
Lecture Notes in Computer Science 5421
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Michel R.V. Chaudron (Ed.)

Models in
Software Engineering

Workshops and Symposia at MODELS 2008
Toulouse, France, September 28 – October 3, 2008
Reports and Revised Selected Papers

13

Volume Editor

Michel R.V. Chaudron
University of Leiden
Faculty of Science
Leiden Institute of Advanced Computer Science
P.O. Box 9512, 2300 RA Leiden, The Netherlands
E-mail: chaudron@liacs.nl

Library of Congress Control Number: Applied for

CR Subject Classification (1998): D.2, D.3, I.6, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-642-01647-2 Springer Berlin Heidelberg New York
ISBN-13 978-3-642-01647-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

springer.com

© Springer-Verlag Berlin Heidelberg 2009
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12607341 06/3180 5 4 3 2 1 0

Preface

Following the tradition of previous editions of the MODELS conference, many
satellite events were organized in co-location with the MODELS conference in
Toulouse in 2008: 12 workshops, 3 symposia, 9 tutorials, a poster session, and a
tools exhibition. The selection of the workshops was organized by a Workshop
Selection Committee, which consisted of the following experts:

– Michel R.V. Chaudron, Leiden University, The Netherlands (Chair)
– Jochen Küster, IBM Research Zurich, Switzerland
– Henry Muccini, University of L’Aquila, Italy
– Holger Giese, Hasso-Plattner-Institute, Germany
– Hans Vangheluwe, McGill University, Canada

Some workshops have been running for several years as MODELS satellite
events, but each year some workshops end. Furthermore, there are always new
developments, and hence there is room for new workshops. Therefore, the Work-
shop Selection Committee very much welcomes new proposals.

The workshops enabled groups of participants to exchange recent and/or
preliminary results, to conduct intensive discussions, or to coordinate efforts
between representatives of a technical community. They served as forums for
lively discussion of innovative ideas, recent progress, or practical experience
on model-driven engineering for specific aspects, specific problems, or domain-
specific needs.

The three symposia this year were: the Doctoral Symposium, the Educators’
Symposium, and the Research Projects Symposium. The Doctoral Symposium
provided specific support for PhD students to discuss their work and receive
guidance for the completion of their dissertation research. The Educators’ Sym-
posium addressed the question of how to educate students and practitioners to
move from traditional thinking to an engineering approach based on models.
The Research Projects Symposium was a showcase for research projects, as well
as a forum where researchers from academia and industry and representatives
of funding agencies could debate on technology transfer and trends in research
projects.

These satellite-event proceedings were published after the conference and
include summaries as well as revised versions of the best papers from the work-
shops, the Doctoral Symposium, the Educators’ Symposium, and the Research
Projects Symposium.

I would like to thank everyone involved in making the satellite events such a
successful and inspiring experience.

January 2009 Michel R.V. Chaudron

Table of Contents

Model Based Architecting and Construction of Embedded
Systems (ACES-MB)

Model Based Architecting and Construction of Embedded Systems 1
Iulian Ober, Stefan Van Baelen, Susanne Graf, Mamoun Filali,
Thomas Weigert, and Sébastien Gérard

Translating AADL into BIP - Application to the Verification of
Real-Time Systems . 5

M. Yassin Chkouri, Anne Robert, Marius Bozga, and Joseph Sifakis

Towards Model-Based Integration of Tools and Techniques for
Embedded Control System Design, Verification, and Implementation . . . 20

Joseph Porter, Gábor Karsai, Péter Völgyesi, Harmon Nine,
Peter Humke, Graham Hemingway, Ryan Thibodeaux, and
János Sztipanovits

Challenges in Model Driven Software Engineering
(CHAMDE)

Challenges in Model-Driven Software Engineering . 35
Ragnhild Van Der Straeten, Tom Mens, and Stefan Van Baelen

The Grand Challenge of Scalability for Model Driven Engineering 48
Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack

MDE Adoption in Industry: Challenges and Success Criteria 54
Parastoo Mohagheghi, Miguel A. Fernandez, Juan A. Martell,
Mathias Fritzsche, and Wasif Gilani

Behavior, Time and Viewpoint Consistency: Three Challenges for
MDE . 60

José Eduardo Rivera, José Raul Romero, and Antonio Vallecillo

Empirical Studies of Model Driven Engineering (ESMDA)

Embedded System Construction – Evaluation of Model-Driven and
Component-Based Development Approaches . 66

Christian Bunse, Hans-Gerhard Gross, and Christian Peper

VIII Table of Contents

Assessing the Power of a Visual Modeling Notation – Preliminary
Contemplations on Designing a Test . 78

Dominik Stein and Stefan Hanenberg

Models@runtime

Third International Workshop on Models@run.time 90
Nelly Bencomo, Gordon Blair, Robert France, Freddy Muñoz, and
Cédric Jeanneret

Modeling and Validating Dynamic Adaptation . 97
Franck Fleurey, Vegard Dehlen, Nelly Bencomo, Brice Morin, and
Jean-Marc Jézéquel

Model-Based Traces . 109
Shahar Maoz

Model Co-evolution and Consistency Management
(MCCM)

Model Co-evolution and Consistency Management (MCCM’08) 120
Dirk Deridder, Jeff Gray, Alfonso Pierantonio, and
Pierre-Yves Schobbens

On Integrating OCL and Triple Graph Grammars . 124
Duc-Hanh Dang and Martin Gogolla

Triple Graph Grammars or Triple Graph Transformation Systems? A
Case Study from Software Configuration Management 138

Thomas Buchmann, Alexander Dotor, and Bernhard Westfechtel

Model-Driven Web Engineering (MDWE)

Model-Driven Web Engineering (MDWE 2008) . 151
Geert-Jan Houben, Nora Koch, and Antonio Vallecillo

Model Transformations for Performability Analysis of Service
Configurations . 153

László Gönczy, Zsolt Déri, and Dániel Varró

A Transformation Framework to Bridge Domain Specific Languages to
MDA . 167

Marco Brambilla, Piero Fraternali, and Massimo Tisi

Table of Contents IX

Modeling Security (MODSEC)

First International Modeling Security Workshop . 181
Jon Whittle, Jan Jürjens, Bashar Nuseibeh, and Glen Dobson

Security Requirements Elicitation Using Method Weaving and Common
Criteria . 185

Motoshi Saeki and Haruhiko Kaiya

Model-Based Design of Trustworthy Health Information
Systems (MOTHIS)

Second International Workshop on the Model-Based Design of
Trustworthy Health Information Systems MOTHIS 2008 197

Ruth Breu and János Sztipanovits

Experiences from Model-Driven Development of Homecare Services:
UML Profiles and Domain Models . 199

St̊ale Walderhaug, Erlend Stav, and Marius Mikalsen

Ontology-Based Assessment of Functional Redundancy in Health
Information Systems . 213

Alfred Winter, Alexander Strübing, Lutz Ißler, Birgit Brigl, and
Reinhold Haux

Non-Functional System Properties in Domain Specific
Modeling Languages (NFPin DSML)

The First International Workshop on Non-Functional System Properties
in Domain Specific Modeling Languages (NFPinDSML2008) 227

Marko Bošković, Dragan Gašević, Claus Pahl, and Bernhard Schätz

FPTC: Automated Safety Analysis for Domain-Specific Languages 229
Richard F. Paige, Louis M. Rose, Xiaocheng Ge,
Dimitrios S. Kolovos, and Phillip J. Brooke

From Access Control Policies to an Aspect-Based Infrastructure: A
Metamodel-Based Approach . 243

Christiano Braga

OCL Tools: From Implementation to Evaluation and
Comparison (OCL)

Eighth International Workshop on OCL Concepts and Tools 257
Jordi Cabot, Martin Gogolla, and Pieter Van Gorp

X Table of Contents

Shortcomings of the Embedding of OCL into QVT ImperativeOCL 263
Fabian Büttner and Mirco Kuhlmann

Optimization Patterns for OCL-Based Model Transformations 273
Jesús Sánchez Cuadrado, Frédéric Jouault,
Jesús Garćıa Molina, and Jean Bézivin

Quality in Modeling (QIM)

Third International Workshop on Quality in Modeling 285
Jean-Louis Sourrouille, Ludwik Kuzniarz, Lars Pareto,
Parastoo Mohagheghi, and Miroslaw Staron

Description and Implementation of a UML Style Guide 291
Mohammed Hindawi, Lionel Morel, Régis Aubry, and
Jean-Louis Sourrouille

Empirical Validation of Measures for UML Class Diagrams: A
Meta-Analysis Study . 303

M. Esperanza Manso, José A. Cruz-Lemus, Marcela Genero, and
Mario Piattini

Transforming and Weaving Ontologies and Model Driven
Engineering (TWOMDE)

First Workshop on Transforming and Weaving Ontologies in Model
Driven Engineering (TWOMDE 2008) . 314

Fernando Silva Parreiras, Jeff Z. Pan, Uwe Assmann, and
Jakob Henriksson

Using an Ontology to Suggest Software Design Patterns Integration 318
Dania Harb, Cédric Bouhours, and Hervé Leblanc

Using Ontologies in the Domain Analysis of Domain-Specific
Languages . 332

Robert Tairas, Marjan Mernik, and Jeff Gray

Doctoral Symposium

Model-Driven Development of Context-Aware Web Applications Based
on a Web Service Context Management Architecture 343

Georgia M. Kapitsaki and Iakovos S. Venieris

DSL Tool Development with Transformations and Static Mappings 356
Elina Kalnina and Audris Kalnins

Table of Contents XI

Educational Symposium

Current Issues in Teaching Software Modeling: Educators Symposium
at MODELS 2008 . 371

Micha�l Śmia�lek

The UML Is More Than Boxes and Lines . 375
Yvan Labiche

Automatic Checklist Generation for the Assessment of UML Models 387
Tom Gelhausen, Mathias Landhäußer, and Sven J. Körner

Research Project Symposium

MODELS Research Projects Symposium . 400
Iulian Ober

Author Index . 403

Model Based Architecting and Construction
of Embedded Systems

Iulian Ober1, Stefan Van Baelen2, Susanne Graf3, Mamoun Filali4,
Thomas Weigert5, and Sébastien Gérard6

1 University of Toulouse - IRIT, France
Iulian.Ober@irit.fr

2 K.U.Leuven - DistriNet, Belgium
Stefan.VanBaelen@cs.kuleuven.be

3 Université Joseph Fourier - CNRS - VERIMAG, France
Susanne.Graf@imag.fr

4 University of Toulouse - CNRS - IRIT, France
Filali@irit.fr

5 Missouri University of Science and Technology, USA
weigert@mst.edu

6 CEA - LIST, France
Sebastien.Gerard@cea.fr

Abstract. This workshop brought together researchers and practition-
ers interested in model-based software engineering for real-time
embedded systems, with a particular focus on the use of architecture
description languages, domain-specific design and implementation lan-
guages, languages for capturing non-functional constraints, and compo-
nent and system description languages. Ten presenters proposed contri-
butions on model-based analysis, transformation and synthesis, as well
as tools, applications and patterns. Three break-out groups discussed
the transition from requirements to architecture, design languages, and
platform (in)dependence. This report summarises the workshop results.

1 Introduction

The development of embedded systems with real-time and other constraints
implies making specific architectural choices ensuring the satisfaction of criti-
cal non-functional constraints (in particular, related to real-time deadlines and
platform parameters, such as energy consumption or memory footprint). Re-
cently, there has been a growing interest in (1) using precise (preferably formal)
domain-specific models for capturing dedicated architectural and non-functional
information, and (2) using model-driven engineering (MDE) techniques for com-
bining these models with platform independent functional models to obtain a
running system. As such, MDE can be used as a means for developing analysis
oriented specifications that, at the same time, represent the design model.

The MoDELS workshop on “Model Based Architecting and Construction of
Embedded Systems” brought together researchers and practitioners interested
in all aspects of model-based software engineering for real-time embedded sys-
tems. The participants discussed this subject at different levels, from modelling

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 1–4, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

2 I. Ober et al.

languages and related semantics to concrete application experiments, from model
analysis techniques to model-based implementation and deployment. The work-
shop was attended by 61 registered participants hauling from 18 different coun-
tries, including six outside of Europe.

2 Reviewed Contributions

We received 16 submissions from 8 different countries, of which ten were accepted
for presentation. A synopsis of each presentation is given below. Articles [4,10]
are included in this workshop reader, while the other articles can be found in
the workshop proceedings [1].

[2] proposes a method for estimating the power consumption of components in
the AADL (Architecture Analysis and Design Language) component assembly
model, once deployed onto components in the AADL target platform model.

[3] proposes Visual Timed Scenarios (VTS) as a graphical property specifica-
tion language for AADL. An effective translation from VTS to Time Petri Nets
(TPN) has been devised, which enables model-checking of properties expressed
in VTS over AADL models using TPN-based tools.

[4] describes a general methodology and an associated tool for translating
AADL and its annex behavior specification into the BIP (Behavior Interaction
Priority) language. This allows simulation of systems specified in AADL and
application of formal verification techniques developed for BIP to these systems.

[5] discusses the transformation of a global requirements model into a system de-
sign. It describes an algorithm that derives the local behaviors for each system com-
ponent, includingcoordinationmessagesbetweenthedifferent systemcomponents.

[6] shows how higher-order model composition can be employed for constructing
scalable models. An approach based on model transformation is presented, defining
basic transformation rules operating on the graph structures of actor models.

[7] demonstrates an approach for early cross toolkit development based on the
ISE ADL and the MetaDSP framework. It is designed to cope with hardware
design changes, like changes in the instruction set of target CPUs.

[11] Discusses advantages and drawbacks of UML and SysML for modeling
RF systems, based on a case study of a UMTS transceiver.

[8] propose the use of a new notion of modeling patterns for arbitrating be-
tween the real-time system designer’s needs of expressive power and the restric-
tions that must be imposed so that models can be amenable to static analysis.

[9] proposes an approach based on UML-MARTE that allows system mod-
elling with separation of concerns between the functional software model and
the execution platform resources as well as timing constraints. Temporal char-
acteristics and timing constraints can be specified at different abstraction levels,
and scheduling analysis techniques can be applied on the resulted model.

[10] presents a model-based integration environment which uses a graphical
architecture description language (EsMoL) to pull together control design, code
and configuration generation, platform-specific resimulation, and a number of
other features useful for taming the heterogeneity inherent in safety-critical em-
bedded control system designs.

Model Based Architecting and Construction of Embedded Systems 3

3 Discussion of Breakout Sessions

After the presentations, the participants broke into three different groups, each
one focusing on a particular subject of interest. The following summarizes the
conclusions of each breakout session.

Transition from requirements to architecture. There is a need for formal-
isation of requirements, better traceability, structuring and partitioning,
validation, verification, and enforcement of requirements. Too often design
decisions are already made during requirements decomposition. Given a re-
quirements specification, the next step is to guide the developers towards a
good architecture. A manual approach can be followed, by which the devel-
oper defines proper components, makes architectural choices, and allocates
requirements to system elements. The result is analyzed and incrementallhy
improved until a suitable system design has been found. Alternatively, a
semi-automatic approach could be used by defining the constraints on the
system, generating solutions that satisfy these constraints, and adding more
constraints in order to reduce the solution space. The key difficulty for this
approach is to find suitable constraints to add, in order to avoid inadvertently
eliminating possible solutions. One could leverage patterns for obtaining de-
tailed architectures and designs. The key issue here is how to deal with the
interaction between patterns, since a system often has to deal with many
competing concerns and accompanying patterns. Finally, after the system
has been designed it has to be verified. A model refinement approach can
insure correctness by construction, but a key concern is whether such can
be done in an incremental manner, and how to resolve the different conflict-
ing aspects. Another verification approach is by model analysis and model
checking. The key question here is to build a relevant abstraction/analysis
model in order to verify the properties of interest.

Design Languages. Modeling languages are in wide-spread use today, at least
in the prototyping phase, but we are facing a scalability problem and many
conflicting demands on a modeling language: Modeling languages are neces-
sary for expressing our understanding of the problem. Modeling languages
should also be used for existing software. They should provide ways to go
back and forth between designs and existing code. They should support
consistent views between different levels of abstraction. Modeling languages
cannot not be generic, but need to be domain-oriented. However, while for
some domains the mapping between the formal model and its implementa-
tion is well understood, for other domains this has yet to be demonstrated.
The use of modeling languages relies essentially on tools which are heavily
dependent on version changes, and users should be aware of that. Version
control is a real problem. Education is very important, since when people
enter the work force it is often too late to teach new methods. Teaching
formal methods, or at least teaching rigorous modelling, is a must.

Transformations and platform (in)dependence. This discussion group
concentrated on the meaning of platform independence and on the types

4 I. Ober et al.

of transformations in which platform independent models can be involved.
A model can only be independent from a specific understanding of what
the platform is, and in order to achieve this independence it must include a
model of the platform. Such a model could specify, for example, a specific
model of computation, a set of services, a set of resources, or required QoS
constraints. Only in the presence of such platform model can a model be
qualified as platform independent, which means, independent with respect
to a concrete platform which conforms to the constraints specified by the
platform model. The platform model is often not explicit, which reduces the
self-containment and the usability of models.

Acknowledgements. We thank all workshop participants for the lively dis-
cussions and the useful feedback we received. We thank the workshop pro-
gram committee members for their helpful reviews. This workshop was sup-
ported by the ARTIST2 Network of Excellence on Embedded Systems Design
(http://www.artist-embedded.org) and by the EUREKA-ITEA project SPICES
(http://www.spices-itea.org).

References

1. Van Baelen, S., Ober, I., Graf, S., Filali, M., Weigert, T., Gérard, S. (eds.): ACES-
MB 2008 Proceedings: First International Workshop on Model Based Architecting
and Construction of Embedded Systems, IRIT, Toulouse, France (2008)

2. Senn, E., Laurent, J., Diguet, J.-P.: Multi-level power consumption modelling in the
aadl design flow for dsp, gpp, and fpga. In: Van Baelen, et al. (eds.) [1], pp. 9–22

3. Monteverde, D., Olivero, A., Yovine, S., Braberman, V.: Vts-based specification
and verification of behavioral properties of aadl models. In: Van Baelen, et al.
(eds.) [1], pp. 23–37

4. Chkouri, M.Y., Robert, A., Bozga, M., Sifakis, J.: Translating aadl into bip - applica-
tion to the verification of real-time systems. In: Van Baelen, et al. (eds.) [1], pp. 39–53

5. Bochmann, G.V.: Deriving component designs from global requirements. In: Van
Baelen, et al. (eds.) [1], pp. 55–69

6. Feng, T.H., Lee, E.A.: Scalable models using model transformation. In: Van Baelen,
et al. (eds.) [1], pp. 71–85

7. Pakulin, N., Rubanov, V.: Ise language: The adl for efficient development of cross
toolkits. In: Van Baelen, et al. (eds.) [1], pp. 87–98

8. Bordin, M., Panunzio, M., Santamaria, C., Vardanega, T.: A reinterpretation of
patterns to increase the expressive power of model-driven engineering approaches.
In: Van Baelen, et al. (eds.) [1], pp. 145–158

9. Peraldi-Frati, M.-A., Sorel, Y.: From high-level modelling of time in marte to real-
time scheduling analysis. In: Van Baelen, et al. (eds.) [1], pp. 129–143

10. Porter, J., Karsai, G., Völgyesi, P., Nine, H., Humke, P., Hemingway, G., Thi-
bodeaux, R., Sztipanovits, J.: Towards model-based integration of tools and tech-
niques for embedded control system design, verification, and implementation. In:
Van Baelen, et al. (eds.) [1], pp. 99–113

11. Lafi, S., Champagne, R., Kouki, A.B., Belzile, J.: Modeling radio-frequency front-
ends using sysml: A case study of a umts transceiver. In: Van Baelen, et al. (eds.)
[1], pp. 115–128

Translating AADL into BIP - Application to the
Verification of Real-Time Systems�

M. Yassin Chkouri, Anne Robert, Marius Bozga, and Joseph Sifakis

Verimag, Centre Equation - 2, avenue de Vignate 38610 GIERES

Abstract. This paper studies a general methodology and an associated
tool for translating AADL (Architecture Analysis and Design Language)
and annex behavior specification into the BIP (Behavior Interaction Pri-
ority) language. This allows simulation of systems specified in AADL and
application to these systems of formal verification techniques developed
for BIP, e.g. deadlock detection. We present a concise description of
AADL and BIP followed by the presentation of the translation method-
ology illustrated by a Flight Computer example.

1 Introduction

AADL [5] is used to describe the structure of component-based systems as an
assembly of software components mapped onto an execution platform. AADL is
used to describe functional interfaces and performance-critical aspects of com-
ponents. It is used to describe how components interact, and to describe the
dynamic behavior of the runtime architecture by providing support for model
operational modes and mode transitions. The language is designed to be exten-
sible to accommodate analysis of runtime architectures.

An AADL specification describes the software, hardware, and system part of
an embedded real-time system. Basically, an AADL specification is composed of
components such as data, subprogram, threads, processes (the software side of
a specification), processors, memory, devices and buses (the hardware side of a
specification) and system (the system side of a specification).

The AADL specification language is designed to be used with analysis tools
that support automatic generation of the source code needed to integrate the
system components and build a system executable.

BIP [9] is a language for the description and composition of components as
well as associated tools for analyzing models and generating code on a dedi-
cated platform. The language provides a powerful mechanism for structuring
interactions involving rendezvous and broadcast.

In order to demonstrate the feasibility of the BIP language and its runtime
for the construction of real-time systems, several case studies were carried out
such as an MPEG4 encoder [15], TinyOS [10], and DALA [8].

� This work is partially supported by the ITEA/Spices project as well as by the STIC-
AmSud project TAPIOCA.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 5–19, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

6 M.Y. Chkouri et al.

This paper provides a general methodology for translating AADL models
into BIP models [4]. This allows simulation of systems specified in AADL and
application to these systems of formal verification techniques developed for BIP,
e.g. deadlock detection [11].

We use existing case studies [3,2] to validate the methodology. This paper is
organized as follows. Section 2 gives an overview of AADL and annex behavior
specification. Section 3 gives an overview of BIP. In section 4, we translate AADL
components (software, hardware, system and annex behavior specification). We
present our tool in Section 5. In section 6, we present a Flight Computer example.
Conclusions close the article in Section 7.

2 Overview of AADL

2.1 Generalities

The SAE Architecture Analysis & Design Language (AADL) [5] is a textual
and graphical language used to design and analyze the software and hardware
architecture of performance-critical real-time systems. It plays a central role in
several projects such as Topcased [7], OSATE [6], etc.

A system modelled in AADL consists of application software mapped to an
execution platform. Data, subprograms, threads, and processes collectively rep-
resent application software. They are called software components. Processor,
memory, bus, and device collectively represent the execution platform. They are
called execution platform components. Execution platform components support
the execution of threads, the storage of data and code, and the communication
between threads. Systems are called compositional components. They permit
software and execution platform components to be organized into hierarchical
structures with well-defined interfaces. Operating systems may be represented
either as properties of the execution platform or can be modelled as software
components.

Components may be hierarchical, i.e. they my contain other components.
In fact, an AADL description is almost always hierarchical, with the topmost
component being an AADL system that contains, for example, processes and
processors, where the processes contain threads and data, and so on.

Compared to other modeling languages, AADL defines low-level abstractions
including hardware descriptions. These abstractions are more likely to help de-
sign a detailed model close to the final product.

2.2 AADL Components

In this section, we describe the fragment of AADL components, connections and
annex behavior taken into account by our translation.

Software Components. AADL has the following categories of software com-
ponents: subprogram, data, thread and process.

Translating AADL into BIP 7

subprogram operation
features

A: in parameter integer;
B: in parameter integer;
result: out parameter integer;

end operation;

data Person
end Person;
data implementation Person.impl

subcomponents
Name : data string;
Adress: data string;
Age : data integer;

end Person.impl;

Fig. 1. Example of AADL subprogram and data

Subprogram : A subprogram component represents an execution entry-point
in the source text. Subprograms can be called from threads and from other
subprograms. These calls are handled sequentially by the threads. A subprogram
call sequence is declared in other subprograms or thread implementations.

A subprogram type declaration contains parameters (in and out), out event
ports, and out event data ports. A subprogram implementation contains con-
nections subclause, a subprogram calls subclause, annex behavior subclause, and
subprogram property associations. Figure 1 gives an example of a subprogram,
that takes as input two integers A, B, and produces the result as output.

Data : The data component type represents a data type in the source text
that defines a representation and interpretation for instances of data. A data
implementation can contain data subcomponents, and data property associations.
An example of data is given in Figure 1.

Thread : A thread represents a sequential flow of control that executes instruc-
tions within a binary image produced from source text. A thread always executes
within a process. A scheduler manages the execution of a thread.

A thread type declaration contains ports such as data port, event port, and
event data port, subprogram declarations, and property associations. A thread
component implementation contains data declarations, a calls subclause, annex
behavior, and thread property associations.

Threads can have properties. A property has a name, a type and a value.
Properties are used to represent attributes and other characteristics, such as
the period, dispatch protocol, and deadline of the threads, etc. Dispatch protocol
is a property which defines the dispatch behavior for a thread. Four dispatch
protocols are supported in AADL: periodic, aperiodic, sporadic, and background.

Figure 2 presents a thread component called sensor, that is a periodic thread
with inter-arrival time of 20ms. This thread receives an integer data through
port inp and sends an event through port outp.

Process : A process represents a virtual address space. Process components
are an abstraction of software responsible for executing threads. Processes must
contain at least one explicitly declared thread or thread group, and can contain a
connections subclause, and a properties subclause. Figure 2 presents an example
of process called Partition, that contains thread subcomponents and two types
of connections (data port and event port) between threads.

8 M.Y. Chkouri et al.

thread sensor
features

inp : in data port integer;
outp : out event port;

properties
Dispatch protocol=>Periodic;
Period => 20ms;

end sensor;

process Partition
end Partition;
process implementation Partition.Impl

subcomponents
Sensor A : thread Sensor Thread.A;
Data Fusion: thread Fusion.Impl;
Alrm : thread Alrm Thread.Impl;

connections
data port

Sensor A.outp->Data Fusion.inpA;
event port

Sensor A.launch->Alrm.launch A;
end Partition.Impl;

Fig. 2. Example of AADL thread and process

Hardware Components. Execution platform components represent hardware
and software that is capable of scheduling threads, interfacing with an external
environment, and performing communication for application system connections.
We consider two types of hardware components: processors and devices.

Processor : AADL processor components are an abstraction of hardware and
software that is responsible for scheduling and executing threads. In other words,
a processor may include functionality provided by operating systems.

Device : A device component represents an execution platform component that
interfaces with the external environment. A device can interact with application
software components through their ports.

Systems. A system is the toplevel component of the AADL hierarchy of com-
ponents. A system component represents a composite component as an assembly
of software and execution platform components. All subcomponents of a system
are considered to be contained in that system. We present an example of system:

system Platform
end Platform;
system implementation Platform.Impl

subcomponents
Part : process Partition.Impl;
p : processor myProcessor ;
...

end Platform.Impl;

Annex Behavior Specification. Behavior specifications [1] can be attached to
AADL model elements using an annex. The behavioral annex describes a transi-
tion system attached to subprograms and threads. Behavioral specifications are
defined by the following grammar:

annex behavior specification {**
<state variables>? <initialization>? <states>? <transitions>?

**};

Translating AADL into BIP 9

– State variables section declares typed identifiers. They must be initialized in
the initialization section.

– States section declares automaton states.
– Transitions section defines transitions from a source state to a destination

state. The transition can be guarded with events or boolean conditions. An
action part can be attached to a transition.

Connections. A connection is a linkage that represents communication of data
and control between components. This can be the transmission of control and
data between ports of different threads or between threads and processor or
device components. There are two types of connections: port connections, and
parameter connections.

Port connection: Port connections represent transfer of data and control be-
tween two concurrently executing components. There are three types of port
connections: event, data and event data.

Parameter connection: represent flow of data between the parameters of a
sequence of subprogram calls in a thread.

3 The BIP Component Framework

BIP (Behavior Interaction Priority) is a framework for modeling heterogeneous
real-time components [9]. The BIP component model is the superposition of three
layers: the lower layer describes the behavior of a component as a set of transi-
tions (i.e. a finite state automaton extended with data); the intermediate layer
includes connectors describing the interactions between transitions of the layer
underneath; the upper layer consists of a set of priority rules used to describe
scheduling policies for interactions. Such a layering offers a clear separation be-
tween component behavior and structure of a system (interactions and priorities).

Fig. 3. BIP Atomic Component

The BIP framework consists of a language
and a toolset including a frontend for edit-
ing and parsing BIP programs and a ded-
icated platform for model validation. The
platform consists of an Engine and software
infrastructure for executing models. It allows
state space exploration and provides access
to model-checking tools of the IF toolset [13]
such as Aldebaran [12], as well as the D-
Finder tool [11]. This permits to validate
BIP models and ensure that they meet prop-
erties such as deadlock-freedom, state invari-
ants [11] and schedulability. The BIP lan-
guage allows hierarchical construction [14] of
composite components from atomic ones by
using connectors and priorities.

10 M.Y. Chkouri et al.

An atomic component consists of a set of ports used for the synchronization
with other components, a set of transitions and a set of local variables. Transi-
tions describe the behavior of the component. They are represented as a labeled
relation between control states. A transition is labeled with a port p, a guard
g and a function f written in C. The guard g is a boolean expression on local
variables and the function f is a block of C code. When g is true, an interaction
involving p may occur, in which case f is executed. The interactions between
components are specified by connectors.

Figure 3 shows an atomic component with two control states Si and Sj , ports
in and out, and corresponding transitions guarded by guard gi and gj .

Interactions between components are specified by connectors. A connector
is a list of ports of atomic components which may interact. To determine the
interactions of a connector, its ports have the synchronization attributes trigger
or synchron, represented graphically by a triangle and a bullet, respectively. A
connector defines a set of interactions defined by the following rules:

- If all the ports of a connector are synchrons then synchronization is by
rendezvous. That is, only one interaction is possible, the interaction including
all the ports of the connector.

- If a connector has one trigger port then synchronization is by broadcast. That
is, the trigger port may synchronize with the other ports of the connector.
The possible interactions are the non empty sublists containing this trigger
port.

In BIP, it is possible to associate with an interaction an activation condition
(guard) and a data transfer function both written in C. The interaction is possi-
ble if components are ready to communicate through its ports and its activation
condition is true. Its execution starts with the computation of data transfer func-
tion followed by notification of its completion to the interacting components.

4 Automatic Model Transformation from AADL to BIP

In this section, we present the translation from AADL [5] to BIP [9]. It is orga-
nized in five part. First, we translate AADL software components (subprogram,
data, thread and process). Second, we translate hardware components (proces-
sor, device). Third, we translate a system component. Fourth, we translate the
AADL annex behavior specification [1] in BIP. Finally, we translate connections.

4.1 Software Component

We define the translation of the different AADL software components into BIP.

Subprogram. Depending on its structure, we translate the AADL subprograms
into atomic or compound BIP components:

Translating AADL into BIP 11

Fig. 4. Subprogram as atomic BIP component

As atomic BIP component :
When the AADL subprogram
does not contain subprogram
calls and connections, it is mod-
elled as an atomic component
in BIP. Figure 4 shows such
a component. This component
has two ports call and re-
turn, because subprogram can
be called from another subpro-
gram or thread. It also has a
particular state IDLE and two
transitions to express the call
and return to the IDLE state.
The behavior is obtained from the annex as described in section 4.4.

As compound component : When the AADL subprogram contains subprogram
calls and connections, it is modelled as a compound BIP component. The sub-
program calls are executed sequentially. This execution is modelled by an atomic
component with states wait call1...wait calln and wait return1...wait returnn,
transitions labeled by the ports call1...calln and return1...returnn (where n is
the number of the subprograms called sub1...subn). To enforce the right sequence
of execution and the transfer of parameters, two ports call and return are used
to express calls to the compound subprogram by other subprograms or threads,
and the port data to sends event or data to the threads, as shown in Figure 5.

Data The data component type represents a data type in the source text that
defines a representation and interpretation for instances of data in the source
text. In BIP it is transformed into a C data structure.

Fig. 5. Subprogram as compound BIP component

12 M.Y. Chkouri et al.

Fig. 6. BIP model for thread behavior

Thread : An AADL thread is modelled in BIP by an atomic component as
shown in Figure 6. The initial state of the thread is halted. On an interaction
through port load the thread is initialized. Once initialization is completed the
thread enters the ready state, if the thread is ready for an interaction through
the port req exec. Otherwise, it enters the suspended state. When the thread
is in the suspended state it cannot be dispatched for execution.

Fig. 7. BIP model for process behavior

When in the suspended state,
the thread is waiting for an event
and/or period to be activated de-
pending on the thread dispatch pro-
tocol (periodic, aperiodic, sporadic).
In the ready state, a thread is wait-
ing to be dispatched through an in-
teraction in the port get exec. When
dispatched, it enters the state com-

pute to make a computation. Upon
successful completion of the compu-
tation, the thread goes to the out-

puts state. If there are some out ports
to dispatch the thread returns to the
outputs state. otherwise, it enters
the finish state.

The thread may be requested to en-
ter its halted state through a port stop after completing the execution of a

Translating AADL into BIP 13

dispatch. A thread may also enter the thread halted state immediately through
an abort port.

Process : Processes must contain at least one explicitly declared thread or
thread group. The process behavior is illustrated in Figure 7. Once processors
of an execution platform are started, the process enters to the state loading

through port load and it is ready to be loaded.
A process is considered as stopped when all threads of the process are halted.

When a process is stopped, each of its threads is given a chance to finalize its
execution.

A process can be aborted by using abort port. In this case, all contained
threads terminate their execution immediately and release all resources.

The Load deadline property specifies the maximum amount of elapsed time
allowed between the time the process begins and completes loading.

4.2 Execution Platform Components

This section defines the translation into BIP of processors and devices.

Processors. AADL processor components are an abstraction of hardware and
software that is responsible for scheduling and executing threads. Schedulers
are modelled as atomic BIP components as shown in Figure 8. The initial state
of a scheduler is idle. When a thread become ready, the scheduler enters the
choice state through an interaction on port ready. In this state, the thread ID
is stored into the scheduler memory. When a thread is dispatched, the scheduler
selects a thread identifier (into SelectedID variable) and enters the wait end

state through an interaction on port dispatch. If there are several threads to be
dispatched the scheduler re-enters to the state choice, otherwise, it enters the
state idle.

Fig. 8. BIP model of a scheduler

14 M.Y. Chkouri et al.

Devices. A device component represents an execution platform component that
interfaces with the external environment. A device can interact with application
software components through their ports. It is modelled as an atomic component
in BIP.

4.3 System

A system component represents an assembly of software and execution platform
components. All subcomponents of a system are considered to be contained in
that system. A system is modelled as a compound component in BIP. Figure 9
shows a BIP component representing a system and connexion between threads,
process, and scheduler.

4.4 Annex Behavior Specification

Some annex behavior elements can be directly translated to BIP whereas for
others we need new BIP facilities. Actual behaviors are supposed to be described
using the implementation language. The proposed behavioral annex allows the
expression of data dependent behaviors so that more precise behavioral analysis
remains possible.

– The state variables section declares typed identifiers. In BIP, they correspond
to data variables. They must be initialized in the initialization section, which
is directly included in the BIP initialization part.

– The states section declares automaton states as: The initial state is directly
included in BIP. The return state indicates the return to the caller. This case
is represented in BIP as a transition from return state to idle state.

Fig. 9. BIP System

Translating AADL into BIP 15

– The transitions section defines transitions from a source state to a destination
state. Transitions can be guarded with events or boolean conditions, and can
contain an action. Each transition is translated as one or a sequence of BIP
transitions.

4.5 Connections

Port connection : is translated in BIP depending on the categories :

– an event connection is translated into strong synchronization between the
corresponding event ports.

– a data connection is translated into connection with transfer of data.
– an event data connection is translated into a strong synchronization between

the corresponding ports with transfer of data.

Parameter connection : is translated in BIP by transfer of data between the
parameters of a sequence of subprogram calls in a thread, as shown in section 4.1.

5 Tool

From the high-integrity systems point-of-view, the use of automatic code gen-
eration in the development process is profitable. As the generated code is a
combination of a relatively small set of extensively tested design patterns, the
analysis and review of this code is easier than for hand-written code.

The tool chain is described in Figure 10, and it has the following features:

– AADL to BIP Transformation: Using model transformations, allows to per-
form analysis on the models before code generation. The tool generating BIP
from AADL (Figure 10) has been implemented in Java, as a set of plugins for
the open source Eclipse platform. It takes as input an AADL model(.aaxl)
conforming to the AADL metamodel and generates a BIP model conforming
to the BIP metamodel. Models generated may be timed or untimed. Timed
models can be transformed into untimed models in which time progress is
represented by a tick port that exists in all timed components and a connec-
tor connecting all tick ports.

– Code Generation: Takes as input a BIP model and generate the C/C++
code to be executed by the Engine.

– Exploration Engine: The engine has a state space exploration mode, which
under some restrictions on the data used, generates state graphs that can be
analyzed by using finite state model-checking tools.

– Simulation: Monitors the state of atomic components and finds all the en-
abled interactions by evaluating the guards on the connectors. Then, between
the enabled interactions, priority rules are used to eliminate the ones with
low priority.

– Verification: Automatic verification is very useful for early error detection.

16 M.Y. Chkouri et al.

Fig. 10. AADL to BIP Tool Architecture

6 Case Studies

We used some examples of AADL [3,2] (with annex behavior specification) to
check the feasibility of our translation from AADL to BIP. In this section, we
present the example of a simplistic flight computer [2].

The Flight Computer has a thread called Sensor Sim that periodically sends
integers data for the current AoA(angle-of-attack) and Climb Rate, and an event
in case of Engine Failure. It also has a thread called Stall Monitor that is periodic
and monitors the condition of the AoA and Climb Rate sensors and raise a stall
warning if certain conditions are met. The thread Operator simulates the pilot. It
is a periodic thread that sends a command (Gear Cmd) at every dispatch to raise
or lower the landing gear of the aircraft. The thread Landing Gear simulates the
landing gear subsystem. It receives a command to start a landing gear operation,
and is a sporadic thread with a minimum inter-arrival time of 3 seconds. The
thread HCI is a human computer interface. It receives a Stall Warning as an event
data of type Integer; Engine Failure as an event; a landing gear command from the
pilot. It may send a landing gear operation request (Gear Req) to the landing gear
subsystem, and receives a landing gear operation acknowledgement (Gear Ack)
from the landing gear subsystem. It is a sporadic thread with a minimum inter-
arrival time of 10ms. The graphical representation of Flight Computer system
model is given in Figure 11.

6.1 BIP Model

The AADL model of the Flight Computer is transformed into BIP automatically
by using our AADL to BIP translation tool. Figure 12 shows the obtained BIP
model. This figure represents the BIP atomic components (AADL Threads) and

Translating AADL into BIP 17

Fig. 11. Flight Computer Architecture

Fig. 12. BIP model for the Flight computer (including observer property, dashed)

connectors between them. Notice that we omit here the connectors between
threads, process and scheduler that are shown in the Figure 9.

The component Dummy In Out models the communication between the
Dummy Out and Dummy In events ports. In the AADL model (Figure 11), these
two events are used to control thread reactivation: execution of the Landing Gear
thread is activated by the Dummy In event; it emits a Dummy Out event upon
completion. Thus, synchronizing these two events ensures periodic activation of
this thread.

18 M.Y. Chkouri et al.

6.2 Verification

The model construction methodology applied to this example, opens the way for
enhanced analysis and early error detection by using verifications techniques.

Once the model has been generated, two model checking techniques for veri-
fication have been applied:

Model checking by Aldebaran: The first technique of verification is deadlock
detection by using the tool Aldebaran [12]. Exhaustive exploration by the BIP
exploration engine, generates a Labeled Transition System (LTS) which can be
analyzed by model checking. e.g, Aldebaran takes as input the LTS generated
from BIP and checks for deadlock-freedom. We have checked that the model is
deadlock-free.

Model checking with observers: The second technique of verification is by using
BIP observers to express and check requirements. Observers allow us to express
in a much simple manner most safety requirements. We apply this technique to
verify two properties:

• Verification of thread deadlines by using an observer component keeping
track of the execution time of threads. If the execution time of a thread
exceeds its deadline the observer moves to an error state.

• Verification of synchronization between components: Landing Gear is sporad-
ically activated bye HCI trough the Req port. When it is activated, it send
back an acknowledgement through the ACK port, and possibly reactivates
itself through the Dummy In Out component. This property can be verified
by an observer which monitors the interactions between HCI, landing Gear
and Dummy In Out components (Figure 12).

7 Conclusion

The Architecture Analysis and Design Language (AADL) suffers from the ab-
sence of concrete operational semantics. In this paper, we address this problem by
providing a translation from AADL to BIP, which has an operational semantics
formally defined in terms of labelled transition systems. This translation allows
simulation of AADL models, as well as application verification techniques, such
as state exploration (using IF toolset [13]) or component-based deadlock detec-
tion (using Aldebaran [12], and D-Finder tool [11]). The proposed method has
been implemented in translation tool, which has been tested on the Flight Com-
puter case study, also presented in this paper. Future work includes incorporating
features that will appear in V2.0 of the AADL standard.

References

1. Annex Behavior Specification SAE AS5506
2. http://aadl.enst.fr/arc/doc/

http://aadl.enst.fr/arc/doc/

Translating AADL into BIP 19

3. http://gforge.enseeiht.fr/docman/?group id=37

4. http://www-verimag.imag.fr/∼async/bip{M}etamodel.php
5. SAE. Architecture Analysis & Design Language (standard SAE AS5506) (Septem-

ber 2004), http://www.sae.org
6. SEI. Open Source AADL Tool Environment,

http://la.sei.cmu.edu/aadlinfosite/OpenSourceAADLToolEnvironment.html

7. TOPCASED, http://www.topcased.org/
8. Basu, A., Bensalem, S., Gallien, M., Ingrand, F., Lesire, C., Nguyen, T.H., Sifakis,

J.: Incremental component-based construction and verification of a robotic system.
In: Proceedings of ECAI 2008, Patras, Greece (2008)

9. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
bip. In: Proceedings of SEFM 2006, Pune, India, pp. 3–12. IEEE Computer Society
Press, Los Alamitos (2006)

10. Basu, A., Mounier, L., Poulhiès, M., Pulou, J., Sifakis, J.: Using bip for modeling
and verification of networked systems – a case study on tinyos-based networks. In:
Proceedings of NCA 2007, Cambridge, MA, USA, pp. 257–260 (2007)

11. Bensalem, S., Bozga, M., Sifakis, J., Nguyen, T.H.: Compositional verification for
component-based systems and application. In: Cha, S(S.), Choi, J.-Y., Kim, M.,
Lee, I., Viswanathan, M. (eds.) ATVA 2008. LNCS, vol. 5311. Springer, Heidelberg
(2008)

12. Bozga, M., Fernandez, J.-C., Kerbrat, A., Mounier, L.: Protocol verification with
the aldebaran toolset. In: STTT, vol. 1, pp. 166–183 (1997)

13. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF toolset. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 237–267. Springer,
Heidelberg (2004)

14. Sifakis, J., Gossler, G.: Composition for component-based modeling. Science of
Computer Programming 55, 161–183 (2005)

15. Poulhiès, M., Pulou, J., Rippert, C., Sifakis, J.: A methodology and supporting
tools for the development of component-based embedded systems. In: Kordon, F.,
Sokolsky, O. (eds.) Monterey Workshop 2006. LNCS, vol. 4888, pp. 75–96. Springer,
Heidelberg (2007)

http://gforge.enseeiht.fr/docman/?group_id=37
http://www-verimag.imag.fr/~async/bip{M}etamodel.php
http://www.sae.org
http://la.sei.cmu.edu/aadlinfosite/OpenSourceAADLToolEnvironment.html
http://www.topcased.org/

Towards Model-Based Integration of Tools and
Techniques for Embedded Control System
Design, Verification, and Implementation

Joseph Porter, Gábor Karsai, Péter Völgyesi, Harmon Nine, Peter Humke,
Graham Hemingway, Ryan Thibodeaux, and János Sztipanovits

Institute for Software Integrated Systems,
Vanderbilt University,

Nashville TN 37203, USA
jporter@isis.vanderbilt.edu,

http://www.isis.vanderbilt.edu

Abstract. While design automation for hardware systems is quite
advanced, this is not the case for practical embedded systems. The cur-
rent state-of-the-art is to use a software modeling environment and inte-
grated development environment for code development and debugging,
but these rarely include the sort of automatic synthesis and verification
capabilities available in the VLSI domain. We present a model-based
integration environment which uses a graphical architecture description
language (EsMoL) to pull together control design, code and configuration
generation, platform-specific simulation, and a number of other features
useful for taming the heterogeneity inherent in safety-critical embedded
control system designs. We describe concepts, elements, and development
status for this suite of tools.

1 Introduction

Embedded software often operates in environments critical to human life and
subject to our direct expectations. We assume that a handheld MP3 player will
perform reliably, or that the unseen aircraft control system aboard our flight will
function safely and correctly. Safety-critical embedded environments require far
more care than provided by the current best practices in software development.
Embedded systems design challenges are well-documented [1], but industrial
practice still falls short of expectations for many kinds of embedded systems.

In modern designs, graphical modeling and simulation tools (e.g. Mathworks’
Simulink/Stateflow) represent physical systems and engineering designs using
block diagram notations. Design work revolves around simulation and test cases,
with code generated from ”‘complete”’ designs. Control designs often ignore
software design constraints and issues arising from embedded platform choices.
At early stages of the design, platforms may be vaguely specified to engineers as
sets of tradeoffs [2].

Software development uses UML (or similar) tools to capture concepts such
as components, interactions, timing, fault handling, and deployment. Workflows

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 20–34, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Model-Based Integration of Tools and Techniques 21

focus on source code organization and management, followed by testing and
debugging on target hardware. Physical and environmental constraints are not
represented by the tools. At best such constraints may be provided as documen-
tation to developers.

Complete systems rely on both aspects of a design. Designers lack tools to
model the interactions between the hardware, software, and the environment
with the required fidelity. For example, software generated from a carefully sim-
ulated functional dataflow model may fail to perform correctly when its functions
are distributed over a shared network of processing nodes. Cost considerations
may force the selection of platform hardware that limits timing accuracy. Nei-
ther aspect of development supports comprehensive validation of certification
requirements to meet government safety standards.

We propose a suite of tools that aim to address many of these challenges.
Currently under development at Vanderbilt’s Institute for Software Integrated
Systems (ISIS), these tools use the Embedded Systems Modeling Language (ES-
MoL), which is a suite of domain-specific modeling languages (DSML) to in-
tegrate the disparate aspects of a safety-critical embedded systems design and
maintain proper separation of concerns between engineering and software de-
velopment teams. Many of the concepts and features presented here also exist
separately in other tools. We describe a model-based approach to building a
unified model-based design and integration tool suite which has the potential to
go far beyond the state of the art.

We will provide an overview of the tool vision and describe features of these
tools from the point of view of available functionality. Note that two development
processes will be discussed – the development of a distributed control system
implementation (by an assumed tool user), and our development of the tool
suite itself. The initial vision section illustrates how the tools would be used to
model and develop a control system. The final sections describe different parts
of our tool-development process in decreasing order of maturity.

2 Toolchain Vision and Overview

In this work, we envision a sophisticated, end-to-end toolchain that supports not
only construction but also the verification of the engineering artifacts (including
software) for high-confidence applications. The development flow provided by
the toolchain shall follow a variation of the classical V-model (with software and
hardware development on the two branches), with some refinements added at
the various stages. Fig. 1 illustrates this development flow.

Consider the general class of control system designs for use in a flight control
system. Sensors, actuators, and data networks are designed redundantly to mit-
igate faults. The underlying platform implements a variant of the time-triggered
architecture (TTA) [3], which provides precise timing and reliability guaran-
tees. Safety-critical tasks and messages execute according to strict precomputed
schedules to ensure synchronization between replicated components and pro-
vide fault mitigation and management. Software implementations of the control

22 J. Porter et al.

Fig. 1. Conceptual model of the toolchain: Development flow

functions must pass strict certification requirements which impose constraints
on the software as well as on the development process.

A modeling language to support this development flow must have several
desired properties: (1) the ability to capture the relevant aspects of the system
architecture and hardware, (2) ability to “understand” (and import) functional
models from existing design tools, (3) support for componentization of functional
models, and (4) ability to model the deployment of the software architecture onto
the hardware architecture. The ability to import existing models from functional
modeling tools is not a deeply justified requirement, it is merely pragmatic.
EsMoL provides modeling concepts and capabilities that are highly compatible
with AADL [4]. The chief differences are that EsMoL aims for a simpler graphical
entry language, a wider range of execution semantics, and most important model-
enabled integration to external tools as described below. Model exchange with
AADL tools may be desirable in the future. A simple sample design will introduce
key points of our model-based development flow and illustrate language concepts.

Our language design was influenced by two factors: (1) the MoC implemented
by the platform and (2) the need for integration with legacy modeling and embed-
ded systems tools. We have chosen Simulink/Stateflow as the supported “legacy”
tool. As our chosen MoC relies on periodically scheduled time-triggered compo-
nents, it was natural to use this concept as the basis for our modeling language
and interpret the imported Simulink blocks as the implementation of these com-
ponents. To clarify the use of this functionality, we import a Simulink design and
select functional subsets which execute in discrete time, and then assign them
to software components using a modeling language that has compatible (time-
triggered) semantics. Communication links (signals) between Simulink blocks
are mapped onto TTA messages passed between the tasks. The resulting lan-
guage provides a componentized view of Simulink models that are scheduled pe-
riodically (with a fixed rate) and communicate using scheduled, time-triggered
messages. Extensions to heterogeneous MoC-s is an active area of research.

Model-Based Integration of Tools and Techniques 23

2.1 Requirements Analysis (RA)

Our running example will model a data network implementing a single sen-
sor/actuator loop with a distributed implementation. The sensors and actuators
in the example are doubly-redundant, while the data network is triply-redundant.
The common nomenclature for this type of design is TMR (triple modular redun-
dancy). Unlike true safety-critical designs, we will deploy the same functions on
all replicas rather than requiring multiple versions as is often done in practice [5].
The sensors and actuators close a single physical feedback loop. Specifying the
physical system and particulars of the control functions are beyond the scope of
this example as our focus is on modeling.

This example has an informal set of requirements, though our modeling lan-
guage currently supports the formalization of timing constraints between sen-
sor and actuator tasks. Formal requirements modeling offers great promise, but
in ESMoL requirements modeling is still in conceptual stages. A simple sen-
sor/actuator latency modeling example appears in a later section covering pre-
liminary features for the language.

2.2 Functional Design (FD)

Functional designs can appear in the form of Simulink/Stateflow models or as
existing C code snippets. ESMoL does not support the full semantics of Simulink.
In ESMoL the execution of Simulink data flow blocks is restricted to periodic
discrete time, consistent with the underlying time-triggered platform. This also
restricts the type and configuration of blocks that may be used in a design.
Continuous integrator blocks and sample time settings do not have meaning in
ESMoL. C code snippets are allowed in ESMoL as well. C code definitions are
limited to synchronous, bounded response time function calls which will execute
in a periodic task.

Fig. 2 shows a simple top-level Simulink design for our feedback loop along
with the imported ESMoL model (Fig. 3). The ESMoL model is a structural
replica of the original Simulink, only endowed with a richer software design

Fig. 2. Simulink design of a basic signal conditioner and controller

24 J. Porter et al.

Fig. 3. ESMoL-imported functional models of the Simulink design

environment and tool-provided APIs for navigating and manipulating the model
structure in code. A model import utility provides the illustrated function.

2.3 Software Architecture (SwA)

The software architecture model describes the logical interconnection of func-
tional blocks. In the architecture language a component may be implemented
by either a Simulink Subsystem or a C function. They are compatible at this
level, because here their model elements represent the code that will finally im-
plement the functions. These units are modeled as blocks with ports, where the
ports represent parameters passed into and out of C function calls. Semantics
for SwA Connections are those of task-local synchronous function invocations as
well as message transfers between tasks using time-triggered communication.

Fig. 4 shows the architecture diagram for our TMR model. Instances of the
functional blocks from the Simulink model are augmented with C code imple-
menting replicated data voting.

Fig. 4. The architecture diagram defines logical interconnections, and gives finer con-
trol over instantiation of functional units

Model-Based Integration of Tools and Techniques 25

2.4 Hardware Architecture (HwA)

Hardware configurations are explicitly modeled in the platform language. Plat-
forms are defined hierarchically as hardware units with ports for interconnec-
tions. Primitive components include processing nodes and communication buses.
Behavioral semantics for these networks come from the underlying time-triggered
architecture. The platform provides services such as deterministic execution of
replicated components and timed message-passing. Model attributes for hard-
ware also capture timing resolution, overhead parameters for data transfers, and
task context switching times.

Figs. 5 and 6 show model details for redundant hardware elements. Each
controller unit is a private network with two nodes and three independent data
buses. Sensor voting and flight control instances are deployed to the controller
unit networks.

Fig. 5. Overall hardware layout for the TMR example

Fig. 6. Detail of hardware model for controller units

26 J. Porter et al.

2.5 Deployment Models (CD, SY, DPL)

A common graphical language captures the grouping of architecture compo-
nents into tasks. This language represents three of the design stages from the
V-diagram (Fig. 1) – component design (CD), system architecture design (SY),
and software deployment (DPL), though we will refer to it as the deployment
language. In ESMoL a task executes on a processing node at a single periodic
rate. All components within the task execute synchronously. Data sent between
tasks takes the form of messages in the model. Whether delivered locally (same
processing node) or remotely, all inter-task messages are pre-scheduled for de-
livery. ESMoL uses logical execution time semantics found in time-triggered
languages such as Giotto [6] – message delivery is scheduled after the deadline
of the sending task, but before the release of the receiving tasks. In the TT
model message receivers assume that required data is already available at task
release time. Tasks never block, but execute with whatever data is available each
period.

Fig. 7. Deployment model: task assignment to nodes and details of task definition

Deployment concepts – tasks running on processing nodes and messages sent
over data buses – are modeled as shown in Fig. 7. Software components and bus
channels are actually references to elements defined in architecture and platform
models. Model interpreters use deployment models to generate platform-specific
task wrapping and communication code as well as analysis artifacts.

3 Existing Tools: Simulink to TTA

Control designs in Simulink are integrated using a graphical modeling language
describing software architecture. Components within the architecture are as-
signed to tasks, which run on nodes in the platform.

Model-Based Integration of Tools and Techniques 27

Fig. 8. Platforms. This metamodel describes a simple language for modeling the topol-
ogy of a time-triggered processing network. A sample platform model is included.

3.1 Integration Details

The Simulink and Stateflow sublanguages of our modeling environment are de-
scribed elsewhere, though the ESMoL language changes many of the other design
concepts from previously developed languages described by Neema [7].

In our toolchain we created a number of code generators. To construct the
two main platform-independent code generators (one for Simulink-style models
and another one for Stateflow-style models) we have used a higher-level ap-
proach based on graph transformations [8]. This approach relies on assump-
tions that (1) models are typed and attributed graphs with specific structure
(governed by the metamodel of the language) and (2) executable code can
be produced as an abstract syntax graph (which is then printed directly into
source code). This transformation-based approach allows a higher-level repre-
sentation of the translation process, which lends itself more easily to automatic
verification.

The models in the example and the metamodels described below were
created using the ISIS Generic Modeling Environment tool (GME) [9]. GME
allows language designers to create stereotyped UML-style class diagrams defin-
ing metamodels. The metamodels are instantiated into a graphical language,
and metamodel class stereotypes and attributes determine how the elements are
presented and used by modelers. The GME metamodeling syntax may not be en-
tirely familiar to the reader, but it is well-documented in Karsai et al [10]. Class
concepts such as inheritance can be read analogously to UML. Class aggrega-
tion represents containment in the modeling environment, though an aggregate
element can be flagged as a port object. In the modeling environment a port
object will also be visible at the next higher level in the model hierarchy, and

28 J. Porter et al.

available for connections. The dot between the Connectable class and the Wire
class represents a line-style connector in the modeling environment.

High-confidence systems require platforms providing services and guarantees
for properties such as fault containment, temporal firewalls, partitioning, etc.
System developers should not re-implement such critical services from scratch [2].
Note that the platform also defines a ’Model of Computation’ [11]. An MoC gov-
erns how the concurrent objects of an application interact (i.e. synchronization
and communication), and how these activities unfold in time. The simple plat-
form definition language shown in Fig. 8 contains relationships and attributes
describing time-triggered networks.

Similarly, Fig. 9 shows the software architecture language. Connector elements
model communication between components. Semantic details of such interactions
remain abstract in this logical architecture – platform models must be defined

Fig. 9. Architecture Metamodel. Architecture models use Simulink subsystems or C
code functions as components, adding attributes for real-time execution. The Input
and Output port classes are typed according to the implementation class to which
they belong.

Fig. 10. Details from deployment sublanguage

Model-Based Integration of Tools and Techniques 29

and associated in order to completely specify interactions (though this version
only offers synchronous or time-triggered communications).

Deployment models capture the assignment of Components (and Ports) from
the Architecture to Platform Nodes (and Channels). Additional implementation
details (e.g. worst-case execution time) are represented here for platform-specific
synthesis. Fig. 10 shows the relevant modeling concepts. Simulink objects SLIn-
putPort and SLOutputPort are assigned to Message objects, which represent the
marshaling of data to be sent on a Bus.

4 Under Development: Platform-Specific Simulation,
Generic Hardware, and Scheduling

A control system designer initially uses simulation to check correctness of the
design. Software engineers later take code implementing control functions and
deploy it to distributed controllers. Concurrent execution and platform limita-
tions may introduce new behaviors which degrade controller performance and
introduce errors. Ideally, the tools could allow the control functions to be re-
simulated with appropriate platform effects.

The TrueTime simulation environment [12] provides Simulink blocks mod-
eling processing nodes and communication links. ESMoL tasks map directly
to TrueTime tasks. In TrueTime, tasks can execute existing C code or invoke
subsystems in Simulink models. Task execution follows configured real-time
scheduling models, with communication over a selected medium and proto-
col. TrueTime models use a Matlab script to associate platform elements with
function implementations. A platform-specific re-simulation requires this Matlab
mapping function, and in our case also a periodic schedule for distributed time-
triggered execution. Both of these can be obtained by synthesis from ESMoL
models.

Resimulation precedes synthesis to a time-triggered platform. In order to use
generic computing hardware with this modeling environment, we created a sim-
ple, open, portable time-triggered virtual machine (VM) to simulate the timed
behavior of a TT cluster [13] on generic processing hardware. Since the com-
mercial TT cluster and the open TT VM both implement the same model of
computation, synthesis differences amount to management of structural details
in the models. The open VM platform is limited to the timing precision of
the underlying processor, operating system, and network, but it is useful for
testing.

For both steps above the missing link is schedule generation. In commercial
TTP platforms, associated software tools perform cluster analysis and sched-
ule generation. For resimulation and deployment to an open platform, an open
schedule generation tool is required. To this end we created a schedule generator
using the Gecode constraint programming library [14]. The scheduling approach
implements and extends the work of Schild and Würtz [15]. Configuration for
the schedule generator is also generated by the modeling tools.

30 J. Porter et al.

4.1 Integration Details

To configure TrueTime or the scheduler, the important details lie in the deploy-
ment model. Tasks and Messages must be associated with the proper
processing nodes and bus channels in the model. The ISIS UDM libraries [16]
provide a portable C++ API for creating model interpreters, navigating in mod-
els, and extracting required information. See Fig. 10 for the relevant associations.
Model navigation in these interpreters must maintain the relationships between
processors and tasks and between buses and messages. Scheduler configuration
also requires extraction of all message sender and receiver dependencies in the
model.

5 Designs in Progress: Requirements and Model Updates

Many types of requirements apply to real-time embedded control systems de-
sign. Embedded systems are heterogeneous, so requirements can include con-
straints on control performance, computational resources, mechanical design,
and reliability, to name a few things. Formal safety standards (e.g. DO-178B [5])
impose constraints on the designs as well as on the development process it-
self. Accordingly, current research has produced many techniques for formal-
izing requirements (e.g. ground models in abstract state machines [17] or Z
notation [18]). Models could be used to incorporate formal requirements into
other aspects of the design process. During analysis, requirements may appear
as constraints in synthesized optimization problems or conditions for model
checking. Requirements can also be used for test generation and assessment of
results.

Management of model updates is also essential. As designs evolve engineers
and developers reassess and make modifications. Changes to either the plat-
form model or functional aspects of the design may invalidate architecture and
deployment models created earlier. Some portions of the dependent models will
survive changes. Other parts needing changes must be identified. Where possible,
updates should be automated.

5.1 Integration Details

The requirements sublanguage is in design, and so is light on details. As a simple
example of the potential of such a language, Fig. 13 shows a model with latency
requirements between tasks, and Fig. 11 shows the modeling language definition.
This simple relationship can be quantified and passed directly to the schedule
solver as a constraint. Ideally a more sophisticated requirements language could
capture the syntax and semantics of an existing formal requirements tool. Some
candidate languages and approaches are currently under consideration for inclu-
sion in the framework.

To track model changes we propose to use the Simulink UserData field to store
a unique tag in each functional block when the models are imported. During an

Model-Based Integration of Tools and Techniques 31

Fig. 11. Latencies are timing constraints
between task execution times

Fig. 12. Simulink’s UserData field can help
manage model changes occurring outside
the design environment

Fig. 13. Example of task latency spec for sample model, with detail of timing attribute
value specified on model links

update operation tags in the control design can be compared with previously im-
ported tags in the model environment. Fig. 12 shows the UserData attribute from
our Simulink sublanguage, corresponding to the actual attribute in Simulink
blocks. To handle issues arising from topology concerns during model evolution,
we require control designers to group top-level functionality into subsystems and
place a few restrictions on model hierarchy in deployment models.

32 J. Porter et al.

6 Wishlist: Expanded Semantics, Implementation
Generation, and Verification

Many exciting possibilities loom on the horizon for this tool chain construction
effort. We briefly describe some concepts currently in discussion for the tools.

The current modeling languages describe systems which provide performance
and reliability guarantees by implementing a time-triggered model of computa-
tion. This is not adequate for many physical processes and controller platforms.
We also need provisions for event-triggered communication and components.
Event-triggered component structures give rise to interesting and useful com-
munication patterns common in practical systems (e.g. publish-subscribe, ren-
dezvous, and broadcast). Several research projects have explored heterogeneous
timed models of computation. Two notable examples are the Ptolemy project [19]
and the DEVS formalism and associated implementations [20]. More general sim-
ulation and model-checking tools for timed systems and specifications include
UPPAAL [21] and timed abstract state machines [22]. We aim to identify useful
design idioms from event-triggered models and extend the semantics of the mod-
eling language to incorporate them. Synthesis to analysis tools is also possible
using model APIs.

Safe automation of controller implementation techniques is another focus.
Control designs are often created and simulated in continuous time and arbitrary
numerical precision, and then discretized in time for platforms with periodic sam-
pling and in value for platforms with limited numeric precision. Recent work in
optimization and control offers some techniques for building optimization prob-
lems which describe valid controller implementation possibilities [23] [24]. Early
work on model interpreters aims to generate such optimization problems directly
from the models. Other interesting problems include automated generation of
fixed-point scaling for data flow designs. If integrated, tools like BIP [25] provide
potential for automated verification of distributed computing properties (safety,
liveness, etc...). Model representation of data flow functions, platform precision,
and safety requirements could be used together for scaling calculation.

The addition of proper formal requirements modeling can enable synthesis of
conditions for model checking and other verification tools. Executable seman-
tics for these modeling languages can also provide the behavioral models to be
checked (see Chen [26] [27], Gargantini [28], and Ouimet [29]). Other relevant
work includes integration of code-level checking, as in the Java Pathfinder [30]
or Saturn [31] tools. Synthesis to these tools must also be verified, an active area
of research at ISIS [32].

Acknowledgements

This work is sponsored in part by the National Science Foundation (grant
NSF-CCF-0820088) and by the Air Force Office of Scientific Research, USAF
(grant/contract number FA9550-06-0312). The views and conclusions contained
herein are those of the authors and should not be interpreted as necessarily

Model-Based Integration of Tools and Techniques 33

representing the official policies or endorsements, either expressed or implied, of
the Air Force Office of Scientific Research or the U.S. Government.

References

1. Henzinger, T., Sifakis, J.: The embedded systems design challenge. In: Misra, J.,
Nipkow, T., Sekerinski, E. (eds.) FM 2006. LNCS, vol. 4085, pp. 1–15. Springer,
Heidelberg (2006)

2. Sangiovanni-Vincentelli, A.: Defining Platform-based Design. EEDesign of EE-
Times (February 2002)

3. Kopetz, H., Bauer, G.: The time-triggered architecture. In: Proceedings of the
IEEE, Special Issue on Modeling and Design of Embedded Software (October 2001)

4. AS-2 Embedded Computing Systems Committee: Architecture analysis and design
language (AADL). Technical Report AS5506, Society of Automotive Engineers
(November 2004)

5. RTCA, Inc. 1828 L St. NW, Ste. 805, Washington, D.C. 20036: DO-178B: Software
Considerations in Airborne Systems and Equipment Certification. Prepared by:
RTCA SC-167 (December 1992)

6. Henzinger, T.A., Horowitz, B., Kirsch, C.M.: Giotto: A time-triggered language for
embedded programming. In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001.
LNCS, vol. 2211, pp. 166–184. Springer, Heidelberg (2001)

7. Neema, S., Karsai, G.: Embedded control systems language for distributed process-
ing (ECSL-DP). Technical Report ISIS-04-505, Institute for Software Integrated
Systems, Vanderbilt University (2004)

8. Agrawal, A., Karsai, G., Neema, S., Shi, F., Vizhanyo, A.: The design of a language
for model transformations. Journal on Software and System Modeling 5(3), 261–
288 (2006)

9. ISIS, V.U.: Generic Modeling Environment, http://repo.isis.vanderbilt.edu/
10. Karsai, G., Sztipanovits, J., Ledeczi, A., Bapty, T.: Model-integrated development

of embedded software. Proceedings of the IEEE 91(1) (2003)
11. Lee, E.A., Sangiovanni-Vincentelli, A.L.: A denotational framework for comparing

models of computation. Technical Report UCB/ERL M97/11, EECS Department,
University of California, Berkeley (1997)

12. Ohlin, M., Henriksson, D., Cervin, A.: TrueTime 1.5 Reference Manual. Dept. of
Automatic Control, Lund University, Sweden (January 2007),
http://www.control.lth.se/truetime/

13. Thibodeaux, R.: The specification and implementation of a model of computation.
Master’s thesis, Vanderbilt University (May 2008)

14. Schulte, C., Lagerkvist, M., Tack, G.: Gecode: Generic Constraint Development
Environment, http://www.gecode.org/

15. Schild, K., Würtz, J.: Scheduling of time-triggered real-time systems. Con-
straints 5(4), 335–357 (2000)

16. Magyari, E., Bakay, A., Lang, A., et al.: Udm: An infrastructure for implementing
domain-specific modeling languages. In: The 3rd OOPSLA Workshop on Domain-
Specific Modeling (October 2003)

17. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

18. ISO/IEC: Information Technology – Z Formal Specification Notation – Syntax,
Type System and Semantics. 13568:2002 (July 2002)

http://repo.isis.vanderbilt.edu/
http://www.control.lth.se/truetime/
http://www.gecode.org/

34 J. Porter et al.

19. UCB: Ptolemy II, http://ptolemy.berkeley.edu/ptolemyII/
20. Hwang, M.H.: DEVS++: C++ Open Source Library of DEVS Formalism (May

2007), http://odevspp.sourceforge.net/
21. Basic Research in Computer Science (Aalborg Univ.) Dept. of Information Technol-

ogy (Uppsala Univ.): Uppaal. Integrated tool environment for modeling, validation
and verification of real-time systems, http://www.uppaal.com/

22. Ouimet, M., Lundqvist, K.: The timed abstract state machine language: An exe-
cutable specification language for reactive real-time systems. In: Proceedings of the
15th International Conference on Real-Time and Network Systems (RTNS 2007),
Nancy, France (March 2007)

23. Skaf, J., Boyd, S.: Controller coefficient truncation using lyapunov performance
certificate. IEEE Transactions on Automatic Control (in review) (December 2006)

24. Bhave, A., Krogh, B.H.: Performance bounds on state-feedback controllers with
network delay. In: IEEE Conference on Decision and Control 2008 (submitted)
(December 2008)

25. Basu, A., Bozga, M., Sifakis, J.: Modeling heterogeneous real-time components in
BIP. In: SEFM 2006: Proceedings of the Fourth IEEE International Conference
on Software Engineering and Formal Methods, pp. 3–12. IEEE Computer Society
Press, Washington (2006)

26. Chen, K., Sztipanovits, J., Abdelwahed, S.: A semantic unit for timed automata
based modeling languages. In: Proceedings of RTAS 2006, pp. 347–360 (2006)

27. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic anchoring with
model transformations. In: Hartman, A., Kreische, D. (eds.) ECMDA-FA 2005.
LNCS, vol. 3748, pp. 115–129. Springer, Heidelberg (2005)

28. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using spin to generate testsfrom
ASM specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263–277. Springer, Heidelberg (2003)

29. Ouimet, M., Lundqvist, K.: Automated verification of completeness and consis-
tency of abstract state machine specifications using a sat solver. In: 3rd Interna-
tional Workshop on Model-Based Testing (MBT 2007), Satellite of ETAPS 2007,
Braga, Portugal (April 2007)

30. Visser, W., Havelund, K., Brat, G., Park, S., Lerda, F.: Model checking programs.
Automated Software Engineering Journal 10(2) (April 2003)

31. Xie, Y., Aiken, A.: Saturn: A sat-based tool for bug detection. In: Proceedings of
the 17th International Conference on Computer Aided Verification, pp. 139–143
(January 2005)

32. Narayanan, A., Karsai, G.: Towards verifying model transformations. In: Bruni, R.,
Varró, D. (eds.) 5th International Workshop on Graph Transformation and Visual
Modeling Techniques, 2006, Vienna, Austria, pp. 185–194 (April 2006)

http://ptolemy.berkeley.edu/ptolemyII/
http://odevspp.sourceforge.net/
http://www.uppaal.com/

Challenges in Model-Driven Software
Engineering

Ragnhild Van Der Straeten1, Tom Mens2, and Stefan Van Baelen3

1 Software and Systems Engineering Lab, Vrije Universiteit Brussel
rvdstrae@vub.ac.be

2 Service de Génie Logiciel, Université de Mons
tom.mens@umons.ac.be

3 DistriNet, Department of Computer Science, K.U.Leuven
Stefan.VanBaelen@cs.kuleuven.be

Abstract. After more than a decade of research in Model-Driven Engi-
neering (MDE), the state-of-the-art and the state-of-the-practice in MDE
has significantly progressed. Therefore, during this workshop we raised
the question of how to proceed next, and we identified a number of fu-
ture challenges in the field of MDE. The objective of the workshop was
to provide a forum for discussing the future of MDE research and prac-
tice. Seven presenters shared their vision on the future challenges in the
field of MDE. Four breakout groups discussed scalability, consistency and
co-evolution, formal foundations, and industrial adoption, respectively.
These themes were identified as major categories of challenges by the par-
ticipants. This report summarises the different presentations, the MDE
challenges identified by the workshop participants, and the discussions
of the breakout groups.

1 Introduction

MoDELS’08 is already the eleventh conference on UML, modelling and model-
driven engineering (MDE). After more than a decade, research in MDE has
significantly evolved and improved. Nevertheless, still a lot of fundamental and
practical issues remain. A recent article by France and Rumpe [1] described some
challenges to realise the MDE vision of software development. The existence of
the article and a number of recent events show the real need for a forum to
discuss future challenges in MDE. One such forum was the Dagstuhl Perspec-
tives Workshop 08331 on “Model Engineering of Complex Systems”1 which was
organised at Dagstuhl, Germany on August 10-13, 2008.

The MoDELS workshop on “Challenges in Model-Driven Software Engineer-
ing” can be considered as a continuation of the discussions held during this
Dagstuhl seminar. More specifically, our workshop addressed the question of how
to proceed next, by identifying the future short-term and long-term challenges
in MDE, and proposing ways to address these challenges. The main objective of
the workshop was to provide a forum for people from academia and industry to:
1 http://kathrin.dagstuhl.de/08331/

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 35–47, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://kathrin.dagstuhl.de/08331/

36 R. Van Der Straeten, T. Mens, and S. Van Baelen

– identify obstacles to MDE research and practice;
– facilitate transfer of research ideas to industry;
– propose “revolutionary” novel ideas;
– proclaim important challenges that are either fundamental or pragmatic.

Our initiative was strengthened by the MoDELS’08 panel on the “Past and
Future of MDD” that took place three days after our workshop. Partly based
on questions raised during our workshop, panelists presented their vision of how
MDD technologies and particular aspects of model-driven development research
will evolve over the next 10 or more years.

This report summarises the presentations, the discussions held, and the chal-
lenges identified during the workshop. It can be used as a guide to researchers
in software engineering to help them plan their future research, and to convince
policy makers of the continuing and increasing importance of MDE research.

2 About the Workshop

The event was one of the most successful workshops co-located with MoDELS’08.
There were 66 registered participants coming from 19 different countries, of which
5 non-European ones. From a gender perspective, about 21% of the participants
were female.

In total, we received 15 submissions, of which 11 were accepted. Seven of those
were invited to present their ideas during the workshop. A short abstract of each
presentation is listed below. The articles of the three presentations marked with
(*) are included in this Workshop Reader. For the other articles, as well as for
the accepted submissions that were not presented during the workshop, please
consult the electronic workshop proceedings [2].

Parastoo Mohagheghi (*). MDE Adoption in Industry: Challenges and Suc-
cess Criteria [3]
MDE has been promoted to solve one of the main problems faced by soft-
ware industry today: coping with the complexity of software development by
raising the abstraction level and introducing more automation in the pro-
cess. The promises are many. Among them are: improved software quality
by increased traceability between artifacts, early defect detection, reducing
manual and error-prone work and including knowledge in generators. How-
ever, to be successfully adopted by industry, MDE must be supported by a
rich ecosystem of stable, compatible and standardised tools. It should also
not introduce more complexity than it removes. The presentation reported
on the authors’ experience in adoption of MDE in industrial and research
projects. It also discussed the areas in which MDE has potential for success
and what the key success criteria are.

Dimitrios Kolovos (*) Scalability: The Holy Grail of MDE [4]
Scalability is a desirable property in MDE. The current focus of research in
MDE is on declarative languages for model management, and scalable mech-
anisms for persisting models. The presenter claimed that, instead, modular-
ity and encapsulation in modelling languages should be the main focus. This

Challenges in Model-Driven Software Engineering 37

claim was justified by demonstrating how those two principles apply to a
related domain, namely code development, where the issue of scalability has
been addressed to a much greater extent than in MDE.

Ernesto Posse A foundation for MDE [5]
MDE is still lacking adoption by developers. To live up to its full potential
MDE must rest on a solid foundation. Therefore, one of the main challenges
facing MDE today is the establishment of such a foundation. In this presen-
tation, UML-RT was used as a case study to illustrate what can be achieved,
what is missing and what kind of issues must be addressed by a successful
approach to MDE.

Antonio Vallecillo (*) Behaviour, Time and Viewpoint Consistency: Three
Challenges for MDE [6]
Three problems that MDE should tackle in order to be useful in industrial
environments were outlined in this presentation. Firstly, the specification of
the behavioural semantics of meta-models so that different kinds of anal-
ysis can be conducted, e.g., simulation, validation and model checking. A
second challenge is the support of the notion of time in these behavioural
descriptions, to be able to conduct, e.g., realistic performance and reliability
analysis of industrial systems. As a third challenge, not only the accidental
complexity involved in building software systems needs to be tackled, but
their essential complexity should be addressed too. To achieve this, more ef-
fective use needs to be made of independent but complementary viewpoints
to model large-scale systems, and correspondences between them to reason
about the consistency of the global specifications need to be specified.

Dennis Wagelaar Challenges in bootstrapping a model-driven way of software
development [7]
According to the presenter, current MDE technologies are often demon-
strated using well-known scenarios that consider the MDE infrastructure
to be already in place. If developers need to develop their own infrastruc-
ture because existing tools are insufficient, they will encounter a number
of challenges. Generally, developers cannot just implement all their model
transformations and other MDE infrastructure immediately, because it sim-
ply takes too long before they get usable results. An incremental approach to
putting model-driven development into place gives you the necessary “break-
points”, but poses extra challenges with regard to the MDE technologies
used. Some of these challenges are: how to bootstrap a step-wise refinement
chain of model transformations, how to bootstrap the modelling language us-
age, how to fit in round-trip engineering, and what are the useful properties
for a model transformation tool.

Robert Clarisó UML/OCL Verification in Practice [8]
One of the promises of model-driven development is the ability to identify
defects early, at the level of models, which helps to reduce development
costs and improve software quality. However, there is an emerging need for
“lightweight” model verification techniques that are usable in practice, i.e.,
able to find and notify defects in realistic models without requiring a strong
verification background or extensive model annotations. Some promising

38 R. Van Der Straeten, T. Mens, and S. Van Baelen

approaches revolve around the satisfiability property of a model, i.e., decid-
ing whether it is possible to create a well-formed instantiation of the model.
Existing solutions in the UML/OCL context were discussed. The presenter
claimed that this problem has not yet been satisfactorily addressed.

Jordi Cabot Improving Requirements Specifications in Model-Driven Develop-
ment Processes [9]
Understanding the organisational context and rationales that lead up to sys-
tem requirements helps to analyse the stakeholders’ interests and how they
might be addressed or compromised by the different design alternatives. These
aspects are very important for the ongoing success of the system but are not
considered by current MDE methods. The presenter argued for the necessity
of extending existing methods with improved requirement techniques based
on goal-oriented techniques for the analysis and specification of the organisa-
tion context, and discussed the benefits and challenges of such integration.

3 Identified Challenges

During the plenary session that took place after the presentations, all workshop
participants identified some of the major challenges in MDE. Those challenges
are enumerated below. It is important to note that this list is inevitably incom-
plete. Also, the order in which we present the challenges here is of no particular
importance.

Model quality. We need to deal with quality aspects in modelling and model-
driven engineering. This gives rise to a number of open questions:
– How can we define model quality?
– How can we assure, predict, measure, improve, control, manage quality?
– How can we reconcile conflicting quality aspects?

These and many related challenges are very important, and have been dis-
cussed in more detail in the MoDELS’08 workshop on “Quality in Mod-
elling”. There is also a recent book that addresses these topics [10].

Run-time models. In model-driven software engineering focus has been pri-
marily on using models at analysis, design, implementation, and deployment
stages of development. The use of models during run-time extends the use
of modelling techniques beyond the design and implementation phases of
development and introduces a number of challenges:
– How can we represent dynamic behaviour?
– What should a run-time model look like? How can we use and maintain

such models at run-time?
– How do they relate to “static” models?
– What are good approaches to follow when developing run-time models?
– What are the differences, advantages and shortcomings of model inter-

pretation, model simulation/execution and code generation techniques?
These and many related challenges have been discussed during the MoD-
ELS’08 workshop on “Models@run.time”.

Challenges in Model-Driven Software Engineering 39

Requirements modelling. Research related to requirements is underrepre-
sented in the MDE community. Nevertheless a number of important chal-
lenges remain to be tackled:
– How can we model requirements?
– How can we bridge the gap between informal (textual) requirement spec-

ifications and formal requirement models?
– How can we integrate the activity of requirement specifications into tra-

ditional modelling?
– How can we achieve traceability between requirement specifications and

design models?
Standards and benchmarks. There is a need for standards and benchmarks

to compare different tools and approaches. Benchmarks provide an excellent
resource to measure progress and the significance of a contribution. However,
widely accepted benchmarks do not exist yet. This leads to the following open
questions:
– How to design and develop benchmarks that facilitate comparison be-

tween tools and approaches?
– Which standards are needed to facilitate interoperability between tools?
– How can we obtain and share common data (models, model transforma-

tions, case studies)?
Modelling languages. Models cannot be developed without precise modelling

languages. Modelling languages are one of the main themes of the MoDELS
conferences. Although the state of research in modelling languages has sig-
nificantly progressed, a number of open questions remain:
– Which languages, methods, principles and tools are necessary to design

precise meta-models?
– How can we support better modularity in MDE?
– How to describe design pragmatics (as opposed to syntax and seman-

tics)?
– How can we allow for and deal with multi-models and multi-formalism

modelling?
Domain-specific modelling. Domain-specific modelling languages are

designed to provide precise abstractions of domain-specific constructs. Mod-
els for complex systems encompass several domains. Capturing all important
aspects of such a complex system requires developing multiple models using
different DSMLs and introduces many challenges.
– How to develop and integrate models using different domain-specific

modelling languages?
– What process and which tools should we use to analyse, design, develop,

verify and validate domain-specific models and languages?
– How can we increase reuse across different domain-specific modelling

languages?
– How can we facilitate code generation from domain-specific modelling

languages?

40 R. Van Der Straeten, T. Mens, and S. Van Baelen

– What is the trade-of between general-purpose modelling languages, tools,
techniques and domain-specific ones? Do we get a higher degree of spe-
cialisation, higher expressiveness, and higher potential for code genera-
tion, model execution and formal reasoning?

Panelists of the MoDELS’08 panel on “Addressing the Challenges of Multi-
Modelling for Domain-Specific Modelling Languages” have commented on
these and related challenges.

Empirical analysis. In the context of MDE, the topic of empirical analysis
raises a number of interesting challenges:
– What are the main obstacles and potential remedies when performing

empirical studies of MDE?
– What are the strengths and weaknesses of evaluating MDE activities,

tools and techniques in laboratory and field settings, as well as industrial
case studies?

– How should we deal with the unavoidable trade-offs between realism and
control?

– How can we obtain adequate estimations for an MDE process and which
measurements are relevant for MDE?

These and related challenges have been addressed and discussed at the MoD-
ELS’08 workshop on “Empirical Studies in Model Driven Engineering”.

Model verification and validation. As in any software development
approach, verification and validation are essential for MDE. In the context
of MDE, it imposes a number of additional challenges:
– How can we verify, validate, debug, and test the models and the code

generated from those models?
– How can we automatically generate test cases from models?
– How can we provide incremental support for verification and validation?
– How can we deal with partially incomplete and inconsistent models?
– How can we support formal verification of models?
– How can we address validation and verification in a multi-model world?

Process support. Model-driven engineering encompasses many more activities
than merely modelling. One important aspect that is often overlooked by
the scientific community is process support. This gives rise to a number of
essential questions:
– Which processes should be used for MDE?
– How should existing processes embrace MDE?
– How should we teach and educate people in adopting MDE technology?
– How can we incorporate the MDE environment in the MDE process?

Fuzzy modelling. Models are not always complete and sometimes inconsisten-
cies need to be tolerated. This gives rise to specific questions like:
– How can we deal with modelling in presence of uncertainty?
– How can we deal with models that are imperfect or ambiguous?
– How can we reason about models that are incomplete or inconsistent?
– How can we cope with imprecision of models?

Industrial adoption. This topic will be discussed in section 4.1.
Formal foundations. This topic will be discussed in section 4.2.

Challenges in Model-Driven Software Engineering 41

Scaleability issues. This topic will be discussed in section 4.3.
Model consistency and co-evolution. This topic will be discussed in sec-

tion 4.4.

As a general kind of meta-challenge, it was suggested by one of the participants
that we need to be aware more of relevant past research (possibly in other
software engineering domains), rather than trying to reinvent the wheel.

4 Discussion of Breakout Groups

Because it was not possible to explore all of the above challenges in detail during
the workshop, we decided to break out into 4 different groups, each one focusing
on a particular set of challenges that were considered to be important by the
majority of participants.

4.1 Industrial Adoption

The “engineering” aspect of model-driven engineering implies that research in
MDE is useless without having industrial adoption. The MDE community could
benefit a lot from concrete industrial use cases, both positive and negative ones.

From the positive side, it would be good to learn which companies have suc-
cessfully adopted MDE technology, and what was the reason of this success:
Which tools, techniques and processes have been used, and what was the added
value brought by MDE? Several participants mentioned examples of such suc-
cess stories. For example, in the automotive industry, the use of MDE technology
is standard practice. The same appears to be true for real-time and embedded
systems. Also in the area of web application development there are various ap-
proaches that support MDE (e.g., AndroMDA). Finally, there were examples of
the use of MDE in the telecommunications and insurance domains.

The opposite question was also discussed. Can we find failures of the use of
MDE in industry, and the reasons underlying these failures? Similarly, can we
find reasons why some software companies are not using MDE? Some interesting
points were raised when discussing about these questions. First of all, there is a
significant technological threshold and learning curve before you can actually use
MDE in industry. Therefore, using MDE technology may not be cost effective
for many industrial application scenarios. The argument was also made that,
although some companies do not use MDE, they do use models for communica-
tion. Finally, while some companies may be interested in using MDE technology,
it may not be possible if they still have a large legacy code base available that
has been around for decades, and has been developed in “old” technology (e.g,
COBOL code) that may be too costly or too hard to migrate.

One thing that appeared to be common to all discussed industrial use cases
was the use of domain-specific modelling languages. This seems to indicate that
MDE works well for specific problems in specific domains, and that the use of
a universal modelling language (e.g., UML) may possibly not work well in an
industrial setting.

42 R. Van Der Straeten, T. Mens, and S. Van Baelen

We also discussed how MDE can bring value to industry. In some of the
industrial cases discussed, MDE was used because of its ability to formally specify
and analyse (part of) the system. This leads to a reduction in ambiguity and
improved quality. Other potential advantages are cost reduction, productivity
improvement, easier maintenance, and detection of problems and inconsistencies
in the software system early in the life cycle. Of course, it is essential to keep in
mind that any of these potential advantages should not be detrimental to the
performance of the software system to be produced.

The main issue with the above is that we need to convince industry that there
is actually added value of MDE, and we should come up with a deployment
model to enable the adoption of MDE technology in industry. The only way
this can be done is by performing convincing empirical case studies of the use
of MDE in industry. Obviously, to be able to perform such studies, we need
to be able to obtain detailed data about MDE practice from industry itself.
In practice, it turns out to be very difficult to obtain industrial data, and to
transfer technology and research results from academia to industry. Participants
of the breakout group basically agreed that the only viable way to achieve this
is by direct contact between the research community and industry. One way
to establish such contact is via exchange programmes in which PhD students
spend a couple of months in a company to understand the process used and the
particular activities that are amenable to automation via MDE technology, as
well as to raise awareness of industry in the benefits of MDE. Other possibilities
are the use of dedicated industrial education and training programmes.

4.2 Formal Foundation

Verification and validation is an important research theme in the MDE com-
munity. To be able to verify and validate models and model transformations, a
formal foundation is a necessity. The first challenge identified by the participants
of this breakout group was to integrate formal verification tools into modelling
environments. This needs to be done in such a way that the user of the modelling
environment does not need to have expertise in the different formalisms and tech-
niques used for verification. The feedback of these verification tools needs to be
formulated in a language or formalism that the end user of the environment is
familiar with.

To realise this smooth integration, the participants of the breakout group
agreed that transformations from modelling languages to formal verification and
analysis models need to be defined. The definition of transformations triggers
several interesting challenges. How to define such transformations? How to prove
correctness of model transformations, especially if the source models are infor-
mal? And how to proof that the transformation is correct? It is possible that
the transformation of an informal model to a formal model is correct by con-
struction, since the main goal of such semantic mapping is to define a precise
semantic meaning for the concepts of the informal model. All participants of the
breakout group agreed that first of all the notion of correctness needs to be de-
fined, because many variations of correctness definitions exist in state-of-the-art

Challenges in Model-Driven Software Engineering 43

literature. Once models are transformed into a certain formalism and verification
of properties has been executed in this formalism, feedback needs to be given
to the end user and incorporated into the source model. The question arises on
how to reinterpret these results in the source models and tools.

There is a lot of existing work on using formalisms to support model-driven
engineering. Examples are graph transformation theory, algebraic specifications,
model checking, logic-based approaches and SAT solvers, and category theory.
In the programming language area, operational, denotational and axiomatic se-
mantics exist. These different approaches are useful for investigating different
kinds of properties. The participants also recognised that different semantics
and formalisms may be necessary at different phases in the development life cy-
cle, and at at different levels of abstraction, since a single formalism may not fit
all the models describing various aspects of a complex system. This gives rise to
an interesting challenge: how to relate these levels and how to define the relation-
ships between them. The participants posed the question whether it is necessary
to define relations between the different formalisms. As a complex system is
gradually being modelled using a multitude of often large models, and regularly
extended and adapted, incremental verification and validation and scalability of
the verification and validation tools become key challenges for MDE.

Precisely defining domain-specific modelling languages was another discus-
sion topic. This raises the question how to help developers design good mod-
elling languages that guarantee useful properties to the users of these languages.
Reusability was recognised as a key issue in modelling language design. In anal-
ogy with design patterns, the participants propose to identify and define patterns
and anti-patterns for designing modelling languages. The main challenge that
was identified is to define domain-specific modelling languages that enable and
enforce model correctness by construction.

All participants agreed that, despite the multitude of existing formalisms and
experiments to use them in MDE, a lot of research still needs to be done. This is
especially true for tool support for verification and validation, as well as support
for defining well-designed modelling languages. A goal-driven approach for MDE
was suggested, by focusing on the question of what needs to be the added value
of the languages, techniques, and tools?

4.3 Scaleability

Scaleability is a general problem in software engineering. Many software en-
gineering research areas are struggling to cope with scaleability issues, and a
large research effort has already been spent to develop solutions for overcom-
ing scaleability problems. The MDE community must therefore focus on (1) the
kind of scalability issues that are intrinsic for MDE; (2) elements about MDE
do not scale well and the underlying reasons thereof; and (3) specific scalability
problems for MDE that cannot be addressed by existing solutions from other
software engineering domains.

Concerning the intrinsic type of scalability needed for MDE, one of the main
problems is that MDE has to be able to cope with very large models in order

44 R. Van Der Straeten, T. Mens, and S. Van Baelen

to model systems of systems and Ultra-Large-Scale (ULS) systems. These mod-
els have to be constructed, transformed, merged, and used as a base for code
generation. So one could try to develop solutions for optimising these activities
in order to use them adequately on large models. However, often solutions for
one type of activity can be rather different than those necessary for other types
of activities. The question arises whether generic optimisation solutions can be
developed for MDE activities. In addition, one must be aware that the time to
load huge models is often greater than the time needed for checking, merging or
transforming such models.

Elements that can cause scalability problems in an MDE approach are, among
others, multi-site collaborative development, complexity of algorithms manipu-
lating models, computer resources needed to manage huge models, and technical
limitations of the used notations and tools (concerning support for modularity,
concurrent access, distribution, etc.). In addition, the accidental complexity of
underlying MDE technology should be reduced.

Mechanisms and techniques from other software engineering domains could
be useful for solving MDE scaleability issues. From the programming commu-
nity, techniques such as modular engineering principles, incremental processing,
caches, and indices could be beneficial for MDE. Further solutions can come
from logic inference engines for model checking, and high performance comput-
ing for optimisation techniques. The participants assessed that there are known
solutions to all the problems they thought of, however, the issue is to generalise
them for MDE. In addition, the design of modelling languages seems not always
to respect known scaling problems in concrete languages.

4.4 Model Evolution and Inconsistency Management

Models do not appear after a big bang, but are often developed by different per-
sons in a distributed setting using different modelling languages. Such multi-user
distributed setting, combined with the usage of different modelling languages to
model a system, can cause inconsistencies in and between models. Models evolve
and so do their meta-models. The major challenge is to assess the impact of
change of a model or meta-model on the other models and meta-models. The
challenge increases if models are distributed. The participants of this breakout
group propose – as a small step towards a solution – to categorise the different
change types and the possible ways to resolve the inconsistencies introduced by
the changes.

Models are built using a variety of domain-specific modelling languages. The
question arises how to develop DSMLs can be efficiently extended, adapted or
customised. The term efficiency is strongly related to traditional quality mea-
sures. More effort should go to a DSML process. One possible solution would be
to have rapid prototyping for building DSMLs. Prototyping has the advantage of
giving continuous, incremental feedback. In the context of evolution the question
arises how a DSML evolves from version n − 1 to version n and what happens
with the existing models adhering to the DSML version n − 1?

Challenges in Model-Driven Software Engineering 45

Other challenges that were identified are: how to deal with long-lived models
and legacy models? How to maintain models? How to avoid model erosion? How
to support long-lived software intensive systems that have been generated using
MDE? The participants stated that more effort should go to a model-driven
development process.

Once inconsistencies are identified in or between models, the question arises
how to deal with these inconsistencies. Model-driven development environments
need built-in support for inconsistency handling and resolution. Built-in sup-
port for inconsistency detection and handling is also needed in versioning tools.
In a model-driven software development process, handling inconsistencies at
model level will also affect the (generated) code. As such, an important re-
search question is how to support model-code synchronisation and round-trip
engineering.

Formalisms and techniques to detect, handle and resolve inconsistencies can
be based on formal verification techniques used in other software engineering
domains such as programming language engineering, but also on formalisms and
techniques used in database engineering and artificial intelligence.

The participants also discussed the question how collaboration in this field
can be improved. They suggest two possible approaches. First, the development
of an ontology for the consistency/evolution area, and second, a survey that
unifies the different existing perspectives.

5 Past and Future of MDD

As one of the outcomes of the workshop, besides the current workshop report,
each breakout group prepared a single question that was passed to the panelists
of the MoDELS’08 panel on the “Past and Future of MDD”. These questions
were:

– How can we better understand the software process and activities that com-
panies use and improve them with MDE technology?

– Can incremental model verification and model checking contribute to suc-
cessful adoption of MDE?

– Are there scalability problems that are specific to MDE, and how can we
address them?

– How can we deal with co-evolution of models, meta-models and transforma-
tions in a distributed multi-developer environment?

6 Conclusions

During the workshop, a large number of challenges for MDE have been iden-
tified, covering a broad range of topics that are important for the successful
application of MDE in practice. The organisers hope that the workshop results
help to identify an MDE research agenda, to define the roadmap for future MDE
research, and to inspire researchers for tackling important problems and develop
novel and adequate solutions.

46 R. Van Der Straeten, T. Mens, and S. Van Baelen

Acknowledgements

This workshop was organised in the context of three research projects:

– the research project “Modelling, Verification and Evolution of Software
(MoVES)”, an IAP-Phase VI Interuniversity Attraction Poles Programme
funded by the Belgian State, Belgian Science Policy, http://moves.vub.ac.be

– the research project “Model-Driven Software Evolution”, an Action de
Recherche Concertée financed by the Ministère de la Communauté française
- Direction générale de l’Enseignement non obligatoire et de la Recherche
scientifique.

– the EUREKA-ITEA2 research project “Evolutionary Validation, Verification
and Certification (EVOLVE)”, partially funded by the Flemish government
institution IWT (Institute for the Promotion of Innovation by Science and
Technology in Flanders), http://www.evolve-itea.org

We thank all workshop participants for the lively discussions and the useful
feedback we received. We thank the workshop programme committee members
for their helpful reviews: Jean Bézivin, Xavier Blanc, Dirk Deridder, Gregor
Engels, Vincent Englebert, Robert France, Dragan Gasevic, Sébastien Gérard,
Wouter Joosen, Anneke Kleppe, Jochen Küster, Richard Paige, Ivan Porres,
Laurent Rioux, Bernhard Rumpe, and Hans Vangheluwe.

References

1. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: FOSE 2007: 2007 Future of Software Engineering, pp. 37–54. IEEE
Computer Society Press, Washington (2007)

2. Van Baelen, S., Van Der Straeten, R., Mens, T. (eds.): ChaMDE 2008 Workshop
Proceedings: International Workshop on Challenges in Model-Driven Software En-
gineering, VUB, UMH, K.U.Leuven (2008)

3. Mohagheghi, P., Fernandez, M., Martell, J., Fritzsche, M., Giliani, W.: MDE adop-
tion in industry: Challenges and success criteria. In: ChaMDE 2008 Workshop
Proceedings: International Workshop on Challenges in Model-Driven Software En-
gineering, pp. 5–9 (2008)

4. Kolovos, D.S., Paige, R.F., Polack, F.A.: Scalability: The holy grail of model driven
engineering. In: ChaMDE 2008 Workshop Proceedings: International Workshop on
Challenges in Model-Driven Software Engineering, pp. 10–14 (2008)

5. Posse, E., Dingel, J.: A foundation for MDE. In: ChaMDE 2008 Workshop Proceed-
ings: International Workshop on Challenges in Model-Driven Software Engineering,
pp. 15–19 (2008)

6. Rivera, J.E., Romero, J.R., Vallecillo, A.: Behavior, time and viewpoint consis-
tency: Three challenges for MDE. In: ChaMDE 2008 Workshop Proceedings: In-
ternational Workshop on Challenges in Model-Driven Software Engineering, pp.
20–24 (2008)

Challenges in Model-Driven Software Engineering 47

7. Wagelaar, D.: Challenges in bootstrapping a model-driven way of software de-
velopment. In: ChaMDE 2008 Workshop Proceedings: International Workshop on
Challenges in Model-Driven Software Engineering, pp. 25–30 (2008)

8. Cabot, J., Clarisó, R.: Uml/ocl verification in practice. In: ChaMDE 2008 Work-
shop Proceedings: International Workshop on Challenges in Model-Driven Software
Engineering, pp. 31–35 (2008)

9. Cabot, J., Yu, E.: Improving requirements specifications in model-driven develop-
ment processes. In: ChaMDE 2008 Workshop Proceedings: International Workshop
on Challenges in Model-Driven Software Engineering, pp. 36–40 (2008)

10. Rech, J., Bunse, C. (eds.): Model-Driven Software Development: Integrating Qual-
ity Assurance. Information Science Reference (2008)

The Grand Challenge of Scalability
for Model Driven Engineering

Dimitrios S. Kolovos, Richard F. Paige, and Fiona A.C. Polack

Department of Computer Science, University of York, UK
{dkolovos,paige,fiona}@cs.york.ac.uk

Abstract. Scalability is particularly important for the adoption of
Model Driven Engineering (MDE) in an industrial context. The cur-
rent focus of research in MDE is on declarative languages for model
management, and scalable mechanisms for persisting models (e.g., using
databases). In this paper we claim that, instead, modularity and encap-
sulation in modelling languages should be the main focus. We justify
this claim by demonstrating how these two principles apply to a related
domain – code development – where the issue of scalability has been
addressed to a much greater extent than in MDE.

1 Introduction

The adoption of MDE technologies in an industrial context involves significant
benefits but also substantial risks. Benefits in terms of increased productivity,
quality and reuse are easily foreseeable. On the other hand, the most important
concerns raised of MDE are those of scalability [1], the cost of introducing MDE
technologies to the development process (training, learning curve) and longevity
of MDE tools and languages. To our perception, the latter two concerns (cost of
induction and longevity) are not preventive for the adoption of MDE; however
scalability is what is holding back a number of potential adopters.

2 Scalability in MDE

Large companies typically develop complex systems, which require proportion-
ally large and complex models that form the basis of representation and reason-
ing. Moreover, development is typically carried out in a distributed context and
involves many developers with different roles and responsibilities. In this con-
text, typical exploratory questions from industrial parties interested in adopting
MDE include the following:

1. In our company we have huge models, of the order of tens of thousands of
model elements. Can your tool/language support such models?

2. I would like to use model transformation. However, when I make a small
change in my (huge) source model, it is important that the change is incre-
mentally propagated to the target model; I don’t want the entire target model
to be regenerated every time.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 48–53, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

The Grand Challenge of Scalability for Model Driven Engineering 49

3. (similarly) I would like to use code generation. However, when I make a small
change in my (huge) model I don’t want all the code to be regenerated.

4. In my company we have many developers and each manages only a specific
part of the model. I would like each developer to be able to check out only a
part of the model, edit it locally and then merge the changes into the master
copy. The system should also let the developers know if their changes are in
conflict with the rest of the model or with changes done by other developers.

Instead of attempting to answer such questions directly, we find it useful to
consider analogies with a proven and widely used environment that addresses
those problems in a different – but highly relevant – domain. The domain is code
development and the environment is the well known and widely used Eclipse Java
Development Tools (JDT).

As a brief overview, JDT provide an environment in which developers can
manage huge code-bases consisting of (tens of) thousands of Java source code files
(concern 1). JDT supports incremental consistency checking and compilation (con-
cerns 2,3) in the sense that when a developer changes the source code of a particular
Java class, only that class and any other classes affected by the change – as opposed
to all the classes in the project or the workspace – are re-validated and re-compiled.
Finally, JDT is orthogonal to version control, collaborative development (concern
4), and multi-tasking tools such as CVS and SVN and Mylyn.

3 Managing Volume Increase

As models grow, tools that manage them, such as editors and transformation
engines, must scale proportionally. A common concern often raised is that mod-
elling frameworks such as EMF [2] and widely-used model management lan-
guages do not scale beyond a few tens of thousands of model elements per model.
While this is a valid concern, it is also worth mentioning that the Java compiler
does not allow Java methods the body of which exceed 64 KB, but in the code-
development domain this is rarely a problem.

The reason for this asymmetry in perception is that in code development,
including all the code of an application in a single method/file is considered – at
least – bad practice. By contrast, in modelling it is deemed perfectly reasonable
to store a model that contains thousands of elements in a single file. Also, it
is reasonable that any part of the model can be hard-linked with an ID-based
reference to any other part of the model.

To deal with the growing size of models and their applications, modelling frame-
works such as EMF support lazy loading and there are even approaches, such as
Teneo [3] and CDO [4], for persisting models in databases. Although useful in
practice, such approaches appear to be temporary workarounds that attempt to
compensate for the lack of encapsulation and modularity constructs in modelling
languages. In our view, the issue to be addressed in the long run is not how to
manage large monolithic models but how to separate them into smaller modular
and reusable models according to the well understood principles defined almost
40 years ago in [5], and similarly to the practices followed in code development.

50 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

4 Incrementality

In the MDE research community, incrementality in model management is sought
mainly by means of purely declarative model transformation approaches [6,7].
The hypothesis is that a purely declarative transformation can be analysed au-
tomatically to determine the effects of a change in the source model to the
target model. Experience has demonstrated that incremental transformations
are indeed possible but their application is limited to scenarios where the source
and target languages are similar to each other, and the transformation does not
involve complex calculations.

JDT achieves incrementality without using a declarative language for compil-
ing Java source to bytecode; instead it uses Java which is an imperative language.
The reason JDT can achieve incremental transformation lies mainly the design
of Java itself. Unlike the majority of modelling languages, Java has a set of well-
defined modularity and encapsulation rules that, in most cases, prevent changes
from introducing extensive ripple effects.

But how does JDT know what is the scope of each change? The answer is
simple: it is hard-coded (as opposed to being automatically derived by analysing
the transformation). However, due to the modular design of the language, those
cases are relatively few and the benefits delivered justify the choice to hard-code
them. Also it is worth noting that the scope of the effect caused by a change
is not related only to the change and the language but also to the intention of
the transformation. For example, if instead of compiling the Java source code to
bytecode we needed to generate a single HTML page that contained the current
names of all the classes we would unavoidably need to re-visit all the classes (or
use cached values obtained earlier).

5 Collaborative Development

As discussed in Section 2, a requirement for an MDE environment of industrial
strength is to enable collaborative development of models. More specifically, it is
expected that each developer should be able to check out an arbitrary part of the
model, modify it and then commit the changes back to the master copy/reposi-
tory. Again, the formulation of this requirement is driven by the current status
which typically involves constructing and working with large monolithic models.
With enhanced modularity and encapsulation, big models can be separated into
smaller models which can then be managed using robust existing collaborative
development tools such as CVS and SVN, augmented with model-specific version
comparison and merging utilities such as EMF Compare [8]. Given the criticality
of version control systems in the business context, industrial users are partic-
ularly reluctant to switching to a new version control system1. Therefore, our
view is that radically different solutions, such as dedicated model repositories,
1 Evidence of this is that CVS which was introduced in the 1980s is still the most

popular version control system despite its obvious limitations compared to newer
systems such as SVN

The Grand Challenge of Scalability for Model Driven Engineering 51

that do not build on an existing robust and proven basis are highly unlikely to
be used in practice.

6 Modularity in Modelling Languages

The above clearly demonstrate the importance of modularity and encapsulation
for achieving scalability in MDE. There are two aspects related to modularity
in modelling: the design of the modelling language(s) used and the capabilities
offered by the underlying modelling framework. In this section we briefly discuss
how each of those aspects affect modularity and envision desirable capabilities
of modelling frameworks towards this direction.

6.1 Language Design

With the advent of technologies such as EMF and GMF [9], implementing a new
domain-specific modelling language and supporting graphical and textual edi-
tors is a straightforward process and many individuals and organizations have
started defining custom modelling languages to harvest the advantages of the
context-specific focus of DSLs. When designing a new modelling language, mod-
ularity must be a principal concern. The designers of the language must ensure
that large models captured using the DSL can be separated into smaller models
by providing appropriate model element packaging constructs. Such constructs
may not be part of the domain and therefore they are not easily foreseeable.
For example, when designing a DSL for modelling relational databases, it is
quite common to neglect packaging, because relational databases are typically
a flat list of tables. However, when using the language to design a database
with hundreds of tables, being able to group them in conceptually coherent
packages is highly important to the manageability and understandability of the
model.

6.2 Modelling Framework Capabilities

In contemporary modelling frameworks there are three ways to capture rela-
tionships between two elements in a model: containment, hard references and
soft references. Containment is the natural relationship of one element being
a composite part of another, a hard reference is a unique-ID-based reference
that can be resolved automatically by the modelling framework and a soft
reference is a reference that needs an explicit resolution algorithm to
navigate [10].

To enable users to split models over multiple physical files, contemporary mod-
elling frameworks support cross-model containment (i.e. the ability of a model
element to contain another despite being stored in different physical files). With
regard to hard and soft non-containment references, hard references are typically
proffered because they can be automatically resolved by the modelling framework

52 D.S. Kolovos, R.F. Paige, and F.A.C. Polack

and thus, they enable smooth navigation over the elements of the model with lan-
guages such as OCL and Java. Nevertheless, in our view hard references are par-
ticularly harmful for modularity as they increase coupling between different parts
of the model and prevent users from working independently on different parts. On
the other hand, soft references enable clean separation of model fragments but re-
quire custom resolution algorithms which have to be implemented from scratch
each time.

To address this problem, we envision extensions of contemporary modelling
frameworks that will be able to integrate resolution algorithms so that soft ref-
erences can be used, and the efficient and concise navigation achievable with
languages such as OCL can still be performed.

7 Conclusions

In this paper we have demonstrated the importance of modularity and encapsu-
lation for achieving scalability in MDE. We have identified two main problems:
neglect of modularity constructs during the design of modelling languages and
extensive use of ID-based references that lead to high coupling between different
parts of the model. With regard to the first issue we have been working on prepar-
ing a set of guidelines for the design of scalable and modular DSLs and expect to
report on this soon. The second issue is quite more complex and we plan to elab-
orate and prototype a solution based on EMF and Epsilon [11] in the near future.

Acknowledgements

The work in this paper was supported by the European Commission via the
MODELPLEX project, co-funded by the European Commission under the “In-
formation Society Technologies” Sixth Framework Programme (2006-2009).

References

1. Warmer, J., Kleppe, A.: Building a Flexible Software Factory Using Partial Domain
Specific Models. In: Proc. 6th OOPSLA Workshop on Domain-Specific Modeling,
Portland, Oregon, USA (October 2006)

2. Eclipse Foundation. Eclipse Modelling Framework,
http://www.eclipse.org/emf

3. Eclipse Foundation. Teneo (2008),
http://www.eclipse.org/modeling/emft/?project=teneo

4. Eclipse Foundation. CDO (2008),
http://www.eclipse.org/modeling/emft/?project=cdo

5. Parnas, D.L.: On the criteria to be used in decomposing systems into modules.
Communications of ACM 15(12), 1053–1058 (1972)

6. Hearnden, D., Lawley, M., Raymond, K.: Incremental model transformation for the
evolution of model-driven systems. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio,
G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 321–335. Springer, Heidelberg (2006)

http://www.eclipse.org/emf
http://www.eclipse.org/modeling/emft/?project=teneo
http://www.eclipse.org/modeling/emft/?project=cdo

The Grand Challenge of Scalability for Model Driven Engineering 53

7. Giese, H., Wagner, R.: From model transformation to incremental bidirectional
model synchronization. Software and Systems Modeling, 1619–1374 (March 2008)

8. Eclipse Foundation. EMF Compare (2008),
http://www.eclipse.org/modeling/emft/?project=compare

9. Eclipse GMF - Graphical Modeling Framework, Official Web-Site,
http://www.eclipse.org/gmf

10. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: Detecting and Repairing Inconsistencies
Across Heterogeneous Models. In: Proc. 1st IEEE International Conference on
Software Testing, Verification and Validation, Lillehammer, Norway, pp. 356–364
(April 2008)

11. Extensible Platform for Specification of Integrated Languages for mOdel maNage-
ment (Epsilon), http://www.eclipse.org/gmt/epsilon

http://www.eclipse.org/modeling/emft/?project=compare
http://www.eclipse.org/gmf
http://www.eclipse.org/gmt/epsilon

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 54–59, 2009.
© Springer-Verlag Berlin Heidelberg 2009

MDE Adoption in Industry: Challenges and Success
Criteria

Parastoo Mohagheghi1, Miguel A. Fernandez2, Juan A. Martell2,
Mathias Fritzsche3, and Wasif Gilani3

1 SINTEF, P.O. Box 124-Blindern, N-0314 Oslo, Norway
parastoo.mohagheghi@sintef.no

2 Telefónica Research & Development, Valladolid, Spain
{mafg@tid.es,jamartell}@gfi-info.com

3 SAP Research CEC Belfast, United Kingdom
{mathias.fritzsche,wasif.gilani}@sap.com

Abstract. Model-Driven Engineering has been promoted for some time as the
solution for the main problem software industry is facing, i.e. complexity of
software development, by raising the abstraction level and introducing more
automation in the process. The promises are many; among them improved
software quality by increased traceability between artifacts, early defect detec-
tion, reducing manual and error-prone work and including knowledge in gen-
erators. However, in our opinion MDE is still in the early adoption phase and to
be successfully adopted by industry, it must prove its superiority over other de-
velopment paradigms and be supported by a rich ecosystem of stable, compati-
ble and standardized tools. It should also not introduce more complexity than it
removes. The subject of this paper is the challenges in MDE adoption from our
experience of using MDE in real and research projects, where MDE has poten-
tial for success and what the key success criteria are.

Keywords: Model-driven engineering, challenges, domain-specific modeling,
performance engineering, traceability.

1 Introduction

Today’s software systems are complex in nature; the size has been growing because
of the increased functionality, heterogeneity is also becoming a bigger concern as
systems are built from several systems or include legacy code, systems are distributed
over multiple sites and there are new requirements such as dynamicity and autonomy
(self-* properties, for example self-healing). Handling each of these challenges re-
quires specific approaches which often include domain-specific knowledge and solu-
tions. However, based on the experience gained from multiple domains and projects,
some solutions may be identified as beneficial to complex software development in
general.

