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ABSTRACT
There are five different types of eye movements: saccades, smooth pursuit, vestibular ocular eye
movements, optokinetic eye movements, and vergence eye movements. The purpose of this book
is focused primarily on mathematical models of the horizontal saccadic eye movement system and
the smooth pursuit system, rather than on how visual information is processed. A saccade is a fast
eye movement used to acquire a target by placing the image of the target on the fovea. Smooth
pursuit is a slow eye movement used to track a target as it moves by keeping the target on the fovea.
The vestibular ocular movement is used to keep the eyes on a target during brief head movements.
The optokinetic eye movement is a combination of saccadic and slow eye movements that keeps
a full-field image stable on the retina during sustained head rotation. Each of these movements is
a conjugate eye movement, that is, movements of both eyes together driven by a common neural
source. A vergence movement is a non-conjugate eye movement allowing the eyes to track targets
as they come closer or farther away.

In this book, early models of saccades and smooth pursuit are presented. The smooth pursuit
system allows tracking of a slow moving target to maintain its position on the fovea. Models of the
smooth pursuit have been developed using systems control theory, all involving a negative feedback
control system that includes a time delay, controller and plant in the forward loop, with unity
feedback.The oculomotor plant and saccade generator are the basic elements of the saccadic system.
The oculomotor plant consists of three muscle pairs and the eyeball. A number of oculomotor plant
models are described here beginning with the Westheimer model published in 1954, and up through
our 1995 model involving a 4th order oculomotor plant model. The work presented here is not an
exhaustive coverage of the field, but focused on the interests of the author. In Part II, a state-of-art
model of the saccade system is presented, including a neural network that controls the system.

KEYWORDS
smooth pursuit, saccade, main sequence, time-optimal control, system identification
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1

C H A P T E R 1

Introduction

1.1 INTRODUCTION

The visual system is our most important sensory system. It provides a view of the world around us
captured with receptors in the eyeball that is transmitted to the central nervous system (CNS). The
eye movement or oculomotor system is responsible for movement of the eyes so that images are clearly
seen. The oculomotor system also responds to auditory and vestibular sensory stimuli. In this book,
a qualitative and quantitative description of the saccadic and smooth pursuit eye movement systems
are presented for horizontal movements of the eye. A saccadic or fast eye movement involves quickly
moving the eye from one image to another image. This type of eye movement is very common, and
it is observed most easily while reading; that is, when the end of a line is reached, the eyes are moved
quickly to the beginning of the next line. Saccades are also used to locate or acquire targets. Smooth
pursuit is a slow eye movement used to track an object as it moves by keeping the eyes on the target.
In addition to these two movements, the eye movement system also includes the vestibular ocular
movement, optokinetic eye movement, and vergence movement.These three eye movements will be
briefly described in this chapter. Vestibular ocular movements are used to maintain the eyes on the
target during head movements. Optokinetic eye movements are reflex movements that occur when
moving through a target-filled environment or to maintain the eyes on target during continuous
head rotation. The optokinetic eye movement is a combination of saccadic and slow eye movements
that keeps a full-field image stable on the retina during sustained head rotation. Each of these four
eye movements is a conjugate eye movement, that is, movements of both eyes together driven by
a common neural source. Vergence eye movements use nonconjugate eye movements to keep the
eyes on the target. If the target moves closer, the eyes converge − farther away, they diverge. Each
of these movements is controlled by a different neural system, and all of these controllers share the
same final common pathway to the eye muscles.

Each eye can be moved within the orbit in three directions: vertically, horizontally, and tor-
sionally. These movements are due to three pairs of agonist - antagonist muscles. These muscles
are called antagonistic pairs because their activity opposes each other and follows the principle of
reciprocal innervation. Shown in Fig. 1.1 is a diagram illustrating the muscles of the eye, optic nerve
and the eyeball. We refer to the three muscle pairs and the eyeball as the oculomotor plant, and the
oculomotor system as the oculomotor plant and the neural system controlling the eye movement
system.

At the rear of the eyeball is the retina, as shown in Fig. 1.2. Regardless of the input, the
oculomotor system is responsible for movement of the eyes so that images are focused on the central
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Figure 1.1: Diagram illustrating the muscles, eye ball, and the optic nerve of the right eye.The left eye is
similar except the lateral and medial rectus muscles are reversed.The lateral and medial rectus muscles are
used to move the eyes in a horizontal motion. The superior rectus, inferior rectus, superior oblique, and
inferior oblique are used to move the eyes vertically and torsionally. The contribution from each muscle
depends on the position of the eye. When the eyes are looking straight ahead, called primary position,
the muscles are stimulated and under tension.

one-half degree region of the retina, known as the fovea. Lining the retina are photoreceptive cells
that translate images into neural impulses.These impulses are then transmitted along the optic nerve
to the central nervous system via parallel pathways to the superior colliculus and the cerebral cortex.
The fovea is more densely packed with photoreceptive cells than the retinal periphery; thus a higher
resolution image (or higher visual acuity) is generated in the fovea than the retinal periphery. The
purpose of the fovea is to allow us to clearly see an object, and the purpose of the retinal periphery
is to allow us to detect a new object of interest. Once a new object of interest is detected in the
periphery, the system redirects the eyes to the new object.

A qualitative description of the each eye movement is provided in the next section. In Chap-
ter 2, models of the smooth pursuit system are presented. After this, chapters on models of the
saccade system are presented, including the saccade generator on the basis of anatomical pathways
and control theory. The literature on the saccade system is vast, and thus this presentation is not
exhaustive but rather a representative sample from the field and the interest of the authors.

1.2 SACCADES

One of the most successfully studied systems in the human is the oculomotor or eye movement
system. Some of the reasons for this success are the relative ease in obtaining data, the simplicity
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Fovea

A

B

Fovea

Figure 1.2: (A) Diagram illustrating a side-view of the eye. The rear surface of the eye is called the
retina. The retina is part of the central nervous system and consists of two photoreceptors, rods and
cones. (B) Front view looking at the rear inside surface (retina) of the eye. The fovea is located centrally
and is approximately 1 mm in diameter. The oculomotor system maintains targets centered on the fovea.

of the system, and the lack of feedback during dynamic changes in the system. A saccade is a fast
eye movement that involves quickly moving the eyes from one target or image to another. The word
saccade originated from the French word saquer, which means to jerk the reins of a horse. A saccade
is a very quick and jerky movement of the eye from one target to another.
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The eye muscles are among the fastest in the human body, with a 10◦ saccade taking only
50 ms. The saccadic system can be thought of as a targeting system that is concerned only with
accurate and swift eye movements from one target to another without concern for the information
swept across the retina during the eye movement. During a saccade, the visual system is turned off.
After the saccade is complete, the system operates in a closed-loop mode to ensure that the eyes
reached the correct destination. Information from the retina and muscle proprioceptors is used to
correct any error between the desired and current eye position. The saccade system operates in a
closed-loop mode to reduce this error to zero with a corrective saccade. One possible explanation of
the operation of the neural control of saccades is that the saccadic neural controller is an open-loop
time-optimal system using an internal closed-loop controller (Zhou et al., 2009; Enderle, J., 2006,
2002; Enderle and Wolfe, 1987). This system does not rely on muscle proprioceptors or real time
visual feedback to ensure accuracy of movement because the eye movements occur too fast. Instead,
a complex neural network involving the mesencephalon, cerebellum, brainstem and the cerebrum
keeps track of the eye movement.

A typical experiment for recording saccades has the subject sitting before a horizontal target
display of small light emitting diodes (LEDs) as shown in Fig. 1.3 (left). The subject is instructed
to maintain their eyes on the lit LED by moving their eyes as fast as possible to avoid errors. A
saccade is made by the subject when the active LED is switched off and another LED is switched
on. Eye movements can be recorded using a variety of techniques, including electrooculography,
video oculography, scleral search coil and infrared oculography (shown in Fig. 1.3 (right)). A typical
saccade is shown in Fig. 1.4, with a latent period of approximately 100 ms and amplitude of 10◦
with duration of approximately 60 ms. Saccadic eye movements are conjugate and ballistic, with a
typical duration of 30-100 ms and a latency of 100-300 ms. The latent period is thought to be the
time interval during which the CNS determines whether to make a saccade and, if so, calculates the
distance the eyeball is to be moved, transforming retinal error into transient muscle activity. Also
shown in this figure is the velocity of the saccade with a peak velocity of approximately 400◦s−1.

Generally, saccades are extremely variable, with wide variations in the latent period, time
to peak velocity, peak velocity, and saccade duration. Furthermore, variability is well coordinated
for saccades of the same size; saccades with lower peak velocity are matched with longer saccade
durations, and saccades with higher peak velocity are matched with shorter saccade durations. Thus,
saccades driven to the same destination usually have different trajectories.

To appreciate differences in saccade dynamics, it is often helpful to describe them with saccade
main sequence diagrams (Bahill et al., 1975; Enderle and Wolfe, 1988; Harwood et al., 1999). The
main sequence diagrams plot saccade peak velocity–saccade magnitude, saccade duration–saccade
magnitude, and saccade latent period–saccade magnitude. The saccade size or amplitude is the
angular displacement from the initial position to its destination. The size of a saccade ranges from
less than a degree (microsaccades) to 45◦ in both the nasal (toward the nose) and temporal (toward
the temple) directions. Peak or maximum velocity occurs at approximately half the duration of the
saccade for small saccades less than 15◦ (Bahill et al., 1975).The duration of a saccadic eye movement



1.2. SACCADES 5

LED

SCREEN

Figure 1.3: Experimental setup to record a saccade (left) and an infrared eye movement recorder (right).
The eye movement recorder is based on the design by Engelken et al., 1984.

is the time from the start to the end of a saccade. Duration is usually hard to determine from the
saccade amplitude vs. time graph, but it is more easily seen in the velocity vs. time graph as shown
in Fig. 1.4. Saccade durations can range from approximately 30 ms for saccades less than 5◦, and
up to 100 ms for large saccades. For saccades greater than 7◦, there is a linear relationship between
saccade amplitude and duration. The latent period is the time interval from when a target appears
until the eyes begin to move.

Shown in Fig. 1.5 are the main sequence characteristics for a subject executing 26 saccades.
The subject actually executed 52 saccades in both the positive and negative directions with only the
results of the saccades in the positive direction displayed in Fig. 1.5 for simplicity. Note that saccade
characteristics moving to the left are different from those moving to the right. The solid lines in
the figures include a fit to the data. Peak velocity-saccade magnitude is basically a linear function
until approximately 15◦, after which it levels off to a constant for larger saccades. Many researchers
have fit this relationship to an exponential function. The line in graph (A) is fitted to the nonlinear
equation

vmax = α
(

1 − e
− x

β

)
(1.1)

where vmax is the maximum velocity, x the saccade size, and the constants α and β evaluated to
minimize the summed error squared between the model and the data. Note that α is to represent the
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Figure 1.4: A 10◦ saccade with various indices labeled.

steady-state peak velocity-saccade magnitude curve and β is to represent the “time constant” for the
peak velocity-saccade magnitude curve. For this data set for positive eye movements, α equals 825,
and β equals 9.3. A similar pattern is observed with eye movements moving in the negative direction,
but the parameters are α = 637 and β = 6.9, which are typically different from the values computed
for the positive direction.The exponential shape of the peak velocity–saccade amplitude relationship
might suggest that the system is nonlinear if a step input to the system is assumed. A step input
provides a linear peak velocity–saccade amplitude relationship. In fact, the saccade system is not
driven by a step input but rather a more complex pulse-step waveform as discussed in Chapter 3.
Thus, the saccade system cannot be assumed to be nonlinear solely based on the peak velocity-saccade
amplitude relationship. The input to the saccade system is discussed more fully in Chapters 3 and 6.

Shown in Fig. 1.5B are data depicting a linear relationship between saccade duration–saccade
magnitude. If a step input is assumed, then the dependence between saccade duration and saccade
magnitude also might suggest that the system is nonlinear. A linear system with a step input al-
ways has a constant duration. Since the input is not characterized by a step waveform, the saccade
system cannot be assumed to be nonlinear solely based on the saccade duration–saccade magnitude
relationship.
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Figure 1.5: Main Sequence Diagrams for positive saccades. Similar shapes are observed for negative
saccades. (A) Peak velocity-saccade magnitude, (B) saccade duration-saccade magnitude, and (C) la-
tent period-saccade magnitude for 26 saccadic movements by a single subject. Adapted from: Enderle, J.
(1988). Observations on pilot neurosensory control performance during saccadic eye movements. Avia-
tion, Space, and Environmental Medicine, 59: 309.



8 1. INTRODUCTION

Shown in Fig. 1.5C is the latent period-saccade magnitude data. It is quite clear that the latent
period does not show any linear relationship with saccade size, i.e., the latent period’s value appears
independent of saccade size. However, some other investigators have proposed a linear relationship
between the latent period and saccade magnitude. This feature is unimportant for the presentation
in this book since in the development of the oculomotor plant models, the latent period is implicitly
assumed within the model.

Because of the complexity of the eye movement system,attention is restricted to horizontal fast
eye movements. In reality, the eyeball is capable of moving horizontally, vertically and torsionally. An
appropriate model for this system would include a model for each muscle and a separate controller
for each muscle pair.The development of the horizontal saccadic eye movement models in this book
are historical and are presented in increasing complexity with models of muscle introduced out of
sequence so that their importance is fully realized. Not every oculomotor model is discussed. A few
are presented for illustrative purposes.

1.3 SMOOTH PURSUIT SYSTEM

Smooth pursuit is a voluntary eye movement that allows tracking of a slow moving target (with
maximum velocity under 50 − 70◦s−1) to maintain its position on the fovea. During smooth pursuit,
vision remains clear, unlike a saccade where vision is interrupted. A time delay of approximately 100-
200 ms occurs before smooth pursuit begins after acquiring a target to track. The smooth pursuit
system responds to both position and velocity errors, but the velocity seems to be more important,
especially in initiating the movement (Leigh and Zee, 1999). Oftentimes, smooth pursuit involves
a saccade to bring the fovea on the target, followed by a continuous eye movement that matches the
velocity of the target so that the target does not slip off the fovea. In general, smooth pursuit eye
movements are initiated only when following a target (or the remembered motion of a target); that
is, without visual stimulus, voluntary smooth pursuit eye movements do not occur.This is in contrast
to a saccade, which can be voluntarily elicited. The performance of smooth pursuit is increased with
predictable target movements such that the subject is able to perfectly track the motion of the target.
To achieve such performance, a predictive mechanism is postulated to control the smooth pursuit
system using an internal target velocity signal (Bahill and McDonald, 1983; Bahill and Harvey,
1986; Bahill and Hamm, 1989; Becker and Fuchs, 1985). Typically, humans tracking a periodic
target quickly lock onto the target and track it with no latency, perhaps using an internal model of the
target movement. The performance of the smooth pursuit system greatly varies among individuals,
and it even varies for the same individual tested on different days. Smooth pursuit is affected by the
quality stimulus, interest in following the stimulus, medications and age.

In the clinic or research laboratory, two types of stimuli are used to study the smooth pursuit
system:a predictable sine-wave signal and a constant-velocity signal (ramp position input).A pseudo-
random (sum of sine-waves) stimulus is also used to eliminate the predictability of the sine waveform.
From the data collected, performance is evaluated using gain (peak eye velocity/peak target velocity)
and phase (time offset of the output and input waveforms). Others use cross-spectral density analysis
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to evaluate central and peripheral pathology (Wolfe et al., 1978). Ideal performance for gain is close
to 1.0 with a very small phase shift. Performance is usually best if the target moves slowly (< 1.0 Hz)
and the amplitude of the movement is small (<±5◦). If the amplitude is increased with frequency
kept at 1 Hz, the smooth pursuit system does not operate as well. Smooth pursuit performance is
better for predictable target motions than nonpredictable target motions.

As the target moves across visual space, the eyes track until they reach the limit of the field
of vision, then the eyes move in the opposite direction with a saccade, acquiring a new target to
track, with the process repeating itself.This type of eye movement pattern looks like saw-tooth time
course and is called nystagmus. To keep up with the target in the real world, tracking often consists
of smooth pursuit, interrupted by catch-up saccades.

1.4 VESTIBULAR OCULAR REFLEX EYE MOVEMENTS

The vestibular system holds the visual field steady during head rotations by rotating the eyes in the
opposite direction to keep the target on the fovea. Vestibular ocular reflex (VOR) eye movements
have a shorter latency (< 16 ms) than the saccadic or smooth pursuit eye movements because the
labyrinth of the inner ear provides a signal to move the eyes faster than the visual system.

Within each ear, the labyrinth is divided into three parts: cochlea, the three semicircular canals,
and endolymphatic sacs called the utricle and saccule that forms the otolith organs. The canals are
oriented approximately perpendicular to each other, providing the system with the ability to sense
angular rotation. Within the system are sensory cells with hairs that project directly into a gelatinous
substance that bends when it flows past them during angular rotation. These sensors provide signals
to the eye movement system during rotational head movements, which cause the eyes to move in
the opposite direction the head is moving. Linear translational movements of the head stimulate
the otolith organs. Normally in the human, angular rotation cause movements of the eyes – linear
acceleration does not result in eye movements.

The function of VOR is to match the velocity of the eye to that of the head with a smooth
pursuit movement to keep the target on the fovea. If the rotation continues past the visual field,
the movement is interrupted by a saccade in the opposite direction, and then the smooth pursuit
movement continues (nystagmus).

1.5 OPTOKINETIC EYE MOVEMENTS

Optokinetic eye movements occur when a large, full-field image moves uniformly across the retina
during head rotations. The purpose of optokinetic eye movements is to help stabilize the retinal
image during head rotation or translation. Similar to the nystagmus of VOR, after approximately
a 1 to 2 s delay, the eyes move with the same velocity as the image, and then execute a saccade in
the opposite direction when the full range of eye motion is complete. During the slow phase of
the movement, the eyes are not tracking or attempting to keep the target on the fovea but simply
stabilizing the image on the retina.
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While both smooth pursuit and optokinetic eye stimulations could occur simultaneously when
a small target is moving on a full-field image (providing contradictory responses), only the smooth
pursuit response occurs.The smooth pursuit response is used to keep the target on the fovea, moving
in the same direction as the target. The optokinetic eye movement response is just the opposite,
keeping the image stabilized on the retina. In these situations, the smooth pursuit movement is the
more important response and is executed rather than the optokinetic eye movement.

Optokinetic eye movements can be elicited by having the subject view a slowly rotating striped
drum that fills the visual field (Carpenter, R., 1988). The eyes follow the strip on the drum with a
smooth pursuit movement until the gaze moves to the end of the visual field, after which a saccade
occurs in the opposite direction. After the saccade, the eyes acquire another strip on the drum and
follow it, continuing this process of smooth pursuit followed by a saccade.This type of eye movement
is called optokinetic nystagmus.

1.6 VERGENCE
All of the previous eye movements presented are conjugate eye movements, with each eye driven by
the same neural control. Vergence eye movements allow us to move our eyes under separate controls
when the target moves closer or farther away. When viewing a target at a far distance, the line of
sight for each of the eyes to the target is straight ahead, approximately parallel with each other. As
the target comes closer, the eyes change their direction by moving nasally, using a different neural
controller for each eye.
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C H A P T E R 2

Smooth Pursuit Models

2.1 INTRODUCTION
The first model of the smooth pursuit system was published by Young and Stark in 1963, and it
involves a sampled-data visual system with negative feedback. The input to this model is the target
position and the output is eye position. The input to the forward-path is the retinal error position
(REP), the error between the fovea and target. The forward-path includes:

• Sampled-data element

• Two limiters to restrict abrupt changes and velocity exceeding 30◦

• Overdamped second-order oculomotor plant

• Two integrators, one to translate position into velocity and the other to translate velocity into
position.

While this model is able to describe some features of the smooth pursuit system, it does not
accurately depict many aspects of the real system.

Many models have been proposed since 1963 that are increasingly more complex and able to
more accurately depict additional aspects of the smooth pursuit system. Key components of these
models are that the stimulus to the smooth pursuit system is primarily the target’s velocity and a
transport delay in the forward-path. The brain uses the difference between the target’s velocity and
the eye velocity, called retinal error velocity (REV ), to move the eye so that it eventually moves at
the same velocity as the target. The transport delay represents the time interval starting when the
target appears on the retina, the time it takes for the signal to be sent from the retina to the brain
sites responsible for the smooth pursuit, signal analysis by the brain, and the time it takes to send
the command signal to the muscles of the eye that results in an eye movement. Some newer models
include both the retinal error velocity and retinal error position to accurately model the response
during the start of the stimulus and the response after the stimulus had ended. Before discussing
some of these models, we will introduce a simple system to illustrate several important points.

2.2 A SIMPLE MODEL OF THE SMOOTH PURSUIT SYSTEM
Consider the smooth pursuit model for horizontal eye movements shown in Fig. 2.1. The input
to the model is the target velocity, Ṫ , and the output is eye velocity, Ė. In the forward-path is the
transport delay, T D, the controller, GC , and the oculomotor plant, GP . The feedback element is
unity. The retinal error velocity is given by REV = Ṫ − Ė.
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Figure 2.1: Simple smooth pursuit feedback model. All functions and variables are functions of the
Laplace variable s.

2.2.1 A SIMPLE MODEL WITHOUT A TIME DELAY
Initially, we consider the case when the time delay is zero. Here, the system’s closed-loop transfer
function, GCL, is given by

GCL = Ė

Ṫ
= GCGP

1 + GCGP

. (2.1)

When a retinal velocity error is present, the error driving the system is Ṫ . As the eyes move toward
the target, the error becomes progressively less until it reaches a minimum value.The retinal velocity
error is given by

REV = 1

1 + GCGP

Ṫ . (2.2)

For the eyes to be traveling at almost the same speed as the target, the magnitude of 1 + GCGP must
be very large over the appropriate range of s. Once this happens, the REV is very small, resulting
in a very small input to the forward-path necessary to keep the eyes traveling at almost the same
speed as the target. Another way to think of this is using Eq. (2.1), with GCGP � 1, then Ė ≈ Ṫ .
We will illustrate this point by examining the REV as GC increases.

UNDERDAMPED OCULOMOTOR PLANT
In the following cases, we assume that GC = K , GP = ω2

n

s2+2ζωns+ω2
n

and Ṫ = L {3 cos(1.885t)}.
The oculomotor plant, GP , is based on a 1954 second-order model by Westheimer, with ζ =
0.7 and wn = 120 as described in Section 3.2.1. Note that the oculomotor plant in this system
is underdamped, and oscillatory behavior is evident during the transient response. The input is a
slow sinusoid with frequency 0.3 Hz and amplitude of 3. Substituting GC and GP into Eq. (2.1),
we have

GCL =
Kω2

n

s2+2ζωns+ω2
n

1 + Kω2
n

s2+2ζωns+ω2
n

= Kω2
n

s2 + 2ζωns + (K + 1)ω2
n

. (2.3)
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We assume zero initial conditions for the eye.The form of the solution for this system is given
by

ė(t) = eαt (B1 cos(βt) + B2 sin(βt))

+ B3 cos(1.885t) + B4 sin(1.885t) (2.4)

where ė(t) is the velocity of the eye, α ± jβ are the roots of the characteristic equation, and Bi are
the constants evaluated from the zero initial conditions and the input.

Consider the case where K = 2. The closed-loop transfer function is given by

GCL = 28, 800

s2 + 168s + 43, 200
. (2.5)

The roots of the characteristic equation are −84 ± j190.12 and the solution given by

ė(t) = e−84t (−2 cos(190.12t) − 0.8835 sin(190.12t))

+ 2 cos(1.885t) + 0.0147 sin(1.885t) . (2.6)

The MatLab SIMULINK response for this case is shown in Fig. 2.2.The transient response is quite
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Figure 2.2: (Left) Smooth pursuit response for an underdamped oculomotor plant with gain K = 2.
Response to steady state illustrating the transient response due to the oculomotor plant. (Right) Steady
state response with scale that hides the transient response.

brief, dying out in approximately 0.06 s as shown in Fig. 2.2 (Left). The REV is approximately 1
after steady-state is reached as shown in Fig. 2.2 (Right).

Next, we increase GC to 20, with results shown in Fig. 2.3.The nature of the response changes
according to Eq. (2.3). The roots of the characteristic equation are −84 ± j534.46, and B3 =
2.8572. The time to steady-state stays at approximately 0.06 s. The number of oscillations in the
transient response have increased since the imaginary component of the root increased. The REV

is 0.1428 (i.e., 3.0 − 2.8572) after steady-state is reached as shown in Fig. 2.3 (Right).
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Figure 2.3: (Left) Smooth pursuit response for an underdamped oculomotor plant with gain K = 20.
Response to steady state illustrating the transient response of the oculomotor plant. (Right) Steady state
response with scale that hides the transient response.
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Figure 2.4: (Left) Smooth pursuit response for an underdamped oculomotor plant with gain K = 100.
Response to steady state illustrating the transient response of the oculomotor plant. (Right) Steady state
response with scale that hides the transient response. The target and eye velocity almost completely
overlap except for 0 ≤ t < 0.06.

Next, we increase GC to 100, with results shown in Fig. 2.4. The roots of the characteristic
equation are −84 ± j1203.1, and B3 = 2.9703.The time to steady-state stays at approximately 0.06
s. As before, the number of oscillations have increased since the imaginary component of the root
increased. The REV is 0.0297 after steady-state is reached as shown in Fig. 2.4 (Right).

As demonstrated, the negative feedback system described here offers excellent performance
with small error signals. The sensitivity to parameter variations in GCGP is quite small, especially
when GCGP � 1.
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Negative feedback is rather typical in a physiological system as it provides a much faster
response than an open-loop system, it is very accurate, and it is relatively insensitive to parameter
changes in the forward path. For instance, consider changes in GC that might occur with aging.
Here, the overall system performance is minimally impacted even with a 50% change; that is, if at
birth GC = 10 and then falls to 5 with aging, the closed-loop gain goes from 0.91 to 0.83, a rather
small change in the overall system given the large change in the gain.

