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Preface

This book focuses on model predictive control (MPC) schemes for industrial power electron-
ics. The emphasis is on three-phase ac–dc and dc–ac power conversion systems for high-power
applications of 1 MVA and above. These systems are predominantly based on multilevel volt-
age source converters that operate at switching frequencies well below 1 kHz. The book mostly
considers medium-voltage (MV), variable-speed drive systems and, to a lesser extent, MV
grid-connected converters. The proposed control techniques can also be applied to low-voltage
power converters when operated at low pulse number, that is, at small ratios between the
switching frequency and the fundamental frequency.

For high-power converters, the pulse number typically ranges between 5 and 15. As a result,
the concept of averaging, which is commonly applied to power electronic systems to conceal
the switching aspect from the control problem, leads to performance deterioration. In general,
to achieve the highest possible performance for a high-power converter, averaging is to be
avoided, and the traditionally used current control loop and modulator should be replaced by
one single control entity.

This book proposes and reviews control methods that fully exploit the performance potential
of high-power converters, by ensuring fast control at very low switching frequencies and low
harmonic distortions. To achieve this, the control and modulation problem is addressed in one
computational stage. Long prediction horizons are required for the MPC controllers to achieve
excellent steady-state performance. The resulting optimization problem is computationally
challenging, but can be solved in real time by branch-and-bound methods. Alternatively, the
optimal switching sequence to be applied during steady-state operation—the so-called opti-
mized pulse pattern (OPP)—can be precomputed offline and refined online to achieve fast
closed-loop control.

To this end, the research vision is to combine the benefits of deadbeat control methods (such
as direct torque control) with the optimal steady-state performance of OPPs, by resolving the
antagonism between the two. Three such MPC methods are presented in detail.
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ωsl slip frequency

Superscripts
i∗ current reference
�i current space vector
în amplitude of harmonic current of order n
i′ scaled version of i, e.g., when turned into the per unit system
ū switch position multiplied with the generator matrix V

Operations
dx/dt time derivative of the variable x
exp(x), ex exponential of the variable x
�{x} real part of the complex variable x
�{x} imaginary part of the complex variable x
conj{x} complex conjugate of the complex variable x
x × y cross product of the vectors x and y
x ∈ S variable x belongs to the set S
xT transpose of the vector x
X−1 inverse of the matrix X
|x| absolute value of the scalar x
||x||1 1-norm of the vector x (sum of the absolute values)
||x||2 2-norm or length of the vector x (square root of the sum of the squared values,

Euclidian norm). To simplify the notation, we will often simply write ||x||
||x||∞ infinity-norm of the vector x (largest absolute value)
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1
Introduction

Power electronics applications with power levels in excess of 1 MVA, such as medium-voltage
(MV) drives, are introduced in this chapter along with their market and technology trends. The
commonly used control and modulation schemes are summarized. An introduction to model
predictive control (MPC) is provided, which focuses on the control principle of MPC, and its
advantages and challenges. This chapter concludes with a summary of the main results of the
book and an outline.

1.1 Industrial Power Electronics

1.1.1 Medium-Voltage, Variable-Speed Drives

A typical representative of an industrial power electronic system is a variable-speed drive
(VSD). The block diagram of such a system is shown in Fig. 1.1. It consists of an optional
step-down transformer connected to the grid, an (active) rectifier, a dc-link, an inverter, and
an electrical machine that drives the mechanical load. Additional components such as the
controller, cooling, protection, and switchgear are part of the VSD system, but are not shown
in the figure.

A VSD allows the operation of an electrical machine at an adjustable speed and at an
adjustable electromagnetic torque. This is achieved by decoupling the grid electrically from
the machine. The grid’s fixed frequency ac quantities, which are either 50 or 60 Hz, are recti-
fied to dc quantities, using either a diode rectifier or an active front end. An inverter transforms
these dc quantities back to ac at a variable frequency, which is proportional to the rotational
speed of the mechanical load. The dc-link acts as an energy storage element and decouples the
rectifier from the inverter.

By adjusting the phase and amplitude of the rectifier voltages, the power flow between the
grid and the dc-link can be manipulated. Similarly, on the machine side, by adjusting the phase
and amplitude of the inverter voltages, the machine currents and thus the electromagnetic
torque and magnetization of the machine are controlled.

MV VSDs use line-to-line rms voltages between 690 V and 20 kV, with typical voltages
in the range 2.4–6.9 kV. Power ratings are usually in excess of 1 MVA. Because of the

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/geyermodelpredictivecontrol
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Figure 1.1 Variable-speed drive system

high currents and voltages, high-power semiconductor switches are used in the rectifier and
inverter to commutate and control the currents. The semiconductor switches are operated
such that the resulting currents approximate, albeit in a coarse manner, sinusoidal waveforms
at steady-state operation.

As a well-known example for an MV VSD system, Fig. 1.2 depicts the ACS6000 and
a typical MV induction machine. The ACS6000 is based on the three-level neutral-point-
clamped (NPC) topology with water-cooled integrated-gate-commutated thyristors (IGCTs).

(a) ACS6000 with an active front end, the terminal and control unit, the inverter unit, the dc-link capacitor bank, a
voltage limiter and the water cooling unit

(b) MV induction machine

Figure 1.2 Medium-voltage VSD system. Source: ABB Image Bank. Reproduced with permission of
ABB Ltd
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It is rated at an output voltage between 2.3 and 3.3 kV. In the single-drive configuration shown
in Fig. 1.2(a), the ACS6000 provides 5–12 MVA. Up to 36 MVA is available in the multidrive
configuration.

1.1.2 Market Trends

Sale of industrial high-power electronics is experiencing high annual growth rates. For MV
drives, for example, the growth rate is consistently above 10% per year, with worldwide rev-
enues of 3.7 billion USD in 2014 [1]. The high growth is driven by four major trends:

1.1.2.1 Electrification

Combustion engines are increasingly being augmented or replaced by electrical drives with
the aims of increasing efficiency, reducing emissions, reducing fuel consumption, and remov-
ing the clutch and gear box to simplify the mechanical drive train. Examples of this include
diesel-electric propulsion systems for trains, large mining trucks, tug boats, and large ships. In
the oil and gas industry, gas turbines in compressor trains have traditionally required a starter
motor, which—if designed accordingly—may also act as a helper motor, thus augmenting the
gas turbine [2]. Furthermore, drives are about to fully replace gas turbines in large liquefied
natural gas (LNG) compressor trains. In the low-voltage range, (hybrid) electric automotive
vehicles constitute a major and rapidly growing trend.

1.1.2.2 Renewable Power Generation and Energy Storage

Wind turbines have traditionally relied on low-voltage, doubly fed induction machines. Mod-
ern wind turbines for the offshore market often exceed 3 MW and have adopted full back-to-
back power conversion stages. For higher power ratings, MV generators are used [3]. Pumped
hydro storage systems are typically based on MV doubly fed induction machines [4]. Utility-
scale photovoltaic plants and large battery energy storage systems are based on MV power
converters.

1.1.2.3 Industrial Drive Applications

For industrial drive applications, a distinction between general-purpose and special-purpose
drives is generally made [5]. The latter term refers to highly demanding variable-speed and
variable-torque applications, such as rolling steel mills, for which a back-to-back power con-
version system is mandatory. General-purpose loads, however, such as large pumps, fans,
blowers, and compressors, are predominantly connected directly to the grid using standard
direct online—rather than inverter-duty—electrical machines. In order to increase their effi-
ciency during partial load operation, many grid-coupled electrical machines are upgraded to
VSDs in an retrofit effort [6].
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1.1.2.4 Utility-Scale Power Electronics for the Grid

The power system is being overhauled by adding flexible ac transmission systems (FACTS)
to it to achieve smart grid capabilities and to enhance the power flow [7, 8]. High-voltage dc
(HVDC) systems are installed for bulk power transmission and to connect large offshore wind
farms to the grid [9, 10]. Other notable examples for utility-scale, grid-connected power elec-
tronics include active voltage conditioners (AVCs) and uninterruptible power supplies (UPSs).

1.1.3 Technology Trends

Industrial power electronic systems in the MV range are influenced by four major technology
trends:

1.1.3.1 Multilevel Converter

Over the past 50 years, there has been a continuous shift toward converters with a higher num-
ber of output voltage levels [11]. Starting from the two-level converter, the three-level NPC
converter was introduced in the early 1980s [12]. Five-level topologies followed around the
year 2000. Topologies with a higher number of levels have been available for a few years,
which are either based on cascaded H-bridges or the modular multilevel converter (MMC) [13].
The main motivation to adopt these topologies is to achieve higher output power ratings. To
keep the currents at bay, this implies increased voltage ratings. Another incentive is to avoid
the step-down transformer on the grid side.

1.1.3.2 Product Business

The MV converter business is turning from a project business into a product business, in which
MV converters can be bought off the shelf, and installed and commissioned quickly. A rela-
tively large number of competitors coexist, competing with similar products and technologies.

1.1.3.3 Efficiency

Close to 100% efficiency and low losses are paramount for some applications, such as FACTS
and photovoltaic systems.

1.1.3.4 Computational Power

The computational power of control hardware is growing exponentially. The observation
underlying Moore’s law, that the transistor count of integrated circuits doubles every 2 years,
still holds true [14]. In industrial power electronics, a transition from relatively small
digital signal processors (DSPs) to high-performance DSPs, often augmented by a large
field-programmable gate array (FPGA), can be observed. In some cases, multicore processors
are adopted as a corner piece of the control hardware.
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1.2 Control and Modulation Schemes

1.2.1 Requirements

For industrial power electronic systems, the three pivotal requirements for control and modu-
lation schemes are the following:

1.2.1.1 Low Harmonic Distortions per Switching Losses (or Frequency)

The trade-off between harmonic distortions on one hand and switching frequency or switching
losses on the other hand is well known and fundamental to power electronics. The objective
is to move this trade-off curve toward the origin, rather than to optimize along the curve; see
Fig. 1.3. Lower harmonic distortions allow the reduction or removal of harmonic filters, or the
use of standard direct online machines without derating them. Lower switching losses enable
either boosting the inverter efficiency or increasing the rating of the inverter. On the grid side,
low grid current distortions and compliance with grid codes are required.

1.2.1.2 High Controller Bandwidth

Fast closed-loop control is required to quickly control electrical machines in applications with
rapidly changing loads or speed setpoints. This translates into the requirement of fast torque
responses of a few milliseconds. Grid-connected power converters often require similarly fast
current responses, particularly during power reference steps and faults.

Switching
losses

Harmonic
distortions

?

Figure 1.3 Fundamental trade-off between harmonic distortions and switching losses (frequency)
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1.2.1.3 Accurate Load Power Control

The load power must be controlled. On the machine side, this implies control of the speed
and/or electromagnetic torque of the ac machine. On the grid side, the real and reactive power
must be controlled. Typically, the real power is manipulated such that the dc-link voltage is
maintained at its nominal level, while the reactive power is set to zero.

Additional requirements include robustness to parameter variations, insensitivity to mea-
surement and observer noise, as well as a high degree of fault tolerance. The computational
burden of the control and modulation scheme must be sufficiently low to enable a successful
implementation on the available control hardware.

1.2.2 State-of-the-Art Schemes

Almost universally, the controller of an industrial power electronic system is split into a
load-side and a grid-side controller. Each controller is subdivided into two cascaded control
loops. On the grid side, an outer loop controls the dc-link voltage and manipulates the real
power, which is a setpoint for the inner loop. The latter controls the real and reactive power
of the converter by manipulating the three-phase converter voltage.

On the load side of a VSD system, the outer loop controls the machine’s speed by manip-
ulating the torque reference. The inner loop controls the machine’s electromagnetic torque
and degree of magnetization by manipulating the voltage applied to the stator windings of the
machine. For a grid-connected power electronic system, the load-side controller needs to be
designed according to the attached load.

The voltage command of the inner control loop is typically translated into gating signals for
the semiconductor switches using a carrier-based pulse width modulator (CB-PWM) [15] or
a space vector modulator (SVM) [16]. In both cases, a fast inner control loop is often used,
which is typically formulated in a rotating orthogonal reference frame. On the machine side,
the reference frame is aligned with a flux linkage vector, leading to the concept of the so-called
field-oriented control (FOC) [17, 18]. On the grid side, the reference frame can be aligned with
the grid voltage, resulting in voltage-oriented control (VOC), or with a virtual flux vector,
giving rise to virtual-flux-oriented control [19].

Lower harmonic distortions per switching frequency can be achieved by using OPPs. Since
the related control problem is difficult to solve with a high-bandwidth controller, the commonly
used approach is to resort to a slow inner control method, such as scalar or volts per frequency
(V/f) control.

A third alternative is to replace the inner control loop by a hysteresis controller. Instead of
a modulator, a look-up table is used, which decides the inverter switch positions. Noteworthy
examples include direct torque control (DTC) [20] on the machine side, which controls the
electromagnetic torque and the magnetization of the machine, and direct power control (DPC)
[21] on the grid side, which controls the real and reactive power components. DTC and DPC
lead to very fast responses of the controlled variables, but tend to give rise to pronounced
harmonic distortions.

Figure 1.4 qualitatively characterizes these three standard control methodologies according
to the two control requirements outlined in the previous section. A more comprehensive intro-
duction to the requirements of control and modulation schemes and the state-of-the-art control
methods is provided in Chap. 3.
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DTC/
DPC FOC/VOC

with CB-PWM

V/f control
with OPP

Controller
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Distortions per
switching losses
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Figure 1.4 State-of-the-art control and modulation schemes for high power converters and industrial
drives. These include hysteresis-based control schemes such as direct torque control (DTC) and direct
power control (DPC), field-oriented control (FOC) or voltage-oriented control (VOC) with carrier-based
pulse width modulation (CB-PWM) or space vector modulation (SVM), and volts per frequency (V/f)
control with optimized pulse patterns (OPPs)

In summary, the majority of control and modulation methods used in industry today have
the following three attributes: First, the overall multiple-input multiple-output (MIMO) con-
trol problem is divided into multiple control loops with single-input single-output (SISO)
controllers. These control loops are arranged in a cascaded manner according to the domi-
nant time constant of their loop. Second, the switching behavior of the power converter is
neglected through the use of averaging. This allows the use of linear controllers, such as
proportional-integral (PI) controllers. These controllers are typically augmented by an addi-
tional anti-windup mechanism and a rate limiter. Third, a pulse width modulation (PWM) stage
is used to translate the averaged reference quantities into switching signals.

1.2.3 Challenges

Three major challenges can be identified for the design and real-time computation of high-
performance control and modulation schemes:

1.2.3.1 Challenge 1: Switched Nonlinear Systems

The main building blocks of power electronic systems are linear circuit elements, such as
inductors, capacitors, and resistors, which are complemented by semiconductor switches,
which are either active (or controlled) switches or (passive) diodes. For different combina-
tions of switch positions, different system dynamics arise, which can be described by linear
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10 Model Predictive Control of High Power Converters and Industrial Drives

functions of time for each combination. As a result, when controlling currents, fluxes, and
voltages and manipulating the switch positions, power electronic systems constitute switched
linear systems, provided that saturation effects of magnetic material, delays, and safety
constraints can be neglected [22, 23].

In general, however, power electronic systems represent switched nonlinear systems. Non-
linearities arise, for example, when machine variables such as the electromagnetic torque or
stator flux magnitude are directly controlled; both quantities are nonlinear functions of cur-
rents or flux linkages. For grid-connected converters, the real and reactive power is nonlinear
in terms of the currents and voltages. Saturation effects in inductors and current constraints
lead to additional nonlinearities.

Averaging [24, 25] is a viable way to conceal the switching behavior, provided that the
pulse number is high. A paramount property of CB-PWM is that the ripple current is zero at
regular sampling instants, facilitating the use of averaging. For pulse numbers well above 15,
CB-PWM results in low current distortions. For low pulse numbers, however, averaging should
be avoided and the switching nature of the power electronic system should be addressed by
the control and modulation scheme to achieve low current distortions despite the low pulse
number. For this, OPPs are the preferred choice. Since sampling instants at which the ripple
current is zero in all three phases generally do not exist for OPPs, the concept of averaging is
not suitable in the context of OPPs.

1.2.3.2 Challenge 2: MIMO Systems

The decomposition of the MIMO control problem into multiple SISO loops and the use of cas-
caded control loops greatly simplifies the controller design. This approach works well when
the time constants of the cascaded control loops differ by at least an order of magnitude and
while operating at (quasi) steady-state operating conditions. During transients and faults, how-
ever, the different loops often start interacting with each other in an adverse manner, limiting
the achievable performance in terms of controller bandwidth and robustness, and complicating
the tuning of the control loops.

For converters with LC filters, for example, the current controller is typically augmented
by an active damping loop, with the purpose of dampening the system resonance introduced
by the LC filter [26, 27]. To avoid large overshoots during transients, the current response
has to be slowed down, for example, by rate-limiting the current reference. For an MMC, a
plethora of quantities have to be either regulated along their references or kept at their nominal
values. Because of the physical coupling of these quantities, the commonly used approach to
control the MMC using multiple SISO loops leads to satisfactory performance only during
steady-state operation. Interestingly, few results are available in the literature that showcase a
fast dynamic operation of the MMC.

Therefore, for demanding applications, the MIMO characteristic of the power electronic
system needs to be addressed by a MIMO controller. The benefit of doing so is a faster dynamic
response during transients with less overshoot, as well as a simpler tuning and commissioning
procedure.

1.2.3.3 Challenge 3: Short Computation Times

The third challenge results from the short sampling intervals of 1 ms and less that are typically
used in power electronic systems. These short sampling intervals limit the time available to
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compute the control actions. To reduce the cost of power electronic converters sold in high
volumes, cheap computational hardware is usually deployed as the control platform. Replacing
existing control loops with low computational requirements by new and computationally more
demanding methods exasperates the challenge of short sampling intervals. This is particularly
the case for direct control methods that avoid the use of a modulator. These methods benefit
from very short sampling such as 25 μs.

1.3 Model Predictive Control

Modern control theory formulated in the time domain emerged in the 1960s with the Kalman
filter and the linear quadratic regulator [28, 29]. The state-feedback control law of the latter
is obtained by minimizing a quadratic cost function over an infinite horizon, subject to the
dynamic evolution of a linear system model. The first variants of MPC emerged in the process
industry in the 1970s, focusing on nonlinear systems with physical constraints and on a finite
horizon formulation.

Traditionally, since its inception 40 years ago, MPC has received little attention from the
power electronics community and has been underutilized in this field. Other communities,
such as the process industry, had already adopted this concept in the 1980s with great suc-
cess [30]. Qin and Badgwell report in the late 1990s more than 4500 applications of linear
MPCs in various industries, predominantly in refining, petrochemicals, and chemicals. Some
applications can also be found in the areas of food processing, aerospace and defence, mining
and metallurgy, and the automotive industry [30].

The reasons for the late adoption of MPC by the power electronics community include the
limited processing power that was available in the last century to solve the control problem
in real time and the very short time constants of power electronic systems necessitating the
use of short sampling intervals. The switched (non)linear characteristic of power electronic
systems complicates the controller design, analysis, and verification. Nevertheless, some
initial investigations in MPC-related concepts for power converters were accomplished
in the 1980s. Most importantly, these methods have been successfully implemented and
experimentally verified [31, 32].

Over the past decade, however, MPC has rapidly emerged in power electronics. This
progress has been facilitated not only by the tremendous increase of the computational
power available in the controller hardware but also by the equally significant speed-up of
the solvers that compute the solution to the underlying optimization problem. At the same
time, complicated, new, multilevel topologies have emerged that require sophisticated control
algorithms, the requirements imposed on power electronic systems have become more
stringent, and, in the globalized world, companies are facing considerable pressure to retain
or regain a competitive edge over their competitors.

1.3.1 Control Problem

Consider a general (power electronic) system with the input vector u ∈ R
nu and the output

vector y ∈ R
ny , as shown in Fig. 1.5. Both vectors may contain real-valued and integer com-

ponents. Physical constraints in the form of actuator limits usually exist on the input. We refer
to the system input u as the manipulated variable and the system output y as the controlled
variable.
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Controller Modulator System

Observer

y∗
u

y

y

x

Figure 1.5 Controller regulating the system output y along its reference y∗ by manipulating the system
inputu. An optional modulator translatesu into the converter switch position. The observer reconstructs
the system state x

We distinguish between two varieties of the control problem. When a modulation stage is
added to the system, the manipulated variable is real-valued and typically a voltage reference.
We refer to this as the indirect control problem. Averaging can be used to mask the switching
phenomenon, and the use of integer variables in the system model can be avoided. On the
other hand, when the modulator is removed, the direct control problem arises, with the manip-
ulated variable corresponding to the converter switch positions. As a result, averaging cannot
be employed, and the system model contains integer variables.

MPC requires the state vector x ∈ R
nx of the system. Components of x that cannot be

measured, such as the rotor flux linkage, need to be reconstructed by an observer. Using a
model of the system that is fed with the system input, the state and the output of the system
can be estimated. By feeding back the difference between the measured and the estimated
system outputs, observers can be designed such that the estimated states converge to the real
states, provided that the observer is asymptotically stable and the system is observable.

The general control problem is to design a controller that achieves the following control
objectives: The system output y must be regulated along its reference y∗. This can be achieved
by feeding back the measured output y, comparing it with its reference y∗, and manipulating
the input u accordingly. This feeding back of the output to the input closes the loop and
provides the feedback. The controller also has to guarantee stability and ensure that the con-
straints are met at all times (constraint satisfaction). These three objectives must be achieved
despite disturbances and model uncertainties, necessitating a certain degree of controller
robustness.

1.3.2 Control Principle

Over the past decades, MPC has evolved from a collection of control methods into a coher-
ent control paradigm, perhaps even a control philosophy. Several thousand articles have been
published on MPC. Despite the different MPC formulations and variations, five key attributes
can be identified that are common to the MPC framework. These features are summarized in
the following.
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1.3.2.1 Internal Dynamic Model

MPC incorporates a dynamic model of the system to be controlled. Let x ∈ R
nx denote the

state vector of the system, which—in general—includes real-valued and integer components.
Starting from the current state, the internal dynamic model enables MPC to predict the
sequence of future system states and outputs for a given sequence of manipulated variables.

The dynamic evolution of the system can be described in the continuous-time domain by
the state-space representation

dx(t)
dt

= f(x(t),u(t)) (1.1a)

y(t) = h(x(t),u(t)), (1.1b)

where (1.1a) is a nonlinear first-order differential equation that captures the evolution of the
state vector over the time t ∈ R. The outputs y are a nonlinear function h(·, ·) of the state and
input vectors.

In power electronics, when choosing voltages, currents, or flux linkages as state and out-
put variables, the state-space representation (1.1) is usually linear and we can write it in the
following well-known matrix form

dx(t)
dt

= Fx(t) + Gu(t) (1.2a)

y(t) = Cx(t), (1.2b)

with the system matrix F , input matrix G, and output matrix C.
Most linear MPC strategies are formulated in the discrete-time domain, using a constant

sampling interval Ts. The manipulated variable is restricted to changing its value only at the
discrete sampling instants, that is at the time instants t = kTs, where k ∈ N = {0, 1, 2, . . .}
denotes the time steps. For the continuous-time state-space model (1.2), the discrete-time
representation can easily be computed. Specifically, by integrating (1.2a) from t = kTs to
t = (k + 1)Ts and observing that u(t) is constant during this time interval and equal to u(k),
we obtain the discrete-time state-space equation

x(k + 1) = Ax(k) + Bu(k) (1.3a)

y(k) = Cx(k). (1.3b)

The matrices A and B can be computed from their continuous-time counterparts according to

A = eF Ts and FB = −(I − A)G, (1.4)

where e denotes the matrix exponential, and I is the identity matrix of appropriate dimensions.
We refer to this as exact discretization.

If the matrix exponentials were to pose computational difficulties, the forward Euler approx-
imation is often sufficiently accurate for short sampling intervals of up to several tens of
microseconds in combination with short prediction horizons. In this case, the discrete-time
system matrices are given by

A = I + F Ts and B = G Ts. (1.5)

The output matrix C remains the same when deriving the discrete-time system representation.
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1.3.2.2 Constraints

Even in cases when the state-space equations are linear as in (1.3), constraints on inputs, states,
and outputs

u(k) ∈ U ⊆ R
nu (1.6a)

x(k) ∈ X ⊆ R
nx (1.6b)

y(k) ∈ Y ⊆ R
ny (1.6c)

are usually present, which make the system nonlinear.
For the indirect control problem, when a modulator is added to the system, the real-valued

manipulated variable is typically the voltage reference for the PWM. In this case, it is restricted
to a bounded continuous set, such as

U = [−1, 1]nu . (1.7)

In contrast to this, for the direct control problem, the switch position of the converter constitutes
the manipulated variable, which is constrained to a finite set of integers. A three-level converter,
for example, is capable of synthesizing three voltage levels per phase. This characteristic can
be captured by the input constraint

U = {−1, 0, 1}nu . (1.8)

For a five-level converter, one would have U = {−2,−1, 0, 1, 2}nu . In a three-phase system,
the dimension of the input vector is usually nu = 3. The constraints on u are of a physical
nature and thus hard, implying that they cannot be relaxed.

Constraints on states are sometimes added to prevent the system from operating outside
of its safe operating limits. On the converter currents, for example, upper constraints on the
absolute value of the currents can be imposed slightly below the trip level to avoid trips and
damages due to overcurrents. These constraints are typically imposed in the form of soft
constraints, which can be slightly violated, albeit at a high cost. Imposing soft rather than
hard constraints on state variables is preferable to avoid numerical issues such as the control
problem becoming infeasible.

Rather than regulating the controlled variables along their references, controlled variables
can be kept within upper and lower bounds by imposing soft constraints on them. In the context
of an ac machine, for example, upper and lower bounds can be imposed on the electromagnetic
torque and the stator flux magnitude, similar to the hysteresis bounds in DTC.

1.3.2.3 Cost Function

The control objectives are translated into the cost function, which maps the sequences of future
states, outputs, and manipulated variables into a scalar cost value. The cost function facilitates
the assessment and comparison of the predicted impact the different sequences of manipulated
variables (or scenarios) have on the system. This enables MPC to choose the most suitable
scenario, which is the one that minimizes the value of the cost function.
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A general definition of the cost function is

J(x(k),U (k)) =
k+Np−1∑

�=k

Λ(x(�),u(�)), (1.9)

which is the sum of the stage costs (or weighting functions) Λ(·, ·) over the finite horizon of
Np time steps. The stage cost penalizes the predicted system behavior, such as the deviation
of controlled variables from their references and the control effort, such as the switching fre-
quency. The stage cost is required to be nonnegative. The cost function uses the current state
vector x(k) and the sequence of manipulated variables

U(k) = [uT (k) uT (k + 1) . . . uT (k + Np − 1)]T (1.10)

as arguments. Based on these two arguments, and by using the internal dynamic system model,
the future states and controlled variables can be predicted over the prediction horizon and
penalized accordingly.

1.3.2.4 Optimization Stage

Minimizing the cost function subject to both the evolution of the discrete-time internal system
model over the prediction horizon and the constraints gives rise to a constrained finite-time
optimal control problem. The argument of the result is the optimal sequence of manipulated
variables, U opt(k). The control problem predominantly used in this book is based on a lin-
ear state-update equation, a nonlinear output equation, and constraints on the manipulated
variable, which can be stated as

U opt(k) = arg minimize
U(k)

J(x(k),U(k)) (1.11a)

subject to x(� + 1) = Ax(�) + Bu(�) (1.11b)

y(� + 1) = h(x(� + 1)) (1.11c)

u(�) ∈ U ∀� = k, . . . , k + Np − 1. (1.11d)

In its most general form, with the system model being nonlinear and the system variables
containing integers, the optimization problem underlying MPC is a mixed-integer nonlinear
program (MINLP). Traditionally, the optimization problem has exclusively been solved online,
requiring the solution to be available in real time.

Rather than solving the mathematical optimization problem for the given state vector at
the current time step, the optimization problem can be solved offline for all possible states.
Specifically, the so-called state-feedback control law can be computed for all states x(k) ∈ X
[33–35], by treating the state vector as a parameter and using multi-parametric programming,
which is akin to a generalization of sensitivity analysis. Time-varying references y∗ and
additional time-varying parameters can be treated similarly. The explicit control law can be
stored in a look-up table, and the optimal manipulated variable can be read from the look-up
table in a computationally efficient manner. We refer to this methodology as explicit MPC, in
contrast to standard MPC.
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16 Model Predictive Control of High Power Converters and Industrial Drives

Explicit MPC might appear to be an attractive choice for systems with very short sampling
intervals, such as power electronic systems. It is computationally viable, however, only
for systems with a low-dimensional state vector and with few time-varying references and
parameters. This makes explicit MPC an inflexible approach that is ill suited to address
problems of higher dimensions. The use of integer manipulated variables further complicates
the solution. This approach is therefore not pursued in this book. For a summary on the
literature on explicit MPC for power electronic systems, the reader is referred to [36]. For an
in-depth review of explicit MPC, see [37].

1.3.2.5 Receding Horizon Policy

The solution to the optimization problem (1.11) yields at time step k an open-loop optimal
sequence of manipulated variables Uopt(k) from time step k to k + Np − 1. To provide feed-
back, only the first element of this sequence, namely uopt(k), is applied to the system. At the
next time step k + 1, a new state estimate is obtained and the optimization problem is solved
again over the shifted horizon from k + 1 to k + Np. This policy is referred to as receding
horizon control. It is illustrated in Fig. 1.6.

In summary, the principle of MPC is that at each sampling instant the manipulated variable is
obtained by solving a constrained optimal control problem over a finite prediction horizon. An
internal dynamic model of the system is used to predict future states and controlled variables,
using the current state of the system as the initial state. The control objectives are captured by
a cost function, which is minimized subject to the evolution of the internal model and system
constraints. The solution to the underlying optimization problem yields an optimal sequence
of manipulated variables. A receding horizon policy is employed, that is, only the first element
of this sequence is applied to the system, and the sequence of manipulated variables is recom-
puted at the next sampling instant over a shifted horizon. Hence, MPC combines (open-loop)
constrained optimal control with the receding horizon policy that provides feedback and closes
the control loop.

In this section, some fundamental principles of MPC have been introduced. For more details
on MPC and its mathematical underpinnings, the reader is referred to the vast literature on
MPC that has been accrued in the control community. Prominent survey papers include [30,
38–41], and the classic MPC textbooks are [37, 42–45].

1.3.3 Advantages and Challenges

In Sect. 1.2.3, we have identified three major challenges for the design and implementation of
high-performance control and modulation schemes when applied to industrial power electron-
ics. In light of the MPC principle outlined in the previous section, we discuss in this section the
aforementioned challenges and the ability of MPC to address them. Of the three challenges,
the characteristics of power electronic systems being switched nonlinear systems as well as
MIMO systems can easily be addressed by MPC, while the third challenge, namely the short
computation times available in power electronics, persists as a profound challenge for MPC.
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(a) Prediction horizon at time step k

(b) Prediction horizon at time step k + 1

Figure 1.6 Receding horizon policy exemplified for the prediction horizon Np = 6. The optimal
sequence of manipulated variables U opt is chosen such that the predicted output sequence Y tracks
the output reference Y ∗. Out of the sequence U opt, only the first element uopt is applied to the system

1.3.3.1 Advantages of MPC

First, MPC is formulated in the time domain rather than in the frequency domain. This
enables MPC to address nonlinear systems in general—and switched nonlinear systems in
particular—in a systematic way. This is achieved by incorporating the nonlinear system
behavior into the MPC formulation in the form of an internal dynamic model. Averaging is
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18 Model Predictive Control of High Power Converters and Industrial Drives

not required, and the modulation stage can be included in the controller. Moreover, MPC is
unique in its ability to systematically cope with hard constraints on manipulated variables,
states, and controlled variables.

A vast body of literature has emerged on MPC for switched systems, which are sometimes
referred to as hybrid systems [46]. Various modeling frameworks exist to describe such sys-
tems. This includes piecewise affine (PWA) [47] and mixed logical dynamical (MLD) systems
[48] for the modeling of linear hybrid systems. These and other frameworks are reviewed and
compared with each other in [49]. MPC can be readily formulated and solved for linear hybrid
systems, as shown, for example, in [34, 37]. Many nonlinear (hybrid) systems can be approx-
imated by linear hybrid systems.

The use of a cost function allows one to address diverse and possibly conflicting control
objectives. These objectives can be prioritized, thus endowing MPC with the capability of—in
effect—incorporating multiple control modes in one MPC controller. Furthermore, soft as well
as rate constraints can be added to the control problem formulation.

Second, unlike PI-type controllers, MPC is a multivariable control method that is ideally
suited for MIMO systems, particularly for complicated systems such as the various MMC
topologies or converter systems with additional passive elements such as LC filters. Contrary
to traditional frequency-domain control methods, additional active damping loops or
anti-windup mechanisms are not required in MPC—one current control loop suffices. This
simplifies the design, analysis, and tuning process. This benefit is sometimes overlooked.
Breaking down the control problem into multiple and ideally decoupled SISO loops and
designing individual PI loops for each of them might appear to be a straightforward and easy
endeavor. In practise, however, these loops tend to interact with each other in an adverse
manner, particularly during transients and faults, complicating the design and commissioning
of the control loops. Ultimately, this limits the performance that can be achieved by the
closed-loop system.

1.3.3.2 Challenges for MPC

Third, however, the effort required to solve the optimization problem underlying MPC is often
considerable. Solving the optimization problem in the given time (usually within a part of the
sampling interval) constitutes a major challenge. To extend the applicability of MPC from its
traditional application domain of systems with long sampling intervals (e.g., in the process
industry) to systems with short sampling intervals (e.g., in the automotive industry or power
electronics) has spurred significant research effort along three avenues:

• The computation of the state-feedback control law, the explicit solution, for all possible
states, references, and parameters. In many cases, however, the parameter space has proven
to be of too high a dimension, leading to computationally intractable problems [50].

• The inception of optimization procedures and solvers with fast convergence rates and a low
computational burden. Solvers are investigated that are well suited for implementation on
embedded systems. For quadratic programs, for example, the fast gradient method appears
to be particularly promising when executed on an FPGA, see, for example, [51–53].

• The investigation of new MPC problem formulations and solution methods that are tailored
to the specific control problems that arise from power electronic systems. This is the research
direction that is predominantly pursued in this book.
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We conclude that the effort to formulate MPC control problems is often quite small, while
the effort to solve the underlying optimization problem can be daunting. Unfortunately, the
computational burden associated with solving the optimization problem underlying MPC
increases exponentially with the length of the prediction horizon. Long prediction horizons
yield, in general, a better closed-loop performance than short horizons. In particular, the
infinite horizon case often ensures closed-loop stability, provided that a solution with a finite
cost exists [42, 43]. However, long horizons exasperate the computational issue.

1.4 Research Vision and Motivation

The research vision behind this book is to devise control algorithms so as to maximize the
effectiveness of power electronic systems—or equivalently—to design software to fully utilize
the capability of power electronic hardware. For a three-phase, three-level inverter topology
for example, the proposed control schemes are capable of reducing the switching losses in the
semiconductor switching devices by up to 50% when compared to state-of-the-art schemes.
In the MV arena, the switching losses are typically of a magnitude similar to the conduction
losses; in some cases, they dominate over the latter. When the thermal cooling capability is
the limiting factor, lower switching losses enable one to increase the current accordingly. As a
result, the power rating of the hardware can be increased; for example, a 5 MVA inverter can
be uprated to 6 MVA or more, and sold at an accordingly higher price tag, thus boosting the
sales margin.

Alternatively, such control algorithms allow one to reduce the hardware requirements, for
example, to reduce or remove harmonic filters, reduce dc-link filter capacitors, and allow
standard direct online machines to be used instead of more expensive machines designed
specifically for inverters. Moreover, the safe operating limits of the power electronic system
can be translated into safety constraints, which can be added to the MPC problem formula-
tion. Such constraints include, for example, upper constraints on the absolute value of the phase
current. MPC ensures that these constraints are always met, thus ensuring a safe and reliable
operation of the power converter.

Even more importantly, for MPC, a major part of the control effort is shifted from the design
stage to the computational stage. As a result, on one hand, the design effort, the time to market,
and the commissioning time are significantly reduced. On the other hand, however, a more
powerful control hardware is sometimes required that consists not only of a DSP but often
also of an additional FPGA that runs computationally intensive calculations. Nevertheless, the
cost of an additional FPGA is in most cases negligible when compared to the cost savings that
can be achieved when adopting MPC in the context of MV power electronic systems.

1.5 Main Results

The research objective underlying this book is to combine the advantages of DTC or DPC
during transients with the benefits of offline computed OPPs during steady-state operation. As
shown in Fig. 1.7, the aim is to devise fast current controllers that generate very low switching
losses and distortions. To achieve an OPP-like performance at steady-state operation, very
long prediction horizons are required. Smart algorithms are needed to solve the underlying
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Figure 1.7 Model predictive control combining the merits of DTC or DPC during transients with those
of OPPs during steady-state operation

optimization problem in real time, despite the combinatorial explosion of the number of
possible solutions in the search space.

Over the past few years, three such schemes have been developed that combine the modu-
lator and inner (current) control loop in one computational stage. These control schemes are
based on the key notions of MPC—namely an internal model of the power electronic system
to predict the system’s response over a prediction horizon, a cost function to assess the pre-
dictions, an optimization stage to compute the optimal control action, and a receding horizon
policy to provide feedback and robustness [43]. Despite these common characteristics, the
three control schemes constitute complementary approaches.

The most commonly used MPC approach in power electronics is to directly manipulate
the switch positions of the semiconductors and to formulate the control problem as a refer-
ence tracking problem [54]. This approach is often referred to as the finite control set (FCS)
MPC. Any quantity of a power electronic system, such as a current, electromagnetic torque,
angular speed, flux linkage, neutral point potential, real and reactive power, and so on, can be
regulated along a given reference, as summarized in Chap. 4. The trade-off between tracking
accuracy and switching effort can be adjusted by a tuning parameter. Favorable distortions
per switching losses can be achieved when using long prediction horizons. The underlying
optimization problem can be solved efficiently by adopting a branch-and-bound method from
communication theory called sphere decoding, as shown in Chap. 5.

Model predictive direct torque control (MPDTC) is an advance on DTC, where the look-up
table is replaced by an online MPC-type optimization stage. MPDTC was developed in early
2004, see [55, 56], experimentally verified on a 2 MVA drive in 2007 [57], and generalized in
2009 to further boost the performance by using even longer prediction horizons, see Chap. 7.
Branch-and-bound methodologies can be used to reduce the computational burden by an order
of magnitude, as will be shown in Chap. 10. Model predictive direct current control (MPDCC)
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is a derivative of MPDTC, see Sect. 11.1. Another derivative called model predictive direct
balancing control (MPDBC) can be used to balance the internal inverter voltages in multilevel
topologies [58].

Model predictive pulse pattern control (MP3C) is based on OPPs [59] that are controlled
in an MPC manner. Specifically, offline computed OPPs are modified online to account for
transients and model uncertainties, as well as to provide feedback and robustness. MP3C was
originally devised for the machine-side inverter in electrical drives [60]. For those, MP3C
yields very fast control responses while drastically lowering the switching losses in the con-
verter and/or the current distortions with respect to schemes based on CB-PWM, see Chap. 12.

Although these schemes are based on complementary approaches, they yield very similar
closed-loop performances in terms of distortions per switching losses and controller band-
width. In particular, for three-level MV inverters, the distortions per switching losses are
reduced by up to 50% with respect to DTC and CB-PWM or SVM, while for five-level topolo-
gies they are reduced by 60% and more, see [61–63]. The current and torque response times
are in the range of 1–2 ms. Therefore, at steady-state operating conditions, the resulting distor-
tions per switching losses are similar to those obtained with OPPs. During transients, however,
very fast current and torque response times are achieved, similar to deadbeat control.

In all three cases, the key to success was to devise control algorithms that are computa-
tionally highly tailored to the specific control problem at hand while utilizing the theoretical
foundations of MPC. The standard optimal control approach provides only relatively small
performance improvements and is computationally prohibitively demanding, as evidenced by
some of the early publications, see, for example, [50, 64, 65]. Very long prediction horizons
are required to achieve low distortions per switching losses. A particular effort was required
to achieve the solution of these computationally very demanding MPC problems in real time
on the commonly available drive control hardware.

1.6 Summary of this Book

The 15 chapters of the book are arranged in five parts.

Part I: Introduction

The first part of this book serves as an introduction, recalling basic power electronic terminol-
ogy, concepts, and methods. This includes electrical machines, semiconductors, topologies,
control, and modulation.

More specifically, following this introductory chapter, industrial power electronic systems
are described in detail in Chap. 2. The chapter starts by reviewing some fundamental concepts
that will be used throughout the book, such as the per unit system, orthogonal reference frames,
and space vectors. State-space models of induction machines are derived, which describe the
machines both during steady-state operation and transients. Power semiconductors, such as
IGCTs and power diodes, are introduced and their loss models are stated. Three- and five-level
voltage source inverters are described and modeled, and four industrial power electronics case
studies are defined. The latter refer to MV VSDs and grid-connected converter systems.

After summarizing the requirements that electrical machines, the grid, and converters
impose on control and modulation schemes, Chap. 3 reviews the major industrial control
and modulation schemes that are used in high-power applications. CB-PWM is explained,
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its harmonic spectrum is analyzed, and the equivalence with SVM is recalled. A detailed
account of OPPs is provided, which includes the derivation of the optimization problem
and techniques to solve it in view of multilevel converters. The trade-off between harmonic
distortions and the switching effort is shown analytically. In a last step, scalar control, FOC,
and DTC are reviewed, which constitute the prevailing control methods used for machine-side
converters. An appendix provides an introduction to mathematical optimization.

Part II: Direct Model Predictive Control with Reference Tracking

The second part of this book focuses on direct MPC methods with reference tracking of the
output variables.

Chapter 4 introduces the concept of direct MPC by means of a predictive current controller
with reference tracking and a prediction horizon of one step. This method is also commonly
referred to as FCS MPC. Starting with a single-phase inverter with an RL load, the notions
of the prediction model, cost function, optimization problem, and enumeration are reviewed.
The MPC algorithm is subsequently generalized to the current control problem in three-phase
inverter systems. A derivative of this method can be used to solve the torque and flux con-
trol problem of VSDs. The similarity between the current and torque controllers is shown by
analyzing their cost functions. Moreover, the impact of the tracking error norm on stability is
highlighted, and a method is reviewed to compensate for system delays.

Chapter 5 revisits the control problem of regulating the three-phase currents along their ref-
erences by generalizing the control problem to long prediction horizons. For linear systems
with integer inputs, an integer quadratic program results. It is shown that the optimal inte-
ger solution lies in a sphere centered on the unconstrained solution—the latter is obtained by
relaxing the integer variables to real-valued variables. A branch-and-bound algorithm called
sphere decoding is adopted that exploits this fact and allows one to quickly solve the underly-
ing optimization problem even for relatively long prediction horizons, such as 10. The sphere
decoding principle is illustrated with the help of two examples.

In the next chapter, the performance of long-horizon, direct MPC with reference tracking is
evaluated. For an NPC inverter drive system with an induction machine, a horizon of 10 steps
reduces the current distortions by 20%, when compared to the horizon 1 case. As a result,
long-horizon direct MPC can outperform SVM and CB-PWM during steady-state operation.
When an LC filter is added between the inverter and the electrical machine, the performance
benefits of long prediction horizons become even more pronounced. Increasing the horizon
from 1 to 20, for example, reduces the stator current distortions by up to a factor of 7.

Part III: Direct Model Predictive Control with Bounds

Direct MPC methods that maintain their output variables within upper and lower bounds are
described in the third part of the book.

Chapter 7 is devoted to MPDTC. Similar to DTC, MPDTC manipulates the three-phase
switch position to keep the controlled quantities, such as the electromagnetic torque, stator
flux magnitude, and neutral point potential, within upper and lower bounds. A cost function
that captures either the switching frequency or the switching losses is minimized. To render
the underlying optimization problem computationally tractable for long prediction horizons,
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switching is only considered close to these bounds. In between the switching events, the switch
position is frozen and the trajectories of the controlled variables are extended in an approximate
manner, for example, by using linear or quadratic extrapolation. The cost function, the basic
MPDTC algorithm based on enumeration, the corresponding search tree, and different methods
of performing extrapolation are described and analyzed.

The closed-loop performance of MPDTC is investigated in Chap. 8. The benefit of adopting
long prediction horizons is first shown for an MV NPC inverter drive system operating at
steady state. Compared to DTC, the switching losses can be reduced by up to 60% for the
same harmonic distortions. In the second part of this chapter, MPDTC is adapted to a five-level
inverter drive system, for which the reduction of the harmonic distortions is the main focus.
Compared to those of DTC, the harmonic current and torque distortions can be halved for
the same—or a slightly lower—switching frequency. During torque transients, both DTC and
MPDTC provide excellent results in both case studies.

The next chapter focuses on advanced topics regarding MPDTC. The bounds on the torque
and stator flux magnitude form a target set, within which DTC and MPDTC maintain the stator
flux vector. The offline computation of the control law facilitates the analysis and illustration
of the decision-making process underlying MPDTC as well as the impact of different cost
function formulations. The phenomenon of infeasible states or deadlocks is analyzed, and an
effective deadlock resolution scheme is proposed. With the aim of inhibiting MPDTC from
running into deadlocks, several such methods are proposed and their effectiveness is analyzed
in the last part of the chapter.

The focus of Chap. 10 is on reducing the computational burden of MPDTC by an order of
magnitude to enable the use of very long prediction horizons in real-time implementations.
To this end, a branch-and-bound method is proposed that extends the MPDTC algorithm and
computes the optimal switching sequence while exploring only a small part of the search
tree. Upper and lower bounds on the cost function are introduced that allow the algorithm
to identify and prune suboptimal parts of the search tree without explicitly exploring them.
To limit the maximum number of computations, the optimization procedure can be stopped
if the number of computational steps exceeds a certain threshold. Despite the possibility
of suboptimal solutions, the performance impact is shown to be small, provided that the
threshold is chosen carefully.

Chapter 11 generalizes the MPDTC concept and presents two derivatives. MPDCC controls
the currents rather than the torque and stator flux magnitude. It is suitable for machine-side
and grid-side converters. Thanks to the shape of its current bounds, it tends to achieve lower
current distortions per switching losses than MPDTC. Model predictive direct power control
(MPDPC) controls the real and reactive power components in a grid-connected converter setup.
Both MPDCC and MPDPC are introduced in this chapter along with detailed performance
evaluations. The chapter concludes with a comparison of the shape of the bounds of MPDTC,
MPDCC, and MPDPC.

Part IV: Model Predictive Control based on Pulse Width Modulation

The fourth part of this book focuses on MPC methods that are based on PWM. These methods
are complementary in their approach to the direct MPC techniques discussed in the previous
two parts.
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Chapter 12 proposes the concept of MP3C. By definition, offline computed OPPs provide the
minimal current distortion for a given switching frequency. Integrating the three-phase volt-
age waveform of the OPP over time leads to the optimal stator flux trajectory. By manipulating
the switching instants of the OPP, the stator flux vector of the electrical machine can be regu-
lated along the optimal flux trajectory, thus achieving fast closed-loop control of the machine.
Adopting the notion of MPC, in particular the receding horizon policy, two computational
variations of MP3C are proposed. The first one is based on a quadratic program and uses a
long prediction horizon. The second variation is a deadbeat controller that is computationally
simple and achieves almost as fast a torque response as DTC. To improve the performance
during transients, additional switching transitions can be inserted when the stator flux error
exceeds a certain threshold.

The performance of MP3C is evaluated in Chap. 13 through simulations and experiments
on MV drives. Simulation results are provided for an NPC inverter drive system during steady-
state operation and transients. When compared to SVM operating at the same switching fre-
quency, MP3C reduces the current distortions by up to 50%. The benefit of inserting pulses
during transients is illustrated. Experimental results for a five-level active NPC inverter drive
system are shown in the second part of the chapter, with the MV induction machine operating
at up to 1 MVA. A summary and discussion of the main benefits and characteristics of MP3C
is provided at the end of the chapter.

Chapter 14 focuses on an MMC that is controlled by an indirect MPC scheme with
CB-PWM. The nonlinear MMC model is derived and linearized, based on which a linear
MPC scheme is formulated. By manipulating the reference voltages of the modulator, the
controller regulates the phase currents along their references, controls the branch energies,
and imposes soft constraints on the branch currents, dc-link current, and capacitor voltages. A
subsequent balancing controller maintains the capacitor voltages of the modules around their
nominal values. The main benefit of this two-tiered controller is its ability to provide very
fast responses during transients while operating the converter within its safe operating limits.

Part V: Summary

The last part of this book provides a performance comparison, summary of the results, con-
clusions, and an outlook for MPC of high power converters and industrial drives.

An extensive performance comparison is provided in Chap. 15, in which the principal
direct MPC schemes discussed in this book are benchmarked with SVM. These direct control
schemes include one-step predictive current control, MPDTC, MPDCC, and MP3C. When
minimizing the switching losses in the cost function and adopting long prediction horizons,
MPDCC tends to slightly outperform MP3C, albeit only in terms of harmonic current
distortions per switching losses. Correspondingly, long-horizon MPDTC achieves lower
torque distortions per switching losses than MP3C. An in-depth assessment of the proposed
control and modulation follows, which discusses their benefits and challenges and highlights
promising application areas for each method. The outlook proposes a number of possible
future research directions.



�

� �

�

Introduction 25

Constrained
optimal
control

Mathematical
optimization

Power
electronics

MPC for
power

electronics

Figure 1.8 The focus of this book is on MPC for power converters and industrial drives, which is
a field at the intersection of power electronics, constrained optimal control theory, and mathematical
optimization

1.7 Prerequisites

This book is intended for researchers in academia and industry who are interested in an intro-
duction to and a summary of the MPC methods available today for industrial power electronic
systems. This includes university students at or above the MSc level, academics, and engi-
neers in industry focusing on research and development. As shown in Fig. 1.8, the field of
MPC for power electronics is at the intersection of power electronics, constrained optimal con-
trol theory, and mathematical optimization. Specifically, strong domain knowledge in power
electronics is required to understand the system and the control problem at hand, MPC the-
ory is required to formulate the control problem, and mathematical optimization is needed to
solve it.

The reader is expected to be familiar with power electronics, modern control methods, and
the basic notions of mathematical optimization. This includes three-phase machines, multi-
level voltage source inverters, PWM, linear systems, linear algebra, state-space representation,
discrete-time systems, optimal control, MPC, and quadratic programming.

Some of these prerequisites are covered by the following textbooks. For an introduction to
high-power electronics and ac drives, the reader is referred to [66]. PWM is described and
analyzed in depth in [15]. Detailed dynamic models of three-phase machines are derived in
[67]. For a survey on multilevel converters, the reader is referred to [5, 11].

Linear systems and the state-space representation are described in detail in [68].
Discrete-time systems are explained in [69], while [70] is an excellent textbook on linear
algebra. Regarding MPC, [43, 37] are recommended. An introduction to convex optimization
is provided in [71]. For an encyclopedia on optimization, the reader is referred to [72].
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2
Industrial Power Electronics

Industrial power electronic systems in the high power range are described in detail in this
chapter. The chapter starts by reviewing some fundamental concepts that will be used
throughout the book. State-space models of induction machines are derived, which describe
the machine both during steady-state operation and transients. Power semiconductors are
introduced and their loss models are stated. Three- and five-level voltage source inverters
are described and modeled, and four industrial power electronics case studies are defined.
The latter refer to medium-voltage (MV) variable-speed drives (VSDs) and grid-connected
converter systems.

2.1 Preliminaries

In this section, four concepts fundamental to power electronics are reviewed: three-phase sys-
tems, the per unit (pu) system, orthogonal reference frames, and space vectors. To assist readers
who are not familiar with these concepts, more space than might be considered absolutely nec-
essary has been devoted to summarize these notions and to provide illustrating examples. The
aim is to provide an intuitively accessible yet concise introduction and summary.

2.1.1 Three-Phase Systems

We start by introducing three-phase systems with alternating currents (ac). Consider a bal-
anced three-phase voltage source. In each phase, the voltage is sinusoidal with the peak value√

2Vph, where Vph denotes the root-mean-square (rms) value of the phase voltage. The volt-
age waveforms have the same frequency f in the three phases a, b, and c, but their phases are
shifted by 2π/3 with respect to each other. The three instantaneous phase voltages at time t
are given by

va(t) =
√

2Vph sin(ωt) (2.1a)

vb(t) =
√

2Vph sin
(

ωt − 2
3
π

)
(2.1b)
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vc(t) =
√

2Vph sin
(

ωt − 4
3
π

)
, (2.1c)

where ω = 2πf denotes the angular frequency.
As shown in Fig. 2.1, the phase voltages are the voltages between the phase terminals A, B,

and C of the voltage source and its star point N. In contrast to this, the line-to-line voltages

vab(t) = va(t) − vb(t) =
√

2V sin
(

ωt +
1
6
π

)
(2.2a)

vbc(t) = vb(t) − vc(t) =
√

2V sin
(

ωt − 1
2
π

)
(2.2b)

vca(t) = vc(t) − va(t) =
√

2V sin
(

ωt − 7
6
π

)
(2.2c)

refer to the voltages between the phase terminals, which have the rms value V =
√

3Vph.
Throughout this book, we will use upper case letters to denote rms quantities, and lower case
letters to refer to instantaneous quantities. We will often drop the time t from the instantaneous
quantities to simplify the notation.

A three-phase star-connected resistive–inductive load (see Fig. 2.1) is connected to the
three-phase voltage source via the phase terminals. The star point S of the load is usually
not connected to N. The load’s phase resistances R and inductors L have the same value in
each phase. We say that the load is balanced. The resulting three-phase sinusoidal current
waveforms are of the same magnitude and thus also balanced.

Example 2.1 Consider a voltage source with the line-to-line rms voltage V = 3.3 kV and
the frequency f = 50 Hz. Adding a load with the impedance Z = R + jωL with R = 2 Ω and
L = 2 mH leads to the rms phase currents Iph = V/

√
3/|Z| = 0.91 kA. The phase currents are

shifted with respect to the phase voltages by the angle ∠Z = 17.4◦. The three-phase voltage
and current waveforms are shown in Fig. 2.2.

va

vb

vc

vab

vbc

vca

A

B

C

N S

ia

ib

ic
R

R

R

L

L

L

Figure 2.1 Balanced three-phase system with a voltage source and a resistive–inductive load
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Figure 2.2 Balanced three-phase voltages and currents in SI units

For a balanced three-phase system, the real power P , the reactive power Q, and the apparent
power S are given by

P = 3VphIph cos(φ) (2.3a)

Q = 3VphIph sin(φ) (2.3b)

S = 3VphIph, (2.3c)

where φ denotes the phase angle between the voltage and current waveforms. Note that P has
the unit watt (W), Q has the unit reactive volt-ampere (Var), and S is measured in volt-ampere
(VA). Moreover, S2 = P 2 + Q2 holds.

The power factor is defined as

pf = | cos(φ)| =
P

S
. (2.4)

Example 2.2 In Example 2.1, the apparent power is equal to S = V 2/|Z| = 5.19 MVA. The
phase angle between the voltage and current waveforms is φ = ∠Z = 17.4◦, leading to a
power factor of 0.954.

2.1.2 Per Unit System

In the fields of power electronics and power systems, it is common practise to normalize
all variables and parameters that are used. Normalization is typically performed such that
the normalized variables are equal to 1 when operating at nominal voltage, full power, and
nominal frequency. To this end, the so-called pu system is established with three primary
base quantities.
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Table 2.1 Definition of the base values of the per unit system in
terms of the rated line-to-line voltage VR, the rated current IR, and
the rated angular stator or grid frequency ωsR or ωgR

Base quantity Base value

Voltage VB =
√

2/3VR

Current IB =
√

2IR

Angular frequency ωB = ωsR or ωB = ωgR

Resistance, reactance, impedance ZB = VB/IB

Inductance LB = ZB/ωB

Capacitance CB = 1/(ωBZB)
Apparent power SB = 3/2VBIB

Flux linkage λB = VB/ωB

Torque TB = pf pSB/ωB

We first consider a drive system with a single electrical machine. Assume that the machine is
configured in star connection and let VR denote its rated line-to-line voltage. The base voltage

VB =

√
2
3
VR (2.5)

is defined as the peak value of the machine’s rated phase voltage. Accordingly, the peak value
of the rated current IR is selected as the base current

IB =
√

2IR. (2.6)

The third base quantity is the base angular frequency, which is set equal to the rated angular
stator frequency ωsR, that is,

ωB = ωsR. (2.7)

From the three primary base quantities defined here, additional base quantities can be
derived easily. The commonly used base quantities are summarized in Table 2.1. The torque
equation is derived in Sect. 2.2. Note that pf denotes the power factor and p is the number of
pole pairs in the electrical machine.

When normalizing the drive system with these base quantities and when operating at nomi-
nal speed and rated torque, the normalized stator currents have an amplitude of 1. Furthermore,
the stator flux magnitude, the angular stator frequency, the electrical power, and the electro-
magnetic torque are 1.

Example 2.3 For Example 2.1, a pu system can be established by assuming VR = V , IR =
Iph and ωR = ω. This yields the base quantities VB = 2694 V, IB = 1285 A and ωB =
2π50 rad/s. As a result, the amplitudes of the three-phase voltage and current waveforms are
scaled such that their peak values coincide with 1 (see Fig. 2.3).

For grid-connected power converters, the pu system is typically established using quantities
at the secondary side of the transformer. The base voltage is chosen as the peak value of the
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Figure 2.3 Balanced three-phase voltages and currents in the per unit system

rated transformer phase voltage. The definition of the base voltage remains the same as in
(2.5), but VR refers now to the line-to-line voltage at the transformer’s secondary winding.

The rated apparent power SR is used as the second base quantity. It is defined as

SB = SR. (2.8)

The base angular frequency is again chosen as the third base quantity. It is equal to the rated
angular grid frequency ωgR, that is,

ωB = ωgR. (2.9)

This definition of the pu system is based on the peak values of the voltage and current
waveforms. Another possibility is to choose the rms values as base values. In this case, (2.5)
and (2.6) are replaced by VB = VR/

√
3 and IB = IR, respectively. The apparent base power

in Table 2.1 is then given by SB = 3VBIB .
In addition to this, the time axis will also be normalized by multiplying the time by ωB .

The notion of the pu system will be illustrated in more detail when applying it to electrical
machines in Sect. 2.2.3, to multilevel inverters in Sect. 2.4, and to grid-connected converters
in Sect. 2.5.4.

2.1.3 Stationary Reference Frame

To simplify the modeling and analysis of balanced three-phase circuits, it is common practice
to transform all variables from the three-phase abc system to an orthogonal reference frame,
which is either stationary or rotating. We will use the terms reference frame and coordinate
system interchangeably.

The stationary, orthogonal coordinate system is established by the three axes α, β, and 0
(or γ), which are perpendicular to each other, as shown in Fig. 2.4. The so-called Clarke trans-
formation [1] maps the vector ξabc = [ξa ξb ξc]

T from the balanced three-phase abc system to
the vector ξαβ0 = [ξα ξβ ξ0]

T in the αβ0 reference frame, and vice versa, via the following
transformations:

ξαβ0 = Kξabc and ξabc = K−1ξαβ0. (2.10)
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a

b

c

0

α

β

Figure 2.4 Definition of the stationary αβ0 reference frame

The transformation matrices are given by

K =
2
3

⎡

⎢⎢⎣

1 − 1
2 − 1

2

0
√

3
2 −

√
3

2
1
2

1
2

1
2

⎤

⎥⎥⎦ and K−1 =

⎡

⎢⎢⎣

1 0 1

− 1
2

√
3

2 1

− 1
2 −

√
3

2 1

⎤

⎥⎥⎦ . (2.11)

The factor 2/3 in K in (2.11) ensures that the amplitudes of the (balanced) three-phase
signals are preserved. As a result, the Clarke transformation as defined previously is peak or
amplitude invariant.

Example 2.4 Consider again Example 2.3 with its normalized three-phase voltages and cur-
rents, which are shown in Fig. 2.3. Using (2.10) yields the αβ0 voltages and currents shown
in Fig. 2.5, which have the same amplitudes and the same fundamental frequency as the cor-
responding waveforms in the abc coordinate system.

The 0-component is zero in both cases, because the three-phase quantities in this example
are sinusoidal waveforms with the same amplitude in each phase and a phase shift of 2π/3
between them. More generally, in a three-phase system with its star point not connected to
ground, the 0-component of the current is always zero, that is, ia + ib + ic = 0 holds at all
time instants.

When transforming three-phase quantities into the stationary orthogonal reference frame,
we often require only the α- and β-components, but not the 0-component. To address this case,
we introduce ξαβ = [ξα ξβ ]T and the reduced Clarke transformations

ξαβ = K̃ξabc and ξabc = K̃
−1

ξαβ . (2.12)
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Figure 2.5 Balanced three-phase voltages and currents represented in the stationary αβ0 reference
frame

The corresponding matrices are defined as

K̃ =
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
and K̃

−1
=

⎡

⎢⎢⎣

1 0

− 1
2

√
3

2

− 1
2 −

√
3

2

⎤

⎥⎥⎦ . (2.13)

Note that K̃ holds the first two rows of K, and K̃
−1

holds the first two columns of K−1. K̃
−1

is the pseudo-inverse of K̃, and the 0-component is implicitly assumed to be zero.

2.1.3.1 Remarks

The three-phase abc system can be interpreted as a coordinate system with its three axes dis-
placed by 2π/3. The abc coordinate system can be described by the unit vectors

ea =
[
1
0

]
,eb =

1
2

[
−1√

3

]
and ec =

1
2

[
−1
−
√

3

]
(2.14)

in the orthogonal αβ coordinate system. By definition, the unit vectors are of the magnitude 1.
Note that the α-axis is aligned with the a-axis, as shown in Fig. 2.4.

The Clarke transformation can be interpreted geometrically as a projection of the three
phase quantities onto orthogonal and stationary axes. Specifically, the three unit vectors
in (2.14) are multiplied with the to-be-transformed abc quantities and projected onto the
αβ-axes according to

ξαβ =
2
3
(ξaea + ξbeb + ξcec) . (2.15)

It is clear that the transformation (2.15) is identical to the reduced Clarke transformation in
(2.12). The factor 2/3 is required in both variations of the transformation to ensure that it is
amplitude invariant.
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Figure 2.6 Current vectors iαβ in stationary orthogonal coordinates (solid lines) and their three
per-phase contributions (dotted lines)

The third axis, the 0-axis, is orthogonal to the αβ-plane and points out of it, as indicated in
Fig. 2.4. A common choice for the 0-component is

ξ0 =
1
3
(ξa + ξb + ξc) . (2.16)

Combining (2.15) with (2.16) directly results in the Clarke transformation (2.10).

Example 2.5 To visualize the projection underlying the Clarke transformation, we focus again
on Example 2.3. From Fig. 2.3(b), we read out the instantaneous three-phase currents at
time t0 = 0 as iabc(t0) = [−0.30 − 0.68 0.98]T . For phase a, we define the per-phase vector
ia(t0) = ia(t0)ea. The vectors ib(t0) and ic(t0) are defined accordingly. Summing up these
three vectors and scaling their vectorial sum by 2/3 results in the equivalent representation
of iαβ(t0) = [−0.30 − 0.96]T in the stationary orthogonal coordinate system. This process
is visualized in Fig. 2.6(a).

Accordingly, Fig. 2.6(b) depicts the three-phase currents at time t1 = 2 ms, iabc(t1) =
[0.32 − 0.98 0.66]T , which are equivalent to iαβ(t1) = [0.32 − 0.95]T . We also observe
that the current vector rotates counterclockwise at the angular velocity ω. As before, the
0-component of the current is zero.

2.1.4 Rotating Reference Frame

The stationary orthogonal reference frame can be generalized to the rotating orthogonal ref-
erence frame with the direct (d), quadrature (q), and zero (0) axis. As shown in Fig. 2.7, the
q-axis precedes the d-axis by 90◦, that is, the q-axis is in quadrature to the d-axis. As for the
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a
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c

ϕ

dq

0

ωfr

Figure 2.7 Definition of the rotating dq0 reference frame

stationary frame, the 0-axis points out of the dq-plane. The angular position of the dq0 ref-
erence frame is defined by ϕ, which is the angle between the d-axis of the rotating reference
frame and the a-axis of the three-phase system, with

ϕ(t) =
∫ t

0
ωfr(τ)dτ + ϕ(0) . (2.17)

Here, ωfr denotes the angular speed of the reference frame.
The so-called Park transformation [2] transforms the vector ξabc from the three-phase sys-

tem to ξdq0 = [ξd ξq ξ0]
T in the rotating reference frame, and vice versa, using

ξdq0 = K(ϕ)ξabc and ξabc = K−1(ϕ)ξdq0 (2.18)

with the matrices

K(ϕ) =
2
3

⎡

⎢⎢⎣

cos ϕ cos(ϕ − 2π
3 ) cos(ϕ + 2π

3 )

− sin ϕ − sin(ϕ − 2π
3 ) − sin(ϕ + 2π

3 )
1
2

1
2

1
2

⎤

⎥⎥⎦ (2.19)

and

K−1(ϕ) =

⎡

⎣
cos ϕ − sin ϕ 1

cos(ϕ − 2π
3 ) − sin(ϕ − 2π

3 ) 1
cos(ϕ + 2π

3 ) − sin(ϕ + 2π
3 ) 1

⎤

⎦ . (2.20)

We distinguish between the Clarke and the Park transformation through the dependency on the
angle ϕ; K and K−1 refer to the Clarke transformation and its inverse, while the pair K(ϕ)
and K−1(ϕ) refers to the Park transformation and its inverse, respectively.
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Equations (2.17)–(2.20) summarize the concept of the orthogonal reference frame. The
angular speed ωfr, at which this reference frame rotates, can be arbitrary. For electrical drives,
two special cases are commonly used. On one hand, the synchronous (or synchronously rotat-
ing) reference frame is obtained by aligning the d-axis with the machine’s stator or rotor flux
vector and by setting ωfr to the flux’s angular speed ωs. As a result, during steady-state opera-
tion, the machine’s interdependent ac quantities are transformed into independent (orthogonal)
dc quantities, as will be shown in Sect. 3.6.2.

On the other hand, the stationary (i.e., nonrotating) αβ0 reference frame is the result of
setting both ϕ and ωfr to zero. The d- and q-axes are then referred to as α- and β-axes, respec-
tively, with the 0-axis remaining unchanged. The Clarke transformation can thus be interpreted
as a special case of the Park transformation.

For grid-connected converters, the d-axis of the rotating dq0 reference frame is usually
aligned with the grid voltage, or—more precisely—with the voltage at the point of common
coupling (PCC). A phase-locked loop is used to ensure that the reference frame rotates in syn-
chronism with the PCC voltage. Alternatively, the stationary αβ0 reference frame can be used
also on the grid side.

Example 2.6 To highlight the notion of the synchronous reference frame, consider the
three-phase voltages and currents shown in Fig. 2.3. These quantities were defined in
Example 2.3. We set ωfr = ω = 2π50 rad/s and align the d-axis with the voltage vector by
setting ϕ(0) = 3π/2. The instantaneous voltages and currents at time instant t = 2 ms are
illustrated as the vectors v and i in Fig. 2.8.

The dq0 reference frame rotates in synchronism with the voltage and current vectors. When
represented in the dq0 frame, their ac quantities turn into dc quantities while their vectorial

a

b

c

ϕ

d

q

ωfr

i

v

0

Figure 2.8 Voltage and current vectors of Example 2.3 at time instant t = 2 ms represented in the
rotating dq0 reference frame



�

� �

�

Industrial Power Electronics 39

0 4 8 12 16 20
Time (ms)

V
ol

ta
ge

s
(p

u)
vd

vq v0

(a) Voltages in dq0
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Figure 2.9 Balanced three-phase voltages and currents represented in the rotating dq0 reference
frame

representation remains stationary. This can be confirmed algebraically by inserting the instan-
taneous three-phase quantities, as defined in (2.1) for the voltage, into the Park transformation
(2.18). The resulting dq0 components are shown in Fig. 2.9.

The amplitudes of the voltage and current vectors,
√

v2
d + v2

q + v2
0 and

√
i2d + i2q + i20, are 1

and are thus invariant under the transformation. The 0-components of the three-phase voltages
and currents remain zero.

Similar to (2.12), the 0-component can be ignored, which yields the reduced Park transfor-
mations

ξdq = K̃(ϕ)ξabc and ξabc = K̃
−1

(ϕ)ξdq (2.21)

with the transformation matrix

K̃(ϕ) =
2
3

⎡

⎣ cos ϕ cos(ϕ − 2π
3 ) cos(ϕ + 2π

3 )

− sin ϕ − sin(ϕ − 2π
3 ) − sin(ϕ + 2π

3 )

⎤

⎦ (2.22)

and its pseudo-inverse

K̃
−1

(ϕ) =

⎡

⎢⎢⎢⎣

cos ϕ − sin ϕ

cos(ϕ − 2π
3 ) − sin(ϕ − 2π

3 )

cos(ϕ + 2π
3 ) − sin(ϕ + 2π

3 )

⎤

⎥⎥⎥⎦ . (2.23)

For the inverse transformation, the 0-component is implicitly assumed to be zero.

2.1.4.1 Remarks

The transformation of the vector ξαβ from the stationary reference frame to the vector ξdq in
the rotating reference frame, and vice versa,

ξdq = R(ϕ)ξαβ and ξαβ = R−1(ϕ)ξdq (2.24)
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is carried out through the rotation matrices

R(ϕ) =
[

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

]
and R−1(ϕ) =

[
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ)

]
. (2.25)

As the orthogonal reference frame is rotated by ϕ from αβ to dq in a counterclockwise direc-
tion (compare Figs. 2.4 and 2.7), the vector ξαβ must be rotated in a clockwise direction to
transform it into ξdq . Therefore, the matrix R performs a clockwise rotation. It is also easy to

show that K̃(ϕ) = R(ϕ)K̃ and K̃
−1

(ϕ) = K̃
−1

R−1(ϕ) hold.
As Examples 2.4 and 2.6 confirm, the Clarke and Park transformations as defined previously

are peak or amplitude invariant, implying that the amplitude of the fundamental waveforms
remains unchanged. However, this entails that the transformations are not power invariant.
Specifically, the instantaneous power expressed in abc variables is given by

Sabc = vaia + vbib + vcic . (2.26)

Substituting (2.18) in (2.26) and imposing the instantaneous power in dq0 quantities to be
equal to the power expressed in abc variables leads to

Sdq0 = Sabc =
3
2
(vdid + vqiq + 2v0i0) . (2.27)

The same holds for the abc to αβ0 transformation. In both cases, the factor 1.5 is mandatory
when translating the power from an orthogonal reference frame to the three-phase system.

For an in-depth review of reference frame theory, the reader is referred to Krause’s excellent
book [3, Chap. 3].

2.1.5 Space Vectors

Directly related to the concept of orthogonal reference frames is the notion of space vectors,
which are a widely used and convenient approach to represent three-phase quantities. Specifi-
cally, a space vector is a representation of a three-phase instantaneous quantity in the complex
plane with real and imaginary components. We define the complex number�a = exp(j2π/3) =
− 1

2 + j
√

3/2, where j denotes the imaginary unit. We will use complex numbers only in the
context of space vectors and we use arrows to indicate them.

Aligning the a-axis with the real axis, the position of the b-axis in the complex plane can be
described by �a. Accordingly, �a2 describes the position of the c-axis. The space vector of the
three-phase quantity ξabc is then defined as

�ξ =
2
3
(ξa + ξb�a + ξc�a

2) . (2.28)

The factor 2/3 in (2.28) is required to ensure that the space vector has the same amplitude as
the three-phase quantity it represents. As a result, the space vector representation is peak or
amplitude invariant.

Example 2.7 Consider once again Example 2.3 with the three-phase current waveforms
shown in Fig. 2.3(b). By measuring the currents at time instant t0 = 0 and applying (2.28),
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i(t0) i(t1)

i(t2)

Figure 2.10 Current space vector�i, its phase components, and evolution over time. Straight lines refer
to the time instant t0 = 0, dash-dotted lines to t1 = 2 ms and dashed lines to t2 = 4 ms

the space vector of the current �i(t0) is obtained. This space vector is shown in Fig. 2.10
along with the three per-phase components of which it is composed. For completeness, these
per-phase vectors are given by�ia(t0) = ia(t0), �ib(t0) = ib(t0)�a, and�ic(t0) = ic(t0)�a

2. The
space vectors at times t1 = 2 ms and t2 = 4 ms are derived accordingly and are indicated by
dashed-dotted and dashed lines, respectively. Note that the space vector’s absolute value is
the same as the amplitude of the abc current waveforms. Moreover, the space vector rotates
with the angular velocity ω.

The space vector representation (2.28) is equivalent to the projection (2.15) onto the α- and
β-axes. In particular, the complex numbers �a 0 = 1, �a, and �a 2 can be interpreted as three unit
vectors, which are displaced by 2π/3 and are associated with the three phases. Therefore, the
space vector representation �ξ is equivalent to a two-dimensional vector in the αβ-plane. The
space vector’s real and imaginary parts correspond to the α- and β-components, respectively,
according to

ξα = �{�ξ} and ξβ = �{�ξ} . (2.29)

The α- and β-components of the space vector can be explicitly derived as a function of the
corresponding a-, b-, and c-components. Substituting (2.28) in (2.29) leads to

ξαβ =
2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
ξabc , (2.30)
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which is the same as the abc to αβ transformation (2.12), that is, the reduced Clarke
transformation.

In addition to that, multiplying the space vector in (2.28) by exp(−jϕ) transforms it from
the stationary complex plane to a rotating complex plane. The latter is equivalent to the dq
reference frame. In matrix form, this clockwise rotation is given by R(ϕ), which was defined
in (2.25).

Based on this, one might be tempted to conclude that orthogonal reference frames and space
vectors provide the same representation. Strictly speaking, despite their strong similarities,
these two concepts are not the same. Space vectors were originally proposed to describe sinu-
soidal distributions in space. Such distributions arise, for example, for voltages, currents, and
flux linkages in electrical machines because of the allotted windings (see [4] and the references
therein). In contrast, orthogonal reference frames assume lumped parameters. For an extensive
introduction to the notion of space vectors, the reader is referred to [5, Chap. 4].

2.2 Induction Machines

The modeling process of induction machines is typically performed in three stages. Starting
from the three-phase abc quantities and using fundamental physical laws such as Faraday’s
law of induction and the Lorentz force, the machine’s differential equations and its torque
equation can be derived. In a second stage—to simplify the representation—the model is then
transformed into an orthogonal reference frame as introduced in Sect. 2.1.4. Matrix notation is
the natural choice for such a model. Alternatively, electrical machines can be mathematically
represented using space vector notation. Space vectors, as introduced in Sect. 2.1.5, lead to a
very compact model description. In a last step, the machine model is often translated from SI
quantities to normalized quantities, using the pu system (see Sect. 2.1.2).

This section summarizes the dynamic induction machine model using both notations—
space vectors with complex numbers and matrix representation with real numbers. The deriva-
tion of the differential equations is beyond the scope of this book. The interested reader is
referred to the first three chapters of Krause’s excellent text book on electrical machines [3].

It is important to note that the dynamic model presented hereafter is based on a number of
assumptions and simplifications. These include the following:

• The machine’s magnetic material is linear and thus the saturation of the main inductance is
neglected.

• Magnetic losses and changes to the rotor resistance because of the skin effect are neglected.
• All machine parameters are time invariant. In particular, changes of the stator resistance

because of the temperature variations are neglected.
• The machine is assumed to be symmetrical in its three phases and in the rotor. Specifically,

saliency in the rotor geometry is not considered.
• The machine windings are sinusoidally distributed.

2.2.1 Machine Model in Space Vector Notation

Hereafter, the dynamic model of a three-phase induction machine in SI units is provided adopt-
ing the space vector notation (see [4] and the references therein). This standard dynamic model
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of an induction machine can be used to describe steady-state as well as transient phenomena.
The machine model is formulated in an orthogonal reference frame rotating at an arbitrary
angular speed. All rotor quantities are referred to the stator side.

Following the line of thought in [6], the machine model is grouped into three sets of
equations. The first set is constituted by the voltage equations

�vs = Rs
�is +

d�λs

dt
+ jωfr

�λs (2.31a)

�vr = Rr
�ir +

d�λr

dt
+ j(ωfr − ωr)�λr , (2.31b)

where �vs (�vr) denotes the stator (rotor) voltage space vector,�is (�ir) is the stator (rotor) current
space vector,�λs (�λr) is the stator (rotor) flux linkage space vector, and the stator (rotor) winding
resistance is given by Rs (Rr). The arbitrary angular speed of the reference frame is denoted
by ωfr, while the (electrical) angular speed of the rotor is given by ωr.

The terms Rs
�is and Rr

�ir represent the resistive voltage drop in the stator and rotor winding,
respectively. The terms ωfr

�λs and (ωfr − ωr)�λr are commonly referred to as speed voltages. In
this book, if not otherwise stated, induction machines with squirrel-cage rotors are assumed.
For such a machine, the left-hand side of (2.31b) is set to zero, that is, �vr = 0. The equivalent
circuit representation of the squirrel-cage induction machine model is depicted in Fig. 2.11.

The flux linkage equations

�λs = Ls
�is + Lm

�ir (2.32a)

�λr = Lr
�ir + Lm

�is (2.32b)

represent the second set of equations, where

Ls = Lls + Lm (2.33a)

Lr = Llr + Lm (2.33b)

denote the stator and rotor self-inductance, respectively. Moreover, Lls (Llr) is the stator
(rotor) leakage inductance and Lm is the main inductance. The latter is often referred to as
the magnetizing inductance.

s

is irRs Rr

jωfrλs j(ωfr − ωr)λr
Lls Llr

Lm
v

Figure 2.11 Equivalent circuit of a squirrel-cage induction machine in the arbitrary orthogonal refer-
ence frame based on space vector notation
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The third set of equations includes the torque and the rotational motion equation given by

Te =
3
2
p�{j�λs conj{�is}} (2.34a)

M
dωm

dt
= Te − T� , (2.34b)

where Te (T�) is the electromagnetic (load) torque, p is the number of pole pairs, conj{�is}
denotes the complex conjugate of�is, M is the moment of inertia of the mechanical load includ-
ing the machine’s rotor, and ωm is the mechanical angular speed of the shaft. The units in
(2.34b) are as follows: the inertia M is given in kg m2, the angular speed ωm in rad/s, and the
torque T is given in Nm, with N = kg m/s2.

The electrical rotor speed is
ωr = p ωm, (2.35)

and the mechanical power is
Pm = ωmTe . (2.36)

The torque Te and the power Pm are both positive during the motoring operation, while they
are both negative in the generation mode.

The different angular velocities and frequencies are summarized below:

• ωs is the angular frequency of the stator.
• ωr is the electrical angular speed of the rotor with ωr = p ωm.
• ωm is the mechanical angular speed of the rotor and shaft.
• ωsR is the rated (or nominal) angular frequency of the stator.
• ωB is the base angular frequency of the machine voltages and currents. Typically, ωB = ωsR

is chosen for the pu system.
• ωfr is the angular speed of the arbitrary reference frame.

A fundamental characteristic of induction machines is the slip, which is the normalized
difference between the electrical frequencies of the stator and rotor:

sl =
ωs − ωr

ωs

. (2.37)

In motoring operation—in order to produce an electromagnetic torque—the rotor windings
must revolve slightly more slowly than the stator field. This motion of the stator field relative
to the rotor induces ac voltages in the rotor—hence the name induction machine. These induced
voltages drive ac currents in the rotor, which, in turn, together with the stator field, produce an
electromotive force that gives rise to the electromagnetic machine torque. In generation mode,
the inverse holds, that is, the electrical angular speed of the rotor is slightly higher than that of
the stator field. When zero torque is produced or absorbed, the slip is zero.

2.2.2 Machine Model in Matrix Notation

In modern control theory, including model predictive control, the models are predominantly
given in the state-space representation. For this, a matrix representation of the induction
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machine model appears to be better suited [3]. This representation can be directly obtained
by rewriting the dynamic model in space vector notation derived previously. As shown in
Sect. 2.1.5, in the arbitrary reference frame, the d-axis is associated with the real part of
a space vector, while the q-axis is associated with the imaginary part of a space vector.
Specifically, using the space vector of the stator voltage as an example, the real-valued d- and
q-components of the stator voltage vector vs are obtained as

vs =
[
vsd

vsq

]
=

[
�{�vs}
�{�vs}

]
. (2.38)

Accordingly, the other space vectors are translated into (real-valued) vectors with d- and
q-components. This gives rise to the rotor voltage vector vr, the stator (rotor) current vector
is (ir), and the stator (rotor) flux linkage λs (λr).

With these definitions, the voltage equations (2.31) can be rewritten in matrix notation,
yielding

vs = Rsis +
dλs

dt
+ ωfr

[
0 −1
1 0

]
λs (2.39a)

vr = Rrir +
dλr

dt
+ (ωfr − ωr)

[
0 −1
1 0

]
λr . (2.39b)

Recall that for the squirrel-cage induction machine vr = 0 holds.
Accordingly, the flux linkage equations (2.32) in matrix form are

λs = Lsis + Lmir (2.40a)

λr = Lrir + Lmis (2.40b)

and the electromagnetic torque equation is

Te =
3
2
p (λs × is) . (2.41)

Note that the expanded form of the cross product λs × is is λsdisq − λsqisd.
This leads to the equivalent circuit representation of the squirrel-cage induction machine

model in the dq reference frame, which is shown in Fig. 2.12.

2.2.3 Machine Model in the Per Unit System

It is common practice to normalize the electrical variables and machine parameters by express-
ing them in the pu system. As the process of normalization often causes a certain degree of
confusion, we have devoted more space to this subject matter and provide the reader with a
step-by-step derivation of the normalized machine equations.

Recapitulating Sect. 2.1.2, the SI variables and parameters are normalized by dividing them
by their respective base quantities. We chose the voltage and the current as primary base quan-
tities and set them to the peak machine phase voltage and current, respectively. As the rated
machine voltage VR is the line-to-line rms voltage, this leads to

VB =

√
2
3
VR and IB =

√
2IR . (2.42)
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vsd
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irq
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ωfrλsq (ωfr − ωr)λrq

Lls Llr

Lm

(a) d-axis

Rs Rr
Lls Llr

Lmvsq

isq

ωfrλsd

(b) q-axis

(ωfr − ωr)λrd

Figure 2.12 Equivalent circuit representation of a squirrel-cage induction machine in the arbitrary
reference frame based on matrix notation

The third primary base quantity is the base angular frequency of the machine, which we chose
as the rated stator frequency:

ωB = ωsR . (2.43)

Table 2.1 provides a summary of the base quantities.
The normalization process consists of four steps. First, the flux linkages and inductances

are scaled with the base frequency. This leads to the flux linkages per second ψ (with the unit
volt) and to the reactances X(with the unit ohm):

ψ = ωBλ and X = ωBL . (2.44)

With these definitions, (2.39) can be rewritten as

vs = Rsis +
1

ωB

dψs

dt
+

ωfr

ωB

[
0 −1
1 0

]
ψs (2.45a)

vr = Rrir +
1

ωB

dψr

dt
+

ωfr − ωr

ωB

[
0 −1
1 0

]
ψr . (2.45b)

Multiplying (2.40) with ωB leads to

ψs = Xsis + Xmir (2.46a)

ψr = Xrir + Xmis . (2.46b)
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Second, the voltage equation (2.45) is divided by the base voltage VB :

v′
s = R′

si
′
s +

1
ωB

dψ′
s

dt
+ ω′

fr

[
0 −1
1 0

]
ψ′

s (2.47a)

v′
r = R′

ri
′
r +

1
ωB

dψ′
r

dt
+ (ω′

fr − ω′
r)

[
0 −1
1 0

]
ψ′

r . (2.47b)

The superscript ′ denotes pu quantities. Specifically, the normalized quantities are defined as

v′ =
v

VB

, ψ′ =
ψ

VB

, i′ =
i

IB

, (2.48a)

R′ =
R

ZB

, X ′ =
X

ZB

, ω′ =
ω

ωB

, (2.48b)

where we have used the base impedance ZB = VB/IB . Similarly, by dividing (2.46) by the
base voltage yields

ψ′
s = X ′

si
′
s + X ′

mi′r (2.49a)

ψ′
r = X ′

ri
′
r + X ′

mi′s . (2.49b)

Third, the time axis can be normalized by defining t′ = ωBt. With this, we can rewrite
(2.47) as

v′
s = R′

si
′
s +

dψ′
s

dt′
+ ω′

fr

[
0 −1
1 0

]
ψ′

s (2.50a)

v′
r = R′

ri
′
r +

dψ′
r

dt′
+ (ω′

fr − ω′
r)

[
0 −1
1 0

]
ψ′

r . (2.50b)

Equation (2.49) remains unaffected by this.
Fourth, the electromagnetic torque and the rotational motion equation (2.34) are normal-

ized. For the torque, we use the base torque TB = pf pSB/ωB . For the moment of inertia, the
corresponding base value is MB = TB/ω2

B . The normalization turns (2.41) and (2.34b) into

T ′
e =

Te

TB

=
1
pf

ψ′
s × i′s (2.51a)

M ′ dωm

dt′
= T ′

e − T ′
� . (2.51b)

Note that pf denotes the power factor. By scaling the cross product ψ′
s × i′s by the inverse of

the power factor, the normalized torque T ′
e = 1 pu corresponds to operation at rated torque.

It is important to point out that the normalized machine equations (2.49), (2.50), and (2.51)
are structurally the same as the equations in SI units (2.39), (2.40), (2.41), and (2.34b). The
only difference is that all variables and parameters have been replaced by their normalized
counterparts. The same holds true for the equivalent circuit representation of the squirrel-cage
induction machine model in the dq reference frame, which was given in Fig. 2.12. However,
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unlike in the voltage and flux linkage equations, the structure of the torque equation is changed
during the normalization operation.

We will drop the superscript ′ in the remainder of the book to simplify the notation. It will be
obvious from the text whether a variable or parameter refers to an SI or pu quantity. In general,
pu quantities will be adopted, and all variables and parameters will be normalized, including
the time axis. Nevertheless, waveforms of the pu variables will be plotted versus the time axis
in seconds rather than versus the normalized time in pu to simplify the exposition.

2.2.4 Machine Model in State-Space Representation

It is convenient to rewrite the model of the squirrel-cage induction machine in state-space rep-
resentation. This will facilitate formulating and solving the model predictive control problems
stated later in this book. In the state-space representation

dx(t)
dt

= Fx(t) + Gu(t) (2.52a)

y(t) = Cx(t), (2.52b)

x(t) denotes the state vector, u(t) the input vector, and y(t) the output vector. F , G, and C
are matrices of appropriate dimensions. In the case of nonlinear output equations, (2.52b) is
replaced by y(t) = h(x(t)). To simplify the notation, we will often drop the time-dependency
from x, u, and y.

We assume that the mechanical speed is constant: that is, the left-hand side of (2.51b) is zero
and thus not required. ωr can be then considered to be a parameter rather than a state variable.
This avoids bilinear terms in the differential equations and ensures that the state-space equation
is linear.

The machine is modeled in the dq reference frame rotating at the arbitrary angular velocity
ωfr. In order to represent the dynamic state of the machine’s stator and rotor circuits in this
reference frame, four state variables are required. Common choices include the stator current,
stator flux linkage, rotor current, or the rotor flux linkage, each with d- and q-components. Any
pair of these four dq state vectors can be adopted to model the dynamic state of the stator and
rotor circuits.

In the following, two state-space representations are derived. In the first one, the stator cir-
cuit is represented by the stator flux linkages, while for the second representation, the stator
currents are used as state variables. The rotor circuit is characterized in both cases by the rotor
flux linkages. Normalized quantities are used.

2.2.4.1 Stator and Rotor Flux Linkages

In a first step, (2.49) is inverted, and the stator and rotor current vectors are represented as a
function of the stator and rotor flux vectors:

[
is

ir

]
=

1
D

[
I2Xr −I2Xm

−I2Xm I2Xs

] [
ψs

ψr

]
(2.53)
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α
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ψs

ψr

ϕ

γ
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Figure 2.13 Stator and rotor flux vectors in the stationary reference frame

with the determinant
D = XsXr − X2

m (2.54)

and I2 denoting the 2 × 2 identity matrix.
Inserting (2.53) in (2.50) and (2.51a), respectively, leads to the dynamic representation in

state-space form

dψs

dt
= −Rs

Xr

D
ψs − ωfr

[
0 −1
1 0

]
ψs + Rs

Xm

D
ψr + vs (2.55a)

dψr

dt
= Rr

Xm

D
ψs − Rr

Xs

D
ψr − (ωfr − ωr)

[
0 −1
1 0

]
ψr + vr (2.55b)

and to the electromagnetic torque

Te =
1
pf

Xm

D
ψr × ψs . (2.56)

Expanding the cross product results in Te = 1
pf

Xm

D (ψrdψsq − ψrqψsd).
This model is formulated in the arbitrary reference frame with d- and q-components. By

setting ωfr to zero, a corresponding model in the stationary reference frame results with α- and
β-components.

The stator and rotor flux vectors are shown in Fig. 2.13. During steady-state operation, both
flux vectors rotate at the constant angular velocity ωs. In motoring operation, the stator flux
vector lies ahead of the rotor flux vector. The angle γ between the two vectors defines the torque

Te =
1
pf

Xm

D
||ψs|| ||ψr|| sin(γ) . (2.57)

2.2.4.2 Stator Currents and Rotor Flux Linkages

An alternative, and sometimes more convenient, machine model uses the stator current and the
rotor flux vector as state variables. Such a model can be derived by reformulating (2.53) to

ψs =
D

Xr

is +
Xm

Xr

ψr (2.58)
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and replacing in (2.55a) the stator flux vector by the stator current and the rotor flux vector
using this statement. After some lengthy algebraic manipulations, this leads to

dis

dt
= − 1

τs

is − ωfr

[
0 −1
1 0

]
is +

(
1
τr

I2 − ωr

[
0 −1
1 0

])
Xm

D
ψr +

Xr

D
vs −

Xm

D
vr

(2.59a)

dψr

dt
=

Xm

τr

is −
1
τr

ψr − (ωfr − ωr)
[
0 −1
1 0

]
ψr + vr , (2.59b)

where we have introduced the transient stator time constant and the rotor time constant

τs =
XrD

RsX
2
r + RrX

2
m

and τr =
Xr

Rr

(2.60)

to allow for a more compact representation. Note that I2 denotes the two-dimensional identity
matrix. The electromagnetic torque (2.56) can be expressed in terms of the stator current and
the rotor flux vector

Te =
1
pf

Xm

Xr

ψr × is =
1
pf

Xm

Xr

(ψrdisq − ψrqisd) . (2.61)

2.2.5 Harmonic Model of the Machine

The machine models derived in Sects. 2.2.1–2.2.4 are dynamic models that describe induc-
tion machines during dynamic and steady-state operation. In particular, these models describe
voltages, currents, and flux linkages that are—in general—the superposition of fundamental
as well as harmonic components.

When assessing the impact of voltage harmonics on the machine, however, a separate model
can be derived. This compact model is applicable to harmonic stator quantities with frequen-
cies that are significantly higher than the rated frequency. Adopting the pu system, the voltage
equation of such a harmonic model is given by

vs = Rsis + Xσ

dis

dt
, (2.62)

where we have also normalized the time and omitted again the superscripts ′. The equivalent
circuit representation of the harmonic model is provided in Fig. 2.14.

vs

is Rs

Xσ

Figure 2.14 Harmonic model of an induction machine in the per unit system
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Table 2.2 Machine parameters in the per unit system

Parameter Symbol

Stator winding resistance Rs

Rotor winding resistance Rr

Stator leakage reactance Xls

Rotor leakage reactance Xlr

Main (or magnetizing) reactance Xm

Number of pole pairs p

Stator self-reactance Xs = Xls + Xm

Rotor self-reactance Xr = Xlr + Xm

Determinant D = XsXr − X2
m

Transient stator time constant τs =
XrD

RsX
2
r + RrX

2
m

Rotor time constant τr =
Xr

Rr

Total leakage reactance Xσ = σXs =
D

Xr

Total leakage factor σ = 1 − X2
m

XsXr

The reactance representing the machine’s harmonic characteristic is the total leakage reac-
tance Xσ, which is given by

Xσ = σXs , (2.63)

with

σ = 1 − X2
m

XsXr

(2.64)

denoting the total leakage factor. An alternative representation of (2.63) is Xσ = D/Xr. As a
summary, the machine parameters in the pu system and some of the major deduced quantities
are listed in Table 2.2.

2.3 Power Semiconductor Devices

Power semiconductor devices constitute the key building blocks of the power electronic
topologies. Integrated-gate-commutated thyristors (IGCTs) and insulated-gate bipolar
transistors (IGBTs) are used as active switches in MV voltage source inverters, while power
diodes constitute the passive switches. This section provides a brief introduction to IGCTs
and power diodes, focusing mostly on their switching and conduction losses. More details on
IGCTs are provided in the application note [7].

2.3.1 Integrated-Gate-Commutated Thyristors

The gate driver of gate-commutated thyristors (GCTs) is integrated with the semiconduc-
tor switch in one module to provide a very low inductive path. The module, including the
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Anode

Cathode

Gate

iT

vT

Figure 2.15 Schematic of a gate-commutated thyristor (GCT)

gate driver with the thyristor, is called an integrated-gate-commutated thyristor (IGCT) [8,
9]. GCTs are an advancement on gate turn-off (GTO) thyristors. Unlike GTOs, GCTs do not
require turn-off dv/dt snubbers and are therefore commonly referred to as snubberless devices,
even though they still require a turn-on di/dt snubber to limit the slope of the rising cur-
rent.

The schematic of a GCT is shown in Fig. 2.15. GCTs are available with high blocking
voltages and current ratings. In the on state, when the GCT is conducting, the anode–cathode
voltage vT is equivalent to the on-state voltage, which is typically below 2.5 V. The anode
current iT is limited by the maximum on-state current, which is typically in the range of several
kiloamperes. In the off state, when the GCT is blocking, vT is equal to the blocking voltage,
which amounts to a few kilovolts. The anode current of a few milliamperes is effectively zero.

The GCT losses can be divided into switching losses and conduction losses. Switching
losses arise when the GCT is turned on or off, while conduction losses are due to the on-state
resistance. Both types of losses depend on the blocking voltage, the commutated current, and
the semiconductor characteristics. The conduction (or on-state) losses of GCTs are—similar
to thyristors—very low, while the switching losses are moderate to high. Thus, for high-power
applications, the switching frequency of GCTs is typically restricted to a few hundred hertz [7].
Even when operated at such low switching frequencies, their switching losses dominate over
the conduction losses.

2.3.1.1 Switching Losses

For GCTs, the turn-on and turn-off losses can be well approximated as being linear in the
anode–cathode voltage vT and in the anode current iT flowing through the device. This leads
to the GCT turn-off (energy) loss

eoff = coffvT iT , (2.65)

where coff is a coefficient. For the GCT turn-on losses, the corresponding equation

eon = convT iT , (2.66)

results with the coefficient con. When using pu quantities, the unit of con and coff is the joule.
Typically, con is an order of magnitude smaller than coff and hence often neglected.
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Figure 2.16 Switching and conduction losses for a GCT and a power diode as a function of the current.
eon and eoff denote the GCT turn-on and turn-off losses, respectively, while err is the diode’s reverse recov-
ery losses. The conduction losses of the GCT and the diode are given by pGCT and pdiode, respectively

2.3.1.2 Conduction Losses

The conduction losses are due to the on-state resistance, causing a voltage drop over the device,
which is a function of the on-state current and can be written as

vT = aGCT + bGCTiT + cGCT log(iT + 1) + dGCT

√
iT , (2.67)

where the coefficients aGCT, bGCT, cGCT, and dGCT are device-specific parameters. The con-
duction losses are given by

pGCT = vT (iT ) iT . (2.68)

Using ABB’s 35L4510 4.5 kV 4 kA IGCT as an example, the switching losses as a function
of the commutated current are depicted in Fig. 2.16, assuming a blocking voltage of 2600 V
and a nominal junction temperature of 125◦C.