Model-Driven Engineering (MDE) is an approach built upon many of the success-
ful techniques applied in software engineering: It can be characterized by: a) raising
the abstraction level by hiding platform-specific details ; b) taking advantage of mod-
els in all the phases of software development to improve understanding; c) developing

 MDE Adoption in Industry: Challenges and Success Criteria 55

domain-specific languages and frameworks to achieve domain appropriateness; and
d) taking advantage of transformations to automate repetitive work and improve soft-
ware quality [6]. These are all techniques useful for complex system development and
therefore one may expect rapid adoption of the paradigm by industry. So far, we can-
not see such wide adoption, as also confirmed by a review of industrial experiences
presented in [7]. In fact, and based on the model of technology adoption life cycle
presented in [8], we think that MDE is still in the early adoption stage. Early adopters
do not rely on well-established references in making their buying decisions, preferring
instead to rely on their own intuition and vision. However, they are keys to opening
up any high-tech market segment. To be accepted by the majority, the industry must
gain confidence on the promises of MDE and have access to proper tools and experts.

There are many challenges in complex system development, such as managing re-
quirements, which MDE is not a direct answer to, but it might facilitate their handling
by providing mechanisms for easy traceability between artifacts. There are also chal-
lenges such as dealing with legacy code that may be difficult to handle and must be
either worked around or, better yet, integrated into the MDE approaches. But there are
challenges that MDE may provide an answer to based on the MDE core practices
(such as extensive modeling and the usage of transformations) as discussed in [6].

The European research projects MODELWARE1 and its continuation
MODELPLEX2 have focused on MDE approaches and tools with the goal of making
them suitable for complex system development. Some of the companies involved in
these projects have experience from applying MDE in real projects while others think
that MDE is not yet mature enough to be taken from research projects to industry
production. This paper therefore elaborates on where we can expect added value from
MDE and what the barriers are from experiences gained in the context of these pro-
jects. In the remainder of this paper we discuss industry expectations and experience
in Sections 2 and 3 and conclude our discussion in Section 4.

2 SAP Experience

SAP has already started working towards applying MDE concepts, and currently
employs models in various stages of business application development. The tool
called NetWeaver BPM within the Composition Environment [10] is one example
where MDE concepts are applied for efficient development of Composite Applica-
tions. Composite Applications are self-contained applications that combine loosely
coupled services (including third party services) with their own business logic, and
thereby provide user centric front-end processes that transcend functional boundaries,
and are completely independent from the underlying architecture, implementation and
software lifecycle. With Composition Environment even the non-technical users, such
as business domain experts, consultants, etc., having no programming skills, are able
to model and deploy customized applications suited to their specific business
requirements.

1 http://www.modelware-ist.org/
2 http://www.modelplex-ist.org/

56 P. Mohagheghi et al.

Based on our experience [5] with the currently employed MDE tools for business
processes, such as the Composition Environment, we identified the general need of
supporting non-technical users with regards to non-functional requirements, such as
the impact of their design decisions on performance, etc. Within the context of per-
formance engineering, for instance, such a support means guidance towards better
design / configuration that actually meets the timelines, and optimized resource map-
ping against each activity in the business process.

We implemented such performance related decision support as an extension of
MDE. By implementing this extension, named Model-Driven Performance Engineer-
ing (MDPE), we realized the need for supporting requirements with respect to non-
functional aspects, especially performance. The implementation of MDPE heavily
uses the MDE concepts such as meta-modeling, transformations, model weaving and
mega-modeling. For instance, ten different meta-modeling languages are employed in
order to make the process usable for a number of domain-specific modeling lan-
guages. During the implementation of MDPE, we recognized that the application of
MDE concepts enabled us to focus on the creative tasks of development rather than
repetitive coding. For instance, code generation for our meta-models saved us signifi-
cant development effort. The only place where a significant amount of coding effort
was required was for the integration of MDPE into the existing tool infrastructure.

Meta-model extension is the generally employed technique for model annotations,
such as done with profiles in the case of UML [3]. However, this is not applicable
while dealing with the proprietary models. The application of model weaving enabled
us a high degree of flexibility as we are able to annotate any kind of proprietary
model with the help of a generic editor [3]. Higher-order transformations are used to
enable traceability in our approach [4]. Additionally, mega-modeling enables us to
locate our model artifacts, such as the tracing models related to the models in our
transformation chain [1].

As for the challenges, we experienced that MDE concepts are on the one hand very
systematic and efficient, but on the other hand also difficult to understand for devel-
opers as they require quite a high level of abstraction and training. Also, the MDE
tool support is sometimes not mature enough. Especially the available tooling to de-
fine model transformation chains lacks capabilities of modern IDEs (Integrated De-
velopment Environments), which could decrease the development time for model
transformations significantly.

Concluding, based on the experiences gained with the development of MDPE, we are
optimistic regarding the capabilities of MDE in case the tool support improves, and the
MDE community meets the challenges associated with the MDE process, such as pro-
viding support for dealing with non-functional aspects of system development.

3 Telefónica Experience

In [2], we have discussed the experience of Telefónica in moving from a code-centric
to a model-centric software development. Earlier efforts in modeling failed due to the
complexity of UML, the lack of proper tools and the inability to maintain models in
synch with code, among other issues. Due to the above problems with UML, we de-
cided to develop our own programming tools and frameworks addressing the problem

 MDE Adoption in Industry: Challenges and Success Criteria 57

domain. But without any industry standards to rely on, this approach had no future in
the long term and was also difficult to use for non-technical staff, such as telecom
domain experts, as it did not have the required abstraction level.

This was an experience from eight years ago, but not so many things seem to have
fundamentally changed. What we look for is a domain-specific modeling (DSM)
language integrated in a development environment that will permit the modeling of
our basic domain concepts, such as interfaces, devices, networks, protocols and ser-
vices. We also emphasize adhering to current industry standards in the domain, since
we now look for a domain-specific solution, not a company-wide solution. Other
requirements are: a) the ability to model in multiple abstraction levels, hiding details
as desired; b) the integration of model verification tools based on OCL or other con-
straint languages and c) the composition / weaving of the models at run time to reflect
the changes in the network’s operational status. Some of these approaches are further
discussed in [9].

In the road toward these objectives we foresee numerous challenges. First of all,
the UML standard has evolved but, with this evolution, the syntax has become even
more complex and the necessary supporting mechanisms and tools for dealing with
this added complexity are not yet available. Even something as conceptually simple as
exporting a UML diagram from one tool to another has not been accomplished yet
with ease. On the other hand, developing a DSM solution requires high skills related
to meta-modeling and tool development. Also a big concern with Domain-Specific
Languages (DSLs) is getting the people in that domain to agree upon a standard syn-
tax. Another challenge is having that DSL interact properly with anything outside of
its domain, having a different underlying syntax to that of other languages.

Model synchronization (for example applying multiple profiles to a source model)
and roundtrip engineering are yet to be addressed successfully and mechanisms for
dealing with very large and complex models, such as hierarchical models, traceability
and model management in general are also in an inception phase right now, at least
regarding to the aspect of tool support. The evolution of meta-models, in a business as
dynamic as ours, is also a big concern and tools have much to improve in order to
adequately manage variability at meta-model level and not only at model level. All
these features are important to make a full-fledged MDE process work in complex,
real-life projects.

Another challenge for organizations wanting to get started in MDE, closely related
with the previous idea of managing all these artifacts, is that they may end up dealing
with more complexity than anticipated at first. From our experience in the field we
have gotten the impression that, if not adequately managed, the development of com-
plex systems with MDE gets treated with more complexity. The underlying problem
here is: are the techniques for handling complexity in danger of making the software
engineering process itself too complex? To adequately address complexity we have to
substitute it for something simpler not for something different but equally complex.

It is our opinion also that there are some basic milestones a new technology has to
go through for it to be considered mainstream. To start with, we need a proper context
for it to flourish and be nurtured in. The fabric of this context is made of the proper
professionals with the proper knowledge and expertise and supporting material which
helps in turn to create these professionals. We are seeing shortcomings in this regard
so far. The community is in fact there and growing but perhaps it is not reaching

58 P. Mohagheghi et al.

critical mass yet. We also see a gap between the academic and industrial worlds that
needs to be bridged. In the past, new paradigms have been promoted by well-known
professionals lending credibility and raising interest in the new approach. This has to
be accompanied by the development of high-quality literature, tutorials and proper
material to draw new professionals in.

The main question that an organization has to ask itself is “do I really need MDE?”
The second question relates with its ability to adapt its processes to the ones needed
from an MDE point of view (partially discussed also in [2]), adapt their staff to new
ways of looking at problems and create new layers of software development support-
ing all the aspects MDE has to offer. Companies may be reluctant to change either
their structure or part of it.

To conclude, it is worth mentioning that, apart from software factories for product
line engineering (PLE), we have not seen clear evidence of other good candidates for
MDE to be fully applied to, as a complete lifecycle solution. We feel that it can be
partially applied, though, to some other scenarios like large-scale integration of het-
erogeneous systems, as it is the case with Telefónica’s Operating Support Systems
(OSS), area in which we hope to start making some progress in the short term with
Model-Based Testing (MBT).

4 Conclusions

Probably most companies cannot take the risk of adopting MDE end-to-end in large-
scale projects from scratch. They should look for areas of improvement and take the
approach incrementally and integrated with their own development environment. This
is also the best way to train people. There is an initial high cost related to developing
or adopting tools and transformations. MDE is a long-term investment and needs
customization of environment, tools and processes, and training. For companies that
have a product line, MDE can pay off since this cost is amortized over several pro-
jects. For one-of–a-kind projects this will not pay in most cases. Despite differences
in domain and the type of systems developed in the two companies, there are common
challenges as described in this paper. The most important one is the complexity of
developing an MDE environment tailored to the company needs. This environment
requires:

• Developing proper languages for communication between technical and non-
technical experts and for modeling various aspects. One of the successes of MDE
lies in bridging the gap between technical and non-technical experts. The major
challenge here is to have the required language engineering expertise since creat-
ing own profiles or meta-models are difficult and for complex systems we proba-
bly need several languages. Hence more domain-specific meta-models and
profiles are needed that are supported by tools and may be reused. The current
tools for developing meta-models and editors are not user friendly, the learning
curve is steep and the documentation and support is not satisfactory.

• Several tools are required for modeling, model-to-model and model-to-text trans-
formation, verification and simulation, and other tools to store, reuse and com-
pose models. There is no tool chain at the moment and companies must integrate
several tools and perform adaptation themselves.

 MDE Adoption in Industry: Challenges and Success Criteria 59

Both of the above requirements put a high burden on companies that traditionally
used third-party tools for modeling and performed programming by hand. Training is
another major challenge here. We see advantages in gradual introduction and support
by management, as well as in the creation of teams of experts that can give support
and create the necessary tools for MDE adoption in the whole company.

Acknowledgments. Part of the ideas presented in this paper are based on conclusions
obtained in the MODELPLEX project (IST-FP6-2006 Contract No. 34081), co-
funded by the European Commission as part of the 6th Framework Program.

References

1. Barbero, F., Jouault, J.: Model Driven Management of Complex Systems: Implementing
the Macroscope’s Vision. In: 15th ECBS 2008, pp. 277–286. IEEE Press, Los Alamitos
(2008)

2. Fernandez, M.: From Code to Models: Past, Present and Future of MDE Adoption in Tele-
fónica. In: 3rd Europen Workshop From Code Centric to Model Centric Software Engi-
neering: Practices, Implications and Return on Investment (C2M), co-located with
ECMDA 2008, pp. 41—51 (2008)

3. Fritzsche, M., Johannes, J., et al.: Systematic Usage of Embedded Modelling Languages in
Model Transformation Chains. In: The Software Language Engineering Conference, SLE
2008 (accepted, 2008)

4. Fritzsche, M., Johannes, J., Zschaler, S., Zherebtsov, A., Terekhov, A.: Application of
Tracing Techniques in Model-Driven Performance Engineering. In: Schieferdecker, I.,
Hartman, A. (eds.) ECMDA-FA 2008. LNCS, vol. 5095. Springer, Heidelberg (2008)

5. Fritzsche, M., Gilani, W., Fritzsche, C., Spence, I.T.A., Kilpatrick, P., Brown, T.J.: To-
wards utilizing Model-Driven Engineering of Composite Applications for Business Per-
formance Analysis. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS,
vol. 5095, pp. 369–380. Springer, Heidelberg (2008)

6. Mohagheghi, P.: Evaluating Software Development Methodologies based on their Prac-
tices and Promises. In: Proc. Somet 2008: New Trends in Software Methodologies, Tools
and Techniques, pp. 14–35. IOS Press, Amsterdam (2008)

7. Mohagheghi, P., Dehlen, V.: Where is the Proof? A Review of Experiences from Applying
MDE in Industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008. LNCS,
vol. 5095, pp. 432–443. Springer, Heidelberg (2008)

8. Moore, G.A.: Crossing the chasm: Marketing and Selling High-Tech Products to Main-
stream Customers, 2nd edn. HarperBusiness Essentials (2002)

9. Pickering, B., Fernandez, M., Castillo, A., Mengusoglu, E.: A Domain-Specific Approach
for Autonomic Network Management. In: van der Meer, S., Burgess, M., Denazis, S. (eds.)
MACE 2008. LNCS, vol. 5276. Springer, Heidelberg (2008)

10. Snabe, J.H., Rosenber, A., Møller, C., Scavillo, M.: Business Process Management: The
SAP Roadmap. SAP Press (2008) ISBN 978-1-59229-231-8

Behavior, Time and Viewpoint Consistency:
Three Challenges for MDE

José Eduardo Rivera1, José Raul Romero2, and Antonio Vallecillo1

1Universidad de Málaga Spain
2Universidad de Córdoba Spain

{rivera,av}@lcc.uma.es, jrromero@uco.es

Abstract. Although Model Driven Software Development (MDSD) is
achieving significant progress, it is still far from becoming a real En-
gineering discipline. In fact, many of the difficult problems of the engi-
neering of complex software systems are still unresolved, or simplistically
addressed by many of the current MDSD approaches. In this position pa-
per we outline three of the outstanding problems that we think MDSD
should tackle in order to be useful in industrial environments.

1 Introduction

Although both MDSD and MDA have experienced significant advances during
the past 8 years, some of the key difficult issues still remain unresolved. In fact,
the number of engineering practices and tools that have been developed for the
industrial design, implementation and maintenance of large-scale, enterprise-
wide software systems is still low — i.e. there are very few real Model-Driven
Engineering (MDE) practices and tools. Firstly, many of the MDSD processes,
notations and tools fall apart when dealing with large-scale systems composed of
hundred of thousands of highly interconnected elements; secondly, MDE should
go beyond conceptual modeling and generative programming: it should count
on mature tool-support for automating the design, development and analysis of
systems, as well as on measurable engineering processes and methodologies to
drive the effective use of all these artifacts towards the predictable construc-
tion of software systems. In particular, engineering activities such as simulation,
analysis, validation, quality evaluation, etc., should be fully supported.

We are currently in a situation where the industry is interested in MDE, but
we can easily fail again if we do not deliver (promptly) anything really useful to
them. There are still many challenges ahead, which we should soon address in
order not to lose the current momentum of MDE.

In this position paper we focus on three of these challenges. Firstly, the specifi-
cation of the behavioral semantics of metamodels (beyond their basic structure),
so that different kinds of analysis can be conducted, e.g., simulation, validation
and model checking. A second challenge is the support of the notion of time in
these behavioral descriptions, another key issue to allow industrial systems to
be realistically simulated and properly analyzed — to be able to conduct, e.g.,

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 60–65, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Behavior, Time and Viewpoint Consistency: Three Challenges for MDE 61

performance and reliability analysis. Finally, we need not only to tackle the ac-
cidental complexity involved building software systems, but we should also try
to deal with their essential complexity. In this sense, the effective use of inde-
pendent but complementary viewpoints to model large-scale systems, and the
specification of correspondences between them to reason about the consistency
of the global specifications, is the third of our identified challenges.

2 Adding Behavioral Semantics to DSLs

Domain Specific Languages (DSLs) are usually defined only by their abstract
and concrete syntaxes. The abstract syntax of a DSL is normally specified by
a metamodel, which describes the concepts of the language, the relationships
among them, and the structuring rules that constrain the model elements and
their combinations in order to respect the domain rules.

The concrete syntax of a DSL provides a realization of the abstract syntax of
a metamodel as a mapping between the metamodel concepts and their textual
or graphical representation (see Fig. 1). A language can have several concrete
syntaxes. For visual languages, it is necessary to establish links between these
concepts and the visual symbols that represent them — as done, e.g, with GMF.
Similarly, with textual languages links are required between metamodel elements
and the syntactic structures of the textual DSL.

Current DSM approaches have mainly focused on the structural aspects of
DSLs. Explicit and formal specification of a model semantics has not received
much attention by the DSM community until recently, despite the fact that
this creates a possibility for semantic mismatch between design models and
modeling languages of analysis tools [1]. While this problem exists in virtu-
ally every domain where DSLs are used, it is more common in domains in which
behavior needs to be explicitly represented, as it happens in most industrial ap-
plications of a certain complexity. This issue is particularly important in safety-
critical real-time and embedded system domains, where precision is required and
where semantic ambiguities may produce conflicting results across different tools.
Furthermore, the lack of explicit behavioral semantics strongly hampers the

BehavioralSemantics

Semantic
Mapping

Concrete
Syntax

Mapping

ConcreteSyntaxAbstractSyntax

MetaModel

DSL

1..*
0..1

+target

1

+source

1

0..*

+specification1+specification 0..1 +specification0..1

+target

1

+source

1

1

Fig. 1. Specification of a Domain Specific Language

62 J.E. Rivera, J.R. Romero, and A. Vallecillo

development of formal analysis and simulation tools, relegating models to their
current common role of simple illustrations.

The definition of the semantics of a language can be accomplished through
the definition of a mapping between the language itself and another language
with well-defined semantics (see Fig. 1). These semantic mappings [2] are very
useful not only to provide precise semantics to DSLs, but also to be able to sim-
ulate, analyze or reason about them using the logical and semantical framework
available in the target domain. In our opinion, in MDE these mappings can be
defined in terms of model transformations.

Describing Dynamic Behavior. There are several ways for specifying the
dynamic behavior of a DSL, from textual to graphical. We can find approaches
that make use of, e.g., UML diagrams, rewrite logic, action languages or Ab-
stract State Machines [3] for this aim. One particular way is by describing the
evolution of the state of the modeled artifacts along some time model. In MDE,
model transformation languages that support in-place update [4] can be perfect
candidates for the job. These languages are composed of rules that prescribe the
preconditions of the actions to be triggered and the effects of such actions.

There are several approaches that propose in-place model transformation to
deal with the behavior of a DSL. One of the most important graphical approaches
on this topic is graph grammars [5,6], in which the dynamic behavior is specified
by using visual rules. These rules are visually specified as models that use the con-
crete syntax of the DSL. This kind of representation is quite intuitive, because
it allows designers to work with domain specific concepts and their concrete syn-
tax for describing the rules [5]. There are also other graphical approaches, most of
which are in turn based on graph grammars. Among them, we can find the visual
representation of QVT [7] (where QVT is given in-place semantics) or the use of
different (usually extended) UML diagrams [8,9]. These approaches do not use (so
far) the concrete syntax of the DSL, but an object diagram-like structure. Further-
more, most of them (including graph grammars approaches) use their own textual
language to deal with complex behavior, such as Java [8] or Python [10].

Model Simulation and Analysis. Once we have specified the behavior of a
DSL, the following step is to perform simulation and analysis over the produced
specifications. Defining the model behavior as a model will allow us to transform
them into different semantic domains. Of course, not all the transformations
can always be accomplished: it depends on the expressiveness of the semantic
approach. In fact, simulation and execution possibilities are available for most of
the approaches in which behavior can be specified (including of course in-place
transformations), but the kind of analysis they provide is normally limited. In
general, each semantic domain is more appropriate to represent and reason about
certain properties, and to conduct certain kinds of analysis [3].

A good example of this is Graph Transformation, which has been formalized
into several semantic domains to achieve different kinds of analysis. Examples
include Category theory to detect rule dependencies [11]; Petri Nets to allow
termination and confluence analysis [5]; or Maude and rewrite logic to make

Behavior, Time and Viewpoint Consistency: Three Challenges for MDE 63

models amenable to reachability and model-checking analysis [12]. We have been
working on the formalization of models and metamodels in equational and rewrit-
ing logic using Maude [13]. This has allowed us to specify and implement some of
the most common operations on metamodels, such as subtyping or difference [14],
with a very acceptable performance. This formalization has also allowed us to
add behavior [15] in a very natural way to the Maude specifications, and also
made metamodels amenable to other kinds of formal analysis and simulation.

3 Adding Time to Behavioral Specifications

Formal analysis and simulation are critical issues in complex and error-prone ap-
plications such as safety-critical real-time and embedded systems. In such kind of
systems, timeouts, timing constraints and delays are predominant concepts [16],
and thus the notion of time should be explicitly included in the specification of
their behavior. Most simulation tools that enable the modeling of time require
specialized knowledge and expertise, something that may hinder its usability by
the average DSL designer. On the other hand, current in-place transformation
techniques do not allow to model the notion of time in a quantitative way, or al-
low it by adding some kind of clocks to the DSL metamodel. This latter approach
forces designers to modify metamodels to include time aspects, and allows them
to easily design rules that lead the system to time-inconsistent states [16].

One way to avoid this problem is by extending behavioral rules with their
duration, i.e., by assigning to each action the time it needs to be performed.
Analysis of this kind of timed rules cannot be easily done using the common
theoretical results and tools defined for graph transformations. However, other
semantic domains are better suited. We are now working on the definition of a
semantic mapping to Real-Time Maude’s rewrite logic [17]. This mapping brings
several advantages: (1) it allows to perform simulation, reachability and model-
checking analysis on the specified real-time systems; (2) it permits decoupling
time information from the structural aspects of the DSL (i.e., its metamodel);
and (3) it allows to state properties over both model states and actions, easing
designers in the modeling of complex systems.

4 Viewpoint Integration and Consistency

Large-scale heterogeneous distributed systems are inherently much more complex
to design, specify, develop and maintain than classical, homogeneous, centralized
systems. Thus, their complete specifications are so extensive that fully compre-
hending all their aspects is a difficult task. One way to cope with such complexity
is by dividing the design activity according to several areas of concerns, or view-
points, each one focusing on a specific aspect of the system, as described in IEEE
Std. 1471. Following this standard, current architectural practices for designing
open distributed systems define several distinct viewpoints. Examples include the
viewpoints described by the growing plethora of Enterprise Architectural Frame-
works (EAF): the Zachman’s framework, ArchiMate, DoDAF, TOGAF, FEAF or

64 J.E. Rivera, J.R. Romero, and A. Vallecillo

the RM-ODP. Each viewpoint addresses a particular concern and uses its own spe-
cific (viewpoint) language, which is defined in terms of the set of concepts specific
that concern, their relationships and their well-formed rules.

Although separately specified, developed and maintained to simplify reason-
ing about the complete system specifications, viewpoints are not completely
independent: elements in each viewpoint need to be related to elements in the
other viewpoints in order to ensure the consistency and completeness of the
global specifications. The questions are: how can it be assured that indeed one
system is specified? And, how can it be assured that no views impose contra-
dictory requirements? The first problem concerns the conceptual integration of
viewpoints, while the second one concerns their consistency. There are many
approaches that try to tackle the problem of consistency between viewpoints,
many of them coming from the ADL community (see, e.g., [3] for a list of such
works). However, many of the current viewpoint modeling approaches to sys-
tem specification used in industry (including the IEEE Std. 1471 itself and the
majority of the existing EAFs) do not address these problems [18].

There are several ways to check viewpoint consistency. In some approaches
such as the OpenViews framework [19], two views are consistent if a design can
be found that is a refinement of both views. Other approaches, such as View-
points [20], consistency requirements are defined in terms of rules, which are
specified as queries on the database that contains the viewpoints. The database
performs then the consistency checks, using first-order logic. But the most gen-
eral approach to viewpoint consistency is based on the definition of correspon-
dences between viewpoint elements.

Correspondences do not form part of any of the viewpoints, but provide state-
ments that relate the various different viewpoint specifications—expressing their
semantic relationships. The problem is that current proposals and EAFs do not
consider correspondences between viewpoints, or assume they are trivially based
on name equality between correspondent elements, and are implicitly defined.
Furthermore, the majority of approaches that deal with viewpoint inconsisten-
cies assume that we can build an underlying metamodel containing all the views,
which is not normally true. For instance, should such a metamodel consist of the
intersection or of the union of all viewpoints elements? Besides, the granularity
and level of abstraction of the viewpoints can be arbitrarily different, and they
may have very different semantics, which greatly complicates the definition of
the common metamodel.

Our efforts are currently focused on the development of a generic framework
and a set of tools to represent viewpoints, views and correspondences, which are
able to manage and maintain viewpoint synchronization in evolution scenarios,
as reported in [21], and that can be used with the most popular existing EAFs.

References

1. Kleppe, A.G.: A language description is more than a metamodel. In: Proc. of ATEM
2007 (october 2007), http://megaplanet.org/atem2007/ATEM2007-18.pdf

http://megaplanet.org/atem2007/ATEM2007-18.pdf

Behavior, Time and Viewpoint Consistency: Three Challenges for MDE 65

2. Harel, D., Rumpe, B.: Meaningful modeling: What’s the semantics of “semantics”?
Computer 37(10), 64–72 (2004)

3. Vallecillo, A.: A Journey through the Secret Life of Models. In: Position paper at
the Dagstuhl seminar on Model Engineering of Complex Systems (MECS) (2008),
http://drops.dagstuhl.de/opus/volltexte/2008/1601

4. Czarnecki, K., Helsen, S.: Classification of model transformation approaches. In:
OOPSLA 2003 Workshop on Generative Techniques in the context of MDA (2003)

5. de Lara, J., Vangheluwe, H.: Translating model simulators to analysis models.
In: Fiadeiro, J.L., Inverardi, P. (eds.) FASE 2008. LNCS, vol. 4961, pp. 77–92.
Springer, Heidelberg (2008)

6. Kastenberg, H., Kleppe, A.G., Rensink, A.: Defining object-oriented execution
semantics using graph transformations. In: Gorrieri, R., Wehrheim, H. (eds.)
FMOODS 2006. LNCS, vol. 4037, pp. 186–201. Springer, Heidelberg (2006)

7. Marković, S., Baar, T.: Semantics of OCL Specified with QVT. Software and Sys-
tems Modeling (SoSyM) (2008)

8. Fischer, T., Niere, J., Torunski, L., Zündorf, A.: Story diagrams: A new graph
rewrite language based on the unified modeling language. In: Proc. of the VI In-
ternational Workshop on Theory and Application of Graph Transformation (1998)

9. Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta modeling: A
graphical approach to the operational semantics of behavioral diagrams in UML.
In: Evans, A., Kent, S., Selic, B. (eds.) UML 2000. LNCS, vol. 1939, pp. 323–337.
Springer, Heidelberg (2000)

10. de Lara, J., Vangheluwe, H.: Defining visual notations and their manipulation
through meta-modelling and graph transformation. Journal of Visual Languages
and Computing 15(3-4), 309–330 (2006)

11. Ehrig, H., Karsten, Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph
Transformation. Springer, Heidelberg (2006)

12. Rivera, J.E., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-based behav-
ioral semantics of visual modeling languages with maude. In: Proc. of SLE 2008,
Toulouse, France. LNCS. Springer, Heidelberg (2008)

13. Romero, J.R., Rivera, J.E., Durán, F., Vallecillo, A.: Formal and tool support for
model driven engineering with Maude. JOT 6(9), 187–207 (2007)

14. Rivera, J.E., Vallecillo, A.: Representing and operating with model differences. In:
Proc. of TOOLS Europe 2008. LNBIP, vol. 11, pp. 141–160. Springer, Heidelberg
(2008)

15. Rivera, J.E., Vallecillo, A.: Adding behavioral semantics to models. In: Proc. of
EDOC 2007, pp. 169–180. IEEE Computer Society, Los Alamitos (2007)

16. Gyapay, S., Heckel, R., Varró, D.: Graph transformation with time: Causality and
logical clocks. In: Corradini, A., Ehrig, H., Kreowski, H.-J., Rozenberg, G. (eds.)
ICGT 2002. LNCS, vol. 2505, pp. 120–134. Springer, Heidelberg (2002)

17. Ölveczky, P.C., Meseguer, J.: Semantics and pragmatics of Real-Time Maude.
Higher-Order and Symbolic Computation 20(1-2), 161–196 (2007)

18. Romero, J.R., Vallecillo, A.: Well-formed rules for viewpoint correspondences spec-
ification. In: Proc. of WODPEC 2008 (2008)

19. Boiten, E.A., Bowman, H., Derrick, J., Linington, P., Steen, M.W.: Viewpoint
consistency in ODP. Computer Networks 34(3), 503–537 (2000)

20. Finkelstein, A., Kramer, J., Nuseibeh, B., Finkelstein, L., Goedicke, M.: View-
points: a framework for integrating multiple prespectives in systems development.
SEKE journal 2(1), 31–58 (1992)

21. Eramo, R., Pierantonio, A., Romero, J.R., Vallecillo, A.: Change management in
multi-viewpoint systems using ASP. In: Proc. of WODPEC 2008 (2008)

http://drops.dagstuhl.de/opus/volltexte/2008/1601

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 66–77, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Embedded System Construction – Evaluation of Model-
Driven and Component-Based Development Approaches

Christian Bunse1, Hans-Gerhard Gross2, and Christian Peper3

1 International University in Germany, Bruchsal, Germany
Christian.Bunse@i-u.de

2 Delft University of Technology, Delft, The Netherlands
h.g.gross@tudelft.nl

3 Fraunhofer Institute for Experimental Software Engineering, Kaiserslautern, Germany
Christian.Peper@iese.fraunhofer.de

Abstract. Model-driven development has become an important engineering
paradigm. It is said to have many advantages over traditional approaches, such
as reuse or quality improvement, also for embedded systems. Along a similar
line of argumentation, component-based software engineering is advocated. In
order to investigate these claims, the MARMOT method was applied to develop
several variants of a small micro-controller-based automotive subsystem. Sev-
eral key figures, like model size and development effort were measured and
compared with figures coming from two mainstream methods: the Unified
Process and Agile Development. The analysis reveals that model-driven, com-
ponent-oriented development performs well and leads to maintainable systems
and a higher-than-normal reuse rate.

Keywords: Exploratory Study, Embedded, Model-Driven, Components.

1 Introduction

Embedded software design is a difficult task due to the complexity of the problem
domain and the constraints from the target environment. One specific technique that
may, at first sight, seem difficult to apply in the embedded domain, is modeling and
Model-Driven Development (MDD) with components. It is frequently used in other
engineering domains as a way to solve problems at a higher level of abstraction, and
to verify design decisions early. Component-oriented development envisions that new
software can be created with less effort than in traditional approaches, simply by
assembling existing parts. Although, the use of models and components for embedded
software systems is still far from being industrial best practice. One reason might be,
that the disciplines involved, mechanical-, electronic-, and software engineering, are
not in sync, a fact which cannot be attributed to one of these fields alone. Engineers
are struggling hard to master the pitfalls of modern, complex embedded systems.
What is really lacking is a vehicle to transport the advances in software engineering
and component technologies to the embedded world.

Software Reuse is still a challenging area of research. One reason is that software qual-
ity and productivity are assumed to be greatly increased by maximizing the (re)use of (part

 Embedded System Construction 67

of) prior products, instead of repeatedly developing from scratch. This also stimulated the
transfer of MDD and CBD [12] techniques to the domain of embedded systems, but the
predicted level of reuse has not yet been reached. A reason might be that empirical studies
measuring the obtained reuse rates are sparse. Studies, such as [7] or [8] examined only
specific aspects of reuse such as specialization, or off-the-shelf component reuse, but they
do not provide comparative metrics on the method’s level. Other empirical studies that
directly focus on software reuse either address non-CBD technology [14], or they focus on
representations on the programming language-level [15]. Unfortunately, there are no
studies in the area of MDD/CBD for embedded systems.

This paper shortly introduces the MARMOT system development method. MARMOT
stands for Method for Component-Based Real-Time Object-Oriented Development and
Testing, and it aims to provide the ingredients to master the multi-disciplinary effort of
developing embedded systems. It provides templates, models and guidelines for the prod-
ucts describing a system, and how these artifacts are built. The main focus of the paper is
on a series of studies in which we compare MARMOT, as being specific for MDD and
CBD with the RUP and Agile Development to devise a small control system for an exte-
rior car mirror. In order to verify the characteristics of the three development methods,
several aspects such as model size [13] and development effort are quantified and ana-
lyzed. The analysis reveals that model-based, component-oriented development performs
well and leads to maintainable systems, plus a higher-than-normal reuse rate, at least for
the considered application domain.

The paper is structured as follows: Section 2 briefly describes MARMOT, and Sec-
tions 3, 4, and 5 present the study, discuss results and address threats to validity. Fi-
nally, Section 6 presents a brief summary, conclusions drawn, and future research.

2 MARMOT Overview

Reuse is a key challenge and a major driving force in hardware and software devel-
opment. Reuse is pushed forward by the growing complexity of systems. This section
shortly introduces the MARMOT development method [3] for model-driven and
component-based development (CBD) of embedded systems. MARMOT builds on
the principles of KobrA [1], assuming its component model displayed in Fig. 1, and
extending it towards the development of embedded systems. MARMOT components
follow the principles of encapsulation, modularity and unique identity that most com-
ponent definitions put forward. Component communication relies on interface contracts
(i.e., in the embedded world these are made available through software abstractions). An
additional hardware wrapper realizes that the hardware communication protocol is trans-
lated into a component communication contract. Further, encapsulation requires separating
the description of what a software unit does from the description of how it does it. These
descriptions are called specification and realization (see Fig. 1).

The specification is a suite of descriptive (UML [11]) artifacts that collectively define
the external interface of a component, so that it can be assembled into, or used by, a sys-
tem. The realization artifacts collectively define a component’s internal realization. Fol-
lowing this principle, each component is described through a suite of models as if it was
an independent system in its own right.

68 C. Bunse, H.-G. Gross, and C. Peper

Structural Model
(UML class/object
diagrams)

Functional Model
(operation specs.)

Behavior Model
(UML statechart diagram)

Decision ModelSpecification

Realization

Structural Model
(UML class/object
diagrams)

Interaction Model
(UML collaboration
diagrams)

Activity Model
(UML activity
diagrams)

Decision Model

S
ystem

C
om

ponent

Specification

Fig. 1. MARMOT component model

2.1 Process Model

The fact that components can be realized using other components, turns a MARMOT
project into a tree-shaped structure with consecutively nested abstract component repre-
sentations. A system can be viewed as a containment hierarchy of components in which
the parent/child relationship represents composition. Any component can be a containment
tree in itself, and, as a consequence, another MARMOT project. Acquisition of component
services across the tree turns a MARMOT project into a graph. The four basic activities of
a MARMOT development process are composition, decomposition, embodiment, and
validation as shown in Fig. 2.

Decomposition follows the divide-and-conquer paradigm, and it is performed to sub-
divide a system into smaller parts that are easier to understand and control. A project al-
ways starts above the top left-hand side box in Fig. 2. It represents the entire system to be

Fig. 2. Development activities in MARMOT

 Embedded System Construction 69

built. Prior to specifying the box, the domain concepts must be determined, comprising
descriptions of all relevant domain entities such as standard hardware components that
will appear along the concretization dimension. The implementation-specific entities de-
termine the way in which a system is divided into smaller parts. During decomposition,
newly identified logical parts are mapped to existing components, or the system is decom-
posed according to existing components. Whether these are hard- or software is not impor-
tant since all components are treated in a uniform way: as abstract components.

Composition represents the opposite activity, which is performed when individual
components have been implemented or reused, and the system is put together. After
having implemented some of the boxes and having some others reused, the system
can be assembled according to the abstract model. The subordinate boxes with their
respective super-ordinate boxes have to be coordinated in a way that exactly follows
the component description standard introduced above.

Embodiment is concerned with the implementation of a system and a move to-
wards executable representations. It turns the abstract system (i.e., models) into con-
crete representations that can be executed. MARMOT uses refinement and translation
patterns for doing these transformations, and it supports the generation of code skele-
tons. It can, thus, be regarded as a semi-automatic approach.

Validation checks whether the concrete representations are in line with the ab-
stract ones. It is carried out in order to check whether the concrete composition of the
embedded system corresponds to its abstract description.

2.2 Product Model

MARMOT follows the principles of encapsulation, modularity and unique identity,
which lead to a number of obligatory properties.

• Composability is the primary property and it can be applied recursively: components
make up components, which make up components, and so on.

• Reusability is the second key property, separated into development for reuse, i.e.,
components are specified to be reusable, and development with reuse, dealing with
the integration and adaptation of existing components in a new application.

• Having unique identities requires that a component must be uniquely identifiable
within its development and runtime environment.

• Modularity/encapsulation refer to a component’s scoping property as an assembly
of services, which is also true for a hardware component, and as an assembly of
common data, which is true for the hardware and the software. The software repre-
sents an abstraction of the hardware.

An additional important property is communication according to interface contracts
which becomes feasible in the embedded world through typical software abstractions.
Here, the additional hardware wrapper of MARMOT realizes that the hardware communi-
cation protocol is translated into a component communication contract.

Composition turns a MARMOT project into a tree-shaped structure, a containment tree,
with nested component representations. Every box in the tree is treated as a system in its
own right. It comprises a component specification, defining everything externally know-
able about a component, and a component realization, a model about the internal design of
the component. Any component in a tree also represents a containment tree, and, thus,
another MARMOT project.

70 C. Bunse, H.-G. Gross, and C. Peper

3 Description of the Study

In general, empirical studies in software engineering are used to evaluate whether a “new”
technique is superior to other techniques concerning a specific problem or property. The
objective of this study is to compare the effects of MARMOT concerning reuse in embedded
system development to other approaches such as the Unified Process and agile development.

The study was organized in three runs (i.e., one run per methodology). All runs fol-
lowed the same schema. Based on an existing system documentation, subjects performed
a number of small projects. These covered typical project situations such as maintenance,
ports to another platform, variant development, and reuse in a larger context. The first run
applied MARMOT. The second run repeated all projects but used a variation of the Uni-
fied Process, specifically adapted for embedded system development. The third run, ap-
plying an agile approach, was used to validate that modeling has a major impact and to
rule out that reuse effects can solely be obtained at the code level. Metrics were collected
in all runs and were analyzed in order to evaluate the respective research questions.

3.1 Research Approach

Introducing MDD and CBD in an organization is generally a slow process. An organiza-
tion will start with some reusable components, and eventually build a component reposi-
tory. But they are unsure about the return on investment gained by initial component
development plus reuse for a real system, and the impact of the acquired technologies on
quality and time-to-market. This is the motivation for performing the study and asking
questions on the performance of these techniques.

Research Questions. Several factors concerning the development process and its resulting
product are recorded throughout the study in order to gain insights about using MDD and
CBD for the development of small embedded systems. The research questions of the case-
study focus on two key sets of properties of MDD in the context of component-oriented
development. The first set of questions (Q1-Q4) lead to an understanding of basic and/or
general properties of the embedded system development approach:

Q1: Which process was used to develop the system? Each run of the study used a
different development approach (i.e., MARMOT, Unified Process, and Agile). These
are compared in terms of different quality attributes of the resulting systems.

Q2: Which types of diagrams have been used? Are all UML diagram types re-
quired, or is there possibly a specific subset sufficient for this domain?

Q3: How were models transferred to source code? Developers typically work in a pro-
cedural setting that impedes the manual transformation of UML concepts into C [10].

Q4: How was reuse applied and organized? Reuse is central to MDD with respect
to quality, time-to-market, and effort, but reuse must be built into the process, it does
not come as a by-product (i.e., components have to be developed for reuse).

The second set of questions (Q5-Q9) deals with the resulting product of the applied
approach (i.e., with respect to code size, defect density, and time-to-market).

Q5: What is the model-size of the systems? MDD is often believed to create a
large overhead of models, even for small projects. Within the study, model size fol-
lows the metrics as defined in [13].

 Embedded System Construction 71

Q6: What is the defect density of the code?
Q7: How long did it take to develop the systems and how is this effort distributed

over the requirements, design, implementation, and test phases? Effort saving is one
promise of MDD and CBD [12], though, it does not occur immediately (i.e., in the
first project), but in follow-up projects. Effort is measured for all development phases.

Q8: What is the size of the resulting systems? Memory is a sparse resource and
program size extremely important. MDD for embedded systems will only be success-
ful if the resulting code size, obtained from the models, is small.

Q9: How much reuse did take place? Reuse is central for MDD and CBD and it
must be seen as an upfront investment paying off in many projects. Reuse must be
examined between projects and not within one project.

Research Procedure. MDD and CBD promise efficient reuse and short time-to-
market, even for embedded systems. Since it is expected that the benefits of MDD
and CBD are only visible during follow-up projects [5], an initial system was
specified and used as basis for all runs. The follow-ups then were:

R1/R2 Ports to different hardware platforms while keeping functionality constant.
Ports were performed within the family (ATMega32) and to a different processor family
(PICF). Implementing a port within the same family might be automated at the code-
level, whereas, a port to a different family might affect the models.

R3/R4 Evolving system requirements by (1) removing the recall position function-
ality, and (2) adding a defreeze/defog function with a humidity sensor and a heater.

R5 The mirror system was reused in a door control unit that incorporates the con-
trol of the mirror, power windows, and door illumination.

3.2 Preparation

Methodologies. The study examines the effects of three different development meth-
ods on software reuse and related quality factors. In the first run, we used the
MARMOT method that is intended to provide all the ingredients to master the multi-
disciplinary effort of developing component-based embedded systems. In the second
run we followed an adapted version of the Unified Process for embedded system devel-
opment [4] (i.e., Rational Unified Process Systems Engineering aka RUP SE). RUP SE
includes an architecture model framework that supports different perspectives. A distin-
guishing characteristic of RUP SE is that the components regarding the perspectives are
jointly derived in increasing specificity from the overall system requirements. In the third
run, an agile process (based on Extreme Programming) [9], adapted towards embed-
ded software development, was used.

Subjects of the study were graduate students from the Department of Computer Sci-
ence at the University of Kaiserslautern and the School of IT at the International Uni-
versity. All students, 45 in total (3 per team/project), were enrolled in a Software
Engineering class, in which they were taught principles, OO methods, modeling, and
embedded system development. Lectures were supplemented by practical sessions in
which students had the opportunity to make use of what they had learned. At the begin-
ning of the course, subjects were informed that a series of practical exercises was
planned. Subjects knew that data would be collected and that an analysis would be per-
formed, but were unaware of the hypotheses being tested. To further control for learning
and fatigue effects and differences between subjects, random assignment to the

72 C. Bunse, H.-G. Gross, and C. Peper

development teams was performed. As the number of subjects was known before run-
ning the studies it was a simple procedure to create teams of equivalent size.

Metrics. All projects were organized according to typical reuse situations in compo-
nent-based development, and a number of measurements was performed to answer the
research questions of the previous sub-section:

Model-size is measured using the absolute and relative size measures proposed in [13].
Relative size measures (i.e., ratios of absolute measures) are used to address UMLs multi-
diagram structure and to deal with completeness [13]. Absolute measures used are: the
number of classes in a model (NCM), number of components in a model (NCOM), num-
ber of diagrams (ND), and LOC, which are sufficient as complexity metrics for the simple
components used in this case. NCOM describes the number of hardware/software compo-
nents, while NCM represents the number of software components. These metrics are
comparable to metrics such as McCabe’s cyclomatic complexity for estimating the
size/nesting of a system. Code-size is measured in normalized LOC. System size is meas-
ured in KBytes of the binary code. All systems were compiled using size optimization.

The amount of reused elements is described as the proportion of the system which can
be reused without any changes or with small adaptations (i.e., configuration but no model
change). Measures are taken at the model and code level.

Defect density is measured in defects per 100 LOC, whereby defects were collected via
inspection and testing activities.

Development effort and its distribution over development phases are measured as
development time (hours) collected by daily effort sheets.

Materials. The study uses a car-mirror control (a replication package is available from the
authors). The system is composed of electrical and mechanical components and control
logic. It allows the mirror to be adjusted horizontally and vertically into the desired posi-
tion. Cars supporting different driver profiles can store the mirror position and recall as
soon as the profile is activated. The system (Fig. 3.) comprises a microcontroller, a button,
two potentiometers, and two servos. It controls the two servo-drives via two potentiome-
ters, and indicates their movement on a small LCD panel. The micro-controller reads
values from the potentiometers, converts them to degrees, and generates the needed servo
control signals, while at the same time indicating movement and degree on the LCD dis-
play. The system stores a position through pressing the button for more than 5 seconds.
Concerning the Marmot approach the project was executed as follows:

1) Requirements Modeling: Use cases describe the requirements in a textual and a
graphical representation. Activity diagrams describe the general flow of control,
including a UML representation of the target platform.

2) System Architecture: The system architecture is described by the system’s ’con-
text realization’. The context is like a pseudo component realization at the root of
the development tree that embeds the system as a regular component. It specifies
how the computer system is affecting the context into which it is embedded.
Since components are identified in a top-down manner, a component or con-
tainment hierarchy is established.

3) Component Modeling: Component modeling creates the specification and reali-
zation of all software components using class, state, interaction, and activity dia-
grams, as well as operation schemata. Since timing is critical in embedded
systems, the component realization is extended by timing diagrams. Modeling|

 Embedded System Construction 73

Fig. 3. Exterior mirror control system

starts at the root of the containment hierarchy, and the top-level component is
specified using three different UML models: (1) structural model, showing with
which other classes the component interacts; (2) functional model, describing the
externally visible operations supplied by the component; (3) behavioral model,
showing the externally visible state model.

4) The component specification is further decomposed to the component realization
comprising the component’s private design. It describes how the component ful-
fills its requirements, via (1) a structural model, showing its internal class archi-
tecture, (2) an activity model specifying the algorithms, and (3) an interaction
model showing how a group of instances collaborate to realize an operation.
These primary artifacts can be enhanced, if needed, by timing diagrams, or other
non-functional specifications.

5) Implementation: Iteratively devising specifications and realizations is contin-
ued until an existing component is found, thereby targeting existing abstrac-
tions, or, until it can be implemented (no reuse). Coming to a concrete
implementation from the models requires us to reduce the level of abstraction
of our descriptions. First, the containment hierarchy is simplified according
to the technical restrictions of the used implementation technology. That is
through refining the containment hierarchy and mapping it to a UML model
with the source code structure of the resulting system. Second, the models
are mapped to source code, either through a code generator, or through man-
ual mapping approaches.

For each run, the base system documentation was developed by the authors of this pa-
per. The reason was that we were primarily interested in the reuse effects of one method-
ology in the context of follow-up projects. Using a single documentation for all runs
would have created translation and understanding efforts. Therefore, reasonable effort was
spent to make all three documents comparable concerning size, complexity, etc. This is
supported by the measures of each system.

74 C. Bunse, H.-G. Gross, and C. Peper

4 Evaluation and Comparison

In the context of the three experimental runs, a number of measurements were per-
formed with respect to maintainability, portability, and adaptability of software sys-
tems. Tables 1, 2, and 3 provide data concerning model and code size, quality, effort,
and reuse rates. Table columns denote the project type1.

Table 1. Results of the First Run (MARMOT)

Original R1 R2 R3 R4 R5
LOC 310 310 320 280 350 490
Model Size
(Abs.)

NCM 8 8 8 6 10 10
NCOM 15 15 15 11 19 29
ND 46 46 46 33 52 64

Model Size
(Rel.) 1 1 1 1 0.8 1

3.25 3.25 3.25 2.5 3 3.4

1.375 1.375 1.375 1.33 1.3 1.6

Reuse Reuse Fraction(%) 0 100 97 100 89 60
New (%) 100 0 3 0 11 40
Unchanged (%) 0 95 86 75 90 95
Changed (%) 0 5 14 5 10 5
Removed (%) 0 0 0 20 0 40

Effort (h) Global 26 6 10.5 3 10 24
Hardware 10 2 4 0.5 2 8
Requirements 1 0 0 0.5 1 2
Design 9.5 0.5 1 0.5 5 6
Implementation 3 1 3 0.5 2 4
Test 2.5 2.5 2.5 1 2 4

Quality Defect Density 9 0 2 0 3 4

assesNumberofCl
ateChartsNumberofSt

assesNumberofCl
erationsNumberofOp

assesNumberofCl
sociationsNumberofAs

First Run. Porting the system (R1) required only minimal changes to the models.
One reason is that MARMOT supports the idea of platform-independent modeling
(platform specific models are created in the embodiment step). Ports to different proc-
essor families (R2) are supported by MARMOT’s reuse mechanisms.

Concerning the adaptation of existing systems (R3 and R4), data show that large por-
tions of the system could be reused. In comparison to the initial development project the
effort for adaptations is quite low (26 hrs vs. 3 or 10 hrs). The quality of the system
profits from the quality assurance activities of the initial project. Thus, the promises of
CBD concerning time-to-market and quality could be confirmed.

1 Project types are labeled following the scheme introduced in section 3 (e.g., “Original” stands

for the initial system developed by the authors as a basis for all follow-up projects, “R1” –
Port to the ATMEGA32 microcontroller (same processor family), “R2” – Port to the PIC F
microcontroller (different processor family), “R3“ – Adaptation by removing functionality
from the original system, “R4” – Adaptation by adding functionality to the original system,
and “R5” – Reuse of the original system in the context of a larger system.

 Embedded System Construction 75

Table 2. Results of the Second Run (Unified Process)

Original R1 R2 R3 R4 R5
LOC 350 340 340 320 400 500
Model Size
(Abs.)

NCM 10 10 10 8 12 13
NCOM 15 15 15 11 19 29
ND 59 59 59 45 60 68

Model Size
(Rel.) 1.5 1.5 1.5 0.72 1.33 1.07

4 3.5 3.5 3.25 3 3.46

2.5 2.3 2.3 2.5 2.16 1.76

Reuse Reuse Fraction(%) 0 100 94 88 86 58
New (%) 100 0 6 11 14 42
Unchanged (%) 0 92 80 70 85 86
Changed (%) 0 4 15 6 15 14
Removed (%) 0 4 5 24 0 41

Effort (h) Global 34 8 12 5.5 13 29
Hardware 10 2 4 0.5 2 8
Requirements 4 1 1 1.5 3 4
Design 12 1 2 1 4 7
Implementation 5 2 3 1.5 2 6
Test 3 2 2 1 2 4

Quality Defect Density 8 1 2 0 3 4

assesNumberofCl
ateChartsNumberofSt

assesNumberofCl
erationsNumberofOp

assesNumberofCl
sociationsNumberofAs

Interestingly, the effort for the original system corresponds to standardized effort
distributions over development phases, whereby the effort of follow-ups is signifi-
cantly lower. This supports the assumption that component-oriented development has
an effort-saving effect in subsequent projects.

Porting and adapting an existing system (R1-R4) implies that the resulting variants are
highly similar, which explains why reuse works well. It is, therefore, interesting to look at
larger systems that reuse (components of) the original system (i.e., R5). 60% of the R5
system was reused without requiring major adaptations of the reused system. Effort and
defect density are higher than those of R1-R4, due to additional functionality and hard-
ware extensions. However, when directly compared to the initial effort and quality, a
positive trend can be seen that supports the assumption that MARMOT allows embedded
systems development at a low cost but with high quality.

The Second and Third Run replicated the projects of the first run but used different
development methods. Interestingly, the results of the second run are quite close to
those of the first. However, the Unified Process requires more overhead and increased
documentation, resulting in higher development effort. Ironically, model-size seems to
have a negative impact on quality and effort. Interestingly, the mapping of models to
code seems not to have added additional defects or significant overheads.

Although the amount of modeling is limited in the agile approach, it can be observed
that the original system was quickly developed with a high quality. However, this does
not hold for follow-up projects. These required substantially higher effort than the effort
required for runs 1 and 2. A reason might be that follow-ups were not performed by the
developers of the original system. Due to missing documentation and abstractions, reuse
rates are low. In contrast, the source-code appears to be of good quality.

76 C. Bunse, H.-G. Gross, and C. Peper

Table 3. Results of the Third Run (Agile)

Original R1 R2 R3 R4 R5
LOC 280 290 340 300 330 550
Model
Size
(Abs.)

NCM 14 15 15 13 17 26
NCOM 5 5 5 4 7 12
ND 3 3 3 3 3 3

Model
Size
(Rel.)

0 0 0 0 0 0

3.21 3.3 3.3 3.15 3.23 4.19

3.5 3.3 3.3 3.46 3.17 2.57

Reuse Reuse Fraction(%) 0 95 93 93 45 25
New (%) 100 5 7 7 55 75
Unchanged (%) 0 85 75 40 54 85
Changed (%) 0 14 15 40 36 10
Removed (%) 0 1 10 20 10 5

Effort (h) Global 18 5 11.5 6 13.5 37
Hardware 6 2 4 1 2 8
Requirements 0.5 0 0 0.5 1 1
Design 2 0 0 1 1.5 3
Implementation 7 2 5 2 6 18
Test 2.5 1 2.5 1.5 3 7

Quality Defect Density 7 0 2 1 5 7

assesNumberofCl
ateChartsNumberofSt

assesNumberofCl
erationsNumberofOp

assesNumberofCl
sociationsNumberofAs

5 Threats to Validity

The authors view this study as exploratory. Thus, threats limit generalization of this
research, but do not prevent the results from being used in further studies.

Construct Validity. Reuse is a difficult concept to measure. In the context of this paper
it is argued that the defined metrics are intuitively reasonable measures. Of course, there
are several other dimensions of each concept. However, in a single controlled study it is
unlikely that all the different dimensions of a concept can be captured.

Internal Validity. A maturation effect is caused by subjects learning as the study
proceeds. The threat to this study is subjects learned enough from single runs to bias
their performance in the following ones. An instrumentation effect may result from
differences in the materials which may have caused differences in the results. This
threat was addressed by keeping the differences to those caused by the applied
method. This is supported by the data points as presented in table 1, 2, and 3. Another
threat might be the fact that the studies were conducted at different institutes.

External Validity. The subjects were students and unlikely to be representative of soft-
ware professionals. However, the results can be useful in an industrial context for the
following reasons: Industrial employees often do not have more experience than students
when it comes to applying MDD. Furthermore, laboratory settings allow the investigation
of a larger number of hypotheses at a lower cost, than in field studies. Hypotheses sup-
ported in the laboratory setting can be tested further in industrial settings.

 Embedded System Construction 77

6 Summary and Conclusions

The growing interest in the Unified Modeling Language provides a unique opportunity
to increase the amount of modeling work in software development, and to elevate qual-
ity standards. UML 2.x promises new ways to apply object/component-oriented and
model-based development techniques in embedded systems engineering. However, this
chance will be lost, if developers are not given effective and practical means for han-
dling the complexity of such systems, and guidelines for applying them systematically.

This paper shortly introduced the MARMOT approach that supports the compo-
nent-oriented and model-based development of embedded software systems. A series
of studies was described that were defined to empirically validate the effects of
MARMOT on aspects such as reuse or quality in comparison to the Unified Process
and an agile approach. The results indicate that using MDD and CBD for embedded
system development will have a positive impact on reuse, effort, and quality. How-
ever, similar to product-line engineering projects, CBD requires an upfront invest-
ment. Therefore, all results have to be viewed as initial. This has led to the planning
of a larger controlled experiment to obtain more objective data.

References

[1] Atkinson, C., Bayer, J., Bunse, C., et al.: Component-Based Product-Line Engineering
with UML. Addison-Wesley, Reading (2001)

[2] Bunse, C., Gross, H.-G., Peper, C.: Applying a Model-based Approach for Embedded
System Development. In: 33rd SEAA, Lübeck, Germany (2007)

[3] Bunse, C., Gross, H.-G.: Unifying hardware and software components for embedded system
development. In: Reussner, R., Stafford, J.A., Szyperski, C. (eds.) Architecting Systems with
Trustworthy Components. LNCS, vol. 3938, pp. 120–136. Springer, Heidelberg (2006)

[4] Cantor, M.: Rational Unified Process for Systems Engineering, the Rational Edge e-Zine
(2003),
http://www.therationaledge.com/content/aug_03/f_rupse_mc.jsp

[5] Crnkovic, I., Larsson, M. (eds.): Building Reliable Component-Based Software Systems.
Artech House (2002)

[6] Douglass, B.P.: Real-Time Design Patterns. Addison-Wesley, Reading (2003)
[7] Briand, L.C., Bunse, C., Daly, J.W.: A Controlled Experiment for Evaluating Quality

Guidelines on the Maintainability of Object-Oriented Designs. IEEE TSE 27(6) (2001)
[8] Li, J., Conradi, R., Slyngstad, O.P.N., Torchiano, M., Morisio, M., Bunse, C.: A State-of-

the-Practice Survey of Risk Management in Development with Off-the-Shelf Software.
IEEE Transaction on Software Engineering 34(2) (2008)

[9] Hruschka, P., Rupp, C.: Agile SW-Entwicklung für Embedded Real-Time Systems mit
UML, Hanser (2002)

[10] Marwedel, P.: Embedded System Design (Updated Version). Springer, Heidelberg (2006)
[11] Object Management Group, UML Infrastructure and Superstructure, V2.1.2 (2007)
[12] Szyperski, J.: Component Software. Beyond OOP. Addison-Wesley, Reading (2002)
[13] Lange, C.F.: Model Size Matters. In: Workshop on Model Size Metrics, 2006 (co-located

with the ACM/IEEE MoDELS/UML Conference) (October 2006)
[14] Burkhard, J.-M., Detienne, F.: An Empirical Study of Software Reuse By Experts in Ob-

ject-Oriented Design. In: INTERACT 1995, Lillehammer Norway, June 27-29 (1995)
[15] Lee, N.-Y., Litecky, C.R.: An Empirical Study of Software Reuse with Special Attention

to ADA. IEEE Transaction on Software Engineering 23(9) (1997)

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 78–89, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Assessing the Power of a Visual Modeling Notation
– Preliminary Contemplations on Designing a Test –

Dominik Stein and Stefan Hanenberg

Universität Duisburg-Essen
{dominik.stein,stefan.hanenberg}@icb.uni-due.de

Abstract. This paper reports on preliminary thoughts which have been con-
ducted in designing an empirical experiment to assess the comprehensibility of
a visual notation in comparison to a textual notation. The paper sketches shortly
how a corresponding hypothesis could be developed. Furthermore, it presents
several recommendations that aim at the reduction of confounding effects. It is
believed that these recommendations are applicable to other experiments in the
domain of MDE, too. Finally, the paper reports on initial experiences that have
been made while formulating test questions.

1 Introduction

Although modeling does not imply visualization, people often consider the visual
representation of models to be a key characteristic of modeling. One reason to this
could be that modeling techniques such as State Machines or Petri-Nets are often
taught and explained with help of circles and arrows rather than in terms of mathe-
matical sets and functions. Apart from that, other kinds of modeling, e.g. data model-
ing with help of Entity-Relationship-Diagrams, make heavy use of visual
representations, although the same concepts could be specified in a purely textual
manner, too.

However, let alone the impression that visual representations are considered very
appealing by a broad range of developers, customers, maintainers, students, etc., a
scientific question would be if a visual representation for a particular purpose actual
yields any extra benefit to software development, maintenance, teaching, etc. (cf. [11,
12, 13, 16, 17, 18, 19]).

Driven by a personal belief of the authors that this extra benefit exists, this paper
reports on preliminary thoughts which have been conducted in designing an empirical
experiment. The goal of this empirical experiment is to assess (such a "soft" property
as) the "comprehensibility" of a visual notation in comparison to a textual notation.

This (workshop) paper does not formulate a concrete hypothesis, nor does it pre-
sent any results. Instead, it conducts general contemplation about the design of an
empirical test comparing the comprehensibility of a visual and a textual notation. In
particular, the paper presents several recommendations that aim at the reduction of
confounding effects while running the test. It is suggested that these recommendations
should be obeyed in other experiments evaluating visual notations in the domain of
MDE, too. Furthermore, the paper reports on experiences that have been made while
formulating the test questions for a test on comprehensibility.

 Assessing the Power of a Visual Modeling Notation 79

The paper is structured as follows: Section 2 outlines the general goal of the ex-
periment and what to measure. Sections 3 discusses proper design of the test objects.
Section 4 discusses proper treatment of the test subjects (i.e. the testers). Section 5
deals with proper measurement of the outcomes, and reports on problems which have
been encountered during a preliminary pilot test. Section 6 presents related work, and
section 7 concludes the paper.

2 Defining the Goal of the Experiment, and What to Measure?

This section is meant to "set the scene" for the subsequent sections on confounding
impacts (sections 3 and 4) and preliminary experiences (section 5) with/on the com-
parison of a visual and a textual notation. To do so, we give a (rough) definition of the
experiment, sketch a hypothesis, and select the variables we want to measure.

2.1 Experiment Definition

An experiment comparing visual vs. textual notations can be defined as follows (using
the experiment definition template suggested by [31]):

The goal of the study is to analyze visual and textual program specifications (i.e.
diagrams versus code), with the purpose of evaluating their effect on the "comprehen-
sibility" of the information shown. The quality focus is the perception speed and
completeness and correctness with which all relevant information is apprehended. The
perspective is that of teachers and program managers, who would like to know the
benefit that visual notations can bring to their work (i.e. teaching students in computer
science or developing software). The context of the experiment is made up of artifi-
cial/sample code snippets and their corresponding diagrams (= objects) as well as
undergraduate and graduate students (= subjects).

2.2 Hypothesis Formulation

According to [22], a scientific hypothesis meets the following three criteria:

• A hypothesis must be a "for-all" statement (or rather, a "for-all-meeting-
certain-criteria" statement). This means in particular that the hypothesis must
be true for more than a singular entity or situation.

• A hypothesis must be (able to be reformulated as) a conditional clause (of
the form "whenever A is true/false, this means that B is (also) true/false").

• A hypothesis must be falsifiable. That means that, in principle, it must be
able to find an entity or situation in which the hypothesis is not true.

Furthermore, for practical reasons, [4, 23] suggest to base the hypothesis on ob-
servable data. That is, in the (possibly reformulated) conditional clause, the value of
one observable data (called "the dependent variable") must be specified to depend on
the value of one other observable data (called "the independent variable") in a consis-
tent way. The hypothesis is falsified if at least one example can be found where this
dependency is not satisfied.

80 D. Stein and S. Hanenberg

comparing a visual and
a textual notation

background knowledge
and skills of the subjects

semantic familiarity of
the subjects with the

notations to test

semantic compression
of the objects

semantic equality
of the objects

syntactic representation
of the objects

Fig. 1. Confounding factors

A starting point to find a hypothesis for the experiment outlined in section 2.1
could be the following:

When investigating program specifications, a visual representation X (as com-
pared to a textual representation Y) significantly facilitates comprehension of infor-
mation Z.

Following the aforementioned criteria, the above hypothesis is a scientific hy-
pothesis because it can be rephrased as "whenever a program specification is repre-
sented using a visual notation X, it is easier to comprehend (with respect to
information Z) than an equivalent representation using a textual notation Y". In this
statement, the possible values (treatments) of the independent variable (factor) are
"visual/not visual" and the possible values of the dependent variable are "easier to
comprehend/not easier to comprehend". The claimed dependency would be "visual →
easier to comprehend". The statement could be falsified by showing that visual nota-
tion X is not easier to comprehend than textual notation Y (with respect to informa-
tion Z).

2.3 Variable Selection

Turning a the preliminary idea of a hypothesis into a testable hypothesis which is
thoroughly rooted on objectively observable data is a challenging task in developing
an empirical test. Comprehensibility by itself, for example, is difficult to observe.
Hence, another variable must be found whose values are considered to depend on the
level of comprehension of a tester. A commonly accepted variable measuring the
level of comprehension, for example, is "correctness", i.e. the number of correct an-
swers given to a (test) questions (cf. [29, 28, 27]). However, as pointed out by [28],
correctness is only one facet of comprehensibility. Another variable is "comprehen-
sion speed", e.g. the number of seconds that the subjects look at the object (or maybe
even "easy to remember", i.e. the number of times that the subjects take a look at the
objects; cf. [28]). The inherent effect of the variable being of interest on the variable
being measured must be substantially elucidated (and defended) in the discussion on
the (construct) validity of the test.

 Assessing the Power of a Visual Modeling Notation 81

The only factor (independent variable) in the experiment would be "kind of presen-
tation" with the treatments (values) {visual, textual}.

One of the big challenges when investigating the casual dependencies between the
(dependent and independent) variables is to reduce confounding impacts (see Fig. 1)
as much as possible, and thus to maximize the validity of the experiment (cf. [31]).
Otherwise, the "true" dependency could possibly be neutralized (at least, in parts), or
might even be turned into its reciprocal direction (in the worst case).

In the following sections, some means are presented which should be taken in or-
der to improve the validity of an experiment comparing a visual and a textual nota-
tion. The authors believe that these means are general enough to be applied to other
experiments evaluating two notations in the domain of MDE, too.

3 Preparing Objects – Ensuring Construct Validity (I)

Construct validity refers "to the extent to which the experiment setting actually re-
flects the construct under study" [31]. In particular, this means to ensure that the ob-
jects of the experiment which are given to the subjects in order to perform the tests
represent the cause well (i.e. a visual vs. a textual representation, in this case).

3.1 Semantic Equality

One obvious, yet carefully to ensure, requirement is to compare (visual and textual)
representations that have equal semantics, only. It would be illegal and meaningless to
compare any two representations with different semantics.

Ensuring semantic equality is a greater challenge, though, than it might appear at
the first glance. Fig. 2 shows a (simple) example.

class A {
public B b;

}

class B {
public A a;

}

A

B

+a

+b
⇔⇔

A

B

+a

+b

0..* 0..1

0..1 0..*

0..1

0..1

Fig. 2. Ensure semantic equality

The bidirectional association between classes A and B in the UML model in the left
of Fig. 2 denotes that two instances of class A and B are related to each other such that
the instance of class A can navigate to the instance of class B via property b, while at
the same time the instance of class B can navigate to the instance of class A via prop-
erty a (meaning a = a.b.a is always true; cf. [20, 9, 1, 10]). The Java program code
in the middle of Fig. 2, however, does not imply that an instance of class A which is
associated with an instance of class B (via its property b) is the same instance which
that associated instance of class B can navigate to via its property a (meaning a =
a.b.a does not need to be true).

82 D. Stein and S. Hanenberg

Therefore, in an empirical test comparing the performance1 of visual vs. textual
representations of associations, it would be meaningless to compare the textual repre-
sentation in the middle of Fig. 2 with the visual representation in the left of Fig. 2
since they mean different things. Instead, it would be more appropriate to compare the
textual representation in the middle of Fig. 2 with the visual representation in the right
of Fig. 2. Here, the meaning of one representation can be considered equal to the
meaning of the other representation (cf. [9]), and comparing the results of their indi-
vidual performance can be considered valid.

It must be noted that, in general, asserting the semantic equality of two notations is
not trivial. This is particularly true if the semantics of the two notations have not been
specified in compatible formalisms. In the case of UML and Java, for example, this
means that there is no general agreement on how a UML class diagram should be
transformed into Java code. There is a considerable amount of work that suggests
possible transformations (e.g. [9, 1, 10]). These approaches make use of additional
methods (e.g. setter and getter methods), or even entire classes, to properly capture
the (more advanced parts of the) semantics of UML associations in Java. In doing so,
these approaches ensure the semantic equality of visual and textual representations
considerably well, thus improving the validity of the experiment. However, at the
same time, they threaten the validity by conflicting with another requirement, which
is discussed next: the requirement of equal degree of semantic compression.

3.2 Equal Degree of Compression

Apart from semantic equality, the expressions being compared need to be expressed at
an equal degree of compression (here, the degree of compression shall refer to the
degree with which semantic information is condensed into one language construct; the
use of the term "compression" in this context – rather than "abstraction" – is inspired
by [8, 14]). Otherwise, "better" performance of one notation could be induced by the
fact that one notation uses a "higher" compression (e.g. one language construct of that
notation conveys the same semantic information than four language constructs of the
other notation) rather than that it uses a "better" representation.

Fig. 3 gives an example. Other than in Fig. 2, the Java code now contains extra
lines which states that an instance of class A which is associated with an instance of
class B (via its property b) must be the same instance to which that associated instance
of class B can navigate via its property a (meaning a = a.b.a is always true; see [1]
for a more sophisticated solution). Hence, the Java expression in the right of Fig. 3
now equates to the semantics of the UML expression in the left of Fig. 3.

If – in a test – the UML expression should actually yield "better" results than the
Java expression now, it is unclear (and highly disputable) whether the "better" per-
formance is due to the visual representation or due to the higher degree of compres-
sion (i.e. the fact that we need to read and understand four method definitions in the
Java code as compared to just one association in the UML diagram). A comparison of
two, i.e. a visual and a textual, notations with different compression is, of course, still
valid and may show that one notation performs "better" than the other. However, it

1 In this paper, "performance" refers to "the notation's ability to be read and understood" rather

than computation speed.

 Assessing the Power of a Visual Modeling Notation 83

A

B

a

b

class A {
B b;
B getB() { return b; }
void setB(B b) { this.b = b; b.a = this; }

}

class B {
A a;
A getA() { return a; }
void setA(A a) { this.a = a; a.b = this; }

}

⇔
0..1

0..1

Fig. 3. Do not test expressions of unequal degree of compression

cannot be argued that this is an immediate consequence from the one being visual,
while the other is not.

3.3 Presenting Objects

Apart from equal semantics and equal degree of compression, the expressions have to
be appropriately formatted, each to its cleanest and clearest extent. This is because the
authors estimate that disadvantageous formatting of expressions could have a negative
impact on the test outcome, whereas advantageous formatting of expressions could
improve the test results. There is an extensive body of research supporting this as-
sumption (e.g. [18, 21, 24, 25, 3, 17] to name just a few).

Fig. 4 gives an example. In the left part of Fig. 4, the Java code has been formatted
in a way which is tedious to read. In the right part of Fig. 4, the UML representation
has been formatted disadvantageously. With expressions formatted like this, it is
assumed that the respective notation is condemned to fail in the performance test.

Unfortunately, there usually is no (known) optimal solution for the formatting task.
Therefore, expressions should be formatted clearly and consistently following some
strict and predefined guidelines (e.g. according to [30, 2, 7]). Furthermore, syntactic
sugar is to be avoided. That is, all means that are not related to the semantics of the
underlying notation, such as syntax highlighting in textual expressions, or different
text formats and different line widths in visual expressions, should not be used. Syn-
tactic sugar (fonts, colors, line width, etc.) is likely to impact the comprehensibility of
the expressions (cf. [26, 3] for studies) and thus may confound the pure comparison
between their visual and textual representation.

Evaluating the impacts of formatting, fonts, indentation, colors, and line width on
the comprehensibility of a notation is an interesting test of its own. However, that test
should focus on the comparison of different style guidelines for one notation rather
than on the comparison of (different) guidelines for different notations. Several ex-
periments have indicated that even slight variations in the representation may impact
the performance of a (visual or textual) notation [18, 24, 25, 3, 17, 26]. Hence, it is
important to keep in mind that even though uniform guidelines are used to format the
expressions, the effects of those formatting guidelines on the test outcomes are

84 D. Stein and S. Hanenberg

A

B

a

b

class A { private B
b; B getB() { return
b; } void setB(B b) { this
.b = b; b.a = this; } }

class B { private A
a; A getA()
{ return a; } void
setA(A a) { this
.a = a; a.b =

this; } }

⇔

class A {
B b;

}

class B {
A a;

}

⇔
A

B

a

b

Fig. 4. Format expressions to their cleanest and clearest extent

unclear. This is all the more true because the (unknown) effects may be different for
each notation! Consequently, the impact of formatting guidelines on the test results
needs to be respected in the discussion of the (construct) validity of the test.

4 Preparing Subjects – Ensuring Internal Validity

To ensure internal validity, it must be ensured that a relationship between a treatment
and an outcome results from a causal relationship between those two, rather than from
a factor which has not been controlled or has not been measured (cf. [31]). In particu-
lar this means how to "treat", select, and distribute the subjects such that no coinci-
dental unbalance exists between one group of testers and another.

4.1 Semantic Familiarity

The imperative necessity of comparing semantically equivalent "expressions" (see
section 3.1) is complemented with the necessity that testers are equally trained in, and
familiar with, both notations. Otherwise, i.e. if the testers of one notations are more
experienced with their notation than the testers of the other notation with their nota-
tion, a "better" test result of the former notation could be induced by the fact that its
testers have greater experience in using/reading it rather than by the fact that it is
actually "better" (in whatsoever way). This effect has become evident in several ex-
periments (cf. [5, 6, 21]) – where [6] points out that this is particularly true in case of
briefly presented programs, which may be common in many empirical tests.

The overall challenge here is to determine under which circumstances two testers
can be considered "equally familiar" (i.e. equally knowing and skilled) with their
notations. Furthermore, it needs to be investigated how the knowledge and skills of an
individual tester (with his/her notation) can be reliably assessed (so that we can decide
afterwards whether or not "equal familiarity" has been reached). Finally, it must be
considered how "equal familiarity" can be achieved in a timely and didactically ap-
propriate manner (e.g., by a teaching course or brief introduction just prior to the test;
yet, what is to be done if a particular group of testers encounters unforeseen compre-
hension problems with their notation and, thus, spends much more time with their
notation than the other group with the other notation?).

 Assessing the Power of a Visual Modeling Notation 85

5 Measuring Outcomes – Ensuring Construct Validity (II)

Once the hypothesis is sufficiently clear, the next challenging step is to formulate
questions that are suitable to test the hypothesis and to find a test format that is suit-
able to poll the required data. This is another facet of construct validity, according to
which the outcome of the test needs to represent the effects well (cf. [31]).

In this section, considerations and experiences are presented that have been made
in formulating test questions and capturing answers in/for a pilot test evaluating the
comprehensibility of a (textual) notation2.

5.1 Test Format, and How to Measure?

Multiple Choice tests (when carefully designed; cf. [15]) are considered to be a good
and reliable way to test the knowledge of a person, in particularly in comparison to
simple True/False tests. Hence, Multiple Choice tests would have a higher construct
validity with respect to the correctness of comprehension than True/False tests. A
question format with free answer capabilities would be more realistic (and thus would
increase the external validity of the experiment; cf. [31]). However, such short-answer
test is much more laborious because it requires manual post-processing in order to
detect typos and/or semantically equivalent answers.

When it comes to measuring the response time, it is important to discriminate
between the time to find the answer in the expression and the time to understand
the question. This is because if testers need 30 sec. to understand a question and
then 10 sec. to find the answer in the textual expression and just 5 sec. to find the
answer in the visual expression, it makes a difference whether 40 sec. are com-
pared to 35 sec., or 10 sec. to 5 sec. Not to discriminate between the time to find
an answer and the time to understand a question is only valid, if the ratio is recip-
rocal, i.e. if the time to understand a question is negligible short in comparison to
the time to find the answer.

If the test outcome consists of more than one data, it is a big challenge to define
how the outcomes can be combined in order to obtain a meaningful interpretation. In
the case discussed here, for example, it needs to be decided how "correctness of an-
swers" and "response time" can be combined to indicate a "level of comprehension".
One option would be to disregard all incorrect answers, and consider the response
time of correct answers, only.

5.2 Volatile (Time) Measurements – Problems of a First Test Run

Preliminary and repeated test runs of a test evaluating simple analysis of a textual
notation2 (with the same person) have shown that the measured time needed to answer
the question (exclusive of the time needed to understand the question; cf. section 5.1)
is rather short (in average ~10 sec.) and varies tremendously (3 sec. to 30+ sec., even
for same questions; cf. Fig. 5). Against all expectations, no learning effect is evident,
which should have yielded similar performance and (at least, slight) improvements
after each test run. It seems as if the measured time is heavily confounded by some

2 In another case than association relationships.

86 D. Stein and S. Hanenberg

Question (No.)

R
esponse T

im
e (m

sec)

Fig. 5. Preliminary pilot test: Three subsequent test runs with same person, same objects, and
same questions (in arbitrary order), leading to highly volatile outcomes (measurements of one
test run are connected by a line).

external factor (maybe slight losses of concentration). This is problematic because due
to the short (average) response time, even the slightest disturbance (of about 1 sec.) could
confound the measured (average) time significantly (e.g. by one tenth, in this case).

Another problem was to strictly discriminate between the time to find the answer
in the expression and the time to understand the question (which, again, was essential
due to the short (averaged) response time). The testers were required to explicitly flip
to the expression once they have carefully read (and understood) the question (which
was shown first). As it turned out, however, testers sometimes realized that they have
not fully understood the question after they have already flipped to the expression. As
a result, the measured response time was partly confounded.

It is currently being investigated how the problem of high variation in measure-
ments can be tackled. One option would be to pose questions that are more difficult to
answer, and thus takes more time. This will only work, though, if the confounding
effects do not grow proportionally. Another option would be to repeat the test count-
less times (with the same person and similar questions) in order to get a more reliable
average response time. A big problem of this approach is to ensure that the testers will
not benefit from learning effects in the repeated tests (which are expected to take
effect, ultimately, i.e. some time after the third test run).

A promising solution to properly discriminate between the time to find the answer
in the expression and the time to understand the question has been found in [28].

6 Existing Comparisons of Visual and Textual Notations

In 1977, Shneiderman et al. [29] have conducted a small empirical experiment that tested
the capabilities of flow charts with respect to comprehensibility, error detection, and modi-
fication in comparison to pseudo-code. Their outcome was that – statistically – the bene-
fits of flow charts was not significant. Shneiderman et al. did not measure time, though.

 Assessing the Power of a Visual Modeling Notation 87

This was determined to be inevitable by Scanlan [28]. Scanlan formulated five hy-
potheses (e.g. "structured flow charts are faster to comprehend", "structured flow
charts reduce misconceptions", to name just the two which are closely related to this
paper). Scanlan's test design is very interesting: Scanlan separated comprehension
(and response) time of the question from comprehension time of the expression. To
do so, testers could either look at the question or look at the expression (an algorithm,
in this case). This is an interesting solution for the aforementioned problem of sepa-
rating comprehension time and response time (see section 5.1). Scalan's outcome was
that structured flow charts are beneficial.

Response time was also considered relevant in subsequent experiments evaluating the
performance of visual and textual representations, e.g. [13, 19, 12]. [13] compares a visu-
ally enhanced textual representation (called "Control Structure Diagrams") with a plain
textual representation of code, and concludes that the visually enhancements have a positive
impact on program comprehension tasks. [19] compares a visual and a textual representa-
tion of algebraic specifications (called "OBJ" and "VisualOBJ"). In this case, the overall
results, although slightly favoring the visual notations, show no statistically significant
difference. [12] compares visual notations for conditional logic with corresponding textual
notations. The outcome is that visual notations perform worse than textual notations.

All of the aforementioned experiments [29, 28, 13, 19, 12] compare (visual and textual)
expressions which are both semantically equivalent (cf. section 3.1) and of equal compres-
sion (cf. section 3.2). It is important to note, though, that all of these experiments deal with
(visual representations of) low-level programming language constructs. Hence, ensuring
semantic equivalence and equal compression is no issue here because there is a one-to-one
mapping between visual and textual constructs. In the dawn of MDE, however, the authors
of this paper anticipate the development of (visual) domain-specific languages which map
to a conglomeration of programming language constructs. This is the situation where
empirical experiments evaluating the performance of the visual (i.e. domain-specific) and
textual (i.e. code) representations need to respect the confounding impact that unequal
compression may have on the measured outcomes.

Apart from comparing visual and textual notations, the experiment in [12] also
verifies a previous finding (cf. [11, 16]), i.e. that the performance of a given notation
depends on the actual comprehension task which is to be performed. The experiments
[11, 12] show, in particular, that an "if-then-else" notation facilitates the answering of
so-called "forward questions" (i.e. "which action results into a given condition?"),
while a "do-if" notation facilitates answering so-called "backward questions" (i.e.
"which condition must hold to trigger a specified action?"). These findings emphasize
that the actual comprehension task that shall be studied (i.e. "information Z"; cf. sec-
tion 2.2) must be chosen just as carefully as the notations that shall be studied. (i.e.
"visual representation X" and "textual representation Y"; cf. section 2.2).

7 Conclusion

This paper has presented preliminary thoughts which have been conducted in designing an
empirical experiment to assess the comprehensibility of a visual notation in comparison to
a textual notation. In particular, the paper has presented several recommendations that aim

88 D. Stein and S. Hanenberg

at the reduction of confounding effects on the measured data. These recommendations are
considered helpful for other experiments evaluating two notations in the domain of MDE,
too. Furthermore, the paper has reported on initial experiences that have been made while
formulating sensible test questions for a preliminary pilot test.

It needs to be emphasized that this paper presents preliminary considerations rather
than sustainable outcomes. On the contrary, each of the presented contemplations
could be subject of an empirical evaluation of itself (e.g. whether or not semantic
compression really has an effect on comprehensibility). Apart from that, decisions
need to be made about how to execute the test (e.g. how textual and visual expres-
sions are shown to the testers, if they can use zooming or layouting functions, etc.).
The authors plan to pursue the considerations presented here in order to come up with
a test design, which is qualified to lead to sustainable test results.

Acknowledgement

The authors thank the anonymous reviewers for their patients with the tentativeness of
these contemplations and for their productive comments which have helped to further
advance the test design. Furthermore, the authors thank the workshop organizers and
workshop participants – in particular, Bente Anda, Erik Arisholm, Lionel Briand, Michel
Chaudron, Marcela Genero, Susanne Patig, and Jon Whittle – for their valuable critics,
questions, hints, and suggestions which have helped to complement this publication.

References

1. Akehurst, D., Howells, G., McDonal-Maier, K.: Implementing Associations: UML 2.0 to
Java 5. Software and Systems Modeling (SoSyM) 6(1), 3–35 (2007)

2. Ambler, S.W.: The Elements of UML 2.0 Style. Cambridge University Press, Cambridge
(2005)

3. Andriyevska, O., Dragan, N., Simoes, B., Maletic, J.I.: Evaluating UML Class Diagram
Layout based on Architectural Importance. In: Proc. of VISSOFT 2005, pp. 14–19. IEEE,
Los Alamitos (2005)

4. Bortz, J., Döring, N.: Forschungsmethoden und Evaluation für Sozialwissenschaftler (Re-
search Methods and Evaluation for Social Scientist). Springer, Heidelberg (1995)

5. Burkhardt, J.-M., Détienne, F., Wiedenbeck, S.: Object-Oriented Program Comprehension: Ef-
fect of Expertise, Task and Phase. Empirical Software Engineering 7(2), 115–156 (2002)

6. Davies, S.P.: Expertise and the Comprehension of Object-Oriented Programs. In: Proc. of
Workshop of the Psychology of Programming Interest Group, pp. 61–66 (2000)

7. Eichelberger, H.: Nice Class Diagrams Admit Good Design? In: Proc. of SoftVis 2003, pp.
159–167. ACM, New York (2003)

8. Gabriel, R.: Patterns of Software - Tales from the Software Community. Oxford University
Press, Oxford (1996)

9. Génova, G., del Castillo, C.R., Llorens, J.: Mapping UML Associations into Java Code.
Journal of Object Technology (JOT) 2(5), 135–162 (2003)

10. Gessenharter, D.: Mapping the UML2 Semantics of Associations to a Java Code Genera-
tion Model. In: Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS
2008. LNCS, vol. 5301, pp. 813–827. Springer, Heidelberg (2008)

 Assessing the Power of a Visual Modeling Notation 89

11. Green, T.: Conditional Program Statements and their Comprehensibility to Professional
Programmers. Journal of Occupational Psychology 50(2), 93–109 (1977)

12. Green, T., Petre, M., Bellamy, R.K.E.: Comprehensibility of Visual and Textual Programs:
A Test of Superlativism Against the ‘Match-Mismatch’ Conjecture. In: Empirical Studies
of Programmers: 4th Workshop, pp. 121–146 (1991)

13. Hendrix, T.D., Cross II, J.H., Maghsoodloo, S.: The Effectiveness of Control Structure
Diagrams in Source Code Comprehension Activities. IEEE Trans. Software Eng. 28(5),
463–477 (2002)

14. Henney, K.: Overload 45 (October 2001),
 http://accu.org/index.php/journals/432

15. Krebs, R.: Die wichtigsten Regeln zum Verfassen guter Multiple-Choice Fragen (Most
Important Rules for Writing Good Multiple-Choice Questions), IAWF, Berlin (1997)

16. McGuinness, C.: Problem Representation: The Effects of Spatial Arrays. Memory & Cog-
nition 14(3), 270–280 (1986)

17. Miara, R.J., Musselman, J.A., Navarro, J.A., Shneiderman, B.: Program Indentation and
Comprehensibility. Comm. of the ACM 26(11), 861–867 (1983)

18. Moher, T.G., Mak, D.C., Blumenthal, B., Leventhal, L.M.: Comparing the Comprehensi-
bility of Textual and Graphical Programs: The Case of Petri-Nets. In: Empirical Studies of
Programmers: 5th Workshop, pp. 137–161 (1993)

19. Neary, D.S., Woodward, M.R.: An Experiment to Compare the Comprehensibility of Tex-
tual and Visual Forms of Algebraic Specifications. Journal of Visual Languages and Com-
puting 13(2), 149–175

20. Object Management Group (OMG), UML 2.1.1 Superstructure Specification, Document
formal/2007-02-05

21. Petre, M.: Why Looking Isn’t Always Seeing: Readership Skills and Graphical Program-
ming. Commun. of the ACM 38(6), 33–44 (1995)

22. Popper, K.: Logik der Forschung (The Logic of Scientific Discovery, 1959) (1934)
23. Prechelt, L.: Kontrollierte Experimente in der Softwaretechnik (Controlled Experiments in

Software Engineering). Springer, Heidelberg (2001)
24. Purchase, H.C., Colpoys, L., McGill, M., Carrington, D., Britton, C.: UML Class Diagram

Syntax: An Empirical Study of Comprehension. In: Proc. of Australasian Symposium on
Information Visualisation, pp. 113–120 (2001)

25. Purchase, H.C., Colpoys, L., McGill, M., Carrington, D.: UML Collaboration Diagram
Syntax: An Empirical Study of Comprehension. In: Proc. of VISSOFT 2002, pp. 13–22.
IEEE, Los Alamitos (2002)

26. Rambally, G.K.: The Influence of Color on Program Readability and Comprehensibility.
In: Proc. of SIGCSE 1986, pp. 173–181. ACM, New York (1986)

27. Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., Ceccato, M.: The Role of Experience
and Ability in Comprehension Tasks supported by UML Stereotypes. In: Proc. of ICSE
2007, pp. 375–384. IEEE, Los Alamitos (2007)

28. Scanlan, D.A.: Structured Flowcharts Outperform Pseudocode: An Experimental Compari-
son. IEEE Software 6(5), 28–36 (1989)

29. Shneiderman, B., Mayer, R., McKay, D., Heller, P.: Experimental Investigations of the Utility
of Detailed Flowcharts in Programming. Comm. of the ACM 20(6), 373–381 (1977)

30. Sun, Code Conventions for the Java Programming Language, April 20 (1999),
 http://java.sun.com/docs/codeconv/

31. Wohlin, C., Runeson, P., Host, M., Ohlsson, M., Regnell, B., Wesslen, A.: Experimenta-
tion in Software Engineering - An Introduction. Kluwer, Dordrecht (2000)

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 90–96, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Third International Workshop on Models@run.time

Nelly Bencomo1, Gordon Blair1, Robert France2, Freddy Muñoz3,
and Cédric Jeanneret4

1 Computing Department, Lancaster University, InfoLab21,
Lancaster, UK

{nelly,gordon}comp.lancs.ac.uk
2 Computer Science Department, Colorado State University

Fort Collins, CO, USA
france@cs.colostate.edu
3 IRISA, INRIA, Equipe Triskell,

Rennes, France
fmunoz@irisa.fr

4 Department of Informatics, University of Zurich,
Zurich, Switzerland

jeanneret@ifi.uzh.ch

Abstract. The third edition of the workshop Models@run.time was held at the
ACM/IEEE 11th International Conference on Model Driven Engineering Lan-
guages and Systems (MODELS). The workshop took place in the beautiful city of
Toulouse, France, on the 30th of October, 2008. The workshop was organised by
Nelly Bencomo, Robert France, Gordon Blair, Freddy Muñoz, and Cédric Jean-
neret. It was attended by at least 44 people from more than 10 countries. In this
summary we present an overview of the presentations and fruitful discussions that
took place during the 3rd edition of the workshop Models@run.time.

Keywords: model-driven engineering, reflection, runtime adaptation.

1 Introduction

This year’s workshop aimed to build upon the insights gained at workshops held in 2006
and 2007 to better understand the relationship between models produced during devel-
opment and models used to support and enable runtime monitoring, adaptation and evo-
lution of software. The workshop successfully brought together researchers from
different communities. At least forty-four (44) people attended from: Canada, Colombia,
France, Germany, Ireland, Israel, Norway, Spain, Switzerland, UK, and the US.

This is the third in a series of MODELS workshops. Therefore, we wanted to take
advantage of the experience gained at the two previous editions and focus the discus-
sions of this workshop on the topic: “from abstract concepts to concrete realizations".

We aimed to provide a forum for exchange and collaboration among researchers
from different communities, including researchers working on model-driven software
engineering, software architectures, computational reflection, adaptive systems, auto-
nomic and self-healing systems, and requirements engineering. Thus, the workshop
covered a wide range of topics, including relevance and suitability of different model-
driven approaches to monitoring and managing systems during runtime, compatibility

 Third International Workshop on Models@run.time 91

(or tension) between different model-driven approaches, the role of reflection in
maintaining the causal connection between models and runtime systems, experience
related to the use of runtime models to adapt software systems, and the use of models
to validate and verify behaviour at runtime.

In response to the call for papers, twenty (20) papers were submitted, of which six
(6) papers were accepted. Additionally, six (6) short papers were invited for short
presentations and a demo was also presented. Each submitted paper was reviewed by
at least 3 program committee members. After discussions, two papers were selected
as the best papers. The decision was not easy and took into account the relevance of
the papers to the workshop theme, the impact on the workshop discussions and out-
comes, and the quality of the papers and presentations. We also held a poll of partici-
pants to determine their views on which papers were the most noteworthy. The
authors of these two papers have now extended and improved their manuscripts tak-
ing into account the discussions of the workshop. The extended papers are published
in this proceedings.

2 Workshop Format

The workshop was designed to primarily facilitate focused discussion on the use of
models during run time. It was structured into presentations, discussion sessions, and
a panel. The opening presentation was given by Nelly Bencomo. Nelly set the context
of the workshop reminding the audience of the general goal, and presenting some
results from the last two editions of the workshop in MoDELS’06 and MODELS’07.
She also described the specific goals of the third edition of the workshop “from ab-
stract concepts to concrete realizations" and presented the path to follow during the
rest of the day.

After the opening presentation, the paper sessions followed. There were 6 long and
6 short presentations divided in two sessions during the morning. During the after-
noon a demo that supports the use of models@run.time was presented, followed by
discussion sessions. A panel consisting of three experienced researchers in the area
and three representatives from each discussion group discussed how current visions of
runtime models can be realized and exploited in practice.

During the presentation session, authors presented their papers. Long presentations
were limited to twenty minutes, including five minutes for questions and discussion.
Short presentations were limited to five minutes. Presentation sessions were co-
chaired by Øystein Haugen and Robert France. At the end of the presentation session,
research interests and questions were discussed. This discussion led to the formation
of three breakout groups charged with carrying out more focused discussions during
the afternoon.

The panel was chaired by Gordon Blair and included Bran Selic, Øystein Haugen,
and Jean-Marc Jézéquel who prepared their presentations in advance. The other three
members of the panel were chosen by their colleagues during discussion groups. The
workshop was closed by a final discussion session, including an evaluation of the
workshop made by the attendees. Details of the sessions and panel are provided in
Section 4.

92 N. Bencomo et al.

3 Session Summaries

The 6 long and 6 short presentations were divided into the following two categories
according to their topics and contributions:

Session 1: Specific Techniques for Models@run.time

Long papers
- Runtime Models for Self-Adaptation in the Ambient Assisted Living Domain,

Daniel Schneider and Martin Becker.

- FAME---A Polyglot Library for Metamodeling at Runtime, Adrian Kuhn and

Toon Verwaest.

- Modeling and Validating Dynamic Adaptation, Franck Fleurey, Vegard Dehlen,

Nelly Bencomo, Brice Morin, and Jean-Marc Jézéquel.

Short papers
- A Runtime Model for Monitoring Software Adaptation Safety and its Concretisa-

tion as a Service, Audrey Occello, Anne-Marie Dery-Pinna, and Michel Riveill.

- Runtime Models to Support User-Centric Communication, Yingbo Wang, Peter J.

Clarke, Yali Wu, Andrew Allen, and Yi Deng.

- An Execution Platform for Extensible Runtime Models, Mario Sanchez, Ivan

Barrero, Jorge Villalobos, and Dirk Deridder

Session 2: Architecture and Frameworks for Models@run.time

Long papers
- Embedding State Machine Models in Object-Oriented Source Code, Michael

Striewe, Moritz Balz, and Michael Goedicke.

- Model-Based Traces, Shahar Maoz.

- Mutual Dynamic Adaptation of Models and Service Enactment in ALIVE, Atha-

nasios Staikopoulos, Sebastien Saudrais, Siobhan Clarke, Julian Padget, Owen
Cliffe, and Marina De Vos.

Short papers
- A Framework for bridging the gap between design and runtime debugging of

component-based applications, Guillaume Waignier, Prawee Sriplakich, Anne-
Francoise Le Meur, and Laurence Duchien.

- A Model-Driven Approach for Developing Self-Adaptive Pervasive Systems,
Carlos Cetina, Pau Giner, Joan Fons, and Vicente Pelechano .

 Third International Workshop on Models@run.time 93

- Model-driven Management of Complex Systems, Brian Pickering, Sylvain Robert,
Stephane Menoret, and Erhan Mengusoglu.

A demo illustrating the use of models at runtime opened the afternoon session:

- K@RT: An Aspect-Oriented and Model-Oriented Framework for Dynamic Soft-

ware Product Lines, Brice Morin, Olivier Barais and Jean-Marc Jézéquel.

Following this demonstration, discussions groups were established. Each group re-
ceived the same questions to discuss. These questions were based on the specific
theme of the workshop for that day, “from abstract concepts to concrete realizations”:

- Are we ready to make an impact (assessment of state of the art/ promising ideas/

gaps)?
- What are the next steps (how to make this impact/ from abstract concept to con-

crete realization).

4 Discussions and Panel

After the presentations, the participants were organized into three groups that met in
the afternoon. After spending some time discussing the presentations and shared re-
search interests, the groups came back to the meeting room to present a summary of
their discussions and positions. The summaries were presented in a panel by panellists
representing the groups. The representatives the discussion groups were Frank
Fleurey, Peter J. Clarke, and Stéphane Ménoret who joined Bran Selic, Øystein
Haugen, and Jean-Marc Jézéquel.

The panel started with Bran Selic presenting his position. He defined a “runtime
model” as a model that is required in the course of software execution. Similar to a
design-time model, a runtime model supports reasoning about a complex system, and
can assist in the automated generation of implementations. However, in addition, a
runtime model supports dynamic state monitoring and control of complex systems
during execution, and supports semantic (re-)integration of possibly heterogeneous
software elements at runtime (e.g. through the use of dynamically adaptable meta-
models).

According to Bran, the role of these runtime models implies some form of auto-
mated treatment that involves access to, interpretation, and generation of the model.
Bran suggested the following research challenges:

• Develop methods and standards for specifying semantics suited to auto-
mated interpretation.

• Achieve reversible model transformations, to deal with synchronization is-
sues.

• Provide support for dynamic model synthesis, for runtime adaptation (e.g. a
tool which builds a model of its users as they use it so that it can adapt its
user interface to their habits).

• Develop standardized reflective interfaces.

94 N. Bencomo et al.

• Discover mechanism for dynamic reclassification of models, which shall
bring into light some patterns and methods of modelling or analyzing
models.

• Build model execution engines which can execute specification models.

Bran added that these automated treatments must be efficient and responsive to the
changing demands of the running system.

Øystein Haugen continued the panel presenting his views on models@run.time by
attempting to provide answers to the questions what is it?, what was it?, and what
might it be? Øystein also talked about his experience working with several software
systems such as SIMULA runtime libraries, runtime modelling in the Specification
and Description Language (SDL) for a Train Control system (done in the early nine-
ties), and UML model based on state machines an their relevance to the theme of the
workshop. Øystein also argued that there is no reason why a modeller should be
forced to think in terms of a specific programming language, like Java, rather than in
UML terms or any domain specific language (DSL) when dealing with a program that
is being executed. He supported his claim while running an explaining a demo of a
runtime model (in UML2) based on state machine models. The demo showed how
runtime models can be used to visualize the position of mobile devices on a map. The
adaptive software updates GoogleEarth images according to the position of the mo-
bile devices.

Frank Fleurey, as the representative of his discussion group, noted last year’s edi-
tion was devoted to the definition of models@run.time and their possible usage and
that papers of the workshop edition this year showed that some progress has been
made in these directions. In some of these papers, an application is instrumented and
feedback is presented to the users at the model level. It has been shown how mod-
els@run.time can be used to monitor, validate or debug an application, and to support
dynamic adaptation and evolution of software.

Frank’s discussion group agreed that there are several ideas and technologies avail-
able to support models@run,time in practice. For example, programming languages
include introspection or reflection mechanisms and component frameworks provide
adaptation mechanisms. All these elements present a great potential to support the use
of models@run.time and many papers presented at this workshop leverage them.

However, one of the papers (“FAME---A Polyglot Library for Meta-modelling at
Runtime” by Adrian Kuhn and Toon Verwaest) proposed a modelling framework
dedicated to models@run.time and thus casted some doubt on the adequacy of current
MDE techniques. If a new modelling formalism must indeed be developed for mod-
els@run.time, then practical realizations of models@run.time will be inevitably de-
layed until appropriate modelling formalism is developed.

Peter Clarke continued the panel presenting the position of his discussion group.
Peter talked about how maintaining a model of the system at runtime can support the
adaptation of a system during execution. Indeed, the runtime model of the system
potentially provides an abstraction of the running system allows the administrator or
any other monitoring systems to determine properties of the running system and take
some action to heal, adapt or evaluate the system.

There was an agreement in his group that one promising use of models@runtime
is for answering dynamic “what if” questions during execution. At runtime, models

 Third International Workshop on Models@run.time 95

potentially allow the user to “play” with the model before a change is made to the
running system. Also, models@runtime may be more effective for those systems
that are domain specific or user-centric. Such systems tend to focus on a smaller
application space and can be represented at a level of abstraction that can benefit
the particular stakeholder. Peter, emphasized that for this to happen, the visualiza-
tion of models@runtime must be improved so a domain specialist can effectively
analyze it.

Stéphane Ménoret represented a discussion group in this panel. According to his
group, models@run.time is a research area that requires more attention from industry
making reference to the position given by Bran Selic who is also from industry. His
discussion group also considered important the maintenance of requirement models
during execution to check during execution how requirements agree with the capabili-
ties of the “current” system . A similar initiative is supported by Anthony Finkelstein
(requirement reflection) 1. He also stressed the importance of an international distrib-
uted lab initiative focused on models@run.time where different people from different
research areas in academia and industry could collaborate together.

For Jean-Marc Jézéquel, the notion of models@runtime is an idea that has been
(implicitly) around at least fifty years and that was already used implicitly in Simula
and more recently with Java, and also with UML/matlab/simulink as presented by
Ostein. For example, the class-object pattern can be seen as a model that allows the
modification of behaviour. What is new is the possibility to make models evolvable.
Jean-Marc sees models@runtime as the intersection of computational reflexion and
models and make possible to explore dynamic "what if" situations, to decide whether
or not to take a given path during execution. To illustrate his position, Jean-Marc
gave the example of a fire-fighter (in this case the hypothetical running system) in a
room suddenly breaking ablaze, with huge flames and rapidly raising temperature.
The fire-fighter builds quickly a mental model of his situation and his options. Once
he finds an escape that he estimates safe enough, he runs for it.

Final Remarks at the end of the workshop
A general wrap-up discussion was held at the very end of the workshop. The organiz-
ers asked for anonymous written feedback about the selection of the best two papers
to publish in this proceeding.

The workshop was closed with a warm “thank you” from the organizers to all par-
ticipants for another successful workshop. We regret that this time the big number of
attendees in the workshop did not allow the organization of the usual dinner we have
after the workshop. Instead, attendees dispersed to choose from the many good culi-
nary options that Toulouse offers.

After the workshop
After the workshop and conference, more work was needed. Organizers used the
feedback from attendees and program committee members to select the best two pa-
pers. After discussion the following papers were selected as the best two papers and
are published in new versions in this proceeding:

1 Requirements Reflection a short talk presented by Anthony Finkelstein at the Dagstuhl work-

shop on self-adaptive systems (January, 2008).

96 N. Bencomo et al.

- Model-Based Traces by Shahar Maoz.
- Modeling and Validating Dynamic Adaptation by Franck Fleurey, Vegard

Dehlen, Nelly Bencomo, Brice Morin, Jean-Marc Jézéquel.

A survey was prepared after the workshop and 24 people answered to this survey.
People confirmed that they were pleased with the discussions carried out during the
workshop and considered them useful to their own research. They also appreciated the
introduction of the panel in the format of the workshop. From the survey and com-
ments at the end of the workshop in Toulouse, it was agreed that the topic mod-
els@run.time is relevant for the MODELS community and that this community
should be encouraged to continue the study the issues related to the topic.

Acknowledgments. No workshop is successful by the efforts of only a few people.
We would also like to thank the members of the program committee who acted as
anonymous reviewers and provided valuable feedback to the authors: Betty Cheng,
Fabio Costa, Jeff Gray, Oystein Haugen, Jozef Hooman, Gang Huang, Paola Inver-
ardi, P.F.Linington, Jean-Marc Jézéquel, Rui Silva Moreira, Andrey Nechypurenko,
Oscar Nierstrasz, Eugenio Scalise, Arnor Solberg, Thaís Vasconcelos Batista, and
Steffen Zschaler. We specially thank to Bran Selic, Oystein Haugen, Jean-Marc Jé-
zéquel, Peter Clarke, Frank Fleurey, and Stéphane Ménoret for the feedback and
ideas provided for this summary. Last but not least, the authors for their interesting
submissions are thanked for helping us making this workshop possible.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 97–108, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Modeling and Validating Dynamic Adaptation*

Franck Fleurey1, Vegard Dehlen1, Nelly Bencomo2,
Brice Morin3, and Jean-Marc Jézéquel3

1 SINTEF, Oslo, Norway
2 Computing Department, Lancaster University, Lancaster, UK

3 IRISA/INRIA Rennes, Equipe Triskell, Rennes, France

Abstract. This paper discusses preliminary work on modeling and validation
dynamic adaptation. The proposed approach is on the use of aspect-oriented
modeling (AOM) and models at runtime. Our approach covers design and run-
time phases. At design-time, a base model and different variant architecture
models are designed and the adaptation model is built. Crucially, the adaptation
model includes invariant properties and constraints that allow the validation of
the adaptation rules before execution. During runtime, the adaptation model is
processed to produce a correct system configuration that can be executed.

1 Introduction

In [10], we presented our work on how we combine model-driven and aspect-oriented
techniques to better cope with the complexities during the construction and execution
of adaptive systems, and in particular on how we handle the problem of exponential
growth of the number of possible configurations of the system. The use of these tech-
niques allows us to use high-level domain abstractions and simplify the representation
of variants. The fundamental aim is to tame the combinatorial explosion of the num-
ber of possible configurations of the system and the artifacts needed to handle these
configurations. We use the notion of models at runtime [2] to generate the adaptation
logic by comparing the current configuration of the system and a newly composed
model that represent the configuration we want to reach. One of the main advantages
is that the adaptation does not have to be manually specified.The adaptation model
covers the adaptation rules that drive the execution of the system. These rules can be
dynamically introduced to change the behavior of the system during execution. We
also discussed in [10] the need of techniques to validate the adaptation rules at design-
time. In this paper we discuss our preliminary work on how to perform simulation and
allow for model-checking in order to validate adaptation rules at design-time. The
model validated at design-time is used at runtime.

The remainder of this paper is organized as follows. Section 2 presents an over-
view of our methodology for managing dynamic adaptation. Section 3 gives details on
our meta-model for adaptive systems, and shows through a service discovery example
how it can be used to model variability, context, adaptation rules and constraints.

* This work is done in the context of the European collaborative project DiVA (Dynamic Vari-

ability in complex, Adaptive systems).

98 F. Fleurey et al.

Section 4 shows how we simulate the adaptation model to validate the adaptation
rules. Section 5 explains our solution for runtime model-based adaptation. Finally,
Section 6 discusses the main challenges our work is facing and concludes.

2 Overview of the Approach

Figure 1 presents the conceptual model of the proposed approach. From a methodo-
logical perspective the approach is divided in two phases: design-time and runtime.

At design-time, the application base and variant architecture models are designed
and the adaptation model is built. At runtime, the adaptation model is processed to
produce the system configuration to be used during execution. The following para-
graphs details the steps of Figure 1.

Since the potential number of configurations for an adaptive system grows ex-
ponentially with the number of variation points, a main objective of the approach
is to model adaptive systems without having to enumerate all their possible con-
figurations statically. In order to achieve this objective, an application is modeled
using a base model which contains the common functionalities and a set of variant
models which can be composed with the base model. The variant models capture
the variability of the adaptive application. The actual configurations of the applica-
tion are built at runtime by selecting and composing the appropriate variants. The
adaptation model does not deal with the basic functionality which is represented by
the base model. Instead, the adaptation model just deals with the adaptive parts of
the system represented by the variant models. The adaptation model specifies
which variants should be selected according to the adaptation rules and the current
context of the executing system.

Requirements

Variants

Dependencies

Adaptation Rules

Context sensors

Adaptation model

Variants

Dependencies

Adaptation Rules

Context sensors

Adaptation model

Base Model

Variant modelsVariant modelsVariant modelsVariant modelsVariant models

Variant modelsVariant modelsVariant modelsVariant modelsVariant models

Design time

Runtime
Middleware

Reasoning
Framework

Model
Composer

Running SystemRunning Sensors

Configuration
Model

Validation
Framework

Causal connection

Architecture models

Fig. 1. Overview of the proposed approach

 Modeling and Validating Dynamic Adaptation 99

The adaptation model is central to the approach as it captures all the information
about the dynamic variability and adaptation of the adaptive system. It is built from
the requirements of the system, refined during design and used at runtime to manage
adaptation. The adaptation model has four main elements:

• Variants: They make references to the available variability for the application.
Depending on the complexity of the system, it can be a simple list of variants, a
data structure like a hierarchy, or a complex feature model.

• Constraints: They specify constraints on variants to be used over a configuration.
For example, the use of a particular functionality (variant model) might require or
exclude others. These constraints reduce the total number of configurations by re-
jecting invalid configurations.

• Context: The context model is a minimal representation of the environment of the
adaptive application to support the definition of adaptation rules. We only con-
sider elements of the environment relevant for expressing adaptation rules. These
elements are updated by sensors deployed on the running system.

• Rules: These rules specify how the system should adapt to its environment. In
practice these rules are relations between the values provided by the sensors and
the variants that should be used.

During runtime appropriate configurations of the application are composed from
the base and variant models. In order to select the appropriate configuration, the rea-
soning framework processes the adaptation model and makes a decision based on the
current context. The output of the reasoning framework is a configuration that
matches the adaptation rules and satisfies the dependency constraints. The model of
this configuration can be built at runtime using model composition.

3 Adaptation Model

This section presents the adaptation meta-model and how it is applied to a Service
Discovery Application (SDA). The SDA is a solution to tackle heterogeneity of ser-
vice discovery protocols are presented in [7]. The solution allows an application to
adapt to different service discovery protocols and needs during execution. The service
discovery platform can take different roles that individual protocols could assume:

-User Agent (UA) to discover services on behalf of clients,
-Service Agent (SA) to advertise services, and,
-Directory Agent (DA) to support a service directory.

Depending on the required functionality, participating nodes might be required to
support 1, 2, or the 3 roles at any time. A second variability dimension is the specific
service discovery protocols to use, such as ALLIA, GSD, SSD, SLP [7]. Each service
discovery protocol follows its own rules. As a result, in order to get two different
agents understanding each other, they need to use the same protocol [10]. These deci-
sions have to be performed during execution.

The next sub-section presents an overview of the meta-model and the following
sub-sections detail how it is instantiated for the SDA example.

100 F. Fleurey et al.

3.1 Meta-model for Variability and Adaptation

As detailed in the previous section the adaptation model includes four different as-
pects: variants, adaptation rules, dependencies and context. Additionally, links to the
architecture models and concepts for rules and expressions are supplied. The meta-
model is shown in Figure 2. As can be seen from the figure, colors are used to differ-
entiate between the categories.

The colors indicate the following:

• Grey – base and aspect architecture models;

• Orange – variability information;

• Purple – adaptation rules;

• Red/pink – dependencies, formulated as con-
straints;

• Yellow – context information;

• Blue – expressions.

Fig. 2. Meta-model for variability and adaptation

This is to be considered a first version of our meta-model that has been created at
an early stage in the DiVA project. It was created based on a set of simple examples
such as the SDA described in this paper. During the project, the meta-model will
evolve based on feedback and experiences with applying it to larger and more com-
plex case studies. Nevertheless, at this point the meta-model is able to support model-
ing, simulation and validation activities. The following shows how the meta-model is
instantiated for the SDA. To make the example readable we use a textual concrete
syntax. This concrete syntax is processed by our prototype tool in order to build the
adaptation model.

 Modeling and Validating Dynamic Adaptation 101

3.2 Modeling Variability

Figure 3 shows a model of the variability information in our service discovery example,
located in the section identified by the #variability keyword. We start by defining two
variability dimensions: one for functional variability and another for different discovery
protocols that the application can use. A variability dimension can best be described as a
category of variants, while a variant is an aspect or concern that is described outside of
the base model and may vary to produce adaptation. So far, we have specialized variants
into atomic variants and complex variants. The latter is used to express a collection of
several variants, thus forming a partial or full configuration. This concept was added be-
cause we encountered in our example that some combinations of variants can be foreseen
during the requirements phase. As an example, the Discovery Agent functionality corre-
sponds to having both the User Agent and the Service Agent functionalities. DA is thus
defined as a complex variant referring to UA and SA.

#variability /* Variability of the application */

dimension Functionality : UA, SA
variant DA : UA, SA

dimension DiscoveryProtocol : ALLIA, SLP

Fig. 3. Variability in the Service Discovery Application

3.3 Modeling the Context

Information about the context and sensors are delimited by the #context keyword.
Currently, the meta-model supports two types of context variables: Booleans and
enumerations.

The context model, as shown in Figure 4, starts with defining a variable for whether or
not the device is running low on battery and, similarly, if the application has been elected
as a Discovery Agent. Next, we have defined an enumeration that holds different roles.

#context /* Context of the system */

boolean LowBatt // Battery is low
// Node has been elected Discovery Agent
boolean ElectedDA

// Node is required to act either as
// User Agent or as Service Agent
enum SrvReq : UA, SA

// Node is require to use one or
// more of the following prototcols
boolean ALLIAReq
boolean SLPReq

Fig. 4. Context of the Service Discovery Application

102 F. Fleurey et al.

The application has to act as one of these roles at all time. Finally, there are two variables
that tell which protocols are required, which can be one or many.