Feedback control systems are sensitive to changes in feedback. Suppose that the feedback
element in Eq. (2.1) is given by H rather than 1. The closed-loop transfer function is

GCL = Ė

Ṫ
= GCGP

1 + HGCGP

= 1
1

GCGP
+ H

. (2.7)

If GCGP � 1, then GCL ≈ 1
H

. Thus, we have Ė ≈ Ṫ
H

. Any changes in H are directly evident in
the system response.

OVERDAMPED OCULOMOTOR PLANT
Before moving into the case involving a time delay, we wish to consider an overdamped oculomotor
plant with roots at s1 = 5 = 1

0.2 and s2 = 142.8571 = 1
0.007 (pole locations are from Robinson, D.,

1973) to investigate the oscillations in the response, where

GP = 714.2857

(s + 5) (s + 142.8571)
= 1

(0.2s + 1) (0.007s + 1)
(2.8)

and

GCL= GCGP

1 + GCGP

=
714.2857K

(s+5)(s+142.8571)

1 + 714.2857K
(s+5)(s+142.8571)

= 714.2857K

s2 + 147.8571s + 714.2857(K + 1)
. (2.9)

With these parameters, the eye velocity solution has the form

ė (t) = B1e
s1t + B2e

s2t + B3 cos (1.885t) + B4 sin (1.885t) (2.10)

for values of K less than 6.7, and

ė(t) = eαt (B1 cos (βt) + B2 sin (βt))

+ B3 cos (1.885t) + B4 sin (1.885t) (2.11)

for values of K greater than 6.7.
With GC = 2, the natural response is shown in Fig. 2.5 (Left), an overdamped response. The

roots of the characteristic equation are −131.57 and − 16.2872, and the time to steady-state is
approximately 0.3 s. Notice that there is a sizeable REV as shown in Fig. 2.5 (Right).
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Figure 2.5: (Left) Smooth pursuit response for overdamped oculomotor plant with gain K = 2. Re-
sponse to steady state illustrating the transient response due to the oculomotor plant. (Right) Steady state
response with scale that hides the transient response.
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Figure 2.6: (Left) Smooth pursuit response for overdamped oculomotor plant with gain K = 20. Re-
sponse to steady state illustrating the transient response due to the oculomotor plant. (Right) Steady state
response with scale that hides the transient response.

With GC = 20, the natural response is shown in Fig. 2.6 (Left).The roots of the characteristic
equation are −73.92 ± j97.64, which has an underdamped natural response.The REV is quite close
to zero in this case.

As GC increases, the real part of the root stays at −73.92, and the imaginary part increases.
Thus, there is an increase in the number of oscillations in the natural response as GC increases and
the REV decreases.To have an REV approximately the same value as the underdamped case requires
K ≈ 100, giving us a closed-loop response that is underdamped, even though the oculomotor plant
is overdamped.
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OVERDAMPED OCULOMOTOR PLANT WITH EYE AND VELOCITY INPUTS
Some models of the smooth pursuit system include retinal error position and velocity in the forward
path as shown in Fig. 2.7. These models typically use the same overdamped oculomotor plant
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REV
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1
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+
+

Position 

Velocity

Figure 2.7: Simple smooth pursuit feedback model with retinal error position and velocity in the forward
path. T1 = 0.2.

described before as

GP = 1

(sT1 + 1) (sT2 + 1)
= 1

(0.2s + 1) (0.007s + 1)
= 714.2857

(s + 5) (s + 142.8571)
. (2.12)

Note that the velocity block, T1, in Fig. 2.7 has the same value of one of the roots, s1 = 5 = 1
T1

.
Now, we wish to replace the items within the blue box in Fig. 2.7 with an equivalent representation.

Ė=
(
T1 + 1

s

)
(sT1 + 1) (sT2 + 1)

(REV × GC)

= (sT1 + 1)

s

1

(sT1 + 1) (sT2 + 1)
(REV × GC)

= 1

s (sT2 + 1)
(REV × GC) . (2.13)

Since T2 = 0.007, (sT2 + 1) ≈ 1, and

Ė ≈
(

1

s

)
(REV × GC) . (2.14)

It should be clear from Eq. (2.14) that eye velocity, Ė, approximately equals the integral of the
REV × GC .
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Suppose we replace the items in the blue box in Fig. 2.7 with an integrator as in Eq. (2.14).
The closed-loop transfer function is:

GC =
Gc

s

1 + Gc

s

= GC

s + GC

. (2.15)

Here the root for the closed-loop system is −GC = −K . Thus, as K increases to reduce REV, the
time constant, 1

K
, decreases, as does the time for the natural response to reach steady state. Shown

in Figures 2.8 and 2.9 are simulations with K = 20 and 100. As illustrated, the time for the natural
response to reach steady-state is much smaller for K = 100 than K = 20. Both simulations track
the target very well after this time with a very small REV.
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Figure 2.8: (Left) Smooth pursuit response for an integrator oculomotor plant with gain K = 20.
Response to steady state illustrating the transient response due to the oculomotor plant. (Right) Steady
state response with scale that hides the transient response.
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Figure 2.9: (Left) Smooth pursuit response for an integrator oculomotor plant with gain K = 100.
Response to steady state illustrating the transient response due to the oculomotor plant. (Right) Steady
state response with scale that hides the transient response.
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The problem with the model in Fig. 2.7 is that it requires that the gain multiplying the velocity
equal T1, a totally unreasonable assumption. Furthermore, the oculomotor plants used in this section
do not realistically describe the actual muscle and eye ball system as will be demonstrated in the next
chapters on saccades. However, the actual oculomotor plant is not critical in modeling the smooth
pursuit system since the input is very slow as compared with the time it takes the natural response to
reach steady state. As we will see in Section 2.3.1, no loss in accuracy is observed by setting GP = 1.

2.2.2 A SIMPLE MODEL WITH A TRANSPORT DELAY
Now, we consider the case when a transport delay, or time delay is added to the system. Here, the
system’s closed-loop transfer function, GCL, is given by

GCL = Ė

Ṫ
= GCGP e−sT D

1 + GCGP e−sT D
. (2.16)

The time delay for the smooth pursuit system is 100-200 ms. The time delay introduces a phase lag
into the system without changing the magnitude of the closed-loop transfer function (no poles or
zeros are added).The addition of a time delay to a system can affect the stability of the system because
of the additional phase lag. To keep the system stable with a time delay and its commensurate phase
lag, the gain, GC, often needs to be reduced from values used in the previous section. As shown
before, reduction of the gain increases the REV of the response.

Consider the system shown in Fig. 2.1 with an underdamped oculomotor plant,T D = 0.007 s
and GC = K = 2. The response is shown in Fig. 2.10, which has large oscillations that occur in the
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Figure 2.10: Smooth pursuit response for the system with T D = 0.007 s and K = 2.
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beginning of the movement, but then it declines with time. If T D = 0.01 s with K = 2, the system
is unstable. The change in stability can also be appreciated by plotting a Bode or Nyquist plot.

With T D = 0.1 s as in the real smooth pursuit system, the largest value of K that results in
a stable system is K = 1. The simulation for this case is shown in Fig. 2.11.
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Figure 2.11: Smooth pursuit response for the system with T D = 0.1 s and K = 1.

As demonstrated, a system with a time delay and a 2nd order oculomotor plant cannot have
a REV close to zero since the large gain causes the negative feedback system to become unstable.
These features are present in the simple model presented here, which produce growing oscillations
unlike those seen in the data.

Suppose we replace GCGP with a gain element and integrator—the elements that result when
a position and velocity error are used with a 2nd order oculomotor plant. In this case, the smooth
pursuit system tracks the target quite well with a gain of 10 and a time delay of 0.1 s as shown in
Fig. 2.12. In Fig. 2.12 (Left), oscillations are observed in the natural response. In Fig. 2.12 (Right),
the tracking at steady-state still has the time delay between the input and the response, but the
magnitude is approximately the same. If the gain is increased to 20, the system is unstable.

A normal human is able to track with an overall gain close to 1 with no time delay following
predictable targets such as the sine wave used here. Humans are able to accurately track within
the first quarter of the initial sine wave target motion. Small damped oscillations of 2-4 Hz are
often observed at the beginning of the movement. Nonpredictable target motions are not tracked
by humans as accurately as predictable motions. Models of the form in Figures 2.1 and 2.7 cannot
account for normal smooth pursuit tracking with no time delay. As demonstrated next, there needs
to be a predictive property included in the model for it to behave like the real system.
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Figure 2.12: (Left) Smooth pursuit response with gain K = 10. Response to steady state illustrating the
transient response due to the oculomotor plant. (Right) Steady state response.

2.3 MORE COMPLEX MODELS OF THE SMOOTH PURSUIT
SYSTEM

Now, we will consider more complex models of the smooth pursuit system beginning with the
model shown in Fig. 2.13, loosely based on the one by Yasui and Young, 1975. The major difference
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Figure 2.13: Smooth pursuit model loosely based on the one by Yasui and Young, 1975.

between this model and the previous ones is the inclusion of an internal positive feedback loop,
called the efference loop, with G1

CG1
P . With the efference loop, the input to the system has been

modified from the REV to an internal representation within the brain that represents the motion
of the target. The element 1

sTf +1 is a filter. The thought is that the efference loop cancels the outer
visual feedback loop, and, therefore, the system operates in an open-loop mode and can operate with
higher gains. While this model is stable for larger gains than those in the previous section, it does
not eliminate the time delay in the response.

2.3.1 BAHILL MODEL
Bahill and coworkers introduced a target-selective adaptive control model of the human smooth
pursuit and saccadic eye movement system that produces accurate, zero-latency smooth pur-
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suit target tracking as observed in the data (Bahill and Hamm, 1989; Bahill and Harvey, 1986;
Bahill and McDonald, 1983). The overall model was a major step forward from previous models
since it includes a saccade branch, a predictor to reduce the time delay (called the target-selective
adaptive controller), and a smooth pursuit branch. This model is able to reproduce eye tracking data
that typically has saccades and smooth pursuit movements. Saccades usually occur at the beginning
of the movement, allowing the eyes to catch up with the target, and then the brain tracks the target
with the smooth pursuit system. Four models for the smooth pursuit system were considered: in-

tegrator
(

K
s

)
, a leaky integrator

(
K

τs+1

)
, a critically damped 2nd order system, and an overdamped

2nd order system. After analysis, the leaky integrator was selected as the best representative for the
smooth pursuit system.

The model for the overall system is shown in Fig. 2.14. There are three major components in

+
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1
K
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Integrator
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Figure 2.14: Target-selective adaptive control model primarily based on Bahill and coworkers.The input
is target position and the output is eye position. The smooth pursuit and saccade branches are enclosed
in the blue boxes.

the eye movement system: smooth pursuit system, saccade system and the target-selective adaptive
controller.The overall system operates with negative unity feedback.The input to the overall system
is target position and the output is eye position. The saccade branch corrects position errors and
the smooth pursuit branch corrects velocity errors, helped by the target-selective adaptive controller
that reduces time delay errors.

The original oculomotor plant,GP , was based on Bahill and coworkers 6th order linear home-
omorphic model (Bahill et al., 1980).This model produced accurate saccades, but it was judged more
complex than needed for smooth pursuit movements.They then adopted the 2nd order underdamped
oculomotor plant by Westheimer, which provided sufficiently accurate eye movements. The 6th or-
der GP required a pulse-step saccade generator output, and the 2nd order GP required a step saccade
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generator output. Here, we use an oculomotor plant, GP , set to 1 for simplicity and without any loss
in accuracy. The output of the saccade generator is the eye position error.

Saccade Branch The saccade branch consists of two elements: a saccade controller and a saccade
generator. The saccade controller monitors the error between target and eye position with a time
delay of 150 ms. When the target-selective adaptive controller is operational and the error exceeds
the threshold set at 0.5◦, the saccade controller sends a command to the saccade generator to execute
a saccade. In addition, when the target-selective adaptive controller is turned off and the error exceeds
the threshold set at 0.3◦, the saccade controller sends a command to the saccade generator to execute
a saccade.

Smooth Pursuit Branch The smooth pursuit system includes:

• One input that consists of a derivative to transform REP into REV, which is then limited to
eliminate tracking target velocities greater than 70◦s−1

• A second input which is the output of the target-selective adaptive controller, RC

• A leaky integrator with a time constant of τ

• A time delay

• A saturation element to eliminate eye velocities greater than 60◦s−1

• An integrator to transform the velocity signal into a position signal

The input to the smooth pursuit system is the perceived velocity, RJ , which consists of the
limited REV and the output of the target-selective adaptive controller, RC . RC allows the smooth
pursuit system to predict future target velocities from predictable target movements and to adjust for
the dynamics of the entire system. The target-selective adaptive controller has inputs of the target
position and the eye position.

Target-Selective Adaptive Controller The overall function of the target-selective adaptive con-
troller is to monitor position and velocity errors, and when detected, provide a signal that allows
the eyes to track the target without any time delay. Various thresholds are active in this unit. It only
operates when the target moves smoothly, that is, when there are no discontinuities, and between
frequencies 0.1 and 1 Hz. Frequencies below 0.1 Hz are considered stationary. When the target is
stationary for more than 50 ms and the position error is exceeds 0.3◦, or when the velocity error ex-
ceeds 3◦s−1, the output of the target-selective adaptive controller is zero. When the target-selective
adaptive controller is activated, it takes approximately one-quarter cycle of the target motion before
it is able to track with no time delay or velocity error.

The target-selective adaptive controller is able to track sinusoids, parabolic waveforms (i.e.,
one with constantly increasing velocities), and cubic waveforms by menu selection. The controller is
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also able to track using a 2nd order difference equation, however, with less accuracy as demonstrated
by Bahill and workers (not presented here).

The target-selective adaptive controller is able to interact with the two other branches as
indicated in Fig. 2.14 with the dashed lines. The saccade controller inhibits the target-selective
adaptive controller during a saccade, as well as the smooth pursuit branch. The target-selective
adaptive controller reduces the threshold of the saccade controller when the position error is less
than 0.3◦ and when the velocity error is less than 3◦s−1.

The output of the target-selective adaptive controller, Rc, is created using an internal model
of the target motion to predict future movements and eliminate the time delays between the target
movement and the eye movement.

To be able to predict the target behavior, the dynamics of the system must be incorporated
into Rc. Thus, when added to the target movement, the system is able to track without any delay.
That is, if Ṫ (t) is the current target velocity, then Rc must produce Ṫ (t + T D), where T D is the
time delay of the smooth pursuit system. The adaptive controller must also modify the previous Rc

to compensate for the system dynamics. For the leaky integrator used here,
(

K
τs+1

)
, Rc is modified

as

Rc(t) = 1

K

[
d

dt
τ Ṫ (t + T D) + Ṫ (t + T D)

]
(2.17)

that is, multiplying Ṫ (s) by the inverse of the leaky integrator, (τ s+1)

Ke−T Ds , to compensate for the system
dynamics.

As described previously, the target-selective adaptive controller is able to follow three different
waveforms. Here, we will only consider a target moving sinusoidally, Ṫ (t) = Aω cos(ωt) (i.e., target
position is A sin(ωt)). This target motion is substituted into Eq. (2.17) to give

Rc(t) = Aω

K
[cos (ω (t + T D)) − τω sin (ω (t + T D))] . (2.18)

The target-selective adaptive controller estimates A, ω, K, T D and τ through a neural network
in the brain.

OPEN-LOOP EXPERIMENTS
The smooth pursuit system is a closed-loop system given by Eq. (2.1). If the open-loop gain, GC ,
is quite large, then the closed-loop is approximately 1. Negative feedback tends to hide the forward
path making it is difficult to study its dynamics, i.e., GCGP . By opening the feedback loop, as in
Fig. 2.15, one can study the internal workings of the system to more thoroughly investigate GCGP

without feedback. The open-loop transfer function is GOL = Ė

Ṫ
= e−T DsGCGP . Keep in mind

that when a loop is opened, the system no longer behaves normally and unusual behavior can result;
for instance, if the forward path included an integrator and the input was a step, the system would
respond with a ramp until it saturated.

Ideally, a loop can be opened by cutting the connection to the summer as depicted in Fig. 2.15.
In animal studies, opening the loop can be carried out by lesion or freezing the tissue. In humans,
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Figure 2.15: A closed-loop smooth pursuit system with the feedback loop opened at point A.

we typically trick the brain into seeing the system as opened. One simple technique for opening
the loop for the smooth pursuit system is to have a subject tracking a sinusoidally moving target by
increasing the target movement by the amount of movement by the eyes. This can be done with
electronics controlling the target movement via software and using the recorded eye movement
position. Thus, the eyes never catch up to the target, and, artificially, we have opened the loop.
Bahill and Hamm identified some issues with this approach from subject to subject, as some subjects
turned off their saccade system, others turned off the target-selective adaptive controller, some
turned off both, and others kept both in place, giving rise to unevenness among reports in the
literature (Bahill and Hamm, 1989).

Bahill and coworkers were able to focus on just the smooth pursuit branch by careful experi-
mental design. By keeping the head stationary, the vestibulo-ocular movement was eliminated, and
by keeping the target a fixed distance from the subject, the vergence movement was eliminated.They
eliminated the target-selective adaptive controller by using unpredictable target movements and an-
alyzing the first few seconds of the movement. A unique target waveform was used to eliminate
saccades, and the speed of the target movement eliminated the limiter and the saturation element.

DATA, PARAMETER ESTIMATION AND THE SMOOTH PURSUIT MODEL
Data were collected on the time delays for the saccadic branch and smooth pursuit branch, eye and
target velocity and the rise-time for the open- and closed-loop experiments. From this analysis, a
final smooth pursuit model was determined.

To collect data for the saccade branch, the target movement consists of a series of step dis-
placements, which did not elicit a smooth pursuit movement. From these movements, the time delay
for the saccade branch was calculated as approximately 200 ms.

The time delay for smooth pursuit branch was calculated using sine waves and step-ramps,
while keeping the loop closed. The transport delay for the sine waves was 176 ms and for the
step-ramps 171 ms.

To determine the gain of the controller, Gc, the ratio of Ė

Ṫ
was calculated from the open-loop

experiment with sine waves and ramps as the input. The gains obtained averaged 3.11 for the sine
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wave inputs and 1.61 for the ramp inputs. It was felt that the gain from the sine wave input was less
reliable because of quick adaptation by the subjects. The closed-loop gain for the step-ramp input
averaged 2.35.

Rise-Time Estimates Next, the rise-time is used to estimate the time constant in the leaky
integrator in both the closed-loop and open-loop experiments. In this analysis, we ignore the
time delays since they are easily removed and simplifies the analysis. Thus, the forward path is
GCGP = K

τs+1 , since GP = 1.
The closed-loop transfer function is

Ė

Ṫ
= GCGP

1 + GCGP

=
K

τs+1

1 + K
τs+1

= K

τs + 1 + K
. (2.19)

With a step velocity input (a ramp displacement), Ṫ = 1
s
, Eq. (2.19) is now written as

Ė = K

s (τs + 1 + K)
(2.20)

which has a solution

ė(t) = K

K + 1

(
1 − e− (K+1)t

τ

)
= K

K + 1

(
1 − e

− t
τCL

)
. (2.21)

The ratio of steady-state eye velocity to target velocity from human data equals 0.67, which,
from Eq. (2.21) gives K

K+1 = 0.67 and K = 2.3. The rise-time, TRT , is a function of the time
constant of the system, τCL. Note that the rise-time is defined as the time it takes to go from 10% to
90% of steady state. Steady-state is K

K+1 = 0.67. In general, the time it takes to get to 0.9 of steady
state, t0.9, is 2.3τCL, that is

0.9
K

K + 1
= K

K + 1

(
1 − e

− t0.9
τCL

)
(2.22)

which simplifies to ln(0.1) = − t0.9
τCL

, or t0.9 = 2.3τCL = 2.3 τ
K+1 . Next, we find the time it takes to

get to 0.1 of steady state, which can be shown equal to 0.1τCL. Thus, the rise-time is

TRT = 2.2τCL = 2.2
τ

K + 1
. (2.23)

With TRT = 0.096 and K = 2.3, we have τ = (1+K)TRT

2.2 = 142 ms.
The open-loop transfer function is

Ė

Ṫ
= K

τs + 1
. (2.24)

With a step velocity input, Ṫ = 1
s
, and Eq. (2.24) is now

Ė = K

s (τs + 1)
(2.25)
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which has a solution
ė(t) = K

(
1 − e− t

τ

)
. (2.26)

The ratio of steady-state eye velocity to target velocity from human data equals 1.61. The rise-time
here equals TRT = 2.2τ, or τ = TRT

2.2 = 0.182
2.2 = 83 ms.

The final smooth pursuit model based on the previous results is given as

GC = 2e−0.15s

0.13s + 1
. (2.27)

The saccade branch includes a time delay of 0.15 s, a sample and hold element set at 0.15 s, and a
threshold detector to prevent a saccade occurring if the retinal error is less than 0.5 degrees.

Shown in Fig.2.16 is the Simulink model of the target-selective adaptive controller for smooth
pursuit and saccadic eye movements. The target position input is 3 sin (1.885t), and parameters
are given as previously described. Shown in Fig. 2.17 are the position and velocity response to a
sinusoidally moving target. Notice that it takes less than a period for the system to adequately track
the target with virtually zero error. A few saccades occur early in the movement as seen in Fig. 2.17
(Top). Without the target-selective adaptive controller, the system is no longer able to track with
zero latency, and saccades occur throughout the simulation.
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Figure 2.17: Graphs of the smooth pursuit response to a sinusoidal target obtained from Simulink
simulations for the target-selective adaptive controller model of the smooth pursuit system. (Top) Smooth
pursuit position response (red line) to a sinusoidally moving target (blue line). (Bottom) Smooth pursuit
velocity response (red line) to a sinusoidally moving target (blue line).





31

C H A P T E R 3

Early Models of the Horizontal
Saccadic Eye Movement System

3.1 INTRODUCTION

The oculomotor plant and saccade generator are the basic elements of the saccadic system. The
oculomotor plant consists of three muscle pairs and the eyeball. These three muscle pairs contract
and lengthen to move the eye in horizontal, vertical, and torsional directions. Each pair of muscles
acts in an antagonistic fashion due to reciprocal innervation by the saccade generator. For simplicity,
the models described here involve only horizontal eye movements and one pair of muscles, the lateral
and medial rectus muscle.We call these muscles antagonistic pairs because their activity opposes each
other, a principle known as reciprocal innervation as described originally by Descartes, R. (1664).
Most of the advances seen in models of the saccadic eye movement system involve more complete
models of the oculomotor muscles and the neural network controlling these movements.

Four types of models are typically used to describe muscles: nonlinear models that incorporate
the fundamental relationships of Hill, cross-bridge models, anatomical models, and linear and piece-
wise linear models. Of the four, the linear muscle models prove to be the most popular in systems
applications because of their relative mathematical ease in analysis and simplicity. In the past, linear
muscle models, and linear oculomotor muscle models in particular, have been criticized for their
failure to successfully account for the nonlinear interpretations of experimental evidence. The other
model types are generally not used in oculomotor systems applications because of their complexity,
except for the nonlinear homeomorphic model by Hsu and coworkers Hsu et al. (1976).Today, there
exists a linear homeomorphic muscle model that has the nonlinear properties of muscle, which will
be described later.

The development of the material in this chapter is historical, beginning with the earliest
models to the more homeomorphic models of today. Before the development of mathematical
models, mechanical models of the oculomotor system were created to describe the system. Two
illustrations of these models are presented in Fig. 3.1.

3.2 WESTHEIMER SACCADIC EYE MOVEMENT MODEL

The first quantitative saccadic eye movement model was published by Westheimer in 1954. In this
model, he simulated horizontal saccades in response to a 20◦ target displacement. A mechanical



32 3. EARLY MODELS OF THE HORIZONTAL SACCADIC EYE MOVEMENT SYSTEM

Figure 3.1: The mechanical model by Wundt on the left was used to demonstrate the six muscles of
the oculomotor plant, represented as cords, that move the eyeball. The oculomotor model on the right
was used to demonstrate the complete eye movement system consisting of the two eyeballs driven by
three pairs of muscles each. Illustration adapted from Zimmermann, E. (1903). XVIII. Preis-Liste über
psychologische und psychologische Apparate.

description of the model is given in Fig. 3.2, and a system description in Eq. (3.1).

J θ̈ + Bθ̇ + Kθ = τ(t) . (3.1)

To analyze the characteristics of this model and compare it to data, Laplace variable analysis
is used. Assuming zero initial conditions, the Laplace transform of Eq. (3.1) yields

θ
(
s2J + sB + K

)
= τ (s) (3.2)

and as a transfer function in standard form

H (s) = θ

τ
= 1

s2J + sB + K
=

ω2
n

K

s2 + 2ζωns + ω2
n

(3.3)

where according to Westheimer’s data for a 20◦ saccade, ωn =
√

K
J

= 120 and ζ = B

2
√

KJ
= 0.7.

According to the data, the roots are complex and given by s1,2 = −ζωn ± jωn

√
1 − ζ 2 = −84 ±

j85.7. The input to this system is a step input τ(s) = γ
s
, where γ is the magnitude of the step

input. The response is given by θ(s) = H(s)τ(s) or

θ (s) = γ
ω2

n

K

s
(
s2 + 2ζωns + ω2

n

) . (3.4)
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K

B
J

r

0
 

Figure 3.2: A diagram illustrating Westheimer’s second-order model of the saccade system.The param-
eters J , B, and K are rotational elements for moment of inertia, friction, and stiffness, respectively, and
represent the eyeball and its associated viscoelasticity. The torque applied to the eyeball by the lateral and
medial rectus muscles is given by τ(t), and θ is the angular eye position. The radius of the eyeball is r .