2.3.2 Power Diodes

2.3.2.1 Switching Losses

For a diode, the turn-on losses are effectively zero. The turn-off losses, however, which are the
so-called reverse recovery losses, are often considered to be linear in the voltage but nonlinear
in the commutated current iT . They are given by

err = crrvT frr(iT ) , (2.69)

where crr is the coefficient for the reverse recovery losses. Usually, the value of crr lies in the
interval con and coff . In (2.69), frr(·) is a nonlinear function between 0 and 1, which is typically
concave and saturates at 1.
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2.3.2.2 Conduction Losses

The modeling of the conduction losses of the diode follows the same principles as for the GCT.
Accordingly, the on-state voltage drop is given by

vT = adiode + bdiodeiT + cdiode log(iT + 1) + ddiode

√
iT (2.70)

with the diode-specific parameters adiode, bdiode, cdiode, and ddiode. The conduction losses are

pdiode = vT (iT ) iT . (2.71)

The switching and conduction losses of a power diode, ABB’s 10H4520 fast recovery diode,
are shown in Fig. 2.16. As for the GCT, a blocking voltage of 2600 V and a nominal operating
temperature of 125◦C are assumed.

2.4 Multilevel Voltage Source Inverters

Two voltage source inverters are presented in this section, starting with the three-level
neutral-point-clamped (NPC) inverter. The second topology is an active NPC inverter that
features in each phase an additional flying capacitor to increase the per-phase voltage levels
from three to five.

2.4.1 NPC Inverter

The NPC inverter topology was originally proposed by Nabae et al. in 1981 [10]. This diode
clamped inverter provides three voltage levels per phase. Today, it constitutes the most widely
used voltage source inverter in MV drive applications. It is offered as a commercial prod-
uct by all major drive companies (see also [6, Chap. 1]). A phase leg of ABB’s ACS6000
inverter is shown in Fig. 2.17. This NPC phase leg is arranged in three stacks and it is based
on water-cooled GCTs.

2.4.1.1 Topology

The equivalent representation of an NPC inverter including the dc-link stage is shown in
Fig. 2.18. The dc-link is comprised of two identical dc-link capacitors Cdc, which form the
neutral point N in between them. The total (instantaneous) dc-link voltage is

vdc = vdc,up + vdc,lo , (2.72)

where vdc,up and vdc,lo denote the voltages over the upper and lower dc-link capacitors, respec-
tively. The potential

υn =
1
2
(vdc,lo − vdc,up) (2.73)

of the neutral point N floats.
Each phase leg consists of four pairs of active semiconductor switches with freewheeling

diodes. GCTs constitute the active switches in Fig. 2.18. The upper and lower pairs are clamped
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Figure 2.17 Phase module of an NPC inverter. Source: ABB Image Bank. Reproduced with permission
of ABB Ltd
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Figure 2.18 Neutral-point-clamped voltage source inverter

to the neutral point with the so-called clamping diodes. The phase terminals A, B, and C are
connected to the center points of the respective phase legs.

2.4.1.2 Switch Positions and Voltage Vectors

Let the integer variable ux ∈ {−1, 0, 1} denote the switch position in one phase leg, with x ∈
{a, b, c}. At each phase leg, the inverter can produce three voltage levels. The phase voltages,
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Table 2.3 Correspondence between the phase switch positions
ux, the phase voltages vx, and the switching states Sx1–Sx4, for
phase x, x ∈ {a, b, c}

Switch
position

Phase
voltage

Switching
state

Effect on neutral
point potential

ux vx Sx1 Sx2 Sx3 Sx4 υn

1 vdc,up 1 1 0 0 0
0 0 0 1 1 0 −ix

−1 −vdc,lo 0 0 1 1 0

The effect on the neutral point potential υn is shown on the
right-hand side as a function of the phase current ix.

which are defined with respect to the dc-link midpoint N, are given by

vx =

⎧
⎨

⎩

vdc,up, if ux = 1
0, if ux = 0

−vdc,lo, if ux = −1 ,
(2.74)

as summarized in Table 2.3. When neglecting the fluctuations of the neutral point potential,
(2.74) can be approximated by

vx ≈ vdc

2
ux . (2.75)

The three-phase voltage is equal to vabc = [va vb vc]
T .

Consider the phase leg x and let Sx1–Sx4 denote the four active switches, with Sx1 referring
to the top switch and Sx4 to the bottom switch. As shown in Table 2.3, the four active switches
are operated dually in each phase. The switch position ux = 1, for example, corresponds to
the top switches Sx1 and Sx2 being on and the lower switches Sx3 and Sx4 being off.

There exist 33 = 27 different vectors of the form uabc = [ua ub uc]
T . Using (2.10), these

vectors can be transformed into the stationary orthogonal reference frame

uαβ0 = Kuabc . (2.76)

The vectors uαβ0 = [uα uβ u0]
T are commonly referred to as voltage vectors, whereas uabc

denotes the three-phase switch position. The voltage vectors are shown in Fig. 2.19 with their
0-component neglected.

The voltage vectors of the three-level inverter can be divided into four groups: 6 long vectors
form the outer hexagon, 6 vectors of intermediate length are located between the long vectors,
12 short vectors span the inner hexagon, and 3 zero vectors are located at the origin of the αβ
plane. The 12 short vectors form six pairs on the αβ plane, where each pair comprises vectors
with the same α- and β-components, but whose 0-components have opposite signs. The zero
vectors short-circuit the load connected to the inverter.

The actual voltage at the inverter terminals is calculated from

vαβ0 = Kvabc ≈
vdc

2
Kuabc , (2.77)

where we neglected the fluctuations of the neutral point potential in the second part of the
equation.
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Figure 2.19 Voltage vectors produced by a three-level inverter. The voltage vectors are shown in the
αβ plane along with the corresponding values of the switch positions uabc (where “+” refers to “1” and
“−” to “−1”)

2.4.1.3 Current Paths

Consider one of the three phase legs with the single-phase switch position ux. Assume the
phase current ix to be positive, that is, ix is directed out of the inverter into the load.

• For ux = 1, the upper two active switches are on while the two lower switches are off.
The positive phase current flows from the upper dc-link rail through the upper two active
switches to the phase terminal, as shown in Fig. 2.20(a).

• For ux = 0, the two middle switches are on while the top and bottom switches are off. The
positive current flows from the neutral point through the upper clamping diode and the center
top switch to the phase terminal, as can be seen in Fig. 2.20(b).

• For ux = −1, the two lower switches are on while the upper ones are off. The positive
current flows from the lower dc-link rail through the lower freewheeling diodes to the phase
terminal (see Fig. 2.20(c)).

The current paths for negative phase currents can also be easily derived.
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Figure 2.20 Current paths in an NPC phase leg as a function of the switch position ux, with x ∈
{a, b, c}, for a positive phase current ix

2.4.1.4 Neutral Point Potential

The potential of the neutral point (2.73) evolves as a function of the neutral point current in
according to

dυn

dt
= − 1

2Cdc
in . (2.78)

Specifically, in is the weighted sum of the phase currents ia, ib, and ic, for the phases whose
corresponding switch position is zero:

in = (1 − |ua|)ia + (1 − |ub|)ib + (1 − |uc|)ic . (2.79)

As a result, neutral point current is drawn by a phase when its switch position is zero. For a
three-phase load, whose star point is not connected, ia + ib + ic = 0 holds, and

dυn

dt
=

1
2Cdc

|uabc|T iabc (2.80)

follows directly, where iabc = [ia ib ic]
T is the three-phase current and |uabc| =

[|ua| |ub| |uc|]T is the componentwise absolute value of the inverter switch positions. For
more details about the nature of the neutral point potential and methods employed to tackle
the related balancing problem, the reader is referred to [11] and [12].

Next, we translate the differential equation (2.78) into the pu system. For this, we use the
base voltage VB , the base current IB , and the base frequency ωB as defined in (2.42) and
(2.43), respectively. As before, we also define the base impedance ZB = VB/IB and the base
capacitance CB = 1/(ωBZB) (see also Table 2.1). Dividing the left-hand side of (2.78) by
ωBVB and the right-hand side by ωBZBIB yields

dυ′
n

dt′
= − 1

2X ′
dc

i′n , (2.81)
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where the superscript ′ denotes pu quantities, as stated previously in Sect. 2.2.3. In (2.81), we
have also normalized the time axis by using t′ = ωBt and introduced the pu equivalence of
the capacitor1

X ′
dc =

Cdc

CB

. (2.82)

Accordingly, (2.80) turns into

dυ′
n

dt′
=

1
2X ′

dc
|uabc|T i′abc . (2.83)

As for the induction machine in Sect. 2.2.3, we will drop the superscript ′ in the remainder of
the book to simplify the notation.

2.4.1.5 Switching Transitions

It is a characteristic of the NPC topology that for each switching transition one active switch
is turned off and another one is turned on. To avoid a potential short-circuit over one of the
dc-link capacitors, a time delay is introduced between the turn-off and the turn-on transition.
This time delay is commonly referred to as the interlocking time.

By inspecting Table 2.3, it is straightforward to identify the switches that are turned on and
off. Table 2.4 summarizes the switching transitions for one phase leg. The active switch that is
turned on and the one that is turned off are stated as a function of the single-phase switching
transition from the switch position ux(k − 1) to ux(k).

2.4.1.6 Switching Constraints

Switching a phase leg from 1 to −1 runs the risk of turning on all four active switches in the
phase leg—albeit for a short time (see also Table 2.3). This would lead to a short-circuit (or
shoot-through) between the upper and the lower dc-link rails. Even more important is that the
dynamic voltage sharing across the two blocking switches would not be guaranteed, potentially
creating an overvoltage over one of the inner active switches. For these reasons, switching
between 1 and −1 is prohibited.

Table 2.4 Switching transitions in the NPC phase leg x, with x ∈ {a, b, c}

Switching transition Switch with the on transition Switch with the off transition

0 → 1 Sx1 Sx3
1 → 0 Sx3 Sx1
0 → −1 Sx4 Sx2

−1 → 0 Sx2 Sx4

1 Note that the notation of X ′
dc is slightly misleading, because X ′

dc is not a reactance, but rather its inverse. Specifically,

we have 1
X ′

dc
= Xdc

ZB
, with the SI reactance Xdc = 1

ωBCdc
.
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This restriction can be described by the constraint

max
x

|ux(t) − ux(t − dt)| ≤ 1 , (2.84)

where t is the switching instant and dt is an infinitesimally small time step.
Therefore, switching is allowed only by one step up or down. Switching in a phase leg

between 1 and −1, and vice versa, is only possible via an intermediate zero switch position.
When doing so, an inverter-specific minimum on-time needs to be adhered to. For MV invert-
ers, these minimum on-times are in the range of several tens of microseconds.

Typically, six di/dt snubbers are used in an NPC inverter with one snubber per upper and
lower half of each phase leg. Some manufacturers, however, use only two such snubbers for
such an inverter—one in the upper half and another one in the lower half of the inverter. This
further limits the set of admissible switching transitions. Specifically, simultaneous switching
is allowed in at most two phase legs and only if the switching occurs in opposite inverter halves.

The admissible switching transitions are illustrated in Fig. 2.21. As can be seen, from
[1 1 1]T , for example, switching is possible only to [0 1 1]T , [1 0 1]T , or [1 1 0]T and not
to any of the other 23 switch positions.

2.4.1.7 Switching Losses

Consider one phase leg with the phase current ix and the single-phase switch position ux ∈
{−1, 0, 1}. During switching transitions, the current is commutated by turning semiconductor
devices on and off. As was shown in Sect. 2.3, this gives rise to switching energy losses. The
resulting switching losses per switching transition can be derived by inspecting the current
paths in Fig. 2.20. As the commutation depends on the polarity of the phase current, the cases
with positive and negative phase currents need to be treated separately.

Table 2.5 summarizes the switching energy losses, where the indices 1–4 refer to the pairs
of active semiconductor switches and freewheeling diodes (from top to bottom), while the
indices 5 and 6 refer to the clamping diodes (from top to bottom). Recall that eon (eoff ) refers
to the turn-on (turn-off) energy losses of active semiconductor switches. Assuming GCTs,
the switching losses are given in (2.65) and (2.66), respectively. Accordingly, err denotes the
reverse recovery losses of diodes (see also (2.69)).

Note that, when commutating a positive phase current from ux = 0 to −1, the voltage over
the upper clamping diode remains zero. As a result, this clamping diode incurs no reverse
recovery losses. Similarly, when switching from ux = −1 to 0 for a positive phase current,
the third freewheeling diode experiences no reverse recovery losses. The same applies to the
lower clamping diode and the second freewheeling diode, respectively, when switching from 0
to 1, and vice versa for negative phase currents. As a result, two types of switching transitions
exist. In case the current is commutated from a diode to a GCT, reverse recovery and turn-on
losses arise, while when the current is commutated from a GCT to a diode, only turn-off losses
are generated.

To simplify the computation of the switching losses, one typically assumes the total dc-link
voltage to be constant and the fluctuations of the neutral point potential to be small. Both
assumptions are usually well justified. As a result, for an NPC inverter, the blocking voltage
of each semiconductor is one-half the total dc-link voltage, and the switching losses depend
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Figure 2.21 Voltage vectors produced by a three-level inverter. The voltage vectors are shown in the
αβ plane along with the corresponding values of the switch positions uabc (where “+” refers to “1” and
“−” to “−1”). The switching transitions that are allowed when using two di/dt snubbers are indicated
by bidirectional arrows

Table 2.5 Switching energy losses in an NPC
phase leg

Polarity of the
phase current ix

Switching
transition

Switching
energy losses

> 0 0 → 1 e1,on + e5,rr
1 → 0 e1,off
0 → −1 e2,off

−1 → 0 e2,on + e4,rr

< 0 0 → 1 e3,off
1 → 0 e1,rr + e3,on
0 → −1 e4,on + e6,rr

−1 → 0 e4,off
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only on the commutated current. As a last step, the switching power losses are obtained by
averaging the switching energy losses over time.

2.4.1.8 Conduction Losses

Similar to the switching losses, the conduction losses also depend on the phase current and the
switch position, as summarized in Table 2.6 for one phase leg. As previously, the indices 1–4
refer to the semiconductor switches and their freewheeling diodes. The indices 5 and 6 denote
the clamping diodes. The conduction losses of GCTs and power diodes, pGCT and pdiode, are
given in (2.68) and (2.71), respectively.

With the dc-link voltage being effectively constant, the conduction losses depend only on
the phase current, which is the sum of the ripple current and its fundamental component. As
the ripple current is small compared to the fundamental component of the current (typically
in the range of 10% for a three-level inverter), the conduction losses can be considered to
be independent of the switching pattern. Hence, when formulating model predictive control
problems, the conduction losses are usually not included in the cost function.

2.4.2 Five-Level ANPC Inverter

The active neutral-point-clamped (ANPC) topology is a five-level inverter that has been
proposed in 2005 [13] and introduced as a commercial product in 2010 [14]. With power
ratings of 1 and 2 MVA, this inverter addresses the low power range of the MV drives market.
Using high-voltage IGBTs, output voltages of up to 6.9 kV can be achieved. At the same time,
very low harmonic distortions in the stator currents result, along with acceptable dv/dt and
common-mode voltages. This makes the ANPC inverter particularly suitable for the retrofit
market, in which direct online machines are upgraded to VSDs. Four-quadrant operation is
achieved by using an active front end (AFE), which is connected via an optional transformer
to the grid.

The five-level ANPC topology extends the classic three-level NPC inverter [10] in two ways.
The NPC diodes are replaced by active switches as in [15], and floating phase capacitors are
added to each phase, similar to a flying capacitor (FC) inverter [16]. This innovative topol-
ogy combines the advantages of the reliable and conceptually simple NPC inverter with the

Table 2.6 Conduction power losses in an NPC
phase leg

Polarity of the
phase current ix

Switch
position

Conduction
power losses

> 0 1 p1,GCT + p2,GCT
0 p2,GCT + p5,diode

−1 p3,diode + p4,diode

< 0 1 p1,diode + p2,diode
0 p3,GCT + p6,diode

−1 p3,GCT + p4,GCT



�

� �

�

Industrial Power Electronics 63

versatility of the flying capacitor inverter. The control and modulation problem is, however,
significantly more complex than for the NPC inverter. Balancing the four internal inverter
voltages, specifically the neutral point potential and the three phase capacitors, around their
references while maintaining a low switching frequency is challenging, particularly when the
phase capacitors are small [13].

In the following, we summarize the five-level ANPC topology, its switching restrictions,
commutation paths, and the mathematical model of the internal voltages.

2.4.2.1 Topology and Phase Levels

Consider the five-level ANPC inverter depicted in Fig. 2.22. In phase leg x, with x ∈ {a, b, c},
the switches Sx1–Sx4 consist of two series-connected IGBTs, while the switches Sx5–Sx8 are
single IGBTs. Thus each phase consists of 12 IGBTs. We refer to the switches Sx1–Sx4 as the
ANPC switches, and to the switches Sx5–Sx8 as the FC switches.

The dc-link is divided into an upper and a lower half with the two dc-link capacitors Cdc.
The potential

υn =
1
2
(vdc,lo − vdc,up) (2.85)

of the neutral point N floats, with vdc,lo and vdc,up denoting the voltages over the lower and the
upper dc-link half, respectively. The inverter’s total (instantaneous) dc-link voltage is vdc =
vdc,lo + vdc,up. Neglecting the phase capacitors, this inverter effectively resembles a three-level
ANPC inverter with series-connected IGBTs, producing at each phase the three voltage levels
{−vdc

2 , 0, vdc
2 }.

The available number of phase voltage levels is increased to 5 by adding to each phase an
FC Cph, which is placed between the outer pairs of the existing series-connected switches

vdc

vdc,up

vdc,lo

N

Cdc

Cdc

vph,x Cph

iabc

inx

Sx1

Sx2

Sx3

Sx4

Sx5 Sx6

Sx7 Sx8

Figure 2.22 Equivalent representation of the five-level active neutral-point-clamped (ANPC) voltage
source inverter
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Sx5–Sx8. Let the voltages across the phase capacitors be denoted by vph,x, with x ∈ {a, b, c}.
The phase capacitor voltages are maintained at half the voltage levels of the individual dc-link
capacitors, that is, at vph,x = 0.25vdc. This adds the two additional voltage levels {− vdc

4 , vdc
4 }

and ensures that each IGBT can be rated for the same voltage blocking capability. As a result,
at each phase, the inverter produces the five voltage levels {− vdc

2 ,−vdc
4 , 0, vdc

4 , vdc
2 }. These

voltages can be described by the integer variables ua, ub, uc ∈ {−2,−1, 0, 1, 2}, which we
refer to as phase levels.

2.4.2.2 Switch Positions and Voltage Vectors

The phase levels −1, 0, and 1 can each be synthesized by two different switch positions,
described by the integer variables sa, sb, sc ∈ {0, 1, . . . , 7}. The phase level ux = 1, for
example, with x ∈ {a, b, c}, can be generated either with the FC switch configuration Sx5 =
1, Sx6 = 0, Sx7 = 0, and Sx8 = 1, or with Sx5 = 0, Sx6 = 1, Sx7 = 1, and Sx8 = 0. The
ANPC switches are in both cases set to Sx1 = 1, Sx2 = 0, Sx3 = 1, and Sx4 = 0. Similarly,
two switch positions are available to synthesize the phase level ux = −1, as summarized in
Table 2.7. Each pair of switch positions produces effectively the same voltage at the phase ter-
minal. This redundancy can be used to regulate the phase capacitor voltages when the phase
level is ux = ±1. However, these pairs affect the neutral point potential differently, adding
significant complexity to the system to be handled by the control scheme.

The phase voltage is defined with respect to the dc-link midpoint N. It is approximately

vx ≈ vdc

4
ux , (2.86)

with x ∈ {a, b, c}, provided that the fluctuations on the neutral point potential and the phase
capacitor voltages are small. The precise phase voltage depends on the switch position sx, as
detailed in Table 2.7. The three-phase voltage at the inverter terminals is given by

vαβ0 = Kvabc , (2.87)

with vαβ0 = [vα vβ v0]
T .

Table 2.7 Correspondence between the phase switch positions sx, the phase levels ux, the phase
voltages vx, and the switching states Sx1–Sx8, for phase x, x ∈ {a, b, c}

Switch position Level Voltage Switching state Effect on
sx ux vx Sx1 Sx2 Sx3 Sx4 Sx5 Sx6 Sx7 Sx8 vph,x υn

7 +2 vdc,up 1 0 1 0 1 1 0 0 0 0
6 +1 vdc,up − vph,x 1 0 1 0 1 0 0 1 ix 0
5 +1 vph,x 1 0 1 0 0 1 1 0 −ix −ix
4 0 0 1 0 1 0 0 0 1 1 0 −ix
3 0 0 0 1 0 1 1 1 0 0 0 −ix
2 −1 −vph,x 0 1 0 1 1 0 0 1 ix −ix
1 −1 −vdc,lo + vph,x 0 1 0 1 0 1 1 0 −ix 0
0 −2 −vdc,lo 0 1 0 1 0 0 1 1 0 0

The effect on the phase capacitor voltage vph,x and on the neutral point potential υn is shown on the right
hand side, as a function of the phase current ix.
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Figure 2.23 Voltage vectors produced by a five-level inverter. The voltage vectors are shown in the
αβ-plane along with the corresponding values of the phase levels uabc

Neglecting the voltage fluctuations in the dc-link and the phase capacitors, the inverter pro-
duces 61 different voltage vectors. These can be synthesized by 53 = 125 different phase levels
uabc = [ua ub uc]

T , which in turn are established based on 83 = 512 distinct switch positions
sabc = [sa sb sc]

T . The 0-vector vαβ = [0 0]T , for example, can be synthesized by 26 dif-
ferent switch positions s. The voltage vectors and their corresponding phase levels are shown
in Fig. 2.23. Only the first quadrant is shown.

2.4.2.3 Dynamics of the Internal Inverter Voltages

The evolution of the capacitor voltage in phase x, with x ∈ {a, b, c}, is described by the dif-
ferential equation

dvph,x

dt
=

1
Cph

⎧
⎨

⎩

ix, if sx ∈ {2, 6}
−ix, if sx ∈ {1, 5}

0, if sx ∈ {0, 3, 4, 7} ,
(2.88)
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which involves the product of the phase capacitance and phase current. The dynamics of the
neutral point potential is given by

dυn

dt
= − 1

2Cdc
(ina + inb + inc) , (2.89)

with inx denoting the current drawn from the neutral point:

inx =
{

ix, if sx ∈ {2, 3, 4, 5}
0, if sx ∈ {0, 1, 6, 7} .

(2.90)

Note that the capacitor voltage of phase a, for example, depends only on the switch position
and phase current of phase a, whereas the neutral point potential depends on all three switch
positions and all three phase currents.

As previously done for the NPC inverter, we translate in the next step the differential
equations of the inverter into the pu system. For this, we use the base voltage VB , the base
current IB , and the base frequency ωB as defined in (2.42) and (2.43), respectively. We
also define the base impedance ZB = VB/IB and the base capacitance CB = 1/(ωBZB)
(see also Table 2.1). Following the procedure in Sect. 2.4.1, the differential equation of the
capacitor voltages (2.88) in the pu system is given by

dv′
ph,x

dt′
=

1
X ′

ph

⎧
⎨

⎩

i′x, if sx ∈ {2, 6}
−i′x, if sx ∈ {1, 5}
0, if sx ∈ {0, 3, 4, 7} ,

(2.91)

where the superscript ′ denotes pu quantities. In this equation, we have also normalized the
time axis by using t′ = ωBt and introduced the pu equivalence of the phase capacitor2

X ′
ph =

Cph

CB

. (2.92)

Accordingly, (2.89) turns into

dυ′
n

dt′
= − 1

2Xdc
(i′na + i′nb + i′nc) , (2.93)

with
X ′

dc =
Cdc

CB

. (2.94)

As mentioned before, we will drop the superscript ′ in the remainder of the book to simplify
the notation.

2.4.2.4 Switching Constraints

A number of switching restrictions are present in the five-level ANPC topology, both at the
single-phase and three-phase levels. The allowed single-phase switching transitions are shown
in Fig. 2.24. Only switching by one voltage level up or down is possible. To rule out the
possibility of voltage glitches, switching from sx = 2 to sx = 4 and from sx = 5 to sx = 3 are
not allowed. The minimum on-time of an IGBT is 30 μs. We will typically adopt the sampling
interval Ts = 25 μs. In case the switching is restricted to the sampling instants, which is the

2 Note that, as before for the NPC inverter, the notation of X ′
ph is slightly misleading, because X ′

ph is not a reactance,

but rather its inverse. Specifically, we have 1
X ′

ph
= Xph

ZB
, with the SI reactance Xph = 1

ωBCph
.
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Figure 2.24 Allowed per-phase switching transitions between the single-phase switch positions sx ∈
{0, 1, . . . 7}, x ∈ {a, b, c}, along with the number of on transitions of the IGBTs in the ANPC and FC
part, respectively. The allowed switching transitions depend on the sign of the phase current ix. The
corresponding phase levels ux are shown on the left-hand side

case for some of the control and modulation schemes discussed in this book, this effectively
leads to a minimum on–time of 50 μs.

Owing to the fact that the inverter uses only two di/dt clamps (or snubbers)—one in the
upper dc-link half and another one in the lower half, restrictions on the allowed three-phase
switching transitions arise. Switching transitions that lead to transients in the clamp diode can
be divided into two categories: transitions that turn the clamp diode on, which we refer to as
on transitions, and switching transitions that turn the clamp off, called off transitions, which
result in the reverse recovery effect in the clamp diode. Table 2.8 summarizes the switching
transitions that turn the clamps on and off.

Table 2.8 Transitions between single-phase switch positions sx that turn a di/dt
clamp on or off, depending on the sign of the phase current ix

Phase Transitions sx → sx Transitions sx → sx

current that turn the clamp on that turn the clamp off

Upper clamp ix > 0 6 → 4, 6 → 5, 7 → 5 4 → 6, 5 → 6, 5 → 7
Upper clamp ix < 0 4 → 6, 5 → 6, 5 → 7 6 → 4, 6 → 5, 7 → 5

Lower clamp ix > 0 2 → 0, 2 → 1, 3 → 1 0 → 2, 1 → 2, 1 → 3
Lower clamp ix < 0 0 → 2, 1 → 2, 1 → 3 2 → 0, 2 → 1, 3 → 1

The transitions in the upper (lower) half of the table affect the upper (lower) clamp.
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After a transition that turns the upper (lower) clamp on, at least 50 μs has to pass before the
upper (lower) clamp may be turned off. From this requirement, one can deduce the following.
Simultaneous on transitions are allowed, while simultaneous on and off transitions are not
allowed. An on transition is allowed a few microseconds after an on or an off transition.

2.4.2.5 Commutation Paths

The commutation paths for this topology are rather complex. Figure 2.24 summarizes the
number of on transitions per switching transition, distinguishing between the on transitions
of the IGBTs in the ANPC and in the FC part. Switching between sx = 6 and sx = 7, for
example, incurs no on transition in the ANPC part, but one in the FC part.

It is clear that the number of on transitions always equals the number of off transitions. It
is apparent from Table 2.7 that two on and two off transitions occur in the ANPC part when
switching from sx = 4 to sx = 2 and from sx = 3 to sx = 5. On the other hand, one would
expect that no IGBT is turned on or off in the ANPC part when the transitions occur within the
group sx ∈ {0, 1, 2, 3} or sx ∈ {4, 5, 6, 7}. However, in order to balance the switching load
and to shift some switching losses from the FC to the ANPC part, switching in the ANPC
part does occur also in these cases, depending on the phase current. These additional ANPC
switchings shift the commutation of the current from the FC to the ANPC part.

From Table 2.7, it is also clear that in the FC part, for each transition, one IGBT is turned on
(and another one is turned off), except for transitions occurring between sx = 1 and sx = 2,
as well as between sx = 5 and sx = 6, when two devices are turned on and off.

2.5 Case Studies

Throughout this book, four case studies for industrial power electronic systems are consid-
ered. These case studies are introduced and summarized in this section. They include the NPC
inverter and a five-level active NPC inverter. In three cases, an MV VSD system is considered
with an induction machine. The fourth case study relates to a grid-connected NPC converter.

2.5.1 NPC Inverter Drive System

As a case study, consider a three-level NPC voltage source inverter driving an induction
machine, as shown in Fig. 2.25. A 3.3 kV, 50 Hz squirrel-cage induction machine rated at 2
MVA is used as an example for a commonly used MV induction machine. The rated values
of the machine are summarized in Table 2.9.

The pu system is established using the base quantities VB =
√

2/3VR = 2694 V, IB =√
2IR = 503.5 A, and ωB = ωsR = 2π50 rad/s. The machine and inverter parameters are pro-

vided in Table 2.10 as SI quantities and pu values, along with their respective symbols. Vdc
denotes the nominal dc-link voltage, in contrast to the instantaneous and fluctuating volt-
age vdc. Note that the value of the dc-link capacitance refers to one half of the dc-link (upper
or lower half). The model of the induction machine is derived and summarized in Sect. 2.2.
The NPC inverter is described in detail in Sect. 2.4.1.

The semiconductors used are the 35L4510 4.5 kV 4 kA IGCT and the 10H4520 fast recovery
diode, which are both manufactured by ABB. Recall that the turn-off and turn-on losses of the
GCTs are proportional to the product of the anode–cathode voltage vT with the anode current
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Figure 2.25 Three-level neutral-point-clamped (NPC) voltage source inverter driving an induction
machine (IM)

Table 2.9 Rated values of the induction machine

Parameter Symbol SI value

Voltage VR 3300 V
Current IR 356 A
Real power PR 1.587 MW
Apparent power SR 2.035 MVA
Angular stator frequency ωsR 2π50 rad/s
Rotational speed ωmR 596 rpm
Air-gap torque TR 26.2 kNm

Table 2.10 Drive parameters in the SI (left) and per unit system (right) of the
three-level NPC inverter drive system

Parameter SI symbol SI value pu symbol pu value

Stator resistance Rs 57.61 mΩ Rs 0.0108
Rotor resistance Rr 48.89 mΩ Rr 0.0091
Stator leakage inductance Lls 2.544 mH Xls 0.1493
Rotor leakage inductance Llr 1.881 mH Xlr 0.1104
Main inductance Lm 40.01 mH Xm 2.349
Number of pole pairs p 5
dc-link voltage Vdc 5.2 kV Vdc 1.930
dc-link capacitance Cdc 7 mF Xdc 11.77

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

70 Model Predictive Control of High Power Converters and Industrial Drives

Table 2.11 Switching losses at the maximum rated values and the turn-off, turn-on, and
reverse recovery coefficients

Losses at maximum rated values Loss coefficient

GCT turn-off eoff = 19.5 J at vT = 2.8 kV and iT = 4 kA coff = 2.362 s
GCT turn-on eon = 1.5 J at vT = 2.8 kV and iT = 4 kA con = 0.182 s
Diode reverse recovery err = 7.2 J at vT = 2.8 kV and iT = 4 kA crr = 3.058 s

iT (see Sect. 2.3.1). In an NPC converter, vT is nearly constant and equal to half the total
dc-link voltage. For the turn-off losses, for example, using (2.65), we obtain

eoff = coff
vdc

2
ix , (2.95)

with ix being the commutated phase current, with x ∈ {a, b, c}. Note that ix is always non-
negative when being commutated. According to the GCT’s data sheet, at the maximum rated
values of vT = 2.8 kV and iT = 4 kA, the typical turn-off and turn-on losses are eoff = 19.5 J
and eon = 1.5 J, respectively, at the nominal operating temperature of 125◦C. Assuming that
the voltages and currents in (2.95) are given in the pu system and that the losses are in joules,
the coefficients coff and con can easily be derived, as summarized in Table 2.11. To simplify the
computations, the nominal dc-link voltage Vdc is usually assumed. The term coff

Vdc
2 can then

be replaced by one coefficient.
The diode’s reverse recovery losses are nonlinear in the commutated current. Following the

procedure for the calculation of the GCT switching losses and rewriting (2.69), the reverse
recovery losses in pu are given by

err = crr
vdc

2
frr(ix) . (2.96)

The data sheet of the fast recovery diode states that the reverse recovery losses are err = 7.2 J
at the maximum rated values of vT = 2.8 kV and iT = 4 kA, assuming a di/dt of −400 A/μs.
Recall that frr(.) is a nonlinear function of the phase current in pu, which can be reconstructed
from the data sheet. As shown in Fig. 2.26, we define frr(.) such that it is 1 at the base cur-
rent IB . With this definition at hand, the coefficient crr can easily be computed (see Table 2.11).

Similar to the switching losses, the conduction losses also depend on the dc-link voltage
and the phase current. The dc-link voltage is constant despite the neutral point fluctuations.
The phase current is the sum of the ripple current and the fundamental component, which in
turn depends only on the operating point given by the torque and the speed, but not on the
switching pattern. As the ripple is small compared to the fundamental current (typically in the
range of 10% for an NPC inverter), the conduction losses can be considered to be invariant
under the control and modulation scheme used. Therefore, they are not addressed in the model
predictive control problems formulated in this book and are not further considered here.

2.5.2 NPC Inverter Drive System with Snubber Restrictions

This second case study is the same as the previous one, except for the following differences:
Only two di/dt snubbers are used in the inverter (one per converter half). As a result, only the
switching transitions shown in Fig. 2.21 are allowed. The converter is fed either by a 12-pulse
diode front end or by an AFE. In the case of the diode front end, the nominal dc-link voltage
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Figure 2.26 Nonlinear function frr(ix) of the commutated diode current in per unit

is Vdc = 4294 V, while for the AFE it is Vdc = 4840 V. All the other drive parameters are the
same as in the previous section. For a summary of the parameters, the reader is referred to
Tables 2.9–2.11.

2.5.3 Five-Level ANPC Inverter Drive System

The third case study relates to a five-level MV drive system, as shown in Fig. 2.27. The drive
encompasses a 6 kV, 50 Hz squirrel-cage induction machine rated at 1 MVA with a total leakage
reactance of Xσ = 0.18 pu. The rated values of the machine are summarized in Table 2.12.

vdc
N

Xdc

Xdc

vph,x Xph

is,abc

IM

Figure 2.27 Equivalent representation of the five-level ANPC voltage source inverter driving an
induction machine (IM)
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Table 2.12 Rated values of the induction machine

Parameter Symbol SI value

Voltage VR 6000 V
Current IR 98.9 A
Real power PR 850 kW
Apparent power SR 1.028 MVA
Angular stator frequency ωsR 2π50 rad/s
Rotational speed ωmR 1494 rpm
Air-gap torque TR 5.568 kNm

Table 2.13 Drive parameters in the SI (left) and per unit system (right) of the
five-level ANPC inverter drive system

Parameter SI symbol SI value pu symbol pu value

Stator resistance Rs 203 mΩ Rs 0.0057
Rotor resistance Rr 158 mΩ Rr 0.0045
Stator leakage inductance Lls 9.968 mH Xls 0.0894
Rotor leakage inductance Llr 10.37 mH Xlr 0.0930
Main inductance Lm 277.8 mH Xm 2.492
Number of pole pairs p 2
dc-link voltage Vdc 9.8 kV Vdc 2.000
dc-link capacitor Cdc 200μF Xdc 2.201
Phase capacitor Cph 140μF Xph 1.541

The pu system is established using the base quantities VB =
√

2/3VR = 4899 V, IB =√
2IR = 139.9 A, and ωB = ωsR = 2π50 rad/s. The machine and inverter parameters are

summarized in Table 2.13 as SI quantities and pu values, along with their respective symbols.
Note that Vdc denotes the nominal dc-link voltage. The value of the dc-link capacitance refers
to one half of the dc-link, that is, either the upper or the lower half.

The five-level ANPC inverter is described in detail in Sect. 2.4.2. The model of the induction
machine is derived and summarized in Sect. 2.2.

2.5.4 Grid-Connected NPC Converter System

Consider the grid-connected converter system in Fig. 2.28. The converter is represented by the
switched three-phase converter voltage vc, which is connected via a transformer to the PCC.
The PCC acts as the connection point of the converter system to the grid. In general, additional
industrial loads are connected to the PCC bus. An accurate representation of the grid is usually
not available. Therefore, it is common practise to approximate the grid by the three-phase grid
voltage vg , the grid resistance Rg, and the grid inductance Lg .



�

� �

�

Industrial Power Electronics 73

LgRgPCCTransformer

vga

vgc

iga

igb

igc

ica

icb

icc

vca

vcc

Figure 2.28 Grid-connected converter system in SI units

The short-circuit power

Ssc = 3
(

Vg√
3

)2/
|Zg| = V 2

g /|Zg| (2.97)

is defined as the power supplied to the PCC in case of a three-phase fault at the PCC, where Vg

denotes the rms grid (line-to-line) voltage and Zg = jωgLg + Rg is the grid impedance. The

absolute value of the latter is given by |Zg| =
√

(ωgLg)2 + R2
g . The grid impedance is typi-

cally dominated by the distribution transformer that connects the PCC to the transmission grid.
The short-circuit power can be interpreted as the maximum power that the grid can provide to
the PCC.

The short-circuit ratio
ksc = Ssc/Sc (2.98)

relates the short-circuit power of the grid to the rated power Sc of the power converter. Ratios
above 20 indicate a strong grid, with the power of the converter being small compared to the
maximum power available from the grid. Short-circuit ratios of less than 8 relate to a weak
grid, in which the grid impedance dominates over the impedance of the converter system. In
general, this reduces the stability margin of the converter system and requires tighter limits on
the harmonics the converter may inject into the PCC.

Another characteristic quantity of the grid is the grid impedance ratio

kXR = Xg/Rg (2.99)

between the grid reactance Xg = ωgLg and the grid resistance Rg. A value of 10 is often
assumed.

Based on the grid voltage, converter power, short-circuit ratio, and grid impedance ratio, the
grid inductance and resistance can easily be computed as shown in the following example.

Example 2.8 Consider the rms grid voltage Vg = 3.3 kV, the converter power Sc = 9 MVA,
and the short-circuit ratio ksc = 20. It follows from (2.97) and (2.98) that the absolute value
of the grid impedance is |Zg| = 60.5mΩ. Assuming the grid impedance ratio kXR = 10, the
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following grid inductance and resistance result:

Lg =
|Zg|

ωg

√
1 + 1/k2

XR

= 0.192 mH and Rg =
|Zg|√
1 + k2

XR

= 6.019 mΩ. (2.100)

Note that these parameters are referred to the secondary side of the transformer.

The rated power and voltage of the transformer at its secondary winding are typically used
as the basis for the pu system. Assuming the rated values of the transformer provided in
Table 2.14, the pu system is established using the base quantities VB =

√
2/3VR = 2694 V,

SB = SR = 9 MVA, and ωB = ωgR = 2π50 rad/s. The grid, transformer, and converter
parameters are summarized in Table 2.15 as SI quantities and pu values, along with their
respective symbols. All quantities are referred to the secondary side of the transformer. The
transformer can be represented by its series leakage reactance Xt and the series resistance
Rt. The grid is described by the grid reactance Xg and the grid resistance Rg.

We combine the reactance and the resistance of the transformer and the grid to

X = Xg + Xt and R = Rg + Rt . (2.101)

Table 2.14 Rated values of the step-down
transformer of the grid-connected converter system

Parameter Symbol SI value

Voltage (secondary side) VR 3300 V
Current (secondary side) IR 1575 A
Apparent power SR 9 MVA
Angular grid frequency ωgR 2π50 rad/s

Table 2.15 System parameters in the SI (left) and per unit system (right) of the
NPC grid-connected converter system

Parameter SI symbol SI value pu symbol pu value

Short-circuit ratio ksc 20
Grid impedance ratio kXR 10
Grid inductance Lg 0.192 mH Xg 0.050
Grid resistance Rg 6.019 mΩ Rg 0.005
Transformer leakage inductance Lt 0.385 mH Xt 0.100
Transformer resistance Rt 12.10 mΩ Rt 0.010
dc-link voltage Vdc 5.2 kV Vdc 1.930
dc-link capacitance Cdc 15 mF Xdc 5.702
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Figure 2.29 Grid-connected NPC converter system in the per unit system

This enables the very compact representation of the grid-connected converter system, which is
shown in Fig. 2.29. The NPC converter is shown on the left-hand side with the floating neutral
point potential. As before, the value of the dc-link capacitance refers to one half of the dc-link,
that is, either to the upper or the lower half. Currents flowing from the converter to the grid are
assumed to be positive.
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3
Classic Control and Modulation
Schemes

This chapter provides an introduction to state-of-the-art control and modulation schemes
for industrial power electronic systems. Specifically, the requirements of control and
modulation schemes are stated, and the almost universally used cascaded control structure
is described. The concept of pulse width modulation (PWM) is introduced, and two notable
schemes—carrier-based pulse width modulation (CB-PWM) and optimized pulse patterns
(OPPs)—are explained in detail. The equivalence of space vector modulation (SVM)
and CB-PWM with an appropriate common-mode voltage injection is highlighted. The
performance trade-off between current distortions and switching losses is analyzed. The three
control schemes that are commonly used for high-power inverters driving electrical machines
are reviewed in detail; these control schemes are scalar control, field-oriented control (FOC),
and direct torque control (DTC). This chapter concludes with an appendix that introduces
mathematical optimization.

3.1 Requirements of Control and Modulation Schemes

The control problem of a medium-voltage (MV) power electronic system presents a high
degree of complexity with multiple and conflicting objectives. The requirements for con-
trol and modulation schemes can be grouped into requirements relating to the converter and
requirements relating to the three-phase component connected to the converter, which is either
an electrical machine or the grid. Note that the term “converter” refers either to the active front
end on the grid side or to the inverter on the machine side.

3.1.1 Requirements Relating to the Electrical Machine

3.1.1.1 Torque and Flux

Regarding the machine, the electromagnetic torque must be kept close to its reference. During
torque transients, a high dynamic performance should be achieved, that is, the torque should be

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/geyermodelpredictivecontrol
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quickly adjusted within a short transient response time of a few milliseconds. Such transients
include torque changes of the load; if the machine’s rotational speed is to be kept constant,
the machine torque must match the changing load torque to avoid speed fluctuations. On the
other hand, to achieve fast speed changes, the machine torque must be quickly adjusted. Fast
torque changes are also crucial during grid faults to facilitate low-voltage ride-through of the
drive system. As an example, consider a grid fault lasting for several hundred milliseconds. To
avoid the drive system from tripping because of too high a dc-link voltage, the machine torque
must be almost instantaneously reduced to zero.

The mechanical load usually requires a smooth torque. A low harmonic torque distortion
corresponds to a small torque ripple that limits the mechanical stress and wear of the shaft, the
bearings, and the load. Moreover, the risk of exciting torsional eigenmodes of the drive train
is minimized (see, e.g., [1] and the references therein). For very high-power applications with
particularly stiff shafts such as large compressor drive trains used in the oil and gas industry,
certain low-frequency torque harmonics should be avoided altogether.

A suitable measure of the harmonic distortion of electric waveforms is the total demand
distortion (TDD). For the electromagnetic torque Te, the TDD is defined as

TTDD =
1

Te,nom

√∑

n�=0

(T̂e,n)2, (3.1)

where Te,nom denotes the nominal torque.1 The quantities T̂e,n, n > 0, refer to the amplitudes
of the harmonic components of the torque spectrum at the frequencies nf1, where f1 is the
fundamental frequency. Note that harmonics at any positive n are considered here, not just
harmonics at integer multiples of f1.

The total harmonic distortion (THD) is defined similar to (3.1), but it is related to the dc
component of the actual torque rather than the nominal one. As a result, for a torque close
to zero, the THD tends to infinity, while the TDD remains more or less constant. Apart from
this, the practical impact of torque harmonics is largely independent of the actual torque. For
these reasons, we adopt the TDD rather than the THD to assess harmonic distortions. For more
details on the TDD and THD, the reader is referred to [2].

Second, to ensure that the machine is appropriately magnetized, the machine’s air-gap flux
should be controlled such that the desired magnitude of the rotor flux vector is achieved. In
particular, saturation of the machine’s rotor or demagnetization is to be avoided. When oper-
ating below the rated speed, the rotor flux is usually maintained at its nominal value, while
beyond the rated speed, field weakening is required to avoid saturation.

3.1.1.2 Stator Currents

The switched voltage waveform of the inverter causes harmonic current distortions, which
give rise to iron and copper losses and thus to thermal losses. As the capability of cooling the
rotor is limited, thermal losses in the rotor are of particular concern, particularly at low-speed
operation. The effect of harmonics on electrical machines is explained in [2, Sect. 6.2]. The
losses and temperature rise of squirrel-cage induction machines that are caused by harmonics

1 When working with SI quantities, the nominal torque is equal to the rated torque TR (see Sect. 2.1.2). When adopting
the per unit (pu) system, the nominal torque is 1.
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is estimated in [3]. For a comprehensive review of the literature on and theory of harmonic
machine losses, the interested reader is referred to [4, Chap. 2].

To avoid thermal problems, the harmonic distortions of the stator current have to be kept
small. For the stator current, the TDD is defined as

ITDD =
1√

2Is,nom

√∑

n�=1

(̂is,n)2, (3.2)

where Is,nom refers to the nominal rms stator current.2 The harmonic components îs,n, n ≥ 0,
are the amplitudes of the current harmonics at frequencies nf1. The fundamental component
îs,1 is excluded from the sum. Note that, as in (3.1), n is a real number, not a natural number.

The amplitudes îs,n of the harmonics are peak (rather than rms) values. The factor
√

2 is
required to translate the nominal rms current Is,nom into its amplitude, ensuring that amplitudes
are related to each other in (3.2). Moreover, this definition holds for a single-phase current only.
To compute the TDD of a three-phase current, the TDD is computed for each of the a, b, and
c phase currents separately. The overall TDD is then determined by taking the mean value of
the three phases.

An alternative measure of the current distortions is the THD. For the same reasons as dis-
cussed previously for the torque, we prefer to adopt the TDD rather than the THD. For more
details on the current TDD and THD, the reader is referred to [2] and [5]. The second reference
includes a discussion explaining why the TDD is the preferred choice.

For electrical machines designed and built specifically for use with inverters, current TDDs
of up to 10% are often deemed acceptable. In recent years, however, so-called direct online
machines, which were previously connected directly to the grid, have been increasingly aug-
mented with back-to-back converter systems. This retrofitting enables the machine to operate
at variable speeds, often yielding significant efficiency gains, particularly at partial load oper-
ation. As direct online machines are not designed to withstand significant harmonics in the
stator currents, inverters retrofitted to such machines must meet stringent requirements on the
current TDD. Typically, an upper bound of 5% on the current TDD is required, even though
current TDDs below 3% are desirable and often requested by the customer.

3.1.1.3 Common-Mode Voltage and dv/dt

By definition, the common-mode voltage applied to an electrical machine with a floating
star point neither affects the (differential-mode) stator current nor the electromagnetic torque
produced by the machine. Nevertheless, common-mode voltages establish a common-mode
current path through parasitic capacitances from the stator windings via the motor bearings to
ground. To avoid damaging the bearings, the rms common-mode voltage is typically limited.
More details on the source of bearing currents and their modeling are provided in [6, 7].

In addition, the insulation of the stator windings has to be rated for the resulting dv/dt.
The latter mainly depends on the voltage per semiconductor and its switching characteristic

2 When working with SI quantities, the nominal rms stator current is equal to the rated current IR of the machine
(see Sect. 2.1.2). When adopting the pu system, the nominal peak current is 1, because the pu system is usually based
on the machine. As the electrical machine is often slightly overrated in a variable-speed drive (VSD), a stator current
below Is,nom is achieved when operating the inverter at its full power capability.
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(the slope thereof). Depending on the machine design, dv/dt is limited to values between
500 V/μs for direct online machines and 3 kV/μs for inverter-rated machines.

3.1.2 Requirements Relating to the Grid

The requirements imposed on grid-connected converters can be broadly classified into require-
ments that apply during nominal grid conditions and requirements that apply during grid
disturbances. More specifically, during nominal grid conditions stringent limits on the emitted
voltage and current harmonics are imposed, while during grid disturbances and faults the con-
tinued operation of the converter must be ensured, thus requiring immunity to a wide range of
grid disturbances.

3.1.2.1 Harmonic Emissions

The harmonics injected by power electronic converters into the grid must meet harmonic stan-
dards. These standards are imposed at the point of common coupling (PCC), at which the
harmonics are measured and assessed. According to the IEEE 519 working group, the “PCC
with the consumer/utility interface is the closest point on the utility side of the customer’s ser-
vice where another utility customer is or could be supplied” (see [5, 8]). Harmonic standards
are not intended to be applied within a customer’s subsystem, but they are meant to prevent
one grid customer harming another.

Several harmonic standards exist nowadays for industrial power electronics. These standards
specify the limits on the current and voltage distortions. In the following, we consider two
widely adopted standards, namely the IEEE 519 [2] and the IEC 61000-2-4 standard [9].

• Current distortion limits. In Table 10.3 of the IEEE 519 standard, current distortion limits
are defined at the PCC for general distribution systems with voltages of up to 69 kV [2].
The maximum harmonic current distortion levels are given as a percentage of the nominal
fundamental frequency component.3 These limits depend on the harmonic order and on the
short-circuit ratio. The latter was defined in (2.98) in Sect. 2.5.4 as ksc = Ssc/Sc, which is
the short-circuit grid power Ssc divided by the rated power Sc of the converter. For ksc = 20,
for example, the limits on the harmonic current distortions are shown in Fig. 3.1. Stricter
limits are imposed on current harmonics that are of a higher or an even order. Dc offsets
are not permitted. Larger loads and/or weaker grids correspond to smaller ksc and result in
stricter limits on the harmonic current distortions (see Table 10.3 in [2]).

• Voltage distortion limits. Table 11.1 of the IEEE 519 standard specifies voltage distortion
limits for PCC bus voltages below 69 kV. Individual voltage harmonics are limited to 3% of
the nominal fundamental frequency component and the voltage TDD is limited to 5%.

The IEC 61000-2-4 standard [9] focuses on voltage distortions. Limits up to the 50th har-
monic are specified in Tables 2–4 of the IEC standard. Assuming a Class 2 electromagnetic

3 Note that the nominal fundamental frequency current relates to the maximum demand load current of the power
converter. The rated current of the pu system, however, is usually determined by the transformer and is larger than
the maximum demand load current. This discrepancy is to be taken into account when imposing limits on current
harmonics given in the pu system.
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Figure 3.1 Current harmonic limits at the PCC according to the IEEE 519 standard, assuming the
short-circuit ratio ksc = 20
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Figure 3.2 Voltage harmonic limits at the PCC according to the IEC 61000-2-4 standard, assuming a
Class 2 electromagnetic environment

environment, which applies to general PCCs, these limits are shown in Fig. 3.2. The lim-
its on the non-triplen odd harmonics (the differential-mode harmonics) are relatively loose.
The limits on the even-order harmonics are significantly tighter, and the limits on the triplen
odd harmonics (the common-mode harmonics) of higher order are particularly stringent.
Limits between the 50th harmonic and 9 kHz are provided in Annex C.3 of [9].
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For Class 2 electromagnetic environments, the voltage TDD at the PCC is limited to 8%4.

When interpreting the converter as a harmonic voltage source, the voltage harmonics at the
PCC depend on the ratio Zg/(Zg + Zc), where Zg denotes the grid impedance and Zc the
impedance between the converter and the PCC. The latter relates to the step-down transformer
and an optional LC filter. These two impedances act as a voltage divider. For strong grids,
when Zg is small compared to Zc, the voltage harmonics injected by the power converter are
significantly attenuated at the PCC. As a result, relatively large voltage harmonics may be
injected by the converter without violating the harmonic limits at the PCC. On the other hand,
when the grid is weak, Zg dominates over Zc, and the attenuation of the harmonics is minor,
severely limiting the harmonic distortions the converter may generate.

Note that the grid standards on harmonic emissions and the limits they impose on the volt-
age and current distortions are applicable only to nominal grid conditions. In the presence of
major disturbances, such as significant voltage imbalances, grid under- or overvoltages, grid
frequency deviations, or faults, these grid standards are not applicable.

3.1.2.2 Immunity to Grid Disturbances and Faults

Several IEC standards specify grid phenomena under which the continuous operation of the
converter must be ensured. These phenomena can be grouped into variations of the voltage
amplitude, voltage imbalances, and frequency variations. We distinguish between continuous
and transient phenomena, the latter ranging from several fundamental cycles up to 10 min.
During continuous disturbances, the converter must be able to provide full power, while during
transient phenomena the power may be reduced but the converter must continue to control the
converter currents by modulating the converter voltage. Typical values for the requirements
are summarized in the following.

• Voltage amplitude variations. Most standards require operation during continuous voltage
amplitude variations of up to ±10% and operation during transient voltage amplitude vari-
ations of up to ±20%. Ride-through operation is required for voltage dips of up to 100%.

• Voltage imbalances. Operation under continuous voltage imbalances of ±2% to ±5% is
required, while the converter must be able to tolerate transient voltage imbalances of up to
8% without tripping. The notion of voltage imbalance is defined as the negative sequence
voltage component divided by the positive sequence voltage component (see, e.g., [10] and
the references therein).

• Frequency variations. The requirements for continuous frequency variations vary from±2%
to ±5%, with transient variations of up to ±10%.

The relevant grid standards that specify immunity requirements include the IEC standards
60146-1-1, 61000-2-4, 61800-3, 61800-4, and 61892-1.

4 Note that [9] specifies a limit on the voltage THD, not on the TDD. Nevertheless, because the voltage at the PCC
is effectively constant during nominal operation, the distinction between voltage THD and voltage TDD can be
neglected.
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3.1.3 Requirements Relating to the Converter

As a consequence of the high voltages and currents typically encountered in MV converters,
the switching and conduction losses in the semiconductors are substantial. The limited cooling
capability in the converter imposes an upper bound on the tolerable losses of the semiconduc-
tors. Despite the fact that the semiconductors are often water-cooled, the switching frequency
achievable with the semiconductor devices available today is typically limited to a few hundred
hertz.

Significant losses also reduce the efficiency of the converter. Very high converter efficiencies
are of particular importance for customers acquiring renewable energy converters and power
quality products, such as flexible ac transmission systems (FACTS). During the lifetime of a
converter, lowering the losses by several kilowatts will save a substantial amount of money to
the customer.

Assuming an almost constant blocking voltage across the semiconductors, the conduction
losses are upper bounded by the rated current. In MV applications, the switching losses typi-
cally dominate over the conduction losses. An indirect way of limiting the switching losses is
to limit the switching frequency by imposing a maximum device switching frequency. Even
though the switching frequency is a convenient metric, the switching losses constitute a more
direct and thus more meaningful measure. In practise, however, measuring the switching losses
during operation is usually too complicated, unreliable, and costly. Nevertheless, the switch-
ing losses can be well modeled and reconstructed using the commutated current, voltage, and
semiconductor characteristics. Moreover, the minimization of the switching losses provides a
degree of freedom that some control and modulation schemes can exploit by shifting switch-
ing transitions to switching instants with low current magnitudes, thus reducing the switching
losses.

Besides the switching frequency and losses, additional requirements often arise for multi-
level inverters, such as the balancing of a neutral point potential around zero. Moreover, in
active neutral-point-clamped (NPC) five-level converters (see Sect. 2.5.3), the voltages of the
three phase capacitors must be maintained close to their references. For modular multilevel
converters, the phase capacitor voltages must be maintained close to their nominal value and
the circulating current must be limited. This will be discussed in Chap. 14.

3.1.4 Summary

It is apparent that the requirements relating to the converter and the load (electrical machine or
grid) are—to a significant extent—conflicting. The minimization of the switching frequency or
losses on the one side and the harmonic distortions on the other side are opposing objectives.
This gives rise to a fundamental trade-off, which will be exemplified for carrier-based PWM
in Sect. 3.5.

In the following chapters, the requirements for control and modulation schemes will be
translated into control objectives, based on which model predictive control problems will be
formulated. In general, the control problem is complicated by the fact that the control objec-
tives comprise phenomena of very different time scales. Specifically, the control objectives
relating to the electrical machine depend on the very fast stator current dynamic, which is
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driven by the applied stator voltage and which can be manipulated within several tens of μs.
This requires very short sampling intervals, which are often as short as Ts = 25 μs. The same
applies when controlling grid currents in grid-connected converters.

On the other hand, when minimizing the switching frequency or losses, these quantities
need to be evaluated over a time frame that exceeds the sampling interval by several orders of
magnitude. In high-power applications, where the device switching frequency is in the range
200–400 Hz, each semiconductor switch is turned on roughly every 2.5–5 ms. This implies
time frames of at least 10 ms, over which the switching frequency is to be evaluated.

3.2 Structure of Control and Modulation Schemes

Consider the variable-speed drive (VSD) system shown in Fig. 1.1, which is replicated on
the right-hand side of Fig. 3.3. We distinguish between the (grid-side) converter and the
(machine-side) inverter. The dc-link capacitor acts as a decoupling element. The overall
control task of the VSD system is accordingly decomposed into the grid-side controller and
the machine-side controller.

The grid-side controller maintains the dc-link voltage vdc at its reference value v∗dc using
a cascaded control loop. The outer loop—the voltage controller—regulates the dc-link volt-
age by adjusting the reference of the real power P ∗. The reference for the reactive power
Q∗ is usually set to zero. The real and reactive power references are translated into the grid
current reference i∗g , which is a two-dimensional vector either in the stationary or in the rotat-
ing orthogonal coordinate system. The inner loop, which is the current controller, regulates
the grid currents by manipulating the voltage applied by the converter to the grid. In most
cases, the current controller consists of two proportional-integral (PI) controllers in a rotating
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Figure 3.3 VSD system with cascaded control loops for the grid and the machine side
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orthogonal reference frame. The PI controllers adjust the real-valued voltage reference v∗
c,

which the PWM translates into the switching signal u.
Similarly, a cascaded control structure is used on the machine side. The outer speed control

loop regulates the angular speed of the rotor ωr along its reference ω∗
r , by manipulating the

reference of the electromagnetic torque T ∗
e . Another outer control loop, which is omitted in

Fig. 3.3, controls the rotor flux magnitude. The outputs of the outer control loops are translated
into the stator current reference i∗s. The inner control loop regulates the stator current is along
its reference, by manipulating the inverter and thus the stator voltage vs. As on the grid side,
the (inner) current controller is typically based on two PI control loops with a subsequent PWM
stage.

In summary, the grid and the machine side are treated separately. Coupling between the
two might be considered through a feedforward term, for example, a power feedforward term
from the inverter to the grid-side converter. One or two outer control loops are used, which
are single-input single-output (SISO) loops. The inner current control loop is a multiple-input
multiple-output (MIMO) control problem, which is often split into two orthogonal SISO loops.
To mask the switching characteristic of the power converter, a PWM is usually added to the
inner control loop. PWM is explained in detail in Sect. 3.3. The two control schemes predom-
inantly used for the inner current loop on the machine side—FOC and DTC—are summarized
in Sect. 3.6.

3.3 Carrier-Based Pulse Width Modulation

PWM is used pervasively in power electronics. For an early reference on PWM, see [11].
As shown in Fig. 3.4, PWM translates a real-valued input signal u∗ into a discrete-valued
output signal u, using pulses of fixed amplitude but variable width. The output waveform
u approximates u∗ with regard to the magnitude and phase of its fundamental component.
However, the switching nature of the PWM implies that undesired harmonic content is added
to u.

A converter with the dc-link voltage vdc is used as actuator to translate the switching signal
u into the switched voltage waveform v at the converter terminals. By appropriately scaling
the reference voltage v∗, the converter voltage v approximates its reference v∗ (see Fig. 3.4).
As this principle applies to both (machine-side) inverters and (grid-side) active rectifiers, we
used the term converter and dropped the subindex from the converter voltage v.

=
~~

v∗

0.5vdc

÷ u∗ u

vdc

v

PWM

Figure 3.4 The reference voltage v∗ is scaled to the modulating signal u∗ and translated via PWM to
the switching signal u, which drives the converter to synthesize the voltage v at the converter terminals
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vdc

2

vdc

2

N
N

A
va

Figure 3.5 Single-phase, three-level converter with the output voltage va between the phase leg termi-
nal A and the dc-link midpoint N

Commonly used PWM schemes include CB-PWM, SVM, and OPPs. CB-PWM and OPPs
are introduced in the remainder of this section, and the relationship between CB-PWM and
SVM is shown.

3.3.1 Single-Phase Carrier-Based Pulse Width Modulation

The simplest and most commonly used type of modulation is CB-PWM. Here we introduce
CB-PWM for single-phase converters and generalize it in a subsequent section to the
three-phase setup. To this end, consider the single-phase, three-level NPC converter shown
in Fig. 3.5 with the dc-link voltage vdc. At its phase terminal, this converter produces the
discrete voltage levels −0.5vdc, 0, and 0.5vdc. When assuming the neutral point potential to
be zero, the phase voltage with respect to the dc-link midpoint N is given by

va =
vdc

2
ua. (3.3)

The phase voltage is a function of the switch position of the phase leg ua ∈ {−1, 0, 1} (see
also (2.75)).

The PWM problem at hand is to translate the voltage reference v∗
a into an appropriate

switching signal ua, such that the phase voltage va approximates its reference v∗a. Assuming
steady-state operation, we define the sinusoidal voltage reference

v∗
a(t) = v̂1 sin(ω1t + φ1) (3.4)

with the amplitude v̂1, angular frequency ω1 = 2πf1, and phase φ1. We often refer to f1 as
the fundamental frequency. It is clear from (3.3) that the achievable phase voltage is limited to
|va| ≤ 0.5vdc. Therefore, for the time being, we restrict the amplitude of the reference voltage
to v̂1 ≤ 0.5vdc, but will later lift this restriction when discussing common-mode injection and
overmodulation.
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3.3.1.1 Modulation

In a first step, as shown in Fig. 3.4, the voltage reference is scaled by half the dc-link voltage,
which yields

u∗
a(t) =

2
vdc

v∗
a(t) = û1 sin(ω1t + φ1). (3.5)

We often refer to u∗
a as the modulating signal. The magnitude of the modulating signal is the

so-called modulation index

m =
2

vdc
v̂1 = û1. (3.6)

In the single-phase case and when operating in the linear modulation range, the modulation
index is limited to m ∈ [0, 1]. In the next section, when extending CB-PWM to three-phase
systems, we will see that m can be increased beyond 1.

For three-level CB-PWM, two triangular carrier signals are defined with the carrier fre-
quency fc. The carrier frequency is (significantly) higher than the fundamental frequency, that
is, fc � f1. Both carrier signals have the peak-to-peak magnitude 1. The carriers are arranged
such that they cover the range from −1 to 1 without overlapping. The phase shift between the
two carrier signals is a design parameter. When choosing phase disposition, the two carrier
signals are in phase, while in the phase-opposite disposition, their phases are shifted by 180◦

with respect to each other. The former is commonly used, because it results in lower harmonic
distortions (see also [12]). Lastly, we define the carrier interval

Tc =
1
fc

(3.7)

as the time interval between the upper (or lower) peaks of the carrier signal.
CB-PWM is achieved by comparing the modulating signal u∗

a with the two carrier signals.
The switch position ua is selected based on the following three rules:

• When u∗
a is less than both carrier signals, choose ua = −1.

• When u∗
a is less than the upper carrier signal, but exceeds the lower one, select ua = 0.

• When u∗
a is greater than both carrier signals, choose ua = 1.

In the case of an analog implementation, the instantaneous value of the modulating signal
u∗

a is compared with the carrier signals. We refer to this as natural sampling. Analog CB-PWM
can easily be implemented using two comparators.

Example 3.1 CB-PWM is exemplified in Fig. 3.6 for a single-phase, three-level converter. The
upper and lower triangular carrier signals are shown in Fig. 3.6(a). The carrier signals with
the frequency fc = 450 Hz are in phase (phase disposition). The sinusoidal modulating signal
has the amplitude (modulation index) m = 0.8 and the fundamental frequency f1 = 50 Hz.
This results in a ratio between the carrier frequency fc and the fundamental frequency f1 of 9.
Using natural sampling, the intersections of the modulating signal with the carrier signals
define the switching instants, which are shown as vertical dashed lines. The resulting sequence
of switching commands is shown in Fig. 3.6(b).
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(c) Harmonic amplitude spectrum of the switch position ua

(a) Modulating signal ua and upper and lower triangular carrier signals∗

Figure 3.6 Natural sampled single-phase CB-PWM with fc/f1 = 9

In a digital implementation, u∗
a is a sampled signal, resulting in the so-called PWM with

regular sampling. Two regular sampling techniques are commonly used:

• Symmetric sampling. The voltage reference is sampled once per carrier interval Tc, for
example, at the upper triangular peaks. Throughout the remainder of the carrier interval,
the voltage reference is held constant.

• Asymmetric sampling. The voltage reference is sampled twice per carrier interval, that is,
at the upper and at the lower peaks of the carrier. The voltage reference is held constant for
half the carrier interval.
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Table 3.1 Switching instant and switching transition for asymmetric regularly sampled CB-PWM

Polarity of the Carrier Switching Switching
modulating signal u∗

a slope instant Δt transition for ua

≥ 0 Falling (1 − u∗
a)

Tc

2
0 → 1

≥ 0 Rising u∗
a

Tc

2
1 → 0

< 0 Falling −u∗
a

Tc

2
−1 → 0

< 0 Rising (1 + u∗
a)

Tc

2
0 → −1

For regularly sampled CB-PWM, the switching rules can be refined and the explicit switch-
ing instants can easily be provided. To this end, consider again phase disposition and asym-
metric sampling. Switching is performed when the sampled modulating signal intersects with
a carrier slope. We refer to this time instant (relative to the sampling instant) as the switching
instant Δt. By definition, the switching instant Δt is bounded by zero and 0.5Tc. The switch-
ing instants and the new switch positions can be derived as a function of the polarity of the
modulating signal and the carrier slope, as summarized in Table 3.1.

Example 3.2 The previous example is repeated here with asymmetric regular sampling
instead of natural sampling. The modulating signal, which is shown as the dash-dotted
sinusoid, is sampled twice per carrier interval (see Fig. 3.7(a)). The intersections of the
sampled modulating signal with the carrier signals define the switching instants.

We draw four conclusions from these two examples. First, regardless of the sampling
method, in general, one switching transition occurs within each carrier half-interval. This
follows from the previously stated switching rules. In overmodulation and in degenerate
cases, which will be discussed later, switching transitions can be skipped.

Second, CB-PWM can achieve a high degree of symmetry in the resulting switching pattern,
which has the period T1 = 1/f1. In the two previous examples, when shifting the switching
pattern by half of its period, it is the negative of the original switching pattern. This is known
as half-wave symmetry, and it is formally stated as ua(t − 0.5T1) = −ua(t). The switching
patterns also exhibit symmetry about the quarter points of the period. We refer to this as
quarter-wave symmetry. Note that a quarter-wave symmetric signal is also half-wave sym-
metric. Quarter-wave symmetry is the result of the non-even integer ratio between the carrier
and the fundamental frequency. Moreover, the phase shift of the modulating signal with respect
to the carrier signal was chosen carefully.

In the first example with natural sampling, the modulating signal is aligned with the negative
carrier half-wave (φ1 = πf1/fc phase shift), resulting in five switching transitions within a
quarter of the fundamental period. Note that, when aligning the modulating signal with the
positive carrier half-wave (φ1 = 0 phase shift), symmetry in the switching pattern is preserved,
but the number of switching transitions is reduced to 4. This is a degenerate case. In the carrier
half-intervals around the zero crossings of the modulating signal, the modulating signal does
not intersect with a carrier signal, thus preventing switching.
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(a) Modulating signal ua (dash-dotted line), asymmetric regularly sampled modulating signal
(solid line) and upper and lower triangular carrier signals
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(c) Harmonic amplitude spectrum of the switch position ua

Figure 3.7 Asymmetric, regularly sampled single-phase CB-PWM with fc/f1 = 9

As a general comment, the impact of the phase difference between the modulating signal and
the carrier signals is sometimes ignored. Nevertheless, at fc/f1 ratios below 10, the influence
on the switching pattern, harmonic performance, and power capability of the converter can be
significant, as shown in [13].

Third, the sampling of the modulating signal introduces a time delay that manifests itself
as a phase shift between the voltage reference and the synthesized converter voltage. For an
asymmetric, regularly sampled CB-PWM, this time delay amounts to a quarter of the carrier
interval, which is equivalent to a phase shift of φ1 = 0.5πf1/fc. In Example 3.2, to compensate



�

� �

�

Classic Control and Modulation Schemes 91

for this delay, the phase of the modulating signal was shifted accordingly (see Fig. 3.7(a)) and
set to φ1 = 1.5πf1/fc. For symmetric, regularly sampled CB-PWM, the time delay and phase
shift are twice as large. It is obvious that for low carrier-to-fundamental frequency ratios this
issue becomes more prominent.

Finally, the PWM switching pattern resulting from asymmetric regular sampling tightly
resembles that of natural sampling, albeit the small phase shift that is introduced by the sam-
pling process. This strong similarity can be observed when comparing Figs. 3.6(b) and 3.7(b)
with each other.

3.3.1.2 Harmonic Analysis

Any periodic signal can be represented as the weighted infinite sum (or series) of sinusoidal
signals, the so-called Fourier series. The computation and analysis of Fourier series is com-
monly known as harmonic analysis.

Consider CB-PWM with the carrier frequency fc. The modulating signal has the fundamen-
tal frequency f1. The switching decisions made by the PWM depend on these two signals—the
modulating signal and the carrier signal(s). These signals have two different fundamental fre-
quencies and periods. To account for this, the Fourier series is formulated as a function of both,
and the Fourier coefficients employ two sets of integrals rather than one. The notion of double
Fourier series integrals was introduced in [14] for power electronic converters, enabling the
derivation of analytical expressions for the harmonic spectrum of PWM.

More recently, by formulating and solving the double Fourier series integrals, this ana-
lytical approach has been made popular by the book [15]. The two-level converter case is
analyzed and described in detail in [15] and the references therein.5 For multilevel convert-
ers, the analytical expressions turn out to be quite intricate. As a result, closed-form expres-
sions for the magnitude of the harmonic components are available only for natural sampling
[17]. For regular sampling, the outer integrals of the Fourier coefficients need to be evaluated
numerically [17].

The mathematical details of the harmonic analysis are beyond the scope of this book. The
interested reader is referred to [15], particularly to its Appendix 1, for an excellent introduc-
tion to this type of analysis. In the following, a brief summary of some of the main results is
provided.

The switching nature of PWM leads to harmonics in the output waveform. It is well known
that these harmonics are located at the frequencies

fμν = μfc + νf1, μ ∈ N, ν ∈ Z, (3.8)

which are integer multiples of the carrier frequency fc and the fundamental frequency f1,
where μ refers to the integer multiples of the carrier frequency and ν refers to the sidebands.
The harmonics at multiples of the carrier frequency result from the triangular carrier signals. In
particular, when the modulating signal is a dc signal (f1 = 0), the harmonic spectrum is limited
to harmonics at integer multiples of the carrier frequency. In the general case of a sinusoidally

5 Recently, another promising harmonic analysis approach has been proposed in [16], which avoids the notion of the
double Fourier series and relies on superposition and convolution instead. This method tends to be numerically more
robust and allows one to also address in a comprehensive manner the case where common-mode voltage harmonics
are added to the modulating signal.
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varying modulating signal with the fundamental frequency f1 > 0, sideband harmonics are
added around the carrier multiple harmonics. These sideband harmonics are the result of the
carrier multiple harmonics convoluted with the fundamental component.

More specifically, for natural and asymmetric regular sampling, harmonics exist only at
frequencies fμν for which μ + ν is an odd number. Taking this fact into account, the following
list summarizes the frequencies of these harmonics and introduces the terminology commonly
used to describe them.

• Fundamental component: f01 = f1
• Baseband harmonics: f0ν = νf1 with ν ∈ {3, 5, 7, . . .}
• Carrier multiple harmonics: fμ0 = μfc with μ ∈ {1, 3, 5, . . .}
• Sideband harmonics: fμν = μfc + νf1 with

{
μ ∈ {1, 3, 5, . . .} and ν ∈ {±2,±4,±6, . . .}
μ ∈ {2, 4, 6, . . .} and ν ∈ {±1,±3,±5, . . .} .

Note that for odd multiples of the carrier frequency, the sidebands are located at even mul-
tiples of the fundamental frequency around the carrier, and vice versa.

For three-level converters and naturally sampled CB-PWM with phase disposition, the pairs
of symmetrical sideband harmonics around the carriers have the same magnitude. Baseband
harmonics do not exist when operating in the linear modulation range. In overmodulation, the
frequencies of the harmonics remain unchanged, except for the addition of baseband harmonics
of the order ν = 3, 5, 7, and so on. For more details on this, the reader is referred to [15,
Chap. 11].

As shown in [17], subtle differences arise when considering regular sampling. As a result of
the sampling process, baseband harmonics do appear, but they are of low magnitude. Moreover,
the magnitudes of the pairs of sideband harmonics are no longer identical. Nevertheless, these
differences tend to be small.

Example 3.3 The harmonic spectrum of single-phase CB-PWM is shown in Fig. 3.8(c). As
before, the modulation index is m = 0.8, and asymmetric regular sampling and phase dis-
position are used. The ratio fc/f1 = 21 is chosen. Using the discrete Fourier transform, the
magnitude of the harmonic spectrum of the switch position ua is computed. To obtain the har-
monic spectrum of the phase voltage va, as defined in (3.3) and Fig. 3.5, the spectrum of the
switch position needs to be multiplied with 0.5vdc. Note that the amplitudes of the harmonic
spectrum are peak values rather than rms values.

In Fig. 3.8(c), the fundamental component has the magnitude 0.8, which corresponds to the
desired modulation index m = 0.8. As the integer fc/f1 is odd, harmonics exist only at odd
multiples of the fundamental frequency. The carrier frequency is clearly visible at 1050 Hz.
As its magnitude is 0.461, it is the dominant non-fundamental component in the spectrum.
The even-numbered lower and upper sideband harmonics of the carrier are located at 950
and 1150 Hz, 850 and 1250 Hz, and so on. Note that the amplitudes of the upper sideband
harmonics are slightly larger than those of the lower ones. This is a characteristic of regular
sampling. For natural sampling, the corresponding upper and lower sideband harmonics have
the same amplitudes.
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(c) Harmonic amplitude spectrum of the switch position ua

(a) Modulating signal ua (dash-dotted line), asymmetric regularly sampled modulating signal
(solid line) and upper and lower triangular carrier signals

∗

Figure 3.8 Asymmetric, regularly sampled, single-phase CB-PWM with fc/f1 = 21

A harmonic component at 2 times the carrier frequency (at 2fc = 2100 Hz) does not exist. Its
odd-numbered sidebands tend to be of higher magnitudes than the even-numbered sidebands
around the carrier. The harmonics of the third carrier and its sidebands are of low magnitudes
and widely spread out.

As shown in [15], the phase of the harmonic component at the frequency fμν is given by

φμν = μφc + νφ1 + const, μ ∈ N, ν ∈ Z, (3.9)
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where φc refers to the phase of the triangular carrier signal, while φ1 is the phase of the mod-
ulating signal (see also (3.5)). The constant reflects shifts by 180◦, which are due to Fourier
coefficients with negative signs. The expression for the phase of the harmonics (3.9) corre-
sponds to the one for its frequency (3.8).

The sideband harmonics of different carrier multiples tend to overlap when the ratio fc/f1 is
small. This can be seen in Fig. 3.7(c), where fc/f1 = 9. Depending on the relationship between
the phases of the overlapping harmonics, such overlaps increase or decrease their amplitudes.
In particular, the eighth lower sideband harmonic of the carrier is located at fc − 8f1 = f1,
overlapping with the fundamental component, slightly reducing its magnitude from the desired
0.8 to 0.791.

3.3.2 Three-Phase Carrier-Based Pulse Width Modulation

In this section, single-phase CB-PWM is extended to the three-phase case. As will be shown,
because of the harmonic cancellation between the phases, the harmonic content in the output
voltages is significantly reduced when compared to the single-phase case. The common-mode
voltage represents an additional degree of freedom in the three-phase system, which allows
one to extend the linear modulation range from 1 to 1.155.

Consider the three-phase, three-level NPC converter shown in Fig. 3.9 with a fixed neutral
point potential. The voltage of phase a with respect to the dc-link midpoint was defined in (3.3).
Similarly, the three-phase voltage vabc = [va vb vc]

T with respect to the dc-link midpoint is
defined as

vabc =
vdc

2
uabc, (3.10)

where uabc = [ua ub uc]
T denotes the three-phase switch position with uabc ∈ {−1, 0, 1}3.

With the help of the Clarke transformation (2.11), the voltage vabc is transformed into the
stationary orthogonal coordinate system according to vαβ0 = Kvabc.

vdc

2

vdc

2

N

N

N

A

B

C

va

vb

vc

Figure 3.9 Three-phase, three-level converter with the output voltage va between the phase leg terminal
A and the dc-link midpoint N. The output voltages vb and vc of the phase legs B and C are defined
accordingly
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In a three-phase system with a floating (i.e., not grounded) star point, the third component
of the vector vαβ0, the so-called common-mode voltage

v0 =
1
3
(va + vb + vc) (3.11)

does not drive a phase current. This voltage represents a degree of freedom that can be exploited
by the PWM to increase the modulation range and thus the achievable output voltage. The
first two orthogonal voltage components vα and vβ form the differential-mode voltage, which
does drive a phase current. For a three-phase system, the task of the PWM is to translate
the voltage reference v∗

αβ into the three-phase switch position uabc, such that the resulting
differential-mode voltage vαβ approximates its reference v∗

αβ .

3.3.2.1 Modulation

As in the single-phase case, we scale the voltage reference by half the dc-link voltage and
define the modulating three-phase vector

u∗
abc(t) =

2
vdc

v∗
abc(t) = m

⎡

⎢⎣
sin(ω1t + φ1)
sin(ω1t − 2π

3 + φ1)
sin(ω1t − 4π

3 + φ1)

⎤

⎥⎦ . (3.12)

Note that phases b and c are phase shifted by 120◦ and 240◦, respectively, with respect to
phase a.

The two carrier signals used for the single-phase case are replicated for phases b and c. This
results in three upper and three lower carrier signals. In the case of phase disposition, all six
carrier signals are in phase. For phase-opposite disposition, the three lower carrier signals are
phase shifted by 180◦ with respect to the upper ones. Three-phase modulation is achieved by
three single-phase PWM units that operate in parallel and modulate according to the switching
rules stated in the previous section. For asymmetric, regularly sampled CB-PWM, for example,
the switching rules summarized in Table 3.1 are used for all three phases.

Example 3.4 CB-PWM for a three-level three-phase converter is illustrated in Fig. 3.10. The
same parameters are used as in Example 3.2, namely the carrier frequency is fc = 450 Hz, the
carriers are in phase, asymmetric, regular sampling is used, the modulation index is m = 0.8,
and the fundamental frequency is f1 = 50 Hz. The phase shift between the modulating signal
and the carriers is set again to φ1 = 1.5πf1/fc to compensate for the sampling delay and to
align the sampled modulating signal with the negative half-wave of the carrier signals—see
also the discussion after Example 3.2. The resulting sequence of switching commands is shown
in Fig. 3.10(b).

For the single-phase CB-PWM shown in Figs. 3.6–3.8, we had observed quarter-wave sym-
metry for phase a. The modulating signal of phase b is delayed by one-third of the fundamental
period with respect to phase a. To preserve the phase relationship between the modulating sig-
nal and the carrier signals in phases b and c, integer multiples of the carrier interval must be
equal to one-third of the fundamental period T1 = 1/f1, that is, T1/3 = nTc, with n ∈ N. This
is equivalent to fc/f1 = 3n. In the previous example, we had chosen the non-even triplen ratio
fc/f1 = 9. This choice permits quarter-wave symmetry in all three phases.
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(a) Modulating signals ua, ub, and uc (dash-dotted lines), asymmetric regularly sampled
modulating signals (solid lines), and upper and lower triangular carrier signals
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(c) Harmonic amplitude spectrum of the (differential-mode) switch position uα

Figure 3.10 Asymmetric, regularly sampled, three-phase CB-PWM with fc/f1 = 9

3.3.2.2 Harmonic Analysis

In (3.11), we had defined the notion of the (fundamental) common-mode voltage. Common-
mode voltage harmonics are defined accordingly as the harmonic spectrum of the average value
of the three phase voltages. Specifically, common-mode voltage harmonics relate to phase
voltage harmonics that feature the same amplitude, frequency, and phase in all three phases.

Consider the three voltage harmonics in phases a, b, and c that originate from the same
carrier multiple μ and fundamental frequency multiple ν. Clearly, these three harmonics have
the same amplitude and the same frequency. According to the phase relation (3.9) and the
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definition of the modulating vector (3.12), the phases of the harmonics in the three phases are
given by

φa,μν = μφc + νφ1 + const, (3.13a)

φb,μν = μφc + ν(φ1 −
2π

3
) + const, (3.13b)

φc,μν = μφc + ν(φ1 −
4π

3
) + const. (3.13c)

For triplen ν, that is, ν ∈ {0, 3, 6, . . .}, the three harmonics are in phase. We conclude that
voltage harmonics at the frequencies fμν with ν ∈ {0, 3, 6, . . .} are common-mode harmonics,
regardless of μ. In particular, all carrier multiple harmonics, triplen sideband harmonics, and
triplen baseband harmonics are common-mode harmonics.

Common-mode harmonics cancel out in the line-to-line voltage and do not cause any har-
monic current, provided that the star point floats (i.e., is not grounded). We conclude that a
three-phase CB-PWM features only the following (differential-mode) voltage harmonics:

• Fundamental component: f01 = f1
• Baseband harmonics: f0ν = νf1 with ν ∈ {5, 7, 11, 13, . . .}
• Sideband harmonics: fμν = μfc + νf1 with

{
μ ∈ {1, 3, 5, . . .} and ν ∈ {±2,±4,±8,±10, . . .}
μ ∈ {2, 4, 6, . . .} and ν ∈ {±1,±5,±7,±11, . . .} .

This list can easily be compiled by identifying and removing the common-mode harmon-
ics from the list of single-phase harmonics in the previous section. For naturally sampled
CB-PWM in the linear modulation range, the baseband harmonics are all zero. As a result,
except for the fundamental component, the only remaining harmonic content relates to the
sideband harmonics.

Example 3.5 Asymmetric, regularly sampled CB-PWM for a three-level, three-phase con-
verter was considered in Example 3.4. Figure 3.10(b) shows the corresponding three-phase
switching pattern uabc = [ua ub uc]

T . Transforming u with the help of the Clarke transfor-
mation K into stationary orthogonal coordinates results in the differential-mode switching
patterns uα and uβ . The harmonic amplitude spectra of these two components are identical
and are shown in Fig. 3.10(c). As the Clarke transformation is amplitude invariant, the ampli-
tude of the modulating waveform (the modulation index m) is preserved. When comparing the
three-phase spectrum with the single-phase one in Fig. 3.7(c), one can appreciate the signif-
icant content of common-mode voltage harmonics that is present in the single-phase system
but cancelled out in the three-phase system.

3.3.2.3 Common-Mode Voltage Injection

The fact that common-mode voltage harmonics cease to exist in the line-to-line voltages can
be exploited to increase the linear modulation region from 1 to 2/

√
3 = 1.155 by adding an

appropriate common-mode term to the three modulating signals.
Consider the three-phase modulating signal u∗

abc in Fig. 3.10(a). The upper and lower
peaks of the signal are at ±0.8, in line with the modulation index of m = 0.8. The difference
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between a pair of modulating signals relates to the line-to-line voltage. The difference
between max(u∗

abc) and min(u∗
abc) corresponds to the peak line-to-line voltage. When

inspecting the figure, one can observe that at any time instant t, this difference is always less
than

√
3m. Within a fundamental period, however, the difference between max(u∗

abc) and
min(u∗

abc) is 2m by definition (see (3.12)). This implies that the available dc-link voltage is
not fully utilized.

To boost the line-to-line voltage, an appropriate offset can be applied to all three modulating
signals. As the offset is identical for all three phases, it constitutes a common-mode term. By
definition, the addition of a common-mode signal to the modulating signal u∗

abc does not affect
the line-to-line voltage.

It is standard practise to add one of the two common-mode terms

u∗
0 =

m

6
sin(3ω1t + φ1) (3.14)

u∗
0 = −1

2
(min(u∗

abc) + max(u∗
abc)) (3.15)

to the three-phase modulating signal in the form of u∗
abc + u∗

0. The first term (3.14) is a sinu-
soidal signal with three times the fundamental frequency and the same phase as the modulating
signal. One can show that one-sixth of the modulating signal’s amplitude results in the max-
imum voltage boost. An example for this is shown in Fig. 3.11(a), assuming the modulation
index m = 0.8. The addition of the third harmonic flattens the peaks of the modulating signal.

The addition of the second term (3.15) centers the three-phase modulating signal around
zero. As a result, at any given time instant, −min(u∗

abc + u∗
0) = max(u∗

abc + u∗
0) (see

Fig. 3.11(b)). Both common-mode terms increase the linear modulation range by 15.5% from
m = 1 to m = 2/

√
3, thus fully exploiting the available dc-link voltage.

3.3.2.4 Equivalence with SVM

A popular alternative to CB-PWM is SVM [18]. As shown in [19], CB-PWM with phase
disposition can be modified such that it becomes equivalent to SVM, in the sense that both

0 5 10 15 20
Time (ms)

−1

−0.5

0

0.5

1

(a) Third harmonic common-mode signal

0 5 10 15 20
Time (ms)

−1

−0.5

0

0.5

1

(b) Min/max common-mode signal

Figure 3.11 Injection of the common-mode signal u∗
0 (dotted line) to the three-phase modulating signal

u∗
abc (dash-dotted lines). The three-phase sum u∗

abc + u∗
0 of the two signals is shown as solid lines
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methods yield the same switching pattern when supplied with the same modulating signal.
This equivalence can be achieved by the addition of an appropriate common-mode term u∗

0 to
the modulating signal u∗

abc. As explained in [19], the required common-mode term is

u∗
0 = ū∗

0 +
1
2
− 1

2
(min(ū∗

abc) + max(ū∗
abc)), (3.16)

with the scalar and three-phase terms

ū∗
0 = −1

2
(min(u∗

abc) + max(u∗
abc)) (3.17)

ū∗
abc = (u∗

abc + ū∗
0 + 1) mod 1. (3.18)

Note that the term (3.17) is the same as in (3.15). Also note that for two-level converters, only
this min/max common-mode term is required to achieve equivalence between CB-PWM and
SVM (see [20]). The expression ξ mod 1 in (3.18) is defined as the remainder of the Euclidean
division of ξ by 1. The result is bounded between 0 and 1.

The common-mode signal u∗
0 that turns CB-PWM into SVM is illustrated in Fig. 3.12. For

modulation indices in the linear operating range (i.e., below 1.155), this common-mode signal
differs distinctively from the ones commonly used to boost the line-to-line voltage, that is,
(3.14) and (3.15). At m = 1.155, however, the SVM common-mode signal is equal to the
min/max term (3.15).

Example 3.6 The equivalence of CB-PWM with SVM is illustrated in Fig. 3.13. The
common-mode signal (3.16) is added to the three-phase sinusoidal modulating signal.
Asymmetric, regular sampling is applied to this sum. The intersections with the upper
and lower triangular carriers determine the switching transitions. The modulation index
m = 1.155 corresponds to the upper end of the linear modulation regime. This is confirmed
in Fig. 3.13(a), in which one can observe that the maxima of the dash-dotted lines are 1. Very
narrow pulses are formed in Fig. 3.13(b) when the modulating signals are close to 1. The
amplitude spectrum of a differential-mode component is shown in Fig. 3.13(c).

0 5 10 15 20
Time (ms)

−1

−0.5

0

0.5

1

(a) Modulation index m = 0.8

0 5 10 15 20

Time (ms)

−1

−0.5

0

0.5

1

(b) Modulation index m = 1.155

Figure 3.12 Equivalence of CB-PWM with SVM. Addition of the common-mode signal u∗
0 (dotted

line) to the three-phase modulating signalu∗
abc (dash-dotted lines). The new modulating signalu∗

abc + u∗
0

(solid lines) when applied to CB-PWM results in the SVM switching pattern
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(a) Modulating signals ua, ub, and uc (dashed lines), modulating signals including the
common-mode signal (dash-dotted lines), asymmetric regularly sampled modulating signals
(solid lines), and upper and lower triangular carrier signals

∗ ∗ ∗
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(b) Switch positions ua, ub, and uc
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(c) Harmonic amplitude spectrum of the switch position uα

Figure 3.13 Asymmetric, regularly sampled CB-PWM with fc/f1 = 9 and the injection of a
common-mode voltage such that the resulting switching pattern is the same as for SVM. The modulation
index is m = 1.155

3.3.2.5 Overmodulation and Six-Step Operation

When increasing the modulation index above m = 1.155, CB-PWM enters the so-called non-
linear modulation regime or overmodulation. The linear relationship between the demanded
m and the resulting magnitude of the fundamental component û1 ceases to exist. To increase
û1 further, the modulation index m needs to be increased disproportionately. As m is increased
beyond 1.155, pulses are removed from the switching pattern. This process starts in the vicinity
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(a) Switch positions ua, ,ub and uc (solid lines) and
three-phase fundamental waveform (dash-dotted lines)
with magnitude û1 = 4/π

(b) Harmonic amplitude spectrum of the switch position
uα

Figure 3.14 Six-step operation (at the maximum modulation index m = 4/π)

of the peaks of the modulating signal, that is, around 90◦ and 270◦. The removal of pulses
reduces the switching frequency, but also increases the harmonic distortions, namely the cur-
rent TDD.

For very large m, only one pulse per fundamental half-wave remains, as shown in
Fig. 3.14(a). This switching regime, which is called square-wave or six-step operation, fully
utilizes the available dc-link voltage of the converter and maximizes the line-to-line voltage.
The magnitude of the fundamental waveform is û1 = 4/π = 1.273. This statement will be
easy to prove when performing Fourier analysis of OPPs in Sect. 3.4.1. In that section, we
will also derive the amplitudes of the harmonic spectrum of the six-step operation.

The harmonic spectrum during the six-step operation is shown in Fig. 3.14(b). As the car-
rier signals do not influence the switching decisions, sidebands around carrier multiple har-
monics are nonexistent. Instead, only baseband harmonics are present in the spectrum. In
line with the harmonic analysis performed earlier in this section, the baseband harmonics
are restricted to non-triplen odd multiples of the fundamental frequency. More specifically,
during the six-step operation, harmonic components are located at the frequencies νf1 with
ν ∈ {5, 7, 11, 13, . . .}.

3.3.3 Summary and Properties

The different modulation regimes for three-phase CB-PWM are summarized in Fig. 3.15. Four
distinct regions exist for the modulation index m.

• 0 ≤ m ≤ 1: linear modulation region
• 1 < m ≤ 1.155: extended linear modulation region provided that an appropriate common-

mode signal is added, such as (3.14) or (3.15); overmodulation without common-mode
injection

• 1.155 < m < 1.273: overmodulation
• m = 1.273: six-step operation
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Linear modulation
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linear
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Over-
modulation

Six-step modulation

Figure 3.15 Modulation regimes for CB-PWM with the modulation index m and voltage index mv

Note that 2/
√

3 = 1.155 and 4/π = 1.273. An alternative definition of the modulation index
is the so-called voltage index

mv =
π

4
m, (3.19)

which is the normalized modulation index. By definition, the voltage index is bounded by 0
and 1, that is, mv ∈ [0, 1] (see also Fig. 3.15).

So far, we have only considered PWM schemes in which the ratio fc/f1 between the car-
rier frequency and the fundamental frequency is an integer value, the so-called synchronous
PWM. Owing to this synchronism, the sideband harmonics are located at integer multiples
of the fundamental frequency. As a result, the so-called subharmonic spectral components,
that is, harmonics below the fundamental frequency, do not exist. For asynchronous PWM,
the ratio fc/f1 is a rational number, and sidebands of the carrier frequency may fall below
the fundamental frequency, resulting in subharmonics. This is an issue when the ratio fc/f1 is
small, which is typically the case in MV applications.

For synchronous PWM, a high degree of symmetry can be attained in the switching patterns.
For odd ratios fc/f1, quarter-wave symmetry can be achieved in the single-phase switching
pattern. To achieve symmetry between the three phases, triplen ratios fc/f1 are required. The
phase of the modulating signal with regard to the carrier signals has a significant influence on
the switching pattern, its symmetry, the number of pulses, and hence the switching frequency.
When fc/f1 is small, the phase also has a considerable impact on the harmonic performance.

The modulation cycle is defined as the time interval during which the modulating signal
is approximated by a sequence of three-phase switch positions. For asymmetric, regularly
sampled CB-PWM, for example, this time interval is equal to Tc/2. An important property of
CB-PWM and SVM is that their modulation cycle is symmetrical and of fixed length. This con-
strains the switching transitions to regular time intervals. Regardless of the sampling method,
(at most) one switching transition per phase occurs within each carrier half-interval. Either in
the overmodulation range or for certain phase shifts in the modulating signal, pulses might
get dropped. The fact that the modulation cycle is symmetrical and of fixed length carries two
advantages and one disadvantage.

First, note that the voltage harmonics that are due to the PWM stage are translated to current
harmonics, which correspond to a ripple current. This ripple current is superimposed on the
fundamental current component. The use of a symmetrical modulation cycle ensures that at
the peaks of the carrier signals the ripple current is zero in all three phases. This facilitates the
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sampling of the current at regular and evenly spaced time instants. Specifically, when sampling
the current at the carrier peaks, only the fundamental component of the current is measured.
This important property of CB-PWM and SVM enables the use of linear control schemes that
neglect the switching characteristic of the PWM through the notion of averaging.

Second, the sampling process in asymmetric or symmetric regularly sampled CB-PWM
leads to a time delay (and thus to a phase shift) between the reference signal at the input of
the PWM and the switched waveform at its output. Because the modulation cycle is of a fixed
length, this phase shift is time-invariant, allowing one to compensate for it during the controller
design. This enables the use of aggressively tuned linear controllers with a high bandwidth.

Third, however, the restriction to one switching transition per phase and carrier half-interval
limits the achievable harmonic performance, particularly at low ratios between the carrier and
fundamental frequency. When abolishing this restriction, as it is done for OPPs, additional
degrees of freedom arise that can be exploited to either shape the spectrum or to reduce the
harmonic distortions, as will be shown in the next section.

We conclude that CB-PWM is both easy to understand and implement. It works well in
practise and provides an adequate harmonic performance, provided that the ratio between the
carrier and fundamental frequency is not significantly below 20. CB-PWM also works well in
connection with linear control schemes such as vector control (see Sect. 3.6.2). At low fc/f1
ratios, however, the performance of CB-PWM is rather poor. The harmonic distortions are
high, sideband harmonics spread into the low-frequency range, the harmonic spectrum cannot
be shaped, and the phase delay is significant. For such low fc/f1 ratios, more sophisticated
control and modulation methods are required.

3.4 Optimized Pulse Patterns

Optimal PWM patterns can be calculated in an offline procedure by minimizing a cost function
subject to constraints. The result of this optimization procedure is a set of optimal switching
angles and switch positions over a fundamental period. Two different optimization criteria are
commonly used: the selective harmonic elimination (SHE) of low-order harmonics, and the
minimization of current distortions. We refer to the latter as optimized pulse patterns (or OPPs).

Starting with [21, 22] in the 1970s, the literature on SHE is extensive, indicating its popu-
larity in academia and widespread adoption in industry. In SHE, a certain number of low-order
voltage harmonics are eliminated. Given d switching angles over a quarter of the fundamental
period, d − 1 harmonics can be eliminated, such as the 5th, 7th, 11th, and so on, harmon-
ics. The dth degree of freedom is required to set the magnitude of the fundamental voltage
according to the desired modulation index. To derive the optimal switching angles, an algebraic
equation system consisting of d nonlinear equations needs to be solved. A cost function is not
part of the SHE problem formulation. The main advantage of SHE is that the switching angles
as a function of the modulation index are continuous. With regard to the current controller, this
important property permits the use of the vector control principle (see also Sect. 3.6.2) albeit
in a slow closed-loop setting. Significant results regarding SHE include [23–25] for two-level,
[26] for three-level, [27, 28] for five-level, and [29] for general multilevel converters.

In the second variety of optimal PWM—OPPs—a cost function is minimized subject to con-
straints when computing the pulse pattern. This gives rise to a nonlinear optimization problem
with multiple (local) minima. The cost function typically relates to the current distortions.
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In general, with a few notable exceptions discussed next, optimal PWM based on the mini-
mization of a cost function is rarely considered, reported, or used. This is mainly due to the
difficulty in computing and using such OPPs in a closed-loop control setting. Discontinuities
in the switching angles pose formidable challenges for linear control methods based on aver-
aging. Dedicated control methods are required, such as closed-loop control based on trajectory
tracking.

Early results of the computation of OPPs for two-level converters are provided in [30, 31].
Assuming an inductive load, the current TDD is proportional to the voltage TDD when scaling
the voltage harmonics by their respective frequency. For a given number of switching angles,
the current TDD is minimized in [31] using a gradient method. An algorithm to compute OPPs
for multilevel converters is explained in [32] and [33].