3.4 Modeling Adaptation

Once the variability and context have been modeled, the adaptation rules can be
specified. The adaptation rules link the context variables and the variants in order to
specify the configuration to use with respect to a particular context. Currently, adap-
tation is based on simple condition-action rules. The condition part is a Boolean ex-
pression based on the context information, while the action is a change in the
configuration of variants.

/* Adaptation rules for functionalities */

rule BecomeDA : // Becomes a DA
 condition ElectedDA and not LowBatt and not DA
 effect DA

rule StopDA : // Stop being a DA
 condition (LowBatt or not ElectedDA) and DA
 effect not DA

rule BecomeUA : // Become a User Agent
 condition SrvReq=UA and not UA
 effect UA and not SA

rule BecomeSA : // Become a Service Agent
 condition SrvReq=SA and not SA
 effect not UA and SA

Fig. 5. Adaptation rules for the functionalities of the SDA

Figure 5 depicts the adaptation rules for the variants in the functionality category.
The first rule is called “BecomeDA”, which is triggered when an application is elected
as a discovery agent. If the device also has sufficient batteries and it is not a discovery
agent already, the adaptation will proceed and the application will assume the role of
a discovery agent.

3.5 Modeling Constraints

Finally, Figure 6 shows the dependencies. These are currently modeled as constraints,
more specifically invariants. For example, the first invariant states that the application
must use at least one functionality variant. If it does not, an error message will be
produced by the tool.

invariant AtLeastOneFunctionality : UA or SA
invariant NotDAWithLowBatt : not (LowBatt and DA)
invariant AtLeastOneProtocol : ALLIA or SLP
invariant NoSLPWithLowBatt : not (SLP and LowBatt)

Fig. 6. Invariants of the SDA

 Modeling and Validating Dynamic Adaptation 103

4 Simulation and Validation

The main benefit of using a model to describe adaptation is that it enables to proc-
ess this model at design-time in order to validate it [13]. Based on the meta-model
defined in the previous section we have defined a simulator and automated the veri-
fication of invariants. This section describes the way the simulator is built and how
it allows checking for termination of adaptation rules and verification of invariant
properties.

4.1 Simulation Model and Implementation

The goal of the simulation is to build a model of the valid potential configurations and
adaptations of the application. To do that, the simulation starts from an initial configu-
ration and applies the adaptation rules to move to a new configuration. Figure 7 pre-
sents the simulation model. According to this model, a simulation is composed of a
set of configurations and a set of adaptations between these configurations. Each con-
figuration refers to a set of variants and a set of variable terms. The variants corre-
spond to the aspect to be woven in order to build this configuration [7]. The Variable
terms define the state of the context variables for this configuration. An adaptation
links a source configuration with a target configuration. An adaptation is triggered by
a context event and refers to one or more adaptation rules. The context event is a
change in the values of one or more context variables.

Fig. 7. Simulation model

Based on this simulation model, a prototype simulator has been implemented using
the Kermeta platform [12]. The simulator starts from an initial configuration and for
each variation of the context variables it evaluates the guards of the adaptation rules.
If the guard of an adaptation rule is true in the new context then this rule must be ap-
plied and the guards of all the rules are evaluated again. Adaptation rules are applied
until none of their guards evaluates to true.

104 F. Fleurey et al.

4.2 Simulation Output

The output of a simulation can be rendered as a graph in which each node is a con-
figuration and each edge is an adaptation. Figure 8 shows an excerpt of the simulation
graph for the service discovery application. The complete simulation graph for this
example contains 24 configurations obtained by aspect weaving and 70 adaptations.
In the label of each node, the first line corresponds to the values of the context vari-
ables and the second line to the set of aspects that should be used to create the corre-
sponding configuration. Each edge in the graph corresponds to an adaptation to a
change of one context variable. The label of the edges starts with the context variable
change and details the set of adaptation rules that were applied. In the graph presented
in Figure 8 the configurations have been colored in order to visualize easily the bat-
tery level. Configurations for which the battery is high are displayed in green and con-
figurations with low battery are displayed in orange.

4.3 Constraint Checking and Rule Termination

The main benefit of the simulation model is to allow for validating the adaptation
rules at design-time. As shown in the previous section the adaptation graph can be
visualized and colors can be used in order to highlight specific properties. This allows
for a manual validation of the specified rules. In addition, the simulation process can
identify live-locks and dead-locks in the adaptation graph and allows to automatically
verify invariants on the system.

Dead-locks in the simulation graph correspond to cases where some adaptation
rules lead to a configuration from which the system cannot adapt. In a design, this
could be done voluntarily but in most cases this is due to some incorrect or missing
adaptation rules. Live-locks correspond to cases where the system bounces between
several configurations while the context is not changing. This situation always reveals

Fig. 8. Excerpt of the simulation graph for the SDA

 Modeling and Validating Dynamic Adaptation 105

an error in the adaptation rules. The simulator can identify live-locks while it com-
putes the simulation graph. For a single change of the context, no adaptation rule
should be able to apply twice. Indeed, if after applying a rule (and possibly some oth-
ers), if the same rule can apply again then the rule could be applied an indefinite
number of times. When this situation is detected by the simulator, it reports an error in
the rules and provides the configuration in which the problem occurs and the se-
quence of rules which is looping.

The meta-model presented in Section 3 allows defining invariants on the system.
These invariants are checked by the simulator on all the configurations that are cre-
ated during the simulation. Any violation of these invariants reveals an error in the
adaptation model.

5 Adapting the System at Runtime

In this section, we present how we actually adapt a running system using the rules we
presented in Section 3. In order to trigger the rules, we need to monitor the state of the
system itself and the execution context (e.g., memory, CPU usage, available network
bandwidth, battery level). For this purpose we intend to reuse the Intel Mobile Plat-
form Software Development Kit [1] that already offers a large set of probes. This SDK
is freely available and provides a Java API implementing these probes. Using these
probes, we have to implement the variables related to the execution context, e.g.,
lowBatt. For example, we can specify that:

lowBatt = batteryInstance.percentRemaining < 15

However, defining the variable lowBatt in this way may be too strict. For example,
if the battery level goes under 15%, the system will adapt. But, if the user plugs the
system to power supply, the battery level will rapidly increase and the system may
adapt again because the battery is not low anymore. In this case, the system adapts
twice whereas it would have been preferable to do nothing as the adaptation process
may be time consuming.

In order to tackle the instability of rules, we will use WildCAT 2.0, currently still
under development. WildCAT [5] is an extensible Java framework that eases the crea-
tion of context-aware applications. It provides a simple but yet powerful dynamic
model to represent the execution context of a system. The context information can be
accessed by two complimentary interfaces: synchronous requests (pull mode: applica-
tion makes a query on the context) and asynchronous notifications (push mode: con-
text raises information to the application). Internally, it is a framework designed to
facilitate the acquisition and the aggregation of contextual data and to create reusable
ontologies to represent aspects of the execution context relevant to many applications.
A given application can mix different implementations for different aspects of its con-
text while only depending on WildCAT’s simple and unified API. The version 2.0 of
WildCAT allows defining SQL-like requests on the environment model and integrate
the notion of time. For example, it is possible to trigger a rule when the battery has
been lower than 15% for more than 3 minutes.

When a rule is triggered, the associated variants become active. In other words, we
weave the aspects associated to each variant in the base model. Aspect weaving is

106 F. Fleurey et al.

currently performed with SmartAdapters [8]. Then, we compare the woven model
with the reference model, obtained by introspection over the running system. This
comparison generates a diff and match model specifying what has changed in the
woven model. By analyzing this model, we automatically generate a safe reconfigura-
tion script that is then applied to the running system. Aspect weaving and automatic
adaptation are described in more details in [8, 11].

6 Related Work

Zhang and Cheng present a method for constructing and verifying adaptation models
using Petri nets [13]. Different from our approach, Zhang and Cheng identify and
define all the configurations in advance. In our approach, we define the context prop-
erties, adaptation rules, and variability of the application. The simulator uses this in-
put to eventually produce potential valid system configurations. The simulator
identifies system configurations that violate invariants. The simulator also detects
live-locks and dead-locks that could be incorrectly triggered by the adaptation rules.
Furthermore, the results of the simulation help designers to make decisions when
refactoring the system. Also relevant to our work in the DiVA project is the outcome
from MADAM/MUSIC [6] projects and SAFRAN related work [4]. The approaches
used in MADAM and MUSIC enable runtime adaptation by exploiting architecture
models as in our case. SAFRAN is a platform that provides runtime support for adap-
tive systems. Even though, MADAM, MUSIC, and SAFRAN existing results have
inspired our research they do not focus on validation issues.

7 Conclusion and Future Work

This paper presents our ongoing work on modeling adaptation. So far, based on the
meta-model we have modeled, simulated and checked a few toy adaptive applications.
However, we have also identified the need for more expressiveness in order to de-
scribe the variants, the context and the adaptation rules. Our objective is to build on
top of the current meta-model in order to identify a restricted set of concepts relevant
to the modeling of variability and adaptation. At this stage, we have identified two
specific issues.

Firstly, in their current form, the number of adaptation rules can quickly grow as
the number of context elements and variants increase. Our main goal is to tackle the
problem of an explosive growth in the number of configurations and the artifacts to be
used in their construction. However, we do not want to move the complexity associ-
ated into the rules as a consequence. Consequently, as a step towards improving our
adaptation rules, we aim to express the rules using semantics. In that sense, the rule
should be of the form “choose a set of variants with properties that match the current
context”. The above embraces a more declarative approach. Although, sometimes we
still might want to allow rules on variant configurations since pre-defined full or par-
tial configurations might be extracted or derived from the requirements straightfor-
wardly, as was the case in our variability model.

 Modeling and Validating Dynamic Adaptation 107

Secondly, our current simulation prototype enumerates all the configurations and
adaptations between them. While this is very useful and works well while the number
of configurations is manageable, this approach has the typical model-checking scal-
ability issues when the number of configuration and adaptation grows. Several tech-
niques can be combined in order to keep the simulation space manageable, for
example, adding constraints on the context, considering sub-sets of variability dimen-
sions or using heuristics to limit the depth of simulations. In the context of the DiVA
project, we plan to experiment with industrial adaptive applications in order to choose
the most appropriate solutions to this scalability issue.

For the runtime, as future work we plan to automate as much as possible the im-
plementation of the triggers. For example, it is easy to quantify the domain in which a
battery evolves: 0 to 100. But, defining what low level in terms of battery means may
be more difficult. We previously said that a battery is low if the remaining percentage
is lower than 15 for 3 minutes. However, this kind of information is generally not
specified in requirement documents and developers have to infer the information from
their knowledge and/or based on experimentation. We plan to use fuzzy logic [9] to
help in defining and implementing triggers. Providing a global domain (0 to 100) and
some qualifiers (“high”, “medium”, “low”), the fuzzy logic can determine, for a given
observed value (e.g., 17%) if the battery is “low”, “medium”, etc. Fuzzy logic can
help us in filling the gap between requirement (qualitative descriptions) and imple-
mentation (quantitative observations) and allows keeping high-level adaptation rules
at runtime. Early results are shown in [3].

References

[1] http://ossmpsdk.intel.com/
[2] Bencomo, N., France, R., Blair, G.: 2nd international workshop on models@run.time. In:

MoDELS 2007 Workshops. LNCS, vol. 5002, pp. 206–211. Springer, Heidelberg (2008)
[3] Chauvel, F., Barais, O., Borne, I., Jezequel, J.-M.: Composition of qualitative adaptation

policies. In: Proceedings of Automated Software Engineering Conference (ASE 2008)
(2008)

[4] David, P.-C., Ledoux, T.: An aspect-oriented approach for developing self-adaptive frac-
tal components. In: Löwe, W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 82–97.
Springer, Heidelberg (2006)

[5] David, P.C., Ledoux, T.: WildCAT: a generic framework for context-aware applications.
In: MPAC 2005: 3rd Int. Workshop on Middleware for Pervasive and Ad-hoc Computing,
pp. 1–7. ACM, New York (2005)

[6] Floch, J., Hallsteinsen, S., Stav, E., Eliassen, F., Lund, K., Gjorven, E.: Using architecture
models for runtime adaptability. Software IEEE 23(2), 62–70 (2006)

[7] Flores-Cortés, C.A., Blair, G., Grace, P.: An Adaptive Middleware to Overcome Service
Discovery Heterogeneity in Mobile Ad-hoc Environments. IEEE Dist. Systems Online
(2007)

[8] Lahire, P., Morin, B., Vanwormhoudt, G., Gaignard, A., Barais, O., Jézéquel, J.-M.: In-
troducing variability into aspect-oriented modeling approaches. In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 498–513.
Springer, Heidelberg (2007)

108 F. Fleurey et al.

[9] Moon, S., Lee, K.H., Lee, D.: Fuzzy branching temporal logic. IEEE Transactions on Sys-
tems Man, and Cybernetics –PartB: Cybernetics 34(2) (2004)

[10] Morin, B., Fleurey, F., Bencomo, N., Jezequel, J.-M., Solberg, A., Dehlen, V., Blair, G.:
An aspect-oriented and model-driven approach for managing dynamic variability. In:
Czarnecki, K., Ober, I., Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS,
vol. 5301. Springer, Heidelberg (2008)

[11] Morin, B., Vanwormhoudt, G., Lahire, P., Gaignard, A., Barais, O., Jézéquel, J.-M.: Man-
aging variability complexity in aspect-oriented modeling. In: Czarnecki, K., Ober, I.,
Bruel, J.-M., Uhl, A., Völter, M. (eds.) MODELS 2008. LNCS, vol. 5301. Springer, Hei-
delberg (2008)

[12] Muller, P.A., Fleurey, F., Jézéquel, J.-M.: Weaving executability into object-oriented
meta-languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713,
pp. 264–278. Springer, Heidelberg (2005)

[13] Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive software.
In: International Conference on Software Engineering (ICSE 2006), China (2006)

Model-Based Traces�

Shahar Maoz

Department of Computer Science and Applied Mathematics
The Weizmann Institute of Science, Rehovot, Israel

shahar.maoz@weizmann.ac.il

Abstract. We introduce model-based traces, which trace behavioral
models of a system’s design during its execution, allowing to combine
model-driven engineering with dynamic analysis. Specifically, we take
visual inter-object scenario-based and intra-object state-based models
(sequence charts and statecharts) used for a system’s design, and fol-
low their activation and progress as they come to life at runtime, during
the system’s execution. Thus, a system’s runtime is recorded and viewed
through abstractions provided by behavioral models used for its design.
We present two example applications related to the automatic genera-
tion and visual exploration of model-based traces and suggest a list of
related challenges.

1 Introduction

Transferring model-driven engineering artifacts and methods from the early
stages of requirements and specification, during a system’s design, to the later
stages of the lifecycle, where they would aid in the testing, analysis, mainte-
nance, evolution, comprehension, and manipulation of running programs, is an
important challenge in current model-driven engineering research.

In this paper, as a means towards this end, we introduce model-based traces,
which trace behavioral models from a system’s design during its execution, al-
lowing to combine model-driven engineering with dynamic analysis. Specifically,
we take visual inter-object scenario-based and intra-object state-based models
(sequence diagrams and statecharts) used for a system’s design, and follow their
activation and progress as they come to life at runtime, during the execution of
the system under investigation. Thus, a system’s runtime is recorded and viewed
through abstractions provided by models used for its design.

An important feature of model-based traces is that they provide enough in-
formation to reason about the executions of the system and to reconstruct and
replay an execution (symbolically or concretely), exactly at the abstraction level
defined by its models. This level of model-based reflection seems to be a nec-
essary requisite for the kind of visibility into a system’s runtime required for
model-based dynamic analysis and adaptation.

� This research was supported by The John von Neumann Minerva Center for the
Development of Reactive Systems at the Weizmann Institute of Science.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 109–119, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

110 S. Maoz

Additional features worth noting. First, model-based traces can be generated
and defined based on partial models; the level of abstraction is defined by the
modeler. Second, the models used for tracing are not necessarily reflected ex-
plicitly in the running program’s code; rather, they define a separate viewpoint,
which in the process of model-based trace generation is put against the concrete
runtime of the program under investigation. Third, the same concrete runtime
trace may result in different model-based traces, based on the models used for
tracing; and vice versa, different concrete runtime traces may result in identical
model-based traces, if the concrete runs are equivalent from the more abstract
point of view of the model used for tracing.

In the next section we briefly introduce, informally define, and discuss the
format and features of model-based traces, using a simple example. We then
present two example applications related to the automatic generation and visual
exploration of model-based traces. Finally, we suggest a list of related challenges.

2 Model-Based Traces

The use of system’s execution traces for different analysis purposes requires
different levels of abstraction, e.g., recording CPU register assignments, recording
virtual machine commands, or recording statements at the code level. We suggest
a higher level of abstraction over execution traces, based on behavioral models
typically used for a system’s design, such as sequence diagrams and statecharts.

In this work we present two types of model-based traces, inter-object scenario-
based traces and intra-object state-based traces. Additional types may be created
by combining variants of the two or using other modeling techniques1.

Given a program P and a behavioral model M , a model-based execution trace
records a run r of P at the level of abstraction induced by M . A unification
mechanism is defined, which statically and dynamically maps concrete elements
of the run to elements in the model. The type of the model used, the artifacts
and their semantics, define the types of entries that appear in the model-based
trace. We demonstrate our ideas using two concrete examples of a scenario-based
trace and a state-based trace, taken from a small example system.

Note that although there are code generation schemes for the execution of the
models we use, we do not, in general and in the example given here, consider
tracing programs whose code was automatically generated from models. On the
contrary, we believe that one of the strengths of our approach is that it can
be applied to systems in general, not only to ones where the implementation
explicitly reflects certain high-level models.

Also note that the model-based traces we present are not mere projections
of the concrete runtime information onto some limited domain. Rather, we use
stateful abstractions, where trace entries depend on the history and context of
the run and the model; the model-based trace not only filters out irrelevant

1 In principle, any representation of an execution trace may be considered a model-
based trace, depending on the definition of what constitutes a model.

Model-Based Traces 111

information but also adds model specific information (e.g., information about
entering and exiting ‘states’ that do not appear explicitly in the program).
A small example. Consider an implementation of the classic PacMan game.
PacMan consists of a maze, filled with dots, power-ups, fruit and four ghosts. A
human player controls PacMan, who needs to collect as many points as possible
by eating the objects in the maze. When a ghost collides with PacMan, it loses a
life. When no lives are left, the game is over. However, if PacMan eats a power-
up, it is temporarily able to eat the ghosts, thus reversing roles. When a ghost is
eaten, it must go back to the jail at the center of the maze before leaving again to
chase PacMan. When all dots are eaten, the game advances to the next – more
difficult – level. We consider the PacMan game to be a well-known, intuitive,
relatively small and yet complex enough reactive system, hence a good choice
for the purpose of demonstrating model-based traces in this paper.

2.1 Scenario-Based Models

For inter-object scenario-based modeling, we use a UML2-compliant variant of
Damm and Harel’s live sequence charts (LSC) [4,9]. Roughly, LSC extends the
partial order semantics of sequence diagrams in general with a universal in-
terpretation and must/may (hot/cold) modalities, and thus allows to specify
scenario-based liveness and safety properties. Must (hot) events and conditions
are colored in red and use solid lines; may (cold) events and conditions are col-
ored in blue and use dashed lines. A specification typically consists of many
charts, possibly interdependent, divided between several use cases (our small
PacMan example has 9 scenarios divided between 3 use cases).

Fig. 1. The LSC for PacManEatsGhost with a cut displayed at (3,4,2,0)

112 S. Maoz

Fig. 1 shows one LSC taken from our example model of PacMan. Vertical lines
represent specific system objects and time goes from top to bottom. Roughly,
this scenario specifies that “whenever a gameControl calls a ghost’s
collidedWithPacman() method and the ghost’s isEaten() method evaluates to
TRUE, the gameControl must tell the player (PacMan) to eat the ghost, the
player must tell the ghost it has been eaten, and the ghost’s state must change
to EATEN. Then, if and when the ghost goes to jail it must tell the gameModel it
has gone there and its state should change to JAIL, etc...” Note the use of hot
‘must’ elements and cold ‘may’ elements. Also, note the use of symbolic instances
(see [15]): the lifeline representing ghost may bind at runtime to any of the four
ghosts (all four are instances of the class Ghost).

An important concept in LSC semantics is the cut, which is a mapping from
each lifeline to one of its locations (note the tiny location numbers along the
lifelines in Fig. 1, representing the state of an active scenario during execution).
The cut (3,4,2,0), for example, comes immediately after the hot evaluation of
the ghost’s state. A cut induces a set of enabled events — those immediately after
it in the partial order defined by the diagram. A cut is hot if any of its enabled
events is hot (and is cold otherwise). When a chart’s minimal event occurs, a
new instance of it is activated. An occurrence of an enabled method or true
evaluation of an enabled condition causes the cut to progress; an occurrence
of a non-enabled method from the chart or a false evaluation of an enabled
condition when the cut is cold is a completion and causes the chart’s instance
to close gracefully; an occurrence of a non-enabled method from the chart or a
false evaluation of an enabled condition when the cut is hot is a violation and
should never happen if the implementation is faithful to the specification model.
A chart does not restrict events not explicitly mentioned in it to occur or not to
occur during a run (including in between events mentioned in the chart).

2.2 Scenario-Based Traces

Given a scenario-based specification consisting of a number of LSCs, a scenario-
based trace includes the activation and progress information of the scenarios,
relative to a given program run. A trace may be viewed as a projection of the
full execution data onto the set of methods in the specification, plus, significantly,
the activation, binding, and cut-state progress information of all the instances
of the charts (including concurrently active multiple copies of the same chart).
Thus, our scenario-based traces may include the following types of entries:

– Event occurrence. representing the occurrence of an event. Events are
timestamped and are numbered in order of occurrence. Only the events that
explicitly appear in one of the scenarios in the model are recorded in the
trace (one may add identifiers of participating objects, i.e., caller and callee,
and parameter values). The format for an event occurrence entry is:

E: <timestamp> <event no.>: <event signature>

– Binding. representing the binding of a lifeline in one of the active scenario
instances to an object. Its format is:

Model-Based Traces 113

...
E: 1172664920526 64: void pacman.classes.Ghost.slowDown()
B: PowerUpEaten[1] lifeline 6 <- pacman.classes.Ghost@7e987e98
B: GhostStopsFleeing[7] lifeline 1 <- pacman.classes.Ghost@7e987e98
C: GhostStopsFleeing[7] (0,1) Hot
C: GhostFleeing[7] (1,3) Hot
E: 1172664920526 65: void pacman.classes.GameControl.ghostSlowedDown(Ghost) pacman.classes.Ghost@7e987e98
B: GhostStopsFleeing[7] lifeline 0 <- pacman.classes.GameControl[panel0,0,0,600x600,layout=...
C: GhostStopsFleeing[7] (1,2) Cold
C: GhostFleeing[7] (2,4) Cold
E: 1172664920526 66: void pacman.classes.GameModel.resetGhostPoints()
C: PowerUpEaten[1] (1,2,6,1,1,1,1) Cold
F: PowerUpEaten[1] Completion
E: 1172664921387 67: void pacman.classes.Fruit.enterScreen()
B: PacmanEatsFruit[0] lifeline 2 <- pacman.classes.Fruit@3360336
C: PacmanEatsFruit[0] (0,0,1,0) Hot
C: PacmanEatsFruit[0] (0,0,2,0) Cold
E: 1172664923360 68: void pacman.classes.Ghost.collidedWithPacman()
B: PacmanEatsGhost[2] lifeline 1 <- pacman.classes.Ghost@7d947d94
B: PacmanEatsGhost[2] lifeline 0 <- pacman.classes.GameControl[panel0,0,0,600x600,layout=...
C: PacmanEatsGhost[2] (1,1,0,0) Hot
C: PacmanEatsGhost[2] (1,2,0,0) Hot
C: GhostEatsPacman[2] (0,1,1,0) Cold
F: GhostEatsPacman[2] Violation
...

Fig. 2. Part of a textual representation of a scenario-based trace of PacMan

B: <scenario name>[instance no.] lifeline <no.> <- <object identifier>

– Cut change. representing a cut change in one of the active scenario in-
stances. Its format is:

C: <scenario name>[instance no.] <cut tuple> [Hot|Cold]

– Finalization. representing a successful completion or a violation in an active
scenario instance. Its format is:

F: <scenario name>[instance no.] [Completion|Violation]

Fig. 2 shows an example short snippet from a scenario-based trace of PacMan.
Note the different types of entries that appear in the trace.

2.3 State-Based Models

For intra-object state-based modeling, we use UML state machines (that is, the
object based variant of Harel statecharts [7]). For lack of space, we assume the
reader is partly familiar with the syntax and semantics of statecharts in general,
at least to the level that allows to understand our example.

Fig. 3 shows an example statechart taken from a model of PacMan. It shows
part of a statechart for the class Ghost.

2.4 State-Based Traces

Given a state-based specification consisting of a number statecharts, a state-based
trace includes the creation and progress information of the statecharts, relative
to a given program run. The trace includes information on events, guards eval-
uation, and the entering and exiting of states in all instances of the statecharts
(including concurrently running instances of the same statechart). Thus, our
state-based traces may include the following types of entries:

114 S. Maoz

Fig. 3. Part of the Ghost statechart in the PacMan model

...
EV: 45632290 874: Ghost[3].collided
EX: Ghost[3] Exited state Ghost.InGame.InPlay.Play.Running.Free
EN: Ghost[3] Entered state Ghost.InGame.InPlay.Play.Running.Jail
EV: 45644272 875: Ghost[2].collided
EX: Ghost[2] Exited state Ghost.InGame.InPlay.Play.Running.Free
EN: Ghost[2] Entered state Ghost.InGame.InPlay.Play.Running.Jail
EV: 45644290 876: Ghost[3].timer
EX: Ghost[3] Exited state Ghost.InGame.InPlay.Play.Running.Jail
EN: Ghost[3] Entered state Ghost.InGame.InPlay.Play.Running.Free
EV: PacMan[1] 877: Pacman[1].complete
EX: PacMan[1] Exited state PacMan.InPlay.Play
EN: PacMan[1] Entered state PacMan.InPlay.LevelInitalization
EV: 45664403 878: Ghost[1].nextLevel
EX: Ghost[1] Exited state Ghost.InGame.InPlay.Play.Running.Free
EX: Ghost[1] Exited state Ghost.InGame.Levels.Basic
EN: Ghost[1] Entered state Ghost.InGame.InPlay.Play.Initalization
EN: Ghost[1] Entered state Ghost.InGame.Levels.Intermediate
EV: 45664405 879: Ghost[2].nextLevel
EX: Ghost[2] Exited state Ghost.InGame.InPlay.Play.Running.Jail
EX: Ghost[2] Exited state Ghost.InGame.Levels.Basic
EN: Ghost[2] Entered state Ghost.InGame.InPlay.Play.Initalization
EN: Ghost[2] Entered state Ghost.InGame.Levels.Intermediate
EV: 45664408 880: Ghost[3].nextLevel
...

Fig. 4. Part of a textual representation of a state-based trace of PacMan

– State entered representing a statechart entering a state. The format is:

EN: <class_name>[instance no.] Entered state <state full name>

– State exited representing a statechart existing a state. The format is:

EX: <class_name>[instance no.] Exited state <state full name>

Model-Based Traces 115

– Event occurrence representing the occurrence of an event. Events are
timestamped and are numbered in order of occurrence. Only the events that
explicitly appear in one of the statecharts in the model are recorded in the
trace. One may optionally add guards evaluation. The format is:

EV: <timestamp> <event no.>: <event signature>

Fig. 4 shows a snippet from a state-based trace of PacMan involving a number
of statecharts. Note the different types of entries that appear in the trace.

We remark that the above scenario-based and state-based trace formats are
presented as examples. Depending on the application, the trace generation mech-
anism available, and the kind of analysis and reasoning intended for the model-
based traces, one may consider different formats, different entry types, different
levels of succinctness etc. For example, whether to document the values of guards
or the concrete values of parameters depends on the specific application and ex-
pected usage of the model-based trace.

3 Example Applications

We give a short overview of two example applications related to the generation
of model-based traces and to their visualization and exploration.

3.1 Generating Model-Based Traces

S2A [8] (for Scenarios to Aspects) is a compiler that translates live sequence
charts, given in their UML2-compliant variant using the modal profile [9], into
AspectJ code [1], and thus provides full code generation of reactive behavior
from visual declarative scenario-based specifications. S2A implements a compi-
lation scheme presented in [13]. Roughly, each sequence diagram is translated
into a scenario aspect, implemented in AspectJ, which simulates an automa-
ton whose states correspond to the scenario cuts; transitions are triggered by
AspectJ pointcuts, and corresponding advice is responsible for advancing the
automaton to the next cut state.

Most important in the context of this paper, though, is that in addition to
scenario-based execution (following the play-out algorithm of [10]), S2A provides
a mechanism for scenario-based monitoring and runtime verification. Indeed, the
example scenario-based trace shown in Fig. 2 is taken from an actual execution
log of a real Java program of the PacMan game adapted from [3], (reverse)
modeled using a set of live sequence charts (drawn inside IBM Rational SA [2] as
modal sequence diagrams), and automatically instrumented by the AspectJ code
generated by S2A. More on S2A and its use for model-based trace generation
can be found in http://www.wisdom.weizmann.ac.il/~maozs/s2a/.

3.2 Exploring Model-Based Traces

The Tracer [14] is a prototype tool for the visualization and interactive exploration
of model-based traces. The input for the Tracer is a scenario-based model of a

http://www.wisdom.weizmann.ac.il/~maozs/s2a/

116 S. Maoz

Fig. 5. The Tracer’s main view, an opened scenario instance with its cut displayed at
(3,4,2,0), and the Overview pane (at the bottom). The example trace and model are
taken from an implementation of the PacMan game, see [14].

system given as a set of UML2-compliant live sequence charts, and a scenario-
based trace, generated from an execution of the system under investigation.

Fig. 5 shows a screenshot of the main view of the Tracer, displaying a scenario-
based model and trace similar to the one shown in Fig. 2. Roughly, the main
view is based on an extended hierarchical Gantt chart, where time goes from left
to right and a two-level hierarchy is defined by the containment relation of use
cases and sequence diagrams in the model. Each leaf in the hierarchy represents
a sequence diagram, the horizontal rows represent specific active instances of
a diagram, and the blue and red bars show the duration of being in a specific
cold and hot relevant cuts. The horizontal axis of the view allows to follow
the progress of specific scenario instances over time, identify events that caused
progress, and locate completions and violations. The vertical axis allows a clear
view of the synchronic characteristic of the trace, showing exactly what goes on,
at the models abstraction level, at any given point in time.

When double-clicking a bar, a window opens, displaying the corresponding
scenario instance with its dynamic cut shown in a dashed black line. Identifiers of
bound objects and values of parameters and conditions are displayed in tooltips
over the relevant elements in the diagram. In addition, one can travel back and
forth along the cuts of the specific instance (using the keyboard or the arrows
in the upper-left part of the window). Multiple windows displaying the dynamic
view of different scenario instances can be opened simultaneously to allow for
a more global synchronic (vertical) view of a specific point in the execution,
or for a diachronic (horizontal) comparison between the executions of different
instances of the same scenario at different points in time during the execution.

Note the Overview pane (bottom of Fig. 5), which displays the main execution
trace in a smaller pixel per event scale, and the moving window frame showing

Model-Based Traces 117

the borders of the interval currently visible in the main view. The Overview al-
lows to identify high level recurring behavioral patterns, at the abstract level of
the scenarios in the model. Additional views are available, supporting multiplic-
ities, event-based and real-time based tracing, and the presentation of various
synchronous metrics (e.g., how many scenarios have been affected by the most
recent event?). Overall, the technique links the static and dynamic aspects of
the system, and supports synchronic and diachronic trace exploration. It uses
overviews, filters, details-on-demand mechanisms, multi-scaling grids, and gra-
dient coloring methods.

The Tracer was first presented in [14]. More on the Tracer, including additional
screenshots and screencasts can be found in http://www.wisdom.weizmann.ac.
il/~maozs/tracer/.

4 Related Work

We briefly discuss related work. Generating model-based traces requires an ob-
server with monitoring and decision-making capabilities; a so called ‘runtime
awareness’ component (see, e.g., [5,11]). However, while model-based traces can
be used for error detection and runtime verification, the rich information embed-
ded in them supports more general program comprehension and analysis tasks
and allows the reconstruction and symbolic replay of a program’s run at the
abstraction level defined by the model used for tracing.

The use of AOP in general and AspectJ in particular to monitor program
behavior based on behavioral properties specified in (variants of) LTL has been
suggested before (see, e.g., [5,16]). As LSCs can be translated into LTL (see [12]),
these work have similarities with our use here of S2A. Like [16], S2A auto-
matically generates the AspectJ code which simulates the scenario automaton
(see [13]). Unlike both work however, S2A outputs a rich trace reflecting state
changes and related data (binding etc.), to serve our goal of generating model-
based traces that allow visibility and replaying, not only error detection.

Many work suggest various trace generation and visual exploration techniques
(e.g., for a survey, see, [6]). Most consider code level concrete traces. Some at-
tempt to extract models from these traces. In contrast, model-based traces use
an abstraction given by user-defined models. They are generated by symbolically
running these models simultaneously with a concrete program execution.

5 Discussion and Challenges for Future Work

We introduced model-based traces and presented two example applications. The
focus of model-based traces is on providing visibility into an execution of a
program at the abstraction level defined by a model, enabling a combination of
dynamic analysis and model-driven engineering. Below we discuss our approach
and list related challenges.
Trace generation. S2A provides an example of a model-based trace gener-
ation technology, based on programmatically generated aspects. Two major

http://www.wisdom.weizmann.ac.il/~maozs/tracer/
http://www.wisdom.weizmann.ac.il/~maozs/tracer/

118 S. Maoz

advantages of this approach are that the monitoring code is automatically gen-
erated from the models, and that the code of the system under investigation
itself is oblivious to the models ‘watching’ it. Related challenges include min-
imizing runtime overhead, scalability in terms of trace length and model size,
and the application of similar technology to domains where aspect technology is
not readily available (e.g., various embedded or distributed systems).
Analysis and reasoning. We consider the development of analysis methods
for model-based traces. For example, define and measure various vertical and
horizontal metrics (e.g., ‘bandwidth’, state / transition coverage per trace per
model, how many times was each state visited), abstraction and refinement op-
erators (e.g., hide events and keep states, hide sub states of composite states),
ways to represent and compare different model-based runtime configurations
(‘snapshots’, perhaps most important for dynamic adaptation), or ways to align
and compare between traces of different runs of the same system, or very similar
runs of different versions of the same system. In addition, we consider additional
types of abstractions over the same models, e.g., real-time based vs. event-based
trace representation (as is supported by the Tracer (see [14])). Also, an agree-
able, common representation format for model-based traces, where applicable
(e.g., for specific types of models), should perhaps be defined and agreed upon,
so that not only models but also their traces may be exchanged between tools
in a standard format like XMI.
Visualization and interaction. The visualization and interaction supported
by the Tracer allows a human user to explore and analyze long and complex
model-based traces that are otherwise very hard to handle manually in their
textual form. Still, a lot more can be done on this front, from finding “economic”
visualizations for model-based snapshots to animation to visual filters etc.

Acknowledgements. I would like to thank David Harel, David Lo, Itai Segall,
Yaki Setty, and the anonymous reviewers for comments on a draft of this paper.

References

1. AspectJ, http://www.eclipse.org/aspectj/
2. IBM Rational Software Architect, http://www-306.ibm.com/software/awdtools/

architect/swarchitect/

3. PacMan. Java implementation of the classic PacMan game,
http://www.bennychow.com

4. Damm, W., Harel, D.: LSCs: Breathing Life into Message Sequence Charts. J. on
Formal Methods in System Design 19(1), 45–80 (2001)

5. Goldsby, H.J., Cheng, B.H.C., Zhang, J.: AMOEBA-RT: Run-Time Verification of
Adaptive Software. In: Giese, H. (ed.) MoDELS 2007 Workshops. LNCS, vol. 5002,
pp. 212–224. Springer, Heidelberg (2008)

6. Hamou-Lhadj, A., Lethbridge, T.C.: A Survey of Trace Exploration Tools and
Techniques. In: Lutfiyya, H., Singer, J., Stewart, D.A. (eds.) Proc. Conf. of the
Centre for Advanced Studies on Collaborative research (CASCON 2004), pp. 42–
55. IBM (2004)

http://www.eclipse.org/aspectj/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www-306.ibm.com/software/awdtools/architect/swarchitect/
http://www.bennychow.com

Model-Based Traces 119

7. Harel, D., Gery, E.: Executable Object Modeling with Statecharts. IEEE Com-
puter 30(7), 31–42 (1997)

8. Harel, D., Kleinbort, A., Maoz, S.: S2A: A Compiler for Multi-modal UML Se-
quence Diagrams. In: Dwyer, M.B., Lopes, A. (eds.) FASE 2007. LNCS, vol. 4422,
pp. 121–124. Springer, Heidelberg (2007)

9. Harel, D., Maoz, S.: Assert and Negate Revisited: Modal Semantics for UML Se-
quence Diagrams. Software and Systems Modeling (SoSyM) 7(2), 237–252 (2008)

10. Harel, D., Marelly, R.: Specifying and executing behavioral requirements: the
play-in/play-out approach. Software and Systems Modeling (SoSyM) 2(2), 82–107
(2003)

11. Hooman, J., Hendriks, T.: Model-Based Run-Time Error Detection. In: Giese, H.
(ed.) MODELS 2008. LNCS, vol. 5002, pp. 225–236. Springer, Heidelberg (2008)

12. Kugler, H.J., Harel, D., Pnueli, A., Lu, Y., Bontemps, Y.: Temporal Logic for
Scenario-Based Specifications. In: Halbwachs, N., Zuck, L.D. (eds.) TACAS 2005.
LNCS, vol. 3440, pp. 445–460. Springer, Heidelberg (2005)

13. Maoz, S., Harel, D.: From Multi-Modal Scenarios to Code: Compiling LSCs into
AspectJ. In: Young, M., Devanbu, P.T. (eds.) FSE 2006, pp. 219–230. ACM, New
York (2006)

14. Maoz, S., Kleinbort, A., Harel, D.: Towards Trace Visualization and Exploration
for Reactive Systems. In: Proc. IEEE Symp. on Visual Languages and Human-
Centric Computing (VL/HCC 2007), pp. 153–156. IEEE Computer Society, Los
Alamitos (2007)

15. Marelly, R., Harel, D., Kugler, H.: Multiple Instances and Symbolic Variables in
Executable Sequence Charts. In: Proc. 17th ACM Conf. on Object-Oriented Prog.,
Systems, Lang. and App (OOPSLA 2002), pp. 83–100 (2002)

16. Stolz, V., Bodden, E.: Temporal Assertions using AspectJ. Electr. Notes Theor.
Comput. Sci. 144(4), 109–124 (2006)

Model Co-evolution and
Consistency Management (MCCM’08)

Dirk Deridder1, Jeff Gray2, Alfonso Pierantonio3, and Pierre-Yves Schobbens4

1 Vrije Universiteit Brussel, Belgium
dirk.deridder@vub.ac.be

2 University of Alabama at Birmingham, USA
gray@cis.uab.edu

3 Università degli Studi dell’Aquila, Italy
alfonso@di.univaq.it

4 Université de Namur, Belgium
pierre-yves.schobbens@fundp.ac.be

Abstract. The goal of the workshop was to exchange ideas and experi-
ences related to Model (Co-)evolution and Consistency Management
(MCCM) in the context of Model-Driven Engineering (MDE). Contempo-
raryMDEpractices typically include themanipulation and transformation
of a large and heterogeneous set of models. This heterogeneity
exhibits itself in different guises ranging from notational differences to se-
mantic content-wise variations. These differences need to be carefully man-
aged in order to arrive at a consistent specification that is adaptable to
change. This requires a dedicated activity in the development process and
a rigourous adoption of techniques such as model differencing, model com-
parison,model refactoring,model (in)consistencymanagement,model ver-
sioning, and model merging. The workshop invited submissions from both
academia and industry on these topics, as well as experience reports on the
effective management of models, metamodels, and model transformations.
We selected ten high-quality contributions out of which we included two as
best-papers in the workshop reader. As a result of the high number of par-
ticipants and the nice mix of backgroundswe were able to debate lively over
a number of pertinent questions that challenge our field.

1 Introduction

In general, software artifacts and applications are subject to many kinds of
changes. These range from technical changes due to rapidly evolving technology
platforms, to modifications resulting from the natural evolution of the business
that is supported. This includes changes at all levels, from requirements through
architecture and design, to source code, documentation and test suites. They typ-
ically affect various kinds of models including data models, behavioral models,
domain models, source code models, goal models, etc. Coping with and manag-
ing the changes that accompany the evolution of software assets is therefore an
essential aspect of Software Engineering as a discipline.

Model-Driven Engineering (MDE) is an approach to software design and de-
velopment in which models are the primary artifacts of software development.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 120–123, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Model Co-evolution and Consistency Management (MCCM’08) 121

The major objective of MDE is to increase productivity and reduce time-to-
market by raising the level of abstraction. In part this is done by using concepts
closer to the problem domain instead of those offered by programming languages.
Such models represent domain-specific concepts and conform to metamodels.

A core task of MDE is the manipulation and transformation of models. Thus,
Model (Co-)evolution and Consistency Management (MCCM) are crucial ac-
tivities to cope with the natural changes of the corresponding software system.
Currently, there is an increasing need for more disciplined techniques and en-
gineering tools to support a wide range of model evolution activities, including
model differencing, model comparison, model refactoring, model inconsistency
management, model versioning and model merging.

Recently, a number of works devoted to the detection of differences between
models has emerged to foster enhanced model management practices. The ex-
ploitation of differences is an appropriate solution for version management, be-
cause in general the complete system model is far larger than the modifications
that occur from one version to another. Apart from these works, further research
is required to address the rest of the model evolution activities (refactoring, in-
consistency management, versioning, etc.). Moreover, the different dimensions
of evolution make the problem intrinsically difficult because modifications can
reflect coherent adaptations of correlated artifacts at several layers of the meta-
modeling architecture. For example, some well-formedness rules can be invali-
dated when a metamodel evolves. The same happens with the associated model
transformations. Furthermore, model adaptations should be propagated to arti-
facts interconnected by means of model transformations. Finally, the evolution
of model transformations should be reflected in both source and target models.

In addition, there is a substantial difference between the modeling of evolution
and the evolution of models. There are plenty of works on the former topic,
while our proposed workshop focuses on the evolution of models. One of the
goals of this workshop was to explain and clarify the difference between these
two notions, by explicitly identifying the concepts and mechanisms involved in
each one. In particular, we targeted the cross-fertilization of both the MDE
and software evolution communities. This is why we considered models in a
very broad sense to allow researchers from different communities to identify and
discuss commonalities/differences among their specific MCCM problems.

2 About the Workshop

Theworkshopwasagreatsuccess1.Wehad59registeredparticipantswhichresulted
in many interesting and lively discussions. In total we accepted 10 submissions for
presentation which are listed below (presenters are underlined). The contributions
marked with an (*) were selected as best-papers and are included in the Workshop
Reader. The other papers are available in the electronic workshop proceedings2.
1 MCCM’08 was organised in cooperation with the MoVES network, funded by the Bel-
gian State, Belgian Science Policy http://moves.vub.ac.be/

2 MCCM’08 Workshop Proceedings: http://www.info.fundp.ac.be/mccm/

http://moves.vub.ac.be/
http://www.info.fundp.ac.be/mccm/

122 D. Deridder et al.

An Inconsistency Handling Process,
by Ragnhild Van Der Straeten

Retainment Rules for Model Transformations,
by Thomas Goldschmidt and Axel Uhl

(*) Triple Graph Grammars or Triple Graph Transformation Sys-
tems? A Case Study from Software Configuration Management,
by Bernhard Westfechtel, Thomas Buchmann and Alexander Dotor

MOD2-SCM: Experiences with Co-evolving Models when Designing
a Modular SCM System,
by Thomas Buchmann, Alexander Dotor and Bernhard Westfechtel

Efficient Recognition and Detection of Finite Satisfiability Problems
in UML Class Diagrams: Handling Constrained Generalization
Sets, Qualifiers and Association Class Constraints,
by Azzam Maraee, Victor Makarenkov Makarenkov and Mira Balaban

COPE: A Language for the Coupled Evolution of Metamodels and
Models,
by Markus Herrmannsdoerfer, Sebastian Benz and Elmar Juergens

(*) On Integrating OCL and Triple Graph Grammars,
by Duc-Hanh Dang and Martin Gogolla

Model Engineering using Multimodeling,
by Christopher Brooks, Chih-Hong Cheng, Thomas Huining Feng,
Edward A. Lee and Reinhard von Hanxleden

AMOR Towards Adaptable Model Versioning,
by Kerstin Altmanninger, Gerti Kappel, Angelika Kusel, Werner Retschitzeg-
ger, Martina Seidl, Wieland Schwinger and Manuel Wimmer

Co-Evolution and Consistency in Workflow-based Applications,
by Mario Sanchez, Jorge Villalobos and Dirk Deridder

After the presentations we scheduled a number of plenary discussions. Each
discussion was focused on a particular question that addressed a major theme
in model consistency management and model (co-)evolution.

What are the steps required to install a full-fledged MCCM process?
The need for having a rigourous consistency and co-evolution process in
place was widely acknowledged. A number of participants pointed out that
setting up and (technologically) supporting an MDE process is already a big
challenge. It was agreed upon that more effort should go into defining an
integral approach.

What are the MCCM challenges when managing large models?
Several issues were discussed related to working with large models (both in
terms of size and diversity). In particular, the scalability of existing consis-
tency handlers was questioned, this not only with respect to the computa-
tional side but also to the possible cascade of inconsistencies. A challenge
in the future will be to derive which inconsistencies to address first in order
to reduce the size of problems reported. In addition, it is desirable to guide
developers to cope with the ‘unstructured’ set of inconsistencies (e.g., by

Model Co-evolution and Consistency Management (MCCM’08) 123

tagging the inconsistencies with their type and importance). Also, the need
to temporarily tolerate inconsistencies was identified, which requires a mech-
anism to reason with inconsistent models (e.g., by using a kind of ‘closest
semantic match’ to overcome problems).

How does bridging semantic domains impact MCCM?
The main issue discussed was how inconsistency handling techniques are
challenged by having to address model elements that stem from different se-
mantic universes. It was suggested that we also need dedicated formalisms to
specify cross-domain incompatibilities. This is in line with the growing ten-
dency towards domain-specific modeling languages, and it requires to balance
the benefits of domain-independent support versus dedicated support (e.g.,
dedicated detection engines, formalisms, resolution strategies).

What are the different perspectives on MCCM and how can we learn
from each other?
One of the goals of the workshop was to assemble researchers from diverse
fields in which MCCM is being addressed. We believe this goal was met as
exemplified by the contributions of the participants. Some participants dis-
cussed the topic from a generic MDE point of view, whereas others discussed
it specific to a particular application domain (e.g., software configuration
management, workflow-based applications). Also, in terms of the proposed
techniques we had a good distribution of topics (e.g., retainment rules, triple
graph grammars, ocl, coupled evolution of metamodels and models). As a
result, we were able to hold a lively debate during which we focused on
identifying and relating the commonalities and differences of the different
perspectives. There was a general consensus that the community would ben-
efit from bringing together existing categorisations of co-evolution scenarios
and (in)consistency types. Additionally, it was suggested to record the dif-
ferences in terminology since there are often subtle semantic deltas that
might cause misunderstandings (e.g., co-evolution versus coupled evolution
versus co-adaptation). During the workshop we were already able to clarify a
number of misconceptions. The alignment of terminology was also useful to
identify how we might possibly benefit from each other’s techniques and ap-
proaches. Therefore, a number of workshop participants suggested to set up
an online community in the form of a wiki. It is our hope that this wiki will
further enable the cross-fertilisation of both the MDE and software evolution
communities with respect to consistency and (co-)evolution problems.

Acknowledgements

We thank our programme committee members for their help in the paper selec-
tion process: Jean Bézivin, Rubby Casallas, Antonio Cicchetti, Serge Demeyer,
Stéphane Ducasse, Vincent Englebert, Jean-Marie Favre, Tudor Gı̂rba, Reiko
Heckel, Viviane Jonckers, Frederic Jouault, Ralf Lämmel, Kim Mens, Tom Mens,
Jonathan Sprinkle, Antonio Vallecillo, Ragnhild Van Der Straeten. We also thank
Anthony Cleve and Andreas Classen for the considerable effort they put into the
practical organisation of MCCM’08.

On Integrating
OCL and Triple Graph Grammars

Duc-Hanh Dang and Martin Gogolla

Department of Computer Science, University of Bremen
D-28334 Bremen, Germany

{hanhdd,gogolla}@informatik.uni-bremen.de

Abstract. Triple Graph Grammars (TGGs) tend to be a promising ap-
proach for explaining relationships between models in general, and model
co-evolution and model consistency within model-driven development in
particular. Declarative TGG descriptions can be translated into opera-
tional scenarios for model integration, model synchronization, and model
transformation. To realize such scenarios, restrictions formulated with
the Object Constraint Language (OCL) are an important factor. How
to integrate TGGs and OCL is a topic of ongoing research activities.
There are strong similarities between the result of such an integration
and the Queries, Views and Transformations (QVT) standard of the
Object Management Group (OMG). We propose a language for this in-
tegration: One part of this language has a one-one mapping to TGGs
and the remaining part covers OCL concepts. The language is realized
in our tool UML-based Specification Environment (USE) by taking two
views on operations derived from TGG rules: Declarative OCL pre- and
postconditions are employed as operation contracts, and imperative com-
mand sequences are taken as an operational realization. USE offers full
OCL support for restricting models and metamodels with invariants, for
checking pre- and postconditions of operations as well as for validating
and animating transformation operations. Our approach covers a com-
plete realization of TGGs incorporating OCL within our tool USE.

1 Introduction

Triple graph grammars (TGGs) have been first formally proposed in [1]. Their
aim was to ease the description of complex transformations within software en-
gineering. The original TGGs extend earlier ideas from [2]. With the advent
of model-centric software development approaches (like UML) and model-driven
engineering (MDE), TGGs tend to become one formal basis for underlying devel-
opment concepts. TGGs and the recent QVT (Queries, Views, Transformations)
share many functions and building blocks. But in contrast to TGGs, QVT in-
cludes the declarative language OCL (Object Constraint Language) which allows
to express properties and to navigate in complex models.

In the recent literature, a need for an integration of TGGs and OCL has been
expressed. However, such an integration has not been systematically studied or

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 124–137, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

On Integrating OCL and Triple Graph Grammars 125

realized yet. Recent papers [3,4,5,6,7] often either underestimate the importance
of OCL for constraints as pre- and postconditions of TGG rules or concentrate
on non-deleting rules or ignore the automatic construction of metamodels for
the correspondence domain of TGG rules. Within these works, OCL constraints
are only employed for updating attribute expressions, whereas we also support
OCL pre- and postconditions in TGG rules and OCL (meta-)-model invariants.

We propose a language for the integration of TGGs and OCL: One part of
this language has a one-one mapping to TGGs and the remaining part covers
OCL concepts. The language is realized in our tool UML-based Specification En-
vironment (USE) [8] by taking two views on operational scenarios derived from
a TGG rule: OCL pre- and postconditions are employed as operation contracts,
and command sequences are taken as an operational realization. Our approach
covers a complete realization of TGGs incorporating OCL within our tool USE
as well as an on-the-fly verification of the operations.

The rest of this paper is structured as follows. Section 2 explains the basic
idea by means of an example. Section 3 describes our realization in USE for the
integration. Section 4 explains how the integration of TGGs and OCL can sup-
port model co-evolution and consistency. Section 5 comments on related work.
The paper is closed with a summary and a conclusion.

2 The Basic Idea for Integrating TGGs and OCL

This section explains the basic idea of our approach by means of an example.
We consider a typical situation within software development, where one wants to
formally trace the relationship between a conceptual model and a design model.
Figure 1 indicates the correspondence between an association end on the left
side within a conceptual model and an attribute and an operation on the right
side within a design model. For example, we recognize that the association end
customer is mapped to the attribute customer and the operation getCustomer()
of the class Order.

We want to express the requirement that, when we add an association be-
tween Customer and Order in the conceptual model, the corresponding classes

Fig. 1. Correspondence between Association Ends and Attributes

126 D.-H. Dang and M. Gogolla

Conceptual Domain Correspondence Design Domain

Fig. 2. Simplified Example Metamodels and their Connection

in the design model are automatically extended with new attributes and op-
erations. Therefore, a correspondence between the association ends in the con-
ceptual model and the attributes and operations in the design model has to be
established in a formal way.

This scenario is a model transformation between UML class diagrams, and
QVT [9] as well as TGGs can approach the requirement. Figure 2 shows the
transformation in schematic form as a metamodel. The left side shows the meta-
model for the conceptual domain, the right side displays the metamodel for the
design domain, and the middle part pictures the connection resp. the correspon-
dence between them. Later we will see, that the diagram in Fig. 1 can be seen as
an instance diagram for the metamodels and that the dashed arrows (from Fig. 1)
are represented as objects belonging to classes from the middle part. A TGG
rule as well as QVT mappings can realize an action which adds an association
and updates the attributes and operations as explained in the following.

2.1 QVT for the Example Transformation

Figure 3 presents the example transformation in the QVT Core language. The
transformation contains two mappings, cm2Dm and assocEnd2Attr. The map-
pings declare constraints that must hold between the model elements within
the transformation. The transformation requires two new types of elements (two
new classes) for the correspondence domain: Cm2Dm and AssocEnd2Attr. The
mappings can be executed by matching patterns which are declared within the
‘check’ parts, i.e., domain patterns, and the ‘where’ part, i.e., middle patterns.
Each pattern includes a guard part and a bottom part.

The mapping cm2Dm allows to access a set of object pairs of the conceptual
model and the design model, which coincide in their name.

In the mapping assocEnd2Attr, the first ‘check’ part means that when two
ClassCM objects in the guard part are defined, the restriction including OCL
constraints in the bottom part must hold. The second ‘check’ part means that
when two objects of ClassDM in the guard part are defined, two Attr objects

On Integrating OCL and Triple Graph Grammars 127

map assocEnd2Attr{
 check cm(oneCM:ClassCM; manyCM:ClassCM){
 oneRole:AssocEnd,assoc:Assoc,manyRole:AssocEnd|
 oneRole.class=oneCM; oneRole.assoc=assoc;
 manyRole.class=manyCM; manyRole.assoc=assoc;
 oneRole.multiplicity='1'; manyRole.multplc='*';
 oneRole.roleName<>oclUndefined(String);
 manyRole.roleName<>oclUndefined(String);}
 check enforce dm(oneDM:ClassDM;manyDM:ClassDM){
 realize oneAttr:Attr, realize manyAttr:Attr,
 realize oneOp:Op, realize manyOp:Op |
 oneAttr.class:=manyDM; manyAttr.class:=oneDM;
 oneOp.class:=manyDM; manyOp.class:=oneDM;
 oneAttr.type:=oneDM.name;
 oneOp.retType:=oneDM.name;
 manyAttr.type:=
 'Set('.concat(manyDM.name).concat(')');
 manyOp.retType:=manyAttr.type;}
 where(oneMapping:Cm2Dm, manyMapping:Cm2Dm){
 realize one2Attr:AssocEnd2Attr,
 realize many2Attr:AssocEnd2Attr |
 one2Attr.role:=oneRole;one2Attr.attr:=oneAttr;
 one2Attr.op:=oneOp; many2Attr.role:=manyRole;
 many2Attr.attr:=manyAttr;many2Attr.op:=manyOp;
 oneAttr.name:=oneRole.roleName;
 oneOp.name:='get'.concat(oneRole.roleName);
 manyAttr.name:=manyRole.roleName;
 manyOp.name:='get'.concat(manyRole.roleName)}}

class Cm2Dm{
 classCM: ClassCM;
 classDM: ClassDM;
}

class AssocEnd2Attr{
 role: AssocEnd;
 op:Op;
 attr: Attr;
}

map cm2Dm{
 check cm(){
 classCM: ClassCM;
 }
 check dm(){
 classDM: ClassDM;
 }
 where(){cm2dm:Cm2Dm |
 cm2dm.classCM=classCM;
 cm2dm.classDM=classDM;
 classCM.name
 =classDM.name;
 }}

Fig. 3. Example Transformation in the QVT Core language

and two Op objects are created and their attribute values are updated by the
assignments in the bottom part. The keyword ‘realize’ means that the realized
variables must be enforced in order to bind to values. The keyword ‘enforce’
means that in case the OCL constraints within the bottom pattern do not
hold, the target model, i.e., the design model must be changed to fulfil the
constraints.

The transformation executes when its mappings are executed. A combination
of the two mappings cm2Dm and assocEnd2Attr fulfils the requirements stated
for the example transformation addAssociation.

2.2 TGGs Including OCL for the Example Transformation

Figure 4 presents the rule addAssociation in a TGG-like style, but in addition
to TGG elements OCL is also used. In the six parts LG, CG, RG, LB, CB, and
RB, the items L, C, R, G, B stand for Left, Correspondence, Right, Guard and
Bottom, respectively. The notions Guard and Bottom are taken from the QVT
Core language. The properties in the lower part of the object rectangles (like
name or multiplicity) indicate object attributes. The TGG rule is a non-deleting
rule, i.e., the left-hand side (L=LG+CG+RG) is included in the right-hand side
(R=L+LB+CB+RB).

In Fig. 4, OCL constraints for the rule are presented. The OCL constraints
cannot only be employed to restrict the attribute values in the guard and bottom
part, but they can also express more general restrictions. Classical TGG rules do
not embody OCL constraints. Our approach allows to add OCL constraints in all
parts and thus enables a general form for restricting the rule application as well

128 D.-H. Dang and M. Gogolla

Fig. 4. Example TGG rule including OCL: addAssociation

as a fine-grained description of consequences of rule application, for example, to
describe the updating of object attributes. General OCL expressions, which can
traverse the complete working graph on which the rule is applied, are allowed
as right sides of attribute assignments. The evaluation of the OCL expressions
is made before the working graph is modified by the rule.

This rule works as follows: Applying the rule within the conceptual domain
means to create an Assoc object representing an association; this induces a
graph rewrite in the design domain, i.e., Attr objects and Op objects rep-
resenting the association are created; the correspondence between the added
association and the new attributes and operations is established by a graph
rewrite in the correspondence domain. The OCL constraints allow to check the
applicability of the rule and to update the attribute values within the design
domain.

2.3 Requirements for the Integration of TGGs and OCL

By considering QVT as a motivation and a target for the integration of TGGs
and OCL as well as by generalizing the results from the subsections 2.1 and 2.2,
we propose requirements for the integration of TGGs and OCL as follows.

– Supporting OCL formulas for attribute expressions.
– Supporting OCL conditions as pre- and postconditions of TGG rules (corre-

sponding to negative application conditions and the right-hand side of TGG
rules, respectively), which cannot be represented by graphs.

On Integrating OCL and Triple Graph Grammars 129

– Supporting constraints on the metamodel of the middle domain of TGG
rules. (Supposing that all of the constraints must be taken from TGG rules)

– Supporting bi-directionally executable TGG rules in a synchronous way.

In addition, the integration of TGGs and OCL requires variations of TGGs.
A node in the correspondence domain may be connected to multiple nodes in
the remaining domains. This is a variation of TGGs because in the original
TGGs [1], the mappings are only one-one mappings. With the integration, TGG
rules can be deleting rules whereas in the definition of TGGs [1], TGG rules are
non-deleting rules.

3 USE Realization of TGGs and OCL

This section presents an approach for the realization of TGG rules including OCL
within our tool USE. We propose a language called use4tgg for the integration of
TGGs and OCL. We obtain operational scenarios of a TGG rule by automatically
translating the use4tgg description of the TGG rule. The operations are realized
in two ways: OCL pre- and postconditions are employed as operation contracts,
and command sequences are taken as an operational and executable realization.
We extend the technique from previous work [10] in order to realize operational
scenarios of a TGG rule.

3.1 Descriptions in the Language use4tgg

Figure 5 presents a use4tgg specification for the TGG rule addAssociation.
Recall that the rule is also represented in Fig. 3 and Fig. 4.

A TGG rule in use4tgg includes six parts. Each part corresponds to a pattern
of the TGG rule. Each pair of them corresponds to a domain (left, correspon-
dence, right) rule: (LG, LB), (CG, CB) and (RG, RB). As above, G stands for
Guard and B for Bottom. A rule within a domain is specified by the guard and
bottom parts (*G, *B). They can be seen as the pre- and postcondition of the
rule, respectively.

The language use4tgg offers a particular feature for the correspondence do-
main and allows an extension for specifying patterns of the correspondence. In
use4tgg one can specify correspondences between objects of the left and right
domains. The syntax for these so-called correspondence links is as follows.

(object L, object R) as (role L, role R) in object C: Class C

The items L, R, and C stand for Left, Right and Correspondence, respectively.
The advantage of this extension is that we can automatically generate the meta-
model of the correspondence domain. For example, such a correspondence link is
employed in the (CG, CB) parts in Fig. 5. From these correspondence links, we
can derive the metamodel of the correspondence domain in Fig. 2. In addition,
these correspondence links allow to suppress links between the correspondence
domain and the left and right domains, i.e., the two links (object L, object C)

130 D.-H. Dang and M. Gogolla

rule addAssociation
LG---
 oneCM:ClassCM
 manyCM:ClassCM
LB---
 assoc:Assoc
 oneRole:AssocEnd
 manyRole:AssocEnd
 (assoc,oneRole):Assoc_AssocEnd
 (assoc,manyRole):Assoc_AssocEnd
 (oneCM,oneRole):Class_AssocEnd
 (manyCM,manyRole):Class_AssocEnd
 [oneRole.multiplicity='1']
 [oneRole.roleName<>oclUndefined(String)]
 [manyRole.multiplicity= '*']
 [manyRole.roleName<>oclUndefined(String)]
RG---
 oneDM:ClassDM
 manyDM:ClassDM
RB---
 oneAttr:Attr
 manyAttr:Attr
 oneOp:Op
 manyOp:Op
 (oneDM,manyAttr):Class_Attr
 (manyDM,oneAttr):Class_Attr
 (oneDM,manyOp):Class_Op
 (manyDM,oneOp):Class_Op
 [oneAttr.type=oneDM.name]
 [oneOp.retType=oneDM.name]
 [manyAttr.type='Set('.concat(manyDM.name).concat(')')]
 [manyOp.retType=manyAttr.type]
CG--
 (oneCM,oneDM) as (classCM,classDM) in oneMapping:Cm2Dm
 (manyCM,manyDM) in manyMapping:Cm2Dm
 Cm2Dm:[self.classCM.name=self.classDM.name]
CB---
 (oneRole,oneAttr) as (roleCls,attr) in one2Attr:AssocEnd2Attr
 (oneRole,oneOp) as (roleCls,op) in one2Attr:AssocEnd2Attr
 (manyRole,manyAttr) in many2Attr:AssocEnd2Attr
 (manyRole,manyOp) in many2Attr:AssocEnd2Attr
 AssocEnd2Attr:[self.attr.name=self.roleCls.roleName]
 AssocEnd2Attr:[self.op.name='get'.concat(self.roleCls.roleName)]
end

Fig. 5. TGG rule addAssociation in use4tgg

and (object R,object C) do not have to be given explicitly, because they can
be inferred from the correspondence link. Correspondence links highlight the
correspondence in a condensed way.

OCL constraints from the correspondence domain (CG, CB) can become con-
straints (invariants) on the metamodel. For example, OCL constraints in the CG
and CB parts in Fig. 5 may be employed for restricting the metamodel in Fig. 2.

3.2 Realization by OCL Pre- and Postconditions

The rule can be realized by OCL pre- and postconditions as an operation con-
tract. We obtain these OCL constraints by applying a sequence of transformation
steps on the rule: Initialization, Link Preservation, Link Creation, Link Destruc-
tion, Object Creation, Object Preservation and Object Destruction [10].

Figure 6 illustrates the derivation of OCL pre- and postconditions by the
transformation steps. The Initialization step is applied on the objects a, b, and
d and the links link1 and link2. The Link Preservation step is executed on

On Integrating OCL and Triple Graph Grammars 131

OCL constraints

OCL postcondition

a.b1->excludes(b)

C.allInstances->exists(c|c.oclIsNew)

A.allInstances->includes(a)

D.allInstances->excludes(d)

B.allInstances->includes(b)

a.b3->includes(b)

a.b2->includes(b)

left-hand side

OCL constraints

a:A b:Blink 2

link1

link3
d:D

right-hand side

OCL constraints

link 2

link1

link3

a:A b:B

oclExpr

attr

d:Dc:C

USE Realization

OCL precondition

OCL constraints

a.isDefined

a.b1->includes(b)

b.isDefined d.isDefined

a.b2->includes(b)

a.b3->exclude(b)

command sequence

assign c:=create C

insert (a,b) into AB1

set a.attr:=oclExpr

delete (a,b) from AB3

 trans

realizedestroy d TransOperation

input

output

trans

trans

check

check

TGG Rule

Fig. 6. USE realization for a TGG rule: (i) By imperative command sequences, and
(ii) by declarative OCL pre- and postconditions

link2. The Link Creation step creates link3. Then the Link Destruction step
is done on link1. The Object Creation step creates the object c. Afterwards,
the Object Preservation step is applied on the objects a and b, and the Object
Destruction step on the object d. Using these steps, OCL pre- and postcondition
are derived. For example, when the Link Destruction step is applied on link1, we
obtain the OCL precondition a.b1→includes(b) and the OCL postcondition
a.b1→excludes(b).

3.3 Realization by Command Sequences

We employ five basic commands: Object Creation, Link Creation, Attribute As-
signment, Link Destruction and Object Destruction in order to realize the oper-
ation. The commands are illustrated by the part ‘command sequence’ in Fig. 6.

Remark 1: Although we do not force to employ assignments in our patterns,
certain OCL formulas must be presented in an assignment-like style, if we want
to obtain a complete operation realization of a TGG rule in form of a command
sequence: Only if in the bottom part of a TGG rule an attribute modifica-
tion (written down as an OCL formula) is presented in the form Attribute =
OclExpression, the resulting operation is realized in a correct way.

Remark 2: use4tgg has two modes for specifying TGG rules. The first mode
is indicated with the keyword NONDELETING and the keywords for the rule

132 D.-H. Dang and M. Gogolla

parts (LG, CG, RG, LB, CB, RB), and the second mode is indicated with the
keyword EXPLICIT. The first mode is employed for specifying non-deleting
rules, e.g., for treating the example transformation in this paper. This mode
is the default and the keyword NONDELETING may be skipped. The second
mode is employed for specifying rules which may be deleting. In this mode, all
nodes and links must be explicitly stated whereas in the first case only the added
nodes and links are mentioned. The pattern format of the two modes is identical.
For specifying non-deleting rules, the first mode is much shorter than the second
mode.

3.4 Deploying the TGG and OCL Realization in USE

Figure 7 presents the result of applying the transformation addAssociation.
Snapshot1 is glued with the guard part of the rule, and Snapshot2 is the result
of the rule application. These object diagrams represent the abstract syntax of
the example, whereas the diagram in Fig. 1 is another representation in concrete
syntax.

The integration of TGGs and OCL is completely covered by USE [8]. This is
similar to the case for realizing graph transformation within USE [11].

Presenting models: Host models are represented as object diagrams in USE.
The models are restricted by the metamodel invariants.

Matching TGG rules: Matching a rule is carried out by evaluating OCL
queries on the source object diagram (working graph). These queries are
captured by the precondition of the operation corresponding to the rule.

Applying TGG rules: A rule application is realized by an operation call. Af-
ter each rule application, one may check the postconditions of the rule for
an on-the-fly verification of the transformation.

Fig. 7. Applying the TGG rule addAssociation: From Snapshot1 to Snapshot2

On Integrating OCL and Triple Graph Grammars 133

4 Support Model Co-evolution and Consistency

This section discusses how the integration of TGGs and OCL can support model
co-evolution and consistency by means of an example. We want to emphasize
again the consistency between a conceptual model and a design model and to
maintain the consistency whilst both models are evolving or changed. In exem-
plary form, Fig. 8 illustrates the situation with the model versions A, B and C.
The conceptual (left) and design (right) models are presented in concrete syn-
tax. But the following discussion refers to the models as instances of the UML
metamodel.

Co-evolution of models. A co-evolution step between model versions can
be represented by a TGG rule including OCL. The left- and right-hand sides
of the rule correspond to the target and source versions. The consistency be-
tween the models in the different versions is maintained by links and OCL
constraints in the correspondence domain of the TGG rule. The co-evolution
is carried out by a transformation operation derived from the TGG rule: the
source version is transformed to the target version. In Fig. 8, see the note (1),
a co-evolution from the version A to the version B is carried out by the TGG
rule transAssocclass−one2many as the association multiplicity in the
conceptual model in the version A is changed. The correspondence between
the models in the versions A or B expresses constraints for a refinement of an
association class in the conceptual model, e.g., names of corresponding Class
(Attribute) objects must coincide. In the version A, we recognize the corre-
spondence between two Attribute objects whose name attribute is ‘salary’. The

Fig. 8. Model co-evolution and consistency with TGG rules including OCL

134 D.-H. Dang and M. Gogolla

correspondence (the dashed line in A) is represented by links between the objects
and an object Cm2Dm in the correspondence domain of the TGG rule and the
OCL invariant in the class Cm2Dm: self.attrCM.name=self.attrDM.name.

Detecting inconsistency. We consider an inconsistency in the target version
as (Class, Attribute etc.) object attributes are changed. We can detect the in-
consistency by checking OCL constraints in the correspondence domain of the
TGG rule. In Fig. 8, see the note (2), the version C results from a modification
in the version B. In the version C, we recognize that there are two correspond-
ing Attribute objects whose name attributes do not coincide because the value
‘income’ differs from ’salary’. This induces an inconsistency (indicated by the
dashed line in C) because the invariant of the class Cm2Dm is not fulfilled:
self.attrCM.name=self.attrDM.name.

We consider another inconsistency in the target version as links are changed.
We can detect the inconsistency in a semi-automatic way by representing models
as the image of the TGG rule. We query them from the host models using OCL
conditions built by links and OCL constraints in the TGG rule. In Fig. 8, the
models in the version C can be queried using OCL conditions derived from the
TGG rule transAssocclass−one2many. In the version C, we can recognize an
inconsistency since object links are changed inducing that the refinement of the
association class is not fulfilled.

Fixing inconsistency. Detecting inconsistency in the way as pointed out above
allows us to fix the inconsistency manually. We propose an approach for detecting
and fixing automatically the inconsistency in the target version. The inconsis-
tency occurs because of the change of (Class, Attribute etc.) object attributes
and links in models of the version. We employ a synchronization scenario of the
TGG rule in order to fix the inconsistency. The general aim of the operation
is to re-transform the source version to the target version, however, instead of
creating objects and links like the co-evolution scenario does, the operation will
update objects and links in the target version. In Fig. 8, see the note (3), the
versions A and C correspond to the left- and right-hand sides of the TGG rule.
The synchronization of the version C allows us to fix the inconsistency. A deeper
discussion of our realization of the operation goes beyond the scope of the paper.

5 Related Work

Triple Graph Grammars (TGGs) have been proposed first in [1]. Since then,
a lot of further developments and applications have indicated the strength of
TGGs in particular within software engineering.

In [12], a comparison between TGGs and the QVT Core language is presented.
The paper shows that both approaches are very similar. A difference between
them is the use of OCL constraints within the QVT Core language whereas
multiple correspondence nodes would do the same within TGG. That paper
rises the question how to integrate OCL into TGGs. This can be seen as one
motivation for our work.

On Integrating OCL and Triple Graph Grammars 135

In [6], a quite complete survey of principles, concepts, usability and imple-
mentations of TGGs is discussed. This report proposes a notation for OCL
constraints within TGG descriptions. However, OCL constraints within that
approach are only for attribute expressions. That paper considers only non-
deleting rules and does not go into details about the merits of OCL constraints
on metamodels as well as the technical realization for OCL.

The approach in [13] considers the integration of OCL into model transforma-
tions within Fujaba. This is realized by integrating the Dresden OCL Toolkit.
However, that paper does not mention explicitly TGG concepts as well as OCL
constraints in connection with TGGs.

The work in [3] proposes an approach for the integration of a number of MOF-
compliant models. So-called Multi-Domain Integration (MDI) rules, a general-
ization of TGGs, are proposed. The paper mentions the value of declarative
specifications in connection with TGGs and OCL. However, the specification of
OCL constraints within TGGs is not treated.

In [5,4,14], an extension of TGGs for model integration is proposed. The
basic idea is that declarative TGG rules may be (semi-)automatically derived
in order to obtain operational graph grammar rules for consistency checking,
consistency recovery and model transformation. However, within these works,
OCL constraints, which are in our view central for such approaches, are not
treated.

Our work can be seen an approach to model traceability [15]. The TGG ap-
proach supports an interesting feature for the motivation: Trace links can be
automatically generated. In [16], the approach to tracing two models by a mid-
dle model, a so-called weaving model, is considered. Weaving models are built by
weaving metamodels. We can see TGGs as the very transformations on weaving
models. OCL constraints within our integration of TGGs and OCL are the very
constraints for correspondences within weaving models.

The work in [17] outlines an approach utilizing TGGs for managing con-
sistency between views in general and UML models and semantic domains in
particular. In [7], TGGs are employed for model view management. [18] presents
a TGG approach for incremental model synchronization. Our work adapts from
these papers the intended application scenarios.

Plain textual OCL has been extended to be visualized with collaborations
in [19]. Within our previous work [11,10], we proposed an approach for the
realization of plain graph transformation in USE. The current work extends this
approach for treating TGGs.

6 Conclusion and Future Work

This paper proposes a language for the integration of Triple Graph Gram-
mars (TGGs) and the Object Constraint Language (OCL). The approach views
operational scenarios of a TGG rule as operations and characterizes the opera-
tions by OCL pre- and postconditions and by an executable command sequence.
The language is realized in our UML and OCL tool USE. USE supports full

136 D.-H. Dang and M. Gogolla

OCL and UML (metamodel) class diagrams. Thus, metamodels and their trans-
formations can be inspected and analysed in USE. This paper proposes a novel
approach for model co-evolution and consistency using the integration of TGGs
and OCL.

Future work will include a graphical user interface in combination to the cur-
rent textual interface for the specification of rules. We aim to extend our language
to special QVT features expressed in QVT by keywords as ‘check’, ‘enforce’ and
‘realize’. A further activity will concentrate on how to generate correspondence
metamodels from TGG rules. Middle and large scale case studies must give feed-
back on the practical applicability of our work. In particular, we see applications
in the fundamentals of language engineering where a source language (including
syntax and semantics) is translated into a target language (also including syntax
and semantics) and where the correspondence domain and the correspondence
metamodels take care of correctness criteria.

References

1. Schürr, A.: Specification of Graph Translators with Triple Graph Grammars. In:
Mayr, E.W., Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 151–
163. Springer, Heidelberg (1995)

2. Pratt, T.W.: Pair Grammars, Graph Languages and String-to-Graph Translations.
Academic Press 5, 560–595 (1971)

3. Königs, A., Schürr, A., Bézivin, J., Heckel, R.: Multi-Domain Integration with
MOF and extended Triple Graph Grammars. In: Language Engineering for Model-
Driven Software Development, IBFI, Schloss Dagstuhl, Germany, vol. 04101 (2005)

4. Königs, A.: Model Transformation with Triple Graph Grammars. In: Briand, L.C.,
Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713. Springer, Heidelberg (2005)

5. Königs, A., Schürr, A.: Tool Integration with Triple Graph Grammars - A Survey.
ENTCS 148, 113–150 (2006)

6. Kindler, E., Wagner, R.: Triple Graph Grammars: Concepts, Extensions, Imple-
mentations and Application Scenarios. Technical Report, University of Paderborn,
Germany (2007)

7. Guerra, E., de Lara, J.: Model View Management with Triple Graph Transforma-
tion Systems. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro, L., Rozenberg,
G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 351–366. Springer, Heidelberg (2006)

8. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Specification Environ-
ment for Validating UML and OCL. Science of Computer Programming (2007)

9. OMG: Meta Object Facility (MOF) 2.0 Query/View/Transformation Specification,
Final Adopted Specification ptc/07-07-07. OMG (2007)

10. Büttner, F., Gogolla, M.: Realizing Graph Transformations by Pre- and Postcon-
ditions and Command Sequences. In: Corradini, A., Ehrig, H., Montanari, U.,
Ribeiro, L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 398–413.
Springer, Heidelberg (2006)

11. Gogolla, M., Büttner, F., Dang, D.H.: From Graph Transformation to OCL using
USE. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) AGTIVE 2007. LNCS, vol. 5088,
pp. 585–586. Springer, Heidelberg (2007)

12. Greenyer, J., Kindler, E.: Reconciling tGGs with QVT. In: Engels, G., Opdyke,
B., Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 16–30.
Springer, Heidelberg (2007)

On Integrating OCL and Triple Graph Grammars 137

13. Stölzel, M., Zschaler, S., Geiger, L.: Integrating OCL and Model Transformations in
Fujaba. In: Chiorean, D., Demuth, B., Gogolla, M., Warmer, J. (eds.) Models/UML
Workshop on OCL (OCLApps 2006), ECEASST, vol. 5 (2006)

14. Grunske, L., Geiger, L., Lawley, M.: A Graphical Specification of Model Trans-
formations with Triple Graph Grammars. In: Hartman, A., Kreische, D. (eds.)
ECMDA-FA 2005. LNCS, vol. 3748, pp. 284–298. Springer, Heidelberg (2005)

15. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.: Model Traceabil-
ity. IBM Systems Journal 45 (2006)

16. Fabro, M.D.D., Valduriez, P.: Semi-automatic Model Integration Using Matching
Transformations and Weaving Models. In: Cho, Y., Wainwright, R.L., Haddad, H.,
Shin, S.Y., Koo, Y.W. (eds.) SAC, pp. 963–970. ACM, New York (2007)

17. Heckel, R., Küster, J., Taentzer, G.: Towards Automatic Translation of UML Mod-
els into Semantic Domains. In: Kreowski, H.J., Knirsch, P. (eds.) AGT Workshop
on Applied Graph Transformation, Grenoble, France, pp. 11–22 (2002)

18. Giese, H., Wagner, R.: Incremental Model Synchronization with Triple Graph
Grammars. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS
2006. LNCS, vol. 4199, pp. 543–557. Springer, Heidelberg (2006)

19. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: A visualization of OCL us-
ing collaborations. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185,
pp. 257–271. Springer, Heidelberg (2001)

Triple Graph Grammars or Triple Graph
Transformation Systems?

A Case Study from Software Configuration Management

Thomas Buchmann, Alexander Dotor, and Bernhard Westfechtel

Angewandte Informatik 1, Universität Bayreuth
D-95440 Bayreuth

firstname.lastname@uni-bayreuth.de

Abstract. Triple graph grammars have been used to specify consistency main-
tenance between inter-dependent and evolving models at a high level of abstrac-
tion. On a lower level, consistency maintenance may be specified by a triple graph
transformation system, which takes care of all operational details required for ex-
ecuting consistency maintenance operations. We present a case study from soft-
ware configuration management in which we decided to hand-craft a triple graph
transformation system rather than to generate it from a triple graph grammar. The
case study demonstrates some limitations concerning the kinds of consistency
maintenance problems which can be handled by triple graph grammars.

1 Introduction

Model transformations play a key role in model-driven engineering. In the most simple
case, a transformation of some source model s into some target model t may be per-
formed automatically by a model compiler. If there is no need to edit t, model evolution
(of s) may be handled by simply compiling s once more. However, in general it may
not be possible to generate t from s completely automatically, both s and t may evolve,
and changes may have to be propagated in both directions (round-trip engineering).

Many formalisms have been proposed for defining model transformations, includ-
ing e.g. QVT [1] in the context of object-oriented modeling. In this paper, we focus on
graph transformations: Graphs may represent models in a natural way; graph transfor-
mation rules describe modifications of graph structures in a declarative way. Further-
more, there is a comprehensive body of theories, languages, tools, and applications (see
e.g. the handbooks on graph grammars [2,3]).

A directed, typed, attributed graph consists of typed nodes which are decorated with
attributes and are connected by typed, directed, binary edges. In terms of object-oriented
modeling, a node corresponds to an object, and an edge corresponds to a binary link
with distinguishable ends. A graph grammar is composed of a graph schema, which
defines types of nodes, edges, and attributes, a start graph, and a set of productions
which are used to generate a set of graphs forming a graph language. Thus, a graph
grammar is concerned only with the generation of graphs. In contrast, a graph trans-
formation system is made up of a set of graph transformation rules, which describe
arbitrary graph transformations including deletions and modifications.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 138–150, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

Triple Graph Grammars or Triple Graph Transformation Systems? 139

GG for s GG for t

Design TGG
rules

TGG

Generate
forward rules

Generate corres-
pondence rules

Generate
backward rules

Forward
rules

Correspon-
dence rules

Backward
rules

Generic rules*

* For consistency checks
and repair actions

Compose

TGTS

Fig. 1. The TGG approach

For maintaining consistency between interdependent and evolving models, a graph
transformation system is required which deals with at least two graphs, namely the
source graph s and the target graph t. For incremental change propagation, a corre-
spondence graph c is placed in between s and t for maintaining traceability links with
the help of link nodes. This results in a triple graph transformation system (TGTS), the
rules of which define source-to-target and target-to-source transformations as well as
actions for checking consistency and repairing inconsistencies.

Developing a TGTS is still a tedious and laborious task: First, in addition to the gener-
ation of graphs, modifications and deletions have to be specified explicitly. Second, each
direction of transformation has to be specified explicitly - as well as rules for checking
consistency and establishing correspondences. Therefore, triple graph grammars (TGG)
[4,5] have been proposed to leverage the specification of inter-model consistency main-
tenance. From a high-level TGG dealing only with the synchronous generation of graphs,
a more low-level TGTS may be generated (Figure 1): The TGG designer need only de-
fine generative triple rules which describe synchronous extensions of source, target, and
correspondence graph. From each synchronous triple rule, three directed rules may be
generated (if required): A forward rule assumes that s has been extended, and extends
c and t accordingly; likewise for backward rules. A correspondence rule extends c af-
ter s and t have been extended with corresponding graph structures. Like triple rules,
directed rules are monotonic, i.e., they describe graph extensions. Directed rules are re-
quired when s, t, and c have not been changed synchronously (e.g., when different users
edit s and t independently). In addition to directed rules, further rules are needed which
deal with modifications and deletions having been performed in s and t. To this end,
generic rules have to be defined which perform consistency checks and repair actions.
Finally, the TGTS may include a (generic) control structure for efficient graph traversal
to speed up the execution of consistency maintenance operations.

140 T. Buchmann, A. Dotor, and B. Westfechtel

In this paper, we explore the alternatives of hand-crafting a TGTS versus defining a
TGG and generating a TGTS from the TGG. To this end, we present a case study which we
performed in the MOD2-SCM project (MODel-Driven MODular Software Configuration
Management System [6]), which aims at developing a model-driven product line for SCM
systems. The project employs Fujaba [7] as modeling language and tool, but the discus-
sion in this paper is not specific to Fujaba.

2 Case Study

In the context of developing SCM systems, a recurring problem to be solved consists in
the synchronization between repositories and workspaces, which requires bidirectional
and incremental change propagation. The case study was inspired by open source SCM
systems such as Subversion or CVS. In the model we built, both files and directories
are versioned in a uniform way. The version history of each file system object is repre-
sented by a version tree. A version of a directory uniquely determines the versions of
its components. While file system objects are organized into strict hierarchies (trees),
the hierarchy of file system object versions allows for sharing.

Synchronization between repositories and workspaces is supported by the follow-
ing commands which, when applied to directories, are propagated to all components:
add prepares a file system object for a commit into the repository. commit commits a
file system object into the repository. For an added file system object, an initial ver-
sion is created in the repository. For a changed versioned file system object, a successor
version is created. checkout creates a fresh copy of some file system object version
in the workspace. update propagates changes from the repository into the workspace.
Unmodified copies of outdated versions are replaced with copies of new versions; mod-
ified copies are not updated to prevent the loss of local changes. Finally, checkStatus
analyzes the consistency between repository and workspace. File system objects are
marked as created, deleted, modified, moved, or out of date.

An example is given in Figure 2. The scenario starts with a repository which is ini-
tially empty and a small file system hierarchy (a). In step 1, add is applied to the hier-
archy rooted at d1. All objects (files or directories) of this hierarchy are scheduled for
commit. Adding is implemented by creating link objects and attaching them to the file
system objects. In step 2, commit is used to import the file hierarchy into the repository.
For each file system object, both a versioned object and its initial version are created.
Furthermore, the hierarchy is mirrored in the repository both at the object and the ver-
sion level. In step 3, a part of the hierarchy (with root d2) is exported into another
workspace with checkout. In ws2, the text content of f2 is updated, and the name of f3
is changed into f4. Finally, in step 4 the changes in ws2 are committed. This causes new
versions of both files to be created. Please note that the file names of different versions
may differ. Furthermore, a new version of the directory d2 is created which includes the
new versions of the changed files. An update propagates the changes from the reposi-
tory to ws1; all files and directories now refer to the current versions. Please note that
due to the lack of space we have not shown structural variations caused by moves and
deletes.

Triple Graph Grammars or Triple Graph Transformation Systems? 141

repository

repository

ws2

ws1

repository

d2

ws1
d1

f1
text1 d2

f2
text2

f3
text3

repository
(initially
empty)

1
add d1

ws1
d1

f1
text1 d2

f2
text2

f3
text3

repository
(initially
empty)

2

commit
d1

d1

f1
text1 d2

f2
text2

f3
text3

3

d1
1 : d1

1 : d2f1 1 : f1
text1

f3 1 : f3
text3

f2 1 : f2
text2

checkout
d2 into ws2;
modify ws2

d2

d1
1 : d1

1 : d2f1 1 : f1
text1

f3 1 : f3
text3

f2 1 : f2
text2

d2

f2
text4

f4
text3

ws1

4

commit
d2 (ws2);

update ws1

d2

d1
1 : d1

1 : d2f1 1 : f1
text1

f3 1 : f3
text3

f2 1 : f2
text2

...
(unm

odified)

ws1
d1

f1
text1 d2

f2
text4

f4
text3

ws2
d2

f2
text4

f4
text32 : d2

2 : f2
text4

2 : f4
text3

d1 directory f1
text1

file with
text content

link between
file/directory
and version

hierarchy history source/target
of link

a b

c

d

e

version no : name
text content

ws1 workspace repository d1 versioned
object

1 : f2
text2

Fig. 2. Example

142 T. Buchmann, A. Dotor, and B. Westfechtel

3 A Triple Graph Transformation System

In this section, we present the approach which we decided to follow in our case study.
Synchronization of repositories and workspaces is modeled with the help of a hand-
crafted TGTS. Generating a TGTS from a TGG is discussed in the next section.

Modeling Language. The TGTS was created with the help of the object-oriented mod-
eling language and environment Fujaba [7]. In Fujaba, nodes and edges are represented
as objects and links, respectively. Types of nodes and edges are defined by class dia-
grams. The behavior of objects and links may be modeled by story patterns and story
diagrams (see below). Models written in Fujaba are executable (compiled into Java
code).

Story patterns are UML-like communication diagrams which can be used to rep-
resent graph transformation rules. A story pattern consists of a graph of objects and
links. A graph transformation rule is expressed by marking graph elements as deleted
or created. Furthermore, conditions may be defined for attribute values, and the values
of attributes may be modified. Finally, methods may be called on objects of the story
patterns. Thus, story patterns constitute a uniform language construct for defining graph
queries, graph transformations, and method calls.

Programming with story patterns is supported by story diagrams, which correspond
to interaction overview diagrams in UML 2.0. A story diagram consists of story patterns
which are arranged into a control flow graph. Story patterns appear in-line in nodes of
the control flow graph. Each story diagram is used to implement a method defined in
the class diagram.

Model Architecture. Figure 3 shows a package diagram on the left and lists data on the
overall model size on the right. Each package contains one class diagram and a set of
story diagrams for the methods introduced in the classes of the package. A dashed line
labeled with import denotes an import relationship. An unlabeled dashed line represents
a dependency (the dependent package may have to be modified if the target package is
changed).

Using the terminology of [8], we distinguish between a product space, which is com-
posed of the elements to be submitted to version control, and a version space, where

Product
Space

Version
Space

Repository

Workspace
Management

<<import>>

<<import>>

<<import>>

number of classes and interfaces 24

number of attributes 27

number of methods 83

lines of generated Java code 13291

Fig. 3. Package diagram (left) and model size (right)

Triple Graph Grammars or Triple Graph Transformation Systems? 143

the evolution of these elements is represented. In the context of this paper, the prod-
uct space consists of the file system hierarchy. The package VersionSpace introduces
classes for managing the evolution of versioned objects. In the version model of the case
study, the versions of a versioned object are organized into a history tree. The package
Repository provides classes for versioned files and directories, based on the packages
ProductSpace and VersionSpace. Composition hierarchies are defined on both object
and version level. The packages mentioned so far will not be discussed further. Rather,
we will focus on the package WorkspaceManagement.

Class diagram. Figure 4 shows the class diagram for the package Workspace Manage-
ment. Classes imported from other packages are displayed with collapsed attributes and
methods sections (left-hand and right-hand side). The class WorkspaceManager pro-
vides the external interface of methods for synchronizing repositories and workspaces
(facade pattern).

Synchronization between repositories and workspaces is realized with the help of
a correspondence graph, which is composed of link objects being connected to one
source object and one target version, respectively. The abstract class Link provides a set
of methods corresponding to the exported methods of WorkspaceManager, and a set
of auxiliary methods. Furthermore, each link object carries a set of boolean attributes
indicating the state of the link: In state created, the target of the link does not yet exist.
In state deleted, the source of the link has been destroyed. In state modified, both source
and target exist, and the source has been modified in the workspace. In state moved,
the source has been moved to a different location. In state outOfDate, a new version of
the target is available. Finally, in state updated, the source has been updated to a new
version of the target, but this change has not been committed yet at the next higher
level. Please note that these attributes are not mutually exclusive (e.g., a link object can
be both out of date and modified).

Link objects are organized into a composition hierarchy in a similar way as file sys-
tem objects (composite pattern). When the workspace is consistent with the repository,
the composition tree for link objects agrees with the composition tree of file system ob-
jects in the workspace. The algorithms for synchronizing repositories and workspaces
traverse the composition hierarchy. Since they are attached to the class Link and its
subclasses, the classes of the imported packages need not be extended or modified.

Operations. To illustrate the style of modeling adopted in the TGTS, we present three
simple examples of methods for synchronizing repositories and workspaces. All sam-
ple methods are attached to the class Link and perform only those parts of the synchro-
nization which can be handled at this general level. The methods are redefined in the
subclasses; propagation through the hierarchy is performed in the class CompositeLink.
Only link objects and their embeddings are manipulated directly. All changes in the
repository and the workspace are affected by method calls only.

Figure 5a shows the story diagram for committing the creation of a new file system
object. The first story pattern checks the state of the link object and locates the root of
the repository via the workspace manager. In the second step, a new versioned object
is created. The third step creates the root version of this object, sets its name and its
owner, and connects the new version to the link object.

144 T. Buchmann, A. Dotor, and B. Westfechtel

0..n

0..1

contains

Void:)String:name(init
FileSystemObject:)FileSystemObject:object (update

FileSystemObject :)Directory:targetDir,FileSystemObjectVersion:version (checkout
FileSystemObjectVersion :)FileSystemObject:object (commit

Boolean:)FileSystemObject:object (add
Void :)FileSystemObject:object (checkStatus

String : name

WorkspaceManager

«JavaBean»

0..10..n

toTarget0..1 0..1

toSource

0..n

0..1

contains

FileSystemObject :)Directory:targetDir (checkout
Void:) (checkStatus

FileSystemObject:) (update
FileSystemObjectVersion :) (commitModify
FileSystemObjectVersion :)(commitCreate

AtomicLink

«JavaBean»

FileSystemObject:)(update

FileSystemObject :)Directory:targetDir (checkout
Void:) (checkStatus

Void :)(delete

FileSystemObjectVersion :)(commitCreate

Void:) (commitDelete
FileSystemObjectVersion:) (commitModify

FileSystemObjectVersion:) (commitCreateOrModify

Void :)(reset

Void:) (add

CompositeLink

«JavaBean»

Void:) (reset
FileSystemObject:) (update

FileSystemObjectVersion :)(commit
FileSystemObject:)Directory:targetDir(checkout

Void :)(checkStatus

Void:)(delete
FileSystemObjectVersion :)(commitModify
Void :)(commitDelete
FileSystemObjectVersion:)(commitCreate

Void:) (add

String:type
false=Boolean : updated

false=Boolean : outOfDate
false=Boolean : moved

false=Boolean:modified
false = Boolean:deleted

Boolean:created

Link

«JavaBean»

0..n

0..n

contains

collapsed

DirectoryVersion

«JavaBean»

collapsed

collapsed

FileVersion

«JavaBean»

collapsed

collapsed

FileSystemObjectVersion

«JavaBean»

0..n

0..1

contains

collapsed

Directory

«JavaBean»

collapsed

collapsed

File

«JavaBean»

collapsed

collapsed

FileSystemObject

«JavaBean»

Fig. 4. Class diagram for the package Workspace Management

The story diagram of Figure 5b is invoked when a file system object is already under
version control and has been modified in the workspace. In the first step, the state of
the link object is checked, and both ends are retrieved. In the second step, a successor
version of the old target is created, and the link object is redirected to the new target.

The story pattern of Figure 5c handles change propagation from the repository into
the workspace. The link object must be both outOfDate and not modified; the latter
condition prevents that changes in the workspace are overwritten inadvertently. The link
object is redirected to refer to the most recent (transitive) successor of the old target.
This is ensured by the negative application condition (crossed object): There must be
no other successor with a higher version number. In the course of the update, the name
and the owner of the file system object are copied from the new target version.

Triple Graph Grammars or Triple Graph Transformation Systems? 145

a)

]failure[

Link::commitCreate (): FileSystemObjectVersion

]success[

parent*.root

toSource

contains

FileSystemObject:fso
true==created

this

VersionedFileSystemObjects:vfsoWorkspaceManager:wsm

null

vfso.createVersionedObject(fso.getName(), fso.getType()))VersionedFileSystemObject(:=nvo

nvo.createRootVersion())FileSystemObjectVersion(:=nvthis ´cre ate» toTarget

1: rename(fso.getName()) 2: changeOwner(fso.getOwner())

nv

b)

]success[

]failure[

Link::commitModify (): FileSystemObjectVersion

toTarget

true==modified

this
FileSystemObjectVersion:fsovFileSystemObject:fso toSource

«create» toTargetthis fsov.derive())FileSystemObjectVersion(:=nv

1: changeOwner(fso.getOwner())

2: rename(fso.getName())

null

nv

c)

]failure[]success[

toSource

successor*
«create»

toTarget

successor*

FileSystemObjectVersion:old«destroy» toTarget

false==modified
true==outOfDate

this

FileSystemObject:fso

1: setOwner(new.getOwner())

2: rename(new.getName()) FileSystemObjectVersion:new new.getVersionNo()>versionNo

FileSystemObjectVersion:other

null

Link::update (): FileSystemObject

fso

Fig. 5. Story diagrams for commits and updates

146 T. Buchmann, A. Dotor, and B. Westfechtel

4 A Triple Graph Grammar?

This section discusses the application of the TGG approach to our case study. To this
end, we modeled some sample TGG rules in Fujaba. In the presentation below, we
describe several conceptual problems which we encountered.

Synchronous Rules. The first step of the TGG approach — defining a set of triple
rules — is illustrated in Figure 6. The figure displays three rules which handle the
creation of a subdirectory. Each rule is applied to a complex link both ends of which
are already present. All rules perform the same extensions on the source graph and the
correspondence graph: A subdirectory is created if there is no file system object of the
same name; furthermore, a sublink is created and connected to the new subdirectory.
The rules differ with respect to the target graph. The rule set is designed in such a way
that all structures which may occur in the repository can be generated (version trees for
the evolution history, acyclic graphs for the composition hierarchy).

The first rule creates a directory in the workspace along with a versioned object
and an initial version in the workspace. The attribute nextVersionNo is a counter which
stores the next available version number at the versioned object. The second rule creates
a successor version, which is assigned the next available version number, and incre-
ments the counter. Using only the first and the second rule, only composition trees may
be created in the repository. In the third rule, a directory is created in the workspace and
related to a reused version which is added to the version of the parent directory.

Unfortunately, the third rule (CreateDirectoryAndReuseVersion) does not operate
correctly. After its execution, the composition hierarchy rooted at the new directory
in the workspace is empty, but this does not necessarily apply to the reused version at
the other end of the link. If the composition hierarchy below the reused version is not
empty, the generation process will “get of out sync”. This problem could be fixed by
adding directed rules which copy the composition hierarchy into the workspace, but this
would break the TGG paradigm (relying on synchronous rules only).

The style of modeling employed in the TGG is quite different from the style of
the TGTS. The TGG consists of productions which are partially obtained by copying
productions from the grammars for the source and target graphs, respectively (white-
box reuse). In contrast, in the TGTS source and target graph may be read, but they
may be updated only through method calls. This grey-box reuse avoids duplication of
consistency checks and transformations.

Directed Rules. While synchronization of repositories and workspaces involves bidi-
rectional change propagation with forward and backward rules, correspondence rules
are of little use: An analysis tool which discovers correspondences between repositories
and workspaces and extends the correspondence graph accordingly is not required. The
status check, which analyzes consistency between repository and workspace, merely
determines the status of already existing link objects (see next paragraph).

Forward rules are obtained from synchronous triple rules by converting created ele-
ments in the source graph into elements of the left-hand side. For the rules of Figure 6,
this means that the directory nd and its composition link have to be moved to the left-
hand side (i.e., they must already be present to apply the rule).

Triple Graph Grammars or Triple Graph Transformation Systems? 147

]failure[]success[

«create»
has

«create»

contains

«create»
contains

contains

has

«create»
toTarget

«create»

contains

«create»
toSource

contains
contains

«create»

contains

«create»

contains

toTargettoSource

VersionedFileSystemObjects:vfsos

«create»
TGGCompositeLink:ncl «create»

2:=nextVersionNo
name:=name

VersionedDirectory:nvd

«create»

1:=versionNo
name:=name

DirectoryVersion:ndv«create»

name:=name

Directory:nd

name==name

FileSystemObjectVersion:v

name==name

FileSystemObject:o

DirectoryVersion:dvthisDirectory:d VersionedDirectory:vd

TGGCompositeLink::syncCreateDirectoryAndInitialVersion (name: String): Boolean

true
false

a)

]failure[

false

]success[

true

TGGCompositeLink::syncCreateDirectoryAndSuccessorVersion (name: String, pred: DirectoryVersion): Boolean

«create»revisionOf

«create»

has

has«create»

contains

«create»
toTarget

containscontains

name==name

FileSystemObjectVersion:v

name==name

FileSystemObject:o
create»

contains

«create»
toSource

«create»

contains

toTargettoSource

«create»

vd.nextVersionNo:=versionNo
name:=name

DirectoryVersion:ndv

«create»
TGGCompositeLink:ncl

«create»

name:=name

Directory:nd

nextVersionNo+1:=nextVersionNo

VersionedDirectory:vdDirectoryVersion:dvDirectory:d this

pred

b)

]failure[]success[

contains

name==name

FileSystemObjectVersion:v contai...

contains

«create»
toTarget

«create»

contains

«create»

contains

«create»

contains

toTargettoSource

«create»
TGGCompositeLink:ncl

DirectoryVersion:dvthisDirectory:d

name==name

FileSystemObject:o

«create»

name:=name

Directory:nd
«create»

toSource

name==name

vers

TGGCompositeLink::syncCreateDirectoryAndReuseVersion (name: String, vers: DirectoryVersion): Boolean

true false

c)

Fig. 6. Synchronous rules for creating directories and directory versions

148 T. Buchmann, A. Dotor, and B. Westfechtel

Since all rules shown in Figure 6 are identical with respect to the source graph and the
correspondence graph, the generated rules stand in conflict: A new subdirectory can be
transformed by any of these rules, and applying one rule invalidates the other choices.
Since the rules have different effects, the generated TGTS is non-deterministic, result-
ing in an integration tool which requires user interaction. In contrast, the commands
introduced in Section 2 operate in a deterministic way. For a new file system object, the
user may not deliberately choose either to create a new versioned object and its root
version, or to create a successor version, or to reuse an already existing version. Rather,
only the first option is available for a new file system object. A successor version is cre-
ated when the file system object has already been linked to a version in the repository
and has been changed locally in the workspace. Finally, a version is reused when a new
version of the parent directory has been created, the child object is already under ver-
sion control and has not been changed in the workspace. Similar problems occur with
respect to backward rules; these cannot be elaborated here due to space restrictions.

Another problem which we encountered in our case study consists in the assumption
of the TGG approach that forward and backward transformations operate symmetri-
cally: From a single synchronous rule, symmetric forward and backward rules are de-
rived. However, forward and backward transformations behave differently in our case
study. For example, when the content of a file is modified in the workspace, a new ver-
sion is created in the repository. In contrast, when the new version is propagated into
another workspace by running an update command, the file in the workspace is over-
ridden. Furthermore, composition hierarchies are treated differently in the workspace
(tree) and in the repository (acyclic graph). As a consequence, an acyclic graph is un-
folded into a tree when it is exported into a workspace, and a tree in the workspace is
folded into an acyclic graph when changes are committed into the repository.

Consistency Checks and Repair Actions. One of the most important goals of the TGG
approach is to relieve the modeler from the burden of specifying modifications and dele-
tions. Since the TGG rules define only graph extensions, this abstraction works only
when all operations concerning modifications and deletions can be derived automati-
cally. To this end, generic support for consistency checks and repair actions is required
(see Figure 1). Unfortunately, to the best of our knowledge providing such checks and
repair actions in a generic way still constitutes an open research problem.

In our case study, consistency checks are performed in the checkStatus command.
Some parts of the status checks could be covered by a generic approach, e.g., differ-
ences between values of attributes such as file names and file contents. However, there
are some parts which are highly domain-specific. For example, changes in some file
system object need to be propagated bottom-up to the root such that new versions in
the repository may be created top-down in the course of a commit. Furthermore, the
status check has to recognize updates in the repository that have to be propagated into
the workspace. This is a domain-specific requirement, and there is no triple rule from
which we could derive such a check. Repair actions are performed in the commands for
synchronization, namely update and commit. Again, these repair actions are domain-
specific. For example, when a file in the workspace is deleted, its corresponding version
in the repository is not deleted, as well. Rather, a new version of the parent directory is
created which does not contain this file version.

Triple Graph Grammars or Triple Graph Transformation Systems? 149

a) Alternative processes b) Covered problem domains

4 : Hand-craft
TGTS

1 : Design
TGG

2 : Generate
TGTS

3 : Adapt
TGTS

TGG TGTS

SCM case study

Fig. 7. Triple graph grammars or triple graph transformation systems?

5 Related Work

The overall goal of the MOD2-SCM project is to provide a model-driven product line
that allows to construct a wide range of customized SCM systems with acceptable ef-
fort. These goals are related to a few research projects which were dedicated to the
development of a uniform version model. Both ICE [9] and UVM [10] proposed rule-
based generalizations of conditional compilation as a low-level, common base mecha-
nism. To date, only a few approaches have been dedicated to model-driven development
of versioning systems [11,12]. However, these approaches are confined to structural
models inasmuch as the behavior is hard-coded into the respective system.

Triple graph grammars were introduced as early as 1994 [4]. The QVT standard
[1], which was developed much later, is based on similar concepts. In the context of
this paper, it is interesting to note that QVT defines both a high-level declarative and
a more low-level operational language. Several projects were built upon the concepts
of TGGs, but actually developed a hand-crafted TGTS [13,14]. Frameworks supporting
code generation for TGGs have emerged only recently [15,16,17]. Surveys of the cur-
rent state-of-the-art in TGGs are given in [5,18]. In [19], research challenges and open
problems are discussed. Four design principles for TGGs are postulated: completeness,
consistency, efficiency, and expressiveness. The case study presented in this paper pri-
marily challenges the expressiveness of TGGs (see the conceptual problems reported in
Section 4).

6 Conclusion

For the synchronization between repositories and workspaces, we discussed the alterna-
tives of hand-crafting a TGTS or generating it from a TGG (Figure 7a). Following the
TGG process of Figure 1, the costs of step 2 would be zero (automatic step) and step 3
would be obsolete. However, this process did not work in our case study; it was more
effective to hand-craft the TGTS (step 4) than to define a TGG and adapt the generated
TGTS. In fact, the case study belongs to the range of problems which are not suited for
applying the TGG approach (Figure 7b). For various reasons, the operational behavior
of generated rules does not match the requirements of our case study. Thus, the region
TGTS \TGG is not empty. Improvements from theory may reduce this region further,
but more practical case studies are also needed to explore the potentials and limitations
of the TGG approach.

150 T. Buchmann, A. Dotor, and B. Westfechtel

References

1. Object Management Group Needham, Massachusetts: Meta Object Facility (MOF) 2.0
Query/View/Transformation Specification. Final adopted specification ptc/07-07-07 edn.
(July 2007)

2. Rozenberg, G. (ed.): Handbook on Graph Grammars and Computing by Graph Transforma-
tion: Foundations, vol. 1. World Scientific, Singapore (1997)

3. Ehrig, H., Engels, G., Kreowski, H.J., Rozenberg, G. (eds.): Handbook on Graph Grammars
and Computing by Graph Transformation: Applications, Languages, and Tools, vol. 2. World
Scientific, Singapore (1999)

4. Schürr, A.: Specification of graph translators with triple graph grammars. In: Mayr, E.W.,
Schmidt, G., Tinhofer, G. (eds.) WG 1994. LNCS, vol. 903, pp. 361–375. Springer, Heidel-
berg (1995)

5. Königs, A., Schürr, A.: Tool Integration with Triple Graph Grammars - A Survey. Electronic
Notes in Theoretical Computer Science 148, 113–150 (2006)

6. Buchmann, T., Dotor, A., Westfechtel, B.: MOD2-SCM: Experiences with co-evolving mod-
els when designing a modular SCM system. In: Proceedings of the 1st International Work-
shop on Model Co-Evolution and Consistency Management, Toulouse, France (2008)

7. Zündorf, A.: Rigorous object oriented software development. Technical report, University of
Paderborn, Germany (2001)

8. Conradi, R., Westfechtel, B.: Version models for software configuration management. ACM
Computing Surveys 30(2), 232–282 (1998)

9. Zeller, A., Snelting, G.: Unified versioning through feature logic. ACM Transactions on Soft-
ware Engineering and Methodology 6(4), 397–440 (1997)

10. Westfechtel, B., Munch, B.P., Conradi, R.: A layered architecture for uniform version man-
agement. IEEE Transactions on Software Engineering 27(12), 1111–1133 (2001)

11. Whitehead, E.J., Ge, G., Pan, K.: Automatic generation of hypertext system repositories: a
model driven approach. In: 15th ACM Conference on Hypertext and Hypermedia, pp. 205–
214. ACM Press, New York (2004)

12. Kovŝe, J.: Model-Driven Development of Versioning Systems. PhD thesis, University of
Kaiserslautern, Kaiserslautern, Germany (August 2005)

13. Jahnke, J., Zündorf, A.: Applying graph transformations to database re-engineering. In: [3],
pp. 267–286

14. Cremer, K., Marburger, A., Westfechtel, B.: Graph-based tools for re-engineering. Journal of
Software Maintenance and Evolution: Research and Practice 14(4), 257–292 (2002)

15. Becker, S.M., Herold, S., Lohmann, S., Westfechtel, B.: A graph-based algorithm for con-
sistency maintenance in incremental and interactive integration tools. Software and Systems
Modeling 6(3), 287–315 (2007)

16. Giese, H., Wagner, R.: Incremental model synchronization with triple graph grammars. In:
Nierstrasz, O., Whittle, J., Harel, D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp.
543–557. Springer, Heidelberg (2006)

17. Amelunxen, C., Klar, F., Königs, A., Rötschke, T., Schürr, A.: Metamodel-based tool in-
tegration with MOFLON. In: 30th International Conference on Software Engineering, pp.
807–810. ACM Press, New York (2008)

18. Kindler, E., Wagner, R.: Triple graph grammars: Concepts, extensions, implementations, and
application scenarios. Technical Report tr-ri-07-284, University of Paderborn, Paderborn,
Germany (June 2007)

19. Schürr, A., Klar, F.: 15 Years of Triple Graph Grammars — Research Challenges, New Con-
tributions, Open Problems. In: Ehrig, H., Heckel, R., Rozenberg, G., Taentzer, G. (eds.) ICGT
2008. LNCS, vol. 5214, pp. 411–425. Springer, Heidelberg (2008)

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 151–152, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Model-Driven Web Engineering (MDWE 2008)

Geert-Jan Houben1, Nora Koch2, and Antonio Vallecillo3

1 Delft University of Technology, The Netherlands
2 Ludwig-Maximilians-Universität München and Cirquent GmbH, Germany

3 Universidad de Málaga, Spain
g.j.p.m.houben@tudelft.nl, kochn@pst.ifi.lmu.de, av@lcc.uma.es

Abstract. The MDWE 2008 workshop offered a forum to exchange experi-
ences and ideas related to model-driven languages and systems, applied to the
Web Engineering field. Presentations and discussions focused on Model Driven
Architecture (MDA) for the development of web systems; the use of metamod-
els, UML profiles, model-to-model and model-to-code transformations for gen-
erating web applications; and the use of tools and frameworks for supporting
model-driven web development.

1 Workshop Rationale and Aims

Web Engineering is a specific domain in which Model-Driven Software Development
(MDSD) can be successfully applied. Existing model-based web engineering ap-
proaches already provide excellent methods and tools for the design and development
of most kinds of web applications. They address different concerns using separate
models (navigation, presentation, workflows, etc.) and come with model compilers
that produce the application’s web pages and logic based on these models. However,
most of these Web Engineering proposals do not fully exploit all the potential benefits
of MDSD, such as complete platform independence, metamodeling, and model trans-
formations.

The MDA initiative introduced a new approach for organizing the design of an ap-
plication into different models so portability, interoperability, and reusability can be
obtained through architectural separation of concerns. MDA covers a wide spectrum
of topics and issues (MOF-based metamodels, UML profiles, model transformations,
modeling languages and tools, etc.). At the same time, we see a trend towards applica-
tion interoperability and Web 2.0 technologies and richer applications. However, the
effective integration of all these new techniques with the already existing model-
based Web Engineering approaches is still a challenge.

The fourth edition of the MDWE workshop was held in Toulouse, France, in con-
junction with the MoDELS 2008 conference. The goal of the workshop was to facili-
tate the discussion of key issues, innovative approaches, open problems and trends in
these research areas, with the aim of identifying methodologies and technologies to
effectively support Model-Driven Web Engineering. The MDWE 2008 web site [1]
contains all the detailed information about the workshop, including the agenda and the
Proceedings with the presented papers.