Equation (3.4) can be expanded via partial fraction expansion to yield

θ(s) =
γ
K

s
+

γ

2K
[
(ζ 2−1)−jζ

√
1−ζ 2

]
(
s + ζωn − jωn

√
1 − ζ 2

) +
γ

2K
[
(ζ 2−1)+jζ

√
1−ζ 2

]
(
s + ζωn + jωn

√
1 − ζ 2

) (3.5)

where the magnitude numerator of the complex terms is

M =
∣∣∣∣∣∣

γ

2K
[(

ζ 2 − 1
) − jζ

√
1 − ζ 2

]
∣∣∣∣∣∣ = γ

2K
{(

ζ 2 − 1
)2 + ζ 2

(
1 − ζ 2

)} 1
2

= γ

2K
(
1 − ζ 2

) 1
2

and phase angle is

φ = tan−1 −ζ
√

1 − ζ 2(
ζ 2 − 1

) = tan−1 −ζ
√

1 − ζ 2

−
(√

1 − ζ 2
)2

= tan−1 −ζ

−√
1 − ζ 2

.

The solution to Eq. (3.5) in the time domain is given by

θ (t) = γ

K

[
1 + e−ζωnt√

1 − ζ 2
cos

(
ωn

√
1 − ζ 2t + ψ

)]
(3.6)
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where ψ = π + tan−1 −ζ√
1−ζ 2

.

To fully explore the quality of a model, it is necessary to compare its performance against
the data. For a saccade, convenient metrics are time to peak overshoot, which gives an indication of
saccade duration, and peak velocity.These metrics were discussed previously when the main sequence
diagram was described in Section 1.2.

3.2.1 WESTHEIMER’S TIME TO PEAK OVERSHOOT
Next, we wish to solve for time to peak overshoot, Tp, which is important if we want to estimate the
parameters of the model. It should be clear that for the Westheimer model, Tp does not change as a
function of the input magnitude since the system is linear (i.e., Tp equals a constant for all saccades).
The time to peak overshoot is found from

∂θ

∂t
= ∂

∂t

[
γ

K

(
1 + e−ζωnt√

1 − ζ 2
cos

(
ωn

√
1 − ζ 2t + ψ

))]∣∣∣∣∣
t=Tp

= 0 . (3.7)

Using the chain rule to evaluate Eq. (3.7) and substituting t = Tp, yields

γ

K
√

1 − ζ 2

[−ζωn cos(ωdTp + ψ)e−ζωnt − ωde−ζωnt sin(ωdTp + ψ)
] = 0 . (3.8)

Equation (3.8) is rewritten as

−ζ cos(ωdTp + ψ) =
√

1 − ζ 2 sin(ωdTp + ψ)

which yields

tan(ωdTp + ψ) = −ζ√
1 − ζ 2

= tan ψ . (3.9)

Equation (3.9) is true whenever ωdTp = nπ . The time to peak amplitude is the smallest value
that satisfies Eq. (3.9), which is n = 1. Thus, Tp = π

ωd
= π

ωn

√
1−ζ 2

. To determine θ(Tp), note that

ωdt + ψ = π + ψ , and

θ(Tp) = γ

K

⎡
⎣1 + e

−ζπ√
1−ζ2√

1 − ζ 2
cos(π + ψ)

⎤
⎦

= γ

K

⎡
⎣1 + e

− ζπ√
1−ζ2√

1 − ζ 2
×

√
1 − ζ 2

⎤
⎦ (3.10)

= γ

K

(
1 + e

−πζ√
1−ζ2

)
.
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With Westheimer’s constants of ζ = 0.7 and ωn120,we find that Tp = π

120×
√

1−0.72
= 37 ms.

Tp in the Westheimer model is independent of saccade size and not in agreement with experimental
data presented in the main sequence diagram.The data shows a saccade duration that increases with
amplitude, where this model has a constant duration.

3.2.2 WESTHEIMERS MAXIMUM VELOCITY
An important aid in examining the suitability of a model is to study the model predictions and
data estimates of higher order derivatives. If there are problems with the model, these problems are
amplified when comparing estimates of the higher order derivatives with model predictions. For the
Westheimer model, maximum velocity is found from

∂2θ

∂t2

∣∣∣∣
t=Tmv

= 0 (3.11)

where Tmv is the time at peak velocity. Substituting the solution given by Eq. (3.6) into Eq. (3.11)
yields:

∂2θ

∂t2
= ∂

∂t

[
−γ

K

e−ζωnt√
1 − ζ 2

(
ζωn cos(ωdt + ψ) + ωd sin(ωdt + ψ)

)]

= −γ

K
√

1 − ζ 2

[−ζωne
−ζωnt (ζωn cos(ωdt + ψ) + ωd sin(ωdt + ψ)) (3.12)

+e−ζωnt
( − ζωnωd sin(ωdt + ψ) + ω2

d cos(ωdt + ψ)
)] = 0 .

The terms multiplying the sinusoids in Eq. (3.12) are removed since they do not equal zero.Therefore,

(
ω2

d − ζ 2)ω2
n cos(ωdt + ψ) − 2ζωnωd sin(ωdt + ψ) = 0

which reduces to
ω2

d − ζ 2ω2
n

2ζωnωd

= sin(ωdt + ψ)

cos(ωdt + ψ)
= tan(ωdt + ψ) . (3.13)

Substituting ωd = ωn (1 − ζ 2) into Eq. (3.13), we have

ω2
n

(
1 − ζ 2

) − ζ 2ω2
n

2ζωnωn

(
1 − ζ 2

) = 1 − 2ζ 2

2ζ
√

1 − ζ 2
= tan(ωdt + ψ) . (3.14)

With tan ψ = −ζ√
1−ζ 2

, we factor out −ζ√
1−ζ 2

in Eq. (3.14), substitute tan ψ , giving

1 − 2ζ 2

2ζ
√

1 − ζ 2
= −ζ√

1 − ζ 2

(
1 − 1

2ζ 2

)
=

(
1 − 1

2ζ 2

)
tan ψ = tan(ωdt + ψ) . (3.15)



36 3. EARLY MODELS OF THE HORIZONTAL SACCADIC EYE MOVEMENT SYSTEM

Now
tan(ωdt + ψ) = tan(ωdt) + tan ψ

1 − tan(ωdt) tan ψ
(3.16)

and
tan φ = tan ψ .

Substituting for tan(ωdt + ψ) from Eq. (3.16) into Eq. (3.15) gives(
1 − 1

2ζ 2

)
tan ψ = tan(ωdt) + tan ψ

1 − tan(ωdt) tan ψ
. (3.17)

Multiplying both sides of Eq. (3.17) by (1 − tan(ωdt) tan ψ) gives(
1 − 1

2ζ 2

)
tan ψ −

(
1 − 1

2ζ 2

)
tan(ωdt) tan ψ2 = tan(ωdt) + tan ψ . (3.18)

Collecting like terms in Eq. (3.18) gives

tan(ωdt)

(
1 + tan ψ2

(
1 − 1

2ζ 2

))
= − tan ψ

2ζ 2
. (3.19)

Dividing both sides of Eq. (3.19) by the term multiplying tan(ωdt) gives

tan(ωdt) = − tan ψ

2ζ 2
(

1 + tan ψ2
(

2ζ 2−1
2ζ 2

)) = − tan ψ

2ζ 2 + tan ψ2 2ζ 2 − 1
. (3.20)

With tan ψ = tan φ = −ζ√
1−ζ 2

, we have

tan(ωdt) =
ζ√

1−ζ 2

2ζ 2 + ζ 2

1−ζ 2 2ζ 2 − 1
=

ζ√
1−ζ 2

ζ 2
(

2 + 2ζ 2−1
1−ζ 2

) =
(

1 − ζ 2

1 − ζ 2

) ζ√
1−ζ 2

ζ 2
(

2 + 2ζ 2−1
1−ζ 2

)
=

√
1 − ζ 2

ζ 21 − ζ 2 + 2ζ 2 − 1
=

√
1 − ζ 2

ζ
.

(3.21)

Taking the inverse tangent of the previous equation gives Tmv = 1
ωd

tan−1
(√

1−ζ 2

ζ

)
. θ̇ (Tmv) can be

evaluated using these values for Tmv .
Westheimer noted the differences between saccade duration-saccade magnitude and peak

velocity-saccade magnitude in the model and the experimental data and inferred that the saccade
system was not linear because the peak velocity-saccade magnitude plot was nonlinear. He also
noted that the input was not an abrupt step function. Overall, this model provided a satisfactory
fit to the eye position data for a saccade of 20◦, but it was not for saccades of other magnitudes.
Interestingly, Westheimer’s second-order model proves to be an adequate model for saccades of all
sizes if a different input function, as described in the next section, is assumed. Due to its simplicity,
the Westheimer model of the oculomotor plant is still popular today as evidenced by its use in
Chapter 2.
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3.3 ROBINSON MODEL SACCADIC EYE MOVEMENT
MODEL

One of the challenges in modeling physiological systems is the lack of data or information about
the input to the system. For instance, in the fast eye movement system the input is the neurological
signal from the CNS to the muscles connected to the eyeball. Information about the input is not
available in this system since it involves thousands of neurons firing at a very high rate. Recording
the signal would involve invasive surgery and instrumentation that was not available in the 1960’s.
Often times, however, it is possible to obtain information about the input via indirect means as
described in this section.

In 1964, Robinson performed an experiment in an attempt to measure the input to the eyeballs
during a saccade. To record the input, one eye was held fixed using a suction contact lens, while the
other eye performed a saccade from target to target. Since the same innervation signal is sent to both
eyes during a saccade, Robinson inferred that the input, recorded through the transducer attached
to the fixed eyeball, was the same input driving the other eyeball. He proposed that muscle tension
driving the eyeballs during a saccade are a pulse plus a step, or simply, a pulse-step input (Fig. 3.3).
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Figure 3.3: Diagram illustrating the muscle tension recorded during a saccade.

Today, microelectrode studies are carried out to record the electrical activity in oculomotor
neurons in monkeys. Figure 3.4 illustrates a micropipette being used to record the activity in the
oculomotor nucleus, an important neuron population responsible for driving a saccade. Additional
experiments on oculomotor muscle have been carried out to learn more about the saccade controller
since Robinson’s initial study. For instance in 1975, Collins and his co-workers reported using a
miniature “C” gauge force transducer to measure muscle tension in vivo at the muscle tendon during
unrestrained human eye movements. This type of study has allowed a better understanding of the
tensions exerted by each muscle, rather than the combined effect of both muscles as shown in Fig.3.3.

It is important to distinguish between the tension or force generated by a muscle, called muscle
tension, and the force generator within the muscle, called the active-state tension generator. The
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Figure 3.4: Diagram of recording of a series of saccades using a micropipette and the resultant electrical
activity in a single neuron.Spikes in the membrane potential indicate an action potential occurred.Saccade
neural activity initiates with a burst of neural firing approximately 5 ms before the eye begins to move
and continues until the eye has almost reached its destination. Relative position of the eye is shown at the
top with angles θo through θ3. Initially, the eye starts in position θo, a position in the extremity in which
the muscle is completely stretched with zero input. To move the eye from θo to θ1, neural burst firing
occurs. To maintain the eye at θ1, a steady firing occurs in the neuron. The firing rate for fixation is in
proportion to the shortness of the muscle. Next, the eye moves from θ1 to θ2. This saccade moves much
more slowly than the first saccade with approximately the same duration as the first. The firing level is
also approximately at the same level as the first. The difference in input corresponds to fewer neurons
firing to drive the eye to its destination, which means a smaller input than the first saccade. Because the
muscle is shorter after completing this saccade, the fixation firing rate is higher than the previous position
at θ1. Next, the eye moves in the opposite direction to θ3. Since the muscle is lengthening, the input to
the muscle is zero, that is, no action potentials are used to stimulate the muscle. The fixation firing level
θ3 is less than that for θ1 because the muscle is longer.
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active-state tension generator creates a force within the muscle that is transformed through the
internal elements of the muscle into the muscle tension. Muscle tension is external and measurable.
Active-state tension is internal and not measurable. Active-state tension follows most closely the
neural input to the muscle. From Fig. 3.4, a pattern of neural activity is observed as follows:

1. The muscle that is being contracted (agonist) is stimulated by a pulse, followed by a step to
maintain the eyeball at its destination.

2. The muscle that is being stretched (antagonist), is unstimulated during the saccade (stimulated
by a pause or a negative pulse to zero), followed by a step to maintain the eyeball at its
destination.

Figure 3.5 quantifies these relationships for the agonist neural input, Nag , and the antagonist
neural input, Nant .The pulse input is required to get the eye to the target as soon as possible, and the
step is required to keep the eye at that location. It has been reported that the active-state tensions are
not identical to the neural controllers but are described by low-pass filtered pulse-step waveforms.
The active-state tensions are shown in Fig. 3.5 as blue lines with time varying time constants τac and
τde. It is thought that the low pass filtering involves the movement of Ca++ across the cell membrane.
Some investigators have reported a different set of time constants for the agonist and antagonist
activity, and others have noted a firing frequency dependent agonist activation time constant. Others
suggest that the agonist activation time constant is a function of saccade magnitude. For simplicity in
this chapter, activation and deactivation time constants are assumed to be identical for both agonist
and antagonist activity. The parameters are defined as follows:

Fgo is the initial agonist active state tension before the saccade starts
FP is the maximum agonist active state tension
Fgs is the steady-state agonist active state tension after the saccade ends
Fto is the initial antagonist active state tension before the saccade starts
Fts is the steady-state antagonist active state tension after the saccade ends
Generally, the pulse is used to get the eyeball to the target quickly, and the step is required to

keep the eye at that location. The same innervation signal is sent to both eyes, and as a result, they
move together. We call this a conjugate eye movement.

In 1964, Robinson described a model for fast eye movements (constructed from empirical
considerations) which simulated saccades over a range of 5◦ to 40◦ by changing the amplitude of
the pulse-step input. These simulation results were adequate for the position–time relationship of a
saccade, but the velocity–time relationship was inconsistent with physiological evidence. To correct
this deficiency of the model, physiological and modeling studies of the oculomotor plant were carried
out during the 1960s through the present that allowed the development of a more homeomorphic
oculomotor plant. Essential to this work was the construction of oculomotor muscle models. Some
of these details are presented in the next section.
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Figure 3.5: Agonist, Nag , and antagonist, Nant , control signals (red lines) and the agonist, Fag , and
antagonist, Fant , active-state tensions (blue lines). Note that the time constant for activation, τac, is
different from the time constant for deactivation, τde. The time interval, t1, is the duration of the pulse.

3.4 DEVELOPMENT OF AN OCULOMOTOR MUSCLE
MODEL AND THE OCULOMOTOR PLANT

It is clear that an accurate model of muscle is essential for the development of a model of the
horizontal fast eye movement system that is driven by a pair of muscles (lateral and medial rectus
muscles). In fact, the Westheimer model does not include any muscle model and relies solely on the
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inertia of the eyeball, friction between the eyeball and socket, and elasticity due to the optic nerve
and other attachments as the elements of the model. In this section, the historical development of
a muscle model is discussed as it relates to the oculomotor system. Muscle model research involves
a broad spectrum of topics, ranging from the micro models that deal with the sarcomeres to macro
models, in which collections of cells are grouped into a lumped parameter system and described with
ordinary mechanical elements. Here the focus is on a macro model of the oculomotor muscle based
on physiological evidence from experimental testing. The model elements, as presented, consist of
an active state tension generator (input), elastic elements and viscous elements. Each element is
introduced separately and the muscle model is incremented in each subsection. It should be noted
that the linear muscle model presented at the end of this section completely revises the subsections
before it. The earlier subsections were presented because of their historical significance and to
appreciate the current muscle model.

In the last chapter, an accurate oculomotor plant model was not needed since we were focusing
on the smooth pursuit system, whose movement is very slow compared to the dynamics of the
oculomotor plant. In this chapter, we are focusing on the saccadic system that is directly related to
the oculomotor plant dynamics and is of fundamental importance to understanding this system. For
this reason, we are interested in creating a very accurate model of muscle that is homeomorphic with
the real system as much as possible.

3.4.1 MUSCLE MODEL PASSIVE ELASTICITY
Consider the experiment of stretching an unexcited muscle and recording tension to investigate the
passive elastic properties of muscle. The data curve shown in Fig. 3.6 is a typical recording of the
tension observed in an eye rectus muscle. The tension required to stretch a muscle is a nonlinear
function of distance. Thus, in order to precisely model this element, a nonlinear spring element
should be used. Note that the change in length at 0 refers to the length of the muscle at primary
position (looking straight ahead). Thus, the eye muscles are stretched, approximately 3 mm, when
the eye movement system is at rest in primary position. At rest, the muscle length is approximately
37 mm.

To be useful in a linear model of muscle, Fig. 3.6 must be linearized in the vicinity of an
operating point.The operating point should be somewhat centered in the region in which the spring
operates. In Fig. 3.6, a line tangent to the curve at primary position provides a linear approximation to
the spring’s behavior in this region as done historically.For ease in analysis, the following relationships
hold for a sphere representing the eyeball radius of 11 mm.

1 g = 9.806 × 10−3 N
1◦ = 0.192 mm = 1.92 × 10−4 m

The slope of the line, Kpe, is approximately

Kpe = 0.2
g
◦ = 0.2

g
◦ × 9.806 × 10−3 N

1 g
× 1◦

1.92 × 10−4
= 10.2

N

m
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Figure 3.6: Diagram illustrating the tension-displacement curve for unexcited muscle. The slope of the
linear approximation to the data is muscle passive elasticity, Kpe.

and represents the elasticity of the passive elastic element.
The choice of the operating region is of vital importance concerning the slope of the curve.

At this time, a point in the historical operating region of rectus muscle is used. In most of the
oculomotor literature, the term Kpe is typically subtracted out of the analysis and is not used. The
operating point will be revisited in Chapter 5 and this element will be completely removed from the
model.

3.4.2 ACTIVE STATE TENSION GENERATOR
In general, a muscle produces a force in proportion to the amount of stimulation. The element
responsible for the creation of force is the active state tension generator. Note that this terminology
is used so that there is no confusion with the force created within the muscle when the tension
created by the muscle is discussed. The active tension generator is included along with the passive
elastic element in the muscle model as shown in Fig. 3.7.The relationship between tension, T , active
state tension, F , and elasticity is given by

T = F − Kpex . (3.22)

Isometric (constant length) experiments have been performed on humans over the years to esti-
mate the active tension generator at different levels of stimulation. These experiments were usually
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Figure 3.7: Diagram illustrating a muscle model consisting of an active state tension generator, F , and
a passive elastic element, Kpe. Upon stimulation of the active state tension generator, a tension, T , is
exerted by the muscle.
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Figure 3.8: Length-tension curves for lateral rectus muscle at different levels of activation. Dots rep-
resent tension data recorded from the detached lateral rectus muscle during strabismus surgery while
the unoperated eyeball fixated at targets from −45◦ to 45◦. Adapted from: Collins et al., 1975. Muscle
tension during unrestrained human eye movements. J. Physiol., 245: 351.
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performed in conjunction with strabismus surgery when muscles were detached and reattached to
correct crossed eyes. Consider the tension created by a muscle when stimulated as a function of
length as shown in Fig. 3.8.The data were collected from the lateral rectus muscle that was detached
from one eyeball while the other unoperated eyeball fixated at different locations in the nasal (N) and
temporal (T) directions from –45◦ to 45◦. This experiment was carried out under the assumption
that the same neural input is sent to each eyeball (Hering’s Law of equal innervation), thus the active
state tension in the freely moving eyeball should be the same as that in the detached lateral rectus
muscle. At each fixation point, the detached lateral rectus muscle was stretched and tension data
was recorded at each of the points indicated on the graph. The thick red line represents the muscle
tension at that particular eye position under normal conditions. The curve for 45◦ T is the zero
stimulation case and represents the passive mechanical properties of muscle. Note that the tension
generated is a nonlinear function of the length of the muscle.

To compare the model in Fig. 3.7 against the data in Fig. 3.8, it is convenient to subtract the
passive elasticity in the data (represented by the 45◦ T curve) from each of the data curves 30◦ T
through 45◦ N, leaving only the hypothetical active state tension. Shown in the graph on the left
in Fig. 3.9 is one such calculation for 15◦ N with the active state tension given by the dashed line.
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Figure 3.9: On left: length-tension curves for extraocular muscle at two levels of activation corresponding
to the 15◦ N and 45◦ T positions. The red line represents tension data recorded from the detached lateral
rectus muscle during strabismus surgery while the unoperated eyeball fixated at targets. Blue line is the
15◦ curve with the 45◦ curve (green line) subtracted from it.The resultant blue curve represents the active
state tension as a function of eye position. On right: the theoretical graph for active state tension vs. eye
position as given by Eq. (3.22). Adapted from: Collins et al., 1975. Muscle tension during unrestrained
human eye movements. J. Physiol., 245: 351.
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The other curves in Fig. 3.8 give similar results and have been omitted because of the clutter. The
blue line should represent the active state tension, which appears to be a function of length. If this
was a pure active state tension element, the subtracted curve should be a horizontal line indicative of
the size of the input. One such input is shown for the active state tension in the graph on the right
in Fig. 3.9. The result in Fig. 3.9 implies that either the active state tension’s effect is a nonlinear
element, i.e., there may be other nonlinear or linear elements missing in the model, or, perhaps, some
of the assumptions made in the development of the model are wrong. For the moment, consider
that the analysis is correct and assume that some elements are missing. This topic will be revisited
at the end of this chapter.

3.4.3 ELASTICITY
The normal operating point (at primary position), Lp, is much shorter than the length at which
maximum force occurs at approximately 30◦.Even when the effects of the passive muscle are removed,
a relationship between length and tension is still evident, as previously described. Let us introduce
a new elastic element into the model to account for the relationship between length and tension as
shown in Fig. 3.10, which is described by the following equation.

T = F − Kpex − Kx . (3.23)

Kpe F

T

x

K

Figure 3.10: Diagram illustrating a muscle model consisting of an active state tension generator F ,
passive elastic element,Kpe, and elastic element,K .Upon stimulation of the active state tension generator,
a tension T is exerted by the muscle.

The new elastic element, K , accounts for the slope of the subtracted curve shown with in blue
in the graph on the left in Fig. 3.9. The slope of the line, K , at primary position, is approximately
0.8 g/◦ = 40.86 N/m (a value typically reported in the literature). The slope for each of the curves
in Fig. 3.8 can be calculated in the same manner at primary position with the resultant slopes
all approximately equal to the same value as the one for 15◦ N. At this time, the introduction of
additional experiments will provide further insight to the development of the muscle model.
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SERIES ELASTIC ELEMENT
Experiments carried out by Levin and Wyman in 1927, and Collins in 1975 indicated the need for a
series elasticity element, in addition to the other elements previously presented in the muscle model.
The experimental setup and typical data from the experiment are shown in Fig. 3.11. The protocol
for this experiment, called the quick release experiment, is as follows. (1) A weight is hung onto the

Weight

Muscle

Muscle Length

Time
t2t1

Figure 3.11: Diagram illustrating the quick release experiment. Figure on left depicts the physical setup
of the experiment. Figure on the right shows typical data from the experiment. At time t1 the muscle is
fully stimulated and at time t2 the weight is released.

muscle. (2) The muscle is fully stimulated at time t1. (3) The weight is released at time t2. At time
t2, the muscle changes length almost instantaneously when the weight is released. The only element
that can instantaneously change its length is a spring. Thus, to account for this behavior, a spring,
called the series elastic element, Kse, is connected in series to the active state tension element. While
some investigators argue that this element is nonlinear, we will assume that it is linear for simplicity.
The updated muscle model is shown in Fig. 3.12.

Based on the experiment carried out by Collins, C. (1975) on rectus eye muscle, an estimate
for Kse was given as 125 N/m (2.5 gm/◦). Since the value of Kse does not equal the value of K ,
another elastic element is needed to account for this behavior.

LENGTH TENSION ELASTIC ELEMENT
Given the inequality between Kse and K , another elastic element, called the length-tension elastic
element, Klt , is placed in parallel with the active state tension element as shown in the illustration
on the left in Fig. 3.13. For ease of analysis, Kpe is subtracted out (removed) using the graphical
technique shown in Fig. 3.9. To estimate a value for Klt , the muscle model shown on the right in
Fig. 3.13 is analyzed and reduced to an expression involving Klt . Analysis begins by summing the
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Figure 3.12: Diagram illustrating a muscle model consisting of an active state tension generator F ,
passive elastic element Kpe, and series elastic element Kse. Upon stimulation of the active state tension
generator F , a tension T is exerted by the muscle.

forces acting on nodes 1 and 2.