In the early 1990s, the development of the notion of trajectory tracking enabled the appli-
cation of OPPs to industrial drives. The initial results for stator current trajectory tracking
[34–36] were adapted a decade later to the tracking of the stator flux trajectory [37, 38]. This
modification made the trajectory controller independent from variations in the total leakage
inductance. Interestingly, related ideas had already been proposed earlier [39]. OPPs for drive
systems with four-level and five-level converters have also been investigated in [40, 41].

This section focuses on OPPs that minimize the current TDD. The mathematical equations
describing the voltage and current harmonics of OPPs as a function of the switching angles
and switching transitions are derived. The optimization problem is formulated and solved for
three-level and five-level converters. The properties of OPPs and the inherent challenges when
using them in a closed-loop setting are discussed at the end of this section. As the literature on
OPPs is limited, this section is more detailed than the previous one on CB-PWM.

3.4.1 Pulse Pattern and Harmonic Analysis

Consider the three-level, single-phase switched waveform u(θ), with the angle θ as argument
and u(θ) ∈ U with U = {−1, 0, 1}. Without loss of generality, we assume that u(θ) is periodic
with the period 2π, that is, u(θ) = u(2π + θ) for all θ. As is common practise, we impose
quarter-wave symmetry on u(θ), that is, we require

u(θ) = −u(π + θ) (3.20a)

u(θ) = u(π − θ). (3.20b)

The first constraint ensures that when shifting the switched waveform by half its period, it is
equal to the negative of the original waveform. This is known as half-wave symmetry. The sec-
ond constraint imposes symmetry about the midpoints of the positive and negative half-waves.
Waveforms that meet the two constraints (3.20) are quarter-wave symmetric. These constraints
also imply that u is an odd function, that is, u(θ) = −u(−θ) holds.

We define the pulse number d as the number of switching transitions in the single-phase
switched waveform u(θ) between 0 and π

2 , that is, within the first quarter of its funda-
mental period. The switching transitions are characterized by the switching angles αi,
i ∈ {1, 2, . . . , d}, which we refer to as the primary switching angles. We impose the order

0 ≤ α1 ≤ α2 ≤ · · · ≤ αd ≤ π

2
(3.21)
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Figure 3.16 Single-phase pulse pattern u with quarter-wave symmetry and the d = 3 primary switch-
ing angles α1, α2, and α3. The switched waveform u approximates the modulating signal u∗, which is
shown as the dash-dotted sinusoidal line

on the primary switching angles. At the angle αi, the waveform switches from ui−1 to ui. The
switch positions ui, i ∈ {0, 1, . . . , d}, are restricted to the set U . Half-wave symmetry (3.20a)
implies that the switch position at the beginning of the quarter wave is zero, that is, u0 = 0.

As a result of the symmetry properties (3.20), the switched waveform u(θ) is fully described
by the d switching angles αi and the d + 1 switch positions ui. We often refer to u(θ) as the
single-phase pulse pattern. An example of the latter is shown in Fig. 3.16 for the case of d = 3
primary switching angles and the modulation index m = 0.95.

As the single-phase pulse pattern u(θ) is a periodic signal, it can be described by the Fourier
series

u(θ) =
a0

2
+

∞∑

n=1

(an cos(nθ) + bn sin(nθ)). (3.22)

The Fourier series is an infinite sum of sine and cosine terms of harmonic order n. The Fourier
coefficients an and bn relate to the peak value of the nth harmonic component. These coeffi-
cients are given by

an =
1
π

∫ π

−π

u(θ) cos(nθ)dθ, n ≥ 0 (3.23a)

bn =
1
π

∫ π

−π

u(θ) sin(nθ)dθ, n ≥ 1. (3.23b)

As the pulse pattern is an odd function with quarter-wave symmetry, the Fourier coeffi-
cients an are all zero and the bn are only nonzero for odd n. This fact, which is shown in
Appendix 3.A, leads to the compact representation

u(θ) =
∞∑

n=1

ûn sin(nθ) (3.24a)

ûn =

⎧
⎪⎨

⎪⎩

4
nπ

d∑

i=1

Δui cos(nαi), if n = 1, 3, 5, . . .

0, if n = 2, 4, 6, . . . ,

(3.24b)
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where we have replaced bn by ûn to indicate that the Fourier coefficient relates to the peak
value of the nth harmonic signal. The Fourier coefficient is a function of the changes in the
switch positions (i.e., the switching transitions), which are defined as

Δui = ui − ui−1 for i = 1, 2, . . . , d. (3.25)

The detailed derivation of (3.24) is provided in Appendix 3.A.
It is clear from (3.24) that the harmonics of the single-phase pulse pattern are located solely

at odd multiples of the fundamental frequency. In particular, harmonics of even order do not
exist. The maximum achievable amplitude of the fundamental waveform can now be easily
determined. It can be seen from Fig. 3.14 that this is achieved in the six-step operation. Setting
d = 1, Δu1 = 1, and α1 = 0 in (3.24b) leads to the amplitudes

ûn =

⎧
⎨

⎩

4
nπ

, if n = 1, 3, 5, . . .

0, if n = 2, 4, 6, . . .
(3.26)

of the harmonic components in the six-step operation. The fundamental component is given
by û1 = 4/π.

So far, we have focused on the single-phase case. In a three-phase system, the phase a pulse
pattern is used also for phases b and c, but its phase is shifted by 120◦ and 240◦, respectively.

uabc(θ) =

⎡

⎢⎣
u(θ)
u(θ − 2π

3 )
u(θ − 4π

3 )

⎤

⎥⎦ . (3.27)

It can be shown that the Fourier representation of the pulse pattern with the phase shift φ is
given by

u(θ − φ) =
∞∑

n=1

ûn sin(nθ − nφ). (3.28)

Note that for φ = 0 and thus for phase a, all harmonics are in phase. For phase b, however,
the harmonic of order n has the phase shift n2π/3. This implies that triplen harmonics, that
is, harmonics of the orders n = 3, 6, . . ., are again in phase. The same applies for phase c. As
the triplen harmonics are all in phase, they constitute the so-called common-mode voltage har-
monics. Assuming the star point in a wye-connected load to be floating, common-mode voltage
harmonics do not drive a harmonic current. As a result, a three-phase pulse pattern has—apart
from the fundamental component with the frequency f1—only current harmonics at odd and
non-triplen multiples of the fundamental frequency, that is, at nf1 with n = 5, 7, 11, 13, . . ..
We refer to these harmonics as differential-mode harmonics.

For a three-level converter, the magnitude of the nth voltage harmonic is given by

v̂n =
Vdc

2
ûn, (3.29)

when neglecting the fluctuations of the neutral point potential and assuming a nominal dc-link
voltage. These voltage harmonics drive a harmonic current. In the case of an induction
machine, the impedance seen by the voltage harmonics is determined by the stator resistance
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Rs and the total leakage reactance Xσ . These two quantities and the corresponding harmonic
model of the induction machine are described in Sect. 2.2.5. The amplitudes of the current
harmonics that result from a three-phase pulse pattern are given by

în =
v̂n

nω1Xσ

, (3.30)

where we have neglected the stator resistance and assumed that all quantities are given in the
pu system. Recall that ω1 denotes the angular fundamental frequency.

Inserting the current harmonics into the definition of the (stator) current TDD (3.2) leads to

ITDD =
1√

2Is,nomω1Xσ

Vdc

2

√√√√
∑

n�=1

(
ûn

n

)2

, (3.31)

where we have also, based on (3.29), replaced the amplitude of the voltage harmonic v̂n by
the corresponding harmonic ûn of the pulse pattern.

Similarly, for a grid-connected converter, the impedance seen by the converter is the grid
resistance Rg and the grid reactance Xg. As explained in Sect. 2.5.4, the latter dominates
over the resistance, with the ratio Xg/Rg typically being around 10. Therefore, the current
harmonics for a grid-side converter are given by

în =
v̂n

nXg

, (3.32)

where we assumed that the grid frequency is equal to the base frequency.
As both on the machine side and the grid side the loads are of a predominantly inductive

nature, the magnitude of the voltage harmonics is scaled by their order n to their corresponding
current harmonic.

3.4.2 Optimization Problem for Three-Level Converters

By inserting the Fourier coefficient (3.24b) into (3.31), the current TDD

ITDD =
√

2
π

Vdc

Is,nomω1Xσ

√√√√√
∑

n=5,7,...

(
1
n2

d∑

i=1

Δui cos(nαi)

)2

(3.33)

can be expressed as a function of the converter parameters, load and pulse pattern. More specif-
ically, the TDD expression consists of two terms. The first term is a constant scaling factor,
which includes the dc-link voltage, the nominal current, the (angular) fundamental frequency,
and the total leakage reactance. This term depends on the converter and the load, but not on the
pulse pattern. The second term is the square root of the sum of the squared differential-mode
voltage harmonics scaled by their harmonic order. This pulse-pattern-dependent part is chosen
as the cost function

J(αi) =
∑

n=5,7,...

(
1
n2

d∑

i=1

Δui cos(nαi)

)2

, (3.34)
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which represents the weighted sum of the squared differential-mode voltage harmonics. For
inductive loads, the cost function J is proportional to the current TDD. Therefore, by mini-
mizing J , the minimum current TDD can be obtained. Note that for a given pulse number d
and set of switching transitions Δui, the cost function is a function of the primary switching
angles αi, with i = 1, 2, . . . , d.

For three-level converters, switching is performed between 0 and 1 in the first quarter of
the fundamental period. The switching transitions are given by Δui = (−1)i+1, with i =
1, 2, . . . , d. As the switching transitions are not a degree of freedom in the optimization prob-
lem, the latter is based only on real-valued variables. The same applies to two-level converters.
However, as we will see later, for more complicated topologies such as five-level converters,
the switching transitions form an integral part of the optimization problem and turn it into a
mixed-integer problem, that is, an optimization problem involving real-valued variables and
integer variables. This greatly complicates the process of solving the optimization problem.

Two sets of constraints are present in the optimization problem. First, the resulting ampli-
tude of the fundamental voltage component of the pulse pattern must be equal to the desired
one, that is, the modulation index m. Note that the former is given by û1 in (3.24b). Second,
the ascending order (3.21) is imposed on the primary switching angles. This results in the
following equality and d + 1 inequality constraints:

4
π

d∑

i=1

Δui cos(αi) = m (3.35a)

0 ≤ α1 ≤ α2 ≤ · · · ≤ αd ≤ π

2
. (3.35b)

The minimization of J subject to these constraints gives rise to the optimization problem

Jopt = minimize
αi

J(αi) (3.36a)

subject to (3.35). (3.36b)

The set of constraints (3.35) defines a subset of the Euclidean space R
d. This subset is often

referred to as the feasible region or the search space. The cost function J(αi) : R
d → R is

a function of the optimization variable αi. The optimization variable that minimizes J is
called the optimal solution or the optimizer. The minimum of the cost function is the optimal
value Jopt.

As the optimization problem (3.36) includes trigonometric terms, it is not convex. In general,
(3.36) has multiple local minima, making it difficult and often time consuming, particularly for
high pulse numbers, to find the global minimum. For more details on mathematical optimiza-
tion in general, and convexity, local and global minima, and solution methods in particular, the
reader is referred to classic textbooks, such as [42] and [43]. The standard terminology used
in connection with optimization problems is summarized in Appendix 3.B.

Example 3.7 To visualize the characteristics of the optimization problem, consider a
three-level pulse pattern with pulse number d = 2. This implies that the sequence of switch
positions consists of the elements u0 = 0, u1 = 1, and u2 = 0. It follows that the switching
transitions are given by Δu1 = 1 and Δu2 = −1.
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Figure 3.17 Cost function J(α1, α2) for the pulse pattern optimization problem with d = 2 switching
angles. The dash-dotted line refers to the desired modulation index m = 0.95. The optimal solution is
indicated by the plus symbol

In a first step, we neglect the modulation index constraint (3.35a). The corresponding cost
function J is shown in Fig. 3.17 with the two primary switching angles α1 and α2 as arguments.
The cost function is smooth and exhibits three local minima. One minimum is along α1 = α2.
The second and third minima are marked with crosses. The constraint α1 ≤ α2 excludes the
lower right-hand side of the domain.

When imposing the constraint (3.35a), the fundamental component of the resulting pulse
pattern matches the desired modulation index m. This also reduces the optimization problem
to a one-dimensional problem, limiting the set of admissible switching angles to a curved line.
The latter is shown as the dash-dotted line in Fig. 3.17. The optimal set of primary switching
angles is found by computing the minimum of the cost function along this line. The minimum
is indicated by the plus symbol, and corresponds to the angles α1 = 12.6◦ and α2 = 76.7◦.
The optimal solution is located at the saddle point between the two minima that disregard the
constraint (3.35a).

It is clear from this example and from the optimization problem (3.36) that the equality
constraint (3.35a) removes one dimension from the solution space. In the case of d primary
switching angles, the optimization problem has d − 1 degrees of freedom.
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Figure 3.18 Cost function J(α1, α2, α3) for the pulse pattern optimization problem with d = 3 switch-
ing angles. The third angle is determined by the desired modulation index m = 0.95. The optimal
solution is indicated by the plus symbol

Example 3.8 In a second example, we increase the pulse number to d = 3. In Fig. 3.18, the
cost function J is shown as a function of the first two primary switching angles, α1 and α2.
The third angle α3 is determined by α1, α2, and the modulation index, provided that a solution
exists. The angle domain is constrained in three ways. As previously, the constraint α1 ≤ α2
excludes the lower right-hand side. The right-hand side is constrained by α2 ≤ α3, and the
top side by α3 ≤ 90◦.

The cost function exhibits two local minima for m = 0.95. The global minimum is indicated
by the plus symbol, and corresponds to the switching angles α1 = 26.5◦, α2 = 37.5◦, and
α3 = 49.9◦. This set of angles corresponds to the pulse pattern shown in Fig. 3.16.

Variations in the modulation index modify the location and the values of the minima. In
general, the switching angles vary smoothly as a function of the modulation index. At about
m = 1.04, however, the upper local minimum turns into the global minimum. This leads to a
stepwise change in the switching angles (see also Fig. 3.19(a)). Similar discontinuities can be
observed in this figure at m = 0.51, m = 0.71, and m = 1.18. At these modulation indices,
the optimal value Jopt of the cost function J is not smooth, as can be seen in Fig. 3.19(b).
Note that the discontinuities in the switching angles are a result of the nonconvex nature of the
pulse pattern optimization problem.



�

� �

�

Classic Control and Modulation Schemes 111

0.2 0.4 0.6 0.8 1 1.2
0

0

15

30

45

60

75

90

Modulation index m

Sw
it

ch
in

g
an

gl
es

 α
i 

(d
eg

re
e)

α3

α2

α1

u0 = 0

u1 = 1

u2 = 0

u3 = 1

(a) Primary switching angles αi(m) and switch positions ui(m)

0.2 0.4 0.6 0.8

1

1 1.2
0

0

0.5

1.5

2

Modulation index m

O
pt

im
al

va
lu

e 
J

op
t
·1

0−
3

(b) Optimal value Jopt(m)

Figure 3.19 Primary switching angles αi and optimal value Jopt of the cost function as a function of
the modulation index m for a three-level OPP with d = 3 switching angles

The procedure to compute OPPs for three-level converters typically involves the following
four steps [32, 33]:

Step 1. Equidistant gridding of the required modulation indices is performed by sampling the
range m ∈ [0, 4

π ] with a certain resolution. Typically, 256 discrete modulation indices
suffice.

Step 2. For each modulation index, the corresponding single-phase pulse pattern is computed.
Quarter-wave symmetry is imposed and d primary switching angles are considered.
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The optimization problem (3.36) is solved by minimizing J over the set of admissible
switching angles as defined by (3.35). A procedure to solve this optimization problem
in an iterative manner is detailed in [32]. The method relies on a gradient solver to
find a local minimum. To ensure a high success rate of finding the global minimum,
the optimization stage is repeated several times with random initial sets of angles. The
minimum with the smallest value is kept. In practise, this approach works sufficiently
well for small pulse numbers of 10 or less.

Step 3 (optional). A post-processing stage is sometimes added to reduce the number of dis-
continuities in the switching angles, usually at the expense of a slight increase in the
current TDD. As angle discontinuities are handled well by the controller proposed in
Chap. 12, such discontinuities are removed only when the resulting deterioration in
the current TDD is negligible.

These three computational steps lead to a set of primary switching angles as a func-
tion of the modulation index that fully characterizes the OPP. An example of such a
set is shown in Fig. 3.19(a) for pulse number d = 3 and a three-level converter.

Step 4. For each modulation index, the single-phase pulse pattern over 360◦ is constructed.
The primary switching angles of the quarter-wave pulse pattern are extended to the full
fundamental waveform by applying quarter-wave symmetry. This procedure is exem-
plified in Fig. 3.16. The three-phase OPP is established by shifting the single-phase
pulse pattern by 120◦ to obtain phase b and by another 120◦ to create phase c.

3.4.3 Optimization Problem for Five-Level Converters

When computing OPPs for converters with more than three voltage levels, the sequence of
switching transitions is no longer predetermined, but constitutes an additional degree of free-
dom in the optimization problem. This fact is shown in this section, and the optimization
problem (3.36) is generalized to account for it.

As explained in Sect. 2.4.2, the single-phase switch positions of a five-level converter are
restricted to the integer set U = {−2,−1, 0, 1, 2}. As the first quarter of the fundamental
period corresponds to the first half of the positive fundamental half-wave, the single-phase
switch positions are restricted in this quarter to the set U+ = {0, 1, 2}. As before, the initial
switch position is zero, that is, u0 = 0. This implies that the first switching transition is from 0
to 1, that is, u1 = 1 and Δu1 = 1. For the second transition, however, two options exist: switch-
ing one step up to u2 = 2 or down to u2 = 0. At the third switching transition, regardless of
the previous choice, the switch position is always u3 = 1. Therefore, for pulse number d,

2floor( d
2 ) (3.37)

different sequences of switch positions exist, which we refer to as switching sequences. We
denote them by U = [u1 u2 · · ·ud]

T , where we omit u0 from U .
For the case d = 4, four switching sequences can be identified, as shown in Fig. 3.20, namely

U = [1 0 1 0]T , U = [1 0 1 2]T , U = [1 2 1 0]T , and U = [1 2 1 2]T . For the mod-
ulation index m = 0.55, the corresponding single-phase pulse patterns are shown over the
first quarter of the fundamental period. Note that we impose the constraint |Δui| = 1 on the
switching transitions. This implies that switching by more than one voltage level up or down
is prohibited.

Two modifications are required to generalize the OPP optimization problem of a three-level
converter to the case of a five-level converter. First, the switching sequences U are added.
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Figure 3.20 Switching sequences U for a five-level converter with pulse number d = 4

Second, the switching transitions in the cost function (3.34) and in the modulation index
constraint (3.35a) need to be divided by 2. This scaling accounts for the fact that for a five-level
converter, the voltage steps at its phase terminals are given by a quarter of the dc-link voltage
rather than a half of it as for the three-level converter—compare (2.87) with (2.75). This leads
to the revised cost function

J(αi,Δui) =
∑

n=5,7,...

(
1
n2

d∑

i=1

Δui

2
cos(nαi)

)2

, (3.38)

and to the revised optimization problem

Jopt = minimize
αi,Δui

J(αi,Δui) (3.39a)

subject to
4
π

d∑

i=1

Δui

2
cos(αi) = m (3.39b)

0 ≤ α1 ≤ α2 ≤ · · · ≤ αd ≤ π

2
(3.39c)

Δui ∈ {−1, 1}, ∀i = 1, 2, . . . , d (3.39d)

ui = Δui + ui−1, ui ∈ {0, 1, 2}. (3.39e)
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The switching transitions Δui are now part of the optimization problem, leading to a
mixed-integer program. This complicates the solution process, particularly for large d,
because the number of switching sequences to be explored increases exponentially with d
(see also (3.37)).

To compute OPPs for five-level converters, the procedure stated in the previous section is
modified, as summarized in the following four steps [32, 33].

Step 1. The different switching sequences U are enumerated, with the number of sequences
being given by (3.37). Equidistant gridding of the required modulation indices is per-
formed, by sampling the range m ∈ [0, 4

π ] with a given resolution.
Step 2. For each switching sequence U and modulation index m, the corresponding

single-phase pulse pattern is computed by solving the optimization problem (3.39).
By setting a priori the integer variables, the optimization problem is reduced to a
nonlinear but real-valued program. This allows us to pursue the same optimization
approach as for the three-level converter. Owing to the imposed quarter-wave
symmetry, the result of this step are d primary switching angles.

Step 3. For each modulation index, several sets of switching angles exist, with each set relating
to a different switching sequence. In a post-processing stage, the switching sequence
as well as its corresponding set of angles is chosen that has the smallest value of the
cost function. In this step, it is also possible to reduce the number of discontinuities in
the switching angles.

The result of the first three steps is a set of primary switching angles and a switching
sequence for each modulation index.

Step 4. For each modulation index, the three-phase OPP is constructed in the same way as
before for the three-level inverter.

By enumerating the switching sequences, the complications of formulating and solving a
mixed-integer program can be avoided, and an algorithm similar to the one for three-level OPPs
can be used. In terms of its computational burden, this approach is viable only for small values
of d, because enumeration compounds the combinatorial explosion inherent to mixed-integer
programs, necessitating a mixed-integer optimization approach for large d.

Example 3.9 In order to compute an OPP for a five-level converter, the algorithm stated
earlier is used. For the pulse number d = 3, the two switching sequences U1 = [1 0 1]T

and U2 = [1 2 1]T exist. Figure 3.21(a) and (b) shows the result of Step 2, that is, the pri-
mary switching angles for each of the two switching sequences. When selecting the switching
sequence U1 and avoiding the switch position u = 2, the achievable peak line-to-line voltage
is limited to half the dc-link voltage. As a result, OPPs exist for this switching sequence only in
the lower 50% of the modulation range. Note that the five-level switching angles in Fig. 3.21(a)
are the same as the three-level switching angles in Fig. 3.19(a), but they are compressed to
half the modulation range.

On the other hand, when choosing the switching sequence U2, the full line-to-line voltage
can be modulated, but the switch position u = 2 is a suboptimal choice for small modulation
indices. This can be seen in Fig. 3.21(c) when comparing the values of the cost function for
U1 with the one for U2. Indeed, for modulation indices below 0.35, it is optimal to remove the
pulse with u = 2 from the OPP, by setting α3 = α2. The effective pulse number is then d = 1
with one switching transition from u0 = 0 to u1 = 1.
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Figure 3.21 Primary switching angles and optimal cost function values as a function of the modulation
index and the switching sequence for a five-level OPP with three switching angles
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In Step 3 of the algorithm, the pulse patterns for the different switching sequences are consol-
idated into one. It is clear that U1 is optimal in the lower modulation range, while U2 is optimal
in the upper range. In between, U2 is optimal for 0.465 ≤ m ≤ 0.56. For 0.56 < m ≤ 0.612,
U1 leads to a marginally lower value for the cost function than U2, but as the difference is minor,
and to avoid another discontinuity in the switching angles, we also use U2 in this range. The
resulting OPP is shown in Fig. 3.22 along with the switching sequence. As indicated by the
vertical line, the different switching sequences available for the five-level topology lead to an
additional angle discontinuity at m = 0.465.

In general, OPPs for five-level converters tend to exhibit more angle discontinuities than
for three-level converters because of the different possible switching sequences. Nevertheless,
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Figure 3.22 Primary switching angles αi, optimal cost function value Jopt, and switching sequence U
as a function of the modulation index m for a five-level OPP with three primary switching angles
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not all switching sequences are applicable for all modulation indices. A switching sequence
without the switch position u = 2, for example, cannot synthesize fundamental voltages with
modulation indices exceeding m = 0.637.

3.4.4 Summary and Properties

OPPs are characterized by the integer pulse number d, which corresponds to the number of
single-phase switching transitions within a quarter of the fundamental period. The pulse num-
ber and the fundamental frequency f1 determine the switching frequency. For a three-level
NPC converter, for example, the device switching frequency is given by fsw = df1. As d is
an integer, the pulse pattern is synchronized to the fundamental voltage waveform at all oper-
ating points and load conditions. Therefore, modulation with OPPs belongs to the class of
synchronous PWM methods.

The result of the offline OPP computation is a look-up table that holds the switching (fir-
ing) angles and the respective switch positions (or phase potential values). The content of this
look-up table is a function of the pulse number and the modulation index, which is a nor-
malized quantity that is proportional to the magnitude of the reference voltage in the linear
operating range.

Owing to the synchronism between the pulse pattern and the fundamental waveform,
subharmonic spectral components, that is, components below f1, do not exist. Because
the single-phase pulse pattern is an odd function with quarter-wave symmetry, all integer
harmonics of even order are zero. Moreover, thanks to the 120◦ phase shift between the
phases, all triplen harmonics are zero. As a result, three-phase OPPs exhibit a discrete
amplitude spectrum that comprises only integer components of the orders 1, 5, 7, 11, 13, and
so on.

OPPs do not feature a symmetric modulation cycle of fixed length. Regularly spaced time
instants at which the ripple current is zero do not exist. This makes the direct sampling of the
fundamental current component impossible, greatly complicating the task of establishing fast
current control in systems operated with OPPs. Specifically, when feeding the current samples
to a linear controller without adequate post-processing, the ripple current because of the OPP
is interpreted by the controller as a current error. The current controller attempts to regulate the
ripple current to zero, thereby worsening the harmonic performance of the OPP. To mitigate
this issue, OPPs are typically used in control loops with a low bandwidth, such as V/f control
or FOC that is tuned to act in a very slow manner.

To achieve fast closed-loop control with OPPs, the current controller and the modulator need
to be formulated and solved in one computational stage. To this end, a model predictive pulse
pattern controller is proposed in Chap. 12, which takes the OPP ripple current into account
and achieves closed-loop current control by modifying the switching transitions of the OPP.
A dynamic performance similar to DTC can be achieved by inserting additional switching
transitions during transients.

3.5 Performance Trade-Off for Pulse Width Modulation

The TDD of the stator currents and the switching losses of the inverter pose a trade-off that
is fundamental to power electronics. Specifically, for a given modulation method, it is well
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known in a qualitative manner that reducing the current TDD leads to higher switching losses,
and vice versa. This trade-off can also be established in a quantitative way. Specifically, as will
be shown in this section, the product of the two quantities is equal to a constant c. This implies
that reducing the current TDD by a certain percentage point increases the switching losses by
the same degree.

The constant c characterizes the steady-state performance of the considered modulation
scheme. A similar figure of merit was introduced in [44], which is the product of the spectral
amplitudes and the switching frequency. This section extends this concept by considering the
switching losses rather than the switching frequency, because the former appears to be of a
higher importance to the inverter operation than the latter.

Recall that for CB-PWM with the carrier frequency fc and the fundamental frequency f1,
the voltage harmonics are located at the frequencies

fμν = μfc + νf1, μ ∈ N, ν ∈ Z. (3.40)

The amplitudes of the voltage harmonics v̂μν depend on the type of CB-PWM scheme used
and the number of voltage levels in the inverter, as analyzed in detail in [15].

The amplitudes of the harmonic current components are equal to the voltage amplitudes v̂μν

divided by the total leakage impedance of the machine. In the pu system, the amplitudes of the
current harmonics are given by

îμν = v̂μν

fB

fμν Xσ

= v̂μν

fB

fc(μ + ν f1
fc

) Xσ

, (3.41)

where fB = ωB/(2π) denotes the base frequency of the pu system and Xσ is the total leakage
reactance of the machine, as defined in Sect. 2.2.5.

3.5.1 Current TDD versus Switching Losses

Recall the definition of the current TDD (3.2), which we rewrite as

ITDD =
1√

2Is,nom

√ ∑

μ∈N,ν∈Z

(̂iμν)2 (3.42)

in terms of the harmonic current components îμν . It should be clear that the fundamental com-
ponent is excluded from the sum of squares; this includes μ = 0 and ν = 1 and any sideband
of μ = 1 that coincides with the fundamental component.

By inserting (3.41) into (3.42), the current TDD can be expressed as a function of the carrier
frequency and the amplitudes of the voltage harmonics:

ITDD =
1√

2Is,nomXσ

fB

fc

√√√√ ∑

μ∈N,ν∈Z

(
v̂μν

μ + ν f1
fc

)2

. (3.43)

Note that v̂μν are independent of the carrier and fundamental frequencies. We have seen in
Sect. 3.3 that the voltage harmonics are highly concentrated around the carrier multiples when
the carrier-to-fundamental frequency ratio is not overly small. For the sidebands at νf1, the
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amplitudes of the voltage harmonics quickly decay to zero as |ν| is increased. Specifically,
for |ν| > 6, the voltage harmonics can be usually neglected. Because of this, and assuming
a reasonably high carrier-to-fundamental frequency ratio, such as fc/f1 ≥ 9, the influence of
the term νf1/fc in (3.43) is small.

This allows us to conclude that the current TDD is (approximately) inversely proportional
to the carrier frequency, that is,

ITDD ∝ 1
fc

. (3.44)

The average switching losses caused by CB-PWM can be derived analytically. The turn-off
switching losses over one fundamental period T1 = 1/f1 for the ith semiconductor are
given by

Pi,off =
1
T1

�i,off∑

�=1

ei,off(	), (3.45)

where ei,off(	) denotes the energy losses of the 	th switching transition, in which the semicon-
ductor is turned off. The integer variable 	i,off refers to the number of turn-off events for this
semiconductor over one fundamental period.

According to (2.65), the turn-off energy losses are given by

ei,off(	) = coffvT iph(	), (3.46)

where coff is a coefficient, vT is the voltage across the semiconductor, and iph is the commu-
tated phase current. The latter is equal to the anode current of the semiconductor device under
commutation (see (2.65)). When operating in the linear modulation regime, the switching tran-
sitions generated by CB-PWM are evenly distributed over the fundamental period. Neglecting
the ripple current, this implies

iph(	) ≈ îph sin(2π
	

	i,off
), 	 = 1, 2, . . . , 	i,off , (3.47)

with îph denoting the peak current of the fundamental waveform.
This leads to the (approximate) average turn-off switching losses

Pi,off ≈ coffvT

îph

T1

�i,off∑

�=1

sin(2π
	

	i,off
). (3.48)

It should be clear from Sect. 3.3 that the number of switching events is determined by the
carrier-to-fundamental frequency ratio and is thus proportional to the carrier frequency.

It directly follows that Pi,off is proportional to the carrier frequency. The same applies to the
turn-on and reverse recovery losses, for which expressions similar to (3.48) can be derived. As
a result, the total switching losses Psw of all semiconductors in an inverter are also proportional
to the carrier frequency, that is,

Psw ∝ fc. (3.49)

Multiplying (3.44) with (3.49) leads to the statement

ITDD · Psw = const. (3.50)
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It is convenient to normalize (3.50). The switching losses can be normalized using the rated
apparent power SR (see Sect. 2.1.2). The current TDD already represents a normalized quan-
tity. The relation (3.50) is then rewritten as

ITDD · Psw

SR

= cI , (3.51)

where the constant cI constitutes a performance metric that characterizes the modulation
scheme under investigation. When reducing the carrier frequency by a certain factor, so as
to reduce the switching losses accordingly, the current TDD is increased by the same factor,
and vice versa. Note that, when expressing the current TDD in terms of the switching losses,
a hyperbolic function results.

3.5.2 Torque TDD versus Switching Losses

A statement similar to (3.51) can be obtained for the electromagnetic torque. It is clear from
(3.41) and the previous reasoning that the amplitudes of the current harmonics are inversely
proportional to the carrier frequency, that is,

îμν ∝ 1
fc

. (3.52)

It follows from the torque expression (2.61) that the amplitudes of the torque harmonics are
also inversely proportional to the carrier frequency, that is, T̂μν ∝ 1/fc. Using (3.1), we con-
clude that

TTDD ∝ 1
fc

, (3.53)

which allows us to write TTDD · Psw = const. The normalized trade-off for the electromagnetic
torque is given by

TTDD · Psw

SR

= cT , (3.54)

where cT is the performance metric characterizing the trade-off between the torque TDD and
the switching losses.

Owing to the equivalence between CB-PWM and SVM, which was shown in Sect. 3.3.2, the
relations (3.51) and (3.54) also hold for SVM. For OPPs, however, particularly for low pulse
numbers, (3.51) and (3.54) should be applied with some caution, as the switching transitions
of OPPs are typically not evenly distributed over the fundamental period.

Example 3.10 To highlight the trade-off between the current and torque TDD on one side and
the switching losses on the other, consider a three-level NPC inverter driving an MV induction
machine, as shown in Fig. 2.25. The detailed setup and the drive parameters are provided in
Sect. 2.5.1.

In simulations at 60% speed and at the rated torque, the carrier frequency was varied
between 150 Hz and 1.2 kHz. Synchronous CB-PWM was used, for which the carrier frequency
is an integer multiple of the fundamental frequency. After reaching steady-state operating con-
ditions, the stator currents, stator voltages, and the electromagnetic torque were recorded.
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Figure 3.23 Performance trade-off for synchronous CB-PWM, when applied to a three-level NPC
inverter with an induction machine

Based on these quantities, the switching losses Psw were computed according to Sect. 2.4.1.
The current and torque TDDs were computed using Fourier series over a time window whose
length is an integer multiple of the fundamental period.

Figure 3.23 shows the resulting harmonic distortions of the stator current and the electro-
magnetic torque, respectively, as a function of the normalized switching losses of the inverter.
Both axes are given in percent. The individual simulations are denoted by circles. As antic-
ipated by (3.51) and (3.54), the data points can be approximately described by hyperbolic
functions. Using a data-fitting tool, the constants cI = 1.3 and cT = 0.55 were obtained.6

3.6 Control Schemes for Induction Machine Drives

Control schemes for induction machine drives can be broadly classified into scalar and vector
control methods. Scalar control is based on the steady-state model of the machine and adjusts
the magnitude and frequency of the applied stator voltage.

Vector control schemes, on the other hand, base their control actions on dynamic models of
the induction machine. As a result, not only the magnitude and frequency of the applied stator
voltage but also its instantaneous angular position is manipulated. This allows vector control
schemes to control the instantaneous positions of the current and flux linkage vectors, thus
achieving fast control of the electromagnetic torque and flux magnitude during load transients
and reference changes.

A classification of control methods for induction machine drives adopted from [45] and
slightly modified is shown in Fig. 3.24. The two most widely used vector control schemes are
FOC and DTC. After outlining scalar control, these two control methods are explained in this
section.

6 A small offset in the switching losses of 0.02% is neglected here. This offset relates to the fact that the switch-
ing losses cannot be reduced to zero, as one switching transition per fundamental half-wave is always required to
synthesize the fundamental component—see also the concept of six-step operation, which is displayed in Fig. 3.14(a).
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Figure 3.24 Classification of control methods for induction machine (IM) drives

3.6.1 Scalar Control

Scalar control aims at maintaining the stator flux magnitude close to its nominal value regard-
less of the speed and electromagnetic torque. The torque is not directly controlled but rather
indirectly via the slip frequency.

Control of the stator flux magnitude is achieved by adjusting the magnitude of the stator
voltage as a function of the electrical frequency. Consider a reference frame rotating with the
stator frequency ωs. Inserting ωfr = ωs into the stator voltage equation (2.50a) leads to

vs = Rsis +
dψs

dt
+ ωs

[
0 −1
1 0

]
ψs, (3.55)

where we have dropped the superscript ′ that indicates pu quantities. Recall that the variables in
(3.55) are vectors in the rotating dq reference frame. The stator voltage, for example, is given
by vs = [vsd vsq]

T . The stator current is and the stator flux ψs are defined accordingly.
By neglecting the stator resistance Rs and assuming steady-state operation, (3.55) simpli-

fies to

vs = ωs

[
0 −1
1 0

]
ψs. (3.56)

We define the magnitude of the stator voltage as vs = ||vs|| and the magnitude of the stator
flux as Ψs = ||ψs||. With this, we obtain

vs

ωs

= Ψs. (3.57)
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Because the ratio between the stator voltage magnitude and stator frequency is constant, scalar
control schemes are often referred to as “voltage per frequency” or V/f control. Note that
the stator resistance cannot be neglected at low-speed operation. To compensate for the cor-
responding voltage drop, a voltage offset is often added to the voltage–frequency relation-
ship (3.57).

To achieve slip and thus torque control, the V/f term (3.57) is typically augmented by a speed
controller that manipulates the slip frequency ωsl = ωs − ωr. The electrical angular speed of
the rotor ωr can be derived from the (measured) mechanical angular speed of the rotor ωm

through ωr = pωm (see also (2.35)), where p is the number of pole pairs. By adding the slip
frequency to ωr, the required stator frequency ωs is directly obtained.

As scalar control schemes lack a current control loop, they have an open-loop characteris-
tic and are thus inherently slow. This limits their scope of application to (quasi) steady-state
operation and to drives that do not require fast torque and speed control. Many of the so-called
general-purpose drives, such as pumps and fans, fall into this category. Thanks to their concep-
tual simplicity, scalar control schemes are an attractive choice for these drives. Few machine
parameters are required, with the stator resistance being the most prominent one. This simpli-
fies the commissioning and controller tuning.

For more details on scalar control schemes and their various extensions, the reader is referred
to [46, Chap. 5], [47, Sect. 12.1], [48, Sect. 2.17], and [49] and the references therein.

3.6.2 Field-Oriented Control

The notion of FOC was proposed by Hasse [50, 51] and Blaschke [52–54] around 1970. Today,
FOC constitutes the most widely used vector control method. Because of that, the terms FOC
and vector control are often used synonymously.

A rotating reference frame is established in FOC, which rotates synchronously either with
the stator, the air-gap or the rotor flux vector. In the rotating reference frame, the stator current
vector is can be separated into a d-component and a q-component. These current compo-
nents are, by definition, orthogonal. We will show that the d-component of the stator current
can be used to control the flux magnitude or the degree of machine magnetization, while
the q-component of the stator current directly relates to the electromagnetic torque. During
steady-state operation, the machine quantities in the rotating reference frame are dc quantities
and the two stator current components are effectively decoupled. This greatly simplifies the
controller design.

3.6.2.1 Principle of Rotor Field Orientation

The principle of field orientation is illustrated in Fig. 3.25 for the case of rotor FOC. The d-axis
of the rotating reference frame is aligned with the rotor flux vector ψr. The reference frame
rotates synchronously with the rotor flux at the angular speed ωfr = ωs. The reference frame
is displaced by ϕ with respect to the stationary αβ reference frame.

In Sect. 2.2.4, we derived the dynamic machine model (2.59), which uses the stator current
and the rotor flux vectors as state variables. The stator and rotor equations are repeated here for
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Figure 3.25 Illustration of the principle of rotor field orientation. The dq reference frame is aligned
with the rotor flux vector ψr and rotates with the angular speed ωfr = ωs

the reader’s convenience for the case of a squirrel-cage induction machine. The rotor voltage
vr is thus set to zero.

dis

dt
= − 1

τs

is − ωfr

[
0 −1
1 0

]
is + · · · +

(
1
τr

I2 − ωr

[
0 −1
1 0

])
Xm

D
ψr +

Xr

D
vs

(3.58a)

dψr

dt
=

Xm

τr

is −
1
τr

ψr − (ωfr − ωr)

[
0 −1
1 0

]
ψr. (3.58b)

The transient stator time and rotor time constants τs and τr, respectively, are defined
in (2.60).

Assume the use of a high-bandwidth current controller that maintains the desired stator
current by manipulating the stator voltage accordingly. In doing so, the current controller
overrides the dynamics of the stator windings. This allows us to neglect the stator voltage
equation (3.58a) for the time being.

Setting ωfr = ωs in (3.58b) leads to the modified rotor equation

d
dt

[
ψrd

ψrq

]
=

Xm

τr

[
isd

isq

]
− 1

τr

[
ψrd

ψrq

]
− (ωs − ωr)

[
0 −1
1 0

] [
ψrd

ψrq

]
, (3.59)

where we have replaced the stator current and rotor flux vectors by their dq-components.
Owing to the rotor field orientation of the reference frame, the q-component of the rotor flux
vector is, by definition, zero, that is, ψrq = 0. This also implies that the magnitude of the rotor
flux vector is equal to its d-component, which allows us to write

Ψr = ||ψr|| = ψrd. (3.60)
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To maintain the field orientation, the derivative of ψrq must be zero. This allows us to rewrite
(3.59) in the form of the two scalar expressions

dΨr

dt
=

Xm

τr

isd − 1
τr

Ψr (3.61a)

0 =
Xm

τr

isq − (ωs − ωr)Ψr. (3.61b)

A third equation is required, namely that of the electromagnetic torque. Setting ψrq = 0 in
(2.61) leads to

Te =
1
pf

Xm

Xr

Ψrisq . (3.62)

The following three conclusions can be derived from (3.61) and (3.62). First, the differential
equation (3.61a) of the rotor flux magnitude involves only isd. By manipulating the latter,
the magnetization of the machine can be controlled. During steady-state operation, (3.61a)
simplifies to

Ψr = Xmisd. (3.63)

This highlights the linear steady-state relationship between the d-component of the stator cur-
rent and the rotor flux magnitude. Second, provided that the rotor flux magnitude is constant,
(3.62) implies that there is a linear relationship between isq and the electromagnetic torque,
facilitating torque control. Third, given isq , Ψr, and ωr, (3.61b) determines the (unique) sta-
tor frequency ωs, which maintains the field orientation. This expression is often referred to as
the condition for rotor field orientation. Note that ωsl = ωs − ωr is the slip frequency, which
directly relates to the slip as defined in (2.37).

3.6.2.2 Indirect and Direct Field-Oriented Control

Field orientation can be achieved in two different ways. In the indirect method, the angular
position of the rotor ϕr is measured with an incremental encoder. The slip frequency ωsl =
ωs − ωr is reconstructed using (3.61b). Adding the integral of the slip frequency to ϕr yields
the angular position of the rotor flux vector and thus of the rotating reference frame. As the
slip frequency is determined in an open-loop fashion, it is vulnerable to machine parameter
variations, such as operating-point-dependent changes in the rotor time constant.

In direct FOC, the angular position of the reference frame is determined with the help of an
estimator. Based on the measured stator currents and stator voltages, the stator and rotor flux
vectors can be estimated. The magnitude Ψr and angular position ϕ of the rotor flux vector
directly follow. Instead of measuring the stator voltage, the latter is often reconstructed using
the upper and lower dc-link voltages and the inverter switch positions. Obtaining accurate
rotor flux positions at low speed is, however, inherently difficult because of machine parameter
variations, measurement offsets, and drifts. For more details on (rotor) flux observer schemes,
the reader is referred to [55, Sect. 4.5], [48, Sect. 5.3], and [56] and the references therein.

The block diagram of direct rotor FOC is summarized in Fig. 3.26. The reference for the
rotor flux magnitude Ψ∗

r is translated into the d-component of the stator current reference i∗sd
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Figure 3.26 Block diagram of direct rotor field-oriented control

using (3.63) or (3.61a). A PI flux controller is typically added to achieve fast control of the
rotor flux magnitude and to compensate for machine parameter variations. Given the error
between the rotor speed ωr and its reference, a speed controller manipulates the setpoint of
the electromagnetic torque T ∗

e . The latter is translated into the q-component of the stator cur-
rent reference i∗sq using the relationship (3.62). Note that this mapping depends on the actual
magnitude of the rotor flux vector.
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The two components of the stator current reference i∗s,dq are fed to the current controller
along with the measured stator currents. The latter are transformed from the three-phase
abc system to the rotating dq reference frame with the angular position ϕ using the Park
transformation (2.19). The current controller, which will be described next, manipulates the
(differential-mode) stator voltage reference v∗

s,dq. The common-mode voltage reference v∗
s0

is set by another controller that maintains the neutral point (NP) potential υn of an NPC
inverter close to zero. Various methods are available to control the neutral point potential; the
most prominent ones will be discussed at the end of this section.

The dq0 voltage reference is translated into the three-phase abc system using the inverse
Park transformation (2.20). The resulting three-phase reference voltage is fed to the PWM
stage, typically a CB-PWM or SVM, to generate the three-phase switching commands uabc, as
explained in Sect. 3.3. To reduce the influence of dc-link voltage variations on the synthesized
inverter voltage, the input voltage to the PWM is scaled by the instantaneous dc-link voltage
vdc. This is illustrated in Fig. 3.4.

3.6.2.3 Current Control

We assumed the use of a fast current controller when deriving the machine equations in rotor
field orientation. This allowed us to neglect the dynamics of the stator windings and to focus
exclusively on the rotor equation. This assumption will be justified in this section by designing
a suitable current controller. Before doing so, however, it is expedient to point out two major
advantages that are inherent to the combination of FOC with CB-PWM or SVM.

First, the use of CB-PWM ensures that the stator ripple current is zero at the peaks of the
triangular carrier waveform, as discussed in Sect. 3.3.3. A similar statement holds true for
SVM. By sampling the stator currents at the carrier peaks, only the fundamental component
of the ac current waveform is captured. Directly related to this is the fact that CB-PWM and
SVM use modulation cycles of fixed lengths. This facilitates sampling at equally spaced time
instants. To this end, in the case of asymmetric, regularly sampled CB-PWM, the sampling
interval is set to half that of the carrier interval, that is, Ts = 0.5Tc.

Second, by transforming the abc stator current into a dq reference frame, which rotates
synchronously with the (stator or rotor) flux vector, the ac stator current is transformed into a dc
quantity. The same applies to the orthogonal components of the flux vectors. As the bandwidth
of the current controller is significantly higher than that of the outer flux and speed controllers,
the stator current references are also effectively dc quantities. The fact that the current control
loop involves (quasi) dc quantities facilitates the use of PI controllers. As shown in Fig. 3.27,
two PI control loops are commonly used: one for the d-component of the stator current, and
another one for its q-component.

The performance of the two PI loops is limited, however, by three fundamental issues.
First, a digital implementation of the current controller leads to a computational delay of one
sampling interval. For asymmetric, regularly sampled CB-PWM, the modulator incurs an addi-
tional delay of half a sampling interval (see Sect. 3.3.1). The overall delay in the current control
loop thus amounts to 1.5Ts. When operating at low switching frequencies with long carrier
intervals and correspondingly long sampling intervals, this delay severely limits the achiev-
able bandwidth of the current control loop. To compensate for the delay during steady-state
operation, the angle 1.5ωsTs can be added to the angular position of the reference frame when
performing the inverse Park transformation (between the current controller and the modulator).

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

128 Model Predictive Control of High Power Converters and Industrial Drives

isd
∗

isq
∗

isd isq

vsd
∗

vsq
∗

PI

PI

ωsXσ

ωsXσ

Figure 3.27 Current controller of the rotor FOC scheme. Decoupling of the d- and q-axes is achieved
during steady-state operation with the feedforward terms

Second, the maximum voltage synthesizable by the modulator is limited, as discussed in
Sect. 3.3.2. This imposes a physical constraint on the manipulated variable. Without appro-
priate countermeasures, the integrator of an aggressively tuned PI current controller operating
close to its voltage limit might wind up. To prevent this, an anti-wind-up mechanism is often
added. Such schemes typically monitor the difference between the commanded and the syn-
thesized modulator voltage. If the difference is nonzero, the integrators in the PI controllers
are turned off.

Third, the stator current dynamics in the d- and q-axes are not fully decoupled. This implies
that the two PI loops are coupled to a certain degree, even when neglecting any delays. To
highlight this fact, consider the system that is controlled, namely the stator equation (3.58a).
Following the reasoning in [48, Sect. 4.2], we rearrange this equation in the rotating reference
frame by expressing the stator voltage as a function of the stator current, its derivative, and the
rotor flux vector.

vs = Rσis + Xσ

dis

dt
+ ωfrXσ

[
0 −1
1 0

]
is − Rr

Xm

X2
r

ψr + ωr

[
0 −1
1 0

]
Xm

Xr

ψr . (3.64)

In (3.64), we have introduced the equivalent resistance

Rσ = Rs + Rr

X2
m

X2
r

(3.65)

and used the total leakage reactance Xσ as defined in (2.63). Rotor field orientation implies
that ψr = [Ψr 0]T . With this, the d- and q-components of the stator voltage can be written as

vsd =Rσisd + Xσ

disd

dt
− ωfrXσisq − Rr

Xm

X2
r

Ψr (3.66a)

vsq =Rσisq + Xσ

disq

dt
+ ωfrXσisd + ωr

Xm

Xr

Ψr. (3.66b)
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Four distinct terms can be identified on the right-hand side of these two equations. The first
and second terms involve only the current component of the respective axis. By manipulating
the stator voltage, the dynamics of these two terms can be modified through closed-loop con-
trol, and their corresponding pole can be shifted. Most importantly, the two axes are decoupled
when considering only the first two terms. This fact motivates the use of two independently
operating PI control loops.

The third terms, however, feature the current component of the other axis. These so-called
motion-induced voltages add coupling between the two axes. The fourth terms add a depen-
dency on the rotor flux magnitude, particularly the rotor-induced voltage ωr

Xm

Xr
Ψr. As the

latter is a function of isd (see (3.61a)), this adds further coupling from the d- to the q-axis.
A commonly used attempt to counteract these cross-coupling terms is to augment the control

loops with feedforward terms. Specifically, the third terms in (3.66) are typically compensated
for by setting ωs = ωfr and adding

vsd,ff = −ωsXσisq (3.67a)

vsq,ff = ωsXσisd (3.67b)

to the outputs of the PI controllers, as shown in Fig. 3.27. Sometimes, the rotor-induced voltage
ωr

Xm

Xr
Ψr is added to (3.67b). The corresponding rotor flux term in (3.67a) is often neglected,

because the rotor resistance Rr is small for high-power machines.
It should be clear that these feedforward terms achieve decoupling only during steady-state

operation, while cross-coupling persists during transients. This leads to an adverse interaction
between the two control loops and limits the control performance. To also achieve decoupling
during transients, more sophisticated control methods are required that dynamically capture the
cross-coupling. State feedback controllers [57, 58] and controllers with complex eigenvalues
[59] are examples for such schemes, which achieve a high degree of decoupling and thus a
high performance also during transients.

As a result of the ubiquitous use of FOC with current control and PWM, the related liter-
ature is vast, and numerous variations of the FOC concept have been proposed. Specifically,
besides rotor field orientation, the dq reference frame can also be aligned with the stator flux
or the air-gap flux. A good starting point to learn more about FOC and its variations are the
well-known text books [47, 55, 60].

3.6.2.4 Control of the Neutral Point Potential

Besides the necessity to control the machine’s stator current, the adoption of an NPC inverter
gives rise to another control problem—that of balancing the inverter’s neutral point potential.
Despite the NPC inverter’s natural balancing characteristic [61], active balancing techniques
are commonly employed to avoid a lasting dc offset in the neutral point potential. The ac
(or ripple) component of the neutral point potential is typically not targeted by closed-loop
control.

Most control methods of the neutral point potential are based on the manipulation of the
inverter’s common-mode voltage. A positive common-mode voltage, for example, shifts the
phase voltages to the upper inverter half. Depending on the sign of the phase current, this shift
adds a positive or negative bias to the average current drawn from the neutral point [62, 63],
which, in turn, modifies the neutral point potential.
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Based on this principle, a dedicated neutral point controller can be designed that manipu-
lates the common-mode voltage reference that is fed to the modulator. This control method
was introduced in [64] and extended in [62, 63]. Common-mode voltage offsets can also be
generated by manipulating the deadtime, which must be added between turn-on and turn-off
switching transitions of the semiconductor switches [65].

On the other hand, instantaneous control of the common-mode voltage, and thus of the
neutral point potential, can be achieved by exploiting the redundancy in the voltage vectors
[66]. The inner voltage vectors form pairs, which generate the same differential-mode voltage
but exhibit the opposite common-mode voltage. As a result, one of the two voltage vectors
will always increase the neutral point potential while the other one will decrease it.

Accordingly in SVM, the existence of pairs of redundant voltage vectors can be exploited
by varying the ratio of their on durations in the switching sequence [67]. This, in effect, also
controls the neutral point potential via the common-mode voltage. Alternatively, at low output
voltages, fast neutral point control can be achieved by shifting the entire pulse pattern either
completely into the upper half or the lower half of the inverter [68].

Control of the neutral point potential through common-mode voltage manipulation is, how-
ever, not effective at high modulation indices, low power factors, or low phase currents [63]. To
achieve neutral point potential balancing at no-load conditions, for example, a third-harmonic
reactive current component can be injected, as proposed in [69].

3.6.3 Direct Torque Control

In FOC, as has been shown in the previous section, the electromagnetic torque and the machine
magnetization are controlled indirectly through the stator currents. Alternatively, as was pro-
posed by Takahashi and Noguchi in the mid-1980s, the torque and magnetization can also
be controlled directly. This characteristic coined the term “direct torque control” (DTC) or
“direct torque and flux control.” Nowadays, DTC is a well-established, high-performance con-
trol method for motor drives and a viable alternative to FOC [45, 70–72].

The basic principle of DTC is to impose upper and lower bounds on the electromagnetic
torque and the stator flux magnitude, and to use hysteresis controllers to enforce these bounds.
The outputs of the hysteresis controllers are fed to a look-up table, which sets the inverter
switch positions. Similar to FOC, flux and torque control are achieved independently of each
other. The direct manipulation of the voltage vector applied to the stator windings exploits
the fast stator flux dynamics of the machine. This leads to a control scheme that is concep-
tually simple and almost independent of the machine parameters, yet it achieves a very fast
closed-loop torque and flux response.

By focusing on the stator flux vector, the notions of field orientation, rotating reference
frames, and coordinate transformations are no longer required. Instead, DTC is formulated in
the stationary and orthogonal αβ coordinate system. The main characteristic that distinguishes
DTC from other control methods is its use of closed-loop torque and flux magnitude controllers
instead of current control loops [45]. Typically, DTC also lacks control and estimation loops
that relate to rotor quantities [73].
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3.6.3.1 Principle of Direct Flux Control

In order to accomplish torque and flux control, DTC bases the inner control loop on the stator
flux instead of the stator current vector as in FOC. As stated in (2.53), the stator current can
be expressed as a linear combination of the stator and rotor flux vectors. Specifically, we can
write in the d-axis in rotor field orientation

isd =
Xr

D
ψsd − Xm

D
Ψr , (3.68)

where we have used Ψr = ψrd. This allows us to rewrite the scalar rotor flux magnitude
equation (3.61a) as

dΨr

dt
=

Rr

D
(Xmψsd − XsΨr). (3.69)

This equation shows that the machine magnetization can be controlled through the
d-component of the stator flux vector.

Recall that γ denotes the (load) angle between the stator and rotor flux vectors, as depicted,
for example, in Fig. 3.28. Let Ψs = ||ψs|| denote the magnitude of the stator flux vector. We
can then write ψsd = cos(γ)Ψs in the rotor flux-oriented reference frame. At steady-state oper-
ating conditions, (3.69) reduces to

Ψr =
Xm

Xs

cos(γ)Ψs. (3.70)

To simplify the flux control loop in standard DTC, the stator flux magnitude is controlled
instead of the rotor flux magnitude. As the load angle is typically limited to ±15◦, the error
introduced in (3.70) by omitting the term cos(γ) is less than 3% and is thus in practice usu-
ally negligible. By maintaining the stator flux magnitude close to its desired level, which is

α

β

γ

ψr

ψs ωs

ΔΨ s
 >

 0

ΔΨ s
 <

 0

ΔT e
 >

 0

ΔT e
 <

 0

Figure 3.28 Illustration of the direct torque and flux control principle. The stator flux vector ψs is
manipulated in the stationary orthogonal αβ coordinate system by an appropriate voltage vector, which
increases or decreases the stator flux magnitude Ψs and the electromagnetic torque Te. The rate of change
depends on the voltage vector’s magnitude and direction
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typically 1 unless field weakening is employed, the appropriate magnetization of the machine
is achieved. As shown in Fig. 3.28, control of the stator flux magnitude is accomplished by
manipulating the stator flux vector along its radial direction.

3.6.3.2 Principle of Direct Torque Control

FOC in rotor field orientation is based on the torque equation (3.62). Using (2.53), we can
express the q-component of the stator current by the stator flux component in the q-axis as

isq =
Xr

D
ψsq . (3.71)

Note that the q-component of the rotor flux vector is, by definition, zero. With the help of the
expression ψsq = sin(γ)Ψs, we can rewrite the torque equation (3.62) as

Te =
1
pf

Xm

D
ΨsΨr sin(γ). (3.72)

This implies that the electromagnetic torque is the product of the sine of the load angle and the
magnitudes of the stator and rotor flux vectors. Note that this statement is independent of the
adopted reference frame. In particular, (3.72) holds also in the stationary coordinate system
and can be derived also directly from (2.56).

Fast torque control can be achieved by manipulating the load angle in (3.72). To this end,
the tangential component of the stator flux vector is manipulated by rotating the stator flux
vector forward or backward. This principle is shown in Fig. 3.28.

To ensure that the torque controller is decoupled from the flux control loop, the magnitudes
of the stator and rotor flux vectors must be constant. To achieve this, the stator flux magnitude is
tightly controlled in DTC around its nominal value. The magnitude of the rotor flux vector can
be considered to be constant within several milliseconds, thanks to the small rotor resistance
Rr in (3.69), which causes a long rotor time constant.

3.6.3.3 Fast Stator Flux Control

As previously mentioned, DTC relies on fast stator flux control. To illustrate this principle,
consider the stator equation (2.50a) in stationary coordinates. To this end, we set the angular
speed of the reference frame to zero and drop the superscript ′, which indicates pu quantities.
This leads to

dψs

dt
= vs − Rsis, (3.73)

where the stator flux vector is given by ψs = [ψsα ψsβ]T . The stator voltage vs and the stator
current is are defined accordingly.

As the stator resistance Rs is in many cases negligible, it is clear from (3.73) that the stator
flux vector can be directly manipulated by choosing a suitable voltage vector, which is applied
to the stator windings. In particular, within the sampling interval Ts, the stator flux vector is
modified by

Δψs = vsTs, (3.74)
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Figure 3.29 Block diagram of direct torque control with a switching table

where we have assumed that the voltage vector vs is held constant for Ts. The stator flux vector
is driven in the direction of the voltage vector. The rate of change corresponds to the length of
the voltage vector. The available dc-link voltage imposes an upper bound on ||Δψs||.

3.6.3.4 Direct Torque and Flux Control

The block diagram of standard DTC is shown in Fig. 3.29. A speed controller manipulates the
torque reference T ∗

e . The rotor flux magnitude is usually controlled indirectly via the stator
flux magnitude reference Ψ∗

s. DTC requires only measurements of the stator current is and
the upper and lower dc-link voltages. Based on the latter and the switch positions u, the stator
voltage vs is reconstructed. Using is, vs, and a machine model, an observer constructs the
stator flux vector ψs and the electromagnetic torque Te. The torque error is the difference
between the torque reference and the estimated torque. The error of the stator flux magnitude is
computed accordingly, by applying the Euclidean norm to the reconstructed stator flux vector.

The core of the DTC scheme is the hysteresis control unit and the look-up table, which
contains the switching table. If either the torque or the flux error violates a hysteresis bound,
a new voltage vector is selected that aims to drive the stator flux vector to a position such that
the torque and flux errors both respect their corresponding hysteresis bounds. In the case of an
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Figure 3.30 DTC hysteresis controllers

NPC inverter, a third hysteresis control unit is added that maintains the neutral point potential
υn within prespecified bounds around zero.

The torque hysteresis controller is shown in Fig. 3.30(a) for a three-level inverter. It uses
hysteresis bands at zero, ±hT 1, and ±hT 2. Depending on the torque error and the state of the
hysteresis, the output signal bT is determined. The latter is an integer variable with the five
possible values 0, ±1, and ±2. The flux hysteresis controller shown in Fig. 3.30(b) is similar
to that of the torque controller, but uses only four hysteresis bands at ±hΨ1 and ±hΨ2. As a
result, its output bΨ is equal to one of the four values ±1 and ±2.

The hysteresis controller for the neutral point potential is somewhat different in that it uses
a large band around zero, in which the controller is inactive and the neutral point potential is
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allowed to float. Once the outer threshold at ±hυ2 is violated, the controller is activated and its
output is set to bυ = ±1 until the inner threshold at ±hυ1 is activated. This principle is shown
in Fig. 3.30(c).

In general, the bands of the hysteresis controllers are symmetric around zero. The motivation
to use five bands for the torque controller and to omit the zero band for the flux controller will
be expanded upon when explaining the switching table.

The outputs of the hysteresis controllers are fed into a switching table. For each combination
of inputs, this look-up table holds a suitable voltage vector or, equivalently, a three-phase
switch position. The voltage vectors are selected based on the sign and magnitude of the torque
and flux errors along with the number of the sector that contains the stator flux vector. For the
balancing of the neutral point potential, the sign of the phase currents is also required.

3.6.3.5 Switching Table

The (differential-mode components of the) voltage vectors produced by a two- or three-level
inverter are the same when rotated by an integer multiple of 60◦. To exploit this symmetry, the
αβ coordinate system is divided into six pie-shaped sectors, which are enumerated from 0 to 5.
Each sector covers 60◦. The design of the look-up table can be restricted to the zero-sector with
angles between −30◦ and 30◦. The look-up table for the other five sectors can be easily derived
by rotating the voltage vectors in the zero-sector by multiples of 60◦.

For the three-level inverter, the zero-sector is further divided into two subsectors—a lower
subsector between −30◦ and 0◦, and an upper subsector between 0◦ and 30◦. To this end, the
360◦ circle is divided into 12 subsectors, each with an angular spread of 30◦. The white areas in
Fig. 3.31 correspond to the lower subsectors, while the gray areas depict the upper subsectors.

As can be seen in Fig. 2.19, a three-level converter is capable of producing voltage vectors of
approximately three different magnitudes: zero (the three zero vectors), short (the 12 vectors of
the inner hexagon), and intermediate and long (the 12 vectors of the outer hexagon). The inter-
mediate and long voltage vectors are of similar magnitude and can thus be lumped together.
Therefore, we associate the integers 0, ±1, and ±2 with the voltage vector magnitudes.

A voltage vector that acts in a direction that is orthogonal to the stator flux vector increases or
decreases the electromagnetic torque. Therefore, to accomplish torque control, the orthogonal
component of the voltage vector is manipulated. To this end, we associate the five output levels
of the torque controller with the orthogonal axis shown in Fig. 3.31(a). Note that we assume
here a counterclockwise rotation of the flux vectors. The following switching logic can then
be derived: bT = 0 implies the use of a zero vector, bT = 1 necessitates a short vector in the
direction of the rotation, while an intermediate or long voltage vector is required in case of
bT = 2. Negative bT values, on the other hand, trigger voltage vectors that point in the opposite
direction.

Voltage vectors parallel to the stator flux vector either increase or decrease the stator flux
magnitude. Therefore, the output of the flux controller determines the magnitude and sign
of the voltage vector component in this axis, as shown in Fig. 3.31(b). Typically, only two
levels are used for the flux controller, namely ±1. The zero level is not used, because the zero
vectors have only a minor influence on the stator flux magnitude. When the torque hysteresis
controller outputs bT = 0, however, control of the stator flux magnitude is temporarily lost.
To avoid this, the flux hysteresis controller is augmented by the output levels ±2. This enables
DTC to switch to a short voltage vector when required to maintain flux control.
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Figure 3.31 Voltage vector selection principle in DTC. The αβ-plane with the voltage vectors is
divided into orthogonal bands that correspond to the integer outputs of the hysteresis controllers. The
voltage vectors, and thus the three-phase switch positions, are chosen accordingly
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The switching table can be derived by combining the reasoning for the torque and flux
hysteresis controllers. The αβ-plane of the voltage vectors is divided into orthogonal bands
that correspond to the integer outputs of the two hysteresis controllers. Each combination of
the controller outputs corresponds to one (differential-mode) voltage vector. These voltage
vectors are shown in Fig. 3.31(c) for the upper part of the zero-sector. It can be seen that
all of the available short vectors are used. The voltage vectors are chosen such that they are
applicable to any stator flux vector that lies within this subsector. It is then also apparent why
DTC only requires knowledge of the subsector the stator flux lies in, rather than of its precise
angular position.

To accomplish the balancing of the neutral point potential when bυ = ±1, the redundancy
in the pairs of short voltage vectors is utilized. Each pair of vectors influences the neutral point
potential by the same amount, but with opposite signs. To determine the desired redundant
voltage vector, the sign of the three-phase stator currents is required. On the other hand, when
the control of the neutral point potential is inactive for bυ = 0, the redundancy can be used to
help reduce the switching frequency.

3.6.3.6 Characteristics and Discussion

In DTC, the torque, flux, and neutral point controllers are realized as hysteresis controllers.
When compared to FOC, these controllers replace the inner current control loop along with
the torque and flux feedforward terms. The DTC switching table supersedes the modulator.
Instead of regulating the torque, flux, and neutral point potential to their respective references,
DTC aims at keeping these quantities within certain bounds around their references.

The widths of the hysteresis bounds determine the switching frequency. For fixed-width
hysteresis bands, the switching frequency is operating-point-dependent and varies with the
fundamental frequency and torque setpoint. For an analysis and prediction of the switching fre-
quency for two-level inverter drives, the reader is referred to [74]. The hysteresis controllers
entail a harmonic spectrum of the stator currents and electromagnetic torque that is neither
restricted to discrete frequencies nor is deterministic. Nevertheless, thanks to use of 12 sub-
sectors in the switching table for the three-level inverter, the 11th and 13th harmonics are
pronounced in the stator voltage and current.

To minimize the current and torque ripples, as many hysteresis levels as possible should
be used. This is particularly important for the torque hysteresis controller, which controls
the angular position of the stator flux vector. During steady-state operation, the magnitude
of the orthogonal component of the voltage vector should nearly match the magnitude of
the speed-dependent back-EMF ωsΨs (see also (3.57) and the discussion on scalar control in
Sect. 3.6.1). This motivates the use of five levels for the torque hysteresis controller. Assuming
a counterclockwise rotation of the flux vectors, the torque hysteresis switches between 0 and
1 at low-speed operation and thus applies zero and short active voltage vectors. At nominal
speed, however, the torque hysteresis switches between 1 and 2, that is, between a short and a
long vector.

When compared to FOC, DTC has the following benefits regarding implementation and
performance:

• Simplicity. DTC requires neither a modulator nor coordinate transformations. The PI current
control loops, the decoupling network, and parts of the torque and flux control loops are
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replaced by hysteresis controllers. The latter are conceptually and computationally simple.
The tuning and commissioning effort of DTC schemes is minimal.

• Robustness. DTC requires the estimation of stator quantities, namely of the stator flux vector
and the electromagnetic torque. To do so, only the stator resistance must be known. DTC is
thus insensitive to variations in the rotor parameters. Neither the angular speed of the flux
vectors nor the angular position or magnitude of the rotor flux vector is required. The use
of hysteresis controllers further adds to the notable robustness of DTC.

• Torque response. The dynamic torque response achieved by DTC is very fast and limited
only by the available dc-link voltage. Comparisons with FOC indicate that DTC tends to
outperform FOC in this regard (see, e.g., [75]).

On the other hand, the following disadvantages are typically associated with DTC:

• Harmonic distortions. DTC produces pronounced ripples on the stator current and electro-
magnetic torque. Standard DTC tends to suffer from higher stator current and torque TDDs
than FOC, at least in the case of two-level inverters [75]. For multilevel inverters, however,
an advanced DTC scheme yields a lower torque ripple than FOC with PWM [76].

• Switching frequency. The use of hysteresis control loops leads to an operating-point-
dependent switching frequency. To nevertheless achieve a sufficiently constant switching
frequency, the widths of the hysteresis bounds require adjustment. This can be done, for
example, by monitoring the switching frequency and by modifying the bound widths by a
suitable closed-loop switching frequency control loop.

• Sampling frequency. To limit the violations of the hysteresis bounds, DTC requires a high
sampling frequency. Typically, a sampling interval of Ts = 25 μs is adopted in DTC, which
corresponds to a sampling frequency of 40 kHz. The latter is at least one order of magnitude
higher than in FOC.

• Torque error. The use of hysteresis controllers with multiple output levels inevitably leads
to pronounced steady-state errors, particularly in the torque control loop. To nevertheless
achieve zero torque errors, an offset controller with an integrator is often added to the torque
control loop.

3.6.3.7 Extensions of the DTC Concept and Related Control Methods

For a summary of the basic DTC concept and various extensions to improve the performance
of DTC, the reader is referred to the survey paper [45], the book chapter [46, Chap. 8], and the
text book [55]. Several notable extensions of the basic DTC concept for two-level inverters are
briefly summarized in the following:

• To reduce the torque and flux ripple, additional (discrete) voltage vectors are introduced in
[77], using the notion of SVM. The hysteresis controllers are kept in place.

• As a further step in the direction of SVM, the hysteresis control loops are replaced in [78]
by a deadbeat controller. The stator voltage that is predicted to minimize the torque and flux
errors at the next sampling instant is computed. This voltage is translated into switching
signals using SVM. This ensures a deterministic harmonic spectrum and relatively small
current distortions.
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• Alternatively, a constant switching frequency can be achieved without the use of a
modulator. As proposed in [79] for a two-level converter, the hysteresis control loops
and look-up table determine the active voltage vector, which is complemented by a zero
vector. Using a fixed-length switching interval, the duty cycle of the active voltage vector
is adjusted such that it minimizes the torque ripple.

DTC was originally developed for two-level inverters with three hysteresis levels for the
torque control loop and two levels for the flux loop [70]. Even today, most DTC-related
research efforts focus on two-level inverters. On the other hand, the DTC literature on
inverters with three or more levels is limited. Notable exceptions include [80, 81] for
three-level inverters and [76, 82] for multilevel inverters.

A method closely related to DTC is direct self-control (DSC), which was proposed by
Depenbrock [83, 84] in parallel to DTC. For two-level inverters, control of the stator flux mag-
nitude is achieved by regulating the stator flux vector along a hexagonal path with the help of
three hysteresis controllers—one for each of the three abc flux components. A fourth hysteresis
controller accomplishes torque control by adding zero vectors to the hexagonal flux path.

As a result, standard DSC is inherently based on a six-step operation and allows the
full utilization of the available dc-link voltage. Corner-folding of the flux trajectory was
later introduced to reduce the torque ripple [85]. Extensions to three-level inverters are also
possible [86]. The fact that DSC is very suitable for drives operating at very low switching
frequencies and in the field weakening range makes DSC a popular control method for
traction drive applications [87].

Appendix 3.A: Harmonic Analysis of Single-Phase Optimized Pulse
Patterns

The Fourier series (3.24) for the single-phase pulse pattern u(θ) is derived in this appendix.
Recall that u(θ) is a periodic signal with the period 2π. Therefore, u(θ) can be described by
the Fourier series

u(θ) =
a0

2
+

∞∑

n=1

(an cos(nθ) + bn sin(nθ)) (3.A.1)

with the Fourier coefficients

an =
1
π

∫ π

−π

u(θ) cos(nθ)dθ, n ≥ 0 (3.A.2a)

bn =
1
π

∫ π

−π

u(θ) sin(nθ)dθ, n ≥ 1. (3.A.2b)

Owing to the imposed symmetry (3.20), the pulse pattern is an odd function, that is, u(θ) =
−u(−θ). The terms cos(nθ) in the Fourier coefficient an are even functions. As the product of
an odd function with an even function is an odd function, the integral over the interval [−π, π]
is zero. We conclude that all the coefficients an are zero.

Because the terms sin(nθ) are odd functions, the integrand in bn is an even function. The
integral from −π to 0 and the integral from 0 to π are thus the same, allowing us to simplify
(3.A.2b) to

bn =
2
π

∫ π

0
u(θ) sin(nθ)dθ. (3.A.3)
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We divide the integration interval [0, π] into two parts:

bn =
2
π

∫ π
2

0
u(θ) sin(nθ)dθ +

2
π

∫ π

π
2

u(π − θ) sin(nθ)dθ. (3.A.4)

In the second integral, we have exploited the quarter-wave symmetry (3.20) of the single-phase
pulse pattern. The change of variable θ′ = π − θ in the second integral leads to

bn =
2
π

∫ π
2

0
u(θ) sin(nθ)dθ − 2

π

∫ 0

π
2

u(θ′) sin(nπ − nθ′)dθ′. (3.A.5)

With the help of the identity

sin(nπ − nθ′) = −(−1)n sin(nθ′)

(3.A.5) can be rewritten as

bn =
2
π

∫ π
2

0
u(θ) sin(nθ)dθ − 2

π
(−1)n

∫ π
2

0
u(θ) sin(nθ)dθ, (3.A.6)

where we have replaced θ′ by θ to simplify the notation. The Fourier coefficient can be further
simplified to

bn =

⎧
⎨

⎩

4
π

∫ π
2

0
u(θ) sin(nθ)dθ, if n = 1, 3, 5, . . .

0, if n = 2, 4, 6, . . .

(3.A.7)

Recall that the pulse pattern u(θ) is fully characterized by the primary switching angles αi

and the switch positions ui, with i ∈ {1, 2, . . . , d}. The pulse pattern is a piecewise constant
signal. In the interval 0 ≤ θ ≤ π

2 , it can be described by the statement

u(θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ θ < α1
u1, if α1 ≤ θ < α2
u2, if α2 ≤ θ < α3
...

...
ud−1, if αd−1 ≤ θ < αd

ud, if αd ≤ θ ≤ π
2 .

(3.A.8)

As an example for u(θ) with d = 3 primary switching angles, the reader is referred to Fig. 3.16.
We define the change in the switch position (or the switching transition) as

Δui = ui − ui−1. (3.A.9)

As u0 = 0, it follows that the ith switch position can be represented as the sum of i switching
transitions

ui =
i∑

j=1

Δuj . (3.A.10)



�

� �

�

Classic Control and Modulation Schemes 141

Inserting (3.A.10) and (3.A.8) into (3.A.7) for odd n leads to the sum of d integral terms

bn =
4
π

Δu1

∫ α2

α1

sin(nθ)dθ +
4
π

(Δu1 + Δu2)
∫ α3

α2

sin(nθ)dθ + · · ·

+
4
π

d−1∑

j=1

Δuj

∫ αd

αd−1

sin(nθ)dθ +
4
π

d∑

j=1

Δuj

∫ π
2

αd

sin(nθ)dθ.

(3.A.11)

By rearranging and combining the integral terms for each Δui, the expression can be simpli-
fied to

bn =
4
π

Δu1

∫ π
2

α1

sin(nθ)dθ +
4
π

Δu2

∫ π
2

α2

sin(nθ)dθ + · · ·

+
4
π

Δud−1

∫ π
2

αd−1

sin(nθ)dθ +
4
π

Δud

∫ π
2

αd

sin(nθ)dθ.

(3.A.12)

The integral terms can now be easily solved to
∫ π

2

αi

sin(nθ)dθ = − 1
n

(
cos(n

π

2
) − cos(nαi)

)
=

1
n

cos(nαi), (3.A.13)

where we have used the fact that n is odd. This leads to

bn =
4

nπ

d∑

i=1

Δui cos(nαi). (3.A.14)

As all an are zero, this allows us to state the Fourier series (3.A.1) with its coefficients
(3.A.2) in the compact representation

u(θ) =
∞∑

n=1

ûn sin(nθ) (3.A.15)

ûn =

⎧
⎪⎨

⎪⎩

4
nπ

d∑

i=1

Δui cos(nαi), if n = 1, 3, 5, . . .

0, if n = 2, 4, 6, . . .

(3.A.16)

where we have replaced bn by ûn to indicate that the Fourier coefficient relates to the peak
value of the nth harmonic signal.

Appendix 3.B: Mathematical Optimization

In this appendix, we review the basic terminology of mathematical programming, and intro-
duce mixed-integer programs (MIP) and quadratic programs (QP). For more details on math-
ematical optimization and proofs of the statements made next, the reader is referred to one of
the well-known text books, such as [42, 43, 88–90].
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3.B.1 General Optimization Problems

We start by introducing basic terminology [43]. Consider the general form of an optimization
problem

minimize
x

J(x) (3.B.1a)

subject to gi(x) ≤ 0, i = 1, . . . , ng (3.B.1b)

hi(x) = 0, i = 1, . . . , nh (3.B.1c)

with the optimization or decision variable x = [xT
r xT

b ]T , which contains, in general, both
a real-valued part xr ∈ R

nr and a binary part xb ∈ {0, 1}nb . The objective function or cost
function J(x) : R

nr × {0, 1}nb → R is a mapping from the vector x to the scalar J .
The cost function is to be minimized subject to the inequality constraints (3.B.1b) and

the equality constraints (3.B.1c). These constraints define the subset X of the space R
nr ×

{0, 1}nb . This subset is often referred to as the feasible set, feasible region, or the search
space. We refer to the functions gi(x) and hi(x) as the inequality and equality constraint
functions. The point x is said to be feasible if it is part of the feasible set X and thus satisfies
all constraints. The problem (3.B.1) is feasible if at least one feasible point exists; or else it is
infeasible.

The optimization problem (3.B.1) amounts to finding the vector x ∈ X that minimizes the
cost function J(x) over the feasible set X . The optimal value Jopt of the optimization problem
(3.B.1) is defined as

Jopt = inf{J(x)| x ∈ X}. (3.B.2)

The solution xopt of the (feasible) minimization problem (3.B.1) is referred to as the optimal
solution or the optimizer. We can write J(xopt) = Jopt. If the problem is infeasible, we set
Jopt = ∞, and if the problem is unbounded below, Jopt = −∞ results. We say that a feasible
point x is locally optimal if it minimizes J in a subset of the feasible set, whereas x is (globally)
optimal if it minimizes J over the whole feasible set.

3.B.2 Mixed-Integer Optimization Problems

When the optimization variable contains integer variables (nb ≥ 1), (a subset of) the feasible
set X is discrete and the optimization problem (3.B.1) constitutes an MIP. In the worst case,
all possible integer solutions need to be explored when solving MIPs. This implies that the
solution time grows exponentially with the number of integer optimization variables [91]. In
fact, MIPs are in general non-deterministic, polynomial-time hard (NP -hard) problems.

Nevertheless, optimization techniques have been proposed that often allow one to solve
MIPs efficiently. One such technique is the so-called branch-and-bound method, which is
explained next. Other techniques to solve MIPs include cutting plane, decomposition, and
logic-based algorithms. For more details on these techniques, the reader is referred to [88]
and [92].

The branch-and-bound concept was developed in the 1960s. It has since become of
paramount importance in solving (mixed) integer optimization problems. Rather than
enumerating all possible (candidate) solutions, branch-and-bound methods seek to reduce the
number of investigated candidate solutions. By applying bounds, uninvestigated candidate
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Node 1
X

Node 2
X1

Node 3
X2

Node 4
X21

Node 5
X22

X21 ∪ X22 = X2

X21 ∩ X22 = ∅

X1 ∪ X2 = X
X1 ∩ X2 = ∅

Figure 3.B.1 Illustration of the branch-and-bound concept. The feasible set X is split into disjoint
subsets. Upper and lower bounds on the cost function are applied to identify and remove subproblems
that contain only suboptimal candidate solutions

solutions can be removed from further consideration by proving that these solutions would be
suboptimal. As a result, in general, only a small subset of the set of candidate solutions—and
thus of the search tree—needs to be enumerated to find the optimal solution.

Specifically, as the name indicates, branch-and-bound methods are based on the following
two operations.

1. Branching. The optimization problem is split into subproblems by dividing the feasible set
X into two or more disjoint subsets, for example, into X 1 and X 2, such that X 1 ∪ X 2 =
X and X 1 ∩ X 2 = ∅. Heuristics are typically employed to decide which subset is to be
explored first.

2. Bounding. The smallest value of the cost function of all investigated candidate solutions
serves as an upper bound. By definition, this value is equal to the cost function value of
the best solution found so far. Lower bounds on the subsets’ optimal solutions are usually
provided by relaxations to ensure that they are quick to compute. If the lower bound of a
subset exceeds the upper bound, then the optimal solution cannot be part of this subset and
the corresponding subproblem can be removed from further consideration.

Branch-and-bound is a universal concept that is highlighted in Fig. 3.B.1, which was adopted
from [93]. A good introduction and summary of the branch-and-bound methodology is pro-
vided in [93] and [94, Chaps. 12 and 13]. A more mathematical account is presented in [95]
and [96, Chap. 8], while [97] provides a survey on branch-and-bound methods.

3.B.3 Convex Optimization Problems

An important subclass of (3.B.1) are convex optimization problems. The set X = R
nr is con-

vex if the line segment between any of its two points x1 and x2 is also part of the set, that
is,

	x1 + (1 − 	)x2 ∈ X (3.B.3)
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for all x1,x2 ∈ X and 	 ∈ [0, 1]. Consider the function J : X → R, where X ∈ R
nr is a

nonempty and convex set. The function J is convex on X if

J(	x1 + (1 − 	)x2) ≤ 	J(x1) + (1 − 	)J(x2) (3.B.4)

for all x1,x2 ∈ X and 	 ∈ [0, 1].
For convex optimization problems, the constraint functions are convex and the optimization

variable is real-valued, that is, nb = 0. This implies that the feasible set X is convex. As
the cost function is also required to be convex, local minima are also globally optimal.
The importance of convex optimization problems stems from the fact that they can be
solved in polynomial time, that is, the computation time scales well with the dimension of
the problem.

One relevant type of convex optimization problems is the so-called quadratic program (QP)

minimize
x

1
2
xT Hx + cT x (3.B.5a)

subject to Gx ≤ g. (3.B.5b)

The cost function J(x) : R
nr → R is quadratic, the optimization variable x ∈ R

nr is
real-valued, and the constraints are linear. The matrix H , the so-called Hessian, is of the
dimension nr × nr and the constraint matrix G is of the dimension ng × nr, where ng denotes
the number of inequality constraints. The linear constraints (3.B.5b) define the feasible
set X .

QPs are typically solved using the interior point method [98, 99]. Other solution
approaches include the active set [100] and gradient methods [101]. Examples of QP solvers
include SeDuMi [102], CPLEX [103], and IpOpt [104]. Recently, initial efforts have been
reported in the literature to solve QPs in embedded systems, particularly when running on
field-programmable gate arrays (FPGAs) (see, e.g., [105–108]).

We now require the notion of positive-definite matrices. A symmetric nr × nr matrix H is
positive semidefinite if

xT Hx ≥ 0 (3.B.6)

holds for all x in R
nr . Similarly, H is positive definite if

xT Hx > 0 (3.B.7)

for all nonzero x in R
nr .

One can show that the quadratic cost function J(x) in (3.B.5a) is convex if and only if
H is positive semidefinite. The expression if and only if signifies that this is a necessary and
sufficient condition.

Consider the optimization problem (3.B.5) without the constraints (3.B.5b), that is, assume
X = R

nr . We refer to this problem as the unconstrained QP. Assume that J is differentiable
at xopt. If J is convex, then xopt is a global optimal solution if and only if

∇J(xopt) = 0. (3.B.8)
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The gradient

∇J(x) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

dJ(x)
dx1

dJ(x)
dx2

...
dJ(x)
dxnr

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(3.B.9)

is a vector in R
nr , which consists of the partial derivatives of J(x), where x =

[x1 x2 . . . xnr
]T . For the cost function (3.B.5a) of the QP, the gradient can easily be

computed, and the optimality condition (3.B.8) can be stated as

∇J(xopt) = Hxopt + c = 0. (3.B.10)

Recall that the minimum of a function with a scalar argument can be found by setting the first
derivative to zero and requiring the second derivative to be positive. For functions with a vector
as an argument, this statement has been generalized previously. In particular, the point xopt
that minimizes J requires the gradient to be zero and the Hessian to be positive (semi)definite.

An alternative approach to deriving the optimality condition (3.B.10) is provided here. The
use of derivatives is avoided—we only require the Hessian to be invertible and symmetric.
Starting from the cost function J(xopt) in (3.B.5a), we use the technique of completing the
squares to rewrite the cost function as

J(x) =
1
2
(x + H−1c)T H(x + H−1c) − 1

2
cT H−1c. (3.B.11)

Through algebraic manipulations and by using the fact that the Hessian is symmetric, that
is, HT = H , one can show that (3.B.11) is equal to (3.B.5a). By defining y = x + H−1c,
(3.B.11) can be further simplified to

J(y) =
1
2
yT Hy − 1

2
cT H−1c. (3.B.12)

The second term is a scalar offset that has no influence on the optimal solution. As H is positive
semidefinite, the unconstrained minimum of J(y) is attained at yopt = 0. Equivalently, the
optimum of J(x) is at

xopt = −H−1c, (3.B.13)

c.f. (3.B.10).
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4
Predictive Control with Short
Horizons

The most intuitively accessible and easy-to-implement variety of predictive controllers for
power electronics uses a prediction horizon of one step and regulates one or more variables
along their references. This chapter introduces this concept using a single-phase inverter set-
ting with a resistive–inductive (RL) load and phase current regulation. In a second step, the
controller is extended to a predictive current controller for a three-phase system with an induc-
tion machine. Alternatively, as shown in the last section of this chapter, the tracking of the
electromagnetic torque and stator flux magnitude can be considered. The similarity between
the current and torque controllers is shown by analyzing their corresponding cost functions.
Moreover, the impact of the tracking error norm on stability is highlighted, and a method is
reviewed to compensate for system delays.

4.1 Predictive Current Control of a Single-Phase RL Load

We start by introducing the notion of predictive control for a single-phase system. Specifically,
one phase leg of a three-level inverter is considered, as shown in Fig. 4.1(a). An RL load
is connected between the phase leg’s terminal A and the neutral point N. Let vdc denote the
instantaneous dc-link voltage. The phase leg can produce the three phase voltages −vdc

2 , 0, and
vdc
2 . We use the integer variable u ∈ {−1, 0, 1} to denote the switch position in the phase leg.

The values −1, 0, 1 correspond to the phase voltages − vdc
2 , 0, vdc

2 , respectively. Assuming the
neutral point potential to be zero, the voltage applied to the RL load is given by v = 0.5vdcu.

4.1.1 Control Problem

Let i∗ denote the reference for the instantaneous current through the RL load, and i the actual
current. The aim is to design a controller that manipulates the switches in the inverter phase

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/geyermodelpredictivecontrol
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(a) Single-phase three-level inverter with an RL load
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i∗ u

i
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Minimization of
cost function
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trajectories

dc-link

(b) Predictive current controller

Figure 4.1 Predictive current control of a single-phase RL load

leg such that the load current i closely tracks its reference i∗. Another requirement is to switch
as little as possible. Switching directly between u = 1 and u = −1 is prohibited.

The block diagram of the controller to be designed is shown in Fig. 4.1(b). The controller
consists of two parts. Starting from the current measurement, the first part predicts future
current trajectories for different possible choices of control inputs. The second part is the opti-
mization stage, in which the cost function capturing the control objectives is minimized. This
yields the optimal control input uopt, which is applied to the inverter. The controller operates
in the discrete-time domain with the sampling interval Ts. Each of these blocks is explained
in detail hereafter.

4.1.2 Prediction of Current Trajectories

To predict the future current trajectories, predictive control schemes require a model that cap-
tures the dynamics of the inverter system and its load. Starting from v(t) = Ri(t) + Ldi(t)

dt ,
such a model in the continuous-time domain is directly obtained as

di(t)
dt

= Fi(t) + Gu(t) (4.1)

with
F = −R

L
and G =

1
L

vdc

2
. (4.2)

The current i is the state variable in the state-space model (4.1), and u is the input variable.
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k − 1 k k + 1 k + 2

0

1
u(k) = 1u

t

t

i(k)

i(k+ 1)

i

Figure 4.2 Evolution of the current i as a function of the switch position u, which is manipulated at
discrete-time instants t = kTs, with k ∈ N

As the controller operates at time instants t = kTs, with k ∈ N, this model needs to be
translated from the continuous- to the discrete-time domain. This is achieved by integrating
(4.1) from t = kTs to t = (k + 1)Ts. During this time interval, u(t) is constant and equal to
u(k), where k refers to the kth sampling interval, as illustrated in Fig. 4.2. The integration
yields

i(k + 1) = Ai(k) + Bu(k) (4.3)

with

A = eFTs and B =
∫ Ts

0
eFτdτ G. (4.4)

This provides the exact current evolution at the discrete-time instants t = kTs. The detailed
derivation of (4.3) is provided, for example, in [1, Sect. 4.3.3]. If F is nonzero, B in (4.4) can
be further simplified to B = (A − 1)G/F .

It is obvious from Fig. 4.2 that the evolution of the current between these time instants
is described by exponentially shaped line segments. For short sampling intervals, these line
segments can be approximated to be linear, and approximate discretization methods can be
used, such as the forward Euler approximation or the bilinear method. Forward Euler, for
example, yields (4.3) with

A = 1 + FTs and B = GTs , (4.5)

which uses the slope of the current at t = kTs to obtain its approximate value at t = (k + 1)Ts.
For short sampling intervals, the forward Euler approach is usually sufficiently accurate.
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4.1.3 Optimization Problem

The control problem at time step k of tracking the current reference can be mapped into the
cost function

J = (i∗(k + 1) − i(k + 1))2 + λu|Δu(k)| . (4.6)

The cost function consists of two terms. The first term penalizes the predicted current error
at the next time step k + 1 quadratically. The current error is given by the difference between
the current reference and the predicted current in the phase leg. The second term penalizes
the switching effort, which is the absolute value of Δu(k) = u(k) − u(k − 1). The penalty
λu ≥ 0 is a tuning parameter that adjusts the trade-off between the tracking accuracy (devi-
ation of the current from its reference) and the switching effort, that is, whether switching is
performed or not.1 Note that J is always nonnegative.

The current at k + 1 depends on the choice of u(k). The discrete-time model of Sect. 4.1.2
can be used to predict the current at k + 1 for all admissible u(k). The admissible u(k) are
those that are either−1, 0, or 1 and differ by at most one step from the previous switch position,
that is, u(k − 1). This optimization problem can formally be stated as

uopt(k) = arg minimize
u(k)

J (4.7a)

subject to i(k + 1) = Ai(k) + Bu(k) (4.7b)

u(k) ∈ {−1, 0, 1}, |Δu(k)| ≤ 1 . (4.7c)

The optimal control input, that is, the optimal switch position at time step k, uopt(k), is
obtained by minimizing the cost function J . Note that the expression minimize J minimizes
the cost function J subject to the constraints. This leads to the minimum (or optimum) value
Jopt. On the other hand, arg minimize J yields the argument that minimizes the cost function.
The argument is also referred to as the optimal solution or the optimizer, which is—in this
case—the control input uopt. For a short introduction to the notion of mathematical optimiza-
tion, the reader is referred to Appendix 3.B.

The optimization problem and hence uopt(k) depend on the current i(k), the previously cho-
sen switch position u(k − 1), and the current reference i∗(k + 1). If the latter is not available,
it can be approximated using the current reference at time steps k − 1 and k.

4.1.4 Control Algorithm

The optimization problem (4.7) can be solved using tools from mathematical programming,
as explained in Appendix 3.B. A simple alternative is to use the concept of enumeration. For
each admissible switch position, the model response is predicted and the corresponding cost
is computed by evaluating the cost function. The switch position with the smallest cost is, by
definition, the optimal one and chosen as the control input. Depending on u(k − 1), the set of
admissible switch positions U(k) consists of two or three elements, as shown in Table 4.1.

1 As Δu(k) ∈ {−1, 0, 1}, the absolute value of the switching effort and its squared value give the same result, that
is, |Δu(k)| = (Δu(k))2. Even though we use |Δu(k)| in (4.6), which is computationally simpler, the cost function
effectively consists of two squared terms.
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Table 4.1 Set of admissible switch
positions U(k) that meets the
switching constraint |Δu(k)| ≤ 1

u(k − 1) U(k)

1 {0, 1}
0 {−1, 0, 1}

−1 {−1, 0}

At time step k, the predictive current control algorithm computes uopt(k) according to the
following procedure:

1. Given the previously applied switch position u(k − 1) and taking into account the con-
straints on the switching transitions (4.7c), the set of admissible switch positions at time
step k, U(k), is determined.

2. For each switch position u(k) ∈ U(k), the current at time step k + 1, i(k + 1), is predicted
using the model (4.7b).

3. For each switch position u(k) ∈ U(k), the cost J is computed according to (4.6).
4. The switch position uopt(k) with the minimum cost is determined and applied to the

inverter.

At the next time step, this procedure is repeated.

Example 4.1 Consider the situation depicted in Fig. 4.3. The current at time step k is close to
its reference. Assuming that u(k − 1) is zero, the set of admissible switch positions at time step
k is U(k) = {−1, 0, 1}. For each u(k) ∈ U(k), the predicted i(k + 1) is shown in the figure.

The corresponding costs are summarized in Table 4.2. Switching to u(k) = 1 minimizes the
predicted current error but incurs a switching penalty, which is given by λu. Refraining from

k k+ 1

i(k)

i∗(k)

i∗(k + 1)

i(k + 1) for u(k) = 1

i(k + 1) for u(k) = 0

i(k + 1) for u(k) =−1

t

i

Figure 4.3 Prediction of the current at the next time step i(k + 1) as a function of the switch position
u(k). The current reference i∗ is indicated by the dashed line
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Table 4.2 Costs corresponding to the three
admissible u(k) in Example 4.1

u(k) (i∗(k + 1) − i(k + 1))2 λu|Δu(k)|

1 0.0302 λu

0 0.0522 0
−1 0.1322 λu

switching, that is, using u(k) = u(k − 1) = 0, leads to a slightly larger current error while
incurring no switching penalty. The third choice, u(k) = −1, is clearly suboptimal because
it entails a large current error and also requires switching. Whether u(k) = 0 or u(k) = 1
minimizes the cost and is thus optimal depends on the choice for λu. For large λu, the con-
troller refrains from frequent switching and tolerates relatively large current errors. For small
λu, the controller switches more often to minimize the deviations of the current from its refer-
ence. In this example, provided that λu is less than 0.0522 − 0.0302, switching is avoided and
uopt(k) = 1 is selected; otherwise uopt(k) = 0 is the optimal choice.

4.1.5 Performance Evaluation

In the following, simulation results are provided to demonstrate the performance of the
predictive current controller with reference tracking. The performance is investigated
during steady-state operating conditions as well as during transients, using the single-phase,
three-level inverter with an RL load shown in Fig. 4.1(a). The time delay because of the
controller computation is neglected. More specifically, the current i(k) is sampled at time step
k, the cost function is minimized, and the new control output u(k) is applied to the inverter at
the same time step.

The following parameters are assumed. The load has the ohmic resistance R = 2 Ω and the
inductance L = 2 mH. The rated root-mean-square (rms) phase voltage is VphR = 3.3/

√
3 kV,

the rated fundamental frequency is fR = 50 Hz, and the dc-link voltage is equal to its nominal
value Vdc = 5.2 kV. The per unit (pu) system is established using the base quantities
VB =

√
2VphR = 2694 V, ωB = ωR = 2π50 rad/s, and ZB = |R + jωRL| = 2.096 Ω, with

ωR = 2πfR. For more details on the pu system, the reader is referred to Sect. 2.1.2. The
sampling interval is set to Ts = 25 μs, which is equivalent to a sampling frequency of 40 kHz.

Under steady-state operating conditions, assume a current reference of a sinusoidal wave-
form with an amplitude of 0.8 pu and a fundamental frequency of 50 Hz. For very small λu,
the current tracks its reference closely with a small current ripple, as shown in Fig. 4.4. Note
that the switch positions have been (arbitrarily) scaled to half the peak current to simplify the
illustration. The resulting total demand distortion (TDD) of the current, as defined in (3.2), is
very small at ITDD = 1.66%, whereas the switching frequency fsw = 2650 Hz is prohibitively
high. The current spectrum was computed using a Fourier transformation. The amplitudes of
the harmonics are effectively zero, except for the fundamental component at 50 Hz, which is
equal to the reference amplitude of 0.8 pu.

Each switching transition incurs one on transition of an active switch (see Sect. 2.4.1). As
the phase leg consists of four active switches, the average switching frequency of these active



�

� �

�

Predictive Control with Short Horizons 159

Time (ms)

0

0 5 10 15 20
−1

−0.5

0.5

1

Frequency (kHz)

0
0 2 3 41

0.02

0.04

0.06

0.08

0.1

H
ar

m
on

ic
am

pl
it

ud
es

(p
u)

(b) Current spectrum

i 
(p

u)
, i

∗  
(p

u)
, a

nd
 u

(a) Current (solid line), current reference
      (dash-dotted line) and switch position

Figure 4.4 Predictive current control with λu = 0.0005 during steady-state operation for a single-
phase RL load, with ITDD = 1.66% and fsw = 2650 Hz

switches is upper-bounded by 0.25/Ts = 10 kHz. Setting λu to zero leads to the classic dead-
beat controller with ITDD = 1.03% and fsw = 5475 Hz, which is approximately half of the
theoretical upper bound. To further lower the current TDD, the sampling interval has to be
reduced. For Ts = 5 μs, for example, ITDD = 0.21% and fsw = 27.3 kHz are obtained.