152 G.-J. Houben, N. Koch, and A. Vallecillo

2 Workshop Overview

Eight papers were selected for presentation at the workshop, from 15 initial submis-
sions. Selected papers were published in the workshop Proceedings, which are avail-
able online [2]. The selection was based on a strict peer-review process by which each
submitted paper was reviewed by at least three reviewers.

In the paper by Ernst Oberortner, Martin Vasko and Schahram Dustdar a static
model is introduced, which enables the assignment of Role-Based Access Control to
the pageflow at design time, achieving the integration of security concerns.

Juan Manuel González Calleros, Adrian Stanciulescu, Jean Vanderdonckt, Jean-
Pierre Delacre and Marco Winckler performed in their paper a comparative analysis
of model-transformation engines (publicly available, commercial, and developed ad-
hoc) for the model-driven development of User Interfaces.

The paper by Ali Fatolahi, Stéphane S. Somé, and Timothy C. Lethbridge considers
the use case model as a baseline to generate other models (including state machines and
user interface models), which are eventually transformed into a platform-specific model
used for code generation.

The work of Valeria de Castro, Juan Manuel Vara Mesa, Elisa Herrmann and
Esperanza Marcos focuses on the alignment problems of models at the computational
and platform specific levels (CIM and PIM), i.e. the business view in the former and
the information system view in the latter.

Model-driven performance of service configurations with reliable messaging is
discussed in the paper from László Gönczy, Zsolt Déri, and Dániel Varró. Starting
from high-level UML models of service configurations captured by a UML profile for
SOA, performance models are derived by automated model transformations in order
to assess the performance cost of fault tolerance techniques.

Howard Foster, Sebastian Uchitel, Jeff Kramer and Jeff Magee also focused on
services, presenting a model-driven approach for service brokering specifications.

Marco Brambilla, Piero Fraternali and Massimo Tisi introduced a transformation
framework for the migration of WebML models to MDA.

The final paper by Lutzen Luinenburg, Slinger Jansen, Jurriaan Souer, Inge van de
Weerd and Sjaak Brinkkemper focused on the design of a web content management
systems using the method association approach.

A final session was devoted to analyse and further discuss the main issues raised in
the workshop, including MDWE for “new” web applications, a classification of sys-
tems and features, patterns, criteria for a quality model, traceability, evolution support
for web applications and evolution of methodologies. Extended versions of two of the
papers (the one by Bambrilla et al., and the one by Gönczy et al.) were selected for
inclusion in this MoDELS 2008 Workshop Proceedings.

References

[1] MDWE 2008 web site (last visited 17.11.2008) (2008),
 http://mdwe2008.pst.ifi.lmu.de/

[2] Koch, N., Houben, G.-J., Vallecillo, A.: Proc. of the 4th Int. Workshop on Model-Driven
Web Engineering (MDWE 2008) (last visited 17.11.2008) (2008),

 http://CEUR-WS.org/Vol-389/

Model Transformations for Performability
Analysis of Service Configurations�

László Gönczy, Zsolt Déri, and Dániel Varró

Budapest University of Technology and Economics
Department of Measurement and Information Systems

H-1117 Budapest, Magyar tudósok körútja 2
{gonczy,varro}@mit.bme.hu, zsolt.deri@gmail.com

Abstract. As more and more business-critical systems are based upon
servicesdeployedoverflexible anddynamicplatforms likeService-Oriented
Architecture (SOA), there is an increasing need for such services to meet
their non-functional requirements like reliability, availability, security, etc.
Toachieve suchobjectives, these servicesneed tobedesigned carefullymak-
ing critical design decisions early in the development process on an archi-
tectural level.

In the current paper, we aim at carrying out a performability analysis
of service configurations to estimate the cost of using reliable messaging
techniques for services with respect to performance. Such an analysis
is enabled by automated model transformations carried out within the
VIATRA2 framework.

Keywords: Model-driven Analysis, Model Transformations, Performa-
bility Analysis, Service-Oriented Architecture.

1 Introduction

As more and more business-critical systems are based upon services deployed
over flexible and dynamic platforms like Service-Oriented Architecture (SOA),
there is an increasing need for such services to meet their non-functional require-
ments like reliability, availability, security, etc. To achieve such objectives, these
services need to be designed carefully making critical design decisions early in
the development process on an architectural level.

Non-functional requirements of services are frequently captured by service-
level agreements (SLA), which capture the required service parameters between
two business parties. Unfortunately, there is currently no design time guarantee
that these SLAs will actually be met during service operation. In fact, properly
setting up service configurations is a complex task as performance and relia-
bility requirements can be contradicting: an inappropriate setup of reliability
attributes may cause significant decrease in performance.

� This work was partially supported by the SENSORIA European project (IST-3-
016004).

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 153–166, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

154 L. Gönczy, Z. Déri, and D. Varró

In the current paper, we aim at carrying out a performability analysis of ser-
vice configurations to estimate the cost of using reliable messaging techniques for
services with respect to performance. Such an analysis is enabled by automated
model transformations carried out within the VIATRA2 framework. Previous
work [11] is extended with the technicalities of model transformations used for
performability analysis. Our approach for analyzing service configurations is in
line with the model-driven service engineering framework proposed by the SEN-
SORIA research project [20].
Modeling of service configurations. This paper uses UML models conforming to
the UML4SOA profile (developed within SENSORIA) as a modeling notation.
UML4SOA uses standard UML extensibility mechanism and the structural part
of this modular profile is closely related to the core SOA metamodel presented
in [2]. The profile models several other aspects (policies, dynamic behaviour,
etc.), here we rely on the non-functional extension for service design. UML4SOA
defines a general description format for (design time and runtime) non-functional
parameters of services. In this paper, we specialize this for reliable messaging
standards; the metamodel used here is based upon the work in [12].
Performability analysis. From such service configuration models, automated
model transformations generate formal process models for the PEPA framework
(Performance Evaluation Process Algebra, [7]) to provide an early performabil-
ity evaluation and prediction for service configurations with reliable messaging
(Sec. 3).

In contrast to performance analysis methods which investigate the behaviour
of composed services (e.g., business workflows), here we derive performance mod-
els from the SLA specification of service configurations by using basic building
blocks for modeling services communicating over a reliable messaging middle-
ware. Performability model is automatically derived from high-level system de-
scription by means of model transformations.
Model analysis transformations. These transformations were implemented in the
VIATRA2 framework [22] by following a model-driven approach using para-
metrized transformations to derive target analysis models. A brief insight to the
actual transformations is provided in Sec. 4.

2 Modeling SOA with Reliable Messaging

In the current section, we present how service configurations can be modeled
using a high-level UML model dedicated to service design by a corresponding
UML profile, which was designed as part of the SENSORIA project. This profile
is conceptual follow up of [2] where a semi-formal platform-independent and a
SOA-specific metamodel (ontology) was developed to capture service architec-
tures on various levels of abstraction in a model-driven development process for
business-level services. The UML4SOA profile includes means to capture non-
functional aspects of services on a high-level of abstraction (i.e. independently
of specific non-functional parameters such as availability or performance). In
this section, we briefly overview the core ideas behind this modeling language.

Model Transformations for Performability Analysis of Service Configurations 155

Moreover, we specialize this general-purpose non-functional profile to capture
service configurations with reliable messaging based upon a recently developed
metamodel [12].

2.1 Running Example

In this paper we will use the ”On Road Assistance” scenario developed in scope
of the Automotive Case Study [15] within the SENSORIA [20] project, which
describes a car-to-infrastructure application scenario.

In this scenario, the built-in diagnostic system of a car reports a severe failure
of the engine which triggers the in-vehicle diagnostic system to perform an analy-
sis of the sensor values. If the car is no longer drivable the system sends a message
with the diagnostic data and the GPS data of the vehicle to the car manufacturer
or service center. Based on availability and the driver’s preferences, the service dis-
covery system identifies and selects the appropriate services in the area: repair shop
(garage), tow truck and rental car. The selection of services takes into account per-
sonalized policies and preferences of the driver. Upon confirmation, the owner of
the car has to deposit a security payment before being able to order services.

This scenario raises several non-functional requirements against the system,
as collected in [8]. In this paper, we concentrate on the accountability, which
means on the service architecture level that the effect of communication faults
have to be eliminated by the underlying middleware based upon appropriate
service configurations to guarantee the message delivery between components.

2.2 A Core SOA Metamodel and Non-functional Extensions

The UML4SOA profile [16] was developed in the SENSORIA project to capture
the abstract structural, behavioral and non-functional aspects of service-oriented
applications. The profile is built in a modular way, and thus here, we mainly focus

Fig. 1. Metamodel of non-functional properties of services

156 L. Gönczy, Z. Déri, and D. Varró

on non-functional aspects, which are most relevant for the current paper (see
Fig. 1). These non-functional aspects were inspired by standard UML extensions
(such as [17]). On a very abstract level, we define Services which are provided
by Components. Each service defines a provided interface and a required interface.
Each service defines a Protocol while each component has an Implementation.

Non-functional aspects are included in the UML4SOA profile by generalizing
Service Level Agreements. Attributes of a service are described by NFDimen-
sions which are collected to NFCharacteristics, which represent logical groups of
properties, such as security, performance or reliable communication. These char-
acteristics are contained within an NFSpecification.

During the operation of services, provided and requested properties of services
are negotiated (which process is out of the scope of the current paper). After
the negotiation, a contract with the agreed specification is created. Fulfillment
of the contract is monitored by a dedicated component.

Fig. 2. Core components of the OnRoadAssis-
tance scenario

Case study. An extract of the
components of the “On Road As-
sistance” scenario [15] is shown
in Fig. 2. In the current paper,
we focus on the Vehicle Com-
munication Gateway component,
which is responsible for the car-
to-infrastructure communication,
i.e. it manages communication be-
tween external service providers,
like the Bank and the global po-
sitioning system (GPS). This way,
the Vehicle Communication Gate-
way acts as a communication me-
diator between a central service
Orchestrator component and the
actual external services. For our

initial investigations, we disregard from this Orchestrator, and focus only on the
other three components.

2.3 Reliable Messaging Standards for Web Services

There are various industrial standards reflecting the emerging need for reliable
Web services middleware from which we focus on reliable messaging standards
(e.g., WS-Reliability and WS-ReliableMessaging) in this paper.

Reliable messaging in the fields traditional distributed systems is closely re-
lated to the guaranteed semantics of message delivery. As a demonstrative ex-
ample, we discuss that at least once delivery semantics. In the case of normal
operation, every message is transferred at least once, with the possibility of send-
ing multiple instances of the same message. This can only be allowed in systems
where this does not have an undesired side-effect.

Model Transformations for Performability Analysis of Service Configurations 157

The following attributes are required for the configuration of reliable mes-
saging (besides messagingSemantics, which selects the messaging mode as
described earlier):

– inactivityTimeout: (integer, seconds), after this period of time if no ac-
knowledgment message has arrived, the connection is closed;

– exponentialBackoff: (boolean), if it is set to true, time amounts between
retransmissions are following an exponential distribution;

– acknowledgementInterval: (integer, seconds), amount of time elapsed be-
fore sending acknowledgement message;

– retransmissionInterval: (integer, seconds), after this time a request is
resent by client if no acknowledgement arrived.

We incorporate these attributes to the UML4SOA profile by prescribing that
the NFCharacteristic of an NFSpecification should contain an NFDimension specific
to reliable messaging ReliableMessaging (when reliable messaging is required by
a contract).

Fig. 3. Non-functional specification of the commu-
nication

Case study. Reliable messag-
ing specifications using non-
functional extensions of the
UML4SOA profile are cap-
tured in Fig. 3 (for charg-
ing the bank account of
the driver) which prescribes
that communicating with the
bank requires reliable mes-
sage communication.

NF Specifications are de-
fined to describe the relevant
properties of communication
between Bank Charge service
and Vehicle Communication
Gateway etc. These specifi-
cation can contain different
characteristics like availabil-
ity, performance or reliable
messaging. Certain parame-
ters can be defined for non-
functional attributes (such as

average ResponseTime, messageSemantics etc.) in course of modeling which can
be used for example for generation of configuration files as can be seen later.

In the current paper, we illustrate our approach by using the at-least-once
reliable messaging semantics as a communication model. However, using other
reliable messaging semantics would not cause significant complications for the
presented approach.

158 L. Gönczy, Z. Déri, and D. Varró

3 Model-Based Performability Analysis of Services

We present a model-driven technique for the performability analysis of service
configurations with reliable messaging. Performability refers to the behavior of
the system in the presence of faults, in other words, the cost of fault-handling (or
fault-tolerant) techniques in terms of response time. For our investigations, we
use the PEPA (Performance Evaluation Process Algebra) toolkit [7], which offers
a formal language for capturing and powerful stochastic analysis techniques for
the evaluation of performance models.

3.1 The Performability Model

For capturing the performability model of the basic components (in our case, the
client and the server), we use a visualized version of the process algebra nota-
tion of PEPA. Each process is visualized as an automaton. Rectangles represent
states, while transitions between states correspond to communication actions.
! stands for sending a message and ? means receiving a message. Sending and
receiving messages is carried out by synchronization between the two processes.
Internal actions without communication between processes are also distinguished
(e.g., timeout trigger events). The firing frequency of transition in PEPA are con-
sidered to follow an exponential distribution.

Fig. 4 shows the stochastic performability model created as a combination of
some core processes. The model represents the behavior of a service provider
(Bank) and a service requester Vehicle Communication Gateway when reliable
messaging is required between them.

The service provider (shortly, server) component is either processing a request
or waiting for a new one, with the action of sending an acknowledgement to the
client once the message was successfully received.

Fig. 4. PEPA process model of a service configuration with at-least-once messaging

Model Transformations for Performability Analysis of Service Configurations 159

The service requester (or shortly, client) is assumed to behave according to the
at-east-once semantics (with an upper limit of three on the number of messages).
The automaton of the service requester represents that after sending a message, it
waits for an acknowledgement until a timeout occurs. Then it resends the request
until the maximum number of retransmission is reached. This is represented
by the non-trivial multiplication of a basic automaton as many times as the
maximum number of allowed retransmissions. If an acknowledgement arrives,
the message transmission is considered successful.

3.2 Performability Analysis Objectives

The typical questions for the PEPA solvers investigate passage time (i.e., the
expected response time of the system as a function of stochastic parameters),
utilization of states (what percentage of total operating time is spent in a par-
ticular state). In addition, sensitivity analysis can also be performed to estimate
the effect of changing transition rates on system-level performability attributes.
The number of possible retransmissions is also an interesting parameter to inves-
tigate, however, this needs the modification of the structure of the performability
model (by re-executing the transformation), while tuning of other parameters
requires to modify only the rates in the generated PEPA model. Core examples
for using PEPA are available in [7,24].

We can investigate the utilization of states in order to answer questions like
”What percentage of time is spent waiting for the answer of the request?”. With
the parameter settings of our running example (described in Fig. 4), PEPA
derives that in a steady state, the system spends 23% of the time with fault
handling within states MsgSentX and FailX, which are exactly the states required
for providing reliable messaging.

Sensitivity Analysis. Fig. 5 shows the (relative) change of failure rate as a
function of RAMP related parameters acknowledgement time and retransmission
interval based upon PEPA calculation. For the failure rate, utilization of Failure

Fig. 5. Effect of RAMP-related parameters on failure

160 L. Gönczy, Z. Déri, and D. Varró

state has been used. X-axis shows different values of acknowledgment time while
the different curves plot different timeout thresholds.

Our analysis results can be interpreted as early prediction of performability.
For instance, one can deduce from Fig. 5 that if the rateAck rate is increased
from 0.2 to 0.3 (namely acknowledgement interval decreases), then there is about
100% decrease in the frequency of errors. So it is worth improving performance
of the provider if its cost is linear. Decreasing rateTimeout rate (curves with
different colors) also leads to the improvement of failure rate.

We also extend our performability model to handle service configurations
where a service provider itself needs to call some other (third-party) service in
order to serve its own request. This intermediate (mediator) component acts as
a server and a client at the same time, thus we derive its behavior by combin-
ing the basic elements of our performability model (exemplified in Fig. 4) by
synchronizing the core automata on send and ack messages.

4 Model Transformation Development

Transformation overview. Essentially, automatic model transformations de-
rive PEPA processes from the UML models of service configurations extended
with reliable messaging attributes. This transformation takes various inputs:

– Service configuration models, which only contain the architectural design, i.e.
the dependencies between services being relevant for performability analysis.
For performability analysis, we identify the main roles of service providers
and requesters potentially chained to incorporate third party services.

– Predefined library of component behavior, which captures the core, performa-
bility related behavior of reliable messaging for each party (e.g. service
provider, requester). This library should include technology-related behav-
ior, which is typically observable but not controllable (in case of a reliable
messaging middleware, the overhead of access to stored message content be-
fore generating new message instances).

– Reliable messaging parameters, which affect both the structure and the dy-
namic behavior of performability models. This includes quantitative charac-
teristics of faults of message transmission (encoded implicitly into rates of
transitions) to estimate the effect of unreliable communication layer.

Transformation chain. The translation of the UML model to PEPA code was
implemented in multiple steps as shown in Fig. 6 using model-to-model and
model-to-text transformations implemented in the VIATRA2 framework. The
input of the transformation chain is a standard UML model using UML4SOA
for modeling services and non-functional parameters of messaging captured in an
EMF representation. This model is first imported to the internal representation
of the VIATRA2 tool.

Then uml2pepa is executed to transform relevant parts of the service model
(from the performance aspect) to the concepts of the PEPA tool by taking
the contracts attached to the model and generating PEPA automaton. This

Model Transformations for Performability Analysis of Service Configurations 161

Fig. 6. Transformation chain

transformation also uses a ’parameter library’ (currently encoded as a set of
constants) which represent typical settings of the reliable middleware. These are
also used to set default values for parameters which were uninitialized in the
high level model.

Finally, pepa2out is a syntactical transformation which generates textual code
from the PEPA model. Separating the syntax generation from the semantical
mapping enables to develop transformations which are easier to maintain; more-
over, the abstract performance model can also serve as the basis of creating input
to other stochastic analysis tools.

The transformation chain has also been integrated to the SENSORIA De-
velopment Environment (SDE). SDE is an Eclipse-based tool which integrates
model-driven tools for SOA development, analysis and deployment in a ”SOA-
style” [19] where all models and tools can be managed within the same Eclipse
environment, and different tools are invoked as services.

4.1 Definition of Model Elements: Models and Metamodels

During the implementation of model based analysis technique, we first need to
define the structure of the data we want to handle at different levels of ab-
straction, e.g., at the level of engineering models, level of formal representation
and level of concrete analysis tool syntax. The performability analysis trans-
formations we discuss are part of a complex transformation suite helping the
model-based development of services with non-functional requirements.

The following code shows parts of the metamodel of the PEPA language
implemented in VIATRA. We use the concept of Entity, Relation and subtypeOf
to build hierarchical models.
entity(metamodel.PEPA) {

entity(meta) {
entity (Component);
entity (State);
entity (InitialState);
subtypeOf(InitialState , State);
relation (part , Component , State);

// creating operators (choice , cooperation) ...
// creating actions ...
// creating parameters (rates) ..
}

}

Besides the metamodel of the source (UML) and the target (PEPA) languages,
a reference model also needs to be created in order to ”track” the connections
between corresponding source and target elements of model. Using reference
models improves the maintainability of the transformation. In this case, the

162 L. Gönczy, Z. Déri, and D. Varró

reference model stores information about the ”semantical” connections among
UML component diagram elements and PEPA elements.

4.2 Definition of Basic Mappings: Graph Transformation Rules

Model transformations are also captured in a textual way by using a combination
of (i) graph patterns for querying models, (ii) graph transformation rules for
elementary model manipulations, and (iii) abstract state machines for assembling
complex transformations from simple rules.

Graph patterns are the atomic units of model transformations. They represent
conditions (or constraints) that have to be fulfilled by a part of the model space
in order to execute some manipulation steps on the model. A negative application
condition (NAC) prescribes contextual conditions for the original pattern which
are forbidden in order to find a successful match.

Graph transformation (GT) [6] provides a high-level rule and pattern-based
manipulation language to implement basic mappings. In VIATRA2, graph
transformation rules may be specified by using a precondition (or left-hand side –
LHS) pattern determining the applicability of the rule, and a postcondition pat-
tern (or right-hand side – RHS) which declaratively specifies the result model
after rule application. Elements that are present only in (the image of) the LHS
are deleted, elements that are present only in the RHS are created, and other
model elements remain unchanged. Further actions can be initiated by calling
any ASM instructions within the action part of a GT rule, e.g. to report debug
information or to generate code.
// pattern for finding components with
// reliable messaging specification
gtrule component2componentR(in Component , out Interface) = {
precondition pattern lhs (Component , Interface) = {
structure.Port(Port) in Component;
structure.Interface(Interface) in Component;
structure. PortType (PortType) in Component;
structure.Port.isInstanceOf(Instance , Port , PortType);
structure. PortType .provides (P, PortType , Interface);
RelMsgSpecification(RelMsg);
RelMsgSpecification.providerSpec(PSpec , RelMsg, Port);

}
action {
let PepaComponent = undef in
new (PEPA.Component(PepaComponent) in PEPA.instances);
}

This transformation fragment shows a graph transformation rule matching
for a component and a corresponding interface which have a specification on the
reliability of the messages (and therefore is a subject of the analysis).

4.3 Assembling Complex Transformations

Graph transformation is a declarative mechanism to define relations among el-
ements in different modeling languages. However, a real model transformation
also frequently necessitates efficient control structure to assemble complex model

Model Transformations for Performability Analysis of Service Configurations 163

transformation programs from elementary transformation rules. VIATRA2 uses
Abstract State Machines for this purpose [3]. The following code snippet de-
scribes the high-level transformation flow, which first applies transformation rule
componentPattern to create basic automaton for the server-side process (which
waits for incoming requests, as illustrated on Fig. 4), and then its server-side
and client-side subautomata are populated.
machine uml2pepa {
rule main(in Model) =
let Model=ref(Model), PepaComponent=undef in
forall Component , Interface below Model with apply
component2componentR(Component , Interface , PepaComponent)
do seq {

// creating server process (in separate unit)
call createServerProcess(PepaComponent);
// creating client process (in separate unit)
call createClientProcess(PepaComponent , ...);

}
}

4.4 Platform Specific Data Library

The transformation relies on the knowledge of messaging semantics (specification
level) and the messaging standards defining operations of the concrete middle-
ware. In order to incorporate performability concepts, we need to create a plat-
form specific library of state machines with timing parameters, which is then the
basis of analysis model generation. In our case, this library is used to create the
structure of performance models on the basis of reliable messaging specifications.
For instance, the at-least-once messaging semantics with the specified value of 3
for maxNumberOfRetransmission will correspond to the automata in Fig. 4.

In this case, the success and failure states of the client automaton are created
first, then the intermediate states are created in a recursive manner.
// VIATRA rule for creating the client -side automata
rule createClientProcess (in PepaComponent , in Retransmisson)
= let SIdle = undef , Success = undef , Failure = undef in
seq {
new (PEPA.meta.InitialState(SIdle) in PepaComponent);
new (PEPA.meta.State(Success) in PepaComponent);
new (PEPA.meta.State(Failure) in PepaComponent);
call createSentStates(PepaComponent ,Retransmisson);

}

// rule for intermediate states
rule createSentStates(in PepaComponent , in Retransmisson =
let Sent=undef , Fail=undef in seq {
if (Retransmisson > 0) seq {
new(PEPA.meta.State(Sent) in PepaComponent);

new(PEPA.meta.State(Fail) in PepaComponent);
call createSentStates(PepaComponent , Retransmisson -1);
}

}

The execution of the transformations on the case study model resulted in
PEPA models which were then analyzed as described in Sec. 3.

164 L. Gönczy, Z. Déri, and D. Varró

5 Related Work

A framework for automated WSDL generation from UML models is described
in [21], using the UML extensions of MIDAS [4]. In [13], Web service descrip-
tions are mapped to UML models, and (after using visual modeling techniques)
a composite service can be created for which the descriptor is automatically
generated. However, none of these works considers non-functional properties of
Web services.

Non-functional aspects of e-business applications are discussed among others
in [1], having some description of deployment optimization for J2EE applications,
but without discussing details of model-based deployment.

Integration of non-functional aspects in the development by model transfor-
mations is also investigated in [5,18] and [14], focusing on parts of the engineering
process. However, none of these approaches address performability analysis in
the context of SOA.

In a service-oriented environment, PEPA has already been used to analyze
(application-specific) high-level UML models or workflow-like descriptions of ser-
vices with Service Level Agreement attributes [24]. In this approach, the authors
investigate performance parameters (compared to performability in our case).
However, the main essential difference is the (performance-related) behavior of
services needs to be modeled explicitly on the UML-level. In contrast, our tech-
nique relies only on architectural level UML models, and the core building blocks
of (business-independent) performability-related behavior are instantiated in ac-
cordance with the UML model of service configurations, which allows better
reusability.

Concerning previous work of the same authors, verification of the behavior of
the system (i.e., checking the conformance to requirements on reliable messag-
ing) was performed in [12], thus giving a formal semantics which can be checked
by using some basic verification techniques and tools. The process model used for
performability analysis in Sec. 3 is derived as an abstraction of this work, con-
centrating on quantitative measures. A high-level initial overview of the current
framework were introduced in [9]; however, the current paper contains signif-
icantly more details, and the performability analysis is completely novel. [10]
shares some conceptually similar ideas in order to carry out a model-based per-
formance evaluation to analyze BPEL processes with SLA requirements by using
DEEM.

6 Conclusions

In the paper, we presented an integrated model-driven framework for the design
and analysis of standards-compliant service configurations supporting reliable
messaging.

We provided an overview of transformation development in the VIATRA2
framework [23]. On the example of this transformation, we illustrated the de-
velopment of metamodels and transformations using the combination of graph
pattern matching mechanism and Abstract State Machine rules.

Model Transformations for Performability Analysis of Service Configurations 165

As modeling front-end, the IBM Rational Software Architect v7 UML tool
was used with appropriate model importers for VIATRA. We used an SLA-like
description and (in contrary to existing methods were the original source model
had to be enriched by performability parameters) we created a quantitative
model which is the basis of precise analysis, helping the designer to estimate
the cost and benefit of using reliable middleware. Our analysis uses the PEPA
toolkit.

The same model representation is used as the basis of deployment transfor-
mations to standard-compliant platforms [9], such as IBM RAMP, Apache Axis2
extended with Sandesha module and SCA environments with implementations
of the Policy framework.

A thorough scalability analysis of our approach on a real-life example is also
part of our research activities. From the model transformation aspect, we also
plan to work on the back-annotation of the results to the engineering model.

References

1. Balogh, A., Varró, D., Pataricza, A.: Model-based optimization of enterprise appli-
cation and service deployment. In: Malek, M., Nett, E., Suri, N. (eds.) ISAS 2005.
LNCS, vol. 3694, pp. 84–98. Springer, Heidelberg (2005)

2. Baresi, L., Heckel, R., Thöne, S., Varró, D.: Style-based modeling and refinement
of service-oriented architectures. SoSyM 5(2), 187–207 (2006)

3. Börger, E., Stärk, R.: Abstract State Machines. A method for High-Level System
Design and Analysis. Springer, Heidelberg (2003)

4. Caceres, P., Marcos, E., Vera, B.: A MDA-based approach for web information
system development. In: Workshop in Software Model Engineering (WiSME@UML
2003) (2003)

5. Cortellessa, V., Marco, A.D., Inverardi, P.: Software performance model-driven
architecture. In: SAC 2006: Proceedings of the 2006 ACM symposium on Applied
computing, pp. 1218–1223. ACM Press, New York (2006)

6. Ehrig, H., Engels, G., Kreowski, H.-J., Rozenberg, G. (eds.): Handbook on Graph
Grammars and Computing by Graph Transformation. Applications, Languages and
Tools, vol. 2. World Scientific, Singapore (1999)

7. Gilmore, S., Tribastone, M.: Evaluating the Scalability of a Web Service-Based
Distributed e-Learning and Course Management System. In: Bravetti, M., Núñez,
M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 214–226. Springer,
Heidelberg (2006)

8. Gnesi, S., ter Beek, M., Baumeister, H., Hoelzl, M., Moiso, C., Koch, N., Zobel, A.,
Alessandrini, M.: D8.0: Case studies scenario description, SENSORIA Deliverables
Month 12 (2006)

9. Gönczy, L., Ávéd, J., Varró, D.: Model-based deployment of web services to
standards-compliant middleware. In: Pedro Isaias, I.J.M., Nunes, M.B. (eds.) Proc.
of WWW/Internet 2006 (ICWI 2006). Iadis Press (2006)

10. Gönczy, L., Chiaradonna, S., Di Giandomenico, F., Pataricza, A., Bondavalli, A.,
Bartha, T.: Dependability evaluation of web service-based processes. In: Horváth,
A., Telek, M. (eds.) EPEW 2006. LNCS, vol. 4054, pp. 166–180. Springer, Heidel-
berg (2006)

166 L. Gönczy, Z. Déri, and D. Varró

11. Gönczy, L., Déri, Z., Varró, D.: Model-Based Performability Analysis of Service
Configurations with Reliable Messaging. In: Koch, N., et al (eds.) Proc. Model
Driven Web Engineering (MDWE). CEUR, vol. 389 (2008)

12. Gönczy, L., Kovács, M., Varró, D.: Modeling and verification of reliable messaging
by graph transformation systems. In: Proc. of the Workshop on Graph Transforma-
tion for Verification and Concurrency (ICGT 2006). Elsevier, Amsterdam (2006)

13. Gronmo, R., Skogan, D., Solheim, I., Oldevik, J.: Model-driven web services de-
velopment. In: Proc. of the IEEE Int. Conf. on e-Technology, e-Commerce and
e-Servie (EEE 2004), pp. 42–45. IEEE, Los Alamitos (2004)

14. Jonkers, H., Iacob, M.-E., Lankhorst, M.M., Strating, P.: Integration and analysis
of functional and non-functional aspects in model-driven e-service development.
In: EDOC, pp. 229–238 (2005)

15. Koch, N., Berndl, D.: D8.2.a: Requirements Modelling and Analysis of Selected
Scenarios - Automotive Case Study, SENSORIA Deliverables Month 24 (2007)

16. Koch, N., Mayer, P., Heckel, R., Gönczy, L., Montangero, C.: D1.4.a: UML for
Service-Oriented Systems, SENSORIA Deliverables Month 24 (2007)

17. Object Management Group. UML Profile for QoS and Fault Tolerance (2006),
http://www.omg.org

18. Röttger, S., Zschaler, S.: Model-driven development for non-functional properties:
Refinement through model transformation. In: Baar, T., Strohmeier, A., Moreira,
A., Mellor, S.J. (eds.) UML 2004. LNCS, vol. 3273, pp. 275–289. Springer, Heidel-
berg (2004)

19. SENSORIA Development Environment home page (2007),
http://svn.pst.ifi.lmu.de/trac/sct

20. SENSORIA FP6 IST project (2005), http://sensoria-ist.eu
21. Vara, J.M., de Castro, V., Marcos, E.: WSDL Automatic Generation from UML

Models in a MDA Framework. In: NWESP 2005, p. 319. IEEE, Los Alamitos (2005)
22. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-

work. Science of Computer Programming 68(3), 214–234 (2007)
23. VIATRA2 Framework at Eclipse GMT, http://www.eclipse.org/gmt/
24. Wirsing, M., Clark, A., Gilmore, S., Hölzl, M., Knapp, A., Koch, N., Schroeder, A.:

Semantic-Based Development of Service-Oriented Systems. In: Najm, E., Pradat-
Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006. LNCS, vol. 4229, pp. 24–
45. Springer, Heidelberg (2006)

http://www.omg.org
http://svn.pst.ifi.lmu.de/trac/sct
http://sensoria-ist.eu
http://www.eclipse.org/gmt/

A Transformation Framework to Bridge Domain
Specific Languages to MDA

Marco Brambilla, Piero Fraternali, and Massimo Tisi

Politecnico di Milano, Dipartimento di Elettronica e Informazione
P.za L. Da Vinci, 32. I-20133 Milano - Italy

{marco.brambilla,piero.fraternali,massimo.tisi}@polimi.it

Abstract. The Model Driven Architecture aims at the integration of
different modeling languages, artifacts and tools in a unified technical
space. Pre-existing development methodologies based on Domain Specific
Languages (DSL) require a complex process to benefit from this integra-
tion. After a MOF metamodel for the DSL is defined, there is no standard
methodology to move legacy models and tools to the new architecture.
This paper proposes a general model-driven integration procedure for
pre-MDA DSLs. The procedure, given the definition of suitable model
transformations, is completely automatic. The proposed framework is
fully implemented, in a way independent of the specific DSL that must
be transformed. As a case study, a toolsuite based on WebML, a DSL
for designing Web applications, is bridged to MDA.

1 Introduction

Model Driven Architectures (MDA) are becoming the platform of choice for
the design and implementation of a variety of software systems. Many tools are
flourishing in the opensource community, within academic research projects, and
on the commercial market, fostering the wider adoption of MDA.

On the other hand, these trends put at risk of obsolescence the approaches
based on pre-existing domain specific languages (DSL) and models (DSM) that
do not fully comply with the MDA guidelines. These legacy development method-
ologies would require a complex transformation process to fully benefit from
MDA. The transformation process must be designed and implemented almost
from scratch for every pre-MDA design approach, with a high associated cost.
This may lead to dropping the DSM instead of integrating it in the MDA frame-
work, thus loosing modeling experiences and domain expertise.

In this paper, we discuss a general MDA framework to move DSMs speci-
fied in a legacy technical space to a MDA-compliant architecture. We propose
a multi-step transformation approach based on Higher Order Transformations
(HOT) to transform the legacy DSMs to MDA models whose metamodel can be
either automatically or semi-automatically derived. The contribution is to offer

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 167–180, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

168 M. Brambilla, P. Fraternali, and M. Tisi

a migration path from a legacy technical space to MDA, based on a set of trans-
formations that are independent of the specific DSL. These transformations can
be reused to:

1. transform any DSL defined in the legacy technical space to a corresponding
MOF metamodel (metamodel transformation, M2T);

2. map every model defined by means of the legacy DSL to a MDA model
(model transformation, M1T);

3. guarantee that the generated model is an instance of the corresponding
metamodel. This can be achieved by enforcing the coherence between the
two previous tasks. To this purpose, we use a Higher Order Transformation
(HOT) for automatically generating the M1T transformation from the M2T
transformation.

Once the framework is in place, the developer can optionally implement a final
refinement transformation (M1Tr) to address particular issues of the specific
DSL or specific structures that require ad hoc domain knowledge and cannot be
automatically inferred.

Thanks to our approach, only one higher order transformation and one meta-
model transformation are needed for each technical space. The model transfor-
mations for any DSL in that technical space can be automatically generated.
Moreover, any change in the DSL does not require one to modify the transfor-
mations, because the manually written ones (M2T and HOT) depend only on
the technical space, while the model transformation (M1T), the only one that
depends on the DSL, can be automatically regenerated.

Besides the general framework, the paper also presents a concrete implemen-
tation in the Eclipse Modeling Framework, that provides a mature implementa-
tion for some key MDA standards. The framework is developed using the ATL
transformation language, focusing on the migration from a XML/DTD technical
space to Ecore-based artifacts. The implementation is used to port WebML [9]
legacy models to MDA.

The paper is organized as follows: Section 2 describes the generic transfor-
mation approach, Section 3 presents the concrete transformation case, Section 4
discusses the related works and Section 5 concludes the paper.

2 Transformation Framework

The migration of the syntactical structure of a DSM from a legacy technical
space to MDA is a task that involves three related issues, illustrated in Figure
1 as mappings between artifacts in the two spaces:

1. the DSMs are generally expressed in a DSL that does not conform to MOF,
thus requiring the derivation of an ad-hoc MOF metamodel;

2. the DSMs have to be transformed into models in the MDA technical space;
3. the conforms to relationship that connects models to their language must

be mapped from the legacy technical space to the MDA technical space, to
ensure that the two conforms to relationships have the same semantics.

A Transformation Framework to Bridge Domain Specific Languages to MDA 169

Fig. 1. Correspondences between technical spaces

The correspondences of Figure 1 are not independent. Normally, mapping (1)
and (2) are designed independently, in such a way to implicitly satisfy mapping
(3). As a consequence, any change in one of the mappings impacts the others
and requires their adjustment. For example, a change in the mapping between
the DSL and its corresponding MOF metamodel (1), preserves the conforms to
relationship (3), but impacts the mapping between models (2). Maintaining co-
herence manually is a time-consuming and error-prone activity. The framework
proposed in this paper allows the automatic synchronization of the transforma-
tions. In particular, we formally define two of these correspondences, namely (1)
and (3), and automatically generate the other, i.e. (2), by means of HOTs.

As shown in Figure 2, the organization of the framework consists of three
phases, followed by a final optional step:

1. The metamodel generation phase addresses mapping (1), by performing the
automatic translation of the DSL to a MDA metamodel. The translation
involves a first step of injection and a second step of metamodel transfor-
mation (M2T). These steps require the availability of the metametamodel
(MMM) of the involved technical spaces, i.e. the legacy metametamodel and
Ecore. The legacy MMM needs to be expressed as an MDA metamodel (i.e.,
conforming to Ecore). The DSL injector parses the concrete syntax in which
the DSL is expressed and derives a representation of the DSL abstract syntax
as an instance of the legacy MMM. Subsequently the transformation M2T is
defined as a set of transformation rules that map the syntactical constructs
of the legacy MMM to Ecore. The application of the M2T transformation
translates any metamodel in the legacy technical space into a correspon-
dent Ecore metamodel. Notice that the M2T transformation relies only on
a mapping between the two MMMs, i.e. the two technical spaces. Once this

170 M. Brambilla, P. Fraternali, and M. Tisi

transformation has been specified, it can be reused for the migration of any
DSL between the addressed technical spaces.

2. The model generation phase addresses mapping (2), by automatically trans-
lating the legacy DSMs into models compliant with the new metamodel.
This phase is analogous to the previous one, but applied at a lower level in
the MDA stack: it again involves an injection step followed by a transfor-
mation step. The injection step performs the parsing of the concrete syntax
of the DSM, and generates an instance of the metamodel associated with
the DSM syntax. Subsequently, the model transformation step (M1T) com-
putes the final MDA model as an instance of the metamodel produced by
the metamodel generation.

3. The higher order transformation phase addresses mapping (3), guarantee-
ing the coherence between the conforms to relationship of the two technical
spaces. This task is performed in two sub-tasks: 1) a promotion transforma-
tion obtains the DSL metamodel by promoting the model M1 resulting from
the model generation phase to metamodel (M2); 2) a manually defined HOT
derives the M1T transformation by translating the M2T transformation, and
eventually analyzing the structure of the DSL metamodel.

4. Finally, the refinement model transformation can be optionally applied to
adapt the resulting model to some manually introduced variations of the
DSL metamodel. This phase typically affects marginal aspects of the auto-
matically generated models, and will not be treated in detail in the rest of
the paper.

Fig. 2. Diagram of the general framework

3 Case Study: Modernization of a DTD-Based DSL

This section describes the case study on which we built our prototype framework.
We introduce and discuss the DSL technical space and the transformations of the

A Transformation Framework to Bridge Domain Specific Languages to MDA 171

aforementioned phases of Metamodel Generation, Model Generation, and Higher
Order Transformation. The framework implementation is orchestrated by means
of an Ant script that uses the tasks of the AM3 project [1]. The complete sources
of the prototype framework can be downloaded from [3].

3.1 The Technical Space: DTD/XML

The case study focuses on the migration from a legacy technical space based on
XML files that conform to given Document Type Definitions (DTD). Figure 1
can be specialized for the use case: (i) the DSL syntax is defined by the DTD
grammar (level M3); (ii) the DSL is specified by a DTD document (level M2);
(iii) the DSM is an XML document (level M1); (iv) the conforms to relationship
corresponds to the validity relationship in the DTD/XML technical space, i.e.
to the relationship that connects a valid XML document to its associated DTD.

Moving from the DTD/XML technical space to the MDA technical space
requires the following mappings:

– M3 mapping: to map the DTD grammar to Ecore, associating to each DTD
construct (e.g. ATTLIST) a correspondent Ecore translation (e.g. a set of
EAttributes).

– M2 mapping: to map a specific DTD document to a correspondent Ecore
metamodel, associating each DTD definition (e.g. a specific ATTRIBUTE)
to a correspondent Ecore element (e.g. a specific EAttribute).

– Conformance mapping: to map the validity relationship to the conforms
to relationship, so that if an XML document is valid with respect to its
associated DTD then its correspondent model conforms to its metamodel.

The difference in expressive power between the DTD syntax and Ecore makes
the bridging between these formalisms a non-deterministic activity, since the
DTD syntax is ambiguous in several points, compared to Ecore[19]. This means
that, when mapping a DTD construct to an Ecore translation, the M3 mapping
involves choices among different suitable alternatives, that can only rely on de-
fault policies and heuristics. Examples of lack of expressiveness are the general
CDATA attribute type, that can be mapped on different Ecore types such as ES-
tring, EInteger, or EFloat; and the IDREF attribute type that can be mapped
as an EReference without specifying the associated eType.

The discussion about the optimal policies for the M3 mapping is outside the
scope of this paper. The most convenient heuristics can be different depending
on the considered DSL. The framework we provide assures that, upon changes
on the M3 mapping (or on the DSL itself), the M2 mapping is automatically
synchronized, thus maintaining the coherence between M3 and M2.

3.2 The DSL: WebML

The sample DSL considered in our case study is WebML [9], a DSM language
for data-, service-, and process- centric Web applications. It allows specifying

172 M. Brambilla, P. Fraternali, and M. Tisi

Fig. 3. Example of WebML hypertext model

the conceptual model of Web applications built on top of a data schema and
composed of one or more hypertexts used to publish or manipulate data. The
specification consists of several sub-models: the data model represents the data
schema; the hypertext model represents the content of pages, the navigation
paths, and the parameters that flow among the components; and the presentation
model describes the visual aspects of pages.

The data model is the standard Entity-Relationship (E-R) model. Upon the
same data model, different hypertext models (site views) can be defined (e.g., for
different types of users or for different publishing devices). A site view is a graph
of pages, consisting of connected units, representing data publishing components:
a unit displays instances of an entity, possibly restricted by a selector. Units are
related to each other through links, representing navigational paths and carrying
parameters. WebML allows specifying also update operations on the underlying
data (e.g., the creation, modification and deletion of instances of entities or
relationships) or operations performing arbitrary actions (e.g. sending an e-mail,
invoking a remote service, and so on).

Figure 3 shows a simple hypertext, containing two pages. Page Recent Movies
List contains an index unit defined over the Movie entity, which shows the list of
movies produced after year 2008 (selector [Year > 2008]) , and a data unit also
defined over the Movie entity, which displays the details of the movie selected
from the index. The link between the two units carries the parameter CurrMovie,
used by the selector [OID=CurrMovie] of the data unit. Another link connects
Recent Movies List page to Search Movies page, without carrying any parameter.
Page Search Movies contains an entry unit for inserting the movie title to be
searched, a scroller unit, and a multidata unit displaying a block of search results.
Through the scroller unit it is possible to move to the first, previous, next, and
last block of results.

The WebML language is supported by the WebRatio CASE tool [4], a de-
velopment environment for the visual specification of Web applications and the
automatic generation of code for the J2EE platform.

A Transformation Framework to Bridge Domain Specific Languages to MDA 173

Fig. 4. Overview of the WebML metamodel

Some proposals of WebML metamodels already exist ([8] and [19]). We have
extended the metamodel presented in [17] as summarized in Figure 4, which is
further refined for describing all the details of the DSL.

3.3 Metamodel Generation

Figure 5 depicts the general diagram of the Metamodel Generation phase, that
transforms a DSL specified by means of a DTD into an Ecore metamodel. The
DTD metamodel is a refined version of the one provided in [14]. The first class
objects of this metamodel are Element, Attribute, Sequence, etc.
DSL Injection. The DSL Injection step consists in parsing the concrete syn-
tax of the DTD specification to derive an instance of the DTD metamodel. The
AM3 framework provides support to custom injectors developed as a Java class
implementing the org.eclipse.m2m.atl.engine.injectors.Injector interface. Devel-
oping a custom Java injector for the legacy metametamodel is generally a simple
task, because a parser of the concrete syntax of the metametamodel is usually
available in the legacy technical space and can easily be extended with semantic
actions to build the correspondent metamodel elements. In our work, a DTDIn-
jector class has been developed using the DTD Parser provided in [2].
M2T. The M2T transformation defines the M3 mapping, between the DTD
MM and Ecore. M2T is implemented as an ATL transformation defining the
translation policies between the elements of a DTD and the classes of a meta-
model. M2T is defined without any domain specific knowledge: it is a general
transformation that can be reused to translate every DSL defined by means of

174 M. Brambilla, P. Fraternali, and M. Tisi

Fig. 5. Case Study: Metamodel Generation

a DTD into an Ecore Metamodel. Following is an excerpt from the M2T imple-
mentation in the case study:

module m2t; -- Metamodel Transformation
create OUT : MOF from IN : DTD;
rule Element {
from
element : DTD!RestrictedElement

to
class : MOF!EClass (
name <- element.name,
eStructuralFeatures <-
element.content.attributes.union(element.content.children)

)
}
rule EmptyElement {
from
element : DTD!EmptyElement

to
class : MOF!EClass (
name <- element.name,
eStructuralFeatures <- element.content.attributes
)

}
rule Attribute {
from
attribute : DTD!Attribute

to
attr : MOF!EAttribute (
name <- attribute.name
)

}

The rules translate DTD Elements, Attributes and Children to EClass, EAt-
tribute and EReference elements. This version of the M2T transformation con-
tains several heuristic choices. For instance:the Children of a DTD Element
are always translated as containment references in Ecore; and DTD Attributes

A Transformation Framework to Bridge Domain Specific Languages to MDA 175

are translated to simple EAttributes, without considering their type. The latter
heuristic is sufficient for simple cases, when the use of IDREFs is limited and
can be dealt with in the M1Tr transformation.

3.4 Model Generation

Figure 6 shows the diagram of the Model Generation phase, that transforms a
WebML project specified as an XML document into an instance of the WebML
metamodel generated in the Metamodel Generation phase. The core is an XML
injection step, followed by the generated transformation M1T.

Fig. 6. Case Study: Model Generation

The metamodels involved in this phase are the XML metamodel and the
WebML metamodel. The former is a standard metamodel provided by the EMF
project whose first class objects are Tag, Node, Attribute, etc.
DSM Injection. The injection of the DSM is easily performed by means of the
XMLInjector, a standard injector provided by the AM3 project, to convert an
XML document to an instance of the XML metamodel.

M1T. M1T is the transformation that maps an XML model to an Ecore
model, instance of the generated DSM metamodel, i.e. the WebML metamodel.
Being an ATL transformation that has the DSL metamodel as the output meta-
model, M1T can not be independent of the DSL metamodel. For this reason,
traditional transformation-based approaches to the migration of DSMs to MDA
require one to develop a different M1T transformation for each DSL. The genera-
tive approach that we propose overcomes this problem: in our framework M1T is
still a DSL-specific transformation, but it is generated by a DSL-agnostic HOT.

An exemplary ATL rule, part of the M1T transformation, is:

176 M. Brambilla, P. Fraternali, and M. Tisi

rule INDEXUNIT {
from
element : XML!Tag (name = ’INDEXUNIT’)

to
result : DSLMM!INDEXUNIT (
[...]
)

}

The example represents the skeleton of the M1T translation rule for an INDEX-
UNIT WebML component. In the XML representation of a WebML project, an
INDEXUNIT is represented by an INDEXUNIT tag as a child of the container
PAGE. The ATL excerpt matches every XML INDEXUNIT tag and generates
an instance of the INDEXUNIT Class in the WebML MM (for brevity we omit
the code for the structural features).
M1Tr. Being generated from M2T, the M1T transformation is a DSL-specific
transformation that does not use any DSL-specific knowledge. Since M2T and
HOT are DSL-agnostic transformations, any DSL-specific transformation has to
be specified in a subsequent step that lies outside the generative framework,
represented by the optional M1Tr (i.e. M1T refinement) transformation. M1Tr
translates the generated model to an instance of a manually defined DSL meta-
model that usually has only limited differences with the generated one. M1Tr
is a DSL-specific transformation that can be used to solve issues such as the
different expressive power of the metametamodels, the structural limitations of
the DSL-agnostic transformations, and the implementation limits of the proto-
type (especially wrt. the M2T syntax). In the WebML case, M1Tr can adapt the
generated models to the official WebML metamodel, manually designed in [17].

3.5 Higher Order Transformation

The Higher Order Transformation phase is responsible for the translation of the
M2T transformation, that generates the new metamodel, to the M1T transfor-
mation, that generates the new models. The only metamodel involved in this
phase is the ATL metamodel that provides a representation of an ATL transfor-
mation as an instance model.

ATL Injection/Extraction. The execution of the HOT has to be preceded
and followed respectively by an injection and an extraction of the ATL transfor-
mations. M2T is injected as an instance of the ATL metamodel and, after the
HOT has been executed, M1T is extracted to its textual form. The injection and
extraction of the ATL transformations is implemented using the generic EBN-
FInjector and EBNFExtractor provided by the AM3 project. The two classes
allow one to specify any concrete syntax for the injection/extraction by means
of a Textual Concrete Syntax (TCS) model[15]. A TCS is an Ecore model, that
conforms to the TCS metamodel, describing the syntactic rules of the concrete
syntax. An ATL-TCS model is provided by the ATL project and can be used as
a parameter of the generic injector and extractor.

HOT. The most original aspect of our approach is the use of a HOT to
enforce the coherence of the mappings at different levels. The following code is
a simplified rule extracted from our HOT:

A Transformation Framework to Bridge Domain Specific Languages to MDA 177

module HOT;
create OUT : ATL from IN : ATL, DTD : DTDMM;
rule Classes {
from
matched : ATL!MatchedRule (outPattern.elements->first().type.name = ’MOF!EClass’)

using {
matchedElements : Sequence(OclAny) =

DTDMM!Element.allInstances()->
select(e | e.oclType().toString() = ’DTDMM!’+matched.inPattern.elements->

first().type.name); [...] }
to
atl : distinct ATL!MatchedRule foreach (e in matchedElements) (

name <- e.name,
inPattern <- inPat,
outPattern <- outPat,
isRefining <- false,
isAbstract <- false),

-- InPattern
inPat : distinct ATL!InPattern foreach (e in matchedElements) (

elements <- elementin,
filter <- oc),

elementin : distinct ATL!SimpleInPatternElement foreach (e in matchedElements) (
id <- ’tag0’,
varName <- ’tag’,
type <- intype),

intype : distinct ATL!OclModelElement foreach (e in matchedElements) (
name <- ’XML!Tag’),

-- Filter
oc : distinct ATL!OperatorCallExp foreach (e in matchedElements) (

operationName <- ’=’,
source <- noac,
arguments <- s),

noac : distinct ATL!NavigationOrAttributeCallExp foreach (e in matchedElements) (
name <- ’name’,
source <-fv),

fv : distinct ATL!VariableExp foreach (e in matchedElements) (
name <- ’tag’,
referredVariable <- elementin),

s : distinct ATL!StringExp foreach (e in matchedElements) (
stringSymbol <- e.name),

-- OutPattern
outPat : distinct ATL!OutPattern foreach (e in matchedElements) (

elements <- elementout),
elementout : distinct ATL!SimpleOutPatternElement foreach (e in matchedElements) (

varName <- ’class’,
type <- outtype),

outtype : distinct ATL!OclModelElement foreach (e in matchedElements) (
name <- ’DSLMM!’+e.name)

[...]}

The rules of the HOT match in their source pattern the ATL rules of the
input transformation. Then the HOT rules can make use of the DSL metamodel
to derive useful information on the structure of the DSL.

The previous sample rule matches the rules of M2T that generate Ecore
Classes in the target metamodel. When one of those rules is matched, the using
part of the rule saves in the matchedElements variable all the instances matched
by the transformed rule. Finally a set of output ATL rules is generated, by
iterating on the matchedElements variable.

The small excerpt alone generates a minimal skeleton of a rule without consid-
ering any of the structural features of the output pattern. It can be easily shown
that when the Classes rule is applied to the WebML metamodel (in particular to

178 M. Brambilla, P. Fraternali, and M. Tisi

the INDEXUNIT element), it translates the M2T shown in Section 3.3 exactly
in the M1T rule shown in Section 3.4.

An approach based on a high level of abstraction may lead to an increased
development cost. In particular, the complexity of the HOT grows with the
expressive power of the language in which M2T is specified. A first approach to
face this issue is limiting the ATL features supported by the HOT to a defined
set. For example, our prototype imposes some constraints on M2T:

– only matched (declarative) rules are allowed;
– the source pattern of each rule must comprise one source pattern element

(as in ATL 2004);
– the target pattern of each rule must comprise one simple or iterative target

pattern element;
– local variable sections or imperative block sections are not allowed;
– OCL declarative expressions are restricted to basic path expressions and to

some basic operations on collections, such as union.

While these restrictions did not hamper the translation of a DTD into Ecore,
more advanced constructs might be needed for complex technical spaces or
heuristics. In this case, the HOT transformation can be extended or, in the
worst case scenario, implemented with a general purpose language (e.g., Java).

4 Related Work

The framework described in this paper extends the preliminary work presented
in [7]. The paper [7] concentrates on the DSL metamodel, with special focus
on the modeling of data derivation rules, and only sketches the transformation
project; this work details the general transformation framework and explains in
greater detail how to use it to bridge any DSL to MDA.

The issue of defining a bridge between specific technical spaces and MDA has
been addressed in several works, such as [6], [5], [16] and [22]. The only approach
that uses HOTs is [6], which describes the migration from the Microsoft DSL
technical space to the Eclipse Modeling Framework. Even if the problem and
the chosen means are quite similar, the solution presented in [6] has remarkable
differences with our proposals. In [6] the HOT is designed with the sole purpose
to maintain the framework independent of the specific DSL. Our approach also
aims at the independence of the DSL, but adds the requirement of automatic
synchronization between the mapping of the metamodels and the mapping of
the models. In practice, our solution allows one to change the mapping at the
meta-level and automatically get an updated transformation at the model level.
As discussed in Section 3, the extra requirement comes with a cost. Our HOT
is more complex than in [6], and its development requires a limitation on the
syntax of the metamodels mapping.

Analogies exist also with the co-adaptation of models compliant to an evolving
metamodel ([11], [20], [13]). With respect to these works our framework is the
first to use higher order transformations to directly synchronize the model level
transformation with the meta level transformation.

A Transformation Framework to Bridge Domain Specific Languages to MDA 179

Higher order transformations have already been used to perform various tasks
in model driven development [10], [11], [12]. To our knowledge this work is the
first to address a HOT that translates an ATL transformation at the meta-level
to the associated transformation at model level.

Several approaches have focused on the transformation between XML and
metamodels: [21] surveys 13 proposals, classified according to the direction of
the transformation (i.e. forward, backward or both) and the concrete formalisms
used as source/target of the transformation. To the best of our knowledge, the
only approach conducting a forward transformation from DTD to MOF is [19],
which focuses on the same case study, the WebML DSL. With respect to this
work, our framework provides, on the basis of the transformations defined at the
meta-level, the generation of coherent transformations at the model level, and
thus allows the immediate reuse of existing WebML models in MDA.

Finally, some works concentrate on the specific issue of manually mapping
WebML to MDA: [17] remodels WebML using MOF and [18] proposes a WebML
UML 2.0 profile to facilitate the interoperability between the WebML IDEs (e.g.
WebRatio [4]) and UML modelling tools. Our proposal extends these works, as
it can partially automate the production of the metamodel.

5 Conclusions

In this paper we have discussed a MDA framework to move DSMs specified in
a legacy technical space to a MDA-compliant architecture. The transformation
framework covers the translation of both the metamodel and the model levels,
and grants automatic coherence of the two. The translation specified manually
does not depend on the specific DSL, but only on the technical space. In this
way, we offer a flexible migration solution that is resilient to the changes of
the DSL. Our implementation experience over a real DTD-based DSL called
WebML showed the feasibility and the advantages of the approach. However,
some drawbacks have been highlighted too. The most critical point is related
to the ATL implementation of the HOT: since DTD is a fairly simple syntax
definition language, the metametamodel transformation has been rather simple
to implement too. Only declarative ATL constructs have been used, and no
complex OCL constraints were needed. In this context, the implementation of the
HOT with ATL has been a reasonable task. However, if the M2T transformation
would have involved a deeper use of ATL, the implementation of the ATL HOT
would have been a painful job. Indeed, if M2T is expected to be a transformation
that involves the full expressive power of ATL, the HOT should be implemented
with a different technique (e.g., as a Java program).

References

1. AM3 (2008), http://www.eclipse.org/gmt/am3/
2. DTDParser (2008), http://www.wutka.com/dtdparser.html
3. Framework Implementation (2008),

http://home.dei.polimi.it/mbrambil/legacytomda

http://www.eclipse.org/gmt/am3/
http://www.wutka.com/dtdparser.html
http://home.dei.polimi.it/mbrambil/legacytomda

180 M. Brambilla, P. Fraternali, and M. Tisi

4. WebRatio (2008), http://www.webratio.com/
5. Abouzahra, A., Bézivin, J., Didonet Del Fabro, M., Jouault, F.: A practical ap-

proach to bridging domain specific languages with UML profiles. In: Best Practices
for Model Driven Software Development Workshop at OOPSLA (2005)

6. Bezivin, J., Hillairet, G., Jouault, F., Kurtev, I., Piers, W.: Bridging the ms/dsl
tools and the eclipse modeling framework. In: International Workshop on Software
Factories at OOPSLA (2005)

7. Brambilla, M., Fraternali, P., Tisi, M.: A metamodel transformation framework for
bridging webml models to mda. In: MDWE workshop in Models 2008 (2008)

8. Cattell, R.G., Barry, D.K., Berler, M., Eastman, J., Jordan, D., Russell, C.,
Schadow, O., Stanienda, T., Velez, F.: The Object Data Standard: ODMG 3.0,
1st edn. Morgan Kaufmann, San Francisco (2000)

9. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Design-
ing Data-Intensive Web Applications, 1st edn. Morgan Kaufmann, San Francisco
(2002)

10. Cicchetti, A., Di Ruscio, D., Pierantonio, A.: A metamodel independent approach
to difference representation. Journal of Object Technology (JOT) 6(9), 165–185
(2007) (Special issue on Proc. of TOOLS Europe)

11. Fabro, M.D.D., Valduriez, P.: Semi-automatic model integration using matching
transformations and weaving models. In: Proceedings of the 2007 ACM symposium
on Applied Computing, pp. 963–970 (2007)

12. Graaf, B., van Deursen, A.: Using mde for generic comparison of views. In: Pro-
ceedings of 4th MoDeVVa Workshop: Model-Driven Engineering, Verification and
Validation, INRIA, pp. 57–66 (2007)

13. Gruschko, B., Kolovos, D.S., Paige, R.F.: Towards synchronizing models with
evolving metamodels. In: Proc. Int. Workshop on Model-Driven Software Evo-
lution at IEEE European Conference on Software Maintenance and Reengineering
(ECSMR) (2007)

14. Guyard, P.: DTD Metamodel, www.eclipse.org/gmt/am3/zoos/atlanticZoo
15. Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the specification of textual

concrete syntaxes in model engineering. In: Proceedings of the 5th International
Conference on Generative Programming and Component Engineering (2006)

16. Kern, H., Kuhne, S.: Model interchange between ARIS and Eclipse EMF. In: 7th
Workshop on Domain-Specific Modeling at OOPSLA (2007)

17. Moreno, N., Fraternali, P., Vallecillo, A.: WebML modelling in UML. Software,
IET 1, 67–80 (2007)

18. Moreno, N., Fraternali, P., Vallecillo, A.: A UML 2.0 profile for WebML modeling.
In: 2nd International Workshop on Model Driven Web Engineering (MDWE) at
ICWE (2006)

19. Schauerhuber, A., Wimmer, M., Kapsammer, E., Schwinger, W., Retschitzegger,
W.: Bridging WebML to model-driven engineering: from document type definitions
to Meta Object Facility. Software, IET 1, 81–97 (2007)

20. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: Ernst, E.
(ed.) ECOOP 2007. LNCS, vol. 4609, pp. 600–624. Springer, Heidelberg (2007)

21. Wimmer, M., Schauerhuber, A., Kapsammer, E., Kramler, G.: From document
type definitions to metamodels: The WebML case study. Technical Report of Vi-
enna University of Technology (March 2006)

22. Wimmer, M., Schauerhuber, A., Strommer, M., Schwinger, W., Kappel, G.: A semi-
automatic approach for bridging DSLs with UML. In: 7th Workshop on Domain-
Specific Modeling at OOPSLA (2007)

http://www.webratio.com/
www.eclipse.org/gmt/am3/zoos/atlanticZoo

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 181–184, 2009.
© Springer-Verlag Berlin Heidelberg 2009

First International Modeling Security Workshop

Jon Whittle1, Jan Jürjens2, Bashar Nuseibeh2, and Glen Dobson1

1 Dept. of Computing, Lancaster University, Bailrigg, Lancaster LA1 4YW,
United Kingdom

whittle@comp.lancs.ac.uk, g.dobson@lancs.ac.uk
2 Computing Department, The Open University, Walton Hall, Milton Keynes, MK7 6AA,

United Kingdom
j.jurjens@open.ac.uk, b.nuseibeh@open.ac.uk

Abstract. This report summarizes the results of the 1st International Workshop
on Modeling Security, which was held as part of the 2008 International Confer-
ence on Model-Driven Engineering Languages and Systems (MODELS). The
workshop received 21 paper submissions of which seven were chosen for pres-
entation at the workshop. A further twelve were included in the proceedings and
presented at the workshop as posters. The papers can be found by viewing the
online workshop proceedings at: http://CEUR-WS.org/Vol-413/.

1 Introduction

This document reports on the 1st International Modeling Security Workshop, which was
held on September 28, 2008, in Toulouse, France, as part of the 2008 International Con-
ference on Model-Driven Engineering Languages and Systems (MODELS). The aim of
the workshop was to bring together practitioners and researchers in both software and
system modeling and security to transfer ideas, foster new collaborations, and define a
research agenda for secure modeling of software-intensive systems.

The call for papers led to a total of 21 paper submissions, of which seven were
chosen for presentation at the workshop. The workshop proceedings include an addi-
tional twelve papers, which were presented as posters. The proceedings are available
online as Vol. 413 of the CEUR Workshop Proceedings: http://CEUR-WS.org/Vol-
413/. The workshop website is accessible at: http://www.comp.lancs.ac.uk/modsec.
The workshop was well attended with over twenty-five participants actively engaging
in the two keynote talks, paper presentations and discussion sessions.

2 Workshop Theme

It is well known that ensuring computer security is one of the key challenges in
making modern systems safe, reliable and dependable. The number of vulnerability
exploits is rising exponentially, and estimates set the cost of security breaches at be-
tween $13 billion and $1.6 trillion per year.

Secure programming techniques are now generally well understood. Best practice
guidelines teach programmers how to avoid buffer overflows, when to validate inputs

182 J. Whittle et al.

and how to apply cryptography. Automated tools scan source code for vulnerabilities,
many of which can be detected automatically.

However, large classes of attacks cannot be avoided using such methods. Insider
attacks, for example, bypass authentication protocols. These sophisticated types of at-
tacks require a more holistic view of a system’s vulnerabilities and necessitate secu-
rity analysis techniques that take into account all phases of development. In other
words, there is a pressing need for systematic methods for analyzing and assessing the
security of system models, where models here are interpreted broadly to include re-
quirements, architecture and design, as well as organizational and business models.

This workshop brought together academics and practitioners working on the fol-
lowing topics related to security modeling: modeling security requirements; modeling
security in design and architecture; languages for modeling security; verification and
validation of security models; model-based testing for security; applica-
tions/experience of using security modeling; challenges for security modeling; and
processes and methodologies which incorporate security modeling.

3 Keynote Presentations

There were two keynote presentations to open the workshop. Neil Cooke, from the
University of Surrey, spoke about the Information Assurance (IA) challenge in soft-
ware engineering from a National Technical Authority (NTA) perspective. Most
countries have NTAs that support IA in government and set standards for products
and systems used in government. The UK NTA is a significant organization of about
500 people and is based in Cheltenham.

The classical model for security is to consider functional requirements, identify the
threat in terms of data value, loss impacts, mechanisms of threat, opportunity and then
to identify mitigations and residual risks that have then to be managed. The move
from the communications age to the information age, however, is changing the shape
of the whole IA world. The problem space and functional complexity is expanding at
a rate that challenges Moore's Law. It is no longer possible to evaluate solely by ex-
amining the security critical aspects because they do not exist as physical elements.
Rather, they are virtualized across the whole system. In this environment, to maintain
Assurance & Evaluation capability for Confidentiality, Integrity and Availability,
there must be increased use of higher-level concepts, modeling and automated tool-
sets. Whole system modeling is fast becoming the method of choice for the evaluation
and test of IA critical systems.

The second keynote was given by Ketil Stølen, Chief Scientist and Group Leader
at SINTEF. Ketil spoke about the security analysis of critical infrastructures such as
the electric power supply or telecommunications and noted that their security is com-
plicated by the fact that such infrastructures are mutually dependent. He proposed a
reductionistic approach to the modeling and analysis of security risk scenarios with
mutual dependencies. His approach may be used to deduce the risk-level of an overall
system from previous security risk analyses of its constituent systems. It may also be
used to decompose the analysis of a complex system into separate parts that can be
carried out independently.

 First International Modeling Security Workshop 183

4 Research Paper Presentations

The workshop included seven research paper presentations, arranged into two sepa-
rate sessions.

Mukhtiar Memon presented the paper SECTISSIMO: a platform-independent
framework for security services [1]. SECTISSIMO is a layered approach for the
modeling of security-critical, service-oriented systems. Functional models are en-
riched with security extensions which are then transformed into executables.
SECTISSIMO takes the crucial step of providing a platform that abstracts from the
underlying security technology using a layer of abstract security artifacts.

Karine Peralta presented the paper Specifying Security Aspects in UML Models [2].
This work was performed as part of Karine’s MS thesis. It concerns a technique for
specifying UML security stereotypes, which aims at guiding developers in annotating
vulnerable model parts and allowing automatic security test case generation.

Koen Yskout presented the paper Transforming security audit requirements into a
software architecture [3]. This research is an approach for automated transformations
from a security requirements model to a consistent architectural model. The approach
can be used with an existing architectural model, and allows input from the architect
to be taken into account. The transformation from audit requirements into a UML
model is implemented using QVT and Eclipse EMF.

Tejeddine Mouelhi talked about Mutating DAC and MAC Security Policies: A Ge-
neric Metamodel Based Approach [4]. This work is a novel application of mutation
testing techniques applied to the security domain. DAC and MAC security policies
can be specified, implemented and then validated using mutation testing.

Adam Shostack then gave an entertaining talk based on Experiences Threat Model-
ing at Microsoft [5]. The paper describes a decade of experience on threat modeling
products and services at Microsoft. Adam described the current threat modeling me-
thodology used in the Security Development Lifecycle. This methodology is a practi-
cal approach, usable by non-experts, centered on data flow diagrams and a threat
enumeration technique of “STRIDE per element”. The paper covers some lessons
learned which are likely to be applicable to other security analysis techniques.

The next presentation was of the paper Using Common Criteria as Reusable Know-
ledge in Security Requirements Elicitation [6], by Motoshi Saeki and Haruhiko Kaiya.
The elicitation of security requirements (SRs) is a crucial issue to develop secure in-
formation systems of high quality. Although there are several methods mainly for
functional requirements such as goal-oriented methods and use case modeling, most
of them do not provide sufficient supports to identify threats, security objectives and
security functions. This paper proposes the usage of Common Criteria and related
knowledge sources to identify SRs from functional requirements through eliciting
threats and security objectives.

Finally, Haralambos Mouratidis spoke about a Curriculum for Modeling Security:
Experiences and Lessons Learned [7]. Recent research has identified that security
analysis should be integrated into software engineering techniques and security
should be considered from the early stages of the software systems development
process. Although researchers have focused their efforts towards this direction, the
educational curriculum is not properly addressing this issue. In this paper, the author

184 J. Whittle et al.

presents the experiences and lessons learned from developing and running a module
in Secure Software Systems Engineering at the MSc Level.

5 Concluding Remarks

This was the first workshop dedicated to the topic of Modeling Security. It sparked a
great deal of interest in both the security and modeling communities. The 19 contribu-
tions showed a broad range of interesting research topics and pointed the way towards
future research.

Acknowledgements

The workshop organizers would like to thank the program committee: Ruth Breu
(University of Innsbruck, Austria); Neil Cooke (University of Surrey, UK); Geri
Georg (Colorado State University, USA); Charles Haley (Asia Pacific University Col-
lege of Technology and Innovation, Malaysia); Siv Hilde Houmb (University of
Twente, The Netherlands); Wouter Joosen (Catholic University of Leuven, Belgium);
Ulrich Lang (ObjectSecurity, UK); Yves Le Traon (IRISA, France); Haris Mouratidis
(University of East London, UK); Utz Roedig (Lancaster University, UK); Jörg
Schreck (Telefónica O2, Germany); Duminda Wijesekera, (George Mason University,
USA).

References

[1] Memon, M., Hafner, M., Breu, R.: SECTISSIMO: A Platform-independent Framework for
Security Services

[2] Peralta, K., Zorzo, A.: Specifying Security Aspects in UML Models
[3] Yskout, K., de Win, B., Joosen, W.: Transforming security audit requirements into a soft-

ware architecture
[4] Mouelhi, T., Fleurey, F., Baudry, B., Traon, Y.L.: Mutating DAC And MAC Security

Policies: A Generic Metamodel Based Approach
[5] Shostack, A.: Experiences Threat Modeling at Microsoft
[6] Saeki, M., Kaiya, H.: Using Common Criteria as Reusable Knowledge in Security Re-

quirements Elicitation
[7] Mouratidis, H.: Curriculum for Modelling Security: Experiences and Lessons Learned

Security Requirements Elicitation
Using Method Weaving and Common Criteria

Motoshi Saeki1 and Haruhiko Kaiya2

1 Dept. of Computer Science, Tokyo Institute of Technology
Ookayama 2-12-1-W8-83, Meguro-ku, Tokyo 152-8552, Japan

saeki@se.cs.titech.ac.jp
2 Dept. of Computer Science, Shinshu University

Wakasato 4-17-1, Nagano 380-8553, Japan
kaiya@cs.shinshu-u.ac.jp

Abstract. The elicitation of security requirements (SRs) is a crucial issue to de-
velop secure information systems of high quality. Although we have several re-
quirements elicitation methods, most of them do not provide sufficient supports
to identify security threats, security objectives and security functions. Security
functions are closely related to architectural design of the information system,
i.e. solution space, and knowledge from the solution space is necessary to elicit
appropriate SRs of higher quality. This paper proposes the usage of Common
Criteria and related knowledge sources to identify SRs from functional require-
ments through eliciting threats and security objectives. Our proposed technique
is to weave through Common Criteria two types of elicitation methods; one is
any existing functional requirements elicitation method and the other is a typi-
cal method for eliciting security functional requirements so that we can have a
powerful method.

1 Introduction

Information systems deployed at different sites are being connected to each other through
networks and their users can obtain various services anytime and anywhere. In this cir-
cumstance, it is very significant to protect assets in an information system from events
and/or malicious actors that compromise their security and therefore it is necessary to
develop the information systems with functions that protect from security threats.

In usual information system development like waterfall style, the requirements to an
information system are elicited after a business process modeling stage. It is necessary
to elicit the requirements to security functions (simply security requirements) as early
as possible, in order to reduce the development cost and to develop the information
system of higher quality [1]. Some techniques to elicit security requirements have been
proposed and put into practice, e.g. misuse case [2], abuse case [3], security use case
[4], the application of i* [5] and secure Tropos [6]. Almost of them are the extended
versions of use case modeling and goal-oriented approaches, which are requirements
elicitation ones originally for functional requirements (FRs), so that they can adapt to
the elicitation of security requirements. However, since security functions are closely
related to system architecture design, i.e. artifacts on a solution space of the problems,
thus it is difficult to elicit appropriate security requirements without considering the

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 185–196, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

186 M. Saeki and H. Kaiya

system architectures. For instance, let’s consider the data base system that stores uni-
versity students’ grades and its functions for the students to access to their grades. There
is a potential of the threat that grade data of a student can be read by the others. The
technique of password authentication can be adopted to mitigate the occurrences of this
threat, so that the only student that is authenticated and identified can read her grade data
from the data base system. Therefore, a file system of password data used for authen-
tication and identification (password file) is newly adopted in the system and it stores
pairs of student IDs and passwords. The malicious person illegally and furtively may
read password data from the password file and impersonates other students to get their
grade data when adopting such a technique. To mitigate this threat further, we can have
a solution to encrypt the password data in the file. We can consider threats as concepts
of a problem space, while the countermeasure techniques to mitigate the threats, e.g.
password authentication, password file and cryptography are the concepts in a solution
space of this problem domain. Thus, not only both of them are closely connected, but
also a new threat (a problem) may be invented from the newly adopted solutions. This
relation expresses just a twin-peak model where development activities in these two
spaces [7]. Requirement elicitation activities both in a problem space and in a solution
space are indispensable to appropriate security requirements elicitation. The existing
studies are biased to requirements elicitation on the problem space side, and there are
quite few studies that both sides are simultaneously considered. To make the methods
for eliciting security requirements work well, requirements analysts should have not
only knowledge of a problem space but also knowledge related to security functions on
a solution space, e.g. password authentication and cryptography etc. However it may
be a rare case where a requirements analyst has sufficient knowledge of both spaces,
and some techniques to provide an analyst with knowledge of security functions are
necessary to be weaved with an elicitation method.

In this paper, we propose an weaved security requirements elicitation method that
uses some standard documents as a guideline or knowledge source while requirements
elicitation on the solution space side is being performed. We select Common Criteria
Part 2 [8] and its related document (ECMA-271 E-COFC) [9] as an example of knowl-
edge source, because the Common Criteria consists of general concepts in the solution
space, and it can be considered as a kind of catalog to provide knowledge on threats,
security objectives and security functions that have generally appeared. For example, by
using Common Criteria, we can select the objective “data encryption” from the catalog,
to mitigate the threat “disclosure of password data”. Furthermore, from the catalog we
can select more concrete security functions, e.g. the procedures to generate encryption
keys and to abandon them, in order to achieve the selected objectives. Our technique is
for embedding the usage of Common Criteria to any existing functional requirements
elicitation methods such as goal-oriented approaches and use case modeling ones.

The rest of the paper is organized as follows. We explain Common Criteria (CC)
and describe how it can be used for security requirements elicitation in a solution space
in section 2. Sections 3 and 4 show the overview of the proposed method by using
the examples of goal-oriented method and use case modeling respectively, in order to
show that our approach works well. The related work and future research agenda are
presented in sections 5 and 6 respectively.

Security Requirements Elicitation Using Method Weaving and Common Criteria 187

2 Basic Idea

2.1 Weaving Methods

Typical activities to elicit security requirements (SRs) can be considered as follows;

1. Identify the assets that should be protected,
2. Identify security threats that can attack the identified assets,
3. Identify security objectives that can mitigate the identified threats,
4. Compose security functional requirements by refining the identified security objec-

tives.

Figure 1 shows how the above activities are embedded into a usual method of use
case modeling. In the figure, the left hand side part beginning with “1. Identify ac-
tors” represents a typical activity flow of a normal use case modeling method, while the
right hand side does specific activities for additionally developing misuse cases, their
relationships to normal use cases such as threaten and mitigate and misuse case de-
scriptions. As shown in the figure, the activities of these two activity flows are weaved
and performed in order to get a use case and misuse case model as security require-
ments. After identifying actors and use cases, an analyst starts identifying assets to be
protected. In this case, the assets to be protected are actors and/or use cases. Then the
analyst gets misuse cases and mis actors as security threats that prevent the actors from
performing successfully their use cases. For each misuse case, she identifies as its secu-
rity objectives the use cases that can mitigate its execution, and describes the contents
of the newly identified use cases.

As shown in this example, we should consider two points to be supported; 1) shift-
ing activities between the left part and the right one in Figure 1, and 2) performing
the activities in the right part. The first point shows how we can use intermediate ar-
tifacts developed in the left part to perform the right part and vise versa. We use the
reusable knowledge on security functions that is included in standard documents such
as Common Criteria (CC) in order to support the above two points. In the following

Eliciting FRs

1. Identify actors

2. Identify use cases

3. Describe use cases

4. Identify relationships

among use cases

Eliciting SRs (using misuse cases)

1. Identify assets to be protected

actors & use cases

2. Identify security threats as misuse
cases and mis actors

describe misuse cases

3. Identify security objectives as use
cases that can mitigate misuse cases

4. Compose SRs as the descriptions of
use cases mitigating misuse cases

Problem Space

Solution Space

Fig. 1. A Method of Use Case and Misuse Case Modeling

188 M. Saeki and H. Kaiya

two subsections, we introduce the overview of CC and then present our approach on the
usage of the knowledge included in CC.

2.2 Common Criteria

The Common Criteria (CC) is an international standard prescribing how to write the
documents that are used for assessing security properties of the information system
called TOE (target of evaluation). The produced document includes two types of docu-
ments; one document called security target is to specify security properties of the TOE,
and another is to describe security assurance requirements used for verifying the com-
pliance of the TOE product with the security properties. In this paper, we consider the
former document, i.e. a security target. The CC itself consists of three parts, and we use
its Part 2 as knowledge source of requirements elicitation.

A security target basically consists of 6 chapters. It begins with the overview of
the TOE in chapter 1 and then describes its functional requirements in chapter 2. The
description of functional requirements includes the information on the assets to be pro-
tected. In the example of the database system of students’ grades mentioned in the pre-
vious section, the assets to be protected are grade data of students. Potentials of threats
and assumption, etc. are described in the successive chapter 3 “Security Problem Def-
inition”. In the above example, we can consider identity spoofing by impersonation as
a potential of threat. The chapter 4 “Security Objectives” provides for the objectives
to mitigate the threats listed in the chapter 3. To mitigate the threat “impersonate”, au-
thentication by password can be given as a security objective. Note that each security
objective described in chapter 4 should be linked to the threats in chapter 3, to clarify
which objective mitigates which threats. In the chapter 5 “Security Requirements”, the
components of security functions to represent exactly the security objectives listed up
in chapter 4 are described. In CC Part 2, security functional (SF) components are cat-
alogued beforehand in the form of template. This is the reason why we use CC Part 2,
a collection of SF components and their relationships, as knowledge source in our ap-
proach. We can select appropriate templates from the CC Part 2 catalog and instantiate
them by filling their slots with relevant information. We represent the security objective
as the combination of the instantiations of the selected templates in chapter 5. For in-
stance, the template class FIA is for representing the security objective “identification
and authentication”, and it has the templates of the functional requirements descrip-
tions relevant to “identification and authentication” such as authentication failure, user
authentication, user identification, user attribute definition, etc. In chapter 6, the last
chapter, we specify the security functions by logically combining and summarizing the
component descriptions selected and instantiated in the chapter 5. It is necessary to
maintain traceability between threats, security objectives, SF components and the spec-
ification statements of security functions.

2.3 Using Reusable Knowledge

Figure 2 shows the overview of our approach. Firstly, we mention how to use the knowl-
edge in order to support the activities shown in the right part of Figure 2, i.e. eliciting
security requirements (SRs). Although CC Part 2 has about 120 SF components as a

Security Requirements Elicitation Using Method Weaving and Common Criteria 189

catalog, it has no catalogs of threats and security objectives. On the other hand, ECMA-
271 E-COFC [9], which can be considered as a profile of CC in a certain problem
domain, includes the catalogs of threats and security objectives. In this paper, we use
them together with CC Part 2. As shown in the right hand side of Figure 2, we ac-
cumulate a threat catalog, a security objective catalog and a SF component catalog,
and hold relationships between their catalog entries (i.e. security objective mitigates
threat, SF component represents security objective). After a threat is identified, a re-
quirements analyst should perform the two tasks; 1) identifying the security objectives
that can mitigate the threats, and 2) identifying the SF components that can represent
the identified security objectives. These two tasks can be considered as those in a so-
lution space and be supported by the catalogs. For example, suppose that the analyst
selected a threat “Impersonation” for students (T.impersonate in the catalog) from the
threat catalog. To mitigate it, the relationship between the threat catalog and the se-
curity objective catalog suggests that O.Authentication (authentication for students as
authorized users) and O.Integrity (protection of integrity of authentication data) should
be selected from the security objective catalog. Furthermore, the analyst can select SF
components (templates) of FIA class (User Identification and Authentication) in order
to refine and represent the security objective O.Authentication, by using the relation-
ship represent between the security objective catalog and the SF component’s. She fills
the slots with relevant information, e.g. the acceptable time of authentication failures
and the actions to be performed when the failures exceed to an acceptable value (e.g.
ringing an alarm etc.) in the templates FIA AFL family. And then she completes the
document of security requirements.

Secondly, we focus on the support to weaving two activity flows, i.e. bridging be-
tween the left part and the right one in Figure 2. An artifact produced with the functional
requirements (FRs) elicitation method (left part of the figure) includes the assets to be
protected and they appear as elements of the artifact. For example, when we adopt use
case modeling as a FRs elicitation method, the assets to be protected can appear as use
cases, actors or parts of use case descriptions. To identify the possible threats to the

final artifacts

Elicitation
Process
progresses

Eliciting
FRs

Eliciting
SRs

elicit

Catalog
(Common Criteria Part 2

+ ECMA E-COFC)

Threat Catalog

Security Objective
Catalog

Security Functional
(SF) Component
Catalog

Attaching
Attribute Values

Adding SF Components

mitigates

represents

Problem Space Solution Space

Fig. 2. Using Knowledge Included in Common Criteria

190 M. Saeki and H. Kaiya

assets, we characterize the assets by attaching some attribute values to them. As shown
in Figure 2, attribute values are used to identify threats. After getting SF components
by performing “Eliciting SRs”, the analyst fills the slots with suitable information and
add these SRs to the FRs. In the following two sections, we will clarify which attributes
we use.

3 Using a Goal-Oriented Method

As the first example, we adopt a goal-oriented method as a FRs elicitation method and
explain how our approach works. Figure 3 also shows an activity flow with a simple
example.

Step1. Identify functional requirements (FRs) :
An analyst elicits the FRs of the information system by using the existing elicita-
tion methods such as goal-oriented methods and use case modeling. As an example,
she uses a simplified version of goal-oriented method. As shown in the figure, she
decomposes the root goal “Checking grades” for the database system of students’
grades and decomposes it into two sub goals “Retrieving grades” (a student re-
trieves his grade data) and “Getting grades” (a student gets his grade data from the
database as a result of retrieval) with AND decomposition.

Step2. Identify assets and their attributes :
The analyst identifies from the FRs the assets to be protected. In the case of using
a goal-oriented method only, the assets can be extracted from goals and words ap-
pearing in the goal descriptions written in natural language. For each of the identi-
fied assets, the analyst attaches the attributes to it. Generally, we use 5W1H (Who,
What, When, Where, Why and How) as the attributes to characterize the assets.
The attributes to be used depend on a problem domain. In this example, the ana-
lyst focuses on the operationalized sub goal “Retrieving grades” as the asset to be
protected, and its attributes are the actor who performs it (unspecified person), the
action type of what the actor performs (sending retrieval information to the system)
and the location where the actor does (a student can perform at unspecified place).

Step3. Identify threats :
The analyst infers and derives the potentials of threats from the attribute values of
the assets and the threat catalog by means of inference rules prepared beforehand.
In this example, since the actor of the asset (goal “Retrieving Grades”) was un-
specified (persons) and the location was also unspecified, she selects T.imperonate
using the catalog and an inference rule. The inference rules specify the relation-
ships among possible threats and the attribute values of the assets. For the above
example, the analyst used the following rule of “if then” style to get T.impersonate.

if who(x) = unspecified ∧ where(actor(x)) = unspecified
then select T.impersonate(actor(x)), where x is an asset.

Step4. Identify security objectives :
The analyst selects suitable security objectives from the security objective cata-
log, using the identified threats and the asset attribute values. In this example, she
selected O.Authentication from the catalog, by applying the inference rule like:

Security Requirements Elicitation Using Method Weaving and Common Criteria 191

Identify Functional Requirements (FRs)

Threat Type
T.Threat

Security Objective
Type
O.Objective

SF Component
F.Function

Identify assets & their attributes

Identify threats

Identify security objectives

Identify SF components

Compose SRs and merge them to FRs

Getting
Grades

Checking
Grades

Retrieving
Grades

Retrieving
Grades

assets:
Who(Actor): Unspecified
What (Action Type): Send
Where (Location): Unspecified

T.impersonate

O.Authentication

FIA_UAU.*, FIA_UID.*, FIA_AFL.*

attributes:

Checking
Grades

Retrieving
Grades

preventing from
impersonation
(T.Impersonate)

Authentication
(O.Authentication)

unique
identification
by ID code
(FIA_UID.*)

unique
authentication
by password
(FIA_UAU.*)

Getting
Grades

detection of
authentication
failure
(FIA_AFL.*)

Adding sub goals
based on the
selected
components

Instantiating SF component templates

If attribute = x then
select T.Y

If-then style Inference rules

Fig. 3. Elicitation Method

if who(x)=unspecified∧T.impersonate then select O.Authentication(actor(x)).
This rule suggests that we could adopt the authentication technique in order to
prevent some actors from retrieving the grade data of the other students by means
of spoofing and impersonation.

Step5. Identify security functional (SF) components :
The analyst selects the set of the candidate SF components using the identified se-
curity objectives and the asset attribute values. This step is similar to the former
steps 3 and 4, i.e. the predefined inference rules support the selection of SF com-
ponents. In this example, the analyst selects FIA UAU, which is a family of the

192 M. Saeki and H. Kaiya

functional components for user authentication. Since these components have the
dependencies to FIA UID (the functions for user identification) and to FIA AFL
(the functions for measures to authentication failures), some of them are selected
to refine the security objective appropriately. Dependency relationships among SF
components are very helpful to avoid missing security requirements.

Step6. Compose security requirements (SRs) and merge them into FRs :
The analyst combines the identified SF components logically and makes the doc-
ument of SRs from them. This document explains for the customers how the de-
scribed functions can mitigate the threats and achieve the security objectives. In
this example, since the analyst uses the goal-oriented approach, she adds these
identified elements (threats, security objectives and the instantiated SF compo-
nents) as the sub goals of the asset to be protected, i.e. “Retrieving Grades”. As
shown in the bottom of Figure 3, the sub goals corresponding to T.Impersonate,
O.Authentication and FIA UAU are successively added to “Retrieving Grades”.
FIA UID and FIA AFL are also added with AND decomposition in the same level
because of their dependencies to FIA UAU. To maintain traceability, these ele-
ments as sub goals and their relationships are kept in the goal graph.

For the newly added security requirements, the analyst iterates from step 2 to step 6 and
elicits new requirements. In the example of the figure, after eliciting a sub goal “unique
authentication by password” from FIA UAU, she identifies passwords as the asset to be
protected at the iterated step 2, then identifies the threat T.Data Theft (password data
may be stolen) in the same way, and continues her elicitation tasks.

4 Using a Use Case Modeling Method

We illustrate another example where use case modeling is applied in order to show our
approach can work on various existing requirements elicitation methods, not only goal-
oriented approaches. The example in this section is the system of a financial company
that provides investment services to its customers, which was included in [10]. Figure
4 shows the overall of the system with a use case diagram and a part of the use case
descriptions.

This system includes many potentials of threats and some of them were pointed out
in [10]. In this example, out of them, we pick up and pay attention to the threat “the
manager can create a spurious authorization to access the account”. More concretely,
since the manager can know the identification & authentication information (ID and
Password) of the customer when the customer opens his account (with UC1), a ma-
licious manager can be spuriously authorized using the customer’s ID and password,
and can trade orders by impersonating as the customer. We apply our approach to this
security problem.
Step1. Identify functional requirements
As shown in Figure 4, we elicit the functions of the system with use case modeling. The
security problem results from the case where the customer can ask the manager to open
his account, not by himself. The action 3 of the UC1 suggests that the manager could
obtain the ID and the password of the customer and then impersonate the customer
using UC3 with the obtained ID and password.

Security Requirements Elicitation Using Method Weaving and Common Criteria 193

Open Account

Close Account

Receive Trade Order

Perform Trade

Customer

Manager

Broker

UC1

UC2

UC3

UC4

UC1 : Open Account
1. Manager gets the personal information from Customer

e.g. name, telephone number, etc.
2. Manager inputs the personal information of Customer to System.
3. System issues Customer ID and Password to Manager.
4. Manager informs Customer ID and Password to Customer
5. ... (to be continued)

UC3 : Receive Trade Order
1. Customer inputs ID and password to System.
2. System authorizes right of Trade Order to Customer.
3. Customer specifies commodities and their amounts which he wants

to trade.
4. ... (to be continued)

Fig. 4. Use Case Diagram and Descriptions

Step2. Identify assets and their attributes
Assets can be elicited from constructs of use case diagrams, e.g. actors and use cases,
and the words in use case descriptions. We identify the asset to be protected from the
use case diagram as UC3 “Receive Trade Order”, and find its attributes as follows.

� �
who (who performs): Customer, Broker
what (what is performed): Input, Authorize, Specify, ...
how (how it is performed) : Identify and Authenticate by Customerís ID and password
where: (where it is performed) : unspecified
when : (when it is performed) : after opening an account
why: (why it is performed) : Customer gets trades

� �
Step3. Identify threats
In this example, we use a word-matching technique instead of rigorous “if-then” in-
ference rules used in the previous example of section 3. The attribute values are set

194 M. Saeki and H. Kaiya

based on the words appearing in the use case description of UC3, e.g. authorize, input,
specify, etc., and we match these words with the words appearing in the catalogs. More
concretely, we look for the entries whose explanation sentences include the synonyms
as the attributes, i.e. Input, Authorizes, etc. Concentrating on the word “Authorize” and
its flections (we use a wild card to express the word and its inflection, like authoriz*)
of the “what” attribute, we can obtain the following threats from the threat catalog of
ECMA-271 (E-COFC) because the explanations of all of them have the word authoriz*.
T.Insider, T.Outsider, T.Secret Disclose.
Step4. Identify security objectives
In the similar way, using the relationship “mitigates” between the catalog entries, we
can get OE.Access Malicious from the security objective catalog. In addition, we can
get the followings by using the “what” attribute authoriz* and “how” attribute values
identify* and authentic*.

O.Authen Address, O.Authen Age, O.Authen Indep, O.Authen Protect.
Step5. Identify security functional components
Since OE.Access Malicious is an environmental security objective and it means that
the malicious activities of the manager cause the threat, the SF components included in
CC cannot mitigate it. However, we can select the FIA UAU.3.2 to mitigate the other
security objectives by using the word matching with authentic* and the relationship
“represents”.
Step6. Compose security requirements and merge them into FRs
The use case corresponding to FIA UAU 3.2 is newly added as a sub use case of UC3.

Note that we used the inference rules different from the goal-oriented approach
example of section 3. The reason is that use case descriptions are written in natural
language and we consider that the word-match technique would be simpler and more
suitable. It suggests that the rule styles, in addition to the assets, vary on the adopted
FRs elicitation method.

5 Related Work

Although CC is used to assess whether the security properties of the IT products reach
a certain standard level or not, it can provide reusable knowledge for security require-
ments elicitation such as SF component catalog. Our technique focuses just on this
point. The approach proposed by Ware et. al. was the first one to use CC as a reusable
catalog to support the elicitation of security requirements [11]. In their approach, an an-
alyst constructs a profile for each actor after drawing a use case diagram and correlates
the actors to threats based on the actors’ profiles only. Although our approach can be
considered as its more elaborated version, it can deal with wider requirements elicita-
tion methods and their concepts, not only actors in use case modeling but also use case,
goals in goal-oriented approach, etc. And it can elicit security objectives and SF com-
ponents besides threats. Furthermore, we adopt a method weaving technique based on
a twin peak model and our method is more sophisticated rather than Ware’s approach.

Liu et al. [5] and Mouratidis et al. [6] proposed the usage of the concept of soft goals
in goal-oriented approaches such as i* and Secure Tropos. However, their approaches
did not include the guidelines or the methods to assist in identifying threats and security

Security Requirements Elicitation Using Method Weaving and Common Criteria 195

objectives, and in refining security-related goals in a graph. Thus their approaches can
be considered only as the detailed version of the step 6 of our approach.

The approaches using misuse cases [2] and anti-goals [12] may be helpful to iden-
tify threats and can correspond to the steps 2 and 3 of our approach. However, their
supporting techniques of refining and decomposing use cases or goals are not so pow-
erful to derive countermeasures after identifying threats. That is to say, any of them did
not consider the powerful supports for the activities of the right-hand side of Figure 2.

Industries have tried to extract and structure knowledge included in CC so as to
assist in eliciting security requirements. For example, a STF (specialist task force) in
ETSI has worked on this aim since 2003 [13]. The structured and classified security
knowledge that it has produced can be helpful to make our method more sophisticated,
and our approach can be considered as a bridge between its outcomes and existing
requirements elicitation methods.

6 Research Agenda

This paper proposes the technique to use CC as reusable knowledge within the existing
requirements elicitation methods in order to elicit security requirements. And it helps
the weave of requirements elicitation between a problem space and a solution one,
following a twin-peak model. However, there are several unsolved research agenda to
be tackled. Firstly, the attributes attached to assets and the inference rules should be
explored and elaborated. They may depend on the adopted FRs elicitation methods.
Secondly, as mentioned in section 4, the usage of the words appearing in CC would be
promising to select the catalogued threats, security objectives and SF components. That
is to say, we will investigate the application of ontological approaches, e.g. words as
ontological concepts and the selections as ontological inference respectively. Thirdly,
we also consider that the other types of knowledge sources for security requirements,
e.g. various levels of security patterns [14,15], attack patterns of SAFE-T [16], Mi-
crosoft’s STRIDE catalog [17], Security Ontology catalog such as NRL Ontology [18]
and CVSS [19] could be integrated with our approach. Lastly, we should have more
practical case studies to evaluate our technique.

References

1. Haley, C., Moffett, J., Nuseibeh, B.: Security Requirements Engineering: A Framework for
Representation and Analysis. IEEE Trans. on Software Engineering 34(1), 133–153 (2008)

2. Sindre, G., Opdahl, A.: Eliciting Security Requirements with Misuse Cases. Requirements
Engineering 10(1), 34–44 (2005)

3. McDermott, J., Fox, C.: Using Abuse Case Models for Security Requirements Analysis. In:
Proc. of the 15th Annual Computer Security Applications Conference, pp. 55–64 (1999)

4. Firesmith, D.: Security Use Cases. Journal of Object Technology 2(3), 53–64 (2003)
5. Liu, L., Yu, E., Mylopoulos, J.: Security and Privacy Requirements Analysis with a Social

Setting. In: Proc. of the 11th IEEE International Requirements Engineering Conference, pp.
151–161 (2003)

6. Mouratidis, H., Giorgini, P.: Secure Tropos: A Security-oriented Extension of the Tro-
pos Methodology. International Journal of Software Engineering and Knowledge Engineer-
ing 17(2), 285–309 (2007)

196 M. Saeki and H. Kaiya

7. Nuseibeh, B.: Weaving Together Requirements and Architectures. IEEE Computer 34(3),
115–117 (2001)

8. Official CC/CEM Versions - The Common Criteria Portal (2007),
http://www.commoncriteriaportal.org/thecc.html

9. ECMA-271: Extended Commercially Oriented Functionality Class for Security Evaluation,
E-COFC (1999),
http://www.ecma-international.org/publications/files/ECMA-ST/
Ecma-271.pdf

10. Fernandez, E., Larrondo-Petrie, M., Sorgente, T., Vanhilst, N.: Methodology to Develop Se-
cure Systems Using Patterns. In: Mouratidis, H., Giorgini, P. (eds.) Integrating Security And
Software Engineering: Advances And Future Vision, pp. 107–126 (2006)

11. Ware, M., Bowles, J., Eastman, C.: Using the Common Criteria to Elicit Security Require-
ments with Use Cases. In: Proc. of the IEEE Southeast Conference, pp. 273–278 (2005)

12. van Lamsweerde, A.: Elaborating Security Requirements by Construction of Intentional
Anti-Models. In: Proc. of 26th International Conference on Software Engineering (ICSE
2004), pp. 148–157 (2004)

13. TISPAN security: Adoption of Common Criteria in security evaluation (2003),
http://portal.etsi.org

14. Heyman, T., Yskout, K., Scandariato, R., Joosen, W.: An Analysis of the Security Patterns
Landscape. In: Proc. of the 3rd International Workshop on Software Engineering for Secure
Systems (2007)

15. Yoshioka, N., Washizaki, H., Maruyama, K.: A Survey on Security Patterns. Progress in
Informatics (5), 35–47 (2008)

16. Gegick, M., Williams, L.: Matching Attack Patterns to Security Vulnerabilities in Software-
intensive Designs. ACM SIGSOFT Software Engineering Notes 30(4), 1–7 (2005)

17. Threat Modeling: Uncover Security Design Flaws Using The STRIDE Approach (2006),
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx

18. Kim, A., Luo, J., Kang, M.: Security ontology for annotating resources. In: Meersman, R.,
Tari, Z. (eds.) OTM 2005. LNCS, vol. 3761, pp. 1483–1499. Springer, Heidelberg (2005)

19. Mell, P., Scarfone, K., Romanosky, S.: A Complete Guide to the Common Vulnerability
Scoring System Version 2.0 (2007),
http://www.first.org/cvss/cvss-guide.html

http://www.commoncriteriaportal.org/thecc.html
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-271.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/Ecma-271.pdf
http://portal.etsi.org
http://msdn.microsoft.com/en-us/magazine/cc163519.aspx
http://www.first.org/cvss/cvss-guide.html

Second International Workshop on the
Model-Based Design of Trustworthy Health

Information Systems MOTHIS 2008

Ruth Breu1 and János Sztipanovits2

1 Universität Innsbruck, Institut für Informatik, Techniker Straße 21a,
6020 Innsbruck, A

ruth.breu@uibk.ac.at
2 Institute for Software Integrated Systems, Vanderbilt University,

Nashville, TN, USA
janos.sztipanovits@vanderbilt.edu

Abstract. The objective of the MOTHIS workshop was to discuss
model-based methods for the design of Health Information Systems (HIS)
with a focus on trustworthiness, security and availability. While quality
and affordability of health care delivery represents a major societal chal-
lenge in the 21st century the current situation in health care is still
dominated by paper records and fragmented, error-prone approaches to
service delivery. The workshop brought together computer scientists and
medical experts to discuss research results in the development and ap-
plication of model-based methods for representing, analyzing and inte-
grating, architectures, privacy and security policies, computer security
mechanisms, and human factors engineering.

1 Introduction

The Second International Workshop on the Model-Based Design of Trustworthy
Health Information Systems (MOTHIS) took place on September 30th, 2008 in
Toulouse, France. The objective of MOTHIS was to discuss model-based methods
for the design of Health Information Systems (HIS) and to foster a community
of experts in eHealth, software engineering and security.

While quality and affordability of health care delivery represents a major so-
cietal challenge in the 21st century the current situation in health care is still
dominated by paper records and fragmented, error-prone approaches to service
delivery. Model-based approaches provide a significant step towards the system-
atic analysis of requirements and high-level construction of solutions. Therefore,
they are considered an important contribution to realize emerging interactive ap-
plication scenarios and to support complex safety and security critical processes
in health care.

Approximately fifteen people attended MOTHIS. The program consisted of
one keynote address and two regular sessions. For the detailed program and the
online proceedings, visit http://qe-informatik.uibk.ac.at/mothis2008/.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 197–198, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

http://qe-informatik.uibk.ac.at/mothis2008/

198 R. Breu and J. Sztipanovits

2 Workshop Summary

Alfred Winter, full professor for medical informatics at the Institute of Medical
Informatics, Statistics and Epidemiology at the University of Leipzig, Germany,
focused in this keynote address on the modeling and analysis of IT landscapes.
Based on the 3LGM2, a meta model for modeling information systems at three
layers of abstraction, quality aspects like data and service redundancy, and avail-
ability of IT services can be systematically analyzed. Winter showed case studies
in which complex IT landscapes of hospitals have been modeled and analyzed.

S. Walderhaug et al., reported on experiences from model-driven development
of homecare services in the context of the EU-IST project MPOWER. The goal
of MPOWER is to define and implement an open platform to simplify and
speed up the task of developing and deploying services for persons with cognitive
disabilities and elderly. The contribution reported on the use of a DSL and a
model-driven tool chain and came to the conclusion that the UML profiles used
can improve modeling process performance and results.

Jason B. Martin et al use model-based techniques for guideline-driven clini-
cal process support. Their approach is part of MICIS, a generic tool suite for
designing, testing and deploying clinical information systems. The contribution
showed the use of the framework for specifying and implementing guidelines to
support decisions within workflows in health care. The approach comprises a
modeling language and the application of techniques for model validation and
verification. The approach has been applied to the management of sepsis in acute
care settings at Vanderbilt Medical Center.

A. Strübing presented the paper of A. Winter et al. which introduces a formal
definition of functional redundancy for health information systems. Based on the
3LGM2 meta model a key performance indicator for evaluating the redundancy
rate of an IT landscape is defined. In addition, an algorithm for calculating
non redundant system architectures supports the tool-supported model-based
analysis and improvement of health information systems architectures.

J. Werner et al. addressed the gap between legal regulations (like complex
data protection legislation in the HIPAA) and their enforcement in clinical in-
formation systems. The authors propose an approach to integrate formal logical
representations of privacy policies with workflow models through a common se-
mantic platform. It is shown that a model-based development approach can be
leveraged to develop clinical information systems that comply with privacy leg-
islation in a verifiable manner.

B. Katt and M. Hafner in their position paper sketched the core ideas of
a framework for the modeling and enforcement of usage control-based privacy
policies. The approach is based on meta models for the platform independent
modeling of privacy policies which in a second step are transformed in platform
specific models configuring a security architecture. Examples demonstrated the
relevance of the approach for the health care domain.

Experiences from Model-Driven Development of
Homecare Services: UML Profiles and Domain

Models

St̊ale Walderhaug1,2, Erlend Stav1, and Marius Mikalsen1

1 SINTEF ICT, SP Andersens vei 15b, N-7465 Trondheim, Norway
2 Department of Computer Science, University of Tromsø, N-9037 Tromsø, Norway

{stale.walderhaug,erlend.stav,marius.mikalsen}@sintef.no

Abstract. Model-driven development approaches such as Model Driven
Architecture (MDA) have been proposed as the new paradigm for soft-
ware development. The adoption of MDA is still low, partly because
of the general-purpose modelling language being used. Domain specific
modelling languages are being developed for technological and industrial
domains to improve the expressiveness and effect of model-driven de-
velopment techniques. The healthcare domain could benefit from these
methodologies. In order to incorporate domain knowledge in a MDA
process, information about workflows, artefacts and actors can be for-
malized in a UML profile and applied by MDA tools for design and
development. This paper presents the work done on model-driven devel-
opment of smart homecare services in the MPOWER project. Following
an iterative approach, two UML profiles to support development of Ser-
vice Oriented Architecture based homecare applications are proposed.
Using homecare specific UML profiles indicate an improvement in the
process for model-driven development of homecare services.

1 Introduction

Model-Driven Development (MDD) such as OMG’s Model Driven Architecture
(MDA) [1], has the potential to improve the quality of software systems. Qual-
ity attributes such as interoperability, reusability and appropriateness of soft-
ware components and systems are main features of MDA. By using abstraction
and advanced automation techniques, software artefacts are created from formal
models that are represented using languages such as the Unified Modeling Lan-
guage (UML) [2]. The core of the MDA process, and similar MDD processes, is to
use formal models as the main development artefacts in the entire development
process, from domain analysis to implementation, deployment and testing.

Domain specific modelling languages (DSML) have been proposed as a means
to overcome many of the shortcomings with UML and MDA. The scientific
knowledge about applying MDD techniques in design and development of health-
care information systems is scarce [3]. Creating DSMLs for the healthcare domain
is a daunting task, and requires extensive investment of resources and time.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 199–212, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

200 S. Walderhaug, E. Stav, and M. Mikalsen

We set out to investigate how MDD with DSML support should be introduced
and applied in a healthcare sub domain. In the MPOWER project [4], we have
developed a framework for creating homecare software services using a model-
driven approach. The framework defines a MDA toolchain which is a set of
modelling, transformation and development tools that supports the complete
MDA process as descibed in the MDA Guide [1]. A comprehensive model of
actors and services in homecare along with the MDA toolchain for designing
and implementing these domain specific web services has been developed and
evaluated. This paper presents research results from the project with focus on:

1. What is the domain knowledge in homecare that can be used as assets in
the MDA process?

2. Which knowledge can be included in a UML Profile for homecare services
and how can this knowledge be utilized by developers?

The MPOWER toolchain, providing model traceability, model transformation
and code generation, has been evaluated in the development of two proof-of-
concept applications and is currently been redesigned with improved UML Pro-
file support for the domain. Based on the experience from developing the
MPOWER framework and proof-of-concept applications a conceptual domain
model and UML profile for service oriented computing in the homecare domain
is proposed and discussed.

The remainder of this paper is organized as follows. The next section describes
the background for the work, including relations to and motivations for apply-
ing model driven development, domain specific modelling languages, and service
oriented architecture. Then the applied method and main activities within the
MPOWER project are described. The main results from each of the main activi-
ties are presented next, including conceptual domain models and our preliminary
DSML approach based on two UML profiles. A discussion follows this, before we
conclude the paper.

2 Background and Related Work

The work presented herein is a part of the EU-IST project MPOWER (contract
no. 034707) and of an ongoing PhD thesis work by the main author. MPOWER
is a user driven research and development project where the main goal is to
create a framework for rapidly creating standards-based homecare services. The
framework includes the definition of a toolchain which is being used in the de-
velopment of two proof-of-concept applications targeting elderly and cognitive
impaired people living at home.

MDD promises a potential to improve the quality of software systems and
their development by using formal models as first class entities in the entire de-
velopment process. When MDD is done properly, improvements in the design,
development and maintenance processes can be achieved, in addition to improv-
ing the interoperability aspects and reducing the overall development costs.

Tuomainen et al argues that modelling helps the understanding of healthcare
activities by being illustrative, identifying improvements, simulate organisational

Experiences from Model-Driven Development of Homecare Services 201

processes and individual activities in healthcare [5]. They compare three model
centric approaches; MDA, Business Process Modelling with BPMN and BPEL
and the HL7 development framework. They conclude that in order to realise their
full potential these approaches require local and project specific adaptation. This
paper explains such an adaptation for the homecare domain.

3 Methods

The main objective of the MPOWER project is to create a framework that facil-
itates rapid development of homecare services. To achieve this, it is imperative
to acquire knowledge about the homecare domain, and make this domain knowl-
edge available to actors involved in the system development processes. Due to
the complexity of the healthcare domain, it was considered necessary to iterate
between domain modelling and system design. To facilitate this interaction, the
MPOWER project defined three main activities:

1. Capture domain knowledge from experts on aging/dementia, healthcare
workers in the domain, family carers and patients.

2. Specify a MDA toolchain that support documentation of system require-
ments, modelling of design and development of services. Moreover, the
toolchain must be evaluated in terms of usability and usefulness/performance
by implementing two Proof-of-Concept Applications (PoCA). The results are
a MDA toolchain with evaluation reports on developer acceptance and tech-
nical qualities

3. Design a DSML that incorporates the domain knowledge from task 1 and
MDA toolchain experience from task 2. The result will be one or more UML
profiles that can be used with a revised MDA toolchain.

3.1 Activity 1: Capture Domain Knowledge

The MPOWER project focuses on smart homecare solutions for elderly and
cognitive impaired people. The domain models for the work being presented in
this paper can be seen from two different viewpoints:

1. The Homecare viewpoint: this viewpoint focuses on organizational aspects
of homecare as well as the main stakeholders (people and systems) involved.
This model is the result of a comprehensive process involving a total of 140
domain stakeholders such as domain experts, professional caregivers, family
carers and patients [6].

2. The Homecare SOA viewpoint: this viewpoint focuses on the main sys-
tem components and their relationships in terms of the principles of Ser-
vice Oriented Architecture design. Important assets for this model are the
design principles given by Erl [7], and SOA4HL7 methodology [8]. The struc-
ture and semantics of the domain model is supported by the SOA refer-
ence architecture from IBM along with the IBM UML profile for software
services [9].

202 S. Walderhaug, E. Stav, and M. Mikalsen

3.2 Activity 2: Designing a Toolchain for MDD in Homecare

To have a formal way of specifying the domain models, proper modelling tools are
needed. In the beginning of the MPOWER project, a set of tools were specified
as the MPOWER toolchain to be used by all involved personnel for conceptual
modelling, requirements specification, analysis, system design, system develop-
ment, deployment and testing. The process used for selection of tools matches
the recommendation given by Staron [10], page 240: “The process [of creating
domain models] should be tool independent. The independence should be sup-
ported by using technologies that are open and unbounded, but at the same
time supported by more than one tool.” In MPOWER, Microsoft Word 2003
was used for describing user scenarios and Enterprise Architect (EA) V6.5 from
Sparx Systems used for UML modelling of use cases and services, model trans-
formation and code generation of WSDL code. THE IBM’s UML 2.0 profile for
Software Services was applied during modelling the services to structure models
and stereotype coreelements. Available from IBM [9]. Finally, NetBeans V6.0
was used as Java IDE for generating service skeletons and implementing the
services. http://www.netbeans.org

The described toolchain was used from the start of the project with only minor
modifications such as EA upgrades and bug fixes. The two PoCAs were developed
using the toolchain and the performance of the toolchain, were investigated from
two perspectives: 1) Developer acceptance of the MPOWER toolchain: using the
Technology Acceptance Model with two additional factors, as reported in [11],
and 2) Technical review: Weekly scrum and quarterly technical meetings with
workshop sessions on how to improve the toolchain.

3.3 Activity 3: Refine the MPOWER Toolchain and Develop a
DSML

The UML standard allows for the creation of a DSML in two ways: 1) Creating a
new language based on Meta Object Facility [12], or 2) extending UML through
the use of UML Profiles. As discussed by Selic, the latter will often be the most
practical and cost-effective solution [13], and is also the chosen method for this
paper. By using UML profiles to create a DSML, the semantics and syntax of
UML can be inherited, and powerful UML/MDA tools can be used with the
profile for software development.

The UML Profile standard [2], outlines several reasons for creating a DSML
from UML. The most pertinent reasons for the challenges addressed in this paper
are:

– Terminology adapted to the healthcare domain
– Add information that can be used during transformation
– Add constraints that restrict the way you can use the metamodel

There is not much knowledge in the scientific community about best practices
for creating DSMLs with UML [13] [14]. In a paper from 2007, Selic summa-
rized the basic steps for creating a DSML in terms of UML in [13]: 1) Create a

http://www.netbeans.org

Experiences from Model-Driven Development of Homecare Services 203

conceptual domain model that includes the essential concepts of the domain, the
relationships between the concepts, the constraints that govern the use of the
concepts. A selection of UML models from Activity 1 makes up the conceptual
domain model, 2) Map domain model to a UML profile, refining the core UML
specification with stereotypes, tagged values and constraints.