T = Kse (x2 − x1) (3.24)

F = Kltx2 + Kse (x2 − x1) → x2 = F + Ksex1

Kse + Klt

. (3.25)

Substituting x2 from Eq. (3.25) into (3.24) gives

T = Kse

Kse + Klt

(F + Ksex1) − Ksex1 = Kse

Kse + Klt

F − KseKlt

Kse + Klt

x1 . (3.26)

Equation (3.26) is an equation for a straight line with y-intercept Kse

Kse+Klt
F and slope KseKlt

Kse+Klt
. The

slope of the length-tension curve in Fig. 3.9 is given by K = 0.8 g/◦ = 40.86 N/m. Therefore,

K = KseKlt

Kse + Klt

= 40.86
N

m
. (3.27)

Solving Eq. (3.27) for Klt yields

Klt = KseK

Kse − K
= 60.7

N

m
. (3.28)

3.4.4 FORCE-VELOCITY RELATIONSHIP
Early experiments indicated that muscle had elastic as well as viscous properties. Muscle was tested
under isotonic (constant force) experimental conditions as shown in Fig. 3.14 to investigate muscle
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Figure 3.13: Diagram on left illustrates a muscle model consisting of an active state tension generator F

in parallel to a length-tension elastic element Klt , connected to a series elastic element Kse, all in parallel
with the passive elastic element Kpe. Upon stimulation of the active state tension generator F , a tension
T is exerted by the muscle. The diagram on the right is the same muscle model except that Kpe has been
removed.

viscosity. The muscle and load were attached to a lever with a high lever ratio. The lever reduced the
gravity force (mass × gravity) of the load at the muscle by one over the lever ratio, and the inertial
force (mass × acceleration) of the load by one over the lever ratio squared. With this arrangement, it
was assumed that the inertial force exerted by the load during isotonic shortening could be ignored.
The second assumption was that if mass was not reduced enough by the lever ratio (enough to be
ignored), then taking measurements at maximum velocity provided a measurement at a time when
acceleration is zero, and, therefore, inertial force equals zero. If these two assumptions are valid, then
the experiment would provide data free of the effect of inertial force as the gravity force is varied.

According to the experimental conditions, the muscle is stretched to its optimal length at the
start of the isotonic experiment. The isotonic experiment begins by attaching a load M , stimulating
the muscle, and recording position. The two curves in Fig. 3.15 depict the time course for the
isotonic experiment for a small and large load. Notice that the duration of both responses are
approximately equal regardless of the load, in spite of the apparent much longer time delay associated
with the large load. Next, notice that the heavier the load, the less the total shortening. Maximum
velocity is calculated numerically from the position data.To estimate muscle viscosity, this experiment
is repeated with many loads at the same stimulation level, and maximum velocity is calculated.
Figure 3.16 illustrates the typical relationship between load ratio (P/Po) and maximum velocity,
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Figure 3.14: Drawing of the classical isotonic experiment with inertial load and muscle attached to the
lever. The muscle is stretched to its optimal length according to experimental conditions and attached to
ground.
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Figure 3.15: Diagram illustrating typical response of a muscle stimulated with a large and small load.
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Figure 3.16: Illustrative force-velocity curve.

where P = Mg and Po is the isometric tension (the largest weight that the muscle can move) for
maximally stimulated muscle. This curve is usually referred to as the force-velocity curve.

Clearly, the force-velocity curve is nonlinear and follows a hyperbolic shape. If a smaller
stimulus than maximum is used to stimulate the muscle, then a family of force-velocity curves results
as shown in Fig. 3.17. Each curve is generated with a different active state tension as indicated. The
force-velocity characteristics in Fig. 3.17 are similar to those shown in Fig. 3.16. In particular, the
slope of the force-velocity curve for a small value of active state tension is quite different than that for
a large value of the active state tension in the operating region of the eye muscle (i.e., approximately
800 ◦/s).

To include the effects of viscosity from the isotonic experiment in the muscle model, a viscous
element is placed in parallel with the active state tension generator and the length tension elastic
element as shown in Fig. 3.18. The impact of this element is examined by analyzing the behavior of
the model in Example 3.1 by simulating the conditions of the isotonic experiment. At this stage, it is
assumed that the viscous element is linear in this example. For simplicity, the lever is removed along
with the virtual acceleration term Mẍ1. A more thorough analysis including the lever is considered
later in this book. For simplicity, the passive elastic element Kpe is removed from the diagram and
analysis.
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Figure 3.17: Illustrative family of force-velocity curves for active state tensions ranging from 1.4 to
0.2 N.
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Figure 3.18: Diagram illustrates a muscle model consisting of an active state tension generator F , in
parallel with a length-tension elastic element Klt , and viscous element B, connected to a series elastic
element Kse. The passive elastic element Kpe has been removed from the model for simplicity. Upon
stimulation of the active state tension generator F , a tension T is exerted by the muscle.
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Example 3.1
Consider the system shown in Fig. 3.19 that represents a model of the isotonic experiment. Assume
that the virtual acceleration term Mẍ1 can be ignored. Calculate and plot maximum velocity as a
function of load.

Solution.
Assume that ẋ2 > ẋ1, and that the mass is supported so that x1 > 0. Let the term Kst = Kse + Klt .
Summing the forces acting on nodes 1 and 2 gives

Mg = Kse (x2 − x1) → x1 = x2 − Mg
Kse

F = Bẋ2 + Kltx2 + Kse (x2 − x1).

Substituting x1 into the second equation yields

F = Bẋ2 + Kltx2 + Mg .

Solving the previous equation for x2 and ẋ2 gives

x2 (t) = F − Mg

Klt

(
1 − e− Klt t

B

)

ẋ2 (t) = F − Mg

B
e− Klt t

B .

Maximum velocity, Vmax, for all loads is given by Vmax = F−Mg
B

and ẋ1 = ẋ2 since ẋ1 =
d
dt

(
x2 − Mg

Kse

)
. Figure 3.20 depicts a linear relationship between maximum velocity and load.

The assumption of a linear viscosity element appears to be in error since the analysis in
Example 3.1 predicts a linear relationship between load and maximum velocity (according to the
assumptions of the solution), and the data from the isotonic experiment shown in Fig. 3.16 is clearly
nonlinear. Thus, a reasonable assumption is that the viscosity element is nonlinear.

Traditionally, muscle viscosity is characterized by the nonlinear Hill hyperbola, given by

Vmax (P + a) = b (P0 − P) (3.29)

where Vmax is the maximum velocity, P is the external force, Po the isometric tension, and a and b

are the empirical constants representing the asymptotes of the hyperbola. As described previously,
Po represents the isometric tension, which is the largest weight that the muscle can move, and P is
the weight Mg. Hill’s data suggests that

a = P0

4
and b = Vmax

4
.
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M

BKltF

Kse

x2

x1

Figure 3.19: System for Example 3.1.

F

F/B

Mg

Slope = 1/B

Maximum Velocity

Figure 3.20: Result for Example 3.1.

Therefore, with these values for a and b, the Hill equation is rewritten from Eq. (3.29) as

P = P0 − Vmax (P0 + a)

b + Vmax
= P0 − BVmax (3.30)

where
B = P0 + a

b + Vmax
. (3.31)
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The term B represents the viscosity of the element. Clearly, the force due to viscosity is nonlinear
due to the velocity term, Vmax, in the denominator of Eq. (3.30).

In oculomotor models, Vmax is usually replaced by ẋ2, P is replaced by muscle tension, T ,
and Po is replaced by the active state tension, F , as defined from Fig. 3.19. Therefore, Eqs. (3.30)
and (3.31) are rewritten as

T = F − BV (3.32)

where

B = F + a

b + ẋ2
. (3.33)

Some oculomotor investigators have reported values for a and b in the Hill equation that
depend on whether the muscle is being stretched or contracted. There is some evidence to suggest
that stretch dynamics are different from contraction dynamics. However, the form of the viscosity
expression for muscle shortening or lengthening is given by Eq. (3.33), with values for a and b

parameterized appropriately. For instance, Hsu and coworkers described the viscosity for shortening
and lengthening for oculomotor muscles as

Bag = Fag + AGa

ẋ2 + AGb

(3.34)

Bant = Fant − ANTa

−ẋ2 − ANTb

(3.35)

where AGa, AGb, ANTa, and ANTb are parameters based on the asymptotes for contracting
(agonist) or stretching (antagonist), respectively.

3.4.5 MUSCLE MODEL
At this time, we will put all of the elements that have been discussed into a model of muscle as
shown in Fig. 3.21 (Left), and then we will analyze this model to determine the tension created by
the muscle. Note that in the muscle model, we have subtracted out the effects of passive elasticity
and assumed that ẋ2 > ẋ1. Thus, starting with the free body diagram in Fig. 3.21 (Right), we have
our two node equations as

T = Kse (x2 − x1)

F = Bẋ2 + Kltx2 + Kse (x2 − x1) .

We solve for x2 from the node 1 equation as x2 = T
Kse

+ x1, and we substitute it into the node 2
equation, giving us

F = Bẋ2 + (Kse + Klt ) x2 − Ksex1 = Bẋ2 + Kst

(
T

Kse

+ x1

)
− Ksex1 .
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x1

T 2SEK x 1x F

LT SEBx 1SE2 K x x2SE22x2 LT 2K xLT 2T

Figure 3.21: (Left) Updated model of muscle with active state tension generator, length-tension elastic
element, series elastic element and viscosity element. (Right) Free body diagram of the system on the left.

For convenience, we will let Kst = Kse + Klt , and we will multiply the previous equation by
Kse and rearrange terms, thus, we have

KseF = KseBẋ2 + KstT + KseKltx1

or

T = KseF

Kst

− KseKlt

Kst

x1 − KseB

Kst

ẋ2 .

Equation (3.33), or those in Eqs. (3.34) and (3.35), depending on whether the muscle is contracting
or lengthening, can be substituted for parameter B in the above equation to give a nonlinear model
of oculomotor muscle.

3.4.6 PASSIVE TISSUES OF THE EYEBALL
At this point,we return to modeling the eyeball.As previously discussed,Robinson not only described
the passive properties of muscle, he also determined the elasticity, viscosity, and inertia of the eyeball
from his experiments during strabismus surgery.With the two horizontal muscles,Fig. 3.22 describes
the passive tissues of the eyeball.

Note that the passive elasticity of the eyeball, K , is a combination of the effects due to the
four other muscles, optic nerve, etc. The viscous element of the eyeball, B, is due to the friction of
the eyeball within the eye socket.
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KseKse

Bag Klt

x1

Klt BantBp KpFag Fant

Jp

x3
x2

Figure 3.22: This model describes the two rectus muscles (agonist (ag) and antagonist (ant)), connected
to the eyeball through nodes 1 and 4. θ represents the angle that the eyeball is rotated and x1 represents
the length of arc rotated. Variables x2 and x3 represent the length of the muscles.

3.4.7 ACTIVATION AND DEACTIVATION TIME CONSTANTS
The control signal that the central nervous system sends to the oculomotor system during a saccade
is a pulse-step signal as described in Fig. 3.5. The signal the oculomotor system actually experiences
is a low pass filtered version of this signal as represented by the blue lines in Fig. 3.5.

If we let C(s) = control signal, F(s) = active state tension and H(s) = low-pass filter, then

F (s) = C (s) H (s) = C (s)

(sτ + 1)

where τ is the low-pass filter time constant.
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The agonist time constant reported by Bahill, A. (1980) is a function of motoneuronal firing
frequency, the higher the rate, the shorter the time constant. As explained, this is because large
saccadic eye movements utilize fast muscle fibers and smaller saccadic eye movements utilize slow
muscle fibers. There are two muscles involved with a horizontal eye movement, the agonist and
antagonist muscles.The agonist muscle forcibly contracts and moves the eyeball (fovea) to the target
location. The antagonist muscle is completely inhibited during the pulse phase of the trajectory.
Keep in mind that muscles are always under stimulation (tonic state at primary position) to avoid
slack.

The control signal from the CNS to each muscle is a series of pulses or spikes due to the action
potentials of the motoneurons, as illustrated in Fig. 3.4. This diagram illustrates a typical pattern
observed during a series of fast eye movements in both horizontal directions. Notice that during a
movement in the “on” direction (lateral), the rate of firing increases greatly; in the “off ” direction
(medial), the firing rate is zero. Also, notice that the burst firing starts approximately 5 ms before
the saccade begins, and that the longer the neurons fire, the larger the saccade.

There is a large, nonconstant time delay between the time a target moves, and when the eye
actually starts to move. This is due to the CNS system calculating the forces necessary to bring the
fovea to the target location. This movement is ballistic (not guided) to the extent that there are no
known stretch receptors indicating muscle activity.

3.5 1976 NONLINEAR RECIPROCAL INNERVATION
SACCADE MODEL

Significant strides have been made in modeling the oculomotor plant with nonlinear and linear
models and the neural network controlling the eye movements. Despite this progress in oculomotor
research, much work remains in the development of an oculomotor muscle model that can be used
in systems applications and that exhibits realistic characteristics of rectus eye muscle.

At this time, we will derive a nonlinear model of the fast eye movement system based on the
work of Hsu et al. (1976) using the model in Fig. 3.22. The nonlinearity of the model is due to the
viscosity elements of the muscle as discussed in Section 3.4.4.

To begin our analysis of the saccades for horizontal eye movements only, we assume that:

1. ẋ2>ẋ1 > ẋ3

2. elasticity Kp is the passive elasticity from the superior and inferior oblique muscles, the superior
and inferior rectus muscles and the eyeball

3. xi is measured in mm from the equilibrium position

4. zero initial conditions

Note that x1 = θr or θ = x1
r

= 5.2087 × 103x1, where x1 is measured in meters. To begin the
analysis, we draw free body diagrams as shown in Fig. 3.23, and we write the node equations and
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Figure 3.23: Free body diagrams for nonlinear reciprocal innervation model.
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sum of torques about the eyeball as

Kse (x1 − x2) = Fant + Klt + Bant ẋ3

Fag = Kse (x2 − x1) + Bagẋ2 + Kltx2 (3.36)
rKse (x2 − x1) = Jpθ̈ + Bpθ̇ + Kpθ + rKse (x1 − x3) .

We substitute θ = x1
r

into Eq. (3.36), giving

rKse(x2 + x3 − 2x1) = Jp

r
ẍ1 + Bp

r
ẋ1 + Kp

r
x1

Kse(x1 − x3) = Fant + Kltx3 + Bant ẋ3

Fag = Kse(x2 − x1) + Bagẋ2 + Kltx2 .

Consistent with the original model development by Bahill, we assume Klt = 0 and let J =
Jp

r2 , B = Bp

r2 , and K = Kp

r2 . After making these substitutions, we have

Kse (x2 + x3 − 2x1) = J ẍ1 + Bẋ1 + Kx1

Kse (x1 − x3) = Fant + Bant ẋ3

Fag = Kse (x2 − x1) + Bagẋ2 .

(3.37)

Based on the work of Hsu et al. (1976), we write the following nonlinear viscosity terms for our
model

Bag = Fag + AGa

ẋ2 + AGb

Bant = Fant − ANTa

−ẋ3 − ANTb

.

Substituting these terms into our model gives us

Kse (x2 + x3 − 2x1) = J ẍ1 + Bẋ1 + Kx1

Kse(x1 − x3) = Fant + Bant ẋ3 = Fant +
(

Fant − ANTa

−ẋ3 − ANTb

)
ẋ3 (3.38)

Fag = Kse (x2 − x1) + Bagẋ2 = Kse (x2 − x1) +
(

Fag + AGa

ẋ2 + AGb

)
ẋ2 .

Since Bag and Bant are nonlinear, we cannot directly solve the differential equations or use
Laplace transforms to solve for θ . The results for θ must be simulated. Here, we use SIMULINK,
and for convenience, we redefine the model into a state variable format. Let the state variables be
x1, v1, x2, x3, Fag, and Fant .
For state variable x1, by inspection, we write ẋ1 = v1.
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For state variable x2, we use the node equation for the agonist muscle and solve for ẋ2, giving

Fag = Kse (x2 − x1) + Bagẋ2 = Kse (x2 − x1) +
(

Fag + AGa

ẋ2 + AGb

)
ẋ2

(ẋ2 + AGb) Fag = Kse (x2 − x1) (ẋ2 + AGb) + (
Fag + AGa

)
ẋ2

ẋ2 = AGb

(
Fag − Kse (x2 − x1)

)
AGa + Kse (x2 − x1)

.

For state variable x3, we use the node equation for the antagonist muscle and solve for ẋ3,
giving

Kse (x1 − x3) = Fant + Bant ẋ3 = Fant +
(

Fant − ANTa

−ẋ3 − ANTb

)
ẋ3

(−ẋ3 − ANTb) Kse (x1 − x3) = (−ẋ3 − ANTb) Fant ẋ3 − ANTaẋ3

ẋ3 = ANTb (Kse (x1 − x3) − Fant )

ANTa − Kse (x1 − x3)
.

For state variable v1, we use the node equation for the eyeball, substitute v̇1 = ẍ1 and v1 = ẋ1,
and solve for v̇1, giving

v̇1 = 1

J
[Kse (x2 + x3 − 2x1) − Bv1 − Kx1] .

For the last two state variables, we define them as low-pass filtered neural inputs as

Ḟag = Nag − Fag

τag

Ḟant = Nant − Fant

τant

.

3.5.1 PARAMETERS FOR THE NONLINEAR RECIPROCAL INNERVATION
MODEL

The following are parameter values for the nonlinear reciprocal innervation model that simulate
saccades of all sizes.

Kse = 1.8 g tension/degree = 91.9 N/m
K = 0.86 g tension/degree = 43.9 N/m
B = 0.018 g tension-sec/degree = 0.919 N-s/m
J = 4.3× 10−5 g tension-s2/degree = 2.192 ×10−3 N-s/m
NAG−Pulse = PH (see Table 3.1)
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NANT−Pulse =
(

0.5 + 16e− 
θ
2.5

)
g tension

NAG−Step = (16 + 0.8
θ ) g tension
NANT−Step = (16 − 0.06
θ) g tension
τAG−AC = (13 − 0.1
θ) ms
τAG−DE = 2 ms
τANT−AC = 3 ms
τANT−DE = 11 ms
Agonist Pulse Width (PW) (see Table 3.1)
Antagonist PW circumscribes Agonist PW by 3 ms on each side

Table 3.1: Agonist Pulse width and height for 7 saccades ranging from .1
to 30 degrees.
Magnitude (degree) Pulse Width, PW, (ms) Pulse Height, PH, (g)

0.1 10 17.6
0.5 10 20
1 11 22
5 15 53
10 20 87
20 31 124
30 40 155

For the previous parameters, the nonlinear force-velocity relationships are given as:

Bag = Fag + AGa

ẋ2 + AGb

= 1.25Fag

ẋ2 + 900

g − s
◦

Bant = Fant − ANTa

−ẋ3 − ANTb

= Fant − 40

−ẋ3 − 900

g − s
◦ .

Note that:

1. 1 g tension = 9.806 × 10−3 N

2. 1◦ = 1.92 × 10−4m


θ represents the absolute value of the eye movement size.

Example 3.2
Simulate a 10◦ saccade using the 1976 nonlinear reciprocal innervation oculomotor model. Plot the
neural inputs, agonist and antagonist active-state tension, position, velocity and acceleration vs. time.
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Solution.
Using the values in Table 3.1, the following m-file automatically provides the agonist pulse width
and height. The parameter zero is the start time for the saccade, here set at 10 ms.

%dTheta: Input parameter
dTheta=input(’dTheta Value in degrees:’)
zero=10e-3;
switch dTheta

case 0.1, PH=17.6; PW=10e-3;
case 0.5, PH=20; PW=10e-3;
case 1, PH=22; PW=11e-3;
case 5, PH=53; PW=15e-3;
case 10, PH=87; PW=20e-3;
case 20, PH=124; PW=31e-3;
case 30, PH=155; PW=40e-3;

end;
N_AG_Pulse=PH;
N_AG_Step=16+0.8*dTheta;
N_AN_Pulse=0.5+16*exp(-dTheta/2.5);
N_AN_Step=16-0.06*dTheta;
TauAG_AC=(13-0.1*dTheta)*1e-3;

Shown in Fig. 3.24 is the Simulink program.The main program is shown in Fig. 3.24 (A).The
agonist and antagonist input are shown in Fig. 3.24 (B) and (C). Equation (3.38) is implemented
in Fig. 3.24 (D). In Fig. 3.25 are plots of position, velocity, acceleration, agonist neural input and
active state tension, and antagonist neural input and active state tension.

3.6 1984 LINEAR RECIPROCAL INNERVATION
OCULOMOTOR MODEL

Based on physiological evidence, Bahill et al. (1980) presented a linear 4th order model of the hori-
zontal oculomotor plant that provides an excellent match between model predictions and horizontal
eye movement data. This model eliminates the differences seen between velocity and acceleration
predictions of the Westheimer and Robinson models and the data. For ease in this presentation, the
1984 modification of this model by Enderle and coworkers is used.

In the previous analysis, Bag and Bant are nonlinear functions of velocity. We can linearize
these functions by approximating the force-velocity family of curves with straight line segments as
illustrated in Fig. 3.26. Antagonist activity is typically at the 5% level and agonist activity is at the
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Figure 3.24: Simulink program for Example 3.2 (A) (Main Simulink Program).
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Figure 3.24: (continued). Simulink program for Example 3.2 (B) (Agonist Input).
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Figure 3.24: (continued). Simulink program for Example 3.2 (C) (Antagonist Input).
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Figure 3.24: (continued). Implementation of Eq. (3.38) (D).
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Figure 3.25: Plots of position, velocity, acceleration, agonist neural input and active state tension, and
antagonist neural input and active state tension for Example 3.2.
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Figure 3.26: Linearization of nonlinear force-velocity curves shown in red.

100% level. Thus, we can assume that Bag and Bant are constants with different values since the
slopes are different in the linearization.

Using the linearized viscosity elements in our model of the eye movement system, we will
now derive a linear differential equation describing saccades as a function of θ . The updated model
is shown in Fig. 3.27. The material presented here is based on the work published by Bahill and his
coworkers (Bahill et al., 1980), and Enderle and coworkers (Enderle et al., 1984).

To begin the analysis, we first draw the free body diagrams and write the node equations as
shown in Fig. 3.28.

Node 1: rKse (x2 − x1) − rKse (x4 − x3) = Jpθ̈ + Bpθ̇ + Kpθ

Node 2: Fag = Bagẋ2 + Kse (x2 − x1) + Kltx2

Node 3: Kse (x4 − x3) = Fant + Kltx3 + Bant ẋ3
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Figure 3.27: Linear eye movement model.

Next, we let

J = Jp

r
× 5.2087 × 103, B = Bp

r
× 5.2087 × 103

K = Kp

r
× 5.2087 × 103, and θ = x

r
× 180

π
= 5.2087 × 103x

and rewrite the node 1 equation as

Kse (x2 + x3 − x1 − x4) = J ẍ + Bẋ + Kx .

We assume that there is an initial displacement from equilibrium at primary position for springs
Klt and Kse, since the muscle is 3 mm longer than at equilibrium. That is

x1 = x − xp1

x4 = x + xp4 .
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Figure 3.28: Free body diagrams for the system in Fig. 3.27.
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Figure 3.29: Illustration of the relationship between Fag (red line) and F̂ag (blue line).
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To reduce the node equations to a single differential equation, we must eliminate variables. We use
the operating point analysis method, and we introduce the following variables:

x̂ = x − x (0)

θ̂ = θ − θ (0)

x̂1 = x1 − x1 (0)

x̂2 = x2 − x2 (0)

x̂3 = x3 − x3 (0)

x̂4 = x4 − x4 (0)

F̂ag = Fag − Fag (0)

F̂ant = Fant − Fant (0)

Kst = Kse + Klt

Note that x̂ = x̂1 = x̂4. To appreciate the relationship among the variables, note that if Fag is a
pulse-step, then F̂ag is shown in Fig. 3.29.

We now need to determine the relationship among variables at time zero, recognizing that
derivative terms are zero. Our three-node equations at steady-state are written as:

Fag (0) = Kstx2 (0) − Ksex1 (0)

Fant (0) = − Kstx3 (0) + Ksex4 (0)

Kse (x2 (0) + x3 (0) − x1 (0) − x4 (0)) = Kx(0) = 0 .

(3.39)

Subtracting the muscle node equations for use later, gives:

Fag (0) − Fant (0) = Kst (x2 (0) + x3 (0)) − Kse (x1 (0) + x4 (0)) . (3.40)

We now substitute the operating point variables and initial conditions, yielding

F̂ag + Fag (0) = Kst

(
x̂2 + x2 (0)

) + Bag
˙̂x2 − Kse

(
x̂1 + x1 (0)

)
.

Removing the initial condition terms with our steady-state analysis, gives

F̂ag = Kst x̂2 + Bag
˙̂x2 − Ksex̂

where x̂1 has been replaced by x̂. After repeating this for the other two equations, we have

F̂ant = Ksex̂ − Kst x̂3 − Bant
˙̂x3

Kse

(
x̂2 + x̂3 − 2x̂

) = J ¨̂x + B ˙̂x + Kx̂
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where x̂4 has been replaced by x̂.We next apply the Laplace transform on the previous three equations,
giving

F̂ag(s) = X̂2
(
Kst + sBag

) − KseX̂ (3.41)

F̂ant (s) = KseX̂ − X̂3 (Kst + sBant ) (3.42)

Kse

(
X̂2 + X̂3 − 2X̂

)
=

(
J s2 + Bs + K

)
X̂ (3.43)

Rearranging Eqs. (3.41) and (3.42) yields

X̂2 = Fag(s) + KseX̂

Kst + sBag

X̂3 = KseX̂ − Fant (s)

Kst + sBant

and after substituting X̂2 and X̂3 into Eq. (3.43), we have

Kse

⎛
⎝
(
F̂ag(s) + KseX̂

)
(
Kst + sBag

) +
(
KseX̂ − F̂ant (s)

)
(Kst + sBant )

− 2X̂

⎞
⎠ =

(
s2J + Bs + K

)
X̂ .

Next, we multiply the previous equation by (sBant + Kst )
(
sBag + Kst

)
, giving us

Kse

[
(sBant +Kst ) F̂ag(s) − (

sBag+Kst

)
F̂ant (s)

]
=
(
P4s

4+P3s
3+P2s

2+P1s + P0

)
X̂

where
P4 = JBantBag

P3 = JKst

(
Bag + Bant

) + BBantBag

P2 = JK2
st + BKst

(
Bag + Bant

) + BagBant (K + 2Kse)

P1 = BK2
st + (

Bag + Bant

) (
KKst + 2KseKst − K2

se

)
P0 = KK2

st + 2KseKstKlt .
We now transform back into time domain using the inverse Laplace transform, yielding

Kse

(
Kst

(
F̂ag−F̂ant

)
+Bant

˙̂
Fag−Bag

˙̂
Fant

)
=P4

....
x̂ +P3

...
x̂ + P2

¨̂x + P1
˙̂x + P0x̂ . (3.44)

Since Ḟag = ˙̂
Fag and Ḟant = ˙̂

Fant , we have

F̂ag − F̂ant = Fag − Fag (0) − Fant + Fant (0) . (3.45)
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From Eq. (3.40), we have

Fag (0) − Fant (0) = Kst (x2 (0) + x3 (0)) − Kse (x1 (0) + x4 (0))

and
x1 (0) = x (0) − xp1 and x4 (0) = x (0) + xp1 .