Enlarging λu increases the current TDD and reduces the switching frequency accordingly, as
exemplified in Fig. 4.5 for λu = 0.005 and in Fig. 4.6 for λu = 0.0014. Note that the amplitude
spectra of the current are discrete and concentrated around 2fsw.

The relationship between the current TDD and the tuning parameter λu is effectively linear,
particularly for small λu, as shown in Fig. 4.7(a). The switching frequency, however, depends
in a nonlinear way on λu (see Fig. 4.7(b)). As λu is increased, particularly below 700 Hz, the
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Figure 4.5 Predictive current control as in Fig. 4.4, but with λu = 0.005, which results in ITDD =
8.47% and fsw = 400 Hz
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Figure 4.6 Predictive current control as in Fig. 4.4, but with λu = 0.0114, which results in ITDD =
17.33% and fsw = 150 Hz
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Figure 4.7 Trade-off between the current TDD and the switching frequency for predictive current con-
trol as in Fig. 4.4

switching frequency drops in steps of 50 Hz, indicating a certain degree of periodicity in the
switching pattern, even though this is not enforced in the cost function. This periodicity is also
reflected in the shape of the current spectra, featuring harmonic amplitudes only at discrete
frequencies.

Figure 4.8(a) highlights the performance of the predictive controller in the presence of step
changes in the current reference. The switching penalty is set to λu = 0.005. At t = 5 ms, the
current reference is reduced from 0.8 to 0.2 pu. When applying steps of significant magni-
tude, the current error suddenly increases and the corresponding penalty on the current error
dominates over the switching penalty. As a result, switching is performed to reduce this error
as quickly as possible—effectively regardless of the choice of λu. Specifically, the predictive
controller inserts a negative pulse, which drives the current quickly to its new reference value
within less than 0.5 ms. Note that the switching constraint (4.7c) is met, that is, switching is
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Figure 4.8 Predictive current control for a single-phase RL load during step changes in the current
reference from 0.8 pu to 0.2 pu and back to 0.8 pu at time instants t = 5 ms and t = 15 ms, respectively

performed from u = 1 to u = −1 via the intermediate switch position u = 0, as can be seen
in Fig. 4.8(b).

At t = 15 ms, the current reference is stepped back up to 0.8 pu. The length of the resulting
current transient at 1.2 ms is longer than in the step-down case, because less voltage is available
to be applied across the RL load. In both cases, the predictive controller provides the fastest
current response physically possible, effectively exhibiting a deadbeat behavior.

4.1.6 Prediction Horizons of more than 1 Step

The cost function (4.6) minimizes the current error at the next time step, based on the
predicted current after one time step, which is a function of the to-be-selected switch position.
As a result, the predictive current controller looks one step ahead, and the prediction horizon
is Np = 1. It is straightforward to generalize the controller to longer prediction horizons by
rewriting (4.6) as

J =
k+Np−1∑

�=k

(i∗(� + 1) − i(� + 1))2 + λu|Δu(�)| . (4.8)

The cost function is now a function of the sequence of switch positions, the so-called switch-
ing sequence U(k) = [u(k) u(k + 1) · · · u(k + Np − 1)]T . Accordingly, the generalized
optimization problem is

Uopt(k) = arg minimize
U(k)

J (4.9a)

subject to i(� + 1) = Ai(�) + Bu(�) (4.9b)

u(�) ∈ {−1, 0, 1}, |Δu(�)| ≤ 1 (4.9c)

∀� = k, k + 1, . . . , k + Np − 1 . (4.9d)

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

162 Model Predictive Control of High Power Converters and Industrial Drives

Out of the optimal switching sequence Uopt(k), only the first element uopt(k) is applied to the
inverter. According to the receding horizon policy (see Sect. 1.3.2), new (current) measure-
ments are obtained at the next time step k + 1, and the optimization problem (4.9) is solved
over the shifted time interval from k + 1 until k + 1 + Np.

Example 4.2 Assume a prediction horizon of Np = 2 steps and the previously applied switch
position to be u(k − 1) = 0. The set of admissible switching sequences is shown in Table 4.3.
For each switching sequence, the current trajectory from k to k + Np can be predicted, as
shown in Fig. 4.9. The numbering of the switching sequences is defined in Table 4.3.

Table 4.3 Set U(k) of admissible switching
sequences U(k) = [u(k) u(k + 1)]T for the
prediction horizon Np = 2, assuming the previously
applied switch position to be u(k − 1) = 0

Switching sequence u(k) u(k + 1)

U 1 1 1
U 2 1 0
U 3 0 1
U 4 0 0
U 5 0 −1
U 6 −1 0
U 7 −1 −1

k k+ 1 k+ 2

i(k)

i∗(k)

i∗(k+ 1)

i(k+ 1)
i∗(k+ 2)

i(k+ 2) for U1

i(k+ 2) for U2

i(k+ 2) for U3

i(k+ 2) for U4

i(k+ 2) for U5

i(k+ 2) for U6

i(k+ 2) for U7
t

i

Figure 4.9 Prediction of the current trajectories [i(k + 1) i(k + 2)]T over the prediction horizon
Np = 2 as a function of the switching sequences U(k) as given in Table 4.3. The current reference
i∗ is indicated by the dashed line
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As for a single-phase, three-level inverter there are three possible switch positions avail-
able at each step within the prediction horizon Np, one would expect, in general, 3Np dif-
ferent switching sequences. However, because of the second constraint in (4.9c), this number
merely constitutes an upper bound and the number of admissible switching sequences depends
on u(k − 1). For Np = 2, for example, u(k − 1) = 0 entails 7 switching sequences, while
u(k − 1) = ±1 restricts this number to 5. Nevertheless, for long prediction horizons, the num-
ber of admissible switching sequences explodes. At the same time, the sampling intervals are
typically in the range of several microseconds and thus very short, severely limiting the time
available to perform the optimization step.

As a result, the concept of exhaustive enumeration is not suitable to solve the optimization
problem for prediction horizons of more than a few steps. Instead, more sophisticated opti-
mization methods are essential. One option is to use branch-and-bound techniques, as will be
shown and explained in Chap. 5.

4.1.7 Summary

The predictive control concept introduced in this section is conceptually very simple and versa-
tile. It consists of three main components, namely the cost function, the controller model, and
the solution algorithm based on enumeration. Adapting the cost function to different control
problems and the system model to a large variety of power electronic systems is straightfor-
ward. In the following, several examples are provided.

• Systems with more than one phase, such as three-phase and multiphase systems, can easily
be controlled. The scalar switch position and current are replaced by vectors, with each
component referring to one phase. Accordingly, the system model is given in matrix form,
as shown in the next section.

• Multilevel inverter topologies can be addressed by expanding the discrete set for u. For a
five-level inverter, for example, this leads to u ∈ {−2,−1, 0, 1, 2}. Additional switching
constraints can be added to (4.9d).

• Different loads, such as induction or synchronous machines, can be considered by adapting
the controller model accordingly. This adaptation will be exemplified in the next section for
a squirrel-cage induction machine.

• Inverters with internal dynamics, such as a neutral point potential, can be addressed by
adding these dynamics to the controller model.

• Instead of regulating the current along its reference trajectory, other quantities can be regu-
lated, including the electromagnetic torque and the stator flux magnitude. This case will be
investigated in Sect. 4.3.

• Bounds around the reference trajectory can be added, which can be interpreted as soft con-
straints. Within these bounds, the current error is not or only mildly penalized, while a large
penalty comes into effect once a soft constraint is (or is predicted to be) violated.

• Different norms can be considered in the cost function, such as the 1-norm or the infinity-
norm, rather than the 2-norm. The implications of using the 1-norm will be investigated in
Sect. 4.2.7.

For a review of some of the related literature, the reader is referred to Sect. 4.4.
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4.2 Predictive Current Control of a Three-Phase Induction Machine

The predictive current controller, which was introduced in the previous section for a single-
phase RL load with a three-level inverter leg, is generalized in this section to a three-phase
drive system.

4.2.1 Case Study

As a typically used medium-voltage (MV) drive system, consider a squirrel-cage induction
machine driven by a three-level, three-phase, neutral-point-clamped (NPC) inverter, as shown
in Fig. 4.10. To simplify the exposition in this section, the neutral point potential is fixed to
zero. In each phase, the inverter produces the voltages −vdc

2 , 0, and vdc
2 , which correspond

to the switch positions ua, ub, and uc ∈ {−1, 0, 1}. The total dc-link voltage is denoted by
vdc and assumed to be constant. We use uabc = [ua ub uc]

T to denote the three-phase switch
positions. The voltage applied to the machine terminals in orthogonal coordinates is given by

vs =
vdc

2
K̃ uabc (4.10)

with vs = [vsα vsβ ]T . The reduced Clarke transformation K̃ is defined in (2.13). For more
details on the NPC inverter, see Sect. 2.4.1.

State-space models of the squirrel-cage induction machine were derived in Sect. 2.2.4. In
this section, we choose stationary orthogonal coordinates and set the angular speed of the
reference frame to zero. For the current control problem at hand, it is convenient to represent
the machine dynamics in terms of the stator current is = [isα isβ]T and the rotor flux linkage
vector ψr = [ψrα ψrβ ]T . Recall that the rotor voltage vr is zero in a squirrel-cage induction
machine. This leads to the following set of continuous-time state-space equations:

dis

dt
= − 1

τs

is +
(

1
τr

I2 − ωr

[
0 −1
1 0

])
Xm

D
ψr +

Xr

D
vs (4.11a)

dψr

dt
=

Xm

τr

is −
1
τr

ψr + ωr

[
0 −1
1 0

]
ψr (4.11b)

dωr

dt
=

1
M

(Te − T�) , (4.11c)

where I2 denotes the two-dimensional identity matrix. The model parameters are the stator
and rotor resistances Rs and Rr, respectively, the stator, rotor, and mutual reactances Xls,
Xlr, and Xm, respectively, the moment of inertia M , and the mechanical load torque T�. The
rotor quantities are referred to the stator circuit. Moreover, we had defined in Sect. 2.2

Xs = Xls + Xm, Xr = Xlr + Xm, and D = XsXr − X2
m . (4.12)

The transient stator time constant and the rotor time constant are

τs =
XrD

RsX
2
r + RrX

2
m

and τr =
Xr

Rr

. (4.13)
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Figure 4.10 Three-level, three-phase, neutral-point-clamped voltage source inverter driving an induc-
tion motor with a fixed neutral point potential

The electromagnetic torque is given by

Te =
1
pf

Xm

Xr

ψr × is =
1
pf

Xm

Xr

(ψrαisβ − ψrβisα) . (4.14)

4.2.2 Control Problem

The control problem of the inner current loop is formulated in the αβ reference frame. Let i∗s
denote the reference of the instantaneous stator current, with i∗s = [i∗sα i∗sβ]T . The objective
of the current controller is to manipulate the three-phase switch position uabc such that the
stator current is closely tracks its reference. At the same time, the switching effort, that is,
the switching frequency or the switching losses, is to be kept small. As previously, switching
between 1 and −1 in a phase leg is prohibited.

The block diagram of the predictive current controller is shown in Fig. 4.11. The controller
predicts the stator current at the next time step for all admissible switch positions. For the
prediction, the measured stator current is required, along with the rotor flux vector. A flux
observer estimates the rotor flux vector using the measured stator current and the stator voltage.
The latter is typically not measured, but is rather reconstructed using the dc-link voltage and
the three-phase switch position.

In a drive setting, outer control loops are added in a cascaded controller fashion. These
outer loops manipulate i∗s so as to keep the machine appropriately fluxed and to regulate the
machine’s rotational speed. An example is provided in Fig. 3.26, which shows the block dia-
gram of a (direct) rotor field-oriented controller. The outer flux and speed control loops are
adopted for the predictive current controller. These control loops are shown on the left-hand
side of Fig. 4.11.

The rotor flux magnitude is defined as Ψr = ||ψr||. The outer control loops are formulated in
the rotating dq reference frame with the angular position ϕ of the rotor flux vector. These con-
trol loops provide the stator current reference i∗s,dq in dq, which serves, after being translated
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Figure 4.11 Predictive current controller for the three-phase, three-level NPC inverter with an induc-
tion machine, including the outer flux and speed control loops

into the stationary αβ coordinate system, as the reference i∗s to the predictive current con-
troller. As the dynamics of the outer loops are slower than those of the inner loop—typically
by an order of magnitude—we neglect them in the following to simplify the exposition. For
more details on outer control loops, the reader is referred to Sect. 3.6.2.

4.2.3 Controller Model

The predictive current controller relies on an internal model of the physical drive system to
predict future stator currents as a function of the three-phase switch position u = uabc =
[ua ub uc]

T ∈ {−1, 0, 1}3. By inserting (4.10) into (4.11a), the continuous-time state-space
model of the stator current can be expressed in terms of the switch position u as

dis(t)
dt

= F is(t) + G1 ψr(t) + G2 u(t) (4.15)

with

F = − 1
τs

I2, G1 =
Xm

D

[
1
τr

ωr

−ωr
1
τr

]
and G2 =

vdc

3
Xr

D

⎡

⎣1 − 1
2 − 1

2

0
√

3
2 −

√
3

2

⎤

⎦ . (4.16)

Recall that the stator current is and the rotor flux ψr are represented in orthogonal coordinates
with the components α and β.

The discrete-time state-space representation is obtained by integrating (4.15) from t = kTs

to t = (k + 1)Ts. We assume that the derivative of is at t = kTs is constant throughout the



�

� �

�

Predictive Control with Short Horizons 167

integration time interval. This approach is known as the forward Euler method, which is suffi-
ciently accurate for short sampling intervals of several tens of microseconds. The discrete-time
representation is then

is(k + 1) = Ais(k) + B1 ψr(k) + B2 u(k) (4.17)

with the system matrices

A = I2 + F Ts, B1 = G1 Ts and B2 = G2 Ts . (4.18)

Equation (4.17) allows one to predict the stator current at the next time step k + 1. The
forward Euler discretization method neglects the evolution of the rotor flux vector within
the sampling interval, assuming that it is constant from t = kTs to t = (k + 1)Ts. Therefore,
the rotor flux equation (4.11b) can be neglected when adopting a prediction horizon of 1 and the
forward Euler discretization method. As a result, the rotor flux vector can be considered to be a
time-varying parameter rather than a system state. Similarly, the rotor speed ωr is assumed to
be constant within the prediction horizon, which turns the speed into a time-varying parameter.

It is clear that the discrete-time model (4.17) should be used only to predict the stator current
at the next time step k + 1. Predictions further ahead at time steps k + �, with � � 1, tend to
be inaccurate, because the rotation of the rotor flux vector is not taken into account. For these
predictions, the full state-space representation should be adopted, which includes the evolution
of the rotor flux vector, as described in Chap. 5.

4.2.4 Optimization Problem

The previously defined cost function (4.6) is now generalized to vector quantities.

J = ||ie,abc(k + 1)||22 + λu||Δu(k)||1 . (4.19)

The first term penalizes the predicted three-phase current error at the next time step k + 1,
using the squared 2-norm. The current error in abc is given by

ie,abc = i∗s,abc − is,abc .

The second term penalizes switching at time step k. The latter is defined as

Δu(k) = u(k) − u(k − 1) ,

referring to the switch positions in the three phases a, b, and c.2 As previously, λu is a non-
negative scalar weight.

As the state vector of the controller model is given by the stator currents in αβ coordinates
rather than in abc, it is convenient to express the first term in (4.19) in αβ. To this end, we
define the current error in stationary orthogonal coordinates ie = i∗s − is, and recall from
Sect. 2.1.3 that

ie,abc = K̃
−1

ie .

2 As in each phase switching is allowed only by one step up or down, the 1-norm and the (squared) 2-norm of the
switching transition yield the same cost, that is, ||Δu(k)||1 = ||Δu(k)||22.
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Noting that K̃
−T

K̃
−1

= 1.5I2, the first term in (4.19) can be rewritten as

||ie,abc||22 = (ie,abc)
T ie,abc = 1.5 ||ie||22 . (4.20)

Omitting the factor 1.5 to simplify the expression, the equivalent cost function with the current
error formulated in stationary orthogonal coordinates becomes

J = ||ie(k + 1)||22 + λu||Δu(k)||1 . (4.21)

The cost function requires the stator current reference i∗s in orthogonal coordinates at the
future time step k + 1. Assuming steady-state operation with constant current references in the
rotating dq reference frame, i∗s(k + 1) can be easily derived by modifying the angular position
of the dq reference frame. Specifically, in the dq to αβ transformation in Fig. 4.11, the angle
ϕ + ωsTs is used as argument instead of ϕ. Recall that ωs is the angular stator frequency, and
ωsTs is the angular increment within the sampling interval Ts (see also Sect. 12.2.3).

The optimization problem underlying predictive current control with reference tracking for
an induction machine can then be stated as

uopt(k) = arg minimize
u(k)

J (4.22a)

subject to is(k + 1) = A is(k) + B1 ψr(k) + B2 u(k) (4.22b)

u(k) ∈ {−1, 0, 1}3, ||Δu(k)||∞ ≤ 1 . (4.22c)

Note that ||Δu||∞ denotes the infinity-norm of the vector Δu, which is defined as the compo-
nent of Δu with the largest absolute value, that is, ||Δu||∞ = max(|Δua|, |Δub|, |Δuc|).

4.2.5 Control Algorithm

At time step k, the predictive current control algorithm computes uopt(k) in effec-
tively the same manner as in the single-phase case. The algorithm is repeated here for
completeness.

1. Given the previously applied switch position u(k − 1) and taking into account the con-
straints on the switching transitions (4.22c), the set of admissible switch positions at time
step k, U(k), is determined.

2. For each of these switch positions u(k) ∈ U(k), the stator current at time step k + 1,
is(k + 1), is predicted using the model (4.22b).

3. For each switch position u(k) ∈ U(k), the cost J is computed according to (4.21).
4. The switch position uopt(k) with the minimum cost is determined and applied to the

inverter.

At the next time step, the procedure outlined here is repeated.
This predictive current control algorithm based on enumeration and a prediction horizon of

Np = 1 was originally introduced for a three-phase RL load with voltage sources; the case
of the two-level inverter was considered in [2], whereas the predictive concept was extended
to a three-level inverter in [3]. In both cases, instead of the squared 2-norm, the 1-norm was
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proposed for penalizing the predicted current error in the cost function. The implications of
this will be analyzed and discussed in Sect. 4.2.7.

Example 4.3 Consider the situation depicted in Fig. 4.12. The α-component of the stator cur-
rent is shown in the top half, and the β-component is depicted in the bottom half. At time step
k, both current components are close to their respective references. The previously applied
switch position is u(k − 1) = [1 − 1 0]T . The set of admissible switch positions U(k) con-
tains 12 elements. The predicted stator currents are shown in the figure for three exemplary
admissible switch positions u(k) ∈ U(k).

The corresponding costs are summarized in Table 4.4. Switching to u(k) = [1 − 1 − 1]T

minimizes the predicted current error but incurs a switching penalty, which is given by λu.
Refraining from switching, that is, using u(k) = u(k − 1) = [1 − 1 0]T , leads to a more
pronounced current error while incurring no switching penalty. The third choice, u(k) =
[1 0 0]T , is clearly suboptimal, in that it entails a large current error and also requires two
switching transitions.

If the weight λu is sufficiently small, prioritizing the tracking of the current, the first choice,
that is, u(k) = [1 − 1 − 1]T , is selected as the optimal switch position uopt(k). The corre-
sponding stator current trajectory is shown as a solid line in Fig. 4.12. Large λu, on the other
hand, accentuate the reduction of the switching effort at the expense of tracking accuracy. As
a result, switching is avoided and uopt(k) = u(k − 1) is chosen.

k

k

k + 1

k+ 1

isα(k)

isα(k)∗
isα(k + 1)∗

isα(k + 1) for u(k) = [1−1−1]T

isα(k + 1) for u(k) = [1−1 0]T

isα (k + 1) for u(k) = [1 0 0]T

t

t

isα

isβ(k)

isβ(k)∗

isβ(k + 1)∗

isβ(k + 1) for u(k) = [1 0 0]T

isβ(k + 1) for u(k) = [1−1−1]T

isβ(k + 1) for u(k) = [1−1 0]T

isβ

(a) α-component

(b) β-component

Figure 4.12 Predicted stator currents in orthogonal coordinates at time step k + 1 as a function of the
switch position u(k). The current reference is indicated by dashed lines
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Table 4.4 Costs corresponding to the three switch positions
u(k) shown in Fig. 4.12

u(k) (ieα(k + 1))2 + (ieβ(k + 1))2 λu||Δu(k)||1

[1 − 1 0]T 0.0732 + 0.112 0
[1 − 1 − 1]T 0.0252 + 0.032 λu

[1 0 0]T 0.1352 + 0.032 2λu

4.2.6 Performance Evaluation

As a case study, consider a three-level NPC voltage source inverter driving an induction
machine with a constant mechanical load. A 3.3 kV, 50 Hz squirrel-cage induction machine
rated at 2 MVA with a total leakage reactance of 0.25 pu is used. The detailed parameters of
the machine and inverter are provided in Sect. 2.5.1. Recall that, unlike in Sect. 2.5.1, the
neutral point potential is fixed. The operating point is at nominal speed and rated torque. The
sampling interval is 25 μs.

Simulation results at steady-state operation are shown in Fig. 4.13 for λu = 0.003. The
three-phase stator currents, indicated by solid lines, along with their references, which are
depicted by dash-dotted lines, are shown for one fundamental period, along with the elec-
tromagnetic torque and the three-phase switch positions. The current distortions are ITDD =
6.69%, and the average switching frequency per semiconductor device is fsw = 222 Hz. Owing
to the lack of periodicity, the harmonic current spectrum is spread over a large frequency range.
The majority of the harmonic content is between 600 and 1500 Hz.

By varying the weight λu and running steady-state simulations, the trade-off between the
current TDD and the average switching frequency per semiconductor device can be investi-
gated. The corresponding analysis is shown in Fig. 4.14, where λu is varied between 0 and
0.02. Below λu = 0.017, the current TDD depends almost linearly on λu, while the switching
frequency drops steeply from 3440 Hz at λu = 0 to about 70 Hz at λu = 0.0175. Note that the
switching frequency is plotted using a logarithmic scale. A small discontinuity in the current
TDD can be observed around λu = 0.007, where the switching frequency plateaus at 100 Hz.
When increasing λu beyond 0.018, fundamental frequency switching (or six-step operation)
is achieved with the switching frequency of 50 Hz. The current TDD settles at around 20%.

Of particular interest is the product of the current distortions and the device switching fre-
quency

ITDD · fsw = cf .

We have seen in Sect. 3.5 that cf is effectively a constant for pulse width modulation (PWM),
regardless of the switching frequency. As can be seen in Fig. 4.14(c), for the predictive current
controller under investigation, this statement needs to be refined. Specifically, five distinctive
regions can be observed in Fig. 4.14(c).

1. λu < 0.0005: With the switching penalty effectively zero, a high cf results, leading to an
unfavorable ratio between current distortions and switching frequency. Correspondingly,
when reducing λu below 0.0005, the switching frequency is increased significantly, while
the current TDD, in relative terms, is reduced only mildly.
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2. 0.0005 ≤ λu < 0.0065: For this range of weights, cf is approximately equal to 1600. The
switching frequency is bounded between 1 kHz and 100 Hz. The current TDD depends
linearly on the weight λu, facilitating the tuning of the controller, which would typically
be used in this operating region.

3. λu = 0.0065: A favorable ratio between current distortions and switching frequency is
obtained for 100 Hz switching frequency with cf being as low as 1100.

4. 0.0065 < λu < 0.018: For relatively high switching penalties, low switching frequencies
between 100 and 70 Hz result. The value of cf is mostly very high, indicating an unfavorable
ratio between current distortions and switching frequency.

5. λu ≥ 0.018: For large switching penalties, fundamental frequency switching (fsw = 50 Hz)
results and a very favorable cf of approximately 1000 is achieved.

This analysis shows that weights on the switching transition that are (effectively) zero lead
to a poor steady-state performance. If very low current distortions are required, the sampling
interval Ts should be reduced instead of setting λu to zero. This ensures operation in region 2,
which is the recommended operating regime for the predictive controller. When very low
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Figure 4.13 Predictive current control during steady-state operation for λu = 0.003, with ITDD =
6.69% and fsw = 222 Hz
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Figure 4.14 Trade-off between the current TDD and the device switching frequency for predictive
current control under steady-state operating conditions for an NPC inverter with an induction machine.
As a function of the weight λu, the current TDD, the switching frequency, and the product of the two
scaled by 1000 are shown. The sampling interval is kept constant at Ts = 25 μs

switching frequencies are required, regions 3 and 5 are also favorable. Interestingly, for large
λu the switching frequency locks into integer multiples of the fundamental frequency. This
phenomenon will be further investigated in Chap. 5 in the context of long prediction horizons.
Region 4 should be avoided and the weight λu should be tuned accordingly.

A similar analysis can be performed for the sampling interval Ts. For the weight λ = 0.003,
the sampling interval at which the controller is executed is varied between 5 and 500 μs.3

Plotting the current TDD, the device switching frequency, and the product of the two scaled
by 1000 as a function of the sampling interval using the logarithmic scale, Fig. 4.15 is obtained.

3 One needs to distinguish between the controller and the simulation sampling interval. The controller is executed
at the time instants defined by the controller sampling interval. The system sampling interval is used to simulate the
response of the drive system in MATLAB—it is independent of the controller sampling interval and is in the range
of a few microseconds and thus sufficiently small to ensure that the system evolution is accurately simulated. In this
analysis, the controller sampling interval is varied while the system sampling interval is held constant.
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Figure 4.15 Influence of the sampling interval on the current TDD, device switching frequency, and
the product of the two at steady-state operation. The weight λ = 0.003 on the switching transitions is
kept constant

As can be seen, for λ = 0.003, sampling intervals below 10 μs lead to high current distortions
and to unfavorable products between the current distortion and the switching frequency, with
cf well exceeding 1600. The prediction interval (in time), that is, the prediction horizon (given
as the number of steps) multiplied by the sampling interval, is very small for these sampling
intervals, leading to a poor performance.

For sampling intervals in the range from 10 to 90 μs, low current distortions and rela-
tively low switching frequencies are obtained, with cf mostly below 1600. Very favorable
cf can be achieved for Ts = 10, 20, and 25 μs, for which the fundamental period (here 20 ms)
is an integer multiple of the sampling interval. For sampling intervals exceeding 90 μs, cf

deteriorates and is above 1600. Even though the prediction interval is long, the granularity at
which switching can be performed is overly coarse for long sampling intervals, impacting on
the performance.
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Figure 4.16 Predictive current control in the presence of step changes in the torque reference from 1
to 0 pu and back to 1 pu

We conclude that the sampling interval has almost as strong an influence on the steady-state
performance as the weight λu. In effect, predictive current control uses two tuning parameters.
This complicates the tuning process.

The performance of the predictive current controller during torque reference steps is exam-
ined next. The switching penalty is set to λu = 0.003, and the sampling interval Ts = 25 μs
is again used. Operation is at nominal speed and initially at rated torque. At t = 5 ms, a torque
reference step from 1 to 0 pu is applied, as shown in Fig. 4.16(c). The current references, which
are shown as dash-dotted lines in Fig. 4.16(a), are stepped down accordingly. The predictive
controller achieves a very fast current and thus torque settling time of about 0.3 ms, by insert-
ing a switching pulse of the same duration, which effectively inverts the voltage applied to the
machine (see Fig. 4.16(b)). The stator flux magnitude, which is shown in Fig. 4.16(d), remains
constant and is not affected by the torque step.

At t = 15 ms, the torque reference is stepped back to 1 pu. The length of the resulting
torque transient at 3.5 ms is significantly longer than in the step-down case. During the tran-
sient, a minor dip in the stator flux magnitude can be observed. The latter is due to the fact
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that the controller tracks the stator current references rather than the desired torque and sta-
tor flux magnitude. As in the single-phase case, the predictive controller provides the fastest
torque response physically possible, effectively exhibiting the dynamic behavior of a deadbeat
controller.

4.2.7 About the Choice of Norms

In the cost function, we have—so far—exclusively used the squared 2-norm, that is, the sums
of squares of the current error components in the α- and β-axis. Predictive current control with
reference tracking, however, was originally proposed with the 1-norm, or in other words, the
sum of the absolute values of the current error components [2]. Even today, the vast majority of
the literature on predictive control with reference tracking is based on the 1-norm, because it is
computationally simpler. One might consider the choice of norm to be a subtlety, but this choice
has indeed a profound impact on the controller performance, as will be shown in this section.

For this investigation, we replace the squared 2-norm by the 1-norm and repeat the
steady-state simulations in the previous section for the predictive current controller. More
specifically, the cost function (4.21) is replaced by

J = ||ie(k + 1)||1 + λu||Δu(k)||1 . (4.23)

Note that ||ie||1 = |ieα| + |ieβ |.
The drive system and operating point are the same as previously stated in Sect. 4.2.6. For

λu = 0.017 and Ts = 25 μs, for example, the stator currents, three-phase switch positions,
torque, and stator flux magnitude are shown in Fig. 4.17. Large deviations of the currents from
their references occur, resulting in torque excursions of 20% and more from its reference, as
well as fluctuations in the stator flux magnitude. This is despite the high switching frequency
of 1180 Hz. The closed-loop system appears to become temporarily unstable.

Analogous to Fig. 4.14, but using the 1-norm in the cost function, λu is varied between
0 and 0.02. The current TDD and the device switching frequency as a function of λu are
shown in Fig. 4.18. Current excursions manifest themselves for λu > 0.0072, which lead to
a deterioration of the current TDD, causing a small, yet distinctive step in the current TDD
in Fig. 4.18(a). For λu > 0.0198, the controller entirely fails to track the current references.
The switching frequency drops close to zero and closed-loop stability is lost. For λu > 0.027,
which is not shown in the figure, switching is avoided altogether and the switch position is
frozen at its initial switching state u = [0 0 0]T .

Figures 4.14 and 4.18 use the same scaling to facilitate a direct comparison of the perfor-
mance induced by the squared 2-norm and the 1-norm on the predicted current error, respec-
tively. It is evident that the 1-norm is an unfortunate choice—it is effective only between
λu = 0 and 0.0072. In this range, its tuning capability of setting the trade-off between the
current distortion and the switching frequency is severely limited. In particular, closed-loop
operation with current TDDs in the range of 5–10% with switching frequencies of a few hun-
dred hertz is not possible. Beyond λu = 0.0072, the current excursions impact on the current
TDD, leading to suboptimal results.

The root cause for the poor performance of the 1-norm is analyzed in the following. Consider
a single-phase system with the current i, the reference current i∗, and the current error ierr =
i∗ − i. Assume that the current error at time step k is small, as depicted in Fig. 4.19(a). Starting
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Figure 4.17 Predictive current control during steady-state operation with λu = 0.017 and the 1-norm
penalizing the current error
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Figure 4.18 Trade-off between the current TDD and the switching frequency when using the 1-norm
in the cost function to penalize the predicted current error
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Figure 4.19 Impact of the choice of norm on the selection of the switch position in a single-phase
setting, using the case of a small and a large current error as an example. For the 1-norm, when the
switching cost (light gray bar) outweighs the relative reduction of the tracking error ierr (difference
in the dark gray bars), switching is avoided regardless of the absolute tracking error. This leads to
current excursions and ultimately to instability. When using the squared 2-norm, however, sufficiently
large current errors will always dominate over the cost of switching, triggering a switching transition to
reduce the current error. This ensures good tracking performance as well as stability of the closed-loop
system
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from the time step k and assuming u(k − 1) = 1, the left plot shows the predicted currents
i(k + 1) as a function of the switch position u(k). To denote this, we introduce the notation
i(k + 1)|u=u(k).

The cost function4 using the 1-norm is depicted on top. The tracking error cost depends
linearly on the current error. This cost is shown as a dotted line and indicated by a dark gray
bar. The switching cost is shown as a light gray bar. For the squared 2-norm, the penalty on
the current error depends quadratically on the current error. For both cases, it is evident that
refraining from switching yields the minimum cost and is thus optimal.

Figure 4.19(b) depicts the same situation as before, except for a large current error at time
step k. The cost function based on the 1-norm selects u(k) = u(k − 1) = 1 and thus fails to
trigger a switching transition to u(k) = 0 to reduce the current error. Instead, the current error
grows further. The reason for this is evident from the components in the cost function. The
switching cost (light gray bar) outweighs the relative reduction in the tracking error, which is
given by the difference in the predicted current error when using u(k) = 1 and u(k) = 0. As a
result, switching is avoided regardless of the absolute tracking error. When using the squared
2-norm, however, the current error grows quadratically up to the point where the reduction in
the tracking error cost exceeds the cost of switching, triggering a switching transition from
u(k − 1) = 1 to u(k) = 0. Therefore, when using the squared 2-norm, sufficiently large cur-
rent errors will always trigger a switching transition to reduce this error, ensuring good tracking
performance and closed-loop stability.

To simplify the exposition, a single-phase system was considered in this analysis, but the
reasoning can directly be extended to three-phase systems. Even though the 1-norm might
appear to be appealing in the sense that it is computationally simpler than the squared 2-norm,
its inability to provide adequate tuning and to ensure closed-loop stability makes it a poor
choice for predictive controllers with reference tracking.

4.2.8 Delay Compensation

So far we have assumed an ideal discrete-time setup without any time delay between the
sampling of the measurements and the application of the new switch position. This case is
exemplified in Fig. 4.20. The stator current is is sampled at time step k. The corresponding
switch position u(k) is computed within an infinitesimally short time, and it is applied from
time step k to k + 1. The current is sampled again at time step k + 1, based on which the
switch position u(k + 1) is computed, and so on.

In a practical inverter setting, however, physical limitations cause a time delay between
the sampling of the measurements and the application of the new switch position. The most
prominent and commonly encountered sources of delays can be summarized as follows:

• Measurement delay. The measured signals are typically sampled in the inverter at a fixed
sampling frequency. The analog-to-digital (A/D) conversion incurs a time delay—albeit a
small one—of about 1 μs.

4 The cost J is the sum of the switching cost, λu|Δu(k)|, and the cost on the predicted tracking error. The latter is
(ierr(k + 1))2 for the squared 2-norm and |ierr(k + 1)| for the 1-norm.
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Figure 4.20 Idealized case of predictive current control without any delay. Only the α-component of
the stator current and the phase a of the three-phase switch position are shown

• Uplink communication delay. The digital measurements are transmitted to a computational
unit, such as a field-programmable gate array (FPGA), a digital signal processor (DSP), or
a central processing unit (CPU). In the case of a serial link, the communication delay often
amounts to 10 μs or more.

• Computation delay. The predictive control algorithm is executed on the computational unit.
The computation of the new switch position requires a control-algorithm-specific number of
clock cycles, ranging from several tens of cycles on a dedicated FPGA with a computation-
ally simple algorithm to tens of thousands of cycles. The computational resources are often
shared with other processes, such as outer control loops and monitoring tasks, which reduce
the computational power available for the predictive controller and increase the computation
delay. If some of the state or controlled variables cannot be measured, an observer needs to
be run first to reconstruct them, further increasing the computation delay. As a result, delays
of 10 μs are common even for simple predictive controllers.

• Downlink communication delay. The newly computed switch position is sent back to the
inverter via a downlink, incurring another communication delay.

• Actuation delay. Before applying the switch position, a protection stage usually ensures that
only admissible switch positions are applied to the semiconductors. Further delays often
occur in the gate drivers and from the addition of interlocking times before the current com-
mutates. For gate-commutated thyristors (GCTs), the interlocking time amounts to several
microseconds.

The sum of all time delays typically amounts to several tens of microseconds in a high-power
electronics setup.
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Figure 4.21(a) depicts the communication and computation delays, which are generally the
most significant delays. The symbols U and D refer to the uplink and downlink communication,
respectively, whereas C denotes the computation. The sampling of the measurements and the
application of the switch position are indicated by vertical arrows.

To simplify the exposition, we assume that the sum of the time delays Td is equal to the
sampling interval Ts. The switch position u(k) is computed based on the measurements at
time step k. We use the notation u(k|k) to state that u(k) depends on measurements obtained
at time step k. A delay of one sampling interval causes the application of u(k|k) at the next
time step k + 1. The delayed application of the switch position increases the current ripple, as
indicated in Fig. 4.21(a), and adversely impacts on the closed-loop performance.

It is common practice to compensate for delays when implementing digital control schemes.
To this end, an additional prediction step can be introduced, using the state-space model (4.17).
Specifically, using the stator current sample is(k − 1), the rotor flux estimate ψr(k − 1|
k − 2), and the previously applied switch position u(k − 1|k − 2) at time step k − 1, the
stator current at time step k can be predicted with the help of

is(k|k − 1) = Ais(k − 1) + B1 ψr(k − 1|k − 2) + B2 u(k − 1|k − 2) . (4.24)

This initial state prediction predicts the value of the stator current at time step k, at which
the to-be-computed switch position will be applied to the inverter. The initial state prediction
is based on information that is available at time step k − 1. In particular, the estimate of the
rotor flux vector ψr(k − 1|k − 2) and the switch position u(k − 1|k − 2) were computed at
time step k − 2. This situation is depicted in Fig. 4.21(b).

We are now ready to augment the predictive current controller in Sect. 4.2.5 with a delay
compensation scheme. To this end, we add Step 0 to the control algorithm. Step 0 performs
the initial state prediction and projects the stator current sample from time step k − 1 to k.
Also, the stator current reference needs to be projected one time step forward. Following the
technique outlined in Sect. 4.2.4, we add ωsTs to the angular position of the dq reference frame,
in which the outer control loops manipulate the stator current reference. At time step k − 1, the
predictive current control algorithm computes uopt(k|k − 1), which is applied at time step k.

0. The stator current is(k − 1) is sampled, and the current at time step k is predicted using
the initial state prediction (4.24).

1. Given the switch position u(k − 1|k − 2) and taking into account the constraints on the
switching transitions (4.22c), the set of admissible switch positions at time step k, U(k|
k − 1), is determined.

2. For each switch position u(k|k − 1) ∈ U(k|k − 1), the stator current at time step k + 1,
is(k + 1), is predicted using the model (4.22b).

3. For each switch position u(k|k − 1) ∈ U(k|k − 1), the cost J is computed according to
(4.21).

4. The switch position uopt(k|k − 1) with the minimum cost is determined and applied to the
inverter.

This procedure is repeated at the next time step. Note that both the original and the revised
algorithms compute an optimum switch position that is applied at time step k. To do so, the
execution of the revised algorithm has already started at time step k − 1 by sampling the
current.
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Figure 4.21 Predictive current control without and with delay compensation, assuming a delay of one
sampling interval. The symbols U, C, and D refer to the uplink communication, computation, and down-
link communication, respectively. Only the α-component of the stator current and the phase a of the
three-phase switch position are shown
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If the delay is shorter than the sampling interval, the state-space model (4.24) for the initial
state projection can be discretized with the length of the time delay Td. Specifically, (4.15) is
integrated from t = kTs to t = kTs + Td, and Ts is replaced by Td in (4.18). For the prediction
of the current at time step k in Step 2 of the algorithm, however, the state-space model is always
discretized with the sampling interval Ts, regardless of the delay.

The delay compensation scheme is also applicable to cases involving time delays in excess
of one sampling interval. Figure 4.22 depicts the timing diagram for a time delay of two sam-
pling intervals. After sampling the current at time step k − 2 and sending the measurements
to the computational unit, two prediction steps are required to project the current sample from
time step k − 2 to k. To do so, the switch positions u(k − 2|k − 4) and u(k − 1|k − 3) are
required. As indicated in Fig. 4.22, these switch positions are available at the time the initial
state prediction is performed. Longer delays in the measurement and uplink communication
chain can also be addressed [4]. Time delays that are non-integer multiples of the sampling
interval can be compensated for by discretizing the state-space model accordingly, thus gen-
eralizing the technique described for the case Td < Ts.

In the presence of (long) delays, the initial state prediction significantly improves the
closed-loop performance, as shown in [4]. The performance of the delay compensation is,
however, limited by the accuracy of the state-space model. Nondeterministic and time-varying
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Figure 4.22 Compensation of a time delay of two sampling intervals, using an initial state prediction
with two steps
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delays also affect its performance. Furthermore, the delay compensation scheme is unable to
avoid an initial delay in the controller response to reference changes and transients.

We have introduced in this section the delay compensation scheme for predictive current
control with a prediction horizon of one step. It is straightforward to generalize the initial
state prediction to other model predictive control (MPC) schemes that are formulated in the
discrete-time domain. This includes MPC with reference tracking and long horizons (see
Chaps. 5 and 6), MPC with bounds (as proposed in Chaps. 7–11), and indirect MPC with
PWM (as detailed in Chap. 14). For more information on delays and their compensation in
MPC for power electronics, the reader is referred to [5–7].

For model predictive pulse pattern control (MP3C) (see Chaps. 12 and 13), a different delay
compensation scheme is required. This will be discussed in Sect. 12.4. Throughout the book,
all simulation results have been obtained for simulation setups without delays, unless otherwise
noted. For the experimental results, the controllers were augmented with a delay compensation
scheme similar to the one described in this section.

4.3 Predictive Torque Control of a Three-Phase Induction Machine

The notion of the predictive current controller with reference tracking has been illustrated in the
previous section using an ac drive system setting. When controlling electrical drives, however,
it is often convenient—similar to when using direct torque control (DTC)—to directly control
the electromagnetic torque and the stator flux magnitude of the electrical machine, rather than
to indirectly control these quantities via the stator currents. This can be easily accomplished by
slightly modifying the predictive controller, as shown in this section. While the cost function
and the internal controller model are adapted, the solution algorithm based on enumeration
remains the same.

4.3.1 Case Study

Consider again the same drive system as in Sect. 4.2, which consists of an NPC inverter with a
squirrel-cage induction machine. For predictive torque control, it is convenient to reformulate
the machine model and to express its dynamics in terms of the stator and rotor flux linkage
vectors ψs = [ψsα ψsβ]T and ψr = [ψrα ψrβ ]T , respectively. Setting the rotor voltage vr

and the angular speed of the reference frame to zero in (2.55) leads to the continuous-time
machine equations in state-space representation:

dψs

dt
= −Rs

Xr

D
ψs + Rs

Xm

D
ψr + vs (4.25a)

dψr

dt
= Rr

Xm

D
ψs − Rr

Xs

D
ψr + ωr

[
0 −1
1 0

]
ψr (4.25b)

dωr

dt
=

1
M

(Te − T�) . (4.25c)

By expanding the cross product in (2.56), the electromagnetic torque can be written in the
form

Te =
1
pf

Xm

D
ψr × ψs =

1
pf

Xm

D
(ψrαψsβ − ψrβψsα) (4.26)
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and the magnitude of the stator flux vector is

Ψs = ||ψs|| =
√

(ψsα)2 + (ψsβ)2 . (4.27)

4.3.2 Control Problem

The control problem of predictive torque control is to track the references of these two quanti-
ties by manipulating the three-phase switch position u accordingly. As previously described,
the switching frequency is to be minimized, and direct switching between 1 and −1 in a phase
leg is prohibited.

The block diagram of the predictive torque controller is shown in Fig. 4.23. We introduce
T ∗

e to denote the torque reference and Ψ∗
s to denote the reference of the stator flux magnitude.

The torque reference T ∗
e is usually adjusted by an outer speed control loop as shown in Fig.

3.29. The predictive torque controller predicts the torque and stator flux magnitude at the next
time step for all admissible switch positions. These predictions are based on the stator and
rotor flux vectors, which are reconstructed by a flux observer.

4.3.3 Controller Model

The controller model predicts the electromagnetic torque and the magnitude of the stator flux
vector at time step k + 1 as a function of u(k). Using the stator and rotor flux vectors in
orthogonal coordinates as the state vector, and treating the rotor speed ωr as a parameter, the

=
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Minimization of
cost function

Prediction of
trajectories
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Optional
encoder

T ∗
e
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Figure 4.23 Predictive torque controller for the three-phase, three-level NPC inverter with an induction
machine
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simplified continuous-time state-space model

dψs(t)
dt

= F 1 ψs(t) + G1 ψr(t) + G2 u(t) (4.28a)

dψr(t)
dt

= F 2 ψr(t) + G3 ψs(t) (4.28b)

is obtained with the matrices

F 1 = −Rs

Xr

D
I2, F 2 = ωr

[
0 −1
1 0

]
− Rr

Xs

D
I2 , (4.29a)

G1 = Rs

Xm

D
I2, G2 =

vdc

2
K̃, G3 = Rr

Xm

D
I2 . (4.29b)

Integrating (4.28) from t = kTs to t = (k + 1)Ts by applying the forward Euler approach,
the discrete-time representation

ψs(k + 1) = A1 ψs(k) + B1 ψr(k) + B2 u(k) (4.30a)

ψr(k + 1) = A2 ψr(k) + B3 ψs(k) (4.30b)

results with the system matrices

A1 = I2 + F 1 Ts, A2 = I2 + F 2 Ts , (4.31a)

B1 = G1 Ts, B2 = G2 Ts, B3 = G3 Ts . (4.31b)

4.3.4 Optimization Problem

The cost function

J = λT (T ∗
e (k + 1) − Te(k + 1))2 + (1 − λT )(Ψ∗

s(k + 1) − Ψs(k + 1))2 + λu||Δu(k)||1
(4.32)

consists of three terms. The first term penalizes the predicted deviation of the electromagnetic
torque from its reference at time step k + 1. Accordingly, the second term penalizes the pre-
dicted deviation of the stator flux magnitude from its reference. For both terms, the squared
2-norm is used, which is written as the sum of squares. The third term, which is adopted from
the current controller, penalizes the switching effort at time step k, using the nonnegative scalar
weight λu.

The weight λT is introduced to discount the torque ripple and to prioritize the flux magnitude
ripple, without changing the balance between the cost on these two machine variables and the
switching effort. In general, in order to obtain low current distortions, the stator flux ripple
needs to be much smaller than the torque ripple, which can be achieved, for example, by
setting λT to 0.1. The impact of λT on the current distortion will be analyzed in Sect. 4.3.8.
To ensure that J is nonnegative, the weight λT is bounded between 0 and 1.
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The optimization problem of the predictive torque controller with reference tracking is

uopt(k) = arg minimize
u(k)

J (4.33a)

subject to ψs(k + 1) = A1 ψs(k) + B1 ψr(k) + B2 u(k) (4.33b)

ψr(k + 1) = A2 ψr(k) + B3 ψs(k) (4.33c)

Te(k + 1) =
1
pf

Xm

D
ψr(k + 1) × ψs(k + 1) (4.33d)

Ψs(k + 1) = ||ψs(k + 1)|| (4.33e)

u(k) ∈ {−1, 0, 1}3, ||Δu(k)||∞ ≤ 1 (4.33f)

with the cost function as defined in (4.32).
One of the advantages of this formulation is that the torque and flux references are con-

stant during steady-state operation. This is in contrast to the sinusoidally varying references
that arise in the case of the predictive current controller. Hence we can usually assume that
T ∗

e (k + 1) = T ∗
e (k) and Ψ∗

s(k + 1) = Ψ∗
s(k).

However, the predictive torque control formulation is computationally slightly more
expensive than its current control counterpart. For the current controller, only one state-update
equation with two components (see (4.22b)) needs to be computed. For the torque controller,
the corresponding torque and stator flux magnitude also need to be calculated. Note that the
second state-update equation (4.33c), which predicts the rotor flux vector at time step k + 1,
needs to be computed only once at time step k, because it is independent of u(k). This is due
to the use of the forward Euler discretization method in (4.30). The exact Euler approach,
however, would have led to a coupling—albeit a small one—between the rotor flux vector at
time step k + 1 and the switch position u(k).

4.3.5 Control Algorithm

This optimization problem (4.33) is solved and the optimal switch position at time step k,
uopt(k), is obtained through enumeration, by using a modified version of the predictive current
control algorithm.

1. Given the previously applied switch position u(k − 1) and taking into account the con-
straints on the switching transitions (4.33f), the set of admissible switch positions at time
step k, U(k), is determined.

2. The rotor flux vector at time step k + 1, ψr(k + 1), is computed using the state-update
equation (4.33c).

3. For each of the switch positions u(k) ∈ U(k), the stator flux vector at time step k + 1,
ψs(k + 1), is predicted using (4.33b). Based on this, the torque and stator flux magnitude
at time step k + 1 are predicted using (4.33d) and (4.33e), respectively.

4. For each switch position u(k) ∈ U(k), the cost J is computed according to (4.32).
5. The switch position uopt(k) with the minimum cost is determined and applied to the

inverter.

At the next time step, this procedure is repeated.
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The predictive torque controller based on enumeration and a prediction horizon of one step
was originally proposed for a two-level inverter in [5] with equal weights on the torque and
flux magnitude error and no switching penalty. It has also been proposed to normalize the
torque and flux error by the rated or nominal torque and flux. This normalization is implicitly
accomplished in (4.32) by assuming that all quantities are provided in the pu system.

4.3.6 Analysis of the Cost Function

Before evaluating the closed-loop performance of the torque controller, it is beneficial to ana-
lyze its cost function (4.32) for the case of a prediction horizon of length 1. We start by
rewriting (4.32) as

J = JT + JΨ + λu||Δu(k)||1 (4.34)

with the reference tracking error terms of the torque and stator flux magnitude

JT = λT (T ∗
e − Te)

2 (4.35a)

JΨ = (1 − λT )(Ψ∗
s − Ψs)

2 . (4.35b)

We adopt the dq reference frame rotating in synchronism with the rotor flux. By aligning
the rotor flux vector with the d-axis, the torque expression (4.26) can be simplified to

Te =
1
pf

Xm

D
ψsqψrd . (4.36)

With this, and recalling (4.27), the cost function terms in (4.35) can be expressed in terms of
the d- and q-components of the stator flux vector as

JT = λT

(
1
pf

Xm

D
ψrd

)2

(ψ∗
sq − ψsq)

2 (4.37a)

JΨ = (1 − λT )(||ψ∗
s|| − ||ψs||)2 . (4.37b)

The reference of the stator flux vector ψ∗
s = [ψ∗

sd ψ∗
sq]

T is obtained from (4.36) and (4.27) as

ψ∗
sq = pf

D

Xm

T ∗
e

ψrd

(4.38)

and
ψ∗

sd =
√

(Ψ∗
s)2 − (ψ∗

sq)2 . (4.39)

Note that ψrd is equal to the magnitude of the rotor flux vector.
To visualize the cost function terms JT and JΨ, consider again the MV drive system with

the NPC inverter, as described in Sect. 4.2.6, operating at full speed and rated torque. A geo-
metrical representation of the torque error term JT is provided in Fig. 4.24(a). The rotor flux
vector ψr is aligned with the d-axis. The reference of the stator flux vector ψ∗

s corresponds to
nominal torque and a fully magnetized machine. The contour lines of the torque error term
JT with λT = 0.052 are shown as solid lines for the contour values 0.01, 0.02, . . . , 0.08.
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(a) Contour map of the torque error term JT
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Figure 4.24 Geometrical representation of the cost function terms of the predictive torque controller
in a plane spanned by the d- and q-components of the stator flux vector. The reference stator flux and the
rotor flux vectors are shown by arrows. The references of the torque and stator flux magnitude are shown
as dash-dotted lines in (a) and (b), respectively. The contour lines of the torque and flux magnitude error
terms are solid lines

The dash-dotted line refers to JT = 0. Owing to (4.36), the contour lines are straight lines
that are parallel to the rotor flux vector.

Accordingly, the cost function term JΨ of the stator flux magnitude error is illustrated
in Fig. 4.24(b). The contour lines of JΨ are depicted (as for the torque) for the values
0.01, 0.02, . . . , 0.08. These contour lines form concentric circles that are centered on the
origin of the dq reference frame. The dash-dotted line refers to JΨ = 0. Adding the two cost
functions terms to JT + JΨ leads to the contour map shown in Fig. 4.25(a).

4.3.7 Comparison of the Cost Functions for the Torque and Current
Controllers

To provide further insight, we compare the contour plots of the predictive torque controller
with those of the current controller for a prediction horizon of length 1. The control algorithm
of the current controller was provided in Sect. 4.2.5. To this end, the current error term in the
cost function (4.21),

JI = ||i∗s − is||22 , (4.40)

is rewritten in terms of the stator flux, by expressing the stator current as a linear combination
of the stator and rotor flux vectors with d- and q-components. Using the upper row of (2.53),
that is, is = 1

D (Xrψs − Xmψr), the term

JI =
(

Xr

D

)2

||ψ∗
s − ψs||22 (4.41)
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Figure 4.25 Geometrical representations of the reference tracking error terms in the cost functions of
the predictive torque and current controllers, in accordance with Fig. 4.24

is obtained. Note that JI is independent of the rotor flux vector and its position. The con-
tour lines of the current error term are shown in Fig. 4.25(b). These lines are concentric
circles around the stator flux reference. Note that the contour lines are plotted for the val-
ues 0.15, 0.3, . . . , 1.2; that is, compared to the contour values used for the torque controller
these values are multiplied by a factor of 15.

When comparing the reference tracking error term of the torque controller (4.37) with the
current controller’s term (4.41), it is obvious that the cost functions of the two controllers are
not equivalent, despite the switching cost, λu||Δu(k)||1, being the same. This difference is
illustrated by the different shapes of their corresponding contour lines in Fig. 4.25.

Nevertheless, by appropriately tuning the parameters in the cost function, a large degree of
similarity between the two controllers can be achieved. Specifically, as shown in the following,
λT can be chosen such that the contour lines of the torque controller approximate circles,
particularly when the torque is close to zero.

To simplify the exposition in the following derivation, we set the torque reference to zero.
Consider the stator flux vector

ψs = ψ∗
s +

[
ψerr
0

]
(4.42)

with the flux error ψerr in the d-axis. According to (4.37), the cost is

JT + JΨ = (1 − λT )ψ2
err . (4.43)

Similarly, for a stator flux vector with the flux error ψerr in the q-axis, the cost is

JT + JΨ = λT

(
1
pf

Xm

D
ψrd

)2

ψ2
err , (4.44)
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Figure 4.26 Tuning of the predictive torque controller using λT to achieve close-to-circular contour
lines for the torque and stator flux magnitude error term JT + JΨ

where we have neglected the minor contribution of JΨ. To achieve circular contour lines, both
costs are required to be equal, which leads to

λT =
(pfD)2

(pfD)2 + (Xmψrd)2 . (4.45)

For the parameters of the drive system case study considered in this section, we obtain
λT = 0.052.

The validity of this choice is confirmed by Fig. 4.26(a), which depicts for three different λT

the contour lines with the same cost JT + JΨ = 0.025. When the torque reference is close to
zero, λT = 0.052 leads to an effectively circular contour line.

Variations in λT mostly affect the shape of the contour lines in the q-axis, which relates to the
torque. Reducing λT , and hence the penalty on the torque error, widens the contour lines along
the torque axis and increases the torque ripple. Conversely, when increasing λT and prioritizing
the torque error, the torque ripple is reduced. In both cases, contour lines of elliptical shapes
result. Note that variations of λT around 0.052 have only a minor effect on the contour lines
along the d-axis, which relate to the stator flux magnitude and determine its ripple.

Increasing the torque reference from 0 to 1 pu distorts the contour lines along the circular
reference of the stator flux magnitude, as can be seen in Fig. 4.26(b). In particular, the circular
shape of the contour lines for λT = 0.052 becomes somewhat compromised. Nevertheless,
as will be shown in the next section, the predictive torque and current control schemes pro-
vide similar performance results at all torque setpoints, provided that λT and the penalty on
switching λu are appropriately chosen.

Tuning of the latter is required, because the diameters of the (almost circular) reference
tracking contour lines of the two control schemes differ, as can be seen in Fig. 4.25. More
specifically, errors in the stator flux vector are penalized more heavily for the current controller
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than for the torque controller. This implies that the switching penalty needs to be increased
accordingly for the current controller to achieve the same switching frequency as the torque
controller. Throughout this chapter, we have seen that the ratio between the cost values of the
tracking error and the switching term determines the controller response. To achieve a similar
closed-loop behavior for the torque and the current controllers, these ratios should be the same.
We thus set

JT + JΨ

λuT ||Δu(k)||1
=

JI

λuI ||Δu(k)||1
, (4.46)

where we distinguish between the switching penalty of the torque controller, λuT , and the
switching penalty of the current controller, λuI .

Consider again a zero torque reference, a stator flux error ψerr in the d-axis, and zero flux
error in the q-axis as in (4.42). Using (4.43) and (4.41), (4.46) can be simplified to

(1 − λT )ψ2
err

λuT

=
(

Xr

D

)2
ψ2

err

λuI

. (4.47)

This leads to

λuI =
(

Xr

D

)2 1
1 − λT

λuT = 16.25λuT . (4.48)

We conclude that both control schemes issue very similar switching commands when their
penalties are selected according to the following rules:

• For the torque controller, set λT according to (4.45). Its penalty on switching, λuT , can be
selected such that the desired switching frequency is achieved.

• For the current controller, scale its penalty on switching λuI according to (4.47).

As a result, the torque and current control schemes are expected to yield similar current and
torque TDDs for a given switching frequency. This hypothesis will be substantiated in the next
section through closed-loop simulations.

4.3.8 Performance Evaluation

For the performance evaluation of the predictive torque controller, we adopt the MV drive
system case study that was previously considered in Sect. 4.2.6. The operating point is again
at full speed, and the sampling interval is set to Ts = 25 μs. The penalty λT = 0.052 is cho-
sen such that close-to-circular contour lines for the torque and flux error term are achieved,
making the reference tracking error term in the cost function of the torque controller as sim-
ilar as possible to that of the current controller. At rated torque, with the switching penalty
λuT = 0.198 · 10−3, the predictive torque controller yields a current TDD of 7.74%, a torque
TDD of 5.84%, and a device switching frequency of 221 Hz.

As shown in Table 4.5, these performance metrics are similar to those obtained by the
predictive current controller when choosing a switching penalty of λuI = 3 · 10−3. The latter
closely matches the design guideline (4.48) and achieves the same switching frequency as the
torque controller with λuT = 0.198 · 10−3. At zero torque, both controllers achieve effectively
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Table 4.5 Comparison of the predictive current and torque control schemes in terms of the current
TDD ITDD and torque TDD TTDD

Torque reference Control scheme Controller settings ITDD (%) TTDD (%) fsw (Hz)

T ∗
e = 0 Current λuI = 3 · 10−3 6.38 5.57 220

T ∗
e = 0 Torque λT = 0.052, λuT = 0.198 · 10−3 6.45 5.76 219

T ∗
e = 1 Current λuI = 3 · 10−3 6.69 5.51 222

T ∗
e = 1 Torque λT = 0.052, λuT = 0.198 · 10−3 7.74 5.84 221

The switching penalties are chosen such that a switching frequency of approximately fsw = 220 Hz
results.

the same current and torque TDDs, while at rated torque the current TDD deteriorates by 16%
when using the torque instead of the current controller. This worsening is due to the slightly
noncircular shape of the contour lines for the stator flux error, which results in noncircular
contour lines for the stator current error. The latter defines the current ripple and the current
TDD. Nevertheless, at rated torque, the three-phase stator currents, electromagnetic torque,
stator flux magnitude, switch positions, and stator current spectrum are similar to those of the
current controller, which were shown in Fig. 4.13 and are not repeated here.

The similarity between the two control schemes is further underlined by Fig. 4.27, which
shows the current and torque TDDs versus the switching frequency. At nominal speed and rated
torque, and for switching frequencies in excess of 250 Hz, both schemes yield very similar
current and torque TDDs for a given switching frequency, with the current controller slightly
outperforming the torque controller. This small difference becomes more pronounced at low
switching frequencies.

Figure 4.28(a) shows the influence λT has on the current TDD. The value of λT = 0.052
clearly achieves the lowest current TDD, confirming the cost function analysis provided in the
previous section. For the torque TDD, however, the relatively small penalty of λT = 0.052
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Figure 4.27 Trade-offs between the current and torque TDDs on one hand and the switching frequency
on the other. Predictive torque control with λT = 0.052 is compared with predictive current control when
operating at nominal speed and rated torque
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Figure 4.28 Trade-offs between the current and torque TDDs on one hand and the switching frequency
on the other for predictive torque control and different torque penalties λT , when operating at nominal
speed and rated torque

leads to relatively large torque distortions, as shown in Fig. 4.28(b). Increasing the penalty
fivefold to 0.25, for example, halves the torque TDD throughout the considered switching
frequency range from 50 Hz to 1 kHz. This reduction in the torque TDD, however, comes at the
price of pronounced current distortions (see Fig. 4.28(a)). Nevertheless, for some applications,
very low torque TDDs might be beneficial. The parameter λT endows the torque controller
with a degree of freedom to facilitate this.

When the predictive control schemes operate at low switching frequencies, the switch-
ing frequency tends to lock into integer multiples of the fundamental frequency, such as 50,
100, . . . , 250 Hz, despite significant variations in the switching penalty. This phenomenon can
be seen in Figs. 4.27 and 4.28, which leads to a certain degree of periodicity in the switching
actions and a somewhat discrete current spectrum. This feature is more pronounced in the case
of long prediction horizons, as shown and analyzed in Sect. 6.1.4.

We conclude that, in general, the predictive torque and current controllers yield similar per-
formance metrics at steady-state operation, provided that the penalty λT is tuned appropriately.
In particular, the influences of the switching penalty and the controller sampling interval Ts

on the performance metrics are similar. The same applies to operation during transients, such
as when current or torque reference steps are applied to the drive.

4.4 Summary

The notion of predictive controllers with horizon 1 and reference tracking was introduced
in this section. Starting with a single-phase example in Sect. 4.1, the current of an RL load
was regulated along its reference. In Sect. 4.2, the current controller was generalized to a
three-phase drive system, and subsequently modified in Sect. 4.3 so as to track the references
of the electromagnetic torque and stator flux magnitude of an electrical machine.

Owing to the versatility of the control concept, it can be applied to a wide range of power
electronic topologies. Results have been reported for two-level inverters [2], three-level
NPC inverters [3, 8], cascaded H-bridges [9–11], matrix converters [12], flying capacitor
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converters [13], and modular multilevel converters [14]. By including a corresponding term
in the cost function, floating neutral point potentials in NPC inverters can be balanced around
zero, as shown in [3]. On the grid side, active rectifiers can be controlled in a direct power
control setting, as described in [15].

In light of the extensive literature, only a few references have been given. For further reading
on the family of predictive controllers with horizon 1 and reference tracking, the reader is
referred to the book [16] and to the survey papers [17–19], which include a detailed literature
review.
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5
Predictive Control with Long
Horizons

The optimization problem underlying direct model predictive control (MPC) with reference
tracking is based on integer decision variables. This means that the number of possible solu-
tions increases exponentially when extending the length of the prediction horizon. On one
hand, integer decision variables facilitate the commonly used approach of enumerating all
possible solutions (see Sect. 4.1.4 and the references therein). On the other hand, exhaus-
tive enumeration quickly becomes computationally intractable when increasing the prediction
horizon. This limitation is discussed in Sect. 4.1.6.

For direct MPC with reference tracking, the computational difficulty of solving the
optimization problem has traditionally limited the length of the investigated prediction
horizons to 1, except for a few attempts. These include [1], in which a horizon of 2 steps is
used, and [2], in which a heuristic is proposed to reduce the number of switching sequences
for longer horizons. In [3], a two-step prediction approach has been proposed; in a first step,
the computational delay is compensated for, followed by the use of a standard predictive
controller with a horizon of 1. The method in [3] can thus be considered to be equivalent to
a one-step predictive controller.

We conclude that solving the optimization problem of direct MPC with long prediction hori-
zons in an efficient manner has been—until recently—an unresolved problem. Consequently,
the question of whether longer horizons lead to performance improvements or not remains
largely unanswered.

This chapter examines the use of prediction horizons longer than 1 for direct MPC with
reference tracking. For a linear system with a switched three-phase input vector with equal
switching steps in all phases, the geometrical structure of the underlying optimization problem
is exploited and an efficient optimization algorithm is derived. The algorithm uses elements
of sphere decoding [4] to provide optimal switching sequences, requiring only modest com-
putational resources. This enables the use of long prediction horizons in power electronics
applications.

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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5.1 Preliminaries

Direct MPC with reference tracking can be applied to general ac–dc, dc–dc, dc–ac, and ac–ac
topologies with linear loads, including active front ends, inverters with RL loads, inverters with
LC filters, and inverters with ac machines. Output quantities, such as voltages and currents,
can be regulated along their time-varying references. We therefore opt to keep the problem
formulation and the solution technique proposed in this chapter as general as possible.

5.1.1 Case Study

Nevertheless, we will often focus our description on the three-level inverter case study used
frequently in this book. More specifically, we will consider the control problem of tracking the
current reference of a medium-voltage (MV) variable speed drive system, which consists of a
neutral-point-clamped (NPC) voltage source inverter (VSI) that drives an induction machine
(IM). This case study is depicted in Fig. 5.1 and described in detail in Sect. 2.5.1 along with
a summary of the parameters. To simplify the exposition, we assume the total dc-link voltage
vdc to be constant and the neutral point potential to be zero.

The mathematical model of the drive system was described in Sect. 4.2.1. As discussed
there, the integer variables ua, ub, and uc ∈ U denote the switch positions in the three phase
legs. For a three-level inverter, the (single-phase) constraint set is given by

U = {−1, 0, 1}. (5.1)

The three switch positions are aggregated to the three-phase switch position u = [ua ub uc]
T .

The machine is modeled using the stationary αβ reference frame. The stator currents isα

and isβ , and the rotor flux linkages ψrα and ψrβ , are chosen as state variables. The rotor’s
angular velocity is treated as a (relatively slowly) varying parameter.

The objective of the current controller is to regulate the stator currents along their time-
varying reference i∗s = [i∗sα i∗sβ]T , by manipulating the switch positions u, while minimiz-
ing the switching effort. Switching between 1 and −1 is prohibited. This control problem is
described in detail in Sect. 4.2.2.

vdc

2

vdc

2

N
N

A
B

C

is

IM

Figure 5.1 Three-level, three-phase, neutral-point-clamped voltage source inverter driving an induc-
tion machine with a fixed neutral point potential
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5.1.2 Controller Model

For the derivation of the prediction model, it is convenient to introduce the state vector

x = [isα isβ ψrα ψrβ ]T (5.2)

of the drive model. The stator current is taken as the system output vector, that is,

y = is = [isα isβ]T ,

whereas the three-phase switch position u constitutes the input vector, which is provided by
the controller.

Using the state vector x, the machine model (4.11) described in Sect. 4.2.1 can be rewritten
in state-space form as the continuous-time prediction model

dx(t)
dt

= F x(t) + G u(t), (5.3a)

y(t) = C x(t), (5.3b)

where the matrices F , G, and C are provided in Appendix 5.A.1

By integrating (5.3a) from t = kTs to t = (k + 1)Ts and observing that u(t) is constant
during this time interval and equal to u(k), we obtain the discrete-time representation

x(k + 1) = A x(k) + B u(k) (5.4a)

y(k) = C x(k) (5.4b)

with k ∈ N, where

A = eF Ts and B =
∫ Ts

0
eF τdτ G. (5.5)

Note that e refers to the matrix exponential. For the derivation of the discrete-time matrices
in (5.5), the reader is referred to [5, Sect. 4.3.3]. If F is nonsingular, the input matrix can be
simplified to B = F−1(A − I4)G, where I4 is the four-dimensional identity matrix.

If matrix exponentials were to pose computational difficulties, the forward Euler approx-
imation is usually sufficiently accurate for short sampling intervals of up to several tens of
microseconds and for short prediction horizons. In this case, the discrete-time system matrices
are given by

A = I4 + F Ts and B = G Ts. (5.6)

5.1.3 Cost Function

The control problem of direct MPC with reference tracking over a finite prediction horizon of
length Np can be addressed through the minimization of the general cost function

J =
k+Np−1∑

�=k

||y∗(� + 1) − y(� + 1)||2Q + λu||Δu(�)||22. (5.7)

1 Note that F andG depend on the rotor speed ωr and the dc-link voltage vdc, respectively. Therefore, in a general
setup, these two matrices need to be considered time-varying.
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The first term in (5.7) penalizes the predicted tracking error, that is, the difference between the
time-varying output reference y∗ and the output vector y. The tracking error is penalized at
the future time steps k + 1, k + 2, . . . , k + Np. For this, we use the compact representation

||y∗ − y||2Q = (y∗ − y)T Q(y∗ − y), (5.8)

where Q denotes the penalty matrix on the tracking error. For technical reasons, we require
Q to be positive semidefinite and symmetric, as will be explained in Sect. 5.1.4. Q is of the
dimension ny × ny , with ny being the number of output variables, that is, y ∈ R

ny .
To adapt this general formulation of the tracking error to the specific current control problem

at hand, we set y∗ = i∗s, y = is (as stated previously), and Q = I2. The reference tracking
problem in (5.7) is stated in stationary orthogonal αβ coordinates. It can be easily shown
(see Sect. 4.2.4) that the current reference tracking problem in the three-phase abc system is
equivalent to the one formulated in the αβ coordinate system.

The second term in (5.7) penalizes the switching effort

Δu(k) = u(k) − u(k − 1), (5.9)

which refers to the switch positions in the three phases a, b, and c. The switching effort is
penalized at the future time steps k, k + 1, . . . , k + Np − 1. As switching is possible only
by one step up or down in each phase, that is, we have ||Δu(k)||∞ ≤ 1, the 1-norm and the
(squared) Euclidean norm of the switching effort yield the same cost:

||Δu(k)||1 = ||Δu(k)||22.

The parameter λu > 0 in (5.7) is a tuning parameter that adjusts the trade-off between the
tracking accuracy (deviation of the output from its reference) and the switching effort.

5.1.4 Optimization Problem

We introduce the switching sequence

U(k) = [uT (k) uT (k + 1) . . . uT (k + Np − 1)]T ,

which represents the sequence of inverter switch positions the controller has to decide upon.
The optimization problem underlying direct MPC with reference tracking can then be stated as

U opt(k) = arg minimize
U(k)

J (5.10a)

subject to x(� + 1) = A x(�) + B u(�) (5.10b)

y(� + 1) = C x(� + 1) (5.10c)

Δu(�) = u(�) − u(� − 1) (5.10d)

U(k) ∈ U (5.10e)

||Δu(�)||∞ ≤ 1, ∀� = k, . . . , k + Np − 1. (5.10f)
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The cost function J depends on the state vector x(k), the previously chosen switch position
u(k − 1), and the switching sequence U(k). In (5.10e), U = U × · · · × U is the Np-times
Cartesian product of the set U , where U denotes the set of discrete three-phase switch posi-
tions. The latter is obtained from the single-phase set U via U = U × U × U , as defined in
(5.1). We refer to (5.10f) as switching constraints.

Following the principle of receding horizon control, only the first element of the optimal
switching sequence U opt(k) is applied to the semiconductor switches at time step k. At the next
time step k + 1, and given new information on x(k + 1) and the output references, another
optimization is performed, which provides the optimal switch positions at time step k + 1. The
optimization is repeated online and ad infinitum, as exemplified in Fig. 5.2.

Past Horizon

Y ∗(k)

Y(k)

uopt(k)

Uopt(k)

k k+ 1 k+Np

t

(a) Horizon at time step k

Past Horizon

k k+ 1 k+ 2 k+Np+ 1
t

Y ∗(k+ 1)

Y (k+ 1)

uopt(k+ 1)
Uopt(k+ 1)

(b) Horizon at time step k+ 1

Figure 5.2 Receding horizon policy exemplified for the prediction horizon Np = 6. The optimal
switching sequence Uopt is chosen such that the predicted output trajectory Y tracks the output ref-
erence trajectory Y ∗. Out of the switching sequence Uopt, only the first element uopt is applied to the
inverter
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In this figure, Y (k) denotes the output trajectory over the prediction horizon from time step
k + 1 to k + Np, that is

Y (k) = [yT (k + 1) yT (k + 2) . . . yT (k + Np)]
T . (5.11)

Correspondingly, Y ∗(k) denotes the output reference trajectory.

5.1.5 Control Algorithm based on Exhaustive Search

Owing to the discrete nature of the decision variable U(k), the optimization problem (5.10) is
difficult to solve except for problems with very short horizons. In fact, as the prediction horizon
is enlarged and the number of decision variables is increased, the (worst case) computational
complexity grows exponentially, thus it cannot be bounded by a polynomial. The difficul-
ties associated with minimizing J become apparent when using exhaustive search. With this
method, the set of admissible switching sequences U(k) is enumerated, and the cost func-
tion is evaluated for each such sequence. The switching sequence with the lowest cost is (by
definition) the optimal one, and its first element is chosen as the control input.

At every time step k, exhaustive search entails the following procedure:

1. Given the previously applied switch position u(k − 1), and taking into account the con-
straints (5.10e) and (5.10f), the set of admissible switching sequences over the prediction
horizon is determined.

2. For each of these switching sequences U(k), the state trajectory is computed according to
(5.10b) and the evolution of the output vector (5.10c) is predicted.

3. For each switching sequence, the cost J is computed according to (5.7).
4. The switching sequence Uopt(k) with the minimum cost is determined, and its first element,

uopt(k), is applied to the converter.

At the next time step k + 1, this procedure is repeated using updated information on the
state vector x(k + 1) and the output reference trajectory Y ∗(k + 1). The corresponding algo-
rithm for the current reference tracking problem with the horizon Np = 1 was described in
Sect. 4.2.5.

It is easy to see that exhaustive search is computationally feasible only for very short hori-
zons Np, such as 1 or 2. For Np = 5, assuming a three-level converter and neglecting the
switching constraint (5.10f), the number of switching sequences amounts to 1.4 · 107. This is
clearly impractical, even when imposing (5.10f), which reduces the number of sequences by
an order of magnitude.

Techniques from mathematical programming, such as branch-and-bound [6–8], can be used
to reduce the computational burden of solving (5.10). In particular, off-the-shelf solvers such as
CPLEX [9] include a wealth of smart heuristics and tailored optimization methods. However,
none of the general methods takes advantage of the particular structure of the optimization
problem (5.10) and the fact that in MPC the solution is implemented in a receding horizon
manner. It will be shown in Sect. 5.3 how these distinguishing features of the problem at hand
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can be exploited to greatly reduce the computational burden, thereby enabling the use of long
horizons in power electronics applications.

5.2 Integer Quadratic Programming Formulation

In this section, we reformulate the optimization problem (5.10) in vector form and state it as an
integer quadratic program. The integer search space is truncated because of the finite number
of inverter voltage levels.

5.2.1 Optimization Problem in Vector Form

The dynamic evolution of the prediction model (5.10b) and (5.10c) can be included in the cost
function (5.7). After lengthy algebraic manipulations, which are provided in Appendix 5.B,
the cost function can be written in the compact form

J = (U(k))T HU(k) + 2(Θ(k))T U(k) + θ(k) (5.12)

with

H = ΥT Q̃Υ + λuST S (5.13a)

(Θ(k))T = −(Y ∗(k) − Γx(k))T Q̃Υ − λu(Eu(k − 1))T S (5.13b)

θ(k) = ||Y ∗(k) − Γx(k)||2
Q̃

+ λu||Eu(k − 1)||22. (5.13c)

The matrices Υ, Γ, S, and E are defined in Appendix 5.B. Y ∗(k) denotes the output ref-
erence trajectory. The block diagonal penalty matrix on the tracking error is defined as Q̃ =
diag(Q, . . . ,Q).

The cost function (5.12) consists of three terms. The first term is quadratic in the switching
sequence U(k). The Hessian2 matrix H is a function of the system matrices A, B, and C,
the penalty matrix Q̃, the penalty λu on switching transitions, and the matrix S. Provided
that the system parameters are time-invariant, the Hessian is time-invariant, too. The Hessian
is symmetric and positive definite for λu > 0. This is due to the fact that ST S in (5.13a) is
positive definite and ΥT Q̃Υ is positive semidefinite, because we require Q to be positive
semidefinite. For λu ≥ 0, the Hessian would be positive semidefinite. For the definition of
positive (semi)definite matrices, the reader is referred to Sect. 3.8.

The second term in (5.12) is linear in the switching sequence U(k). The time-varying vector
Θ(k) is a function of the state vector at time step k, the output reference trajectory Y ∗(k), and
the previously chosen switch position u(k − 1). The third term in (5.12) is a time-varying
scalar that has the same arguments as Θ(k).

By completing the squares, (5.12) can be rewritten as

J = (U(k) + H−1Θ(k))T H(U(k) + H−1Θ(k)) + const(k). (5.14)

2 Strictly speaking, 2H is the Hessian matrix according to the commonly used definition (see also (3.94)).
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The constant term in (5.14) is independent of U(k) and thus does not influence the optimal
solution. This allows us to omit the constant term from the cost function and to state the refor-
mulated optimization problem as

Uopt(k) = arg minimize
U(k)

(U(k) + H−1Θ(k))T H(U(k) + H−1Θ(k)) (5.15a)

subject to U(k) ∈ U (5.15b)

||Δu(�)||∞ ≤ 1, ∀� = k, . . . , k + Np − 1. (5.15c)

5.2.2 Solution in Terms of the Unconstrained Minimum

The unconstrained optimum of (5.15) is obtained by minimization, neglecting the constraints
(5.15b) and (5.15c), thus allowing U(k) ∈ R

3Np . As H is positive definite, it follows directly
from (5.15a) that the unconstrained solution at time step k is unique and given by

U unc(k) = −H−1Θ(k). (5.16)

For more details on the unconstrained minimum of a quadratic cost function, the reader is
referred to Sect. 3.8.

As the first element of the unconstrained switching sequence Uunc(k) does not meet the
constraints (5.15b) and (5.15c), it cannot be directly used as gating signals to the semiconductor
switches. However, Uunc(k) can be used to state the solution to the constrained optimization
problem (5.15)—including the constraints (5.15b) and (5.15c)—as shown next.

The cost function (5.15a) can be rewritten by inserting (5.16) as follows:

J = (U(k) − Uunc(k))T H(U(k) − Uunc(k)). (5.17)

As H is (by definition) symmetric and positive definite for λu > 0, a unique invertible and
lower triangular matrix V ∈ R

3Np×3Np exists, which satisfies

V T V = H. (5.18)

The matrix V is the so-called generator matrix. It can be calculated by noting that its inverse
V −1 is also lower triangular and is provided by the following Cholesky decomposition of H−1

(see, e.g., [10]):
V −1V −T = H−1. (5.19)

In terms of V and
Ūunc(k) = V Uunc(k), (5.20)

the cost in (5.17) can be written as

J = (V U(k) − Ūunc(k))T (V U(k) − Ūunc(k)). (5.21)

5.2.3 Integer Quadratic Program

The optimization problem (5.15) underlying direct MPC with output reference tracking can
now be stated as a (truncated) integer quadratic program. The optimal switching sequence
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Uopt(k) is obtained by minimizing the cost function (5.21) subject to (5.15b) and (5.15c),
that is,

Uopt(k) = arg minimize
U(k)

||V U(k) − Ūunc(k)||22 (5.22a)

subject to U(k) ∈ U (5.22b)

||Δu(�)||∞ ≤ 1, ∀� = k, . . . , k + Np − 1 (5.22c)

with

Q̃ = diag(Q, . . . ,Q) (5.23a)

H = ΥT Q̃Υ + λuST S (5.23b)

V T V = H (5.23c)

(Θ(k))T = −(Y ∗(k) − Γx(k))T Q̃Υ − λu(Eu(k − 1))T S (5.23d)

Ū unc(k) = −V H−1Θ(k). (5.23e)

To obtain (5.23e), we have inserted (5.16) in (5.20).
Recall that we require Q to be positive semidefinite and symmetric. Therefore, Q̃ is also

positive semidefinite and symmetric. As a result, the Hessian H is positive definite and sym-
metric, provided that λu is positive. The generator matrix V is lower triangular.

The dimensions of the matrices and vectors in (5.23) are summarized here. Let nx (ny)
denote the number of state (output) variables, and assume the use of a three-phase system with
three switch positions. It follows that the dimension of Q is ny × ny and Q̃ and is of dimension
nyNp × nyNp. The Hessian H and the generator matrix V are of dimension 3Np × 3Np. The
vector Θ(k) has the dimension 3Np × 1. The output trajectory Y (k) and its reference Y ∗(k)
are of dimension nyNp × 1. The switching sequence U(k) and the transformed unconstrained
solution Ūunc(k) are of dimension 3Np × 1.

The matrices Γ, Υ, S, and E, which are required in (5.23b) and (5.23c), are provided in
Appendix 5.B. These matrices are of dimensions nyNp × nx, nyNp × 3Np, 3Np × 3Np, and
3Np × 3, respectively.

In recent years, various efficient solution algorithms for (5.22a) subject to (5.22b)—but not
taking into account (5.22c)—have been developed (see, e.g., [4, 11] and the references therein).
In Sect. 5.3, we will tailor one such algorithm to the optimization problem of interest.

5.2.4 Direct MPC with a Prediction Horizon of 1

Next, we focus on the particular case where the prediction horizon is taken to be equal to 1.
As in virtually all the literature on direct MPC with reference tracking a prediction horizon of
1 is considered, this case is of particular importance and deserves some additional attention.
The low dimensionality of the problem at hand also allows for an intuitively accessible
visualization.

Setting the horizon Np to 1, we have U(k) = u(k), Γ = CA, Υ = CB, S = E = I3,
and Q̃ = Q. This simplifies the integer quadratic program (5.22) to

uopt(k) = arg minimize
U(k)

||V u(k) − ūunc(k)||22 (5.24a)
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subject to u(k) ∈ U (5.24b)

||Δu(k)||∞ ≤ 1 (5.24c)

with

H = (CB)T QCB + λuI3 (5.25a)

V T V = H (5.25b)

(Θ(k))T = −(y∗(k + 1) − CAx(k))T QCB − λu(u(k − 1))T (5.25c)

ūunc(k) = −V H−1Θ(k). (5.25d)

To further illustrate this case, we consider the drive system case study in Sect. 5.1.1 with cur-
rent reference tracking and set Q = I2. It is convenient to use the forward Euler approximation
(5.6) for the prediction model to obtain

CB =
vdcXr

3D
Ts

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

]
, (5.26)

so that

H =
(

vdcXrTs

3D

)2

⎡

⎢⎣
1 − 1

2 − 1
2

− 1
2 1 − 1

2

− 1
2 − 1

2 1

⎤

⎥⎦ + λu

⎡

⎢⎣
1 0 0
0 1 0
0 0 1

⎤

⎥⎦ . (5.27)

As in the Np > 1 case, H is always symmetric and positive definite for λu > 0.
If the design parameter λu is chosen to be much larger than (vdcXrTs/3D)2, then the diag-

onal terms of H in (5.27) become dominant, that is, H ≈ λuI3. This turns V effectively into
a diagonal matrix with V ≈

√
λuI3 (see (5.18)). As a result, for sufficiently large values of

λu, direct component-wise rounding of ūunc(k) to the integer set will often give the optimal
solution (see also [12]).

On the other hand, if λu is much smaller than (vdcXrTs/3D)2, then

V ≈ vdcXrTs

3D

⎡

⎢⎣
0 0 0

−
√

3
2

√
3

2 0
− 1

2 − 1
2 1

⎤

⎥⎦ . (5.28)

In particular, for λu ≈ 0, direct component-wise rounding of ūunc(k) will—in general—
provide only suboptimal results. This conclusion stands in contrast to the proposition made
in [13]. In Sect. 6.2, we will evaluate direct component-wise rounding for horizons larger
than 1.

5.3 An Efficient Method for Solving the Optimization Problem

In this section, we will show how to adapt the sphere decoding algorithm [4, 14] to the task of
finding the optimal switching sequence Uopt(k). The algorithm is based on branch-and-bound
techniques and is—as will be illustrated in Sect. 5.4—by far more efficient than the exhaustive
enumeration method described in Sect. 5.1.5.
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5.3.1 Preliminaries and Key Properties

The basic idea of the algorithm is to iteratively consider candidate sequences, say U(k) ∈ U,
that belong to a sphere of radius ρ(k) > 0 centered on Ū unc(k)

||Ū unc(k) − V U(k)||2 ≤ ρ(k), (5.29)

and satisfy the switching constraint (5.22c).
A key property used in sphere decoding is that, because V is triangular, identifying candi-

date sequences that satisfy (5.29) is very simple. In our case, V is lower triangular, and (5.29)
can be rewritten as

ρ2(k) ≥ (ūunc,1(k) − v(1,1)u1(k))2 + (ūunc,2(k) − v(2,1)u1(k) − v(2,2)u2(k))2 + · · · (5.30)

where ūunc,i(k) denotes the ith element of Ūunc(k), ui(k) is the ith element of U(k), and
v(i,j) refers to the (i, j)th entry of V . Therefore, the solution set of (5.29) can be found by
proceeding in a sequential manner somewhat akin to Gaussian elimination, in the sense that at
each step only a one-dimensional problem needs to be solved (for details, see [4]).

To determine U(k), the algorithm requires an initial value for the radius used at time step
k. On one hand, the radius ρ(k) should be as small as possible, enabling us to remove as many
candidate switching sequences a priori as possible. On the other hand, ρ(k) must not be too
small, to ensure that the solution set is not empty. We propose to choose the initial radius based
on the following educated guess:

Uini(k) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

03×3 I3 03×3 · · · 03×3

03×3 03×3 I3
. . .

...
...

. . .
. . . 03×3

03×3 · · · · · · 03×3 I3

03×3 · · · · · · 03×3 I3

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

Uopt(k − 1). (5.31)

The guessed switching sequence Uini(k) is obtained by shifting the previous optimal switch-
ing sequence by one time step and repeating the last switch position. This is in accordance
with the receding horizon paradigm used in MPC (see also Fig. 5.2). As the optimal switching
sequence at the previous time step satisfies both constraints (5.22b) and (5.22c), the shifted
sequence automatically meets these constraints, too. This statement holds true in all circum-
stances, including transients. Thus, Uini(k) is a feasible candidate solution for the optimization
problem (5.22). Given (5.31), the initial value of ρ(k) is then set to

ρ(k) = ||Ūunc(k) − V Uini(k)||2. (5.32)

5.3.2 Modified Sphere Decoding Algorithm

At each time step k, the controller first uses the current state x(k), the future reference val-
ues Y ∗(k), the previous switch position u(k − 1), and the previous optimizer Uopt(k − 1)
to calculate Uini(k), ρ(k) and Ūunc(k); see (5.31), (5.32), (5.23e), and (5.23d). The optimal
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switching sequence Uopt(k) is then obtained by invoking Algorithm 13:

Uopt(k) = MSphDec([ ], 0, 1, ρ2(k), Ūunc(k)), (5.33)

where [ ] denotes an empty vector.

Algorithm 1 Modified sphere decoding algorithm

function Uopt = MSphDec(U, d2, i, ρ2, Ūunc)
for each u ∈ U do

ui = u
d′2 = ||ūunc,i − v(i,1:i)u1:i||22 + d2

if d′2 ≤ ρ2 then
if i < 3Np then

MSphDec(U, d′2, i + 1, ρ2, Ūunc)
else

if U meets (5.22c) then
Uopt = U
ρ2 = d′2

end if
end if

end if
end for

end function

As can be seen in Algorithm 1, the proposed sphere decoder operates in a recursive man-
ner. Starting with the first component, the switching sequence U(k) is built component by
component, by considering the admissible single-phase switch positions in the set U . If the
associated squared distance is smaller than the current value of ρ2(k), then we proceed to the
next component. Once the last component, that is, u3Np

(k), has been reached, meaning that
U(k) is of full dimension, then U(k) is a candidate solution. If U(k) meets the switching
constraint (5.22c) and if the distance is smaller than the current optimum, then we update the
incumbent optimal solution Uopt(k) and also the radius ρ(k).

The computational advantages of this algorithm stem from adopting the notion of branch-
and-bound [6, 7]. Branching is done over the set of single-phase switch positions U ; bounding
is achieved by considering solutions only within the sphere with the radius ρ(k) (see (5.29)).
If the distance d′ exceeds the radius, a so-called certificate (or proof) has been found that the
branch (and all its associated switching sequences) provides only suboptimal solutions, that
is, solutions that are worse than the incumbent optimum. Therefore, without exploring this
branch, it can be pruned and removed from further consideration. During the optimization
procedure, whenever a better incumbent solution is found, the radius is reduced and the sphere
thus tightened, so that the set of candidate sequences is as small as possible, but nonempty.

3 The notation v(i,1:i) refers to the first i entries of the ith row of V ; similarly, u1:i are the first i elements of the
vectorU .
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The majority of the computational burden relates to the computation of d′ via the evaluation
of the terms v(i,1:i)u1:i(k). Thanks to (5.30), d′ can be computed sequentially, by adding only
the squared term involving the ith component of Ū(k). In particular, the sum of squares in d,
accumulated over the layers 1 to i − 1, need not be recomputed.

It is worth emphasizing that the computational advantages of the proposed algorithm do not
come at the expense of optimality: the algorithm always provides the optimal switch position.
This can easily be verified by recalling that the optimal constrained solution minimizes the
Euclidean distance d to the unconstrained solution. Moreover, the use of the initial radius in
(5.32) guarantees that a feasible switching sequence (which satisfies the constraints) will be
returned. Successive values of ρ2(k) in the iterations are always associated with, and allow for,
feasible sequences. The algorithm stops when the sphere centered on Ūunc(k) only contains a
single element. The latter amounts to the optimal (integer) solution.

5.3.3 Illustrative Example with a Prediction Horizon of 1

To provide additional insight into the operation of the algorithm, we provide an illustrative
example of one problem instance. Consider the horizon Np = 1 case with the sampling inter-
val Ts = 25 μs and the penalties Q = I2 and λu = 1 · 10−3. As before, we consider the current
regulation problem for a drive system with a three-level inverter as in Fig. 5.1 with the param-
eters as in Sect. 2.5.1. The set of single-phase switch positions is U = {−1, 0, 1}.

The set of admissible three-phase switch positions u(k) ∈ U is shown in Fig. 5.3(a) as
black circles. To simplify the exposition, only the ab-plane is shown in this figure, neglect-
ing the c-axis. Suppose that u(k − 1) = [1 0 1]T and that the problem instance at time step k
yields the unconstrained solution uunc(k) = [0.647 − 0.533 − 0.114]T , shown as a triangle
in the figure. Rounding uunc(k) to the next integer values leads to the possible feasible solu-
tion usub(k) = [1 − 1 0]T , which corresponds to the square. It turns out, however—as shown
next—that the optimal solution is uopt(k) = [1 0 0]T , which is indicated by the diamond.

The modified sphere decoding problem is solved in the transformed coordinate system,
which is created by the generator matrix

V =

⎡

⎣
36.45 0 0

−6.068 36.95 0
−5.265 −5.265 37.32

⎤

⎦ · 10−3,

see (5.23c). Using V , the integer solutions u(k) ∈ U in the orthogonal coordinate system can
be transformed to V u(k), which are shown as black circles in Fig. 5.3(b). The coordinate
system created by V is slightly skewed, but almost orthogonal, with the angle between the
axes being 98.2◦ for the chosen parameters. As discussed in Sect. 5.2.4, increasing λu results
in this angle converging toward 90◦.

The optimal solution uopt(k) is obtained by minimizing the distance between the uncon-
strained solution and the integer switch positions in the transformed coordinate system. The
initial value of ρ(k) results from (5.32) and is equal to 0.638. This defines a ball of radius
ρ(k) around ūunc(k) = V uunc(k), which is shown in the ab-plane in Fig. 5.3(b) as the cir-
cle. This ball reduces the set of possible solutions from 33 = 27 elements to 2, because only
two transformed integer solutions V u(k) lie within the ball—these are V uopt(k) (the dia-
mond) and V usub(k) (the square). The algorithm sequentially computes the distances between
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Figure 5.3 Visualization of the sphere decoding algorithm in the ab-plane for the horizon Np = 1
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ūunc(k) and each of these two points. These distances are indicated by the solid and dashed
lines, respectively. The solid line is slightly shorter than the dashed one. Therefore, minimizing
the distance yields the optimal solution uopt(k) = [1 0 0]T and not the (suboptimal) rounded
switch position usub(k) = [1 − 1 0]T .

5.3.4 Illustrative Example with a Prediction Horizon of 2

A second example is provided in the following, which introduces the notion of the search
tree and illustrates the traversal of the tree by the sphere decoding algorithm. Recall that the
optimization problem solved by the algorithm is to find the optimal switching sequence Uopt
of length 3Np out of the set of possible switching sequences U = U × · · · × U , which is the
3Np-times Cartesian product of the set of single-phase switch positions U . For the three-level
converter, we have U = {−1, 0, 1}.

The set U spans a tree of the depth 3Np with nodes at the levels i ∈ {1, 2, . . . , 3Np}. Each
node has three subsequent child nodes, except for the nodes at level 3Np, which are leaf nodes.
The nodes at level i correspond to the switching decisions to be made with regard to the ith
element in U , ui. Specifically, the branches starting from nodes at level i relate to ui. Travers-
ing the tree from the root node to one of its leaves corresponds to a unique switching sequence
U = [u1 u2 . . . u3Np

]T .
The exploration of the search tree is exemplified in Fig. 5.4 for the horizon Np = 2 case,

assuming the previously chosen switch position to be u(k − 1) = [0 0 0]T . Starting from the

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

11

22

33

44

55

66

u1 = −1u1 = −1 u1 = 0

u2 = −1u2 = −1 u2 = 0

u3 = −1u
3

= −1

u6 = −1u6 =−1

u3 = 1

u2 = 1

u1= 1

u6 = 0u6 = 0

Figure 5.4 Visualization of the search tree traversal by the sphere decoding algorithm for the prediction
horizon Np = 2 and a three-level inverter. The optimal switching sequence is found after the exploration
of 6 nodes out of 364 (left-hand side). These six nodes need to be fully explored to prove that this is the
optimal switching sequence (right-hand side)
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root node at i = 1, the algorithm evaluates u1 ∈ U . The choice u1 = −1 exceeds the radius
of the sphere, and the subtree starting at u1 = −1 is pruned. This is indicated by the crossed
circle. The choice u1 = 0 is within the sphere, and the algorithm proceeds to the next level
i = 2, without exploring u1 = 1. The search direction of the algorithm is indicated by the
dashed line.

After the exploration of six nodes, the first candidate solution U = [0 0 − 1 0 0 0]T is
found, which corresponds to the tentative switch positions u(k) = [0 0 − 1]T and u(k +
1) = [0 0 0]T . The leaf node corresponding to the candidate solution is indicated by a star.
The radius of the sphere is tightened, before continuing the exploration, as illustrated on the
right-hand side of Fig. 5.4. The remaining candidate switch positions are explored at the nodes
visited so far, while moving up in the search tree toward the root node. Fully exploring these
nodes provides the algorithm with a certificate that the candidate switching sequence is indeed
the optimal solution. Note that some branches are discarded before exploration. As u3 = −1
was chosen, switching to u6 = 1 would violate the switching constraint (5.22c).

Owing to the tight sphere and the depth-first search of the algorithm, the optimal switching
sequence is found in the majority of the cases after the exploration of the minimum number
of nodes, which is given by 3Np. In some cases, however, additional candidate sequence are
explored, as exemplified in Fig. 5.5. As shown on the left-hand side, after having found the

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

1

2

773

84

95

106

u1 = 1u1 = −1 u1 = 0

u2 = 1

u3 = 1

u2 = −1
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u6 = −1u6 =−1 u6 = 0u6 = 0

Figure 5.5 Visualization of the search tree traversal for another problem instance. The optimal switch-
ing sequence is found after the enumeration of two candidate switching sequences and the exploration
of 10 nodes
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first candidate switching sequence U = [0 0 − 1 0 0 0]T , the branch u2 = 1 of node 2 turns
out to be within the sphere, triggering the exploration of another part of the search tree with the
nodes 7–10, which are shown on the right-hand side of Fig. 5.5. The second candidate solution
is U = [0 1 − 1 0 1 0]T , which is, in this example, the optimal switching sequence.

For a three-level converter, when neglecting the switching constraint (5.22c), the search
tree has

3Np−1∑

i=0

3i (5.34)

nodes, where the base relates to the three levels of the inverter. For the horizon Np = 2
considered previously, the search tree has 364 nodes. Of these, the sphere decoding algorithm
visits only a very small subset, as highlighted by the examples shown in Figs. 5.4 and 5.5.
Statistical data are provided in the next section.