The process of creating a domain specific UML profile is not straightforward,
since the level of abstraction and the intended use of the profile play an im-
portant role for the definition of the profile elements. This challenge is tackled
with experience from the design of the MPOWER toolchain and development
of two MPOWER PoCAs for the homecare domain. To identify and model the
elements of a UML profile is an iterative process. To guide this process, the
Staron’s guidelines for defining good stereotypes using a classification schema
[10], is used.

4 Results

The results presented in this section are based on the work carried out in the
MPOWER project from October 2006 to June 2008.

Fig. 1. Diagram showing the main concepts in a smart homecare domain

4.1 Activity 1: Conceptual Domain Models

The domain models were developed in several iterations from October 2006
to September 2007. Figure 1 shows the main concepts from a homecare view-
point.

To keep the model at an abstract level and not overpopulate it with unnec-
essary details, most attributes on the classes are hidden. The main classes and
relationships are:

204 S. Walderhaug, E. Stav, and M. Mikalsen

Table 1. The main classes and relationships in the homecare domain

Sterotype Comment
Subject of
Care (SoC)

person receiving care through a homecare program. The SoC has a
unique identifier that is managed by the assigned healthcare
organization. A SoC must be associated with at least one healthcare
professional

Homecare
Program

a class comprising the services, devices and healthcare organizations
involved in providing homecare service to a SoC.

Carer an individual that is a part of the family, a healthcare professional or a
friend. All HealthcareProfessionals must be associated with a
HealthcareOrganization.

Healthcare
Organization

an organisation that is directly involved in the provision of care to a
SoC.

Homecare
Service

a service provided to the SoC through a Homecare program. Three core
types of services have been identified: information service (e.g.,
calendar, medication list), communication services (e.g. SMS, email),
and assistive service (e.g. indoor location service, heating control,
burglar alarm, oven control).

Concepts in the model are aligned with the concepts presented in Continuity of
Care (CONTSYS) standard [15], and service categories from [16]. Most concepts
are also available in the HL7 RIM, but CONTSYS is more specific than HL7.
These resources were found useful in selecting an appropriate abstraction level
and structure in the domain model. The complete models of actors and services
are presented in [6]. Figure 2 shows the main components, stereotyped with the
five layers of the IBM SOA reference architecture.

4.2 Activity 2: The MPOWER Toolchain

The experiences from using the described toolchain for development of the ser-
vices that form the PoCAs are grouped into developers’ subjective experience
and technical experience. The first group entails perceived characteristics such
as the factors described by the Technology Acceptance Model [17]. The results
from a developer evaluation of the MPOWER toolchain is presented in [11],
and concludes that perceived ease of use and perceived usefulness are factors
that affect the developers’ adoption of MDA. It was also found that traceabil-
ity between artefacts in the development process was useful. A major drawback
with the evaluated toolchain was found to be the incomplete code generation
features. A technical review of the MPOWER toolchain revealed that 1) WSDL
model transformation incomplete: it was necessary to customize the transfor-
mation template for WSDL models, 2) WSDL code generation had errors: the
built-in transformations in the EA tool generated some errors that had to be
changed manually, e.g. using “type” references instead of “element” references in
message definitions, and 3) Performance problems using HL7: the import of HL7
message types into WSDL resulted in tool crashes because of memory allocation

Experiences from Model-Driven Development of Homecare Services 205

Fig. 2. The Service-oriented view on a typical homecare environment

problems. Recursive import of HL7 xml schema (xsd) defintions were not han-
dled by the WSImport tools in Netbeans.

From the experience with the MPOWER toolchain, a set of new features were
proposed. The developers would like more support in generating the implemen-
tation of the services – repetitive code (e.g. for DB management, handling of
security, return status), and support for object/relational persistence service,
such as generation of Hibernate mappings for the information elements declared
in the message definitions of the WSDLs. These features may impact the design
of a DSML as they could require domain specific information to be incorporated
into the models during the service design.

4.3 Activity 3: Refined Toolchain - Mapping of Domain Concepts
to DSML - UML Profile

The process of defining a UML Profile for SOA in homecare use concepts from
the conceptual domain models and experience from toolchain and PoCA devel-
opment in an iterative approach. This section presents the preliminary results
from Activity 3 after the first iteration (January-June 2008). Activity 3 is car-
ried out by a core team of three researchers. The profiles were updated in three
main revisions: initial version for the start of the development, second version
after first version of services and the third version after the first iteration of
the PoCA development. The changes between version one and two were signif-
icant, whereas only tags and minor adjustments to relationships were done for
version 3.

206 S. Walderhaug, E. Stav, and M. Mikalsen

Fig. 3. First version of Homecare UML Profile

Two UML profiles are proposed, the Homecare UML Profile and the SOA
Homecare UML Profile. The profiles can be used separately or together in a
MDA development project, depending on how the profile elements are utilized
in the development process.

Figure 3 shows the Homecare UML profile. The profile elements are mainly
derived from the homecare conceptual model (figure 1). The tagged values on the
stereotypes were identified based on experience from the MDA toolchain work.
The mapping of concepts to the UML profile was also guided by the CONTSYS
standard [15].

All the stereotypes in the Homecare UML Profile falls into the category “Vir-
tual Metamodel Extension, restrictive” defined by Staron in [10]. These are
stereotypes that reuse the semantics of the metaclasses (e.g. Actor and Class).
Often they must be used with other stereotypes, making the stereotyped model
element more precise and may also add a new icon to the concrete syntax to fa-
miliarize the model presentation (e.g. icons on HealthcareProfessional and Sub-
jectOfCare).

The SOA Homecare UML profile enables developers to create precise models
of SOA-based homecare systems. Figure 4 shows the core elements of the SOA
Homecare UML profile.

Experiences from Model-Driven Development of Homecare Services 207

Table 2. Table describing the proposed stereotypes in and tagged values in the Home-
care UML profile

Sterotype Comment
Subject Of
Care

Subject of care (SoC) is defined in CONTSYS as ”person seeking
to receive, receiving, or having received health care” [15]. Used to
decorate SoC modelling elements and to add information about
the SoC that can be used during model transformation or code
generation.
SoC type: describes can be used to describe different types of SoC
according to e.g., national specific patient classifications.

Carer A stereotype that should be used on all modelling elements
representing an individual that provides care, professionals as well
as non-professional caregivers.
roles: can be used to set the default role, e.g. in terms of security,
for the instances of classes marked with this stereotype

Healthcare
Professional
(HcP)

Defined in CONTSYS as “person authorised by a nationally
defined mechanism to be involved in the direct provision of certain
health care activities” [15]. Should be used to mark all modelling
elements of type Class/Actor that are representing individuals
that fit this definition. The roles attribute is inherited from Carer.

Other Carer Defined in CONTSYS as “person providing assistance for
activities of daily living or social support”. This stereotype should
be used to mark modelling elements of type Class/Actor that are
representing individuals such as family members, friends and other
carers employed by non-healthcare organizations such as home
services and security services. The roles attribute is inherited from
Carer

Healthcare
Organiza-
tion
(HcO)

Defined in CONTSYS as “organisation involved in the direct
provision of health care” [15]. This stereotype should be used to
mark all modelling elements of type Class/Actor that represents
organisations that fits the CONTSYS definition.
orgainsationType: is used to describe the type of organisation
according to speciality levels, private versus public or other
national classifications.

Homecare
Device

Generic homecare device stereotype to be used on modelling
elements of type Class/Actor. The stereotype can be useful for
design-time checking of interoperability and interconnectivity of
devices in a homecare system.
deviceType: describes the type of this device
interfaceType: describes the kind of interface used to connect to
this device. In the UML profile, the HomecareDeviceInterface
enumeration is defined based on the experience in the MPOWER
project, but can be refined to fit other technologies.

208 S. Walderhaug, E. Stav, and M. Mikalsen

Table 2. (continued)

Sterotype Comment
Healthcare
Professional
For Subject
Of Care

A stereotype that is used to mark an association between a
HealthcareProfessional and a SubjectOfCare. The stereotype can
be used to ensure that a SubjectOfCare is associated with at least
one HealthcareProfessional.

EmployedAt A stereotype that is used to mark an association between a
HealthcareProfessional and a HealthcareOrganisation. The
stereotype can be used to check that all HealthcareProfessional
“types” are employed at a HealthcareOrganisation “type”.

Fig. 4. The Homecare SOA UML Profile diagram

All stereotypes in the Homecare SOA UML profiles falls into the category
“Code generation, restrictive” defined by Staron [10]. These are stereotypes that
extend the base metaclass (e.g., Class and Port) with some properties to increase
the precision of the semantics and restrict the usage. Each stereotype is described
in more detail in the table below.

Experiences from Model-Driven Development of Homecare Services 209

Table 3. List of stereotypes and tagged values in the SOA Homecare UML profile

Sterotype Comment
Homecare
Application

The stereotype adds two properties to the modelling elements:
securityLevel: this describes the security level of the application.
This can be used to check that a user (i.e., service, component,
application) of the application must have at least the same access
level in order to be allowed to use the service.
applicationType: this describe the type of application this is, e.g.
in terms of deployment configurations.

Homecare
Service

A service which is used in the homecare environment. The IBM
Service Profile should be used in combination with this stereotype.
securityLevel: this describes the security level of the service. This
allows for specification of the security requirements and rights for
a modelling element that can be utilized during code generation.
In the next version of the UML Profile, this stereotype will be
updated with more security tags addressing service-service
authorization and information encryption.

Homecare
Message

To denote elements that are messages used in interactions of
homecare services and applications.
isPersistent: indicates whether the message data is stored in a
database or not. This can be used for creating Hibernate mapping
code and database schema.
messagingStandard: the standard to which this message belongs.
Can be used both for code generation, ensuring correct libraries
are present, and for checking conformance with the standard.

Assistive
Service

A type of homecare service that provides assistive functionality in
the homecare system. Derived from Stefanov’s classification for
smart house services for elderly and cognitive disabled [16].

Information
Service

An information service which will be used by stakeholders in a
homecare setting.
serviceType: defines the type of information service this service
belongs to. An enumeration is proposed based on the experience
in the MPOWER project.

Uses
Homecare
Message

A stereotype that mark associations between a HomecareService
and a HomecareMessage. The stereotype can be used to generate
traceability information that can again be used when messaging
standards are being updated or changed.

Uses
Homecare
Service

A stereotype that mark associations between a
HomecareApplication and a HomecareService. The stereotype can
be used to generate traceability information that again can be
used when a homecare service is being updated or changed.

210 S. Walderhaug, E. Stav, and M. Mikalsen

5 Discussion

The work presented in this article is a part of an initiative to develop a MDD
framework for healthcare, focusing on homecare services in the first phase. It
is considered imperative to incorporate domain knowledge into the framework
and make this knowledge readily available for architects and developers in all
development phases. This paper presents the results from creating a domain
specific modelling language for homecare using UML Profiles.

Capturing the conceptual domain knowledge for homecare, or any other
healthcare sub-domain, is a daunting task. Many stakeholders are involved,
as well as a plethora of information systems, involving many different coding
standards and vocabularies. These factors, in addition to legislative factors and
organisational aspects, make modelling of reusable healthcare domain models
difficult, but not impossible. To succeed in creating a useful model-driven soft-
ware development process, it is important to choose the right level of abstraction
and in divide the healthcare application areas into well defined sub-domains.

The homecare domain model shown in figure 1 shows the most important
actors and relationships between them. The model would fit for modelling most
homecare solutions, is aligned with the CONTSYS standard [15], and includes
the main classifications from Stefanov’s paper on smart house technologies for
elderly [16]. The model is the result of a comprehensive domain analysis process
where 140 domain stakeholders from four European countries were involved in
improving the validity of the model [6]. If new concepts are developed for the
domain, these can be added as an extension to the existing homecare model,
without compromising the original model and the related UML profiles.

The Homecare SOA model is based on the domain investigation from the
MPOWER project, in addition to the IBM SOA reference model and IBM UML
profile for software services [9]. The Homecare SOA model provides information
about deployment of services and possible configuration and information sources.
The model is on an abstract level, and could in certain cases be refined with
details about security platforms and network connectivity details. Such domain
knowledge could be useful in planning the distribution of services and integration
with existing resources, but will also make the model less suitable for reuse across
different healthcare enterprises and nations.

To make the domain knowledge readily available as assets in the development
process, UML profiles were chosen, inline with the recommendations by Selic [13].
UML profiles builds upon the syntax and semantics of UML, and most UML tools
support profiles. This is an imperative advantage, enabling developers to use their
favourite UML tool for design and development. The process of selecting domain
concepts to include as stereotypes, tagged values or constraints in a UML model, re-
quires knowledge about model-driven development, but also experience from mod-
elling systems in the domain in question. Experience from the development of a
MDAtoolchain (Activity2)provided informationaboutwhichtarget softwarearte-
facts that should be generated from the models and which models and diagrams
that should be applied for achieving this. This information was of utmost impor-
tance when choosing the metaclass extensions for the elements in the UML profiles.

Experiences from Model-Driven Development of Homecare Services 211

UML profiles are used to customize the modelling language to include familiar
concepts that enables more effective and precise system design and implementa-
tion. Stereotypes can be used for several purposes, as discussed by Staron [10].
The result from the mapping of domain concepts to a DSML (Activity 3) showed
that all stereotypes in the Homecare UML profile are classified as Virtual Meta-
model Extensions. This implies that this profile is mainly used to increase the
expressiveness of the modelling language when designing systems for homecare.
A “virtual metamodel extension, restrictive” stereotype adds a domain specific
icon such as a picture of a nurse to the modelling element, together with a well
known domain specific label such as HealthcareProfessional.

The Homecare SOA UML Profile includes elements from the “Code gener-
ation, restrictive” category. These stereotypes can improve code generation by
providing domain information so that code generation scripts can create high-
quality code. In this paper code generation was restricted to WSDL and Hi-
bernate code, but other software artefacts can be generated from the domain
information in a UML profile. Test cases, error-checking code, security policy
verification, and result validation may also be generated.

The two proposed UML profiles can be used on the same models to provide
different “views”. In addition, the IBM Software Service UML profile should be
used to complement the service design models for SOA Homecare systems.

6 Concluding Remarks

Model-driven development approaches can be improved by extending the mod-
elling language with domain specific concepts. UML Profiles can be used as a
mechanism for toolchains based on OMG’s MDA and UML standards.

The UML Profiles must provide information that can improve the design
and/or code generation processes. The two profiles proposed in this paper are
based on solid work on capturing homecare domain knowledge and experience
from developing homecare SOA systems using MDA. Though the profiles are
still undergoing updates and improvements, they can improve modelling process
performance and results.

It was found useful to have a development activity in parallel with specification
of the conceptual domain and profiles. The experience from the development
activity gave valuable input to the mapping of concepts to DSML processes.
This finding extends the approaches to DSML development in [13] [14] [18].

The MPOWER Toolchain will be evaluated by university students in 2008. In
2009, an experiement measuring the subjective improvements (perceived char-
acteristics) and objective improvements (e.g., reduction of errors, time spent for
development) will be conducted with 20 developers from the healthcare domain.

References

1. Miller, J., Mukerji, J.: MDA Guide Version 1.0.1. In: Miller, J., Mukerji, J. (eds.)
Object Management Group (OMG), pp. 1–62 (2003)

212 S. Walderhaug, E. Stav, and M. Mikalsen

2. Object Management Group (OMG), UML 2.1.2 Superstructure and Infrastructure,
Object Management Group (OMG) (2007)

3. Mohagheghi, P., Dehlen, V.: Where Is the Proof?-A Review of Experiences from
Applying MDE in Industry. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA
2008. LNCS, vol. 5095, pp. 432–443. Springer, Heidelberg (2008)

4. MPOWER Consortium (2006) (cited November 15, 2006),
http://www.sintef.no/mpower

5. Tuomainen, M., et al.: Model-centric approaches for the development of health
information systems. In: Medinfo. 2007 Brisbane, Australia (2007)

6. Walderhaug, S., Stav, E., Mikalsen, M.: Reusing models of actors and services in
smart homecare to improve sustainability. In: Medical Informatics Europe 2008,
Gothenburg, Sweden. IOS Press, Amsterdam (2008)

7. Erl, T.: Service-Oriented Architecture Concepts. In: Erl, T. (ed.) Technology, and
Design, Crawfordswille, Indiana, USA. The Prentice Hall Service-Oriented Com-
puting Series. Prentice Hall, Englewood Cliffs (2006)

8. Honey, A., Lund, B.: Service Oriented Architecture and HL7 v3: Methodology, HL7
Service Oriented Architecture Special Interest Group (SOA SIG). p. 79 (2006)

9. Johnston, S.: UML 2.0 Profile for Software Services (2005) (cited November 15,
2008), http://www.ibm.com/developerworks/rational/library/05/419_soa/

10. Staron, M.: Improving modeling with UML by stereotype-based language cus-
tomization. In: School of Engineering, p. 270. Blekinge Institute of Technology,
Blekinge (2005)

11. Walderhaug, S., et al.: Factors affecting developers’ use of MDSD in the Health-
care Domain: Evaluation from the MPOWER Project. In: From code-centric to
model-centric develpoment, Workshop at European Conference on Model-Driven
Architecture. European Software Institiute, Berlin (2008)

12. Object Management Group (OMG), MOF 2.0 / XMI Mapping Specification, v2.1
(2005)

13. Selic, B.: A Systematic Approach to Domain-Specific Language Design Using UML.
In: 10th IEEE ISORC (2007)

14. Lagarde, F., et al.: Improving uml profile design practices by leveraging conceptual
domain models. In: Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, pp. 445–448 (2007)

15. CEN TC251, EN 13940-1: Health Informatics - System of Concepts to Support
Continuity of Care - Part 1: Basic Consepts. European Committee for Standard-
ization, p. 105 (2006)

16. Stefanov, D.H., Bien, Z., Bang, W.-C.: The smart house for older persons and per-
sons with physical disabilities: structure, technology arrangements, and perspec-
tives. IEEE transactions on neural systems and rehabilitation engineering 12(2),
228–250 (2004)

17. Davis, F.D., Bagozzi, R.P., Warshaw, P.R.: User Acceptance of Computer Tech-
nology: A Comparison of Two Theoretical Models. Management Science 35(8),
982–1003 (1989)

18. Fuentes-Fernández, L., Vallecillo-Moreno, A.: An Introduction to UML Profiles.
UML and Model Engineering 5(1) (2004)

http://www.sintef.no/mpower
http://www.ibm.com/developerworks/rational/library/05/419_soa/

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 213–226, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Ontology-Based Assessment of Functional Redundancy
in Health Information Systems

Alfred Winter1, Alexander Strübing1, Lutz Ißler4, Birgit Brigl2,
and Reinhold Haux3

1 University of Leipzig, Institute of Medical Informatics, Statistics and Epidem., Germany
2 Dr. Birgit Brigl Krankenhaus-IT Management Beratung, Friedrichsdorf, Germany

3 Peter L. Reichertz Institute for Medical Informatics of the University of Braunschweig -
Institute for Technology and of Hannover Medical School, Germany

4 Systemantics, Aachen, Germany

Abstract. The paper introduces a formal definition of functional redundancy to
determine non-redundant health information system architectures, in order to
support information management of, in particular, hospital information systems.
We specify an ontology, which is linked to the Three-Layer Graph-Based Meta
Model (3LGM2) and based on enterprise functions and application systems of
(health) information systems. A so called functional redundancy rate (FRR) is
introduced and elucidated by an example. An algorithm for calculating non re-
dundant health information system architectures is presented. Functional redun-
dancy is a key performance indicator for the quality and efficiency of (health)
information systems. With FRR it can now be formally described and quantita-
tively analyzed. Using 3LGM2 based models of information systems, the calcu-
lation of FRR does not need further efforts.

Keywords: Health information systems, hospital information systems, informa-
tion management architectural models, functional redundancy.

1 Introduction

Information management for health information systems has become a crucial and
significant task, in particular for hospitals but also for ‘trans-institutional‘ regional
and national health care settings [1-3]. Assessing the quality and efficiency of health
care institutions’ information systems is an important field in research and practice of
medical informatics [4, 5]. However, there is still a lack of easy to understand and
likewise relevant evaluation criteria, which can be accurately defined and thus for-
mally described. Such formal descriptions provide the option to immediately derive
these criteria from architectural specifications of health information systems, and so
to make them well suitable for the practice of information management. One of those
criteria is functional redundancy ([6], pp. 170 and 233). Most information managers
may have a certain feeling for redundancy of functional support in the information
system they manage. But providing precise information regarding redundancy for
decisions concerning the information system‘s architecture and investments still needs
to be solved.

214 A. Winter et al.

The aim of our research is to introduce a formal definition of functional redun-
dancy and, to calculate a health information system’s functional redundancy rate
(FRR) (section 3) as well as to outline an algorithm for calculating non redundant
health information system architectures (section 5). Before, we need to define an
ontology [7] for describing functional redundancy in (health) information systems
(section 2). On that basis we want to support information managers to find answers to
the following questions:

• What application systems in my information systems can be shut down without
loss of functionality?

• Do I have unnecessary costs because different users in my institution use different
application systems in order to support the same enterprise function? What are the
critical enterprise functions and what application system’s usage should be prevented?

Please note that we are using the term information system in a rather comprehensive
manner. An institution’s (e.g. a hospital’s) information system, is that socio-technical
subsystem of the institution, which comprises all information processing actions as
well as the associated human or technical actors in their respective information proc-
essing role [8]. The basic model, introduced in section 2, is closely linked to the
Three-Layer Graph-Based Meta Model (3LGM2) [9] serving as a domain ontology for
the field of information systems [7].

2 An Ontological Foundation for Assessing Functional
Redundancy in Information Systems

Describing and calculating functional redundancy in an information system first of all
requires a model of the information system. To guarantee that the assessment of func-
tional redundancy can be applied to the variety of existing modelling techniques, such
a model should be based on an ontology for the description of information systems.
To our knowledge, such ontology does not exist yet. But we identified two terms that
are used in the most common modelling approaches, namely enterprise functions and
application systems. Enterprise functions can be considered a directive for human or
machine action and a duty arising from an enterprise's mission and goals. For exam-
ple, “clinical admission”, “radiotherapy”, or “care planning” may be enterprise func-
tions. Within the computer-supported part of an information system, the tools used to
support the execution of enterprise functions can be described as application systems
being installations of application software products on computers. Application sys-
tems may have a local database to store data and interfaces for communication.

Functional redundancy deals with the adequate relationship between tasks to be
done, i.e. enterprise functions, and tools to support these tasks. Using these terms we
can model this support relationship by a matrix SUP.

Let EF be a set of enterprise functions and AS a set of application systems.

{ }PEFEFEF ,...,: 1= , 0>P (1)

{ }NASASAS ,...,: 1= , 0>N (2)

 Ontology-Based Assessment of Functional Redundancy 215

The two-dimensional matrix SUP describing the relationship between tasks and
tools mentioned above is defined as

(), 1... , 1...
: p n p P n N

SUP sup
= =

= with

,

1

0

p n

p n

if function ef is suported by application system as
sup

else

⎧
= ⎨
⎩

(3)

Example (part 1)
Suppose a set of enterprise functions EF:={A,B,C,D,E,F,G} where the letters represent
enterprise functions as follows: A for “clinical admission”, B for “administrative admis-
sion (inpatients)”, C for “administrative admission (outpatients)”, D for “radiotherapy”,
E for “decision making”, F for “patient information”, and G for “care planning”. Addi-
tionally, suppose a set of application systems AS:={1,2,3,4,5,6,7,8,9} where the num-
bers represent application systems as follows: 1 for “CareMgmtSys”, 2 for “PatientAd-
ministrationSystem(ADT)”, 3 for “DepartmentalSystemPsychology”, 4 for “Depart-
mentalSystemRadiotherapy”, 5 for “KnowledgeService”, 6 for “DiabetesTrainer”, 7 for
“ClinicalPathwaySys”, 8 for “TherapyPlaner”, and 9 for “TherapyAdvisor”.

Table 1. The matrix SUP for EF and AS is illustrated in figure 1

application systems n=1,…,9
1 2 3 4 5 6 7 8 9

A 1 0 0 0 0 0 0 0 0
B 0 1 0 0 0 0 0 0 0
C 1 1 1 1 0 0 0 0 0
D 0 0 0 1 0 0 0 0 0
E 0 0 0 0 1 0 1 0 0
F 0 0 0 0 0 1 0 0 0

enterprise
functions
p=1,…,7

G 0 0 0 0 1 0 1 1 1

Fig. 1. Matrix SUP: rectangles denote enterprise functions, rounded rectangles denote applica-
tion systems, and connecting lines illustrate a “1” in the respective position of the matrix, i.e.
that a certain enterprise function is supported by a certain application system. E.g. enterprise
function E “decision making” can be supported by application system 5 “KnowledgeService”
or 7 “ClinicalPathwaySys” alternatively. The meaning of the different hatchings and the ⊕, ∅
and ⑨ -signs will be explained in section 4.3.

216 A. Winter et al.

3 A Measure for Functional Redundancy

Functional redundancy is a characteristic of information systems which should be
addressed by information management. In order to reduce complexity of the informa-
tion system it is interesting to know which application systems could be omitted
without loss of functionality, i.e. without hindering the execution of any enterprise
function. Before we define a measure for functional redundancy we want to explain,
how we can detect redundant support of enterprise functions by application systems.

3.1 Redundant Support of Enterprise Functions

For every enterprise function ef EF∈ we can easily calculate

,
1

:
N

p p n
n

isup sup
=

=∑ (4)

For every p, isupp denotes the number of application systems actually supporting
the individual enterprise function efp; we call it its individual degree of support by
application systems. Every isupp > 1 may be an indicator that some application sys-
tems are dispensable, with isupp - 1 indicating the number of possibly superfluous
systems. However, this number needs a careful investigation because some of the
apparently superfluous application systems may be necessary for other enterprise
functions. Obviously, measuring functional redundancy in a way, which is supportive
for information management, needs a measure which takes these interrelationships
into account.

Example (part 2)
Continuing part 1 of our example we can easily calculate the isupp as shown in
table 2.

Table 2. isupp

p efp isupp
1 A 1
2 B 1
3 C 4
4 D 1
5 E 2
6 F 1
7 G 4

The value of isup3 = 4 indicates that perhaps there are three superfluous application

systems supporting C (“administrative admission (outpatients)”). But detailed analysis
shows that the application systems 1 (“CareMgmtSys”), 2 (“PatientAdministration-
System(ADT)”) and 4 (“DepartmentalSystemRadiotherapy”) cannot be omitted, be-
cause they are needed for the functions A (“clinical admission”), B (“administrative
admission (inpatients)”) and D (“radiotherapy”). However, application system 3

 Ontology-Based Assessment of Functional Redundancy 217

(“DepartmentalSystemPsychology”) is a good candidate for being removed from the
information system because function C as the only function it supports is also sup-
ported by application systems 1, 2, and 4. A measure of redundancy should therefore
correctly indicate that considering the enterprise function C (“administrative admis-
sion (outpatients)”) only one application system could be omitted (namely Depart-
mentalSystemPsychology).

3.2 A Measure for Functional Redundancy for Information Management

We now want to introduce a measure for functional redundancy for information man-
agement as a key performance indicator, denoting the percentage of application sys-
tems in a given information system, which could actually be shut down and omitted
without loss of support of any enterprise function. First we have to check, whether
particular application systems can be omitted or not, given EF, AS and SUP. With the
notions introduced earlier, the challenge is to calculate a minimal subset ASmin ⊆ AS
of application systems which guarantees that all functions are supported and that there
are no superfluous application systems in use. Each set ASmin we call a “minimal func-
tionally non-redundant set of application systems”. In general, there is more than one
such set ASmin for a given information system, i. e. there is more than one way to cut
down the functional redundancy in an information system. In the real setting of the
information system of the Leipzig University Medical Center we actually found sev-
eral hundreds of minimal functionally non-redundant sets of application systems.

Let us describe any subset AS’ ⊆ AS of application systems being actually in use by

a vector
JJJJG
USE , indicating whether application systems are member of the subset AS’ or

not.

1...: () ==
JJJJG

n n NUSE use with 1 '

0
n

n

if as AS
use

else

∈⎧
= ⎨
⎩

 (5)

Hence ASmin can be described by ()min
min

1...
:

=
=

JJJJG
n n N

USE use and { }min 0,1nuse ∈ .

Given what application systems are in use, i.e. given the respective vector USE, we
can calculate the individual degree of support for all enterprise functions as well as:

*=
T

ISUP SUP USE
JJJJJG JJJJG

 with ()
1...=

= p p P
ISUP isup
JJJJJG

 (6)

As stated above, we want that despite of some application systems being not in use,
every function is supported by at least one application system. We introduce a vector

e
G

 of length P containing only “1”:

()
1...=

=
G

p p P
e e with : 1, 1...pe p P= = (7)

Now we can state the first postulation:

(P1) For every vector USE
JJJJG

 which is as a candidate for being considered as a possible
reduced set of application systems, the following constraint holds:

218 A. Winter et al.

∗ ≥
T

SUP USE e
JJJJG G

 (8)

Second we want to have as few application systems in use as possible. We introduce a

vector
G
c of length N containing only “-1”:

() 1...=
= n n N

c c
G

 with : 1, 1...nc n N= − = (9)

This leads to the second postulation:

(P2) max∗ →
T

c USE
G JJJJG

 (10)

Since SUP is a matrix of zeroes and ones, we have a pure 0-1 linear programming
problem. This problem is well known in literature as the “set covering problem” [10].
Corresponding to our statement that there will be more than one “minimal function-
ally non-redundant set of application systems” there are also different solutions for
the set covering problem. The simplest algorithm, known as “brute-force“, checks all
combinations of application systems for postulations (P1) and (P2). Of course this
would need too much computing resources for realistic information systems with
several tenths of application systems. Moreover, set covering is an NP-complete prob-
lem generally, which, roughly, means that the complexity of any algorithm will be in
the order of an exponential function of N. In section 0 we will briefly sketch an algo-
rithm which manages the situation of usual information systems quite well and we
will report on the application of this algorithm in Leipzig in section 6. So we can
assume here that we actually can find a solution for the problem. The solution is the

set minUSE of all vectors
min

min
, 1...: () ==k k n n NUSE use

JJJJG
, for which (P1) and (P2) hold, is

defined as

min minmin
1: { ,..., }= KUSE USE USE

JJJJG JJJJG
 (11)

This corresponds with the set

min min min
1: { ,..., }KAS AS AS= (12)

of minimal functionally non-redundant sets of application systems min
kAS . In the sense

of the set covering problem we could say every min
kAS covers EF. Because of (P2), all

those sets min
kAS are of the same cardinality

min: kM AS= (13)

We can now define the key performance indicator Functional Redundancy Rate
(FRR) as a measure for functional redundancy in an information system, which can be
used for information management:

:
N M

FRR
N

−= (14)

 Ontology-Based Assessment of Functional Redundancy 219

FRR can be interpreted as the percentage of application systems which could be re-
moved from the information system without loss of functionality.

Example (part 3):
Since the given information system in part 1 of the example is quite small, we can
immediately identify two minimal functionally non-redundant configurations:

min
1 {1,2,4,5,6}AS = and min

2 {1, 2, 4,6,7}AS = which correspond to the vectors
min

1 (1,1,0,1,1,1,0,0,0)=USE
JJJJG

 and
min

2 (1,1,0,1,0,1,1,0,0)=USE
JJJJG

.

For
min

1USE
JJJJG

 as one of the two minimal solutions in our example holds:

() ()
min min

1 1 1,1,3,1,1,1,1∗ = =
T

SUP USE ISUP
JJJJG JJJJJG

 (see table 3).

Table 3. Vector
min

1ISUP
JJJJJG

p efp isupp
1 A 1
2 B 1
3 C 3
4 D 1
5 E 1
6 F 1
7 G 1

Thus (P1) holds for

min

1ISUP
JJJJJG

. In the same way (P1) can be shown to hold for
min

2ISUP
JJJJJG

as well.
FRR is only dependent on N and on M, being the number of application compo-

nents and the cardinality of all minimal functionally non-redundant sets of application
systems, respectively. With N=9 and M=5, we get:

9 5
0, 44

9
FRR

−= = (15)

Hence 44% of the application systems in our example could be removed.

4 Using the Functional Redundancy Rate and Minimal
Non-redundant Sets of Application Systems to Support
Information Management

This approach may be supportive for information management in different ways:

220 A. Winter et al.

4.1 Benchmarking Information Systems

The Functional Redundancy Rate FRR may be used as a quality indicator, which
supports benchmarking of information systems. Since besides the set of application
systems the set of enterprise functions is one of the two input variables of FRR, it is
obvious, that the structure (especially the granularity of the functions modelled) as
well as the cardinality of this set will influence the result. Thus FRR depends on the
individual way of modelling the enterprise functions in an institution and FRRs of
different information systems may be incomparable. Moreover the FRRs derived by
different models of different modellers of the same information system may differ as
well. This problem can be overcome by using the same set of enterprise functions for
models of those information systems which shall be benchmarked and compared. An
appropriate set of enterprise functions for hospitals has recently been published as a
reference model in [11]. Using this as a basis for FRR calculation can make informa-
tion systems comparable with respect to their FRR. But of course complete modelling
is needed anyway.

Example (part 4)
The Functional Redundancy Rate of 44%, which has been calculated in part 3 of the
example, indicates that according to the model 44% of the application systems in this
information system – 4 out of 9 – are superfluous. This is an indicator, that – given
the model is sound and complete – information management in the respective hospital
may not have been performed very systematically.

4.2 Reducing Operational Costs

Even if a particular application system cannot be shut down and omitted, it may cause
unnecessary operational costs. Let min

kAK be a minimal set of used application sys-

tems and pisup the related individual degree of support by application systems in
min
kAK for every enterprise function

pef EF∈ . If for some p holds min 1pisup > , this

indicates, that users can use different application systems as support for the enterprise
function efp Information managers should check, whether this option is really favored;
since it may cause additional costs e.g. for customizing the different application sys-
tems the same way, providing catalogues of terms and diagnoses redundantly, addi-
tional training courses, and so on.

Example (part 5)

As can be seen in the vector
min

1ISUP
JJJJJG

in part 3 of the example, users having to perform
“administrative admission (outpatients)” (function C) have the option to choose be-
tween 3 application systems. Information management should check, whether it is
appropriate to allow employees to choose between application systems 1
“CareMgmtSys”, 2 “PatientAdministrationSystem(ADT)”, and 4 “Departmental-
SystemRadiotherapy”, if they have to admit outpatients; because this option causes
additional expenses e.g. for training. Information management could decide that only
the “PatientAdministrationSystem(ADT)” has to be used for the admission of

 Ontology-Based Assessment of Functional Redundancy 221

outpatients and could block the respective modules of the “CareMgmtSys” and “De-
partmentalSystemRadiotherapy”.

4.3 Shut Down of Superfluous Application Systems

Realizing the FRR of the information system the responsible chief information officer
(CIO) will ask what application systems actually are superfluous and can be omitted.
Using the concepts introduced before we can calculate the subset of those application
systems, which are superfluous and can be omitted anyway. Other way round those
application systems can be found, which by no means should be deleted. The calcula-
tion of the latter can simply be based on the matrix SUP (see formula (3)). An appli-
cation system asn cannot be deleted, exactly if there is an enterprise function efp such
that asn is the only application system supporting this function. Let us collect these
application systems in the set:

()(){ }, ,: | : (1) : 0n p p n p mAS as AS ef EF sup m n sup+ = ∈ ∃ ∈ = ∧ ∀ ≠ = (16)

The calculation of superfluous application systems is more difficult. Of course all
those application systems supporting no enterprise function can be omitted. Further-
more already matrix SUP provides valuable information concerning possible re-
placement of one application system by a different one. If we define two application
systems functionally equivalent if they support the same set of enterprise functions,
SUP can be used to determine those application systems which are mutually equiva-
lent.

, ,(,) :x y p x p yequal as as true p sup sup= ⇔ ∀ = (17)

Doing so every application system could be replaced by one of its equivalents. Thus
first decisions can be made, what application systems should be shut down. But there
may be more superfluous application systems, which can be found by using the

set min min min
1: { ,..., }KAS AS AS= as defined in (12) resp. calculated before. Let us

define the set

()min

1

: \−

=

=∩
K

k
k

AS AS AS (18)

of those application systems, which have been found as not needed in all minimal sets
min
kAS . Thus the application systems in AS − can be omitted anyway.

? : (\ \)AS AS AS AS− += (19)

Finally the set
?AS in (19) contains application systems which are not clearly

marked as needed or not. But we can use the equivalence relation mentioned before to

group the members of
?AS into equivalence classes. Based on this we have to decide

for every equivalence class, what member of this class should be used; the rest of the
class can be omitted.

222 A. Winter et al.

Example (part 6)
Using SUP of part 1 of the example immediately results in : {1, 2,4,6}AS + = ; these

application systems are marked with ⊕ in figure 1 and must not be omitted. As stated in

part 3 of the example, min {{1,2,3,5,6},{1, 2, 4,6,7}}AS = . Thus {3,8,9}AS − = ,

which means, that the application systems marked with ∅ in figure 1 should be omitted
anyway. The application systems marked with ⑨ in figure 1 belong to the set

? {5,7}AS = . Since both support the same set of functions, they belong to the same
equivalence class and on of them can be selected to support function E. Given Clinical-
PathwaySys is a personal favourite of the hospital’s medical director the CIO maybe
decides for ClinicalPathwaySys and consequently shuts down the KnowledgeService.
Finally the CIO can reduce the information system according to figure 2:

Fig. 2. Reduced information system (caption see figure 1)

4.4 Exploiting Potentials of Application Systems and Reducing Heterogeneity

In section 2 we defined the matrix SUP for modeling the support of enterprise func-
tions by application systems. But there may be cases, that particular application
software products could support more enterprise functions than the actual implemen-
tation, i.e. the application system, does. If a modeler adjusts the matrix SUP in a way,
that it maps an enterprise function not only to application systems, which actually
support this enterprise function, but also to those application systems, which could do
so, usually more potentially superfluous application systems may be identified.

Example (part 7)
An analysis of the application software product, underlying application system
“CareMgmtSys”, may turn out that by a proper installation this application system
could also support function “patient information”. In this case, the “DiabetesTrainer”
could be omitted, too.

5 An Algorithm for Calculating Minimal Non-redundant Sets of
Application Systems

Our approach is mainly based on the set min min min
1 K: { ,..., }USE USE USE= of minimal

vectors defining minimal non-redundant sets of application systems. But up to now

 Ontology-Based Assessment of Functional Redundancy 223

we did not elucidate how to compute this set. As mentioned before, there are algo-
rithms presented in literature, to solve the set covering problem. Far from starting a
new discussion on optimal solutions for set covering problems in general we want to
show the feasibility, i.e. the computability of the set minUSE in real settings within

acceptable time. According to our experiences there may be hundreds of application
systems and enterprise functions in those settings. Applying set covering solving
algorithms immediately would result in inacceptable computing efforts. But we have
made also the following experiences:

E1. Most of the functions will be supported by exactly one application system.

The corresponding application systems are members of AS +
.

E2. Due to incomplete models there will be more or less application systems

supporting none of the enterprise functions:
0AS .

E3. There will be more or less application systems supporting only enterprise
functions which are already supported by one of the application systems

in AS +
: AS −

.

Thus we can reduce the set of application systems to

()0: \ \ \+ −=reducedAS AS AS AS AS . This set can be further reduced by using the

equivalence relation (17) introduced in 0 and calculating the respective equivalence
classes. Based on this we collect one (arbitrary) element from each class into the set

equiAS . Now we can use
equiAS in place of AS to solve the set covering problem

by one of the algorithms well known in literature delivering
min min min

1: { ,..., }equi equi equi
LAS AS AS= [10]. Based on this calculation and according

to (17) we can calculate

()min

1

: \−

=

=
L

equi equi equi
l

l

AS AS AS∩ (20)

If we take into account that every member of −equiAS in fact is a place holder for an

equivalence class, we can also derive ?AS as defined in 0.

6 Using the Functional Redundancy Rate and Minimal
Non-redundant Sets of Application Systems at Leipzig
University Medical Center

We implemented an algorithm in JAVA solving this set covering problem, which first
reduces the set of application systems to be examined to equiAS as described. equiAS

is explored using decision trees and a backtracking algorithm [12]. Using this algo-
rithm we explored the 3LGM² model of the information system of Leipzig University
Medical Center [13]. See table 3 for the results of the assessment.

224 A. Winter et al.

Table 4. Analysis of the 3LGM² model of the information system of Leipzig University Medi-
cal Center

Functional Redundancy Rate (FRR) 25%
Number of application systems (N=|AS|) 123
Number of application systems exclusively supporting functions (AS+) 86
Number M of needed application systems 92
Number of application systems supporting only functions which are
already supported by one of the application systems in AS+ (AS–)

25

Number of equivalence classes 6
Number of application systems supporting no function (AS0) 0
Number of application systems to be examined by set covering solving
algorithms

5

No. of redundant application systems found by set covering solving
algorithms

4

Computing time (on a usual PC): < 1 sec

The resulting FRR 25%, taken for itself, indicates that a quarter of the application
systems could be removed without loss of functionality. The sets ? , ,− +AS AS AS

uncovered some interesting aspects regarding the model contents, e.g.:

• Since we modeled not only application systems of Leipzig University Medical
Center but also of some hospitals in the neighbourhood, the algorithm suggested to
omit the ADT-systems of these hospitals because the ADT-System of Leipzig Uni-
versity Medical Center would cover the functionality sufficiently.

• Two application systems supporting classification of diagnoses and procedures
have been found as being superfluous. They can be omitted since a new system has
been introduced some time before.

As shown in table 3 we have had quite small computing time; this is due to only 5
application systems to be examined by time-consuming algorithms.

7 Discussion

We have introduced the Functional Redundancy Rate (FRR) as a new key perform-
ance indicator for information systems. Even if redundancy of functions has been
discussed in medical informatics in the context of functional integrity (e.g. [6, 14]) we
could not find any formal and quantitative approach for computing a related key per-
formance indicator before. Moreover it was surprising, that the set covering problem
being discussed since many years turned out to be such a well suited formal descrip-
tion of the problem.

But the FRR and its use depends strongly on the solution of an NP-complete prob-
lem. Because of the NP-hardness, there is no way but to accept a possibly high run-
ning time of the algorithm. But this might not be a problem since a calculation time of
a weekend or two would be acceptable for gaining a saving of several thousands of
Euro. We proposed an algorithm to better manage the situation. Of course we could

 Ontology-Based Assessment of Functional Redundancy 225

not proof the computability of FRR in all settings using our algorithm. But we could
show its computability in a realistic setting giving reason to assume its usefulness in
similar settings as well.

Based on the algorithm the possible questions of information managers cited in the
introduction can be answered. The sets +AS and −AS deliver the application systems

being crucial respectively being obsolete. Additionally the Functional Redundancy
Rate (FRR) supports benchmarking between different information systems.

Besides the complexity of the underlying set covering problem there is the addi-
tional problem of collecting all enterprise functions, all application systems and all
their relationships for the calculation of FRR. Of course these efforts don’t pay for
only calculating the FRR. But if information management has a thorough description
of the information system at its disposal, perhaps by having used the 3LGM² tool [15]
the calculation of FRR does not need any further efforts.

The FRR for functional redundancy is only one key performance indicator for qual-
ity of information systems. Especially data redundancy is one more extremely rele-
vant problem. Future research has to examine this and its relationships with functional
redundancy as well and hopefully can result in considerable steps towards a sound
and complete theory of quality of information systems. Dealing with quality criteria
like functional or data redundancy makes evident, that a distinct ontological basis is
needed independently from modelling approaches used. We need a common, unified
ontology for describing information systems – not only in health care. We consider
3LGM² to be a proposal for first steps in this direction.

Acknowledgements

Thanks to Ernst Schuster. He helped us to find the proper formulation for our optimi-
zation problem. Parts of work have been supported by grants of the Deutsche For-
schungsgemeinschaft (DFG).

References

1. Kuhn, K.A., Giuse, D.A., Lapao, L., Wurst, S.H.: Expanding the scope of health informa-
tion systems - from hospitals to regional networks, to national infrastructures, and beyond.
Methods Inf. Med. 46(4), 500–502 (2007)

2. Lorenzi, N.M., Riley, R.T.: Managing technological change: organizational aspects of
health informatics. Springer, New York (2004)

3. Haux, R.: Individualization, globalization and health-about sustainable information tech-
nologies and the aim of medical informatics. Int. J. Med. Inform. 75, 795–808 (2006)

4. Ammenwerth, E., Aarts, J., Berghold, A., Beuscart-Zephir, M., Brender, J., Burkle, T., et
al.: Declaration of Innsbruck. Results from the European Science Foundation Sponsored
Workshop on Systematic Evaluation of Health Information Systems (HIS-EVAL). IMIA
Yearbook of Medical Informatics 2006. Methods Inf. Med. 45(suppl. 1), 121–123 (2006)

5. Talmon, J.: Evaluation and implementation: A call for action. IMIA Yearbook of Medical
Informatics 2006. Methods Inf. Med. 45(suppl. 1), 16–19 (2006)

6. Haux, R., Winter, A., Ammenwerth, E., Brigl, B.: Strategic Information Management in
Hospitals. Springer, New York (2004)

226 A. Winter et al.

7. Cimino, J.J., Zhu, X.: The Practical Impact of Ontologies on Biomedical Informatics.
IMIA Yearbook of Medical Informatics 2006. Methods Inf. Med. 45(suppl. 1), 124–135
(2006)

8. Winter, A.F., Ammenwerth, E., Bott, O.J., Brigl, B., Buchauer, A., Gräber, S., Grant, A.,
Häber, A., Hasselbring, W., Haux, R., Heinrich, A., Janssen, H., Kock, I., Penger, O.-S.,
Prokosch, H.-U., Terstappen, A., Winter, A.: Strategic Information Management Plans:
The Basis for systematic Information Management in Hospitals. International Journal of
Medical Informatics 64(2-3), 99–109 (2001)

9. Winter, A., Brigl, B., Wendt, T.: Modeling Hospital Information Systems (Part 1): The
Revised Three-Layer Graph-Based Meta Model 3LGM2. Methods Inf. Med. 42(5), 544–
551 (2003)

10. Karp, R.M.: Reducibility Among Combinatorial Problems. In: Miller, R.E., Thatcher, J.W.
(eds.) Complexity of Computer Computations, pp. 85–103. Plenum, New York (1972)

11. Hübner-Bloder, G., Ammenwerth, E., Brigl, B., Winter, A.: Specification of a reference
model for the domain layer of a hospital information system. Stud. Health Technol. In-
form. 116, 497–502 (2005)

12. Cormen, T.H., Leiserson, C., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT
Press, Cambridge (2001)

13. Winter, A., Brigl, B., Funkat, G., Häber, A., Heller, O., Wendt, T.: 3LGM2-Modeling to
Support Management of Health Information Systems. International Journal of Medical In-
formatics 76(2-3), 145–150 (2007)

14. van Bemmel, J.H. (ed.): Handbook of Medical Informatics. Springer, Heidelberg (1997)
15. Wendt, T., Häber, A., Brigl, B., Winter, A.: Modeling Hospital Information Systems (Part

2): Using the 3LGM2 Tool for Modeling Patient Record Management. Methods Inf.
Med. 43(3), 256–267 (2004)

The First International Workshop on
Non-Functional System Properties in Domain

Specific Modeling Languages (NFPinDSML2008)

Marko Bošković1,�, Dragan Gašević2, Claus Pahl3, and Bernhard Schätz4

1 TrustSoft Graduate School, University of Oldenburg, Germany
2 School of Computing and Information Systems, Athabasca University, Canada

3 School of Computing, Dublin City University, Ireland
4 Institute for Informatics, Technical University Munich, Germany

Abstract. This workshop brought together researchers and practition-
ers from communities dedicated to non-functional properties of software
systems and researches from language engineering to study the principles
of integration of various non-functional system properties and language
engineering in order to further expand principles of reasoning about non-
functional properties of software systems in Domain Specific Modeling
Languages, and model-driven engineering in general

1 Motivation

For the engineering of systems of a particular domain, Domain Specific Modeling
Languages (DSMLs) are becoming a common-place in software and system en-
gineering. While DSMLs are mostly dedicated to functional requirements, often
they do not address non-functional system properties (e.g. availability, reliability,
security, performance, timeliness, efficiency). Non-functional system properties
(NFSP) are recognized as at least as important as functional properties and have
to be addressed during the design of systems. As till now, the study of engineer-
ing DSMLs and analysis of NFSP lack common principles. For this reason the
workshop gathered a forum discussing issues of integration of NFSP estimation
and evaluation in the context of software system engineering with DSMLs.

2 Workshop Format

The workshop consisted of four sessions where position (short), and full techni-
cal (long) contribution papers were presented. Short papers discussed thought-
provoking not yet fully developed and evaluated ideas, and long papers described
fully developed new research results.

The first session was the presentation of invited speaker Prof. Dr. Dorina
Petriu, from Carleton University, Ottawa, Canada. She presented the emerging
� This work is supported by the German Research Foundation (DFG), grant GRK

1076/1.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 227–228, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

228 M. Bošković et al.

results of her research group entitled “Performance Analysis of Aspect-Oriented
UML Models”.

The second session started with Richard Paige’s long paper presentation en-
titled “Automated Safety Analysis for Domain-Specific Modeling Languages”.
He presented an automated safety analysis technique, for automatically calcu-
lating the failure behaviour of an entire system from the failure behaviours of
its components.

He was followed by a long paper presentation of the paper entitled “An
Extensible Services Orchestration Framework through Concern Composition”,
and presented by Gabriel Perdraza-Ferreira. “An Extensible Services Orchestra-
tion Framework through Concern Composition”, presented by Gabriel Perdraza-
Ferreira. Next, Moran Kupfer presented the short paper “Understanding and
Representing Deployment Requirements for Achieving Non-Functional System
Properties”. The authors of the paper proposed a research direction towards de-
veloping an approach for reasoning about deployment decisions. Finally, Andreas
Petter presented a short paper, “Modeling Usability in Model-Transformations”.
In their work they identified commonly needed features of transformation lan-
guages for implementation of transformations for usable user interfaces.

The third session was opened by a long paper presentation of Jon Whittle on
detection of interacting aspects, entitled “Towards Semantic-Based Aspect Inter-
action Detection” authored by Gunter Mussbacher, himself, and Daniel Amyot.
This presentation was followed by a long paper presentation of Christiano Braga
“From Access Control Policies to an Aspect-based Infrastructure: A Metamodel-
based Approach” on a validated process of code generation for role based access
controll policies. The session was concluded with Jan Jürjens’s position paper
presentation, “Challenges for the Model-based Development of Distributed Real
Time Systems” and authored by Michael Giddings, himself, and Pat Allen.

The four session was dedicated to discussion of open issues in DSML engi-
neering and non-functional system properties estimation and evaluation. Some
of the identified topics for future work are: identification of NFSP for particu-
lar domains, processes for decision making with multiple NFSP, propagation of
values NFSP to requirements models from design models, transformations and
code generation for optimization of NFSP, methodologies for identification of
causes of problems with NFSPs, and generalities of language engineering and
possibilities of existing analytical and simulation models integration.

3 Workshop Outline

The workshop lasted one day and had 25-30 participants. Four technical contri-
butions and three position papers were presented. All of them are published as
CEUR on line proceedings Vol-394. Furthermore, it was followed by a special
issue of the Journal on Software and Systems Modeling for which papers were
solicited by an open call. Finally, the plans for future of the workshop are to
growing into a network of excellence dealing with issues of NFPinDSML.

FPTC: Automated Safety Analysis for
Domain-Specific Languages

Richard F. Paige, Louis M. Rose, Xiaocheng Ge, Dimitrios S. Kolovos,
and Phillip J. Brooke

Department of Computer Science, University of York, UK
School of Computing, University of Teesside, UK

{paige,louis,xchge,dkolovos}@cs.york.ac.uk, pjb@scm.tees.ac.uk

Abstract. Critical systems must be shown to be acceptably safe to de-
ploy and use in their environment. The size, scale, heterogeneity, and
distributed nature of these increasingly complex systems makes them
difficult to verify and analyse. Additionally, domain experts use a vari-
ety of languages to model and build their systems. We present an auto-
mated safety analysis technique, Fault Propagation and Transformation
Analysis, and explain how it can be used for automatically calculating
the failure behaviour of an entire system from the failure behaviours
of its components. We outline an implementation of the technique in
the Epsilon model management platform, allowing it to be used with
state-of-the-art model management languages and tools, and making it
applicable to a variety of different domain-specific modelling languages.

1 Introduction

Complex systems exhibit emergent properties as a result of composing hetero-
geneous components. These components may be distributed, and may also have
substantial performance, timing, safety, and security requirements. The scale
and complexity of these systems make it difficult to apply general-purpose ver-
ification and validation technology – such as model checkers, simulators, and
theorem provers – to obtain the guarantees of acceptable behaviour that are
required. Obtaining guarantees is particularly important for safety critical sys-
tems, which normally must be certified as acceptably safe according to relevant
standards before they are deployed in the field.

Safety analysis for complex systems is an open field of research. For high-
integrity real-time systems (HIRTS), automated safety analysis can help to
achieve the substantial requirements for reliability and safety necessary for these
kinds of systems to achieve certification. Safety analysis techniques are novel
when contrasted with traditional software analyses, which tend to emphasise
determining a product’s correctness – e.g., through proof, model checking, sim-
ulation, or abstract interpretation. For HIRTS, it is of critical interest to know
how a system behaves in the presence of failure, regardless of whether that fail-
ure is in the environment, or due to internal software or hardware error. Given

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 229–242, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

230 R.F. Paige et al.

an understanding of a system’s behaviour in the presence of failure, methods to
mitigate potential hazards can be determined and engineered.

Manual safety analysis is notoriously expensive for all systems; anything that
can be done to help to automate the process of understanding system behaviour
in the presence of failures will be of benefit to industry. Moreover, safety analysis
is not in general compositional – even small changes to components (and their
corresponding failure behaviour) generally means that the whole safety analysis
has to be performed again for the entire system. Finally, engineers of safety criti-
cal systems often use a variety of general purpose and domain-specific languages
(DSLs), including profiles of UML, Matlab, Simulink, Stateflow, AADL, SysML,
and MASCOT [14]; safety analysis that is applicable to all these languages (and
others) will be of substantial value.

This paper presents a fully automated and compositional safety analysis tech-
nique applicable to domain-specific languages. The technique, fault propagation
and transformation analysis, is outlined and an implementation in the Epsilon
model management toolset [11], is described in detail. The value of having an
implementation in a state-of-the-art and standards compliant toolset like Ep-
silon, built atop of Eclipse, is also explained, particularly for supporting analysis
on domain-specific and heterogeneous models.

2 Background and Related Work

2.1 Components and Failures

Failure and safety analysis is generally applied to component or architectural
models of safety critical systems. In these models (which may be represented
using one of a number of different languages), a component is a building block
of a system, and may be represented in hardware or software. A component has
input ports and/or output ports, and transfers inputs to outputs. Components
may exhibit expected behaviour (e.g., according to a specification such as a pre-
and postcondition), but may also exhibit failures. A failure is any behaviour of a
component or system which deviates from specified behaviour [5]. Failures arise,
can be propagated, and can also be transformed in a system, e.g., as a result
of an accident or incorrect implementation. In order to determine the failure
behaviour of a system, it is necessary to be able to understand, and model, the
failure behaviours of the system’s components.

There has been previous work on modelling and understanding the failure
behaviour of systems. Traditional safety engineering techniques include Failure
Modes and Effects Analysis (which is a manual process) [7], HAZOPs
guidewords-based analyses, Fault Tree Analysis, and finite state analysis [6].
Fenelon et al introduced FPTN [4], a notation for explicitly representing the
failures behaviour of components, and integrated FPTN with a typical safety
engineering process. However, FPTN possessed no tool support. Overall, few of
these approaches have been integrated with Model-Driven Engineering standards
and tools. An exception is work on integrating Fault Tree Analysis with UML,

FPTC: Automated Safety Analysis for Domain-Specific Languages 231

e.g., as carried out by Jürjens [8]; this integration was specifically for UML, and
did not support automated compositional reasoning about failures.

Wallace [15] proposed using a model of HIRTS system architecture as the basis
for safety analysis. The failure behaviours of the components are determined
and modelled when analysing the system. The connections between units are
communication protocols. Because a communication protocol also has its own
potential failure behaviour, the protocols in the model must be treated identically
to the components of the system – i.e., their failures are also modelled.

In [15], a component can introduce failures (e.g., because of an exception or
crash), or may propagate failures (e.g., data that is erroneous when it arrives at
a component remains erroneous when it leaves the component), or transforms a
failure into a different kind of failure (e.g., data that arrives late may thereafter
arrive early). Furthermore, a component may correct or mask failures that it
receives. Thus, when a component receives as input a particular kind of failure,
it generates one of the following responses.

output =

⎧
⎨

⎩

normal
same failure
different failure

To support automated failure analysis, we must be able to connect models of
component failure behaviour to a system model. This can be done by represent-
ing the behaviour of architectural components – such as hardware, wires, and
network connections – using failure models. In our implementation in Epsilon,
we do this by effecting a model transformation (though it is not a traditional
mapping transformation in the classification of Czarnecki [2]).

2.2 Automating Failure Analysis

Assume that we have a component-and-connector model of a system, e.g., in a
DSL. The components in the system can be individually analysed – in isolation,
from the rest of the system – for their failure behaviour in response to potential
failure stimuli. This behaviour should be determined by domain and safety ex-
perts, and should consider all possible failures on input. The analysis can follow
the conventional HAZOP/SHARD [13] identification of types of failures through
a set of guidewords, such as: value failures (e.g., data is stale); timing failures
(e.g., data is arriving later); and sequence failures (e.g., omission).

Following [15], we capture the failure responses of a component to its in-
put in a simple pattern-based modelling language. Using * to indicate normal
(no failure) behaviour, the following four expressions denote example source,
sink, propagation, and transformation behaviours for a trivial single-input single-
output component (the generalisation to multiple inputs and multiple outputs
is straightforward, and is illustrated in Section 4).

* → late (failure source)
early → * (failure sink)

omission → omission (failure propagation)
late → value (failure transformation)

232 R.F. Paige et al.

The first line says that any input leads to late output, whereas the second says
that early input (data arriving before its time) leads to no error, i.e., the compo-
nent sinks all errors. The third line says that an omission failure is propagated
by the component. The most complicated failure behaviour is generally trans-
formational – i.e., the last line above, where a late input leads to a value error
— the wrong value being output.

A typical component will have its failure behaviour modelled by a number of
patterns of this form, and the cumulative effect is its overall behaviour. [15] calls
this the FPTC behaviour of a component.

To represent the system as a whole, every element of the architectural model
– both components and connectors – is assigned FPTC behaviour. Given this,
we can automatically calculate the failure behaviour of a whole system as follows
(see [15] for a formal definition). Each model element that represents a relation-
ship is annotated with sets of tokens (e.g., late, early, value), which represent all
possible failures that can be propagated by this dependency. In other words, we
are informally treating the architectural model as a token-passing network. As
a result of this annotation, we can calculate the failure behaviour of the system
by calculating the maximal token sets on all dependencies in the model. This
turns out to be a fixpoint calculation (presented formally in [15]). Informally, the
calculation works as follows. Starting with the singleton set containing the no
failure (*) token as a label on every dependency, the FPTC behaviour at every
component model element is ‘run’, using the token sets on input dependencies
as the inputs to the FPTC behaviours. The output failure tokens of each compo-
nent are accumulated on the outgoing dependencies, and the system continues
to run until a fixed point is reached, i.e., the token sets no longer change.

The calculation must terminate, because the set of failure types must be finite.
[15] also shows that the calculation produces the same result no matter in what
order the relationships are analysed.

3 Implementation in Epsilon

We have implemented the failure analysis in the Epsilon model management
platform1, under Eclipse. By using Eclipse, we can exploit its mechanisms for
metamodelling, modelling, and extension, as well as its substantial tool support
via plug-ins. Epsilon itself provides a model management framework, via a suite
of integrated languages. Epsilon provides a base language – the Epsilon Object
Language (EOL) [12] – which supports basic model manipulation, e.g., traversal
of models, querying models, modifying models. EOL has many similarities to
the OMG-standard Object Constraint Language (OCL), but is fully executable
and metamodel-independent; thus, EOL (and Epsilon) can be used to manage
models from any language. By implementing the failure analysis approach within
Epsilon, we thus immediately obtain independence from UML-based languages,
but also technology independence, because EOL can be used to manage models
from different technologies such as EMF, MDR/MOF, Z models, and XML.
1 www.eclipse.org/gmt/epsilon

FPTC: Automated Safety Analysis for Domain-Specific Languages 233

The Epsilon platform includes other model management languages that have
been built on, and thus inherit from, EOL. These include a model-to-model
transformation language, a model merging language, a model-to-text transfor-
mation language, a validation language, and a refactoring language, amongst
others. Further details can be found in [11].

The FPTC analysis has been implemented and encoded directly in EOL, based
on a lightweight and reasonably generic metamodel for architectural modelling;
the metamodel is shown in Fig. 1. EOL was used because the model management
task to be completed – calculating a fixpoint on a model – is iterative, and EOL is
the only language in the platform providing iterative constructs. The metamodel
that we use as the basis of the FPTC calculations is intended to be generic so
that it can (a) provide sufficient infrastructure for the FPTC calculations; and
(b) make it reasonably straightforward to use as the target of model-to-model
transformations from other architectural modelling DSLs, such as UML 2.x,
SysML, and AADL. We have implemented several simple transformations for
such source languages.

In the architectural language of Fig. 1, systems are made up of blocks (which
represent both components and connectors). The system overall, and individual
blocks, have fault behaviour, represented as expressions. Expressions are made
up of a number of tuples (which correspond to the patterns we discussed earlier).

Fig. 1. Example metamodel for architectural modelling

234 R.F. Paige et al.

These tuples include sets of identifiers, where an identifier can be a wildcard
(i.e., no-fault behaviour), a literal (i.e., a domain-specific kind of fault), or a
variable.

The actual implementation, written in EOL, encodes the algorithms described
earlier. A certain amount of simple EOL infrastructure needs to be provided
(e.g., to record the behaviour of blocks, variables, and literals, and to reset
these behaviours across different runs of the analysis). The remainder of the
implementation is more complex, and can be subdivided into four main parts
(not including any visual representation of the output of the analysis, nor
how individual FPTC behaviours are expressed – we discuss this
afterwards):

– the pattern matching, e.g., to match failure behaviours with inputs; this
is written as a model comparison operation in EOL. We could equally do
this in the Epsilon Comparison Language (ECL) but because the pattern
matching that we need to do is straightforward and not rule-based – and
we need to use the results of the matching in further EOL programs – we
encode the comparison directly in EOL. This is one of the benefits of hav-
ing an executable base language in Epsilon that is also computationally
complete.

– the propagation behaviour, i.e., what happens when a component or connec-
tor propagates failure behaviour to its environment. As this is an algorithmic
calculation, we implement this with EOL.

– the transformation behaviour, i.e., what happens when a component or con-
nector generates new failure behaviour to its environment, based on specific
input behaviour. This could be implemented using the Epsilon Transfor-
mation Language (ETL) [9] or EOL. We chose the latter for reasons sim-
ilar to the model comparison phase: the transformation we need to carry
out is not a mapping, and is predominantly algorithmic instead of rule-
based. As such, EOL was a better fit for this transformation problem versus
ETL.

– the overall system analysis, which is a fixpoint calculation over the system
model.

The matching behaviour in EOL is described in Listing 1.1. This implements
a pattern matching on blocks and sets of identifiers. The pattern matching is
implemented as a set of overloaded operations, called matches ; one matches op-
eration is defined for each type of model element that can be matched, e.g.,
blocks, faults, variables, identifier sets, etc. Effectively, each operation simple
compares an input (consisting of failure behaviour) against the behaviour of a
model element and returns true or false. We show three examples: for match-
ing sets of identifiers, for matching faults, and for matching no-fault
behaviour; other match operations are direct transliterations of the ones we
show.

FPTC: Automated Safety Analysis for Domain-Specific Languages 235

Listing 1.1. EOL Pattern Matching

1 operation IdentifierSet matches(inSet : IdentifierSet) : Boolean {
2
3 for (identifier in self.contents) {
4 for (inSetIdentifier in inSet.contents) {
5 if (identifier.matches(inSetIdentifier)) {
6 return true;
7 }
8 }
9 }

10 return false;
11 }
12
13 operation NoFault matches(identifier : Identifier) : Boolean {
14 if (identifier.isTypeOf(NoFault)) {
15 return true;
16 } else {
17 return false;
18 }
19 }
20
21 operation Fault matches(identifier : Identifier) : Boolean {
22 if (identifier.isTypeOf(Fault)) {
23 return identifier.type = self.type;
24 } else {
25 return false;
26 }
27 }

Failure propagation behaviour is illustrated in Listing 1.2. This EOL program
calculates output behaviour of a block from input behaviour. Effectively, when
the propagate operation is applied to a specific block in an architectural model,
it iterates through all successor blocks (i.e., all blocks that it is connected to).
After obtaining the input token set for the current block, it simply propagates
all input faults to the output block.

Listing 1.2. EOL propagation behaviour

1 operation Block propagate() {
2 var index : Integer := 0;
3
4 for (successor in self.successors) {
5 var inSet : IdentifierSet;
6 var outSet := self.outSet.contents.at(index);
7
8 -- Retrieve the corresponding in-set for this out-set
9 var pIndex : Integer := 0;

10 for (predecessor in successor.predecessors) {
11 if (predecessor = self) {
12 inSet := successor.inSet.contents.at(pIndex);
13 }
14 pIndex := pIndex + 1;
15 }
16
17 -- Propagate identifiers from out-set to in-set
18 for (identifier in outSet.contents) {
19 inSet.contents.add(identifier.clone());
20 }
21 index := index + 1;
22 }
23 }

236 R.F. Paige et al.

The transformation behaviour is the most complicated part of the analy-
sis. The EOL program implementing the transformation calculates new failure
behaviour from input behaviour. It applies the matches operations presented
earlier to match input failure behaviours against failure behaviours of the com-
ponent. If there is a match on the left-hand side of a pattern, then the right-hand
side failure behaviour is generated on the output of the block. The main part of
the functionality is in operation transform, shown below.

Listing 1.3. EOL transformation behaviour

1 operation Block transform() : Boolean {
2 -- Determine which expressions match
3 var applicable : Sequence(Expression);
4 for (exp in self.faultBehaviour.expressions) {
5 if (exp.lhs.matches(self)) {
6 applicable.add(exp);
7 }
8 }
9

10 var result : Boolean := false;
11 var selected : Expression;
12
13 self.toString().println();
14
15 if (applicable.size() > 0) {
16 if (applicable.size() = 1) {
17 selected := applicable.at(0);
18 } else {
19 selected := applicable.mostSpecific();
20 }
21 selected.toString().println();
22 result := selected.applyTo(self);
23 self.toString().println();
24 }
25 ’’.println();
26
27 return result;
28 }

There are a few subtleties to implementing the transformation behaviour.
When matching input failures against failure behaviours of a component, there
may be several matches; this is recorded in the EOL program via the variable
applicable. This is an artefact of allowing wild-card specifications of behaviour
(i.e., any fault is matched). To deal with this issue, we always select the most
specific match; this is implemented in an EOL operation called mostSpecific().

The second subtlety is in copying failure values to the output of a block. A
component may have several failures on its outputs (and indeed, it may have
many outputs), and we must be careful to record all of them in the output
expressions for the block. This is handled in the EOL operation applyTo(), which

FPTC: Automated Safety Analysis for Domain-Specific Languages 237

applies a model of failure behaviour to a block’s inputs. While we omit the details
of applyTo(), it is a good example of a transformation that is not inherently
a mapping, and which would be more concise expressed using an algorithmic
specification. Another example of such a transformation was presented by Conmy
[1], where the transformation was intended to generate large numbers of stable
configurations of an adaptive system. These transformations are similar because
both involve iterative processing of models, rather than rule-based processing.

Finally, the overall system analysis is encoded in Listing 1.4. The failure anal-
ysis is launched on the full system by the EOL run-time. The analysis first
initialises all blocks with their failure behaviour, and then calculates the output
sets on all blocks, until no output set changes, i.e., a fixpoint has been reached.

Listing 1.4. EOL failure analysis

1 System.allInstances().at(0).doFailureAnalysis();
2
3 operation System doFailureAnalysis() {
4 for (block in Block.allInstances()) { block.initialise(); }
5
6 var blocksChanged : Boolean := true;
7
8 while (blocksChanged) {
9 blocksChanged := false;

10
11 -- Calculate out sets
12 for (block in Block.allInstances()) {
13 blocksChanged := block.transform() or blocksChanged;
14 }
15
16 -- Calculate new in sets
17 for (block in Block.allInstances()) { block.resetInSet(); }
18 for (block in Block.allInstances()) { block.propagate(); }
19 (’==’).println();
20 }
21 }

Epsilon is integrated with Eclipse GMF, so it is possible to create customised
GMF editors and visualisations of the results of the FPTC analysis, and of the
architectural models themselves. We present an example of this in the next section.

4 Example

In this section, we introduce a concrete example to illustrate the functionality
provided by our FPTC implementation. Consider the architectural model shown
in Figure 2. The model is written in a DSL for real-time systems. The depicted
system comprises four software components, connected using three instances
of a signalling communication protocol. This protocol uses a destructive (non-
blocking) write, and a destructive (blocking) read.

We have used a simple GMF editor for creating this model. The model must
now be transformed to include failure behaviour, so that we can perform the
failure analysis. FPTC behaviours are most easily expressed in a textual format.
In order to support this, we have integrated Epsilon with a model-generating
parser specified using oAW’s xText [3]. This allows the FPTC behaviour to be

238 R.F. Paige et al.

Fig. 2. Architectural model of the exemplar system

Table 1. Behavioural properties of components

Component Behaviour

Inertial Navigation v → v
Separation Autopilot * → stale value

* → detectable value
v → v

Signal Comms Protocol early → *
omission → late

commission → value
v → v

easily expressed in a format similar to what was presented earlier. The FPTC
behaviours of the individual components and connectors is listed in Table 1.
These behaviours have been determined by domain experts knowledgeable about
the individual components and connectors and their properties.

These experts have determined that the inertial navigation and separation
autopilot components both propagate any faults that they receive. In addi-
tion the separation autopilot component acts as a source for stale value and
detectable value faults. The signalling communication protocol exhibits a rather
more complex failure behaviour, and comprises three non-trivial expressions.
The first states that, as the protocol utilises a blocking read, should the supplier
provide a value earlier than the receiver expects, no fault is produced. In the case
where the communications protocol fails to relay a message (an omission), the
receiver may block indefinitely, causing it to be delayed (encoded as a late fault).
When the communications protocol duplicates a message sent from the supplier
(a commission), the receiver may proceed with an incorrect value. Additionally,
the protocol simply propagates all other categories of fault.

Having used our GMF-based editor to record the results of our behavioural
analysis of the individual components, we can inject various different types of
faults to potential sources of errors, and run the FPTC analysis to determine
how the system would respond to these types of failures. For example, injecting
an omission fault on the IMU component and executing our simulation toolchain
yields the results depicted in Figure 3. By examining the faults produced by the
actuator demands, it can be seen that the actuators may receive faults from the
set {*, stale value, detectable value, late}.

Suppose the design is now changed such that a second IMU is introduced
in order to provide two-lane redundancy. Additionally, instead of the signal,
a pooling communications protocol is used between the IMU and inertial nav-
igation components. Unlike the signalling protocol, the pooling protocol

FPTC: Automated Safety Analysis for Domain-Specific Languages 239

Fig. 3. Results of executing the simulation on the system. The faults produced by each
component are shown in italics.

Table 2. Behavioural properties of the components in the simple system

Component Behaviour

Pool Comms Protocol early → *
omission → stale value

late → stale value
commission → *

v → v

provides a buffer from which the receiver may non-destructively read. This leads
to the rather different failure behaviour shown in Table 2. Should the pool-
ing protocol omit a message from receiver to supplier, the receiver may read
a previous (stale) value from the buffer. Similarly, if the supplier is late send-
ing a message to the receiver, the receiver may read a stale value from the
buffer. Finally, if the protocol duplicates a message sent from supplier to re-
ceiver, the receiver proceeds as expected, due to the data being buffered by the
protocol.

As can be seen in Figure 4, executing the simulation on the new model high-
lights that the set of faults propagated to the actuator from the actuator demands
is {*, stale value, detectable value}. As such, we can conclude that the new
model provides mitigation against faults with the categorisation late, whereas
the original model does not.

This example illustrates the results that can be obtained by applying FPTC,
and the lightweight nature of its analysis – we were able to change the architec-
tural model to introduce different failure, and re-run the analysis to calculate the
overall effect on the system. The ability to automatically and quickly analyse
models makes the failure analysis technique particularly valuable for complex
and critical systems development.

240 R.F. Paige et al.

Fig. 4. Results of executing the simulation on the modified system

5 Discussion and Conclusions

There are two additional, technical points regarding the FPTC implementation
in Epsilon that are worth noting:

– Initial implementations of the failure analysis did not provide detailed error
checking, e.g., to ensure that erroneous or inconsistent failure behaviours
were not specified for components. For example, consider a component which
was accidentally specified to deliver data both late and early; this should
ideally be caught statically, before the FPTC calculation has been run. As
part of the Eclipse/EOL implementation, we have exploited the availability
of the Epsilon Validation Language (EVL) [10] for specifying well-formedness
rules and constraints on the model. This helps us catch errors at an early
stage. This consistency/constraint checking is also fully automated.

– We have provided support for constructing customised graphical interfaces
by integrating Eclipse’s GMF (Graphical Modelling Framework) with EOL.
This allows the results of the failure analysis to be presented in ways suitable
and appropriate for exploration by domain experts. This in itself is a novelty
and provides functionality that is generally useful, not just for FPTC.

We have applied the FPTC analysis as part of work carried out in the Defense
and Aerospace Research Partnership project at the University of York, in collab-
oration with BAE Systems, Rolls-Royce, QinetiQ, and the Ministry of Defense.
The FPTC toolset has been applied to a number of case studies of very different
models. The results demonstrated that the analytic technique was (a) scaleable;

FPTC: Automated Safety Analysis for Domain-Specific Languages 241

(b) efficient; and (c) produced insightful and sometimes unexpected results. We
are currently working on extensions to FPTC to support probabilistic analysis,
i.e., where engineers can indicate the probability of particular types of failures
occurring. This requires extension not only to the theory underpinning FPTC
(specifically, the calculation of output token sets becomes much more compli-
cated, since conditional probabilistic reasoning must be used), but also some
extensions to Epsilon in order to efficiently support matrix calculations, which
are an appropriate way to implement probabilistic analysis. As well, we are de-
veloping transformations for popular architectural modelling languages (such as
AADL and SysML) into the analysis metamodel presented in this paper, so that
FPTC can be used for these languages as well.

Acknowledgements. The work in this paper is partially supported by the
European Commission via the MODELPLEX project, co-funded under the “In-
formation Society Technologies” Sixth Framework Programme (2006-2009), and
the EPSRC under the Large-Scale Complex IT Systems project, supported by
research grant EP/F001096/1.

References

1. Conmy, P., Paige, R.: Challenges when using Model-Driven Architecture in the
development of safety critical software. In: Proceedings of 4th Workshop on Model-
Based Methodologies for Pervasive and Embedded Software. IEEE Computer So-
ciety Press, Los Alamitos (2007)

2. Czarnecki, K., Helsen, S.: Feature-based survey of model transformation ap-
proaches. IBM Systems Journal 45(3), 621–646 (2006)

3. Efftinge, S.: xText reference document (2007), www.eclipse.org/gmt/oaw
4. Fenelon, P., McDermid, J.A.: An integrated toolset for software safety analysis.

The Journal of Systems and Software 21(3), 279–290 (1993)
5. Grunske, L.: Towards an integration of standard component-based safety evalua-

tion techniques with saveCCM. In: Hofmeister, C., Crnković, I., Reussner, R. (eds.)
QoSA 2006. LNCS, vol. 4214, pp. 199–213. Springer, Heidelberg (2006)

6. Heitmeyer, C.L., Kirby, J., Labaw, B.G., Archer, M., Bharadwaj, R.: Using abstrac-
tion and model checking to detect safety violations in requirements specifications.
IEEE Trans. Software Eng. 24(11), 927–948 (1998)

7. IEC. Analysis techniques for system reliability: Procedures for failure mode and
effect analysis. International Standard 812. IEC Geneva (1985)

8. Jürjens, J.: Model-based security engineering with UML. In: Aldini, A., Gorri-
eri, R., Martinelli, F. (eds.) FOSAD 2005. LNCS, vol. 3655, pp. 42–77. Springer,
Heidelberg (2005)

9. Kolovos, D., Paige, R., Polack, F.: The Epsilon Transformation Language. In: Val-
lecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp. 46–60.
Springer, Heidelberg (2008)

10. Kolovos, D., Paige, R., Polack, F.: On the evolution of OCL for capturing struc-
tural constraints in modelling languages. In: Rigorous Object-Oriented Methods.
Springer, Heidelberg (2008)

11. Kolovos, D.S., Paige, R.F.: Epsilon model management platform (2008),
www.eclipse.org/gmt/epsilon

www.eclipse.org/gmt/oaw
www.eclipse.org/gmt/epsilon

242 R.F. Paige et al.

12. Kolovos, D.S., Paige, R.F., Polack, F.: The Epsilon Object Language (EOL). In:
Rensink, A., Warmer, J. (eds.) ECMDA-FA 2006. LNCS, vol. 4066, pp. 128–142.
Springer, Heidelberg (2006)

13. McDermid, J.A., Nicholson, M., Pumfrey, D.J., Fenelon, P.: Experience with the
application of HAZOP to computer-based systems. In: Compass 1995: 10th Annual
Conference on Computer Assurance, Gaithersburg, Maryland, pp. 37–48. National
Institute of Standards and Technology (1995)

14. Simpson, H.R.: The MASCOT method. Software Engineering Journal 1(3), 103–
120 (1986)

15. Wallace, M.: Modular architectural representation and analysis of fault propagation
and transformation. In: FESCA 2005. ENTCS. Elsevier, Amsterdam (2005)

From Access Control Policies to an
Aspect-Based Infrastructure:

A Metamodel-Based Approach�

Christiano Braga��

Universidad Complutense de Madrid

Abstract. Security is among the most successful applications of aspect-
oriented concepts. In particular, in role-based access control, aspects cap-
ture access conditions in a quite modular way. The question we address
in this paper is how can aspects be generated from access control policies
under a validated process?

We present a metamodel-based transformation from SecureUML,
a role-based access control language, to an abstract aspect language.
Within this model-driven engineering context, a security policy is rep-
resented as an instance of SecureUML’s metamodel and the generated
aspect is represented as an instance of the abstract aspect language meta-
model. Invariants specified on the merged metamodel of SecureUML and
the abstract aspect language are checked to validate the generated aspect
with respect to the given security policy.

We have prototyped our approach as a Java application on top of IT-
P/OCL, a rewriting-based OCL evaluator. It outputs validated AspectJ
code from a SecureUML policy.

1 Introduction

The use of aspects [14] in security is among the most successful uses of
aspect-oriented concepts, both at the specification and coding levels (e.g.
[19,5,11,9,18,13]).

In particular, aspects capture, in a modular way, the control conditions of
role-based access control (RBAC) [10] policies. An RBAC policy describes the
constraints that a given user, within a certain role, must fulfill in order to per-
form an action, that is, access, a controlled system. Essentially, access control
constraints can be understood as preconditions to calls for controlled resources.

Preconditions can be directly represented as the so called before advices in
aspects. Before advices are program statements that are executed before an
(user-defined) identifiable execution point, or join point, in aspect-oriented ter-
minology, is reached. An example of such a join point is a call to a particular
� Research sponsored by Ramón y Cajal program (MICINN), project DESAFIOS

(TIN2006-15660-C02-01, MICINN) and project PROMESAS (S-0505/TIC/0407,
CAM).

�� On leave from Universidade Federal Fluminense, Brasil.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 243–256, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

244 C. Braga

method. A join point can be intercepted using a pointcut declaration in an
aspect-based language, which essentially defines a pattern that matches when-
ever the desired join point is executed, such as a method call.

The benefits of generating aspect-code from RBAC policies is twofold: (i)
we modularly represent access control constraints as pre-conditions, captured as
before advices in an aspect, and (ii) the generated code is automatically called
from the client code (whose access is being controlled) by the so called weaving
process. The first benefit is actually shared with other approaches such as object-
oriented design by contract. However, weaving is only supported by aspect-based
languages. (See Section 2 for an example.)

The literature in the connection of aspects and RBAC is rich. In [19] the au-
thors use aspect-oriented modeling to specify access control concerns. In [5] the
focus is on web applications. The authors propose an aspect-oriented approach
to declarative access control for web applications. In [11] they use aspects to im-
plement the RBAC reference model [20]. In [9] the authors present quite clearly
how aspects can be used to implement access control policies but identify de-
ployment problems. They foresee that automating the generation process from
higher-level descriptions is a must. The proposals in [18,13] research in this di-
rection. In [18] the authors present how role-slicing models are translated into
aspect code. The proposal in [13] uses aspect-oriented modeling to represent
security concerns and generates aspect code.

The question we address in this paper is how can one automatically generate
aspects for access control policies under a rigorous development method, that is,
within a validated generation process?

To answer this question we propose a model driven architecture approach
(MDA) [16]. Moreover, we follow the model-driven security (MDS) ideas [1].
In MDS, we quote, “designers specify system models along with their security
requirements and use tools to automatically generate system architectures from
the models, including complete, configured access control infrastructures.” It is
argued that this approach “bridges the gap between security analysis and the
integration of access control mechanism into end systems. Moreover, it integrates
security models with system design models and thus yields a new kind of model,
security design models.”

We have defined a transformation from role-based access control policies,
modeled in the RBAC-based language SecureUML, defined in [1], to aspects,
modeled in a simple abstract aspect-oriented language that we named Aspects
for Access Control (AAC). Our aspect language essentially defines pointcuts
and before advices. The aspect concepts we believe are the necessary ones to
represent access control. Our approach is a metamodel-based one, that is, we
consider the metamodels of the languages involved in the transformation. There-
fore, a security policy is understood as an object model of the SecureUML
metamodel and the generated aspect is an object model of the aspects meta-
model.

The validation of the transformation process smothly integrates with the val-
idation of SecureUML policies proposed in [6]. There, SecureUML policies are

From Access Control Policies to an Aspect-Based Infrastructure 245

validated by evaluating the OCL invariants of the SecureUML metamodel over
policies captured as object models. We extend their approach, in the context
of MDA, by proposing that model transformations from SecureUML policies to
code could be validated on the merged metamodel of SecureUML and target lan-
guage. Therefore, we consider the merged metamodel of SecureUML and AAC,
our aspect laguage, to guarantee conformance of a generated aspect with respect
to the given security policy. We name transformation invariants the invariants
associated with the merged metamodel.

Our MDA approach applies the metamodel transformation and model
merging approaches from [16]. Moreover, it neither requires a new specifica-
tion language, such as QVT [17], for its specification, nor commits to a par-
ticular implementation. A fact that we believe to be positive in the sense of
using the same languages from the modeling phase (UML and OCL) and not
imposing a particular implementation framework. A point of view that we be-
lieve is shared with [2]. At the implementation level, any programming lan-
guage can be used as long as the implementation preserves the transformation
invariants.

We have prototyped our approach on top of the rewriting-based OCL evalua-
tor ITP/OCL [8,3]. The prototype is implemented in Java and essentially loads
ITP/OCL with all the above mentioned metamodels and invariants. When given
an object model of a security policy as input the transformer generates an object
model of an aspect. The invariants of the merged metamodel are then evaluated
on the union of the object models of security policy and aspect, following the
Design by Contract [15] idea of run-time monitoring of assertions. If they hold,
the transformer outputs an aspect in AspectJ syntax.

To summarize our contribution in one paragraph: we propose an automatic
and validated code generation process from role-based access control policies into
aspect code. Each policy gives rise to an aspect. The validation of the aspect
generation is model-based. The generated aspect is validated by evaluating the
OCL invariants, defined for the model of SecureUML and aspects, on model
instances that represent the security policy and aspect. We have prototyped our
approach on top of an OCL evaluator.

This paper is organized as follows. In Section 2 we illustrate how a SecureUML
policy may be represented by an aspect. Section 3 presents our metamodel-based
transformation approach to aspect generation from SecureUML access control
policies. Section 4 discusses a prototype implementation to our approach. Finally,
Section 5 concludes this paper with final remarks.

2 From SecureUML Policies to Aspect Code

An access control policy in SecureUML specifies which (user) roles are given
permissions to perform actions over resources under certain authorization con-
straints. SecureUML has a loose semantics, in an algebraic sense [12], with re-
spect to the resources which access may be controlled. Our resource language of
choice, called ComponentUML, defines resources to be entities which may have

246 C. Braga

<<Role>>

Test_Operator

<<Role>>

Test_Supervisor

<<Role>>

Test_Administrator

<<Entity>>

TRC

+owner: String

+scope: TypeOfScope

+name: String

+create(p_scope:TypeOfScope,p_owner:String,
p_name:String)

+delete()

<<Permission>>

NewPr iva te

+create: AtomicExecute

p_owner = caller.name and p_scope = Private

<<Permission>>

NewGlobal

+create: AtomicExecute

p_owner = caller.name

Fig. 1. An Example Access Control Policy

attributes, methods, and association ends. Attributes, methods, and association
ends are also resources which access may be controlled.

As an example, consider the SecureUML policy specified by the model in Fig-
ure 1. The model specifies the access control over the entity TRC (for test
report configuration). Users under three different roles may access a TRC :
Test Operator, Test Supervisor or Test Administrator. These roles are related
under role inheritance. The most “powerful” role is a Test Administrator, who
inherits the access controls permissions from the Test Supervisor role. The lat-
ter inherits from the Test Operator role. Therefore, the Test Operator role is the
less powerful one.

For a user to execute the (atomic) create action over TRC, under a
Test Operator role, then the authorization constraint attached to the permis-
sion NewPrivate must hold. This permission means that the parameter p owner
of the create action must be equal to the name of the user (denoted by Se-
cureUML’s special variable caller) and also that the parameter p scope of the
create action must be equal to the constant Private. To perform the same ac-
tion under the role of Test Supervisor the permissions NewGlobal or NewPrivate
(since Test Supervisor inherits permissions from Test Operator) must hold.

The model in Figure 1 is a quite simplified version of the models produced in
an industrial project with a major Spanish technology company, which results
are reported in [7].

From this model, essentially, we produce an abstract class, that represents
an interface to a concrete implementation of the TRC entity, and an aspect,
that implements the access control to TRC ’s methods. For each TRC method,
only create in this example, we declare, in the TRCAccessControl aspect, a
pointcut, identified by createPC, to capture a call to create, and a before advice.
The advice is triggered whenever create is called and checks if the authorization
constraints for NewGlobal or NewPrivate hold. It raises an exception otherwise.
The abstract class and aspect for the TRC access control policy in Figure 1 is
presented below.

From Access Control Policies to an Aspect-Based Infrastructure 247

abstract class TRC {
int scope ; String owner ; String name ;

abstract TRC create(int p_scope, String p_owner, String p_name)

throws Exception ;

}

aspect TRCAccessControl {
static Role caller ;

TRCAccessControl() { caller = Env.getUserRole() ; }
pointcut createPC(int s, String o, String n) :

call(TRC TRC.create(int, String, String)) && args(s,o,n) ;

before(int s, String o, String n) throws Exception : createPC(s,o,n)

{
if (caller instanceof TestSupervisor)

if (o == caller.name) return ;

else throw new

Exception("Current user may not create a TRC.") ;

if (caller instanceof TestOperator)

if ((s == TypeOfScope.PRIVATE) && (o == caller.name)) return ;

else throw new

Exception("Current user may not create a TRC.") ;

throw new Exception("Current user has role "+caller+

" and may not create a TRC.") ;

}
}

In our example, whenever the method create, from the class TRC, is called
(represented by pointcut createPC), the associated before advice will be exe-
cuted before the body of the method create. Therefore, the aspect modularly
captures the access control requirement and the aspect weaving process trans-
parently integrates it with the client code, which, in our example, calls method
create from class TRC.

We have implemented an automatic and validated process for generating as-
pect code from SecureUML policies. Our translation follows the MDS ideas men-
tioned in the introductory section. The transformation process is the subject of
Section 3.

3 Transforming SecureUML Policies into Aspects

Our approach consists on a validated and automatic transformation from Se-
cureUML policies to aspect code. The target language of our transformation is
an abstract aspect-oriented language, that we call Aspects for Access Control
(AAC) which has abstract classes, protected attributes, methods, aspects, point-
cuts and before advices as language constructs; the elements that appear to be
necessary from the aspect-oriented paradigm to code access control.

The proposed transformation is thus a transformation between domain-
specific languages: the source captures access control policies and the target

248 C. Braga

an aspect language for access control. The transformation function essentially
relates each component that requires access control security (called an entity
in SecureUML terminology) into an abstract class and an aspect. The abstract
class represents an interface that a concrete implementation component of the
controlled component must implement. The aspect implements the access con-
trol constraints that must hold when a component’s method (overloaded from
the associated abstract class method) is called.

We use metamodels to specify and validate the transformation process, follow-
ing the MDA approach and aiming at a smooth integration of the transformation
process into the modeling phases. The syntax of each language (i.e. SecureUML
and AAC) is specified as a metamodel in UML, together with its OCL invariants
that capture the structural constraints of the given metamodel. We extend the
model-based validation process for SecureUML proposed in [6] by defining the
metamodel of SecureUML merged with AAC that disjointedly unites the two
languages, adds new relationships among their classes and new invariants over
the merged language. It specifies when an AAC model is a properly generated
one from a given security policy.

In our proposal, validation means to check the invariants for a given access
control policy, for the generated abstract class and aspect and all of them to-
gether, that is, for the generated abstract class and aspect with respect to the
given access control policy. The validation process should occur in two different
moments in time:

1. Before the transformation is applied: the invariants of the SecureUML meta-
model are applied to the given access control policy. This step guarantees
that the given access control policy is well-formed.

2. After the transformation is applied:
(a) The invariants of the AAC metamodel are applied to the generated ab-

stract class and aspect. This step guarantees that they form a valid AAC
model per se.

(b) The invariants of the merged metamodel of SecureUML and AAC are
applied to both the security policy and the generated abstract class and
aspect.

The validation process is automatic and is implemented on top of ITP/OCL
tool, an OCL evaluator. This is the subject of Section 4.

This section continues as follows: in Section 3.1 we discuss the metamodels
for each language and in Section 3.2 we outline the transformation function from
SecureUML to AAC.

3.1 A Metamodel-Based Approach

A metamodel defines the elements of a language, relationships between elements
of a language and assertions that constraint the relationships between the ele-
ments of a language.

We chose UML’s class diagrams to specify a language. Therefore, a metamodel
essentially consists of classes, attributes, methods, associations between classes

From Access Control Policies to an Aspect-Based Infrastructure 249

Fig. 2. The SecureUML+ComponentUML metamodel

(with roles and multiplicities) and generalizations between classes. OCL is our
specification language of choice to specify invariants on metamodels.

SecureUML Metamodel. SecureUML1 provides a language for modeling
Roles, Permissions, Actions, Resources, and Authorization Constraints, along
with their Assignments, i.e., which permissions are assigned to which roles, which
actions are assigned to which permissions, which resources are assigned to which
actions, and which constraints are assigned to which permissions. In addition,
actions can be either Atomic or Composite. The atomic actions are intended
to map directly onto actual operations of the modeled system. The composite
actions are used to hierarchically group more lower-level ones and are used to
specify permissions for sets of actions.

SecureUML leaves open what the protected resources are and which ac-
tions they offer to clients. These are specified in a so-called dialect and de-
pend on the primitives for constructing models in the system design modeling
language of choice. ComponentUML is our dialect of choice. It is a simple lan-
guage for modeling component-based systems. Essentially, it provides a subset
of UML class models: Entities can be related by Associations and may have
Attributes and Methods. Therefore, by using SecureUML+ComponentUML, it
is possible to model the permissions that an user playing a given role has over
an entity, an attribute, a method or an associations, i.e., the actions such an
user can execute while trying to access the resource. The metamodel of Se-
cureUML+ComponentUML is given in Figure 2. Note that the security policy
drawn in Figure 1 shows an instance of SecureUML+ComponentUML meta-
model.

AAC Metamodel. The elements of the AAC metamodel are: ResClass (where
the prefix Res stands for resource), ResAttribute, ResMethod, ResGetMethod,
ResSetMethod, Aspect, Pointcut, BeforeAdvice, RoleClass and Env. The meta-
classes ResClass, ResAttribute and ResMethod represent elements of the gen-
erated abstract class after the application of the transformation function to a
1 The material in this subsection is adapted from [7].

250 C. Braga

SecureUML policy. A ResMethod has two subclasses: ResGetMethod and ResSet-
Method. The metaclasses Aspect, Pointcut and BeforeAdvice represent elements
of the generated aspect. The metaclass RoleClass represents Roles as classes.
The metaclass Env represents the environment that must provide user run-time
information such as the user’s current role and the user’s name.

An instance of ResClass may have many ResAttributes and ResMethods. An
instance of an Aspect may have many Pointcuts and each Pointcut has one and
only one BeforeAdvice. Moreover, an instance of an Aspect must be related with
one and only one ResClass and each Pointcut must be associated with a single
ResMethod. The metaclass RoleClass is related to itself.

An example of OCL invariant for this metamodel is that each ResMethod in
a ResClass must have one Pointcut in the Aspect associated with the ResClass.
This invariant could be called consistency between ResMethod and Pointcut. The
OCL invariant below declares that the navigation from a ResMethod through its
link to its Pointcut and then its Aspect should point to the same object as
navigating through the ResMethod ’s ResClass and then its Aspect.

context ResMethod inv:
self.allInstances()−>forall(rm |
rm.Pointcut-ResMethod.Aspect-Pointcut = rm.Class-ClassMethod.Aspect-Class)

The MergedMetamodel. The classes in the merged metamodel of SecureUML
and AAC are given by the disjoint union of the classes in the metamodel of Se-
cureUML and the classes in the metamodel of AAC. The relations in the merged
metamodel of SecureUML and AAC are given by the disjoint union of the rela-
tions on each metamodel including new relations that associate the classes on each
metamodel. Moreover, it specifies which properties must hold so that an instance
of the merged metamodel of SecureUML and AAC is well-formed. That is, if an
AAC model is a valid abstract class and aspect for the given SecureUML policy,
with respect to the invariants defined in the merged metamodel.

In the merged metamodel, an Aspect is associated with one and only one Entity
and such metaclass is related to a single ResClass to represent the class of an en-
tity. A ResMethod is associated with one and only one Method, and a ResAttribute
is associated with a single Attribute. The subclasses of ResMethod, ResGetMethod
and ResSetMethod, are related to Attribute in order to indicate the getters and set-
ters of the attributes, if any. In addition, an AuthorizationConstraint is associated
with one and only one BeforeAdvice that will implement the constraint but such
an advice may include the implementation of several constraints.

An example of an OCL invariant over the merged metamodel is shown below.2

The invariant specifies that for each Method, there exists a ResMethod in the
ResClass associated with the Method ’s Entity, such that, for each ResMethod, the
BeforeAdvice in the ResMethod ’s Pointcut is associated with the ResMethod ’s
Authorization Constraints.
2 The complete set of invariants for the merged metamodel can be found in
http://maude.sip.ucm.es/~cbraga/transformationInvariants.pdf .

http://maude.sip.ucm.es/~cbraga/transformationInvariants.pdf

From Access Control Policies to an Aspect-Based Infrastructure 251

Fig. 3. A subset of the merged metamodel

The invariant uses two auxiliary operations:
(i) ResMethod::validateResMethodConstraints(Method m):Boolean and
(ii) Method::getMethodResMethods:Set(ResMethod). The second one, which dec-
laration is not shown, returns the ResMethods associated with a given Method.
The first operation, shown below, checks if the given Method is associated with
the current ResMethod (denoted by the special OCL variable self) and if the Au-
thorizationConstraints in the BeforeAdvice associated with the Method ’s Point-
cut are the same as the given Method ’s AuthorizationConstraints, returned by
the function Method::allMethodConstraints().

context Method inv:
self.allInstances()−>forAll(m | (m.getMethodResMethods())−>

exists(rm | rm.validateResMethodConstraints(m)))

context ResMethod::validateResMethodConstraints(m:Method):Boolean body:
(self.Method = m) and
(self.Pointcut-ResMethod.Pointcut-Advice.Advice-AuthorizationConstraints =
m.allMethodConstraints())

3.2 The Transformation Function

For a given SecureUML policy the transformation function produces for each
Entity an abstract class and an aspect. The abstract class (ResClass) represents
the interface that has to be fulfilled by a concrete implementation for the given
Entity. This abstract class is comprised by attributes (ResAttribute) and meth-
ods (ResMethod) that represent their Entity’s counterparts in the SecureUML
policy and moreover: (i) with all attributes declared with protected visibility
(that is, only directly accessible by instances of the given class or its heirs) and

252 C. Braga

(ii) with the so called “getters” and “setters” methods for each attribute, that
is, methods to, respectively, read and update the state of each attribute.

The Aspect generated by the transformation function controls the calls to the
methods of the generated ResClass. For each ResMethod there exists a Pointcut
and a BeforeAdvice. The Pointcut is declared as a call to the given ResMethod.
The BeforeAdvice implements the permissions of the resource associated with
the ResMethod, as follows:

– If the given ResMethod is a “getter” method to a ResAttribute then the
body of the BeforeAdvice implements the AuthorizationConstraints of the
read permissions of the attribute associated with the ResAttribute guarded
by the given ResMethod. (Read permissions are those related with Atomic
Read, Attribute Full Access, Entity Read and Entity Full Access actions in a
SecureUML policy.)

– If the given ResMethod is a “setter” method to a ResAttribute then the body
of the BeforeAdvice implements the AuthorizationConstraints of the write
permissions of the Attribute associated with the ResAttribute controlled by
the given ResMethod. (Write permissions are those related with AtomicUp-
date, AtomicDelete, Attribute Full Access, Entity Update and Entity Full
Access actions in a SecureUML policy.)

– If the given ResMethod is associated with a Method then the body of Be-
foreAdvice implements the AuthorizationConstraints of the permissions of
the Method associated with the given ResMethod.

The AuthorizationConstraints are essentially predicates over the state of their
associated Entity. We assume, for the sake of simplicity of this explanation, that
each of them is already coded in the concrete syntax of our target language. The
implementation of an AuthorizationConstraint is a condition which first tests
for the user’s Role, with respect to the AuthorizationConstraint ’s Role, and then
checks for the AuthorizationConstraint ’s predicate.

The body of a BeforeAdvice is essentially a sequence of conditions. It may
return successfully (then allowing a ResMethod to be called) if the user has
an appropriate Role and fulfills the AuthorizationConstraints of at least one of
the Permissions associated with the given ResMethod. Otherwise it returns an
error (for instance, by raising an exception) if no Permission is fulfilled or if
the user does not have an appropriate Role that copes with any of the Permis-
sions. Therefore, the conditions in the body of a BeforeAdvice are ordered by
the Role associated with the AuthorizationConstraint that the condition imple-
ments, starting from the most powerful one (e.g. an administrator) to the least
powerful one (e.g. an operator).

Each Role is transformed into a RoleClass. The Role hierarchy relationship is
captured as a RoleClass inheritance relationship.

4 Monitoring Transformation Invariants

We have implemented the transformation function described in Section 3.2 as
a prototype Java application on top of the OCL evaluator ITP/OCL. Our

From Access Control Policies to an Aspect-Based Infrastructure 253

implementation is a three-tiered application. The higher layer implements the
transformation function, the middle layer is a Secure UML policy manager and
the bottom layer is an OCL evaluator.

The OCL evaluator is a “wrapper” Java class that provides access to IT-
P/OCL. Essentially, it defines methods for:

– Creation of class and instance diagrams.
– Creation and deletion of classes, relationships between classes, objects and

links between objects.
– Evaluation of OCL queries on instance diagrams.
– Evaluation of OCL invariants on instance diagrams.

The SecureUML policy manager is implemented as a Java class that instanti-
ates the OCL evaluator with the SecureUML metamodel as class diagram. The
SecureUML policy manager defines an API to create SecureUML policies and
operations to query a SecureUML policy. A SecureUML policy is represented
internally as an instance diagram of the SecureUML metamodel. Operations
on a SecureUML policy are translated into OCL expressions and executed as
queries in the OCL evaluator instance held by the SecureUML policy manager.
Moreover, it implements all the invariants and operations over the SecureUML
metamodel defined in [6].

The SecureUML to aspect transformer is implemented as a Java class that
extends the SecureUML policy manager. Given a SecureUML policy, the trans-
former instantiates a set of Java classes that faithfully represent the AAC
metamodel described in Section 3.1. The instantiation process follows the trans-
formation defined in Section 3.2. The set of Java objects produced in memory
by the transformer are then traversed in order to generate an object model of
AAC in the underlying instance of the OCL evaluator. Finally, all the invariants
are checked and the abstract class and aspect are written into the output using
AspectJ syntax together with Java classes for each role with the appropriate
inheritance relationship.

The metaclass Env is translated to a Java class named Env with a single
method with signature Role getUsrRole(). This method returns the role of the
current user. The prototype generates a simple implementation for getUserRole
just for the purpose of our experiment. This implementation is shared with the
application that the generated aspect is connected with. Of course, a more robust
component could have been targeted that takes advantage of user information
from the underlying operational system, for example.

Note that the function that produces the concrete syntax in AspectJ could
be overloaded to produce different concrete syntax for Design by Contract lan-
guages such as Eiffel, JML or Spec#. For these languages the generated abstract
class would be annotated with preconditions representing the access control as-
sertions. Of course, in this case, the weaving process is not automatic and ex-
plicit calls to the methods implementing the pre-conditions would have to be
written.

254 C. Braga

5 Final Remarks

The use of aspects in security is among the most successful uses of the AOP
paradigm. In particular, we refer to [18,13,19] as representatives of the use of
AOP in access control.

In [18] the authors formalise role-slices to specify access control policies and
a compilation process from access control policies into aspect code. The compi-
lation process is described as a functional program. The process appears to be
quite precise however there is no indication of a correctness proof or any valida-
tion of the proposed process. In [19] the authors propose the use of aspects at
the modeling level (similarly to [13]) but analysis is left to future work.

The approach followed in [13], we quote, “translates security aspects specified
as UMLsec stereotypes as concrete security mechanisms on the modelling level”.
They analyze, with a theorem prover, first-order logic (FOL) formulae generated
out of control flow graphs obtained from the produced source code and associ-
ated security requirements. Their approach appears to be similar to [1,4] where
the target of the transformation process is a FOL theory that can be reasoned
about. Our approach is part of the so called lightweight formal methods. We
aim at validation instead of the verification approach in [13,1,4]. Our approach
allows the validation of each and every instance of the application of the trans-
formation function over an access control policy and generated (abstract class
and) aspect. We do not aim at allowing for the proof of general (inductive) prop-
erties that would require theorem proving but rather an approach following the
pragmatic ideas of Design by Contract (DbC). In [1] the authors propose two
transformations from SecureUML policies targeting two different object-oriented
frameworks. We complement that effort with another transformation to aspects
that further extends the code generation ideas in [6,7]. Moreover, we extend [6]
by applying validation to transformation invariants.

What appears to be novel in our MDS approach from RBAC policies to code
is to generate validated AspectJ code. The use of aspects modularly code permis-
sion’s constraints. We validate our transformation using a merged metamodel of
the abstract syntax of the languages involved, focusing on the transformation
invariants that specify structural constraints that the implementation of the
transformation has to cope with. We do not commit ourselves to any particular
transformation specification language or implementation language. The specifi-
cation of the transformation occurs under the same model-based approach used
during design. The transformation invariants are then checked by a tool during
runtime, following DbC’s run-time assertion monitoring idea. Also, the gener-
ation of different concrete syntax, besides AspectJ, can be targeted such as a
DbC-based language.

We believe that our approach thus contributes to the efforts both of code
generation for model driven security [1] and perhaps to model driven architecture
itself, in the context of [2]. We foresee the continuation of this work with more
experimentation, in particular on the exploitation of the notion of transformation
contracts over merged metamodels, and by enhancing our tool support for OCL
evaluation and SecureUML policy manager, both in terms of efficiency.

From Access Control Policies to an Aspect-Based Infrastructure 255

Acknowledgements. I would like to thank Viviane Silva and Marina Egea for
their comments on a draft of this paper. Jorge Ogalla Ramı́rez and Pedro Dı́az
Yeregui work on the implementation on the prototype is also acknowledged.

References

1. Basin, D.A., Doser, J., Lodderstedt, T.: Model driven security: From UML models
to access control infrastructures. ACM Transactions on Software Engineering and
Methodology 15(1), 39–91 (2006)

2. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A.: Model
transformations? Transformation models! In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 440–453. Springer,
Heidelberg (2006)

3. Braga, C., Clavel, M., Durán, F., Eker, S., Farzan, A., Hendrix, J., Lincoln, P.,
Mart́ı-Oliet, N., Meseguer, J., Olveczky, P., Palomino, M., Sasse, R., Stehr, M.-O.,
Talcott, C., Verdejo, A.: All About Maude - A High-Performance Logical Frame-
work. LNCS, vol. 4350, pp. 667–693. Springer, Heidelberg (2007),
http://dx.doi.org/10.1007/978-3-540-71999-1_21

4. Brucker, A.D., Doser, J., Wolff, B.: A model transformation semantics and analysis
methodology for secureUML. In: Nierstrasz, O., Whittle, J., Harel, D., Reggio, G.
(eds.) MoDELS 2006. LNCS, vol. 4199, pp. 306–320. Springer, Heidelberg (2006)

5. Chen, K., Lin, C.-W.: An aspect-oriented approach to declarative access control
for web applications. In: Zhou, X., Li, J., Shen, H.T., Kitsuregawa, M., Zhang, Y.
(eds.) APWeb 2006. LNCS, vol. 3841, pp. 176–188. Springer, Heidelberg (2006)

6. Clavel, M., Basin, D., Doser, J., Egea, M.: Automated analysis of security-design
models. Information and Software Technology (2008),
http://maude.sip.ucm.es/~clavel/pubs/BCDE07-journal.pdf

7. Clavel, M., da Silva, V., Braga, C., Egea, M.: Model-driven security in practice: An
industrial experience. In: Schieferdecker, I., Hartman, A. (eds.) ECMDA-FA 2008.
LNCS, vol. 5095, pp. 326–337. Springer, Heidelberg (2008),
http://maude.sip.ucm.es/~clavel/pubs/CSBE08.pdf

8. Clavel, M., Egea, M.: ITP/OCL: A rewriting-based validation tool for UML+OCL
static class diagrams. In: Johnson, M., Vene, V. (eds.) AMAST 2006. LNCS,
vol. 4019, pp. 368–373. Springer, Heidelberg (2006)

9. de Win, B., Vanhaute, B., Decker, B.D.: Security through aspect-oriented pro-
gramming. In: Proceedings of the IFIP TC11 WG 11.4 First Annual Conference on
Netwrok Security: Advances in Network and Distributed Systems Security, vol. 206,
pp. 125–138 (2001)

10. Ferraiolo, D.F., Kuhn, D.R., Chandramouli, R.: Role-Based Access Control, 2nd
edn. Artech House Publishers (2007)

11. Gao, S., Deng, Y., Yu, H., He, X., Beznosov, K., Cooper, K.: Applying aspect-
orientation in designing security systems: A case study. In: Proceedings of 16th
International Conference on Software Engineering and Knowledge Engineering,
Banff, Alberta, Canada, June 20-24, pp. 360–365 (2004)

12. Goguen, J.A., Meseguer, J.: Order-sorted algebra I: equational deduction for mul-
tiple inheritance, overloading, exceptions and partial operations. Theoretical Com-
puter Science 105(2), 217–273 (1992)

13. Jürjens, J., Houmb, S.H.: Dynamic secure aspect modeling with UML: From models
to code. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp.
142–155. Springer, Heidelberg (2005)

http://dx.doi.org/10.1007/978-3-540-71999-1_21
http://maude.sip.ucm.es/~clavel/pubs/BCDE07-journal.pdf
http://maude.sip.ucm.es/~clavel/pubs/CSBE08.pdf

256 C. Braga

14. Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., Griswold, W.G.: An
overview of aspectJ. In: Knudsen, J.L. (ed.) ECOOP 2001. LNCS, vol. 2072, pp.
327–355. Springer, Heidelberg (2001)

15. Meyer, B.: Object-Oriented software construction, 2nd edn. Prentice-Hall, Engle-
wood Cliffs (1997)

16. Miller, J., Mukerji, J. (eds.): MDA Guide (Version 1.0.1). Number omg/2003-06-01.
OMG (2006)

17. Object Management Group. MOF QVT Final Adopted Specification, OMG
Adopted Specification ptc/05-11-01 (2005)

18. Pavlich-Mariscal, J.A., Michel, L., Demurjian, S.A.: A formal enforcement frame-
work for role-based access control using aspect-oriented programming. In: Briand,
L.C., Williams, C. (eds.) MoDELS 2005. LNCS, vol. 3713, pp. 537–552. Springer,
Heidelberg (2005)

19. Ray, I., France, R., Li, N., Georg, G.: An aspect-based approach to modeling access
control concerns. Information and Software Technology 46(9), 575–587 (2004)

20. Sandhu, R.S., Coyne, E.J., Feinstein, H.L., Youman, C.E.: Role-based access con-
trol models. IEEE Computer 29(2), 38–47 (1996)

Eighth International Workshop on
OCL Concepts and Tools

Jordi Cabot1, Martin Gogolla2, and Pieter Van Gorp3

1 Open University of Catalonia Spain
jcabot@uoc.edu

2 University of Bremen Germany
gogolla@informatik.uni-bremen.de

3 University of Antwerp Belgium
pieter@pietervangorp.com

Abstract. This paper reports on the 8th OCL workshop held at the
MODELS conference in 2008. The workshop focussed on how to evaluate,
compare and select the right OCL tools for a given purpose and how
to deal with the expressiveness and complexity of OCL. The workshop
included sessions with paper presentations as well as a special tool demo
session.

1 Introduction

In recent years, MDA and associated MDE methodologies, approaches and
languages (like QVT) emphasized the role that the Object Constraint Lan-
guage (OCL) has to play in MDE development. Moreover, the modeling commu-
nity is continuously pushing forward the OCL, far beyond its initial requirements
as a precise modeling language complementing UML descriptions. Now, OCL is
used in quite different applications domains (e.g., domain-specific languages and
web semantics) and for various purposes (e.g., model verification and validation,
code-generation, test-driven development, and transformations). To be success-
ful, all these new OCL applications, extensions and usages require new OCL
tools that support them.