Assuming identical muscles, gives us

Fag (0) − Fant (0) = Kst (x2 (0) + x3 (0)) − 2Ksex (0) . (3.46)

We have from Eq. (3.39),

or

Kse (x2 (0) + x3 (0) − 2x (0)) = Kx (0)

x2 (0) + x3 (0) =
(

K

Kse

+ 2

)
x (0)

and when substituted into Eq. (3.46), gives

Fag (0) − Fant (0) =
(

Kst

(
K

Kse

+ 2

)
− 2Kse

)
x (0) . (3.47)

With Eqs. (3.45) and (3.46) inserted into Eq. (3.44), we have

Kse

[
Kst

(
Fag − Fant

) − Kst

(
Fag (0) − Fant (0)

) + Bant Ḟag − BagḞant

]
= P4

....
x +P3

...
x + P2ẍ + P1ẋ + P0 (x − x (0)) .

(3.48)

To reduce Eq. (3.48) further, we note, using Eq. (3.47), that

KseKst

(
Fag (0) − Fant (0)

) = KseKst

(
Kst

(
K

Kse

+ 2

)
− 2Kse

)
x (0)

= (
K2

stK + 2KseK
2
st − 2K2

seKst

)
x (0)

= (
K2

stK + 2KseKstKlt

)
x (0)

= P0x (0)

and substituting this result back into Eq. (3.48) gives

Kse

{
Kst

(
Fag − Fant

) + Bant Ḟag − BagḞant

} = P4
....
x +P3

...
x + P2ẍ + P1ẋ + P0x .

Exchanging x with θ yields:

δ
(
Kst

(
Fag − Fant

) + Bant Ḟag − BagḞant

) =....
θ +C3

...
θ + C2θ̈ + C1θ̇ + C0θ (3.49)
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where

δ = 57.296Kse

rJBantBag

C3 = JKst

(
Bag + Bant

) + BBantBag

JBantBag

C2 = JK2
st + BKst

(
Bag + Bant

) + BagBant (K + 2Kse)

JBantBag

C1 = BK2
st + (

Bag + Bant

) (
KKst + 2KseKst − K2

se

)
JBantBag

C0 = KK2
st + 2KseKstKlt

JBantBag

.

A block diagram for the oculomotor plant is shown in Fig. 3.30. The section of the diagram

ant stsB KstK

ag stsB KstK

Gain

Agonist
Force

Generator

Antagonist
Force

Generator

4
3 0

1
s 2

3 0C s C s C s C23
3 2 1

Initial
Conditions

Target
Position

Eye
Position

Figure 3.30: Block diagram of the modified linear homeomorphic eye movement model.

in the forward path is the linear homeomorphic model. The feedback element H is unity and is
operational only when the eye is not executing a saccade.

3.6.1 METHODS
Data are usually collected from subjects seated before a target display of small light emitting diodes
(LEDs), each separated by five degrees (see Fig. 1.3). The subject’s head is restrained by a bit-bar,
and the subject is instructed to follow the “jumping” target as it moves from the center position to
any of the other LEDs and then returns to the center position. The order of the target positions
as well as the time interval between displacements are randomized. Data are recorded only for the
initial displacement from the center position.
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Horizontal eye movements are recorded from each eye using an infrared signal reflected from
the anterior surface of the cornea-scleral interface with standard instrumentation (see Fig. 1.3).
Signals for both eyes tracking are digitized using the analog/digital converter and stored in disk
memory. These signals are typically sampled at a rate of 1000 samples per second for one-half
second after the target has moved.

3.6.2 SYSTEM IDENTIFICATION AND VALIDATION
A theoretical model’s validity must be established by comparison with experimental data if confidence
in its predictive capabilities is expected. Parameters for the theoretical model are determined from
physiological evidence or numerical estimation. Simulations are performed with a reliable parameter
set and compared with the experimental data. A close match between the data and simulation results
under a variety of conditions lend support to the theoretical model’s validity. In 1988, Enderle and
Wolfe published a paper (Enderle and Wolfe, 1988) in which they used the system identification
technique to estimate the oculomotor plant parameters and the agonist and antagonist active state
tension during a series of saccades from three subjects using the model presented in this section.

The agonist and antagonist active state tensions are given by the following low-pass filtered
pulse-step waveforms, and they are illustrated along with their corresponding neurological control
signals in Fig. 3.5.

Fag = Fg0u(−t) +
(
Fp + (

Fg0 − Fp

)
e

−t
τac

)
(u (t) − u (t − t1))

+
(

Fgs + (
Fp + (

Fg0 − Fp

))
e

−t1
τac − Fgs

)
e

−(t−t1)
τde u (t − t1)

Fant = Ft0u(−t) + Ft0e
−t
τde (u (t) − u (t − t1))

+
(

Fts +
(

Ft0e
−t1
τde − Fts

)
e

−(t−t1)
τac

)
u (t − t1) (3.50)

where
Fg0 = initial magnitude of the agonist active state tension
Fp = pulse magnitude of the agonist active state tension
Fgs = step magnitude of the agonist active state tension
Ft0 = initial magnitude of the antagonist active state tension
Fts = step magnitude of the antagonist active state tension
τac = activation time constant
τde = deactivation time constant
t1 = duration of the agonist pulse active state tension
Final parameter estimates for the saccadic eye movement model are found using the sys-

tem identification technique, a frequency response method. The oculomotor system operates in an
open-loop mode while executing a saccade. After completing the saccade, the central nervous sys-
tem operates in a closed loop mode and compares eye and target position (Carpenter, R., 1988).
Figure 3.30 presents a block diagram illustrating the open-loop, closed-loop operation of the ocu-
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lomotor system, with the feedback element H operating only during discrete-time intervals when
a saccade is not being executed. Our system identification is used to estimate parameters and the
input during the open loop mode of the saccade.

For the oculomotor system, the transfer function is calculated from the fast eye response to
a step in target displacement. Unequal time delays for eye displacements from saccade to saccade
for the same target displacement and variability in time to peak velocity and peak velocity make
it impossible to use averaging techniques to reduce the effects of measurement noise. Fortunately,
the measurement noise is small relative to the input and output signals, and, therefore, the transfer
function is calculated as the ratio of the Fourier transform of a single saccadic eye movement and
the input signal as follows. First, the fast eye response measurements are filtered using a 4th order
Butterworth digital low-pass filter with a half-power point at 125 Hz. Transforming the filtered
measurements directly by the fast Fourier algorithm resulted in distortion due to truncation since
the signal did not go to zero at steady state. This is circumvented by subtracting the steady-state
value from each sample and passing this signal through a Kaiser window. Next, this modified data
sequence is extended to a total length of 2048 samples to increase the frequency domain resolution
and to force the data length to a power of two (necessary for the fast Fourier transform). Note
that subtracting the steady-state value from each sample makes it more convenient to extend the
sequence. This modified data sequence is then transformed using the fast Fourier algorithm. Note
that the Fourier transform of the fast eye response is now equal to the fast Fourier transform of the
modified signal plus the Fourier transform of the unit step with amplitude equal to the steady-state
value. The input signal is the Fourier transform of the unit step function with amplitude equal to
the steady-state value. Parameter estimates for the oculomotor model in Eq. (3.49) and the active
state tensions in Eq. (3.50) are calculated using the conjugate gradient search program similar to
Seidel’s (Seidel, R., 1975), which minimizes the integral of the absolute value of the error squared
between the model and the data.

Initial estimates of the oculomotor mechanical components are based on published data, and
initial estimates of the oculomotor control signals are based on an extrapolation of the eye movement
trajectory. Specifically, the oculomotor saccade model is solved for the time to peak velocity and peak
velocity to yield detailed control signal information. The system identification technique is used to
obtain final estimates for the oculomotor mechanical components and control signals by minimizing
the quadratic distance between the modified linear homeomorphic model and the data. Although
time domain techniques have been used to estimate oculomotor mechanical components and control
signals by other investigators, the advantage of this approach is that it allows an estimate of the
transfer function, actually the Fourier transform of the output-input ratio, and permits a validity test
in both the time and frequency domain.

Great care is exercised in evaluating initial parameter estimates and active state tensions since
large differences from the true values could cause the estimation routine to converge to suboptimal
and nonphysiologically consistent results. The initial estimates for the mechanical components Ci

and δ in Eq. (3.49) are specified from published experimental data. Details on oculomotor muscle
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elasticity and viscosity, and static active state tensions are presented in this section. As described, a
new method of muscle viscosity linearization is presented.The initial estimates for the dynamic active
state tensions are specified through theoretical peak velocity results and manual data extrapolation.

MUSCLE VISCOSITY
The nonlinear force-velocity relationship established by isotonic experiments by Fenn and Marsh
(1935), quantitatively analyzed by Hill, A. (1938), and linearized by Bahill et al. (1980), is re-
examined here. Fig. 3.31 illustrates a linear model of muscle, at equilibrium with a weight Mg

M

BKltF

Kse

x2

x1
Kpe

Figure 3.31: Muscle connected to a weight.

attached, which depicts the isotonic experiment. The equations describing the forces acting at junc-
tions 1 and 2 are

Mg + Kpex1 = Kse (x2 − x1)

F = Bẋ2 + (Kse + Klt ) x2 − Ksex1 . (3.51)

Note that we have not included the Mẍ1 term to be consistent with the original experiment. By
eliminating x2 from Eq. (3.51), we have

F − (Kse + Klt )

Kse

Mg = B

(
Kpe

Kse

+ 1

)
ẋ1 +

(
Klt + (Kse + Klt ) Kpe

Kse

)
. (3.52)
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Solving Eq. (3.52) gives

x1 =
(
F − (Kse+Klt )Mg

Kse

)
(
Klt + (Kse+Klt )Kpe

Kse

)
⎛
⎜⎜⎜⎝1 − e

−
(

Klt + (Kse+Klt )Kpe
Kse

)
t

B

(
Kpe
Kse

+1

)
⎞
⎟⎟⎟⎠

ẋ1 =
(
F − (Kse+Klt )Mg

Kse

)
B
(

Kpe

Kse
+ 1

) e

−
(

Klt + (Kse+Klt )Kpe
Kse

)
t

B

(
Kpe
Kse

+1

)
. (3.53)

Since maximum velocity occurs at time zero, we have

Vmax = ẋ1(0) =
(
F − (Kse+Klt )Mg

Kse

)
B
(

Kpe

Kse
+ 1

) (3.54)

which is a function of Mg according to the isotonic experimental procedure since F is a constant
equal to 100% stimulation. Figure 3.32 displays the weight vs. maximum velocity relationship for

Mg
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Figure 3.32: Weight vs. maximum velocity relationship for the linear muscle model.

the linear muscle model with slope

m = B
(
Kpe + Kse

)
(Kse + Klt )

. (3.55)
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Since the experimental data is hyperbolic, these results are linearized in the vicinity of the
operating point and the viscosity B determined by Eq. (3.55). Using the equations for agonist and
antagonist viscosity provided by Hsu et al. (1976), the linearized agonist and antagonist viscosities
are determined by substituting the following empirical relationships for m in Eq. (3.55):

mag = 1.25Fag

AGb + Vmax
gs/◦

mant = Fant − 40

−Vmax − ATb

gs/◦ (3.56)

where Fag = 87 g, Fant = 0.79 g, and AGb and ATb are constants associated with Hill’s hyperbolic
equation. Since the values for AGb and ATb were updated by Robinson, D. (1981), we use AGb =
ATb = 1422◦s−1 instead of the values from Hsu et al. (1976).

Viscosity estimates are computed by linearizing in the vicinity of the maximum saccade ve-
locity. For instance, a 10◦ saccade with θ̇ (tmv) = 432◦s−1 (from Bahill et al., 1981) has

mag = 3.0 Nsm−1

mant = 1.1 Nsm−1

Bag = 3.4 Nsm−1

Bag = 1.2 Nsm−1

using Eqs. (3.55) and (3.56) with Kpe = 12.26 Nm−1 (from Robinson et al., 1969). Table 3.2 gives
a list of values of the agonist and antagonist muscle viscosities as a function of saccade magnitude
(computed with θ̇ (tmv) from Bahill et al., 1981). These values are based on a maximum attainable
peak velocity of 684◦s−1 and would be correspondingly smaller as this value is increased i.e., some
investigators indicate maximum attainable peak velocities in the range of 800 − 1000◦s−1).

Other investigators have not included the relationship of Eq. (3.55) for the estimates of
agonist and antagonist viscosity or linearizing on the basis of θ̇ (tmv). Bahill et al. (1980) report
Bag = 3.0 Nsm−1 and Bant = 1.4 Nsm−1 (after adjusting their incorrectly derived results by the
factor (Kse + Klt ) /Kse) (Enderle et al.,1984).Further adjusting of Bahill estimates using Eq. (3.55)
raises the viscosities to Bag = 3.4 Nsm−1 and Bant = 1.6 Nsm−1, which closely corresponds to the
values in Table 3.2. Other researchers report significantly different linearized muscle viscosity es-
timates. Lehman and Stark (1979) report Bag = 0.9 Nsm−1 and Bant = 2.4 Nsm−1 (after using
Eq. (3.55)), based on average value of the nonlinear viscosity Lehman and Stark (1979). In a para-
metric sensitivity analysis of the oculomotor system, Hsu et al. (1976) and Lehman and Stark (1982)
identified the muscle viscosity as having a relatively strong effect on saccadic response. Enderle et
al. further established the importance of muscle viscosity on the saccadic response while examining
the linear homeomorphic saccadic eye movement model (Enderle et al., 1984). They report that the
muscle viscosities multiply the rate of change of the muscle forces in the saccadic eye movement
differential equation, thus the muscle viscosities contribute to the forces that drive the eyeball to its
destination (Enderle et al., 1984).
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Table 3.2: Agonist and antagonist viscosities as a function of sac-
cade magnitude.
Magnitude Degree θ̇ (tmv)

◦s−1 Bag Nsm−1 Bant Nsm−1

5 269 3.8 1.4
10 432 3.4 1.2
15 531 3.3 1.2
20 591 3.2 1.1

In examining the main sequence diagram, two factors are particularly significant in regard to
muscle viscosity. First, since θ̇ (tmv) is a function of the saccade magnitude, agonist and antagonist
viscosity are also functions of saccade magnitude. Second, since maximum velocity variability exists
for saccadic eye movements of the same magnitude, variability also exists for estimates of agonist
and antagonist viscosity, which, in turn, causes variability in the estimates for the eigenvalues of the
oculomotor system.

OCULOMOTOR MUSCLE ELASTICITY
At steady state, the tensions applied to the eyeball are

Tag − Tant = Kpx (3.57)

where
Tag = agonist muscle tension minus passive elasticity.
Tant = antagonist muscle tension minus passive elasticity.
From Robinson et al. (1969, Fig. 23), the following relationships are extrapolated with length

corrected slopes

Tag = 17 g + 1 g
degree

θ (3.58)

and

Tant = 17 g − 0.3 g
degree

θ . (3.59)

Substituting Eqs. (3.58) and (3.59) into Eq. (3.57) yields Kp = 66.4 Nm−1. Note, one can
either use tension data to calculate Kp, or use physiologic data on the passive elasticity of the two mus-
cles plus the eyeball.That is, passive elasticity that acts past primary position is 40.35 Nm−1 [antago-
nist muscle], plus passive elasticity that acts short of primary position is 6.64 Nm−1 [agonist muscle],
plus passive elasticity from the eyeball is 24.52 Nm−1, which yields 71.51 Nm−1 (Robinson, D.,
1981). We use the value Kp = 66.4 Nm−1 in our simulations. Lehman and Stark (1982) identified
the passive elasticity as a critical parameter in fitting a model to saccadic eye movement data. Other
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researchers have estimated Kp = 25 Nm−1 (Bahill et al., 1980), 44 Nm−1 (Hsu et al., 1976), 76.6
Nm−1 (Cook and Stark, 1967), and 97 Nm−1 (Cook and Stark, 1968).

The length tension elasticity is estimated from the slope of the length tension curve from
Robinson et al. (1969, Fig. 23). The slope of the length-tension curve, K ′, is the series combination
of the series elasticity and length tension elasticity elements, with the muscle passive elasticity
removed.

K ′ = KseKlt

Klt + Kse

= 25.5 Nm−1 (3.60)

at primary position from the 0◦ curve. From quick release experiments, Collins estimates Kse =
125 Nm−1 (Collins, C., 1975). Therefore, from Eq. (3.60)

Klt = KseK
′

Kse − K ′ = 32 Nm−1 . (3.61)

STATIC ACTIVE STATE TENSIONS
In his paper, Collins, C. (1975) reported only the value for the series elastic element, Kse, from the
isotonic-isometric quick release experiment without explanation. May has described the experiment
and verified the results using the muscle model of the modified linear homeomorphic model (May, A.,
1985). The experiment was performed on the medial rectus muscle detached at the globe end of
a patient undergoing strabismus surgery. With the unoperated eye, the patient looked 15◦ nasally,
which resulted in a corresponding set of active state tensions in the operated eye. The medial
rectus muscle was initially stretched to 9 mm beyond slack and quick released a total of 1 mm.
In the operating region of the experiment, the passive elasticity of the muscle is negligible and is
eliminated from the analysis. Figure 3.33 illustrates a model of the muscle depicting the quick release
experiment, where T is muscle tension. Using D’Alembert’s law yields

T (t) = Kse (x2(t) − x1(t)) . (3.62)

Diagrams (b) and (c) in Fig. 3.33 contain the experimental results from Collins’ experiment.
Since x1 is the total change in the muscle length and x2 cannot change instantaneously, we have

T (0−) − T (0+) = Kse

(
x1

(
0+) − x1

(
0−))

or (3.63)

Kse = T (0−) − T (0+)

Kse

(
x1

(
0+) − x1

(
0−)) = 125 Nm−1 .

The estimates of the static active state tensions during fixation must satisfy Eq. (3.49), that is

δ (Kse + Klt )
(
Fag − Fant

) = C0θ . (3.64)
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Figure 3.33: (a) Model of muscle depicting the quick release experiment where T is the tension exerted
by the muscle; (b)-(c) diagrams illustrating the experimental results from Collins et al. (1975) experiment.
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To eliminate the active state tensions during fixation, the following equations describe the
forces acting at nodes 1-4 in Fig. 3.26.

Tag = Kse (x2 − x1) (3.65)
Fag = Kltx2 + Tag (3.66)
Tant = Kse (x4 − x3) (3.67)
Fant = Tant − Kltx3 . (3.68)

The static agonist active state tension is found by eliminating x2 from Eq. (3.65) by using Eq. (3.66),
yielding

Fag = (Kse + Klt )

Kse

Tag + Kltx1 . (3.69)

At primary position, xp1 + xp2 = −0.003. To remove x1 from Eq. (3.69), note that x1 = x −
xp1 and xp1 = −0.002167, thus

Fag = (Kse + Klt )

Kse

Tag + Klt

(
x − xp1

)
. (3.70)

We next eliminate Tag from Eq. (3.70) by using Eq. (3.58), yielding

Fag = 0.14 + 0.0185θ N . (3.71)

The static antagonist active state tension is found by eliminating x3 from Eq. (3.67) by using
Eq. (3.68), yielding

Fant = (Kse + Klt )

Kse

Tant − Kltx4 . (3.72)

To remove x4 from Eq. (3.72), note that x4 = x + xp4 and xp4 = 0.002167, thus

Fant = (Kse + Klt )

Kse

Tant − Klt

(
x + xp4

)
. (3.73)

Next, we eliminate Tant from Eq. (3.73) by using Eq. (3.59), yielding

Fant = 0.14 − 0.0098θ N . (3.74)

To satisfy Eq. (3.64) and ensure only positive active state tensions, Eqs. (3.71) and (3.74) are written
with the following constraints.

Fag =
{

0.14 + 0.0185θ N for θ < 14.23◦
0.0283θ N for θ ≥ 14.23◦

Fant =
{

0.14 − 0.0098θ N for θ < 14.23◦
0 N for θ ≥ 14.23◦ .

(3.75)
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These estimates of static active state tensions are in good agreement with those determined from
Robinson’s length tension innervation curves (Robinson, D., 1981).

Summarizing, the set of parameter estimates for the oculomotor plant are
Kse = 125 Nm−1

Klt = 32 Nm−1

K = 66.4 Nm−1

B = 3.1 Nsm−1

J = 2.2 × 10−3 Ns2m−1

Bag = 3.4 Nsm−1

Bant = 1.2 Nsm−1

τac = 0.009 s
τde = 0.0054 s
δ = 5.80288 × 105

The eigenvalues for the oculomotor plant using the parameter values above are −15, −66,
−173, and −1, 293.

DYNAMIC ACTIVE STATE TENSIONS
Initial estimates of the oculomotor control signals are based on an extrapolation of the eye movement
trajectory. Specifically, the model is solved for the time to peak velocity and peak velocity to estimate
the initial values for the control signal.

The saccadic eye movement model is solved via superposition using the classical technique.
This is, separate solutions are found for the tensions operating between the time intervals 0 to t1,
and t1 to ∞, and then combined to yield the complete solution. The forced response is given by

θf (t)=
(
A11+A21e

−t
τac +A31e

−t
τde

)
u(t)+

(
A12+A22e

−(t−t1)
τac +A32e

−(t−t1)
τde

)
u(t−t1) (3.76)

where

A11 = δ (Kse + Klt ) Fp
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τ 4
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τ 3
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τ 2
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+ C0
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δ
(
(Kse + Klt ) − Bant

τac

) (
Fg0 − Fp

)
Dac

Dac = 1

τ 4
de

− C3

τ 3
de

+ C2

τ 2
de

− C1

τde

+ C0

A31 =
δFt0

(
(Kse + Klt ) − Bag

τde

) (
Fg0 − Fp

)
Dde
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A12 = −δ (Kse + Klt )
(
Fp − Fgs + Fts

)
C0

A22 =
−δ

((
(Kse + Klt ) − Bag

τac

)(
Ft0e

−t1
τde − Fts

)
+

(
(Kse + Klt ) − Bant

τac

)(
e

−t1
τde

(
Fg0 − Fp

)))

Dac

A32 =
δ

(
Ft0e

−t1
τde

(
(Kse + Klt ) − Bag

τde

)
+

(
(Kse + Klt ) − Bant

τde

)(
Fp − Fgs + e

−t1
τac

(
Fg0 − Fp

)))

Dde
.

The natural response is given by

θn(t)=
(
K11e

a1t + K21e
a2t + K31e

a3t + K41e
a4t

)
u(t)

+
(
K12e

a1(t−t1)+K22e
a2(t−t1)+K32e

a3(t−t1)+K42e
a4(t−t1)

)
u (t − t1) (3.77)

where Kij are the constants determined from the system’s initial conditions, and ai are the eigen-
values. The complete solution is

θ(t) = θn(t) + θf (t)

=
(
K11e

a1t +K21e
a2t +K31e

a3t +K41e
a4t +A11 + A21e

−t
τac +A31e

−t
τde

)
u(t)

+
⎛
⎝ K12e

a1(t−t1)+K22e
a2(t−t1)+K32e

a3(t−t1)+K42e
a4(t−t1)

+A12+A22e
−(t−t1)

τac +A32e
−(t−t1)

τde

⎞
⎠ u (t − t1) . (3.78)

The initial conditions are specified with the system at rest at primary position (looking straight
ahead), that is, θ(0) = 0. Note that Eq. (3.78) assumes the eye movement starts at time zero. In
fact, the response to the target movement starts only after a variable latent period. This time delay
is omitted for simplicity in writing the results and may be incorporated quite easily at a later time.