5.4 Computational Burden

In this section, the computational burden of the modified sphere decoding algorithm is ana-
lyzed and compared with the exhaustive search method. In this analysis, a distinction is made
between computations that can be made offline once and the computations that are performed
online and in real time. For the latter, we distinguish between the preprocessing and the sphere
decoding stage.

5.4.1 Offline Computations

The generator matrix V can be computed offline, provided that the rotor speed ωr and the
dc-link voltage vdc are time-invariant. If these two quantities were time-varying, V could be
precomputed for different combinations of rotor speeds and dc-link voltages, and the result
could be stored in a look-up table. The steps required to compute V involve the following:
First, the discrete-time state-space matrices A, B, and C are computed according to (5.5)
or (5.6). Second, Υ and S are calculated (see Appendix 5.B), based on which H is derived
according to (5.23b). In the last step, the generator matrix V results from the Cholesky fac-
torization (see (5.19)).

5.4.2 Online Preprocessing

The preprocessing stage involves four computational steps, which need to be performed in real
time. First, the output reference trajectory Y ∗(k) needs to be derived over the prediction hori-
zon Np. Second, Θ(k) in (5.23d) is computed as a function of the state vector x(k), output ref-
erence trajectory Y ∗(k), and the previously applied switch position u(k − 1). Third, the trans-
formed unconstrained solution (5.23e) is derived. Note that the term V H−1 can be precom-
puted offline. In the last step, a feasible candidate switching sequence Uini(k) is obtained from
the optimal switching sequence Uopt(k − 1) at the previous time step (see (5.31)). Based on
this candidate sequence, the initial radius ρ(k) of the sphere can be derived according to (5.32).

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

212 Model Predictive Control of High Power Converters and Industrial Drives

5.4.3 Sphere Decoding

The sphere decoding algorithm takes up the majority of the real-time computations. As a
measure of the computational burden, we count the number of nodes that are visited by the
algorithm in the search tree. For this, the drive system case study with current reference track-
ing is considered again. We assume operation at nominal speed and rated torque, and chose
Q = I2 and the sampling interval Ts = 25 μs. Different prediction horizons are investigated.
The weight λu is chosen such that a switching frequency of approximately 300 Hz is obtained,
regardless of the prediction horizon.

Over multiple fundamental periods, the number of nodes that the algorithm investigates
at each time step is recorded. The average and the maximum number of nodes are stated in
Table 5.1 as a function of the prediction horizon. By definition, at least 3Np nodes need to
be explored before the optimal switching sequence can be found. This constitutes the lower
bound. The theoretical upper bound is given by (5.34). Even though this bound neglects
the switching constraint, the computational burden of exhaustive search is similar to this
upper bound.

When using sphere decoding for the horizon 1 case, the table shows that on an average
3.18 nodes need to be considered by the algorithm. This implies that, by choosing the initial
radius of the sphere according to the educated guess (5.32), the sphere is sufficiently tight.
Specifically, in the vast majority of cases, the sphere is perfectly tight, in the sense that, out of
all the admissible switching sequences, only one is located within the sphere, which implies
that only one leaf node in the search tree is visited. The same holds true for prediction horizons
of lengths 2 and 3.

This is in stark contrast to the exhaustive search method. For the horizon 1 case, depending
on the optimal switch position obtained at the previous time step, u(k − 1), and in accordance
with the switching constraint, up to 13 nodes need to be investigated. As the prediction horizon
is increased, the computational burden associated with sphere decoding initially grows slowly,
while exhaustive search becomes computationally intractable for horizons of 5 or more. Using
sphere decoding, the optimization problem for direct MPC with long prediction horizons such

Table 5.1 Number of nodes explored in the search tree as a
function of the length of the prediction horizon

Prediction
horizon Np

Lower
bound

Sphere decoding Upper
bound

average maximum

1 3 3.18 7 13
2 6 6.39 13 364
3 9 9.72 22 9841
5 15 16.54 49 7.17 · 106

10 30 37.10 249 1.03 · 1014

The average and maximum number of nodes explored by the
sphere decoding algorithm are provided, along with lower and upper
bounds.
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Figure 5.6 Histogram of the number of nodes investigated by the modified sphere decoding algorithm,
when considering the prediction horizon Np = 10

as 10 can be solved relatively quickly, with the empirical maximum number of nodes to be
investigated being 249.

Figure 5.6 depicts the histogram of the average number of nodes that need to be explored at
each time step when using a horizon of 10 steps. The histogram is highly concentrated at the
lower bound of 30, but it exhibits a long, albeit very flat tail. It can be seen that, with sphere
decoding, in 80% of the cases the optimization problem can be solved by exploring only one
candidate switching sequence. The 95th and 98th percentiles are shown as dash-dotted and
dashed lines, respectively. They indicate that in 95% of the cases fewer than 85 nodes need to
be explored.

Appendix 5.A: State-Space Model

The matrices corresponding to the continuous-time prediction model (5.3) are

F =

⎡

⎢⎢⎢⎢⎣

− 1
τs

0 Xm

τrD ωr
Xm

D

0 − 1
τs

−ωr
Xm

D
Xm

τrD
Xm

τr
0 − 1

τr
−ωr

0 Xm

τr
ωr − 1

τr

⎤

⎥⎥⎥⎥⎦
, G =

vdc

2
Xr

D

⎡

⎢⎢⎣

1 0
0 1
0 0
0 0

⎤

⎥⎥⎦ K̃, (5.A.1a)

C =
[
1 0 0 0
0 1 0 0

]
. (5.A.1b)

The transient stator and rotor time constants τs and τr were defined in (2.60). The determinant
D is stated in (2.54).
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Appendix 5.B: Derivation of the Cost Function in Vector Form

By successively using (5.10b), the state vector at time step � + 1 can be represented as a
function of the state vector at time step k and the switching sequence comprising the switch
positions u(k) to u(�) as

x(� + 1) = A�−k+1 x(k) + A�−kB u(k) + · · · + A0B u(�) (5.B.1)

with � = k, . . . , k + Np − 1.
Recall the definition of the output reference trajectory

Y (k) = [yT (k + 1) yT (k + 2) . . . yT (k + Np)]
T (5.B.2)

over the prediction horizon Np. Substituting (5.B.1) into (5.10c) yields

Y (k) = Γ x(k) + Υ U(k), (5.B.3)

where the matrices Γ and Υ are defined as

Γ =

⎡

⎢⎢⎢⎣

CA
CA2

...
CANp

⎤

⎥⎥⎥⎦ and Υ =

⎡

⎢⎢⎢⎣

CB 0ny×3 · · · 0ny×3
CAB CB · · · 0ny×3

...
...

...
CANp−1B CANp−2B · · · CB

⎤

⎥⎥⎥⎦ . (5.B.4)

Note that ny denotes the number of output variables, that is, y ∈ R
ny .

We define the output tracking error ξ = y∗ − y. With this definition, the first term in the
cost function (5.7) can be written as

J1 =
k+Np−1∑

�=k

||ξ(� + 1)||2Q =
k+Np−1∑

�=k

(ξ(� + 1))T Q ξ(� + 1) (5.B.5a)

= [ξT (k + 1) . . . ξT (k + Np)] Q̃ [ξT (k + 1) . . . ξT (k + Np)]
T (5.B.5b)

= (Ξ(k))T Q̃ Ξ(k) = ||Ξ(k)||2
Q̃

, (5.B.5c)

where we have introduced the block diagonal matrix Q̃ = diag(Q, . . . ,Q) and the output
error trajectory Ξ(k) = [ξT (k + 1) ξT (k + 2) . . . ξT (k + Np − 1)]T . By inserting (5.B.3)
into Ξ(k) = Y ∗(k) − Y (k) in (5.B.5c), the cost function term

J1 = ||Y ∗(k) − Γx(k) − ΥU(k)||2
Q̃

(5.B.6)

directly follows.
Similarly, the second term in the cost function (5.7) can be rewritten as

J2 =
k+Np−1∑

�=k

λu||Δu(�)||22 (5.B.7a)

= λu

k+Np−1∑

�=k

(u(�) − u(� − 1))T (u(�) − u(� − 1)) (5.B.7b)
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= λu(SU(k) − Eu(k − 1))T (SU(k) − Eu(k − 1)) (5.B.7c)

= λu||SU(k) − Eu(k − 1)||22, (5.B.7d)

with the auxiliary matrices

S =

⎡

⎢⎢⎢⎢⎢⎢⎣

I3 03×3 . . . 03×3

−I3 I3 · · · 03×3

03×3 −I3 · · · 03×3
...

...
...

03×3 03×3 · · · I3

⎤

⎥⎥⎥⎥⎥⎥⎦
and E =

⎡

⎢⎢⎢⎢⎢⎣

I3
03×3
03×3

...
03×3

⎤

⎥⎥⎥⎥⎥⎦
. (5.B.8)

Summing up (5.B.6) and (5.B.7d) yields the cost function in vector notation:

J = ||Y ∗(k) − Γx(k) − ΥU(k)||2
Q̃

+ λu||SU(k) − Eu(k − 1)||22. (5.B.9)

The first term in (5.B.9) penalizes the predicted tracking error, while the second term penalizes
the switching effort.

To obtain the representation (5.12) of the cost function, some additional algebraic manipu-
lations are required. In this last step, to improve the readability, we simplify the notation and
drop the time dependence of the vectors and matrices in (5.B.9) and write

J = ||Y ∗ − Γx − ΥU ||2
Q̃

+ λu||SU − Eu||22 (5.B.10a)

= (ΥU)T Q̃ΥU + λu(SU)T SU − (Y ∗ − Γx)T Q̃ΥU

− (ΥU)T Q̃(Y ∗ − Γx) − λu(Eu)T SU − λu(SU)T Eu (5.B.10b)

+ (Y ∗ − Γx)T Q̃(Y ∗ − Γx) + λu(Eu)T Eu.

By exploiting the fact that Q̃ is symmetric, that is, Q̃
T

= Q̃, and that for a scalar ξ the state-
ment ξT = ξ holds, the terms in the cost function (5.B.10b) can be rearranged as

J = UT (ΥT Q̃Υ + λuST S)U − 2(Y ∗ − Γx)T Q̃ΥU

− 2λu(Eu)T SU + ||Y ∗ − Γx||2
Q̃

+ λu||Eu||22. (5.B.11)

By defining

H = ΥT Q̃Υ + λuST S (5.B.12a)

(Θ(k))T = −(Y ∗(k) − Γx(k))T Q̃Υ − λu(Eu(k − 1))T S (5.B.12b)

θ(k) = ||Y ∗(k) − Γx(k)||2
Q̃

+ λu||Eu(k − 1)||22, (5.B.12c)

(5.B.11) can be written in the final form

J = (U(k))T HU(k) + 2(Θ(k))T U(k) + θ(k), (5.B.13)

where we have reintroduced the time dependency.
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6
Performance Evaluation of
Predictive Control with Long
Horizons

In direct model predictive control (MPC) schemes with reference tracking, the prediction hori-
zon has traditionally been set to 1 [1]. Indeed, it is often believed that a horizon of 1 suffices
and that the use of longer horizons carries no performance benefits. This common belief might
be a result of the fact that, because of the combinatorial explosion of the number of possible
solutions, investigating the potential benefits of long horizons is intrinsically challenging, and
horizons of 2 or 3 often offer only an incremental benefit, as will be shown in this chapter.
Another reason might be that researchers have so far mostly focused on inverters directly
connected to the load, such as an RL load [2]. In an orthogonal coordinate system, the fast
(current) dynamic of such a setup constitutes a first-order system. In each coordinate axis,
the transfer function from the manipulated variable (the inverter voltage) to the load current
(the controlled variable) is of first order, implying that these power electronic systems can be
controlled with ease.

Adopting the sphere decoding algorithm proposed in the previous chapter, the performance
benefits of long horizons for inverter drive systems are investigated in this chapter. As will be
shown for a three-level converter connected to an induction machine, long prediction horizons
improve the converter performance at steady-state operating conditions, by either reducing
the switching frequency or the total demand distortion (TDD) of the current, or both. Specif-
ically, direct MPC with horizon Np = 10 reduces the current TDD by approximately 20%,
when compared to the Np = 1 case. As a result, direct MPC can outperform space vector
modulation (SVM) and carrier-based pulse width modulation (CB-PWM). In some cases, the
performance of direct MPC may even approach that of optimized pulse patterns (OPPs), which
are generally considered to provide the upper bound of the attainable steady-state performance.
During transients, MPC with long horizons provides as short a transient response time as MPC
with short horizons, often outperforming classic control arrangements such as field-oriented
control.

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/geyermodelpredictivecontrol
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The main benefit of long horizons, however, becomes evident when considering power elec-
tronic systems of so-called higher order. In an orthogonal coordinate system, the fast dynamics
of such systems feature more than one state variable per coordinate axis. In the second case
study, an LC filter is added to the drive system, resulting in a third-order system. The direct
MPC scheme can easily be extended to control all three state variables, without requiring an
additional active damping loop. For such systems, the horizon 1 case leads to poor performance
results with large current TDDs. Adopting long horizons, however, reduces the current TDD
by about fivefold for the same switching frequency. Interestingly, device switching frequencies
significantly below the filter resonance frequency can be used with long-horizon direct MPC.

6.1 Performance Evaluation for the NPC Inverter Drive System

In this section, the performance of direct MPC with long prediction horizons is investigated
at steady-state operating conditions and during torque transients. An NPC inverter with an
induction machine is used as a case study. We use the modified sphere decoding algorithm
described in Sect. 5.3.2 to solve the optimization problem (5.22). To assess the performance
of MPC, we need to first define a suitable framework.

6.1.1 Framework for Performance Evaluation

6.1.1.1 Simulation Setup

As stated in Sect. 5.1.1, we consider as a case study the current reference tracking problem of
an NPC voltage source inverter. The inverter is connected to a medium-voltage (MV) induction
machine with a constant mechanical load, as shown in Fig. 5.1. All simulations are performed
in MATLAB, using an idealized setup. As such, second-order effects such as deadtimes, mea-
surement noise, observer errors, saturation of the machine’s magnetic material, parameter
variations, and so on, are neglected. We assume that the manipulated variable is computed
instantly after measuring the state variables, thus neglecting implementation-related delays.
For more details on delays and a method to compensate them, the reader is referred to Sect.
4.2.8. Furthermore, the penalty matrix Q is set to the identity matrix I2.

Throughout this chapter, if not otherwise stated, all simulations were performed at nominal
speed and rated torque, implying a fundamental frequency of 50 Hz and rated currents. To
ensure that the drive system has settled at steady-state operating conditions, the system was
first simulated over several fundamental periods without recording the results.

6.1.1.2 Modulation Methods Used for Benchmarking

To evaluate the steady-state performance of direct MPC with long horizons, we will bench-
mark this strategy with SVM and OPPs. Synchronous modulation is used, that is, the carrier
frequency is an integer multiple of the fundamental frequency.

The OPPs were calculated offline for pulse numbers (the ratio between the switching
frequency and the fundamental frequency) of up to 20. The switching angles were computed
by minimizing the squared differential-mode voltage harmonics divided by the order of
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the harmonic. For an inductive load such as a machine, this approach is effectively equivalent
to minimizing the current TDD. This is explained in detail in Sect. 3.4.

6.1.1.3 Performance Criteria

The key criteria related to the control performance are the device switching frequency fsw
and the current TDD ITDD. In addition, we will also investigate the a posteriori closed-loop
cost. It is obtained after the simulations, by evaluating the cost function J (see (5.7)), over
all simulated time steps and dividing it by the total number of time steps ktot. For the current
reference tracking problem at hand, the closed-loop cost is given by

Jcl =
1

ktot

ktot−1∑

�=0

||i∗s(� + 1) − is(� + 1)||22 + λu||Δu(�)||22. (6.1)

The closed-loop cost (6.1) captures the squared root-mean-square (rms) current error (in sta-
tionary αβ coordinates) and the averaged and squared switching effort (which is weighted
with λu) over the closed-loop simulation.

6.1.1.4 Trade-Off between the Current TDD and Switching Frequency

Unavoidably, with switching power converters, a trade-off exists between the current TDD
ITDD and the switching frequency fsw. It is convenient to plot these two quantities along two
orthogonal axes. Figure 6.1 illustrates this performance trade-off for SVM and OPPs. In this

Switching frequency fsw (Hz)

C
ur

re
nt

 T
D

D
 I

T
D

D
 (

%
)

SVM

OPP

0 200 400 600 800 1000
0

4

8

12

16

20

Figure 6.1 Trade-off between the current TDD and the switching frequency for synchronous SVM and
OPPs
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figure, each square corresponds to a unique simulation with synchronous SVM. The squares
are approximated using a polynomial, indicated by the dash-dotted line. Accordingly, the dia-
monds correspond to volts per frequency (V/f) simulations with OPPs.

The switching frequency range between 200 and 350 Hz is of particular importance for MV
power converters. As can be seen in Fig. 6.1, in this range there is scope for a significant
reduction of the current TDD while maintaining the same switching frequency. For example,
at fsw = 200 Hz, the current TDD can be almost halved when replacing SVM by OPPs. Con-
versely, the switching frequency can be drastically reduced for the same current TDD. For
ITDD = 5%, for example, the switching frequency can be lowered from 350 to 200 Hz by
adopting OPPs instead of SVM. This is a reduction of 42%. Both examples are indicated by
arrows, which are shown in Fig. 6.1.

At higher switching frequencies, however, the performance benefit of OPPs compared to
SVM becomes smaller. For fsw > 600 Hz and pulse numbers greater than 12, the OPPs reduce
the current distortions only by 15–20% when compared to SVM. Moreover, the optimization
process to compute OPPs with high pulse numbers becomes computationally demanding. As a
result, previous results shown in [3] were based on OPPs with slightly higher current distortions
for pulse numbers exceeding 9.

With this as a background and recalling that OPPs exhibit—to a large extent—optimal
steady-state behavior, we will quantify in this chapter the relative merits of MPC by normal-
izing the current TDD to the one obtained by OPPs. Specifically, we introduce

I rel
TDD =

ITDD − ITDD,OPP

ITDD,OPP
, (6.2)

which is the relative current TDD degradation, normalized to the current TDD of OPPs and
given in percent. The normalization is performed with regard to the polynomial approximation
of the OPPs shown in Fig. 6.1.

6.1.2 Comparison at the Switching Frequency 250 Hz

Consider direct MPC with the horizon Np = 1, sampling interval Ts = 125 μs, and cost func-
tion (5.7) with the weighting factor λu = 8.4 · 10−3. This results in an average device switch-
ing frequency of fsw = 250 Hz, which is typical for MV applications, and a current TDD of
ITDD = 5.96%.

Figure 6.2(a) illustrates three-phase stator current waveforms over one fundamental period.
The colors black, light gray, and dark gray correspond to the phases a, b, and c, respectively.
The currents are provided in a per unit (pu) system. The evolution of the stator current is
simulated with a time resolution of 25 μs, based on which the spectrum of the stator current is
computed with a Fourier transformation. The resulting current spectrum is shown in Fig. 6.2(b)
and the three-phase switching sequence is depicted in Fig. 6.2(c). For direct MPC—unlike
PWM—a repetitive switching pattern is not enforced. As a result, the current spectrum is
predominantly flat without characteristic harmonics, despite a pronounced 11th harmonic.

Extending the prediction horizon to Np = 10 reduces the current TDD by about one per-
centage point, as stated in Table 6.1. This initial result indicates that long prediction horizons
do indeed reduce the current TDD, in this case by about 15%. The corresponding waveforms
for the Np = 10 case are shown in Fig. 6.3. It can be seen that the long horizon leads to a certain
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Figure 6.2 Simulated waveforms for direct MPC with the horizon Np = 1, sampling interval Ts =
125 μs, and weighting λu = 8.4 · 10−3, at full speed and rated torque. The switching frequency is approx-
imately 250 Hz

Table 6.1 Comparison of direct MPC with SVM and an OPP in terms of the current TDD ITDD,
torque TDD TTDD, and switching frequency fsw

Controller Controller settings ITDD (%) TTDD (%) fsw (Hz)

MPC Np = 1, λu = 8.4 · 10−3 5.96 4.65 250
MPC Np = 10, λu = 8.3 · 10−3 5.05 4.03 254
SVM fc = 450 Hz 7.71 5.35 250
OPP d = 5 4.12 3.40 250

The penalty λu, carrier frequency fc, and pulse number d are chosen such that a switching frequency of
approximately 250 Hz results.
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Figure 6.3 Simulated waveforms for direct MPC with the horizon Np = 10, sampling interval Ts =
125 μs, and weighting λu = 8.3 · 10−3. The operating point and the switching frequency are the same
as in Fig. 6.2

degree of repetitiveness in the switching pattern. Accordingly, non-triplen odd-order harmon-
ics are clearly identifiable in the current spectrum, such as the 11th, 13th, and 19th harmonics.
Indeed, the degree of repetitiveness in the switching pattern and—correspondingly—the mag-
nitude of the discrete harmonics in the current spectrum are remarkable. It can be observed
that, in this case, long prediction horizons foster a discrete current spectrum by concentrating
the harmonic power in harmonics of odd order. An analysis shows that the same applies to the
triplen (common-mode) voltage harmonics. The shift of some of the harmonic ripple power
into common-mode harmonics is one of the reasons why direct MPC with long prediction
horizons leads—in general—to a lower current TDD than the horizon 1 case. Moreover, longer
horizons tend to shift some of the differential-mode voltage harmonics from the low-frequency
range to higher frequencies, resulting in a lower current TDD.

To facilitate a comparison with SVM, the corresponding waveforms of SVM are shown in
Fig. 6.4. The equivalent carrier frequency fc = 450 Hz results in the same switching frequency
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Figure 6.4 Simulated waveforms for volts per frequency (V/f) control and SVM with the equivalent
carrier frequency fc = 450 Hz. The operating point and the switching frequency are the same as in
Fig. 6.2

as for MPC, that is, fsw = 250 Hz. The current TDD is at 7.71%, which is significantly higher
than with direct MPC (see Table 6.1). As expected, because of the symmetry and repetitiveness
of the switching pattern, SVM features a discrete current spectrum with distinctive harmonics
at non-triplen and odd multiples of the fundamental frequency. Note that the 17th current
harmonic has an amplitude of 0.066 pu.

On the other hand, for the same switching frequency and the pulse number d = 5, an OPP
leads to a current TDD of 4.12%, which is approximately one percentage point lower than for
direct MPC with Np = 10. The corresponding waveforms of the OPP are shown in Fig. 6.5.

6.1.3 Closed-Loop Cost

Next, the influence of λu on the switching frequency and the current TDD is investigated. For
each of the horizons Np = 1, 3, 5, and 10, and for more than 1000 different values of λu,
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Figure 6.5 Simulated waveforms for V/f control and an OPP with pulse number d = 5. The operating
point and the switching frequency are the same as in Fig. 6.2

ranging between 0 and 0.5, steady-state simulations were run. Focusing on switching frequen-
cies between 100 Hz and 1 kHz, and current TDDs below 20%, the results are shown in Fig. 6.6
using a double logarithmic scale. Each simulation corresponds to a single data point. Polyno-
mial functions, which approximate the individual data points, are overlaid. Figures 6.6(a) and
(b) suggest that, for small prediction horizons, the relationship between λu and the perfor-
mance variables is approximately linear in the double logarithmic scale; for larger values of
Np, the relationship is more complicated, but still monotonic.

When extending the horizon for a given λu, the switching frequency is increased while the
current TDD is significantly reduced. This waterbed effect makes it difficult to assess from
Fig. 6.6(a) and (b) the benefit long prediction horizons might have on these two key perfor-
mance metrics. A more suitable measure is the a posteriori closed-loop cost (see (6.1)), which
is illustrated in Fig. 6.6(c). As the prediction horizon is increased, the cost is clearly reduced,
suggesting that horizons larger than 1 are beneficial. For example, with λu = 0.01 and Np = 1,
we have Jcl ≈ 0.05, whereas with the horizon Np = 3, the closed-loop cost can be reduced to
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Figure 6.6 Key performance criteria of MPC for the prediction horizons Np = 1, 3, 5, and 10 and
sampling interval Ts = 25 μs. The switching frequency, current TDD, and closed-loop cost are shown
as a function of the tuning parameter λu, using a double logarithmic scaling. The individual simulations
are indicated using dots, and their overall trend is approximated using dash-dotted polynomials

Jcl ≈ 0.003. This is a reduction by a factor of 17! We also note that, for this value of λu, the
achieved a posteriori closed-loop cost is almost optimal. The benefit of long horizons on the
current TDD and the switching frequency is investigated in the subsequent sections.

6.1.4 Relative Current TDD

6.1.4.1 Sampling Interval Ts = 25 μs

Figure 6.7 shows the relative current TDDs of SVM and of MPC, as defined in (6.2). In
this figure, the simulations referring to SVM are indicated by squares, and those of OPPs
are indicated by diamonds. Using the sampling interval Ts = 25 μs, hundreds of individual
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Figure 6.7 Trade-off between the relative current TDD and the switching frequency for MPC with the
prediction horizons Np = 1, 3, 5, and 10, and sampling interval Ts = 25 μs. The relative current TDD
of SVM and OPP modulation is indicated by squares and diamonds, respectively

simulations of MPC with prediction horizons Np = 1, 3, 5, and 10 were performed, using dif-
ferent weights λu. Specifically, λu was varied between 0 and 1. Each simulation corresponds
to a dot in the figure. The individual simulation results were approximated by polynomials in a
least-squares sense, which are shown in Fig. 6.7 as solid lines. The trend lines for the different
prediction horizons are summarized in Fig. 6.9(a).

It can be clearly seen that long prediction horizons reduce the current TDD. In fact, for
high switching frequencies above 600 Hz, the horizon 1 case resembles the performance of
SVM. Increasing the horizon to 10 steps reduces the current TDD by about 15% compared
to SVM. For even higher switching frequencies above 800 Hz, the current distortions are half
way between that of SVM and OPPs. In terms of the absolute current TDD, however, the
differences are small and in the range of a fraction of 1% (see also Fig. 6.1).

For low switching frequencies between 100 and 250 Hz, the performance results are some-
what scattered. The trend lines suggest that around fsw = 200 Hz the current TDD can be
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Figure 6.8 Trade-off between the relative current TDD and the switching frequency for MPC with the
prediction horizons Np = 1, 3, 5, and 10, and sampling interval Ts = 125 μs. The relative current TDD
of SVM and OPP modulation is indicated by squares and diamonds, respectively

reduced by about 30% when increasing the prediction horizon from Np = 1 to 5. Longer
horizons do not appear to carry any additional performance benefit. Interestingly, for long
horizons such as Np = 10 and low switching frequencies, the switching frequency appears to
lock into integer multiples of the fundamental frequency. This is apparent for fsw = 100, 150,
and 200 Hz. For these switching frequencies and for particular choices of λu, MPC almost
reproduces the steady-state performance of OPPs, in terms of the current TDD achieved for a
given switching frequency.

6.1.4.2 Sampling Interval Ts = 125 μs

The simulations are repeated for a fivefold longer sampling interval, that is, Ts = 125 μs.
Figure 6.8 shows the resulting trade-off relationships, analog to those in Fig. 6.7. The summary
plot is provided in Fig. 6.9(b). As in the Ts = 25 μs case, longer prediction horizons improve
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Figure 6.9 Trade-off between the relative current TDD and the switching frequency for MPC with the
prediction horizons Np = 1, 3, 5, and 10, and sampling interval Ts = 25 and 125 μs, respectively. The
relative current TDD of SVM and OPP modulation is indicated by squares and diamonds, respectively

the performance of MPC by lowering the current TDD for a given switching frequency. This
becomes particularly evident for switching frequencies between 150 and 450 Hz. In this range,
MPC with Np = 10 exhibits a relative current TDD that is approximately 20% lower than
that for the Np = 1 case. When comparing Figs. 6.9(a) and (b), we note that, in addition to
the weight λu, the choice of sampling interval has a significant impact on the closed-loop
performance. This somewhat complicates the tuning procedure for direct MPC.

All trade-off curves converge at fsw = 600 Hz, which corresponds to an effectively zero
penalty on the switching effort, that is, λu ≈ 0. When not penalizing the switching transitions
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Figure 6.10 Trade-off between the relative current TDD and the switching frequency for MPC with
the prediction horizons Np = 1, 3, 5, and 10, using Monte Carlo simulations. The relative current TDD
of SVM and OPP modulation is indicated by squares and diamonds, respectively

and thus only penalizing the predicted deviation of the current from its sinusoidal reference,
MPC turns into a deadbeat controller. Here, the current loop effectively constitutes two
first-order systems (one in the α-axis and the other one in the β-axis) and the length of the
prediction horizon ceases to have an impact on the performance of MPC. In this situation,
MPC with Np = 1 yields the same control action as MPC with Np > 1.

6.1.4.3 Monte Carlo Simulations

We have seen that, in addition to the tuning parameter λu and the horizon Np, the sampling
interval Ts has a profound influence on the MPC performance. The reason for this is that the
MPC cost function in (5.7) evaluates system predictions over a prediction horizon of length
NpTs in time.

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

230 Model Predictive Control of High Power Converters and Industrial Drives

fsw (Hz)

I
re

l
T

D
D

(%
)

Np = 1
Np = 3

Np = 5 Np = 10

SVM

OPP

0

0 200 400 600 800 1000

20

40

60

80

100

Figure 6.11 Trade-off between the relative current TDD and the switching frequency for MPC with
the prediction horizons Np = 1, 3, 5, and 10, using Monte Carlo simulations. The relative current TDD
of SVM and OPP modulation is indicated by squares and diamonds, respectively

To derive results that take into account a variety of sampling intervals, we carried out Monte
Carlo simulations with random sampling intervals and random weights. Specifically, the sam-
pling interval was randomly chosen from the interval Ts ∈ [5, 200] μs, and the weight was
chosen from λu ∈ [0, 5]. Moreover, the initial conditions of the drive system were random,
including random initial stator currents and rotor fluxes for the induction machine, and ran-
dom initial switch positions for the inverter. As previously, to ensure that the simulations were
captured at steady state, presimulations were run, which were not recorded.

MPC with prediction horizons Np ∈ {1, 3, 5, 10} was considered, and approximately 104

simulations were performed. The results are depicted in Fig. 6.10, where each data point cor-
responds to one closed-loop simulation. To determine the trend lines, polynomials were fitted
to the data points using a least-squares approach. The resulting curves are shown as solid lines
in Fig. 6.10, and they are summarized in Fig. 6.11.

It can be clearly observed that, as the prediction horizon is extended, the performance of
MPC is improved by reducing the current TDD for a given switching frequency. For switching
frequencies above 400 Hz, MPC with the horizon Np = 10 reduces the relative current TDD
by about 30%, when compared to the popular Np = 1 case. Even the relatively short horizon
of Np = 3 shows an improvement on the horizon 1 case by 15%. One can also observe that the
performance improvement is most significant when enlarging the horizon from 1 to 3, whereas
the performance gains level off when further increasing Np to 5 and 10. For very low switching
frequencies, the trade-off curves for different prediction horizons converge, getting close to the
point of six-step operation, that is, fundamental frequency modulation.

For switching frequencies above 340 Hz, MPC with the horizon Np = 1 performs worse
than SVM. In terms of the average current TDD, MPC with the horizon Np = 10 always
outperforms SVM and achieves a steady-state performance that is not dissimilar to that of
OPPs when operating at low switching frequencies of 250 Hz and below.
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6.1.5 Operation during Transients

One of the major benefits of direct MPC is its very fast dynamic behavior during transients.
Consider the MPC scheme with the horizon 1, sampling interval Ts = 25 μs, and weight
λu = 2.55 · 10−3. At nominal speed, reference torque steps of magnitude 1 pu are imposed
(see Fig. 6.12(a)). The steps on the torque reference are translated into steps in the current
references, shown as dash-dotted lines in Fig. 6.13(a). The corresponding switching pattern is
shown in Fig. 6.14(a), with the switching frequency being fsw = 252 Hz.

When switching from the rated torque to zero, the voltage applied to the machine is momen-
tarily inverted, leading to an extremely short settling time of 0.35 ms. On the other hand, the
torque step from 0 to 1 pu at 4 ms is significantly slower. This is due to the small voltage
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Figure 6.12 Torque for the horizons Np = 1 and Np = 10 during torque steps
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Figure 6.13 Three-phase stator currents for the horizons Np = 1 and Np = 10 during torque steps
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Figure 6.14 Three-phase switch positions for the horizons Np = 1 and Np = 10 during torque steps

margin available, which results from the machine operating at nominal speed. Nevertheless,
as can be seen in Fig. 6.13(a), the currents are regulated as quickly as possible to their new
references. Note that, because of the constraint (5.22c), switching between −1 and 1 is inhib-
ited, and switching is performed via an intermediate zero switch position, which is applied for
one sampling interval Ts.

Figures 6.12(b), 6.13(b), and 6.14(b) show the corresponding step responses for MPC with
horizon 10. The settling times are nearly identical to those of the horizon 1 case. The weight
λu = 120 · 10−3 was chosen, which results in the same switching frequency as previously, that
is, fsw = 250 Hz.

When operating at 50% speed and applying the same torque steps as before, the torque
settling times are 0.5 ms for the step-down and 1.1 ms for the step-up case, for MPC with both
horizon 1 and horizon 10. We conclude that during transients, the dynamic performance of
direct MPC is effectively limited only by the available voltage, regardless of the length of the
prediction horizon. In particular, long horizons do not slow down the dynamic response of
MPC. This is also due to the fact that the computation of the controller output is assumed to
take the same time regardless of the length of the prediction horizon. Indeed, we assume in
this chapter that the computation time is zero.

6.2 Suboptimal MPC via Direct Rounding

We have seen in Sects. 5.2.4 and 5.3.3 that, in general, direct rounding of the unconstrained
solution provides suboptimal solutions. However, in some cases, the generator matrix V is
almost diagonal and its basis vectors are almost orthogonal. This motivates the investigation
of an approximate solution, based on trivial quantization (rounding). This approach yields
suboptimal solutions but is computationally very fast, because it requires only basic matrix
manipulations. Sphere decoding and branching is not required.

Specifically, instead of invoking Algorithm 1 in Sect. 5.3.2, the (suboptimal) sequence
of switch positions is obtained by rounding (quantizing) the unconstrained solution
component-wise to the nearest integer in the set U :
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Figure 6.15 Trade-off between the relative current TDD and the switching frequency for suboptimal
MPC with the prediction horizons Np = 1, 3, 5, and 10, and sampling interval Ts = 25 μs, when round-
ing the unconstrained solution

U sub(k) = roundU(Uunc(k)). (6.3)

Recall that, as defined in (5.23e), Uunc(k) denotes the unconstrained solution to the optimiza-
tion problem (5.22) at time step k.

The simulations in Sect. 6.1.4 for (optimal) direct MPC were repeated for this suboptimal
design. Using the sampling interval Ts = 25 μs, the resulting trade-off curves for suboptimal
MPC are depicted in Fig. 6.15 for the horizons 1, 3, 5, and 10. The trend lines were fitted as
before and are shown separately in Fig. 6.16.

For switching frequencies below 300 Hz, the weight λu is large and the diagonal terms dom-
inate over the off-diagonal terms in the generator matrix V . As a result, the component-wise
quantization in (6.3) yields solutions close to the optimal one. This can be seen when compar-
ing Figs. 6.9(a) and 6.16 with each other. For Np = 1, suboptimal MPC exhibits a performance
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Figure 6.16 Trade-off between the relative current TDD and the switching frequency for suboptimal
MPC with the prediction horizons Np = 1, 3, 5, and 10, and sampling interval Ts = 25 μs, when round-
ing the unconstrained solution

that is very similar to that of optimal MPC. Longer horizons improve the performance of sub-
optimal MPC (6.3), but to a lesser degree than for the optimal case (5.22).

High switching frequencies are the result of small λu and generator matrices that are cor-
respondingly less orthogonal. Using the trivial quantization in (6.3) for switching frequencies
above 300 Hz leads to suboptimal solutions that are clearly inferior, with the Np = 1 case
being about 15% worse than the optimal solution. Moreover, extending the horizon appears
to be of very little benefit, if any at all. As λu is decreased and the switching frequency is
increased, the relative deterioration of suboptimal MPC becomes more prominent. The abso-
lute performance loss, in terms of current TDD for a given switching frequency, is, however,
very small.

6.3 Performance Evaluation for the NPC Inverter Drive System
with an LC Filter

For direct MPC schemes, the performance benefits of long prediction horizons become more
pronounced when increasing the complexity of the power electronic system to be controlled.
As an example, consider an inverter driving an induction machine via an intermediate LC filter.
Ignoring the rotor dynamics, which are slow compared to the dynamics of the stator and LC
filter, this system consists of two third-order systems in an orthogonal coordinate system. To
control such a system, it is common practice to design two single-input single-output (SISO)
proportional integral (PI) controllers for the inverter current. To rein in the filter resonance, an
additional active damping loop is typically added [4].

A more elegant—and in the end more promising—approach is to treat the higher order
system as a multiple-input multiple-output (MIMO) system and to design a single MIMO
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Figure 6.17 Three-level, three-phase, neutral-point-clamped voltage source inverter with an LC filter
driving an induction machine. The neutral point potential is fixed at zero

controller for it. This can easily be accomplished with MPC, by regulating the inverter
current, capacitor voltage, and stator current simultaneously. For the MPC scheme to perform
well, however, a long prediction horizon is required that covers a significant fraction of
the oscillation period of the filter resonance. To solve the underlying integer optimization
problem, the sphere decoding algorithm proposed in Chap. 5 is used.

6.3.1 Case Study

In the following, the previously used case study consisting of an NPC inverter and an MV
induction machine is augmented by an LC filter. As shown in Fig. 6.17, a symmetrical
three-phase LC filter is placed between the inverter and the machine to reduce the harmonic
distortions at the stator windings. Adopting again the pu system, we introduce the reactances1

Xl and Xc for the filter inductor and capacitor, respectively. The internal resistors of the
inductor and capacitor are denoted by Rl and Rc, respectively.

The total dc-link voltage vdc is assumed to be constant, and the neutral point potential is
clamped to zero. We use u = [ua ub uc]

T to denote the three-phase switch position. The
inverter voltage vi = [viα viβ]T in stationary orthogonal coordinates is given by

vi =
1
2
vdc K̃ u. (6.4)

The reduced Clarke transformation K̃ has been defined in (2.13).
The state-space equations of the filter in the αβ coordinate system are

dii

dt
=

1
Xl

(vi − vc − Rlii − Rc(ii − is)) (6.5a)

dvc

dt
=

1
Xc

(ii − is), (6.5b)

where ii denotes the inverter current, vc is the capacitor voltage, and is is the stator current.

1 Note that the notation of Xc is slightly misleading, because Xc is not a reactance, but rather its inverse. Specifically,
we have 1

Xc
= 1

ωBCc

1
ZB

, see also Footnote 1 in Sect. 2.4.1.
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Table 6.2 Parameters in the SI (left) and per unit system (right) of the three-level NPC inverter drive
system with an LC filter

Parameter SI symbol SI value pu symbol pu value

Stator resistance Rs 57.61 mΩ Rs 0.0108 pu
Rotor resistance Rr 48.89 mΩ Rr 0.0091 pu
Stator leakage inductance Lls 2.544 mH Xls 0.1493 pu
Rotor leakage inductance Llr 1.881 mH Xlr 0.1104 pu
Main inductance Lm 40.01 mH Xm 2.349 pu
Number of pole pairs p 5
dc-link voltage Vdc 5.2 kV Vdc 1.930 pu
Filter inductor L 2 mH Xl 0.1174 pu
Filter capacitor C 200μF Xc 0.3363 pu
Filter inductor resistance Rl 2 mΩ Rl 0.0004 pu
Filter capacitor resistance Rc 2 mΩ Rc 0.0004 pu

ii
Rl Xl

Rc

Xc

is
Rs

Xσvi

vc

vs

Figure 6.18 Harmonic model of the drive system with an LC filter given in stationary orthogonal
coordinates. The model is valid for frequencies above the fundamental frequency

The voltage applied to the stator windings of the machine is

vs = vc + Rc(ii − is). (6.6)

The state-space model of the induction machine remains the same as in (4.11)–(4.14), using
the stator current is = [isα isβ ]T and the rotor flux linkage vector ψr = [ψrα ψrβ ]T as state
variables.

The previously considered 3.3 kV, 50 Hz squirrel-cage induction machine rated at 2 MVA
with 356 A rated current is used again. The machine’s total leakage reactance is Xσ = 0.25 pu.
The values of the LC filter are given by L = 2 mH and C = 200 μF. The detailed parameters
of the machine, inverter, and LC filter are provided in Table 6.2. The pu system is established
using the rated machine values, which are stated in Table 2.9.

For frequencies beyond the fundamental frequency, a simplified model can be derived. In
particular, the model of the induction machine (4.11) is replaced by its harmonic model. As
explained in Sect. 2.2.5, the machine can be represented by the series connection of the sta-
tor resistor Rs and the total leakage reactance Xσ . This leads to the harmonic model shown
in Fig. 6.18. The voltage source on the left-hand side of the circuit represents the voltage
harmonics injected by the inverter.

Two conclusions can be drawn. First, the three resistors in the system are almost negligible
and provide effectively no passive damping. Second, the dominant resonance of the system
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is constituted by the filter capacitance oscillating against the two inductances, namely the
filter inductance and the total leakage inductance of the machine. Therefore, the resonance
frequency in hertz can be expressed in SI units and in the pu system, respectively, as

fres =
1

2π
√

C LLσ

L+Lσ

= fB

1√
Xc

XlXσ

Xl+Xσ

, (6.7)

where fB = ωB/(2π) = 50 Hz is the base frequency. For the given parameters, fres = 304 Hz
results.

6.3.2 Controller Model

As the state vector for the prediction model, we chose the eight-dimensional vector

x = [iT
i vT

c iT
s ψT

r ]T (6.8)

in the stationary orthogonal coordinate system. The three-phase switch position u constitutes
the input vector, whereas the inverter current, the capacitor voltage, and the stator current are
the output variables, which form the output vector

y = [iT
i vT

c iT
s ]T . (6.9)

As discussed in the previous chapters, the dynamic of the rotor is neglected and the rotor
speed ωr is considered to be a time-varying parameter. By inserting the inverter voltage (6.4)
into the filter model (6.5) and the filter output voltage (6.6) into the machine model (4.11), the
continuous-time prediction model

dx(t)
dt

= Fx(t) + Gu(t) (6.10a)

y(t) = Cx(t) (6.10b)

can be obtained, where the matrices F , G, and C are provided in Appendix 6.A. Using
the exact Euler approach—see (5.5)—with the sampling interval Ts results in the equivalent
discrete-time state-space model

x(k + 1) = Ax(k) + Bu(k) (6.11a)

y(k) = Cx(k). (6.11b)

6.3.3 Optimization Problem

For the drive system with an LC filter, the three output variables in αβ coordinates need to be
regulated along their trajectories. Specifically, the inverter current ii, the capacitor voltage vc,
and the stator current is should track their references i∗i , v∗

c, and i∗s, respectively. The latter are
joined together in the output reference vector y∗. Moreover, the switching frequency needs to
be minimized. The block diagram of the proposed MPC scheme with reference tracking of y∗

is depicted in Fig. 6.19.

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

238 Model Predictive Control of High Power Converters and Industrial Drives

=
~~

Minimization of
cost function

Prediction of
trajectories

is

u

Encoder
(optional)

Observer

dc-link

Xl

Xc

ii
∗

v∗
c

i∗s

ψr

ii

vc

ωr

IM

Figure 6.19 Direct MPC with reference tracking for the drive system with an LC filter

The general cost function (5.7) introduced in Sect. 5.1.3 is repeated here:

J =
k+Np−1∑

�=k

||y∗(� + 1) − y(� + 1)||2Q + λu||Δu(�)||22, (6.12)

which addresses all three output variables. As before, we require the penalty matrix Q ∈ R
6×6

to be positive semidefinite and symmetric. To achieve a low stator current TDD, the stator
current ripple needs to be small. This can be achieved by prioritizing the tracking of the stator
current, by choosing large values for the weighting factors of the α- and β-components of the
stator current. These weighting factors correspond to the last two diagonal entries in Q. The
scalar penalty on the switching effort λu is required to be positive. The ratio between Q and
λu decides on the trade-off between the overall tracking accuracy and the switching effort.
When prioritizing the tracking of the stator current, this trade-off is equivalent to that between
the stator current TDD and the switching frequency of the inverter.

Note that the output reference vector y∗ in (6.12) is time-varying. Its evolution within the
prediction horizon can be computed by transforming the drive system model (6.10) from the
αβ frame into the rotating dq reference frame. The electrical angular speed of the rotor ωr,
the torque reference T ∗

e , and the reference of the stator flux magnitude Ψ∗
s define the operat-

ing point. Based on these, the relationship between the components of the output vector y,
the stator and rotor flux vectors ψs and ψr , and the inverter voltage vs can be computed at
steady-state operating conditions. This is shown in detail in Appendix 6.B. When operating
at nominal speed and rated torque, the relationship between these quantities in the rotating dq
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Figure 6.20 Drive system quantities in the rotating dq reference frame at steady-state operation. The
reference frame rotates with the stator frequency ωs

frame is exemplified in Fig. 6.20. As the filter capacitor resistance Rc is effectively zero, the
capacitor and stator voltage vectors are almost equal.

The integer quadratic program underlying direct MPC with output reference tracking
was stated in (5.22). Even though the dimension of the output reference trajectory Y ∗(k) is
increased from 2Np to 6Np and the dimension of the state vector x(k) is doubled from 4 to
8—when compared to the case study without an LC filter—the dimensions of Θ(k) and the
Hessian H remain the same, that is, Θ(k) ∈ R

3Np and H ∈ R
3Np×3Np . This is due to the

fact that the dimension of the optimizer, that is, of the switching sequence U(k), is the same.
This implies that the computational burden required to solve the integer quadratic program
remains unchanged. Nevertheless, the effort to compute Θ(k) and the unconstrained solution
Ū unc(k) is somewhat increased because of the higher dimensionality of Y ∗(k) and x(k).

6.3.4 Steady-State Operation

Simulation results are presented in this section to highlight the benefits long prediction hori-
zons bring when using direct MPC for higher order systems. The MV drive with an LC filter,
as shown in Fig. 6.17, is used for this purpose. The NPC inverter is fed by a constant dc-link
voltage and a fixed neutral point potential. The parameters of the drive system are provided in
Table 6.2.

The controller sampling interval Ts = 125 μs is chosen to facilitate long prediction inter-
vals in time. Even though such a relatively long sampling interval reduces the granularity of
switching, it is beneficial when operating at low switching frequencies. The penalty on the
tracking error is set to Q = diag(1, 1, 5, 5, 150, 150) in the cost function (6.12). The weight
λu is tuned such that the desired switching frequency is achieved.
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In the first step, the performance of direct MPC with reference tracking is investigated at
steady-state operating conditions. Operation at nominal speed and rated torque is considered.
To ensure that the drive system has settled at steady-state operation, the system is first simu-
lated over several fundamental periods without recording the results. The prediction horizon
of Np = 15 is investigated and λu = 0.28 is chosen, resulting in an average device switching
frequency of 303 Hz, which is a typical value for MV applications. A very low stator current
TDD of 1.156% is achieved.

The steady-state waveforms of the electromagnetic torque and of the three-phase inverter
current are shown in Figs. 6.21(a) and (b) over one fundamental period. Figure 6.21(c) displays
the three-phase voltage across the filter capacitors, and Fig. 6.21(d) shows the three-phase sta-
tor current waveforms. The latter are effectively sinusoidal, despite operation at a low switch-
ing frequency. Figure 6.21(e) depicts the three-phase switch position. For each phase of the
stator current, the spectrum was computed using a Fourier transformation of the current wave-
form, which was recorded over 15 fundamental periods. The spectrum of each phase is shown
separately in Fig. 6.21(f). The amplitude of the fundamental component is 1 pu. To ensure a
high resolution, the drive system was simulated with a sampling interval of 25 μs, despite the
control algorithm being executed every 125 μs.

In the second step, the influence of the prediction horizon on the TDD of the stator current
is investigated for a given switching frequency. Specifically, for different prediction horizons,
the penalty λu was tuned such that an almost constant switching frequency of 300 Hz results.
As shown in Fig. 6.22, when using a prediction horizon of one step, the stator current TDD at
7.43% is high, making the direct MPC scheme unsuitable for industrial applications. Increasing
the prediction horizon to three steps, however, drastically reduces the TDD to 2.17%. This is
a reduction by a factor of three. Further increases in the prediction horizon lead to further
decreases in the TDD. For the prediction horizon Np = 20, for example, a stator current TDD
of 1.01% is achieved when operating at a switching frequency of 303 Hz.

This result is remarkable in that a very low stator current TDD can be achieved with a direct
MPC scheme without the addition of an outer damping loop. Note that the drive system does
not provide passive damping; the resistances of the filter inductor and capacitor are almost
zero, and the stator resistance at 0.01 pu is very small. Moreover, it is remarkable that the
optimization problem with such a long prediction horizon can be solved. Without the sphere
decoder and when resorting to full enumeration, about 10Np switching sequences would have
to be computed every 125 μs, which is computationally intractable for long prediction horizons
Np

2.
When operating at 200 Hz and extending the prediction horizon, the stator current TDD

slowly drops from its peak value of 10.2% at Np = 1. For the horizon Np = 4, the TDD is
halved to 5.03%. To halve it again, the prediction horizon needs to be extended to 15 steps,
resulting in a TDD of 2.43%. We conclude that long prediction horizons tend to be of greater
benefit when operating at low device switching frequencies. This observation is in line with
the results in Sect. 6.1.4.

The trade-off between the stator current TDD and the device switching frequency is inves-
tigated in Fig. 6.23. Each data point corresponds to a steady-state simulation at nominal speed
and rated torque. The switching penalty λu is varied as follows: for Np = 1 between 0.025 and

2 Note that the number of switching sequences is less than the theoretical upper bound of 27Np thanks to the switching
constraint (5.22c).
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Figure 6.21 Simulated waveforms for direct MPC with the prediction horizon Np = 15 and the con-
troller sampling interval Ts = 125 μs. For the device switching frequency of 303 Hz, a stator current
TDD of 1.156% is achieved
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Figure 6.23 Trade-off between the stator current TDD and the device switching frequency, when using
the prediction horizons Np = 1, 5, and 20

0.065, for Np = 5 between 0.15 and 2.5, and for Np = 20 between 0.18 and 85. The horizon
Np = 1 case is clearly not suitable for the drive system with an LC filter. Extending the pre-
diction horizon to Np = 5 greatly reduces the current TDD for the same switching frequency,
or vice versa. Long prediction horizons such as Np = 20 lead to superior results.

In particular, the drive system can be successfully operated at switching frequencies signif-
icantly below the resonance frequency of the system. For the prediction horizon Np = 20 and
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the penalty λu = 9.6, for example, the converter operates at the device switching frequency
138 Hz, which is less than half the 304 Hz of the LC filter resonance. The resulting stator cur-
rent TDD is 4.99%. To achieve this, the direct MPC scheme shapes the stator current spectrum
based on information extracted from the internal prediction model of the drive system, which
captures the filter resonance and the effect the switching actions have on it. To successfully
shape the current spectrum at low switching frequencies, long prediction horizons are required.

6.3.5 Operation during Transients

In the last step, the performance of direct MPC is examined during torque transients to high-
light its very fast dynamic behavior. For the examined scenario, a 15-step prediction horizon
is considered with the penalty λu = 0.28 on the switching transitions. While operating at the
rated speed, reference torque steps of magnitude 1 pu are imposed. During the transients, a
switching frequency of 280 Hz is measured, which is slightly below that for λu = 0.28 at
steady-state operation.

The drive system response to torque steps at t = 10 ms and t = 30 ms is shown in Fig. 6.24.
The same subfigures as in Fig. 6.21 are used, except for the current spectrum, which is not
shown because it is of no relevance during transients. The steps on the torque reference are
translated into the corresponding steady-state references y∗ on the inverter current, capacitor
voltage, and stator current. The latter are shown as dash-dotted lines in Fig. 6.24(d). Note that
the torque steps cannot be anticipated by the controller and are thus not captured in the output
reference trajectory Y ∗.

As can be observed in Fig. 6.24(e), when the torque reference is stepped down from the rated
torque to zero, the voltage applied to the LC filter is instantly inverted, as shown in Fig. 6.24(f).
Because of this, a short torque settling time of 2.5 ms is achieved. When the torque reference is
stepped up from 0 to 1 pu, the transient lasts significantly longer and the steady-state operating
point is reached within 6 ms. This is due to the small voltage margin available, which results
from the machine operating at nominal speed. Nevertheless, the stator currents are quickly
regulated to their new reference values, as can be seen in Fig. 6.24(d).

During torque transients, significant energy is to be moved between the inverter, filter, and
the machine. The magnitude and phase of the inverter current through the filter inductor is
changed, as is the phase of the capacitor voltage as well as the magnitude and phase of the
stator current.

When large torque steps are imposed, the direct MPC scheme acts effectively like a deadbeat
controller. To move the third-order system to its new references as quickly as possible, notches
in the switching sequence are created, which lead to notches in the inverter current. These, in
turn, lead to one distinctive notch in the capacitor voltage. When voltage margin is available,
that is, when stepping the torque down from 1 to 0 pu, these notches can easily be identified in
Fig. 6.24(f). When stepping the torque up, very little voltage margin is available, limiting the
magnitude of the notches and the speed of the torque response.

During transients, aggressively tuned controllers such as this one are prone to
producing overshoots in the controlled variables. When using the penalty matrix
Q = diag(1, 1, 5, 5, 150, 150), overshoots in the torque by 25% and in the stator current by
60% occur during the negative torque step. To avoid this, we switch during transients to a
different penalty matrix, which provides a more equal weighting of the tracking errors. In
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Figure 6.24 Steps in the torque reference for direct MPC with the horizon Np = 15 at nominal speed.
The references are shown as dash-dotted lines
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particular, by choosing Qtrans = diag(1, 1, 5, 5, 15, 15), the penalty on the stator current error
is reduced and the tracking of the inverter current reference is improved. When reaching the
desired torque, the original penalty matrix Q is applied again. As can be seen in Fig. 6.24, this
approach avoids any overshoot in the torque and in the inverter current. Small overshoots are
observable in the capacitor voltage, which are, in general, less critical than current overshoots.

The effect of the switching constraint (5.22c) is visible in Fig. 6.24(f). Whenever a switching
transition from −1 to 1, and vice versa, is required, a mandatory intermediate zero switch
position is added for the duration of the controller sampling interval. This slightly slows down
the transient performance of the controller. Nevertheless, the torque settling times are similar
to those for the drive system without an LC filter (see Sect. 6.1.5).

6.4 Summary and Discussion

In this final section, the proposed MPC algorithm, its performance during steady-state and tran-
sient operation, the choice of the cost function, and its computational complexity are discussed
and conclusions are provided.

6.4.1 Performance at Steady-State Operating Conditions

When assessing the steady-state performance of a current controller, the two key performance
metrics are arguably the current TDD and the switching effort. As the switching frequency
is easy to quantify, it is usually used as a measure for the switching effort, rather than the
switching losses, which might be more meaningful. OPPs are typically considered to yield the
lowest achievable current TDD for a given switching frequency, while SVM—particularly for
low switching frequencies—entails a significantly higher current TDD.

When tracking the current reference in MPC and directly setting the converter switch posi-
tions without the use of a modulator, a horizon of Np = 1 is almost universally used in the
literature [5, 6]. Alas, the penalty on the switching effort is often omitted in the literature,
resulting in a deadbeat control scheme. Such schemes are well known to be highly sensitive
to noise in the measurements and estimates. Adding a penalty on the switching effort not only
reduces the switching frequency but also lessens the sensitivity to such noise. By enlarging the
prediction horizon, this sensitivity is further reduced, as shown, for example, in Sect. 13.1.2
for the model predictive pulse pattern controller.

For the low switching frequencies typically used in MV applications, the horizon 1 case
tends to improve on SVM, by reducing the current TDD for a given switching frequency, or
vice versa. For higher switching frequencies, however, MPC with Np = 1 performs either sim-
ilarly to SVM or worse. The use of long prediction horizons significantly reduces the current
TDD. For a three-level inverter with an induction machine, for example, when compared to
the horizon 1 case and at the same switching frequency, direct MPC with the horizon Np = 10
leads to a 20% reduction in the current TDD. Indeed, for long prediction horizons, the result-
ing steady-state performance in terms of current TDD per switching frequency gets close to
that of OPPs. When considering multilevel inverters with a higher number of voltage levels,
the benefit of long horizons would be expected to be even more pronounced.
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For higher order systems, such as drive systems with an LC filter, the performance benefits
of long prediction horizons are even more prominent. A minimum horizon length of a few
steps is required to provide the system with a sufficient degree of active damping. For the case
study investigated in this chapter with the relatively long sampling interval of Ts = 125 μs,
a prediction horizon of at least three steps is mandatory. Longer prediction horizons further
improve the performance. Overall, when extending the prediction horizon from 1 to 20, the
stator current TDD can be reduced by fourfold to sevenfold for the same switching frequency.

Not only the weight λu but also the sampling interval Ts has a profound impact on the
closed-loop characteristic of MPC. Even though this second degree of freedom complicates the
tuning procedure, it can be exploited to one’s advantage. Specifically, it is important to achieve
a long prediction interval in time. If a low switching frequency is desired, it is beneficial to use
a fairly long sampling interval such as Ts = 125 μs, even though this reduces the granularity
of switching. For high switching frequencies, a high granularity is important, requiring a high
sampling frequency and thus a short sampling interval, such as Ts = 25 μs.

6.4.2 Performance during Transients

During transients, MPC achieves an excellent dynamic performance, similar to that of deadbeat
control (see also Sect. 8.1.3 and [5]). When applying torque steps, the settling time is limited in
effect only by the available dc-link voltage. If required, MPC temporarily inverts the voltage
applied to the load, in order to achieve as short a transient as possible. For a drive system
without an LC filter, the horizon length has no impact on the settling time, with long horizons
resulting in the same transient performance as the short ones. When adding an LC filter to the
drive, long horizons are also required during transients to provide active damping of the filter
resonance.

The transient performance of direct MPC is by far superior to that typically achieved with
OPPs, because traditionally it has only been possible to use OPPs in a modulator driven by
a very slow control loop (see, e.g., [7]). Notable exceptions to this include the stator flux
trajectory controller with pulse insertion, as summarized in Chap. 12 and [8].

6.4.3 Cost Function

Horizons longer than 1 significantly reduce the closed-loop cost (6.1), when compared to the
Np = 1 case. For very long prediction horizons, however, when further increasing the horizon,
the incremental cost reduction becomes very small and ceases at some point. This is a general
characteristic of MPC (see, e.g., [9, 10]) and can be seen in Fig. 6.6(c) for the drive system
case study without an LC filter. For the case study with a filter, the same characteristic can be
observed in Fig. 6.22. The larger the weight on the switching effort, the later this leveling off
occurs, indicating that long horizons are particularly beneficial when switching is expensive
and the switching frequency is low.

The cost function consists of two terms. The first term captures the rms output tracking
error, which corresponds to the stator current TDD in both case studies. To prioritize the min-
imization of the stator current ripple for the higher order system, large penalties are imposed
in Q on the stator current tracking error and smaller penalties are used for the inverter current
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and the capacitor voltage. The second term in the cost function represents the switching effort,
which is a direct measure of the switching frequency. Both terms are penalized in the cost
function, and the trade-off between the two is adjusted by the weight λu. When increasing
the length of the prediction horizon for a given λu, a drastic reduction of the closed-loop cost
can be observed, but only comparatively minor reductions in the current TDD and switching
frequency are achieved. In particular, long horizons shift the trade-off point along the trade-off
curve while only marginally improving it.

As an alternative, in model predictive direct current control, this shift is avoided by fixing
one of the two quantities (see Sect. 11.1). More specifically, the width of the current bounds
determines the current TDD, and the cost function captures the switching effort, which is
to be minimized. Fixing one of the two performance metrics, while minimizing the other
one—rather than aiming at minimizing both—merits further investigations. In addition, the
effect of final state weighting is worth exploring, as it allows one to approximate infinite hori-
zon problems (see [9, 11]).

6.4.4 Control Objectives

It is conceivable that one can directly minimize the switching losses rather than the switching
frequency. To achieve this, one might replace the constant scalar weight λu by a time-varying
3 × 3 matrix Qu. Specifically, the switching effort term λu||Δu(�)||22 could be replaced by
ΔuT QuΔu. The penalty matrix Qu would be diagonal with three phase-specific weights.
These weights could be adjusted online according to the phase current. Specifically, the phases
with high instantaneous currents would feature large weights, while phases with low instan-
taneous currents would have a correspondingly small weight. As a result, it is expected that
the switching transitions are shifted from phases with high currents to phases with lower cur-
rents, thus reducing the average switching losses, albeit at the computational expense of a
time-varying Hessian matrix.

6.4.5 Computational Complexity

When considering multilevel converters with more than three levels, the computational
complexity increases—in the worst case—exponentially with a large base. Nevertheless,
our empirical results for the modified sphere decoding algorithm suggest that the average
computational burden is effectively independent of the number of inverter levels, because
the search for the optimal switching sequence is restricted to a sphere centered on the
unconstrained solution. The size of the sphere is independent of the number of levels. The
same holds true when considering higher order systems.

Therefore, this algorithm appears to be particularly well suited to multilevel converter
topologies with a very large number of levels. Nevertheless, the modified sphere decoding
algorithm provides significant computational savings also for three-level converters, when
compared to an exhaustive search. Notably, even for the horizon 1 case, the computational
burden can be reduced by one order of magnitude on average, which makes sphere decoding
an attractive alternative to solve the optimization problem of direct MPC also in cases where
long horizons are not strictly required.
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The real-time computational complexity of the proposed sphere decoding algorithm can
be further reduced, as shown in [12]. In a preprocessing stage, a lattice reduction algorithm
[13] transforms the integer optimization problem into an equivalent problem that is well con-
ditioned and can be solved more efficiently. During the optimization stage, the initial radius
of the sphere can be calculated in a more effective way, by adopting the notion of the Babai
estimate [14]. The computational complexity can be further reduced by allowing suboptimal
solutions [15]. In particular, an upper limit can be imposed on the operations performed in real
time while guaranteeing that a feasible solution is always found.

Appendix 6.A: State-Space Model

The matrices of the state-space model (6.10) of the drive system in the continuous-time domain
are given by

F =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Rl+Rc

Xl
I2 − 1

Xl
I2

Rc

Xl
I2 02×2

1
Xc

I2 02×2 − 1
Xc

I2 02×2

Xr

D RcI2
Xr

D I2 −( 1
τs

+ Xr

D Rc)I2

(
1
τr

I2 − ωr

[
0 −1

1 0

])
Xm

D

02×2 02×2
Xm

τr
I2 − 1

τr
I2 + ωr

[
0 −1

1 0

]

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G =
1
2
vdc

[ 1
Xl

I2 02×6
]T

K̃ and C =
[
I6 06×2

]
.

The transient stator and rotor time constants τs and τr were defined in (2.60). The determinant
D is stated in (2.54).

Appendix 6.B: Computation of the Output Reference Vector

The output reference vector y∗ is required at each time step within the prediction horizon. For
the operating point, which is determined by the angular rotor speed ωr, the torque reference
T ∗

e , and the reference of the stator flux magnitude Ψ∗
s, the steady-state relationship between the

output variables can be computed. To this end, only fundamental components are considered
and switching is neglected. The computation of the output reference vector is performed in
three steps.

6.B.1 Step 1: Stator Frequency

Consider the machine model (2.55), which uses as state variables the stator and rotor flux
vectors in the dq reference frame, which rotates synchronously at the flux vectors with the
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angular speed ωfr = ωs. We chose to align the stator flux vector with the d-axis of the reference
frame, that is

ψs,dq = [Ψ∗
s 0]T . (6.B.1)

The magnitude of the stator flux is set equal to its reference.
The q-component of the rotor flux

ψrq = −pf
T ∗

e

Ψ∗
s

D

Xm

(6.B.2)

can be computed by inserting (6.B.1) into the torque equation (2.56). At stationary opera-
tion, the flux derivatives in the dq reference frame are zero. Inserting (6.B.1) into (2.55b)
and assuming the use of a squirrel-cage induction machine, the d-component of the rotor flux
results in

ψrd = −Rr

Xs

D

ψrq

ωs − ωr

. (6.B.3)

By inserting (6.B.1) and (6.B.3) into (2.55a), and after some algebraic manipulations, we
obtain two possible solutions for the d-component of the rotor flux.

ψrd =
Xm

2Xs

Ψ∗
s ±

√
X2

m

4X2
s

(Ψ∗
s)2 − ψ2

rq (6.B.4)

It is easy to show that the solution with the plus operation is the correct one.
Having computed the rotor flux vector, the stator frequency can be derived as a function of

the electrical angular speed of the rotor ωr. This also implicitly defines the slip. To this end,
(6.B.3) is solved for the stator frequency

ωs = ωr − Rr

Xs

D

ψrq

ψrd

. (6.B.5)

Note that, in motoring operation, the rotor flux lags behind the stator flux. As we have aligned
the stator flux with the reference frame’s d-axis, the q-component of the rotor flux is negative
and, according to (6.B.5), ωs > ωr holds.

6.B.2 Step 2: Inverter Voltage

Here, the continuous-time model (6.10) of the drive system is transformed from the
stationary orthogonal αβ reference frame to the rotating dq reference frame with the angular
position ϕ. The dq frame rotates synchronously with the stator quantities at the angular
speed ωs.

Consider the state-space model (6.5) of the LC filter, replace all quantities in αβ by
R−1(ϕ) ξdq, and multiply the differential equations on the left with R(ϕ). Note that R(ϕ)
and R−1(ϕ) denote the rotation matrices from αβ to dq, and vice versa, as defined in (2.25).
Because

R(ϕ)
d
dt

(R−1(ϕ)ξdq) =
dξdq

dt
+ ωs

[
0 −1
1 0

]
ξdq, (6.B.6)
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the two LC filter state-space equations in the rotating reference frame are

dii,dq

dt
+ ωs

[
0 −1
1 0

]
ii,dq =

1
Xl

(vi,dq − vc,dq − Rlii,dq − Rc(ii,dq − is,dq)) (6.B.7a)

dvc,dq

dt
+ ωs

[
0 −1
1 0

]
vc,dq =

1
Xc

(ii,dq − is,dq). (6.B.7b)

The filter equations are augmented by the state-space equations of a machine model in the
rotating reference frame. Using the stator current and the rotor flux as state variables, the
machine model (2.59) is adopted. We set ωfr = ωs and the rotor voltage vr to zero.

Combining (6.B.7) with (2.59) leads to the reformulated drive system model

dxdq(t)
dt

= F dqxdq(t) + Gdqvi,dq(t) (6.B.8a)

ψs,dq(t) = Cdqxdq(t) (6.B.8b)

in the rotating dq reference frame, where we have also used (6.6). The inverter voltage vi,dq

in the rotating reference frame is used as the input vector rather than the three-phase switch
position u. The stator flux ψs,dq is defined as the output, which is, according to (2.58), a linear
combination of the stator current and the rotor flux. The input and output matrices are

Gdq =
[ 1

Xl
I2 02×6

]T
and Cdq =

[
02×4

D
Xr

I2
Xm

Xr
I2

]
. (6.B.9)

The system matrix F dq can easily be derived.
At steady-state operation, in the rotating orthogonal reference frame, the derivative of the

state vector in (6.B.8a) is equal to zero. This allows us to express the state vector

xdq = −(F dq)
−1 Gdq vi,dq (6.B.10)

as a function of the inverter voltage. Note that the operating point (rotor speed, torque, and
stator flux magnitude) is determined by the system matrix F dq.

As stated in (6.B.1), we choose to align the stator flux vector with the reference frame’s
d-axis. By inserting (6.B.10) into (6.B.8b) and by inverting the equation, the inverter voltage

vi,dq = −(Cdq F−1
dq Gdq)

−1 ψs,dq (6.B.11)

can be computed as a function of the stator flux. Note that the inverted matrix in (6.B.11) is of
the dimension 2 × 2.

6.B.3 Step 3: Output Reference Vector

The output reference vector in the rotating reference frame is given by

y∗
dq = Cxdq = −C (F dq)

−1 Gdq vi,dq (6.B.12)

with C as defined in Appendix 6.A. The evolution of y∗ in stationary coordinates is obtained
by rotating each one of the three components from dq to αβ according to (2.24), using R−1(ϕ)
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as stated in (2.25). This operation needs to be performed at each time step within the prediction
horizon.
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7
Model Predictive Direct Torque
Control

7.1 Introduction

Direct torque control (DTC) is a machine-side control concept that imposes hysteresis bounds
on the electromagnetic torque and the stator flux magnitude of an electrical machine, as was
shown in Sect. 3.6.3. The outputs of the hysteresis controllers are fed into a look-up table,
which chooses the discrete three-phase switch position for the inverter. As a result, DTC con-
trols the torque directly (rather than indirectly via the stator currents) and does not require a
modulator. DTC is sometimes interpreted as a predictive control strategy, but it predicts only
one switching transition ahead, and lacks an internal controller model, a cost function, the
notion of optimality, and the receding horizon policy, which are all fundamental elements of
model predictive control (MPC) schemes, as explained in Sect. 1.3.

The DTC look-up table can be replaced by an MPC method with the aim of reducing the
switching losses while maintaining the very fast torque response that is inherent to DTC.
To this end, three preliminary MPC methods were proposed. Starting with a closed-form,
mixed-integer linear optimization problem that was solved online [1, 2], the optimization prob-
lem was subsequently pre-solved offline and a look-up table was computed [3]. An alternative
open-form problem formulation, which was also solved offline, reduced the computational
burden by an order of magnitude [4].

The concept of model predictive direct torque control (MPDTC) was proposed in 2004
[5]. It was described and analyzed in detail in 2005 [6] and later in [7]. MPDTC keeps the
electromagnetic torque Te and the stator flux magnitude Ψs within upper and lower bounds.
The three-phase switch position u is directly set by MPDTC, thus not requiring the use of a
modulator. To achieve this, MPDTC enumerates the set of admissible switch positions, predicts
trajectories of the torque and stator flux magnitude as a function of these switch positions
using the notion of extrapolation, and minimizes a cost function that captures the switching
frequency or the switching losses. For multilevel inverters, MPDTC also imposes bounds on
internal inverter voltages, such as the neutral point potential in a neutral-point-clamped (NPC)
inverter.

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/geyermodelpredictivecontrol
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Figure 7.1 Block diagram of MPDTC for an NPC inverter with an induction machine (IM)

As shown in Fig. 7.1, MPDTC constitutes the inner control loop that is augmented by a
speed controller and an (optional) rotor flux controller. An additional loop adjusts the widths
of the bounds that are imposed on the torque and stator flux magnitude. In doing so, the average
switching frequency can be controlled. A flux observer is needed to reconstruct the stator and
rotor flux linkage vectors. It is clear that MPDTC inherits the basic structure of the control
loops from DTC (see also the DTC block diagram shown in Fig. 3.29). Note also that MPDTC
is applicable both to drives with position encoders and to sensorless drives.

Using extrapolation and relying on a tailored open-form formulation of the optimization
problem, MPDTC in its simplest form has a modest computational burden. This facilitated the
implementation of MPDTC on the existing control platform of an industrial medium-voltage
(MV) drive system, which is based on an NPC inverter. More specifically, the successful test
runs on ABB’s ACS6000 drive with power levels exceeding 1 MW [8, 9] can be considered as
a milestone in the development of MPC for industrial drives.

The initial MPDTC algorithm was generalized in 2009, allowing for longer prediction hori-
zons that include multiple hinges (groups of switching transitions) and extrapolation segments
[10]. Prediction horizons in excess of 100 time steps are typically achieved, greatly reducing
the switching frequency per harmonic distortions. Moreover, instead of indirectly reducing the
switching losses through the minimization of the switching frequency, the switching losses
can be directly minimized in MPDTC by predicting and minimizing them in the cost function,
as proposed in [11]. Since 2009, a large number of publications have appeared that further
extend and improve the MPDTC concept. Some of these extensions, such as the analysis,
resolution, and avoidance of deadlocks, branch-and-bound methods to reduce the computa-
tional burden, and smart extrapolation techniques to achieve more accurate predictions, will
be detailed in this and subsequent chapters.

Precursors to MPDTC had already been proposed in the 1980s [12, 13] and early 1990s [14].
Even though these control methods control the current (instead of the torque and the stator
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flux magnitude) for a two-level converter using a very simplistic model of the machine, the
controlled quantities are kept within bounds, the set of switch positions is enumerated, linear
extrapolation is used to predict future current trajectories, and a cost function is minimized
that captures the switching frequency. MPDTC reinvented many of these concepts, albeit in a
more general and formal MPC framework.

Among others, MPDTC adds the notion of the receding horizon policy, achieves long pre-
diction horizons with multiple hinges, minimizes the switching losses, avoids deadlocks, uses
branch-and-bound methods, and predicts future trajectories using smart extrapolation tech-
niques. Moreover, MPDTC targets multilevel converters. Owing to the different shapes of the
bounds, MPDTC with short horizons tends to lead to slightly lower current and torque distor-
tions for the same switching frequency even when using the same cost function and the same
extrapolation technique. For MPDTC with long horizons, the performance difference is more
pronounced. For an in-depth comparison of MPDTC with these early predictive methods, the
reader is referred to [15].

7.2 Preliminaries

7.2.1 Case Study

As a case study, consider an MV squirrel-cage induction machine fed by a three-level NPC
inverter with the floating neutral point potential N, as shown in Fig. 7.2. The total (instanta-
neous) dc-link voltage is vdc = vdc,up + vdc,lo, with vdc,up and vdc,lo denoting the voltages over
the upper and lower dc-link capacitors, respectively. The total dc-link voltage is assumed to
be constant and equal to its nominal value Vdc.

At each of the three phase terminals A, B, and C, the inverter produces the voltages −vdc
2 ,

0, and vdc
2 with respect to the dc-link midpoint. These phase voltages correspond to the switch

positions ua, ub, uc ∈ {−1, 0, 1}. We use uabc = [ua ub uc]
T to denote the three-phase switch

position. The voltage applied to the machine terminals in orthogonal coordinates is given by

vs =
1
2
vdc K̃uabc , (7.1)

where vs = [vsα vsβ ]T . K̃ denotes the reduced Clarke transformation (2.12).

vdc,up

vdc,lo Xc

Xc

N

N A
B

C

is,abc

IM

Figure 7.2 Three-level NPC voltage source inverter driving an induction machine (IM)
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The neutral point potential is defined as

υn =
1
2
(vdc,lo − vdc,up) , (7.2)

and its dynamic evolution in the per unit (pu) system is given by

dυn

dt
=

1
2Xc

|uabc|T is,abc (7.3)

according to (2.83). Recall that Xc denotes the pu equivalence of one of the two dc-link
capacitors. The differential equation (7.3) is a function of the component-wise absolute value
of the inverter switch position |uabc| = [|ua| |ub| |uc|]T and the three-phase stator current
is,abc = [isa isb isc]

T . For more details on the NPC inverter, the reader is referred to Sect.
2.4.1. The details of the drive system and its parameters are provided in Sect. 2.5.1.

Next, we state the differential equations of the induction machine using normalized quan-
tities and a normalized time axis. As in Sect. 4.3.1, we adopt the stationary αβ coordinate
system and express the machine dynamics in terms of the stator and rotor flux vectors ψs =
[ψsα ψsβ]T and ψr = [ψrα ψrβ ]T , respectively. Setting the rotor voltage vr and the angular
speed of the reference frame to zero in (2.55) leads to the continuous-time machine equations
in state-space representation

dψs

dt
= −Rs

Xr

D
ψs + Rs

Xm

D
ψr +

1
2
vdc K̃uabc (7.4a)

dψr

dt
= Rr

Xm

D
ψs − Rr

Xs

D
ψr + ωr

[
0 −1
1 0

]
ψr (7.4b)

dωr

dt
=

1
M

(Te − T�) , (7.4c)

where we have used (7.1).
The machine parameters are the stator and rotor resistances Rs and Rr, and the stator,

rotor, and mutual reactances Xls, Xlr , and Xm, respectively. In (2.33) and (2.54), we had
also defined

Xs = Xls + Xm, Xr = Xlr + Xm, and D = XsXr − X2
m (7.5)

as the stator self-reactance, rotor self-reactance, and determinant, respectively. All rotor quan-
tities are referred to the stator circuit.

Recall that ωr denotes the electrical angular rotor speed, M is the moment of inertia, and
T� is the load torque. According to (2.56), the electromagnetic torque is given by

Te =
1
pf

Xm

D
ψr × ψs =

1
pf

Xm

D
(ψrαψsβ − ψrβψsα) (7.6)

and the magnitude of the stator flux vector is

Ψs = ||ψs|| =
√

(ψsα)2 + (ψsβ)2 . (7.7)
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7.2.2 Control Problem

The control problem of a high-performance, variable-speed drive (VSD) system has a high
degree of complexity with multiple conflicting objectives. Regarding the machine, the elec-
tromagnetic torque and the degree of the machine’s magnetization are the key quantities to
be controlled. In DTC and MPDTC, these two quantities are directly controlled. Rather than
forcing them along their references, a certain ripple is tolerated. To this end, upper and lower
bounds around the references are introduced, and the torque and stator flux magnitude are kept
within these bounds.

At steady-state operating conditions, the total demand distortion (TDD) of the stator current
(3.2) is to be minimized. This reduces the iron and copper losses in the machine, which, in turn,
lowers the thermal losses. In addition, low torque TDDs (3.1) are required to avoid problems
with the mechanical drive systems, such as accelerated wear of the shaft and the excitation
of eigenmodes of the shaft and mechanical load. During transients, a high dynamic perfor-
mance, that is, a short torque settling time in the range of a few milliseconds, is demanded in
special-purpose drive applications.

Regarding the inverter, the neutral point potential needs to be balanced around zero to limit
the blocking voltages of the semiconductor switches. The temperature of the semiconductor
devices has to be kept below a maximum value to ensure their safe operation. As the inverter
has limited cooling capability, the temperature requirement can be translated into a limit on
the total semiconductor losses that can be tolerated. As the conduction losses are given by the
fundamental current and (half) the dc-link voltage, only the switching losses can be influenced
by the control and modulation scheme. Reducing the switching losses increases the efficiency
and the power capability of the inverter. Lowering the switching losses also tends to reduce the
failure rate of the semiconductor devices. An indirect, and less effective, way of minimizing the
switching losses is to minimize the number of commutations, that is, the switching frequency.
Unlike the switching losses, however, the switching frequency can be easily measured and
monitored.

7.2.3 Controller Model

In the following, we derive a discrete-time model of the drive system that is suitable to serve
as an internal prediction model for MPDTC. The model’s purpose is to predict the trajectories
of the electromagnetic torque, stator flux magnitude, and neutral point potential over the pre-
diction horizon with sufficient accuracy. The length of this time interval is typically between
1 and 3 ms.

As the time constant of the rotor speed dynamics exceeds the length of the prediction interval
by at least an order of magnitude, we neglect the speed dynamics and assume the rotor’s angular
speed ωr to be constant within the prediction horizon.1 This allows us to treat the speed as a
model parameter rather than as a state variable. The saturation of the machine flux and the skin
effect in the rotor are neglected, even though these variations could also be incorporated in the
model.
1 For highly dynamic drives and/or drives with a small inertia, it might be necessary to include the speed as an addi-
tional state variable in the model.
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Modeling the squirrel-cage induction machine in orthogonal coordinates, it is convenient to
select the stator and the rotor flux linkages as the machine state vector

xm = [ψsα ψsβ ψrα ψrβ ]T . (7.8)

The three-phase switch position constitutes the input vector

u = uabc = [ua ub uc]
T ∈ {−1, 0, 1}3 . (7.9)

7.2.3.1 Continuous-Time Model

We write the differential equations (7.4a) and (7.4b) in the state-space representation as

dxm(t)
dt

= F m xm(t) + Gm u(t) , (7.10)

where F m and Gm are provided in Appendix 7.A.
In order to represent the differential equation of the neutral point potential as a function of

the machine state vector, we take advantage of the fact that the α- and β-components of the
stator current is = [isα isβ]T are linear combinations of the stator and rotor flux components.
Specifically, repeating (2.53), we write

is =
1
D

[
XrI2 −XmI2

] [
ψs

ψr

]
, (7.11)

where I2 denotes the 2 × 2 identity matrix. Transforming the stator current from orthogonal
coordinates to the three-phase system using K̃

−1
and inserting the result into (7.3) leads to

dυn(t)
dt

=
1

2XcD
|u(t)|T K̃

−1 [
XrI2 −XmI2

]
xm(t) . (7.12)

We define the neutral point potential as the inverter state variable xi = υn and write

dxi(t)
dt

= f i(u(t)) xm(t) , (7.13)

where f i is provided in Appendix 7.A. Note that f i is a function of the component-wise
absolute value of the three-phase switch position u.

The state-space representation of the drive system is obtained by combining the state-space
models of the machine (7.10) and of the inverter (7.13) to

dx(t)
dt

= F (u(t)) x(t) + G u(t) (7.14a)

y(t) = h(x(t)) . (7.14b)

The drive state vector
x = [xT

m xi]
T (7.15)

is the concatenation of the machine and inverter state vectors. The system and input matrices
are

F (u) =
[

F m 04×1
f i(u) 0

]
, G =

[
Gm

01×3

]
. (7.16)
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The output vector
y = [Te Ψs υn]T (7.17)

comprises the electromagnetic torque, the stator flux magnitude, and the neutral point potential.
The output function h(x), which is provided in Appendix 7.A, maps the state vector to the
output vector.

The drive model (7.14) is nonlinear because of two terms. The dynamic equation of the
neutral point potential entails a multiplication of the input vector with the state vector. In the
output equation h(x), the electromagnetic torque and the stator flux magnitude are nonlinear
functions of the state vector.

7.2.3.2 Discrete-Time Model

In the following, we derive the discrete-time representation of the continuous-time drive model
(7.14). The discrete-time state-space model is valid at the discrete-time steps t = kTs, where
k ∈ N denotes the time step and Ts is the sampling interval.

We compute the discrete-time state-space model in three steps. First, the differential
equation of the machine (7.10) is discretized. To achieve high accuracy and to take into
account the coupling between the stator and the rotor fluxes, we resort to the exact Euler
discretization method and integrate (7.10) from t = kTs to t = (k + 1)Ts. Recall that
the three-phase switch position u(t) is—by definition—constant between t = kTs and
t = (k + 1)Ts and thus equal to u(k). This leads to the discrete-time representation of the
machine model

xm(k + 1) = Am x(k) + Bmu(k) (7.18)

with the matrices

Am = eF mTs and Bm = −F−1
m (I4 − Am)Gm . (7.19)

Note that e refers to the matrix exponential.
Second, we discretize the differential equation of the neutral point potential (7.13). For this,

we choose the forward Euler discretization method and assume the derivative of xi at t = kTs

to be constant throughout the integration step. This leads to the discrete-time representation

xi(k + 1) = xi(k) + f i(u(k)) Ts xm(k) . (7.20)

Third, we combine the discrete-time models of the machine (7.18) and of the inverter (7.20)
to the discrete-time drive model:

x(k + 1) = A(u(k)) x(k) + Bu(k) (7.21a)

y(k) = h(x(k)) (7.21b)

with the matrices

A(u) =
[

Am 04×1
f i(u) Ts 1

]
, B =

[
Bm

01×3

]
. (7.22)

Using the exact Euler method for the machine model and forward Euler for the neutral point
potential is facilitated by the fact that the machine states do not depend on the inverter state.
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The proposed discretization approach has two advantages. First, the discrete-time model of
the machine captures the coupling between the stator and rotor fluxes, which enhances the
accuracy of the prediction model and is beneficial when considering long prediction horizons.
Second, only the time-varying part of the system matrix A, that is, the vector f i(u) that relates
to the neutral point potential, needs to be updated. This reduces the computation time.

7.2.4 Switching Effort

Throughout this book, we use the term switching effort as a generic term that refers to both the
switching frequency and the switching losses of the inverter. The switching frequency of each
active semiconductor device can be computed by identifying the corresponding on transitions,
as summarized in Table 2.4. By counting the number of on transitions over a time interval
and by dividing this number by the interval’s length yields the switching frequency for each
of the 12 active switches. The average switching frequency is obtained by averaging over
the individual switching frequencies of the 12 active switches. As each switching transition
in u corresponds to one on transition (see Table 2.4), the average switching frequency per
semiconductor can be conveniently computed via

fsw = lim
N→∞

1
12NTs

N−1∑

�=0

||u(�) − u(� − 1)||1 , (7.23)

where || · ||1 denotes the 1-norm. We often refer to (7.23) as the (average) device switching
frequency.

The procedure to compute the switching losses is more involved. When assuming the nom-
inal voltage Vdc/2 over each half of the dc-link and the use of integrated-gate-commutated
thyristors (IGCTs) as active semiconductor devices, the turn-off and turn-on losses of the
gate-commutated thyristors (GCTs), eoff and eon, are proportional to the commutated phase
current. On the other hand, the diode’s reverse recovery losses err are nonlinear in the com-
mutated current. In the pu system, the switching (power) losses can be summarized by

eoff = coff
Vdc

2
ix (7.24a)

eon = con
Vdc

2
ix (7.24b)

err = crr
Vdc

2
frr(ix) , (7.24c)

as has been previously stated in (2.95) and (2.96). The loss coefficients coff , con, and crr are
provided in Table 2.11. The quantity ix, with x ∈ {a, b, c}, is the commutated phase current,
which is—by definition—always nonnegative. Furthermore, according to (7.11), the phase cur-
rent depends linearly on the state vector x. For more details on semiconductors and switching
losses in general, the reader is referred to Sect. 2.3. The specific switching losses of NPC
inverters are explained in Sects. 2.4.1 and 2.5.1.

For a given switching transition from u(� − 1) to u(�) and polarity of the commutated phase
current, the semiconductor devices that are turned on and off can be identified. These cases are
summarized in Table 2.5 and can be easily translated into a small look-up table. By using (7.24)
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and Table 2.5, the switching loss esw(x(�),u(�),u(� − 1)) can be computed. By summing up
the instantaneous switching (energy) losses over a time interval and dividing the sum by the
length of this time interval, the switching (power) losses

Psw = lim
N→∞

1
NTs

N−1∑

�=0

esw(x(�),u(�),u(� − 1)) (7.25)

of the inverter are obtained. Note that the switching energy losses esw are always positive.

7.3 Control Problem Formulation

As stated in Sect. 7.2.2, the control objective is to keep the output (or controlled) variables
within given bounds around their respective references while minimizing the switching effort.
For the drive system based on an NPC inverter, the output variables are the electromagnetic
torque, the stator flux magnitude, and the neutral point potential. If a bound has been violated,
the violation has to be eliminated as quickly as possible.

The MPDTC controller is endowed with the discrete-time controller model of the drive
(7.21). This internal model enables the controller to anticipate and predict the impact of its
decisions. The control objectives are mapped to a cost function that yields a scalar cost value.
This cost function is minimized subject both to the dynamic evolution of the controller model
and to the constraints. The latter include switching constraints and integer constraints on the
switch positions. Upper and lower constraints on the phase currents are also conceivable.

At each time step, the controller computes a sequence of three-phase switch positions over
the time interval of the prediction horizon. This sequence of switch positions keeps the con-
trolled variables within their bounds and minimizes the switching effort over the prediction
horizon. From this sequence, only the first switch position at the current time step is applied
to the inverter. The predictions are recomputed at the next time step using new measurements
and flux estimates, and a shifted—and if necessary, revised—sequence of switch positions is
derived. This is referred to as the receding horizon policy, which provides feedback and makes
MPDTC robust to parameter uncertainties in the underlying prediction model (see also [16]).

7.3.1 Naive Optimization Problem

Writing the aforementioned control problem as a closed-form optimization problem leads to

Uopt(k) = arg minimize
U(k)

J (7.26a)

subject to x(� + 1) = A(u(�))x(�) + Bu(�) (7.26b)

y(� + 1) = h(x(� + 1)) (7.26c)
{

εj(� + 1) = 0, if εj(�) = 0
εj(� + 1) < εj(�), if εj(�) > 0 (7.26d)

u(�) ∈ U , ||Δu(�)||∞ ≤ 1 (7.26e)

∀� = k, . . . , k + Np − 1, ∀j = 1, 2, 3 . (7.26f)
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The sequence of control inputs

U(k) = [uT (k) uT (k + 1) . . . uT (k + Np − 1)]T (7.27)

over the prediction horizon Np represents the sequence of three-phase switch positions the
controller decides upon. The cost function J is minimized over the set of all admissible U(k)
subject to the dynamic evolution of the drive system (7.26b), its output variables (7.26c), and
the constraints (7.26d) and (7.26e). The argument of this minimization is the optimal switching
sequence U opt(k). The variables in (7.26) are defined in the following subsections, and the
respective equations are explained in detail.

7.3.2 Constraints

To quantify the degree of a bound violation, we introduce the nonnegative auxiliary variable

εT (�) =
1

Te,max − Te,min

⎧
⎨

⎩

Te(�) − Te,max if Te(�) > Te,max
Te,min − Te(�) if Te(�) < Te,min
0 else

(7.28)

for the torque, where Te,min (Te,max) denotes the lower (upper) bound on the torque. Note
that we normalize the degree of the bound violation by the width of the torque bounds. This
facilitates the deadlock resolution mechanism, which will be proposed in Sect. 9.4, but the
normalization can be omitted here when imposing the constraint (7.26d).

For the stator flux magnitude and the neutral point potential, the auxiliary variables εΨ and
ευ are defined accordingly. Aggregating these variables, we define the degree of the bound
violation as

ε = [εT εΨ ευ]T . (7.29)

In (7.26d), we use the index j, with j ∈ {1, 2, 3}, to refer to the jth component of ε.
The constraint (7.26d) is imposed component-wise, that is, separately for each output vari-

able. If at time step �0 an output variable is within its bounds, then it has to remain within them
for the future time steps � > �0 until the end of the prediction horizon. We say that the output
variable is feasible or within its feasible region. The latter is defined as the set between the
respective upper and lower bounds. During steady-state operation, the outputs usually remain
within their bounds.

If, however, at time step �0 an output variable violates a bound, then it has to move closer
to the bound at every time step within the prediction horizon. In doing so, the bound violation
is reduced until the output variable becomes feasible. This scenario typically occurs during
transients, such as torque reference steps. The concept of feasibility and diminishing bound
violations is illustrated in Fig. 7.3 for torque trajectories. Note that the trajectory on the lower
right-hand side of this figure violates the constraint (7.26d) and must be excluded. The switch-
ing sequence corresponding to this torque trajectory would allow MPDTC to postpone any
switching transition from time step k to k + 1. Owing to the receding horizon policy, MPDTC
would be able to postpone switching again at time step k + 1, and so on.
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Te,maxTe,max

Te,minT
e,min

TeTe

t t
k k + 1 k + 2k k + 1 k + 2

k k + 1 k + 2k k + 1 k + 2

(a) Trajectories that are either feasible (left) or reduce the bound violation (right)

Te,maxTe,max

Te,minTe,min

TeTe

tt

(b) Trajectories that are neither feasible nor reduce the bound violation at every time step

Figure 7.3 Example torque trajectories that meet the constraint (7.26d) (a) and torque trajectories that
violate it (b). The feasible region between the upper and lower torque bounds is shaded

The constraint (7.26e) limits the switch position u to the integer values U = {−1, 0, 1}3,
which are available for the three-level inverter. Switching in a phase by more than one step up
or down is not allowed. This is enforced by the second constraint in (7.26e), ||Δu(�)||∞ ≤ 1,
which limits the elements in Δu(�) = u(�) − u(� − 1) to ±1. These constraints have to be
met at every time step � within the prediction horizon.

7.3.3 Cost Function

The cost function
J = Jsw + Jbnd + Jt (7.30)

in (7.26a) consists of three terms. The first term captures the switching effort. Specifically,

Jf =
1

Np

k+Np−1∑

�=k

||Δu(�)||1 (7.31)

represents the sum of the switching transitions (i.e., the number of commutations) over the
prediction horizon divided by the length of the horizon. As a result, Jf approximates the
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short-term switching frequency. Strictly speaking, (7.31) should be multiplied with 1/(12Ts),
as stated in (7.23). We usually omit this term to simplify the computations.

Alternatively, the switching (power) losses can be modeled and captured in the cost function.
To this end, we rewrite (7.25) as the short-term switching losses

JP =
1

Np

k+Np−1∑

�=k

esw(x(�),u(�),u(� − 1)) (7.32)

over the prediction horizon. As for the switching frequency, we drop the factor 1/Ts from
(7.32). In the cost function (7.30), we either set the switching effort term to Jsw = Jf or to
Jsw = JP .

The second term in the cost function

Jbnd = qT ε(k) (7.33)

penalizes the (normalized) rms bound violation

ε(k) = [εT (k) εΨ(k) ευ(k)]T (7.34)

of the output vector y over the prediction horizon. The rms bound violation of the torque, for
example, is defined as

εT (k) =

√√√√ 1
Np

k+Np−1∑

�=k

(εT (�))2 , (7.35)

with εT (�) as in (7.28). Alternatively, to reduce the computational burden, the square root
can be omitted from (7.35). For the stator flux magnitude and the neutral point potential, the
bound violations εΨ and ευ are defined accordingly. The weighting vector q has nonnegative
components.

The third term Jt is an optional penalty on the predicted output quantities at the end of the
prediction horizon, in the form of either a terminal soft constraint or a terminal weight. The
rationale for such a penalty and its benefits will be explained in detail in Sect. 9.4.

7.4 Model Predictive Direct Torque Control

To assess the length of the prediction horizon that is required to provide a good steady-state
performance, recall that one of the controller’s main objectives is to minimize the switch-
ing effort. For the model predictive controller to be able to address this objective sufficiently
well, the prediction horizon should comprise several switching transitions. In an MV power
electronics setting, the switching frequency is in the range of a few hundred hertz.

Example 7.1 For an NPC inverter and a device switching frequency of 250 Hz, a switch-
ing transition occurs on average every 2 ms per phase and every 0.67 ms in the three-phase
inverter. If, on average, the prediction horizon was to capture six transitions in the inverter, a
prediction horizon amounting to 4 ms would be required.
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On the other hand, with a direct control scheme like MPDTC, switching is restricted to
discrete-time steps and thus to the sampling instants. To avoid that the discretization of the
time axis restricts the controller in its switching decisions, potentially worsening the current
distortions, a short sampling interval is required. This ensures a fine granularity of the time
axis and thus of possible switching events. If the ratio between the sampling frequency and
the switching frequency is large, say more than 100, the restriction of the switching transitions
to discrete-time instants becomes negligible and the time axis can be deemed to be continuous.
To achieve this, we typically chose a sampling interval of 25 μs.

The combination of low switching frequencies, the need to capture several switching tran-
sitions within the prediction horizon, and the necessity of short sampling intervals leads to
prediction horizons that exceed 100 time steps. For example, when adopting a sampling inter-
val of 25 μs, Example 7.1 implies a horizon of Np = 160 steps.

The optimization problem (7.26) is a nonlinear, mixed-integer program. When solving
(7.26) to find the optimal solution, it is well known that—in the worst case—all possible
solutions need to be enumerated. This makes the solution process computationally challenging
even for very short prediction horizons. Solving it for reasonably long horizons is not feasible,
as the next example will show, unless simplifications or approximations are made.

Example 7.2 Using a three-level inverter as an example, the number of admissible switching
transitions from u(�) to u(� + 1) is on average 12. Owing to the switching constraint (7.26e),
this number is smaller than the theoretically possible 27 transitions. Nevertheless, for the
horizon Np = 75, for example, the number of possible switching sequences amounts to 12Np ≈
1080, which is equal to the estimated number of atoms in the observable universe.

7.4.1 Definitions

To facilitate the exposition of the MPDTC algorithm, we first define the following terms:

• The switching sequence U(k) is the sequence of three-phase switch positions u. General-
izing (7.27), we define the switching sequence

U(k) = [uT (k) uT (k + 1) . . . uT (k + N − 1)]T (7.36)

of length N . Its first element is the switch position at the current time step k.
• Associated with a switching sequence is the state trajectory X(k) = [xT (k + 1) . . .

xT (k + N)]T , which is the sequence of state vectors x that fully describes the evolution
of the drive from time step k + 1 until time step k + N , when applying the switching
sequence U(k). Note that the initial state x(k) is not included in X(k), because it does
not depend on U(k). The state vector encompasses the four components of the machine
fluxes and the neutral point potential (see also (7.15)).