This workshop aimed to look specifically at how to develop, apply, evaluate
and compare all kinds of OCL-related tools. The workshop brought together
OCL practitioners and OCL tool builders (from both academy and industry)
in order to evaluate today’s state-of-the-practice. In particular, the workshop
focused the discussion on how to evaluate, compare and select the right OCL
tools for a given purpose, how to deal with the expressiveness and complexity
of the language and how to tackle its ambiguous or underdefined issues from a
practical point of view. The workshop discussed new OCL tools and patterns,
libraries, and algorithms that may facilitate development and reuse. In addition,
all other aspects that may improve the adoption and support of OCL or its
usability were considered. As a result, the workshop contributed to consolidate
and expand the role of OCL in the modeling community by discussing approaches

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 257–262, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

258 J. Cabot, M. Gogolla, and P. Van Gorp

for research and development that could potentially drive the building of new
OCL tools.

All submitted papers were reviewed by three industrial or academic members
from the Program Committee:

– David H. Akehurst, Thales, UK
– Thomas Baar, Tech@Spree, Germany
– Jean Bézivin, University of Nantes, France
– Behzad Bordbar, University of Manchester, UK
– Achim Brucker, SAP, Germany
– Dan Chiorean, University of Cluj, Romania
– Tony Clark, Ceteva, UK
– Birgit Demuth, Technical University of Dresden, Germany
– Remco Dijkman, Eindhoven University of Technology, The Netherlands
– Robert France, University of Fort Collins, USA
– Heinrich Hussmann, University of Munich, Germany
– Richard Mitchell, Inferdata, UK
– Mark Richters, Astrium Space Transportation, Germany
– Shane Sendall, IBM, Switzerland
– Burkhart Wolff, University of Paris-Sud (Orsay), France
– Steffen Zschaler, Lancaster University, UK

2 Workshop Papers

Here we give a short overview of the papers presented in the workshop taken
from the abstracts provided by the authors. The papers were organized in three
different sessions: Executing OCL (papers 1 to 3), Translating OCL (4 to 6) and
Validation and Verification (7 to 9). Polished versions of the workshop papers
will appear in an EASST special issue.

2.1 Building an Efficient Component for OCL Evaluation by
Manuel Clavel, Marina Egea and Miguel Garćıa de Dios

In this paper we report on our experience implementing the Eye OCL Software
(EOS) evaluator, a Java component for efficient OCL evaluation. We first moti-
vate the need for an efficient implementation of OCL in order to cope with novel
usages of the language. We then discuss the performance of the EOS component
when evaluating expressions on medium-large scenarios. Finally, we explore var-
ious approaches for evaluating OCL expressions on really large scenarios.

2.2 Static Source Code Analysis Using OCL by Mirko Seifert and
Roland Samlaus

The majority of artifacts created during software development are representa-
tions of programs in textual syntax. Although graphical descriptions are becom-
ing more widespread, source code is still indispensable. To obtain programs that

Eighth International Workshop on OCL Concepts and Tools 259

behave correctly and adhere to given coding conventions, source code must be
analyzed — preferably using automated tools. Building source code analyzers
has a long tradition and various mature tools exist to check code written in con-
ventional languages, such as Java or C. As new languages emerge (e.g., Domain
Specific Languages) these tools can not be applied and building a tool for each
language does not seem feasible either. This paper investigates how meta models
for textual languages and the Object Constraint Language can enable generic
static source code analysis for arbitrary languages. The presented approach is
evaluated using three languages (Java, SQL and a DSL for state machines).

2.3 Optimization Patterns for OCL-Based Model Transformations
by Jesús Sánchez Cuadrado, Frédéric Jouault, Jesús
Garćıa-Molina and Jean Bézivin

Writing queries and navigation expressions in OCL is an important part of the
task of developing a model transformation definition. When such queries are
complex and the size of the models is significant, performance issues cannot
be neglected. In this paper we present five patterns intended to optimize the
performance of model transformations when OCL queries are involved. For each
pattern we will give an example as well as several implementation alternatives.
Experimental data gathered by running benchmarks is also shown to compare
the alternatives.

2.4 An Incremental OCL Compiler for Modeling Environments by
Tamás Vajk and Tihamer Levendovszky

In software engineering, reliability and development time are two of the most im-
portant aspects, therefore, modeling environments, which aide both, are widely
used during software development. UML and OCL became industry standards,
and are supported by many CASE tools. OCL code checking, which has to be
performed by these tools, has a specialty, as not all of the information necessary
for compilation is available from the code, the related model contains the types,
navigations and attributes. The build time of OCL code fragments is increased if
the development tool supports distributed modeling, because in this case, model
element checking has to be performed in a model repository that cannot be held
in memory. In this paper, we introduce a method that enables incremental OCL
code building and therefore reduces the development time. Incremental builds
require higher complexity than simple builds, thus balancing between the two
methods is also considered.

2.5 Implementing Advanced RBAC Administration Functionality
with Use by Tanveer Mustafa, Karsten Sohr, Duc-Hanh Dang,
Michael Drouineaud and Stefan Kowski

Role-based access control (RBAC) is a powerful means for laying out and de-
veloping higher-level organizational policies such as separation of duty, and for

260 J. Cabot, M. Gogolla, and P. Van Gorp

simplifying the security management process. One of the important aspects of
RBAC is authorization constraints that express such organizational policies.
While RBAC has generated a great interest in the security community, organi-
zations still seek a flexible and effective approach to impose role-based autho-
rization constraints in their security-critical applications. In particular, today
often only basic RBAC concepts have found their way into commercial RBAC
products; specifically, authorization constraints are not widely supported. In this
paper, we present an RBAC administration tool that can enforce certain kinds
of role-based authorization constraints such as separation of duty constraints.
The authorization constraint functionality is based upon the OCL validation tool
USE. We also describe our practical experience that we gained on integrating
OCL functionality into a prototype of an RBAC administration tool that shall
be extended to a product in the future.

2.6 Shortcomings of the Embedding of OCL into QVT
ImperativeOCL by Fabian Büttner and Mirco Kuhlmann

MOF QVT introduces ImperativeOCL as an imperative language for operational
descriptions of model transformations (QVT operational mappings). Impera-
tiveOCL extends conventional OCL by expressions with side-effects. A couple of
semantical problems arise from the way OCL is embedded into ImperativeOCL
imperative expressions are modelled as a subtype of OCL expressions. This paper
points out these semantical problems and proposes a change to the operational
mappings language of QVT that resolves these problems, following an approach
that reuses OCL by composition rather than by inheritance in the abstract
syntax of ImperativeOCL. The proposed change reduces the complexity of the
imperative language, removes undefinedness, and leaves OCL conformant to its
original definition.

2.7 Observations for Assertion-Based Scenarios in the context of
Model Validation by Emine Aydal, Richard Paige and Jim
Woodcock

Certain approaches to Model-Based Testing focus on test case generation from
assertions and invariants, e.g., written in the Object Constraint Language. In
such a setting, assertions and invariants must be validated. Validation can be
carried out via executing scenarios wherein system operations are applied to
detect unsatisfied invariants or failed assertions. This paper aims to improve our
understanding of how to write useful validation scenarios for assertions in OCL.
To do so, we report on our experiences during the creation and execution of 237
scenarios for validating assertions for the Mondex Smart Card application. We
also describe key factors that must be considered in transforming scenarios into
test cases.

Eighth International Workshop on OCL Concepts and Tools 261

2.8 Executing Underspecified OCL Operation Contracts with a
SAT Solver by Matthias P. Krieger and Alexander Knapp

Executing formal operation contracts is an important technique for requirements
validation and rapid prototyping. Current approaches require additional guid-
ance from the user or exhibit poor performance for underspecified contracts
that describe the operation results non-constructively. We present an efficient
and fully automatic approach to executing OCL operation contracts which uses
a satisfiability (SAT) solver. The operation contract is translated to an arith-
metic formula with bounded quantifiers and later to a satisfiability problem.
Based on the system state in which the operation is called and the arguments
to the operation, an off-the-shelf SAT solver computes a new state that satis-
fies the postconditions of the operation. An effort is made to keep the changes
to the system state as small as possible. We present a tool for generating Java
method bodies for operations specified with OCL. The efficiency of our method
is confirmed by a comparison with existing approaches.

2.9 How My Favorite Tool Supporting OCL Must Look Like by
Dan Chiorean, Vladiela Petrascu and Dragos Petrascu

This paper presents its authors’ viewpoint on the assessment of tools that sup-
port the use of OCL. At this time, deciding on which such tool to use is not
an easy task. This is influenced by a number of objective factors, including:
the user’s needs, knowledge of existing tools, knowledge of the language and of
the various possibilities of using it. Undoubtedly, the choice of a particular tool
does also include subjective aspects. The paper is limited to the presentation
of objective criteria. In this context are examined: the features that distinguish
OCL within the modeling languages’ family, some aspects that are either in-
completely or ambiguously described in the OCL specification, the main func-
tionalities that an OCL supporting tool should implement, the universe of tools
supporting OCL. In the end, the tools listed in Section 6 are characterized with
respect to the functionalities of an ideal tool and the obtained conclusions are
presented.

3 Tool Showcase

The following tools were demonstrated during a two hour session at the end
of the workshop: RoclET1, The Epsilon Validation Language2, The HOL-OCL
system 3, UMLtoCSP4, The Eye Secure Software (ESS5), UML Specification En-

1 http://www.roclet.org/ by Thomas Baar, Cédric Jeanneret and Slavisa Markovic.
2 http://www.eclipse.org/gmt/epsilon/ by Dimitrios Kolovos and Richard Paige.
3 http://www.brucker.ch/projects/hol-ocl/ by Achim D. Brucker and Burkhart Wolff.
4 http://gres.uoc.edu/UMLtoCSP/ by Robert Clarisó, Jordi Cabot and Daniel Riera.
5 http://maude.sip.ucm.es/eos/ by Miguel A. Garćıa de Dios, Marina Egea and

Manuel Clavel .

262 J. Cabot, M. Gogolla, and P. Van Gorp

vironment (USE6), RestrictED7, Advanced OCL Editor based on Eclipse OCL8,
Visual Modeling and Transformation System (VMTS9), OCLE10 and Kermeta11.
Most of these demonstrations have been recorded by specialized screen capture
software and can be downloaded from the workshop website12.

4 Lessons Learned

The workshop triggered a series of interesting discussion threads, most of which
may guide future work on OCL related tools. First of all, several questions and
remarks related to whether OCL tools should be extended with OCL specific
algorithms (analyses, optimizations, ...) or whether one should translate OCL
into other languages for those purposes. For example, in the context of the
performance evaluation of Clavel et al., several attendees proposed to leverage
existing work on query optimization from the database domain. Others were
convinced that several applications required optimizations that could only be
realized within the evaluator of an OCL tool itself. In the end, it remained an
open issue whether it would be most promising to focus on bridging technological
spaces or on improving the OCL/modeling space, perhaps by reusing (probably
specializing) expertise from other spaces.

In another discussion thread, one questioned whether or not the OCL commu-
nity was mature enough to focus on performance. In this case, Jouault demon-
strated that the semantics of the OCL collection operations was clear enough to
reason about correctness while internally changing the mutability of collections
for performance reasons. The participants agreed that one should not extend
the OCL with performance specific language constructs: the language should
stimulate conceptual modeling, and a modeler should not have a particular tool
in mind. Obviously, it may be much easier for tool builders to expect from users
that a particular style of specification is used. However, tool builders should go
further and rewrite specifications that focus on non-technical issues into more
technical OCL specifications that are ready for efficient execution.

Finally, the participants expressed concerns about communication channels
to the authors of the OCL standard. More specifically, the community wants
a light-weight communication channel to discuss problems about the standard.
Summarizing such problems solely in scientific articles may be insufficient and
sometimes even inappropriate.

6 http://www.db.informatik.uni-bremen.de/projects/USE/ by Fabian Büttner.
7 http://www.inf.tu-dresden.de/∼ms72/RestrictED/ by Mirko Seifert and Roland

Samlaus.
8 http://squam.info/ocleditor/ by Joanna Chimiak-Opoka, Ekrem Arslan, Hannes

Moesl and Franz-Josef Peer (and presented by Michael Felderer.)
9 http://vmts.aut.bme.hu/ by Tamas Vajk, Gergely Mezei and Tihamer Levendovszky.

10 http://lci.cs.ubbcluj.ro/ocle/ by Dan Chiorean.
11 http://www.kermeta.org/ by Jean-Marie Mottu.
12 http://www.fots.ua.ac.be/events/ocl2008/

Shortcomings of the Embedding of OCL into
QVT ImperativeOCL

Fabian Büttner and Mirco Kuhlmann

University of Bremen, Computer Science Department
{green,mk}@tzi.de

Abstract. MOF QVT introduces ImperativeOCL as an imperative lan-
guage for operational descriptions of model transformations (QVT op-
erational mappings). ImperativeOCL extends conventional OCL by ex-
pressions with side-effects. A couple of semantical problems arise from
the way OCL is embedded into ImperativeOCL – imperative expres-
sions are modelled as a subtype of OCL expressions. This paper points
out these semantical problems and proposes a change to the operational
mappings language of QVT that resolves these problems, following an
approach that reuses OCL by composition rather than by inheritance
in the abstract syntax of ImperativeOCL. The proposed change reduces
the complexity of the imperative language, removes undefinedness, and
leaves OCL conformant to its original definition.

1 Introduction

OCL [9] has proven to be a valuable ingredient in modeling, model validation,
and model transformation. It can be used to precisely describe model constraints
such as invariants, guards, and pre- and post-conditions, and to formulate queries
to system states in general. In model transformation, it can be used to express
queries to models, e.g., to specify source objects for transformations.

By now, several OCL tools exist, including ATL [2], the Dresden OCL toolkit [4],
Eclipse MDT OCL [8], KMF [1], OCLE [3], Octopus [6], RoclET [12], and USE [5].

In MOF QVT [10] OCL is extended to so-called ImperativeOCL as part of
QVT’s “operational mappings”. Within ImperativeOCL, statements with side-
effects can be formulated. It adds facilities to manipulate system states (e.g,
to create and modify objects, links, and variables) and certain constructs from
imperative programming languages (e.g., loops, conditional execution). Impera-
tiveOCL is used in QVT to specify transformations operationally (complemen-
tary to the relational language of QVT).

While the usefulness of a combination of OCL with imperative language ele-
ments is unquestioned, we criticise the way OCL is extended to ImperativeOCL.
The chosen abstract syntax leads to a couple of semantical problems which we
point out in this paper. In our opinion, the intention of ImperativeOCL can be
achieved without modifying the semantics of OCL itself following an approach
that favours a composition of OCL into an imperative language over reuse by
inheritance in the abstract syntax.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 263–272, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

264 F. Büttner and M. Kuhlmann

This paper is structured as follows: In Sect. 2 we give a short overview of
ImperativeOCL and its role in QVT. In Sect. 3 we explain the various semantical
problems that arise from the QVT definition of ImperativeOCL. We suggest a
change to the QVT specification that resolves these problems in Sect. 4 and
conclude in Sect. 5.

2 ImperativeOCL

QVT defines two ways to express model transformations, a declarative approach
and an operational approach. The declarative approach is the Relations lan-
guage where transformations between models are specified as a set of relations
that must hold for the transformation to be successful. The operational approach
allows either to define transformations using a complete imperative approach or
allows complementing relational transformations with imperative operations im-
plementing the relations. The imperative language introduced by QVT is called
ImperativeOCL.

ImperativeOCL adds imperative elements to OCL which are typically found
in general purpose programming languages such as Java. Its semantics is defined
in [10] as usual by an abstract syntax model. The complete abstract syntax of
ImperativeOCL is depicted in Fig. 1.

An element of this extension is the ability to use block expressions to calculate
a given value. The compute expression (meta-class ComputeExp in Fig. 1)

compute(v:T=initExpr) { e1; ... ; en }

returns the value of the variable v after ending the sequential execution of the
body (e1; ... ;en). Within the body, variables defined in outer scopes can be
freely accessed and changed.

New loop expressions such as forEach and while have been introduced to
iteratively execute expressions (meta-classes ForExp and WhileExpr):

company.employees->forEach(c) { c.salary := c.salary * 1.1}

while(x<10) { x := x + 2 }

An imperative version of conditional evaluation is available (meta-class AltExp):

if (x < 0) { x := 0 } else { x := 1 } endif

Variables can be declared in the current scope using the var statement (meta-
class VariableInitExp):

var x : String
var y : Integer := 2

Instances of classes can be created using a new operator (meta-class Instantia-
tionExp):

var p : Person
p := Person.new

Shortcomings of the Embedding of OCL into QVT ImperativeOCL 265

The most important aspect of the abstract syntax to that we refer in this pa-
per is the fact that all imperative expression classes inherit from OclExpression
(at the top of Fig. 1). OclExpression is the base class for all expressions in con-
ventional OCL (cf. [9]). Consequently, ImperativeExpressions can be used at all
locations where OclExpressions occur. Thus, we can have imperative expressions
consisting of OCL expressions that again consist of imperative expressions. For
example,

var z : Set(Integer) := Set{1,2,3}->select(y |
compute(x:Integer) { x := y * 2 } < 5

)

becomes a valid OCL expression under the QVT extension. The right-hand side
of this imperative assignment expression is an OCL select expression. This OCL
select expression requires a boolean body expression, which is given by a rela-
tional OCL expression whose left-hand side is an imperative compute expression.
The body of this compute expression is an assignment expression whose right-
hand side is again a conventional OCL expression (y * 2). While this is a very
simple example, trickier mixtures of imperative expressions and OCL expres-
sions exist that comprise several semantical problems. In the following section
we explain these problems that all follow from the design by inheritance of Im-
perativeOCL.

3 Problems

This section explains semantical problems that arise from the embedding of
OCL into QVT ImperativeOCL. First (and most formally) we show that Im-
perativeOCL redefines the interpretation of OCL expressions and that this re-
defined interpretation leads to undefined semantics of several OCL expressions
that had a perfectly well-defined semantics under conventional OCL. Second, we
show that several equivalence rules for OCL not longer hold if ImperativeOCL
is around. Third, we further show that (under the current design) some of the
new imperative expressions are actually redundant to conventional OCL expres-
sions. Finally, we generalise this critique and discuss that the abstract syntax
of ImperativeOCL violates the subtype substitution principle in various other
locations in UML, too. All of these problems arise from the fact that the abstract
syntax of ImperativeOCL allows imperative expressions at all locations where
OCL expressions are expected – ImperativeExpression is modeled as a subclass
of OclExpression.

3.1 Undefined Semantics for OCL Expressions

In conventional OCL, the semantics of an OCL expression e can be formally
expressed by an interpretation function

I[[e]] : ENV → VALUE

266 F. Büttner and M. Kuhlmann

Fig. 1. ImperativeOCL abstract syntax

Shortcomings of the Embedding of OCL into QVT ImperativeOCL 267

where ENV = (σ, β) is the environment in which the expression is evaluated (σ is
a system state – objects, links, and attribute values –, and β maps bound variables
to their values). Cf. [9, Annex A] and [11] for the formal semantics of OCL.

However for ImperativeOCL expressions, the interpretation function described
above is not sufficient. The evaluation (or execution) of an ImperativeOCL ex-
pression does not only return a value, it also results in a (possibly) modified
state and a (possibly) modified variable binding. To take this into account, the
interpretation of an ImperativeOCL expression must be defined like follows:

IIMP[[e]] : ENV → VALUE × ENV

While this is not done formally in [10], the effect of all imperative expressions
are described in natural language, and one could define IIMP[[e]] for all imperative
expressions from this descriptions.

But, since ImperativeExpression is modeled as a subclass of OclExpression,
the imperative semantics MUST be defined for all “ordinary” OCL expression,
too, as ImperativeOCL expression can occur everywhere a OCL expression is
expected. Figure 2 depicts this structural problem using the OCL metamodel –
the redefinition of eval() in ImperativeExpression is invalid.

eval(e : Env) : (Value, Env)

of eval

OclExpression

ImperativeExpression

eval(e : Env) : Value

incompatible redefinition

Fig. 2. Problem illustrated using the OCL meta-model

The following imperative OCL expressions illustrates this problem:

compute(z:Boolean) {
var x : Boolean := true
var y : Boolean := true
if ((x:=false) and (y:=false)) { ... }
z := x

}

The value of this compute expression is false: the block is executed and the value
of the block variable z at the end of the block becomes the value of the compute
expression. Since false is assigned to x in the condition of the if statement, z
becomes false at the end (the assignment expression has the value of its right-
hand side, like in C or Java, therefore the expression x:=false is false).

But what happens if we change the last line as follows:

compute(z:Boolean) {
var x : Boolean := true

268 F. Büttner and M. Kuhlmann

var y : Boolean := true
if ((x:=false) and (y:=false)) { ... }
z := y

}

Is the value of this expression true or false? It depends on how we define the
imperative semantics of the logical connectives. Given boolean expressions e1

and e2, we have at least two choices to define IIMP[[e1 and e2]](env):

1. Lazy evaluation semantics like in Java or C (returns true for the above
example):

IIMP[[e1 and e2]](env) =

{
IIMP[[e2]](env1) if v1 = true
(v1, env1) otherwise

where (v1, env1) = IIMP[[e1]](env). Under this semantics (also called short-
circuit evaluation) the right-hand side of the and operator is not evaluated
if the left-hand side already evaluates to false. Therefore, y stays true.

2. Strict evaluation semantics (returns false for the above example):

IIMP[[e1 and e2]](env) =

{
(true, env2) if v1 = true ∧ v2 = true
(false, env2) otherwise

where (v1, env1) = IIMP[[e1]](env) and (v2, env2) = IIMP[[e2]](env1). Under
this semantics, both sides of the and operator are always evaluated. There-
fore, false is assigned to y.

The QVT specification does not say which semantics should hold. But since
ImperativeOCL expressions can occur everywhere OCL expressions can occur,
this semantics has to be defined.

One can find further similar locations where the imperative semantics of OCL
expression is not obvious, e.g. for the collection operation iterate (what happens
if the body of the expressions modifies the range variable?) or the treatment of
undefined values in arithmetic expressions (similar to the logical connectives –
lazy or not?).

3.2 Breaking Equivalence Rules

In conventional OCL, several equivalence rules hold, most of them well-known
from predicate logic. If we include imperative expressions into the set of OCL
expressions, they all do not longer hold. This is not necessarily a problem but
at least contrary to the logical character of conventional OCL.

1. Substituting variables by let expressions. In conventional OCL, the following
equivalence holds:

let x : T = e1 in e2 ⇔ e2{x/e1}
In ImperativeOCL, this equivalence does not hold. The left-hand and right-
hand term are only equivalent if x occurs exactly once in e2.

Shortcomings of the Embedding of OCL into QVT ImperativeOCL 269

2. Commutativity laws.
e1 and e2 ⇔ e2 and e1

In ImperativeOCL, the commutativity laws for conjunction (and also dis-
junction) do not longer hold. Notice that this is a different problem than the
one discussed in subsection 3.1. The following example illustrates it (return-
ing false and true):

compute(z:Boolean) { y := (z:=true) and (z:=false) }

compute(z:Boolean) { y := (z:=false) and (z:=true) }

3.3 Redundancy of Existing OCL Language Features

Some of the new language features in ImperativeOCL such as forEach and the
imperative conditional are not really necessary (as long as ImperativeExpression
is a subclass of OclExpression). Their effect can be achieved using conventional
OCL expressions:

company.employees->forEach(c) { c.salary := c.salary * 1.1}

has the same effect as

company.employees->iterate(c; r:OclAny=Undefined |
c.salary := c.salary * 1.1

)

and

if (x < 0) { x := 0 } else { x := 1 } endif

is the same as

if x < 0 then x := 0 else x := 1 endif

3.4 Further Problems

Apart from the problems illustrated above, we can find several other locations
where allowing imperative expressions does not make sense. For example, Im-
perativeOCL would allow us to modify the system state in an invariant or a
post-condition. The evaluation of the invariant could evaluate to true and inval-
idate the state at the same time.

Apart from the structural problems discussed above, we have the opinion that
the subtype relation between ImperativeExpression and OclExpression violates
the substitutability of subtypes for supertypes (e.g., [7]) very clearly. An im-
perative expression cannot be used everywhere a OCL expression is expected.
On the contrary, there are only very few locations where imperative expressions
can be safely used where an OCL expression is expected. Therefore, we propose
a change to the QVT specification that leaves the semantics of conventional
OCL unchanged and reuses OCL (as is) as a part of QVT’s imperative language
instead.

270 F. Büttner and M. Kuhlmann

4 Suggested Change to the QVT Specification

We think that ImperativeOCL expressions have not been intended to be used
at all locations where OCL expressions occur. Therefore, imperative languages
such as the one defined in QVT (called ImperativeOCL at the moment) should
use OCL by composition rather than by inheritance, as depicted in Fig. 3.

Several concrete changes in the abstract syntax of ImperativeOCL follow from
this modification. Most important, two versions of assignment expressions will
be required: one whose right-hand side is of type OclExpression (as current) and
one whose right-hand side is an ImperativeExpression (to capture the result of
a compute or instantiation expression). Figure 4 shows the modifications to the
abstract syntax class diagram.

The body of imperative loops will not longer be inherited from the OCL
meta-class LoopExp. Iterators and the (imperative) body expression are modeled
explicitly now (Fig. 5).

Similar changes have to be made for conditional execution (meta-classes Al-
tExp and SwitchExp), while loops (meta-class WhileExp), and general block
expression (meta-class BlockExp).

The sketched modification makes a clear distinction between imperative and
logical language elements (i.e., conventional OCL). This solves all of the afore-
mentioned problems: For the OCL part (then unchanged from [9]), no under-
definedness is introduced and the expected equivalence rules hold again. Also, it
is made clear that no expressions with side-effects can occur at unexpected lo-
cations such as invariants and post-conditions. Imperative loops and conditional
execution are clearly separated from the logical versions.

However, constellations such as the one provided in the introduction of this
paper are not longer possible if the abstract syntax of ImperativeOCL is changed

*

OclExpression

ImperativeExpression

eval(e : Env) : Value

eval(e : Env) : (Value, Env)

OclExpression

ImperativeExpression

eval(e : Env) : Value

eval(e : Env) : (Value, Env)

/ expressions

Fig. 3. Suggested change to the abstract syntax of QVT

{xor}

OclExpression
(from EssentialOCL)

AssignExp

ImperativeExpression

OclExpression
(from EssentialOCL)

AssignExp

1

1

left

value

1

0..1

left

oclValue

0..1 computedValue

Fig. 4. Suggested change to meta-class AssignExp

Shortcomings of the Embedding of OCL into QVT ImperativeOCL 271

1..*
LoopExp

(from EssentialOCL)
OclExpression

(from EssentialOCL)

Variable
(from EssentialOCL)

ImperativeLoopExp

ImperativeLoopExp

OclExpression
(from EssentialOCL)

ImperativeExpression

Variable
(from EssentialOCL)

0..1 condition

source

1

body

1

1..* iterator
source

1

condition0..1

body1

iterator

Fig. 5. Suggested change to meta-class ImperativeLoopExp

this way. While imperative expressions can still contain OCL expressions, OCL
expressions can no longer contain imperative parts to calculate sub-results:

z := Set{1,2,3}->select(y |
compute(x:Integer) { x := y * 2 } < 5

)

will be no valid expression. The example would have to be reworked either as
pure OCL for the right-hand side of the assignment

z := Set{1,2,3}->select(y | y * 2 < 5)

or into a fully imperative version (except the arithmetic and relation expressions
that are OCL):

z := Set{}
Set{1,2,3}->forEach(y) {
if (compute(x:Integer) { x := y * 2 } < 5) { z += y }

}

Of course, this is a very simplified example. Imperative expressions in real
QVT applications may be more complicated to rewrite. Especially, if imperative
operations are invoked as part of an expression. For example the following im-
perative expression, using an operation with side-effects (calcAgeImperatively)

if (calcAgeImperatively(p1) > calcAgeImperatively(p2)) {...}

would have to be rewritten as

var ageOfP1 : Integer = calcAgeImperatively(p1);
var ageOfP2 : Integer = calcAgeImperatively(p2);
if (ageOfP1 > ageOfP2) { ... }

because the arguments of the relational OCL expression cannot be imperative
expressions.

272 F. Büttner and M. Kuhlmann

5 Conclusion

In this paper, we have pointed out a couple of semantical problems that all
arise from the way OCL is embedded into QVT’s ImperativeOCL. The design
which subclasses OclExpression in the abstract syntax does not allow to replace
subtype instances for supertype instances. It also requires an extended semantics
of all conventional OCL expressions which is not defined at the moment.

We outlined a change to ImperativeOCL that resolves these problems by
reusing OCL (as it is) in a non-intrusive way, making OCL a part of the imper-
ative language. While this change requires certain (intermixed) expressions to
be rewritten, it essentially reduces the complexity of the imperative language,
removes undefinedness, and leaves OCL conformant to its original definition.

We have informed the OMG about the problems depicted in this paper by
means of an OMG issue regarding [10].

References

1. Akehurst, D., Patrascoiu, O.: The Kent Modeling Framework (KMF). University
of Kent (2005), http://www.cs.kent.ac.uk/projects/ocl

2. Allilaire, F., Bézivin, J., Jouault, F., Kurtev, I.: Atl - eclipse support for model
transformation. In: Proceedings of the Eclipse Technology eXchange workshop
(eTX) at the ECOOP 2006 Conference, Nantes, France (2006)

3. Dan Chiorean and OCLE-Team. Object Constraint Language Environment 2.0.
(2008), http://lci.cs.ubbcluj.ro/ocle/

4. Dresden-OCL-Team. Dresden OCL Toolkit (2008),
http://dresden-ocl.sourceforge.net/

5. Gogolla, M., Büttner, F., Richters, M.: USE: A UML-Based Speci location En-
vironment for Validating UML and OCL. Science of Computer Programming 69,
27–34 (2007)

6. Klasse Objecten. The Klasse Objecten OCL Checker Octopus. Klasse Objecten
(2005), www.klasse.nl/english/research/octopus-intro.html

7. Liskov, B.H., Wing, J.M.: A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems 16(6), 1811–1841 (1994)

8. MDT-OCL-Team. MDT OCL (2008),
http://www.eclipse.org/modeling/mdt/?project=ocl

9. Object Modeling Group. Object Constraint Language Specifica- tion, version 2.0,
OMG document formal/2006-05-01 (June 2006),
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

10. Object Modeling Group. Meta Object Facility (MOF) 2.0 Query/View/- Transfor-
mation Specification, OMG document formal/08-04-03 (2008),
http://www.omg.org/spec/MOF/2.0/PDF/

11. Richters, M.: A Precise Approach to Validating UML Models and OCL Con-
straints. PhD thesis, Universität Bremen, Fachbereich Mathematik und Informatik,
Logos Verlag, Berlin, BISS Monographs, No. 14 (2002)

12. RoclET-Team. Welcome to RoclET (2008), http://www.roclet.org/

http://www.cs.kent.ac.uk/projects/ocl
http://lci.cs.ubbcluj.ro/ocle/
http://dresden-ocl.sourceforge.net/
www.klasse.nl/english/research/octopus-intro.html
http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/spec/MOF/2.0/PDF/
http://www.roclet.org/

Optimization Patterns for OCL-Based Model
Transformations

Jesús Sánchez Cuadrado1, Frédéric Jouault2, Jesús Garćıa Molina1,
and Jean Bézivin2

1 Universidad de Murcia
{jesusc,jmolina}@um.es

2 AtlanMod team, INRIA & EMN
{jean.bezivin,frederic.jouault}@inria.fr

Abstract. Writing queries and navigation expressions in OCL is an im-
portant part of the task of developing a model transformation definition.
When such queries are complex and the size of the models is significant,
performance issues cannot be neglected.

In this paper we present five patterns intended to optimize the per-
formance of model transformations when OCL queries are involved. For
each pattern we will give an example as well as several implementation
alternatives. Experimental data gathered by running benchmarks is also
shown to compare the alternatives.

1 Introduction

Rule-based model transformation languages usually rely on query or navigation
languages for traversing the source models to feed transformation rules (e.g.,
checking a rule filter) with the required model elements. The Object Constraint
Language (OCL) is the most common language for this task, and it is imple-
mented in several languages such as: ATL [4], QVT [10], and Epsilon [5].

In complex transformation definitions a significant part of the transformation
logic is devoted to model navigation. Thus, most of the complexity is typically
related to OCL. From a performance point of view, writing OCL navigation
expressions in an efficient way (e.g., avoiding bottlenecks) is therefore essential
to transformations optimization.

We are currently working on the identification of common transformation
problems related to performance. For each identified issue, we analyze several
alternative solutions. In this work, we present some of our initial results in the
form of idioms.

In particular, we describe five performance-related patterns in model trans-
formations when OCL queries are involved. Each pattern is presented in three
parts: i) a statement describing the problem, as well as a motivating example;
ii) some experimental data gathered by running benchmarks, so that different
implementation alternatives can be compared, and finally iii) some recommen-
dations on the basis of this data.

The paper is organized as follows. Next section describes the five patterns.
Section 3 presents some related work. Finally, Section 4 gives the conclusions.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 273–284, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

274 J.S. Cuadrado et al.

2 Performance Patterns

In this section we describe five OCL patterns and analyze them in order to im-
prove the performance of OCL navigation expressions in model transformations.
We rely on the experimental data obtained by running performance benchmarks
to compare the different implementation strategies1.

We identified these patterns by working on actual transformations in which
we identified one or more bottlenecks. The corresponding expressions are then
re-implemented in a more efficient way. Next, whenever a pattern is identified, a
small, synthetic benchmark is created to isolate this particular problem and to
compare several implementation options.

We will illustrate the patterns using the ATL language2, but they are general
for any rule-based transformation language using OCL, such as QVT [10]. There-
fore, these optimization patterns can be considered as idioms or code patterns
[3], since they provide recommendations about how to use OCL.

ATL is a rule-based model transformation language based on the notion of
declarative rule that matches a source pattern and creates target elements ac-
cording to a target pattern. It also provides imperative constructs to address
those problems that cannot be completely solved in a declarative way. The nav-
igation language of ATL is OCL. Helpers written in OCL can be attached to
source metamodel types. Also, global attributes whose value is computed at the
beginning of the transformation execution can be defined. The ATL virtual ma-
chine provides support for several model handlers, but in our experiments we
have only considered EMF.

It should be noted that the patterns presented here suppose that no special
optimization is performed by the compiler (i.e., straightforward implementation
of the OCL constructs), and that all optimizations have to be done manually
by the developer. This is the case with ATL 2006, but this may not be the case
with all OCL implementations. These patterns could also probably be used by
an OCL compiler to perform internal optimizations using expression rewriting,
but this is out of the scope of this paper.

2.1 Short-Circuit Boolean Expressions Evaluation

Model transformations usually involve traversing a source model by means of a
query generally containing boolean expressions. When such boolean expressions
are complex and the source model is large, the order in which such operands
are evaluated may have a strong impact on the performance if short-circuit
evaluation [2] is used. Short-circuit evaluation means that the first condition is
always evaluated but the second one is only evaluated if the first argument does
not suffice to determine the value of the expression.
1 The benchmarks have been executed in a machine with the following configuration:

Intel Pentium Centrino 1.5Ghz, 1GB RAM. Java version 1.6.0 under Linux kernel
2.6.15.

2 The ATL version used is: ATL 2006 compiler, using the EMFVM virtual machine
on Eclipse 3.4.

Optimization Patterns for OCL-Based Model Transformations 275

Fig. 1. Boolean expressions with and without short-circuit-evaluation

Experiments. The experiment carried out compares the possible performance
impactofevaluatingbooleanexpressionswithandwithoutshort-circuitevaluation.

Figure 1 shows the execution time of a query containing a boolean expres-
sion with the following form: simpleCondition or complexCondition, where
simpleCondition is an operation with a constant execution time, while complex-
Condition is an operation whose execution time depends on the size of the source
model. The query is executed once for each element of a given type in the model.

Three cases has been considered in the benchmark, each one tested with and
without short-circuit evaluation:

– The simpleCondition operation returns true for half of the elements. This
means that complexCondition must be executed, in any case, for the other
half of the elements. This can be considered an average case.

– In the second case, simpleCondition is satisfied for all the elements. Thus,
complexCondition may not be evaluated. This would be the best case.

– In the third case, simpleCondition is not satisfied for any element. Thus,
complexCondition must always be evaluated. This would be the worst case.

As expected, in the average case the performance improvement with short-
circuit evaluation is directly proportional to the number of times the first con-
dition is executed (i.e. its execution prevents the execution of the second one).
In the best case the execution time with short-circuit evaluation is much lower
because the complex condition is never executed. On the contrary, for the worst
case the complex condition must always be executed, so there is no difference
between having short-circuit evaluation or not.

Recommendations. There are two well-known strategies to improve the per-
formance of a boolean expression when short-circuit evaluation is considered,
depending on whether it is “and” or “or”.

276 J.S. Cuadrado et al.

– And. The most restrictive (and fastest) conditions must be placed first, that
is, those conditions/queries more likely to return a “false” value. Thus, the
slowest condition will be executed less often.

– Or. The less restrictive conditions (and fastest) must be placed first, that
is, those conditions/queries more likely to return a “true” value. Again, the
slowest condition will be executed less often.

If the implementation supports short-circuit evaluation then boolean expressions
can be written in such a way that efficiency is considerably improved. If not, any
expression can be rewritten using the rules of the following table, where the
second column shows how to rewrite the expressions in OCL. It is important
to notice that this table assumes that the results of the queries are defined
values, i.e. true or false, but not OclUndefined. As a matter of fact, the current
implementation of ATL uses a two-valued logic.

With short-circuit Without short-circuit
AND query1() and query2() if query1() then query2() else false endif

OR query1() or query2() if query1() then true else query2() endif

2.2 Determining an Opposite Relationship

Given a relationship from one model element to another, it is often necessary to
navigate through the opposite relationship. For instance, if one is dealing with
a tree defined by the children relationship it may be necessary to get a node’s
parent node (i.e., navigating the opposite relationship of children).

If the opposite relationship has been defined in the metamodel, then nav-
igation in both directions can be efficiently achieved. However, such opposite
relationship is not always available, so an algorithm to check all the possi-
ble opposite elements has to be worked out. This algorithm tends to be inef-
ficient since it implies traversing all the instances of the opposite relationship’s
metaclass.

When the metametamodel supports containment relationships, and the refer-
ence we are considering has been defined as containment, then it is possible for a
transformation language to take advantage of the unique relationship between an
element and its container to efficiently compute the opposite one. For instance,
ATL provides the refImmediateComposite() operation (defined in MOF 1.4)
to get the container element.

Experiments. The performance test has consisted in getting the owning pack-
age for all classifiers of a given class diagram. A package references its owned
classifiers through a classifiers relationship. A helper for the Classifier
metaclass has been created to compute the owner opposite relationship. The
helper will be called once for each classifier of the model.

Four ways of computing an opposite relationship have been compared:

Optimization Patterns for OCL-Based Model Transformations 277

– Using an iterative algorithm such as the following (all examples are given in
ATL syntax3):

helper context CD!Class def : parent : CD!Package =

CD!Package.allInstances()->any(p |

p.classifiers->includes(self));

– Using the refImmediateComposite() operation provided by ATL.
– Precomputing, before starting the transformation, a map (dictionary in QVT

terminology) associating elements with their parent. In the case of ATL,
maps are immutable data structures, and as we will see this issue affects
performance.

helper def : pkgMap : Map(CD!Class, CD!Package) =

CD!Package.allInstances()->iterate(p;

acc : Map(CD!Class,CD!Package) = Map{} |

p.classifiers->iterate(c;

acc2 : Map(CD!Class, CD!Package) = acc |

acc2.including(c, p)

)

);

helper context CD!Class def : owner : CD!Package =

thisModule.pkgMap.get(self);

– The same as the previous strategy but using a special mutable operation to
add elements to the map.

The results of this benchmark are shown in Figure 2. Three class diagrams
with n×m elements, where n is the number of packages and m is the number of
classes per package, have been considered at this time: (1) a small model with 10
packages and 250 classes per package, (2) a second model with 25 packages and
500 classes per package, and (3) a third model with 500 packages and 25 classes
per package. This last model has been introduced to test how the “shape” of the
model may affect the performance.

The refImmediateComposite operation proves to be the best option, how-
ever the performance of the “mutable map version” is comparable. The iterative
algorithm is more efficient than the “immutable map version” when the number
of packages is smaller than the number of classes, which will be probably the
common case. The reason is that such an algorithm only iterates over the pack-
ages, while the “map version” also iterates over all the classes. The main reason
for the poor numbers is that, since it is immutable, the cost of copying a map
each time a new element is added is too high.

3 The helper keyword and the terminal semicolon are required by ATL to syntactically
identify OCL helpers. ATL also requires that type names be prefixed by the name
of the metamodel defining them (e.g., CD here), separated by an exclamation mark.

278 J.S. Cuadrado et al.

Fig. 2. Comparison of different ways of computing an opposite relationship. The log-
arithmic scale used for the time axis corresponds to the following formula: 1.59 ×
ln(time) + 8.46.

Recommendations. According to this data, to compute the opposite of a con-
tainment relationship the refImmediateComposite operation should be used. If
the reference is not containment or just the metametamodel does not provides
this feature, using a mutable map proved to be the best option.

If the transformation language does not provide a mutable map data type,
but an immutable one, the iterative algorithm or the map strategy has to be
chosen according to the most usual shape of the models.

As a final remark, although maps or dictionaries are not natively supported
by OCL, transformation languages usually extends OCL to implement them. For
instance, ATL provides an immutable Map4 data type (usable in side-effect free
OCL expressions), and QVT provides a mutable Dictionary data type.

2.3 Collections

OCL provides different collection data types. Each type is more efficient for
certain operations and less efficient for others. It is important to choose the
proper collection data type according to the operations to be applied, otherwise
performance may be compromised.

In this section we compare the implementation of the including (adds an
element to a collection), and includes (check the existence of some element)
operations for three collection data types, Sequence, Set, and OrderedSet. The
performance results are applicable to other operations, such as union.

4 In order to measure the performance using a mutable Map, we had to implement it
in a test version of the ATL engine.

Optimization Patterns for OCL-Based Model Transformations 279

Experiments. The benchmark for the including operation consists of iterating
over a list of n elements, adding the current element to another list in each
iteration step. The execution time for different input sizes, as well as for the
three collections data types is shown in Figure 3.

As can be seen, including is more efficient for sequences than for sets. This
is what one would expect, since in a sequence a new element is inserted at
the tail, and there is no need to check if the element was already added. The
performance of ordered sets is slightly worse than sets, basically because it is
internally implemented in ATL using a LinkedHashSet, that is, both a hash
map and a linked list must be updated in each insertion.

The benchmark for the includes operation consists of finding an element
which is in the middle of a list of n elements. The same code is executed 2000

Fig. 3. Comparison of the including operation for different collection data types

Fig. 4. Comparison of the includes operation for different collection data types

280 J.S. Cuadrado et al.

times. The execution time for different input sizes, as well as for the three col-
lections data types is shown in Figure 4.

As expected the cost of includes is greater for sequences. However, if it
executed less times, for instance 100 times, the execution time is similar in all
cases, and there is not difference in using a sequence or a set. This shows that
it is not worth converting a collection to a set (using asSet) if the number of
query operations (such as includes) is not large.

Recommendations. The decision about which collection data type to use
should be based on which will be the most frequent operations. In particular,
these tests show that unless one needs to make sure that there is no duplicated
elements into the collection (or if the transformation logic cannot enforce it),
then the sequence type should be used, in particular when operations to add
new elements are frequently called.

2.4 Usage of Iterators

OCL encourages a “functional” style of navigating through a model by promot-
ing iterators to deal with collections. Thus, queries are often written without
taking into account the efficiency of the expressions, but just trying to find out
a readable, easy or more obvious solution.

For instance, it is common to come across OCL code like expression (a) shown
below, which obtains the first element of a collection satisfying a condition.
However, expression (b) may be more efficient since the iteration can finish as
soon as the condition is satisfied. Of course, an optimizing compiler could rewrite
(a) into (b).

(a) collection->select(e | condition)->first()

(b) collection->any(e | condition)

Thus, it is important to take into account the contract of each iterator and
operation to choose the most appropriate one, depending on the computation to
be performed.

Experiments. To assess whether it is really important, from a performance
point of view, to be careful when choosing an iterator we have compared these
two ways of finding the first element satisfying a condition in a list of n elements.
In this benchmark the condition is satisfied by all elements after the middle of
the list. This means that option (a) will return a list of n/2 elements.

The first time we ran this benchmark, the execution time for both cases (a)
and (b) was the same. The reason is that the current implementation of any
in ATL does not finish the iteration as soon as possible, but it is equivalent
to “select()- first”. Thus, a new optimized version was implemented and its
performance is also compared.

Figure 5 shows the execution time for the three cases: using the original version
of any, using a fixed version and with “select()- first”. It also shows another case
which is explained below.

L

L

Optimization Patterns for OCL-Based Model Transformations 281

Fig. 5. Finding the first element satisfying a condition

According to the proposed benchmark, the execution time of “select()- first”
should be worse than using any, but not so much. We looked into this issue and
the reason is related to the implementation of the select operation in ATL. It
internally uses the standard OCL including operation to add an element to
the result each time the condition is satisfied. Since including is an immutable
operation the whole partial result is copied for each selected element. That is
why as the size of the list grows the execution time grows exponentially.

We implemented an optimized version of select which uses a mutable opera-
tion to add elements to the result. As can be seen in Figure 5, its performance is
greater than the original, but it is also comparable to any. The main reason for
this result is that the transformation execution involves a constant time which is
independent of the iterator execution time. When such constant time is removed,
the any iterator is around 150% faster.

Recommendations. The select iterator should be used only when it is strictly
needed to visit all elements of the collections. Iterators such as any, exists, in-
cludes, etc. should be used to avoid iterating the whole collection. In any case,
the benchmark results show that if the select iterator is properly implemented
then it can provide a performance comparable to other iterators.

2.5 Finding Constant Expressions

In rule-based transformation languages, rules are executed at least once for each
instance matched against the source pattern, so all expressions within the rule
may be executed once for each rule application. When such expressions depend
on the rule’s source element, then it is inevitable to execute them each time.
However, those parts of an expression which are independent of variables bound
to the source element can be factorized in a “constant”, so that they are executed

L

282 J.S. Cuadrado et al.

only once when the transformation starts. Some transformation engines do not
support this kind of optimization, so it has to be done manually.

As an example, let us consider the following transformation rule, which trans-
forms a classifier into a graphical node. The condition to apply the rule is that
the classifier (instance of Classifier) must be referenced by another element
which establishes whether or not it is drawable (Drawable). Since the filter is
checked for each classifier, all elements of type Drawable are traversed each time
the engine tries to find a match.

rule Classifier2Node {

from source : CD!Classifier (

DrawModel!Drawable.allInstances()->exists(e | e.element = source)

)

to Graphic!GraphNode ...

}

A more efficient strategy is to compute in a constant attribute all the drawable
elements, so that the transformation can be rewritten in the following way:

helper def : drawableElements : Set(CD!Classifier) =

CD!Drawable.allInstances()->collect(e | e.element);

rule Classifier2Node {

from source : CD!Classifier (

thisModule.drawableElements->includes(source)

) ...

}

Experiments. The rule shown above has been executed for several input mod-
els (the same number of elements of type Classifier and Drawable is as-
sumed). Figure 6 shows the results for the following three cases: (1) without

Fig. 6. Performance impact of the factorization a common expression into a constant

Optimization Patterns for OCL-Based Model Transformations 283

pre-computing the common query code into a constant, and using the original
ATL version of exists, (2) the same but using an optimized version of exists
which finishes the iteration as soon as it finds the required element, and (3) using
the strategy of pre-computing a constant.

As can be seen the third strategy has a cost which is significantly lower than
the two others, and does not grow as fast (the algorithm complexity is O(n+m)),
while the first one has a cost of O(n · m), where n is the number of elements of
type Classifier and m is the number of elements of type Drawable.

Recommendations. It is possible to easily identify expressions within rules
and helpers which can be factorized into some constant because they usually
rely on allInstances() to get model elements without navigating from the
rule’s source element. Therefore, the transformation developer should be aware
of this kind of optimization and apply it whenever possible.

Also, it is worth noting that using a let statement (or similar) is a good
practice to factorize expressions at the local level.

3 Related Work

In [6] the need for developing benchmarks to compare different OCL engines is
mentioned. The authors have developed several benchmarks that can be found
in [1]. However, they are intended to compare features of OCL engines, rather
than performance.

In [8] and [9] the authors present several algorithms to optimize the compila-
tion of OCL expressions. They argue that its optimizing OCL compiler for the
VMTS tool can improve the performance of a validation process by 10-12%.

Regarding performance of model transformation languages few work has been
been done. In [11] a benchmark to compare graph-based transformation lan-
guages is proposed. In [7] some general recommendations about how to improve
performance of model driven development tools are presented, but neither con-
crete examples or experimental data are given.

4 Conclusions and Future Work

In this paper we have presented several optimization patterns for OCL-based
transformation languages. These patterns address common navigation problems
in model transformations from a performance point of view. For each pattern
we have provided several implementation options along with performance com-
parison data gathered from running benchmarks.

The contribution of this work is twofold, on the one hand these patterns
may be useful as a reference for model transformation programmers to choose
between different implementation alternatives. On the other hand, they provide
some empirical data which is valuable for tool implementors to focus on the
optimization of some common performance problems.

284 J.S. Cuadrado et al.

As future works we will continue defining benchmarks for model transforma-
tions in order to identify more patterns related to performance. We are also
improving our framework for benchmarking to consider other transformation
languages. Beyond the individual patterns that are being identified, we are also
looking at improving and generalizing a method for finding, identifying and clas-
sifying transformation patterns.

References

1. OCL benchmarks, http://muse.informatik.uni-bremen.de/wiki/index.php/

ocl_benchmark_-_core

2. Aho, A.V., Ullman, J.D.: Principles of Compiler Design. Addison-Wesley series in
computer science and information processing. Addison-Wesley, Reading (1977)

3. Beck, K.: Implementation Patterns. Addison-Wesley Professional, Reading (2006)
4. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Bruel, J.-M. (ed.)

MoDELS 2005. LNCS, vol. 3844, pp. 128–138. Springer, Heidelberg (2006)
5. Kolovos, D.S., Paige, R.F., Polack, F.A.: The epsilon transformation language. In:

Vallecillo, A., Gray, J., Pierantonio, A. (eds.) ICMT 2008. LNCS, vol. 5063, pp.
46–60. Springer, Heidelberg (2008)

6. Kuhlmann, M., Gogolla, M.: Analyzing semantic properties of ocl operations by
uncovering interoperational relationships. In: Engels, G., Opdyke, B., Schmidt,
D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735. Springer, Heidelberg (2007)

7. Langlois, B., Exertier, D., Bonnet, S.: Performance improvement of mdd tools.
In: EDOCW 2006: Proceedings of the 10th IEEE on International Enterprise Dis-
tributed Object Computing Conference Workshops, p. 19. IEEE Computer Society,
Los Alamitos (2006)

8. Mezei, G., Levendovszky, T., Charaf, H.: Restrictions for ocl constraint optimiza-
tion algorithms. Technical report, Technische Universität Dresden (October 2006)

9. Mezei, G., Levendovszky, T., Charaf, H.: An optimizing ocl compiler for meta-
modeling and model transformation environments. In: Software Engineering Tech-
niques: Design for Quality, pp. 61–71. Springer, Heidelberg (2007)

10. OMG. Final adopted specification for MOF 2.0 Query/View/Transformation
(2005), www.omg.org/docs/ptc/05-11-01.pdf

11. Varro, G., Schurr, A., Varro, D.: Benchmarking for graph transformation. In: VL-
HCC 2005: Proceedings of the 2005 IEEE Symposium on Visual Languages and
Human-Centric Computing, pp. 79–88. IEEE Computer Society, Los Alamitos
(2005)

http://muse.informatik.uni-bremen.de/wiki/index.php/ocl_benchmark_-_core
http://muse.informatik.uni-bremen.de/wiki/index.php/ocl_benchmark_-_core
www.omg.org/docs/ptc/05-11-01.pdf

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 285–290, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Third International Workshop on Quality in Modeling

Jean-Louis Sourrouille1,2, Ludwik Kuzniarz3, Lars Pareto4, Parastoo Mohagheghi4,
and Miroslaw Staron5

1 Univ Lyon
2 INSA-Lyon, LIESP, F-69621, Villeurbanne, France
3 Blekinge Institute of Technology, Ronneby, Sweden

4 SINTEF ICT, Oslo, Norway
5 IT University of Göteborg, Göteborg, Sweden

Abstract. Software quality management is widely researched within Model
Driven Software Development (MDD), from both industry practices and aca-
demic research viewpoints. The goal of this workshop was to gather researchers
and practitioners interested in the emerging issues of quality in the context of
MDD. During the first part of the workshop, selected papers were presented and
discussed. The second part was divided into two working sessions. The first
session was devoted to the introduction of model quality into the software
development process by drawing a parallel with quality of code. An invited
practitioner introduced issues related to quality of code, followed by a guided
discussion based on a list of predefined questions. The second session was deal-
ing with future work and research interests of the participants.

1 Introduction

Quality is an important issue in software engineering, and stakeholders involved in
the development of software systems definitely are aware of the impact of the quality
of both development process and produced artifacts on the quality of final system.
The recent introduction of Model Driven Software Development (MDD) raises new
challenges related to ensuring proper quality of the software produced when using this
approach. Software quality management within MDD is widely researched from mul-
tiple perspectives. Furthermore, in software engineering, the issues of model quality
need to be approached from the viewpoints of both industry practices and academic
research in order to arrive at sound and industrially applicable results.

The Quality in Modeling series of workshop (QiM) aim to provide a forum for pre-
senting and discussing emerging issues related to software quality in MDD. The in-
tended result is to increase consensus in understanding quality of models and issues
that influence this quality. In the previous QiM workshop, a common quality model
was established [1]. The intention of this year’s workshop was to discuss model qual-
ity issues related to software development processes. Within “usual” software devel-
opment, code quality seems to be under-exploited. However, all the concepts and
theory about code quality have been widely described. Therefore, a special attention
is to be paid to practical issues such as the introduction of model quality into the
software development process in a convenient and accepted way.

286 J.-L. Sourrouille et al.

2 Summary of the Paper Contributions

The presentation of papers consisted of two sessions, each one with three topics ad-
dressed by the papers [4]:

• Towards model quality
− Definition of a measurement procedure to accurately quantify the size of soft-

ware developed with a Model-Driven Development (MDD) [4],
− Definition of a proactive and process-driven approach based on a meta-approach

to be instantiated in every sub-process producing a UML model [5],
− Description and implementation of a customized style guide for UML [6].

• Frameworks for model quality
− Definition of an operational framework to address database schema quality

through both global and analytical views of quality [7],
− Empirical validation of measures for UML class diagrams through a meta-

analysis study from five controlled experiments [8],
− Definition of a metamodel to precisely define quality elements and their rela-

tionships in a quality model [9].

3 Introducing Model Quality in the Development Process

The starting point of the discussion was the introduction, presented by an industrial
expert, Marc Rambert from Kalistick, on how code quality management is approached
in an industrial context [2]. Obviously, there are common points between model qual-
ity and code quality, but the main reason for this discussion was the actual use of
quality in practice. Despite the fact that theoretical and practical aspects of code qual-
ity are well-known, and that a number of market tools for assessing code quality exist
for a long time, the quality of code is not used as much as it could be. To analyze
deeply theoretical aspects of quality is not enough. We have certainly to deal with
practical and/or human aspects for model quality to enforce its usage by software
developing teams. The aim of this discussion was to take lessons from experience
related to code quality to increase our chances to introduce successfully model quality
into the software development process. First, the industrial expert recalled issues
related to code quality:

− Getting control over the technical quality of a software development, which re-
quires clear objectives closely linked with project management, and aid to teams to
achieve project goals,

− Improving the technical quality by providing teams with a set of good practices,
detecting gaps between actual code and objectives, and focusing on key issues for
improvement,

− Providing a balance between additional costs and returns on investment. Quality is
not an absolute value; it is related to objectives that depend on the needs of the tar-
get application. For instance the requirements for an embedded system are not the
same than for a text editor.

 Third International Workshop on Quality in Modeling 287

The expert also showed examples of metrics related to code quality, how quality can
be assessed and visually reported to assist teams in their daily work and taking
decisions for release. After this introduction, a discussion guided by a set of questions
sent to the participants before the workshop was carried on. For each of the questions
the course was as follows: the question was recalled followed by the moderator’s
comments; then the question was answered from the code quality perspective, and
finally an open discussion was carried out aiming to find a “common” answer from a
model quality perspective. In the sequel, a quality problem means a quality level
lower than the expected one for a criterion, for instance the number of dependency
cycles is too large. A quality goal is the expected value for some aggregate of assess-
ments and metrics. Quality goals depend on the application requirements and should
be defined by stakeholders before starting the development. In the following we list
the questions and a summary of the discussion on each question.

1. Not all metrics can be measured automatically. Some quality properties such as
architecture design value can be assessed manually.
Should we keep only automatic measurement?
To what extent can we keep manual assessment?

The overall answer is that it should be as automatic as possible depending on the
required effort. If the semantics is to be considered then it should be manual. Even
when the assessment is automatic, a manual interpretation is necessary in order to
assess where we are and to undertake recovery actions.

2. Software quality is relative to the requirements of an application: there is no abso-
lute level of quality, and "over-quality" is just non-quality.
How to define/express the quality requirements of an application from the end user
point of view?
How to avoid overestimated quality requirements, which implies over-costs?

The schema Fig. 1 expresses a basic principle: increasing the development costs to
reduce maintenance costs is limited by the increase in total costs. To define the
suitable quality level, the industrial expert draws a quality profile (Fig. 2) from re-
plies to a questionnaire directly related to project requirements but only indirectly
related to quality. Stakeholders have different requirements and they should reach
an agreement. The quality requirements for models seem to be closer to system
quality requirements than quality requirements for code, which might result in
some differences in the description.

Cost

Quality

Total costs

Maintenance costs Development costs

4
3
2
1
0

Security Reliability

Efficiency
...

...

Maintenability

Fig. 2. Quality profile Fig. 1. Optimal cost

288 J.-L. Sourrouille et al.

3. When actual quality is different from the expected one, some quality goals may
have a greater importance for the end user.
How to express the importance of application's quality goals?

In the industrial context, a dashboard shows the gap between actual and expected
profiles, and improvement plans are proposed to reduce the gaps. All quality as-
pects have not the same importance for the stakeholders, leading to two kinds of
conflicts: (i) internal, between quality attributes, for instance to increase maintain-
ability may reduce performance; (ii) external, the same attribute being more impor-
tant for one stakeholder that for another one.

4. Continuous quality assessment would be a burden for the developer and would
probably result in some reject. On the other hand, to find quality problems as early
as possible is a well-known need in software engineering.
What could be the frequency or suitable moment for quality assessment?

The frequency may depend on cost of checks. In practice, weekly assessment is
enough for code. When no gap between actual values and goals is detected, and
when the trend of evolution does not deviate, the human cost is quite null; other-
wise a quick reaction is possible. Regarding models, instead of regular checks,
quality gates or check points could be introduced in the development process to en-
sure quality levels.

5. When quality problems are detected, there are numerous possible actions. These
actions generally depend on the application status: to correct existing software
might be risky (non-regression) and of limited interest, while to correct software
under construction will have a better return.
Should we help the user to define the actions to achieve?
Should we prioritize the quality problems to deal with?
Finally, should the developer deal with all the quality problems?

Another factor affects the decision: how fast the developer can find the fault? Ac-
tions to undertake depend on project management decisions, and to help managers
to make their decisions is necessary.

6. There is a link between metrics and quality goals.
To what extent does the developer need to know this relationship?
When this relationship is known, is it acceptable for a developer to limit quality
problems to stay just below thresholds that triggers quality problems?

Example: if the metric for readability is that a sequence diagram includes less than
20 connected elements, the quality goal can specify that at most 5 sequence dia-
grams may break the rule. Below 5 rule violations, no quality problem is detected,
therefore the developer is not warned and the situation is acceptable.

7. To find a way to deal with a quality problem is not always easy.
Do we need to aid correcting quality problems?
Do we need to show the place of the problem in the model (see tool below)?

Tools detect the symptoms but not the causes: the tool may detect that there are
too many dependencies, which does not explain why and how to reduce them.
Similarly, patterns and anti-patterns explain why and where the problem is,
but not how to correct it. Since errors may come from a combination of
several causes, explanations should be precise. Regarding model quality, to help

 Third International Workshop on Quality in Modeling 289

developers implies embedding quality checks in a tool, which is a great differ-
ence with code.

8. Developer training could be an important aspect to get better results.
What kind of training would be useful: before development? When errors occur?
Should developers training focus on actual metrics? Or only on principles?

The experience shows that teaching rules has no interest. The best way seems to
train on principles, and when a problem occurs to train on this problem. Moreover,
training professionals has psychological issues to take into account.

9. Many stakeholders will look at quality results, each one with a different point of
view.
How to present the results in a suitable way for each stakeholder?
What are the suitable ways for developers?

A dashboard for each category of stakeholder is useful in industrial context.

10.Code quality assessment does not depend on a tool.
Is it desirable to assess model quality independently of any tool (for instance by
analyzing XMI files)? Or should the IDE tool include quality assessment?

Participants mainly think that tools should include quality assessment. This ideal
solution requires customizing each tool.

Comments. Due to lack of time, but also because all the answers are not actually
known, there is no precise answer for each question. The list was limited to 10 items,
aiming to tackle different practical aspects about model quality. Anyway, answers
will be needed to bring model quality into play. These aspects complement the quality
model discussed during the previous workshop.

4 Working Session on a Road Map for Further Research

The second session of the working part was devoted to development of a common
research roadmap, by the following procedure. 1) The presentations were analyzed
using the unified quality model of the QiM’07 workshop [10]; analysis result was a
graph associating presentations to distinct qualities of concern. 2) This graph was
presented for review: contributing sites were asked to check that associated qualities
were appropriate and complete with respect to the research pursued at the site. 3) The
graph was revised collectively. The outcome is given in the Table below. The topmost
part shows the home base of the research groups behind the QiM’08 contributions.
The lowermost part shows the white spots with respect to the common quality model:
these qualities have no immediate connection to the presented talks, and should be
fertile ground for research.

Acknowledgement. We would like to thank Marc Rambert, from Kalistick,
provider of the 1rst SaaS platform for code quality, who kindly agreed to prepare the
invited talk for the working session, and to moderate the discussion based on code
quality.

290 J.-L. Sourrouille et al.

 P1
Valencia

P2
Genova

P3
Lyon

P4
Namur

P5
Ciadud

P6
Oslo

P7 Ville-
Urbaine

Correctness x x x

Consistency x x x

Completeness x x

Conciseness x x

Maintainability x x x x

Complexity x

Size x x

Understandability x x x

Model
Quality

Transferability x

Infrastructure Automatic x x

Rigourously defined x x x x

Automateable x
Process
Quality

Easily configureable x

Rigourously managed x

Automatically Measurable x Project Quality

Modeling Guidelines x

Model Quality Navigability, Traceability, Measurable, Stable, Precision Improving,, Detailedness

Infrastructure
Quality

Ubiquitous, Updateable, Seclusive, Flexible, Categorial, Archival, Cohesive,
Efficient

Process Quality
Predictability, Reuse of good practices, Roll backing, Quality Assurance for
models, Explicit about modeling purpose, Voluntary, Incentive, Regulatory, Process
Support, Measurability, Effectiveness, Productivity

White Spots

Project Quality Qualified staff, Skill, Experience, Tools

References

1. Kuzniarz, L., Pareto, L., Sourrouille, J.-L., Staron, M.: Third intenational workshop on
quality in modeling. In: Giese, H. (ed.) MoDELS 2007 Workshops. LNCS, vol. 5002, pp.
271–274. Springer, Heidelberg (2008)

2. Blanc-dit-Grenadier, N., Rambert, M., Sourrouille, J.-L., Aubry, R.: Toward a real integra-
tion of quality in software development. In: ICSSEA 2008 (2008)

3. Sourrouille, J.-L., Staron, M., Kuzniarz, L. (eds.): Proc. of the 3rd Workshop on Quality in
Modeling, IT University of Göteborg RR 2008: 02, ISSN 1654-4870, pp. 1–88

4. Maron, B., Condori-Fernandez, N., PastorJean, O.: Design of a Functional Size Measure-
ment Procedure for a Model-Driven Software Development Method. In: [3]

5. Reggio, G., Astesiano, E., Ricca, F.: A proactive process-driven approach in the quest for
high quality UML models. In: [3]

6. Hindawi, M., Morel, L., Aubry, R., Sourrouille, J.-L.: Description and Implementation of a
Style Guide for UML. In: [3]

7. Lemaitre, J., Hainaut, J.-L.: A Combined Global-Analytical Quality Framework for Data
Models. In: [3]

8. Manso, M.E., Cruz-Lemus, J.A., Genero, M., Piattini, M.: Empirical Validation of Meas-
ures for UML Class Diagrams: A Meta-Analysis Study. In: [3]

9. Mohagheghi, P., Dehlen, V., Neple, T.: Towards a Tool-Supported Quality Model for
Model-Driven Engineering. In: [3]

10. Pareto, L., Lange, C., Mohagheghi, P., Dehlen, V., Staron, M., Bouhours, C., Weil, F.,
Bastarrica, C., Rivas, S., Rossel, P.O., Kuzniarz, L.: Towards a Unified Quality Model for
Models. 2nd QiM, RR in Soft. Eng. and Management 2008:01, Gothenburg University

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 291–302, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Description and Implementation of a UML Style Guide

Mohammed Hindawi, Lionel Morel, Régis Aubry, and Jean-Louis Sourrouille

Université de Lyon
INSA Lyon, LIESP, Bât. B. Pascal, 69621 Villeurbanne, France

{Mohammed.Hindawi,Lionel.Morel,Régis.Aubry,
Jean-Louis.Sourrouille}@insa-lyon.fr

Abstract. Model quality is still an open issue, and a first step towards quality
could be to establish and use style guides. A style guide is a set of rules aiming
to help the developer improving models in many directions such as good prac-
tices, methodology, consistency, modeling or architectural style, conventions
conformance etc. First, this paper attempts to clarify the meaning of notions be-
ing used such as rule or modeling domain semantics. Then, several examples il-
lustrate a possible classification of rules, and the verification process is detailed.
A style guide is not universal: each project manager should be able to customize
his/her set of rules according to specific needs. In addition to rules expressed in
OCL, we describe a user interface to facilitate the specification of rules based
on quantifiers, along with the translation of these rules into OCL.

1 Introduction

In the emerging context of Model Driven Engineering, software development more
and more focuses on models. On the other hand, the software engineering community
has known for a long time the advantages of early fault detection. Thus to check mod-
els from the beginning of the development cycle appears a promising direction. Gen-
erally, application domain semantics is a matter for users, while tools know the se-
mantics of the modeling domain only. Beyond faults, which are all the more difficult
to find that models are imprecise and abstract, many model properties are of interest
for developers. A style guide is a set of rules aiming to help the developer improving
models in many directions such as good practices, methodology, consistency, model-
ing or architectural style, conventions conformance etc. Some rules are hints while
others are warnings, i.e., potential errors. These rules check “good properties”, which
are kinds of quality criteria. However, the quality of a model is relative to application
requirements, which means that deficiencies are ignored as long as they remain in the
range defined by the quality objectives of the application. Conversely, a style guide
checker notifies all the rule violations: the developer defines his/her own objectives
and priorities, often based on error gravity.

Developers could be in charge of rule checking. However, in practice, only auto-
mated checks are suitable not to increase developer burden, but also because manual
checks are unsure. Consequently, as many rules as possible should be given a formal
description, and only rules expressed in natural language will require manual checks.
There is no universal style guide. Each development team may have its own needs

292 M. Hindawi et al.

depending on applications; hence we need an easy way to specify rules. UML pro-
vides OCL as a description language, but non-experts find it difficult to use. This
implies the need for specific tooling to describe and manage a set of rules, and to
control the verification process that should be as flexible and automated as possible.

The rest of the paper (extended version in [17]) is organized as follows: section 2
gives definitions and attempts to clarify the meaning of used notions; section 3 classi-
fies some rule descriptions; section 4 shows the verification process, defines the main
tool components, and details the user interface to specify rules including the transla-
tion into OCL. Then we discuss related works and conclude.

2 Context and Definitions

This section describes the context of the work and defines notions used in the rest of
the paper. Moreover, we aim to clarify what it means to apply rules to a model.

2.1 Syntactic vs. Semantic Correctness

In software engineering, a model is a representation, from a given point of view, of a
system expressed in some formalism [4]. The formalism definition includes notions
and their semantics. This semantics induces constraints on the model, for instance the
semantics of inheritance induces that cycles are not allowed along the inheritance
relationship. A model expressed in a formalism is correct when it conforms to all the
constraints of this formalism. The UML specifies constraints in both OCL and natural
language. We call the former syntactic constraints and the latter semantic constraints
[14][6]. Although surprising, this definition is precise and deals with the lack of un-
ambiguous difference between semantic and syntactic constraints (readers may think
of semantic constraints as constraints specified in natural language). A model that
meets syntactic constraints is syntactically correct, and a model that meets semantic
constraints is semantically correct. Syntactic constraints can be checked automatically
while semantic constraints are left to human users, hence it is not possible to check
automatically whether a model is correct or not. In everyday cases, the semantic cor-
rectness of UML models is unknown. In addition, semantic variation points specified
in the UML specification require human choices.

In the following, we consider only syntactically correct models. Additional con-
straints aim to increase the semantic correctness.

2.2 Interpretations

A system can be modeled in different ways. A model interpretation is the meaning of
this model in a semantic domain. A correct model has generally several interpreta-
tions in a semantic domain (Fig. 1), while an incorrect model has no interpretation.
The natural semantic domain of a modeling language such as UML is the modeling
domain. There is no consensus about a universal semantics of modeling domains;
hence, we assume that there are several modeling domains, each one with its own
semantics, e.g., active objects do not behave the same according to modeling contexts.
The UML does not meet all modeling needs. On the other hand, it allows expressions
that the semantics of modeling domains may forbid, e.g., to send a signal to an object

 Description and Implementation of a UML Style Guide 293

that cannot catch it. The modeling domain is not to be mixed up with the application
domain. In the modeling domain, a class Dog may inherit from a class Bird, but in the
application domain, this inheritance relationship is surely wrong.

An interpretation may be licit in a semantic domain, i.e., it conforms to the seman-
tics of this domain, and illicit in another one. A UML model can be both correct and
illicit. For instance, a TypedElement without Type is correct in UML, but when the
element is the receiver of a message, it is illicit in most modeling domains.

Refinement. An abstract model has a large number of interpretations due to the lack
of details. Along the development process, models are refined and become more and
more complete and precise; hence, the number of interpretations decreases (Fig. 2a).
For example, navigability restriction to an undirected association reduces the
interpretations. At the end of the refinement process, one interpretation is selected to
generate code. This code is a model whose interpretations form an equivalence class
from the developer point of view, i.e., all the interpretations are equivalent: the
expression a+b+c can be interpreted as either (a+b)+c or a+(b+c).

Checking models. Within a modeling domain, a model is consistent when it has at
least one licit interpretation. There is no formal definition of the semantics of
modeling domains, but many works propose consistency rules to check that models
meet some modeling domain constraints. Constraints expressed in a formal language
are easy to check. The outstanding issue is how to check models to meet semantic
constraints? There is no basic difference between semantic constraints from UML and
from modeling domains: both are expressed in natural language, and both aim to
reject models, either incorrect or with no licit interpretation. To check these
constraints, a first idea is to define consistency rules that are stronger than the actual
semantic constraints, but that we can express in a formal way. These rules reduce the
expressive power of UML (Fig. 2b), i.e., reject potentially correct models and forbid
some interpretations, but in return they allow automating checks. A second idea is to
define rules that will help the developer to make well-formed models. These rules
forbid model expressions leading generally to models with illicit or questionable
interpretations. In the last resort, human reviews find remaining problems. At code

Fig. 1. Relationships between System, Models and Interpretations

294 M. Hindawi et al.

generation, model analysis may reveal errors but it is too late. The checking process
fails when an error that was visible in a model is discovered at run time.

2.3 Style Guide

A style guide defines a set of rules that any model must conform to. Style guides
reduce the number of acceptable models and force developers to make models owning
the wished properties, which results in smaller sets of licit interpretations (Fig. 2b).
Unlike language hard constraints, bypassing rules that are simple hints is allowed.

Checking model conformance to a style guide is usually a human issue. Due to the
high cost of human reviews, the return on investment seems unsure. To reduce the
human burden, this paper details an approach to describe and implement an automati-
cally checkable style guide. We define an architecture on top of existing tools, and a
checking process.

2.4 Style Guide and Quality

A style guide defines the boundaries of the set of models owning the wished proper-
ties. It aims to help developers designing models with a better quality, for instance
using good practices. Of course, the quality of a model that does not meet all the style
guide rules is not definitely low; hence, the link between rule violation and quality is
to be clarified. Within a multilevel framework for quality assessment such as
ISO9126 [8] or[11], rule violation is at the lower level of metrics. Metrics are aggre-
gated to form attributes, which in turn are aggregated to form characteristics. The
quality of a model is not subject to conformance to some individual rules, but rather
to some statistical knowledge embodied as threshold values for attributes and charac-
teristics. These thresholds come from quality objectives that are set according to spe-
cific needs of applications. From the quality point of view, only deviations from these
values will lead to corrections, otherwise the model is considered to have the expected
quality. While the style guide notifies all rule violations, non-quality is detected only
when the combination of a set of metrics reach critical thresholds.

Both style guide and quality assessment detect failures, i.e., non-quality, but no-
body knows to what extent a model is good. To ease model comparison, each rule has

 Fig. 2. (a) Model evolution and interpretations (b) Reduction of interpretations

 Description and Implementation of a UML Style Guide 295

a gravity from warning to serious. Developers know that no serious error should re-
main in the end while warnings are acceptable.

In spite of the high theoretical maturity level of code quality, it remains an under-
exploited way to improve software. The main lessons learned from surveys show that
quality should be provided at no cost, with a suitable support, and should not induce
delays in the project. Therefore we should pay a great attention to the implementation
of the style guide: integration of the verifier within the modeling tool, very simple
checking process, flexible user interface, easy rule description, etc.

3 Rules

3.1 Identifying and Classifying Rules

Models are checked along several dimensions corresponding to different software
engineering areas such as methodology, good practices, or modeling. The semantics
of each area induces rules. Since this semantics is generally not described, experts
from these areas are in charge of rule identification. In addition to the dimension,
which is our main structuring property, each rule owns a set of properties aiming to
give further comments, to specify gravity, to link it with model parts or development
process stages, to specify and implement it, to describe correction actions, etc. The
rules below are classified by dimension, although they might often be attached to
several dimensions. As mentioned above, some syntactic rules can be stronger than
the actual semantic constraints to allow writing them in OCL. Rules’ description is
deliberately short and sometimes imprecise due to available space:

− Methodology rules come from method description, e.g., “Any communication
between actors and subsystem goes through an interface class” (USDP [9]). This
rule aims to contain changes to a set of well-identified classes when communica-
tion protocols between actors and subsystem are modified.

Within the development process, methodologies distinguish steps or phases such
as requirement elicitation, elaboration, or detailed design. Whatever the methodol-
ogy, these phases are required to identify moments in the life cycle of artifacts,
therefore levels of abstraction. The phase is used to select the set of rules to be ap-
plied to each part of a model at a given moment.

− Common methodology gathers rules that apply whatever the methodology. They
come from skills of experienced developers, e.g.: “A black box sequence diagram
only holds actors and a subsystem (definition)” or “A black box sequence diagram
only holds communications between actors and a subsystem, not between actors”.

− Consistency rules detect meaningless expressions in the modeling domain, e.g.,
“The initial stimulus in a sequence diagram is triggered by an Actor or a Port, i.e.,
neither a class instance nor a Component”. Based on redundancies in the model,
some rules detect inconsistencies, e.g., “Within a sequence diagram, actor-to-
subsystem interactions should correspond to associations between actors and use
cases of this subsystem”.

− Modeling style rules detect expressions that are generally meaningless in the mod-
eling domain. Unlike consistency rules, breaking these rules is tolerated, e.g.,
“Within any complete class model, a path through navigable associations should

296 M. Hindawi et al.

link the root class to any class (not a database schema)”. This rule requires marking
the root class in the model. The rule “Each ConnectableElement (from metamodel)
in the sequence diagram should be either a port or a class instance” reduces the ex-
pressive power forcing components to be connected through ports.

− Completeness rules check missing elements, e.g., “When the subsystem B is an
output actor of the subsystem A, then A should be an input actor in the description
of the subsystem B”, or “Each association actor-to-use case should be implemented
in at least one sequence diagram describing a scenario of this use case”.

− Good practices rules are often hints, e.g., “Cycles along class associations are to
be avoided” which aims to reduce coupling, or “To specify systematically bi-
directional navigability for associations is likely unnecessary”.

− Conventions rules are group agreements about syntactic forms, e.g., “When the
class of an attribute is represented on the same diagram, drawing the association is
mandatory” to avoid hidden associations.

− Architecture style rules aim to aid developers to meet software architecture styles
such as low-coupling/high-cohesion or Model-View-Controller, e.g., “A view
knows its model but the model does not know its views”.

− Refinement and trace related rules check consistency along the development
cycle and enforce links between model elements, e.g., “A sequence diagram should
be associated with a use case or a less detailed sequence diagram (traceability)”.

− Specification gap rules deal with non-standard UML. Modeling tools often allow
expressions that do not conform to the UML specifications. To deal with this issue,
a set of tool specific rules fulfills the gap between the tool and standard UML
specifications. This dimension avoids mixing up style guide rules with UML syn-
tactic constraints that tools do not check.

Since rules check a wide variety of issues, their violation does not have the same
gravity. We define three categories: error, warning and hint. When a model has no
meaning in the domain of modeling, the violation is an error to be corrected. A viola-
tion that might result in a further problem is a warning. When rules such as methodol-
ogy are hints to improve the modeling process, to correct them after model comple-
tion is not always desirable. Although there is a strong link between dimensions and
gravity, the gravity is not attached to the dimension.

3.2 Expressing Rules

First, rules are expressed in natural language. Next, they have to be formulated in a
formal language, preferably OCL, but non-experts generally find it difficult to use. To
allow non-experts to formalize rules, we propose a graphical approach on top of OCL
that rely on well-known notions of first-order logic quantification. The rule “Each
connected element in a white box sequence diagram should be either a port or an
instance of a class” is written:
 ∀x∈WBSeqDiag, IsConnectableElem(x) ⇒ IsPort(x) ∨ ∃y, IsClass(y)∧ x.class=y

where WBSeqDiag is a collection of model elements, IsT(x) is a predicate which is
true when x is an instance of T. The general form of this rule is:
 ∀x∈X, R1(x) ⇒ R2(x) ∨ ∃y, R3(y)

 Description and Implementation of a UML Style Guide 297

Based on quantifiers, our interface provides a limited set of standard forms that
ease description but whose expressive power is lower that the OCL one. The main
remaining issue is the link between model elements such as class or interaction, and
UML metamodel notions. To read and understand the meta-model is hard and re-
served to UML experts. In the implementation section, we propose an approach based
on rewriting rules that makes it easier to use metamodel notions.

Anyway, to avoid specifying the same rules again and again, a set of standard/
common built-in rules should be provided by tools implementing the style guide.
Thus, only specification gap rules and customized rules are to be specified.

4 Verification Process

The verification process lies on the architecture illustrated in Fig. 3. Rules to check
depend on the role of the user, the phase in the development process, temporary
choices of the developer, etc. Configurations express links between rules, model and
users and guide the verification process. To check the style guide and to ensure trace-
ability, we need to annotate the model with data such as the current phase or the actor
trigger (Fig. 4). Besides, the implementation of the verification process requires mark-
ing models to specify which rules should be checked, e.g., a developer knowing that
its model is incomplete is not interested in the related errors. To summarize, we need
two types of model tags: adornments to complete the model description, and error-
processing tags to control the verification process.

4.1 Architecture and Process

The Fig. 3 gives the main processes and data of the verification process:
• Rules are managed through an input interface. Rule properties are stored in a de-

scription file. The mapping dictionary maps rule concepts to metamodel notions or
OCL expressions (detailed further table 1).

• Configurations link together a model and sets of rules. These sets are defined
either using rule properties, e.g., phase=Elaboration and gravity= error, or manu-
ally for specific needs. For instance, a team member may decide to keep watch on a
particular set of rules.

Process Data

 Model Rules

Configurations

Verification

Correction/Tags

Update

User decision

Input
Interface

Description

Mapping
dictionary

Action
Translation

Fig. 3. Verification process

298 M. Hindawi et al.

• The verification checks rules based
on the configurations. When a check
fails, data about the rule and related
model elements are displayed. Ac-
cording to the rule, several choices
are possible: to annotate the model
with a tag, to invalidate the rule either in the configuration or in the model, to cor-
rect automatically the model. Let us take an example of rule with two diagnoses:
“A use case is triggered by only one actor”. When no trigger is specified, checking
results in a warning for incomplete model. When two triggers are specified (Fig. 4),
checking results in an error. The diagnosis depends on the number of triggers: 0 is
a warning, and greater than 1 an error. This solution avoids several descriptions of
the same rule, but each diagnosis holds its own message, gravity, correction, etc.

4.2 Implementation

To check easily the rules and to aid correction, the style guide is embodied in a IDE
(ongoing work on top of Eclipse). The integration into a tool reduces the cost of train-
ing and use. We need plug-in extensions to manage configurations, errors, and correc-
tions using model transformations, but the awkward point is rule description.

This section focuses on the design of a user interface aiming to hide the trickiest
aspects of OCL. To provide a simplified description of constraints in OCL while
keeping the same expressive power is difficult. Our approach is a compromise

Fig. 5. Rule description interface

Use
Actor1 Actor2

{trigger} {trigger}

Fig. 4. Rule violation: two triggering actors

 Description and Implementation of a UML Style Guide 299

between expressive power and simplicity: simple constraints are specified through the
provided interface, while intricate ones are to be written directly in OCL. The main
form of the user interface (Fig. 5) allows to expressing a subset of all the possible
OCL expressions only. Let us illustrate the description of the rule: “Each connected
element in a white box sequence diagram should be either a port or an instance of a
class”. An equivalent expression using quasi-natural language could be: “For any
white box sequence diagram wb, for any connected element e in wb, either e is a Port
or e is an instance of a class”. This later expression is close to first-order logic and its
structure fits well with our generic input form that reads as follow:
 For any Sequence diagram in Model diagrams such as White box is true
 For any connected element e , e is a Port or e is an instance of a Class
The next step is the translation into OCL. Quantifiers are translated into OCL opera-
tions such as forall, select, exists, etc. Notions such as Sequence diagram or Class are
to translate into notions of the UML metamodel.

Translating: For any Sequence diagram in Model diagrams such as White box is true

UML does not supply the notion of diagram: sequence diagrams are Interaction
owned by packages. From Package, the interactions are (Fig. 6):
 self.ownedMember->select(i | i.oclIsKindOf(Interaction))

We extract model packages from the metaclass NamedElement:
NamedElement::allPackages(): Set(Package) ; -- standard operation
 allPackages = NamedElement.allInstances->select(p | p.oclIsKindOf(Package))
Selecting Interactions:
NamedElement:: sdFilter() : Set(Interaction) ;
 sdFilter = allPackages()->iterate(p ; result :Set(Interaction)={} |

result->union(p.ownedMember->select(i | i.oclIsKindOf(Interaction))))
White Box is not a UML notion, we assume that GetKindOf('WhiteBox') returns true
for a WhiteBox Interaction. The set of White Box sequence diagrams is:
NamedElement:: sdWBFilter() : Set(Interaction) ;
 sdWBFilter = sdFilter()->select(i | i.GetKindOf(‘WhiteBox’))

NamedElement
name

type

0..1

ownedMember

namespace

0..1

*

nestedPackage
*

Element

Package

Classifier

InteractionFragment

Interaction

lifeline*

represents 0..1
ConnectableElement

Lifeline

Property

TypedElement TypeNamespace

Port ClassInterface

Fig. 6. Root of the required metamodel (from [15])

300 M. Hindawi et al.

Table 1. Mapping dictionary

Name OCL expression
Model dia-

grams
NamedElement:: Rule() : Boolean ;

 R1 = allPackages() - - built-in operation, diagrams are owned by packages
Sequence
diagram

 R2 = R1->iterate(p ; result :Set(Interaction)={} |
result->union(p.ownedMember->select(i | i.oclIsKindOf(Interaction))))

White Box R3 = R2->select(i | i.GetKindOf(‘WhiteBox’))

Connected
element

 Rule = R3.lifeline->forAll(f ; x:ConnectableElement= f.represents | R5)

Is A R5a = x.oclIsKindOf(Port)

Instance Of R5b = x.type.oclIsKindOf(Class)

or R5 = R5a or R5b

Translating: For any connected element e, e is a Port or e is an instance of a Class

An Interaction accesses to its ConnectableElement via represents. Either the Con-
nectableElement is a Port or it is a Property whose type is a Class:
 oclIsKindOf(Port) or type.oclIsKindOf(Class)

From Interaction, the complete expression is:
 lifeline->forAll(f |

f.represents.oclIsKindOf(Port) or f.represents.type.oclIsKindOf(Class)))

OCL final constraint:
NamedElement:: Rule() : Boolean ;
 Rule = sdWBFilter()->forAll(i | i.lifeline->forAll(f |

f.represents.oclIsKindOf(Port) or f.represents.type.oclIsKindOf(Class)))

To avoid any syntactic error, the interface is aided and users select values in lists,
e.g., when Model Diagrams is selected (Fig. 5a), the next filter list supplies only al-
lowed subsets. When Sequence diagram is selected, the filter allows WhiteBox. The
translation of the selected expressions into OCL is based on a rewriting principle
(Table 1): each element of a list has a value in the dictionary. We plan to build the
dictionary using an interface that lists the accessible item names in a context. For
instance in the metamodel Fig. 6, from Interaction the three only choices are name,
lifeline and namespace. This work is close to the definition of a subset of UML [16].
The right area of the interface (Fig. 5c) deals with additional properties and corrective
actions when the checked element does not conform to the rule.

5 Related Works

Style guide rules come from various sources. The UML specification [15] is a use-
ful source. UML books such as [1][2] include recommendations or style guides that
help making “better” models. Methodology books such as USDP [9] provide tips and
rules. Modeling conventions in [12] correspond to several dimensions within our
classification. These modeling conventions proved to be useful to reduce model

 Description and Implementation of a UML Style Guide 301

“defects”, which confirms that a style guide is an important issue. In addition, papers
related to rules or metrics for UML models are interesting sources [13].

A tool may enforce frozen built-in rules, which relieve from the burden of rule de-
scription but prevent customization. Using templates, for instance related to a meth-
odology confine the user in a frame, but remaining dimensions are not checked [7].
To summarize, templates enforce a subset of the required rules only, therefore a pref-
erable way will be to include this subset into a more flexible solution.

The verification of style guides described in natural language within books such
as [1] must be done manually. Works aiming at automating the verification process
should express rules in a formal language. The automated verification on demand is
the best solution but proposals are still rare [5][7]. In [7], a checker prototype fully
automatically verifies models from rules described using a specific language. Al-
though rule description is different, this work is close to our project. We agree
with [5] that find it difficult to write rules in OCL. Instead of defining a new language
as in [7], we provide a user interface to aid specifying rules that are next translated
into OCL. This way we keep a standard language while aiding rule description. In this
direction, some works aim to facilitate OCL writing: VisualOCL [3][10] visualizes
OCL expressions in an alternative notation. It provides additional information, which
increases the usability of OCL. However, to use such tool implies experience in OCL.
We try to overcome this issue by proposing an interface easy to use, at a high abstrac-
tion level, but rather far from OCL, which implies an additional and tricky translation
process.

6 Conclusion

This project is under development1 and some issues are pending. The advance of our
solution lies in the integration of several technical artifacts to form a complete meth-
odology and tooling. This integration associated with automated checking and style
guide customization is a necessary condition for actual use in companies. Some par-
ticularly relevant elements in our approach include:
− Selective checking of model parts using tags, which avoid re-checking of rules and

messages related to incomplete model parts, therefore lighten the user burden;
− Selective checking according to the current phase in the methodology;
− Customization of the set of active rules in a configuration file according to devel-

oper role and experience, application domain, expected “quality”, etc.
− Aid for correcting models: when a rule is violated, the developer may choose a

predefined action including model change by applying patterns;
− Aid for defining rules: the graphical interface helps project managers in the defini-

tion of rules for their own style guide.

This work is part of a grant aiming to assess model quality. The companies in-
volved in the project will help us to tune quality assessment from metrics. Model
quality assessment is relative to application quality requirements and developers do
not always know the important quality criteria. A style guide brings the educational

1 Partly financed by the grant PACTE QUALITE with the Rhône-Alpes regional government.

302 M. Hindawi et al.

aspect needed to help increasing models’ “good properties”: it detects all rules
violations but also provides hints, warns to avoid potential errors, and may include
company know-how. Finally, a style guide is a quite necessary complement to put
into practice quality assessment.

References

1. Ambler, S.W.: The Elements of UML 2.0 Style. Cambridge University Press, Cambridge
(2005)

2. Booch, G., Rumbaugh, J., Jacobson, I.: The Unified Modeling Language User Guide. Ad-
dison-Wesley, Reading (1998)

3. Bottoni, P., Koch, M., Parisi-Presicce, F., Taentzer, G.: A visualization of OCL using col-
laborations. In: Gogolla, M., Kobryn, C. (eds.) UML 2001. LNCS, vol. 2185, pp. 257–271.
Springer, Heidelberg (2001)

4. Caplat, G., Sourrouille, J.L.: MDA: Model Mapping using Formalism Extension. IEEE
Software 22(2), 44–51 (2005)

5. Farkas, T., Hein, C., Ritter, T.: Automatic Evaluation of Modeling Rules and Design
Guidelines. In: Proc. of the Workshop From code centric to Model centric Soft. Eng.,

 http://www.esi.es/modelware/c2m/papers.php
6. Harel, D., Rumpe, B.: Modeling Languages: Syntax, Semantics and All That Stuff, TR

MCS00-16, The Weizmann Institute of Science (2000)
7. Hnatkowska, B.: Verification of Good Design Style of UML Models. In: Proc. Int. Conf.

Information System Implementation and Modeling (2007)
8. ISO, International Organization for Standardization, ISO 9126-1:2001, Software engineer-

ing – Product quality, Part 1: Quality model (2001)
9. Jacobson, I., Booch, G., Rumbaugh, J.: The Unified Software Development Process. Addi-

son-Wesley, Reading (1999)
10. Kiesner, C., Taentzer, G., Winkelmann, J.: Visual OCL: A Visual Notation of the Object

Constraint Language. Technical Report 2002/23, Tech. Univ. of Berlin (2002)
11. Kuzniarz, L., Pareto, L., Sourrouille, J.-L., Staron, M.: Third intenational workshop on

quality in modeling. In: Giese, H. (ed.) MoDELS 2007 Workshops. LNCS, vol. 5002, pp.
271–274. Springer, Heidelberg (2008)

12. Lange, C.F.J., DuBois, B., Chaudron, M.R.V., Demeyer, S.: Experimentally investigating
the effectiveness and effort of modeling conventions for the UML. CS-Report 06-14, Tech.
Univ. Eindhoven (2006)

13. Malgouyres, H., Motet, G.: A UML model consistency verification approach based on
meta-modelling formalization. In: Biham, E., Youssef, A.M. (eds.) SAC 2006. LNCS,
vol. 4356, pp. 1804–1809. Springer, Heidelberg (2007)

14. Sourrouille, J.-L., Caplat, G.: A Pragmatic View about Consistency Checking of UML
Model, Work. Consistency Problems in UML-Based Software Dev., pp. 43–50 (2003)

15. UML, OMG Unified Modeling Language, Version 2.1.2 (2007)
16. Sourrouille, J.L., Hindawi, M., Morel, L., Aubry, R.: Specifying consistent subsets of UML.

In: Proc. Educators Symposium, Models 2008, pp. 26–38 (2008) ISBN 83-916444-8-0
17. Hindawi, M., Morel, L., Aubry, R., Sourrouille, J.L.: Description and Implementation of a

Style Guide for UML. In: Proc. 3rd Workshop on Quality in Modeling, IT Univ Göteborg
RR 2008:02, pp. 31–45 (2008) ISSN 1654-4870

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 303–313, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Empirical Validation of Measures for UML Class
Diagrams: A Meta-Analysis Study

M. Esperanza Manso1, José A. Cruz-Lemus2, Marcela Genero2, and Mario Piattini2

1 GIRO Research Group, Department of Computer Science, University of Valladolid,
Campus Miguel Delibes, E.T.I.C., 47011, Valladolid, Spain

manso@infor.uva.es
2 ALARCOS Research Group, Department of Technologies and Information Systems,

University of Castilla-La Mancha, Paseo de la Universidad, 4, 13071 Ciudad Real, Spain
{JoseAntonio.Cruz,Marcela.Genero,Mario.Piattini}@uclm.es

Abstract. The main goal of this paper is to show the findings obtained through
a meta-analysis study carried out with the data obtained from a family of five
controlled experiments performed in academic environments. This family of
experiments was carried out to validate empirically two hypotheses applied to
UML class diagrams, which investigate 1) The dependence between the
structural complexity and size of UML class diagrams on one hand and their
cognitive complexity on the other, as well as 2) The dependence between the
cognitive complexity of UML class diagrams and their comprehensibility and
modifiability. We carried out a meta-analysis, as it allows us to integrate the in-
dividual findings obtained from the execution of a family of experiments carried
out to test the aforementioned hypotheses. The meta-analysis reveals that the
measures related to associations and generalizations have a strong correlation
with the cognitive complexity, and that the cognitive complexity has a greater
correlation to comprehensibility than to modifiability. These results have impli-
cations from the points of view of both modeling and teaching, revealing which
UML constructs are most influential when modelers have to comprehend and
modify UML class diagrams. In addition, the measures related to associations
and generalizations could be used to build prediction models.

Keywords: meta-analysis, experiments, UML class diagrams, comprehensibil-
ity, modifiability, structural complexity, size.

1 Introduction

The Model-Driven Development paradigm (MDD) [1] is an emerging approach for
software development which is of ever-increasing interest to both the research com-
munity and software practitioners. MDD considers models as end-products rather than
simply as means to produce software. In this context the quality focus has shifted
from code to models, given that the quality of the models obtained through transfor-
mations is of great importance. This is because it will ultimately determine the quality
of the software systems produced. Since, in the context of MDD, maintenance must
be done on models, we are concerned about sub-characteristics of maintainability,
such as the comprehensibility and modifiability of UML class diagrams. Class

304 M.E. Manso et al.

diagrams constitute the backbone of a system design and they must be comprehensi-
ble and flexible enough to allow the modifications that reflect changes in the things
they model to be incorporated easily. We have based our work on the model shown in
Figure 1 [2, 3]. This model constitutes a theoretical basis for the development of
quantitative models relating to internal and external quality attributes and has been
used as the basis for a great amount of empirical research into the area of structural
properties of software artefacts [4-6]. In the study reported here, we have assumed a
similar representation for UML class diagrams. We hypothesize that the structural
properties (such as structural complexity and size) of a UML class diagram have an
effect on its cognitive complexity. Cognitive complexity can be defined as the mental
burden placed by the artefact on the people who have to deal with it (e.g. modellers,
maintainers). High cognitive complexity will result in the production of an artefact
that has reduced comprehensibility and modifiability, which will consequently affect
its maintainability.

The main motivation behind the research we have been carrying out is to validate
this model, formulating two main hypotheses based on each of the arrows in Figure 1:

Size and structural complexity of UML class diagrams affect cognitive complexity
Cognitive complexity affects the comprehensibility and modifiability of UML

class diagrams.
To measure the content of each box of Figure 1 we have defined some measures,

which will be introduced in Section 3. In order to test such hypotheses, we carried out
5 experiments, which constitute a family of experiments [7, 8].

The data analysis carried out in each individual experiment did not allow us to ob-
tain conclusive results. This led us to carry out a meta-analysis study. Meta-analysis
has been recognised as an appropriate way to aggregate or integrate the findings of
empirical studies in order to build a solid body of knowledge on a topic based on em-
pirical evidence [9-11]. Moreover, the need for meta-analysis is gaining relevance in
empirical research, as is demonstrated by the fact that it is a recurrent topic in various
forums related to Empirical Software Engineering. Meta-analysis is a tool for extract-
ing these global conclusions from families of experiments, as it allows us to estimate
the global effect size of the whole family, as well as to measure the accuracy of this
measure and to evaluate the significance of effect size with respect to the hypotheses
under study.

External Quality Attributes - ISO 9126

Internal Quality
Attributes
(size and
structural

complexity)

Cognitive

Complexity

Functionality Reliability

Usability

Portability

Efficiency

Maintainability
(Comprehensibility,
Modifiability)

affects affects

Fig. 1. Relationship between structural properties, cognitive complexity, and external quality
attributes, based on [1, 3]

 Empirical Validation of Measures for UML Class Diagrams: A Meta-Analysis Study 305

The main goal of the current paper is to present a meta-analysis study that would
serve to integrate the results obtained from previous experimentation. In this way,
meta-analysis contributes to the obtaining of a solid body of knowledge concerning
the usefulness of the measures for UML Class diagrams.

The remainder of the paper is organised as follows: Section 2 describes the family
of experiments. The Meta-analysis study is presented in Section 3. Finally, the last
section presents some concluding remarks and outlines our future work.

2 The Family of Experiments

Isolated studies (or experiments) hardly ever provide enough information to answer
the questions posed in a research study [10, 12, 13]. Thus, it is important for experi-
ments to be part of families of studies [12]. Common families of studies allow re-
searchers to answer questions that are beyond the scope of individual experiments,
and to generalize findings across studies. In this work we will comment on five ex-
periments, whose main contextual characteristics are summarized in Table 1.

Table 1. Characteristics of the experiments

Study #Subjects University Date Year

E1 72 March 2003

R1 28
University of Seville (Spain)

March 2003
4th

E2 38 Univ. of Castilla-La Mancha (Spain) April 2003 3rd
R21 23 University of Sannio (Italy) June 2003 4th
R22 71 University of Valladolid (Spain) Sept. 2005 3rd

To perform the experiments, we followed the guidelines provided in [14, 15].

2.1 Planning of Experiments

In this sub-section we will define the common framework of all the studies:
1. Preparation. The family has the goal of testing both the hypotheses presented in

the introduction.
• To analyze the structural complexity of UML class diagrams with respect to

their relationship with cognitive complexity from the viewpoint of software
modelers or designers in an academic context.

• To analyze the cognitive complexity of UML class diagrams with respect to
their relationship with comprehensibility and modifiability from the viewpoint
of software modelers or designers in an academic context.

2. Context definition. In these studies, we have used students as experimental sub-
jects. The tasks to be performed did not require high levels of industrial experi-
ence, so we believed that these subjects might be considered appropriate, as is
pointed out in several works [12, 16]. In addition, working with students implies a
set of advantages, such as the facts that the students’ prior knowledge is fairly
homogeneous, a large number of subjects is readily available, and there is the pos-
sibility of testing experimental design and initial hypotheses [17]. A further advan-
tage of using novices as subjects in experiments on understandability is that the

306 M.E. Manso et al.

cognitive complexity of the object under study is not hidden by the subjects’
experience.

3. Material. The experimental materials consisted of a set of UML class diagrams
suitable for the family goals. The selected UML class diagrams covered a wide
range of the metrics values, considering three types of diagrams: Difficult to main-
tain (D), Easy to Maintain (E) and Moderately difficult to maintain (M). Some
were specifically designed for the experiments and others were obtained from real
applications. Each diagram had some documentation attached, containing, among
other things, four comprehension and four modification tasks.

2.2 How the Individual Experiments were Conducted

We shall now explain the experimental plan of the different members of the family of
experiments. The variables considered for measuring the structural complexity and
size were the set of 11 measures presented in Table 7 in Appendix A. The CompSub
measure is the subjective perception given by the subjects with regard to the complex-
ity of the diagrams they have to work with during the experimental task. We consider
CompSub to be a measure of cognitive complexity. The allowable values of this vari-
able are: Very simple, Moderately simple, Average, Moderately complex and Very
complex. To measure the Comprehensibility and Modifiability of UML class dia-
grams, we considered the time (in seconds) taken by each subject to complete the
comprehensibility and modifiability tasks. We called these measures the Comprehen-
sibility and Modifiability time.

We used a counter-balanced between-subjects design, i.e., each subject works with
only one diagram. The diagrams were randomly assigned and each diagram is consid-
ered by the same number of subjects.

We formulated the following hypotheses, which are derived from the family’s goals:
- H0,1: The structural complexity and size of UML class diagrams are not corre-

lated with the cognitive complexity. H1,1: ¬ H0,1
- H0,2: The cognitive complexity of UML class diagrams is not correlated with

their comprehensibility and modifiability. H1,2: ¬ H0,2
All the experiments were supervised and time-limited. More details can be found

in [7, 8]. Finally, we used SPSS [18] to perform all the statistical analyses and the tool
Comprehensive Meta Analysis [19] was employed to perform the meta-analysis.

2.3 Experiment 1 (E1) and Replication (R1)

On testing the hypotheses we obtained the following findings:
- The correlation between the CompSub variable and the 11 metrics was signifi-

cant at a 0.05 level for E1. We also obtained a significant correlation for R1 in
all cases, with the exception of the NM, NGen and MaxDIT metrics.

- The subjective complexity seems to be positively correlated to the effort
needed to comprehend UML class diagrams, but the results are significant
only for E1 (see Table 2). At the same time, there is no correlation with the ef-
fort needed to modify the diagrams. A possible explanation for this could be
that the subjects base their perception on the difficulty of the first tasks that
they perform, which in this case are the comprehension ones.

 Empirical Validation of Measures for UML Class Diagrams: A Meta-Analysis Study 307

Table 2. Results related to goal 2 for E1 & R1

E1 (n=62) R1(n= 22)
Variables correlated

ρspearman p-value ρspearman p-value
CompSub vs Comprehensibility 0.266 0.037 0.348 0.111

CompSub vs Modifiability 0.132 0.306 0.270 0.217

2.4 Experiment 2 (E2) and its Replications (R21 and R22)

In these studies, goals and variables are the same as in the previous ones, but the dia-
grams used were different, and context and design have also been improved. More de-
tailed information about them can be found in [8].

Apart from the family’s variables, some other variables have been added, in order
to validate the results:

- CompCorrectness = # correct comprehension tasks / # total tasks performed
- CompCompleteness = # correct comprehension tasks / # total tasks to per-

form
- ModifCorrectness = # correct modification tasks / # total tasks performed
- ModifCompleteness = # correct modification tasks / # total tasks to perform

Again, we use a between-subjects design, but in this case it has been improved by
blocking the subjects’ experience. A pre-test was performed, the results of which led
to the subjects’ being divided into two groups. Each diagram was then assigned to the
same number of subjects from each group. More details about this process can be
found in [8].

The Comprehensibility and Modifiability measures were only included when the
tasks performed had a minimum quality level, and it was for this reason that we used the
newly introduced variables, presented previously. The subjects who attained under 75%
in correctness and completeness were excluded from the study. In fact their exclusion
improved the behaviour of the dependent variables, i.e, symmetry and outliers.

On testing the hypotheses we obtained the following findings:

Table 3. Goal 1 results for E2, R21 & R22

Study Significantly correlated metrics
E2 NC, NAssoc, NGen, NGenH, MaxDIT (5 out of 11)

R21 All except for NM, NGenH and MaxAgg (8 out of 11)
R22 All except for NM (10 out of 11)

Table 4. Results related to goal 2 for E2, R21 & R22

E2 R21 R22
Variables
correlated spearman

p-
value

N spearman
p-

value
N spearman

p-
value

N

CompSub vs
Comprehensibility

0.343 0.049 33 0.410 0.065 0.353 0.003

CompSub vs
Modifiability

0.337 0.099 25 0.156 0.500
21

0.165 0.173
70

308 M.E. Manso et al.

- We have favourable results which admit a correlation between the structural
and the cognitive complexities of UML class diagrams. Most of the metrics
are significantly correlated with the subjective complexity in the different
studies; especially those related to inheritance hierarchies (see Table 3).

- The results are also in favour of the hypothesis that relates cognitive complex-
ity to the comprehensibility of UML class diagrams (see Table 4).

2.5 Threats to the Validity of the Family of Experiments

The main threats to the validity of the family are the following:
- Conclusions validity. The number of subjects in R1, E2 and R21 is quite low,

and subjects were selected by convenience. Our conclusions must therefore be
applied to the population represented by these subjects.

- Internal validity. We have found correlation between the variables, which
implies the possibility of the existence of that causality, but not the causality
itself. Moreover, R21 materials were written in English, which is not the
mother language of the subjects (Italians). This fact may have increased the
times taken to perform the tasks, especially those of modification.

- External validity. It would be advisable to perform some replications with
data extracted from real projects, in an effort to generalise the results obtained.

3 Meta-analysis Study

There are several statistical methods that allow us to accumulate and interpret a set of
results obtained through different inter-related experiments, since they check similar
hypotheses [20-24]. There are three main ways in which to perform this process:
meta-analysis, significance level combination and vote counting.

According with the characteristic of our data, in the present study we used meta-
analysis, which is a set of statistical techniques that allow us to combine the different
effect size measures (or treatment effect) of the individual experiments. There are
several metrics to obtain this value, e.g. the means difference and the correlation coef-
ficients, among others [21]. The objective is to obtain a global effect, the treatment ef-
fect of all experiments. As effect size measures may come from different environ-
ments and may even not be homogeneous, it is necessary to obtain a standardized
measure of each one. For example, the dependence between two variables could be
measured by different coefficients or scales The global effect size is obtained as a
weighted average of standardized measures, in which the most commonly used
weights are the sample size or the standard deviation. Together with the estimation of
the global effect size, we can provide an estimated confidence interval and a p-value
which allows us to decide on the meta-analysis hypotheses. We can find several ap-
plications of this technique in Empirical Software Engineering [25, 26].

We have a family of experiments whose main goals are:
1. To study the influence of metrics on the cognitive complexity of UML class dia-

grams.
2. To study the influence of cognitive complexity on the comprehensibility and modi-

fiability of UML class diagrams.

 Empirical Validation of Measures for UML Class Diagrams: A Meta-Analysis Study 309

The use of meta-analysis will allow us to extract global conclusions, despite the
fact that some of the experimental conditions are not the same. As we have mentioned
previously, we will need to standardize the effect sizes. In this meta-analysis we used
correlation coefficients (ri) that, once transformed (Fisher transformation), provide the
effect sizes that have a Normal distribution (zi), what makes them easier to use. The
global effect size is obtained using the Hedges’ g metric [21, 27], that is a weighted
mean which has the proportional weights to the experiment size (equation 1).

∑
∑

=

i
i

i
ii

w

zw
Z Wi = 1/(ni-3) (1)

The higher the value of Hedges’ g is, the higher the corresponding correlation coef-
ficient is too. For studies in Software Engineering, we can classify effect sizes into
small, medium and large [27]. We rely on the use of the five empirical studies, previ-
ously presented in this work, which means that the conclusions about our goals will
be extracted from five different results.

3.1 Meta-analysis Results

Firstly, a meta-analysis for each metric-CompSub pair will be carried out, taking into
account the fact that the hypothesis test is one-tailed, i.e., we consider as null-
hypothesis that the correlation is now above zero. In Table 5 we present the global es-
timation of the correlation coefficient, a confidence interval at 95%, the p-value and
the value for Hedges’ g, including a classification of the effect size as large (L), me-
dium (M) or small (S).

The results observed are in favour of the existence of a positive correlation be-
tween cognitive complexity and the 11 metrics that measure the structural complexity
and size of UML class diagrams. In fact, most of the effect sizes are medium or large,
with the exception of NM, which is small. The size metrics that have most influence
upon the cognitive complexity are NC and NA, while the complexity metrics that
have most influence upon cognitive complexity are related to aggregations (NAgg)
and generalizations (NGen and MaxDIT). We can conclude that those diagrams with
many classes and attributes will have an increased cognitive complexity. Moreover,
class diagram models using many inheritance and aggregation mechanisms will also
have an increased cognitive complexity.

With regard to the hypotheses derived from goal 2, Table 6 shows that we can ad-
mit the existence of correlation between the cognitive complexity and the two meas-
ures, Comprehensibility and Modifiability, which measure quality attributes of UML
class diagrams.

The effect sizes are medium in both cases, but the correlation estimation of Com-
prehensibility is larger than the correlation of Modifiability. So we can conclude that,
the more cognitive complexity a diagram contains, the more difficult it will be to
comprehend and modify.

As an example, Figure 2 presents in diagram form the meta-analysis of the rela-
tionship of a couple of metrics and the CompSub measure, and the relationship be-
tween their comprehensibility and cognitive complexity.

310 M.E. Manso et al.

Table 5. Meta-analysis of metrics-CompSub

H0: ρ≤0
Correlation (ρ)

Global effect
size

Lower
limit

Upper
limit p-value Hedges’g

NC 0.566 0.464 0.653 0.0000 1.322(L)
NA 0.541 0.435 0.632 0.000 1.219(L)
NM 0.177 0.040 0.307 0.012 0.339(S)

NAssoc 0.566 0.465 0.653 0.000 1.318(L)
NAgg 0.481 0.368 0.581 0.000 1.051(M)
NDep 0.484 0.371 0.584 0.000 1.060(M)
NGen 0.484 0.371 0.584 0.000 1.018 (L)

NGenH 0.422 0.302 0.529 0.000 0.903 (M)
NAggH 0.393 0.270 0.504 0.000 0.814 (M)
MaxDIT 0.492 0.379 0.590 0.000 1.080 (L)

MaxHAgg 0.360 0.233 0.474 0.000 0.734 (M)

Table 6. Meta-analysis of CompSub-Comprehensibility and Modifiability time

H0: 0 Correlation ()
gobal effect size

Lower
limit

Upper
limit p-value Hedges’g

Comprehensibility
Time

0.330 0.200 0.449 0.000 0.684 (M)

Modifiability Time 0.186 0.044 0.320 0.011 0.368(M)

Fig. 2. Meta-analysis for NC-CompSub, NAssoc-CompSub and CompSub-Comprehensibility

4 Conclusions

The main goal of this work has been that of validating a theoretical model which re-
lates the structural complexity and size of UML class diagrams and cognitive com-
plexity to two of their external quality attributes: comprehensibility and modifiability
(Figure 1). For that purpose, we carried out a meta-analysis study with the data ob-
tained from a family of five experiments. The meta-analysis results are in favour of
the model under inspection with regard to the two goals being pursued:
- Goal 1: structural complexity is correlated with cognitive complexity, espe-

cially with that related to associations and generalizations. An increase in the
number of classes and attributes within classes also increases the cognitive
complexity of UML class diagrams.

 Empirical Validation of Measures for UML Class Diagrams: A Meta-Analysis Study 311

- Goal 2: cognitive complexity influences both the comprehensibility time and modifi-
ability time of UML class diagrams, but this is especially true in the former case.

These results are relevant, as they point to a means of controlling the level of certain
quality attributes of UML class diagrams from the modelling phase. The findings also
have implications, both practically and in terms of teaching, providing information
about which UML constructs may have more implications in the effort to understand
and maintain UML class diagrams. When alternative designs of UML class diagrams
exist, it could be advisable to select the one which minimizes these constructs.