From the solution given in Eq. (3.78), the time to peak velocity and peak velocity are de-
termined to yield estimates of agonist pulse magnitude and filter time constants. The time to peak
velocity, tmv , is calculated from

∂2θ

∂t2

∣∣∣∣
t=tmv

= 0

or

0 =
(

a2
1K11ea1tmv +a2

2K21ea2tmv + a2
3K31ea3tmv +a2

4K41ea4tmv + A21

τ2
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e
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τac + A31

τ2
de

e
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τde

)
u(t)

+

⎛
⎜⎜⎝

a2
1K12ea1tmv e−a1t1 +a2

2K22ea2tmv e−a2t1 +a2
3K32ea3tmv e−a3t1 + a2

4K42ea4tmv e−a4t1

+A22

τ2
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e
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τac e
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τ2
de

e
−tmv
τde e

t1
τde

⎞
⎟⎟⎠u (t−t1) . (3.79)
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Equation (3.79) is iteratively solved for tmv using a first-order Taylor series approximation for
the exponential terms involving tmv .

eai t
j+1
mv = eai t

j
mv eai t

j+1
mv −t

j
mv ≈ eai t

j
mv

(
1 + ai

(
t
j+1
mv − t

j
mv

))
. (3.80)

Substitute Eq. (3.80) into Eq. (3.79), yielding
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Separating like terms gives

0 =

⎛
⎜⎜⎜⎜⎜⎝

a2
1K11e

a1t
j
mv

(
1 − a1t

j
mv

)
+ a2

2K21e
a2t

j
mv

(
1 − a2t

j
mv

)
+a2

3K31e
a3t

j
mv

(
1 − a3t

j
mv

)
+ a2

4K41e
a4t

j
mv

(
1 − a4t

j
mv

)

+A21
τ 2
ac

e
t
j
mv
τac

(
1 − t

j
mv

τac

)
+ A31

τ 2
de

e
t
j
mv
τde

(
1 − t

j
mv

τde

)

⎞
⎟⎟⎟⎟⎟⎠ u(t)

+ t
j+1
mv

⎛
⎜⎜⎜⎜⎜⎝

a3
1K11e

a1t
j
mv + a3

2K21e
a2t

j
mv

+a3
3K31e

a3t
j
mv + a3

4K41e
a4t

j
mv

+A21
τ 3
ac

e
t
j
mv
τac + A31

τ 3
de

e
t
j
mv
τde

⎞
⎟⎟⎟⎟⎟⎠ u(t)



3.6. 1984 LINEAR RECIPROCAL INNERVATION OCULOMOTOR MODEL 85

+

⎛
⎜⎜⎜⎜⎜⎝

a2
1K12e

a1t
j
mv

(
1 − a1t

j
mv

)
e−a1t1 + a2

2K22e
a2t

j
mv

(
1 − a2t

j
mv

)
e−a2t1

+a2
3K32e

a3t
j
mv

(
1 − a3t

j
mv

)
e−a3t1 + a2

4K42e
a4t

j
mv

(
1 − a4t

j
mv

)
e−a4t1

+A22
τ 2
ac

e
t
j
mv
τac

(
1 − t

j
mv

τac

)
e

t1
τac + A32

τ 2
de

e
t
j
mv
τde

(
1 − t

j
mv

τde

)
e

t1
τde

⎞
⎟⎟⎟⎟⎟⎠ u (t − t1)

+ t
j+1
mv

⎛
⎜⎝ a3

1K12e
a1t

j
mv e−a1t1 + a3

2K22e
a2t

j
mv e−a2t1 + a3

3K32e
a3t

j
mv e−a3t1

+a3
4K42e

a4t
j
mv e−a4t1 + A22

τ 3
ac

e
t
j
mv
τac e

t1
τac + A32

τ 3
de

e
t
j
mv
τde e

t1
τde

⎞
⎟⎠ u (t − t1) .

Next, we solve for t
j+1
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where the (j + 1)th iterates of t
j+1
mv are calculated from the j th iterates of t

j
mv . The procedure of

solving for time at peak velocity begins with specifying an initial guess, t0
mv , and using Eq. (3.81)

to solve for t
j+1
mv , and iterating until the desired degree of accuracy is achieved. Clearly, the solution

for tmv involves two distinct cases: case 1 with tmv dependent on the size of the saccade and case 2
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with tmv independent of the size of the saccade. Case 1 involves saccades in which the agonist pulse
duration is in the interval [0, tc1 ], where tc1 is the maximum value of t1 in which tmv is a function of
saccade displacement.The case 1 solution for tmv yields a value greater than t1 due to the mechanical
components of the oculomotor model. The case 2 solution of tmv yields tmv = tc1 for all saccades
when t1 > tc1 . These results agree with the characteristics of the main sequence diagram.

Peak velocity is calculated from
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(
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e

−tmv
τac e−a1t1 − A32

τde
e

−tmv
τde e−a1t1

⎞
⎠ u (t − t1).

(3.82)

The diagrams in Fig. 3.34 illustrate the effect of agonist pulse magnitude, pulse duration, and
activation time constant on peak velocity using the parameter estimates described in this section.

Figure 3.34: Diagram illustrating the effect of the agonist pulse magnitude, pulse duration and activation
time constant on peak velocity. (a) τac = 0.004 s; (b) τac = 0.007 s; (c) τac = 0.010 s; (d) τac = 0.013 s;
τde = 0.005 s for all saccades.
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As expected, the pulse magnitude strongly affects peak velocity, increasing Fp, increases θ̇ (tmv) for
all pulse durations. Additionally, increasing Fp does not affect tc1 ; that is, tc1 is independent of the
pulse magnitude. Increasing the pulse duration from zero increases peak velocity until tmv > tc1 as
computed from Eq. (3.82), after which peak velocity remains a constant as pulse duration increases.
Increasing the activation time constant increases tc1 , while slightly reducing the peak velocity θ̇ (tmv).
It should be noted that the effects of the deactivation time constant during the pulse phase of the
trajectory does not significantly influence the time to peak velocity or the peak velocity.

Saccadic eye movement data and physiological conditions determine the initial estimates for
the dynamic active state tensions during a saccade. First, the saccadic eye movement data is analyzed
using the two-point central difference method from which estimates of velocity and acceleration are
computed (the two-point central difference method is described in Chapter 4). Velocity estimates
are computed with a step size of 3 and acceleration estimates are computed with a step size of 4.
Values for the time to peak velocity, tmv , and peak velocity, θ̇ (tmv), are calculated from the data, and
used to determine Fp, t1 and τac based on the theoretical peak velocity investigation presented here
and summarized in the graphs in Fig. 3.34. The initial estimate of the deactivation time constant is
also estimated directly from the time interval from t1 to the end of the saccade, divided by four (i.e.,
within four time constants an exponential reaches steady state).

SYSTEM IDENTIFICATION TECHNIQUE AND ESTIMATION RESULTS
Parameter estimates and inputs for the model of the oculomotor system are found using the system
identification technique as previously described. Final estimates for all parameters and inputs were
determined with a conjugate gradient search program, initialized using published physiological data
and experimental data. Figure 3.35 shows estimation routine results for a 15◦ target displacement in
the time and frequency domain. The accuracy of these results is typical for all target displacements
with all subjects tested, except for saccades with glissadic or dynamic overshoot (saccades with glis-
sadic or dynamic overshoot are discussed in Chapter 6). Figures 3.36 and 3.37 further illustrates the
accuracy of the system identification technique parameter estimation routine by the close agreement
of the velocity and acceleration estimates with the two-point central differences estimates.

Displayed in Fig. 3.38 are the system identification technique estimates of agonist pulse
magnitude as a function of displacement for the three subjects tested. The estimated agonist pulse
magnitude showed more variation within each target movement than between target movements.
One pronounced feature evident from this graph is the apparent lack of a strong relationship between
agonist pulse magnitude and displacement related by other investigators. In fact, pulse magnitude
is evidently independent of the size of the target displacement. These results are consistent with
a control of saccadic eye movements that is time-optimal as described in the next section. The
magnitude of the agonist pulse is a maximum regardless of the size of the saccade and only the
duration of the agonist pulse affects the size of the saccade.

Analogous to the agonist pulse magnitude relationship with saccade magnitude, the activation
and deactivation time constants showed more variation within each target movement than between
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Figure 3.35: Time and frequency response for a 15 degree saccadic eye movement. Solid and dashed
lines are the predictions of the saccadic eye movement model with final parameter estimates computed
using the system identification technique. Dots and triangles are the data.
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Figure 3.36: A plot of the velocity estimates (dots) and velocity simulation results (solid line) from the
modified linear homeomorphic model.
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Figure 3.37: A plot of the acceleration estimates (dots) and acceleration simulation results (solid line)
from the modified linear homeomorphic model.
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Figure 3.38: System identification technique estimate of the agonist pulse magnitude as a function
of saccade magnitude for the three subjects tested (a), (b), and (c). Figures 3.35–3.37 correspond to
subject (a).
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target movements for this subject as displayed in Fig. 3.39. The average activation time constant is

Figure 3.39: System identification technique estimates of the activation and deactivation time constant
as a function of saccade magnitude.

9.0 ms, with a range of values from 3.7 to 15.7 ms. The average deactivation time constant is 5.4 ms,
with a range of values from 3.5 ms to 7.2 ms (one outlier with a value of 11.1 falls outside this range).
No trends are noted in the data between either time constant and saccade magnitude.

3.6.3 TIME OPTIMAL CONTROL OF SACCADIC EYE MOVEMENTS
Saccadic eye movements, among the fastest voluntary muscle movements the human body is capable
of producing, are characterized by a rapid shift of gaze from one point of fixation to another.Although
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the purpose for such an eye movement is obvious, that is, to quickly redirect the eyeball to the target,
the neuronal control strategy is not. For instance, does the word “quickly” in the previous sentence
imply the most rapid movement possible, or simply a fast as opposed to a slow movement? To reach
a destination in minimum time, the input to the oculomotor system must be bang-bang according
to Pontryagin’s minimum principle; that is, the oculomotor system is either maximally or minimally
stimulated during the saccadic eye movement. With this control strategy, saccade magnitude is
affected only by the length of the time intervals during which the system is maximally or minimally
stimulated. This section describes an investigation utilizing Pontryagin’s minimum principle and
system identification techniques to estimate muscle active state tensions during horizontal saccadic
eye movements in order to better understand the neuronal control strategy.

To detail the neuronal control strategy, it is necessary to understand the effect of the saccadic
innervation signals on the oculomotor plant and the resultant response. Many investigators have
extensively studied the saccadic innervation signals, which are described by pulse-step waveforms.
At the start of a saccade, the agonist muscle is strongly stimulated, and the antagonist muscle is
completely inhibited. After a brief time interval, this is followed by a decrease in agonist stimulation
and an increase in antagonist stimulation to tonic levels necessary to maintain the eyeball in its new
position. Collins states that the amplitude and duration of the saccadic innervation signal determines
the magnitude of each saccade (Collins et al., 1975). Specifically, he determined a logarithmic rela-
tionship between innervation amplitude and saccade magnitude. Zee and his co-workers assumed
that a local feedback loop automatically controlled the amplitude and duration of the saccadic inner-
vation signal (Zee et al., 1976).The difference between the internal representation of the present eye
position and the desired eye position determines the saccadic innervation signal. Note that Zee et al.
still hypothesize a pulse-step innervation signal but base the pulse size and duration on a nonlinear
velocity function. Bahill reports a nonlinear relationship between saccade innervation magnitude
and saccade magnitude, and a linear relationship between saccade innervation duration and saccade
magnitude (Bahill, A., 1980). If these authors are correct in their assertion that saccadic magnitude
is a function of both the duration and the amplitude of the innervation signal, and not duration
alone, then neuronal control does not operate with a bang-bang or minimum-time strategy.

While investigators have recorded the innervation signal from several types of motoneurons
that drive the eyeball during a saccade, they have not directly measured the active state tensions
responsible for this movement. Collins and his co-workers have measured the muscle tension in vivo
at the muscle tendon during unrestrained human eye movement using a miniature “C” gauge force
transducer (Collins et al., 1975). The active state tension, however, is distributed throughout the
muscle and cannot be directly measured since it is modified by the viscoelasticity of the muscle. Very
little is known about the dynamic active state tensions generated in the antagonist-agonist muscle
pair during a saccade and their relationship to the saccadic innervation signal. Naturally, under static
conditions during fixation, the active state tensions are proportional to the innervation signal, and
a constant firing frequency produces a constant active state tension. During a saccade, the agonist
active state tension changes rapidly, rising in a matter of milliseconds to a new level approximately
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tenfold higher than during fixation, and then falling to the new fixation level. The proportional
relationship that exists for innervation and active state tension during fixation is not valid during a
saccade due to the effect of saturation and filtering of the input signal. Thus, the exact shape of the
input to the muscle is uncertain.The active state tensions are typically modeled by low-pass filtering
the innervation signal (1981). While very little is known about the activation and deactivation time
constants due to lack of in vivo testing, Bahill has estimated their values to be between 0.2 and
13 ms based on the rise of the isometric force during electrical stimulation (Bahill, A., 1981). In the
previous section, we estimated the average activation time constant is 9.0 ms, with a range of values
from 3.7 to 15.7 ms. The average deactivation time constant is 5.4 ms, with a range of values from
3.5 ms to 7.2 ms.

Robinson presented data that seem to contradict the previous relationship of amplitude and
duration with saccade magnitude (Robinson, D., 1981). From Robinson, D. (1981, Fig. 4), note
that the agonist motoneuron burst peaks at the same amplitude and then drops to a constant level
during the saccade regardless of the size of the retinal error. Since the motoneurons fire well above
200 Hz for the initial pulse phase of the trajectory regardless of the amplitude of the saccade, only
the duration of the agonist pulse is a function of the saccade displacement. Under these conditions,
the eyeball appears to be driven to its destination in minimum- time for saccades of all sizes.

Other researchers have investigated the neuronal control strategy of saccadic eye movements
using optimal control theory.While these investigators concluded that each saccadic eye movement is
driven to achieve final eye position in minimum-time, they reported different neuronal control strate-
gies. Clark and Stark, 1975 postulated second-order time-optimal control signals, but they observed
a first-order time-optimal control simulation solution when using the same model in both analy-
ses (Clark and Stark, 1975). While never completely rectifying these differences, Clark and Stark
concluded that the saccadic eye movement neuronal control strategy is first-order time-optimal.
Clark and Stark did not give switch-time details or comment on the pulse magnitude-saccade mag-
nitude relationship. Lehman and Stark, however, reported a second-order time-optimal controller
using a simplified saccadic eye movement model which excluded the activation and deactivation time
constants (Lehman and Stark, 1979). Further, Lehman and Stark indicated that they were unable to
solve the optimality problem using a saccadic eye movement model with activation and deactivation
time constants. Lehman and Stark also reported agonist pulse magnitude as a function of saccade
amplitude, which violates the bang-bang controller.

This section presents an optimal control investigation of horizontal saccadic eye movements
based on Pontryagin’s minimum principle with a linear oculomotor model in which activation and
deactivation time constants are explicitly included. Based on the optimality solution, it is shown that
horizontal saccadic eye movement neuronal control is a first-order time-optimal control signal. The
concepts underlying this hypothesis are

1) the agonist pulse is maximum regardless of the amplitude of the saccade

2) only the duration of the agonist pulse effects the size of the saccade
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The antagonist muscle is assumed to be completely inhibited during the period of maximum
stimulation for the agonist muscle. Furthermore, higher order signals are found not to be time-
optimal. A quantitative analysis of saccadic eye movement data is also presented to support the
hypothesis that the saccadic neuronal control mechanism operates to achieve final eye position in
minimum-time under a first-order controller. Thus, a consistent first-order time-optimal neuronal
control strategy is demonstrated which also agrees with experimental data analysis.

TIME-OPTIMAL NEURONAL CONTROL STRATEGY
The hypothesis that the eyeball is driven to its destination in minimum-time for saccades of all sizes
is investigated using optimal control theory based on the minimum principle of Pontryagin with a
linear oculomotor model. In order to state the optimal control problem to be solved, we describe
the model in terms of state variables with the agonist and antagonist active state tensions explicitly
included as follows.

θ̇1 = θ2

θ̇2 = θ3

θ̇3 = θ4

θ̇4 = C0θ1 − C1θ2 − C2θ3 − C3θ4 (3.83)

+ δ

(
(Kse + Klt ) (θ5 − θ6) + Bant

n1 − θ5

τag

− Bag

n2 − θ6

τant

)

θ̇5 = n1 − θ5

τag

θ̇6 = n2 − θ6

τant

where
θ1 = θ = angular position
θ2 = θ̇1 = angular velocity
θ3 = θ̇2 = angular acceleration
θ4 = θ̇3 = angular jerk
θ5 = agonist active state tension
θ6 = antagonist active state tension
n1 = agonist neurological controller
n2 = antagonist neurological controller
Ci = mechanical components of the oculomotor plant

Note that the filter time constants τag and τant are functions of time, that is

τag = τac (u(t) − u(t − t1)) + τdeu(t1)

τant = τde (u(t) − u(t − t1)) + τacu(t1) . (3.84)
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Due to physiological constraints, the agonist and antagonist neurological controller must
satisfy 0 ≤ ni ≤ nmax. Equation (3.83) is written in matrix form as

θ̇ = Aθ + Bn (3.85)

where

θ=

⎡
⎢⎢⎢⎢⎢⎢⎣

θ1
θ2
θ3
θ4
θ5
θ6

⎤
⎥⎥⎥⎥⎥⎥⎦

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0

−C0 −C1 −C2 −C3 δ

(
(Kse + Klt ) − Bant

τag

)
−δ

(
(Kse + Klt ) − Bag

τant

)

0 0 0 0
−1

τag
0

0 0 0 0 0
−1

τant

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 0

δBant

τag
− δBag

τant
1

τag
0

0
1

τant

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

n =
[

n1
n2

]
.

It should be clear that the system matrix A is stepwise time-varying due to the time constants.
The hypothesized time-optimal neural control strategy is to choose the control n(t) to transfer θ (0)

according to θ̇ = Aθ + Bn to the destination D so that the functional

J (n) =
tf∫

0

dt +
6∑
1

G
(
θi

(
tf
) − Di

)2 (3.86)

is minimized, where the terminal time tf and θ
(
tf
)

are unspecified. G is a weighting vector which
determines the nearness of θ

(
tf
)

to D.

TIME-OPTIMAL CONTROL SOLUTION
The time-optimal control solution is investigated using the minimum principle of Pontryagin. The
minimum principle states that the time-optimal input to the model must be bang-bang. Using
the standard approach to the optimality problem, the gradient or steepest descent method, it is
impossible to solve for the switch-time for the sixth order oculomotor model. Instead of simplifying
the model in order to determine the optimal control, as did Lehman and Stark (1979), we decided
to solve for the optimal switch-times directly.
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Direct Optimal Switch-Time Evaluation The difficulties associated with the gradient method are
avoided by directly evaluating the optimal switch-time for the minimum-time controller based on the
works of Pierre, D. (1969), Lee, E. (1960), and Smith, F. (1961). First, using Pontryagin’s minimum
principle, this system’s minimum-time controller is of the bang-bang type. Due to physiological
considerations, the agonist neurological control is fully stimulated at the start of the saccade and the
antagonist neurological control is completely inhibited. At the switch-time, the controllers exchange
values. Thus, all that is necessary to solve this problem is to specify the minimum-time controller
switch-time. Since the oculomotor system is a time-varying system, the direct evaluation procedure
in solving for the optimal switch-time by Pierre, D. (1969), Lee, E. (1960), and Smith, F. (1961) is
not suitable since the commutativity condition is not satisfied (Kinariwala, B., 1961). Fortunately, the
differential equation that describes saccadic eye movements with a bang-bang controller is readily
solved using classical techniques (see Eq. (3.78), expanded below).

θ(t) =
(
K11e

a1t + K21e
a2t + K31e

a3t + K41e
a4t + A11 + A21e

−t
τac + A31e

−t
τde

)
u(t)

+
(

K12e
a1(t−t1) + K22e

a2(t−t1) + K32e
a3(t−t1) + K42e

a4(t−t1)

+A12 + A22e
−(t−t1)

τac + A32e
−(t−t1)

τde

)
u (t − t1) . (3.87)

Thus, by avoiding direct evaluation of the state transition matrix, the direct evaluation com-
putational procedure can be modified appropriately with the saccadic eye movement model solution
to yield the optimal switch-time.

The saccadic eye movement model is solved via superposition by incorporating the bang-
bang neurological controllers directly in the agonist and antagonist active state tensions and treating
the active state tensions as inputs. That is, separate solutions are found for the tensions operating
between the time intervals 0 to t1 and t > t1, and then combined to yield the complete solution.

The initial conditions are specified with the system at rest at primary position (looking
straight ahead), that is, θ (0) = 0. In general, the minimum-time controller is specified by selecting
t1 and tn so that tf > tn is minimum and θ

(
tf
) = D. At θ

(
tf
)

we have

θ(tf ) = K11e
a1tf + K21e

a2tf + K31e
a3tf + K41e

a4tf + A11 + A21e
−tf
τac + A31e

−tf
τde

+ K12e
a1(tf −t1) + K22e

a2(tf −t1) + K32e
a3(tf −t1) + K42e

a4(tf −t1)

+ A12 + A22e
−(tf −t1)

τac + A32e

−(tf −t1)

τde . (3.88)

The only unknowns in Eq. (3.88) are t1 and tf . As before, Eq. (3.88) is solved for t1 by using
a first-order exponential Taylor series approximation iterative linearization technique as described
previously. First, assume that tf is known. Next, substitute the truncated exponential Taylor series
approximation

eai t
j+1
1 = eai t

j
1 eai t

j+1
1 −t

j
1 ≈ eai t

j
1

(
1 + ai

(
t
j+1
1 − t

j

1

))
(3.89)
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into Eq. (3.88) for eai t1 , which yields

θ(tf )=K11e
a1tf + K21e

a2tf + K31e
a3tf + K41e

a4tf + A11 + A21e
−tf
τac + A31e

−tf
τde

+K12e
a1

(
tf −t

j
1

) (
a1

(
t
j+1
1 − t

j

1

)
+ 1

)
+ K22e

a2

(
tf −t

j
1

) (
a2

(
t
j+1
1 − t

j

1

)
+ 1

)
+K32e

a3

(
tf −t

j
1

) (
a3

(
t
j+1
1 − t

j

1

)
+ 1

)
+ K42e

a4

(
tf −t

j
1

) (
a4

(
t
j+1
1 − t

j

1

)
+ 1

)

+A12 + A22e
−
(
tf −t

j
1

)
τac

⎛
⎝
(
t
j+1
1 − t

j

1

)
τac

+ 1

⎞
⎠ + A32e

−
(
tf −t

j
1

)
τde

⎛
⎝
(
t
j+1
1 − t

j

1

)
τde

+ 1

⎞
⎠ .

(3.90)

Next, factor out the term t
j+1
1 in Eq. (3.90), giving

θ(tf ) = K11ea1tf + K21ea2tf + K31ea3tf + K41ea4tf + A11 + A21e

−tf
τac + A31e

−tf
τde

+K12e
a1

(
tf −t

j
1

) (
1 − t

j
1 a1

)
+ K22e

a2

(
tf −t

j
1

) (
1 − a2t

j
1

)
+ K32e

a3

(
tf −t

j
1

) (
1 − t

j
1 a3

)

+K42e
a4

(
tf −t

j
1

) (
1 − a4t

j
1

)
+ A12 + A22e

−
(
tf −t

j
1

)
τac

(
1 − t

j
1

τac

)
+ A32e

−
(
tf −t

j
1

)
τde

(
1 − t

j
1

τde

)

+t
j+1
1

⎛
⎜⎜⎜⎜⎝

a1K12e
a1

(
tf −t

j
1

)
+ a2K22e

a2

(
tf −t

j
1

)
+ a3K32e

a3

(
tf −t

j
1

)
+ a4K42e

a4

(
tf −t

j
1

)

+A22

τac
e

−
(
tf −t

j
1

)
τac + A32

τde
e

−
(
tf −t

j
1

)
τde

⎞
⎟⎟⎟⎟⎠.

(3.91)

Next, solve for t
j+1
1

t
j+1
1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ(tf ) − K11ea1tf − K21ea2tf − K31ea3tf − K41ea4tf − A11 − A21e

−tf
τac − A31e

−tf
τde

−K12e
a1

(
tf −t

j
1

) (
1 − t

j
1 a1

)
− K22e

a2

(
tf −t

j
1

) (
1 − a2t

j
1

)
− K32e

a3

(
tf −t

j
1

) (
1 − t

j
1 a3

)

−K42e
a4

(
tf −t

j
1

) (
1 − a4t

j
1

)
− A12 − A22e

−
(
tf −t

j
1

)
τac

(
1 − t

j
1

τac

)
− A32e

−
(
tf −t

j
1

)
τde

(
1 − t

j
1

τde

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

a1K12e
a1

(
tf −t

j
1

)
+ a2K22e
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(
tf −t

j
1

)
+ a3K32e

a3

(
tf −t
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1

)
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(
tf −t

j
1

)
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j
1

)
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e

−
(
tf −t

j
1

)
τde

⎞
⎟⎟⎠

(3.92)

where t0
1 is the initial guess value of the switch-time and (j + 1)th iterates of t

j+1
1 are calculated

from the j th iterates of t
j

1 .
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The procedure of specifying the minimum-time controller begins by fixing tf and using the
linear approximation of Eq. (3.92) to solve for t

j+1
1 and iterating until the desired degree of accuracy

is achieved. Next, this procedure is repeated after decreasing tf until the smallest tf is found.
Enderle and Wolfe also examined the case of more than one switch time (Enderle and Wolfe,

1987). Their analysis demonstrated that the saccadic eye movement system is time-optimal with a
single switch-time.

Presented in Fig. 3.40 are the optimal control results which illustrate the saccade magnitude

Figure 3.40: A diagram of the saccade magnitude and switch-time relationship for Fp = 1.0 N, τac =
4 ms, and τde = 5 ms.

and switch-time relationship. The function is monotonically increasing with an inflection point at
approximately 10◦. For saccade magnitudes less than approximately 10◦, the function is concave
upward. For saccade magnitudes greater than approximately 10◦, the function is concave downward.
Time-optimal control results are presented in Fig. 3.41 for various values of τac and τde = 5 ms.

PEAK VELOCITY
The results of the data analysis on one of the three subjects discussed previously using the two-point
central difference method are illustrated in Fig. 3.42. Velocity estimates are computed with a step
size of 3 and a sampling interval of 1 ms.The time interval from the start of the saccade to the time at
peak velocity tmv showed marked variation within the 5, 10, and 15◦ target movements. The time
at peak velocity should not be interpreted as a switching time. In fact, theoretical predictions in the
previous section indicate that peak velocity occurs after the switching time for small eye movements
and before the switching time for large eye movements. The range of variation on tmv within each
target movement is approximately constant and independent of the size of the target displacement.
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Figure 3.41: Diagram illustrating the effect of the activation time constant on the switch-time for
first-order time-optimal neurological control signals. (a) τac = 4 ms, (b) τac = 7 ms, (c) τac = 10 ms,
(d) τac = 13 ms, and τde = 5 ms.