• Similarly, the evolution of the drive outputs is described by the output trajectory Y (k) =
[yT (k + 1) . . . yT (k + N)]T , where y is composed of the electromagnetic torque, the
stator flux magnitude, and the neutral point potential as defined in (7.17).
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• An admissible switching sequence meets the switching constraint (7.26e) at every time step.
• A candidate switching sequence is an admissible switching sequence that yields output

trajectories that meet the constraint (7.26d) at every time step. These output trajectories are
either feasible or reduce the bound violation. Feasibility means that the output variables lie
within their corresponding bounds; reducing the bound violation refers to the case in which
an output variable is not feasible, but the degree of the bound violation decreases at every
time step. These conditions must hold component-wise for all output variables.2 The notion
of candidate switching sequences is exemplified in Fig. 7.3 for torque trajectories.

7.4.2 Simplified Optimization Problem

It is important to recognize that optimal solutions to the optimization problem (7.26) corre-
spond to switching sequences U that feature switching transitions almost exclusively in the
vicinity of the bounds or when bounds have been violated. This is due to the combination of the
cost function (7.26a) with the constraint (7.26d). The former penalizes the switching effort and
bound violations, while the latter requires the output variables to remain within their bounds,
or, when a bound has been violated, to reduce the bound violation. These objectives are best
met by switching effectively only when an output variable is about to violate its bound, or, in
case a bound has been violated, when the rate of convergence toward the bound is insufficient.

Therefore, an attractive way to simplify the solution procedure of (7.26) is to consider
switching transitions only when at least one of the output variables is close to its respective
bound, that is, when switching is imminently required to keep the output variables within their
bounds. When the outputs are well within their bounds, it is not necessary to consider switching
transitions, and the three-phase switch position can be frozen.

This approach meets the constraints (7.26d) and (7.26e), minimizes the switching effort in
the cost function (7.26a), and greatly reduces the number of switching sequences to be consid-
ered and thus the computational complexity of the problem at hand. However, the switching
sequences obtained with this approach are in general suboptimal solutions to the original
optimization problem (7.26), because only a subset of the admissible switching sequences
is considered.

7.4.3 Concept of the Switching Horizon

To describe the switching sequences that are considered in the simplified optimization prob-
lem, we introduce the so-called switching horizon. The switching horizon Ns is a string that
is composed of the characters S, E, and e.

The character S stands for switch, that is, a switching transition from u(�) to u(� + 1). This
involves considering at time step � all admissible switch positions

u(�) ∈ U such that ||Δu(�)||∞ ≤ 1 , (7.37)

2 As an example, consider the case where the torque is feasible, the stator flux violates its bounds but the bound
violation is reduced at each time step, and the neutral point potential is feasible. The underlying switching sequence
is a candidate switching sequence, provided that it is admissible.
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−1

1

ua

SSS EE

t
k k + 1 k + N

ua(k) ua(k + 1) ua(�1 − 1)

ua(�1) ua(k + N − 1)

�0 �1

Figure 7.4 Concept of the switching horizon with the elements S and E, which refer to switch and
extend, respectively, exemplified for a single-phase switching sequence with the switching horizon
Ns = SSESE. Note that ua(�0 − 1) = ua(k + 1) and ua(�0 − 2) = ua(k)

see (7.26e), and performing the prediction step

x(� + 1) = A(u(�))x(�) + Bu(�) (7.38a)

y(� + 1) = h(x(� + 1)) (7.38b)

as in (7.26b) and (7.26c). At time step � + 1, the constraint
{

εj(� + 1) = 0, if εj(�) = 0
εj(� + 1) < εj(�), if εj(�) > 0 (7.39)

must be met for each output variable yj , with j ∈ {1, 2, 3}. The degree of the jth bound vio-
lation εj was defined in (7.28), using the torque as an example. Transitions to switch positions
u(� + 1) that violate (7.39) are discarded.

The character E refers to extend, that is, an extension step, which is preceded by a switching
transition. Assume that the last switching transition (was predicted to have) occurred at time
step �0 − 1 from the old switch position u(�0 − 2) to the new switch position u(�0 − 1) (see
also Fig. 7.4). By definition, the output variables meet the constraint (7.39) at time step �0,
at which the extension step starts. The switch position is frozen from time step �0 − 1 until
time step �1, that is, u(�0 − 1) = u(�0) = · · · = u(�1 − 1). The time step �1 is defined as the
last time step at which the constraint (7.39) is met. Specifically, at time step �1 + 1, one of the
output variables will either violate its bounds or the requirement to reduce the bound violations
will no longer be met.

This extension mechanism can be formally stated as the following maximization problem:

�1 = arg maximize
�

� (7.40a)

subject to x(�) = A(u(� − 1))x(� − 1) + Bu(� − 1) (7.40b)

y(�) = h(x(�)) (7.40c)
{

εj(�) = 0, if εj(� − 1) = 0
εj(�) < εj(� − 1), if εj(� − 1) > 0 (7.40d)

u(� − 1) = u(�0 − 1) (7.40e)

∀� = �0 + 1, �0 + 2, . . . ,∀j = 1, 2, 3 . (7.40f)
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The extension leg commences at time step �0 and ends at �1 > �0. It uses the state vector x(�0)
and the switch position u(�0 − 1) as initial conditions.

The third possible element e denotes an optional extension step. The switching horizon
Ns = eSE, for example, implies two cases to be investigated: one with the switching horizon
ESE, and the other with SE.

Example 7.3 The switching horizon Ns = SSESE entails two switching transitions at time
steps k and k + 1, followed by an extension step and a switching transition at time step �1 >
k + 1, which is followed by another extension step. Thus, switching is considered only at time
steps k, k + 1, and �1, while the switch position is frozen during the extension steps. As a result,
the switch positions in the general switching sequence (7.36) meet the constraints

u(k + 1) = u(k + 2) = · · · = u(�1 − 1) (7.41a)

u(�1) = u(�1 + 1) = · · · = u(k + N − 1) . (7.41b)

A corresponding single-phase switching sequence is depicted in Fig. 7.4.

We have seen in Example 7.2 that the number of possible switching sequences for a
three-level inverter amounts to approximately 12Np , where Np is the length of the prediction
horizon. For the switching horizon Ns = SSESE, prediction horizons of similar lengths
can be achieved while considering only 123 = 1728 switching sequences. This compelling
reduction motivates the simplification of the optimization problem and the adoption of the
switching horizon.

We define the prediction horizon as the length (in terms of the number of time steps) of
the longest switching sequence. Specifically, let I denote the index set of candidate switching
sequences and i ∈ I the ith switching sequence, which is of length Ni. The prediction horizon
is then defined as

Np = max
i∈I

Ni . (7.42)

Note that the prediction horizon is time-varying. There is a weak correlation between the
switching horizon and the prediction horizon, in the sense that adding S and E elements to
the switching horizon increases, in general, the length of the prediction horizon.

Example 7.4 Figure 7.5 depicts the concept of the switching horizon for a three-level inverter
drive system using the switching horizon Ns = eSSESE. Not utilizing the optional extension
leg, a first candidate switching sequence is shown in Fig. 7.5(c). Its corresponding output
trajectories are shown in Figs. 7.5(a) and (b). Switching in phases b and a is performed at
time steps k and k + 1, respectively, from u(k − 1) = [0 1 − 1]T via u(k) = [0 0 − 1]T to
u(k + 1) = [1 0 − 1]T .

After freezing the switch position at time step k + 1 at u = [1 0 − 1]T , the extension step
(7.40) predicts that the torque will hit its lower bound between k + 5 and k + 6. This triggers a
predicted switching transition at time step k + 5 in phases a and b to u(k + 5) = [0 1 − 1]T

with the aim of keeping the torque within its bounds. Using this switch position and another
extension leg, the stator flux magnitude is predicted to violate its upper bound shortly after
time step k + 24. As a result, the switching sequence shown in Fig. 7.5(c) switches at three
time steps and is of length N1 = 24 steps. Switching will be required at time step k + 24.



�

� �

�

Model Predictive Direct Torque Control 271

k k + 10 k + 20 k + 30 k + 40
(a) Predicted torque trajectory

k k + 10 k + 20 k + 30 k + 40
(b) Predicted stator flux trajectory

k k + 10 k + 20 k + 30 k + 40
(c) Candidate switching sequence
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Figure 7.5 The first candidate switching sequence of Example 7.4 with the switching horizon eSSESE.
The corresponding torque and stator flux trajectories are shown in (a) and (b) within their respective
upper and lower bounds. The neutral point potential is not shown, but it is treated in the same way as the
torque and stator flux magnitude

Another candidate switching sequence along with its output trajectories is indicated by the
solid lines in Fig. 7.6. The optional extension step predicts that switching is not required until
the time step k + 13, when the torque is about to violate its upper bound. One way to avoid this
violation is to switch in phase c from −1 to 0. The degree of freedom of the second switching
transition (in the switching horizon Ns = eSSESE) at time step k + 14 is not taken up and
the switch positions are kept constant. Another extension leg predicts a bound violation of the
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(b) Predicted stator flux trajectories
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Figure 7.6 The second and third candidate switching sequences of Example 7.4 along with their cor-
responding torque and stator flux trajectories. Solid lines correspond to the second switching sequence,
while dash-dotted lines refer to the third one

torque just before k + 25, triggering a switching transition at time step k + 24 in phase c. The
last extension step indicates that this switching sequence can be applied for N2 = 45 sampling
intervals before an output variable violates its bound.

A third candidate switching sequence is shown in Fig. 7.6 using dash-dotted lines. Switching
is predicted to occur at time steps k + 13, k + 14, and k + 33. The length of the switching
sequence is again N3 = 45 time steps.
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Table 7.1 Summary of the three candidate switching sequences of Example 7.4 when
minimizing the switching frequency

Index i of the candidate Number of Length Ni of the Cost Ji

switching sequence switching transitions switching sequence

1 4 24 0.167
2 2 45 0.044
3 4 45 0.089

In order to assess which candidate switching sequence is the optimal one, the cost function
J stated in (7.30) needs to be evaluated for each candidate sequence. As the bounds are not
violated in this example, Jbnd in (7.30) is always zero. When penalizing the switching frequency
with the cost function term Jf as defined in (7.31), the second candidate switching sequence
is optimal, because it requires the least number of switching transitions and features a long
switching sequence. The corresponding values that yield this result are shown in Table 7.1.

When minimizing the switching losses JP as in (7.32), the first switching sequence could be
the optimal one in case the sum of the absolute values of the commutated currents is less than
half that of the second switching sequence. Specifically, in case the instantaneous currents in
phases a and b were close to zero, the first sequence would be the optimal one because the
phase c current would be high. The third switching sequence will always remain suboptimal
because for the same length as the second one it requires two more switching transitions in
phase a.

In summary, considering switching transitions only when the constraint (7.26d) is triggered
gives rise to two different prediction horizons—the switching horizon Ns (consisting of switch-
ing events S, extension legs E, and optional extension legs e), and the prediction horizon Np

(the number of time steps the MPDTC algorithm looks into the future). By inserting extension
legs between the switching instants, the switch positions are frozen until the constraint (7.26d)
is about to be violated. The switching elements act like hinges that are connected by extension
legs. Multiple switching events may form clusters of switching transitions, such as SSS. The
concept of extension legs leads to very long prediction horizons (typically 30–200 time steps)
while the switching horizon is short (usually 2–5 elements).

It will later become apparent that the computational complexity of the MPDTC algorithm
strongly depends on the switching horizon, that is, the controller’s degree of freedom, while the
closed-loop performance is a function of the prediction horizon. We have seen in Example 7.1
that a prediction horizon of Np = 160 steps was required to ensure that the controller is capable
of adequately anticipating the impact of its decisions, by including on average two switch-
ing transitions per phase within the prediction horizon. For the NPC inverter, 12160 possible
switching sequences result. The notion of the switching horizon reduces this number to a few
thousands. Branch-and-bound techniques will be described in Chap. 10, which further reduce
the number of switching sequences to be explored to a few hundreds. This results in a compu-
tational complexity that is amenable for implementation on a digital signal processor (DSP)
or a field-programmable gate array (FPGA).
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7.4.4 Search Tree

The switching horizon induces a search tree. A node in the search tree at time
step �0, �0 = k, k + 1, . . ., is specified by the 9-tuple3 (u(�0 − 1),x(�0),y(�0 − 1),
y(�0), Esw, Ssw, �0, A,u(k)), which is defined as follows.

• As before, u(�0 − 1) and x(�0) denote the previously applied three-phase switch position
and the current state vector of the drive, respectively. The pair u(�0 − 1) and x(�0) thus
fully defines the state of the drive including its switching state.

• The output vector y at time steps �0 − 1 and �0 is required to assess whether the output
trajectory at time step �0 is feasible, reduces the bound violation, or fulfills neither of the
two conditions.

• Esw =
∑�0

�=k esw(�) is the sum of the predicted individual switching losses esw(�) up to time
step �0. The unit of the switching energy losses is watt-second.

• Ssw =
∑�0

�=k ||Δu(�)||1 is the sum of the predicted number of commutations up to time
step �0.

• A denotes the sequence of actions to be performed on the node. A is a string that consists
of elements from the set {S, E, e}.

• Instead of storing the complete switching sequences U(k) in the 9-tuple, it suffices to store
only its first element, that is, the switch position u(k). Only the latter is applied to the
inverter at time step k.

An example of a search tree is provided in Fig. 7.7 for the switching horizon SSESE. We
distinguish between the following nodes in the search tree.

• The root node is the initial node at time step k. It is initialized with (u(k − 1),x(k),
y(k − 1),y(k), 0, 0, k,Ns, [ ]). The symbol [ ] denotes an empty switch position. The root
node is depicted as the gray circle at the top of Fig. 7.7.

• Bud nodes correspond to incomplete candidate switching sequences with actions remaining
that induce child nodes. The corresponding output trajectories fulfill the candidacy require-
ment (so far). Bud nodes are shown as gray circles.

• Leaf nodes come in two varieties. (i) Nodes corresponding to complete candidate switching
sequences that have been fully computed with no actions remaining and candidacy ful-
filled at every time step. These are shown as stars in Fig. 7.7. (ii) Nodes that correspond
to non-candidate switching sequences, which are not further considered, are marked with a
stop sign.

As the path from the root node to a subsequent node is unique, the switching sequence to
each node is also unique. As a result, there is a direct correspondence between nodes and
switching sequences, allowing us to subsequently use both terms interchangeably. Note also
that leaf nodes with complete candidate switching sequences correspond to complete solutions
(switching sequences) of the optimization problem.

3 Note that in the node either the switching losses Esw or the number of commutations Ssw is required, allowing one
to reduce the node to an 8-tuple.
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k

k + 1
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k + 3

k + 4
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k + 6

k + 7

k + 8

k + 9
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k + 13
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Figure 7.7 Example of a search tree that is induced by the switching horizon SSESE. The gray circles
denote the root and bud nodes, stars refer to leaf nodes that correspond to complete candidate switching
sequences, and stop signs mark leaf nodes that relate to non-candidate switching sequences. Switching
transitions S are shown as thin lines, while extension steps E are thick vertical lines. The discrete-time
axis is shown on the left, where the prediction horizon has 14 steps

7.4.5 MPDTC Algorithm with Full Enumeration

We are now ready to specify the MPDTC algorithm. The MPDTC algorithm relies on the
notions of the switching horizon, enumeration, and extension steps. Specifically, in its basic
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form, the MPDTC algorithm enumerates all admissible switching sequences that are candidate
sequences and computes their corresponding output trajectories and their cost. Starting at the
current time step k, the MPDTC algorithm iteratively explores the tree of admissible switching
sequences moving forward in time. Hence all nodes in the search tree are visited that belong to
candidate switching sequences. The algorithm is based on a stack model, which is commonly
used in the field of computer science.

At time step k, the drive’s system state is fully described by the pair x(k) and u(k − 1),
that is, the state vector and the previously chosen inverter switch position. Based on these, the
MPDTC algorithm computes the optimal control input uopt(k) according to the following pro-
cedure in which the switching losses are minimized. The modifications required to minimize
the switching frequency will be stated at the end of this section.

1a. The root node is initialized and pushed onto the stack.
1b. Optional step: The output trajectories are extended using (7.40). If the length of the

extended trajectory exceeds a given threshold, uopt(k) = u(k − 1) is set and the
algorithm proceeds with Step 4. Otherwise, the extension leg is discarded and the
algorithm proceeds with Step 2a.

2a. The top node i with a nonempty sequence of actions, Ai �= ∅, is taken from the stack.
2b. The first element is read out from Ai and removed.

• For S, all admissible switching transitions are enumerated according to (7.37). The
state and output vectors at the next time step are predicted for each admissible switch-
ing transition using (7.38). If the output constraint (7.39) is met, the new node j is
created. Assuming that the switching transition occurred at time step �, the switching
losses of the semiconductor switches are predicted with the help of (7.24) and Table 2.5.
This yields the losses esw(�), which are added to the sum of the switching losses Esw,i

incurred so far for this switching sequence by setting Esw,j = Esw,i + esw(�). The node
i is removed, but multiple child nodes have been created.

• For E, the output trajectories are extended using (7.40) and the node i is updated. A new
node is not created.

• For e, the node i is kept and the optional extension leg is ignored. The new node j is
created as a copy of the node i, and its trajectories are extended using (7.40).

2c. The newly created and updated nodes are pushed onto the stack. By definition, these nodes
relate to candidate switching sequences.

2d. If at least one node with a nonempty set of actions A remains, the algorithm proceeds with
Step 2a; or else it proceeds with Step 3a.

The results of Step 2 are the leaf nodes i ∈ I, where I is an index set. These nodes
correspond to the candidate switching sequences U i(k).

3a. For each leaf node i ∈ I, the associated cost Ji = Esw,i/Ni + Jbnd,i + Jti is computed,
as defined in (7.30) and (7.32). Note that Ni is the length of the switching sequence U i.

3b. The leaf node with the index
i = arg min

i∈I
Ji

is chosen that has the minimum cost value. The associated switch position at time step k
is read out and set as the optimal one, uopt(k) = ui(k).

4. The switch position uopt(k) is applied to the inverter, and this procedure is executed again
at the next time step k + 1.
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Step 1b is an optional preprocessing step, which greatly reduces the average computation
time. For long switching horizons, it also tends to slightly improve the closed-loop perfor-
mance of MPDTC, as will be explained at the end of Sect. 9.2.2. The threshold for the length
of the output trajectories is usually set to two time steps.

Steps 2a–2d are executed until all nodes of the search tree have been enumerated. Sub-
sequently, Steps 3a and 3b are run on the candidate leaf nodes, which form a subset of all
admissible nodes.

If the switching frequency is to be minimized, Esw,i is replaced by the number of commuta-
tions Ssw,i. When switching in Step 2b, the incremental number of commutations ||Δu(�)||1 is
added to the sum of the number of commutations Ssw,j = Ssw,i + ||Δu(�)||1. The cost func-
tion Ji = Ssw,i/Ni + Jbnd,i + Jti is adopted in Step 3a, which approximates the switching
frequency over the length of the switching sequence.

In summary, the MPDTC algorithm derives a long sequence of switch positions that mini-
mizes the predicted switching effort and ensures that the output variables are maintained within
their bounds. From this sequence, only the first gating signal at the current time step k is
applied to the inverter. New measurements are obtained at the next sampling instant k + 1, the
optimization procedure is repeated, and a new switching sequence is computed.

At steady-state operating conditions, the new switching sequence is in many cases equal to
the one previously computed, albeit being shifted by one step in time. In some cases, however,
the new switching sequence is slightly modified in order to account for model mismatches,
dc-link voltage fluctuations, measurement noise, observer errors, and so on. This strategy,
which is referred to as the receding horizon policy, provides feedback and makes MPDTC
robust. During step changes of the torque reference, however, the new switching sequence
differs significantly from the previously computed one.

7.5 Extension Methods

One of the main characteristics of the MPDTC algorithm is the extension mechanism in
which the number of time steps is predicted for which a switch position can be applied
before one of the output variables either violates a bound, or, in case of a bound violation,
ceases to reduce the violation. As stated in (7.40), the extension step can be formulated as
an optimization problem. The fact that the controller model (7.21) is nonlinear implies that
the optimization problem is also nonlinear with the nonlinear constraints (7.40b) and (7.40c).
The solution to this optimization problem constitutes arguably the most difficult step in the
MPDTC algorithm from a conceptual and a computational point of view.

This section analyzes the nonlinear characteristic of the state and output trajectories, and
proposes methods to solve the extension problem (7.40) in an approximate manner. The most
straightforward and commonly used approach is linear extrapolation, as proposed in [6, 9]. At
low-speed operation, when the machine’s back electromotive force (back-EMF) is small, linear
extrapolation is usually sufficiently accurate. An alternative and more accurate approach is to
adopt quadratic extrapolation. This might be required during high-speed operation, when the
machine’s back-EMF is consequently high [6]. The concept of prediction with interpolation
is even more accurate. In this approach, the controller model is discretized with an integer
multiple of the sampling interval, and the state (or output) vector is predicted at time steps that
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lie multiple sampling intervals in the future. When this operation is performed twice, quadratic
interpolation can be achieved.

7.5.1 Analysis of the State and Output Trajectories

We focus again on the NPC inverter drive system with an induction machine. The stator
and rotor flux vectors and the neutral point potential form the drive’s state vector; the
electromagnetic torque, the stator flux magnitude, and the neutral point potential are its
three output variables. When applying a constant three-phase switch position u from time
instant t0 until t, with t ≥ t0, the trajectories of the state and output variables are analyzed in
this section.

To simplify the exposition, we assume that the angular rotor speed ωr and the total dc-link
voltage are constant. Recall that the stator resistance Rs is very small in MV machines. More-
over, the magnetizing reactance dominates over the leakage reactances (see (7.5)), which
allows us to write Xm ≈ Xs ≈ Xr. As the stator and rotor flux vectors of an induction machine
are close to each other even at full torque, the first two terms in (7.4a) are not only small
but almost cancel each other out. The same applies to the first two terms in the rotor flux
equation (7.4b). This allows us to approximate the machine model (7.4) for t ≥ t0 by the
differential equations

dψs(t)
dt

=
1
2
vdcK̃u(t0) (7.43a)

dψr(t)
dt

= ωr

[
0 −1
1 0

]
ψr(t) . (7.43b)

Integrating (7.43a) from time instant t0 to t provides the stator flux vector at time t in orthog-
onal coordinates:

ψs(t) = ψs(t0) +
1
2
vdcK̃u(t0) (t − t0) . (7.44)

The α- and β-components of the stator flux vector are linear functions of time. The squared
magnitude of the stator flux vector Ψ2

s = ||ψs||2 is quadratic in time. As the stator flux magni-
tude Ψs is kept close to 1, the magnitude is effectively also quadratic in time. As a result, the
trajectory of the stator flux magnitude can be accurately described by a quadratic function.

The trajectory of the rotor flux vector in stationary coordinates can be obtained from (7.43b),
which states that the rotor flux vector rotates with the constant magnitude Ψr = ||ψr|| at the
angular speed ωr. The rotor flux vector at time t is given by

ψr(t) =
[
cos(ωr(t − t0) + ϕ0)
sin(ωr(t − t0) + ϕ0)

]
Ψr , (7.45)

where ϕ0 = ϕ(t0) denotes the angular position of the rotor flux vector at time t0. The α- and
β-components of the rotor flux vector are trigonometric functions of time.

The electromagnetic torque is the cross product between the stator and rotor flux vectors (see
(7.6)). Therefore, the evolution of the torque is described by terms that include t cos(ωrt),
t sin(ωrt), cos(ωrt), sin(ωrt), and t. At low-speed operation, ωr is small and the sine and
cosine terms in (7.45) can be accurately approximated by linear functions. The torque is then
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a quadratic function of time. Close to standstill, the rotor flux vector is effectively stationary,
turning the torque into a linear function of time.

The trajectory of the neutral point potential (7.3) is the integral of the stator currents is,abc

over time, weighted with the component-wise absolute value of the inverter switch positions.
More specifically, by integrating (7.3), the neutral point potential at time t follows as

υn(t) = υn(t0) +
1

2Xc

|u(t0)|T
∫ t

t0

is,abc(τ)dτ . (7.46)

The integral acts like a low-pass filter, allowing us to approximate the stator currents by linear
functions in time. The trajectory of the neutral point potential is then approximately quadratic
in time.

7.5.2 Linear Extrapolation

Let the extension leg commence at time step �0 ∈ N. An extension leg is typically preceded by
a switching transition, which decides the switch position u(�0 − 1). The output vector y(�0)
is predicted during the switching step S. This case is exemplified in Fig. 7.8 for the switching
horizon SE, which implies �0 = k + 1. Alternatively, the extension leg may constitute the first
element in the switching horizon and thus start at the current time step �0 = k. In both cases,
the output vector y is available at time steps �0 − 1 and �0 along with the previously selected
three-phase switch position u(�0 − 1), which is to be kept constant during the extension leg.

Let the index j ∈ {1, 2, 3} denote the jth output variable yj . In the following, we consider
each one of the three output variables separately. Based on yj at time steps �0 − 1 and �0, the
future output trajectory can be predicted. Using linear extrapolation, future values of yj are
given by

yj(�0 + nj) = yj(�0) + (yj(�0) − yj(�0 − 1))nj , (7.47)

where nj ∈ N denotes the discrete-time step within the extension leg.

yj,min

y∗j

yj,max

k – 3 k k + 3 k + 6 k + 9 k + 12 k + 18

yj(�0 − 1)

yj(�0)

Past S Extension

(a) Predicted output trajectory
k – 3 k k + 3 k + 6 k + 9 k + 12 �1�0 k + 18

−1

−1

−1

0

0

0

1

1

1

u
c

u
b

u
a

(b) Predicted switching sequence
�1�0

Figure 7.8 Linear extrapolation: Predicted trajectory (dash-dotted line) of the jth output variable yj

starting at time step �0, where �0 = k + 1. The output variable is predicted to violate its lower bound
between time steps �1 = �0 + nj and �1 + 1, where �1 = k + 15. The nonlinear trajectory of yj is indi-
cated by a solid line
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For yj(�0) �= yj(�0 − 1), the linearly extrapolated trajectory has exactly one intersection
point with each bound. By setting (7.47) equal to the upper and lower bound, yj,max and yj,min,
respectively, the two corresponding intersection points can be easily derived. Regardless of the
location of yj(�0) with respect to its bounds (it is either within the bounds or it violates one
of them), we always require the second intersection point. We therefore take the maximum of
the two points in time and define the number of time steps:

nj =
⌊
max

(
yj,max − yj(�0)

yj(�0) − yj(�0 − 1)
,

yj,min − yj(�0)
yj(�0) − yj(�0 − 1)

)⌋
. (7.48)

In the degenerate case, when the extrapolated trajectory is parallel to the bounds, we set
nj = ∞.

Our objective is to maintain the output variables within their bounds and to switch before
they violate them. To facilitate this, we apply the floor operator �·� to the expression in (7.48).
As a result, the output variable yj is predicted to remain within its bounds for nj time steps
before violating a bound between time steps �1 = �0 + nj and �1 + 1.

The length of the extension leg is determined by the output variable that is predicted to first
violate a bound. Therefore, when considering all three outputs, the length of the extension leg
is given by

n = min
j

nj . (7.49)

Example 7.5 An example is provided in Fig. 7.8 that illustrates the concept of linear extrap-
olation of output trajectories for the switching horizon SE. The output variable relates to the
electromagnetic torque when operating the machine at nominal speed. Following the switch-
ing transition at time step k = �0 − 1 to u(k) = [−1 0 0]T , the linearly extrapolated output
trajectory, which is shown as the dash-dotted line, is predicted to remain within its bounds for
nj = 14 steps, that is, until time step �1 = k + 15. To avoid a violation of the bounds between
�1 and �1 + 1, a switching transition will be required at time step �1. Using the nonlinear con-
troller model, the exact trajectory of yj can be predicted, which is shown as the solid line in
Fig. 7.8(a).

The approximation error is significant in this example, motivating the investigation of more
accurate techniques to perform the extension step. Linear extrapolation is nevertheless often
sufficiently accurate, resulting only in a minor degradation in performance, particularly at low
speed. This is evidenced by the successful experimental tests of an early version of MPDTC
with linear extrapolation for an MV NPC inverter drive system (see [9]).

7.5.3 Quadratic Extrapolation

A more accurate method to predict the future evolution of output trajectories is based on
quadratic extrapolation. To this end, the output values at time steps �0 − 1, �0, and �0 + 1
are required. The first two values are generally available, but the third one at time step �0 + 1
needs to be computed with the help of the prediction step (7.38), in which we set � = �0.

With quadratic extrapolation, the trajectory of the output variable yj beginning at time step
�0 is given by

yj(�0 + nj) = ajn
2
j + bjnj + cj . (7.50)
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The coefficients aj , bj , and cj are obtained from the equation system

yj(�0 − 1) = aj − bj + cj (7.51a)

yj(�0) = cj (7.51b)

yj(�0 + 1) = aj + bj + cj , (7.51c)

which can be solved to give

aj =
1
2
(yj(�0 − 1) − 2yj(�0) + yj(�0 + 1)) (7.52a)

bj =
1
2
(−yj(�0 − 1) + yj(�0 + 1)) (7.52b)

cj = yj(�0) . (7.52c)

In general, up to four intersection points of the extrapolated output trajectory (7.50) and the
bounds exist. To determine the sought-after intersection point, we introduce three criteria: (i)
value of yj(�0) with respect to the bounds, that is, it is either above, within, or below the
bounds; (ii) sign of aj , that is, when it is positive (negative), the extrapolated trajectory is
convex (concave), whereas in the event of the degenerative case with aj = 0, (7.50) turns into
a linear equation and linear extrapolation as explained in the previous section should be used;
and (iii) existence of intersection points with the upper or the lower bound or with both.

Based on these criteria, one can derive statements based on which the number of time steps
nj can be derived, for which the extrapolated output trajectory is predicted to be applicable
before the output variable leaves a bound or ceases to reduce the bound violation. For the case
shown in Fig. 7.9, for example, yj(�0) is within the bounds, the approximated output trajectory
is convex (aj is positive), and intersection points exist only with the upper bound. Therefore,
the second intersection with the upper bound

nj =
⌊

1
2aj

(
−bj +

√
b2
j − 4aj(cj − yj,max)

)⌋
(7.53)

is the desired solution. If the quadratically extrapolated output trajectory also intersected its
lower bound, the first intersection with the lower bound

nj =
⌊

1
2aj

(
−bj −

√
b2
j − 4aj(cj − yj,min)

)⌋
(7.54)

would be the solution.

Example 7.6 Reconsider the extension problem of Example 7.5. Using the values of the out-
put variable yj at time steps �0 − 1, �0, and �0 + 1, the output trajectory is predicted using
quadratic extrapolation. The latter is shown as the dash-dotted line in Fig. 7.9(a), while the
solid line refers to the exact output trajectory. The quadratically extrapolated output trajectory
is predicted to remain within its bounds for nj = 22 steps, that is, until time step �1 = k + 23.

In a last step, the length of all three output trajectories is considered and their minimum is
taken, as was stated in (7.49). Quadratic extrapolation is more complex to implement than lin-
ear extrapolation. In particular, the decision table adds to its complexity. Yet, it is significantly
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(b) Predicted switching sequence

Figure 7.9 Quadratic extrapolation: Predicted trajectory (dash-dotted line) of the jth output variable
yj starting at time step �0, where �0 = k + 1. The output variable is predicted to violate its upper bound
between time steps �1 = �0 + nj and �1 + 1, where �1 = k + 23. The nonlinear trajectory of yj is indi-
cated by a solid line

more accurate and causes only minor approximation errors. Nevertheless, quadratic extrapola-
tion is somewhat vulnerable to numerical errors in the case of very long extrapolation intervals.
To mitigate this issue and to further increase the accuracy of the predictions, a viable alternative
is to use the concept of extrapolation with quadratic interpolation, which will be introduced in
the next section.

7.5.4 Quadratic Interpolation

The idea underlying quadratic interpolation is to predict the values of the output variable at
two regularly spaced time steps far ahead in the future. Between those output values and the
one at the current time step, the output trajectory can be approximated by a quadratic function.
Specifically, this is done for the values at time steps �0, �0 + ns, and �0 + 2ns, where the
design parameter ns ∈ N determines the interval between those time steps. It is typically in
the range of 5–25 steps. The intersection points with the bounds are found through quadratic
interpolation.

To predict the output values at �0 + ns and �0 + 2ns, we discretize the continuous-time
controller model (7.14) with the sampling interval nsTs. As a result, two (instead of 2ns)
prediction steps are required to compute y(�0 + ns) and y(�0 + 2ns).

As for quadratic extrapolation, the trajectory of the output variable yj is given by

yj(�0 + nj) = ajn
2
j + bjnj + cj . (7.55)

The coefficients aj , bj , and cj are now obtained from the equations

yj(�0) = cj (7.56a)

yj(�0 + ns) = ajn
2
s + bjns + cj (7.56b)

yj(�0 + 2ns) = 4ajn
2
s + 2bjns + cj . (7.56c)
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Solving the equation system (7.56) leads to the coefficients

aj =
1

2n2
s

(yj(�0) − 2yj(�0 + ns) + yj(�0 + 2ns)) (7.57a)

bj =
1

2ns

(−3yj(�0) + 4yj(�0 + ns) − yj(�0 + 2ns)) (7.57b)

cj = yj(�0) . (7.57c)

The mechanism for determining the desired intersection point of the predicted output trajectory
with its bounds is the same as for quadratic extrapolation (see Sect. 7.5.3).

Example 7.7 To illustrate the concept of quadratic interpolation, consider again the exten-
sion problem of Example 7.5. We set ns to 12. As shown in Fig. 7.10, the output values of yj

are predicted at time steps �2 = �0 + ns and �3 = �0 + 2ns using the discrete-time controller
model with the sampling interval nsTs. Quadratic interpolation leads to the predicted output
trajectory, which is shown as the dash-dotted line in Fig. 7.10(a). Quadratic interpolation pro-
vides a very accurate approximation of the nonlinear output trajectory, which is shown as the
solid line, making both lines almost indistinguishable. The quadratically interpolated output
trajectory is predicted to remain within its bounds for nj = 25 steps, that is, until time step
�1 = k + 26.

Quadratic interpolation provides very accurate predictions within the interval [�0, �0 + 2ns]
over which the interpolation is performed. Indeed, its approximation error is typically below
the length of the sampling interval Ts, and it is thus often negligible. Nevertheless, in the case
of very long extension legs, the predicted intersection point might occur at a time step that
significantly exceeds �0 + 2ns. This might result in a noticeable approximation error.

yj,min

y∗j

yj,max

k – 5 k�0 k + 5 k + 10�2k + 15 k + 20 �3 �1

yj(�0)

yj(�0 + ns)

yj(�0 + 2ns)

Past S Extension

(a) Predicted output trajectory
k – 5 k�0 k + 5 k + 10 �2 k + 15k + 20 �3 �1

(b) Predicted switching sequence

−1

−1

−1

0

0

0

1

1

1

u
c

u
b

u
a

Figure 7.10 Quadratic interpolation: Predicted trajectory (dash-dotted line) of the jth output variable
yj starting at time step �0. The interpolation is based on the output values at time steps �0, �2 = �0 + ns,
and �3 = �0 + 2ns, where �0 = k + 1, �2 = k + 13, and �3 = k + 25. The output variable is predicted to
violate its upper bound between time steps �1 = �0 + nj and �1 + 1, where �1 = k + 26. The nonlinear
trajectory of yj is indicated by a solid line
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To mitigate this issue and to avoid the adoption of time-varying ns, the interpolation proce-
dure can be repeated over a shifted time interval. More specifically, if the intersection point is
predicted to occur at the time step �1  �0 + 2ns, the value of the output variable at �0 + 3ns

can be predicted. With this, quadratic interpolation can be performed using the output values
at time steps �0 + ns, �0 + 2ns, and �0 + 3ns, thereby achieving a more accurate prediction of
the intersection point. This procedure can be repeated as required. For more details on iterative
quadratic interpolation, the reader is referred to [17] and [18].

If an extension step is followed by a switching transition, the state vector x is required at the
end of the extension step at time step �0 + n. To determine x(�0 + n), the extension methods
described previously can be directly applied.

7.6 Summary and Discussion

The MPDTC control problem of maintaining the output variables within their bounds while
minimizing the switching effort was introduced in this chapter. Based on first principles, a
discrete-time nonlinear model of the drive system was derived. Similarly, the switching losses
in the inverter could be predicted using first principles. The control objectives were mapped
into a cost function, which was minimized subject to the evolution of the dynamic drive model
and constraints imposed on the output variables and the switch positions. This led to the naive
optimization problem (7.26), which cannot be solved in real time but which serves as a starting
point to devise an algorithm that derives a suboptimal solution to the optimization problem.

As the objective is to maintain the output variables within their bounds while minimizing the
switching effort, a promising heuristic technique is to consider switching transitions only when
bound violations are about to occur and to freeze the switch positions for the remainder of the
prediction horizon. This policy can be described by the switching horizon with the elements
S and E, which represent switching steps and extension legs, respectively. The extension legs
can be addressed in a computationally efficient manner through the use of linear and quadratic
extrapolation and interpolation techniques that predict future bound violations.

The imposition of bounds on the output variables and the notion of extension legs allow
us to achieve very long prediction horizons at a modest computational burden. The use of
long prediction horizons enables MPDTC to make better educated decisions. For example, a
certain switching sequence might appear to be prohibitively expensive in terms of the switch-
ing effort when considering a short prediction horizon. Over a longer time period, however,
this switching sequence might turn out to be very cheap. To provide the MPDTC algorithm
with the capability to choose this switching sequence, long prediction horizons are required.
This characteristic and the benefit of long prediction horizons are illustrated in the following
example.

Example 7.8 Consider the switching horizon SSE and the three switching sequences U i(k),
i ∈ I = {1, 2, 3}. The latter are shown in Fig. 7.11 along with the output trajectories they
induce. In this example, to simplify the exposition, we neglect the neutral point potential, which
is treated in exactly the same way as the torque and the stator flux magnitude.

U 1(k) is not a candidate switching sequence, because it violates the lower torque bound
after the first switching transition. In contrast to this, U 2(k) and U 3(k) are candidate
sequences. Their torque and stator flux trajectories are extended using linear extrapolation.
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(a) Electromagnetic torque trajectories
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Figure 7.11 Torque and stator flux magnitude trajectories along with their corresponding switching
sequences with the switching horizon SSE in Example 7.8. The three switching sequencesU 1(k),U 2(k),
and U 3(k) are indicated by their numbers. The switching steps are indicated by solid lines, while the
extension legs are depicted by dashed lines. The regions between the upper and lower (hysteresis) bounds
are shaded
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Table 7.2 Characteristics of the three switching sequences in Example 7.8

Index i of the Number of Length Ni of the Cost Ji

switching sequence switching transitions switching sequence

1 — — —
2 1 4 0.25
3 2 10 0.2

It can be seen that the total lengths of the trajectories amount to 4 and 10 steps, respectively,
while the underlying switching sequences require 1 and 2 switching transitions. These
numerical results are summarized in Table 7.2.

We choose the cost function J = Jf , where Jf captures the short-term switching frequency
(see (7.31)). The minimization of J results in the sequence U 3(k) being the optimal one. Even
though U 3(k) requires two switching transitions (at time steps k and k + 1), this investment
in the switching effort is amortized over a longer time interval because of the longer length of
the output trajectory. Without the extension leg, the corresponding cost expressions would be
0.5 and 1 for U 2(k) and U 3(k), respectively, and the controller would have selected U 2(k)
as the optimal sequence. In the long run, however, U 2(k) is clearly inferior to U 3(k). This
motivates the notion of the extension leg and the use of long prediction horizons.

The implementation of the MPDTC algorithm on a control platform gives rise to a number
of delays, with the most prominent one relating to the controller computation time. The uplink
communication delays between the (current and voltage) sensors and the controller computa-
tion unit are also often significant. Similar delays are imposed by the downlink communication
from the controller computation unit to the gate drivers. Provided that these delays are con-
stant and known, they can be compensated for by an initial state prediction stage. This delay
compensation scheme is described in detail in [9] and in Sect. 4.2.8 along with the common
causes of delays.

Appendix 7.A: Controller Model of the NPC Inverter Drive System

For the NPC drive model (7.14) and (7.16), the continuous-time system and input matrices of
the machine model are

F m =

⎡

⎢⎢⎢⎢⎣

−Rs
Xr

D
0 Rs

Xm

D
0

0 −Rs
Xr

D 0 Rs
Xm

D

Rr
Xm

D 0 −Rr
Xs

D −ωr

0 Rr
Xm

D ωr −Rr
Xs

D

⎤

⎥⎥⎥⎥⎦
(7.A.1a)

Gm =
vdc

6

⎡

⎢⎢⎢⎢⎣

2 −1 −1

0
√

3 −
√

3

0 0 0

0 0 0

⎤

⎥⎥⎥⎥⎦
, (7.A.1b)
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respectively, and the continuous-time system vector of the inverter model is

f i(u) =
1

2XcD
|u|T K̃

−1 [
XrI2 −XmI2

]
(7.A.2a)

=
1

4XcD
|u|T

⎡

⎢⎣

2Xr 0 −2Xm 0

−Xr

√
3Xr Xm −

√
3Xm

−Xr −
√

3Xr Xm

√
3Xm

⎤

⎥⎦ (7.A.2b)

=
1

4XcD

[
Xr(2|ua| − |ub| − |uc|)

√
3Xr(|ub| − |uc|) . . .

]
. (7.A.2c)

Note that |u| denotes the component-wise absolute value of the inverter switch position, that
is, |u| = [|ua| |ub| |uc|]T . The vector-valued output function of the drive model is given by

h(x) =

⎡

⎢⎣

1
pf

Xm

D
(x2x3 − x1x4)√

x2
1 + x2

2

x5

⎤

⎥⎦ , (7.A.3)

where xj refers to the jth component of the vector x.
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Performance Evaluation of Model
Predictive Direct Torque Control

The performance of model predictive direct torque control (MPDTC) is examined in this
chapter, using three-level and five-level inverters connected to medium-voltage (MV) induc-
tion machines as case studies. Two different cost functions are examined. The first one mini-
mizes the switching frequency, while the second variety focuses on the switching losses. By
using MPDTC instead of direct torque control (DTC), the steady-state performance in terms
of harmonic distortions and switching losses can be significantly improved, particularly when
adopting long prediction horizons. The performance during torque steps is similar for both
control methods.

8.1 Performance Evaluation for the NPC Inverter Drive System

The performance of MPDTC during steady-state operation and torque transients is compared
with that of DTC. As a case study, consider a three-level, neutral-point-clamped (NPC) inverter
with a floating neutral point potential and the nominal dc-link voltage Vdc = 4840 V. The
inverter uses only two di/dt snubbers—one in the upper and the other in the lower half of the
inverter. This restriction imposes additional switching constraints. To minimize the switching
losses of the gate-commutated thyristors (GCTs), the switching frequency is limited to a few
hundred hertz.

The inverter drives an MV squirrel-cage induction machine, which is rated at 3.3 kV, 50 Hz,
and 2 MVA. This case study is described in Sect. 2.5.2. The parameters of the inverter, machine,
switching devices, and their losses along with the base quantities of the per unit (pu) system are
provided in Sect. 2.5.1. The corresponding continuous-time models are summarized in Sect.
7.2.1. The discrete-time controller model and the model of the switching effort are derived in
Sects. 7.2.3 and 7.2.4.

The DTC control objectives are to keep the three output variables, namely the electromag-
netic torque, the magnitude of the stator flux, and the neutral point potential, within given
(hysteresis) bounds. In MPDTC, these objectives are inherited from DTC. The torque and
flux bounds indirectly determine the stator current ripple and thus the current distortions.

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/geyermodelpredictivecontrol
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In addition, we aim to minimize the inverter losses. An indirect way of doing this is to minimize
the (short-term) average switching frequency. We will see that by directly targeting the switch-
ing losses in the MPDTC cost function, the losses can be reduced more effectively than when
minimizing the switching frequency.

8.1.1 Simulation Setup

A detailed MATLAB/Simulink model of the drive system was used for the performance eval-
uation. The block diagram of the DTC scheme is shown in Fig. 3.29, and the DTC hysteresis
controllers and look-up table are described in Sect. 3.6.3. For MPDTC, the look-up table with
the DTC strategy was replaced by a function that runs the MPDTC algorithm at each sampling
instant. The MPDTC algorithm was explained in the previous chapter. As shown in Fig. 7.1,
and similar to DTC, outer control loops adjust the references for the torque and stator flux
magnitude and the widths of the bounds.

MPDTC is based on the cost function J = Jsw + Jbnd + Jt, which consists of three terms.
The first term minimizes either the switching frequency or the switching losses. Both options
will be considered in this section. The second term Jbnd = qT ε penalizes root mean square
(rms) bound violations of the controlled variable y. We set the corresponding penalty q to
zero during steady-state operation and to q = [1000 0 0]T during transients, thus penalizing
bound violations of the torque. The third term Jt, which can be used to reduce the likelihood of
deadlocks, is not used. For an in-depth treatment of deadlocks and techniques to avoid them,
the reader is referred to Sects. 9.3 and 9.5.

The following performance evaluation compares the switching frequency and the switching
losses between DTC and MPDTC while operating at a similar torque and flux magnitude
ripple. To achieve similar ripples and to partly account for DTC’s tendency to violate the
torque and stator flux magnitude bounds, the bounds were relaxed for MPDTC. Specifically,
the torque bounds were widened by ±0.03 pu and the bounds of the stator flux magnitude were
relaxed by ±0.004 pu. The bounds of the neutral point potential were set to ±0.05 pu for both
control schemes.

8.1.2 Steady-State Operation

8.1.2.1 Operation at 70% Speed

We start by investigating the steady-state performance of the drive when operating at 70%
speed and rated torque. For the switching horizon eSESESE and the cost function minimizing
the switching losses, we compare DTC and MPDTC with each other. Figures 8.1–8.7 show
selected waveforms over one fundamental period. Figures 8.1 and 8.2 show the torque and
the stator flux magnitude together with their upper and lower bounds. These figures underline
the observation that DTC switches only after a torque or flux bound has been violated, while
MPDTC predicts future bound violations and switches proactively before these are violated.
Because of this, it was possible to widen the torque and flux bounds for MPDTC. Despite this
relaxation, the resulting ripples are still slightly smaller for MPDTC, which achieves a small
reduction in the current and torque distortions when compared to DTC. This will be shown
later in Table 8.1.
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Figure 8.1 Electromagnetic torque for DTC and MPDTC minimizing the switching losses, when oper-
ating at 70% speed and rated torque
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Figure 8.2 Stator flux magnitude of the simulation in Fig. 8.1
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Figure 8.3 Three-phase stator currents of the simulation in Fig. 8.1
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Figure 8.4 Spectra of the three-phase stator currents shown in Fig. 8.3
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Figure 8.5 Spectra of the electromagnetic torque shown in Fig. 8.1
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Figure 8.7 Three-phase switch positions and the three-phase stator currents (shown as dashed lines) of
the simulation in Fig. 8.1

Table 8.1 Comparison of DTC with MPDTC using different switching horizons and control
objectives

Control
scheme

Switching
horizon

Control
objective

Prediction horizon Performance (%)

average maximum Psw fsw ITDD TTDD

DTC — — — — 100 100 100 100

MPDTC eSSE fsw 25.1 95 64.6 65.0 95.2 86.5
MPDTC eSSESE fsw 53.4 114 49.7 54.9 95.3 87.1
MPDTC eSESESE fsw 73.6 112 47.9 52.9 93.9 87.3

MPDTC eSSE Psw 23.5 87 58.8 77.8 95.9 93.3
MPDTC eSSESE Psw 50.8 108 49.0 63.6 95.5 87.4
MPDTC eSESESE Psw 72.2 123 41.9 56.9 92.6 88.9

The fourth and fifth columns indicate the average and maximum lengths of the achieved prediction
horizon. The last four columns relate to the switching losses Psw, switching frequency fsw, current TDD
ITDD, and torque TDD TTDD, using DTC as a baseline.

The three-phase stator currents are shown in Fig. 8.3. The fundamental current component
is 1 pu, which is in line with operation at rated torque. The harmonic spectrum was computed
for each phase of the stator current using a Fourier transformation of the current waveform.
The spectrum of each phase is shown separately in Fig. 8.4.

As DTC lacks periodicity in the switching signal, it produces a current spectrum that is
mostly flat. The largest amplitudes of the current harmonics are found at frequencies around
twice the switching frequency. Distinctive current harmonics at odd and non-triplet multiples
of the fundamental frequency of 35 Hz nevertheless exist, such as the 5th, 7th, 17th, and 19th
harmonics. Notwithstanding this, the amplitudes of the current harmonics are below 1.5% of
the fundamental current component amplitude (of 1 pu).
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When adopting a long prediction horizon and minimizing the switching losses, MPDTC
concentrates the harmonic energy into discrete current harmonics. All odd and non-triplen
harmonics up to the 23rd harmonic are pronounced and can be easily identified in Fig. 8.4(b).
This implies that MPDTC commands switching transitions that exhibit a certain degree of
periodicity during steady-state operation.

Similarly, the torque spectrum of DTC is mostly flat, while that of MPDTC features large
torque harmonics, as can be seen in Fig. 8.5. The 5th and the 7th current harmonics form
a pair that creates the 6th harmonic in the torque. The 12th and 18th torque harmonics are
formed accordingly. These torque harmonics at integer multiples of 6f1, where f1 denotes
the fundamental frequency, are pronounced in MPDTC. Overall, the harmonic torque energy
is lower in MPDTC than in DTC, which is evidenced by the fact that MPDTC lowers the
torque’s total demand distortion (TDD) with respect to DTC (see Table 8.1).

Periodicity can also be observed in the evolution of the neutral point potential. As can be
seen in Fig. 8.6, MPDTC produces a distinctive third harmonic in the neutral point potential.
This stands in contrast to DTC. Nevertheless, both methods maintain the neutral point potential
well within its upper and lower bounds.

The last figure, Fig. 8.7, compares the three-phase switch positions that are issued by the
two control methods. The switch positions are plotted with their respective phase currents.
As can be seen in Fig. 8.7(a), DTC tends to switch continuously over time regardless of the
phase current. The torque, flux, and neutral point potential are considered independently of
each other.

In contrast, MPDTC considers all three output variables simultaneously in a multiple-input
multiple-output (MIMO) control approach and optimizes its switching decisions such that the
switching losses are minimized. As can be observed in Figs. 8.1 and 8.2, this enables MPDTC
to keep the torque and flux within their bounds for longer before an imminent bound violation
triggers a switching transition. MPDTC is particularly good at exploiting the convex curvature
of the flux trajectory. As a result, MPDTC requires significantly fewer switching transitions
for the same torque and flux ripple, as can be observed in Fig. 8.7(b).

When minimizing the switching losses in MPDTC, about half of the switching transitions
are centered at the phase currents’ zero crossings, where they incur virtually no switching
losses, while the other half are issued close to the peak currents. This can be observed in
Fig. 8.7(b). Each of the two groups of switching transitions covers approximately 30◦ of the
fundamental period in each phase. In the remaining 60◦ between these clusters of switching
transitions, because of the 120◦ phase shift between the phases, the other two phases provide
switching transitions. As a result, switching transitions occur regularly in the three-phase sys-
tem, and the torque, stator flux magnitude, and neutral point potential are kept permanently
under closed-loop control. At the same time, the switching losses are reduced to a minimum;
MPDTC more than halves the switching losses at this operating point.

In a way, the penalty on the switching losses imposes a time-varying penalty on the switch-
ing transitions that is synchronized through the phase currents with the fundamental period.
This characteristic enhances the periodicity of the switching pattern, which is reflected in the
creation of distinct harmonics in the current and torque spectra.

Figure 8.8 compares the switching patterns that result from MPDTC minimizing either the
switching losses or the switching frequency. When the latter policy is adopted, a significant
proportion of the switching transitions occur when the phase currents are high. The period-
icity in the switching pattern is less pronounced, resulting in harmonic current and torque
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Figure 8.8 Three-phase switch positions and the three-phase stator currents (shown as dashed lines)
for MPDTC with the switching horizon eSESESE when minimizing either the switching frequency or the
switching losses. Note that Fig. 8.8(b) is a repetition of Fig. 8.7(b) to allow a side-by-side comparison

spectra with less distinctive discrete harmonics. Nevertheless, MPDTC minimizing the switch-
ing frequency is effective at this operation point in that it almost halves the switching frequency
and thus the switching losses, when compared to DTC.

Table 8.1 summarizes the performance of MPDTC for various switching horizons and for
both minimization criteria (either the switching frequency or the switching losses). MPDTC
is compared with DTC in terms of the switching losses, switching frequency, and the current
and torque distortions. DTC is used as a baseline and the MPDTC performance indices are
normalized with respect to this baseline. The simulations refer to steady-state operation at
70% speed and rated torque.

When adopting the short switching horizon eSSE and minimizing the switching frequency,
MPDTC is capable of reducing both the switching frequency and the switching losses by about
one-third. Increasing the switching horizon to eSSESE reduces these quantities by another
20%. The average length of the prediction horizon is doubled from 25 steps to more than
50. Further extending the switching horizon to eSESESE increases the average length of the
prediction horizon by another 50%, but the improvement in the switching frequency and the
switching losses is minor. In general, such very long prediction horizons often achieve dimin-
ishing returns in terms of the performance gain.

Penalizing the switching losses (instead of the switching frequency) further reduces the
switching losses. For the switching horizon eSESESE, for example, the switching losses can
be reduced by another 13%. The switching frequency, however, tends to be slightly higher. In
all cases, the current and torque TDD is below that of DTC, particularly when adopting long
switching horizons.

8.1.2.2 Operation Over a Range of Speed Operating Points

To provide a more comprehensive analysis of the performance benefits of MPDTC, we com-
pare it with DTC over a range of operating points. The speed is varied between 0.55 and 1 pu in
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steps of 0.01 pu while operating at rated torque. The torque and stator flux bounds are relaxed
again for MPDTC by ±0.03 and ±0.004 pu, respectively.

In order to facilitate the comparison, we introduce the two performance metrics

cf = ITDD · fsw (8.1a)

cP = ITDD · Psw, (8.1b)

which are the product of the current TDD on the one side and the switching frequency or the
switching losses on the other side. Similar performance metrics were introduced in Sect. 3.5
for PWM.

We consider short, medium, and long horizons for MPDTC. We define the switching horizon
eSE as the short horizon and the switching horizons eSSE and eSESE to be medium hori-
zons. For each speed operating point, we take the horizon that minimizes the corresponding
metric (8.1). More specifically, when using MPDTC that minimizes the switching frequency,
we employ cf as a metric. Conversely, when minimizing the switching losses, we use cP .
The switching horizons eSSESE, eSESESE, and eSSESESE constitute long horizons. As for
medium horizons, we take the one that minimizes the respective metric.

MPDTC minimizing the switching frequency is compared to DTC in Fig. 8.9. The two met-
rics are normalized with respect to DTC. By minimizing the switching frequency, the switching
losses are also reduced. In general, the reduction in terms of the switching frequency and
switching losses is the same; this can be seen when comparing Fig. 8.9(a) with Fig. 8.9(b).
Even with the very short switching horizon eSE, MPDTC is capable of significantly improv-
ing on DTC by reducing the switching frequency and the switching losses by about one-third.
Nevertheless, the performance for the switching horizon eSE seems to be dominated by the
adverse impact of deadlocks, which are relatively frequent for such short horizons. Specifically,
deadlocks abound between 0.65 and 0.7 pu and around 0.8 pu speed. The issue of deadlocks
will be explained in Sect. 9.3 and techniques to avoid them will be proposed in Sect. 9.5. Such
techniques are not employed here.
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Figure 8.9 Steady-state performance of MPDTC minimizing the switching frequency
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Except for the speed operating point around 0.8 pu, medium-length horizons largely avoid
deadlocks, thus improving the performance of MPDTC. Long horizons almost completely
avoid deadlocks, thus avoiding the performance deterioration around 80% speed. Disregard-
ing deadlocks, we conclude that very long prediction horizons are not mandatory to achieve an
excellent performance when minimizing the switching frequency in MPDTC. Medium hori-
zons, such as eSSE and eSESE, are in many cases sufficient. This observation will also be made
for the five-level inverter case study in Sect. 8.2.4.

We also observe that the two performance metrics can be halved with MPDTC in the speed
range between 0.55 and 0.8 pu. As we have seen, this implies that the switching frequency
and hence the switching losses can be halved, while keeping the current distortions at the
same level. The reverse also holds true in many cases, allowing one to drastically reduce
the current distortions while leaving the switching frequency unchanged. The performance
improvement is smaller at higher speeds, amounting to a reduction of the metrics between a
quarter and a third.

Penalizing the switching losses in the MPDTC cost function alters the performance results
significantly. As shown in Fig. 8.10, medium horizons fully resolve the issue of deadlocks
and provide a smooth performance metric with the speed as the argument. Long horizons
significantly improve on medium horizons by further reducing the switching losses (see
Fig. 8.10(b)). In many cases, however, MPDTC requires a slight increase in the switching fre-
quency to achieve this reduction in the switching losses. This characteristic can be observed in
Fig. 8.10(a). Nonetheless, the switching losses (and not the switching frequency) relate to the
efficiency of the inverter and its cooling capability, and thus constitute the main quantity to be
reduced.

The losses metric cP can be reduced by about 60% with respect to DTC when operating
in the medium-speed region between 0.6 and 0.75 pu. In the high-speed region above 0.8 pu,
the reduction amounts to at least one-third. We conclude that, when minimizing the switching
losses, very long switching horizons carry a performance benefit over horizons of medium
lengths. The successful minimization of the switching losses requires the placement of the
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Figure 8.10 Steady-state performance of MPDTC minimizing the switching losses

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

298 Model Predictive Control of High Power Converters and Industrial Drives

switching instants at positions where the phase current is small while keeping the three output
variables within their bounds. This is a complex optimization problem that benefits from
long horizons.

8.1.3 Operation during Transients

The dynamic performance of MPDTC during torque reference steps is investigated and com-
pared with that of DTC. For MPDTC, we choose the switching horizon eSESE, the penalty on
rms bound violations q = [1000 0 0]T , and slightly widen the torque and flux bounds as previ-
ously. While operating at 70% speed, we reverse the torque by applying torque steps from 1 to
−1 pu and back to 1 pu. Both control methods use the same initial conditions for the machine
and the neutral point potential.

The torque response is shown in Fig. 8.11. Both control methods are effectively equally
fast. During the negative torque step, the torque settling times of DTC and MPDTC amount to
0.8 and 1.1 ms, respectively, while during the positive torque step the respective time intervals
are 4.2 and 3.6 ms. The negative torque transient is much shorter than the positive one because
ample voltage margin is available at close to nominal speed when reversing the torque. Specif-
ically, both control methods temporarily invert the stator voltage during the negative step, as
can be observed in Fig. 8.12. This figure also indicates that MPDTC switches significantly
less often than DTC. Over the short time window of 30 ms, MPDTC reduces the switching
frequency and the switching losses by 40% compared to DTC.

As shown in Fig. 8.13, both control methods keep the stator flux magnitude well within
its bounds. The same applies to the neutral point potential, which is not shown here. The
rapid torque response is also visible when examining the three-phase stator currents, which
are shown in Fig. 8.14. Temporary overcurrent conditions are avoided in both cases.
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Figure 8.11 Electromagnetic torque for DTC and MPDTC minimizing the switching frequency, when
operating at 70% speed. Torque steps of magnitude 2 pu are applied at time instants 10 and 20 ms
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Figure 8.12 Three-phase switch positions of the torque step simulation in Fig. 8.11
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Figure 8.13 Stator flux magnitude of the torque step simulation in Fig. 8.11
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Figure 8.14 Three-phase stator currents of the torque step simulation in Fig. 8.11
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8.2 Performance Evaluation for the ANPC Inverter Drive System

The five-level active neutral-point-clamped (ANPC) inverter is a recent topology [1, 2] that
extends the classic three-level NPC converter [3]. The NPC diodes are replaced by active
switches as in [4] and floating capacitors are added to each phase, similar to a flying capacitor
converter [5]. The five-level ANPC inverter topology is reviewed in detail in Sect. 2.4.2.

An MV induction machine rated at 6 kV and 1 MVA is connected to this inverter, forming a
variable-speed drive (VSD) system, which is shown in Fig. 8.15. The control problem of this
five-level ANPC drive extends that of the three-level NPC drive summarized in Sect. 7.2.2. In
addition to the electromagnetic torque, stator flux magnitude, and neutral point potential, the
three voltages of the phase capacitors need to be balanced around their references. The control
problem thus involves two machine quantities and four inverter voltages.

A number of control and modulation strategies have been proposed for the five-level ANPC
topology. All of these approaches divide the control and modulation problem into two hierar-
chical layers. The upper layer controls the machine currents by manipulating the three-phase
inverter voltages. To achieve this, control and modulation schemes, which were originally
developed for two- and three-level converters, were extended to five levels. This includes DTC
[1], selective harmonic elimination, and optimized pulse patterns [6]. The lower layer maps
the upper layer’s differential-mode voltage command into inverter gating signals. By exploit-
ing the redundancy in the phase voltages, the four internal inverter voltages can be balanced
around their respective references, as was shown, for example, in [1]. A hierarchical control
architecture based on DTC is shown in Fig. 8.16.

Owing to its ability to handle complex multiobjective drive control problems, its very fast
torque response, and its ability to achieve low switching frequencies and losses, MPDTC
appears to be an ideal candidate to address the control and modulation problem of the five-level
ANPC inverter. In particular, MPDTC allows one to formulate and solve the control and modu-
lation problem in one computational stage, thus addressing the torque and flux control problem
as well as the balancing of the internal inverter voltages in a combined manner. As a result,
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Figure 8.15 Five-level ANPC inverter drive system with an induction machine (IM)
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Figure 8.16 Hierarchical control architecture used for the five-level ANPC inverter drive system. DTC
serves as the control and modulation method used in the upper control layer

the limitation inherently imposed by separating the control and modulation problem into two
layers, in which the set of available control actions is inevitably reduced, is overcome. This
results in a performance advantage.

In this section, we summarize the controller model and adapt and extend MPDTC to the
five-level topology. Using a 1 MVA drive system with an induction machine as a case study, we
compare the performances of MPDTC and DTC at steady-state operation and during transients.
The comparison indicates that MPDTC achieves a reduction in the current TDD by 50% and
more for the same switching frequency while preserving the very fast torque response of DTC.

8.2.1 Controller Model

The internal prediction model on which MPC relies to predict the future drive trajectories
consists of three parts—the machine model, the inverter model, and the inverter’s switching
restrictions. We use the same machine model as in Sects. 7.2.1 and 7.2.3. Specifically, we
define the machine state vector

xm = [ψsα ψsβ ψrα ψrβ ]T , (8.2)

which comprises the stator and the rotor flux linkages in orthogonal coordinates. For the
inverter, we define the state vector

xi = [vph,a vph,b vph,c υn]T , (8.3)

with the phase capacitor voltages in the phases a, b, and c, and the neutral point potential. As
input vector, we choose the three-phase switch position

s = sabc = [sa sb sc]
T ∈ {0, 1, . . . , 7}3 (8.4)
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rather than the phase-level vector u = uabc ∈ {−2,−1, 0, 1, 2}3. The former encompasses
the single-phase redundancy that is inherent to the five-level topology, while the latter masks
this type of redundancy and exhibits only three-phase redundancy. The choice of s as the
input vector enables MPDTC to exploit both kinds of redundancies. For the definitions of the
three-phase vectors s and u, the reader is referred to Sect. 2.4.2.

The fluctuations of the phase capacitor and dc-link voltages are often significant in the
five-level ANPC inverter. To ensure that the controller model provides predictions that are
sufficiently accurate, we consider these fluctuations in the predicted stator voltage in (7.1).
Specifically, using Table 2.7, we derive the three-phase stator voltage as a function of the
three-phase switch position s, the inverter states xi, and the total dc-link voltage vdc. To sim-
plify the notation, we usually drop vdc from the list of arguments and simply write vs,abc(s,xi)
for the three-phase stator voltage.

This allows us to write the machine’s differential equations (7.4a) and (7.4b) in the
state-space form

dxm(t)
dt

= F mxm(t) + Gmvs,abc(s(t),xi(t)). (8.5)

The system and input matrices F m and Gm are provided in Appendix 8.A.
The dynamic model of the inverter captures the evolution of the three phase capacitor volt-

ages and of the neutral point potential. These four inverter voltages depend on the switch
position and the stator currents. As the latter can be expressed as a linear combination of the
machine vector (see (2.53)), we can state the derivative of the inverter state vector

dxi(t)
dt

= F i(s(t)) xm(t) (8.6)

as a function of the machine state vector and the switch position. The system matrix F i(s) is
derived in Appendix 8.A. It is a function of the three-phase switch position s.

In order to derive the continuous-time state-space representation of the ANPC drive system,
we combine the state-space model of the machine (8.5) with that of the inverter (8.6):

dx(t)
dt

= F (s(t)) x(t) + G vs,abc(s(t),x(t)) (8.7a)

y(t) = h(x(t)). (8.7b)

The state vector of the drive system

x = [xT
m xT

i ]T (8.8)

is defined as the concatenation of the machine and inverter state vectors. The system and input
matrices are

F (s) =
[

F m 04×4
F i(s) 04×4

]
and G =

[
Gm

04×3

]
. (8.9)

The output vector
y = [Te Ψs vph,a vph,b vph,c υn]T (8.10)

comprises the electromagnetic torque, the stator flux magnitude, the three phase capacitor volt-
ages, and the neutral point potential. The output function h(x) is provided in Appendix 8.A.
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The zeros in the input matrix G conceal the fact that the evolution of the four inverter state
variables strongly depends on the switch position s. Indeed, this dependency is manifested by
the inverter system matrix F i(s) being a function of s.

In a last step, we derive the discrete-time representation of the drive model by integrat-
ing (8.7) from t = kTs to t = (k + 1)Ts using the forward Euler discretization method. This
leads to

x(k + 1) = A(s(k)) x(k) + B vs,abc(s(k),x(k)) (8.11a)

y(k) = h(x(k)) (8.11b)

with the discrete-time matrices

A(s(k)) = I8 + F (s(k)) Ts and B = G Ts. (8.12)

The switching restrictions are stated in Sect. 2.4.2. Specifically, single-phase switching
restrictions are imposed (see Fig. 2.24), as well as restrictions on the three-phase switching
transitions (see Table 2.8). Both types of restrictions depend on the switch positions applied
during the past 50 μs and on the sign of the stator current. Assuming a sampling interval of
25 μs, the switching restriction at time step k can be formally stated as

s(k) ∈ S(is,abc(k), s(k − 1), s(k − 2)). (8.13)

In equation (8.13), S denotes the set of allowed three-phase switch positions the inverter may
transition to from s(k − 1).

In summary, the controller model includes the standard dynamic model of an induction
machine with four state variables, the inverter dynamics, and restrictions on the switching
transitions. If required, the model can be extended to include the speed dynamic (7.4c).

8.2.2 Modified MPDTC Algorithm

We distinguish between two groups of switches in phase x, with x ∈ {a, b, c}. The dc-link
and the switches Sx1–Sx4 form the ANPC part, while the phase capacitor and the switches
Sx5–Sx8 constitute the flying capacitor (FC) part. Each one of the Sx1–Sx4 switches consists
of two series-connected insulated-gate bipolar transistors (IGBTs), while the switches Sx5–Sx8
correspond to single IGBTs. Slightly abusing the notation, we introduce the variables

ΔsANPC,x(k) = fANPC(isx(k), sx(k), sx(k − 1)) (8.14a)

ΔsFC,x(k) = fFC(isx(k), sx(k), sx(k − 1)), (8.14b)

which capture at the discrete time step k the per-phase on (or off) transitions in the ANPC and
in the FC part, respectively. The functions fANPC and fFC are implicitly defined in Fig. 2.24.
Their outputs are 0, 1, or 2. We also define the vectors

ΔsANPC =

⎡

⎣
ΔsANPC,a

ΔsANPC,b

ΔsANPC,c

⎤

⎦ and ΔsFC =

⎡

⎣
ΔsFC,a

ΔsFC,b

ΔsFC,c

⎤

⎦ . (8.15)
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The IGBTs of the FC part bear the majority of the switching burden. It is thus particu-
larly important to minimize the switching frequency of these switches. This motivates the cost
function

J = Jsw + Jbnd + λn(υn(k + Ni))
2 (8.16)

with

Jsw =
1
Ni

k+Ni−1∑

�=k

λs||ΔsANPC(�)||1 + ||ΔsFC(�)||1. (8.17)

The first term in (8.16) represents the (short-term) switching frequency over the length Ni

of the ith candidate switching sequence. We use the tuning parameter 0 ≤ λs < 1 to dis-
count switching transitions in the ANPC part. The second term Jbnd = qT ε penalizes bound
violations of the output variables. Similar to (7.33), we define the normalized rms bound vio-
lations as

ε(k) = [εT (k) εΨ(k) εa(k) εb(k) εc(k) ευ(k)]T . (8.18)

The third term in the cost function adds a terminal weight on the neutral point potential, by
penalizing the potential’s deviation from zero at the end of the switching sequence. The penalty
is adjusted using the weight λn ≥ 0, which is significantly smaller than 1.

The purpose of this third term is to reduce the likelihood of infeasibilities or deadlocks, that
is, situations in which the set of candidate switching sequences is empty. Such scenarios tend
to occur when two or more output variables are close to their bounds. In most cases, the neutral
point potential and one of the phase capacitor voltages act as antagonists. The likelihood of
such events can be largely reduced by adding a terminal weight on the neutral point potential
to the cost function. This penalty provides an incentive for MPDTC to drive the neutral point
potential closer to zero whenever the predicted increase in the switching frequency is minor.
For more details on the phenomenon of deadlocks and strategies to avoid them, the reader
is referred to Sects. 9.3 and 9.5. In the case of a deadlock, the deadlock resolution strategy
described in Sect. 9.4 is employed.

The MPDTC algorithm in Sect. 7.4.5 is adapted to the five-level ANPC inverter drive
system by performing the following three modifications. First, the controller manipulates
the three-phase switch position s, with s ∈ {0, 1, . . . , 7}3. This implies that the switching
sequence is

S(k) = [sT (k) sT (k + 1) · · · sT (k + N − 1)]T , (8.19)

which replaces (7.36). Second, when switching at time step �, only the admissible switch
positions s(�) in the set S(is,abc(�), s(� − 1), s(� − 2)) are considered, generalizing the
switching constraint (7.37). Third, the controller model in (7.38) and (7.40b)–(7.40c) is
replaced by (8.11).

8.2.3 Simulation Setup

In the remainder of this section, the performance of MPDTC is evaluated and benchmarked
with DTC for an MV five-level ANPC inverter drive system. More specifically, a 6 kV, 50 Hz
squirrel-cage induction machine rated at 1 MVA is used. The inverter’s nominal dc-link voltage
is 9.8 kV. The drive system case study is summarized in Sect. 2.5.3. The parameters of the
machine and inverter are summarized in Tables 2.12 and 2.13.
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A very accurate and detailed MATLAB/Simulink model of the drive system was used for
this comparison to ensure a simulation setup as realistic as possible. This model includes an
observer for the motor flux linkages and outer control loops that adjust the (time-varying)
bounds on the torque and stator flux magnitude. The optional speed encoder is not used. The
induction machine model includes the saturation of the machine’s magnetic material and the
changes of the rotor resistance because of the skin effect. Measurement delays and the con-
troller’s computational delay are explicitly modeled. The Simulink model includes an active
front end (AFE) with a transformer and a grid model. The AFE regulates the total dc-link volt-
age and the reactive power injected into the grid. The AFE does not control the neutral point
potential, but it nevertheless has a significant influence on it.

As a benchmark control scheme, the DTC scheme described in Sect. 3.6.3 is extended to
the five-level inverter. The torque and flux hysteresis controllers are augmented with addi-
tional hysteresis bands, and the DTC look-up table is refined accordingly. The hierarchical
control structure shown in Fig. 8.16 is adopted. DTC controls the machine’s torque and degree
of magnetization through the manipulation of the phase levels u. An underlying balancing
controller maintains the three phase capacitor voltages and the neutral point potential within
their bounds. The balancing controller exploits the single-phase and three-phase redundancies
inherent to the five-level ANPC topology and issues the three-phase switch position s. This
two-tiered control scheme is described in [1].

In the case of MPDTC, the Simulink block with the DTC and balancing scheme was replaced
by a function that runs the MPDTC algorithm at each sampling instant. The weights in the
cost function (8.16) are set to λs = 0.1 and λn = 0.1. The penalty on the bound violation is
set to q = 06×1 during steady-state operation. During torque transients, however, it is set to
q = [1000 0 · · · 0]T , strongly penalizing bound violations of the torque.

8.2.4 Steady-State Operation

The performance comparison between MPDTC and DTC focuses on the current and torque
TDDs, ITDD and TTDD, respectively, and the following three switching frequencies: the aver-
age of all 36 device switching frequencies, fsw,avg; the switching frequency of the IGBT pairs
Sx1–Sx4 (ANPC part of the inverter), fsw,ANPC; and the switching frequency of the IGBTs
Sx5–Sx8 (FC part), fsw,FC.

DTC imposes the symmetrical bounds 0.25vdc ± 0.055 pu on the phase capacitor voltages.
These bounds are centered at a quarter of the dc-link voltage. The neutral point potential is
kept within ±0.09 pu. Both sets of bounds are inherited by MPDTC. The bounds on the elec-
tromagnetic torque and the stator flux magnitude are set by the outer DTC loops. In order to
reduce the current and torque distortions, the widths of the torque and flux bounds were mul-
tiplied by 0.774 and 0.427, respectively. This resulted in the effective torque and flux bounds
of about 1 ± 0.04 and 1 ± 0.005 pu, respectively, when operating at rated torque.

8.2.4.1 Operation at Nominal Speed

Consider steady-state operation at nominal speed and rated torque. Table 8.2 shows selected
simulation results that compare the closed-loop performances of DTC and MPDTC. Owing
to the tightening of the bounds and because MPDTC adheres more closely to the bounds, the
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Table 8.2 Comparison between DTC and MPDTC with various switching horizons. The comparison
is made at nominal speed and rated torque in terms of the current and torque TDDs, ITDD, and TTDD,
respectively, which are given in percent, using DTC as a baseline

Control Switching Average prediction ITDD TTDD fsw,avg fsw,ANPC fsw,FC
scheme horizon horizon Np (%) (%) (Hz) (Hz) (Hz)

DTC — — 100 100 421 315 634
MPDTC eSE 8.4 48.6 49.9 383 272 605
MPDTC eSSE 13.7 47.7 50.5 350 248 555
MPDTC eSESE 19.7 47.1 49.9 337 238 534
MPDTC eSESESE 30.4 45.8 48.7 326 229 519

The average switching frequency fsw,avg, the switching frequency of the ANPC part fsw,ANPC, and the
switching frequency of the FC part fsw,FC are also shown.

current and torque TDDs are more than halved for MPDTC, while the switching frequency is
also reduced.

As the switching horizon is extended, the resulting prediction horizon grows accordingly,
enabling MPDTC to look further ahead and to achieve a significant reduction in the switching
frequencies. For MPDTC with the switching horizon eSE, for example, the average switching
frequency and thus the switching losses can be reduced by almost 10% with respect to DTC. In
contrast, when adopting the long switching horizon eSESESE, the average switching frequency
is lowered by more than 20%.

The IGBTs in the FC part carry the majority of the switching burden and constitute the lim-
iting factor. Their switching frequencies can be reduced by 5% by MPDTC with eSE and by
almost 20% when using eSESESE. This is a noteworthy result, because the FC switches are
predominantly used to balance the phase capacitor voltages and the controller has only few
degrees of freedom to improve the balancing. As approximately half of the switching transi-
tions in the FC part are triggered by internal inverter voltages approaching their bounds, a 10%
reduction may enable one to tighten the bounds on the torque and stator flux by another 20%
and to reduce the corresponding distortions accordingly. Interestingly, as the switching hori-
zon is extended, the current TDD also drops slightly. This indicates that the torque and stator
flux magnitude are kept more tightly within their bounds when using long prediction horizons.

Figures 8.17(a) and 8.18(a) show waveforms for DTC operating at nominal speed and rated
torque. Significant violations of the torque and stator flux bounds occur because of the fact
that DTC switches only after a bound has been violated. The phase currents in Fig. 8.19(a)
exhibit a noticeable current ripple. The torque and current spectra in Figs. 8.20(a) and 8.21(a)
were computed using a Fourier transformation. The amplitudes of the harmonics are small and
below 2% of the 1 pu amplitudes of the rated torque and phase currents.

The balancing controller underlying DTC keeps the neutral point potential well within its
bounds, except for rare violations. The balancing controller imposes inner and outer bounds
on the phase capacitor voltages to ensure that the voltages are always kept within their outer
bounds. However, the use of additional inner bounds implies that the outer bounds are not
always fully utilized. This can be seen in Fig. 8.23(a), which only shows the outer bounds.
The phase levels and switch positions are shown in Figs. 8.24(a) and 8.25(a). Three different
switching frequencies that are obtained with DTC are summarized in the first line in Table 8.2.
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Figure 8.17 Electromagnetic torque for DTC and MPDTC minimizing the switching frequency, when
operating at rated speed and rated torque
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Figure 8.18 Stator flux magnitude of the simulation in Fig. 8.17
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Figure 8.19 Three-phase stator currents of the simulation in Fig. 8.17
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Figure 8.20 Spectra of the electromagnetic torque shown in Fig. 8.17
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Figure 8.21 Spectra of the three-phase stator currents shown in Fig. 8.19
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Figure 8.22 Neutral point potential of the simulation in Fig. 8.17
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Figure 8.23 Phase capacitor voltages of the simulation in Fig. 8.17
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Figure 8.24 Phase levels u of the simulation in Fig. 8.17
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Figure 8.25 Switch positions s of the simulation in Fig. 8.17
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Figures 8.17(b)–8.25(b) show the corresponding waveforms for MPDTC with the switch-
ing horizon eSESESE. The long prediction horizon and the internal controller model enable
MPDTC to make educated switching decisions. The small bound violations are due to uncom-
pensated measurement and computation delays. When compared with DTC, it was possible to
tighten the bounds on the torque and stator flux magnitude while maintaining (or even slightly
reducing) the switching frequency. The tightening of the bounds significantly reduces the cur-
rent ripple (see Fig. 8.19(b)) and effectively halves the current and torque TDDs, as shown in
Table 8.2.

The torque and current spectra are considerably flatter and below 0.5% of the rated torque
and phase currents, respectively, as can be seen in Figs. 8.20(b) and 8.21(b). The neutral point
potential is kept well within its bounds (see Fig. 8.22(b)), despite the unmodeled interference
from the AFE. The bound width on the phase capacitor voltages is fully utilized, but not vio-
lated (see Fig. 8.23(b)), because potential violations are predicted and can thus be avoided by
MPDTC. The phase levels and switch positions are shown in Figs. 8.24(b) and 8.25(b). Com-
pared to those of DTC, these waveforms exhibit a smoother shape and approximate sinusoidal
waveforms more accurately.

8.2.4.2 Operation Over a Range of Speed Operating Points

Next, the performance of the two control and modulation schemes is compared over a range
of speed operating points. The speed is varied between 0.5 and 1.1 pu in steps of 0.05 pu while
operating at rated torque. For MPDTC, the torque and stator flux bounds are multiplied by the
same factors (0.774 for the torque and 0.427 for the flux magnitude) as during operation at
nominal speed. The bounds on the four internal inverter voltages remain unchanged. The short
switching horizon eSE and the medium switching horizon eSESE are considered for MPDTC.

Figure 8.26(a) shows the current TDD achieved by MPDTC in percent using DTC as a base-
line. As can be seen, for this set of bounds, the current TDD is halved throughout the considered
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Figure 8.26 Steady-state performance comparison between MPDTC and DTC when varying the speed
setpoint between 0.5 and 1.1 pu and operating at rated torque. The current and torque TDDs are given in
percent, using DTC as a baseline
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Figure 8.27 Steady-state performance comparison between MPDTC and DTC when varying the speed
setpoint between 0.5 and 1.1 pu and operating at rated torque. The switching frequencies are given
in hertz

range of operating points. Similarly, the torque TDD shown in Fig. 8.26(b) is reduced by
40–50%. The improvement in the current and torque TDDs is independent of the speed in this
experiment. This is due to our choice of using the same factor, by which the MPDTC bounds
are tightened with respect to DTC, at all operating points.

The three key switching frequencies are shown in Fig. 8.27, namely the device switching
frequencies of the ANPC and FC parts, and the average device switching frequency. For speeds
below 0.8 pu, MPDTC with the switching horizon eSE greatly reduces the switching frequen-
cies. Specifically, the pivotal switching frequency of the IGBTs in the FC part is decreased
by up to 180 Hz (see Fig. 8.27(b)), whereas the average switching frequency is reduced by up
to 135 Hz (see Fig. 8.27(c)). Even though the switching frequency in the ANPC part is only
weakly penalized with a discount factor of 0.1, the switching frequency reduction of up to
110 Hz in the ANPC part is also significant, as can be seen in Fig. 8.27(a).
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Table 8.3 Steady-state comparison between DTC and MPDTC operating at rated torque

Control Switching ITDD TTDD fsw,avg fsw,ANPC fsw,FC
scheme horizon (%) (%) (Hz) (Hz) (Hz)

DTC — 100 100 434 332 638
MPDTC eSE 52.4 56.6 374 274 574
MPDTC eSESE 50.4 54.5 328 242 502

The performance metrics are averaged over 13 speed operating points between 0.5 and 1.1 pu.

It appears that MPDTC provides the largest performance benefit at around 0.7 pu speed. A
similar observation has been made when applying MPDTC to an NPC inverter drive system
(see Sect. 8.1). The reductions in the switching frequencies are less pronounced for speeds
above 0.8 pu. Nevertheless, in addition to the switching frequency reductions, the current and
torque TDDs are reduced by 40–50% throughout the range of investigated speed operating
points, as discussed before.

Adopting longer switching horizons further reduces the switching frequencies. Using eSESE
instead of eSE, for example, reduces on average the switching frequency of the FC devices by
another 70 Hz. The switching frequency of the ANPC part is further reduced by 30 Hz, and
the average switching frequency is reduced by another 45 Hz. As can be seen in Fig. 8.27, this
switching frequency difference is effectively independent of the speed operating point.

Table 8.3 summarizes the average performance improvement that MPDTC with the switch-
ing horizons eSE and eSESE achieves over DTC at steady-state operation. For this, the results
shown in Figs. 8.26 and 8.27 were averaged over the speed range 0.5–1.1 pu. We conclude that
MPDTC with the medium switching horizon eSESE achieves an average reduction of the cur-
rent and torque TDDs by about 45%. At the same time, the average device switching frequency
of the FC part is reduced by 136 Hz and the average switching frequency of all semiconductor
switches is lowered by 106 Hz.

8.2.5 Operation during Transients

Figures 8.28–8.30 compare the performances of DTC and MPDTC during torque transients.
Steps of magnitude 1 pu are applied to the torque reference when operating at nominal speed.
Both control schemes fully exploit the available dc-link voltage by temporarily inverting the
voltage applied to the machine. As a result, DTC and MPDTC provide similar fast torque
responses. The torque settling time for negative torque steps is around 0.4 ms, while it is about
1.5 ms for the positive torque step. Overshoots in the torque occur in both schemes, which
appear to be a result of the switching restrictions and delays. The other output variables are
kept well within their bounds, and unnecessary switching is avoided.

The MPDTC results are based on the switching horizon eSSE. Shorter horizons, such as
eSE, tend to result in slower torque responses, because very short switching horizons in con-
nection with the switching restrictions limit the set of voltage vectors that can be considered
by MPDTC.
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Figure 8.28 Electromagnetic torque for DTC and MPDTC minimizing the switching frequency, when
operating at nominal speed. Torque steps of magnitude 1 pu are applied every 5 ms
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Figure 8.29 Stator flux magnitude of the simulation in Fig. 8.28
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Figure 8.30 Phase levels u of the simulation in Fig. 8.28
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8.3 Summary and Discussion

The performance of MPDTC was evaluated in this chapter for MV induction motor drives
based on the classic three-level NPC inverter and the recent five-level ANPC inverter. During
steady-state operation, the main performance criteria are the switching frequency, the switch-
ing losses in the semiconductors, and the current and torque distortions. For the NPC inverter,
the focus was on reducing the switching frequency and the losses. Compared to DTC, these
can be reduced by at least 25%. In the medium-speed regime, reductions of up to 60% are pos-
sible. To minimize the switching losses as much as possible, the losses should be penalized
in the MPDTC cost function, and long switching horizons are required. Conversely, the har-
monic distortions can be reduced while maintaining the switching frequency or losses at the
level of DTC. Improvements of 30% and more are often achieved. To achieve low current dis-
tortions, the torque and flux bounds have to be tightened. Very tight bounds might necessitate
an increase in the sampling frequency.

It is relatively straightforward to adapt MPDTC to the five-level ANPC inverter drive
system. The focus here was on reducing the harmonic distortions. Compared to standard
DTC, the current and torque distortions can be halved while maintaining—and in many cases
reducing—the switching frequency. The opposite, that is, halving the switching frequency
for the same harmonic distortions, is not possible with this inverter, because a significant
proportion of the switching effort is required to maintain the phase capacitor voltages within
their upper and lower bounds. We had seen for the NPC inverter that, when minimizing the
switching frequency in the cost function, medium prediction horizons are often sufficient.
This observation can also be made for the five-level inverter.

During transients such as step changes in the torque reference, MPDTC provides as fast a
dynamic torque response as DTC. The torque settling times of these two control schemes are
very similar. This was shown for the three-level as well as the five-level inverter drive system.

MPDTC is attractive also in light of its simple outer control loops. A field-oriented reference
frame is not required, and the torque is directly set by the speed controller. The outer control
loops thus require almost no tuning and no drive parameters. Tuning is, however, required to
choose appropriate bounds on the torque and flux magnitude. In this chapter, we have bypassed
this issue and simply adopted the—somewhat modified—DTC bounds. If the current distor-
tions per switching frequency (or losses) are the main concern, a revised set of bounds often
leads to better results. A derivative of MPDTC will be introduced in Sect. 11.1, which directly
controls the ripple current and thus the current TDD. Requiring only one tuning parameter,
this MPDTC derivative permits a simple and straightforward tuning procedure.

Even though only simulation results have been provided in this chapter, a preliminary ver-
sion of MPDTC has been successfully implemented and tested on an MV drive system with an
NPC inverter. This version is akin to MPDTC with the switching horizon SE, but enumerates
all 27 switching transitions in the switching step S. For switch positions that are unattainable
within one switching transition, a feasible switching sequence is established that involves mul-
tiple control cycles and links the current switch position with the desired one. This preliminary
MPDTC version is explained in detail in [7] and [8].

The experimental results were obtained for a 3.3 kV induction motor, whose parameters are
summarized in Sect. 2.5.1. In fact, the parameters of this electrical machine form the basis of
the NPC inverter drive case study, which is used throughout this book. During the experiments,
power levels of up to 1 MVA were achieved, as described in [9]. For the five-level ANPC
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inverter, an implementation of MPDTC on a small field-programmable gate array (FPGA) is
a feasible task [10] when using the short switching horizon eSE. Experimental results have,
however, not yet been reported.

MPDTC can be adapted to other power electronic topologies and machines. An LC fil-
ter is placed between the NPC inverter and the induction machine in [11]. MPDTC can be
adapted to this drive setup by controlling the virtual inverter torque and the virtual inverter
flux instead of the corresponding machine quantities. The extension of MPDTC to a five-level
inverter driving a high-frequency induction machine was shown in [12]. Each phase leg of
the inverter comprises a three-level H-bridge module. Alternatively, MPDTC can be used for
permanent magnet synchronous machines (PMSMs). Performance improvements over DTC
that are similar to those discussed in Sect. 8.1 can be achieved [13].

Irrespective of the successful implementation of MPDTC with short switching horizons,
MPDTC with long horizons and full enumeration is computationally demanding and requires
a powerful control platform. To facilitate the implementation of MPDTC on a control plat-
form with modest computational power, techniques from mathematical programming such as
branch-and-bound can be used. As exemplified in Chap. 10, such techniques reduce the compu-
tation time by an order of magnitude while causing only a negligible impact on the closed-loop
performance.

Appendix 8.A: Controller Model of the ANPC Inverter Drive System

The continuous-time state-space matrices of the five-level ANPC drive model (8.7) and (8.9)
are derived in this appendix. The system matrix of the machine F m is the same as in (7.A.1a).
The three-phase stator voltage vs,abc(s,xi) is constructed from the phase capacitor voltages
vph,x and the neutral point potential υn, which are part of the inverter state vector xi. Based on
υn and the total dc-link voltage vdc, the upper and lower dc-link voltages vdc,up = 0.5vdc − υn

and vdc,lo = 0.5vdc + υn are derived. Table 2.7 provides then vs,abc(s,xi).
The input matrix transforms the three-phase stator voltage into orthogonal coordinates and

applies the transformed stator voltage to the stator flux dynamics. This leads to

Gm =
1
3

⎡

⎢⎢⎣

2 −1 −1
0

√
3 −

√
3

0 0 0
0 0 0

⎤

⎥⎥⎦ . (8.A.1)

To derive the inverter model, we introduce for the phase capacitor dynamics the auxiliary
logic variables

δph,x =

⎧
⎨

⎩

1, if sx ∈ {2, 6}
−1, if sx ∈ {1, 5}

0, else,
(8.A.2)

with x ∈ {a, b, c}. This allows us to write the differential equations of the capacitor voltages
(2.91) in the compact form

dvph,x

dt
=

1
Xph

δph,xisx. (8.A.3)
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Recall that Xph denotes the pu equivalence of the phase capacitance, and isx is the stator
current in phase x.

Similarly, we introduce the three logic variables

δnx =
{

1, if sx ∈ {2, 3, 4, 5}
0, else

(8.A.4)

for the neutral point potential and rewrite the differential equation (2.93) as

dυn

dt
= − 1

2Xdc
(δnaisa + δnbisb + δncisc). (8.A.5)

The three-phase stator current can be expressed in terms of the stator and rotor flux vectors
in orthogonal coordinates. These flux vectors form the state vector of the machine xm. Com-
bining (2.53) with the pseudo-inverse of the Clarke transformation K̃

−1
allows us to write

is,abc = K̃
−1 1

D

[
XrI2 −XmI2

]
xm, (8.A.6)

where I2 denotes the 2 × 2 identity matrix.
The continuous-time system matrix of the inverter

F i(s) =

⎡

⎢⎢⎢⎢⎣

δph,a

Xph
0 0

0 δph,b

Xph
0

0 0 δph,c

Xph

− δna

2Xdc
− δnb

2Xdc
− δnc

2Xdc

⎤

⎥⎥⎥⎥⎦
K̃

−1 1
D

[
XrI2 −XmI2

]
(8.A.7)

is obtained by inserting (8.A.6) into (8.A.3) and (8.A.5). This matrix is dependent on the aux-
iliary logic variables, which in turn depend on the three-phase switch position s.

The vector-valued output function of the complete drive model is given by

h(x) =
[

1
pf

Xm

D (x2x3 − x1x4)
√

x2
1 + x2

2 x5 x6 x7 x8

]T
, (8.A.8)

where xj refers to the jth component of the state vector x = [xT
m xT

i ]T .
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9
Analysis and Feasibility of Model
Predictive Direct Torque Control

Direct torque control (DTC) and model predictive direct torque control (MPDTC) impose
upper and lower bounds on the torque and stator flux magnitude. As shown in Sect. 9.1, these
bounds can be translated into equivalent bounds on the stator flux components in orthogonal
coordinates. This gives rise to the target set within which DTC and MPDTC maintain the
stator flux vector. Section 9.2 derives and visualizes the state-feedback control law of MPDTC
around this target set. The control law is computed in an offline procedure. The availability of
the control law allows one to analyze the controller, and to illustrate and better understand its
behavior and decision-making process.

Similar to DTC, the MPDTC algorithm occasionally runs into situations in which the
control problem does not permit a solution and is thus infeasible. These so-called deadlocks
refer to instances in which no switching sequence exists that keeps the controlled variables
within their bounds or, when a bound has been violated, reduces the bound violation. As with
DTC, these deadlocks are induced by the imposition of bounds on the controlled variables
and the fact that the number of available voltage vectors is finite. The root cause of deadlocks
is analyzed in Sect. 9.3.

In the case of a deadlock, one option is to relax the bounds and to minimize the predicted
bound violation instead of the switching effort. This so-called deadlock resolution strategy,
which is proposed in Sect. 9.4, is executed until the deadlock has been resolved. However,
the execution of this resolution strategy often leads to a spike in the instantaneous switching
frequency, which we refer to as a switching burst. In the worst case scenario, such a switching
burst could lead to a trip of the drive. Section 9.5 proposes methods that aim to avoid dead-
locks and their associated switching bursts. The proposed methods are based on the notions of
terminal weights and terminal constraints. These measures drastically reduce the likelihood of
deadlocks and—in many cases—avoid them altogether.

Throughout this chapter, we will consider a three-level, neutral-point-clamped (NPC)
inverter with a medium-voltage (MV) induction machine as the basis for our analysis. The
MPDTC control problem of this drive system is to maintain the electromagnetic torque, the
stator flux magnitude, and the floating neutral point potential within given bounds.

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/geyermodelpredictivecontrol
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9.1 Target Set

We start by introducing the concept of the target set for MPDTC. The target set will be instru-
mental when deriving and analyzing the state-feedback control law, and when analyzing and
avoiding deadlocks.

For a given rotor flux vector ψr with the magnitude Ψr = ||ψr||, the references on the
electromagnetic torque T ∗

e and stator flux magnitude Ψ∗
s can be translated into an equiva-

lent reference for the stator flux vector ψ∗
s. To accomplish this, it is convenient to work in a dq

reference frame, whose d-axis is aligned with the rotor flux vector, as shown in Fig. 9.1. Using
the expressions (7.6) and (7.7) for the torque and stator flux magnitude, it is straightforward
to derive the d- and q-components of the stator flux reference vector:

ψ∗
sd =

√

(Ψ∗
s)2 −

(
pf

D

XmΨr

T ∗
e

)2

(9.1a)

ψ∗
sq =

pf D

XmΨr

T ∗
e . (9.1b)

In Sect. 7.3.2, we defined Te,min and Te,max as the lower and upper bounds on the electro-
magnetic torque. The bounds on the magnitude of the stator flux vector were defined accord-
ingly as Ψs,min and Ψs,max. The bounds on the neutral point potential are given by υn,min
and υn,max.

α

β

d

q

ψr

ψs

ψ∗
s

vs

Ψs,min

Ψs,max

Te,min

Te,max

ϕ

γ

ωfr

Figure 9.1 Stator and rotor flux vectors ψs and ψr in the dq reference frame, which rotates with the
angular velocity ωfr. The target set around the stator flux reference ψ∗

s is indicated by solid lines, which
correspond to the upper and lower bounds on the torque and stator flux magnitude, respectively. The
stator flux vector is driven into the target set by the voltage vector vs. The dashed lines indicate the
rectangular set for which the state-feedback control law will be derived
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The neutral point potential at time t is obtained by integrating (7.3), which leads to

υn(t) = υn(t0) +
1

2Xc

∫ t

t0

|u(τ)|T is,abc(τ)dτ . (9.2)

As the neutral point potential is the integral of the component-wise absolute value of the
three-phase switch position u = [ua ub uc]

T multiplied with the three-phase stator currents
is,abc, it cannot be easily represented in the stator flux plane. We thus restrict the discussion
in this and the following section to the electromagnetic torque and the stator flux magnitude.

The upper and lower torque and flux magnitude bounds can be translated into the stator
flux plane with the help of (9.1). Because of the linear relationship between the torque and
the q-component of the stator flux vector (see (9.1b)), the torque bounds form lines that run
parallel to the rotor flux vector. The upper and lower bounds of the stator flux magnitude form
concentric circles around the origin. As depicted in Fig. 9.1, the four bounds form a target
set for the stator flux vector. Keeping the latter within this set is equivalent to maintaining the
electromagnetic torque and the stator flux magnitude within their respective upper and lower
bounds. When this is achieved, the desired torque will be generated and the machine will be
appropriately magnetized.

At steady-state operating conditions, the target set rotates in synchronism with the rotor
flux vector, while it remains stationary within the dq reference frame. During transients, such
as torque steps, the target set is moved along the q-axis. In the presence of large steps, this
movement will result in the stator flux vector violating the target set. To ensure a minimum
torque settling time and to avoid too high or too low a stator flux magnitude, the stator flux
vector needs to be driven back into the target set as quickly as possible by an appropriate
voltage vector vs.