Moreover, the measures related to associations and generalizations could be used
to build prediction models, to evaluate how the time taken to understand or modify an
UML class diagram increases; we have done this prediction modeling in [8]. In future
work we plan to refine the prediction models obtained, using the data obtained in the
whole family of experiments.

Further experimentation is needed to confirm the findings of the current study, im-
proving different issues: 1) Increasing the class diagram sample, 2) Working with
practitioners, 3) Improving the modifying tasks and 4) Investigating other metrics to
do with cognitive complexity.

Also pending is the carrying out of a similar study with the measures we have de-
fined for UML statechart diagrams [28] and OCL expressions [29].

Acknowledgements

This research is part of the ESFINGE project (TIN2006-15175-C05-05) financed by
the “Ministerio de Educación y Ciencia (Spain)”, the IDONEO project (PAC08-0160-
6141) financed by “Consejería de Ciencia y Tecnología de la Junta de Comunidades
de Castilla-La Mancha”.

References

1. Atkinson, C., Kühne, T.: Model Driven Development: a Metamodeling Foundation. IEEE
Transactions on Software Engineering 20, 36–41 (2003)

2. Briand, L., Morasca, S., Basili, V.: Defining and Validating Measures for Object-Based
High-Level Design. IEEE Transactions on Software Engineering 25, 722–743 (1999)

3. ISO-IEC, ISO/IEC 9126. Information Technology - Software Product Quality (2001)
4. El-Emam, K., Melo, W.: The Prediction of Faulty Classes Using Object-Oriented Design

Metrics, National Research Council of Canada (1999)
5. El-Emam, K., Benlarbi, S., Goel, N., Rai, S.: The Confounding Effect of Class Size on the

Validity of Object-Oriented Metrics. IEEE Transactions on Software Engineering 27(7),
630–650 (2001)

6. Poels, G., Dedene, G.: Measures for assessing dynamic complexity aspects of object-
oriented conceptual schemes. In: Laender, A.H.F., Liddle, S.W., Storey, V.C. (eds.) ER
2000. LNCS, vol. 1920, pp. 499–512. Springer, Heidelberg (2000)

7. Genero, M., Manso, M.E., Piattini, M.: Early Indicators of UML Class Diagrams Under-
standability and Modifiability. In: ACM-IEEE International Symposium on Empirical
Software Engineering (2004)

8. Genero, M., Manso, M.E., Visaggio, A., Canfora, G., Piattini, M.: Building Measure-
Based Prediction Models for UML Class Diagram Maintainability. Empirical Software
Engineering 12, 517–549 (2007)

9. Lipsey, M., Wison, D.: Practical Meta-Analysis. Sage, Thousand Oaks (2001)

312 M.E. Manso et al.

10. Miller, J.: Applying Meta-Analytical Procedures to Software Engineering Experiments.
Journal of Systems and Software 54, 29–39 (2000)

11. Pickard, L.M.: Combining Empirical Results in Software Engineering, University of Keele
(2004)

12. Basili, V., Shull, F., Lanubile, F.: Building Knowledge through Families of Experiments.
IEEE Transactions on Software Engineering 25, 456–473 (1999)

13. Shull, F., Carver, J., Travassos, G., Maldodano, J., Conradi, R., Basili, V.: Replicated
Studies: Building a Body of Knowledge about Software Reading Techniques. Lecture
Notes on Empirical Software Engineering, pp. 39–84. World Scientific, Singapore (2003)

14. Wohlin, C., Runeson, P., Hast, M., Ohlsson, M.C., Regnell, B., Wesslen, A.: Experimentation in
Software Engineering: an Introduction. Kluwer Academic Publisher, Dordrecht (2000)

15. Juristo, N., Moreno, A.: Basics of Software Engineering Experimentation. Kluwer Aca-
demic Publishers, Dordrecht (2001)

16. Höst, M., Regnell, B., Wohlin, C.: Using Students as Subjects - a Comparative Study of
Students & Professionals in Lead-Time Impact Assessment. In: 4th Conference on Empiri-
cal Assessment & Evaluation in Software Engineering (EASE 2000). Keele, UK (2000)

17. Sjoberg, D.I.K., Hannay, J.E., Hansen, O., Kampenes, V., Karahasanovic, A., Liborg,
N.K., Rekdal, A.C.: A Survey of Controlled Experiments in Software Engineering. IEEE
Transactions on Software Engineering 31(9), 733–753 (2005)

18. SPSS, SPSS 12.0, Syntax Reference Guide. SPSS Inc.: Chicago, USA (2003)
19. Biostat, Comprehensive Meta-Analysis v2 (2006)
20. Glass, G.V., McGaw, B., Smith, M.L.: Meta-Analysis in Social Research. Sage Publica-

tions, Thousand Oaks (1981)
21. Hedges, L.V., Olkin, I.: Statistical Methods for Meta-Analysis. Academia Press (1985)
22. Rosenthal, R.: Meta-Analytic Procedures for Social Research. Sage Publications, Thou-

sand Oaks (1986)
23. Sutton, J.A., Abrams, R.K., Jones, R.D., Sheldon, A.T., Song, F.: Methods for Meta-

Analysis in Medical Research. John Wiley & Sons, Chichester (2001)
24. Wolf, F.M.: Meta-Analysis: Quantitative Methods for Research Synthesis. Sage Publica-

tions, Thousand Oaks (1986)
25. Dybå, T., Arisholm, E., Sjøberg, D.I.K., Hannay, J.E., Shull, F.: Are Two Heads Better

than One? On the Effectiveness of Pair Programming. IEEE Software 24(6), 10–13 (2007)
26. Miller, J., McDonald, F.: Statistical Analysis of Two Experimental Studies, University of

Strathclyde (1998)
27. Kampenes, V., Dybå, T., Hannay, J.E., Sjoberg, D.I.K.: A Systematic Review of Effect

Size in Software Engineering Experiments. Information and Software Technology 49(11-
12), 1073–1086 (2007)

28. Cruz-Lemus, J.A., Genero, M., Piattini, M.: Metrics for UML Statechart Diagrams. In:
Genero, M., Piattini, M., Calero, C. (eds.) Metrics for Software Conceptual Models. Impe-
rial College Press, UK (2005)

29. Reynoso, L., Genero, M., Piattini, M.: Measuring OCL Expressions: An approach based
on Cognitive Techniques. In: Genero, P.A.C. (ed.) Metrics for Software Conceptual Mod-
els. Imperial College Press, UK (2005)

30. Genero, M., Piattini, M., Calero, C.: Early Measures for UML Class Diagrams.
L’Object 6(4), 495–515 (2000)

31. Genero, M., Poels, G., Manso, M.E., Piattini, M.: Defining and Validating Metrics for
UML Class Diagrams. In: Genero, M., Piattini, M., Calero, C. (eds.) Metrics for Software
Conceptual Models. Imperial College Press, UK (2005)

 Empirical Validation of Measures for UML Class Diagrams: A Meta-Analysis Study 313

32. Chidamber, S., Kemerer, C.: A Metrics Suite for Object-Oriented Design. IEEE Transac-
tions on Software Engineering 20, 476–493 (1994)

Appendix A
After studying the UML metamodel, and having reviewed the literature concerning existing
measures, we proposed a set of eight measures for the structural complexity of UML class
diagrams [30, 31]. The proposed measures are related to the usage of UML relationships, such
as associations, dependencies, aggregations and generalizations. In the study reported in this
work, we have also considered traditional OO measures, such as size measures (see Table 7).

Table 7. Measures for UML class diagrams

 Measure Name Measure definition
Number of Classes
(NC)

The total number of classes in a class diagram.

Number of Attributes
(NA)

The number of attributes defined across all classes
in a class diagram (not including inherited attributes
or attributes defined within methods). This includes

attributes defined at class and instance level.

S
iz

e
m

ea
su

re
s

Number of Methods
(NM)

The total number of methods defined across all
classes in a class diagram, not including inherited
methods (as this would lead to double counting).

This includes methods defined at class and instance
level.

Number of Associations
(NAssoc)

The total number of association relationships in a
class diagram.

Number of Aggrega-
tions (NAgg)

The total number of aggregation relationships (each
“whole-part” pair in an aggregation relationship).

Number of Dependen-
cies (NDep)

The total number of dependency relationships.

Number of Generaliza-
tions (NGen)

The total number of generalization relationships
(each “parent-child” pair in a generalization rela-

tionship).
Number of Generaliza-
tion Hierarchies
(NGenH)

The total number of generalization hierarchies, i.e.
it counts the total number of structures with gener-

alization relationships.
Number of Aggrega-
tion Hierarchies
(NAggH)

The total number of aggregation hierarchies, i.e. it
counts the total numbers of “whole-part” struc-

tures within a class diagram.

Maximum DIT
(MaxDIT).

The maximum DIT value obtained for each class of
the class diagram. The DIT value for a class within
a generalization hierarchy is the longest path from

the class to the root of the hierarchy [32].

S
tr

uc
tu

ra
l c

om
pl

ex
ity

 m
ea

su
re

s

Maximum HAgg
(MaxHAgg)

The maximum HAgg value obtained for each class
of the class diagram. The HAgg value for a class

within an aggregation hierarchy is the longest path
from the class to the leaves.

First Workshop on Transforming and Weaving
Ontologies in Model Driven Engineering

(TWOMDE 2008)

Fernando Silva Parreiras1, Jeff Z. Pan2, Uwe Assmann3, and Jakob Henriksson3

1 ISWeb — Information Systems and Semantic Web,
Institute for Computer Science, University of Koblenz-Landau

Universitaetsstrasse 1, Koblenz 56070, Germany
parreiras@uni-koblenz.de

2 Department of Computing Science, The University of Aberdeen
Aberdeen AB24 3UE
jpan@csd.abdn.ac.uk

3 Institute for Software- and Multimedia-Technology, TU Dresden
D-01062 Dresden, Germany

{uwe.assmann,jakob.henriksson}@tu-dresden.de

Abstract. The First International Workshop on Transforming and
Weaving Ontologies in Model Driven Engineering (TWOMDE 2008),
affiliated with the 11th International Conference on Model Driven
Engineering Languages and Systems (MoDELS2008), brought together
researchers and practitioners from the modeling community with expe-
rience or interest in MDE and in Knowledge Representation to discuss
about: (1) how the scientific and technical results around ontologies, on-
tology languages and their corresponding reasoning technologies can be
used fruitfully in MDE; (2) the role of ontologies in supporting model
transformation; (3) and how ontologies can improve designing domain
specific languages.

1 Introduction

As Model Driven Engineering spreads, disciplines like model transformation and
domain specific modeling become essential in order to support different kinds
of models in an model driven environment. Understanding the role of ontol-
ogy technologies like knowledge representation, automated reasoning, dynamic
classification and consistence checking in these fields is crucial to leverage the
development of such disciplines.

Thus, the objectives of the First International Workshop on Transforming
and Weaving Ontologies in Model Driven Engineering (TWOMDE 2008) were
to present success cases of integrated approaches and state-of-the-art researches
covering ontologies in MDE; and to encourage the modeling community to ex-
plore different aspects of ontologies.

TWOMDE 2008 addressed how the scientific and technical results around
ontologies, ontology languages and their corresponding reasoning technologies

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 314–317, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

First Workshop on TWOMDE 315

can be used fruitfully in MDE. More specifically, TWOMDE 2008 discussed
the infrastructure for integrating ontologies and MDE and the application of
ontologies in the following aspects of MDE: Domain Specific Languages, Design
Patterns, and Conceptual Modeling.

This first edition counted on one invited talk and five paper presentations. The
audience comprised 20 participants. Senior researchers and professors constitute
at least half of audience. It indicates that the modeling community is willing to
know about the integration of Ontologies and MDE.

This report covers an analysis of papers presented in the workshop. For more
information, please refer to the Workshop Proceedings1.

2 Research Papers

The workshop was divided in three parts. It started with the invited talk about
about “potential applications of ontologies and reasoning for modeling and soft-
ware engineering” following by a group of papers concerning application of on-
tologies in MDE.

Andreas Friesen gave a keynote talk about the experience of SAP’s potential
applications for ontologies and reasoning for enterprise applications [1]. Partici-
pating of at least five EU projects on the topic, SAP has collected a large number
of potential applications. We illustrate two of them: Dynamic Integration of lo-
gistic service providers and business process composition.

The first involves the usage of semantic web services and ontologies to au-
tomatically find the most appropriate web service based on predefined require-
ments. This application replaces multiple manual steps for discovery and selec-
tion of suitable web services.

The second potential application relies on employing ontologies in business
process composition. When composing business processes, currently, there is a
manual effort in ensuring the correct message flow and integration logic among
business processes. Applying ontologies may allow for semi-automatic generating
the message flow for consistent execution.

An open issue is how to measure the value added by ontologies. Indeed, al-
though the role of ontologies is clear, metrics to assess the impact of ontologies on
enterprise systems lack so far. Ongoing EU projects like MOST2 may contribute
with use cases and patterns to support this issue.

2.1 Applications of Ontologies in MDE

Papers addressing the application of ontologies in MDE cover topics like design
pattern integration, domain specific languages and multi-agent systems.

Cédric Bouhours presented the use of “an ontology to suggest design patterns
integration” [2]. the paper analyses the application of an extended Design Pat-
tern Intent Ontology (DPIO) in an pattern integration process. The process is
1 http://ceur-ws.org/Vol-395/
2 www.most-project.eu

http://ceur-ws.org/Vol-395/
www.most-project.eu

316 F.S. Parreiras et al.

composed by three steps: Alternative models detection, Validation of the propo-
sitions and Patterns integration. The DPIO ontology is used in the second step
to validate the suggestions made. A future work would be the semi-automatic de-
tection of alternative models by ontology. This task would make use of reasoning
to infer relationships between the the model and the alternative model.

Another interesting application of ontologies is in the Domain Analysis of
Domain-Specific Languages[3], presented by Marjan Mernik. In such paper, on-
tologies are used during the initial phase of domain analysis in identifying com-
mon and variable elements of the domain that should be modeled in a language
for that domain. Since the research is on its first steps, the analysis of applying
ontologies in the other stages was not considered yet. Currently, ontologies are
applied in the domain analysis and automated reasoning services have not been
used. Indeed, reasoning services could be used to build a class diagram from the
ontology. For example, the common subsummer [4] can be used to suggest an
abstract super class based on the description of two or more concrete subclasses.

Daniel Okouya [5] presented a paper with the proposal of applying ontologies
in conceptual modeling of multi-agent systems (MAS) and uses the expressive
power of OWL based ontologies to deal with constraints verification and domain
knowledge provision of MAS models. The idea is to support designers provid-
ing verification and validation of conceptual models produced during the MAS
development process.

2.2 Integrated Approaches

Marion Murzek presented an infra-structure for integrating ontologies in MDE in
the paper “Bringing Ontology Awareness into Model Driven Engineering Plat-
forms” [6]. The architecture is based on the authors’ experience with interop-
erability issues in metamodeling platforms. It should provide support to the
following MDE disciplines: (1) modeling, (2) management and (3) guidance.

For example, the framework supports applying ontologies to validating models
(1), simulations and model transformations (2) and Flexibility of process defi-
nitions(3). This is an ongoing research with first prototypes scheduled for the
second semester of 2009.

An approach from a different point of view was presented by Guillaume
Hillairet in the paper “MDE for publishing Data on the Semantic Web” [7].
It proposes the usage of the object model as pivot between persistence layer and
ontology in semantic web applications. Mapping and transformations between
the object model and an ontology are discussed. An interesting conclusion is
that MDE helps to reduce the complexity of dealing with these mappings and
transformations.

3 Conclusion

The TWOMDE2008 was the first workshop at the MDE conference to address
the application of ontologies in model driven development. The potential of this
field has just started being explored.

First Workshop on TWOMDE 317

Although we had papers covering different aspects of MDE, the employment
of automated reasoning services to make use of the formal description provided
by ontology languages has practically not been explored. Moreover, prominent
topics in MDE like model transformation, traceability and query languages were
not pondered by the papers of this first edition.

For the next editions, we expect more use cases in a wider range of topics. We
would like to see successful industry use cases and mechanisms to evaluate the
role of ontologies.

References

1. Friesen, A.: Potential applications of ontologies and reasoning for modeling and soft-
ware engineering. In: Proceedings of the of the First Workshop on Transforming and
Weaving Ontologies in Model Driven Engineering (TWOMDE 2008) at MoDELS
2008, Toulouse, France, September 28, 2008. CEUR Workshop Proceedings, vol. 395
(2008) CEUR-WS.org

2. Harb, D., Bouhours, C., Leblanc, H.: Using an ontology to suggest design patterns
integration. In: Proceedings of the of the First Workshop on Transforming and
Weaving Ontologies in Model Driven Engineering (TWOMDE 2008) at MoDELS
2008, Toulouse, France, September 28, 2008. CEUR Workshop Proceedings, vol. 395
(2008) CEUR-WS.org

3. Tairas, R., Mernik, M., Gray, J.: Using ontologies in the domain analysis of domain-
specific languages. In: Proceedings of the of the First Workshop on Transforming and
Weaving Ontologies in Model Driven Engineering (TWOMDE 2008) at MoDELS
2008, Toulouse, France, September 28, 2008. CEUR Workshop Proceedings, vol. 395
(2008) CEUR-WS.org

4. Mantay, T.: Computing least common subsumers in expressive description logics.
Technical report, Hamburg, Germany (1999)

5. Okouya, D., Penserini, L., Saudrais, S., Staikopoulos, A., Dignum, V., Clarke, S.:
Designing mas organisation through an integrated mda/ontology approach. In: Pro-
ceedings of the of the First Workshop on Transforming and Weaving Ontologies in
Model Driven Engineering (TWOMDE 2008) at MoDELS 2008, Toulouse, France,
September 28, 2008. CEUR Workshop Proceedings, vol. 395 (2008) CEUR-WS.org

6. Zivkovic, S., Murzek, M., Kuehn, H.: Bringing ontology awareness into model driven
engineering platforms. In: Proceedings of the of the First Workshop on Transforming
and Weaving Ontologies in Model Driven Engineering (TWOMDE 2008) at MoD-
ELS 2008, Toulouse, France, September 28, 2008. CEUR Workshop Proceedings,
vol. 395 (2008) CEUR-WS.org

7. Hillairet, G., Bertrand, F., Lafaye, J.Y.: Mde for publishing data on the semantic
web. In: Proceedings of the of the First Workshop on Transforming and Weaving On-
tologies in Model Driven Engineering (TWOMDE 2008) at MoDELS 2008, Toulouse,
France, September 28, 2008. CEUR Workshop Proceedings, vol. 395 (2008) CEUR-
WS.org

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 318–331, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using an Ontology to Suggest Software Design Patterns
Integration

Dania Harb, Cédric Bouhours, and Hervé Leblanc

IRIT – MACAO
Université Paul Sabatier
118 Route de Narbonne

F-31062 TOULOUSE CEDEX 9
{harb,bouhours,leblanc}@irit.fr

Abstract. To give a consistent and more valuable feature on models, we pro-
pose that model-driven processes should be able to reuse the expert knowledge
generally expressed in terms of patterns. In order to formalize and use them,
some design pattern ontologies have been developed. To share them on the
Web they have been implemented using the OWL language. They can be easily
interrogated with dedicated query languages. Our work has consisted in extend-
ing a design pattern intent ontology with “alternative model” and “strong
points” concepts, which partially refers “anti-patterns”. We validate this ap-
proach in tooling a step of a design review activity, we have proposed. This ac-
tivity, directed by design patterns, is adapted to a model driven process, for the
need to improve object-oriented architecture quality.

Keywords: OWL, SPARQL, Software Design Pattern, Design Review Activ-
ity, MDE, MDA.

1 Introduction

The emergent MDE community, aiming at giving a productive feature on models, has
proposed model-driven process development. However, to obtain guarantees on
model relevance at the end of each activity, these processes should promote the reuse
of the knowledge of experts generally expressed in terms of analysis [1], design [2] or
architectural [3] patterns approved by the community. Given the existence of “code
review” activities [4] in some development processes, we have specified a “design
review” activity [5] directed by design patterns and oriented to model quality. In this
activity, we propose to parse models to find fragments substitutable with software
design patterns and to replace them if the intent of the designer matches with the
intent of the pattern and if the architectural qualities of the pattern are needed. Our
activity is situated after the design stage, and its purpose is to urge and to help the
designer to integrate design pattern in his design.

Thanks to their Design Pattern Intent Ontology (DPIO), Kampffmeyer et al. [6]
have developed a wizard enabling designers to efficiently retrieve software design
patterns applicable for their design problems, during the design stage. Our approach
has not the same timing. It is situated after the design stage, and it verifies if there is

 Using an Ontology to Suggest Software Design Patterns Integration 319

no known bad design practices in a model. So, the designer is not in need of identify-
ing design problems, it is the activity which finds the lacks in his models and suggests
design patterns integrations instead. However, the DPIO [6] is an interesting start
point for the formalization of our concepts because it links software design pattern to
some problem concepts. So, in reusing this ontology backwards (from the pattern to
the design problems), and in adding our concepts, we are able to establish a dialog
with the designer.

In this paper, after presenting the design review activity, we explain how we have
reused and extended the DPIO [6]. We illustrate the execution of our activity on a
“file system management” example.

2 The Design Review Activity

The design review activity, presented in [5], may be decomposed into four steps (see
Fig. 1).

Pattern integration
[propositions]

Rules of object
oriented quality

Model to reviewDesigner

Model to review
[checked]

Model to review
[improved]

Alternative models
catalog

Integration tool

Object oriented
quality checking

Alternative models
detection

Patterns integration

Validation of
propositions

Pattern integration

Integration trace

OWL ontology

step
sequence

IN or OUT
element

for a step

Fig. 1. Design Review Activity

320 D. Harb, C. Bouhours, and H. Leblanc

In order to work with models in a “sufficient” quality, the first step checks good
basic object-oriented design practices.

When the model to review is checked in a “sufficient” quality state, the second step
consists in an automatic research of model fragments which are candidate to a substi-
tution with a pattern. This research is based on structural similarities detection with
“alternative models”. An “alternative model” is a model which solves inadequately
the same problem as a pattern [5]. That means there is a better solution to solve this
problem. Our work hypothesis is that a software design pattern is the best solution for
a given design problem. According to the taxonomy proposed by Chikofsky and
Cross [8], our detection technique can be connected to a redocumentation technique
as to permit model restructuring. Our “alternative models” catalog is presented in [9],
with the experiments used to constitute it.

Each “alternative model” detected in the model represents propositions of frag-
ments substitutable with a design pattern. Since we need the designer opinion in the
third step, our ontology will help him determine if his intent matches with the sug-
gested pattern intent and whether the propositions are needed in the model to review.

With the designer authorization, the last step consists in integrating the validated
propositions into the model. This integration is done thanks to an automatic model
refactoring.

3 Reusing and Extending an Existing Ontology

In order to improve the design of object oriented models, our work relies on detecting
all instances of alternative models in UML design models and substituting them, if
necessary, with appropriate design patterns. Each class of the instances detected is
connected in the same manner as the classes of the alternative model. So, since the
detection is only structural, the instances detected must be checked by the designer
before any substitution with a pattern. Therefore, after the detection step, propositions
of patterns integration consist of sets of model fragments representing a possible
substitution. These sets may be large where some fragments may not be relevant with
a substitution. So, to help the designer in filtering the fragments, we need an ontology
that formalizes intent of design patterns (is the substitution have a sense?) and our
characterizations of “alternative models” in terms of quality features (is the effort of
the substitution balanced by improved architectural qualities?).

For this purpose, we choose OWL, the Web Ontology Language [10], to import an
existing ontology on design patterns intent and extend it by adding our knowledge on
“alternative models”. We validated our new knowledge base using a specific query
language to interrogate it and filter out the pertinent information.

3.1 Requirements

Our catalogue is composed with “alternative models”, introduced in Section 2, and
their characterization. We have constituted our catalog in asking students to solve
some design problems. These problems were simply solvable with designs patterns,
but, as the students chosen have no knowledge on design patterns, they solve the prob-
lems without using design patterns. In following our work hypothesis, their solutions
were not the best solution for the problem, and so, the models produced had some

 Using an Ontology to Suggest Software Design Patterns Integration 321

design defects. The characterization of these defects consists in a valuation of the
“strong points” of the pattern. “Strong points” are criteria of object-oriented architec-
ture or software engineering quality, partially deduced from the “consequences” sec-
tion of the GoF [2] catalogue and from our study on the design defects of “alternative
models”. As pattern injection may alter some object-oriented metrics [11], “strong
points” allow us to compute dedicated pattern metrics to classify the “alternative mod-
els” and to help the estimation of the pertinence of pattern injection in a design model.
Each “alternative model” perturbs the “strong points” of its associated pattern.

Since we need to formally describe design patterns, “alternative models” and
“strong points” in a machine readable format, we start with the DPIO ontology. These
concepts must be constructed in a way that allows querying based on the “alternative
model” detected.

In Fig. 2, we present one of the GoF patterns, named Composite. The intent, the
applicability and the structure are provided directly from the GoF book while the
“strong points” are deduced from our experiments by comparing solutions to specific
design problem implemented by the Composite pattern and its “alternative models”.
Fig. 3 shows the structure and the design defect valuation of an “alternative model” to
the Composite pattern. We have named it “Development of the composition on Com-
posite with process conformance” in reference of its design defects. Then an “alterna-
tive model” can be considered as a “chipped pattern”.

Fig. 2. Composite Pattern and its “Strong Points”

Intent: Compose objects into tree structures to represent part-whole hierarchies. Com-
posite lets clients treat individual objects and compositions of objects uniformly.
Applicability: Use the Composite pattern when:

• you want to represent part-whole hierarchies of objects.
• you want clients to be able to ignore the difference between compositions of ob-

jects and individual objects. Clients will treat all objects in the composite structure
uniformly.

Structure:
Component

Leaf

+children*

Composite

Strong points:
1 Decoupling and extensibility

1.1 Maximal factorization of the composition
1.2 Addition or removal of a Leaf does not need code modification
1.3 Addition or removal of a Composite does not need code modification

2 Uniform processing
2.1 Uniform processing on operations of composed object
2.2 Uniform processing on composition managing
2.3 Unique access point for the client

322 D. Harb, C. Bouhours, and H. Leblanc

Fig. 3. Characterization of an “Alternative Model”

So we have made two major hypotheses about “alternative models”. First, each “al-
ternative model” is attached by the valuation of their design defects to a unique design
pattern. Second, each “alternative model” has one or more strong points perturbed. We
assume that the same structure of an “alternative model” can be duplicated in our cata-
log, but with a different name, a different valuation and some different components.

3.2 Existing Ontology: The Design Pattern Intent Ontology

Design patterns have been used successfully in recent years in the software engineer-
ing community in order to share knowledge about the structural and behavioural
properties of software. Most of the existing approaches to formalizing design patterns
are based on structural aspects. For example, the work of Dietrich et al. [12] uses the
OWL to formally describe the structure of design patterns and then transform it in
first-order logic predicates which are reuse as an entry for a scanner pattern. How-
ever, there is more lightly approaches concentrated in the usability of design patterns
according to the design problems they solve. Kampffmeyer and Zschaler [6] define
the intent of the 23 GoF design patterns [2] using OWL. Their work was based on the
work of Tichy [13], who developed a catalogue of more than hundred design patterns
classified according to the problems patterns solve.

The core structure of the DPIO, provided from the paper [6], is presented in Fig. 4
by UML classes and associations. Kampffmeyer and Zschaler chose to represent their
ontology with UML diagram because they consider that is easily to understand. To
read the diagram, they indicate: “The relations between DesignPattern, DPProblem
and ProblemConcept classes are depicted using UML-notations. UML classes sym-
bolize OWL classes and UML associations symbolize OWL object properties. Each
DesignPattern is a solution to one or more design pattern problem DPProblem. The
association between them indicates an object property isSolutionTo which is an in-
verse property of isSolvedBy. DPProblem is defined that is the root node for more
specific problems. The association class Constrains indicates an OWL object property

Name:
Development of the composition on Composite with process conformance

Alternative model:

Component

CompositeLeaf
*

*

Strong points perturbations

1.1 2.1
1.2 2.2
1.3 2.3

 Using an Ontology to Suggest Software Design Patterns Integration 323

Fig. 4. Graphical overview of the core structure of the DPIO

that can be specialized also by subproperties. DPProblem is a set of classes that de-
scribe a problem by constraining a ProblemConcept”. The DPIO contains the vocabu-
lary for describing the intent of design patterns.

All the 23 GoF patterns inherit from the DesignPattern class. DPProblem and Prob-
lemConcept are the root classes of the other hierarchies.

Based on the work of [6], and instead of finding the design pattern for a given
problem, we retrieve the intent of a design pattern. It is much like reversing the query
to get the pertinent data from the same ontology. So we can benefit from their existing
work and their published ontology.

3.3 Method and Results

Now to determine the scope of our new ontology, there are kinds of questions called
“competency questions” the ontology should be able to answer [14]. Our work could
be defined in 3 steps: first, when an “alternative model” is detected, we need to inter-
rogate our knowledge base to know which design pattern could replace it. Second, we
will verify with the designer if his “alternative model” detected has a similar intent as
the corresponding design pattern. Last, in this case, we will show him the lack in his
model by displaying the perturbed “strong points”. Then, if the designer finds the
need to improve his model, his fragment will be substituted with the design pattern.
Therefore, the three competency questions are as follow:

1. Which design pattern could replace a given “alternative model”?
2. What is the intent of the corresponding design pattern?
3. Which are the “strong points” perturbed using this “alternative model”?

In designing the structure of the new ontology, we took into consideration all the
possible relations between the classes in the DPIO model and the classes we want to
add:

1. Each”alternative model” could be replaced by one and only one Design
Pattern. But a Design Pattern will replace one to many “alternative
models”.

2. An “alternative model” perturbs at least one “strong point” of the Design
Pattern that can replace it.

From this analysis, we extend the DPIO by adding our new concepts.

324 D. Harb, C. Bouhours, and H. Leblanc

Fig. 5. Graphical overview of the structure of the extended ontology

Fig. 5 represents the new structure of the extended ontology. Based on this struc-
ture and the relations between classes, we extended the existing ontology with OWL
classes and properties as follow:

1. Two new OWL classes:
a. AlternativeModel: the root class of all “alternative models”. They

are grouped by the design pattern that could replace them. For
example, we find six “alternative models” for the Composite pat-
tern. They inherit all from the Composite_AM class (Fig. 6).
They have the name of their super class followed by their nu-
meration in the catalogue.

b. StrongPoint: the root class of all the “strong points”. They are at-
tached to a design pattern. For example, we find two main
“strong points” for the Composite pattern: Composite_Rule_1
and Composite_Rule_2 (Fig. 6); each one of them was précised
by three sub features. They have the name of their super class
followed by their numeration in the catalogue.

2. Four new OWL properties:

a. isReplacedBy: links an AlternativeModel to his corresponding
DesignPattern.

b. Replace: the inverse of isReplacedBy.
c. Perturbes: links an AlternativeModel to the valuation of the cor-

responding pattern “strong points” (StrongPoint).
d. hasRule: links a DesignPattern class to one of its StrongPoint.

Fig. 6 shows a detailed structure of the extended base concerning the Composite

pattern. The “alternative model” presented in Fig. 3 perturbs the three subfeatures of
the first “strong point” of the Composite pattern that concerned in the Decoupling and
extensibility. More precisely, for each OWL class concerning our concepts, we have:

OWL Classes rdfs:comment
Composite_AM_5 Development of the composition on “Composite” with

protocol conformance
Composite_Rule_1 Decoupling and Extensibility
Composite_Rule_2 Uniform processing
Composite_Rule_1.1 Maximal factorization of the composition

 Using an Ontology to Suggest Software Design Patterns Integration 325

Composite_Rule_1.2 Adding or removing a Leaf does not need a code
modification

Composite_Rule_1.3 Adding or removing a Composite does not need a
code modification

Composite_Rule_2.1 Uniform processing on operations of composed ob-
jects

Composite_Rule_2.2 Uniform processing on compositions management
Composite_Rule_2.3 Unique access point for the client

Fig. 6. Detailed structure of the extended ontology

For presentation reasons, we have omitted the name of the design pattern in each
sub feature.

We used Protégé [15], an open source ontology editor and knowledge-base frame-
work, to load the existing ontology and add our new classes, properties, property
characteristics, and interrogate it using queries. We referred to a user guide [14] on
how to develop an ontology using Protégé and the OWL Plug-in. We created our
OWL classes, linked them by OWL properties, and interrogated the knowledge base
by generating SPARQL (SPARQL Protocol and RDF Query Language) [16] queries
to answer our competency questions.

SPARQL is a W3C Candidate Recommendation towards a standard query language
for the Semantic Web. Its focus is on querying RDF graphs at the triple level.
SPARQL can be used to query an RDF Schema or OWL model to filter out individu-
als with specific characteristics.

4 Illustration on a “File System Management” Design

After adding our new concepts to the DPIO, the knowledge base could now be
interrogated according to the competency questions we mentioned earlier. Standard

326 D. Harb, C. Bouhours, and H. Leblanc

ontology reasoning is used to retrieve the results responding to queries. In order to
illustrate the use of the ontology, we execute the whole activity on an example. It was
found in a subject of an object-oriented programming supervised practical work. It
aims to implement a file management system represented in the Fig. 7 below.

Directory

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

*

-root

-subdirectory

*

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

Fig. 7. Model to Review: File System Management

This static UML model represents a basic architecture for a File System Manage-
ment. Authors of this model are interested in the presentation of some object concepts:

• Inheritance between classes and abstract classes. A uniform protocol for
every FileSystemElement is encapsulated by a corresponding abstract
class. Directories and Files must respect this protocol via inheritance re-
lationship. We can note that all concrete classes are derived directly or in-
directly from an abstract class. This rule enforces the emergence of reus-
able protocols.

• Management of references, here composition links, between container and
components. A Directory object manages some references to Files and
Directories objects.

Nevertheless, this model contains a misconception. Although there is a uniform
protocol owned by the class FileSystemElement, the management of composite links
along a hierarchical structure is duplicated. Indeed, Directory class manages inde-
pendently links on Files and Directories. Now, we consider two evolution scenarios.
The first is adding new Terminal types in the tree structure, for example, symbolic
links in UNIX systems. This evolution requires the management of this new type of
links by the Directory class and then requires code modification and code duplication
in this class. The second is adding new non Terminal types in the tree structure, for
example archive files in UNIX or in Java environment. We can consider that an ar-
chive file has the same functionalities as a Directory. This evolution requires a

 Using an Ontology to Suggest Software Design Patterns Integration 327

reflexive link on an archive file class and the duplication of all links that represent
composition links in the tree structure. Then it requires duplication of management of
composition and modification in the Directory class, it must manage another type on
FileSystemElement. These two scenarios show a decoupling problem (each container
manages a part of the composite structure) and an extensibility limitation (it requires
existing code modification for adding new type of terminal or non terminal element of
the composition hierarchy). Therefore, this model can be improved. Furthermore,
when the authors have implemented this model, they realized that there were defects,
and they adapted their code to improve it.

4.1 Object-Oriented Quality Checking

Visually, there is no design mistake: each class of the model presents a reusable pro-
tocol. Composition links are used here as delegation between Directory and File.
And messages sent between them have the same selector.

4.2 “Alternative Models” Detection

This step consists in the execution of all queries corresponding at each “alternative
model” of the base. In this example, the query of the fifth Composite “alternative
model” returns theses matching classes:

1. The Directory class is able to play the role of the Composite class.
2. The File class is able to play the role of the Leaf Class.
3. The FileSystemElement is able to play the role of the Component class.

This means that we detected an “alternative model” for the Composite pattern be-
cause they have the same structural features (cf. Fig. 8).

Fig. 8. The fifth Composite “Alternative Model” its Instantiation in the Model

4.3 Designer/Machine Dialog

At this step, the designer must verify the substitutability of the detected fragment.
Firstly, he must verify if the intent of the fragment matches with the proposed design
pattern. To do so, we build a question thanks to a SPARQL query we have coded (cf.
Listing 1). This query retrieves the intent of the design pattern in using the “alterna-
tive model” detected (here Composite_AM_5). Indeed, we consider that the intent of
the pattern is described with a list of couples (constraint – ProblemConcept) in the
ontology (see Fig. 5).

328 D. Harb, C. Bouhours, and H. Leblanc

SELECT ?DesignPattern ?constrains ?ProblemConcept
WHERE{
 ?DesignPattern rdfs:subClassOf ?x.
 ?x rdf:type owl:Restriction.
 ?x owl:onProperty :replace.
 ?x owl:someValuesFrom: Composite_AM_5.
 ?DesignPattern rdfs:subClassOf ?y.
 ?y rdf:type owl:Restriction.
 ?y owl:onProperty :isSolutionTo.
 ?y owl:someValuesFrom ?pbconcept.
 ?pbconcept rdfs:subClassOf ?z.
 ?z rdf:type owl:Restriction.
 ?z owl:onProperty ?constrains.
 ?z owl:someValuesFrom ?ProblemConcept.
}

Listing 1. SPARQL query to retrieve the intent of the Composite pattern that could replace the
“alternative model” Composite_AM_5

Fig. 9. Screenshot of Protégé after executing the query (Listing 1)

Based on the results (cf. Fig. 9) of this query, we will proceed in dialoguing the de-
signer with the first question: We have detected in your design an alternative model of
the CompositeDesignPattern. Is the fragment {FileSystemElement, File, Directory}
composes Object, builds TreeStructure and nests Objects?

We can note that the intent of {FileSystemElement, File, Directory} is a recursive
composition: “Directories are composed with Files or Directories which are com-
posed with…”. So the answer to the previous question is positive.

Now, we must check the interest to replace the fragment with the pattern. Thanks
to the perturbation of the “strong points”, we can present to the designer the advan-
tage to use the pattern. We retrieve the perturbed “strong points” with a SPARQL
query (Listing 2):

SELECT ?Strong_Points ?Sub_Features
WHERE{
 :Composite_AM_5 rdfs:subClassOf ?x.
 ?x rdf:type owl:Restriction.
 ?x owl:onProperty :perturbs.
 ?x owl:someValuesFrom ?SF.
 ?SF rdfs:subClassOf ?SP.
 ?SP rdfs:comment ?Strong_Points.
 ?SF rdfs:comment ?Sub_Features.
} ORDER BY ASC(?Strong_Points)

Listing 2. SPARQL query to retrieve the “strong points” perturbed by COMPOSITE_AM_5

 Using an Ontology to Suggest Software Design Patterns Integration 329

Fig. 10. Screenshot of the result window presenting the “strong points” perturbed

The second question is built with the results (cf. Fig. 10) of the previous query:
Our analysis shows that you have problems of “Decoupling and Extensibility”; your
model is unable to satisfy those points:

1. Maximal factorization of the composition.
2. Addition or removal of a leaf does not need code modification.
3. Addition or removal of a composite does not need code modification.

In injecting the CompositeDesignPattern, you will improve all of these points. Do
you want to refactor the identified fragment {FileSystemElement, File, Directory} ?

As we consider that the model may evolve, it is useful to guarantee that there are
extensibility and decoupling possibilities. Therefore, the fragment must be substi-
tuted with the pattern.

4.4 Patterns Integration

At this step, the identified fragment is replaced by the suggested design pattern like
the Fig. 11 below:

Directory
<<Composite>>

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String
+add(e: FileSystemElement)
+remove(e: FileSystemElement)
+get(): FileSystemElement[*]
+searchDir(name: String)
+searchFile(name: String)

File
<<Leaf>>

-size: int
-data: byte

+open()
+delete()
+getSize(): int
+getAbsolutePath(): String

FileSystem

+getRoot(): Directory
+setRoot(d: Directory)

FileSystemElement
<<Component>>

+delete()
+getSize()
+getAbsolutePath()
+open()

Path

-path: String

+getPath(): String
+getParts(): String[*]

Nameable

-name: String

-getrName(): String

-root

-subdirectory *

FileSystemServices

+search(p: Path): FileSystemElement

Comparable

+compareTo(c: Comparable): int

Fig. 11. Model to Review Improved

330 D. Harb, C. Bouhours, and H. Leblanc

To do so, a suite of simple model refactoring suffices to integrate the pattern.
Here, it consists in:

• Remove composition link between Directory and File.
• Move the end of the recursive composition link from Directory to FileSys-

temElement.
These inter-classes refactorings can be automatically deduced with an operation of

“differentiation” between the “alternative model” and the pattern structure.
At the end of the activity, we can say that this model is improved, because we have

substituted a fragment (with “weak points”) with a pattern (with “strong points”).
This transformation may appear as non fundamental in the model, but at the code
level, the implications are substantial. Every hierarchy traversal methods are simpler
to implement, and there is less code to write. Moreover, in case of extensions, there is
no code modification of existing classes.

5 Conclusion and Perspectives

The approach of reusing and extending an existing ontology corresponding to our
requirements was successfully applied. From the existing DPIO ontology, we have
plugged our concepts on “alternative models” and “strong points”. These concepts are
fundamental for tooling our Design Review Activity. Accurately, at the step named
validation of substitution propositions, we have simulated a dialog with a designer by
interrogating the extended base using queries. These queries will be generated auto-
matically by a template process. The integration of this work into a tool dedicated to
the design review activity is envisaged.

Finally, we conclude with some perspectives:
• Take into consideration the relationships between patterns. For example,

the Decorator pattern can be applied to the Composite pattern structure.
• Take into consideration the applicability of each pattern. For example, re-

ferring to the GoF book, one of the applicability of the Composite pattern is:
you want clients to be able to ignore the difference between compositions of
objects and individual objects. We notice that this sentence cannot be part
of the pattern intention but can be considered as a “strong point”.

• Optimize our knowledge base by sharing common “strong points” be-
tween patterns. For example, the Composite, the Decorator and the
Bridge pattern have a same “strong point” concerning the maximal fac-
torization between specific classes.

• Use inference rules to find new concepts when adding new “alternative
models” or “strong points”. This could help us improving our knowledge
on patterns and particularly, our knowledge on the good practices on ob-
ject oriented architecture.

Acknowledgements

We are grateful to Mrs. Nathalie Aussenac-Gilles for her precious advices during this
work.

 Using an Ontology to Suggest Software Design Patterns Integration 331

References

1. Fowler, M.: Analysis patterns: reusable objects models. Addison Wesley Longman Pub-
lishing Co, Inc., Amsterdam (1997)

2. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of Reusable
Object-Oriented Software. Addison Wesley Professional, Reading (1995)

3. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-Oriented Soft-
ware Architecture. John Wiley & Sons, Chichester (1996)

4. Dunsmore, A.P.: Comprehension and Visualisation of Object-Oriented code for Inspec-
tions. Technical Report, EFoCS-33-98, Computer Science Department, University of
Strathclyde (1998)

5. Bouhours, C., Leblanc, H., Percebois, C.: Alternative Models for a Design Review Activ-
ity. In: Kuzniarz, L., Sourrouille, J.-L., Staron, M. (eds.) Workshop on Quality in Model-
ing - ACM/IEEE International Conference on Model Driven Engineering Languages and
Systems, Nashville, TN, USA, 30/09/2007-05/10/2007, pp. 65–79. Springer, Heidelberg
(2007)

6. Kampffmeyer, H., Zschaler, S., Engels, G., Opdyke, B., Schmidt, D.C., Weil, F.: Finding
the pattern you need: The design pattern intent ontology. In: Engels, G., Opdyke, B.,
Schmidt, D.C., Weil, F. (eds.) MODELS 2007. LNCS, vol. 4735, pp. 211–225. Springer,
Heidelberg (2007)

7. Guéhéneuc, Y.G., Albin-Amiot, H.: Using Design Patterns and Constraints to Automate
the Detection and Correction of Inter-Class Design Defects. In: Proceedings conference
TOOLS, pp. 296–305 (July 2001)

8. Chikofsky, E.J., Cross, J.H.: Reverse engineering and design recovery: A taxonomy. IEEE
Software 7(1), 13–17 (1990)

9. Bouhours, C., Leblanc, H., Percebois, C.: Alternative Models for Structural Design Pat-
terns, research report, IRIT/RR–2007-1–FR, IRIT (December 2007),

 http://www.irit.fr/recherches/DCL/MACAO/docs/
 AlternativeModelsForStructuralDesignPatterns.pdf

10. McGuinness, D.L., van Harmelen, F.: OWL Web Ontology Language Overview (2004),
http://www.w3c.org/TR/owl-features/

11. Huston, B.: The effects of design pattern application on metric scores. Journal of Systems
and Software 58(3), 261–269 (2001)

12. Dietrich, J., Elgar, C.: A formal description of design patterns using OWL. In: Australian
Software Engineering Conference (ASWEC 2005), pp. 243–250. IEEE Computer Society,
Los Alamitos (2005),

 http://doi.ieeecomputersociety.org/10.1109/ASWEC.2005.6
13. Tichy, W.F.: A catalogue of general-purpose software design patterns. In: TOOLS 1997.

Proceedings of the Tools-23: Technology of Object-Oriented Languages and Systems.
IEEE Computer Society, Washington (1997)

14. Noy, N.F., McGuinness, D.L.: Ontology development 101: A guide to creating your first
ontology. Technical Report KSL-01-05, Knowledge Systems Laboratory, Stanford Univer-
sity, Stanford, CA, 94305, USA (March 2001)

15. Protégé ontology editor and knowledge acquisition system (2006),
 http://protege.stanford.edu/

16. Prud’hommeaux, E.: Seaborne: SPARQL Query Language for RDF (January 2008),
 http://www.w3.org/TR/rdf-sparql-query/

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 332–342, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Using Ontologies in the Domain Analysis of
Domain-Specific Languages

Robert Tairas1, Marjan Mernik2, and Jeff Gray1

1 University of Alabama at Birmingham, Birmingham, Alabama, USA
{tairasr,gray}@cis.uab.edu
2 University of Maribor, Maribor, Slovenia
marjan.mernik@uni-mb.si

Abstract. The design stage of domain-specific language development, which
includes domain analysis, has not received as much attention compared to the
subsequent stage of language implementation. This paper investigates the use of
ontology in domain analysis for the development of a domain-specific language.
The standard process of ontology development is investigated as an aid to de-
termine the pertinent information regarding the domain (e.g., the conceptualiza-
tion of the domain and the common and variable elements of the domain) that
should be modeled in a language for the domain. Our observations suggest that
ontology assists in the initial phase of domain understanding and can be com-
bined with further formal domain analysis methods during the development of a
domain-specific language.

Keywords: Domain Analysis, Domain-Specific Languages, Ontology.

1 Introduction

The development of a Domain-Specific Language (DSL) requires detailed knowledge
of the domain in which the language is being targeted. Paradigms such as Generative
Programming [3] and Domain Engineering [5] also require an understanding of the
target domain, which is done through a process called domain analysis that produces a
domain model. An important theme in the domain analysis used by both paradigms is
the need to determine elements that can be reused. The reusable components or soft-
ware artifacts form the building blocks for developing new software systems. In DSL
development, in addition to the overall knowledge of the domain, the domain model
can reveal important properties that will influence the way the language is shaped. In
particular, the search for reusability in domain analysis can be translated into realizing
the commonalities and variabilities of a domain. This information can assist in point-
ing out elements in the domain that can be fixed in the language and those that must
provide for variabilities; hence, domain analysis has the potential to be beneficial if
used during DSL development. However, clear guidelines for the use of established
domain analysis techniques in the process of DSL development are still lacking [11].

Ontology development is one approach that has contributed to the early stages of
domain analysis [5]. This paper investigates the use of ontology during domain analy-
sis in DSL development and how it contributes to the design of the language. The rest

 Using Ontologies in the Domain Analysis of Domain-Specific Languages 333

of the paper is organized as follows: Section 2 describes the potential connection
between ontology and DSL development. Section 3 provides a case study on the use
of ontology in the development of a DSL for air traffic communication and Section 4
provides some observations on ontology in DSL development based on the case
study. Related work, a conclusion, and future work are described in Sections 5 and 6.

2 Early Stage DSL Development

Chandrasekaran et al. [2] propose two properties related to ontologies: the first is a
representation vocabulary of some specialized domain. This vocabulary represents the
objects, concepts, and other entities concerning the domain. The second is the body of
knowledge of the domain using this representative vocabulary. This knowledge can
be obtained from the relationships of the entities that have been represented by the
vocabulary. Ontologies seek to represent the elements of a domain through a vocabu-
lary and relationships between these elements in order to provide some type of
knowledge of the domain.

An interesting connection can be observed between ontology and DSL design. As
it relates to DSL development [11], a domain model is defined as consisting of:

• a domain definition defining the scope of the domain,
• the domain terminology (vocabulary, ontology),
• descriptions of domain concepts, and
• feature models describing the commonalities and variabilities of domain concepts

and their interdependencies.

Not only is an ontology useful in the obvious property of domain terminology, but the
concepts of the domain and their interdependencies or relationships are also part of
the properties of an ontology [2]. The knowledge of the commonalities and variabili-
ties of the domain concepts can further provide crucial information needed to deter-
mine the fixed and variable parts of the language. This part is a more open question as
to the potential of finding commonalities and variabilities through information ob-
tained from the ontology.

As it relates to the DSL development process as a whole, the insertion of ontology
development in the early stages of DSL development can potentially provide a struc-
tured mechanism in the part of DSL development that is still lacking attention. The
early stages of DSL development (i.e., domain analysis) have not received as much
attention compared to the latter stages of development (i.e., language implementa-
tion). Various DSL implementation techniques have been identified in [11], including
interpreter or compiler development and embedding in a General-Purpose Language
(GPL). In contrast, only four out of 39 DSLs evaluated in [11] utilized a more formal
domain analysis, such as FAST [14] and FODA [8]. These formal approaches have
shown to result in good language design, but their use is still limited and it has yet to
be seen how well they will be adopted by the community. The question is whether
other less formal approaches, such as Object-Oriented Analysis (OOA) or ontology,
can be reused in the early stages of DSL development. In order to promote interest in
the domain analysis stage of DSL development, this paper advocates the use of

334 R. Tairas, M. Mernik, and J. Gray

ontology in DSL development, which is observed through a case study of a DSL for
air traffic communication.

3 Case Study

Ontology development to assist in the design of a DSL is described through a case
study in this section. Section 3.1 provides a summary of the air traffic communication
problem domain. The ontology and its related competency questions are given in
Sections 3.2 and 3.3. The development of a class diagram, object diagram, context-
free grammar, and sample program related to the DSL and obtained from the ontology
is given in Section 3.4.

3.1 Air Traffic Communication

A case study was selected to apply the ontology development process and observe its
usefulness in domain analysis related to DSL development. The case study selected
focuses on the communication that occurs between the air traffic control (ATC) at an
airport and the pilot of an aircraft. More specifically, the communication is between
the ground controller that is responsible for the traffic between the runways and the
ramps containing gates in an airport, and the pilots of an aircraft that has just arrived
or is in the process of departure. The purpose is to develop a DSL that can standardize
the language for the communication between the two individuals. English is the stan-
dard language in this domain, but more often the controllers or pilots of non-English
speaking countries may experience problems communicating in English. A DSL that
standardizes the communication can be translated into the native tongue of the con-
troller or pilot for better comprehension. A separate functionality could check and
verify the path that is given to a pilot by a ground controller. An example communica-
tion sequence that highlights the potential communication problem is given in Listing
1. The controller is asking the captain to hold short of taxiway “MikeAlpha,” but the
pilot continually assumes it is taxiway “November.”

Listing 1. Example of air traffic communication

ATC: Make the right turn here at Juliette. Join Alpha. Hold short
MikeAlpha.

Pilot: Right on Juliette hold sh ... Taxi Alpha. Hold November [...] Can
we taxi now?

ATC: Make the right turn here at Juliette. Join Alpha. Hold short of
MikeAlpha.

Pilot: Roger, join right Juliette. Join Alpha. Hold short November.

ATC: OK, I'll say it again. Hold short of Mike Alpha "M" - "A" MikeAl-
pha, not November.

Pilot: OK, hold short of MikeAlpha.

3.2 Ontology Development

Following the ontology development process outlined by Noy and McGuinness
[13], competency questions are selected that serve as the purpose of the ontology.

 Using Ontologies in the Domain Analysis of Domain-Specific Languages 335

In order to obtain a domain model as defined in Section 2, two competency ques-
tions were selected: “What are the concepts of the domain and the interdependen-
cies of these concepts?” and “What are the commonalities and variabilities of the
domain?”

Both the Ontolingua1 and DAML2 ontology libraries were searched for existing
ontologies related to the domain in this case study, but no related instances contained
the vocabulary necessary for the domain. Although a new ontology is needed for this
case study, the availability of an existing ontology in other cases provides a head start
to the development of a domain model as the important terms and relationships have
been determined already for the domain and can be used toward the subsequent steps
of DSL development.

Table 1. Listing of classes and associated slots

Slots Class Description

Name Description Values

Airline ID Name of the airline Two letters Aircraft Arriving or departing
aircraft Flight

Number
Flight Identification Integer

GroundControl Controller in charge of
airport ground traffic

Tower Controller in charge of
take-offs and landings

Runway
Number

Runway Identification 1 – 36 (i.e., runway
heading 10° – 360°)

Runway Available take-off and
landing locations

Runway
Orientation

To distinguish parallel
runways

Class Left or Right

Taxiway Paths connecting run-
ways to ramps

Taxiway Name Taxiway Identification One or two letters
(digits)

Ramp Aircraft parking area Ramp Name Ramp Identification String

Gate Letter Gate Identification One letter Gate Passenger embarkation
and disembarkation Gate Number Gate Identification Integer

Direction Turning direction Class Left or Right Turn Command to turn

Taxiway Taxiway Identification Class Taxiway

Runway Runway Identification Class Runway HoldShort Command to hold short
of a runway or taxiway Taxiway Taxiway Identification Class Taxiway

Contact Command to contact a
separate controller

ATC Controller to contact Class Tower or
GroundControl

Follow Command to follow
behind another aircraft

Aircraft Aircraft Identification Class Aircraft

1 Ontolingua Ontology Library, http://www-ksl.stanford.edu/knowledge-sharing/ontologies/html
2 DAML Ontology Library, http://www.daml.org/ontologies

336 R. Tairas, M. Mernik, and J. Gray

Utilizing the tool introduced by Noy and McGuinness [13] called Protégé 20003,
the ontology for the case study was developed. The terms in Protégé 2000 are stored
as classes. This allows for terms to be considered subclasses of other terms. In addi-
tion to classes, Protégé 2000 also contains slots and instances. Slots are the properties
and constraints of the classes. Slots define the properties of classes and also determine
the values that can be set for each property. Instances are actual instances of the
classes in the ontology. These can be used to determine how well the ontology is
representing a domain.

Table 1 contains a selection of classes and slots of the ontology that was devel-
oped in Protégé 2000 for the case study. In addition to the classes and slots in Table 1,
instances of these classes were also determined. These instances are based on the
information from a simplified diagram of the Birmingham International Airport
(BHM) as shown in Figure 1. For example, instances of the Runway class are 6, 24, 18,
and 36. Instances of the Taxiway class are A, B, F, G, H, M, A1, A2, A3, A4, B1, G1,
H2, and H4. The Ramp class consists of Cargo and Terminal.

Fig. 1. Simplified diagram of Birmingham International Airport (BHM)

3.3 Competency Questions Revisited

The usefulness of the ontology in Table 1 can be measured by how well the ontology
assists in answering the previously specified competency questions from Section 3.2.
Regarding the first question, the ontology provides the concepts of the domain
through the classes. The interdependencies between the concepts can be derived from
the constraints of the slots of the classes. For example, the HoldShort class is depend-
ent on either the Runway or Taxiway classes, as this command is always followed by
the location in which the pilot is to hold short.

Answering the second question related to commonalities and variabilities is less
evident if observing only the ontology’s structure of classes and slots. Information
regarding the variabilities can be extracted by including the instances of classes, such
as the instances from BHM. Classes Runway and Taxiway consist of many instances,
which could mean these classes have the variabilities property. Moreover, instances
that represent airports other than BHM will also contain different values for these

3 Protégé 2000, http://protege.stanford.edu

36

18

6

24

Cargo

Terminal

A1

A2

A3
A4

A

A

A

A

A

H

H

H2

H4

F

F

B

B

B

B

F

B1 G1

G

G

G

M

M

Gates
B1-B3 Gates

C1-C5

 Using Ontologies in the Domain Analysis of Domain-Specific Languages 337

classes, which could also be interpreted as containing variabilities. The classes not
containing instances, such as most of the commands (i.e., Turn, HoldShort, and Con-
tact), could be interpreted as common concepts in all instances. These commands are
common in the ATC domain and represent standard commands that are used in all
airports. However, the specific airport elements (i.e., collection of instances of run-
ways and taxiways) may change depending on the airport.

3.4 Conceptual Class Diagram

The ontology process is similar to the process of object-oriented analysis [1]. How-
ever, one distinction is that ontology design is mainly concerned with the structural
properties of a class, whereas object-oriented analysis is primarily concerned with the
operational properties of a class [13]. The focus here is a methodology that can assist
in determining the domain concepts for DSL development by reusing an approach
from general software engineering.

Figure 2 presents a conceptual class diagram that was manually generated from the
structural information of the classes in the ontology from Table 1. In this case, the de-
velopment of the class diagram has been assisted by the information obtained from the
ontology. In Figure 2, similar classes are grouped together. For example, classes Gate,
Ramp, Runway, and Taxiway represent physical structures in the airport. Such groupings
identified the need for a generalized class for each group. A generalized class was in-
cluded in the diagram for Runway and Taxiway, because from the slot properties of class
HoldShort, two possible values can be used (i.e., Runway and Taxiway). In the diagram,
this is represented by abstract class Way. The classes at the bottom of the diagram repre-
sent communication commands. These are associated with other classes through their

-airlineID : string
-flightNumber : int

Aircraft

-aircraft : Aircraft

Follow

1

GroundControl-number : int
-orientation : Direction

Runway

-name : string

Taxiway

-name : string

Ramp

-letter : char
-number : int

Gate

-direction : Direction
-taxiway : Taxiway

Turn

-way : Way

HoldShortLeft

-atc : Air Traffic Control

Contact

Tower

Right

Direction

0..1

0..1

Way

1

1 1

-Code : string

Airport

0..*

Air Traffic Control

1..*1..*

Command

1..*

1

Fig. 2. Conceptual class diagram obtained from the ontology

338 R. Tairas, M. Mernik, and J. Gray

respective slot properties. Generalizations such as Command and Way were not part of the
original ontology and were only introduced during the development of the class dia-
gram. These classes in turn can be used to update the ontology to further improve the
structure of the ontology. This can be seen as part of the process of iteratively refining
the ontology to better represent the domain.

From the class diagram in Figure 2, an initial context-free grammar (CFG) for the
DSL can be generated, as shown in Listing 2. This CFG was manually obtained from
the conceptual class diagram to CFG transformation properties defined in [12]. Rela-
tionships such as generalization and aggregation in the class diagram are transformed
into specific types of production rules in the CFG. For example, a generalization
where classes Runway and Taxiway are based on class Way is transformed into the
production rule WAY ::= RUNWAY | TAXIWAY. An aggregation where class Gate is part
of class Ramp is transformed into the production rule RAMP ::= GATES. In this case the
non-terminal GATES is used, because the cardinality of this aggregation is zero or more
gates on a ramp (i.e., 0..*). An additional production rule is generated to represent this
cardinality (i.e., GATES ::= GATES GATE | ε).

Listing 2. Transformation of conceptual class diagram to context-free grammar

The transformation of the class diagram into the CFG above, albeit manual, fol-
lowed a predefined collection of transformation rules. The manual transformation of
the ontology into the class diagram is less formal, but was done by connecting the
properties of the classes in the ontology with the graphical representation of the
class diagram. In order to provide a more automated transformation between the
ontology and the class diagram, developing a transformation between a Web Ontol-
ogy Language (OWL) instance for the ontology and a textual representation of the
class diagram could be considered. Related to this, UML-based ontology develop-
ment has been proposed [6]. Specifically for this case, the transformation between
an XML-based OWL file into a class diagram represented in XMI could assist in
the automation of the ontology to class diagram step. After the transformation to a
CFG, some keywords have been added to the CFG for easier human parsing, as
shown in Listing 3.

 Using Ontologies in the Domain Analysis of Domain-Specific Languages 339

Listing 3. Addition of keywords and production refactoring

AIRPORT ::= WAYS RAMPS ATC
WAYS ::= WAYS WAY | WAY
WAY ::= runway RUNWAY | taxiway TAXIWAY
RUNWAY ::= number DIRECTION
TAXIWAY ::= name
RAMPS ::= RAMPS RAMP | RAMP
RAMP ::= ramp name GATES

GATES ::= GATES GATE | ε
GATE ::= gate letter number
ATC ::= GROUNDCONTROL | TOWER
GROUNDCONTROL ::= COMMANDS
COMMANDS ::= COMMANDS COMMAND | COMMAND
COMMAND ::= CONTACT | FOLLOW | HOLDSHORT | TURN
CONTACT ::= contact ATC
FOLLOW ::= follow AIRCRAFT
HOLDSHORT ::= hold short WAY
TURN ::= turn DIRECTION on TAXIWAY

DIRECTION ::= left | right | ε
AIRCRAFT ::= airlineID flightNumber
TOWER ::= tower

An example of a program written in this DSL is shown in Listing 4 and is
based on the CFG of Listing 3. Even from this simple DSL for ground control, it
can be seen that some simple verification of aircraft path control can be checked.
The development of the DSL has been aided by the ontology that was initially
produced, which in turn assisted in the generation of a class diagram. This
provided a means to understand the domain in the early stages of DSL
development, which provided input to the subsequent structure of the DSL, as
seen in the grammar in Listing 2.

Listing 4. An example program

// description of BHM airport
runway 6 runway 24 runway 18 runway 36
taxiway A taxiway A1 taxiway A2 taxiway A3 taxiway A4 taxiway B taxiway B1
taxiway F taxiway G taxiway G1 taxiway H taxiway H2 taxiway H4
ramp Cargo
ramp Terminal gate B1 gate B2 gate B3 gate C1 gate C2 gate C3 gate C4 gate C5

// commands from Ground Control
turn right on A
turn left on M
hold short runway 18
contact tower

An object diagram of the example program in Listing 4 is illustrated in Fig-
ure 3. Airport-related structures such as gates, ramps, runways, and taxiways
are represented by multiple objects that will differ among various airports.
However, the types of commands issued by the ground control remain the same.
The specific attributes of the command objects are based on the objects of the
structures of a particular airport, e.g., taxiway A and M, and runway 18. As
described in Section 3.3, evaluating the instances of the classes provides infor-
mation regarding the elements of the domain that are common (or fixed) and
those that are variable.

340 R. Tairas, M. Mernik, and J. Gray

number : int = 6
orientation : Direction

runway1 : Runway

Code : string = BHM

airport : Airport

number : int = 24
orientation : Direction

runway2 : Runway

number : int = 18
orientation : Direction

runway3 : Runway

number : int = 36
orientation : Direction

runway4 : Runway

name : string = Cargo

ramp1 : Ramp

name : string = Terminal

ramp2 : Ramp

letter : char = B
number : int = 1

gate1 : Gate

letter : char = B
number : int = 2

gate2 : Gate

letter : char = B
number : int = 3

gate3 : Gate

letter : char = C
number : int = 1

gate4 : Gate

letter : char = C
number : int = 5

gate8 : Gate

name : string = A

taxiway1 : Taxiway

name : string = A1

taxiway2 : Taxiway

name : string = M

taxiway13 : Taxiway

name : string = A2

taxiway3 : Taxiway

direction : Direction = right
taxiway : Taxiway = A

command1 : Turn

direction : Direction = left
taxiway : Taxiway = M

command2 : Turn

way : Way = 18

command3 : HoldShort

atc : Air Traffic Control = tower

command4 : Contact

groundControl : GroundControl tower : Tower

Fig. 3. Object diagram from example program

4 Ontologies in DSL Development

Section 3 summarized the development of a preliminary ontology using the standard
development process as seen in literature using a well-known tool called Protégé
2000. The usefulness of the ontology was measured by answering several competency
questions that were selected to match the goals of domain analysis. Domain concepts
and their interdependencies were determined. In addition, commonalities and
variabilities as they relate to the DSL can be determined by observing the instances of
the classes in the ontology. It should be noted that the ontology and class diagram
went through several iterations before reaching the state described in Section 3.
However, further refinements may help to provide more satisfactory answers to the
competency questions. The ontology was then used to manually generate a conceptual
class diagram, which in turn produced an initial context-free grammar for the
proposed DSL.

The case study has shown the potential usefulness of ontology in the development
of a DSL specifically during the early stages of development. An ontology can pro-
vide a well-defined and structured process to determine the concepts of a domain and
the commonalities and variabilities for a DSL, which can result in the generation of a
class diagram and subsequently a CFG from the information. Two further observa-
tions highlight the benefits of an ontology-based approach. First, if an ontology is
already available for a domain, then this existing ontology can be used to initiate the
development of a DSL without the need to start from scratch. This was not the case
for the air traffic communication domain described in Section 3, but ontologies for

 Using Ontologies in the Domain Analysis of Domain-Specific Languages 341

other domains could already exist and be utilized in the DSL development for those
domains. Second, the entire process outlined in Section 3 could be used as an alterna-
tive to a more formal domain analysis technique such as FODA. In a separate direc-
tion, the ontology alone can be combined with formal domain analysis techniques
(e.g., proposed by Mauw et al. in [10]) and be used as a supplier of a well-defined
input of domain concepts and relationships for further analysis.

5 Related Work

De Almeida Falbo et al. describe the use of ontology in domain engineering that has
the purpose of developing software artifacts for reuse [5]. A more recent publication
demonstrates the use of ontology in engineering design requirements capture [4].
Both cases propose methodologies of utilizing ontology in terms of providing the
knowledge about a specific domain, albeit more in a general case of engineering.
However, the utilization of ontology in domain analysis in these works translates well
to the similar effort in DSL development. Guizzardi et al. associate ontology with the
development of Domain-Specific Visual Languages (DSVL) [7]. The ontology is used
to assist in developing a representative language for a specific domain that is correct
and appropriate. Similarly, our initial investigation described in this paper utilizes
ontology as part of the main goal of developing a representative language for a do-
main such as air traffic communication. However, in addition to this, the common and
variable elements of the domain are also considered through the ontology in order to
determine the structure of the domain-specific textual language (i.e., fixed and vari-
able language constructs).

Gašević et al. describe efforts to associate the two technical spaces of Model-
Driven Architecture (MDA) and ontology, which include the utilization of MDA-
based UML in ontology development [6]. We follow a similar approach where a con-
nection is made between the ontology in Table 1 and the UML class diagram in Fig-
ure 1. However, in addition to this association, we perform manual transformations on
the class diagram to obtain a context-free grammar for the DSL.

6 Conclusion and Future Work

An initial investigation of the usefulness of ontology in domain analysis in DSL de-
velopment was described in this paper. A case study demonstrated the insertion of
ontology development in the DSL development process, where a class diagram was
obtained from the ontology and subsequently a CFG was produced. The ontology
assisted in answering questions related to the domain, such as the main concepts and
their interdependencies, and the common and variable parts related to the DSL. The
ontology also provided a structured input to the subsequent stages of DSL develop-
ment. Continued exploration of ontology-driven domain analysis may provide further
proof of effectiveness in the analysis of domains for DSL development.

The class diagram in Figure 2 that was generated from the ontology can also serve
as the basis for creating a metamodel. Slight adaptations of this diagram could repre-
sent the metamodel for a tool like the Generic Modeling Environment (GME) [9],
which provides a domain-specific modeling language that has a concrete syntax that

342 R. Tairas, M. Mernik, and J. Gray

resembles concepts from the domain. Thus, the results of the domain analysis and the
observed ontology can inform technologies of both grammarware and modelware. This
direction will be explored as future work. In addition, the transformations that were
performed were done manually based on predefined transformation properties. A pos-
sibility for a more automated step is the transformation of the Web Ontology Language
(OWL) representation into a Backus-Naur Form (BNF) representation for the DSL.
Such a transformation may map similar elements and perform some alterations be-
tween the representations. This direction will also be considered in future work.

Acknowledgments. This project is supported in part by NSF grant CPA-0702764.

References

[1] Booch, G.: Object-Oriented Development. IEEE Transactions on Software Engineer-
ing 12, 211–221 (1986)

[2] Chandrasekaran, B., Josephson, J., Benjamins, V.: What Are Ontologies, and Why Do
We Need Them? IEEE Intelligent Systems 14, 20–26 (1999)

[3] Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Applica-
tions. Addison-Wesley, Boston (2000)

[4] Darlington, M., Culley, S.: Investigating Ontology Development for Engineering Design
Support. Advanced Engineering Informatics 22, 112–134 (2008)

[5] De Almeida Falbo, R., Guizzardi, G., Duarte, K.: An Ontological Approach to Domain
Engineering. In: International Conference on Software Engineering and Knowledge En-
gineering (SEKE), Ischia, Italy, pp. 351–358 (2002)

[6] Gašević, D., Djurić, D., Devedžić, V.: Model Driven Architecture and Ontology Devel-
opment. Springer, Berlin (2006)

[7] Guizzardi, G., Ferreira Pires, L., van Sinderen, M.: Ontology-Based Evaluation and De-
sign of Domain-Specific Visual Modeling Languages. In: International Conference on In-
formation Systems Development, Karlstad, Sweden (2005)

[8] Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-Oriented Domain Analy-
sis (FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineer-
ing Institute, Carnegie Mellon University (1990)

[9] Lédeczi, Á., Bakay, Á., Maróti, M., Völgyesi, P., Nordstrom, G., Sprinkle, J., Karsai, G.:
Composing Domain-Specific Design Environments. IEEE Computer 34, 44–51 (2001)

[10] Mauw, S., Wiersma, W., Willemse, T.: Language-Driven System Design. International
Journal of Software Engineering and Knowledge Engineering 14, 625–664 (2004)

[11] Mernik, M., Heering, J., Sloane, A.: When and How to Develop Domain-Specific Lan-
guages. ACM Computing Surveys 37, 316–344 (2005)

[12] Mernik, M., Črepinšek, M., Kosar, T., Rebernak, D., Žumer, V.: Grammar-Based Sys-
tems: Definition and Examples. Informatica 28, 245–255 (2004)

[13] Noy, N., McGuinness, D.: Ontology Development 101: A Guide to Creating Your First
Ontology,

 http://www-ksl.stanford.edu/people/dlm/papers/
 ontology-tutorial-noy-mcguinness.pdf

[14] Weiss, D., Lay, C.: Software Product Line Engineering. Addison-Wesley, Boston (1999)

Model-Driven Development of Context-Aware
Web Applications Based on a Web Service

Context Management Architecture

Georgia M. Kapitsaki and Iakovos S. Venieris

National Technical University of Athens,
School of Electrical and Computer Engineering,

Intelligent Communications and Broadband Networks Laboratory,
Heroon Polytechniou 9, 15773 Athens, Greece
gkapi@icbnet.ntua.gr, venieris@cs.ntua.gr

Abstract. Context information constitutes an essential aspect of ser-
vice development and provision in mobile computing in the attempt to
provide users with personalized services. The problem of handling con-
text in these environments, as well as the development of context-aware
services, have become quite challenging research tasks in the last years.
In this paper, the ongoing work towards context handling of web services
is presented along with a model-driven methodology for context-aware
service engineering for web applications built on web services. The so-
lution focuses on decoupling the context management mechanism from
the core service logic in all development stages.

1 Introduction

An increasing trend towards mobile computing is visible in the last years. The
main aim of application developers for these environments is to offer users per-
sonalized services that take into account location, personal information and cur-
rent activity, as well as other contextual information. Under this perspective,
there is a vital need to manage the use of contextual information in mobile
applications. At the same time, there is an increasing trend towards offering In-
ternet services to mobile users and this tends to be performed through stripped
down version of accepted web services that have been tested in the Internet
world. The development of context-aware services, i.e. services that take into
account context information and adapt their behaviour accordingly, is an in-
teresting research challenge in the field of software engineering that needs to
be handled in all development changes, since in many occasions the delivery of
a service requires a complicated software engineering process passing through
the stages of analysis and design prior to the actual code development. When
web services are exploited for the service development the development process
should be treated accordingly.

In this paper a solution to the above problem is proposed by the research
work towards the model-driven development of context-aware web applications

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 343–355, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

344 G.M. Kapitsaki and I.S. Venieris

consisting of web services. The combination with model-driven techniques helps
in addressing context management in all development stages. An approach that
focuses mainly on the decoupling of the main service logic from the context
management phase is presented. Indeed, an interesting observation regarding
the context adaptation of user centric services is that although the interaction
between the user and the service can be adapted to contextual parameters, the
overall goals related to service logic are usually indifferent to context changes. As
an example we can consider a service providing airport ticket bookings. Depend-
ing on the user context (e.g. financial constraints, preferred airlines) different
operations belonging possibly to different subservices can be invoked. In every
case the main service goal - ticket booking - remains the same regardless of the
specific user context. Along this line of thought, core service logic and context
handling can be treated as two separate concerns, both on modeling and imple-
mentation level. Finally, not all application cases depend on context, but context
adaptation may or may not be applied depending on service characteristics. For
this reason, the context adaptation scheme needs to remain transparent to the
service and be applied on top of it.

The proposed work shows that a structured methodology including service
and context modeling along with the corresponding dependencies is sufficient to
result in a functional web application built on web services, where context infor-
mation is handled in all service development stages remaining outside the main
application logic. By doing so it contributes to the advance of the research on
model-driven development of context-aware services by providing a methodology
that handles context information independently in all phases and uses concrete
transformation tools and code mappings without limiting to the specification of
the development meta-models. Indeed descriptions of concrete code generation
tools is something that is not addressed in detail in the activities of this research
field. Of course the approach is targeting a specific area of interest - which has
not been studied extensively in the past - regarding the use of web services to
form the context-aware web application. Nevertheless, by exploiting the pro-
posed ideas the application consisting of web service clients can be generated
from the model allowing the developer to potentially reuse existing services and
focus on the dependencies with context information. Furthermore, the developer
does not need to be fully aware of how the context adaptation mechanism works
during execution allowing him again to concentrate primarily on the application
design.

The rest of the paper is structured as follows. Section 2 introduces the main
concepts of context and context-awareness used in the paper concentrating also
on related work in the field, whereas Section 3 presents the proposed model-
driven methodology along with the specified steps and the introduced profiles.
Section 4 is dedicated to the context-management architecture on which the
methodology is based. Section 5 presented a simple modeling example that
demonstrates how the proposed methodology can be used and finally Section
6 concludes the paper and outlines the current and future work in respect to the
presented approach.

Model-Driven Development of Context-Aware Web Applications 345

2 Context Awareness and Context-Aware Services

Context information can be defined in many ways and in different domains. In
the domain of mobile applications and services the most widely used definition
has been given by Day and Abowd stating that: ”Context is any information
that can be used to characterize the situation of an entity. An entity is a per-
son, place, or object that is considered relevant to the interaction between a user
and an application, including the user and applications themselves” [1]. Many
different solutions have been provided by researchers to the problem of context
management during service development and provision. Regarding the provi-
sion dedicated platforms or middleware are trying to provide supporting infras-
tructures like in the cases of the Service-oriented Context-Aware Middleware
(SOCAM) [2] and the Context-awareness sub-structure (CASS) [3].

In service development a variety of solutions have also been proposed. In
many cases the context management is handled directly at the code level by
enriching the business logic of the service with code fragments responsible for
performing the context manipulation. The first such significant attempt can be
found in Context Oriented Programming (COP) [4] where the code skeleton
is kept context-free and context-dependant stubs are exploited for context ma-
nipulation. Context-filling is then used for selecting the appropriate stub and
binding it with the respective program gap, thus providing the desired context-
dependent behaviour. Another example are context-aware aspects [5] that exploit
the principles of Aspect-oriented Programming (AOP) [6] to separate context-
aware behaviour from application code. Aspects are context-aware in the sense
that their use is driven by context. A certain aspect may or may not be executed
depending on its context of use.

However, context adaptation needs to be handled in the preceding develop-
ment stages especially when developers face more complicated cases. Model-
driven engineering and Model Driven Architecture (MDA) [7] techniques have
been exploited by many researchers (e.g. in [8]), in order to meet this need.
Some of the proposed solutions are focusing on modeling using Domain Specific
Modeling (DSM) like [9], where the WebML CASE tool is used. Context is ren-
dered here as a first-class actor allowing applications to adapt automatically to
context changes without user intervention targeting context-aware multichannel
web applications. Although specific to other types of applications than the ones
assumed in our work, this approach focuses more on information modeling for
web applications, whereas in the proposed approach the functionality of the ap-
plication is addressed in addition. In the majority of cases though meta-models
that extend the widely used Unified Modeling Language (UML) [10] are pro-
posed. Meta-modeling extends the abstract UML syntax to allow its specialized
use in different domains of context. Examples of this latter category are the
UML meta-model of [11] that supports structural, architectural and behavioural
adaptations of service design based on context values and [12], where context
is categorized in state-based context that characterizes the current situation of
an entity and event-based context that represents changes in an entity’s state.
These approaches use generic service dependencies to context only at design

346 G.M. Kapitsaki and I.S. Venieris

level, whereas in the presented work focus is given on web service dependencies
that can also be managed during service execution.

We are adopting the approach of the latter group that allows us to focus
on the whole development life cycle. Indeed model-driven techniques provide an
abstraction from the concrete platform and facilitate significantly the developer’s
work. However, they could prove inefficient without adequate support at the code
level. Therefore the proposed model-driven approach is also oriented towards
an implemented architecture responsible for the context adaptation of context-
aware web services at runtime. The architecture is based on message interception
for the context adaptation of the web services that form the application. Message
interception approaches have also been proposed in the literature like the work
presented in [13] where the context information transport and processing for
web services is addressed. Context information is maintained in blocks and is
included as extensions in message headers, whereas the context manipulation is
automatically performed through handlers either included as context plugins in
the framework or available remotely as dedicated web services.

3 Proposed Model-Driven Development Methodology

The proposed solution process towards context-aware development of web appli-
cations is based on an open solution that employees widely used languages and
practices and is presented in Fig. 1. The methodology is initiated by the introduc-
tion of the separate service model (Step 1) and the context service model (Step
2) to be used in the application, all in UML notation. Service models refer to the
services that act as business services for the application, i.e. the available web ser-
vices that are to be adapted to context, whereas context service models refer to
the web services that act as context sources and have access to the actual context
information in different ways (e.g. by encapsulating the functionality provided by
sensors, remote database systems etc.). The context associations between the con-
text sources and the application context model - depicting which source is used to
retrieve each context information - forms part of Step 3. Having both models and
source assignments available the context dependencies between the service and
context models are designed (Step 4). Then the application flow for the complete
web application expressing the order of web service operations calls consisting of
web service consumers is constructed for applications that consist of more than
one web service (Step 5). Finally, the application is mapped to platform specific
code (e.g. Java or C++ source code files, configuration files etc.) through the ap-
propriate code transformation (Step 6).

For the design phase, a number of UML profiles are proposed: an intuitive
web service profile and a context profile based on a modified version of the
ContextUML metamodel [15] similar to the one presented in [16] depicted both
in Fig. 2. The web service profile contains the elements found in a Web Services
Description Language (WSDL) document, whereas for the context modeling it
is assumed that all business services and context sources are exposed as web
services.

Model-Driven Development of Context-Aware Web Applications 347

Fig. 1. The steps for the model-driven development of context-aware applications

Fig. 2. The web service and context profiles

348 G.M. Kapitsaki and I.S. Venieris

Building on the introduced profiles, the separate business and context ser-
vice models are either imported in the modeling environment or constructed
(Steps 1 and 2 mentioned above). They can even be generated based on the
WSDL web service definitions. The source assignment for the context model
using <<SourceAssignment>> stereotyped relationships that represent relations
between context information and the web service source is then performed. This
step is followed by the modeling of the relations between the two main models:
the business logic and the context model, since the dependencies between the
service and context model are also part of the profile definitions.

Three different cases of context adaptation are supported by the development
methodology and the implemented architecture:

– Parameter Injection: one or more parameters values of the request message
are replaced with values related to context information (e.g. a parameter
representing a location is set to the current user location at the time of ser-
vice invocation). This is performed using <<ContextBinding>> stereotyped
associations and involves the modification of the <<Part>> parameters of
the <<InMessage>> stereotyped classes.

– Operation selection: the operation contained in the request message is
changed to reflect the contextual needs. This case is useful for services that
aggregate a number of methods implementing the same functionality in dif-
ferent ways. The operation to be invoked is selected based on context in-
formation (e.g. a payment service may select the method that corresponds
to the payment choice stored in a user profile like payment using a credit
card or a PayPal account). Again the <<ContextBinding>> stereotype be-
tween the service definition and the context information is used to reflect
this dependency case.

– Response Manipulation: it refers to the manipulation or the modification
of service responses based on context and is often related with filtering or
sorting operations based on the context information. An example would be
the ordering of a book list response according to user preferences on book
genre. <<ContextTriggering>> associations between the service output and
the trigger class (<<Trigger>> stereotype) with the triggered operation(s)
(<<ContextAction>> stereotype) show this dependency. The respective op-
eration is called when specific conditions expressed in the Object Constraint
Language (OCL) [14] are met (<<ContextConstraint>> stereotype).

The above cases are specific to web services and capture the modifications
that can be performed on web service messages. Of course it is also possible
to have combinations of the above when adapting a service (e.g. a parameter
injection for the input parameters followed by a response manipulation for the
response).

In case of a web application consisting of more than one web services the
service flow is modeled by means of a state transition diagram, which is suit-
able for service flow modeling in this type of applications. In the state transition
diagram state activities correspond to web service operation calls that may be

Model-Driven Development of Context-Aware Web Applications 349

Fig. 3. The presentation profile

adapted to context if specified so by the application model. For the state di-
agram modeling an introduced Presentation profile is exploited. The profile is
used to model application view properties, User Interface (UI) elements and the
application navigation. At the code level the presentation UI flow is handled by
the application controller that can be found in Model-View-Controller (MVC)
based architectures (e.g. Spring Web Flow1). Generally, the presentation pro-
file captures the properties of such MVC pattern implementations (e.g. Apache
Struts2 or Spring MVC3). The profile is illustrated in Fig. 3 as part of the UML
state transition diagram definition. It is comprised of different stereotypes such
as <<FrontEndView>> which refers to a separate application view and tags in
the general format:

@presentation.web.view.type = text/enumerationtype

that express more specific properties of view elements (e.g. if a web service return
parameter should be displayed as a text field, a table, a hyperlink etc.).

For the code mapping step a transformation tool consisting of a model parser
and a code generator has been implemented. At the current state the imple-
mented code generator targets the context adaptation architecture presented
next. However, the mapping can also be performed considering target implemen-
tations based on different web development technologies, since the fundamental
1 http://springframework.org/webflow
2 http://struts.apache.org/
3 http://springframework.org

350 G.M. Kapitsaki and I.S. Venieris

web application development principles remain the same and the introduced pro-
files are generic enough to support different kind of code mappings. The aim is
to extend the current work towards this direction. For the transformation pro-
cess Eclipse EMF and UML2 libraries [17] along with a number of dedicated
tools developed in the framework of this work are exploited. The presence of
specific stereotypes on application model elements triggers the execution of Ve-
locity templates4 that are responsible for the generation of the actual source
code (e.g. Java bean classes) and other configuration files (e.g. Spring web flow
beans definition). The model is parsed in its EMF format which is exported from
the XML Metadata Interchange (XMI) [18] representation. Different modeling
environments can be exploited and many of them support this EMF export such
as Magicdraw5.

4 Proposed Solution to Context Management

In order to handle the context management problem at the platform specific
level keeping it at the same time transparent to the core application logic, an
architecture based on web services and the interception of Simple Object Access
Protocol (SOAP) messages [19] is proposed (Fig. 4). The Apache Axis26 web
service framework has been exploited for the implementation of the proposed
mechanism, although the same principles can be applied for any framework that
supports message interception. The context management is performed as follows:
service requests and responses are intercepted through the architecture han-
dler, context information related to these messages is retrieved and finally the
modified messages reflecting the context adaptation are returned. The message
modification is carried out through a number of plugins. The three adaptation
cases presented earlier including combinations are supported by the management
architecture.

The main elements of the architecture are:

– SOAP Interception Handler : the handler intercepts all SOAP request and
response messages and loads the appropriate plugins for the message modi-
fication, if present. It is accompanied by a simple configuration file in XML
format: handler.xml that lists the available plugins and associates context
adaptation cases with the corresponding plugins.

– Plugin library: the plugins are responsible for the actual message modifica-
tion. They are separated in inPlugins for SOAP requests and outPlugins for
the responses. The context plugins communicate with the context sources
that have direct access to the context information and alter the input and
output messages to reflect the current user task and its environment. In this
manner, the context adaptation is kept independent from the specific service
implementation and clearly separated from the service logic. The plugins are

4 http://velocity.apache.org/
5 http://www.magicdraw.com/
6 http://ws.apache.org/axis2/

Model-Driven Development of Context-Aware Web Applications 351

Fig. 4. The context management architecture

loaded on runtime based on a the configuration file. At the same time, the
context adaptation phase remains optional, since no message modification is
performed for services that do not require any adaptation.

– Context sources context providers: the context information is accessed by
the web services acting as context sources. The mechanisms that provide the
information (e.g. sensors in the environment, RFIDs, database management
systems etc.) expose their functionalities to these web services.

The architecture is presented extensively in [20].

5 Demonstration Example

In order to illustrate the above concepts a simple modeling example that fol-
lows the above principles is used. The example consists of two web services
acting as business services WebServiceA and WebServiceB), one context source
(ContexSource) and some atomic and composite context information (ContextA
to ContextD). The service and context model with the corresponding dependen-
cies are illustrated in Fig. 5.

All context adaptation cases are visible in the figure. The parameter injection
case is visible between partA1 of the input message of WebServiceA operation
and the attrA2 of ContextA. This means that the SOAP request message that
will be intercepted by the handler needs to be modified. When this is done the
value of the corresponding message part will be replaced by the value of the
context information attribute which will be retrieved using the getAttr2 con-
text source operation as shown by the <<SourceAssignment>> dependency. The
same operation is linked with a second dependency: a response manipulation

352 G.M. Kapitsaki and I.S. Venieris

Fig. 5. Application modeling example service and context models diagram

Fig. 6. Handler.xml configuration file for the presented dependencies

Model-Driven Development of Context-Aware Web Applications 353

Fig. 7. Application modeling example state transition diagram

case with the trigger class ContentSorting. This dependency indicates that the
SOAP response will be intercepted and the trigger class operation will be called
to modify the message. The conditions under which the operation is called (con-
straints) and the parameters to be used are both indicated in the OCL expression
that accompanies the class (pre and context part of the expression respectively).
The last operation selection depends on the attrD3 value of ContextD to select
between the operations available in WebServiceB.

The context dependencies correspond to plugin and association entries in the
handler.xml. For the presented case the structure of the configuration file is
depicted in Fig. 6.

The application flow consisting of operation calls to these two web services is
depicted in Fig. 7. The Entry Activity modeling construct of UML state transi-
tion diagrams is used to model the service call. The entry contains information on
the response and how the response should be rendered on the application view in
the form of stereotypes and tag values (e.g. using the <<FrontEndField>> stereo-
type of the presentation profile). The <<FrontEndAction> stereotype refers to
the view actions that trigger the transition to the next view and hence applica-
tion state. In the diagram the transition to the second view of the application is
performed when the user presses the viewB button as expressed by the tag:

@presentation.view.action.button=”viewB”

6 Conclusions

In this paper the research effort towards a methodology for the model-driven
development of context-aware web applications built on web services has been
presented. The design of the application is based on the introduced UML pro-
files. The model transformation to the final platform specific code is performed
through the tools developed in the presented work. A use case for the code gen-
eration exploiting the Apache Axis2 framework for web services and Spring Web
Flow for the application controller has been implemented. Current work includes

354 G.M. Kapitsaki and I.S. Venieris

the full specification of the transformation process and the mapping to different
technologies, whereas the potential future work is directed towards the inclusion
of privacy-aware mechanisms. Privacy guarantees needed to protect sensitive
user data and its dissemination is a major issue of context awareness. Indeed,
the issue of privacy has been scarcely handled (e.g. [21]). However, the secure
provision and processing of user and service related information remains vital
[22]. In order to face this issue, a privacy-aware context profile is being developed.
The aim is to integrate in the future this profile in the context-aware service de-
velopment methodology and extend the context architecture, so that context
information processing and retrieval is handled in a privacy-aware manner. A
further issue being studied is a potential extension of context dependencies by
defining semantics for the exact relations between service and context models.
This would require the introduction of ontologies that capture the characteristics
of adaptation for the case of applications being studied.

The described work contributes to the advance of the research on model-
driven development of context-aware services by providing a methodology that
handles context information independently and efficiently in all development
stages. It faces a very interesting issue of the latest years and aims in boosting this
research area. Through the proposed solution the context management remains
independent from the main service logic. The development process is straight
forward and adequate independence between the context and service modeling
is maintained. This constitutes context model replacement a simple process for
the developer.

References

1. Dey, K., Abowd, G.D.: Towards a Better Understanding of Context and Context-
Awareness, GVU technical report GIT-GVU-99-22, Georgia Institute of Technol-
ogy, pp. 3–4 (1999)

2. Gu, T., Pung, H.K., Zhang, D.Q.: A Middleware for Building Context-Aware Mo-
bile Services. In: Vehicular Technology Conference, vol. 5, pp. 2656–2660 (2004)

3. Fahy, P., Clarke, S.: CASS - Middleware for Mobile Context-Aware Applications.
In: Workshop on Context Awareness, MobiSys 2004, pp. 304–308 (2004)

4. Keays, R., Rakotonirainy, A.: Context-Oriented Programming. In: Proceedings of
the 3rd ACM international workshop on Data engineering for wireless and mobile
access, San Diego, CA, USA, pp. 9–16 (2003)

5. Tanter, E., Gybels, K., Denker, M., Bergel, A.: Context-Aware Aspects. In: Löwe,
W., Südholt, M. (eds.) SC 2006. LNCS, vol. 4089, pp. 227–242. Springer, Heidelberg
(2006)

6. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V., Loingtier, J.-
M., Irwin, J.: Aspect-oriented programming. In: Aksit, M., Matsuoka, S. (eds.)
ECOOP 1997. LNCS, vol. 1241, pp. 220–242. Springer, Heidelberg (1997)

7. Object Management Group (OMG), MDA Guide Version 1.0.1 (2003),
http://www.omg.org/docs/omg/03-06-01.pdf

8. Grassi, V., Sindico, A.: Towards Model Driven Design of Service-Based Context-
Aware Applications. In: International workshop on Engineering of software services
for pervasive environments: in conjunction with the 6th ESEC/FSE joint meeting,
2007, Dubrovnik, Croatia, pp. 69–74 (2007)

http://www.omg.org/docs/omg/03-06-01.pdf

Model-Driven Development of Context-Aware Web Applications 355

9. Ceri, S., Daniel, F., Matera, M.: Model-Driven Development of Context-Aware
Web Applications. ACM Transactions of Internet Technology 7(1), article no. 2,
1–32 (2007)

10. Object Management Group (OMG), Unified Modeling Language (OMG UML)
Infrarstructure, v.2.1.2 (2007), http://www.omg.org/docs/formal/07-11-03.pdf

11. Ayed, D., Berbers, Y.: UML profile for the design of a platform-independent
context-aware applications. In: Proceedings of the 1st Workshop on Model Driven
Development for Middleware (MODDM 2006), Melbourne, Australia, pp. 1–5
(2006)

12. Grassi, V., Sindico, A.: Towards Model Driven Design of Service-Based Context-
Aware Applications. In: Proceedings of the International workshop on Engineer-
ing of software services for pervasive environments: in conjunction with the 6th
ESEC/FSE joint meeting, Dubrovnik, Croatia, pp. 69–74 (2007)

13. Keidl, M., Kemper, A.: Towards Context-Aware Adaptable Web Services. In: Pro-
ceedings of the 13th international World Wide Web conference (WWW 2004), New
York, NY, USA, pp. 55–65 (2004)

14. Object Management Group (OMG), Object Constraint Language OMG Available
Specification, v. 2.0 (2006), http://www.omg.org/docs/formal/06-05-01.pdf

15. Sheng, Q.Z., Benatallah, B.: ContextUML: A UML-Based Modeling Language for
Model-Driven Development of Context-Aware Web Services. In: Proceedings of
the International Conference on Mobile Business (ICMB 2005), pp. 206–212. IEEE
Computer Society Press, Los Alamitos (2005)

16. Prezerakos, G.N., Tselikas, N.D., Cortese, G.: Model-driven Composition of
Context-aware Web Services Using ContextUML and Aspects. In: Proceedings of
the IEEE International Conference on Web Services (ICWS 2007), pp. 320–329.
IEEE Computer Society Press, Los Alamitos (2007)

17. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. Addison Wesley Professional, Reading (2003)

18. Object Management Group (OMG), XML Metadata Interchange (XMI), MOF
2.0/XMI Mapping, v.2.1.1 (2007),
http://www.omg.org/docs/formal/07-12-02.pdf

19. World Wide Web Consortium (W3C), Simple Object Access Protocol (SOAP) 1.1
(2000), http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

20. Kapitsaki, G.M., Kateros, D.A., Venieris, I.S.: Architecture for Provision of
Context-aware Web Applications based on Web Services. In: Proceedings of the
IEEE conference on Personal, Indoor and Mobile Radio Communications (PIMRC
2008), Cannes, France, September 15-18 (2008)

21. Henriksen, K., Wishart, R., McFadden, T., Indulska, J.: Extending context models
for privacy in pervasive computing environments. In: Proceedings of the 3rd In-
ternational Conference on Pervasive Computing and Communication Workshops
(PerCom 2005 Workshops), pp. 20–24 (2005)

22. Weitzner, D.J., Ackerman, M., Darrell, T.: Privacy In Context, Human-Computer
Interaction A Journal of Theoretical. Empirical, and Methodological Issues of User
Science and of System Design 16(2-4), 167–176 (2001)

http://www.omg.org/docs/formal/07-11-03.pdf
http://www.omg.org/docs/formal/06-05-01.pdf
http://www.omg.org/docs/formal/07-12-02.pdf
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 356–370, 2009.
© Springer-Verlag Berlin Heidelberg 2009

DSL Tool Development with Transformations and Static
Mappings

Elina Kalnina and Audris Kalnins

University of Latvia, IMCS, Raina bulvaris 29, LV-1459 Riga, Latvia
Elina.Kalnina@lumii.lv, Audris.Kalnins@lumii.lv

Abstract. A tool development framework for domain-specific languages com-
bining mapping and transformation based approaches is proposed in this re-
search project. The combination of both approaches permits to use advantages
and eliminate disadvantages as far as possible. First results are described includ-
ing draft architecture for the framework implementing proposed ideas. A sketch
of mapping definition facilities is presented. Initial implementation proposals
are described as well. A template based graphical generation language Template
MOLA for implementation algorithm description is introduced.

1 Introduction

Currently it is very popular to create and use specialized modelling languages for a
domain area. Theses languages are called domain-specific languages (DSL). They are
developed for users specialized in the concrete area. By using domain-specific
languages users can operate with familiar terms. There can be graphical or textual
domain-specific languages. Only graphical languages will be considered here.
Operational semantics of DSL is also out of scope of this research project. A visual
domain-specific language basically consists of two parts – the domain part and the
presentation (visual) part. Sometimes they are called also the abstract and concrete
syntax respectively.

The domain part of the language is defined by means of the domain metamodel,
where the relevant language concepts and their relationships are formalized. The
domain metamodel is used also for the precise definition of language semantics. Stan-
dard MOF [1] or similar notations are used for the definition of domain metamodel.

For the presentation part (concrete syntax) definition there is no universally ac-
cepted notation. The same metamodelling techniques are used, but with various se-
mantics. Most frequently, instances of classes in the presentation type metamodel are
types of diagram elements to be used in the diagram. A concrete set of graphical ele-
ment types for a diagram definition is called the presentation type model (a typical
example is the graphical definition model in GMF [2]).

Tool development for graphical domain-specific languages is time consuming and
expensive task. Due to the growing popularity of domain specific languages various
graphical tool building frameworks have been developed to improve the tool (editor)
building process. Two different approaches are used in these environments. The first
option is to use a mapping-based approach. During the tool design this mapping

 DSL Tool Development with Transformations and Static Mappings 357

assigns a fixed presentation type model element (a node type, edge type or label type)
to a domain metamodel element, by means of which the latter one must be visualized.
This solution is quite appropriate for simple cases, where no complicated mapping
logic is required. In this case tools for simple DSLs can be developed even during a
presentation session. However, DSL support frequently requires much more compli-
cated and flexible mapping logic. One of the reasons is that there is no fixed corre-
spondence between the domain metamodel and presentation types. In this case the
second approach is used: to define the correspondence by model transformation lan-
guages. Transformations define the synchronisation between the domain and presen-
tation models and the tool behaviour in general.

Mapping based frameworks are MetaEdit [3], GMF framework [2], Microsoft DSL
Tools [4], Generic Modeling Tool [5] and some other. A pure transformation based
framework is METAclipse framework [6]. The other transformation based frame-
works Tiger GMF project [7], ViatraDSM framework [8] and GrTP [9] provide also
some elements of the mapping based approach.

There exist mapping based and transformation based tools, but usually some parts
of the same DSL are suitable for mappings and some for transformations. It means
none of solutions is optimal. Problem is that there is no good combined solution. In
this paper the combined solution problem is addressed.

The only framework which already proposes some sort of combined solution in-
volving both mapping definition and transformations is ViatraDSM framework [8].
However, a lot of principal issues such as a generic mapping metamodel, seamless
integration of static mappings with transformations and user-friendly mapping defini-
tion facilities are not solved there. Therefore new ideas for a really satisfactory solu-
tion for combined approach to tool building framework are required.

The given paper briefly proposes a new complex solution how to combine
transformations and static mappings for tool building. The paper concentrates on
architectural solutions and required language facilities. In particular, a new mapping
definition language ensuring close mapping and transformation integration is pro-
posed. Some ideas how to implement this solution are also sketched briefly. The im-
plementation is planned as a natural extension of METAclipse framework [6], thus
providing advanced facilities for defining presentation type model, mappings and
other parts of the tool definition. An interesting facility is introduced for the transfor-
mation generation from mappings. It is proposed to use the Template MOLA lan-
guage to specify the generation algorithm. Template MOLA apparently is the first
template based graphical generation language and therefore has a value of its own.

As there is no universally accepted terminology in the area, the second section of
this paper begins with a terminology clarification. This section continues with the
description of mapping and transformation based approaches as well as related work.
In section 3 the original ideas how to combine transformations and mappings are
presented. In this chapter the new mapping definition language is introduced. Facili-
ties required to implement this language are described in section 4. Template MOLA
is briefly described at the end of section 4.

2 State of the Art in DSL Tool Development

In this section the existing approaches for DSL tool development are briefly described.

358 E. Kalnina and A. Kalnins

2.1 Terminology Explanation

Let us begin with some terminology clarification. Currently different DSL develop-
ment frameworks use completely inconsistent terminologies, even the terms model
and metamodel are used differently depending on the context. For example, the map-
ping-based GMF [2] speaks only of two layers: model and metamodel, everything the
tool builder creates is termed model. This paper combines both the transformations
and static mapping context. To avoid misunderstanding, a consistent terminology and
its relations to be used in this paper are defined in Fig. 1.

As we can see the domain metamodel is defined using MOF as a meta-metamodel.
A domain model is created according to the domain metamodel. It should be noted
that alternative domain meta-metamodels used in some approaches in fact play the
same role as MOF (and are similar to it).

The situation is not so simple with the presentation part. In every framework there
is a fixed presentation type definition environment. Possibilities supported in this
environment can be described with a presentation type metamodel. Presentation types
for a concrete domain specific language constitute a presentation type model defined
according to the presentation type metamodel. Presentation types describe the relevant
graphical element types. When data is created in this concrete DSL tool instances of
presentation model are created, but data in this model is not an instance in the presen-
tation type model. It is an instance of the presentation metamodel describing sup-
ported graphical elements in the tool in general, for example, line, box, label etc. In
the presentation type model, for example, we can describe that we want to represent
this type as a grey rounded rectangle, with green lines and containing one label. In
this case instances of the rounded rectangle, label and colours will be created in the
presentation model, with appropriate properties set (according to the presentation
metamodel). After instances have been created the user can change the rounded rec-
tangle colour (if this feature is supported by the tool). In this case the presentation

Fig. 1. Terminology definition

 DSL Tool Development with Transformations and Static Mappings 359

model is modified, but it does not affect the presentation type model. The presentation
type describes only the default look of this node. That is why presentation model and
presentation type model are two separate models.

One more important thing is to define a mapping model. This should be done ac-
cording to the mapping metamodel. The mapping model describes the relationship
between the domain metamodel and presentation types. At the data level mappings
are not used directly.

When defining a new DSL tool in a tool definition framework, the user has to de-
fine a domain metamodel, a presentation type model and a mapping model. It should
be noted that the presentation metamodel is needed directly only if mappings are
defined using model transformations. Models required at runtime for the tool created
from the definition depend on whether the tool definition framework is an interpreter
or generator. If the framework is an interpreter the mapping and presentation type
models are needed to interpret them in runtime. If the framework is a generator these
models are not needed in runtime because the tool code is generated according to data
in these models.

Most of the known DSL tool definition frameworks can be correctly categorized in
the framework of this terminology schema.

2.2 Mapping-Based Approach

A mapping-based approach prescribes by means of which presentation type model
element each domain metamodel element must be visualized. Thus, the graphical tool
functionality is basically defined by this mapping. The mapping itself can be defined
as a mapping model according to the mapping metamodel. The mapping typically
may be complemented by use of constraints, but only at few selected points.

Most of the frameworks (GMF, MS DSL…) use the generation step, by means of
which language classes are generated in the corresponding OOPL (Java, C#,…) from
the involved models. The generated code ensures the relevant synchronization be-
tween the domain and presentation models in runtime. If the generated functionality is
insufficient, the language code can be extended manually. Actually, mapping may be
used without the generation step too - examples are MetaEdit+ [3] and Generic Mod-
eling Tool [5], which are model interpreters.

It must be noted that the mapping approach is easy to use - if the generated code is
sufficient (or should be accompanied by a small amount of manual code), the tool
definition is mainly declarative and very fast. However, when the presentation type
model is dissimilar to domain metamodel, a lot of code in an OOPL must be added.
To avoid this, it is a common practice for simple DSLs to create custom domain
metamodels nearly isomorphic to the corresponding presentation type metamodels
(one class to one node type and so on). However, there can be situations when it is not
possible to select the domain metamodel freely, for example, if it is used for compil-
ing, integration with other tools etc.

Mapping definition capabilities of a framework depend on mapping design patterns
supported. The most expressive static mapping language is implemented in GMF. But
even it is not expressive enough. For example, every domain class mapped to a dia-
gram node must be contained in a domain class mapped to the diagram itself (canvas
in GMF). Therefore it is impossible to implement by pure mappings standard UML

360 E. Kalnina and A. Kalnins

class diagram where a class is contained in a package (in UML domain) and is visual-
ised in several diagrams independently of its package containment.

Let us take a look at some DSL language examples where mapping approach is
clearly insufficient. Evidently, one such group is model transformation languages. A
typical example is MOLA [10, 11], which is a graphical language with a lot of seman-
tic dependencies between language elements. It is important to use the native MOLA
metamodel as a domain metamodel for the MOLA tool, since only this way compli-
cated syntax checks can be performed during editing and context-sensitive lists of
valid references proposed. If the goal of the tool is to create as syntactically correct
models as possible, clearly it is impossible to implement this tool using only static
mappings. The same can be said about tools for other transformation languages, for
example, MOF QVT [12], where the native domain metamodel is even further from
the presentation. Another such group could be complicated workflow languages.

2.3 Model Transformation Based Approach

A complete alternative to the mapping-based approach is the model transformation based
approach. The correspondence between the domain and presentation is defined by trans-
formations in a model transformation language, for example, MOLA [10, 11]. These
transformations define what modifications must be done in one of the models, if the other
one changes (due to user actions or other internal activities). Therefore the correspon-
dence between the domain metamodel and presentation type model may be arbitrarily
complicated here. In fact, transformations control the complete tool behaviour.

From the first glance this approach is more complicated to use - though experience
shows that programming model element mappings in an adequate model transforma-
tion language is much easier than in a standard OOPL. The usability of the approach
is ensured also by the fact that a significant part of the transformations are domain-
independent and are built only once, as part of the framework itself. Clearly, the trans-
formation driven approach is more time consuming in simple cases.

The first pure transformation based project is the Tiger project [7]. However, a
specific domain modelling notation is used there which forces the domain metamodel
of a language still to be close to the presentation metamodel. Standard editing actions
(create, delete, etc.) are specified by graph transformations which act on the domain
model, and the presentation model is updated accordingly. The main goal of Tiger
approach is to provide the building of syntactically correct diagrams only.

The most advanced transformation based framework is METAclipse [6] which
uses the MOLA transformation language and a powerful presentation engine in
Eclipse which is an extension of GEF, GMF runtime and some other plug-ins. It is
based on a presentation metamodel specially adapted for defining transformations.
The current version of MOLA editor [6] is built on this framework (using a
bootstrapping approach). This editor provides an advanced support for ensuring syn-
tactical correctness of MOLA programs and a high usability. The developed editor
confirms the suitability of the framework for implementing complicated DSLs.

2.4 Combined Approach

Usually, for some parts of the tool the correspondence from domain to presentation is
simple (fit for mappings) and for some complicated (fit for transformations). The best

 DSL Tool Development with Transformations and Static Mappings 361

solution would be to combine both approaches. In this case for simple one-to-one
relations between domain and presentation the mapping based approach could be
used, but for complicated parts model transformations could be written. For example,
for the abovementioned MOLA Editor [6] the transformation size could be reduced
approximately by 50% if mappings were applicable. Simple visualisation could be
defined by mappings, but for complicated consistency maintenance transformations
would still be needed.

Currently there are only known two attempts to combine both approaches in a lim-
ited way. Frameworks using this combination to a degree are the Tiger GMF Trans-
formation project [13] and the ViatraDSM framework [8].

The Tiger GMF Transformation project [13] (related to the original Tiger project)
proposes to extend GMF by complex editing commands. The mapping between do-
main and presentation models is defined by standard GMF facilities. But new com-
plex model editing commands can be defined by transformations acting only on the
domain model. However, this approach does not permit to define more complicated
(transformation based) mappings between the domain and presentation, which is the
main goal of the approach proposed in this paper.

The ViatraDSM framework [8] is based on the Viatra2 transformation language [14].
In this framework a mapping from domain to GEF-level presentation concepts has to be
defined. This static mapping is interpreted by the ViatraDSM engine. The transforma-
tion based mapping (defined by Viatra2 rules) can be combined with the static mapping
approach. The goal of ViatraDSM seems to be the closest to the proposal in this paper.
However, a lot of principal issues are not solved there. First of all, the static mapping
mechanisms support only very limited mapping possibilities. Only basic mapping pat-
terns are supported. Mapping and transformation integration possibilities are very lim-
ited as well. Each object can be mapped using either transformations or mappings.
Mapping definition for ViatraDSM framework has no adequate notation. Solutions to all
these issues are the topics of the project described in this paper.

We propose to use a more detailed mapping and transformation integration granu-
larity, for example, to use transformations as preprocessors or postprocessors for
mappings. A more expressive mapping language and a mapping definition notation
are proposed as well.

There is one more framework GrTP [9] which combines both approaches to a de-
gree, but in a different setting. This framework is based on an advanced presentation
type metamodel, by means of which the desired diagram structure is defined. The
framework contains a large set of predefined transformations, which implement all
standard user actions related to the defined diagram type. All these predefined actions
can be extended or replaced by custom transformations. The main application area for
this framework is various conceptual modelling languages; therefore there is no built-
in support for domain models. If required, synchronisation with the corresponding
domain can be supported by custom transformations, but in future a support for typi-
cal mappings to domain could be included.

3 Research Project Description

The main topic of the given research project is how to add mappings to a transforma-
tion based tool development framework. The METAclipse framework [6] and model

362 E. Kalnina and A. Kalnins

transformation language MOLA built by UL IMCS is chosen as the basis for research
project realisation. This choice is based on the fact that the framework is completely
transformation based, it provides flexible ways of extension and it itself can be used
in a bootstrapping manner for implementing the extended features.

To ensure usability of the proposed approach mappings and transformations should
be smoothly integrated. The proposed mapping language could be implemented using
an interpreter or a generator generating transformations in a model transformation
language (MOLA in our case). This implementation decision affects integration pos-
sibilities. In both cases extension points where custom transformations can be added
to the functionality defined by mappings could be used. If the generator approach is
used we can allow also manual modifications of the generated transformations.

The main extension mechanism should be extension points. For this mechanism to
be sufficient in most cases, extension points should be chosen appropriately. Exten-
sion points should permit to replace or extend the built-in mapping possibilities by
custom transformations.

3.1 The Framework from the User Point of View

The proposed tool definition framework will be metamodel based. At the beginning
the domain metamodel of a domain specific language should be built (e.g., by MOLA
metamodel editor). The next step would be to define the presentation type model and
mappings between the domain metamodel and presentation type model. All this will
be done using graphical wizard-style dialogs in the tool development framework.

If built-in mapping possibilities are not suitable for some task, the tool builder will
be able to select/create custom MOLA procedure (using the built-in MOLA editor).
Appropriate parameters to and from this procedure should be passed, to ensure integ-
rity with the mappings. For each extension point parameters passed to procedures
used in this extension point are predefined.

When the tool development is complete, the tool builder can press the button
“Build tool”. Thus the tool executable in one step is obtained. Alternatively, if there is
such a need the generated transformations can be edited and then compiled.

3.2 Mapping Definition

Mappings are based on typical mapping patterns. A large set of mapping patterns has
been identified in Generic Modeling Tool [5] and they will be reused in this project.

Mapping definition is based on the mapping and presentation type metamodels as
the abstract syntax of the “mapping language”. The visible form of this language will
show up as wizard-style dialogs, which will build instances of these metamodels.
Appropriate tool support can be built with a small effort using the METAclipse
framework. A more detailed description is given in the next section.

Presentation definition in a graphical tool consists of several parts: property dia-
logs, diagrams as well as model tree, menus etc. Informal mapping examples men-
tioned so far all have been related to mapping the domain to diagram element types.
Now we switch to another part of the presentation – the property dialogs. It is because
the proposed ideas can be easier demonstrated on this part and the corresponding
metamodels are smaller. In this paper only an essential subset from the property dia-
log part of the presentation type and mapping metamodels is briefly sketched (in Fig.
2). We assume here that typical Eclipse-style dialogs are used.

 DSL Tool Development with Transformations and Static Mappings 363

Fig. 2. Mapping and presentation type metamodel subset describing property dialogs

Fig. 3. Metamodel fragment describing design pattern field is based directly on property

When a property dialog for a domain class is to be defined, at first an appropriate
property dialog type (i.e., its structure, element types and functionality) is designed,
then it is mapped to domain metamodel elements. A property dialog consists of tabs,
which can be either a field list (for displaying class attributes and linked class in-
stances) or a grid (for displaying child instance properties in a tabular form). The
basic element of both is a field, whose type definition is the central point in the ap-
proach. For each field type it must be defined what must be shown there when the
corresponding class instance is selected. For many field kinds (e.g. combobox) the
valid value set (e.g., a set of appropriate class instances) must be obtained and visual-
ized. Finally, it must be defined what has to be done when the value is modified (in
Eclipse-style dialogs the model update follows immediately).