Since the actual mechanical elements of the oculomotor system are not changing for saccades of
the same size, the input to the oculomotor system must be responsible for the differences in saccade
dynamics. As previously illustrated, the only parameter capable of changing the time to peak velocity
is a variable activation time constant. Increasing the activation time constant predominantly increases
the time to peak velocity while slightly reducing the peak velocity. These results are indicative of a
random or variable activation time constant acting independently of saccade magnitude. Next, peak
velocity varies greatly for all target displacements within the 5, 10, and 15◦ target movements.
Peak velocity is influenced by the filter time constants, the magnitude of the agonist pulse, as well
as the switching time. The most dominant factor affecting peak velocity, however, is the size of
the agonist pulse magnitude. Increasing the size of the agonist pulse magnitude directly increases
the peak velocity. This implies that the peak velocity variability apparent in the central difference
results is primarily due to the magnitude of the agonist pulse, and that agonist pulse magnitude is a
random variable, independent of the size of the target displacement. Note that the random behavior
of these parameters is not a function of fatigue because the recording sessions were kept short to
avoid fatigue.
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Figure 3.42: Two-point central difference estimates of peak velocity and time to peak velocity as a
function of saccade magnitude. Velocity estimates are computed with a step size of 3 and a sampling
interval of 1 ms.
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SYSTEM IDENTIFICATION RESULTS
Displayed in Fig. 3.38 are the estimates of agonist pulse magnitude as a function of displacement for
the three subjects tested.The estimated agonist pulse magnitude showed more variation within each
target movement than between target movements. One pronounced feature evident from this graph
is the apparent lack of a strong relationship between agonist pulse magnitude and saccade amplitude
related by other investigators. In fact, pulse magnitude evidently does not depend on saccade size,
consistent with a time-optimal control. Under a time optimal control, the magnitude of the agonist
pulse should be a maximum regardless of the size of the saccade. Only the duration of the agonist
pulse affects the size of the saccade. Figure 3.43 compares the average agonist pulse magnitude of

AGONIST PULSE MAGNITUDE (N)

SACCADE MAGNITUDE IN DEGREES

5 10 15

0 5

1 0

1 5

2 0

Figure 3.43: Diagram comparing the agonist pulse magnitude as a function of saccade magnitude as
predicted by a first-order time-optimal control signal (blue line) and according to Bahill, A. (1981) (red
line). Note that the first-order time-optimal agonist pulse magnitude is the average value from subject (a).

one of the three subjects tested to the agonist pulse magnitude according to Bahill et al. (1980). As
indicated earlier, had the agonist pulse magnitude estimates displayed any dependence on saccade
magnitude, as in Bahill’s prediction, the controller would not have been time-optimal. Interestingly,
Lehman and Stark use an agonist pulse magnitude that is a function of amplitude, a controller that
they acknowledge as violating a bang-bang or optimal controller.

Clark and Stark first stated that the neuronal control strategy for human saccadic eye move-
ments is time-optimal based on experimental data analysis (Clark and Stark,1975).Using a nonlinear
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model with activation and deactivation time constants, they analyzed three different sets of agonist-
antagonist controller inputs. Based on a curve fitting investigation matching model predictions to
saccadic eye movement data, Clark and Stark concluded that the best results are obtained with a
first-order pulse-step neuronal controller. Based on their optimal control investigation, however, they
reported a second-order time optimal control signal. By reducing the order of the model from sixth to
fourth-order, eliminating the activation and deactivation time constants, Clark and Stark’s optimal
control investigation yielded a first-order time optimal control signal, consistent with their experi-
mental findings. Note that Clark and Stark did not solve for the switch-times in their optimal control
analysis or comment on the pulse magnitude-saccade amplitude relationship. Lehman and Stark also
investigated the neuronal control strategy for human saccadic eye movements (Lehman and Stark,
1979). Applying Pontryagin’s minimum principle on a linear model, which includes the activation
and deactivation time constants, failed to give robust results. After reducing the order of the model
from sixth- to fourth-order, as Clark and Stark did by eliminating the activation and deactivation
time constants, and applying Pontryagin’s minimum principle, their analysis yielded a second-order
time-optimal control signal. In simulating saccadic eye movements, Lehman and Stark, however,
assumed that the agonist pulse magnitude is a function of saccade magnitude, a controller that is
not time optimal since it violates Pontryagin’s minimum principle.

Table 3.3: Saccadic Eye Movement Time-Optimal Controller Results with
the Activation and Deactivation Time Constants Included in the Analysis.
Investigator Model Time-Optimal Controller

Clark and Stark Sixth-Order Nonlinear Second-Order
Lehman and Stark Sixth-Order Linear Unable to Specify
Enderle and Wolfe Sixth-Order Linear First-order

Table 3.4: Saccadic Eye Movement Time-Optimal Controller Results with-
out the Activation and Deactivation Time Constants Included in the Analysis.

Investigator Model Time-Optimal Controller

Clark and Stark Fourth-Order Nonlinear First-Order
Lehman and Stark Fourth-Order Linear Second-Order

In omitting the activation and deactivation time constants in their optimal control investi-
gation, but not in their simulations, both Clark and Stark (1975) and Lehman and Stark (1979)
implicitly assume that the values of the time constants are zero. However, there is abundant physi-
ological evidence for including activation and deactivation time constants in models of saccadic eye
movements (Robinson, D., 1981; Bahill, A., 1981). Additionally, sensitivity analyses indicate that
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both of these time constants are important but not dominant, control parameters (Clark and Stark,
1975; Hsu et al., 1976). It therefore seems important that these time constants be included in the
neurological control investigation of saccadic eye movements.

Tables 3.3 and 3.4 summarize the theoretical time-optimal saccadic eye movement control
results reported here in this section. Each of the investigators uses a fourth-order oculomotor plant
in their analysis.The difference between the tables involves including the activation and deactivation
time constants in the optimal control analysis (which increases the order of the system from fourth-
to a sixth-order) or not including the time constants. Furthermore, it should be noted that Lehman
and Stark’s model is linearized from Clark and Stark’s model.

In comparing the table listings, it is apparent that the optimal controller for the nonlinear
oculomotor system is different from the optimal controller for the linear oculomotor model. The
differences in the linear and nonlinear time-optimal controllers are probably not attributable to the
linearization because of the high degree of accuracy exhibited by the linear model. Such differences
might be attributed to the assumptions regarding the costate variables p2 and p3 by Clark and Stark.
Lehman and Stark report that the costate variables are extremely sensitive to the initial conditions,
which can only be roughly estimated. Further, Lehman and Stark state that varying the costate
variable initial conditions results in different order controllers. Thus, the theoretical time-optimal
controller specified by Clark and Stark is probably in error due to the lack of information about the
costate variables initial conditions and since it did not agree with their observed first-order time-
optimal control simulation solution. Only the theoretical first-order time-optimal control results
presented here includes the activation and deactivation time constants in the oculomotor system
model and agree with the experimental results of Clark and Stark (1975), and Enderle and Wolfe
(1988).

Example 3.3
Using the oculomotor plant model described with Eq. (3.49) and the following parameters, simulate
a 20◦ saccade.

Kse = 125 Nm−1

Klt = 32 Nm−1

K = 66.4 Nm−1

B = 3.1 Nsm−1

J = 2.2 × 10−3 Ns2m−1

Bag = 3.4 Nsm−1

Bant = 1.2 Nsm−1

τac = 0.009 s
τde = 0.0054 s
δ = 5.80288 × 105

Fp = 1.3 N
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t1 = 31 ms
Latent Period = 150 ms.
Plot the neural inputs, agonist and antagonist active-state tension, position, velocity and

acceleration vs. time.

Solution.
Using the given parameter values, the following m-file provides the parameter values for the Simulink
program.

Fp=1.3
t1=.031
theta=20
theta0=0
TDE=.0054
TAC=.009
tdeinv=1/TDE
tacinv=1/TAC
KSE=125
KLT=32
K=66.4
B=3.1
J=2.2 * 10ˆ{}-3
BAG=3.4
BANT=1.2
DELTA=5.80261*10ˆ5
KST=KLT+KSE
C0=((K*KSTˆ2)+(2*KSE*KST*KLT))/(J*BANT*BAG)
C1=((B*KSTˆ2)+(BAG+BANT)*((K*KST)+(2*KSE*KST)-KSEˆ2))/(J*BANT*BAG)
C2=((J*KSTˆ2)+((B*KST)*(BAG+BANT))+((BANT*BAG)*(K+(2*KSE))))/(J*BANT*BAG)
C3=(((J*KST)*(BAG+BANT))+(B*BANT*BAG))/(J*BANT*BAG)
if theta0 $<$ 14.23

Fag0=0.14+0.0185*theta0
else

Fag0=0.0283*theta0
end
if theta0 < 14.23

Fant0=0.14-0.0098*theta0
else

Fant0=0
end
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if theta < 14.23
Fagss=0.14+0.0185*theta

else
Fagss=0.0283*theta

end
if theta < 14.23

Fantss=0.14-0.0098*theta
else

Fantss=0
end
latent=.15
sstart=latent+t1
agstep=Fp-Fagss

Shown in Fig. 3.44 is the Simulink program. The main program is shown in Fig. 3.44 (A)
based on Eq. (3.49). The input to the system is shown in Fig. 3.44 (B), the agonist and antagonist
input is shown in Fig. 3.44 (C) and (D). In Fig. 3.45 are plots of position, velocity, acceleration,
agonist neural input and active state tension, and antagonist neural input and active state tension.
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Figure 3.44: Simulink program for Example 3.3 (A) (Main Simulink Program).
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Figure 3.44: (continued). Simulink program for Example 3.3 (B). (Input).
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Figure 3.44: (continued). Simulink program for Example 3.3 (C) (Agonist Input).
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Figure 3.44: (continued). Simulink program for Example 3.3 (D). (Antagonist Input).
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Figure 3.45: Plots of position, velocity, acceleration, agonist neural input and active state tension, and
antagonist neural input and active state tension for Example 3.2.
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C H A P T E R 4

Velocity and Acceleration
Estimation

4.1 INTRODUCTION
Estimates of accurate saccade velocity and acceleration are essential in the study of the oculomotor
system. Saccade velocities are used in clinical studies and studies of the frequency characteristics of
saccade neural networks and the oculomotor plant. Most studies use the main sequence diagram that
describes the relationship between peak velocity versus saccade amplitude. The accuracy of velocity
and acceleration estimates from three algorithms is presented in this section. The saccade signal is
composed of low frequency components that are contaminated by biological noise as well as noise
caused by the use of measuring devices, quantization, and analog-to-digital conversion. The choice
of a derivative algorithm depends on simplicity, desired accuracy and the frequency characteristics.

In verifying a model, it is often helpful to examine global characteristics. For instance, when
the Westheimer model was introduced, we examined time to peak velocity and peak velocity as
functions of the size of the saccade. Another important characteristic of this system is the latent
period, that is, the time it takes from the movement of the target to the start of the eye movement.
Saccade peak velocity-saccade magnitude and duration characteristics are usually referred to as the
main sequence characteristics.

4.2 TWO-POINT CENTRAL DIFFERENCE METHOD
One method for computing derivatives is the central difference method. For estimators of two data
points, it is the best method as it introduces no phase shifts. To compute the first derivative of a
sequence of data points according to the central difference method, we calculate

ẏ (kT ) = y ((k + n) T ) − y ((k − n) T )

2nT
(4.1)

where T is the sampling interval (s), nT is the step size and k is the discrete time variable. Note that
the experimenter selects T and n according to the system studied and the degree of accuracy desired.

4.2.1 FREQUENCY CHARACTERISTICS
The accuracy of the derivative approximation is best seen in the frequency domain. Note that the
central difference algorithm differentiates and filters — a very desirable feature when analyzing data.
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Consider a general function of time x(t) and its derivative ẋ(t). In the frequency domain, the
relationship between the two is:

Ẋ (jω) = jωX (jω) .

Now a two-point central difference estimate of the derivative is

ẏ (kT ) = y ((k + 1) T ) − y ((k − 1) T )

2T

and the z-transform is

Ẏ (z) = Y (z)

(
z − z−1

)
2T

.

We can return to the frequency domain by letting z = ejωT = cos (ωt) + j sin (ωt),

Ẏ (ωT ) = Y (ωT )

(
ejωt − e−jωt

2T

)

yielding

Ẏ (ωT ) = Y (ωT )
j sin ωT

T
.

Now ideally
Ẋ (jω)

X (jω)
= jω or

∣∣∣∣ Ẋ (ω)

X (ω)

∣∣∣∣ = ω

and experimentally

Ẏ (ωT )

Y (ωT )
= j sin ωT

T
or

∣∣∣∣ Ẏ (ωT )

Y (ωT )

∣∣∣∣ = sin ωT

T
.

The graph in Fig. 4.1 is of the ABS (Gain) for the true derivative and the estimated cen-
tral difference derivative vs. frequency with T = 0.001 s. The bandwidth (3 db point) is approx-
imately 221 Hz, (found from a Bode plot). Note that we typically low-pass filter (analog filter)
frequencies above the highest frequency content of our signal to reduce aliasing. Based on the work
of Bahill and McDonald (1983b), the relationship between the bandwidth and the amount of spread
between points for the central difference method is expressed as:

bandwidth (Hz) = 0.443 × sampling rate (Hz)
spread

that is, ±3 points (a spread of 6) yields a bandwidth of 74 Hz.
The maximum frequency content for saccade velocity is estimated at 74 Hz, and 45 Hz for

saccade acceleration. Stated simply, the optimal estimate is found by having the smallest bandwidth
for the central difference algorithm without losing any of the signal. Thus, for saccades, we sample
with T = 0.001 s, and can calculate a velocity estimate as

ẏ (kT ) = y ((k + 3) T ) − y ((k − 3) T )

6T
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Figure 4.1: Plot of gain for the true derivative and the estimated central difference derivative vs. frequency.

which has a bandwidth of 74 Hz, and an acceleration estimate as

ÿ (kT ) = ẏ ((k + 4) T − ẏ (k − 4) T )

8T

which has a bandwidth of 55 Hz.

4.3 BAND-LIMITED DIFFERENTIATION FILTER
The choice of a derivative filter depends on simplicity, accuracy, and frequency characteristics. With
the computer power available to us today, relying on simple two-point filters because of computational
needs is no longer a major concern. The choice of the derivative filter today should be dependent on
the desired degree of accuracy and the frequency characteristics.

One excellent derivative filter is called a band-limited derivative (BLD) filter, which is of the
form:

y(kT ) =
N∑

n=−N

Cnx ((k − n) T ) (4.2)

where xn is the input data sequence, yn is the derivative sequence, N is the number of input values
used on each side of the current input value, and Ck is the filter coefficients. The filter is a form of
nonrecursive filter as it does not use past values of the filtered output, but it merely depends on the
input. This filter can be used to calculate time derivatives with a phase response that is linear.
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Since yn is calculated after N future input values are sampled and stored, a linear phase shift
results between the input and the filtered data with this filter. If a real time filter is desired, we have
no knowledge of future data (xn+1 to xn+N ) and, therefore, this filter is not appropriate.

The transfer function of a band-limited differentiating filter is shown in Fig. 4.2. Notice that

Frequency 
(Hz)

Fc

H(f)

Figure 4.2: The transfer function of a BLD filter.

function has the shape of an ideal differentiator until the frequency Fc; afterwards, it acts like a
low-pass filter that removes any signal content above Fc. The function is a ramp function with slope
of 2π up to the cutoff frequency, Fc, above which, it is zero.

To create a BLD filter with the characteristics of the above transfer function, the coefficients
are obtained from a Fourier-series expansion of the ideal transfer function in Fig. 4.2 as follows

Ck = 2
∫ Fc

0
2πf sin(2πkf )df

which reduces to

Ck = 1

π

(
sin (2πkFc)

k2
− 2πFc cos (2πkFc)

k

)
.

The filter coefficients from the previous equation are calculated in the range of −N ≤ k ≤ N .
Note that because the filter coefficients are antisymmetric, Ck = C−k and C0 = 0. The Fourier-
series expansion also assumes a sampling interval of unity. Therefore, a factor of 1

T
is used to scale

the coefficients.

ẏ(kT ) = 1

T

N∑
n=1

Cn (y ((k + n) T ) − y ((k − n) T )) .
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The sampling rate for saccades is typically T = 0.001 s. Using power spectral analysis, the
cutoff frequency can be determined by setting Fc such that 99% of the energy falls within it. A value
of approximately Fc= 30 Hz is appropriate for most saccades. A good value for N is 45 points.

Truncating the filter at 45 points causes an undesirable characteristic know as the Gibbs
phenomenon to appear in the filtered response.The Gibbs response is a ripple.To control the ripple,
a Kaiser window is used to reduce the effect of the Gibbs phenomenon at the cost of increasing the
transition zone.The Kaiser window is a flexible window that allows for the adjustment via parameter
α to produce the ripple and transition zone desired. The Kaiser window weights are given by:

wk =
I0

(
α

√
1 − (

n
N

)2
)

I0 (α)
, |n| ≤ N

and

I0 (x) = 1 +
∞∑

n=1

((
x
2

)n
n!

)2

where α is the parameter used to reduce the Gibbs Phenomenon. For saccades, a value of α= 5.4414
works well.

Combining the Kaiser window with the other filter gives the following equation for estimation
of velocity of a saccade:

ẏ (kT ) = 1

T

N∑
n=1

wnCn (y ((k + n) T ) − y ((k − n) T )) .

The following is a FORTRAN program for calculating the saccade velocity with the BLD
filter. Note that the coefficients used for ωnCn are given in the data statement for vcoef.

real*4 time(500),position(500),velocity(500),vcoef(45),vdata(500)
+ ,accel(500),adata(500)
data vcoef/.7072319E+00,.1394343E+01,.2042004E+01,

+.2632429E+01,.3150056E+01,.3582120E+01,.3919101E+01,
+.4155012E+01,.4287543E+01,.4318018E+01,.4251214E+01,
+.4095032E+01,.3860031E+01,.3558882E+01,.3205744E+01,
+.2815608E+01,.2403643E+01,.1984566E+01,.1572080E+01,
+.1178384E+01,.8137948E+00,.4864816E+00,.2023151E+00,
+-.3516010E-01,-.2246426E+00,-.3668937E+00,-.4644756E+00,
+-.5214275E+00,-.5429054E+00,-.5348019E+00,-.5033759E+00,
+-.4549027E+00,-.3953669E+00,-.3302089E+00,-.2641316E+00,
+-.2009733E+00,-.1436451E+00,-.9412885E-01,-.5352848E-01,
+-.2216477E-01,.2980921E-03,.1470597E-01,.2226023E-01,
+.2436629E-01,.2249453E-01/
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open(10,file=
+’Model Simulation Output Time and Position-Large Noise.txt’,
+status=’old’,form=’formatted’)

do 225 i=1,400
read(10,226)time(i),position(i)

225 continue
226 format(F10.4,F11.4)

tsampl=.001
ncoef=45
maxit=350

ibegin=50
npt=400

open(12,file=’bld.txt’,form=’formatted’)
c Compute velocity estimates
c
c BAND LIMITED DIFFERENTIATION

do 270 i=ibegin,maxit
k=i-ibegin+1
vdata(k)=0.
do 260 j=1,ncoef

vdata(k)=vdata(k)+vcoef(j)*(position(i+j)-position(i-j))
260 continue

velocity(i)=vdata(k)
270 continue
do 370 i=100,301

k=i-ibegin+1
adata(k)=0.
do 360 j=1,ncoef

adata(k)=adata(k)+vcoef(j)*(velocity(i+j)-velocity(i-j))
360 continue

accel(i)=adata(k)
370 continue

do 470 i=101,301
write(12,227)time(i),position(i),velocity(i),accel(i)

470 continue
227 format(4F15.4)

stop
end
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4.4 MEDIAN DIFFERENTIATION FILTER
The BLD filter has the advantage of better bandwidth control and superior pass band and stop-band
performance than that of the two-point central difference method. The disadvantage of the BLD is
the long impulse response. This is the classic linear filter trade-off between the frequency domain
and the time domain. The impulses typically produce a ringing in the filter output. This ringing is
simply the impulse response of the filter evoked by the impulse noise. It is an inherent characteristic
of all linear finite impulse response and infinite impulse response filters. The ideal differentiating
filter has a short impulse response of the two-point central difference method and the stop-band
performance of the BLD.

Estimating velocity using the BLD filter greatly magnifies low level impulse noise that occa-
sionally appears in the output of eye movement measurements. A direct way to avoid this problem
is to use a differentiating filter that has no impulse response function, which requires a nonlinear
filter. This is because a linear filter with no impulse response will have no response for any input.
A median filter, a class of order statistic filters, has no impulse response and no transfer function.
Strictly speaking, the terms frequency response and bandwidth do not apply to the median filter.

Order statistic filters are a class of nonlinear digital filters that operate on a sliding window
of input data samples. Usually the window is of odd length; i.e., L = 2N + 1. The samples in the
window are rank-ordered and the ordered samples (ordered statistics) are linearly weighted. This
linear combination of order statistics constitutes the filter output. For example, the standard median
filter is an order statistic filter in which the center sample of the ordered array is given a weight of 1
and all other samples a weight 0. Other order statistic filters are implemented by choosing different
weighting coefficients. The key element in all order statistic filters is the rank ordering operation,
which is a data dependent, nonlinear process. Order statistic filters are nonlinear since the principle
of superposition does not apply.

The median filter may be introduced into a differentiating filter in two ways. The nonlinear
operation (median) may be applied first followed by the linear operation (differentiation). The
reverse also works. In this case, the differentiation is performed before the median operation. The
latter approach is discussed in this section. This approach requires several independent derivative
estimates to be calculated so that an unbiased median is found. Here the two point central difference
method is used to calculate the derivative. The median derivative filter is a classic order-statistical
filter consisting of a bank of linear filters (two-point differences) followed by the median operation
and given by

•
y(kT ) = 1

2nT
MEDIAN

⎧⎪⎪⎨
⎪⎪⎩

y((k + 6) T ) − y (kT ) , y((k + 5) T ) − y ((k − 1) T ) ,

y((k + 4) T ) − y ((k − 2) T ) , y((k + 3) T ) − y ((k − 3) T ) ,

y((k + 2) T ) − y ((k − 4) T ) , y((k + 1) T ) − y ((k − 5) T ) ,

y (kT ) − y ((k − 6) T ).

⎫⎪⎪⎬
⎪⎪⎭

While the median filter does not have a bandwidth, a bandwidth can be estimated based on
the linear component of the filter (two-point central difference estimate).The nonlinear component
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of the median filter has a low-pass filter-like property. Therefore, the median filter can be considered
a cascade combination of a low-pass filter and a differentiator. For design purposes, the bandwidth
of the median filter is essentially the two-point central difference estimate, and the impulse rejection
property is related to the number of differences used in the median operation. The more differences
used, the greater the impulse rejection capability.

The following is a FORTRAN program for calculating the saccade velocity with the median
filter.

USE MSIMSL
real*4 time(500),position(500),velocity(500),ra(7),rb(7),
+ median,accel(500)
open(10,file=
+’Model Simulation Output Time and Position-Large Noise.txt’,

+status=’old’,form=’formatted’)
do 225 i=1,400

read(10,226)time(i),position(i)
225 continue
226 format(F10.4,F11.4)

tsampl=.001
c nsample is the number of eye movements to be plotted

maxit=350
ibegin=50
npt=400

open(12,file=’median.txt’,form=’formatted’)
c Median Derivative Method
c
870 do 809 i=ibegin,maxit

ra(1)=position(i+6)-position(i)
ra(2)=position(i+5)-position(i-1)
ra(3)=position(i+4)-position(i-2)
ra(4)=position(i+3)-position(i-3)
ra(5)=position(i+2)-position(i-4)
ra(6)=position(i+1)-position(i-5)
ra(7)=position(i)-position(i-6)
call SVRGN(7,ra,rb)
median=rb(4)
velocity(i)=median/(6*.001)

809 continue
do 810 i=1,301
ra(1)=velocity(i+6)-velocity(i)
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ra(2)=velocity(i+5)-velocity(i-1)
ra(3)=velocity(i+4)-velocity(i-2)
ra(4)=velocity(i+3)-velocity(i-3)
ra(5)=velocity(i+2)-velocity(i-4)
ra(6)=velocity(i+1)-velocity(i-5)
ra(7)=velocity(i)-velocity(i-6)
call SVRGN(7,ra,rb)
median=rb(4)
accel(i)=median/(6*.001)

810 continue
do 270 i=101,301

write(12,227)time(i),position(i),velocity(i),accel(i)
270 continue
227 format(4F15.4)

stop
end

4.5 SUMMARY OF DIFFERENTIATION RESULTS

Shown in the following figures are the simulation results and filter estimates for velocity and accel-
eration. Noise was added to the simulated eye position to create realistic eye movement data.

Since the two-point central difference method (TPCD) is the differentiation method of choice
for most researchers in saccadic eye movement analysis, results obtained using two other techniques
are compared to those results. In general, little filtering of the noise is carried using the TPCD filter
since the transfer function is similar to a rectified sine wave, and noise is greatly amplified as the
order of the derivative increases. The BLD filter provides best low-pass filtering above the cutoff
frequency since it is based on a frequency domain triangle waveform. However, while the BLD filter
greatly eliminates the noise, it does so at the expense of inaccurately tracking the true waveform.
The BLD is also the most computationally expensive as compared to the other two techniques.

As illustrated in Fig. 4.3, the median filter velocity estimate provides the most accurate repre-
sentation of the simulated velocity signal, especially during the saccade. The median filter provides
the best estimate of peak velocity of all of the filters, with the TPCD overestimating and the BLD
underestimating. Similarly, the median filter acceleration estimate is the most accurate of the three
algorithms as shown again in Fig. 4.4. The BLD severely underestimates the peak acceleration. The
TPCD provides a poor estimate during fixation, and a noisy estimate during the saccade.The median
filter provides the best fixation estimate of acceleration and the closest match to the acceleration
during the saccade. However, it falls short of providing a good estimate of peak acceleration. Similar
results are observed for 5◦, 15◦, and 20◦ saccades.