9.2 The State-Feedback Control Law

MPDTC is based on an online optimization stage that computes a suitable inverter switch
position in real time. Therefore, and unlike DTC, the MPDTC control law is not directly
available—for example, in form of a look-up table—and thus cannot be analyzed and illus-
trated. This complicates the design stage and the analysis of the MPDTC decision-making
process.

To rectify this shortcoming, the MPDTC state-feedback control law will be computed, illus-
trated, and analyzed. This control law maps the state vector over the state space and the
previously applied switch position to the control input (the switch position). The impact of
varying the length of the switching horizon will also be shown. The information and insight
obtained is not only meant to further the reader’s understanding of MPDTC, but it is also envi-
sioned that this will facilitate future revisions and improvements of the MPDTC algorithm, for
example, by further reducing its computational burden.

When formulating model predictive control (MPC) problems for linear and piecewise affine
(linear plus offset) systems with piecewise affine constraints, the state-feedback control law
can be computed in a mathematically elegant way. The resulting control input is piecewise
affine in the state vector. Specifically, the state space is divided into regions,1 and the con-
trol input of each region is an affine function of the state vector. For more details on the

1 If the 1- or ∞-norm is used in the cost function, the regions are polyhedra, whereas for the 2-norm, non-convex
ellipsoidal regions may emerge.
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state-feedback control law of MPC for piecewise affine systems, the reader is referred to [1]
and the references therein. The multiparametric MATLAB toolbox [2] provides a powerful set
of tools to compute and analyze such solutions.

For power electronics systems, state-feedback control laws can be derived by approximating
the nonlinearities by piecewise affine functions, modeling the system in the mixed logical
dynamical (MLD) framework [3], formulating the MPC control problem as a closed-form
optimization problem, and using a modified version of the multiparametric toolbox to derive
the state-feedback control law. Owing to its daunting computational complexity, this approach
is feasible only for two-level inverters [4, 5] and dc–dc converters [6]. A problem-specific
computational scheme, which exploits the structure of the drive control problem, is proposed
in [7]. The derivation of a state-feedback control law for a simplified field-oriented control
(FOC) problem is described in [8].

These standard techniques are not applicable for computing the state-feedback control law
of MPDTC, because the MPDTC optimization problem (7.26) is solved in an approximate
manner by adopting the notion of trajectory extension and considering switching transitions
only when the output variables are close to their bounds. For details on the MPDTC algorithm,
the reader is referred to Sect. 7.4.5.

9.2.1 Preliminaries

As a case study, consider an MV drive system consisting of a three-level NPC inverter with an
induction machine. This case study is described in detail in Sect. 2.5.1 along with the corre-
sponding parameters and the base quantities of the per unit (pu) system. To simplify the case
study, the inverter is fed by two dc voltage sources, removing the need to actively balance the
neutral point potential around zero. This allows us to remove the neutral point potential from
the state and output vectors, reducing their dimensions by one.

Consider the cost function
J = Jsw + Jbnd + Jt (9.3)

as defined in (7.30). We target the switching losses and set Jsw = JP , which represents the
switching power losses over the length of the prediction horizon (see (7.32)). The term Jbnd =
qT ε(k) penalizes the predicted root mean square (rms) bound violation of the output variables,
which we define as

ε(k) = [εT (k) εΨ(k)]T , (9.4)

similar to (7.3.3). We set the corresponding penalty to q = [2 2]T . The third term, Jt, is not
used and set to zero.

The MPDTC algorithm minimizes the cost function (9.3) subject to the evolution of the
controller model (7.26b)–(7.26c) and two additional sets of constraints: The switching con-
straints (7.26e)

u(�) ∈ U and ||Δu(�)||∞ ≤ 1, (9.5)

with U = {−1, 0, 1}3 and Δu(�) = u(�) − u(� − 1), and the constraints on the output vari-
ables (7.26d) {

εj(� + 1) = 0, if εj(�) = 0
εj(� + 1) < εj(�), if εj(�) > 0.

(9.6)
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Here, the nonnegative εj denotes the degree by which the jth output variable violates one of
its bounds. In (7.28), for example, we had defined the degree of the torque bound violation as

εT (�) =
1

Te,max − Te,min

⎧
⎨

⎩

Te(�) − Te,max if Te(�) > Te,max
Te,min − Te(�) if Te(�) < Te,min
0 else ,

(9.7)

where εT is normalized by the bound width. The degree of the bound violation for the stator
flux magnitude is defined accordingly and is denoted by εΨ. The output constraint (9.6)
ensures that the output variables at time step � + 1 are either kept within their bounds or, if
a bound has been violated, are moved closer to the violated bound at every time step within
the prediction horizon.

We restrict the analysis to operation at steady state. The dimension of the state space for
which the control law is derived can be reduced thanks to the following observations. The
machine operates at a constant rotor flux magnitude and at a constant speed. By treating these
two quantities as parameters, the machine state can be fully described by the stator flux vector
and the angular position of the rotor flux. This is conveniently done in the rotating dq refer-
ence frame, which is aligned with the rotor flux vector and rotates synchronously with it. The
(redefined) state vector x(k) of the machine is given by the two components of the stator flux
vector in dq, ψs,dq(k), and the rotor flux angle ϕ(k). As the neutral point potential is fixed to
zero, the inverter state is fully described by the switch position u(k − 1), which was selected
in the previous control cycle.

Unless otherwise stated, the operating point is at nominal speed ωr = 1 pu and rated torque,
the rotor flux angle is zero, and the applied switch position is u(k − 1) = [−1 0 − 1]T . The
magnitude of the rotor flux vector is Ψr = 0.92 pu and the stator flux reference vector in the
rotating dq reference frame is ψ∗

s,dq = [0.972 0.235]T pu for the considered machine. The
bounds on the electromagnetic torque are chosen as Te,min = 0.85 pu and Te,max = 1.15 pu,
whereas the bounds on the stator flux magnitude are Ψs,min = 0.97 pu and Ψs,max = 1.03 pu.
These values define the target set around ψ∗

s,dq , which is shown in Fig. 9.1. The sampling
interval is set to Ts = 25 μs.

In a first step, the control law is derived for a given rotor flux angle and for a subset of the
state space. The boundary of this set is indicated by dashed lines in Fig. 9.1. The set is centered
on the stator flux reference vector, with its edges parallel to the d- and q-axes. The lengths of
its edges are (arbitrarily) chosen as 0.16 pu.

9.2.2 Control Law for a Given Rotor Flux Vector

The state-feedback control law constitutes the mapping from the stator flux vector in dq, the
rotor flux angle, and the previously chosen switch position to the optimal three-phase switch
position uopt. This can be written at time step k as

uopt(k) = fMPC(ψs,dq(k), ϕ(k),u(k − 1)). (9.8)

Recall that we assume steady-state operation and treat the magnitude of the rotor flux vector
and the speed as parameters. The function fMPC can be evaluated by executing the MPDTC
algorithm, which is stated in Sect. 7.4.5.
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In order to compute the control law in an offline procedure, we consider stator flux vectors
within the rectangular set, which is indicated by the dashed lines in Fig. 9.1. We resort to the
technique of gridding and generate a fine set of grid points along the d- and q-axes. These points
correspond to stator flux components within the rectangular set. The grid points, along with the
rotor flux angle ϕ, define the machine’s state. For a given switch position u(k − 1), the optimal
control input uopt(k) can be computed for each grid point, which yields the state-feedback
control law. The latter can be stored in a look-up table.

9.2.2.1 State-Feedback Control Law for a Short Switching Horizon

Several control laws that resulted from this procedure are shown in Figs. 9.2 and 9.3 for
MPDTC with the short switching horizon SE. The optimal three-phase switch positions
uopt(k) are plotted in the two-dimensional space that is spanned by the d- and q-components
of the stator flux vector. The different shades of gray refer to different switch positions.
As can be seen, neighboring stator flux vectors relate to the same switch position forming
distinctive regions in the state space that share the same control input. The switch positions
of these regions are indicated by the symbols +, 0, and −. For example, 00− refers to
uopt(k) = [0 0 − 1]T .

The target set is shown as the slightly curved parallelogram with solid lines. The arrows
correspond to the voltage vectors in the dq frame. These arrows highlight the different veloc-
ities and directions in which the various voltage vectors drive the stator flux vector relative to
the rotating dq reference frame. Specifically, the length of the arrows indicates the amount by
which the stator flux vector is moved within 100 μs.

Moreover, selected predicted stator flux trajectories are shown for several regions. Every
second sampling instant (i.e., every 50 μs) along the trajectories is indicated by a dot. These
trajectories start at selected stator flux vectors and terminate when a bound is about to
be violated, thus predicting that switching will be required at this point in the future. In
Fig. 9.2(a), for example, the stator flux trajectory starting in the lower right region with
uopt(k) = [−1 1 − 1]T is 53 steps or 1.325 ms long. Also note that in the dq reference frame,
in general, voltage vectors move the stator flux along curved rather than straight trajectories.

9.2.2.2 Analysis and Observations

In the following, details about the individual control laws in Figs. 9.2 and 9.3 are provided.
The control laws are based on the assumptions and settings stated in Sect. 9.2.1.

The resulting regions have clearly defined borders, within which the same control input
(switch position) is used. This forms distinct areas in the state space. When the stator flux
vector at time step k is within the target set, switching is not required and thus avoided. In
Fig. 9.2(a), for example, uopt(k) = [−1 0 − 1]T is chosen, which results in the almost vertical
stator flux trajectory. As a result, within the target set, the control law heavily depends on
u(k − 1), because this largely determines the switching losses and thus the overall cost. This
characteristic of MPDTC will be explained in more detail later in this section.

The controller predicts when the target set will be violated and aims to switch such
that any violation is avoided. As an example of this, consider the lower edge of the
target set in Fig. 9.2(a), which refers to the lower torque bound. Instead of choosing

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

324 Model Predictive Control of High Power Converters and Industrial Drives

ψ
s
q
(k

)

ψsd(k) ψsd(k)

ψsd(k) ψsd(k)

ψ
s
q
(k

)

ψ
s
q
(k

)

ψ
s
q
(k

)

000

00−

0+−

−0−

−+−

00−

0+−

−0−

−+−

−+0

−00

00−

0+−

−0−

−+−

−+0

−00

0.89 0.93 0.97 1.01 1.05

0.16

0.19

0.22

0.25

0.28

0.31

0.89 0.93 0.97 1.01 1.05

0.16

0.19

0.22

0.25

0.28

0.31

0.89 0.93 0.97 1.01 1.05

0.16

0.19

0.22

0.25

0.28

0.31

0.89 0.93 0.97 1.01 1.05

0.16

0.19

0.22

0.25

0.28

0.31

(a) When minimizing the switching losses

0−−
−−−

(b) When minimizing the switching frequency

(c) For q = 02×1

000

+0−

0+−

0+0

−+−

−+0

−00
+00

00−

(d) For u(k − 1) = [0 0 0]T

Figure 9.2 State-feedback control laws, that is, inverter switch position uopt(k), as a function of the
stator flux vector ψs,dq(k), the rotor flux angle ϕ(k), and the inverter switch position u(k − 1). The
rotor flux angle is ϕ(k) = 0◦, the speed operating point is ωr = 1 pu, and the applied switch position is
u(k − 1) = [−1 0 − 1]T , unless otherwise stated. Predicted stator flux trajectories are shown as curved
lines with dots, while the target set is indicated by the parallelogram. The arrows indicate the voltage
vectors

uopt(k) = [−1 0 − 1]T throughout the target set, switching is performed preemptively
when the stator flux is one sampling interval away from the lower torque bound. This time
interval translates to different distances in the state space, depending on the velocity of the
voltage vector relative to the dq frame. This can be observed when comparing Figs. 9.2(a)
and (d). The default voltage vector uopt(k) = [0 0 0]T in Fig. 9.2(d) points roughly in the
same direction as uopt(k) = [−1 0 − 1]T , but its velocity is (relative to the reference frame)
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Figure 9.3 State-feedback control laws, that is, inverter switch position uopt(k), as a function of the
stator flux vector ψs,dq(k), the rotor flux angle ϕ(k), and the inverter switch position u(k − 1). Pre-
dicted stator flux trajectories are shown as curved lines with dots, while the target set is indicated by the
parallelogram. The arrows indicate the voltage vectors

significantly higher. As a result, the band around the lower torque bound, in which switching
is performed, is accordingly larger in Fig. 9.2(d).

When the stator flux vector significantly violates the target set, however, the differential
mode of the control laws tend to become similar, irrespective of u(k − 1). This can be
seen when comparing Figs. 9.2(a) and (d), which only differ with respect to u(k − 1).
As an example for this, consider the region with uopt(k) = [0 1 0]T in Fig. 9.2(d), which
corresponds to the region with uopt(k) = [−1 0 − 1]T in Fig. 9.2(a). The voltage vectors
have the same differential-mode voltage but a different common mode.

The reason for this characteristic is that the bound violation term Jbnd dominates over the
switching effort in the cost function when the stator flux vector is well outside its bounds.
As Jbnd is independent of u(k − 1), switching is performed almost regardless of the applied
switch position. Moreover, the stator flux vector is manipulated by the differential-mode com-
ponent of the voltage vector, not its common-mode content.

When minimizing the switching frequency instead of the switching losses, only minor alter-
ations in the resulting control law result, as shown in Fig. 9.2(b). Differences arise mostly
with regard to the common mode of the voltage vectors, as can be seen in the upper left
corner of the figure. When a switching transition from u(k − 1) = [−1 0 − 1]T to a zero
vector is required, two options exist, namely u(k) = [−1 − 1 − 1]T and u(k) = [0 0 0]T .
The first option involves only one switching transition, which is preferable when minimizing
the switching frequency. The second option involves two switching transitions with—in this
particular case—very small currents in the corresponding phases. Therefore, when minimizing
the switching losses, it is here advantageous to switch twice.

These differences are also reflected in Fig. 9.4, which shows the predicted switching efforts
for the two control laws discussed earlier. The predicted switching losses in kilowatts are
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Figure 9.4 Predicted switching effort, discounted over the prediction horizon, as a function of the stator
flux vector ψs,dq(k), the rotor flux angle ϕ(k) = 0◦, and the switch position u(k − 1) = [−1 0 − 1]T .
The target set is indicated by the parallelogram. The two figures relate to Fig. 9.2(a) and (b), respectively

obtained by dividing Jsw by 1000 Ts. A subsequent division by 12 yields the average switch-
ing losses per semiconductor device,2 which are depicted in Fig. 9.4(a). The device switching
frequency is obtained accordingly.

2 Recall that an NPC inverter is used with 12 integrated-gate-commutated thyristors (IGCTs).
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It can be seen that the surfaces of the switching efforts are smooth within each region.
When moving from one region to a neighboring one, the transition is smooth, provided
that both control laws meet the constraint (9.6) at the intersection. As an example, consider
the regions with the control inputs uopt(k) = [0 1 − 1]T and uopt(k) = [−1 1 − 1]T . If,
however, one of the control inputs ceases to meet the constraint (9.6), then, when moving from
one region to a neighboring one, the switching effort at the transition changes in a stepwise
manner. This can be seen at the boundary between the regions with uopt(k) = [−1 0 − 1]T

and uopt(k) = [0 1 − 1]T . When moving from the first region to the second one, the control
input ceases to meet this constraint, triggering a switching transition and a stepwise change
in the switching effort.

Next, consider the control law depicted in Fig. 9.2(c), which is obtained by setting the weight
q to zero. As a result, only the switching losses are penalized, but no incentive is provided to
move the stator flux vector quickly back into the target set. This greatly enlarges the region in
which the previously applied control input is maintained, that is, uopt(k) = u(k − 1). In this
region, as exemplified for the two predicted stator flux trajectories shown in Fig. 9.2(c), the
degree of the bound violation decreases at every time step. The second constraint in (9.6) is
thus met, but the convergence rate is small for the right trajectory. Note that this trajectory ter-
minates when the lower torque bound—and hence the constraint (9.6)—is about to be violated.

Figure 9.3(a) shows the control law when lowering the speed to ωr = 0.1 pu. The stator flux
trajectories are now effectively straight lines, and the zero voltage vector leads to a very slow
stator flux movement relative to the dq reference frame.

So far, we have investigated control laws only for the case where the rotor flux angle is
ϕ(k) = 0◦. Figure 9.3(b) shows the control law for ϕ(k) = 30◦ at nominal speed. When com-
pared to the control law for ϕ(k) = 0◦ in Fig. 9.2(a), the nonzero voltage vectors are rotated
and the regions are deformed accordingly.

9.2.2.3 Illustration of the Control Law Derivation

We now provide additional insight into the derivation of the state-feedback control law.
For this, consider in Fig. 9.2(a) the control law along the (not shown) line given by
ψsd ∈ [0.89, 1.05] pu and ψsq = 0.235 pu, which corresponds to the torque reference. This
line is equivalent to a one-dimensional slice through the stator flux plane. As mentioned
previously, the applied switch position is u(k − 1) = [−1 0 − 1]T , from which transitions
to 11 different switch positions are possible, in accordance with the constraint (9.5). We
consider only four options in Fig. 9.5. We either keep the switch position that is currently
applied, or we switch to one of the three new switch positions by considering

u(k) ∈ {u1,u2,u3,u4} (9.9)

with u1 = [−1 0 − 1]T , u2 = [0 0 − 1]T , u3 = [−1 1 − 1]T and u4 = [0 1 − 1]T .
For certain stator flux vectors, some of these switch positions lead to a violation of the

constraint (9.6) and thus cannot be applied. Keeping the applied switch position for ψsd <
0.94 pu, for example, would violate the constraint (9.6).
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Figure 9.5 Visualization of the control law derivation along the line ψsd ∈ [0.89, 1.05] pu and ψsq =
0.235 pu in Fig. 9.2(a), with MPDTC minimizing the switching losses and the switching horizon SE.
Starting with the switch position u(k − 1) = [−1 0 − 1]T , 4 out of the 12 possible switch positions are
considered at time step k: u1 (no switching), u2 (switching in phase a), u3 (switching in phase b), and
u4 (switching in phases a and b)
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Figure 9.5(a) shows the lengths of the predicted stator flux trajectories. These lines are
slightly curved because of the rotation of the reference frame. The distinctive changes in
the slopes are caused by changes in the bound at which the trajectory terminates. Below
ψsd = 0.955 pu, for example, the stator flux trajectory corresponding to u1 terminates at the
lower flux bound, while above this threshold it terminates at the lower torque bound (see also
Fig. 9.2(a)).

The switching energy losses (in watt-second) depend on the commutated stator current,
which is a linear combination of the stator and rotor flux vectors. The switching energy losses
thus depend linearly on the stator flux components. This is confirmed by the distinctively
straight lines in Fig. 9.5(b).

The cost of the switching effort Jsw in Fig. 9.5(c) is obtained by dividing the switching
energy losses by the trajectory lengths, as explained earlier. As a result, these costs
are—similar to the trajectory lengths—slightly curved lines with discontinuities. The
switching power losses in Fig. 9.5(d) are obtained by scaling Fig. 9.5(c), as described in the
previous section.

The cost of the bound violation Jbnd is zero as long as the stator flux trajectory remains
within the target set. This is the case when the initial stator flux vector is within the set,
as shown in Fig. 9.5(e). As the starting point of the stator flux trajectory moves away from
the target set, the cost of the bound violation quickly increases as a result of the rms for-
mulation used in Jbnd (see (7.33)). The slopes differ between the various switch positions,
according to the predicted rms violation of the bounds. For ψsd > 1.005 pu, for example,
the switch position u(k) = [−1 1 − 1]T brings the stator flux vector back into the target set
significantly faster than u(k) = [−1 0 − 1]T does. This is clearly visible in Fig. 9.2(a) and
is illustrated in Fig. 9.5(e), in that the former switch position entails a lower penalty on the
bound violation.

The total cost J in Fig. 9.5(f) is the sum of the costs of the switching effort and of the bound
violation. By minimizing the total cost, the optimal control input uopt(k) is derived. For ψsd <
0.94 pu, u(k) = [0 0 − 1]T and u(k) = [0 1 − 1]T yield similar costs. The first switch posi-
tion incurs a lower switching effort but is slower in bringing the stator flux vector back into
the target set. Therefore, in the interval 0.925 pu ≤ ψsd < 0.94 pu, the former is chosen as the
optimal control input uopt(k), while the latter is optimal for ψsd < 0.925 pu. Within the target
set and when slightly violating the upper flux bound, that is, for 0.94 pu ≤ ψsd ≤ 1.005 pu, it
is optimal not to switch, that is, to use uopt(k) = u(k − 1). For significant violations of the
upper flux bound, that is, for ψsd > 1.005 pu, uopt(k) = [−1 1 − 1]T is optimal.

9.2.2.4 Analysis for Longer Switching Horizons

The analysis has so far focused on the switching horizon SE. Longer switching horizons are
considered in the following, using SESE as an illustrative example. The same assumptions as
previously mentioned are used, namely the switching losses are minimized, the rotor’s angular
position is ϕ(k) = 0◦, and the previously applied switch position is u(k − 1) = [−1 0 − 1]T .

Example state-feedback control laws are shown in Fig. 9.6. Several predicted stator flux
trajectories are shown, of which every second sampling instant is indicated by a small cir-
cle. Three features distinguish the control law with the switching horizon SESE from that
with SE.
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Figure 9.6 State-feedback control law for the switching horizon SESE and the inverter switch position
u(k − 1) = [−1 0 − 1]T . This figure corresponds to Fig. 9.2(a) with the switching horizon SE

First, switching is scheduled to be performed twice within the prediction horizon, namely at
the current time step k and again when a bound is predicted to be hit. As a result, two different
switch positions are used within the prediction horizon, leading to distinctive vertices in the
predicted stator flux trajectories. The control law refers to the first switch position, that is, to
the optimal switch position at time step k, uopt(k). Assuming that the second switching tran-
sition occurs at time step � > k, the second predicted switch position u(�) cannot be directly
observed from the control map in Fig. 9.6. It can be reconstructed, though, from the direc-
tion and velocity of the predicted stator flux trajectory. In general, u(�) does not coincide
with the switch position uopt(k) of the region in which the second switching is predicted to
occur. As an example, consider the dotted predicted trajectory in Fig. 9.6(a) and its switching
transition at the lower flux bound. The control law associated with the region in which this
transition is predicted to occur is uopt(k) = [0 0 − 1]T , while the second switch position is
u(�) = [0 1 − 1]T .

Second, switching is also performed well within the target set, as can be seen in Fig. 9.6(a).
Consider the predicted trajectory with the straight downward-pointing line, for which switch-
ing is postponed until the lower torque bound is about to be hit. When moving toward this
bound, the number of steps over which the switching effort can be depreciated becomes smaller
and smaller. At a certain point, switching preemptively becomes cheaper than further delaying
the switching transition, because the switching energy losses associated with the new trajectory
are likely to be low and can be depreciated over a long trajectory. As a result, the region with
the control input uopt(k) = [−1 1 − 1]T is extended well into the target set. This is exempli-
fied by the dotted trajectory. Therefore, when optimizing over multiple switching transitions,
MPDTC may choose to switch preemptively. This is an important characteristic of MPDTC,
which is due to the imposition of bounds, the discrete nature of the switch positions, and the
variable-length prediction horizons.
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Third, some regions may not have well-defined boundaries, as can be observed in
Fig. 9.6(b) for the regions with uopt(k) = [0 0 − 1]T and uopt(k) = [0 1 − 1]T . Two
example trajectories are shown, which start from very similar stator flux positions and
provide—despite their different switching sequences—very similar overall costs. By
perturbing ψs,dq(k) slightly, either one or the other switching sequence is selected. This
phenomenon results from the fact that MPDTC operates in the discrete-time domain and
that the trajectory length is a natural rather than a real number. It is obvious that the
length of the upper trajectory is very sensitive to small perturbations in ψs,dq(k)—shifting
ψs,dq(k) slightly along the d-axis, for example, has a major influence on the length of the
downward-pointing second part of the trajectory. Reducing the length of the sampling interval
mitigates this issue.

Both trajectories have effectively the same cost and thus provide the same performance,
making the choice between the two irrelevant. It is, however, desirable that MPDTC adheres
to a strategy once selected and avoids switching repeatedly between one strategy and another.
This can be easily enforced by re-evaluating the control input only once a bound of the target
set is about to be violated. This is achieved through the optional Step 1b in the MPDTC algo-
rithm in Sect. 7.4.5. This policy also prevents MPDTC from preemptively switching when
the stator flux vector is located well within the target window, as discussed in the previous
paragraph.

9.2.3 Control Law along an Edge of the Target Set

We have seen in Sect. 9.2.2 that during steady-state operation, when the stator flux vector
is kept within the target set and the switching horizon SE is used, switching is essentially
performed only along the edges of the target set.

To gain insight into the dependence of the control law when varying the rotor flux angle,
one can compute the control law for different angular positions of the rotor flux vector ϕ(k),
as exemplified in Fig. 9.3(b). An alternative approach is to compute the control law over a
two-dimensional space that is spanned by the rotor flux angle and the position along one of
the edges of the target set. This is done separately for each one of the four edges. The lower
flux bound, for example, can be parameterized in polar coordinates using the amplitude Ψs =
Ψs,min and the load angle γ(k), which has been previously defined as the angle between the
stator and rotor flux vectors. Therefore, for the lower flux bound, the control law can be derived
as a function of the rotor flux angle ϕ(k) and the load angle γ(k).

The resulting control law is shown in Fig. 9.7. As expected, the control law for ϕ(k) = 0◦

in Fig. 9.7 is identical to that in Fig. 9.2(a) along the lower flux bound (left edge) of the target
set. The same holds true for ϕ(k) = 30◦ and Fig. 9.3(b). Owing to the properties of symmetry,
it suffices to compute the control law over an angle span of 60◦ for ϕ(k) to fully characterize
the controller.

9.3 Analysis of the Deadlock Phenomena

Despite the performance benefits of MPDTC, the algorithm occasionally runs into the so-called
infeasible states or deadlocks. An infeasible state at time step k is the combination of a state
vector x(k) and a switch position u(k − 1) for which no switching sequence exists that meets
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Figure 9.7 State-feedback control law along the lower flux bound of the target set for u(k − 1) =
[−1 0 − 1]T , where ϕ(k) represents the angular position of the rotor flux vector and γ(k) is the (load)
angle between the stator and rotor flux vectors. Both angles are given in degrees. The switching horizon
SE is used

the constraints (9.6) on the output variables. This implies that the control problem (7.26) is
infeasible, not permitting a solution.

9.3.1 Root Cause Analysis of Deadlocks

In this section, we provide insight into the nature of the deadlocks along with a root cause
analysis. We will see that deadlocks are caused by the combination of the output variables
being constrained between upper and lower bounds and the fact that the switch positions are
restricted to a finite and discrete-valued set. Constraints on the allowed switching transitions,
which limit the set of voltage vectors that can be reached within one time step, further aggravate
the problem, while long switching horizons alleviate it.

We focus again on MPDTC for a three-level inverter, but consider now the case study in Sect.
2.5.2, which is based on an NPC inverter comprising only one di/dt snubber per inverter half.
Unlike stated in Sect. 2.5.2, we set the nominal dc-link voltage to 5.2 kV, which is equivalent
to 1.93 pu. The parameters of the MV induction machine are given in Table 2.10. In the first
step, we ignore the neutral point potential and only focus on the controlled machine quantities,
that is, the electromagnetic torque and the stator flux magnitude.

We start by determining the set of voltage vectors that achieve a constant torque. To facilitate
this, we neglect the discrete nature of the voltage vectors, that is, we assume that the inverter
can produce at each phase terminal real-valued voltages between −0.5vdc and 0.5vdc. As a
result, the discrete voltage vectors shown in Fig. 9.8 are relaxed to the set of real-valued vectors,
which is enclosed by the dashed hexagon. The corner points of the hexagon have the Euclidean
distance 2/3vdc to the origin. Consider the orthogonal and rotating dq reference frame, which
is aligned with the rotor flux vector ψr and rotates at the electrical angular speed of the rotor
ωr. In this reference frame, we denote the relaxed voltage vectors by ṽs = [ṽsd ṽsq]

T .
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Figure 9.8 Geometric analysis of the root cause of deadlocks related to the torque and the stator flux
magnitude. The (discrete) voltage vectors are shown as small circles, and the set of relaxed voltage vectors
is enclosed by the dashed hexagon. Assuming nominal speed and rated torque, the constant torque and
stator flux magnitude lines are shown as dash-dotted lines. The constant torque line is parallel to the
rotor flux vector. The set of relaxed voltage vectors that increase the torque and reduce the stator flux
magnitude is indicated by the dotted region

Recall the definition of the electromagnetic torque in (2.56)

Te =
1
pf

Xm

D
ψr × ψs =

1
pf

Xm

D
(ψrdψsq − ψrqψsd), (9.10)

which is the cross product of the rotor and stator flux linkage vectors ψs = [ψsd ψsq]
T and

ψr = [ψrd ψrq]
T . The derivative of the torque with respect to time is given by

dTe

dt
=

1
pf

Xm

D

(
ψrd

dψsq

dt
− ψrq

dψsd

dt

)
, (9.11)

where we have taken advantage of the fact that the derivatives of the rotor flux vector in the
synchronously rotating reference frame are zero. We insert the d- and q-components of the
stator flux derivative (2.55a) into (9.11). The stator and rotor resistances are typically very
small in an MV setting and can thus be neglected for the purpose of this investigation. This
leads to the torque derivative

dTe

dt
=

1
pf

Xm

D
(ṽsqψrd − ṽsdψrq − ωr(ψsdψrd + ψsqψrq)) (9.12a)

=
1
pf

Xm

D
(ψr × ṽs − ωrψ

T
s ψr). (9.12b)
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Setting the torque derivative to zero simplifies (9.12) to

ψr × ṽs = ωrψ
T
s ψr. (9.13)

Considering the d- and q-components of the relaxed voltage vector as free variables, (9.13)
describes a line in the dq-plane that is parallel to the rotor flux vector. The line’s distance to
the origin is given by |ωrψ

T
s ψr|/||ψr||. We refer to this line as the constant torque line. Voltage

vectors that lie below the constant torque line (including the origin) decrease the torque, while
voltage vectors beyond the line increase it.

At steady-state operating conditions, the torque and the stator flux magnitude are tightly kept
within bounds around their references. This ensures that the inner product of the two fluxes in
(9.13) is effectively constant. As a result, the distance of the constant torque line from the origin
is proportional to the speed ωr and therefore to the modulation index. Increasing the speed
moves the constant torque line away from the origin, reducing the number of discrete-valued
voltage vectors that are available to increase the torque if required. Thus the higher the angular
speed, the more difficult the control problem becomes to solve.

The magnitude of the stator flux vector is

Ψs = ||ψs|| =
√

(ψsd)2 + (ψsq)2, (9.14)

and its derivative with respect to time can be computed as

dΨs

dt
=

1
Ψs

(
ψsd

dψsd

dt
+ ψsq

dψsq

dt

)
. (9.15)

We use again the derivative of the stator flux vector (2.55a) and set the stator and rotor resis-
tances to zero. This simplifies (9.15) to

dΨs

dt
=

ψsdṽsd + ψsq ṽsq

Ψs

=
ψT

s ṽs

Ψs

. (9.16)

Setting the derivative of the stator flux magnitude to zero yields the compact expression

ψT
s ṽs = 0. (9.17)

The relaxed voltage vectors that fulfill (9.17) form a line in the dq-plane, which is perpen-
dicular to the stator flux vector and passes through the origin. This line is referred to as the
constant stator flux magnitude line. Voltage vectors that lie on the same side as the stator flux
vector increase the stator flux magnitude, while voltage vectors that lie on the opposite side
decrease it.

Example 9.1 Consider the NPC inverter drive system operating at nominal speed and rated
torque. Assume that the torque has hit its lower bound and is commanded to increase, while the
stator flux magnitude has hit its upper bound, necessitating a decrease in the flux magnitude.
Consider the stator and rotor flux vectors shown in Fig. 9.8, which relate to a fully magnetized
machine and to the rated torque. The constant torque and stator flux magnitude lines are shown
as dash-dotted lines.

The set of (relaxed) voltage vectors that increase the torque and reduce the stator flux magni-
tude is indicated by the dotted area. As can be seen, in this example, the dotted set contains no
discrete voltage vector. This implies that the MPDTC control problem permits no solution that
fulfills the requirements imposed on the torque and stator flux magnitude. The control problem
for the given flux vectors cannot be solved and is thus infeasible, giving rise to a deadlock.
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The previous analysis focused on the torque and stator flux magnitude. When the neutral
point potential is also taken into account and when it is close to one of its bounds, further
restrictions are imposed on the voltage vectors. Depending on the sign of the phase current,
each switch position that corresponds to at least one phase connected to the neutral point
has a specific influence on the neutral point potential. Even if a voltage vector is available
that satisfies the requirements for the torque and the stator flux magnitude, the corresponding
switch position might lead to a violation of the neutral point potential’s bounds. The addi-
tion of switching restrictions imposed by the use of two di/dt snubbers and the ruling out of
switching transitions between the upper and the lower dc-link rails further reduce the set of
available voltage vectors.

9.3.2 Location of Deadlocks

To determine the location of deadlocks, MPDTC with the switching horizon SSE minimizing
the switching frequency was run for the NPC drive system at steady-state operating condi-
tions. The penalties Jbnd and Jt in the cost function (9.3) were set to zero. The switching
transitions were limited to the set of transitions shown in Fig. 2.21. One thousand funda-
mental periods were simulated at nominal speed and at rated torque. The torque was kept
within the symmetric bounds Te,min = 0.88 pu and Te,max = 1.12 pu, whereas asymmetric
bounds at Ψs,min = 0.97 pu and Ψs,max = 1.015 pu were used for the stator flux magnitude.
The bounds υn,max = −υn,min = 0.04 pu were imposed on the neutral point potential. We also
define the set

Y = [Te,min, Te,max] × [Ψs,min,Ψs,max] × [υn,min, υn,max], (9.18)

which is formed by the upper and lower bounds on the torque, stator flux magnitude, and
neutral point potential.

Figure 9.9 depicts the resulting deadlocks within the torque and stator flux magnitude
bounds [Te,min, Te,max] and [Ψs,min,Ψs,max], respectively. This two-dimensional set is the
projection of the three-dimensional set Y onto the torque and stator flux magnitude subspace.
It is indicated by the large rectangle. To retrieve some of the information lost because of this
projection, we categorize the deadlocks in terms of the neutral point potential at the time the
deadlock occurs. To this end, we divide the deadlocks into the two types M and N .

Type M (•) if υn ∈ [υn,min + Δυn, υn,max − Δυn],

Type Na (�) if υn ≥ υn,max − Δυn,

Type Nb (�) if υn ≤ υn,min + Δυn. (9.19)

The parameter
Δυn = 0.0125(υn,max − υn,min) = 0.001 pu (9.20)

defines a thin region around the upper and lower bounds of the neutral point potential.
The first type of deadlock is characterized by the neutral point potential being well within

its bounds. Therefore, only the two output variables of the machine give rise to the deadlock.
We refer to these deadlocks as Type M deadlocks, where M refers to the machine.

The second type of deadlocks corresponds to situations in which the neutral point potential
is close to, or violates its upper or lower bound. Owing to the fact that the neutral point potential
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Figure 9.9 Deadlocks within the torque and stator flux magnitude bounds when operating at nominal
speed and rated torque. The Type M (indicated by circles) and Type N deadlocks (indicated by upward
and downward-pointing triangles) form clearly visible clusters

is involved in the deadlock, we refer to this as Type N deadlocks. Depending on whether the
neutral point potential is at its upper or lower bound, we distinguish between the two subtypes
Na and Nb, respectively.

Figure 9.9 reveals that Type M deadlocks are concentrated in the lower right corner. In this
region, the electromagnetic torque is close to its lower bound and a voltage vector is required
that increases the torque. On the other hand, the stator flux magnitude is at its upper bound
and must be reduced. This situation was discussed in Example 9.1 in the previous section.

Type N deadlocks arise close to the lower bounds of the torque and flux magnitude, particu-
larly in the lower left corner, where both machine variables are close to their lower bounds (see
Fig. 9.9). As the neutral point potential is close to one of its bounds, this restricts the choice
of admissible voltage vectors. The constraints on the switching transitions further restrict the
available set.

Type N deadlocks are significantly more frequent than Type M deadlocks, which amount
only to about 20% of the total number of deadlocks. We also observe that Type M and N
deadlocks occur at different locations within the set Y , suggesting that they ought to be handled
separately, as will be discussed in Sect. 9.5.

An alternative representation of the deadlocks is provided in Fig. 9.10, which shows the
deadlocks as a function of the stator flux magnitude Ψs ∈ [Ψs,min,Ψs,max] and the rotor flux
angle ϕ ∈ [−180◦, 180◦] with respect to the α-axis of the orthogonal coordinate system. The
set shown in this figure can be interpreted as the projection of Y onto the one-dimensional
stator flux magnitude space, while showing this projecting as a function of the rotor flux angle.
It can be seen that Type M deadlocks appear every 60◦ as a result of the 60◦-symmetry that
is inherent to the voltage vectors. Type N deadlocks also appear every 60◦, but they alternate
between the two subtypes. Specifically, Type Na and Nb deadlocks occur every 120◦ because
of the significant third-harmonic component that is present in the neutral point potential.
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Figure 9.10 Deadlocks within the stator flux magnitude bounds when varying the rotor flux angle ϕ.
Operation is at nominal speed and rated torque. The Type M (indicated by circles) and Type N deadlocks
(indicated by upward and downward-pointing triangles) form clearly visible clusters

So far we have considered operation at nominal speed only. Figure 9.11 shows the influence
speed variations have on the frequency of deadlocks fDL, which is the (average) number of
deadlocks per second. Lowering the speed does not necessarily reduce the frequency of dead-
locks, because Type N deadlocks dominate. When varying the speed, the distribution of the
deadlocks in the torque and stator flux magnitude plane is qualitatively similar to those shown
in Figs. 9.9 and 9.10.

9.4 Deadlock Resolution

The previous section has shown that situations exist in which no switch position is available
that keeps the three output variables within their bounds or, when one or more of them violate a
bound, reduces the bound violations at each time step. In case no candidate switching sequence
exists that meets the switching and output constraints (9.5) and (9.6), the optimization problem
(7.26) does not permit a solution and is infeasible.

To resolve this issue, several options exist. One is to widen (some of) the bounds on the
output variables. However, the torque and flux bounds implicitly define bounds on the stator
currents and thus constrain the peak current. Widening one of those bounds carries the risk of
causing too high a phase current in the inverter. The bounds on the neutral point potential limit
the peak blocking voltage of the gate-commutated thyristors (GCTs). Temporarily widening
any of the bounds on the output variables has to be done with great care, to avoid causing an
overcurrent or overvoltage trip.

An alternative, and preferred, option is to change the optimality criterion in the optimization
problem and to temporarily refrain from minimizing the switching effort. During a deadlock

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

338 Model Predictive Control of High Power Converters and Industrial Drives

Speed ωr (pu)
0 0.2 0.4 0.6 0.8 1

0

20

40

60

80

Figure 9.11 Frequency of deadlocks fDL (Hz) as a function of the speed ωr, when using the original
version of MPDTC and operating at rated torque

situation, the quick resolution of the deadlock is of the highest importance, because significant
bound violations might lead to a trip of the drive. We thus choose to minimize the predicted
bound violation until all output variables are moved back within their bounds and the deadlock
has been resolved. To this end, we replace the hard constraint (9.6) by a soft constraint that
penalizes the worst predicted violation. This is achieved by the new cost function

JDL = ‖
k+Np∑

�=k+1

ε(�)‖∞, (9.21)

where the vector ε = [εT εΨ ευ]T denotes the degrees of the bound violations for the three
output variables. For the definition of εT the reader is referred to (7.28). The variables εΨ and
ευ are defined accordingly. Recall that the bound violations are normalized with respect to the
bound width, that is, the distance between the upper and the lower bounds.

Over the prediction horizon Np, the predicted bound violations are summed up for each
output variable, yielding a vector of dimension 3 × 1. The ∞-norm provides the maximum
value of this vector, which is a scalar. We therefore aim at minimizing the worst violation.
Note that the bound violations are, by definition, nonnegative, and the elements of the sum in
(9.21) are thus also nonnegative.

We also redefine the switching horizon and use only the switching elements S. Typically,
we set the switching horizon to S or SS during a deadlock. The switching horizon eSSESE,
for example, turns into SS and the prediction horizon is set to Np = 2. A lower torque bound
violation is shown in Fig. 9.12 for Np = 2. The degrees of the normalized torque violations are
predicted at time steps k + 1 and k + 2, and their sum is penalized in the cost function JDL. The
same is performed for the stator flux magnitude and the neutral point potential. A switching
sequence of two steps is derived that meets the switching constraint (9.5) and minimizes the
cost function (9.21).
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Figure 9.12 Torque violating the lower torque bound and a predicted torque trajectory that minimizes
future violations when considering the switching horizon SS

The MPDTC deadlock resolution algorithm is a derivative of the standard MPDTC algo-
rithm of Sect. 7.4.5. Note that the sequence of actions A holds only S elements.

1. The root node is initialized and pushed onto the stack.
2a. The top node i with a nonempty sequence of actions, Ai 	= ∅, is taken from the stack.
2b. The first element is read out from Ai and removed. All admissible switching transitions

are enumerated according to (7.37). The state and output vectors at the next time step are
predicted for each admissible switching transition using (7.38). The new node j is created
for each switching transition. The node i is removed.

2c. The newly created nodes are pushed onto the stack.
2d. If at least one node with a nonempty set of actions A remains, the algorithm proceeds with

Step 2a, or else it proceeds with Step 3a.
The result of Step 2 are the leaf nodes i ∈ I, where I is an index set. These nodes

correspond to the switching sequences U i(k).
3a. For each leaf node i ∈ I, the associated cost JDL,i is computed.
3b. The leaf node with the index

i = arg min
i∈I

JDL,i (9.22)

is chosen that has the minimal cost value. The associated switch position at time step k is
read out and set as the optimal one, uopt(k) = ui(k).

4. The switch position uopt(k) is applied to the inverter. The standard MPDTC algorithm
is executed at the next time step k + 1. If it yields an empty set of candidate switching
sequences, the deadlock resolution algorithm is called upon.

This deadlock resolution algorithm is formulated in a fairly general way. The algorithm can
be significantly simplified when choosing the switching horizon S during deadlocks. In this
case, all switching transitions at time step k have already been enumerated and the output
vectors at time step k + 1 have been predicted by the MPDTC algorithm. When memorizing
these, in the case of a deadlock, one only needs to apply the revised cost function JDL and
minimize it according to (9.22). Additional enumerations and predictions are not required, thus
keeping the additional computational burden required to resolve the deadlock at a minimum.
This special case of the deadlock resolution algorithm was initially proposed in [9].
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9.5 Deadlock Avoidance

The deadlock resolution strategy proposed in the previous section reliably resolves all dead-
locks and ensures the continuous operation of the drive system. However, this strategy often
requires several switching transitions within a short time interval to resolve a deadlock. This
leads to a spike in the instantaneous switching frequency.

We define the instantaneous switching frequency as the average number of switching events
(of all switching devices) over a time window of 1 ms. Figure 9.13 shows the instantaneous
switching frequency of MPDTC minimizing the switching frequency with the switching hori-
zon SSE. Characteristic spikes in the instantaneous switching frequency can be observed,
which we refer to as switching bursts. These bursts correlate with the occurrence of dead-
locks, which are denoted by squares. This indicates that deadlocks cause switching bursts;
avoiding deadlocks avoids these bursts, as will be shown in Sect. 9.5.2.

For the safe operation of the inverter, it is mandatory to avoid bursts in the instantaneous
switching frequency. Switching bursts can lead to the overheating of semiconductor switches
and might prevent the gate drivers of the GCTs from fully recharging before the next switch-
ing transition. Therefore, the number of switching events per millisecond is monitored by a
protection mechanism. In the worst case, switching bursts trigger this protection mechanism
and lead to the tripping of the drive system.

9.5.1 Deadlock Avoidance Strategies

In the following, three families of deadlock avoidance strategies are introduced. These
approaches are based on terminal soft constraints (Approach A), terminal weights
(Approach B), and exact deadlock prediction (Approach C), respectively. We will see that
Approaches A and C can be applied to Type M and N deadlocks, while Approach B is

Time (ms)
0 250 500 750 1000

0

400

800

1200

1600

Figure 9.13 Instantaneous switching frequency (Hz) when operating the NPC inverter drive system at
nominal speed and rated torque for 1 s. The squares indicate deadlocks
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restricted to Type N deadlocks. To simplify the exposition, we set the bound violation term
Jbnd in the cost function (9.3) to zero.

9.5.1.1 Approach A1: Terminal Soft Constraint on the Torque and Stator Flux
Magnitude

The terminal soft constraint

Jt =
{

λm if y(k + Ni) ∈ Yc

0 else (9.23)

is added to the cost function (9.3). This soft constraint adds the large penalty λm � 0 to the
cost function if the output vector at the end of the switching sequence (recall that the length of
the ith switching sequence is Ni) is within the set Yc. We refer to this set as the critical region
for the torque and stator flux magnitude

Yc = {y | Te ≤ Te,min + ΔTe} ∩ {y | Ψs ≥ Ψs,max − ΔΨs} ∩ Y . (9.24)

The set Yc is a subset of Y and comprises the bottom right corner of Fig. 9.9. The positive
parameters ΔTe and ΔΨs are chosen such that all Type M deadlocks are covered, while Yc

is as small as possible.
The terminal soft constraint (9.23) has the following effect on the selection process of the

optimal switching sequence. If at least one sequence exists such that Jt = 0 holds, which
implies that its output trajectory does not terminate in the critical region, then only switching
sequences are considered that meet the constraint

y(k + Ni) ∈ Y \ Yc. (9.25)

In general, this reduces the set of candidate switching sequences. Out of this set, the sequence
with the lowest switching effort Jsw is chosen as the optimal sequence. All switching sequences
with Jt = λm are by definition suboptimal.

If no sequence with Jt = 0 exists, that is, all sequences drive the outputs into the critical
region, then (9.25) is implicitly relaxed and all candidate switching sequences are considered.
The penalty λm then adds only an offset to the cost of all candidate switching sequences.
The proposed method performs well only if the region corresponding to Type M deadlocks is
well defined and small compared to Y , because MPDTC forgoes a certain degree of freedom,
potentially impacting on its performance. In our case, these two conditions are met.

9.5.1.2 Approach A2: Terminal Soft Constraint on the Torque, Stator Flux
Magnitude and Neutral Point Potential

As Type N deadlocks dominate, it is expedient to avoid the neutral point potential from hit-
ting its bounds. This can be achieved by augmenting the terminal soft constraint (9.23) to
also address the neutral point potential and therefore Type N deadlocks. The critical region is
modified to Y ′

c = Yc ∩ Yn with

Yn = {y | υn ≤ υn,min + Δυn} ∪ {y | υn ≥ υn,max − Δυn}, (9.26)

with Δυn as defined in (9.20).
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9.5.1.3 Approach B: Terminal Weight on the Neutral Point Potential

Imposing a terminal constraint on the neutral point potential might merely, in effect, tighten
the bounds imposed on the neutral point potential, rather than avoid the drive system from
running into deadlocks. A quadratic penalty can be a gentler and more suitable means to keep
the neutral point potential close to its reference and away from its bounds. Focusing on the
neutral point potential’s trajectory, we add the quadratic terminal weight (or penalty)

Jt = λn(υn(k + Ni))
2 (9.27)

to the cost function (9.3), with λn ≥ 0 being a tuning parameter. As a result, trajectories of the
neutral point potential ending close to the reference at zero are penalized only a little, whereas
trajectories with significant deviations are penalized severely.

9.5.1.4 Approach A1B: Combination of Approaches A1 and B

The terminal soft constraint on the torque and stator flux trajectories (Approach A1) can be
combined with the terminal weight on the neutral point potential (Approach B) by adding both
(9.23) and (9.27) to the cost function (9.3).

9.5.1.5 Approach C1: Deadlock Prediction at Time Step k + Ni

Approach C1 adds a post-processing step to the MPDTC algorithm. Once the candidate switch-
ing sequences have been enumerated and the tentative optimal switching sequence U opt(k) has
been determined, a deadlock prediction procedure is executed that attempts to ensure that the
chosen switching sequence will not lead to a deadlock. Specifically, we replace Step 3b of the
MPDTC algorithm in Sect. 7.4.5 by the following procedure:

3b. The leaf node with the index
i = arg min

i∈I
Ji

is chosen, which has the lowest cost value. The associated terminal state vector xi(k + Ni)
and the switching sequence U i(k) starting at time step k are read out.

3c. Using xi(k + Ni) as the new initial state, the algorithm considers switching sequences
U(k + Ni) that start at time step k + Ni. A short switching horizon such as eSE suffices.
The algorithm determines whether at least one candidate switching sequence U(k + Ni)
exists that meets the switching and output constraints (9.5) and (9.6).

3d. The existence of such a U(k + Ni) serves as a proof that the switching sequence U i(k)
will not lead into a deadlock.

• If this is the case, the algorithm proceeds with U i(k), reads out the first element from
it, sets it as the optimal one, uopt(k) = ui(k), and continues with Step 4 of the MPDTC
algorithm in Sect. 7.4.5.

• If such a U(k + Ni) was not found, U i(k) is discarded, the corresponding index i is
removed from the index set I, and the algorithm proceeds with Step 3b by considering
the switching sequence with the second lowest cost.
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In this way, candidate switching sequences are analyzed in an ascending order of their cost,
starting with the sequence with the lowest cost, until one is found that provides a certificate
that it will not lead into a deadlock. If no such sequence exists, the one with the lowest cost is
selected, similar to Approach A1. Note that this certificate is only valid at steady-state operat-
ing conditions and, strictly speaking, only under nominal conditions, which imply negligible
model mismatches and no measurement or flux observer errors.

9.5.1.6 Approach C2: Deadlock Prediction at Time Step k + 1

A modified version of Approach C1 uses xi(k + 1) as the new initial state, rather than
xi(k + Ni). Looking only one step ahead renders the deadlock prediction strategy highly
robust, because xi(k + 1) can be predicted very accurately.

9.5.2 Performance Evaluation

The closed-loop performance of the proposed deadlock avoidance strategies is evaluated now
using simulations. Specifically, the influence of the deadlock avoidance schemes on the fre-
quency of deadlocks, the occurrence of switching bursts, the device switching frequency, and
the current and torque TDDs are investigated. The NPC inverter drive system with one di/dt
snubber per dc-link half is used as a case study, as explained in Sect. 9.3.1. All simulations were
run at the rated torque, using the switching horizon SSE and the sampling interval Ts = 25 μs.

9.5.2.1 Effect on the Frequency of Deadlocks

Figure 9.14 depicts the frequency of deadlocks as a function of the speed ωr. The solid lines
refer to the original MPDTC algorithm, which serves as a benchmark. Figure 9.14(a) presents
the results for Approaches A1, A2, and B, whereas Fig. 9.14(b) focuses on Approaches A1B,
C1, and C2. Approach A1B avoids all deadlocks except at ωr = 0.6 pu. Considering the results
of Approaches A1 and B separately, one can see that Approach A1B is the synergy of the two
strategies, combining their benefits. A detailed analysis shows that Approach A1 significantly
reduces Type M deadlocks, while increasing Type N deadlocks, such that the overall result does
not exhibit a significant improvement. If Approach A1 is, however, combined with Approach
B, which reliably resolves all Type N deadlocks, this negative effect is compensated for, result-
ing in a very good performance. Approaches A2 and C1 work nearly as well as A1B in terms
of deadlock reduction, while Approach C2 is less successful.

9.5.2.2 Effect on Switching Bursts

Repeating Fig. 9.13 to allow a side-by-side comparison, Fig. 9.15(a) shows the instantaneous
switching frequency for the original MPDTC algorithm. Switching bursts are clearly identifi-
able and the deadlocks are marked by squares. Approach A1B, however, successfully avoids all
deadlocks and all switching bursts, as can be seen in Fig. 9.15(b). This confirms the hypothesis
that, by preventing the MPDTC algorithm from running into deadlocks, the switching bursts
are also avoided.
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(a) Approaches A1, A2, and B compared with the original MPDTC algorithm
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(b) Approaches A1B, C1, and C2 compared with the original MPDTC algorithm

Figure 9.14 Frequency of deadlocks fDL (Hz) as a function of the speed ωr for Approaches A1, A2,
B, A1B, C1, and C2. The frequency of deadlocks resulting from the original MPDTC algorithm is also
shown

For the other promising Approaches A2, C1, and C2, however, switching bursts are not
fully avoided. It appears that, for these approaches, the switching effort that is required to
avoid deadlocks is similar to that needed to resolve deadlocks using the deadlock resolution
strategy. In other words, for Approaches A2, C1, and C2, the switching bursts are only shifted
in time, but not prevented.
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(a) Original MPDTC algorithm

Time (ms)
1000

0

400

800

1200

1600

500 750 0 250 500 750

(b) MPDTC with Approach A1B

Figure 9.15 Instantaneous switching frequency (Hz) when operating the NPC inverter drive system at
nominal speed and rated torque for 1 s. The squares indicate deadlocks

Additional investigations revealed that Type N deadlocks are the dominant cause of the
switching bursts and that these deadlocks are, in general, more difficult to resolve than Type
M deadlocks, which are caused by the torque and stator flux magnitude. It is therefore of
paramount importance to efficiently avoid Type N deadlocks. Only Approach B, which is based
on a terminal weight on the neutral point potential, achieves this consistently. The terminal
weight provides MPDTC with an incentive to move the neutral point potential closer to its
reference whenever the additional switching effort required to do so is minor. Provided that
the weight λn is not overly small, this mechanism prevents the neutral point potential from
hitting its bounds.

9.5.2.3 Effect of Approach A1B on the Performance

As only Approach A1B avoids deadlocks as well as switching bursts, the subsequent investi-
gation is restricted to this deadlock avoidance scheme. In the following, the effect of A1B on
the frequency of deadlocks fDL, the switching frequency fsw, the stator current TDD ITDD,
and the electromagnetic torque TDD TTDD is investigated and discussed. Using the original
MPDTC algorithm as a baseline, the latter three performance values are normalized and their
percentage-wise deviation from the original algorithm is considered. Specifically, we define
the relative switching frequency

f rel
sw =

fA1B
sw − f org

sw

f org
sw

. (9.28)

The relative current and torque TDDs are defined accordingly.
Figure 9.16 shows the frequency of deadlocks and the relative switching frequency as a

function of the terminal weight λn that is imposed on the neutral point potential at the end of
its predicted trajectory. The three different speeds ωr ∈ {0.3, 0.6, 1} pu are investigated. As
shown in Fig. 9.16(a), as λn is increased, the neutral point potential is kept more tightly around
its reference, and the number of deadlocks is reduced accordingly. Reducing the deadlocks
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Figure 9.16 Approach A1B: Frequency of the deadlocks and relative switching frequency as a function
of the terminal weight λn on the neutral point potential for the three different speed setpoints ωr ∈
{0.3, 0.6, 1} pu

Table 9.1 Approach A1B: Performance metrics as a function of the
angular speed ωr, using the original MPDTC algorithm as a baseline

ωr (pu) f rel
sw (%) I rel

TDD (%) T rel
TDD (%) fDL (Hz) λn

0.1 0 −0.5 0 0 25
0.2 0 −1.2 −0.3 0 75
0.3 0.5 −0.9 1.4 0 300
0.4 −0.9 −2 0.8 0 150
0.5 −2.5 −1 0.3 0 125
0.6 −1.1 −0.4 −1.6 4.5 250
0.7 0 −0.6 0.2 0 50
0.8 0 0 0 0 0
0.9 −1.3 −0.25 −0.2 0 75
1 −1.5 −0.9 −0.6 0 125

tends to also reduce the switching frequency, as evidenced by Fig. 9.16(b), provided that λn

is relatively small. Large λn entail a higher control effort, which results in an increase in the
switching frequency.

Figure 9.16 is complemented by Table 9.1, which lists the relative performance of Approach
A1B (with respect to the original MPDTC algorithm) for the whole range of speed operating
points, while operating at rated torque. The table reveals that the benefit of the terminal weight
λn is similar for all speed setpoints. To obtain excellent results, however, λn has to be adjusted
depending on the speed, as summarized in Table 9.1. Figure 9.16 indicates that this tuning of
λn is relatively straightforward. As the weight λn is increased, the frequency of deadlocks first
drops steeply, and then remains mostly flat. On the other hand, the impact of too high a λn on
the switching frequency is modest.
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Table 9.1 also indicates that the influence of the terminal weight λn on the current distortions
is small, because the latter primarily depends on the width of the bounds that are imposed on the
stator flux magnitude. Nevertheless, smaller fluctuations of the neutral point potential tend to
reduce the distortions in the applied stator voltages and avoiding deadlocks prevents potential
violations of the bounds. These two aspects have a positive influence on the current TDD.

9.6 Summary and Discussion

This chapter focused on two major topics for MPDTC—analysis of the control law and feasi-
bility of the control problem. Both aspects will be summarized and discussed in the following.

9.6.1 Derivation and Analysis of the State-Feedback Control Law

Unlike FOC and DTC, the control law is not directly available in MPDTC. Section 9.2 showed
a straightforward method to compute the state-feedback control law and—by analyzing and
interpreting it—has provided additional insight into MPDTC.

The derivation and visual representation of the control law is paramount during the design
phase of the controller, because it enables one to analyze and understand the controller’s
choices, to assess the impact that different cost functions have on the closed-loop behavior, to
understand the impact switching constraints have, and to evaluate the influence of phenomena
such as model uncertainties, observer noise, and unaccounted for dc-link voltage fluctuations.

Along with the plotting and analysis of the predicted output trajectories and switching
sequences, the availability of this method constitutes one of the main advantages of MPC
in general, and MPDTC in particular, over classic control methods. For the latter, the design
and tuning process is usually restricted to running closed-loop simulations, and to iterate on
a trial and error basis. Furthermore, with this tool at one’s disposal, the following tasks are
envisioned to be achievable in the future: a further reduction of the computational effort, the
derivation of switching heuristics, a further improvement of the closed-loop performance, and
a detailed feasibility analysis.

The techniques proposed in this section are directly applicable to other predictive control
methods, including predictive control with reference tracking, which is discussed in Chaps.
4–6, and derivatives of MPDTC. Two of them, model predictive direct current control
(MPDCC) and model predictive direct power control (MPDPC), are described in Chap. 11.
The third one, model predictive direct balancing control (MPDBC), has been proposed in
[10]. It is also straightforward to address other multilevel inverter topologies and to include
the neutral point potential in the considerations. Since its inception, the derivation of the
state-feedback control as described in this section has proven to be instrumental in analyzing
and improving MPDTC.

9.6.2 Deadlock Analysis, Resolution, and Avoidance

For an NPC inverter drive system, Sect. 9.3 has shown that the deadlocks encountered during
the execution of the MPDTC algorithm can be classified into two groups. The first group
comprises the deadlocks that are exclusively caused by the interplay between the torque and
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the stator flux magnitude of the machine. The neutral point potential is involved in the second
group of deadlocks. When the neutral point potential is close to one of its bounds or even
violates one of them, it acts as an antagonist to the torque or stator flux magnitude.

A computationally simple yet effective deadlock resolution mechanism was discussed in
Sect. 9.4. All simulation results shown in this book that are based on the MPDTC family use
this mechanism.

Even though deadlocks can be resolved, they often trigger bursts in the instantaneous switch-
ing frequency. To prevent the MPDTC algorithm from running into deadlocks, a combination
of terminal constraints on the electromagnetic torque and stator flux magnitude together with
a terminal weight on the neutral point potential has been proposed as Approach A1B in Sect.
9.5.1. This minor modification to the original MPDTC algorithm successfully avoids virtually
all deadlocks over the whole speed range. As a result, the switching bursts are also avoided.
Moreover, a minute reduction in the switching frequency and the current distortions is, in many
cases, observable.

This deadlock avoidance method is also applicable to drives with more complicated inverter
topologies such as the five-level ANPC inverter drive system (see the case study described in
Sect. 2.5.3). Unlike for the NPC inverter, for which only the neutral point potential must be
balanced, in the case of the five-level topology also its three phase capacitor voltages must be
controlled. This greatly complicates the task of the controller. When using MPDTC for the
drive, the introduction of a terminal weight on the neutral point potential maintains the latter
closer to its reference and effectively avoids almost all deadlocks. Note that for the results
depicted in Sect. 8.2, such a terminal weight has been used.

Alternatively, the control problem of the five-level ANPC drive can be divided into an
upper-level machine controller and a lower-level inverter balancing task, which is performed
by MPDBC [10]. For the latter, a terminal weight on the neutral point potential greatly reduces
the balancing effort that is required for the neutral point potential. At low speed, a penalty on
the common-mode voltage is imposed. As a result, the deadlocks and switching bursts are not
only avoided, but a significant improvement in the overall performance is also observable. At
nominal speed, with respect to the baseline MPDBC method, the average switching frequency
and the current TDD are reduced by 20% and 13%, respectively, as indicated in [11].

The proposed deadlock avoidance strategies can also be directly applied to the other mem-
bers of the MPDTC family, notably to MPDCC (see Sect. 11.1) and to MPDPC. The latter is
the adaptation of MPDTC for grid-connected converters (see Sect. 11.2).
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Computationally Efficient Model
Predictive Direct Torque Control

The computational complexity of model predictive direct torque control (MPDTC) is pro-
portional to the number of admissible switching transitions to the power of the number of
switching events considered within the prediction horizon. The former, the number of switch-
ing transitions per time step, is determined by the inverter topology—most prominently by
the number of available voltage levels. The latter, the number of switching events, is set by
the switching horizon. On one hand, long switching horizons greatly boost the performance
of MPDTC, in the sense that the switching losses, the current distortions, or the torque dis-
tortions can be significantly reduced, as shown in Chap. 8. On the other hand, long switching
horizons lead to a combinatorial explosion of the number of admissible switching sequences
to be explored.

Until now, finding the optimal switching sequence required the investigation of all admissi-
ble switching sequences by the MPDTC algorithm (see Sect. 7.4.5). This brute-force concept
of full enumeration becomes computationally very expensive, and thus often prohibitive, for
long switching horizons. Specifically, when running MPDTC with very long switching hori-
zons, the combinatorial explosion slows down the simulations significantly. For a real-time
implementation of MPDTC on control hardware, the achievable switching horizons are often
limited to relatively short horizons, such as SE, SSE, or SESE.

This shortcoming motivates the techniques presented in this chapter, which drastically
reduce the number of switching sequences to be explored and thus lessen the computational
burden of MPDTC. The first technique, branch-and-bound, uses upper and lower bounds on
the cost function to discard large parts of the search tree. A simple branching heuristic is used
to select promising parts of the search tree. As a result, the optimal solution is found more
quickly and the average number of computations is reduced. To limit the maximum number of
computations, the optimization procedure can be stopped if the number of computational steps
exceeds a certain threshold. Despite the possibility of suboptimal results, the performance
deterioration is small, provided that the threshold is chosen carefully. Alternatively, one can
choose to stop if the incumbent best solution is sufficiently close to the optimum.

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/geyermodelpredictivecontrol
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Performance evaluations indicate that these techniques reduce the computation time by an
order of magnitude when compared to full enumeration. MPDTC with long switching horizons
is thus expected to become implementable on the control hardware available today, allowing
one to take full advantage of its performance benefits.

In order to reduce the computational burden for direct model predictive control (MPC)
schemes, a commonly followed approach is to restrict the search space a priori. For one-step
predictive control with reference tracking, for example, the authors of [1] propose to restrict
the set of voltage vectors that are explored to the vectors neighboring the currently applied
vector. Instead of ruling out specific voltage vectors a priori, the branch-and-bound technique
presented in this chapter removes voltage vectors dynamically during the optimization stage,
basing the line of reasoning on the cost function rather than on specific voltage vectors. The
proposed method thus appears to be more elegant, less restrictive, and more flexible than pre-
viously reported approaches.

After revisiting the drive control problem and defining terminology in Sect. 10.1, Sect. 10.2
proposes a computationally efficient version of MPDTC based on branch-and-bound with an
upper bound on the number of computations. Computational results are presented in Sect. 10.3,
and the implications of the revised MPDTC algorithm are discussed and conclusions are drawn
in Sect. 10.4. For an introduction to the concept of branch-and-bound, the reader is referred
to Sect. 3.8.

10.1 Preliminaries

Recall the MPDTC control problem of maintaining the so-called output variables, namely the
electromagnetic torque, the length (or magnitude) of the stator flux vector, and the neutral point
potential within given upper and lower bounds. Moreover, the switching losses of the inverter
are to be minimized. To achieve this, we adopt in this chapter the cost function

J =
1

Np

k+Np−1∑

�=k

esw(x(�),u(�),u(� − 1)) , (10.1)

as defined in (7.32). Cost function terms on bound violations and terminal weights as in (7.30)
are not considered. Note that we omit, as in Chap. 7, the scaling of the cost J by the sampling
interval Ts to reduce the computational burden. When plotting J , however, we typically divide
it by the sampling interval Ts. The cost can then be stated in terms of the unit watt.

Recall the notions of the switching horizon and of the search tree, which were introduced in
Sects. 7.4.3 and 7.4.4, respectively. The MPDTC algorithm with full enumeration in Sect. 7.4.5
serves as a baseline. Its computational burden is proportional to the total number of nodes in
the search tree.

Before proceeding, we introduce the terminology that will be required in this chapter. In
doing so, we follow [2]. We distinguish between incomplete and complete candidate switching
sequences. The latter have been fully computed for the whole switching horizon, while for
incomplete candidate switching sequences some actions, in the form of switching transitions
or extension legs, are left. Complete candidate switching sequences correspond to leaf nodes,
while incomplete ones are bud nodes. As explained in Sect. 7.4.4, each node corresponds to
an (incomplete) candidate switching sequence. This allows us to use the index i to denote the
ith switching sequence as well as the ith node. We define the following terms:
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• Ji = Esw,i/Ni is the cost associated with a (complete) candidate switching sequence,
where Esw,i is the sum of the switching energy losses and Ni is the length of the switching
sequence.

• Nmax is an upper bound on the (maximum) length of the prediction horizon, that is, it is
assumed that Ni ≤ Nmax holds for all i.

• Ji,min = Esw,i/Nmax is a lower bound on the cost of the ith incomplete switching sequence,
where Esw,i is the sum of the switching energy losses incurred so far for this sequence. As
Esw,i increases monotonically as the ith switching sequence is extended and Ni ≤ Nmax
holds by definition, it also holds that Ji,min ≤ Ji, that is, Ji,min always serves as a lower
bound on the cost Ji.

• Jopt is the optimal (minimum) cost of all complete candidate switching sequences. This cost
is available only when all candidate switching sequences have either been fully explored or
certificates have been obtained that the unexplored ones are suboptimal.

• Jmax denotes the incumbent minimal cost, that is, the smallest cost found so far for all com-
plete candidate switching sequences. This cost constitutes an upper bound on the optimal
cost to be found, that is, Jmax ≥ Jopt.

• Jmin refers to the minimum of all lower bounds Ji,min. It holds that Jmin ≤ Jopt.

In summary, we will use one static upper bound, Nmax, and the two dynamic bounds, Jmin
and Jmax, which bound the optimal cost Jopt, which is to be found. By definition, the latter is
bounded by

Jmin ≤ Jopt ≤ Jmax . (10.2)

10.2 MPDTC with Branch-and-Bound

The general concept of branch-and-bound has been summarized in Sect. 3.8. In the following,
the branch-and-bound concept will be tailored to the peculiarities of MPDTC. The modified
concept will be introduced in an intuitively accessible way, through the provision of several
examples.

10.2.1 Principle and Concept

The cost in (10.1) directly relates to the switching losses. When constructing candidate switch-
ing sequences along a time axis, which starts at time step k and extends into the future, the
evolution of the cost over time is, unfortunately, neither smooth nor monotonic. This is illus-
trated in the following example.

Example 10.1 Consider the switching horizon SESE and the evolution of the cost over time.
Switching Sequence 1a in Fig. 10.1 switches at time step k with the switching energy losses
esw ,1. The switching sequence is extended from time step k + 1 onward, which reduces the cost
in terms of the switching power losses by distributing the switching energy losses over a longer
time interval. The extension leg terminates when a bound is hit between time steps k + 7 and
k + 8, triggering another switching transition.

Assume that at time step k + 7 two switching transitions are admissible. These carry the
switching energy losses esw ,2 and esw ,3, respectively, and create two possibilities on how
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to extend Sequence 1. This leads to the Sequences 1 and 2, which are complete candidate
switching sequences with no actions remaining. Their first parts coincide with Sequence 1a,
which is an incomplete candidate switching sequence.

We conclude that the cost increases in a step-like manner when switching transitions occur.
When the sequence is extended using extrapolation, the cost decreases smoothly, because the
switching losses are depreciated over a longer time interval. This non-monotonic characteristic
of the cost over time necessitates the introduction of Nmax, which provides an upper bound on
the length of the switching sequences. Consider again the previous example.

Example 10.2 In Fig. 10.1, the cost associated with the complete candidate Sequence 1 is
J1 = (esw ,1 + esw ,2)/N1, with N1 = 12 time steps. The incumbent minimal cost (and the upper
bound) is Jmax = J1. Having computed the second switching transition at k + 7 with the
energy losses esw ,3, one can try to find a proof before extending Sequence 2 that this sequence,
when completed, will only lead to a suboptimal solution that is inferior to the incumbent opti-
mum. This proof can be found by computing the lower bound on the cost for Sequence 2, which
is given by J2,min = (esw ,1 + esw ,3)/Nmax . As J2,min is equal to or exceeds Jmax , the remain-
der of this sequence can be discarded and removed from the search tree. If this were not the
case, however, the sequence would have to be further considered.

The same reasoning applies to the dash-dotted Sequence 3a and its child Sequences 3 and 4.
Having computed the first switching transition with the losses esw ,4, the whole subtree, starting
at this node, can be discarded, because J4,min = esw ,4/Nmax exceeds Jmax .

These two examples provide an indication of how bounding can be accomplished in
MPDTC. More specifically, the branch-and-bound algorithm tailored to the MPDTC problem

k k + 2 k + 4 k + 6 k + 8 k + 10 k + 12 k + Nmax

esw,1

esw,4

esw,6

esw,5

esw,3

esw,2 1
1 a

2

3

3 a
4

Time

J

Jmax

Figure 10.1 Cost J (W) when extending switching sequences over future time steps, where esw,j

denotes the jth switching energy loss (Ws). The incumbent minimal cost Jmax = (esw,1 + esw,2)/12
refers to Sequence 1. Nmax = 14 denotes the upper bound on the length of the switching sequences
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setup can be described as follows. Compute the switching sequences, the associated output
trajectories, and the cost step by step as the search tree is explored from its root node to
the terminal nodes (leaves). Consider the bud node i, which corresponds to an incomplete
candidate switching sequence. If the lower bound on its final cost Ji,min exceeds that of the
lowest cost found so far, Jmax, a certificate has been found that it is suboptimal. This allows
us to discard this bud node and to prune the attached unexplored part of the search tree. If a
candidate switching sequence is completed, compute its cost Ji and update the incumbent
minimal cost (if required) by setting Jmax = min(Jmax, Ji). The algorithm summarized in
Sect. 7.4.5 can easily be augmented by this branch-and-bound methodology, as will be shown
in Sect. 10.2.4.

10.2.2 Properties of Branch-and-Bound

The concept of branch-and-bound is further explained and illustrated in the following example.

Example 10.3 Consider a three-level inverter with an induction machine. This case study is
described and defined in Sect. 2.5.2. The machine is operated at 60% speed and rated torque,
using MPDTC with the switching horizon eSSESE. For a specific instance of the optimization
problem at time step k, the induced search tree contains 730 nodes. Using full enumeration,
all 730 nodes are explored. As shown in Fig. 10.2(a), the incumbent minimal cost Jmax drops
fairly quickly, but the minimal cost Jopt = 2.25 kW is only found after having almost fully
explored the search tree. The optimal switch position uopt , which is the first element in the
optimal switching sequence Uopt , will already have been found after having explored 221
nodes. Nevertheless, to obtain a certificate that this is indeed the optimal switch position, the
search tree has to be fully explored.

In contrast to this, with branch-and-bound, promising nodes are explored first and clearly
suboptimal parts of the search tree are pruned. As a result, the optimal cost Jopt and the optimal
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Figure 10.2 Evolution of the optimal cost (in kilowatt) when solving one instance of the MPDTC
optimization problem, using full enumeration (a) and branch-and-bound (b). The incumbent minimal
cost Jmax is shown versus the number of nodes visited
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(b) MPDTC with branch-and-bound

Figure 10.3 Costs of all switching sequences when solving one instance of the MPDTC optimization
problem, using full enumeration (a) and branch-and-bound (b). The costs are shown as a function of the
time step within the prediction horizon. Complete candidate switching sequences terminate with a large
dot, incomplete (i.e., pruned) candidate sequences end with a circle, and non-candidate sequences end
with a diamond. Note the logarithmic scaling of the cost

switch position uopt are found significantly earlier—in this example after only 61 nodes. Some
additional nodes need to be explored to prove that this is indeed the optimum. This certificate
is obtained after visiting a total of 140 nodes.

Even when using branch-and-bound, all of the nodes induced by the first part of the switch-
ing horizon, that is, eS, and most of the nodes corresponding to the second switching transition
S have to be explored, because bounding is not effective for the first part of the switching hori-
zon. This can be clearly seen in Fig. 10.3 for the prediction interval from k to k + 5. For the
second half of the switching horizon, that is, ESE, which corresponds in this case to the pre-
diction interval roughly from k + 6 to k + 62, bounding is very effective. This significantly
reduces the number of nodes that are explored and prevents the algorithm from exploring sub-
optimal nodes with costs that are higher than the incumbent minimum. As a result, when using
branch-and-bound, in this example less than 20% of the search tree needs to be explored.

A few remarks concerning branch-and-bound are required. This algorithm does not affect
the optimality of the solution, that is, the same optimal switching sequence will be found
as with full enumeration. In general, branch-and-bound methods drastically reduce the aver-
age computation time when compared to full enumeration. Yet, in the worst case, despite
branch-and-bound techniques, a full enumeration of the search tree might be required to find
not only the optimum but also a proof (certificate) that the optimum has been found. Such a
certificate is provided when no more bud nodes exist with Ji,min < Jmax. The optimal switch-
ing sequence is usually found relatively early during the search process. Moreover, because we
require only the first element of this sequence, that is, the optimal switch position uopt, the solu-
tion is actually found even faster, as indicated in Fig. 10.2. We will exploit this characteristic
in the next section.

At each step during the optimization procedure, the optimal cost Jopt is lower and upper
bounded according to (10.2). As the optimization proceeds, these bounds are tightened. The
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bounds provide information on how close the incumbent minimal cost is to the optimum. This
can be seen in Fig. 10.2(b), where the upper line refers to Jmax and the lower one corresponds
to Jmin. Both lines converge to the optimal cost Jopt, which is given by the dashed line.

Branch-and-bound works best if the upper and lower bounds are tight. A tight upper bound
Jmax is achieved by finding a close-to-optimal leaf node with a low cost at an early stage
of the optimization. To achieve this, depth-first search techniques can be employed and the
optimal switching sequence from the previous time step k − 1 can be used to warm-start the
optimization procedure. A tight lower bound Jmin is the result of a tight upper bound on the
maximum length of the prediction horizon Nmax. During the optimization process, branch-
ing heuristics can help to identify the most promising nodes and to explore them first. One
simple heuristic we will use is to first consider the bud node i with the lowest bound on its
cost Ji,min.

10.2.3 Limiting the Maximum Number of Computations

In a practical controller implementation, only a limited number of computations can be per-
formed within the time interval that is available to compute the control input. Therefore, it
might be necessary to limit the maximum number of computational steps or to impose an
upper bound on the computation time. Aborting the branch-and-bound optimization before a
certificate of optimality has been obtained might lead to suboptimal results, that is, switch-
ing sequences that yield a higher cost than the optimal sequence. Therefore, a conservative
implementation adopts a fairly short switching horizon, so as to ensure that the search tree can
always be fully enumerated in the time available and that the optimal solution is thus found
under all circumstances.

On the other hand, by lowering the switching effort for the same distortion levels, or vice
versa, long horizons offer a significant performance gain, as illustrated in Sect. 8.1. Therefore,
it might be beneficial to adopt very long horizons, to impose an upper bound on the number of
computations, and to accept that the result lacks—in some cases—a certificate of optimality
or even optimality. Yet, as explained in the previous section, in most cases the optimum will
have already been found, despite the missing certificate.

To this end, stopping criteria can be added to the MPDTC algorithm. For example, an upper
bound can be imposed on the number of nodes that are explored or on the elapsed computation
time. If this number or time is exceeded, the optimization procedure is stopped, and the switch-
ing sequence with the incumbent minimum cost is accepted as the solution. Alternatively, one
may run the optimization procedure for as long as possible, for example, until an interrupt is
received to stop it. This allows one to reduce idle processor time and to invest this time on
improving the incumbent optimal solution.

When using such stopping criteria, it is of paramount importance to ensure that in all cir-
cumstances a switching sequence is found that ensures feasibility (the first switch position
is admissible, i.e., meets all switching constraints), stability (the output variables either stay
within their bounds or they are brought closer to the bounds if they have been violated), and
good performance (the predicted cost is small). One way to achieve this is to solve the MPDTC
control problem in two stages. In the first stage, a short switching horizon is adopted, which
results in an optimization problem that is guaranteed to be solvable within the available time.
One could use MPDTC with full enumeration and a short switching horizon, such as eSSE. The
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solution of this first stage is an optimal switching sequence, which—by definition—ensures
feasibility, stability, and good performance.

The second stage uses a long switching horizon such as eSSESESE and computes in the
remaining time a switching sequence that improves on the short horizon solution, by further
reducing the cost of the switching sequence obtained in the first stage. If the switching hori-
zon of the first stage is equal to the first part of the second stage’s switching horizon, the
computational results obtained in the first stage can be used to warm-start the second stage. In
particular, the leaf nodes of the first stage turn into bud nodes for the second stage, to which
only the second part of the switching horizon (in this example SESE) needs to be applied.

The computational complexity of a two-staged approach tends to be only slightly higher
than that of a single long-horizon stage with branch-and-bound. This is due to fact that the
number of nodes in the search tree of the first stage is one or two orders of magnitude smaller
than the number of nodes in the second stage. Moreover, bounding tends to be less effective in
the first part of a long switching horizon. This is due to the lower bound Ji,min being not tight,
because the sum of the switching energy losses Esw,i is depreciated over the upper bound on
the switching sequence length Nmax.

Another alternative is to stop once a guarantee of closeness to optimality has been
obtained. Closeness to optimality can be defined via the cost. For example, an acceptable
deviation from optimality could be 5%, and the optimization procedure could be stopped once
Jmin ≥ 0.95Jmax is met, that is, when the lower bound on the cost of uncompleted switching
sequences is within 5% of the cost of the best completed switching sequence obtained so far.
However, such a stopping criterion has to be chosen carefully to ensure that the optimization
algorithm always concludes within the available time.

10.2.4 Computationally Efficient MPDTC Algorithm

An MPDTC algorithm based on full enumeration has been proposed in Sect. 7.4.5. In this
section, a computationally efficient version of this algorithm is proposed, which is based on
a tailored branch-and-bound technique and reduces the average computational burden. By
imposing the upper bound κ ≤ κmax on the number of nodes κ explored, the maximum com-
putational burden can be also limited.

1a. The root node is initialized and pushed onto the stack. The incumbent minimal cost and
the node counter are set to Jmax = ∞ and κ = 0.

1b. Optional step: The output trajectories are extended using (7.40). If the length of the
extended trajectory exceeds a given threshold, uopt = u(k − 1) is set and the algorithm
proceeds with Step 4. Otherwise, the extension leg is discarded and the algorithm pro-
ceeds with Step 2a.

2a. The top node i with the lower bound on the cost Ji,min and with a nonempty sequence of
actions, Ai �= ∅, is taken from the stack.

2b. The first element is read out from Ai and removed. Recall that Ai is a string with the
elements S, E, and e.
• For S, all admissible switching transitions are enumerated according to (7.37). The

state and output vectors at the next time step are predicted for each admissible
switching transition using (7.38). If the output constraint (7.39) is met, the new
node j is created. Assuming that the switching transition occurred at time step �,
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the switching losses of the semiconductor switches are predicted with the help of
(7.24) and Table 2.5. This yields the losses esw(�), which are added to the sum of
the switching losses Esw,i incurred so far for this switching sequence by setting
Esw,j = Esw,i + esw(�). The node i is removed, but several child nodes have been
created. The node counter κ is increased accordingly.

• For E, the output trajectories are extended using (7.40) and the node i is updated. A
new node is not created.

• For e, the node i is kept and the optional extension leg is ignored. The new node j is
created as a copy of the node i, and its trajectories are extended using (7.40). The node
counter is updated according to κ = κ + 1.

2c. The cost expressions are updated and pruning is performed.

• For leaf nodes: The incumbent minimal cost is updated according to Jmax = min
(Jmax, Ji), where Ji = Esw,i/Ni.

• For bud nodes: The lower bounds Ji,min = Esw,i/Nmax are computed. Bud nodes with
Ji,min ≥ Jmax are removed (i.e., pruned).

2d. The newly created and updated nodes are pushed onto the stack. By definition, these
nodes relate to candidate switching sequences.

2e. If at least one node i with a nonempty set of actions Ai remains, and if κ < κmax, the
algorithm proceeds with Step 2a, or else it proceeds with Step 3a.

The result of Step 2 are the leaf nodes i ∈ I, where I is an index set. These nodes
correspond to the candidate switching sequences U i(k).

3a. For each leaf node i ∈ I, the associated cost Ji = Esw,i/Ni + Jbnd,i + Jti is computed,
as defined in (7.30) and (7.32). Note that Ni is the length of the switching sequence U i.

3b. The leaf node i with Ji = Jmax is chosen. The associated switch position at time step k
is read out and set as the optimal one, uopt = ui(k).

4. The switch position uopt is applied to the inverter, and this procedure is executed again
at the next time step k + 1.

This algorithm uses a branching heuristic in Step 2a, performs bounding in Step 2c, and
limits the computational burden in Step 2e. As for the original MPDTC algorithm, the switch-
ing frequency can be minimized instead of the switching losses. For this, replace Esw,i by
the number of commutations Ssw,i, add the incremental number of commutations Ssw,i =
Ssw,i + ||Δu(�)||1 in Step 2b, and use in Step 3 the cost Ji = Ssw,i/Ni + Jbnd,i + Jti, which
approximates the average switching frequency over the length of the switching sequence.

The MPDTC algorithm is based on the notion of nodes in the search tree. For the compu-
tationally efficient MPDTC algorithm, these nodes are the same as for the original MPDTC
algorithm based on full enumeration, except for the addition of the lower bound on the ith node,
Ji,min. Specifically, at time step �0, �0 = k, k + 1, . . ., such a node is specified by the 10-tuple1

(u(�0 − 1),x(�0),y(�0 − 1),y(�0), Esw, Ssw, �0, A, Jmin,u(k)), as defined in Sects. 7.4.4 and
10.1. Two global variables are required, namely the node counter κ and the incumbent minimal
cost Jmax.

1 Note that in the node either the switching losses Esw or the number of commutations Ssw is required, allowing one
to reduce the node to a 9-tuple.
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We assumed in Step 3 that at least one leaf node exists, that is, that the set I is nonempty. In
case of overly tight κmax or deadlocks, however, I might be empty. In this case, the deadlock
resolution algorithm stated in Sect. 9.4 is executed in lieu of Step 3.

10.3 Performance Evaluation

10.3.1 Case Study

As a case study, consider again the drive system summarized in Sect. 2.5.2, which encom-
passes a three-level voltage source inverter with two di/dt snubbers, a medium-voltage (MV)
induction machine, and a constant mechanical load. The detailed parameters of the drive can
be found in Table 2.10. A diode front end is used, which has the nominal dc-link voltage
Vdc = 4294 V. At 60% speed with a 100% torque setpoint, the steady-state performance of
direct torque control (DTC) was compared with that of computationally efficient MPDTC for
short and long switching horizons.

A detailed MATLAB/Simulink model of the drive system was used for the performance
evaluation, which is similar to the DTC block diagram shown in Fig. 3.29. Outer control loops
adjust the references for the torque and stator flux magnitude and the widths of the bounds.
The DTC hysteresis controllers and look-up table are described in Sect. 3.6.3. For MPDTC, the
look-up table with the DTC strategy was replaced by a function that runs the computationally
efficient version of the MPDTC algorithm at each sampling instant.

The general form of the MPDTC cost function is J = Jsw + Jbnd + Jt (see (7.30)). The
first term penalizes the switching losses. The second and third terms are not used here and
are set to zero. The torque and flux bounds were widened for MPDTC by 0.015 and 0.005 pu,
respectively, to account for DTC’s imminent violations of the bounds. As a result, DTC and
MPDTC yield similar total demand distortions (TDDs) of the stator current, while for MPDTC
with long horizons, the torque TDD is slightly lower than for DTC. Note that the torque and
especially the flux bounds are asymmetric. The bounds on the neutral point potential were set
to ±0.05 pu for both control schemes.

10.3.2 Performance Metrics during Steady-State Operation

The steady-state performance of DTC can be assessed from Fig. 10.4, which over a fundamen-
tal period shows the waveforms of the electromagnetic torque, the magnitude of the stator flux,
the neutral point potential, and the three-phase switch positions along with the stator currents.
The upper and lower bounds on the torque, flux magnitude, and neutral point potential are
also shown. It can be seen that DTC reacts only once an output variable has violated its bound
and that the neutral point potential does not fully exploit the width of the bounds imposed
upon it. The switching frequency is relatively high, and the switching transitions are almost
equally spaced, regardless of the phase current’s magnitude. As a result, the switching losses
are fairly high.

Figure 10.5 shows the steady-state waveforms for the computationally efficient MPDTC
scheme with the short switching horizon eSSE. As can be seen, the bounds are well respected
and the switching frequency is reduced significantly. More specifically, with respect to DTC,
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Figure 10.4 Standard DTC, corresponding to the first row in Table 10.1

the switching frequency is lowered by at least 25% and the switching losses are reduced by
40%, as summarized in Table 10.1.

The standard MPDTC algorithm based on the full enumeration of the search tree requires
the exploration of up to 277 nodes to achieve this result, as shown in the first row in Table 10.2.
By adopting branch-and-bound techniques, the switching heuristic, and the conservative bound
Nmax = 100, the average number of nodes that is visited is reduced by a quarter while always
providing the optimal solution. Yet, the maximum number of nodes explored remains effec-
tively the same. To reduce the latter significantly, a tight bound on the length of the switching
sequences, such as Nmax = 50, has to be chosen along with an upper bound on the number
of nodes explored, such as κmax = 50. This leads to suboptimal results—in almost 8% of the
cases a suboptimal u(k) is computed (see Table 10.1)—but this appears, at least in this partic-
ular case, to barely affect the performance. As a result, the maximum computational burden is
reduced by 82%, from 277 down to 50 nodes explored.
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Figure 10.5 Computationally efficient MPDTC with the switching horizon eSSE, corresponding to the
fifth row in Table 10.1 and the fourth row in Table 10.2

For the long switching horizon eSSESESE, the switching losses are reduced by another 35%
with respect to MPDTC with eSSE and by 60% when compared to DTC. This is achieved, as
can be observed from Fig. 10.6(d), by reducing the switching frequency by another 30% and
by carefully redistributing the remaining switching transitions along the time axis. As a result,
about half of the transitions occur when the respective phase current and, hence, the incurred
switching losses are small. Note that the switching losses are not reduced at the expense of
higher current and torque TDDs. Interestingly, as the switching horizon is extended, the current
and torque distortions tend to get smaller, as can be seen in Table 10.1. At the same time,
the switching pattern tends to become more repetitive, resulting in a current spectrum with
distinctive harmonics. These include pronounced 7th, 11th, 17th, and 19th harmonics (see
Fig. 10.7(c)). The repetitiveness in the switching pattern is also reflected in the evolution of
the neutral point potential (see Fig. 10.6(c)).

As summarized in Table 10.2, the computational burden of MPDTC with full enumer-
ation and the long switching horizon eSSESESE is exorbitant—its search trees encompass
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Table 10.1 Comparison of the performance of DTC, full-enumeration MPDTC, and computationally
efficient MPDTC with the upper bounds Nmax and κmax on the horizon length and the number of nodes
explored, respectively

Control
scheme

Switching
horizon

Nmax κmax uopt
found (%)

Performance (%)

Psw fsw ITDD TTDD

DTC — — — — 100 100 100 100

MPDTC eSSE — — 100 57.3 71.2 103 98.4
MPDTC eSSE 100 — 100 57.3 71.2 103 98.4
MPDTC eSSE 50 — 97.4 57.7 73.4 103 102
MPDTC eSSE 50 50 92.2 58.3 74.1 104 103

MPDTC eSSESESE — — 100 37.9 48.9 97.0 92.0
MPDTC eSSESESE 150 — 100 37.9 48.9 97.0 92.0
MPDTC eSSESESE 110 — 96.7 40.9 50.0 99.5 92.2
MPDTC eSSESESE 110 600 92.1 38.6 51.4 97.3 94.0

The fifth column states the probability that the optimalu(k) is found at each control cycle. The remaining
four columns relate to the switching losses Psw, switching frequency fsw, current TDD ITDD, and torque
TDD TTDD, using DTC as a baseline.

Table 10.2 Comparison of the computational burden of full-enumeration MPDTC and
computationally efficient MPDTC with the upper bounds Nmax and κmax on the horizon length and the
number of nodes explored, respectively

Control
scheme

Switching
horizon

Nmax κmax Prediction horizon Nodes explored

Average Maximum Average Maximum

MPDTC eSSE — — 26.6 96 112 277
MPDTC eSSE 100 — 25.7 92 86.9 275
MPDTC eSSE 50 — 25.6 96 64.3 249
MPDTC eSSE 50 50 22.0 97 43.6 50

MPDTC eSSESESE — — 98.2 150 3246 7693
MPDTC eSSESESE 150 — 98.2 150 1884 6806
MPDTC eSSESESE 110 — 101 157 1102 4756
MPDTC eSSESESE 110 600 88.0 152 483 600

The fifth and sixth columns indicate the average and maximum lengths of the achieved prediction horizon.
The last two columns state the number of explored nodes in the search tree, which is proportional to the
computational burden. The rows in this table correspond to the rows in Table 10.1.

almost 8000 nodes. Branch-and-bound with the upper bound Nmax = 150 on the length of
the prediction horizon cuts down the average number of nodes explored and thus the com-
putation time by 40%, but the maximum number of nodes is barely affected. The tight upper
bound Nmax = 110 achieves a more significant reduction of the average and maximum com-
putations by 65% and 40%, respectively. This, however, is achieved at the expense of not
always obtaining the optimal switch position (see Table 10.1). The impact on the closed-loop
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Figure 10.6 Computationally efficient MPDTC with the switching horizon eSSESESE, corresponding
to the last rows in Tables 10.1 and 10.2

performance, such as the switching losses, switching frequency, current TDD, and torque
TDD, is nevertheless small, as depicted in Table 10.1.

Despite the use of branch-and-bound, the maximum computational burden remains high.
To drastically reduce the latter by more than 90%, a fairly low upper bound on the number of
explored nodes, κmax = 600, is required. As for the eSSE case, the impact on the performance
appears to be small, with the switching effort and the TDDs of the stator currents and the
torque deteriorating by at most 2% and thus being only mildly affected (see Table 10.1). This
minor deterioration contrasts with the observation that in 8% of the cases a suboptimal switch
position is applied to the drive system.

10.3.3 Computational Metrics during Steady-State Operation

We have seen in the previous section that the addition of a tight upper bound κmax on the num-
ber of nodes explored in MPDTC with branch-and-bound has only a relatively minor impact on
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Figure 10.7 Spectra of the three-phase stator currents for DTC and computationally efficient MPDTC
with the switching horizons eSSE and eSSESESE, respectively. Note that the current TDDs are effectively
the same

the closed-loop performance of the drive system in terms of switching losses and distortions.
This characteristic can be understood by investigating the probability that the optimal cost
will be found when exploring a certain number of nodes. To determine this, MPDTC with the
switching horizon eSSESESE was simulated again. At each time step, the number of nodes
that had been explored when finding the optimal cost for the first time was recorded. These
numbers were grouped into bins of width 100, and their sum was normalized to 100%. The
resulting histograms are shown in Fig. 10.8.

These histograms depict the probability that the optimal cost Jopt—and thus the optimal
switching sequence U opt—will be found when exploring a certain number of nodes. The
vertical lines denote the 50th, 95th, and 99th percentiles. The 95th percentile, for example,
indicates the number of nodes such that in 95% of the cases, at most this number of
nodes is required to obtain the optimal cost. The histogram is relatively flat for standard
full-enumeration MPDTC, as shown in Fig. 10.8(a), with optimality being achieved in
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Figure 10.8 Probability of finding the optimal cost Jopt as a function of the number of nodes explored
for MPDTC with the switching horizon eSSESESE

95% of the cases after the exploration of 4150 nodes. Adding the branching heuristic to
full-enumeration MPDTC significantly increases the probability of finding the optimal cost
during the early stages of the optimization process, as indicated by Fig. 10.8(b). The 95th
percentile corresponds to 885 nodes.

Further pruning suboptimal parts of the search tree with the help of the tight upper bound
Nmax = 110 shifts the 95th percentile to 1017 nodes (see Fig. 10.8(c)). Note that the 99th per-
centile does not exist, because the optimal cost is found in only 96.7% of the cases, as seen from
Table 10.1. When imposing the upper bound κmax = 600 on the number of explored nodes, the
optimal cost is found in only 92.1% of the cases and the 95th percentile does not exist. A com-
parison between Fig. 10.8(c) and (d) shows that the application of switching commands that
correspond to suboptimal costs slightly modifies the histogram. Applying suboptimal switch-
ing commands in closed-loop operation modifies the state and output trajectories of the drive
system. This also implies that the search trees of the MPDTC optimization problems differ
from the cases in which the optimal cost has been found.
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Figure 10.9 Probability of finding the optimal switch positionuopt as a function of the number of nodes
explored for MPDTC with the switching horizon eSSESESE

So far, we have investigated the probability that the optimal cost and thus the optimal switch-
ing sequence U opt is found. In the end, however, only the first element of this switching
sequence, uopt, is applied to the inverter. The corresponding histograms, which indicate after
how many steps the optimal switch position uopt is found, are shown in Fig. 10.9. On average,
MPDTC with full enumeration finds the optimal switch position quickly, but because of the
long tail the 95th percentile is at 3270 nodes (see Fig. 10.9(a)). This indicates that the imposi-
tion of an upper bound on the nodes explored is either impractical or would lead to a significant
deterioration of the closed-loop performance.

The application of branching heuristics and the pruning of suboptimal parts of the search
tree largely removes the long tail and increases the probability of finding the optimal switch
position during an early stage of the optimization process. As shown in Fig. 10.9(c), the 95th
percentile is shifted to 970 nodes. This served as a motivation to place the upper bound at
κmax = 600.

Even though full-enumeration MPDTC often finds the optimal switching sequence early on,
the whole search tree needs to be explored in order to provide a certificate of optimality. As
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Figure 10.10 Probability of the number of nodes that need to be explored to solve the MPDTC problem
with the switching horizon eSSESESE

shown in Fig. 10.10(a), up to 7700 nodes must be explored to achieve this. The same applies
to the full-enumeration MPDTC with the branching heuristic (see Fig. 10.10(b)). For MPDTC
with branch-and-bound, the branching heuristic and Nmax = 110, the maximum number of
nodes to be explored until a certificate of optimality is found remains high, see Fig. 10.10(c),
but the median (i.e., the 50th percentile) is greatly reduced from 3200 to 726 nodes. Note that
the average number of nodes explored is 1102, as stated in Table 10.2. Therefore, to achieve
a hard limit on the computational burden, the upper bound κmax = 600 is required. As dis-
cussed previously, the optimal switch position uopt is found in most cases before κmax = 600
is reached, which explains why the impact on the closed-loop performance is minor.

10.4 Summary and Discussion

This chapter proposed a modified version of the MPDTC algorithm based on branch-
and-bound techniques, which have been adopted from mathematical programming. The
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proposed branch-and-bound algorithm is based on three techniques. First, for each (incom-
plete) candidate switching sequence, a lower bound on its final cost is computed. Out of the
pool of (incomplete) candidate switching sequences, the one with the lowest bound on its
cost is chosen to be extended (by applying switching transitions or extension legs to it).