As the metamodel in Fig. 2 shows, for all these situations possible typical cases are
defined via mappings to domain metamodel elements (e.g., which class attribute must
be visualized in a field in the simplest case, see the fragment in Fig. 3).

The metamodel contains also structuring elements defining various typical ways
how these elementary mappings can be combined, e.g., expressions built over elemen-
tary mapped values. In all cases the corresponding mapping-based definition can be
replaced by a call to a specified custom MOLA procedure. One more novel idea is to

364 E. Kalnina and A. Kalnins

Fig. 4. Class dialog example, general and attribute tab

use MOLA patterns for defining custom instance set filters, e.g., for selection of rele-
vant child instances.

For example, we can use this mapping language to describe a property editor for
UML 2 class diagrams (based on the standard UML 2 metamodel [1]). For UML
Class a property dialog type could be defined, consisting of two tabs. The first tab
will contain a field list describing the UML Class itself. The attributes name and isAb-
stract are directly mapped to fields in this tab. For the attribute name, a uniqueness
check (within a package) before the change is needed, for this task a custom MOLA
procedure can be invoked. The second tab could be a grid describing class attributes
(see Fig. 4). In this case, the grid InstanceSetDefiniton feature is mapped to the Prop-
erty class. The basic instance selection is via ownedAttribute master-detail association
and additional filtering is defined using MOLA pattern selecting only those properties
which are attributes (but not association ends).

The metamodel part for the diagram mapping and presentation types can be built
the same way, only more classes would be present since it is more complicated.

3.3 Mapping and Transformation Integration

For the mapping metamodel the most important task is a seamless integration of map-
pings with custom MOLA procedures. MOLA is a procedural transformation lan-
guage, therefore MOLA procedures are chosen as the integration unit. It does not
restrict the integration possibilities, since any set of statements can be included in a
procedure. Actually it even allows reusing the same procedure in different contexts.

The mapping metamodel granularity and structure should be chosen so that each
action could be extended or replaced by an appropriate custom MOLA procedure. The
transformation based approach permits to use a more detailed mapping granularity
than in traditional mapping based tools.

For each extension point the set of required parameters for custom procedure is
predefined. This predefined set should be compatible to the parameter set of the se-
lected procedure.

In Fig. 5 an integration example is given. When a property dialog field is modified
a custom transformation can be executed as a preprocessor, postprocessor or instead
of the action implied by the static mapping. A custom procedure can be used as well
to calculate the field value to be displayed.

This close integration of mappings and transformation based approach is a key fac-
tor in reaching the goal when the transformations generated from mapping only need
to be combined with the specified custom MOLA procedures, but require no direct
manual modification.

 DSL Tool Development with Transformations and Static Mappings 365

Fig. 5. Metamodel fragment describing mapping and transformation integration

4 Facilities Required to Implement the Approach

To implement the ideas described in the previous section several facilities are re-
quired. First of all, a user interface for the mapping definition language should be
defined. Then the language implementation is needed. It means an interpreter or code
generator for this language is required. This interpreter or generated code should be
compatible with the METAclipse framework.

4.1 Mapping Definition Language User Interface

We propose to use wizard style dialogs for the definition of presentation type model
and mappings. These wizards will create instances according to the relevant meta-
model. The presentation type and mapping definition will be integrated.

To generate presentation types and mapping for a domain class, the user will be
asked to select the appropriate tool design pattern and enter additional properties of
presentation types to be created (for property dialog, diagram node type etc.). The
relevant mapping instances will be created automatically. The palette element if
needed will be created simultaneously as well.

Wizards will be organised in several levels, for the whole domain metamodel (as in
GMF) or on one domain class to see or modify the features related only to this class.

In addition to presentation and mapping definition, wizards will allow for compli-
cated cases to select custom MOLA procedures for the relevant extension points.
These procedures will be created using the built-in MOLA editor.

A natural way to implement the proposed mapping definition editor in META-
clipse framework is to build it as an extension of the existing MOLA tool [6]. Then
slightly extended metamodel definition editor can be reused for domain metamodel
creation and MOLA editor can be used directly for creating custom procedures.

The mapping/presentation wizard itself could be implemented in several ways. A
classical wizard style dialog sequence could be built, but this requires certain exten-
sions to METAclipse property engine. A more interesting and user friendly way could
be to create wizard diagrams. The dashboard in GMF [2] could serve as a simple
prototype for such diagrams. The possibilities of METAclipse permit to create dy-
namic wizard diagrams where each node represents some wizard dialog “page”. The
dialog in such a page can be defined using standard METAclipse property dialog
facilities. The edges in such a diagram represent the order in which these pages must

366 E. Kalnina and A. Kalnins

Fig. 6. Wizard diagram example, for domain class mapped to Node

be visited. Next nodes and edges will be created and existing ones enabled/disabled in
response to the values the user has entered in the current node. A simplified sketch of
a wizard diagram for a domain class mapped to node can be seen in Fig.6. It is as-
sumed that the user currently defines tabs for the property dialog.

The same visual representation can be used to modify the defined mappings. After
opening the appropriate wizard diagram the user can select a node and update proper-
ties. If this modification influences dependencies to other wizard nodes the user is
asked to update these nodes as well.

We can think about other mapping visualisation possibilities too. For example, a
“mapping diagram” similar to the one in Microsoft DSL Tools [4] can be used, with
domain metamodel in one side of the diagram and presentation type model in another,
and with mapping lines connecting them. A lot of improvements are possible for this
idea. The domain part could be visualised by a standard class diagram. A palette ele-
ment (if needed) can be shown together with the presentation type. A presentation
type can be visualized close to the node with this type. Instead of a label a short form
of the template how this label value will be calculated can be shown. Subelement
mappings could be shown in a similar way too.

4.2 Mapping Language Implementation

As it was already mentioned a mapping language implementation is needed and this
implementation can be done via an interpreter or generator.

One of the solutions is to create a generator generating MOLA transformations
from the defined mappings. MOLA is selected as the target language since it is the
base language of the METAclipse framework and custom transformations will also be
in it. In addition, it will be easier for the user to modify the generated transformations
if needed.

The most straightforward approach would be to define this generator in MOLA
language as well. However, a more interesting solution requiring less effort to be
implemented can be provided in this project. It is possible to define a “MOLA tem-
plate language”. It will be a template language, combining executable parts in MOLA
with templates for transformations to be generated. The first experiments (about 10 %
of generator written) show that generator algorithms in this Template MOLA could be

 DSL Tool Development with Transformations and Static Mappings 367

defined quite easily. It should be noted, that the Template MOLA has a value of its
own as a general purpose macro-processor for MOLA. A more detailed description of
this language is given in the next section. One more aspect is that Template MOLA
would permit to modify the generator procedures themselves more easily, for exam-
ple, to adapt the framework to some specific kinds of DSLs.

Another possible way to implement the transition from mapping definitions to
MOLA would be to build a universal interpreter in MOLA which would directly
interpret them. Some experiments show that the interpreter would consist of proce-
dures quite similar in form to those used in generator. Certainly, some true extensions
to MOLA language and compiler would be required in this case. Also, there would be
impossibile for tool builder to modify the “generated” code. However, the total effort
for interpreter approach could be less.

4.3 Template MOLA

The “MOLA template language” is a direct generalisation of popular textual tem-
plate languages (of the kind model-to-text) to graphical languages. The planned
Template MOLA language would contain two kinds of MOLA statements: stan-
dard ones to be executed during the generation process and those to be “copied” to
the generated “code” (in fact, model) with template expressions replaced by the
appropriate generation time values. Some interesting solutions could appear here,
for example, how to generate a set of similar procedures from one template proce-
dure. The template part of the language requires some natural extensions of MOLA
syntax, for example, reference to a parameterized class in the MOLA pattern
definition.

The metamodel for transformations in Template MOLA consists of three parts. The
first one is the generation time part. As already mentioned, there are statements exe-
cuted in generation time in Template MOLA. These statements are similar to tradi-
tional MOLA and elements used in them should reference the generation time part of
the metamodel. In the context of tool building the mapping and presentation type
metamodels should be used as this part. Then there is the template part of Template
MOLA. Situation with this part is more complicated. There are constant and variable
parts of template statements. By constant part we understand elements to be copied
directly to the generated MOLA code. Accordingly, there must be also the constant
template part of the metamodel. The constant part of template statements should ref-
erence only the corresponding part of the metamodel. This metamodel part must be
present in the Template MOLA definition environment and must be copied to the
runtime metamodel. In the given context, the presentation metamodel is this constant
part. There is also the variable part of template MOLA (elements with parameterized
types – in angle brackets). For example, the parameterized type “<class>” means that
some class should be used here. The generator part during its execution has to substi-
tute this parameter by a reference to an appropriate class. The variable part of meta-
model must be provided before the generator is run. In the given context this variable
part of metamodel is the domain metamodel (which is supplied by tool builder before
the generator execution).

368 E. Kalnina and A. Kalnins

Fig. 7. Template MOLA example

You can see a Template MOLA procedure example in Fig. 7. The procedure gen-
erated from this template procedure creates a property dialog tab which actually is of
FieldListType. We assume that the basic structure of property dialogs is already cre-
ated during initialization. This procedure is called when some property dialog should
be visualised, its goal is to fill the “prefabricated” dialog structure with data. The first
task is to find the already created tab by its name. Then for each field its value is set
using the procedure dlg_BuildPropertyRowElementValue.

This procedure has one generation parameter @tab and one template parameter
@i, the template parameter has a parameterized type. Another Template MOLA pro-
cedure invoking the given one will supply a particular class for this template parame-
ter (in fact, a domain class), therefore in the generated procedure this class will be
used as the type of this parameter. The procedure begins with a template rule. Four
class elements have types from the presentation metamodel (the fixed part of template
metamodel) and one is a reference to the template parameter whose type is substituted
the same way as in the parameter itself. During generation this rule is copied to the
generated MOLA code, replacing the type of the parameterized element in the de-
scribed way. Then the procedure contains a loop executable in generation time. It is
executed for each Field in the FiledListType. This loop contains a template rule and a
procedure call. In this template rule all elements have types from the fixed part of
template metamodel. For each loop iteration one copy of this template rule is created.

 DSL Tool Development with Transformations and Static Mappings 369

In the generated code only @f.name template expression is replaced with its
generation time value. The procedure call means both the generation time call and a
generated call, the generated call (to the corresponding generated procedure) will
contain only the template parameters. Control flows are generated as well in an ap-
propriate way.

The implementation of template MOLA itself would also not be very complicated.
The Template MOLA editor could be built in METAclipse framework using the
MOLA editor as basis. The experience in creating MOLA editor shows that it could
be done quite easy and would take about one men-month. Also a compiler for Tem-
plate MOLA is needed. It could be implemented in two steps. The first step would be
a “preprocessor” converting template MOLA to traditional MOLA. Certainly, only
the abstract syntax form (model) of MOLA can be easily generated, but this is suffi-
cient for the subsequent compilation. In the second step the existing MOLA compiler
could be used. The preprocessor converting template MOLA to ordinary MOLA
seems to be not very complicated. We have written approximately 10 percent of this
preprocessor and these experiments are very promising.

5 Conclusions

The overall goal of this research project is to develop the scientific basis required to
create a DSL tool development framework with integrated mapping and transforma-
tions support. The main target is to develop language and metamodel facilities for this
framework. Only an experimental version of the framework is planed to validate the
proposed approach and languages.

Currently draft requirements for such a tool development framework have been
developed. The first version of mapping definition and generation/interpretation lan-
guages has been developed. These languages should be improved and tested on real
life examples. Detailed architecture of the framework should be developed including
tool support for the proposed languages.

Actually, ideas and languages described in this paper could be used in terms of
other frameworks as well. It would be easier to apply these ideas to transformation
based frameworks because their structure is quite similar to METAclipse.

Tool development framework implementing ideas described in this paper could be
built with a reasonable effort. It would permit to reduce the transformation size for
MOLA Editor approximately by a half. Tool for MOF QVT Relational graphical form
[12] (using the original metamodel from OMG) could also be built relatively easy
using this framework. The framework would be suitable for building advanced work-
flow editors as well, for example advanced BPMN implementation with syntax di-
rected editing.

Though there are many open questions, first experiments (redefining some parts of
MOLA tool) seem to be very promising.

Acknowledgments. The authors would like to thank Agris Šostaks and Edgars Celms
for their help and suggestions.

370 E. Kalnina and A. Kalnins

References

1. Meta-Object Facility (MOF), http://www.omg.org/mof/
2. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language Toolkit, Rough

Cuts. Addison-Wesley, Reading (2008)
3. MetaEdit+, http://www.metacase.com/
4. Cook, S., Jones, G., Kent, S., Wills, A.C.: Domain-Specific Development with Visual Stu-

dio DSL Tools. Addison-Wesley, Reading (2007)
5. Celms, E., Kalnins, A., Lace, L.: Diagram definition facilities based on metamodel map-

pings. In: OOPSLA 2003, Workshop on DSM, Anaheim, California, USA, pp. 23–32 (Oc-
tober 2003)

6. Kalnins, A., Vilitis, O., Celms, E., Kalnina, E., Sostaks, A., Barzdins, J.: Building Tools by
Model Transformations in Eclipse. In: Proceedings of DSM 2007 workshop of OOPSLA
2007, Montreal, Canada, Jyvaskyla University Printing House, pp. 194–207 (2007)

7. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object Oriented and Rule-based Design of
Visual Languages using Tiger. In: Proceedings of GraBaTs 2006, p. 12 (2006)

8. Rath, I., Varro, D.: Challenges for advanced domain-specific modeling frameworks. In:
Proc. of Workshop on Domain-Specific Program Development (DSPD), ECOOP 2006,
France (2006)

9. Barzdins, J., Zarins, A., Cerans, K., et al.: GrTP: Transformation Based Graphical Tool
Building Platform. In: Proc. of the MDAUI Workshop of MoDELS 2007, Nashville, Ten-
nessee, USA, October 1, 2007. CEUR Workshop Proceedings 297 CEUR-WS.org (2007)

10. Kalnins, A., Barzdins, J., Celms, E.: Model transformation language MOLA. In: Aßmann,
U., Aksit, M., Rensink, A. (eds.) MDAFA 2003/2004. LNCS, vol. 3599, pp. 62–76.
Springer, Heidelberg (2005)

11. UL IMCS, MOLA pages, http://mola.mii.lu.lv/
12. MOF QVT Final Adopted Specification, OMG, document ptc/08-04-03 (2008)
13. Taentzer, G., Crema, A., Schmutzler, R., Ermel, C.: Generating Domain-Specific Model

Editors with Complex Editing Commands. In: Schürr, A., Nagl, M., Zündorf, A. (eds.)
AGTIVE 2007. LNCS, vol. 5088, pp. 98–103. Springer, Heidelberg (2008)

14. Visual Automated Model Transformations (VIATRA2), GMT subproject, Budapest Uni-
versity of Technology and Economics,

 http://dev.eclipse.org/viewcvs/indextech.cgi/gmthome/
 subprojects/VIATRA2/index.html

Current Issues in Teaching Software Modeling:
Educators Symposium at MODELS 2008

Micha�l Śmia�lek

Warsaw University of Technology,
Warsaw, Poland

smialek@iem.pw.edu.pl

Abstract. Software modeling is an increasingly popular method among
software development teams to overcome the problems associated with
complexity of contemporary software systems. It can be argued that
teaching modeling to software engineers is as important as teaching
maths and physics to general engineers. This lead many academic and
industrial centers to introducing modeling courses to their curricula. Un-
fortunately, it seems that education does not yet support the modeling
paradigm well enough, thus limiting its acceptance as a mature method
of developing software systems. This symposium sought for innovations
on teaching modeling that would show its benefits in attractive and ped-
agogically effective ways. Three areas that need improvement were iden-
tified: placing modeling in the software engineering curriculum, teaching
model semantics, and tool support for teaching modeling. Several ped-
agogical solutions in these three areas were presented. The symposium
concluded with several recommendations on such improvements, with
the most important being: “let the students play with models”.

1 Introduction

Modeling is an important part of any software development effort, even if the
developers do not realize that they are in fact doing modeling by eg. scribbling
quick diagrams on whiteboards. It allows developers to abstract over complex
problems and create “visual maps” of the “territory” covered by the resulting
programs. However, usually, models are used only informally to support pro-
gramming with additional (often hand-written) “visual notes”. It can be noted
that most of the engineering disciplines have a common language that allows en-
gineers from various backgrounds communicate effectively. It can be argued that
software engineering also needs such a “lingua franca” and modeling languages
serve this purpose very well. Unfortunately, in order for modeling to become to
software engineering what maths is for general engineering, much wider knowl-
edge of modeling semantics is needed.

Although it is fairly widespread, the approach of using models in a systematic
way which includes automatic model transformation and code generation has not
yet got through to industry to the degree which would satisfy the advocates of the
approach. This might be caused by lack of high quality, pedagogically effective

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 371–374, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

372 M. Śmia�lek

MDE courses. Assuming we are convinced ourselves, we need to convince the
students – prospective software engineers – that MDE gives significant benefits
over other approaches. The students need to experience these benefits and gain
appreciation leading to usage of MDE in their day-to-day business. Convincing
the students of MDE is not easy, as it is usually treated as a “nice to have”
feature within a software engineering project. We should thus discuss ways to
convince people within the project teams to treat the model-driven approach as
a “must have” that introduces additional, necessary level of abstraction. This
in turn leverages understanding of complex systems also through the existence
of the above mentioned “lingua franca”. We need to convince students who
normally use eg. only Java IDEs that they also need modelling plug-ins which
would not only give a visual map of their Java programs but also allow for better
organization of the path from user requirements to code.

2 Organization, Selection and Thematic Areas

The symposium was organized around three types of submissions: full papers,
short position papers and informal teaching technique descriptions. Formal sub-
missions resulted in classical paper presentations and associated discussion. In-
formal submissions resulted in “tricks and tips” sessions where several educa-
tional artifacts were presented and discussed. From the submitted formal papers
only 8 could be selected, and a thorough review process was needed. The selected
paper submissions formed three thematic groups: teaching model semantics, tool
support for teaching models and modeling course concepts.

Within the first area, there were presented approaches to show to the students
that modeling (specifically in UML) is more than just drawing nice (meaning
also: syntactically correct) diagrams. Within the proposed courses, the role of
modeling language semantics is presented to the students. This is important,
as only presenting model semantics in a pedagogically effective way can supply
the students with arguments for using models in practice. An interesting ap-
proach to tackle the above issue is presented in one of the papers selected for
this volume - “The UML is more than Boxes and Lines”. Throughout the course
presented in this paper, the students get to know consistency rules for UML spec-
ifications in different software development contexts. The presented approach is
unique through the use of inconsistencies introduced deliberately by the teacher
to the handed-out models. In another paper presented during the Symposium
an attempt to simplify UML’s meta-model for teaching purposes was presented.
The third paper in this area presents an approach to teach semantics of model
transformations through showing small variations in models.1

The second group of papers stresses the role of tools that support teaching.
This does not only pertain to the obvious role of CASE tools. Novel approaches

1 All the papers are published in a volume issued by the Warsaw Uni-
versity of Technology; abstracts are available at the Symposium website:
http://www.iem.pw.edu.pl/edusymp08/.

Current Issues in Teaching Software Modeling 373

use tools to give certain pedagogical feedback on the models created by stu-
dents. While creating their models within CASE tools, students receive instant
comments that help in improving their modeling style. Such tools relieve the
teachers and help in organizing courses with many attendants. They can also
help in preparing fair and transparent criteria for assessing models created by
many students. Such an approach is presented in the second paper selected
for this volume - “Automatic Checklist Generation for the Assessment of UML
Models”. This paper presents a tool that automatically generates a checklist
for modeling assignments based on natural language description. With the gen-
erated checklist, grading the models prepared by the students is significantly
facilitated.

The final group of presentations treated new course ideas described through
short papers. This includes ideas on how to cope with large “volumes” of students
(up to 1000 per course) and approaches which bring the modeling theory closer
to practice by introducing project assignments that emulate real life in a software
development organization. These course ideas were supplemented by the “tricks
and tips” which included ideas on: how to present to the students the syntax and
semantics of interaction diagrams in a way that actively involves the students;
how to use the official chess specification as the basis for a modeling assignment;
various assignments associated with modeling.

3 Symposium Results

The symposium concluded with discussion in groups formed around the above
three thematic areas. The discussion concentrated on finding more effective ways
to promote the MDE paradigm through software modeling education. It resulted
with several recommendations for the prospective curricula and courses on soft-
ware modeling:

– Introductory modeling should be taught as early as possible within the soft-
ware engineering curriculum (as compared to teaching maths or physics in
general engineering curricula). It could be taught even before or just after
the basic programming course.

– Modeling courses should use good, convincing examples. Toy examples of-
ten found in textbooks are not satisfactory for attracting the students. The
examples should start with natural language descriptions from which the
models could be discovered.

– Modeling should be taught in the context of software engineering process.
Both agile and formal methodologies should be covered for modelling. Model
Driven Development should be taught as a compulsory course at the master
level.

– It is very important to teach properly the semantics of modeling languages
(specifically UML). This semantics should be presented for different contexts
that the modeling language is used in (business, requirements, design). UML
has to be taught with care due to ambiguous semantics caused by universality
of the language.

374 M. Śmia�lek

– The students learning modeling should be able to “play” with the modeling
languages similarly to “playing” with the programming languages. In order
to get convinced, the students need to see concrete (eg. executable) results
of their modelling in a specific assignment.

– More than just a model drawing tool is needed to practice real modeling. In
order to see the real benefits of modeling and model driven development, the
students need to see model transformations and executable models through
appropriate tool usage.

– Modeling should be taught also to non-software developers. Communication
through visual models is a skill necessary for many people in contemporary
business and research environments.

4 Conclusion

The most important message for modeling educators that comes out of the Edu-
cators Symposium at MODELS’08 can be summarised in a short motto: “make
models fun”. Only by allowing the students to have fun with the models we
can convince them to use modeling techniques in their day-to-day activities. It
is also important to start modeling as an activity that abstracts over various
programming languages and software technologies. Only this way, the models
can fill the gap that separates natural language descriptions of a problem with
the problem solution in a specific programming language. This leads to the ideal
educational scenario, where the students can first play with the initial, natural-
language-based models, then transform them to more detailed ones and finally
execute them just like for programming languages. This allows to achieve “con-
crete” results that give personal satisfaction to the students, and makes the
learning process “fun”. Hopefully, the above scenario can be implemented in
various educational contexts thus leveraging the spread of modeling approaches
in the software development industry.

Acknowledgement

I would like to thank all the members of the Program Committee for their help
in selecting the most relevant papers which highly contributed to the sympo-
sium’s success. I would also like to thank the Symposium participants for their
involvement in preparing excellent formal and informal presentations and for
interesting discussions which lead to this summary text.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 375–386, 2009.
© Springer-Verlag Berlin Heidelberg 2009

The UML Is More Than Boxes and Lines

Yvan Labiche

Carleton University, Department of Systems and Computer Engineering,
Software Quality Engineering Laboratory

1125 Colonel By Drive, Ottawa, ON K1S5B6, Canada
labiche@sce.carleton.ca

Abstract. The Unified Modeling Language (UML) is now the de-facto standard
for the analysis and design of object-oriented software systems. There is a gen-
eral consensus among researchers and practitioners that the UML could have a
stronger semantic content. However, even the semantics of the UML, as
described for example as well-formedness rules in the UML standard documen-
tation, is not very well-known to many practitioners. As a result, practitioners
often perceive the UML merely as a graphic tool. This paper discusses the ap-
prenticeship of the UML semantics and presents a pedagogical method to help
students overcome their limited view of the UML language as merely a set of
annotated boxes and lines and to allow them to discover UML semantics.

Keywords: UML, well-formedness rules, consistency, teaching, laboratory.

1 Introduction

The Unified Modeling Language (UML) [11] is now the de-facto standard for the
analysis and design of object-oriented software systems [12]. Every researcher work-
ing (extensively) on, and possessing an intimate knowledge of, the UML would agree
that UML is much more than a set of annotated boxes and lines. Indeed, these anno-
tated boxes and lines come together to reflect the meaning of a software, that is, the
UML has semantics. The semantics of the UML is expressed through its metamodel
and in particular through so-called well-formedness rules, which describe in plain
language and often using the Object Constraint Language (OCL) [10] the constraints
that UML model elements have to satisfy. For example, a well-formedness rule states
that generalization hierarchies shall be directed and acyclical [11]. This well-
formedness rule only involves model elements that belong to one UML diagram,
specifically the class diagram, whereas other well-formedness rules involve different
UML diagrams. For example, the signature of a message in an interaction diagram
must either refer to an operation (i.e., an operation of a class in a class diagram) or a
signal (i.e., a signal class in a class diagram) [11]. Therefore, although some research-
ers and practitioners would like to improve the UML semantics—and there have been
many attempts at doing so (e.g., [8])—claims that the UML is devoid of semantic
content do not hold true. It results that even the most rigorous application of UML
syntax cannot ensure logical outcomes. The correct practice of the UML necessarily
entails the simultaneous understanding of UML syntax and semantics.

376 Y. Labiche

Despite UML’s potential for carrying meanings, current practice (in schools and in
the profession) often shows that the semantics of the UML, even the one specified in
the UML metamodel, is not (very well) known to practitioners. Many practitioners
and students are simply not aware of the semantics of the UML and therefore perceive
the UML merely as a graphic tool that allows them to freely draw annotated boxes
and lines. There are probably two main reasons for this reduction. On the one hand,
UML semantics is not necessarily taught to students during their degree (and few
textbooks explicitly mention the problem of well-formedness of UML diagrams), and
on the other hand, tools do not necessarily enforce well-formedness rules (even the
ones of the standard), and as such mask the need for a semantic understanding.

In this article, we report on an attempt we have made to address the first possible
root cause of this erroneous perception. We created laboratory material to heighten
student awareness of the problem of the well-formedness of UML diagrams. The
laboratory material consists of a UML analysis document (with use case, class, inter-
action, state machine diagrams and a data dictionary) in which well-formedness prob-
lems, introduced by the instructor, were to be discovered by undergraduate students.
In this article we describe this laboratory material and report on our experience of its
use since 2003. In particular, though the laboratory material could be improved, re-
sults showed that we did achieve our objective: to heighten student awareness of the
problem of the well-formedness of UML diagrams. Students were indeed able to
identify a number of well-formedness problems by themselves. This is particularly
important in the context of Model Driven Engineering [7] where models are the pri-
mary artifact of interest.

The rest of the paper is structured as follows. Section 2 puts this paper into context
by describing the course in which the laboratory exercise took place. Section 3 de-
scribes in detail the laboratory material, and observations are discussed in Section 4.
Conclusions are drawn in Section 5.

2 Course Context

The Software Engineering course in which the laboratory sessions took place is a 4th
year course offered to Computer System Engineering and Software Engineering
bachelor students. It is composed of three hours of lecture a week and three hours of
laboratory every other week, over a period of eleven weeks. Its objective is to go
through the different phases of software development, from requirement elicitation to
design, code and testing with the support of the UML notation [3]. This course is
preceded in the curriculum by the Systems Analysis and Design course, which is
mostly dedicated to teaching the UML notation, and it is a pre-requisite to the Analy-
sis and Design Laboratory course which is a laboratory-based course where students
put what they have learnt into practice. (See calendar descriptions of the three courses
in Table 1).

As such, at the beginning of the Software Engineering course, students possess a
relatively solid command of the UML notation (use case, class, interaction, activity,
and state machine diagrams mainly), as well as the OCL, but have had near to no
exposure to complete analysis and design documents, and have not seen how the
UML notation can be used during the many software development phases.

 The UML Is More Than Boxes and Lines 377

Additionally, students embarking on the Software Engineering course have not
been introduced to the fact that UML diagrams allow the decomposition of an analy-
sis/design problem into sub-problems focusing on one aspect of the problem at a time,
such as structure or behavior. Relatedly, the students have no experience in grasping
that these diagrams, which together describe one software system, are to be coher-
ently inter-related and consistent with each other. And from here, new challenges
arise: in designing diagrams, students make numerous mistakes of incompatibility or
inconsistency. In other words, they are aware of the UML syntax and some well-
formedness rules that involve one diagram only and that relate to the correct use of
the UML graphical notation (e.g., generalization hierarchies shall be directed and
acyclical [11]), but are not necessarily aware of the well-formedness rules that involve
several diagrams and which make up a coherent analysis/design document. For in-
stance, our experience shows that at the beginning of the Software Engineering
course, students do not systematically ensure that signatures of messages in interac-
tion diagrams refer either to operations (i.e., an operation of a class in a class dia-
gram) or to signals classes (i.e., a signal class in a class diagram).

3 Laboratory Material

A first note: the well-formedness rules discussed in this article are not restricted to the
ones specified in the UML standard [11]. They more generally address the issue of the
consistency between different parts of an analysis/design document [3]. Therefore, we
will use the term consistency rule instead of well-formedness rule in the remainder of
this article, unless we refer to the rules of the standard.

It was decided that the first laboratory session in the Software Engineering course
would be dedicated to heighten student awareness of the problem of the consistency
of UML diagrams, and specifically consistency rules that involve different parts of an
analysis/design UML document. To do so, the laboratory material included:

1. An introductory (30mins) lecture on consistency rules involving different parts
(including UML diagrams) of an analysis/design document (Section 3.1);

2. The construction (by the teaching assistants and the course instructor) of an
analysis document for a realistic system (Section 3.2);

3. The insertion of inconsistencies in the analysis document (Section 3.3).

Table 1. Course calendar descriptions

Systems Analysis and
Design

Creating requirements specifications prior to designing and implementing com-
plex software systems. Software development lifecycles, role of requirements
analysis; functional decomposition, dataflow modeling; database modeling,
entity-relationship diagrams; finite state machines; object-oriented analysis; use
cases, use case maps; project management; introduction to software design.

Software Engineering Review of software lifecycles and requirements analysis. Software design, with
emphasis on methods for real-time systems. Testing, verification and validation,
quality assurance and control. Project planning and management. Maintenance
and configuration management. Software reuse during design and maintenance.

Analysis and Design
Laboratory

Applying the full spectrum of engineering and programming knowledge ac-
quired in the program through team projects in the laboratory. Practice in doing
presentations and reviews. Lectures will discuss software engineering issues as
they relate to the projects, from a mature point of view.

378 Y. Labiche

During the three-hour long first laboratory session, the students then:

a. Attended a 30mins lecture on UML diagrams consistency;
b. Were given the task, during the remainder of the laboratory, of finding as

many consistency problems as possible in the analysis document with the help
of the consistency rules informally described during the lecture. They were not
asked to fix the identified problems, as this was later discussed in class.

3.1 Introductory Lecture on UML Diagrams Consistency Rules

Since the UML analysis document provided to the students comprised use case, class,
interaction and state machine diagrams as well as use case descriptions and a data
dictionary1 (see Section 3.2), the consistency rules discussed during the introductory
lecture focused on these different views only. The objective of the introductory
lecture was not to introduce the UML metamodel in detail, describing every single
well-formedness rule it contains. Our experience is that introducing the notion of
metamodel, going through the UML metamodel and discussing its well-formedness
rules would take more than half an hour (the duration of the introductory lecture).
Additionally, some well-formedness rules of the standard documentation are already
known to the students: e.g., the fact that a generalization hierarchy is acyclical. Last,
the UML standard documentation is not meant to be read by bachelor students, and is
dry reading anyway. Instead, we decided to give an informal description of some
consistency rules, focusing on those that involve more than one part of a UML
analysis/design document and that we consider important when designing a software
system with the UML notation. In other words the list of rules is not meant to be
complete. These consistency rules are summarized in Table 5.

Table 5 is basically a square, symmetrical matrix. The reason for this symmetry is
that in order to ensure that a specific diagram (say an interaction diagram) is consis-
tent with another diagram (say a class diagram) a two-way analysis is required. For
instance, all the operations (in message signatures) of an interaction diagram should
appear in a class of a class diagram, and operations in classes of a class diagram
should be used somewhere in interaction diagrams. Note that not satisfying these
consistency rules may not indicate a design problem: it may simply be a case of the
UML model not being complete (e.g., an interaction diagram is not complete if it does
not include all the possible scenarios and therefore some of the operations of classes
are not used in interaction diagrams). Failing to satisfy a consistency rule may also be
due to the level of detail of diagrams: the designer may decide to omit some messages
(and therefore the use of some operations) in interaction diagrams.

Note also that these consistency rule descriptions could be more precise. For in-
stance, when comparing an interaction diagram to a class diagram (i.e., row “Interac-
tion diagram” and column “Class diagram”) one could add that an operation used in a
message signature should belong to the class which is the type of the target of the
message. Though this information does not appear in the table for reasons of manage-
ability of size, it was discussed during the introductory lecture.

1 Note that such a data dictionary, with descriptions of use cases, classes, operations, attributes,

associations, contracts, …, could be automatically produced by UML case tools. It can there-
fore be considered part of the UML model.

 The UML Is More Than Boxes and Lines 379

Last, these rules have four main origins. First, some come from the UML standard
itself [11], such as the “Interaction diagram” / “Class diagram” example discussed
above. Some come from current practice (e.g., based on experience and designer
feedback [1]) or are recommended in software engineering textbooks [3]. The fact
that classes and operations should be documented in a data dictionary is an example
of such tradition or practice-based rules. Third, some come from the literature on the
UML notation, like the idea that state machines can be synthesized out of a collection
of scenarios (e.g., [2, 15]) thereby suggesting some consistency rules between interac-
tion and state machine diagrams (e.g., row “State machine diagram”, column “Interac-
tion diagram” in Table 5). Indeed, an interaction diagram specifies co-operations
between objects and those co-operations should trigger (legal) objects’ state-based
behavior as specified in state machine diagrams. Fourth, some come from our own
experience of UML-based design; this is the case for the consistency rule between
scenarios in interaction diagrams and operations’ pre and post conditions in the data
dictionary (i.e., row “Interaction diagram”, column “Data dictionary”).

To illustrate this last point, consider the example of Fig. 1. Though greatly simpli-
fied, Fig. 1 (a) shows a class diagram and one set of contracts for operation ad-
dUser(name:String):Integer. The predcondition, i.e., what the client of the
method has to ensure according to Design by Contract [9], states (in OCL) that the
value of parameter name does not correspond to an existing user. Figures (b) and (c)
show two different interaction diagrams (excerpts). The first one is consistent with the
operation contract: the client (not shown in the diagram) ensures that the precondition
is met before calling addUser() by calling findUser() beforehand. However,
the second one is not: nothing ensures that the precondition is satisfied and therefore,
according to Design by Contract [9] the result of addUser() is unexpected. The
“Interaction diagram” / “Data dictionary” rule therefore demonstrates to students that
specifying class and operations responsibilities under the form of contracts has an
impact on the construction of interaction diagrams.

Since it was the first time the students were introduced to a long, almost complete
analysis document (see the next section), the introductory lecture additionally gave
the students some guidance as to how to read an analysis document. One approach
could have been to teach the students an existing inspection technique that has shown
to have important benefits [5, 6], tailored to a UML context. Instead, because time

b=falseopt

findUser(name:String):Boolean
addUser(name:String):Integer

UserControl uc:UserControl

b=findUser(“john”)

id=addUser(“john”)
addUser(name:String):Integer
pre: findUser(name)=false
post: ...

(a)
Class diagram

and contracts (excerpt)
(b)

Correct interaction diagram
(c)

Incorrect interaction diagram

uc:UserControl

id=addUser(“john”)
b=findUser(“john”)

...
b=falseopt

Fig. 1. Illustrating coherence between scenarios and operation contracts

380 Y. Labiche

was limited at the beginning of the course and in the first laboratory, the students
were encouraged to follow the guidelines below:

1. Do not attempt to read the document sequentially from the first page to the
last page.

2. Follow an iterative procedure, to incrementally increase your understand-
ing, as follows:

i. Take a look at a use case that seems to be one of the most important
ones from the use case diagram and use case descriptions.

ii. Identify the corresponding interaction diagram to learn how objects co-
operate to achieve the tasks of the use case.

iii. Look at the class diagram to understand how the corresponding classes
are structurally related.

iv. Look at the data dictionary (i.e., class descriptions and operation con-
tracts) to precisely understand the object interactions.

v. Look at state machine diagrams where necessary to discover state-based
behavior.

vi. Repeat those steps for another use case.

3.2 The Analysis Document

The analysis document distributed to the students during the first laboratory session of
the Software Engineering course describes the (incomplete) analysis of a Cab Dis-
patching System. This system can be used to dispatch cabs following clients’ requests
in real-time, to pre-book cabs in advance and dispatch them when it is time to do so.
The analysis document is 40 pages long and contains a use case diagram, use case
descriptions (for each use case) following a specific template [3], a plain language
description of the seven actors, two class diagrams (one with only the entity classes
and one with all the entity, control and boundary classes2), interaction diagrams for
three of the use cases, state machine diagrams for three of the entity classes, and a
data dictionary describing classes (with class invariant specified in OCL), attributes,
and operations (with OCL contracts) in plain language. Other detailed information
about this analysis document is available in Table 2.

Table 2. Details about the Cab Dispatching System analysis document

Total Number of classes 20 Number of use cases 10
Number of entity classes 6 Number of actors 7
Number of control classes 4 Number of interaction diagrams 3
Number of boundary classes 10 Number of state machine diagrams 3

Number of attributes 25 Descriptions of use cases and actors 7 pages
Number of operations 59 Data Dictionary 23 pages
Number of class relationships 21

2 Entity classes represent persistent or long-lived information tracked by the system whereas

control classes perform the tasks supported by the system and boundary classes show interac-
tions between the system and actors [3].

 The UML Is More Than Boxes and Lines 381

The document was left incomplete (e.g., not all the use cases have an interaction
diagram) for several reasons. As a complete document would very likely have more
than 100 pages, students would feel overwhelmed and spend most of their time trying
to understand the whole system instead of investigating consistency. We did not in-
clude all the classes, attributes and operations, and we did not include all the interac-
tion and state machine diagrams. However, the analysis document is complete
enough: it fully describes (with use cases, use case description and interaction dia-
grams) the main functionalities of dispatching a cab for an immediate request, book-
ing a cab in advance (e.g., a day before), and dispatching a pre-booked cab. The entity
classes involved in the interaction diagrams that have a state-based behavior are de-
scribed with a state machine, and all the classes, attributes and operations involved in
interaction and state machine diagrams appear in the data dictionary.

3.3 The Inconsistencies Introduced in the Analysis Document

The analysis document was constructed by a graduate student well-versed in UML-
based object-oriented analysis and design, and reviewed by the instructor and the
teaching assistants of the course. During the reviewing process, a number of inconsis-
tencies were identified and fixed. These were the starting point of a larger set of in-
consistencies that were eventually re-inserted in the document before distributing it to
the undergraduate students. Aside from inconsistencies due to the document’s incom-
pletion (these were quickly weeded out through in-class instructions), the inconsisten-
cies the undergraduate students were asked to identify were not arbitrary: they are the
real errors that a (junior) designer is likely to make.

A total of 57 inconsistencies were introduced in the document, as illustrated in Table 3
and Table 4. (Table 4 gives examples for those inconsistencies that may not seem straight-
forward from the descriptions in Table 3.) There exist other inconsistencies in the docu-
ment but they are only due to the fact that the document is not complete: e.g., not all the
use cases are described with an interaction diagram, not all the classes have attributes.

One inconsistency is particularly more complex than all the others as it involves an
interaction diagram, two classes (and their invariants), a public method and a con-
structor (and their contracts). Its description below is supported by Fig. 2.

Table 3. Taxonomy of inconsistencies

 Total number
In the data dictionary (e.g., erroneous operation description, missing or incorrect contract) 14
Between interaction and class diagrams (e.g., message suggests navigation between
objects but there is no association)

2

Between class diagram and data dictionary (e.g., missing operation in data dictionary,
inconsistent signatures in class and data dictionary, inconsistent scopes in class and data
dictionary, missing attribute description in data dictionary, inconsistent association role
names or multiplicities, attribute redundant with association, missing association)

17

Between interaction diagram and data dictionary (e.g., wrong operation used in mes-
sage, inconsistency of message sequence with operation contracts, wrong sequence of
messages, precondition not checked in message sequence, wrong target object type for
message)

12

Between state machine diagram and data dictionary (e.g., missing state, missing
transition, missing guard condition)

12

382 Y. Labiche

The signature of Cab::dispatchCab(j:ImmediateJob), its description, and
its post-condition suggest that its responsibility is to set this cab’s currentJob link to
j (the parameter). However, the precondition indicates that this link is assumed to al-
ready exist (reference to self.currentJob). So if the intent (i.e., post-condition) of
the operation is correct, the precondition should read j.jobState = #dis-
patched instead of self.currentJob.jobState = #dispatched.

Additionally, the postcondition of ImmediateJob’s constructor indicates that
the state of the ImmediateJob, once created, is #dispatched. According to the
state invariant, this means that once the constructor finishes, the link from the Imme-
diateJob object to the Cab object should be set (self.performedBy-
>notEmpty) and the link from the Cab object to the ImmediateJob object
should be set too (self.performedBy.currentJob = self). In other
words, the purpose of the constructor is to set the links in both directions.

However, the interaction diagram shows that calls to the ImmediateJob con-
structor and operation dispatchCab() are performed in sequence by another ob-
ject. So the interaction diagram suggests that the link is set twice.

Additionally, the ImmediateJob’s invariant specifies that the Cab state is busy,
whereas the precondition of dispatchCab() (which immediately follows the call to
the constructor of ImmediateJob) requires that this state be idle or assigned.

There is therefore a contradiction: setting the link between the ImmediateJob and
the Cab objects should be the responsibility of either the constructor of ImmediateJob
or Cab’s operation dispatchCab(), but not both, and the pre and post conditions and
invariants should be consistent with the ordering of messages in the interaction diagram.

Table 4. Illustrating some inconsistencies

Inconsistency Example
Erroneous operation descrip-
tion

In operation Cab::assignCab(j:PrebookedJob), the textual de-
scription should mention pre-booked jobs instead of immediate jobs.

Missing or incorrect contract The textual description of JobManagerControl::sendCab() is not
consistent with its post-condition: the description mentions both
immediate and pre-booked jobs whereas the post-condition only
constrains immediate jobs.

Message suggests navigation
between objects but there is no
association

A message is sent from an instance of class ImmediateJob to an
instance of class NotifyNewJobs but there is not association (or
path) between those two classes in the class diagram.

Inconsistent role names be-
tween class diagram and data
dictionary

The data dictionary shows an OCL navigation of the form
self.roleName but the class diagram does not show a role name on
any association in which the context class is involved.

Attribute redundant with
association

Class Cab has an attribute driver (of type Driver) as well as an
association to class Driver.

Wrong operation used in
message

In a message, operation disptachCab() should be used instead of
assignCab() (the two operations are very similar).

Inconsistency of message
sequence with operation
contracts

According to pre and post-conditions, all the messages triggered by the
constructor of class ImmediateJob (in the sequence diagram for use
case DispatchPrebookedJob) should in fact be called by the caller of
that constructor (e.g., the services offered by these messages are not the
responsibility of that constructor, as per its post-condition).

Precondition not checked in
message sequence

Operation getFirstCab() has a precondition (cab.allInstances-
>size >= 1) that is not checked before its use in a message.

 The UML Is More Than Boxes and Lines 383

Cab::dispatchCab(j:ImmediateJob)
Description: A Cab is dispatched to perform a Job, if …
Pre: self.currentJob.jobState=#dispatched

and (self.cabState=#idle or self.cabState=#assigned)
and …

Post: self.cabState = #busy
 and self.currentJob=j

+dispatchCab(in j:ImmediateJob)

-cabState:enum{off,idle,assigned,busy}

Cab

+ImmediateJob(in cab:Cab)

jobState=enum{dispatched,complete}

ImmediateJob
0..1

performedBy1

currentJobImmediateJob::ImmediateJob(cabID:String,
loc:String)
Description: cabID is the id of the cab that has to perform
the Job and loc is the pickup location.
Pre: Cab.allInstances->exists(c:Cab | c.cabId = cabID)
Post: self.performedBy=Cab.allInstances->select(c:Cab

| c.cabID = cabID)->asSequence->first
and jobState = #dispatched
and …

ImmediateJob: state invariant (excerpt)
jobState=#dispatched =
 (self.performedBy -> notEmpty
 and self.performedBy.currentJob=self
 and self.performedBy.cabState = #busy)

JobManagerControl

j2:ImmediateJob

c:Cab

<<new>>(c>getID(), …)

dispatchCab(j2)

Fig. 2. Example of complex inconsistency (excerpts)

4 Lessons Learned

The discussion of this section is the result of our observations of laboratory results of,
and comments made by, the 437 students who have been following the Software
Engineering course and who therefore attended this first laboratory exercise on UML
diagram consistency rules since 2003.

Overall, the students were not able to find all the seeded inconsistencies. On average,
students were only able to find 11.5 inconsistencies; The minimum and maximum num-
ber of inconsistencies found by a student are 6 and 21, respectively. Most of the identi-
fied inconsistencies were the ones we seeded between the class diagram and the data
dictionary. Our explanation is that (most of) those inconsistencies are simple to find as
they mostly consist in different writings (or spelling) of the same information: e.g.,
inconsistent operation signatures, wrong multiplicities; and do not require a deep under-
standing of the UML semantics to be caught (they could likely be caught automatically
by a tool). (Automated identifications of those inconsistencies can therefore be investi-
gated.) Most of the other inconsistencies being reported by students involve interaction
diagrams and the data dictionary: especially the consistency of message sequences and
operations contracts. This is probably due to the fact that we discussed an example of
such an inconsistency during the introductory lecture in detail. (Automated identifica-
tion of those inconsistencies can also be investigated, though they may require complex
manipulations and evaluations of OCL expressions.) Only a few students were able to
discover the more difficult inconsistency discussed previously in Section 3.3. (Although
automatically identifying this problem can be further investigated, we have doubts that
this is feasible as finding it requires a deep understanding of the model.)

384 Y. Labiche

There are probably different reasons for the small number of reported inconsisten-
cies. Among others, we can mention:

1. Although introduced to the UML notation during the pre-requisite “Systems
Analysis and Design” course, this was the first time the students were facing a
fairly large and complex analysis document for a real system;

Table 5. An informal description of consistency rules

 Use case
diagram

Use case
description

Interaction
diagram

State Machine
diagram

Class diagram Data dictionary

U
se

 c
as

e
di

ag
ra

m

N
A

E
ac

h
us

e
ca

se
 in

th

e
us

e
ca

se

di
ag

ra
m

 is
 d

e-
sc

ri
be

d
by

 a
 u

se

ca
se

 d
es

cr
ip

ti
on

E
ac

h
us

e
ca

se
 is

ac

co
m

pa
ni

ed
 b

y
an

in

te
ra

ct
io

n
di

ag
ra

m

A
ct

or
s

an
d

us
e

ca
se

s
ap

pe
ar

 in
 th

e
da

ta
 d

ic
tio

na
ry

U
se

 c
as

e
de

sc
ri

pt
io

n

E
ac

h
us

e
ca

se
 d

e-
sc

ri
pt

io
n

co
rr

es
po

nd
s

to
 a

 u
se

 c
as

e
in

 th
e

us
e

ca
se

 d
ia

gr
am

N
A

Se
rv

ic
es

 d
es

cr
ib

ed
 in

ea

ch
 u

se
 c

as
e

de
sc

ri
p-

tio
n

fi
nd

 a
 r

ea
liz

at
io

n
in

 a
n

in
te

ra
ct

io
n

di
ag

ra
m

D
at

a
m

an
ip

ul
at

ed
 b

y
th

e
sy

st
em

 (
as

sp

ec
if

ie
d

in
 u

se
 c

as
e

de
sc

ri
pt

io
ns

)
ap

pe
ar

as

 E
nt

ity
 c

la
ss

es
 in

th

e
cl

as
s

di
ag

ra
m

A
ct

or
s

an
d

us
e

ca
se

s
ap

pe
ar

 in
 th

e
da

ta

di
ct

io
na

ry

In
te

ra
ct

io
n

di
ag

ra
m

E
ac

h
in

te
ra

ct
io

n
di

ag
ra

m
 c

or
re

-
sp

on
ds

 to
 a

 u
se

 c
as

e
in

 th
e

us
e

ca
se

 d
ia

gr
am

T
he

 f
lo

w
 o

f
m

es
sa

ge
s

in
 a

n
in

te
ra

ct
io

n
di

ag
ra

m
 c

or
re

sp
on

ds

to
 th

e
fl

ow
 o

f
st

ep
s

in
 th

e
co

rr
e-

sp
on

di
ng

 u
se

 c
as

e
de

sc
ri

pt
io

n

N
A

St
at

e
ch

an
ge

s
su

gg
es

te
d

by

sc
en

ar
io

s
in

 a
n

in
te

ra
ct

io
n

di
ag

ra
m

 a
re

 le
ga

l a
s

pe
r

a
st

at
e

m
ac

hi
ne

 d
ia

gr
am

O
bj

ec
ts

 in
 a

n
in

te
ra

ct
io

n
di

ag
ra

m

ar
e

in
st

an
ce

s
of

 c
la

ss
es

 in
 th

e
cl

as
s

di
ag

ra
m

. T
yp

es
 in

 a
n

in
te

ra
ct

io
n

di
ag

ra
m

 a
pp

ea
r

in
 a

cl

as
s

di
ag

ra
m

. M
es

sa
ge

 s
ig

na
-

tu
re

s
 r

ef
er

 to
 o

pe
ra

tio
ns

 o
r

(s
ig

na
l)

 c
la

ss
es

 in
 a

 c
la

ss
 d

ia
-

gr
am

s

Sc
en

ar
io

s
in

 in
te

ra
ct

io
n

di
ag

ra
m

s
ar

e
co

he
re

nt
 w

ith
 c

on
tr

ac
ts

 (
i.e

.,
op

er
at

io
n

pr
e

an
d

po
st

co
nd

iti
on

s)

of
 th

e
da

ta
 d

ic
tio

na
ry

St
at

e
M

ac
hi

ne

di
ag

ra
m

A
ll

le
ga

l (
se

qu
en

ce
 o

f)

st
at

e
ch

an
ge

s
in

 a
 s

ta
te

m

ac
hi

ne
 d

ia
gr

am

m
at

ch
es

 a
 (

se
qu

en
ce

 o
f)

m

es
sa

ge
s

N
A

O
pe

ra
tio

ns
 (

i.e
.,

ac
tio

ns
)

in
 th

e
st

at
e

m
ac

hi
ne

 d
ia

gr
am

ap

pe
ar

 in
 a

 c
la

ss

di
ag

ra
m

St
at

es
 in

 th
e

st
at

e
m

ac
hi

ne
 d

ia
gr

am
 a

re

de
sc

ri
be

d
w

it
h

st
at

e
in

va
ri

an
ts

 in
 th

e
da

ta

di
ct

io
na

ry

C
la

ss
 d

ia
gr

am

E
nt

it
y

cl
as

se
s

co
rr

es
po

nd
 to

 d
at

a
m

an
ip

ul
at

ed
 b

y
th

e
sy

st
em

 a
s

de
sc

ri
be

d
in

 a

us
e

ca
se

 d
es

cr
ip

ti
on

C
la

ss
es

 a
nd

 o
pe

ra
tio

ns

ar
e

us
ed

 in
 th

e
se

t o
f

in
te

ra
ct

io
n

di
ag

ra
m

s

C
la

ss
es

 a
nd

 o
pe

ra
tio

ns

ar
e

us
ed

 in
 th

e
se

t o
f

st
at

e
m

ac
hi

ne
 d

ia
gr

am
s

N
A

C
la

ss
es

, a
ttr

ib
ut

es
,

op
er

at
io

ns
 a

nd
 c

on
tr

ac
ts

(c

la
ss

 in
va

ri
an

ts
, o

pe
ra

-
tio

n
pr

e
an

d
po

st
 c

on
di

-
ti

on
s)

 a
re

 d
es

cr
ib

ed
 in

th

e
da

ta
 d

ic
ti

on
ar

y

D
at

a
di

ct
io

na
ry

D
es

cr
ib

es
 u

se
 c

as
es

an

d
ac

to
rs

 in
 th

e
us

e
ca

se
 d

ia
gr

am

D
es

cr
ib

es
 u

se
 c

as
es

an

d
ac

to
rs

 in
 u

se

ca
se

 d
es

cr
ip

ti
on

s

C
on

tr
ac

ts
 a

re

co
he

re
nt

 w
ith

sc

en
ar

io
s

in

in
te

ra
ct

io
n

di
ag

ra
m

s

St
at

e
in

va
ri

an
ts

de

sc
ri

be
 s

ta
te

s
in

st

at
e

m
ac

hi
ne

di

ag
ra

m
s

D
es

cr
ib

es
 c

la
ss

es
,

op
er

at
io

ns
 a

nd

at
tr

ib
ut

es
 o

f
th

e
cl

as
s

di
ag

ra
m

N
A

 The UML Is More Than Boxes and Lines 385

2. The document we used was perhaps too large. A reduced document that would
focus only on the main use cases (e.g., the three use cases for which we have
sequence diagrams), that would show in the class diagram only the classes, at-
tributes and operations that are used in the three interaction and three state ma-
chine diagrams, would be more manageable;

3. The laboratory session was only three hours long and half an hour was dedi-
cated to the introductory lecture: only two and a half hours remained for read-
ing, understanding the 40-page long analysis document and finding inconsis-
tencies. The students therefore had to focus on some parts of the document and
ignore others;

4. The students were not instructed to follow a specific inspection technique for
UML documents, though such techniques have been proven to be effective at
finding problems (see for instance [4, 13, 14]). Instead they followed a heuris-
tic to traverse the analysis document. An inspection technique could have pro-
duced better results.

The laboratory exercise however achieved its objectives since:
a. The students were exposed for the first time to a reasonably complex analysis

document involving the main UML diagrams;
b. They were able to find inconsistencies, thereby showing that they actually

went through the document and understood the analysis diagrams. Notably, a
very large number of students were able to find at least one inconsistency in-
volving a message sequence and operations contracts;

c. They learnt that the UML is more than annotated boxes and lines and that de-
sign decisions made in one diagram have impacts on other diagrams.

Overall, student feedback was very positive. Although no questionnaire was used
to get student feedback, informal discussions at the end of the laboratory session and
later during the term indicated that students did get the message. Quoting a student:
“Before that laboratory session, I did not have a clear understanding of what the UML
was all about.” Additionally, the instructor of the Analysis and Design Laboratory
course, that follows the course in which the laboratory session took place, reported
that she noticed a clear increase in the performance and the UML proficiency of the
students since the introduction of the laboratory session.

5 Conclusion

The Unified Modeling Language (UML) [11] is now the de-facto standard for the
analysis and design of object-oriented software systems [12]. Though the UML has
semantics, in particular under the form of well-formedness rules [11], and though
these rules have not been recently introduced (many were already part of the UML 1.3
standard in 1999), many practitioners and students do not seem to be aware of basic
UML well-formedness rules. This is part of the broader problem of the consistency
between views in a UML analysis/design document: the different views each focus on
one aspect of the software, but together describe the whole software and should there-
fore be coherent. As a result practitioners perceive the UML as a graphic tool that
merely allows them to draw annotated boxes and lines freely.

386 Y. Labiche

In this article, we reported on an attempt we made to heighten student awareness of
the problem of the well-formedness (and more broadly, consistency) of UML dia-
grams. We described the laboratory material we used to that end and reported on our
experience of its use since 2003. Experience has shown that this laboratory material
was indeed useful, and that specific training in what the semantics of the UML are
(e.g., by identifying inconsistencies) improves students’ ability to apply the language.

Future work will include improving the laboratory material to include other kinds
of well-formedness (or consistency) rules, restructuring the analysis document to
allow students to discover more inconsistencies, and trying to provide automated tool
support for as many rules as possible.

References

[1] Berenbach, B.: The Evaluation of Large, Complex UML Analysis and Design Models. In:
Proc. ACM International Conference on Software Engineering, pp. 232–241 (2004)

[2] Bontemps, Y., Heymans, P., Schobbens, P.Y.: From Live Sequence Charts to State Ma-
chines and Back: A guided Tour. TSE 31(12), 999–1014 (2005)

[3] Bruegge, B., Dutoit, A.H.: Object-Oriented Software Engineering Using UML, Patterns,
and Java, 2nd edn. Prentice Hall, Englewood Cliffs (2004)

[4] Conradi, R., Mohagheghi, P., Arif, T., Hegde, L.C., Bunde, G.A., Pedersen, A.: Object-
Oriented Reading Techniques for Inspection of UML Models – An Industrial Experiment.
In: Cardelli, L. (ed.) ECOOP 2003. LNCS, vol. 2743, pp. 483–501. Springer, Heidelberg
(2003)

[5] Doolan, E.P.: Experience with Fagan’s inspection method. Software Practice and Experi-
ence 22(2), 173–182 (1992)

[6] Fagan, M.E.: Design and code inspections to reduce errors in program development. IBM
Systems Journal 15(3), 182–211 (1976)

[7] Kleppe, A., Warmer, J., Bast, W.: MDA Explained - The Model Driven Architecture:
Practice and Promise. Addison-Wesley, Reading (2003)

[8] Lano, K.: A Compositional Semantics of UML-RSDS Software and Systems Modeling
(to appear)

[9] Meyer, B.: Design by Contracts. IEEE Computer 25(10), 40–52 (1992)
[10] OMG, OCL 2.0 Specification. Object Management Group, Final Adopted Specification

ptc/03-10-14 (2003)
[11] OMG, UML 2.0 Superstructure Specification. Object Management Group, Final Adopted

Specification ptc/03-08-02 (2003)
[12] Pender, T.: UML Bible. Wiley, Chichester (2003)
[13] Shepard, T., Kelly, D., Smith, R., Chisholm, R., Jackson, T., Mondoux, P.: Inspecting de-

signs in the context of model-driven development. In: Proc. Conference of the Center for
Advanced Studies on Collaborative Research (2006)

[14] Travassos, G.H., Shull, F., Carver, J.: A Family of Reading Techniques for OO Design
Inspections. In: Proc. Brazilian Symposium on Software Engineering: Workshop on
Software Quality (2000)

[15] Ziadi, T., Helouet, L., Jezequel, J.M.: Revisiting Statechart Synthesis with an Algebraic
Approach. In: Proc. ICSE 2004, pp. 242–251 (2004)

Automatic Checklist Generation for the
Assessment of UML Models

Tom Gelhausen, Mathias Landhäußer, and Sven J. Körner

Institute for Program Structures and Data Organization
University of Karlsruhe

76131 Karlsruhe, Germany
{gelhausen,lama,koerner}@ipd.uni-karlsruhe.de

Abstract. Assessing numerous models from students in written exams
or homework is an exhausting task. We present an approach for a fair and
transparent assessment of the completeness of models according to a nat-
ural language domain description. The assessment is based on checklists
generated by the tool Sumoχ. Sumoχ directly works on an annotated
version of the original exam text, so no ‘gold standard’ is needed.

1 Introduction

If we teach modeling we also need to grade models. But the task of modeling
comprises a certain degree of freedom, and this renders exam questions on that
task somewhat awkward: Assessments are frequently rejected by the examinees.
This is either due to mistakes of the examiners or due to unreasonableness of
the examinees. No doubt, the examiners make mistakes as the task of assessing
numerous models is exhausting, requires fast perception, and great mental flexi-
bility. But as frequently, students tend to challenge assessments on a pursuit for a
better grade. Experience shows, that especially modeling tasks lend themselves
to discussing every single detail of an assessment in terms of correctness and
adequacy. Instant insight on the students’ side seems aspirational to solve both
problems: a) discover true errors made by the examiners and b) avoid exhausting
discussions during homework reviews and post-exam reviews.

We identified the need for an evaluation procedure that meets the follow-
ing requirements: The assessments should be systematic, fair, transparent, and
cumulative in a sense that they consist of simple atomic decisions which them-
selves are (ideally) unquestionable. An assessment based on a sample solution
is problematic, as one tends to use this sample as a yardstick for all of the
students’ solutions. We discourage the use of such a ‘gold standard’, since it
stultifies the examiner’s perceptivity. Our approach uses comprehensive and self-
explanatory checklists to assess UML models1. Based on a technique which we
initially designed to automatically generate domain models [1], we developed

1 Please note that the approach is not limited to class diagrams. We currently support
class and sequence diagrams, state charts and OCL.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 387–399, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

388 T. Gelhausen, M. Landhäußer, and S.J. Körner

Sumoχ (SalE-based UML MOdel eXamination). It works on a semantic an-
notation of the original exam question’s text and is therefore able to generate
considerably less biased checklists than one would create by hand.

The Sumoχ-checklists are designed to measure the completeness of the con-
tent of a model according to a given domain description. Established metrics on
models measure quality aspects such as similarity and class relationship com-
plexity (cf. Section 5). In this respect, general checklists on model quality and
the domain-dependent Sumoχ-checklists complement each other.

We start with the explanation of the approach and how it can be used to
generate checklists. We then evaluate the complete process using the checklists
to assess students’ homework and exams. The lessons we learned during the
evaluation are discussed afterwards. The following section focuses on the related
work and also serves as foundation for our idea since it shows the necessity of
such a method. The article closes with a conclusion.

2 The Approach

Assume you want to give your students a modeling task as it is depicted in
Figure 1. You provide a text describing the application domain and you expect
your students to model it concisely regarding this text.

We propose to use a systematic checklist to grade the results from the stu-
dents. Table 1 shows an excerpt of such a checklist for the text above. This check-
list was generated by Sumoχ and has already been filled out by an imaginary
examiner (in script style). It contains one section per sentence of the original do-
main description. For example, row 1 introduces the first section of this checklist.
Each section lists all elements that could be modeled. For the first section, oppo-
nents and the Multiplicity 2 are exemplified (rows 2-6 and 7-10). The opponents
in turn give an example for a linguistic structure, a constituent in this case, that
can be modeled in various ways: They could be modeled as a class (row 2) or
as a role (-name) within a UML association (row 3). Sumoχ also proposes that
opponents could be modeled as an instance of another class (row 4) – possibly
meaningless in this case but obviously meaningful in the case of the element

Fig. 1. Example modeling task

Automatic Checklist Generation for the Assessment of UML Models 389

Table 1. Example of an Assessment Based on a Sumoχ-Questionnaire

R
o
w

Element of Phrase Modeled... y
e
s

n
o

w
r
o
n
g

1 Phrase: The game of chess is played between two opponents.

2 “opponents” as class ✗
3 as role ✗

4 as instance ✗

5 Differently (please specify): .
6 Explicitly not modeled (please specify): Opponent- and Player-classes are equivalent ✗

7 Multiplicity “2” of “opponents” as multiplicity ✗
8 in an OCL constraint ✗

9 Differently (please specify): .
10 Explicitly not modeled (please specify): .

. . . ������������ etc. ������������
27 Phrase: The player with the white pieces commences the game.

28 “player” as class ✗

29 as role ✗

30 as instance ✗
31 Differently (please specify): .
32 Explicitly not modeled (please specify): .

33 Attribute “white” of “pieces” as Boolean function (with a parameter) ✗

34 as scalar function ✗

35 as state of “pieces” ✗
36 as attribute of “pieces” ✗

37 Differently (please specify): .
38 Explicitly not modeled (please specify): .

. . . ������������ etc. ������������

player below (row 30). However, our imaginary examiner did not find a class, a
role, or an instance that covered the concept of opponents. Instead, he found
a note from the student that the classes Player and Opponent were unified
(row 6).

Obviously, our approach maps linguistic structures2 to model elements. This
approach originated in Abbott’s 1983 article “Program Design by Informal En-
glish Descriptions” [2]. Our method incorporates various suggestions that have
been published in the domain of (automatic) model extraction since then (see [3]
for a survey of approaches). We collected all UML fragments we found that were
generated from single (simple or complex) linguistic structures; Table 2 enumer-
ates some of the resulting mappings. Up to now, we identified a total of 35 rules3

to turn linguistic structures into questions about model elements. Applying these
rules and generating the appropriate questions can be done by hand, of course.
Yet, we created Sumoχ to apply these rules automatically and published an
online version of the tool together with the ruleset [4].

2 On a syntactic level such structures are expressed via noun phrases or adverbials,
for instance. But actually, we do not map syntactic patterns on the text source, but
rather semantic patterns on the internal discourse model (cf. Table 2).

3 The exact number significantly depends on the intelligence of the rule processor.
The number 35 would apply to a ‘human processor’. A computer program is less
fault-tolerant according to the applicability of the single rules and thus requires (in
our case) a total of 120 GrGen.NET-rules for all variations.

390 T. Gelhausen, M. Landhäußer, and S.J. Körner

Table 2. Linguistic Structures matched to UML (excerpt)

Linguistic Struc-
ture

Explanation UML model element

object with the role
AG

An acting person or thing
executing an action

Class, role, or instance

object with the role
PAT

Person or thing affected by
an action or on which an ac-
tion is being performed

Class, role, or instance

object with the role
ACT (+AG +PAT)

An action, executed by AG
on PAT, or a relation be-
tween AG and PAT

Method named ACT at the AG
class with PAT param, associ-
ation named ACT between AG
and PAT classes, state or transi-
tion named ACT, etc.

ACT1 ACT2
OMN PARS

ACT3
PARS

A complex action (OMN)
composed of multiple other
actions (n×PARS).

Subcall of ACT2 and ACT3 from
ACT1 in sequence diagram or in
a comment on method ACT1

������������ etc. ������������

Listing 1. SalE-Annotated Domain Description
� �

1 [#The game_of_chess|PAT #is played|ACT #between *two opponents|AG].
2

3 [They|AG move|ACT their|POSS pieces|{HAB,PAT} $alternately<<3 #on
4 [#a $square ˆboard|{PAT,FIN} called|ACT #a chessboard|FIC]|LOC_POS].
5 [@They|EQD @opponents|EQK].
6 [@their|EQD @opponents|EQK].
7

8 [[#The ˆplayer|POSS #with #the $white pieces|HAB]|AG
9 commences|ACT #the game|PAT].

10 [@game|EQD @game_of_chess|EQK].
� �

2.1 Preparing the Text

To use Sumoχ, one first annotates the domain description using SalE. This is an
annotation language for the semantic markup of natural language [1]. This task
does not require any modeling knowledge, since it is just a linguistic annotation.
Neither does it require any deeper grammatical knowledge (even though this
might help), as the annotation concerns semantics, not syntax. The annotated
result for the above example is shown in Listing 1. The original text is denoted
in bold font whereas all added information is non-bold.

Roughly speaking, SalE distinguishes ‘objects’, n-ary relations, and the roles
that the objects play in these relations. As you can see in Listing 1, all clauses
and all sub-clauses are embraced using square brackets ([]). Each pair of brack-
ets denotes a relation. Within a relation, SalE treats single words and nested
relations as units. A word is commented out with a hash prefix (#). An ‘object’
is marked by denoting its role(s) using a vertical bar (|) in conjunction with the
role name(s). Examples for roles used in this excerpt are AG, ACT, and PAT.

Automatic Checklist Generation for the Assessment of UML Models 391

These three roles are also described in Table 2. (For a complete list of the 44
roles our system currently supports, see [1] or [5].)

In SalE, a nested relation (like in line four: a square board called a chess-
board) can per se take a role in its outer relation. Yet, if an inner object of the
nested relation is marked with a caret (ˆ), it is interpreted as the head of the
clause (like in ANTLR grammars). This head is then bound to the outer relation
with the role which is appended to the nested relation. Thus the board in line
four takes the roles PAT and FIN in the inner relation and the role LOC POS
in the outer relation.

Each object can be attributed in SalE. An attribute is denoted with a dollar
sign ($) and applies to the following object – except when it is explicitly reas-
signed using the movement operators (<< and >>): The alternately in line three
is reassigned to modify the move-action this way. A special form of an attribute
is multiplicity which is denoted using an asterisk (*).

As SalE is rather a compiler than a sophisticated natural language processor
(cf. Section 2.2), we need a simple and deterministic way to cope with coref-
erences4. There are two ways in SalE to express coreferences: either via word
occurrence references or via assertions. A word occurrence reference is denoted
with an at-sign (@) in front of a word. It tells the system, that a word refers
to the very same thing (same instance) as in the preceding occurrence of that
word – not just to “any instance of this category”, which is the default. The
lines five, six, and ten contain assertions, expressed via relations with special
roles. These relations do not directly originate from the text. The annotator has
entered them to tell the system that, for instance, they and opponents means
the same thing. The role EQK denotes the one of the two equal concepts that
should be kept in the internal discourse model, while EQD denotes the one that
should be dropped. The object that has been annotated with EQK inherits all
roles and attributions from the dropped object in this case. For a more detailed
description of this process see [5].

2.2 Implementation

The questions are generated based on pattern matching on the discourse model.
Therefore, Sumoχ uses the SalE compiler to obtain this discourse model from
the annotated text. Technically, the SalE compiler is based on an ANTLR [6]
generated parser, thus avoiding resource consuming and error-prone Natural
Language Processing (NLP). It builds a graph representation of the discourse
for the graph rewrite system GrGen.NET [7]. The graph rewrite system then
executes the above-mentioned 35 (respectively 120) declarative transformation
rules. Finally, the surface structures (i. e. the actual questionnaire) are generated
via the application of XSL-T templates.

An optimization that we implemented in the rule set for GrGen.NET concerns
the repetition and the order of the generated questions: The rules do not pro-
duce more than one question about elements that are mentioned in the domain

4 Coreference: two or more expressions refer to the same extra-linguistic entity.

392 T. Gelhausen, M. Landhäußer, and S.J. Körner

description multiple times. Because of this, the list contains questions about
the existence of elements (for example classes) in the beginning, and questions
about their behavior (methods, state transitions) or their design (attributes, as-
sociations) later on. This eases the assessment since the examiner first needs to
find the element before he can answer questions about it. However, some man-
ual rework of the resulting lists is necessary, since the generation is simple and
straightforward. In our experience, the manual rework is largely limited to delet-
ing superfluous questions and adapting flections. We regard this as a negligible
issue as a user of Sumoχ will probably revise the list for his own version anyway,
for example including model quality criteria.

3 Evaluation

We evaluated our approach in various ways. First of all, we successfully used it
for grading exams and homework – and plan to do so in the future. For exams,
we determined student complaint rates. We compared these rates with historical
data on non-modeling questions. The results suggest that assessments created
this way are acceptable to the students. Yet, as the historical data on exam
results has not been collected with this research in mind, we currently cannot
conduct other studies on exam results and the students’ complaint behavior. To
further evaluate our approach, we conducted an extensive study on a large home-
work in which we asked pairs of students to model the game of chess. We provide
statistical analyses of the results which show a high inter-rater agreement. Be-
sides the numerical results, we examined the discrepancies of the examiners’
ratings on a qualitative basis. We present our insights in Section 4.

3.1 Legitimate Complaints in Exams: ‘Intra-Student’ Fairness

Written exams for our software engineering lecture are held twice a year and take
60 minutes. Typically 60 to 250 graduate students of computer science attend
the lecture and take the exam. After the assessment, we hold a post-exam review
in which the students can double-check. If they find grading errors, they can ask
for correction. After this review, the final grade is determined. Approximately
45 % of the examinees attend these reviews.

Two recent exams included a modeling task worth 17 of 60 points. We explic-
itly advised our students to examine the text carefully and to closely analyze
every part of every phrase on its own. Since they were pinched for time, we did
not expect their models to be overly sophisticated, but that they kept closely
with the domain description.

We compared the results with the results of 22 non-modeling questions from
written exams over the last three years. These 22 questions are of well established
types, for example memorization questions such as ‘Name three stages of the
waterfall model’. These types can be assessed in a fair and transparent manner
and lead to few legitimate complaints in the post-exam reviews. In the two
modeling tasks, the students achieved moderate results, so complaints were to be

Automatic Checklist Generation for the Assessment of UML Models 393

●

po
st

−
ex

am
 r

ev
ie

w
 g

ai
n

[
q e

]
 (

le
ss

 is
 b

et
te

r)

non−modeling
questions

modeling
questions

0%

1%

2%

3%

Fig. 2. Legitimate complaints about as-
sessments (post-exam reviews)

1 2 3 4

solution of student pair no.

m
od

el
 c

om
pl

et
en

es
s

[%
]

20
30

40
50

60
70

80

 examiner

A B C D

Fig. 3. Comparison of ratings (assessed
homework)

expected. During the post-exam reviews, we handed out the filled-out checklists
along with the exams. This way, the ratings were completely transparent to the
students. A low number of legitimate complaints would be considered fair for
each individual student5.

To compare the assessments of the questions, we computed the post-exam
review gain qe as the mean difference between the results before (ppre) and
after (ppost) the post-exam review for every exercise e for all students s that
reviewed their exam (let n be the number of these students). We normalize
the post-exam review gain by the maximum number of points pmax

e , that the
students could obtain in the corresponding exercise: qe := 1

n

∑n
s=1

ppost
es −ppre

es

pmax
e

.
The results are depicted in Figure 2: The post-exam review gain of the 22 non-
modeling questions (left side) are opposed to the two modeling tasks (right
side) in this diagram. Every triangle and both squares represent the post-exam
review gain for one exam question. The average n (i. e. the number of students
that reviewed their exam in one of the six review sessions under scope) is 64.8.
The results suggest that our way of assessing UML models can keep up with
other (evolved) types of exam questions: More than half of the 22 non-modeling
questions performed worse in terms of the post-exam review gain.

3.2 Homework Study: ‘Inter-Student’ Fairness

Our experience from post-exam reviews shows that assessments are repeatedly
biased by the examiners’ different levels of generosity (in the sense of their margin
of discretion). Nonetheless, an assessment method should still be monotonic in a
sense that better students always get better grades. We conducted a study where

5 We suspect that in this case every student feels the assessment of his work to be
profound. We examine ‘inter-student’ fairness in Section 3.2.

394 T. Gelhausen, M. Landhäußer, and S.J. Körner

Table 3. Pairwise correlation with Pearson’s correlation coefficient

(r,p) examiner A examiner B examiner C examiner D

examiner B (0.904,4.8%) – – –

examiner C (0.826,8.7%) (0.935,3.2%) – –

examiner D (0.964,1.8%) (0.968,1.6%) (0.945,0.3%) –

avg (0.961,1.9%) (0.976,1.2%) (0.945,2.7%) (0.999,0%)

multiple examiners independently assessed a randomly chosen set of student
homework. A high inter-rater agreement would indicate that the students rank
independently from the examiners. This study was run to verify this property in
order to ensure inter-student fairness.

We chose the FIDE laws of chess as domain description to be modeled in UML.
This resulted in a domain description of four pages. The students attended the
software engineering lecture and were mainly graduate students of computer
science. They were allowed to work in pairs and had to develop a UML model
accompanied with OCL as part of an assessed homework. For this study, we
randomly picked four student pairs and asked four examiners from the staff of
our chair to rate their work. The diagram in Figure 3 shows the evaluated model
completeness of the inspected UML models. The horizontal line indicates the
examiner groups’ average rating for each model.

In order to compare the agreement of every possible examiner pair, we com-
puted Pearson’s correlation coefficient6 r (for details see [8]) of each examiner
with every other. Since we expect the results of the examiners to be positively
correlated, we try to reject the null hypothesis H0 : r ≤ 0. We assume the null
hypothesis to be rejected if the p value calculated with a one-tailed t-Test is
below the significance level7 of α = 0.05.

The first three rows of Table 3 show the correlations among the examiners. The
values of r suggest that there is a strong linear relationship between the results of
the examiners. Only the p value of the correlation between examiner A and C is
greater than the significance level α, but the probability that the corresponding
correlation coefficient is due to chance is still below 9 %. Even though this value
does not allow us to reject H0 on a significance level of α, we support the
conclusion that our approach is indeed successful.

To investigate the consistency of the examiners’ rating with the average group
rating, we calculated Pearson’s correlation coefficient of every examiner with

6 The values of r can range from −1 to +1 and indicate strength and direction of a
linear relationship between two variables X and Y , in our case of the scores for the
models of two examiners. A value of 0 means that we have no linear relationship
between the variables. Positive values indicate a positive linear relationships, i. e.
whenever the value of X increases, the value of Y increases, too. Negative values
indicate a negative linear relationships, i. e. whenever X increases, Y decreases.

7 Meaning the probability that our observed correlation coefficients r (or greater co-
efficients) could be due to chance is less than 5%.

Automatic Checklist Generation for the Assessment of UML Models 395

the group average. The resulting correlation coefficients and their corresponding
p values can be found in the last row of Table 3. Again we found high values of r
suggesting a strong linear relationship between the ratings of the examiners and
the group’s average rating. This time, all r values are statistically significant.
This clearly states that the decision of a single examiner is consistent with the
group’s decision.

4 Observations and Discussion

As our homework study showed (cf. Figure 3), we have not reached absolute
unquestionableness yet. Comparing the different examiners’ results, we observed
that they are still biased – so there still remains room for interpretations. This
does not impose a threat to assessments conducted by a single examiner (or
a small group of examiners who synchronize their decisions): In our study, the
examiners were strictly isolated to ensure statistical independence. Yet, after the
assessments, the examiners discussed the discrepancies in their decisions.

4.1 Observations Concerning the Examiners

Examiners had different interpretations of the models and the meaning of some
list items. We need to minimize this margin of discretion. An example is the
rook’s multiplicity which could have been 2, [0..2], or [0..10]. (The latter is pos-
sible through pawn-promotion.)

After a while, the examiners tended to mark list items which were clearly
non-existent in the students’ models. This could be due to the fact that only
having parts of the model sometimes resulted the examiners forming their own
– more complete – model in their mind. For example some examiners marked
classes as modeled though they were only indicated in a state chart.

A huge effort is finding the sought-after item, especially if the models comprise
multiple pages (as in the case of our homework study). UML diagrams in digital
form could ease this effort as computer-based find functions could speed-up the
process. Exams might still be written by hand, but don’t usually exceed a certain
model size due to time constraints.

It is also hard to ensure that examiners find and check all possible versions: If
an element occurs multiple times in the model, it also has to be marked multiple
times in the list in our study. But the examiners tended to stop searching after
an element was found for the first time.

4.2 Observations Concerning the Students

Some students delivered models that were hardly UML. Collectively using a
UML tool should help to check the models for compliance with the rules of
UML, thus easing the assessment.

A number of students handed in code rather than models. This contradicts
the idea of abstraction and rather gives a concrete implementation. This misun-
derstanding can be prevented by clear formulation of exam questions.

396 T. Gelhausen, M. Landhäußer, and S.J. Körner

Some students used domain knowledge to complement their models: They
added artifacts which were not given in the domain description. In turn, some
students left out parts that were in the description, for example the (rather
complex) castling move. We conclude that some of the students did not focus on
the provided text, but rather modeled the game by what they knew by heart.
Our approach of making content-completeness the primary basis of valuation
leads to bad grades for these students. The examiner must decide whether this
poses a threat to the validity of his ratings.

4.3 Applicability

The process we presented here still depends on the provided text to a large
extend. In comparison to many other model extraction approaches (see [3], for
example) SalE is much less dependent on the chosen formulation. Nevertheless,
our approach can only work with content that a) actually resides in the provided
text and that b) is also annotated correctly.

The effort for the annotation depends on the experience of the annotator
using SalE, but it also depends on the given domain description. This effort
may also tip the scales regarding the applicability of our approach as a met-
rics in industry. (Indeed, there seems to be a need for a metrics for content-
completeness of models, as we show in the next section.) On the one hand, the
effort in learning SalE mainly comes from learning and applying the 44 roles
we currently support. Practice will show whether and how this role set can be
optimized in the future. On the other hand, effort originates from ‘linguistic
defects’ in the domain description. Linguistic defects are unobvious semantic or
pragmatic flaws in the text, such as deletions, generalizations, and distortions
(see [9] for details). Generally, it seems that ‘better’ specifications are easier to
annotate.

Concerning the grading of models, the approach is limited in two ways: First,
it is not suited to grade (object-oriented) analyses, it has been designed to grade
models of a certain, precisely prescribed domain. Second, it is not suited to assess
architectural decisions that might be contained in a model. Both limitations are
by design – even though we support the opinion, that analysis and architecture
are two important subtasks of modeling in practice.

Regarding the first limitation (grading analyses), we understand that this is a
challenging but particularly a different task. Technically, it could be done with
our approach by assigning the task to the students withholding certain aspects
(i. e. sentences) from the domain description. The philosophical question behind
this approach is how fair it is: The examinee not only has to catch (guess) all of
the expected aspects, he or she also has to guess the intended degree of relevance
for the model. We have no idea, whether (and how) the omitted aspects can be
made “obvious enough”.

Concerning the second limitation (assessing architectural decisions), there are
already plenty of metrics available. These can be used to complement our ap-
proach without difficulties.

Automatic Checklist Generation for the Assessment of UML Models 397

5 Related Work

Grading models is exhausting as there are usually countless accurate solutions:
Lange et al. [10] show that UML models bring the freedom of creativity to the
modeler because they can be ambiguous and correct at the same time. The lack
of uniformity and the large amount of defects contained in UML models result
in miscommunication among UML readers. Lange et al. [10] propose modeling
conventions, analogous to coding conventions for programming. Results indicate
that decreased defect density is attainable at the cost of increased effort when
using modeling conventions. This shows that assessing UML models remains a
complicated – and not yet mastered – task. Modeling conventions could probably
be enforced by tailoring our assessment questions to the proper settings.

Lange and Chaudron show that modelers who tend to exploit the freedom of
UML impose risks on software projects [11] and their modeling phase [12]. One
has to take into account that even unambiguous and syntactically correct models
can be incomplete with regard to the users’ needs and specification [13].

Mohagheghi and Aagedal [14] agree with our basic assumption that model
content-completeness is important. They ran a general survey of various methods
on determining model quality. As it turns out, quality assurance techniques must
not only consider the quality itself but also the completeness of UML models.
The earlier one focuses on model completeness, the better.

In 2006, Lange and Chaudron [15] conducted a survey among practitioners
which analyzed UML models in 14 case studies. Even though 52 % of the practi-
tioners responded that model completeness is a major stopping criteria for their
modeling activities, there are hardly any metrics to measure completeness. In-
completeness is a big problem: More than half of the reported miscommunication
between project stakeholders in subsequent software process stages is due to in-
complete models. Stakeholders would like to use metrics two to four times more
often than they actually do. Briand et al. [16] point out that working with com-
plete models progresses faster and delivers higher quality software. This shows
a need for assessing the completeness of models – even in industry.

Being able to judge the quality of a UML model is important to software qual-
ity. No known approach considers checking the models against the textual domain
description. But these models are eventually used to create the software. Being the
prime artifacts of Model Driven Engineering, models are highly important for the
quality of the resulting product [14]. But how can a model be evaluated?

There are some software metrics which are applicable to UML models [17],
but most of them are made for analyzing source code. These metrics are usually
computed in the last stages of the software process – stages in which a metric
cannot show the deficiencies of the product; only the defects of a potentially
incomplete implementation. Therefore the model’s quality should be evaluated
long before the resulting source code itself is created. But the fact that the
models deviate from the initial (customer’s) textual specification is not yet dealt
with. McQuillan and Power show that we need to ensure the software follows
the fundamental ideas of the customer [18]. Our approach makes matching the
content of a textual specification to existing models feasible.

398 T. Gelhausen, M. Landhäußer, and S.J. Körner

6 Conclusion

We presented Sumoχ, an approach to automatically generate comprehensive
and self-explanatory checklists for the assessment of models. These checklists
are intended to grade the content-completeness of models according to a given
domain description. They could also serve as a new metrics for the content-
completeness of models. A great advantage of our approach is that it does not
use a ‘gold standard’. Instead, it creates checklists that do systematically not
restrict the freedom of the modelers. We reached our major design goals of
being systematic, cumulative, transparent, and fair. Yet, our studies showed,
that there is still room for interpretation while working with the checklists. This
leaves room for improvement in future work. Besides an optimization of the role
set, tool support for SalE could ease the annotation process.

References

1. Gelhausen, T., Tichy, W.F.: Thematic Role based Generation of UML Models from
Real World Requirements. In: First IEEE International Conference on Semantic
Computing (ICSC 2007), pp. 282–289 (September 2007)

2. Abbott, R.J.: Program Design by Informal English Descriptions. Communnications
of the ACM 26(11), 882–894 (1983)

3. Moreno, A.M.: Object Oriented Analysis from Textual Specification. In: Ninth
International Conference on Software Engineering and Knowledge Engineering,
Madrid, Spain (June 1997)

4. Landhäußer, M.: Sumoχ – SalE-based UML MOdel eXamination (August 2008),
http://www.ipd.uka.de/˜gelhausen/sumox/

5. Landhäußer, M.: Automatische Erzeugung von Prüflisten zur spezifikationsbezoge-
nen Beurteilung der Vollständigkeit von UML-Modellen. Studienarbeit, Institute
for Program Structures and Data Organization (IPD), University of Karlsruhe
(July 2008)

6. Parr, T.: ANTLR, http://www.antlr.org/
7. Geiß, R., Batz, G.V., Grund, D., Hack, S., Szalkowski, A.: GrGen: A fast SPO-

based graph rewriting tool. In: Corradini, A., Ehrig, H., Montanari, U., Ribeiro,
L., Rozenberg, G. (eds.) ICGT 2006. LNCS, vol. 4178, pp. 383–397. Springer,
Heidelberg (2006)

8. Howell, D.C.: Fundamental Statistics for the Behavioral Sciences, 4th edn. Brook-
s/Cole Publishing Company (1999)

9. Rupp, C.: Requirements and Psychology. IEEE Software 19(3), 16–18 (2002)
10. Lange, C.F.J., DuBois, B., Chaudron, M.R.V., Demeyer, S.: An Experimental In-

vestigation of UML Modeling Conventions. In: Nierstrasz, O., Whittle, J., Harel,
D., Reggio, G. (eds.) MoDELS 2006. LNCS, vol. 4199, pp. 27–41. Springer, Hei-
delberg (2006)

11. Lange, C.F.J., Chaudron, M.R.V.: Managing Model Quality in UML-Based Soft-
ware Development. In: Chaudron, M.R.V. (ed.) Proc. 13th IEEE International
Workshop on Software Technology and Engineering Practice, pp. 7–16 (2005)

12. Lange, C.F.J., Chaudron, M.R.V.: Effects of Defects in UML models: An Experi-
mental Investigation. In: ICSE 2006: Proceeding of the 28th international confer-
ence on Software engineering, pp. 401–411. ACM, New York (2006)

http://www.ipd.uka.de/~gelhausen/sumox/
http://www.antlr.org/

Automatic Checklist Generation for the Assessment of UML Models 399

13. Lange, C.F.J., Chaudron, M.R.V.: An Empirical Assessment of Completedness in
UML Designs. In: EASE 2004: Proceedings of the 8th Internation Conference on
Empirical Assessment in Software Engineering, vol. 920, pp. 111–119 (May 2004)

14. Mohagheghi, P., Aagedal, J.: Evaluating Quality in Model-Driven Engineering. In:
MISE 2007: Proceedings of the International Workshop on Modeling in Software
Engineering, p. 6. IEEE Computer Society, Washington (2007)

15. Lange, C.F.J., Chaudron, M.R.V., Muskens, J.: In Practice: UML Software Archi-
tecture and Design Description. IEEE Software 23(2), 40–46 (2006)

16. Briand, L.C., Hove, S.E., Labiche, Y., Arisholm, E.: Guiding the Application of De-
sign Patterns Based on UML Models. In: Proceedings of IEEE International Con-
ference on Software Maintenance (ICSM), Philadelphia, USA, pp. 234–243 (2006)

17. Kim, H., Boldyreff, C.: Developing Software Metrics Applicable to UML Models.
In: Proceedings of QAOOSE 2002 (2002)

18. McQuillan, J.A., Power, J.F.: On the Application of Software Metrics to UML
Models. In: Kühne, T. (ed.) MoDELS 2006. LNCS, vol. 4364, pp. 217–226. Springer,
Heidelberg (2007)

MODELS Research Projects Symposium

Iulian Ober

University of Toulouse - IRIT,
118 route de Narbonne, F-31062 Toulouse, France

Iulian.Ober@irit.fr

Abstract. This half-day symposium brought together researchers and
practitioners around eight presentation of important multi-organization
research projects in domains related to the MODELS community.

1 Introduction

The Research Project Symposium was a novelty of MODELS 2008. It aimed to
be a showcase for big, multi-organization collaborative research projects in the
areas of interest to the MODELS community (software and model engineering
at large). The symposium served as a forum for discussing the different organi-
zational models for such projects, to draw conclusions on what works and what
does not work well in this type of structure and to derive trends for future topics
and collaboration models.

The programme committee selected a wide variety of projects, with respect
to their stage (from young to mature and finished projects with well established
results), their geography (national/trans-national), the nature of the consortia
(academia-only or mixed academia-industry), the funding scheme and agency.

We had 12 submissions, out of which we had to choose only 8 for presentation.
The following section makes a brief account of the selected projects.

2 Projects Presented at the Symposium

Modelplex [1]. Title : MODELling solution for comPLEX software systems
(EU - IST Programme). The project has three major objectives: (1) to develop
an open solution for complex systems engineering improving quality and produc-
tivity, (2) to lead its industrialisation and (3) to ensure its successful adoption
by the industry.
HCDDES [2]. Title : Frameworks and Tools for High-Confidence Design of Adap-
tive, Distributed Embedded Control Systems (USA, multi-university research ini-
tiative). The project proposes to develop a comprehensive approach to the design
of high-confidence complex embedded systems, by integrating verification, valida-
tion, and test procedures throughout the complete design, development and main-
tenance cycle.
TOPCASED [3]. Title : Toolkit In OPen source for Critical Applications and
SystEms Development (French DGE project). The project aims at developing
an open source CASE environment for critical systems development.

M.R.V. Chaudron (Ed.): MODELS 2008 Workshops, LNCS 5421, pp. 400–401, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

MODELS Research Projects Symposium 401

SPICES [4]. Title : Support for Predictable Integration of mission Critical
Embedded Systems (EU - ITEA Programme). Focusing on aerospace industry
SPICES aims at developing an MDD/MDE-compliant tool suite for the design,
verification and development of mission-critical RT/E systems dedicated to the
aerospace industry.
ALIVE [5]. Title : A Model Driven approach to Coordination and Organisation
for Dynamic Services Engineering (EU - IST Programme). The project aims
to develop new approaches to the engineering of service-oriented systems based
on the adaptation of coordination and organisation mechanisms often seen in
human and other societies to service-oriented architectures.
FAROS [6]. Title : Composition Environment for Building Reliable Service-
Oriented Architectures (French ANR project). The project aims at defining a
composition environment for building reliable SOAs for applications to be used
in ubiquitous environments.
AMPLE [7]. Title : Supporting Product Line Engineering through Synthesis
of Aspect-Oriented and Model-Driven Development (EU - IST Programme).
The project AMPLE (Aspect-oriented, Model-driven, Product Line Engineer-
ing) aims at synthesising concepts and techniques from aspect-oriented software
development (AOSD) and model-driven engineering (MDE).
Health@net [8]. Title : Concepts and Prototypes for a Patient-Centric Health
Record in Austria (EU - IST Programme). The project has been part of Austria’s
preparatory actions with the aim of establishing a shared national electronic
health record. It developed concepts and a prototype for a shared patient-centric
health record, and allowed to validate the needs of the stakeholders (patients,
hospitals, practitioners).

Acknowledgements

The author wishes to thank the other members of the Programme Committee
for their help in the selection process: Alain Rossignol (EADS Astrium, France),
Andras Pataricza (Budapest University, Hungary), Jochen Malte Küster (IBM,
Switzerland), Susanne Graf (VERIMAG, France), Robert France (Colorado State
University, USA), Betty Cheng (Michigan State University, USA), Agusti Canals
(CS, France).

References

1. MODELPLEX project website, https://www.modelplex.org/
2. HCDDES project website,

https://wiki.isis.vanderbilt.edu/hcddes/index.php/Main_Page
3. TOPCASED project website, http://www.topcased.org
4. SPICES project website, http://www.spices-itea.org
5. ALIVE project website, http://www.ist-alive.eu
6. FAROS project website, http://www.lifl.fr/faros
7. AMPLE project website, http://www.ample-project.net
8. Health@net project website (in German), http://healthatnet.at

https://www.modelplex.org/
https://wiki.isis.vanderbilt.edu/hcddes/index.php/Main_Page
http://www.topcased.org
http://www.spices-itea.org
http://www.ist-alive.eu
http://www.lifl.fr/faros
http://www.ample-project.net
http://healthatnet.at

Author Index

Assmann, Uwe 314
Aubry, Régis 291

Bencomo, Nelly 90, 97
Bézivin, Jean 273
Blair, Gordon 90
Bošković, Marko 227
Bouhours, Cédric 318
Bozga, Marius 5
Braga, Christiano 243
Brambilla, Marco 167
Breu, Ruth 197
Brigl, Birgit 213
Brooke, Phillip J. 229
Buchmann, Thomas 138
Bunse, Christian 66
Büttner, Fabian 263

Cabot, Jordi 257
Chkouri, M. Yassin 5
Cruz-Lemus, José A. 303

Dang, Duc-Hanh 124
Dehlen, Vegard 97
Deridder, Dirk 120
Déri, Zsolt 153
Dobson, Glen 181
Dotor, Alexander 138

Esperanza Manso, M. 303

Fernandez, Miguel A. 54
Filali, Mamoun 1
Fleurey, Franck 97
France, Robert 90
Fraternali, Piero 167
Fritzsche, Mathias 54

Garćıa Molina, Jesús 273
Gašević, Dragan 227
Ge, Xiaocheng 229
Gelhausen, Tom 387
Genero, Marcela 303
Gérard, Sébastien 1
Gilani, Wasif 54

Gogolla, Martin 124, 257
Gönczy, László 153
Graf, Susanne 1
Gray, Jeff 120, 332
Gross, Hans-Gerhard 66

Hanenberg, Stefan 78
Harb, Dania 318
Haux, Reinhold 213
Hemingway, Graham 20
Henriksson, Jakob 314
Hindawi, Mohammed 291
Houben, Geert-Jan 151
Humke, Peter 20

Ißler, Lutz 213

Jeanneret, Cédric 90
Jézéquel, Jean-Marc 97
Jouault, Frédéric 273
Jürjens, Jan 181

Kaiya, Haruhiko 185
Kalnina, Elina 356
Kalnins, Audris 356
Kapitsaki, Georgia M. 343
Karsai, Gábor 20
Koch, Nora 151
Kolovos, Dimitrios S. 48, 229
Körner, Sven J. 387
Kuhlmann, Mirco 263
Kuzniarz, Ludwik 285

Labiche, Yvan 375
Landhäußer, Mathias 387
Leblanc, Hervé 318

Maoz, Shahar 109
Martell, Juan A. 54
Mens, Tom 35
Mernik, Marjan 332
Mikalsen, Marius 199
Mohagheghi, Parastoo 54, 285
Morel, Lionel 291
Morin, Brice 97
Muñoz, Freddy 90

404 Author Index

Nine, Harmon 20
Nuseibeh, Bashar 181

Ober, Iulian 1, 400

Pahl, Claus 227
Paige, Richard F. 48, 229
Pan, Jeff Z. 314
Pareto, Lars 285
Parreiras, Fernando Silva 314
Peper, Christian 66
Piattini, Mario 303
Pierantonio, Alfonso 120
Polack, Fiona A.C. 48
Porter, Joseph 20

Rivera, José Eduardo 60
Robert, Anne 5
Romero, José Raul 60
Rose, Louis M. 229

Saeki, Motoshi 185
Sánchez Cuadrado, Jesús 273
Schätz, Bernhard 227
Schobbens, Pierre-Yves 120
Sifakis, Joseph 5

Śmia�lek, Micha�l 371
Sourrouille, Jean-Louis 285, 291
Staron, Miroslaw 285
Stav, Erlend 199
Stein, Dominik 78
Strübing, Alexander 213
Sztipanovits, János 20, 197

Tairas, Robert 332
Thibodeaux, Ryan 20
Tisi, Massimo 167

Vallecillo, Antonio 60, 151
Van Baelen, Stefan 1, 35
Van Der Straeten, Ragnhild 35
Van Gorp, Pieter 257
Varró, Dániel 153
Venieris, Iakovos S. 343
Völgyesi, Péter 20

Walderhaug, St̊ale 199
Weigert, Thomas 1
Westfechtel, Bernhard 138
Whittle, Jon 181
Winter, Alfred 213

	front-matter.pdf
	fulltext.pdf
	Model Based Architecting and Construction of Embedded Systems
	Introduction
	Reviewed Contributions
	Discussion of Breakout Sessions

	fulltext_001.pdf
	Translating AADL into BIP - Application to the Verification of Real-Time Systems
	Introduction
	Overview of AADL
	Generalities
	AADL Components

	The BIP Component Framework
	Automatic Model Transformation from AADL to BIP
	Software Component
	Execution Platform Components
	System
	Annex Behavior Specification
	Connections

	Tool
	Case Studies
	BIP Model
	Verification

	Conclusion

	fulltext_002.pdf
	Towards Model-Based Integration of Tools and Techniques for Embedded Control System Design, Verification, and Implementation
	Introduction
	Toolchain Vision and Overview
	Requirements Analysis (RA)
	Functional Design (FD)
	Software Architecture (SwA)
	Hardware Architecture (HwA)
	Deployment Models (CD, SY, DPL)

	Existing Tools: Simulink to TTA
	Integration Details

	Under Development: Platform-Specific Simulation, Generic Hardware, and Scheduling
	Integration Details

	Designs in Progress: Requirements and Model Updates
	Integration Details

	Wishlist: Expanded Semantics, Implementation Generation, and Verification

	fulltext_003.pdf
	Challenges in Model-Driven Software Engineering
	Introduction
	About the Workshop
	Identified Challenges
	Discussion of Breakout Groups
	Industrial Adoption
	Formal Foundation
	Scaleability
	Model Evolution and Inconsistency Management

	Past and Future of MDD
	Conclusions

	fulltext_004.pdf
	The Grand Challenge of Scalability for Model Driven Engineering
	Introduction
	Scalability in MDE
	Managing Volume Increase
	Incrementality
	Collaborative Development
	Modularity in Modelling Languages
	Language Design
	Modelling Framework Capabilities

	Conclusions

	fulltext_005.pdf
	MDE Adoption in Industry: Challenges and Success Criteria
	Introduction
	SAP Experience
	Telefónica Experience
	Conclusions
	References

	fulltext_006.pdf
	Behavior, Time and Viewpoint Consistency: Three Challenges for MDE
	Introduction
	Adding Behavioral Semantics to DSLs
	Adding Time to Behavioral Specifications
	Viewpoint Integration and Consistency

	fulltext_007.pdf
	Embedded System Construction – Evaluation of Model- Driven and Component-Based Development Approaches
	Introduction
	MARMOT Overview
	Process Model
	Product Model

	Description of the Study
	Research Approach
	Preparation

	Evaluation and Comparison
	Threats to Validity
	Summary and Conclusions
	References

	fulltext_008.pdf
	Assessing the Power of a Visual Modeling Notation – Preliminary Contemplations on Designing a Test –
	Introduction
	Defining the Goal of the Experiment, and What to Measure?
	Experiment Definition
	Hypothesis Formulation
	Variable Selection

	Preparing Objects – Ensuring Construct Validity (I)
	Semantic Equality
	Equal Degree of Compression
	Presenting Objects

	Preparing Subjects – Ensuring Internal Validity
	Semantic Familiarity

	Measuring Outcomes – Ensuring Construct Validity (II)
	Test Format, and How to Measure?
	Volatile (Time) Measurements – Problems of a First Test Run

	Existing Comparisons of Visual and Textual Notations
	Conclusion
	References

	fulltext_009.pdf
	Third International Workshop on Models@run.time
	Introduction
	Workshop Format
	Session Summaries
	Discussions and Panel

	fulltext_010.pdf
	Modeling and Validating Dynamic Adaptation
	Introduction
	Overview of the Approach
	Adaptation Model
	Meta-model for Variability and Adaptation
	Modeling Variability
	Modeling the Context
	Modeling Adaptation
	Modeling Constraints

	Simulation and Validation
	Simulation Model and Implementation
	Simulation Output
	Constraint Checking and Rule Termination

	Adapting the System at Runtime
	Related Work
	Conclusion and Future Work
	References

	fulltext_011.pdf
	Model-Based Traces
	Introduction
	Model-Based Traces
	Scenario-Based Models
	Scenario-Based Traces
	State-Based Models
	State-Based Traces

	Example Applications
	Generating Model-Based Traces
	Exploring Model-Based Traces

	Related Work
	Discussion and Challenges for Future Work

	fulltext_012.pdf
	Model Co-evolution and Consistency Management (MCCM’08)
	Introduction
	About the Workshop

	fulltext_013.pdf
	On IntegratingOCL and Triple Graph Grammars
	Introduction
	The Basic Idea for Integrating TGGs and OCL
	QVT for the Example Transformation
	TGGs Including OCL for the Example Transformation
	Requirements for the Integration of TGGs and OCL

	USE Realization of TGGs and OCL
	Descriptions in the Language use4tgg
	Realization by OCL Pre- and Postconditions
	Realization by Command Sequences
	Deploying the TGG and OCL Realization in USE

	Support Model Co-evolution and Consistency
	Related Work
	Conclusion and Future Work

	fulltext_014.pdf
	Triple Graph Grammars or Triple Graph Transformation Systems?
	Introduction
	Case Study
	A Triple Graph Transformation System
	A Triple Graph Grammar?
	Related Work
	Conclusion

	fulltext_015.pdf
	Model-Driven Web Engineering (MDWE 2008)
	Workshop Rationale and Aims
	Workshop Overview
	References

	fulltext_016.pdf
	Model Transformations for Performability Analysis of Service Configurations
	Introduction
	Modeling SOA with Reliable Messaging
	Running Example
	A Core SOA Metamodel and Non-functional Extensions
	Reliable Messaging Standards for Web Services

	Model-Based Performability Analysis of Services
	The Performability Model
	Performability Analysis Objectives

	Model Transformation Development
	Definition of Model Elements: Models and Metamodels
	Definition of Basic Mappings: Graph Transformation Rules
	Assembling Complex Transformations
	Platform Specific Data Library

	Related Work
	Conclusions

	fulltext_017.pdf
	A Transformation Framework to Bridge Domain Specific Languages to MDA
	Introduction
	Transformation Framework
	Case Study: Modernization of a DTD-Based DSL
	The Technical Space: DTD/XML
	The DSL: WebML
	Metamodel Generation
	Model Generation
	Higher Order Transformation

	Related Work
	Conclusions

	fulltext_018.pdf
	First International Modeling Security Workshop
	Introduction
	Workshop Theme
	Keynote Presentations
	Research Paper Presentations
	Concluding Remarks
	References

	fulltext_019.pdf
	Security Requirements Elicitation Using Method Weaving and Common Criteria
	Introduction
	Basic Idea
	Weaving Methods
	Common Criteria
	Using Reusable Knowledge

	Using a Goal-Oriented Method
	Using a Use Case Modeling Method
	Related Work
	Research Agenda

	fulltext_020.pdf
	Second International Workshop on the Model-Based Design of Trustworthy Health Information Systems MOTHIS 2008
	Introduction
	Workshop Summary

	fulltext_021.pdf
	Experiences from Model-Driven Development of Homecare Services: UML Profiles and Domain Models
	Introduction
	Background and Related Work
	Methods
	Activity 1: Capture Domain Knowledge
	Activity 2: Designing a Toolchain for MDD in Homecare
	Activity 3: Refine the MPOWER Toolchain and Develop a DSML

	Results
	Activity 1: Conceptual Domain Models
	Activity 2: The MPOWER Toolchain
	Activity 3: Refined Toolchain - Mapping of Domain Concepts to DSML - UML Profile

	Discussion
	Concluding Remarks

	fulltext_022.pdf
	Ontology-Based Assessment of Functional Redundancy in Health Information Systems
	Introduction
	An Ontological Foundation for Assessing Functional Redundancy in Information Systems
	A Measure for Functional Redundancy
	Redundant Support of Enterprise Functions
	A Measure for Functional Redundancy for Information Management

	Using the Functional Redundancy Rate and Minimal Non-redundant Sets of Application Systems to Support Information Management
	Benchmarking Information Systems
	Reducing Operational Costs
	Shut Down of Superfluous Application Systems
	Exploiting Potentials of Application Systems and Reducing Heterogeneity

	An Algorithm for Calculating Minimal Non-redundant Sets of Application Systems
	Using the Functional Redundancy Rate and Minimal Non-redundant Sets of Application Systems at Leipzig University Medical Center
	Discussion
	References

	fulltext_023.pdf
	The First International Workshop on Non-Functional System Properties in Domain Specific Modeling Languages (NFPinDSML2008)
	Motivation
	Workshop Format
	Workshop Outline

	fulltext_024.pdf
	FPTC: Automated Safety Analysis for Domain-Specific Languages
	Introduction
	Background and Related Work
	Components and Failures
	Automating Failure Analysis

	Implementation in Epsilon
	Example
	Discussion and Conclusions

	fulltext_025.pdf
	From Access Control Policies to an Aspect-Based Infrastructure: A Metamodel-Based Approach
	Introduction
	From SecureUML Policies to Aspect Code
	Transforming SecureUML Policies into Aspects
	A Metamodel-Based Approach
	The Transformation Function

	Monitoring Transformation Invariants
	Final Remarks

	fulltext_026.pdf
	Eighth International Workshop onOCL Concepts and Tools
	Introduction
	Workshop Papers
	Building an Efficient Component for OCL Evaluation by Manuel Clavel, Marina Egea and Miguel García de Dios
	Static Source Code Analysis Using OCL by Mirko Seifert and Roland Samlaus
	Optimization Patterns for OCL-Based Model Transformations by Jesús Sánchez Cuadrado, Frédéric Jouault, Jesús García-Molina and Jean Bézivin
	An Incremental OCL Compiler for Modeling Environments by Tamás Vajk and Tihamer Levendovszky
	Implementing Advanced RBAC Administration Functionality with Use by Tanveer Mustafa, Karsten Sohr, Duc-Hanh Dang, Michael Drouineaud and Stefan Kowski
	Shortcomings of the Embedding of OCL into QVT ImperativeOCL by Fabian Büttner and Mirco Kuhlmann
	Observations for Assertion-Based Scenarios in the context of Model Validation by Emine Aydal, Richard Paige and Jim Woodcock
	Executing Underspecified OCL Operation Contracts with a SAT Solver by Matthias P. Krieger and Alexander Knapp
	How My Favorite Tool Supporting OCL Must Look Like by Dan Chiorean, Vladiela Petrascu and Dragos Petrascu

	Tool Showcase
	Lessons Learned

	fulltext_027.pdf
	Shortcomings of the Embedding of OCL into QVT ImperativeOCL
	Introduction
	ImperativeOCL
	Problems
	Undefined Semantics for OCL Expressions
	Breaking Equivalence Rules
	Redundancy of Existing OCL Language Features
	Further Problems

	Suggested Change to the QVT Specification
	Conclusion

	fulltext_028.pdf
	Optimization Patterns for OCL-Based Model Transformations
	Introduction
	Performance Patterns
	Short-Circuit Boolean Expressions Evaluation
	Determining an Opposite Relationship
	Collections
	Usage of Iterators
	Finding Constant Expressions

	Related Work
	Conclusions and Future Work

	fulltext_029.pdf
	Third International Workshop on Quality in Modeling
	Introduction
	Summary of the Paper Contributions
	Introducing Model Quality in the Development Process
	Working Session on a Road Map for Further Research
	References

	fulltext_030.pdf
	Description and Implementation of a UML Style Guide
	Introduction
	Context and Definitions
	Syntactic vs. Semantic Correctness
	Interpretations
	Style Guide
	Style Guide and Quality

	Rules
	Identifying and Classifying Rules
	Expressing Rules

	Verification Process
	Architecture and Process
	Implementation

	Related Works
	Conclusion
	References

	fulltext_031.pdf
	Empirical Validation of Measures for UML Class Diagrams: A Meta-Analysis Study
	Introduction
	The Family of Experiments
	Planning of Experiments
	How the Individual Experiments were Conducted
	Experiment 1 (E1) and Replication (R1)
	Experiment 2 (E2) and its Replications (R21 and R22)
	Threats to the Validity of the Family of Experiments

	Meta-analysis Study
	Meta-analysis Results

	Conclusions
	References

	fulltext_032.pdf
	First Workshop on Transforming and Weaving Ontologies in Model Driven Engineering (TWOMDE 2008)
	Introduction
	Research Papers
	Applications of Ontologies in MDE
	Integrated Approaches

	Conclusion

	fulltext_033.pdf
	Using an Ontology to Suggest Software Design Patterns Integration
	Introduction
	The Design Review Activity
	Reusing and Extending an Existing Ontology
	Requirements
	Existing Ontology: The Design Pattern Intent Ontology
	Method and Results

	Illustration on a “File System Management” Design
	Object-Oriented Quality Checking
	“Alternative Models” Detection
	Designer/Machine Dialog
	Patterns Integration

	Conclusion and Perspectives
	References

	fulltext_034.pdf
	Using Ontologies in the Domain Analysis of Domain-Specific Languages
	Introduction
	Early Stage DSL Development
	Case Study
	Air Traffic Communication
	Ontology Development
	Competency Questions Revisited
	Conceptual Class Diagram

	Ontologies in DSL Development
	Related Work
	Conclusion and Future Work
	References

	fulltext_035.pdf
	Model-Driven Development of Context-Aware Web Applications Based on a Web Service Context Management Architecture
	Introduction
	Context Awareness and Context-Aware Services
	Proposed Model-Driven Development Methodology
	Proposed Solution to Context Management
	Demonstration Example
	Conclusions

	fulltext_036.pdf
	DSL Tool Development with Transformations and Static Mappings
	Introduction
	State of the Art in DSL Tool Development
	Terminology Explanation
	Mapping-Based Approach
	Model Transformation Based Approach
	Combined Approach

	Research Project Description
	The Framework from the User Point of View
	Mapping Definition
	Mapping and Transformation Integration

	Facilities Required to Implement the Approach
	Mapping Definition Language User Interface
	Mapping Language Implementation
	Template MOLA

	Conclusions
	References

	fulltext_037.pdf
	Current Issues in Teaching Software Modeling: Educators Symposium at MODELS 2008
	Introduction
	Organization, Selection and Thematic Areas
	Symposium Results
	Conclusion

	fulltext_038.pdf
	The UML Is More Than Boxes and Lines
	Introduction
	Course Context
	Laboratory Material
	Introductory Lecture on UML Diagrams Consistency Rules
	The Analysis Document
	The Inconsistencies Introduced in the Analysis Document

	Lessons Learned
	Conclusion
	References

	fulltext_039.pdf
	Automatic Checklist Generation for the Assessment of UML Models
	Introduction
	The Approach
	Preparing the Text
	Implementation

	Evaluation
	Legitimate Complaints in Exams: `Intra-Student' Fairness
	Homework Study: `Inter-Student' Fairness

	Observations and Discussion
	Observations Concerning the Examiners
	Observations Concerning the Students
	Applicability

	Related Work
	Conclusion

	fulltext_040.pdf
	MODELS Research Projects Symposium
	Introduction
	Projects Presented at the Symposium

	back-matter.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