The median derivative filtering method is demonstrated to provide many advantages over
the two-point central difference and the band-limited derivative method in computing velocity and
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Figure 4.3: Saccade velocity calculated from the oculomotor model and three estimates.
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acceleration estimates.The two-point central difference method is a two-tap finite impulse response
filter, and thus suffers from an impulse response. The BLD filter has the advantage of superior pass
and stop band performance, but it suffers from a long impulse response (transient response), which
is the classic trade-off between frequency and time domain performance. The median derivative
filter is a nonlinear filter, which has no impulse response and a bandwidth defined by the low-pass
differentiator (Engelken et al., 1996, 1993, 1991, 1990). Improved impulse rejection is dependent
on the number of differences used in the median operation. This means that the more differences,
the better the impulse rejection capability.

The main sequence diagram is the relationship between peak velocity and saccade amplitude.
As shown, the median filter provides the best estimate of peak velocity among the three filters.
Clinically, saccades are defined as too slow or fast if they fall outside bounds defined from the
main sequence diagram. Saccades that are too fast are typified by patients with myasthenia gravis.
Slow saccades usually occur in patients with ocular muscle or ocular motor nerve paresis, or central
neurological disorders. Saccade velocity is lower in drowsy, inattentive, drugged, intoxicated, or aged
patients.
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C H A P T E R 5

1995 Linear Homeomorphic
Saccadic Eye Movement Model

5.1 INTRODUCTION
In Chapter 3, we presented a linear model of the oculomotor plant developed by linearizing the
force-velocity curve. We then derived a linear differential equation to describe the system. Here
we re-examine the static and dynamic properties of muscle in the development of a linear model
of oculomotor muscle. With the updated linear model of oculomotor muscle, the model of the
oculomotor system will also be updated.

5.2 LINEAR MUSCLE MODEL
The updated linear model for oculomotor muscle is shown in Fig. 5.1. Each of the elements in
the model is linear and supported with physiological evidence. The muscle is modeled as a parallel
combination of viscosity B2 and series elasticity Kse, connected to the parallel combination of active
state tension generator F , viscosity element B1, and length tension elastic element Klt . Variables
x1 and x2 describe the displacement from the equilibrium for the stiffness elements in the muscle
model.The only structural difference between this model and the previous oculomotor muscle model
is the addition of viscous element B2 and the removal of passive elasticity Kpe. As will be described,
the viscous element B2 is vitally important to describe the nonlinear force-velocity characteristics of
the muscle, and the elastic element Kpe is unnecessary.

The need for two elastic elements in the linear oculomotor muscle model is supported through
physiological evidence. As described previously, the use and value of the series elasticity Kse was de-
termined from the isotonic-isometric quick release experiment by Collins. Length-tension elasticity
Klt was estimated in a slightly different fashion than before from the slope of the length-tension
curve. Support for the two linear viscous elements is based on the isotonic experiment and estimated
from simulation results presented in this chapter.

5.2.1 LENGTH-TENSION CURVE
The basis for assuming nonlinear elasticity is the nonlinear length-tension relation for excited and
unexcited muscle for tensions below 10 g as shown in Fig. 3.8. Using a miniature “C” gauge force
transducer, Collins in 1975 (Collins, C., 1975) measured muscle tension in vivo at the muscle tendon
during unrestrained human eye movements. Data shown in Fig. 3.8 were recorded from the rectus
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B1 Klt F

B2 Kse

T

x2

x1

Figure 5.1: Diagram illustrates an updated linear muscle model consisting of an active state tension
generator F in parallel with a length-tension elastic element Klt and viscous element B1, connected to
a series elastic element Kse in parallel with a viscous element B2. Upon stimulation of the active state
tension generator F , a tension T is exerted by the muscle.

muscle of the left eye by measuring the isometric tensions at different muscle lengths, ranging from
eye positions of −45◦ to 45◦, and different levels of innervation, established by directing the subject
to look at the corresponding targets with the unhampered right eye from −45◦ temporal (T) to 45◦
nasal (N). The change in eye position during this experiment corresponds to a change in muscle
length of approximately 18 mm. Collins described the length-tension curves as “straight, parallel
lines above about 10 g. Below the 10 g level, the oculorotary muscles begin to go slack.” He also
reported that the normal range of tensions for the rectus muscle during all eye movements never
falls below 10 g into the slack region when the in vivo force transducer is used.

In developing a muscle model for use in the oculomotor system, it is imperative that the
model accurately exhibits the static characteristics of rectus eye muscle within the normal range of
operation. Thus, any oculomotor muscle model must have length-tension characteristics consisting
of straight, parallel lines above 10 g tension. Since oculomotor muscles do not operate below 10 g,
it is unimportant that the linear behavior of the model does not match this nonlinear portion in the
length-tension curves observed in the data as was done in the development of the muscle model
earlier. As demonstrated in this section, by concentrating on the operational region of the oculomotor
muscles, accurate length-tension curves are obtained from the muscle model using just series elastic
and length tension elastic elements, even when active state tension is zero. Thus, there is no need to
include a passive elastic element in the muscle model as previously required.
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Since the rectus eye muscle is not in equilibrium at primary position (looking straight ahead,
0◦) within the oculomotor system, it is necessary to define and account for the equilibrium position
of the muscle. Equilibrium denotes the unstretched length of the muscle when the tension is zero,
with zero input. It is assumed that the active state tension is zero on the 45◦ T length-tension curve.
Typically, the equilibrium position for rectus eye muscle is found from within the slack region, where
the 45◦ T length-tension curve intersects the horizontal axis. Note that this intersection point was
not shown in the data collected by Collins (Fig. 3.8) but is reported to be approximately 15◦ (3 mm
short of primary position), a value that is typical of those reported in the literature.

Since the muscle does not operate in the slack region during normal eye movements, using
an equilibrium point calculated from the operational region of the muscle provides a much more
realistic estimate for the muscle. Here, the equilibrium point is defined according to the straight-line
approximation to the 45◦ T length-tension curve above the slack region.The value at the intersection
of the straight-line approximation with the horizontal axis gives an equilibrium point of −19.3◦.
By use of the equilibrium point at −19.3◦, there is no need to include an additional elastic element
Kpe to account for the passive elasticity associated with unstimulated muscle as others have done.

The tension exerted by the linear muscle model shown in Fig. 5.1 is given by

T = Kse

Kse + Klt

F − KseKlt

Kse + Klt

x1 . (5.1)

With the slope of the length-tension curve equal to 0.8 g
◦ = 40.86 N

m in the operating region of
the muscle (non slack region), Kse = 2.5 g

◦ = 125 N
m , and Eq. (5.1) has a slope of

KseKlt

Kse + Klt

. (5.2)

Klt is evaluated as 1.2 g
◦ = 60.7 N

m .
To estimate the static active state tension for fixation at the locations detailed in Figure 1 of

Collins (Collins, C., 1975), use the techniques by Enderle and coworkers (1991) by taking Eq. (5.1)
to solve for steady-state active state tensions for each innervation level straight line approximation,
yielding for θ > 0◦ (N direction)

F = 0.4 + 0.0175θ N for θ > 0◦ (N direction) (5.3)

and
F = 0.4 + 0.012θ N for θ ≤ 0◦ (T direction) (5.4)

where θ is the angle that the eyeball is deviated from the primary position measured in degrees, and
θ = 5208.7 × (x1 − 3.705). Note that 5208.7 = 180

πr
, where r equals the radius of the eyeball with

a value of 11 mm.
Figure 5.2 displays a family of static length-tension curves obtained using Eqs. (5.1)–(5.4),

which depicts the length-tension experiment. No attempt is made to describe the activity within the
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Figure 5.2: Length-tension relationship generated using Eqs. (5.1)–(5.4) derived from the linear muscle
model and inputs: F = 130 g for 45◦ N, F = 94.3 g for 30◦ N, F = 64.9 g for 15◦ N, F = 40.8 g for
0◦, F = 21.7 g for 15◦ T, F = 5.1 g for 30◦ T, and F = 0 g for 45◦ T. These lines were parameterized to
match Fig. 3.8.

slack region since the rectus eye muscle does not normally operate in that region.The length-tension
relationship shown in Fig. 5.2 is in excellent agreement with the data shown in Fig. 3.8 within the
operating region of the muscle.

5.2.2 FORCE-VELOCITY RELATIONSHIP
The original basis for assuming nonlinear muscle viscosity is that the expected linear relation between
external load and maximum velocity was not observed in early experiments by Fenn and Marsh. As
Fenn and Marsh reported, “If the muscle is represented accurately by a viscous elastic system this
force-velocity curve should have been linear, the loss of force being always proportional to the
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velocity. The slope of the curve would then represent the coefficient of viscosity.” Essentially the
same experiment was repeated for rectus eye muscle by Close and Luff (1974) with similar results.

The classic force-velocity experiment was performed to test the viscoelastic model for muscle
as described previously in Section 3.4.4. Under these conditions, it was first assumed that the inertial
force exerted by the load during isotonic shortening could be ignored. The second assumption
was that if mass was not reduced enough by the lever ratio (enough to be ignored), then taking
measurements at maximum velocity provided a measurement at a time when acceleration is zero,
and, therefore, inertial force equals zero. If these two assumptions are valid, then the experiment
would provide data free of the effect of inertial force as the gravity force is varied. Both assumptions
are incorrect.The first assumption is wrong since the inertial force is never minimal (minimal would
be zero) and therefore has to be taken into account. The second assumption is wrong since, given an
inertial mass not equal to zero, then maximum velocity depends on the forces that act prior to the
time of maximum velocity. The force-velocity relationship is carefully re-examined with the inertial
force included in the analysis in this section.

The dynamic characteristics for the linear muscle model are described with a force-velocity
curve calculated via the lever system presented in Fig. 3.14 and according to the isotonic experiment.
For the rigid lever, the displacements x1 and x3 are directly proportional to the angle θ1 and to each
other, such that

θ1 = x1

d1
= x3

d3
. (5.5)

The equation describing the torques acting on the lever is given by

Mgd3 + Md2
3 θ̈1 = d1Kse (x2 − x1) + d1B2 (ẋ2 − ẋ1) . (5.6)

The equation describing the forces at node 2, inside the muscle, is given by

F = Kltx2 + B1ẋ2 + B2 (ẋ2 − ẋ1) + Kse (x2 − x1) . (5.7)

Equation (5.6) is rewritten by removing θl using Eq. (5.5), hence

Mg
d3

d1
+ M

(
d3

d1

)2

ẍ1 = Kse (x2 − x1) + B2 (ẋ2 − ẋ1) . (5.8)

Ideally, to calculate the force-velocity curve for the lever system, x1(t) is found first. Then ẋ1 (t)

and ẍ1 (t) are found from x1(t). Finally, the velocity is found from Vmax = ẋ1(T ), where time T

is the time it takes for the muscle to shorten to the stop, according to the experimental conditions
of Close and Luff (1974). While this velocity may not be maximum velocity for all data points, the
symbol Vmax is used to denote the velocities in the force-velocity curve for ease in presentation. Note
that this definition of velocity differs from the Fenn and Marsh, 1935 definition of velocity. Fenn
and Marsh denoted maximum velocity as Vmax = ẋ1(T ), where time T is found when ẍ1(T ) = 0.

It should be noted that this is a third-order system and the solution for x1(t) is not trivial and
involves an exponential approximation (for an example of an exponential approximation solution for
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Vmax from a fourth-order model, see the paper by Enderle and Wolfe, 1988). It is more expedient,
however, to simply simulate a solution for x1(t) and then find Vmax as a function of load.

Using a simulation to reproduce the isotonic experiment,elasticity’s estimated from the length-
tension curves as previously described and data from rectus eye muscle, parameter values for the
viscous elements in the muscle model are found as B1 = 2.0 Nsm−1 and B2 = 0.5 Nsm−1 as
demonstrated by Enderle and co-workers in 1991. The viscous element B1 is estimated from the
time constant from the isotonic time course. The viscous element B2 is calculated by trial and error
so that the simulated force-velocity curve matches the experimental force-velocity curve.

Shown in Fig. 5.3 are the force-velocity curves using the model described in Eq. (5.8) (with
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Figure 5.3: Force-velocity curve derived from simulation studies with the linear muscle model with
an end stop. Shown with triangles indicating simulation calculation points and an empirical fit to the
force-velocity data (solid line) as described by Close and Luff (1974). Adapted from Enderle et al. (1990).
A Comparison of Static and Dynamic Characteristics Between Rectus Eye Muscle and Linear Muscle
Model Predictions, IEEE Trans. on Biomedical Engineering, vol. 38, no. 12, pp. 1235–1245, 1991.

triangles), plotted along with an empirical fit to the data (solid line). It is clear that the force-velocity
curve for the linear muscle model is hardly a straight line, and that this curve fits the data well.

The muscle lever model described by Eqs. (5.6) and (5.7) is a third-order linear system and is
characterized by three poles. Dependent on the values of the parameters, the eigenvalues (or poles)
consist of all real poles or a real and a pair of complex conjugate poles. A real pole is the dominant
eigenvalue of the system. Through a sensitivity analysis, viscous element B1 is the parameter that
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has the greatest effect on the dominant eigenvalue for this system, while viscous element B2 has
very little effect on the dominant eigenvalue. Thus, viscous element B1 is estimated so that the
dominant time constant of the lever system model (approximately B1

Klt
when B1 > B2) matches the

time constant from the isotonic experimental data. For rectus eye muscle data, the duration of the
isotonic experiment is approximately 100 ms. A value for B1 = 2.0 Nsm−1 yields a simulated isotonic
response with approximately the same duration. For skeletal muscle data, the duration of the isotonic
experiment is approximately 400 ms, and a value for B1 = 600 Nsm−1 yields a simulated isotonic
response with approximately the same duration. It is known that fast and slow muscle have differently
shaped force velocity curves and that the fast muscle force-velocity curve data has less curvature.
Interestingly, the changes in the parameter values for B1 as suggested here gives differently shaped
force velocity curves consistent with fast (rectus eye muscle) and slow (skeletal muscle) muscle.

The parameter value for viscous element B2 is selected by trial and error so that the shape of the
simulation force-velocity curve matches the data. As the value for B2 is decreased from 0.5 Nsm−1,
the shape of the force velocity curves changes to a more linear shaped function. Moreover, if the
value of B2 falls below approximately 0.3 Nsm−1, strong oscillations appear in the simulations of the
isotonic experiment, which are not present in the data. Thus, the viscous element B2 is an essential
component in the muscle model. Without it, the shape of the force-velocity curve is linear and the
time course of the isotonic experiment do not match the characteristics of the data.

Varying the parameter values of the lever muscle model changes the eigenvalues of the system.
For instance,with M = 0.5 kg, the system’s nominal eigenvalues (as defined with the parameter values
previously specified) are a real pole at −30.71 and a pair of complex conjugate poles at −283.9
± j221.2. If the value of B2 is increased, three real eigenvalues describe the system. If the value of
B2 is decreased, a real pole and a pair of complex conjugate poles continue to describe the system.
Changing the value of B1 does not change the eigenvalue composition, but it does significantly
change the value of the dominant eigenvalue from −292 with B1 = 0 .1 to −10 with B1 = 6.

5.3 1995 LINEAR HOMEOMORPHIC SACCADIC EYE
MOVEMENT MODEL

The linear model of the oculomotor plant presented in Section 3.6 is based on a nonlinear oculomotor
plant model by Hsu and coworkers using a linearization of the force-velocity relationship and
elasticity curves. Using the linear model of muscle described in the previous section, it is possible to
avoid the linearization and to derive a truer linear homeomorphic saccadic eye movement model.

The linear muscle model in the previous section has the static and dynamic properties of
rectus eye muscle, a model without any nonlinear elements. As presented, the model has a nonlinear
force-velocity relationship that matches eye muscle data using linear viscous elements, and the length
tension characteristics are also in good agreement with eye muscle data within the operating range
of the muscle. Some additional advantages of the linear muscle model are that a passive elasticity
is not necessary if the equilibrium point xe = −19.3◦, rather than 15◦, and muscle viscosity is a
constant that does not depend on the innervation stimulus level.
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Figure 5.4 illustrates the mechanical components of the updated oculomotor plant for hori-
zontal eye movements, the lateral and medial rectus muscle, and the eyeball. The agonist muscle is
modeled as a parallel combination of viscosity B2 and series elasticity Kse, connected to the parallel
combination of active state tension generator Fag , viscosity element B1 and length tension elastic
element Klt . For simplicity, agonist viscosity is set equal to antagonist viscosity.The antagonist mus-
cle is similarly modeled with a suitable change in active state tension to Fant . Each of the elements
defined in the oculomotor plant is ideal and linear.

The eyeball is modeled as a sphere with moment of inertia Jp, connected to a pair of viscoelastic
elements connected in series.The update of the eyeball model is based on observations by Robinson,
presented in 1981 (Robinson, D.,1981),and the following discussion.In the model of the oculomotor
plant described in Section 3.6, passive elasticity Kpe was combined with the passive elastic orbital
tissues. In the new linear model muscle presented in this chapter, the elastic element Kpe is no
longer included in the muscle model. Thus, the passive orbital tissue elasticity needs to be updated
due to the elimination of Kpe and the observations by Robinson. As reported by Robinson, D.
(1981), “When the human eye, with horizontal recti detached, is displaced and suddenly released,
it returns rapidly about 61% of the way with a time constant of about 0.02 sec, and then creeps the
rest of the way with a time constant of about 1 sec.” As suggested according to this observation,
there are at least two viscoelastic elements. Here it is proposed that these two viscoelastic elements
replace the single viscoelastic element of the previous oculomotor plant. Connected to the sphere,
are Bp1 ||Kp1 connected in series to Bp2 ||Kp2. As reported by Robinson, total orbital elasticity is
equal to 12.8 ×10−7 g/◦ (scaled for this model). Thus, with the time constants previously described,
the orbital viscoelastic elements are evaluated as Kp1 = 1.28 × 10−6 g/◦, Kp2 = 1.98 × 10−6 g/◦,
Bp1 = 2.56 × 10−8 gs/◦, and Bp2 = 1.98 × 10−6 gs/◦. For modeling purposes, θ5 is the variable
associated with the change from equilibrium for these two pairs of viscoelastic elements.Both θ and θ5

are removed from the analysis for simplicity using the substitution θ = 57.296 x
r

and θ5 = 57.296 x5
r

.
By summing the forces acting at junctions 2 and 3, and the torques acting on the eyeball and

junction 5, a set of four equations is written to describe the oculomotor plant.

Fag = Kltx2 + B1ẋ2 + Kse (x2 − x1) + B2 (ẋ2 − ẋ1)

B2 (ẋ4 − ẋ3) + Kse (x4 − x3) = Fant + Kltx3 + B1ẋ3

B2 (ẋ2 + ẋ3 − ẋ1 − ẋ4) + Kse (x2 + x3 − x1 − x4) = J ẍ + B3 (ẋ − ÿẋ5) + K1 (x − x5)

K1 (x − x5) + B3 (ẋ − ẋ5) = B4ẋ5 + K2x5 (5.9)

where

J = 57.296

r2
Jp, B3 = 57.296

r2
Bp1, B4 = 57.296

r2
Bp2, K1 = 57.296

r2
Kp1, K2 = 57.296

r2
Kp2.

Using Laplace variable analysis about an operating point as before in Section 3.6, yields

KseK12
(
Fag − Fant

) + (KseB34 + B2K12)
(
Ḟag − Ḟant

) + B2B34
(
F̈ag − F̈ant

)
= C4

....
x +C3

...
x + C2ẍ + C1ẋ + C0x

(5.10)
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Figure 5.4: This diagram illustrates the mechanical components of the updated oculomotor plant. The
muscles are shown to be extended from equilibrium, a position of rest, at the primary position (looking
straight ahead), consistent with physiological evidence. The average length of the rectus muscle at the
primary position is approximately 40 mm, and at the equilibrium position is approximately 37 mm. θ is
the angle the eyeball is deviated from the primary position, and variable x is the length of arc traversed.
When the eye is at the primary position, both θ and x are equal to zero. Variables x1 through x4 are
the displacements from equilibrium for the stiffness elements in each muscle, and θ5 is the rotational
displacement for passive orbital tissues. Values xp1 through xp4 are the displacements from equilibrium
for each of the variables x1 through x4 at the primary position. The total extension of the muscle from
equilibrium at the primary position is xp1 plus xp2 or xp3 plus xp4, which equals approximately 3 mm.
It is assumed that the lateral and medial rectus muscles are identical, such that xp1 equals xp4 and xp3

equals xp2. The radius of the eyeball is r .
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where

B12 = B1 + B2, B34 = B3 + B4, K12 = K1 + K2

C4 = J B12B34

C3 = B3B4B12 + 2B1B2B34 + JB34Kst + JB12K12

C2 =2B1B34Kse+JKstK12 + B3B34Kst + B3B12K12+K1B12B34 − B2
3Kst −2K1B3B12

+2B2KltB34 + 2B1K12B2

C1 = 2KltB34Kse + 2B1K12Kse + B3KstK2 + K1B34Kst + K1B12K12 − KstK1B3

−K2
1 B12 + 2B2KltK12

C0 = 2KltKseK12 + K1KstK2.

Converting from x to θ gives

δ
(
KseK12

(
Fag − Fant

) + (KseB34 + B2K12)
(
Ḟag − Ḟant

) + B2B34
(
F̈ag − F̈ant

))
=....

θ +P3
...
θ + P2θ̈ + P1θ̇ + P0θ (5.11)

where

δ = 57.296

rJ B12B34
, P3 = C3

C4
, P2 = C2

C4
, P1 = C1

C4
, P0 = C0

C4
.

Based on an analysis of experimental data, suitable parameter estimates for the oculomotor
plant are:

KSE = 125 Nm−1

KLT = 60.7 Nm−1

B1 = 2.0 Nsm−1

B2 = 0.5 Nsm−1

J = 2.2 × 10−3 Ns2m−1

B3 = 0.538 Nsm−1

B4 = 41.54 Nsm−1

K1 = 26.9 Nm−1

K2 = 41.54 Nm−1

Based on the updated model of muscle and length tension data presented in the previous section,
steady-state active state tensions are determined as:

F =
{

0.4 + 0.0175θ N for θ ≥ 0◦
0.4 + 0.0125θ N for θ < 0◦. (5.12)

The agonist and antagonist active state tensions follow from Fig. 3.5, which assume no latent
period, and are given by the following low-pass filtered waveforms:

•
Fag= Nag − Fag

τag

and
•
Fant= Nant − Fant

τant

(5.13)



5.3. 1995 LINEAR HOMEOMORPHIC SACCADIC EYE MOVEMENT MODEL 131

where Nag and Nant are the neural control inputs (pulse-step waveforms), and

τag = τac(u(t) − u(t − t1)) + τdeu(t − t1)

τant = τde(u(t) − u(t − t1)) + τacu(t − t1)

are the time-varying time constants.
Saccadic eye movements simulated with this model have characteristics that are in good agree-

ment with the data, including position, velocity and acceleration, and the main sequence diagrams.
As before, the relationship between agonist pulse magnitude and pulse duration is tightly coupled.

Example 5.1 Using the oculomotor plant model described with Eq. (5.11), parameters given in
this section and the steady-state input from Eq. (5.12), simulate a 10◦ saccade. Plot agonist and
antagonist active-state tension, position, velocity and acceleration vs. time. Compare the simulation
with the main sequence diagram in Fig. 1.5.

Solution.
The solution to this example involves selecting a set of parameters

(
Fp, t1, τac, and τde

)
that match

the characteristics observed in the main sequence diagram shown in Fig. 1.5. There is a great deal of
flexibility in simulating a 10◦ saccade.The only constraints for the 10◦ saccade simulation results are
that the duration is approximately 40 to 50 ms and peak velocity in the 500 to 600◦s−1 range. For
realism, a latent period of 150 ms has been added to the simulation results. A SIMULINK block
diagram of Eq. (5.11) is shown in Fig. 5.5.

The response of the system is shown in Fig. 5.6 with Fp = 1.3 N, t1 = 0.01 s, τac =
0.018 s and τde = 0.018 s. These 10◦ simulation results have the main sequence characteristics with
a peak velocity of 568◦s−1 and a duration of 45 ms.

Many other parameter sets can also simulate a 10◦ saccade. For instance, consider reducing
τde to .009 s. Because the antagonist active-state tension activity goes toward zero more quickly than
in the last case, a greater total active-state tension

(
Fag − Fant

)
results. Therefore, to arrive at 10◦

with the appropriate main sequence characteristics, Fp needs to be reduced to 1.0 N if τac remains
at 0.018 s and t1 equals 0.0115 s. This 10◦ simulation is shown Fig. 5.7.

To simulate larger saccades with main sequence characteristics, the time constants for the
agonist and antagonist active-state tensions can be kept at the same values as the 10◦ saccades
or made functions of saccade amplitude (see Bahill, A., 1981 for several examples of amplitude
dependent time constants). Main sequence simulations for 15◦ and 20◦ saccades are obtained with
Fp = 1.3 N and the time constants are both fixed at 0.018 s (the first case) by changing t1 to 0.0155
and 0.0223 s, respectively. For example, the 20◦ simulation results are shown in Fig. 5.8 with a peak
velocity of 682◦s−1 and a duration of 60 ms.

In general, as Fp increases, t1 decreases to maintain the same saccade amplitude. Additionally,
peak velocity increases as Fp increases. For the saccade amplitude to remain a constant as either or
both time constant increases, Fp should also increase.
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Figure 5.5: SIMULINK block diagrams for Example 5.1. (A) Model defined by Eq. (5.11). (B) The
input.
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Figure 5.5: (continued). SIMULINK block diagrams for Example 5.1. (C) Agonist Pulse-Step. (D) An-
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