

174–176, 204, 239, 245, 260, 270, 285,
301–303, 310, 312, 313

parasitic-insensitive structures see under
switched-capacitor (SC) filter

passband 41, 50, 53, 54, 55, 56, 60, 61, 63,
67, 68, 69, 71, 73, 96, 227, 228

phase approximation 73–77
phase delay 74
pinched resistor see under resistor
pole frequency 104
pole zero pairing 228, 229
pole-Q 104
positive impedance converter (PIC) 17
positive impedance inverter (PII) 18, 138,

208, see also gyrator

prewarping 170–172, 205, 248, 250, 251,
293

primary resonator block (PRB) 237

q
Quality factor (Q) 71, 211, 285
Q−enhancement 134
Qp-sensitivity see under sensitivity

r
rational function 29, 50, 66
RC:CR transformation see under

transformation
reactance function 85, 86, 87, 89, 90
reactance network 85, 86
reciprocal network 15, 47, 48, 100
reconstruction filter 168
reflection coefficient 94
resistive dual 45, also see dual networks
resistor
– active 143
– diffused 142
– pinched 142
reversed two-port (network) 47, 48

s
Sallen and Key filters 110–116
sampled-data domain 164, 166, 170, 207,

250, 251, 289
sampled-data frequency 163, 168–170
sampled-data transfer function 167–169
– Frequency domain characteristics of 167
second-order filters 4, 7, 30, 31, 35, 52,

103–140, 157, 159, 161, 181, 187, 189, 191,
193, 195, 197, 207, 223, 225, 239, 253, 266,
278, 280, see also biquadratic filters and
biquads

sensitivity 4, 124–127, 129, 154, 207, 213,
216, 227–229, 238, 267, 272, 300

Qp-sensitivity 125, 126, 127, 267
ωp-sensitivity 126, 127
shifted-companion feedback structure 235
short circuit admittance parameters 13
signal-flow graph technique 192–198
Silicon dioxide 144–146
simulation of LC ladder 217
single-amplifier biquad see under biquad
single-input dual-output (SIDO) OTA

277–279
single-input multi-output (SIMO) 121
singly terminated network 50, 51, 83, 84,

90–92
source transformation 9–11, 239, 240
state variable filter 119, 120, 126, 127
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stopband 41, 53, 54, 55, 63, 66, 67, 68, 69,
71, 72, 170,

super-capacitors 213, 215, 217, also see FDNR
switched-capacitor (SC) filter 2, 149,

161–206
– parasitic insensitive (PI) 4, 162, 175–187,

245–250
– second-order 162, 192, 196
– higher-order 248, 249
swiched-current filters see switched-current

techniques
switched-current techniques 285–294
switched-current memory 286
systolic array architecture 192

t
time-delay see delay
three-terminal two-port 16
threshold voltage 144, 291, 301
topological dual 45
Tow-Thomas biquad see under biquad
transadmittance function (TAF) 12, 52, 84,

92, 118
transconductance 51, 135, 149, 260
transconductance amplifier 150, 258
transconductance-C filter see OTA-C filter
transformation
– bilinear (s→z) 161, 169–173
– Bruton’s 214
– Frequency 69–71, 114
– impedance 42–43, 113–114, 214, 217
– lossless digital integrator (LDI) 166
– low-pass to band-pass 71, 88, 237, 316
– low-pass to high-pass 69–70, 212
– low-pass to band-reject (bandstop) 73
– RC:CR 79, 113–115
transimedance amplifier 258
transimedance function (TIF) 12, 15, 52,

84, 89, 93
transition band 53, 54, 67, 68, 69, 72, 168
transmission parameters see chain

parameters
transmission zero 66, 88, 89, 128, 215, 223,

230, 233, 237
transposed networks 4, 48, 50, 268, 271,

273, 280

transposition 3, 5, 267, 268, 271–273, 275,
277, 279, 295

two-port networks 4, 7, 12, 13, 15–17, 22,
37, 41, 42, 45, 48, 268

two-port parameters 4, 13–18

u
unity gain amplifier (UGA) 105, 199–204

v
VCCS see Voltage controlled current source
VCVS see Voltage controlled voltage source
VLSI 2, 303
voltage amplifier 25–29, 105, 109, 117, 131,

137, 185, 199, 269, 307
voltage controlled current source (VCCS) 7,

16, 17, 18, 28, 30, 48, 49, 79, 80, 262, 271
voltage controlled voltage source (VCVS) 7,

16–18, 24, 26, 28, 29, 34, 42, 48, 49, 79,
113, 114, 184–186, 217, 262, 268, 271, 272,
280–283

voltage follower 105
voltage mode (VM) 5, 103, 217, 225, 255,

267–279
voltage transfer function (VTF) 12, 32, 35,

39, 43, 46–49, 52, 80, 84, 85, 93, 214, 265,
267, 268, 271–283, 285, 294, 295

VTF see votage transfer function
voltage transfer function (VTF) matrix 271,

276, 295
VTF matrix see voltage transfer function

(VTF) matrix

w
warping 170

y
y-parameters see short circuit admittance

parameters

z
z-parameters see open circuit impedance

parameters
z-transform 163–165, 178, 179
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