Second, the lowest cost of fully computed candidate switching sequences is monitored. This
serves as an upper bound on the final, optimal cost. If the lower cost bound of an incomplete
switching sequence exceeds the upper bound on the optimal cost, this switching sequence is
suboptimal and it can be removed from further consideration. In doing so, optimality of the
final solution is not impacted on, provided that the upper bound on the length of the switching
sequences has been correctly chosen. Third, an upper bound on the number of nodes to be
explored is imposed. Recall that the number of visited nodes directly corresponds to the com-
putational burden of the MPDTC algorithm. By imposing such an upper bound, the real-time
computational burden of the algorithm is limited. This mechanism can be used to ensure that
the algorithm always terminates within the allocated time frame.

The first two techniques increase the probability that the optimal switch position is found
during an early stage of the optimization process. This enables the use of the third technique,
namely the addition of an upper bound on the nodes to be explored, without significantly
affecting the closed-loop performance.

Simulation results suggest that the proposed branch-and-bound techniques achieve a reduc-
tion of the worst case computational effort by an order of magnitude. In general, the longer the
prediction horizon, the more significant is the percentage-wise reduction of the computational
burden. This observation makes these techniques particularly attractive for MPDTC with very
long prediction horizons. In particular, branch-and-bound methods can make long-horizon
MPDTC computationally feasible, enabling one to take full advantage of its performance
benefits.

The techniques presented here are equally applicable to the adaptation of MPDTC to the
current control problem—model predictive direct current control (MPDCC) (see Sect. 11.1).
When considering inverter topologies with a higher number of switching levels, such as
five-level topologies, the benefit in terms of a reduction of the computational effort is expected
to become even more prominent.
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11
Derivatives of Model Predictive
Direct Torque Control

Model predictive direct torque control (MPDTC), as introduced in Chap. 7, can be considered
a refinement of direct torque control (DTC). MPDTC inherits DTC’s principle to keep the
electromagnetic torque, the stator flux magnitude, and the neutral point potential within given
bounds, but MPDTC replaces the DTC hysteresis controller and the look-up table by an opti-
mization problem. The latter consists of three parts: a cost function that captures the pre-
dicted switching effort, a controller model of the drive system that endows the controller
with the ability to predict the system response to possible switching sequences, and a set
of constraints that is imposed on the controlled output variables and the allowed switching
transitions.

The switch position is determined by solving this optimization problem online without
requiring a modulator. MPDTC considers switching transitions only when one of the output
variables is close to one of its bounds; otherwise, the switch position is kept constant. In doing
so, very long prediction horizons can be achieved by considering only a few switching transi-
tions. The former determines the closed-loop performance, while the latter directly relates to
the computational burden of solving the optimization problem.

The fundamental principle of MPDTC can be adapted to other control problems. Specifi-
cally, instead of controlling the torque and the stator flux magnitude, the stator currents of an
electrical machine can be kept within upper and lower bounds. The currents of grid-connected
converters can be controlled in a similar manner. We refer to this as model predictive direct
current control (MPDCC). Alternatively, the real and reactive power can be controlled in a
converter, by imposing upper and lower bounds on these quantities. This concept is known
as model predictive direct power control (MPDPC), which generalizes direct power control
(DPC). Both MPDCC and MPDPC are introduced in this chapter along with detailed perfor-
mance evaluations. The chapter concludes with a comparison of the shape of the bounds of
MPDTC, MPDCC, and MPDPC.

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/geyermodelpredictivecontrol
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11.1 Model Predictive Direct Current Control

This section proposes a model predictive current controller with very long prediction horizons
in the range of 100 time steps. The proposed MPDCC scheme keeps the stator currents within
hexagonal bounds around their references in the stationary orthogonal reference frame. Simi-
larly, the neutral point potential is balanced around zero by imposing upper and lower bounds
on it. The switch positions are chosen such that either the switching losses or the switching
frequency is minimized.

By addressing the current control and the modulation problems in one computational stage,
the harmonic current distortion and the switching losses can be reduced simultaneously, when
compared to classical modulation schemes such as carrier-based pulse width modulation
(CB-PWM) or space vector modulation (SVM). Indeed, at low pulse numbers, the ratio
between harmonic distortions and switching losses is similar to that obtained with optimized
pulse patterns (OPPs). During transients, however, very fast current responses are achieved.

This MPDCC scheme can be considered as an adaptation of MPDTC to the current control
problem by modifying the control objectives. Instead of controlling the torque and stator flux
magnitude, the stator currents are controlled. A preliminary MPDCC scheme based on the ini-
tial MPDTC [1] algorithm minimizing the inverter switching frequency and using a relatively
short prediction horizon was presented in [2] for a two-level inverter.

Nevertheless, the idea of keeping the stator currents of a machine within bounds, predicting
future current trajectories using a model, and minimizing a cost function had already been
proposed in the 1980s [3–5], albeit with short prediction horizons and only for two-level con-
verters. Moreover, either circular or rectangular (rather than hexagonal) bounds were imposed
on the stator currents in the stationary orthogonal reference frame. These types of bounds lead
to a simple control problem formulation, but they are suboptimal in terms of the harmonic
current distortions. For an in-depth comparison of MPDCC with these early predictive current
control methods, the reader is referred to [6].

11.1.1 Case Study

Consider as a case study the medium-voltage (MV) inverter drive system shown in Fig. 11.1.
The MV induction machine is connected to a three-level neutral-point-clamped (NPC) inverter
with a floating neutral point potential. The voltages over the upper and lower dc-link capacitors
are given by vdc,up and vdc,lo, respectively. Their sum is the total (instantaneous) dc-link voltage
vdc = vdc,up + vdc,lo. We use the symbol Vdc to refer to the nominal dc-link voltage.

The per-phase switch positions ua, ub, and uc are restricted to the set {−1, 0, 1}, and the
three-phase switch position of the inverter is given by uabc = [ua ub uc]

T . The stator voltage
in the stationary orthogonal coordinate systems is

vs =
1
2
vdc K̃ uabc , (11.1)

where vs = [vsα vsβ]T , and K̃ is the transformation matrix (2.13) of the reduced Clarke trans-
formation (2.12).

The evolution of the neutral point potential of the inverter

υn =
1
2
(vdc,lo − vdc,up) (11.2)



�

� �

�

Derivatives of Model Predictive Direct Torque Control 371

vdc,up

vdc,lo Xc

Xc

N

N A
B

C

is,abc

IM

Figure 11.1 Three-level neutral-point-clamped (NPC) voltage source inverter driving an induction
machine (IM)

is governed by the differential equation

dυn

dt
=

1
2Xc

|uabc|T is,abc . (11.3)

Adopting the per unit (pu) system, Xc denotes the pu equivalence of one of the two dc-link
capacitors. The component-wise absolute value of the inverter switch position is defined as
|uabc| = [|ua| |ub| |uc|]T , and the three-phase stator current is given by is,abc = [isa isb isc]

T .
For more details on the NPC inverter, see Sect. 2.4.1. The details of the drive system and its
parameters are provided in Sect. 2.5.1.

Switching losses arise in the inverter when turning the semiconductors on or off and
commutating the phase current with a nonzero blocking voltage. These losses depend on the
applied voltage, the commutated current, and the semiconductor’s characteristics. Considering
integrated-gate-commutated thyristors (IGCTs), with the gate-commutated thyristor (GCT)
being the semiconductor switch, the turn-on and turn-off losses can be well approximated
to be linear in the dc-link voltage and the phase current. The reverse recovery losses of the
diodes are nonlinear in the commutated current. For more details on semiconductors and their
associated switching losses, the reader is referred to Sect. 2.3. The specific switching losses
of the NPC inverter are explained in Sects. 2.4.1 and 2.5.1.

State-space models of induction machines were derived in Sect. 2.2. For the current control
problem at hand, it is convenient to adopt the stationary αβ reference frame and to choose
the stator current is = [isα isβ] and the rotor flux ψr = [ψrα ψrβ ]T as state variables. The
continuous-time machine model of a squirrel-cage induction machine

dis

dt
= − 1

τs

is +
(

1
τr

I2 − ωr

[
0 −1
1 0

])
Xm

D
ψr +

Xr

D
vs (11.4a)

dψr

dt
=

Xm

τr

is −
1
τr

ψr + ωr

[
0 −1
1 0

]
ψr (11.4b)

dωr

dt
=

1
M

(Te − T�) (11.4c)
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is obtained from (2.59) by setting the rotor voltage vr and the angular speed of the reference
frame ωfr to zero.

All parameters and variables are normalized using the pu system, including the time axis.
The parameters of the machine model include the stator and rotor resistances Rs and Rr, the
stator and rotor leakage reactances Xls and Xlr, and the main reactance Xm. The stator and
rotor self-reactances are defined as Xs = Xls + Xm and Xr = Xlr + Xm, respectively. The
determinant is D = XsXr − X2

m. We have previously introduced the transient stator time
constant and the rotor time constant in (2.60) as

τs =
XrD

RsX
2
r + RrX

2
m

and τr =
Xr

Rr

. (11.5)

Note that all rotor quantities are referred to the stator circuit, and I2 denotes the two-
dimensional identity matrix.

Furthermore, ωr denotes the electrical angular rotor speed, M is the moment of inertia, and
T� is the load torque. The electromagnetic torque in terms of the stator current and the rotor
flux vector is

Te =
1
pf

Xm

Xr

ψr × is =
1
pf

Xm

Xr

(ψrαisβ − ψrβisα) (11.6)

according to (2.61).
Equations (11.4)–(11.6) represent the standard dynamic model of a squirrel-cage induction

machine, where the saturation of the machine’s magnetic material, the changes of the rotor
resistance due to the skin effect, and the changes of the stator resistance due to temperature
are neglected.

11.1.2 Control Problem

The control problem considered in this section has three aspects. First, the stator currents
is of the machine must be regulated along their time-varying references i∗s. At steady-state
operating conditions, the main performance metric is the harmonic distortion of the current,
that is, the total demand distortion (TDD) of the current (3.2). By minimizing the current
TDD, the copper losses and, therefore, the thermal losses in the machine windings are reduced.
During transients, a high dynamic performance must be ensured with short settling times in
the range of a few milliseconds. To achieve this, the fast regulation of the stator currents to
their new references is required.

Second, the switching losses in the semiconductors are to be minimized. An indirect way of
achieving this is to reduce the device switching frequency, while a direct way is to minimize the
predicted switching losses. Third, the neutral point potential of the inverter has to be balanced
around zero.

This control problem is described in detail in Sect. 4.2.2. In particular, as shown in Fig.
4.11, the inner stator current control loop is augmented in a cascaded controller fashion by
outer control loops that operate in the rotating dq reference frame. These outer loops comprise
rotor flux, torque, and speed controllers, which are typically based on proportional–integral
(PI) controllers with appropriate feedforward terms.

We have seen in Sect. 3.5 that a fundamental trade-off exists between the current TDD and
the switching effort. Lower current TDDs imply higher switching frequencies and losses, and
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vice versa. We will show in Sect. 11.1.8 that the current TDD is proportional to the current
ripple, which is the difference between the stator current and its reference. This allows us to
consider the current ripple in the MPDCC problem formulation instead of the current TDD.
To simplify the tuning procedure, we fix the current ripple (and thus the current TDD) by
imposing upper and lower bounds on the stator currents. The second trade-off quantity—the
switching effort—can then be minimized.

11.1.3 Formulation of the Stator Current Bounds

The bounds on the stator currents can be imposed in various ways. Possible bound shapes
include circles, rectangles, and hexagons, which can be imposed either in the stationary or
rotating coordinate system. The most prominent bound shapes will be discussed in this section.

We consider the use of symmetric bounds around the stator current reference. Let

irip,a = i∗sa − isa (11.7)

denote the ripple current in phase a. The ripple currents in phases b and c are defined
accordingly. We introduce the positive parameter δi to describe the difference between the
upper (or lower) bound and the current reference.

The natural choice [7] is to impose upper and lower bounds on the abc ripple currents in
the form

|irip,a| ≤ δi (11.8a)

|irip,b| ≤ δi (11.8b)

|irip,c| ≤ δi . (11.8c)

Figure 11.2(a) shows the a-, b-, and c-axes, which are displaced by 2π/3 with respect to
each other. The upper and lower bounds form lines that are perpendicular to these axes and
displaced by δi from the origin. The set of ripple currents that meets the constraints (11.8)
lies between these lines. The latter are edges (or facets) that form a polygon, which is shown
in Fig. 11.2(a) as the gray hexagon.

Using the reduced Clarke transformation (2.12), the abc ripple currents in (11.8) can be
expressed in terms of the αβ ripple currents. This translates the bounds from the abc coordinate
system into the stationary αβ reference frame, in which we have

|irip,α| ≤ δi (11.9a)

|irip,α −
√

3irip,β | ≤ 2δi (11.9b)

|irip,α +
√

3irip,β | ≤ 2δi . (11.9c)

It turns out that the bounds (11.9b) and (11.9c) can also be imposed by the compact statement
|irip,α| +

√
3|irip,β | ≤ 2δi.

The set of ripple currents in αβ that meets (11.9) is depicted in Fig. 11.2(b) as the gray
polygon. It is clear that symmetric upper and lower bounds imposed on the three-phase currents
in the abc coordinate system are equivalent to hexagonal bounds in αβ coordinates. Moreover,
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irip,a

irip,b

irip,c

δi−δi

δi

−δi
δi

−δi

(a) Bounds on the ripple current in abc based on (11.8)

δi−δi

irip,α

irip,β

δi

−δi

(b) Bounds on the ripple current in αβ based on (11.9)

Figure 11.2 Bounds on the ripple current. The upper and lower bounds on the phase currents are trans-
lated into hexagonal bounds in the stationary orthogonal reference frame

because the star point of the machine is not connected, the sum of the three-phase currents is
zero at any instant in time, that is, it is common-mode-free. This statement also holds true for
the ripple currents.

Alternatively, the set defined by the bounds (11.8) can be represented in an abc system, in
which the three axes are orthogonal to each other. As the common-mode component of the
ripple current is zero, this set is of dimension two. Figure 11.3(a) shows the projection of this
set onto a plane spanned by orthogonal a- and b-axes, while Fig. 11.3(b) shows the projection
onto the bc-plane. The projection onto the ac-plane is the same as in Fig. 11.3(a).

irip,a

irip,b

δi−δi

δi

−δi

(a) Bounds on the ripple current in the ab-plane

δi−δi

δi

−δi

irip,b

irip,c

(b) Bounds on the ripple current in the bc-plane

Figure 11.3 Projection of the ripple current bounds (11.8) onto the ab- and bc-planes
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The fact that the ripple current is common-mode-free adds a coupling constraint between the
phases, which brings about non-square sets in the ab-, bc-, and ac-planes. The ripple current
in phase c, for example, is given by irip,c = −irip,a − irip,b. The upper constraint in (11.8c),
irip,c ≤ δi, is equivalent to the constraint

irip,b ≥ −irip,a − δi (11.10)

in the ab-plane, which removes the bottom left part from the ripple current set in Fig. 11.3(a).
Similarly, the lower constraint in (11.8c), irip,c ≥ −δi, removes the top right part from the
ripple current set.

Conversely, one might impose upper and lower bounds on the currents in the αβ reference
frame, as proposed, for example, in [2]:

|irip,α| ≤ δi (11.11a)

|irip,β | ≤ δi. (11.11b)

These constraints and the square set they form are visualized in Fig. 11.4(a). The hexagonal set
that corresponds to (11.9) is indicated by dotted lines. Square bounds in the αβ frame relate
to non-constant bounds in the abc system.

It is obvious that the two constraint formulations (11.8) and (11.11) lead to different sets.
By definition, the harmonic current distortion relates to the ripple current in the abc system.
Thus, from a TDD perspective, it is advantageous to impose the constraint (11.8) rather than
(11.11). This is confirmed by simulation results, even though the differences are relatively
small, amounting to only a few percent.

If an approximation of the hexagon is desired, circular bounds of the form

i2rip,α + i2rip,β ≤ δ2
i (11.12)

provide a viable alternative. The circular set they define is shown in Fig. 11.4(b). Circular
bounds were initially proposed in [3].

irip,α

irip,β

δi−δi

δi

−δi

(a) Square bounds

irip,α

irip,β

δi
−δi

δi

−δi

(b) Circular bounds

Figure 11.4 Alternative definitions of bounds on the ripple current in the stationary orthogonal refer-
ence frame and comparison with the hexagonal bounds (dotted lines)
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Bounds can also be imposed on the ripple current in an orthogonal and rotating dq reference
frame. When aligning the reference frame with the rotor flux vector, as proposed in [4], the
torque can be controlled by imposing upper and lower bounds on the q-component of the sta-
tor current. Similarly, upper and lower bounds can be imposed on the d-component of the
stator current to control the magnetization of the machine. Strictly speaking, however, radial
bounds should be adopted, as discussed in Sect. 9.1. It should be clear from the previous
discussion that rectangular bounds tend to yield inferior current TDDs to hexagonal and cir-
cular bounds.

As the stator currents of the machine model will be formulated in the three-phase abc system,
it is convenient to also formulate the current constraints in this system. Therefore, we adopt
the constraint formulation (11.8) in MPDCC. In order to impose upper and lower bounds on
the ripple currents, the trajectory of the stator current reference must be predicted over the
time interval of the prediction horizon. To this end, we assume that the current references are
sinusoidal waveforms with the angular stator frequency ωs. The evolution of the stator current
reference in orthogonal coordinates is then described by the differential equation

di∗s(t)
dt

= F ri
∗
s(t) with F r = ωs

[
0 −1
1 0

]
. (11.13)

11.1.4 Controller Model

MPDCC relies on a model of the physical drive system to predict future trajectories of the
stator current and neutral point potential. As the prediction horizon is in the range of a few
milliseconds, we may assume that the rotor speed is effectively constant within the prediction
horizon. This allows us to treat the speed as a time-varying parameter and to reduce the dimen-
sion of the state-space model. Nevertheless, for highly dynamic drives or for drives with little
inertia, it might be necessary to include the speed as an additional state in the model.

We choose the stator current and the rotor flux as state variables for the electrical machine.
To simplify the imposition of upper and lower bounds on the three-phase stator currents, we
model the stator currents in the three-phase abc system. This choice also tends to simplify the
extension mechanism in MPDCC (see the corresponding description in Sect. 7.5 for MPDTC).
The rotor flux vector is modeled in stationary orthogonal coordinates. To this end, we define
the machine state vector

xm = [isa isb isc ψrα ψrβ ]T (11.14)

and choose
x = [xT

m υn (i∗s)
T ]T (11.15)

as the overall state vector of the controller model. This vector includes the machine state vector,
the neutral point potential, and the stator current reference in orthogonal coordinates.

The three-phase switch position constitutes the input vector

u = uabc = [ua ub uc]
T ∈ {−1, 0, 1}3 . (11.16)

The three-phase ripple current of the stator along with the neutral point potential forms the
output vector

y = [irip,a irip,b irip,c υn]T . (11.17)
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The continuous-time state-space representation of the drive system is given by

dx(t)
dt

= F (u(t)) x(t) + G u(t) (11.18a)

y(t) = Cx(t) (11.18b)

with the system, input, and output matrices

F (u) =

⎡

⎢⎢⎣

F m 05×1 05×2

f i(u) 0 01×2

02×5 02×1 F r

⎤

⎥⎥⎦ , G =

⎡

⎢⎢⎣

Gm

01×3

02×3

⎤

⎥⎥⎦ , (11.19a)

C =

⎡

⎢⎢⎢⎢⎣

−1 0 0 0 0 0 1 0

0 −1 0 0 0 0 −1/2
√

3/2

0 0 −1 0 0 0 −1/2 −
√

3/2

0 0 0 0 0 1 0 0

⎤

⎥⎥⎥⎥⎦
. (11.19b)

The machine’s system and input matrices F m and Gm, and the system vector of the inverter
f i(u) are derived and provided in Appendix 11.A. The submatrix F r can be found in (11.13).
The output matrix C directly follows from the definition of the three-phase ripple current

irip,abc = K̃
−1

i∗s − is,abc , (11.20)

see also (11.7). The pseudo-inverse of the reduced Clarke transformation K̃
−1

(see (2.13))
translates the stator current reference from orthogonal αβ coordinates to the three-phase abc
system.

MPDCC requires the discrete-time representation of the state-space model (11.18), which
is valid at the discrete-time steps t = kTs, where k ∈ N denotes the time step and Ts is the
sampling interval. To time-discretize (11.18), we follow the procedure that was proposed in
Sect. 7.2.3 for MPDTC. Specifically, we use the exact Euler discretization method for the
machine model, forward Euler discretization for the neutral point potential, and exact Euler
discretization for the prediction of the stator current reference. This leads to the discrete-time
model

x(k + 1) = A(u(k)) x(k) + B u(k) (11.21a)

y(k) = Cx(k) (11.21b)

with the matrices

A(u) =

⎡

⎢⎢⎣

Am 05×1 05×2

f i(u)Ts 1 01×2

02×5 02×1 Ar

⎤

⎥⎥⎦ and B =

⎡

⎣
Bm

01×3
02×3

⎤

⎦ . (11.22)

The submatrices are given by

Am = eF mTs ,Ar = eF rTs and Bm = −F−1
m (I5 − Am) Gm . (11.23)
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11.1.5 Control Problem Formulation

As stated in Sect. 11.1.2, the control objectives are to keep the instantaneous stator current
components within given bounds around their respective references and to balance the neutral
point potential around zero, while minimizing the switching losses. These control objectives
are mapped into a cost function that yields a scalar cost (here the short-term switching losses)
that is minimized subject to the dynamic evolution of the internal controller model of the drive
system and subject to constraints. This leads to the optimization problem

U opt(k) = arg minimize
U(k)

J (11.24a)

subject to x(
 + 1) = A(u(
))x(
) + Bu(
) (11.24b)

y(
 + 1) = Cx(
 + 1) (11.24c)
{

εj(
 + 1) = 0, if εj(
) = 0
εj(
 + 1) < εj(
), if εj(
) > 0 (11.24d)

u(
) ∈ U , ||Δu(
)||∞ ≤ 1 (11.24e)

∀
 = k, . . . , k + Np − 1,∀j = 1, 2, 3, 4 . (11.24f)

The cost function J is minimized subject to three sets of constraints. The equality constraints
(11.24b) and (11.24c) represent the controller model and thus describe the dynamic evolution
of the drive system (and its current references) over the prediction horizon Np when applying
the sequence of control inputs (or switching sequence)

U(k) = [uT (k) uT (k + 1) . . . uT (k + Np − 1)]T . (11.25)

The second set of constraints (11.24d) imposes bounds on the output variables. As shown
in Fig. 11.2(a), we impose symmetric upper and lower bounds on the three-phase stator ripple
current. For the ripple current in phase a (see (11.7)), we define the nonnegative variable

εa(
) =
1

2δi

{
|irip,a(
)| − δi if |irip,a(
)| > δi

0 else ,
(11.26)

which is normalized by the bound width. The variables εb and εc are defined accordingly.
Similarly, symmetric upper and lower bounds are imposed on the neutral point potential υn,
using the parameter δυ and the degree of the bound violation ευ .

We aggregate these bound violations to the vector of bound violations

ε = [εa εb εc ευ]T . (11.27)

Its first three components relate to the three-phase stator current, while the fourth component
denotes the degree of the bound violation of the neutral point potential. We use the index j to
denote the jth component of the vector ε.

The third set of constraints (11.24e) limits the manipulated variable u to the integer values
{−1, 0, 1}3, which are available for a three-level inverter. Switching between the upper and
the lower rail is inhibited by the second constraint in (11.24e), where we have introduced
Δu(
) = u(
) − u(
 − 1).
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The cost function J is the same as for MPDTC. It consists of the three terms

J = Jsw + Jbnd + Jt . (11.28)

The switching effort Jsw represents either the short-term switching frequency (7.31) or the
switching power losses (7.32), as described in detail in Sect. 7.3.3.

The second term in the cost function Jbnd = qT ε penalizes the root-mean-square (rms)
bound violation of the output vector, which is defined as

ε = [εa εb εc ευ]T . (11.29)

Its first three components relate to the three-phase ripple current, while the fourth one is the rms
bound violation of the neutral point potential. The four components are defined in accordance
with (7.35).

The last term in the cost function Jt is an optional penalty on the predicted output quantities
that is imposed on them at the end of the prediction horizon. This term can be used to reduce the
likelihood of the so-called deadlocks. For more details on the formulation of the cost function,
deadlocks, and schemes to avoid them, the reader is referred to Sects. 7.3.3, 9.3, and 9.5.

11.1.6 MPDCC Algorithm

The block diagram of MPDCC including the outer flux and speed control loops is provided in
Fig. 4.11. The MPDCC algorithm is similar to the MPDTC algorithm described in Sect. 7.4.5.
In particular, the MPDCC algorithm adopts the concepts of the switching and prediction hori-
zons, the full enumeration of candidate switching sequences in a search tree, the extension of
output trajectories until a bound violation is predicted to occur, and the target set.

The main difference between the MPDCC and the MPDTC algorithms concerns the char-
acteristic and handling of the bounds on the output variables. In MPDTC, the references on
the output variables are constant within the prediction horizon, which implies that the upper
and lower bounds are also constant. This greatly simplifies the handling of the bounds.

In MPDCC, on the other hand, the bounds on the stator currents are time-varying. The
upper bound in phase a, for example, is equal to the phase a current reference plus δi. This is
exemplified in Fig. 11.5(a). Time-varying bounds complicate the extension step. To mitigate
this issue, we choose as output variables the stator ripple currents rather than the stator currents.
This renders the upper and lower bounds time-invariant and constant throughout the prediction
horizon, as shown in Fig. 11.5(b). As a result, the MPDTC extension mechanism as described
in Sect. 7.5 is also applicable to MPDCC.

Nevertheless, the future stator current references need to be predicted. This adds two
additional state variables to the controller model and makes the control problem formulation
(11.24) more complex to solve. To reduce the computational burden, the controller model
can be split into two. One model captures the evolution of the stator current reference and
rotor flux vector. The weak coupling from the stator to the rotor flux can either be neglected,
or a nominal stator flux evolution can be assumed, which relates the stator flux to the stator
current reference. The response of this model is independent of the switching sequence and
needs to be computed only once at time step k.

The second model predicts the trajectories of the ripple current and the neutral point poten-
tial, taking into account the predicted trajectories of the rotor flux and stator current reference.
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(a) Stator current isa and its bounds around the stator
current reference i∗sa
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Figure 11.5 Imposition of upper and lower bounds on the stator current and its corresponding ripple
current. Phase a is used as an example

This model uses the three-phase stator current and the neutral point potential as state variables,
the three-phase switch position as input variable, and the rotor flux and stator current reference
in orthogonal coordinates as parameters.

Alternatively, MPDCC can be formulated in a dq reference frame, which rotates syn-
chronously with the rotor flux vector. The current references are constant in this reference
frame, and so are the upper and lower bounds. The hexagonal bounds, however, rotate. A
possible simplification is to approximate the hexagon by a circle, as shown in Fig. 11.4(b)
and originally proposed in [3].

Moreover, when formulating the controller model in the dq reference frame, the three-phase
switch position needs to be transformed into the rotating frame. This is achieved with the Park
transformation, which requires the angular position of the reference frame. Furthermore, to
predict the evolution of the neutral point potential, the stator currents are required either in the
three-phase abc system or in the stationary αβ reference frame. This necessitates the use of the
inverse Park transformation, further complicating the prediction of the state and output vectors.

We conclude that, when choosing the reference frame, a trade-off emerges between the
necessity to predict stator current reference trajectories and the frequent use of the (inverse)
Park transformation. In this section, we opt for the simplest approach, using one controller
model with an eight-dimensional state vector. The latter includes the three-phase stator current,
rotor flux in orthogonal coordinates, neutral point potential, and stator current reference in
orthogonal coordinates (see (11.15)).

11.1.7 Performance Evaluation

Consider the three-level NPC voltage source inverter with a floating neutral point potential
shown in Fig. 11.1. The total dc-link voltage is equal to its nominal value Vdc = 5.2 kV. The
inverter is connected to an MV induction machine with a constant mechanical load. The drive
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system case study is summarized in Sect. 2.4.1, and the detailed parameters of the machine
and inverter are provided in Table 2.10. The MPDCC cost function minimizes the predicted
switching power losses. Bound violations and output quantities at the end of the prediction
horizon are not penalized. Therefore, the cost function is simply given by J = JP , with JP as
in (7.32).

The stator current reference is provided by outer control loops, which are shown in Fig. 4.11.
Symmetric bounds around the three-phase stator current references are imposed, and the ripple
current in each phase is kept within [−δi, δi]. The width 2δi of the current bounds determines
the trade-off between the switching losses and the current distortions. This will be shown in
Sect. 11.1.8, making δi the main tuning parameter of MPDCC. A second parameter defines
the bounds on the neutral point potential, which is set to δυ = 0.04 pu. This implies that the
neutral point potential is kept within the range [−0.04, 0.04] pu. Operation at steady-state
conditions is ensured by starting the main simulation only after initial transients have settled
down. The sampling interval is set to Ts = 25 μs.

11.1.7.1 Steady-State Operation

Closed-loop simulations at 60% speed and rated torque are shown in the following to assess the
steady-state performance of MPDCC. The key performance criteria are the switching losses
in the inverter, the average switching frequency per semiconductor device, and the harmonic
current and torque distortions. The performance evaluation is done for switching horizons
of varying length and for various current bound widths. MPDCC is benchmarked with two
well-established control and modulation methods: field-oriented control (FOC) with SVM and
scalar control with OPPs.

The SVM switching signals are generated by a three-level, asymmetric, regularly sampled
CB-PWM. The two triangular carriers are in phase and have the carrier frequency fc. The
three-phase reference voltage is augmented by the common-mode voltage term (3.16), which is
of the min/max type plus a modulus operation. The resulting gating signals are the same as for
SVM, as explained in Sect. 3.3.2. We will therefore refer to this modulation method as SVM.

Alternatively, OPPs can be calculated in an offline procedure by computing the optimal
switching angles over a quarter of the fundamental period for all possible operating points. This
minimizes the current distortions for a given pulse number d (number of switching transitions
per phase within a quarter of the fundamental period). The concept of OPPs is summarized in
detail in Sect. 3.4.

Table 11.1 summarizes selected closed-loop simulations by stating the controller settings
and the resulting performance metrics. The latter are provided as absolute values. Three sets
of simulations were run. The first set uses a switching frequency of 60 Hz, while the second
and third sets result in switching losses of around 3.1 and 7.8 kW, respectively. Table 11.2 sum-
marizes the same simulation results as in Table 11.1, but represents the performance metrics
relative to the SVM baseline.

Selected waveforms over one fundamental period of 33.3 ms are shown in Figs. 11.6(a)–
11.11(a) for SVM based on the carrier frequency fc = 270 Hz. The repetitive nature of the
switching pattern implies that the corresponding harmonic spectra are discrete. Figure 11.11(a)
shows the switching pattern along with the phase currents. Owing to the fixed modulation
cycle, the switching transitions are evenly distributed over the fundamental period, which
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Table 11.1 Comparison of MPDCC with SVM and OPPs using absolute values for the performance
metrics

Control Control Switching Average prediction Psw fsw ITDD TTDD
scheme setting horizon horizon (steps) (kW) (Hz) (%) (%)

SVM fc = 90 Hz — — 1.25 60.0 17.5 5.77
MPDCC δi = 0.21 pu eSE 63.2 1.00 61.0 10.7 5.09
OPP d = 2 — — 1.42 60.0 10.4 5.14

SVM fc = 270 Hz — — 3.04 150 8.63 3.28
MPDCC δi = 0.144 pu eSE 27.6 3.06 170 10.4 8.29
MPDCC δi = 0.099 pu eSESE 55.4 3.08 162 6.42 4.17
MPDCC δi = 0.095 pu eSESESE 82.4 3.04 166 6.09 4.01
OPP d = 5 — — 3.11 150 5.51 2.80

SVM fc = 720 Hz — — 7.98 375 3.13 1.33
MPDCC δi = 0.054 pu eSE 11.6 7.76 406 3.67 2.85
MPDCC δi = 0.042 pu eSESE 21.8 7.66 420 2.68 1.74
MPDCC δi = 0.040 pu eSESESE 31.1 7.95 470 2.54 1.67
OPP d = 12 — — 7.70 360 2.37 1.48

These metrics include the switching losses Psw, the switching frequency fsw, the current TDD ITDD, and
the torque TDD TTDD. The three sets of comparisons refer to a switching frequency of 60 Hz, and to
switching losses of around 3.1 and 7.8 kW, respectively. The operating point is at 60% speed and rated
torque.

Table 11.2 Comparison of MPDCC with SVM and OPPs using relative values for the performance
metrics

Control Control Switching Average prediction Psw fsw ITDD TTDD
scheme setting horizon horizon (steps) (%) (%) (%) (%)

SVM fc = 90 Hz — — 100 100 100 100
MPDCC δi = 0.21 pu eSE 63.2 80.4 102 60.8 88.2
OPP d = 2 — — 114 100 59.5 89.1

SVM fc = 270 Hz — — 100 100 100 100
MPDCC δi = 0.144 pu eSE 27.6 101 113 120 253
MPDCC δi = 0.099 pu eSESE 55.4 102 108 74.4 127
MPDCC δi = 0.095 pu eSESESE 82.4 100 111 70.6 122
OPP d = 5 — — 103 100 63.8 85.4

SVM fc = 720 Hz — — 100 100 100 100
MPDCC δi = 0.054 pu eSE 11.6 97.2 108 117 215
MPDCC δi = 0.042 pu eSESE 21.8 95.9 112 85.5 131
MPDCC δi = 0.040 pu eSESESE 31.1 99.6 125 81.2 126
OPP d = 12 — — 96.5 96.0 75.7 111

The same results as in Table 11.1 are shown, using SVM as a baseline.
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Figure 11.6 Three-phase stator currents for SVM and MPDCC, when operating at 60% speed and rated
torque. Both schemes yield the same switching losses
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Figure 11.7 Spectra of the three-phase stator currents that are shown in Fig. 11.6

implies that several transitions occur at high phase currents. The resulting switching losses
are 3.04 kW, and the current TDD is 8.63%, as summarized in Table 11.1.

The MPDCC current ripple can be adjusted by tuning the stator current bounds such that
similar switching losses are obtained. As the switching horizon is increased from eSE to
eSESESE, the average prediction horizon increases, allowing MPDCC to make better informed
decisions by looking further into the future. As a result, the bounds can be tightened, thereby
reducing the harmonic current and torque distortions, while keeping the switching losses con-
stant. Figures 11.6(b)–11.11(b) show selected waveforms for MPDCC with the long switching
horizon eSESESE and the bound parameter δi = 0.095 pu.
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Figure 11.8 Electromagnetic torque that corresponds to the simulations in Fig. 11.6
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Figure 11.9 Spectra of the electromagnetic torque that is shown in Fig. 11.8
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Figure 11.10 Neutral point potential, which corresponds to the simulations in Fig. 11.6
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Figure 11.11 Three-phase switch positions and phase currents (dashed lines), which correspond to the
simulations in Fig. 11.6

For the same switching losses, the current distortions are reduced by 30%. The torque
distortions are, however, 22% worse than for SVM. The switching frequency also tends to
be higher than for SVM, because it is not directly penalized in the cost function. By arrang-
ing the switching pattern such that a significant proportion of the switching transitions occurs
when the phase currents and thus the switching losses are small, the switching losses are kept
at the same level as for SVM despite the higher switching frequency. Interestingly enough,
MPDCC with long horizons achieves almost the same switching losses and current distortions
as the OPP with pulse number d = 5 (3.04 kW vs 3.11 kW and 6.09% vs 5.51%, respectively).
The torque distortions are, however, significantly worse (4.01% vs 2.80%), and the switching
frequency is slightly higher (166 Hz vs 150 Hz), as stated in Table 11.1.

Alternatively, one may wish to minimize the switching losses with regard to SVM, possibly
at the expense of pronounced current distortions. As an example, consider again SVM based on
fc = 270 Hz. MPDCC with the switching horizon eSE and the bound parameter δi = 0.21 pu
leads to 24% higher current distortions (10.7% instead of 8.63%), but the switching losses are
reduced from 3.04 to 1.0 kW, that is, by 67%! In this case, MPDCC actually outperforms the
OPP with pulse number d = 2. For similar current and torque distortions, MPDCC reduces the
switching losses from 1.42 to 1.0 kW, that is, by 30%. This might appear to be counterintu-
itive, as it is often assumed that OPPs provide the upper bound on the achievable steady-state
performance of a modulator.

Recall that the OPPs were computed by minimizing the current distortions for a given pulse
number (or switching frequency), disregarding the switching losses. By taking the switching
losses into account and by rearranging the switching transitions accordingly, MPDCC is able to
achieve similarly low distortions, while further reducing the switching losses. This beneficial
characteristic is exemplified qualitatively in Fig. 11.12, which compares the switching patterns
of the OPP and MPDCC when operating at a switching frequency of 60 Hz. Table 11.3 provides
a quantitative comparison of the switching losses in phase a for half a fundamental period.
Owing to the observed half-wave and three-phase symmetry, the ratio between the switching
losses is the same for the three-phase system.
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Figure 11.12 Three-phase switch positions and phase currents (dashed lines) for an OPP and MPDCC.
Both schemes yield the same switching frequency of 60 Hz and similar distortion levels, but MPDCC
reduces the switching losses by 30%

Table 11.3 Switching losses resulting from the first four switching transitions of the phase a
switching pattern shown in Fig. 11.12

Quantity OPP switching transitions MPDCC switching transitions

isa (pu) −0.65 0.55 0.93 0.93 0.14 1.15 0.33 0.60
eon (J) 0.16 0.02 0.06
eoff (J) 1.48 1.25 2.12 2.62 1.37
err (J) 2.78 0.41 0.99

∑
e (J) 7.79 5.47

The variables eon, eoff , and err denote the GCT turn-on, GCT turn-off, and the diode reverse recovery
losses, respectively. The switching losses of MPDCC are 30% lower than those of the OPP.

The benefit of MPDCC is particularly pronounced when operating at low pulse numbers.
For a switching frequency of 60 Hz, MPDCC reduces the switching losses by 20% and the
current TDD by about 40%, when compared to SVM that is based on a carrier frequency of
90 Hz. At higher switching frequencies, however, the performance gain achieved with MPDCC
is less significant. This can be seen in Table 11.2 when benchmarking MPDCC with respect
to SVM based on the carrier frequency fc = 720 Hz. MPDCC with the switching horizon
eSESESE reduces the current distortions by 19% for the same switching losses. The switching
frequency and the torque distortions are, however, both increased by about 25%.

OPPs maintain a small edge over long-horizon MPDCC at high switching frequencies. For
similar switching losses, the OPP reduces the current and torque distortions by 7% and 11%,
respectively, and the switching frequency by 23%, when compared to MPDCC with the switch-
ing horizon eSESESE.
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11.1.7.2 Operation during Transients

The dynamic response of MPDCC to step changes in the torque reference is explored in the
following. The switching horizon eSSE and the current bound parameter δi = 0.08 pu are cho-
sen. The bounds on the neutral point potential remain at δυ = 0.04 pu. During steady-state
operation, these controller settings result in the switching losses Psw = 4.93 kW, the switch-
ing frequency fsw = 240 Hz, and the current TDD ITDD = 5.48%, which are typical for an
IGCT-based MV drive. The second term in the cost function Jbnd = qT ε, which penalizes
the rms bound violation of the outputs, is utilized to shorten the torque transients. By set-
ting the penalty to q = 1000 · [1 1 1 0]T , we heavily penalize violations of the bounds on the
three-phase ripple current.

At 60% speed, torque reference steps of magnitude 1 pu are imposed. As shown in
Fig. 11.13, a very fast current and thus torque response is achieved. During the negative
torque steps, sufficient voltage margin is available and MPDCC temporarily inverts the
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Figure 11.13 Dynamic response of MPDCC to torque steps of magnitude 1 pu when operating at 60%
speed
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applied stator voltage. As a result, the torque transients are below 0.6 ms. For q = 04×1, a
slightly more sluggish response would have resulted, with the torque transients lasting for
1.3 ms. Little voltage margin is available during the positive torque step. The transient lasts
for 1.4 ms and is thus almost three times longer than during the negative torque steps. Setting
q to zero has no influence on the control actions during the positive torque step.

These results indicate that MPDCC is as fast as deadbeat and hysteresis control schemes.
Excessive switching during the transients is avoided, as can be seen from Fig. 11.13(d). Note
that in this example, the neutral point potential is close to its upper bound, necessitating switch-
ing transitions that modify the common-mode voltage at time instants 1, 3, and 10.7 ms to avoid
the neutral point potential from violating its upper bound.

11.1.8 Tuning

The role of the bound width on the stator ripple current is investigated now. At 60% speed and
rated torque, closed-loop simulations for MPDCC with the switching horizon eSESE were
run while varying the current bound parameter δi between 0.02 and 0.23 pu. The resulting
current and torque TDDs along with the associated switching frequency and losses are shown
in Fig. 11.14. These four quantities are normalized with respect to their maximum values and
are provided in percent.

The bound width directly determines the amplitude of the stator ripple current. Because
of the relationship between the rms value of the ripple and the TDD, one would expect that
δi also determines the harmonic current distortions. This is indeed the case, as can be seen
in the figure. In particular, the current distortions are effectively linear in the current bound

0 0.05 0.1 0.15 0.2
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Psw

Figure 11.14 Tuning of MPDCC using the bound parameter δi. The current and torque TDD, the
switching losses, and the switching frequency are given in percent and are normalized with respect to
their maximum value in the interval δi ∈ [0.02, 0.23] pu
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parameter up to 0.2 pu. Because the torque is the cross product between the stator current
and the (sinusoidal) rotor flux components in orthogonal coordinates, the torque distortions
are also proportional to δi. For very wide bounds, and when approaching six-step operation,
however, the relationship between the bound width and the harmonic current and torque
distortions becomes nonlinear.

We have seen in Sect. 3.5 for CB-PWM that the products of the current distortions on
one hand and the switching frequency and losses on the other, ITDD · fsw and ITDD · Psw, are
invariant under some minor assumptions. The same applies to the torque TDD. Indeed, one
would expect that similar statements also hold true for other control and modulation methods,
including MPDCC. This is indeed the case, as an analysis of the data shown in Fig. 11.14
reveals. Specifically, the switching losses and switching frequency are hyperbolic functions of
the bound parameter δi; that is, they are inversely proportional to δi.

We conclude that in MPDCC the width of the ripple current bounds is a tuning parameter
that adjusts the trade-off between the harmonic distortions and the switching effort (which is
either the switching frequency or the switching losses). This tuning parameter is equivalent to
the penalty λu on switching transitions, which is used in the cost function of direct MPC with
current reference tracking (see the introductory Sects. 4.1 and 4.2 and Chap. 5). In CB-PWM,
this trade-off is adjusted by the carrier frequency and in OPPs by the pulse number d.

Three additional parameters are used in MPDCC. The bounds on the neutral point potential
at ±δυ are chosen such that, for a given dc-link voltage, the blocking voltages over the GCTs
are limited to values that are within their safe operating area. The sampling interval Ts should
be set to as small a value as possible in order to conceal the adverse effect of restricting the
switching transitions to discrete-time instants. For switching frequencies of a few hundred
hertz, a sampling interval of 25 μs is appropriate. The switching horizon should be as long
as possible. To limit the considerable computational burden long switching horizons entail,
MPDCC can be augmented with branch-and-bound methods. Such techniques are described
in Chap. 10 for MPDTC, but they are also applicable to MPDCC.

11.2 Model Predictive Direct Power Control

So far, we have almost exclusively focused on machine-side inverters in the setting of
variable-speed drives (VSDs). Their counterpart on the grid side, however, is of equal
importance. More specifically, MV grid-connected converters are used as active front ends in
VSDs [8, 9] to connect the dc-link stage to the grid. A VSD with an active front end is shown
in Fig. 1.1. Another important application of grid-connected converters is the integration
of renewable energy sources in the grid [10]. Grid-connected converters are also used for
energy storage systems [10] and uninterruptible power supplies, and to enhance the power
quality [11] at the point of common coupling (PCC).

The control objective of grid-connected converters is to maintain the dc-link voltage close
to its reference by manipulating the flow of real power through the converter [12]. The reactive
power reference is usually set to zero, in order to achieve a power factor of 1. The most widely
used control technique is voltage-oriented control (VOC) [13, 14]. An orthogonal dq reference
frame is established that rotates in synchronism with the voltage of the PCC. The real and
reactive power components are decoupled in this reference frame, and the power set points are
translated into equivalent set points for the dq currents.
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To control the real and reactive power, two current control loops are devised in the rotating
reference frame. The current controllers manipulate voltage references that are fed into a mod-
ulator, which in turn generates the switching signals. VOC can be interpreted as the grid-side
equivalent of FOC. As in FOC, the two controlled quantities—the electromagnetic torque and
flux magnitude—are controlled indirectly via their corresponding current components. For a
summary of FOC, the reader is referred to Sect. 3.6.2.

An alternative method to control grid-connected converters is DPC, which is the grid-side
equivalent of DTC. DPC directly controls the instantaneous real and reactive power by impos-
ing hysteresis bounds on these components. A look-up table is utilized to select an appropriate
converter switch position. DPC was proposed in [15] for two-level converters. Rather than
measuring the PCC voltage, the latter is reconstructed using the equivalent grid inductance,
the derivative of the converter current, and the switched converter voltage.

The concept of DPC can be augmented with the notion of virtual flux vectors [16]. As current
derivatives are no longer required to estimate the real and reactive power components, the level
of noise on the estimated power can be reduced. DPC based on virtual flux vectors, which
we refer to as VF-DPC, was proposed in [17]. Note that a related control method had been
proposed almost a decade earlier in [18]. Instead of directly controlling the real and reactive
power, these quantities are controlled indirectly in [18] through the angular position and the
magnitude of the virtual converter flux vector with respect to the virtual grid flux vector.

By imposing hysteresis bounds on the neutral point potential and by exploiting the redun-
dancy in the voltage vectors with regard to their common-mode component, VF-DPC can
be extended to three-level NPC converters [19]. Similarly, for five-level active NPC convert-
ers, the voltages of the phase capacitors can be maintained close to their nominal values by
imposing hysteresis bounds on them and by extending the VF-DPC scheme [20]. To address
converters that are connected via an intermediate LC filter to the grid, the VF-DPC scheme
needs to be augmented by an active damping mechanism, as described in [21].

Similar to DTC, DPC achieves a superior performance during transients and dynamic oper-
ation. The switching frequency is, however, variable, and the harmonic spectrum is nondeter-
ministic. To achieve a constant switching frequency and a deterministic harmonic spectrum, a
modulator can be added. To this end, [22] replaces the hysteresis controllers by PI controllers
and the look-up table by a space vector modulator (SVM). In a further step, the PI controllers
can be replaced by deadbeat controllers [23].

Recently, predictive control methods have been proposed that extend the DPC concept. In
[24], the switching instants of a given sequence of voltage vectors are manipulated with the
objective of minimizing the predicted rms ripple on the real and reactive power. A constant
switching frequency is achieved without explicitly using a modulator. A one-step predictive
controller was proposed in [25]. The predicted deviations of the real and reactive power com-
ponents from their references are penalized in a cost function, and switch positions are chosen
that minimize this cost function.

In the same way that the control concept of DTC can be translated to DPC, MPDTC can
be adapted to grid-connected converters, giving rise to MPDPC. MPDPC can be interpreted
as an extension of DPC, in which the hysteresis controllers and the look-up table are replaced
by an online optimization stage, while the symmetrical bounds on the real and reactive power
components are inherited from DPC. Unlike other predictive DPC methods, MPDPC is well
suited to achieve very long prediction horizons, thanks to the notion of the switching horizon
and the extension mechanism (see Sects. 7.4.3 and 7.5). This facilitates the reduction of either
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the harmonic current distortions or the switching losses of the semiconductor devices while
preserving the superior dynamic performance of DPC.

11.2.1 Case Study

As a case study, we consider in the second part of this chapter a 9 MVA NPC converter with
a line-to-line rms voltage of 3.3 kV. As shown in Fig. 2.28, the grid-connected converter is
connected via a transformer to the PCC. The resistances, reactances, and voltage sources to
the right of the PCC model the distribution and transmission system of the grid. We refer
these quantities to the secondary side of the transformer and adopt a pu system based on
the rated values in Table 2.14. The transformer, PCC, and grid can then be represented by
the equivalent resistance R = 0.015 pu, reactance X = 0.15 pu, and three-phase grid voltage
vg,abc = [vga vgb vgc]

T with the amplitude 1 pu. This equivalent representation of the con-
verter system is shown in Fig. 11.15, thereby repeating Fig. 2.29 for the reader’s convenience.

We define the three-phase converter current as ic,abc = [ica icb icc]
T . Recall that vdc,up

and vdc,lo denote the voltages over the upper and lower dc-link capacitors. The instantaneous
dc-link voltage is given by vdc = vdc,up + vdc,lo, while Vdc denotes the nominal dc-link voltage.

The three-phase switch position uabc = [ua ub uc]
T is restricted to the set {−1, 0, 1}3.

Analogous to (11.1), the converter voltage in stationary orthogonal coordinates is

vc =
1
2
vdc K̃uabc (11.30)

with vc = [vcα vcβ ]T . K̃ is the reduced Clarke transformation matrix (see (2.13)). The evo-
lution of the neutral point potential υn = 1

2(vdc,lo − vdc,up) is described by the differential
equation

dυn

dt
=

1
2Xc

|uabc|T ic,abc , (11.31)

where |uabc| denotes the component-wise absolute value of the three-phase switch position.
For the definition of the remaining NPC converter-related variables and parameters, the reader
is referred to Sects. 11.1.1 and 2.4.1. The parameters of the case study are summarized in
Table 2.15.
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Figure 11.15 Grid-connected NPC converter system with a simplified grid representation

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

392 Model Predictive Control of High Power Converters and Industrial Drives

The phase a converter voltage vca is the voltage between the phase terminal A and the neutral
point potential N, whereas v0 is the voltage between the star point S of the grid voltage and N.
In the pu system, the continuous-time differential equation of the phase a converter current is

vca = Rica + X
dica

dt
+ vga + v0 . (11.32)

The differential equations for phases b and c are defined accordingly. By defining vc,abc =
[vca vcb vcc]

T and v0 = [v0 v0 v0]
T , we can write the three differential equations in matrix

notation
dic,abc

dt
= −R

X
ic,abc −

1
X

vg,abc +
1
X

vc,abc −
1
X

v0 . (11.33)

By left-multiplying (11.33) with the reduced Clarke transformation matrix K̃ (see (2.11)),
we can express the differential equation in the stationary reference frame as

dic

dt
= −R

X
ic −

1
X

vg +
1
X

vc . (11.34)

To this end, we have introduced ic = [icα icβ]T and vg = [vgα vgβ ]T . The Clarke transfor-
mation also removed the star point voltage v0 from the right-hand side of (11.34), because
K̃v0 = [0 0]T . In the absence of a fault, ica + icb + icc = 0 holds for the converter current.
With the zero-sequence current being zero, (11.34) fully describes the dynamics of the con-
verter currents.

We assume that the grid voltage amplitude in each phase is 1 pu and that the phase shift
between the phases is 120◦. The evolution of the grid voltage can then be described in the
stationary reference frame by the differential equation

dvg

dt
= F rvg with F r = ωg

[
0 −1
1 0

]
, (11.35)

where ωg = 2πfg denotes the angular grid frequency.

11.2.2 Control Problem

In order to formulate the control problem, we require definitions for the instantaneous real
and reactive power (rather than the average power). Starting from the three-phase grid voltage
and converter current, the instantaneous real and reactive power are derived in Appendix 11.B.
These power components are defined in the stationary orthogonal reference frame and the pu
system as

P = vgαicα + vgβicβ (11.36a)

Q = vgαicβ − vgβicα , (11.36b)

in accordance with [26]. Active power corresponds to the current component that is in phase
with the voltage. Reactive power relates to the current component that is orthogonal to (or 90◦

out of phase with) the voltage. Different sign conventions exist for the reactive power. Accord-
ing to the definition in (11.36b), positive reactive power relates to a capacitive load, in which
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the current leads the voltage. Negative reactive power, on the other hand, corresponds to an
inductive load and a lagging current. For a comprehensive review of the notion of instantaneous
real and reactive power, see [27, Appendix B] and the literature cited therein.

Strictly speaking, the real and reactive power should be controlled at the PCC. In the sim-
plified representation in Fig. 11.15, the transformer and the grid have been replaced by the
equivalent reactance X and resistance R, thereby removing the PCC. We thus define and con-
trol the power at the grid voltage sources.

The primary control objective of MPDPC is inherited from DPC, which is to maintain the
real and reactive power within symmetrical bounds. These bounds are defined around their
respective references P ∗ and Q∗. The real power reference is set by an external control loop,
which regulates the dc-link voltage around its nominal value by manipulating this reference.
The reactive power reference is usually set to zero to achieve unity power factor operation.
Furthermore, symmetrical bounds around zero are imposed on the neutral point potential.

MPDPC selects three-phase switch positions with the aim of keeping these three output
variables, namely the real power, the reactive power, and the neutral point potential, within
their respective bounds. MPDPC minimizes the switching effort at the same time, either in the
form of the switching frequency or the switching losses.

11.2.3 Controller Model

The controller model captures the current dynamic, the grid voltage evolution, and the dynamic
of the neutral point potential. We therefore choose the state vector

x = [icα icβ vgα vgβ υn]T (11.37)

with the converter current and grid voltage in orthogonal coordinates as well as the neutral
point potential. The input vector is the three-phase switch position

u = uabc = [ua ub uc]
T ∈ {−1, 0, 1}3 . (11.38)

The output vector
y = [P Q υn]T (11.39)

comprises the (instantaneous) real and reactive power and the neutral point potential.
The continuous-time state-space representation of the grid-connected converter system is

dx(t)
dt

= F (u(t)) x(t) + G u(t) (11.40a)

y(t) = h(x(t)) (11.40b)

with the system and input matrices

F (u) =
[

F g 04×1
f c(u) 0

]
and G =

[
Gg

01×3

]
. (11.41)

The matrices F g and Gg are derived and provided in Appendix 11.C along with the input-
dependent row vector f c(u) and the state-dependent output function h(x).
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The discrete-time model can be derived in the same way as for MPDTC in Sect. 7.2.3 and
MPDCC in Sect. 11.1.4. The exact Euler discretization method is applied to the dynamics of
the converter current and grid voltage, whereas forward Euler is used for the neutral point
potential. The resulting discrete-time representation of (11.40) is

x(k + 1) = A(u(k)) x(k) + B u(k) (11.42a)

y(k) = h(x(k)) (11.42b)

with the matrices

A(u) =
[

Ag 04×1
f c(u)Ts 1

]
and B =

[
Bg

01×3

]
(11.43)

and the sampling interval Ts. The submatrices are given by

Ag = eF gTs and Bg = −F−1
g (I4 − Ag) Gg . (11.44)

11.2.4 Control Problem Formulation

A cost function capturing the switching effort is minimized subject to the evolution of the
controller model and constraints. The resulting optimization problem underlying MPDPC is
effectively the same as for MPDTC in (7.26). Nevertheless, for the sake of completeness, the
MPDPC optimization problem is stated next.

U opt(k) = arg minimize
U(k)

J (11.45a)

subject to x(
 + 1) = A(u(
))x(
) + Bu(
) (11.45b)

y(
 + 1) = h(x(
 + 1)) (11.45c)
{

εj(
 + 1) = 0, if εj(
) = 0
εj(
 + 1) < εj(
), if εj(
) > 0 (11.45d)

u(
) ∈ U , ||Δu(
)||∞ ≤ 1 (11.45e)

∀
 = k, . . . , k + Np − 1,∀j = 1, 2, 3 . (11.45f)

The discrete-time controller model is given in (11.42). The constraints (11.45d) impose
upper and lower bounds on the three output variables. These bounds are symmetric around their
references. For MPDPC, the references can be assumed to be constant within the prediction
horizon. The vector of bound violations is defined as

ε = [εP εQ ευ]T . (11.46)

We use the index j ∈ {1, 2, 3} to denote the jth component of ε. These components are non-
negative and normalized by two times the bound widths. The degree of the bound violation
for the real power, for example, is defined as

εP (
) =
1

2δP

{
|P ∗(k) − P (
)| − δP if |P ∗(k) − P (
)| > δP

0 else ,
(11.47)
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where δP > 0 denotes the difference between the upper (or lower) bound and the reference.
The degrees of the bound violations for the reactive power and the neutral point potential are
defined accordingly, using the bound width parameters δQ > 0 and δυ > 0, respectively.

As for MPDTC and MPDCC, the cost function

J = Jsw + Jbnd + Jt (11.48)

of MPDPC has three terms. Jsw captures the switching effort in terms of either the short-term
switching frequency or the switching losses. The second term is defined as Jbnd = qT ε with

ε = [εP εQ ευ]T . (11.49)

Its three components denote the rms bound violations of the real and reactive power and the
neutral point potential. They are defined similar to (7.35). The third term Jt serves as a means
to reduce the likelihood of deadlocks (see Sect. 9.4).

This section has introduced the MPDPC optimization problem by defining the variables
and parameters that are unique to MPDPC. For a more comprehensive description of the opti-
mization problem and its underlying rationale, the reader is referred to the control problem
formulation of MPDTC in Sect. 7.3.

To solve this optimization problem, the MPDTC algorithm can be adapted to the grid side
in a straightforward manner. The MPDTC and MPDPC algorithms are formulated in the sta-
tionary orthogonal reference frame, and the references and bounds on the output variables are
constant within the prediction horizon. This simplifies the algorithm compared to MPDCC, in
which the current bounds are time-varying. A detailed description of the MPDTC algorithm is
provided in Sect. 7.4, including the nomenclature and the concepts of the switching horizon,
search tree, and full enumeration.

11.2.5 Performance Evaluation

A brief performance evaluation of MPDPC is provided here for the grid-connected NPC con-
verter system shown in Fig. 11.15. The 9 MVA converter with a floating neutral point potential
and the nominal dc-link voltage Vdc = 5.2 kV is connected to the secondary side of a step-down
transformer with a line-to-line rms voltage of 3.3 kV. The transformer and grid reactances are
referred to the secondary side of the transformer, with their sum being equal to X = 0.15 pu.
The grid frequency is fg = 50 Hz. The pu system and the parameters of this case study are
provided in Tables 2.14 and 2.15, respectively.

Regarding the controller settings for MPDPC, we choose to minimize the switching losses
in the cost function. The penalty on rms bound violations is set to q = 1000 · [1 1 0]T during
transients. When operating at steady state, q is set to zero. As will be explained at the end of this
chapter, we choose equal bound widths for the real and reactive power, setting δP = δQ. The
bound width parameter for the neutral point potential is set to δυ = 0.03 pu, and the sampling
interval is Ts = 25 μs.

11.2.5.1 Steady-State Operation

While operating at steady state, we compare the switching losses, the switching frequency, and
the current distortions of MPDPC with those of SVM. For SVM, we consider the equivalent
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Table 11.4 Comparison of MPDPC with SVM using absolute values for the switching losses Psw, the
switching frequency fsw, and the current TDD ITDD

Control Control Switching Average prediction Psw fsw ITDD
scheme setting horizon horizon (steps) (kW) (Hz) (%)

SVM fc = 750 Hz — — 27.0 400 7.79
MPDPC δP = δQ = 0.10 pu eSE 11.2 24.2 422 7.81
MPDPC δP = δQ = 0.10 pu eSESE 25.4 22.9 368 7.46
MPDPC δP = δQ = 0.083 pu eSESE 21.3 27.3 447 6.27

The operating point is at nominal real power and zero reactive power.

Table 11.5 Comparison of MPDPC with SVM using relative values for the performance metrics

Control Control Switching Average prediction Psw fsw ITDD
scheme setting horizon horizon (steps) (%) (%) (%)

SVM fc = 750 Hz — — 100 100 100
MPDPC δP = δQ = 0.10 pu eSE 11.2 89.6 106 100
MPDPC δP = δQ = 0.10 pu eSESE 25.4 84.8 92.0 95.8
MPDPC δP = δQ = 0.083 pu eSESE 21.3 101 112 80.5

The same results as in Table 11.4 are shown, using SVM as a baseline.

carrier frequency of fc = 750 Hz, which results in a switching frequency for each semicon-
ductor device of 400 Hz. As summarized in Table 11.4, the converter switching losses amount
to 27 kW, and the current TDD is 7.79% for SVM. With MPDPC, with the short switching
horizon eSE and δP = δQ = 0.1 pu, similar current distortions are achieved while the switch-
ing losses can be reduced to 24.2 kW. As stated in Table 11.5, this is a reduction of 10%. The
switching frequency is, however, slightly higher.

Longer switching horizons, such as eSESE, further improve the steady-state performance of
MPDPC. Compared to SVM, the switching losses and the switching frequency are reduced by
15% and 8%, respectively, while the current distortions are reduced by 4% (see Table 11.5).
By tightening the bounds, the switching loss reduction achieved by MPDPC can be translated
into a further reduction of the current distortions. For the bounds δP = δQ = 0.083 pu, for
example, the same switching losses as in SVM result, but the current TDD is reduced by
almost 20%. The device switching frequency is, however, 12% higher than for SVM.

Figures 11.16–11.20 compare the steady-state waveforms of SVM and MPDPC over one
fundamental period. The settings for SVM and MPDPC are stated in Table 11.4 in the first
and the last row, respectively. Both control and modulation schemes operate at the same con-
verter switching losses of 27 kW. The instantaneous real and reactive power waveforms are
shown in Fig. 11.16. Compared to SVM, MPDPC reduces the ripple on the real and reac-
tive power by 11% and 41%, respectively. As can be seen in Fig. 11.17, this reduction in the
power ripple translates into a slight reduction of the current ripple. The current spectra of the
two methods are very different though (see Fig. 11.18). SVM produces the well-known dis-
crete spectrum with the harmonic content limited to integer multiples of the fundamental and



�

� �

�

Derivatives of Model Predictive Direct Torque Control 397

0 5 10 15 20
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time (ms)

(a) SVM with fc = 750Hz

0 5 10 15 20
Time (ms)

(b) MPDPC with eSESE and δP = δQ = 0.083pu

Figure 11.16 Instantaneous real and reactive power for SVM and MPDPC, when operating at nominal
real power and zero reactive power. Both schemes yield the same switching losses
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(b) MPDPC with eSESE and δP = δQ = 0.083pu

Figure 11.17 Three-phase converter currents, which correspond to the simulations in Fig. 11.16

carrier frequencies. In contrast, MPDPC—like MPDTC and MPDCC—produces an almost
flat harmonic spectrum with few distinct harmonics. The neutral point potential in Fig. 11.19
is balanced around zero for both methods. As relatively wide bounds were chosen, the ripple
is higher for MPDPC than for SVM.

Figure 11.20 shows the three-phase switch positions as solid lines and the respective phase
currents as dashed lines. Owing to the fixed-length modulation cycle for SVM, its switching
transitions are evenly spread along the fundamental period, irrespective of the switching losses.
In MPDPC, however, the switching losses are considered and minimized. As a result, as can be
seen in Fig. 11.20(b), MPDPC shifts the majority of the switching transitions from time instants
with high phase currents to time instants when the currents are low. Despite the switching
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Figure 11.18 Spectra of the three-phase converter currents, which are shown in Fig. 11.17
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Figure 11.19 Neutral point potential, which corresponds to the simulations in Fig. 11.16
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Figure 11.20 Three-phase switch positions (solid lines) and converter currents (dashed lines), which
correspond to the simulations in Fig. 11.16



�

� �

�

Derivatives of Model Predictive Direct Torque Control 399

frequency being 10% higher for MPDPC than for SVM, the switching losses are the same. The
additional switching transitions are used to reduce the ripple on the real and reactive power,
thus reducing the current TDD.

11.2.5.2 Grid Standards

Tables 11.4 and 11.5 suggest that MPDPC might have an edge over SVM, because it either
reduces the switching losses or lowers the current distortions. The latter is, however, of sec-
ondary importance for grid-connected converters. Instead, as summarized in Sect. 3.1.2, such
converters must meet certain grid standards at the PCC. These grid standards impose upper
bounds on individual current and voltage harmonics. Commonly imposed grid standards are
the IEEE 519 standard [28] for current harmonics and the IEC 61000-2-4 standard [29] for
voltage harmonics.

The IEEE 519 standard specifies limits on the current harmonics as a function of the
short-circuit ratio ksc. The latter was defined in (2.98). In this case study, it is equal to 20. The
corresponding limits on the current harmonics are shown in Fig. 3.1 for harmonics of integer
order. Recall that the order of a harmonic is the frequency ratio between the harmonic and
the fundamental component. Harmonics of noninteger order are lumped to the closest integer
harmonic by computing an equivalent rms value.

By applying this technique, the equivalent integer current harmonics can be determined for
SVM with the carrier frequency fc = 750 Hz and for MPDPC. For the latter, we consider
again the case with the switching horizon eSESE and the bounds δP = δQ = 0.085 pu. The
resulting current harmonics are shown in Fig. 11.21. The limits are shown as light gray bars,
harmonics that meet these limits are shown as dark gray bars, and harmonics violating their
corresponding limit are indicated by black bars.

The first violation for SVM occurs at the 17th harmonic, which is an upper sideband of the
carrier frequency. For MPDPC, the first violation occurs at the 20th harmonic. Despite SVM
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(b) MPDPC with eSESE and δP = δQ = 0.083pu

Figure 11.21 Current harmonics (%) at the PCC, which correspond to the simulations in Fig. 11.16.
The grid standard limits are shown as light gray bars, current harmonics that meet these limits are shown
as dark gray bars, and harmonics violating their corresponding limit are indicated by black bars
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Figure 11.22 Voltage harmonics (%) at the PCC, which correspond to the simulations in Fig. 11.16.
The grid standard limits are shown as light gray bars, voltage harmonics that meet these limits are shown
as dark gray bars, and harmonics violating their corresponding limit are indicated by black bars

violating the limits on the 29th and 37th harmonics by factors of 3.8 and 4, respectively,
MPDPC causes even larger violations. The 22nd and the 34th current harmonics exceed their
limits by factors of 4.4 and 10, respectively, as the limits on the even current harmonics are
particularly tight. To meet the grid standards, both schemes require the addition of an LC filter
that is placed between the converter and the transformer.

The voltage harmonics at the PCC are computed by separating the resistances and reactances
within the lumped model shown in Fig. 11.15 into those on either side of the PCC according to
Fig. 2.28. Limits on voltage harmonics are specified in the IEC 61000-2-4 standard. Assuming
a Class 2 environment and repeating Fig. 3.2, these limits are shown in Fig. 11.22 as light gray
bars. The limits on high-order voltage harmonics at triplen odd multiples of the fundamen-
tal frequency are particularly tight. Indeed, MPDPC violates the limit on the 33th harmonic
11-fold. SVM with fc = 750 Hz, in contrast, produces only non-triplen and odd harmonics.
The most significant violation occurs at the 29th harmonic, with the limit being violated by a
factor of 5.2. Despite the large 29th voltage harmonic of SVM, MPDPC features larger viola-
tions at lower frequencies. This implies that MPDPC would require an LC filter with a lower
cut-off frequency and larger filter components than SVM.

We conclude that it is particularly difficult to meet grid standards on voltage harmonics. The
amplitude of a voltage harmonic at the PCC is determined by the amplitude of the injected
voltage harmonic and the ratio between the transformer and grid impedances. Indeed, these
two impedances form a voltage divider that is frequency-independent. High-frequency voltage
harmonics are thus not attenuated. High-frequency current harmonics are, on the other hand,
greatly attenuated, because the impedance between the converter and grid voltage increases
linearly with the frequency.

Despite their apparent differences, both control and modulation schemes poorly utilize the
harmonic limits imposed by the grid standards. In the low-frequency region of up to the 20th
harmonic, both schemes inject little harmonic power and rather concentrate it in the higher
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frequency range. Such a strategy is preferred when the aim is to minimize the overall current
distortions, that is, the current TDD. To avoid violating the amplitude limits on the current
harmonics, however, the harmonic power would have to be better distributed, with some con-
tent being shifted toward lower frequencies. This is particularly true for voltage grid standards,
which penalize high-frequency harmonics in a disproportionately stringent manner.

11.2.5.3 Operation during Transients

Assume in the following that the grid-connected converter acts as an active rectifier unit in a
VSD system. According to the sign of the converter currents in Fig. 11.15, positive real power
implies power flowing from the dc-link stage to the grid, with the electrical machine operating
in generator mode. In motoring operation, on the other hand, the power flow is reversed and
the sign of the real power is negative. To investigate the dynamic performance of MPDPC, a
step of amplitude 1 pu is applied to the reference of the instantaneous real power every 4 ms.
With the electrical machine initially operating in motoring mode, the first power step is from
−1 pu to zero. We choose the switching horizon eSESE and the penalty q = 1000 · [1 1 0]T .

The resulting waveforms of the real and reactive power, three-phase converter current, and
switch positions are shown in Fig. 11.23. The average settling time of the positive steps from
−1 pu to zero is 2.2 ms. To halt the current flow into the converter, the converter voltage needs
to match or exceed the grid voltage. As little voltage margin is available to accomplish this,
the dynamic response of the converter is relatively sluggish. On the other hand, when stepping
down the real power from zero to −1 pu, ample voltage margin is available. Indeed, by invert-
ing the converter voltage, very fast transients can be achieved, and the average settling time of
0.5 ms is very short. The switching frequency remains low at 425 Hz, indicating that transients
do not increase the switching frequency.

MPDPC achieves decoupled control of the real and reactive power and keeps the reactive
power around its zero set point despite the transients in the real power (see Fig. 11.23(b)). This
ensures that the converter operates under unity power factor regardless of the operating con-
ditions. The neutral point potential, which is not shown here, remains well within its bounds.

We conclude that the machine-side inverter and the grid-side converter have opposite
dynamic characteristics. The converter is capable of quickly ramping up the real power to the
dc-link, whereas increasing the power (by increasing the torque) is a slow task for the inverter,
particularly when operating at nominal speed and nominal voltage. In contrast, the inverter is
able to quickly reduce the power (by lowering the torque), while this is a time-consuming
task for the converter.

11.3 Summary and Discussion

11.3.1 Model Predictive Direct Current Control

MPDCC is conceptually slightly more involved than MPDTC because of its time-varying
current bounds. A major advantage of MPDCC is, however, that it requires only one
tuning parameter—the current bound width, unlike MPDTC, which is based on two tuning
parameters—the bound widths on the torque and stator flux magnitude. Even more important,
MPDCC has a small edge over MPDTC in terms of the harmonic current distortions.
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Figure 11.23 Dynamic response of MPDPC to reference steps in the real power

The hexagonal current bounds in MPDCC are ideally suited to achieving minimal current
distortions for a given switching effort, as explained in Sect. 11.1.3.

When minimizing the switching losses and adopting long switching horizons, MPDCC is
capable of outperforming OPPs in terms of the switching losses and the current TDD, at least
when operating at very low switching frequencies. However, the switching frequency and the
torque TDD of MPDCC tend to be higher. When minimizing the switching frequency in the
cost function, MPDCC often achieves a performance close to that of OPPs, but it is unable to
outperform them. This is shown in the extensive performance comparison [6].

A three-level NPC inverter with an induction machine was used in this chapter as an illustra-
tive example for an MV drive system. Addressing other topologies and machines only requires
a change of the internal controller model, and is thus a straightforward undertaking. Notably,
MPDCC can be applied to both modular multilevel converters [30] and grid-connected con-
verters [31]. In the presence of an LC filter, an active damping loop is required to suppress the
filter resonance. To this end, a virtual resistor [32, 33] can be incorporated into the MPDCC



�

� �

�

Derivatives of Model Predictive Direct Torque Control 403

algorithm [34]. Such a resistor emulates a physical damping resistor without incurring power
losses. A virtual resistor is also effective in attenuating current harmonics that result from grid
voltage harmonics, as indicated by the experimental results in [34].

An important aspect, which has not yet been discussed, is closed-loop stability. It can
be shown for MPDCC that the algorithm guarantees closed-loop stability; the load currents
are moved into the imposed bounds and are kept within them. This is formally proven in
[35], although the switching constraint ||Δu(
)||∞ ≤ 1 in (11.24e) had to be neglected and
the hexagonal bounds were approximated by a circle. It can also be shown that, by slightly
modifying the MPDCC algorithm, robustness to bounded additive parameter uncertainties
can be established. For more details on the stability and robustness of MPDCC, the reader is
referred to [35].

11.3.2 Model Predictive Direct Power Control

MPDPC imposes upper and lower bounds on the instantaneous real and reactive power with
the bound width parameters δP and δQ. As shown in [36], the grid current distortions are
proportional to δ2

P + δ2
Q, simplifying the tuning procedure. The lowest current distortions

per switching frequency are achieved when the two bound widths are the same. Therefore,
MPDPC has—like MPDCC—in effect only one tuning parameter. Furthermore, thanks to
the fact that the bounds are constant within the prediction horizon, the control problem
formulation is as simple as in MPDTC.

MPDPC with long switching horizons is capable of reducing the current distortions per
switching losses compared to SVM. The harmonic spectrum of MPDPC is, however, ill suited
to meet harmonic grid standards imposed at the PCC, because MPDPC produces harmonic
content at even and triplen integer multiples of the fundamental frequency. Moreover, even if
such a harmonic spectrum were acceptable, MPDCC might still be the preferred choice for
grid-connected converters, as it can also be used for the grid side and—thanks to its hexagonal
bounds—tends to produce slightly lower current distortions.

An LC filter is required in most cases to meet the relevant grid standards. To dampen the
filter resonance, MPDPC can be augmented with a virtual resistor [32, 33] in a similar manner
as for MPDCC. More specifically, as proposed in [37], virtual resistors can be placed in par-
allel to the filter inductor and capacitor. In the introduction to this section, we have seen that
DPC can be formulated in terms of virtual converter and grid fluxes, giving rise to VF-DPC.
Accordingly, MPDPC can be extended to VF-MPDPC, as shown in [38]. Experimental results
for an NPC converter are provided in [36], using the MPDPC formulation explained in this
section. Several implementation-related aspects of MPDPC are also discussed, which reduce
the computational burden and simplify the implementation.

11.3.3 Target Sets

We have seen in this chapter that MPDCC and MPDPC are closely related to MPDTC. Indeed,
the main differences between these three control methods are both their controller model and
which output variables they control by imposing upper and lower bounds on them. These
bounds form a set, within which the controlled variables are retained. In the following, we
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Figure 11.24 MPDTC target set

will compare the characteristic target sets of MPDTC, MPDCC, and MPDPC by expressing
them in terms of the (stator or converter) current.

MPDTC imposes upper and lower bounds on the torque and stator flux magnitude around
their references T ∗

e and Ψ∗
s. For a given rotor flux vector ψr, these references can be translated

with the help of (9.1) into an equivalent reference ψ∗
s on the stator flux vector. The upper

and lower torque and flux magnitude bounds can be translated accordingly into bounds on the
stator flux vector. As shown in Fig. 11.24(a), the torque bounds form lines parallel to the rotor
flux vector, whereas the stator flux magnitude bounds are concentric circles around the origin.
Note that the example in this figure corresponds to an MV induction machine, which operates
at nominal torque and whose rated values are provided in Table 2.9. The target set rotates with
the angular stator frequency ωs.

In a further step, the bounds on the stator flux vector can be translated into equivalent bounds
on the stator current vector. To this end, consider the first row of (2.53), which is

is =
Xr

D
ψs −

Xm

D
ψr = 3.92ψs − 3.75ψr . (11.50)

The numerical values correspond to the 3.3 kV MV induction machine used throughout the
book (see Table 2.10). The current vector is a linear transformation of the stator and rotor flux
vectors. Specifically, the current vector is the scaled stator flux shifted by the scaled rotor flux.
The resulting current bounds, which are shown in Fig. 11.24(b), are equivalent to those on the
stator flux vector in Fig. 11.24(a). It can be seen that the target set is increased about fourfold
and shifted upwards. The line segments of the torque bounds and the circular segments of
the flux magnitude bounds are preserved thanks to the linear transformation in (11.50). In
particular, the orientation of the bounds in the stationary orthogonal reference frame remains
unchanged.

In MPDCC, upper and lower bounds are imposed on the three phase currents. This formu-
lation of the bounds is, as discussed in Sect. 11.1.3, beneficial to achieve a favorable ratio
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Figure 11.25 Target sets of MPDCC and MPDPC

between the current distortions and the switching losses. The bounds form a hexagonal tar-
get set in the stationary orthogonal reference frame. As depicted in Fig. 11.25(a), this target
set is centered at the stator current reference vector i∗s. In contrast to MPDTC, the MPDCC
target set does not rotate. In particular, the vertical edges, which correspond to the upper and
lower bounds on the phase a current, remain parallel to the β-axis of the stationary orthogonal
coordinate system.

MPDPC controls the instantaneous real and reactive power with the help of upper and lower
bounds. Equation (11.B.11) implies that the bounds on the real power are orthogonal to the
grid voltage, whereas the bounds on the reactive power are parallel to it. These bounds form
a rectangular target set around the reference of the converter current i∗c (see Fig. 11.25(b)).
As shown in [36], the lowest current distortions per switching effort are achieved when the
target set is square. The bounds rotate in the stationary orthogonal coordinate system with the
angular grid frequency ωg.

It is clear that MPDCC with hexagonal bounds achieves the lowest current distortions
per switching effort, followed by the square bounds of MPDPC. The non-square bounds of
MPDTC are less suitable to achieving very low current distortions. The difference between
MPDCC and MPDTC in terms of the current distortions per switching losses is, however,
small, as will be shown in Sect. 15.1 through extensive simulations. Similarly, only small dif-
ferences arise when comparing the current distortions per switching frequency, as shown in [6].

Appendix 11.A: Controller Model used in MPDCC

The matrices (11.19) of the continuous-time MPDCC model (11.18) are derived in this
appendix. Recall that the machine model (11.4) is described in the stationary αβ reference
frame. In order to guard against confusion, we will explicitly state in this appendix the
coordinate systems in which the vectors are defined.
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In a first step, we express the stator dynamic (11.4a) in terms of the three-phase stator current
is,abc. A left-multiplication of (11.4a) with the pseudo-inverse of the reduced Clarke transfor-

mation K̃
−1

(see (2.13)) yields

d
dt

(K̃
−1

is,αβ) = − 1
τs

K̃
−1

is,αβ + K̃
−1

(
1
τr

I2 − ωr

[
0 −1
1 0

] )
Xm

D
ψr,αβ

+
Xr

D
K̃

−1
vs,αβ . (11.A.1)

In a next step, we insert the expression (11.1) for the stator voltage into (11.A.1) and write the
differential equation in terms of the three-phase stator current. Doing the same for the rotor
dynamic (11.4b) leads to the revised machine model

dis,abc

dt
= − 1

τs

is,abc + K̃
−1

(
1
τr

I2 − ωr

[
0 −1
1 0

] )
Xm

D
ψr,αβ +

vdc

2
Xr

D
K̃

−1
K̃uabc

(11.A.2a)

dψr,αβ

dt
=

Xm

τr

K̃is,abc −
1
τr

ψr,αβ + ωr

[
0 −1
1 0

]
ψr,αβ . (11.A.2b)

The system and input matrices F m and Gm of the continuous-time machine model can then
be stated as

F m =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− 1
τs

0 0 1
τr

Xm

D ωr
Xm

D

0 − 1
τs

0 − 1
2 (

1
τr

+
√

3ωr)
Xm

D
1
2 (

√
3

τr
− ωr)

Xm

D

0 0 − 1
τs

1
2 (
√

3ωr − 1
τr

)Xm

D − 1
2 (

√
3

τr
+ ωr)

Xm

D

2
3

Xm

τr
− 1

3
Xm

τr
− 1

3
Xm

τr
− 1

τr
−ωr

0 1√
3

Xm

τr
− 1√

3
Xm

τr
ωr − 1

τr

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11.A.3a)

Gm =
vdc

6
Xr

D

⎡

⎢⎢⎢⎢⎣

2 −1 −1
−1 2 −1
−1 −1 2
0 0 0
0 0 0

⎤

⎥⎥⎥⎥⎦
. (11.A.3b)

Note that the three upper rows of Gm relate to the matrix product K̃
−1

K̃, which can be
written as

K̃
−1

K̃ =
1
3

⎡

⎣
2 −1 −1
−1 2 −1
−1 −1 2

⎤

⎦ =

⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ − 1
3

⎡

⎣
1 1 1
1 1 1
1 1 1

⎤

⎦ . (11.A.4)

The last matrix in (11.A.4) removes the common-mode component of the three-phase switch
position from each phase. This implies that—not surprisingly—only the differential-mode part
of the three-phase switch position manipulates the stator current, while the common-mode part
has no effect.
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The dynamic of the neutral point potential is described by (11.3) in terms of the
component-wise absolute value of the inverter switch position |uabc| = [|ua| |ub| |uc|]T
and the three-phase stator current. The input-dependent system vector of the inverter directly
follows as

f i(uabc) =
1

2Xc

[
|ua| |ub| |uc| 0 0

]
. (11.A.5)

Appendix 11.B: Real and Reactive Power

The expressions for the instantaneous power of the three-phase system shown in Fig. 11.15
are derived in this appendix. We start with the instantaneous real power at the grid voltage
sources. In phase a, the instantaneous real power is the product of the grid voltage vga and the
converter current ica. By summing up the contributions from all three phases, the instantaneous
three-phase real power in the SI system is given by

P = vgaica + vgbicb + vgcicc = vT
g,abcic,abc . (11.B.1)

Using the inverse Clarke transformation (2.10), the three-phase grid voltage can be
expressed in stationary orthogonal coordinates as

vg,abc = K−1vg,αβ0 , (11.B.2)

where vg,αβ0 = [vgα vgβ vg0]. The same can be performed with the converter current, where
ic,αβ0 is defined accordingly. Note that we included the 0-component here. We can then rewrite
(11.B.1) as

P = vT
g,αβ0K

−T K−1ic,αβ0 = vT
g,αβ0

⎡

⎣
1.5 0 0
0 1.5 0
0 0 3

⎤

⎦ ic,αβ0 . (11.B.3)

The zero-sequence current ic0 is zero in the absence of faults, and (11.B.3) reduces to

P =
3
2
(vgαicα + vgβicβ) . (11.B.4)

Note that the factor 1.5 is a consequence of the Clarke transformation being amplitude-
invariant rather than power-invariant.

The reactive power is commonly defined in single-phase systems to be at its maximum when
the current leads the voltage by 90◦. The reactive power can then be defined in phase a as the
product of the current ica and the voltage v̆ga. The latter represents the phase a grid voltage vga

that is phase-shifted by 90◦. This definition can be extended to three-phase systems. According
to [39], the instantaneous three-phase reactive power in the SI system is defined as

Q = v̆gaica + v̆gbicb + v̆gcicc = v̆T
g,abcic,abc , (11.B.5)

where the phase-shifted grid voltages in phases b and c, v̆gb and v̆gc, are defined similar to v̆ga.
The phase-shifted three-phase voltage is defined as v̆g,abc = [v̆ga v̆gb v̆gc]

T .
We define

v̆g,abc = K−1v̆g,αβ0 (11.B.6)

in accordance with (11.B.2). It is easy in the orthogonal reference frame to relate the grid
voltage to its phase-shifted counterpart. For the α- and β-components, this is achieved by a
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90◦ rotation, whereas the 0-component remains the same.

v̆g,αβ0 =

⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦ vg,αβ0 . (11.B.7)

Equation (11.B.5) can be rewritten with the help of (11.B.6) and (11.B.7) as

Q = vT
g,αβ0

⎡

⎣
0 −1 0
1 0 0
0 0 1

⎤

⎦
T

K−T K−1ic,αβ0 = vT
g,αβ0

⎡

⎣
0 1.5 0

−1.5 0 0
0 0 3

⎤

⎦ ic,αβ0 . (11.B.8)

With ic0 being zero, (11.B.8) simplifies to

Q =
3
2
(vgαicβ − vgβicα) . (11.B.9)

This definition is in line with [26]. The definitions of the instantaneous real and reactive power
components are applicable to symmetric as well as asymmetric grid voltages, provided that
the sum of the converter currents—the zero-sequence current—is zero.

Additional insight can be gained by adopting a rotating dq reference frame, which rotates
with the angular grid frequency ωg = 2πfg . In this reference frame, we define the grid voltage
vg,dq = [vgd vgq]

T and the converter current ic,dq = [icd icq]
T . With the help of the αβ to

dq transformation (2.24), which is based on the rotation matrix R (see (2.25)), the power
components can be written as

P =
3
2
(vgdicd + vgqicq) (11.B.10a)

Q =
3
2
(vgdicq − vgqicd) . (11.B.10b)

By aligning the d-axis with the grid voltage, the quadrature component of the grid voltage
becomes zero, and the expressions for the real and reactive power components simplify to

P =
3
2
vgdicd (11.B.11a)

Q =
3
2
vgdicq . (11.B.11b)

This compact representation reveals that the d-component of the converter current produces
real power while the quadrature component of the current produces reactive power. This fact
is depicted in Fig. 11.B.1. We can also see that positive reactive power corresponds to the
capacitive case, in which the current leads the voltage.

To express (11.B.4) and (11.B.9) in the pu system, we normalize the grid voltage and the
converter current by the base voltage VB and the base current IB , respectively. The power is
normalized by the base apparent power SB = 1.5VBIB (see also Table 2.1 and Sect. 2.5.4).
To this end, we introduce the pu quantities

v′
g =

vg

VB

, i′c =
ic

IB

, P ′ =
P

SB

and Q′ =
Q

SB

. (11.B.12)
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α

β

ϕ

d

q

vg,dq

ic,dq

icd

icq
ωg

Figure 11.B.1 Converter current ic,dq and grid voltage vg,dq in an orthogonal reference frame that is
aligned with the grid voltage and rotates with the angular grid frequency ωg . The current component icd

relates to the real power P , whereas the quadrature current component icq relates to the reactive power Q

Dividing (11.B.4) and (11.B.9) by VB , IB , and 1.5 leads to

P ′ =
P

1.5VBIB

= v′
gαi′cα + v′gβi′cβ (11.B.13a)

Q′ =
Q

1.5VBIB

= v′
gαi′cβ − v′gβi′cα . (11.B.13b)

To simplify the notation, we will drop hereafter the superscript ′. Per unit quantities are adopted
throughout this book and all variables and parameters are normalized.

Appendix 11.C: Controller Model used in MPDPC

The continuous-time prediction model for MPDPC is derived in this appendix. The model
is based on the converter current ic, the converter voltage vc, and the grid voltage vg in the
stationary orthogonal reference frame. The switch position u is a three-phase vector.

We start by inserting the converter voltage (11.30) into the differential equation (11.34) of
the converter current. This leads to

dic

dt
= −R

X
ic −

1
X

vg +
vdc

2X
K̃ u . (11.C.1)

By combining (11.C.1) with the evolution of the grid voltage (11.35), we obtain

d
dt

[
ic

vg

]
= F g

[
ic

vg

]
+ Gg u (11.C.2)

with the matrices

F g =

⎡

⎢⎢⎢⎢⎣

−R
X 0 − 1

X 0

0 −R
X 0 − 1

X

0 0 0 −ωg

0 0 ωg 0

⎤

⎥⎥⎥⎥⎦
and Gg =

vdc

6X

⎡

⎢⎢⎣

2 −1 −1
0

√
3 −

√
3

0 0 0
0 0 0

⎤

⎥⎥⎦ . (11.C.3)
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The dynamic evolution of the neutral point potential depends on both the component-wise
absolute value of the switch position and the three-phase converter current. The latter can be
expressed in terms of the αβ current, which allows us to rewrite (11.31) as

dυn

dt
=

1
2Xc

|u|T K̃
−1

ic (11.C.4)

or equivalently as
dυn

dt
= f c(u)

[
ic

vg

]
, (11.C.5)

where we have introduced

f c(u) =
1

4Xc

[
2|ua| − |ub| − |uc|

√
3(|ub| − |uc|) 0 0

]
. (11.C.6)

By recalling the definitions of the instantaneous real and reactive power (11.36), the output
function directly follows, as

h(x) =

⎡

⎣
x1x3 + x2x4
x2x3 − x1x4

x5

⎤

⎦ . (11.C.7)
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12
Model Predictive Pulse Pattern
Control

Offline-computed optimized pulse patterns (OPPs) allow the minimization of the current dis-
tortion for a given switching frequency. Conceptually, OPPs are a particularly attractive choice
for medium-voltage (MV) drives. Traditionally, however, it has been possible to use OPPs only
in a modulator driven by a very slow control loop. When the operating point is changed or when
transitions between different pulse patterns occur, the absence of a fast controller leads to a
poor dynamic performance and to large deviations of the stator currents from their references.

After recapitulating state-of-the-art control methods that utilize OPPs, this chapter
describes a novel control and modulation strategy that combines the dynamic performance of
a high-bandwidth controller such as direct torque control (DTC) with the superb harmonic
performance of OPPs during steady-state operation. More specifically, the proposed pulse
pattern controller achieves a nearly optimum ratio of harmonic current distortions per
switching frequency at steady-state operation, and a fast rejection of disturbances. During
transients, very fast current and torque response times are achieved that are similar to that of
DTC, particularly when inserting additional pulses when required.

The underlying optimization problem constitutes a quadratic program (QP), which can be
solved efficiently in real time. Alternatively, the pulse pattern controller can be simplified to a
deadbeat (DB) controller. Simulation and experimental results of MV drive systems are pro-
vided in Chap. 13.

12.1 State-of-the-Art Control Methods

A common method to establish closed-loop control is to use field-oriented control (FOC)
for machine-side inverters and voltage-oriented control (VOC) for grid-side converters. For
a review of FOC and VOC, the reader is referred to Sect. 3.6.2 and to the introduction of Sect.
11.2, respectively. When using OPPs in the modulator, however, the performance of the over-
all control scheme is very limited—even in quasi-steady-state operation. Current excursions
occur that may lead to overcurrent conditions [1]. Therefore, the application of FOC and VOC

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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with OPPs has been typically limited to grid-connected setups, where the range of modulation
indices is relatively small during nominal operation. When the goal is to use this method in
applications with widely varying modulation indices, as is the case for variable-speed drives,
the (inner) current control loop is tuned to be sufficiently slow such that its operation does not
interfere with the optimal volt-second balance of the OPP. However, such a tuning significantly
decreases the dynamic performance of the drive.

Furthermore, in this case, the offline optimization procedure of OPPs itself is compromised,
because restrictions need to be added to the optimization algorithm that avoid discontinuities
in the switching angles when changing the modulation index. Eliminating these discontinuities
in the OPP improves operation at quasi steady state by eliminating a priori the possibility of
current excursions when the operating point changes. However, the resulting currents are sub-
optimal in terms of the total demand distortion (TDD) even at steady-state operation, because
of the additional restrictions added during the optimization procedure.

As an improvement to FOC with OPPs, current trajectory tracking was proposed in [1–3].
This method derives the optimal steady-state stator current trajectory from the pulse pattern in
use. The actual stator current space vector is forced to follow this target trajectory. A disadvan-
tage is that the stator current trajectory depends on the parameters of the electrical machine,
notably on the total leakage inductance [4]. Variations in the load conditions have also been
found to influence the stator current trajectory.

A further improvement can be made by tracking the stator flux trajectory [5, 6], which is
insensitive to parameter variations and is thus better suited for trajectory tracking control. To
establish closed-loop control, the instantaneous fundamental components of the stator current
and flux linkage vectors are required in real time. As the ripple current is nonzero at the sam-
pling instants, these fundamental machine quantities cannot be directly sampled when using
OPPs [4]. This makes the design of the closed-loop controller difficult, because these sig-
nals are required to achieve flux and torque control. For this reason, existing control schemes,
such as [3, 7, 8], employ an observer to derive the instantaneous fundamental current and flux
linkage values separately from their respective harmonic quantities.

12.2 Optimized Pulse Patterns

In this section, the notion and computation of OPPs is recapitulated from Sect. 3.4. The ref-
erence trajectory of the stator flux vector is computed, and the storing of OPPs in a look-up
table is discussed.

12.2.1 Summary, Properties, and Computation

OPPs are computed in an offline procedure by calculating the optimal switching angles and
switching transitions. Typically, the aim is to minimize the current TDD for a given switching
frequency (or pulse number). Assuming a load with a predominantly inductive characteristic,
the current TDD is proportional to the weighted sum of the squared differential-mode voltage
harmonics

ITDD ∝

√√√√
∑

n=5,7,11,...

(
v̂n

n

)2

, (12.1)
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where v̂n is the magnitude of the nth voltage harmonic. In an induction machine, the quantity
v̂n/n is proportional to the magnitude of the nth current harmonic. It is therefore common
practice to choose (12.1) as the cost function when computing OPPs, as explained in Sect.
3.4.2. Note that only the differential-mode harmonics are penalized in the cost function.

In the first step, a single-phase pulse pattern is computed that minimizes the cost function
(12.1) for a given modulation index m. Owing to the imposed quarter-wave symmetry, the
single-phase pulse pattern is fully characterized by the primary switching angles and the cor-
responding switch positions over the first quarter of the fundamental period. To this end, we
define the vector of primary switching angles

A = [α1 α2 . . . αd]
T (12.2)

and the vector of switch positions (the switching sequence)

U = [u1 u2 . . . ud]
T . (12.3)

Both vectors are of length d, where d denotes the pulse number. Note that the initial switch
position u0 is assumed to be zero. Switching is performed from ui−1 to ui at the angular
position αi, where i ∈ {1, . . . , d}. This relationship is exemplified in Fig. 12.1(a).

It is clear that the pulse pattern is a piecewise constant signal. In the interval 0 ≤ θ ≤ π
2 , the

single-phase pulse pattern can be described by the statement

u(θ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

0, if 0 ≤ θ < α1
u1, if α1 ≤ θ < α2
u2, if α2 ≤ θ < α3
...

...
ud−1, if αd−1 ≤ θ < αd

ud, if αd ≤ θ ≤ π
2 .

(12.4)

The voltage harmonics v̂n in (12.1) can be expressed as a function of the dc-link voltage,
the primary switching angles, and the corresponding switching transitions (see (3.29) and
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(a) Single-phase pulse pattern
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(b) Three-phase pulse pattern

Figure 12.1 OPP with d = 5 primary switching angles for a three-level inverter with the modulation
index m = 0.6
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Figure 12.2 Primary switching angles as a function of the modulation index. The switching angles
indicated by (black) circles correspond to the modulation index m = 0.6. The corresponding switching
sequence is shown in Fig. 12.1

(3.24b)). Owing to the quarter-wave symmetry, the computation is restricted to one quarter of
the fundamental period. The minimization of the cost function (12.1) for a given modulation
index m results in the vector of primary switching angles A and the vector of switch positions
U , whose corresponding pulse pattern minimizes the current TDD for an inductive load.

To derive the OPP for the whole range of modulation indices [0, 4/π], this set is finely
gridded (or discretized) resulting, for example, in the set {0, 0.005, 0.01, . . . 4/π}. For each
discrete element in this set, the corresponding switching angles and switch positions are com-
puted, resulting in a matrix of primary switching angles and switch positions.

The three-phase OPP can easily be constructed from the single-phase pulse pattern in two
steps. First, by applying quarter-wave and half-wave symmetry, the remaining single-phase
switching angles over 360◦ can be derived. Second, by shifting the single-phase pattern by
120◦ and 240◦, respectively, the three-phase OPP is constructed.

Example 12.1 For a three-level converter, the switching sequence is always U = [1 0 1 . . .]T .
The primary switching angles are shown in Fig. 12.2, assuming the pulse number d = 5. The
single-phase pulse pattern that corresponds to the modulation index m = 0.6 is shown in
Fig. 12.1(a), while the three-phase OPP is shown in Fig. 12.1(b).

12.2.2 Relationship between Flux Magnitude and Modulation Index

In this section, we establish the simple yet important relationship between the stator flux
magnitude, nominal dc-link voltage Vdc, modulation index, and fundamental frequency. As
this relationship is between fundamental and dc quantities, we neglect the phenomenon of
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switching and assume sinusoidal three-phase voltages with the angular fundamental frequency
ω1. According to the definition of the modulation index m in (3.12), the (ideal) three-phase
voltage produced by the inverter is

vabc(t) = m
Vdc

2

⎡

⎣
sin(ω1t)
sin(ω1t − 2π

3 )
sin(ω1t − 4π

3 )

⎤

⎦ . (12.5)

Using the Clarke transformation (2.12), we can express the sinusoidal inverter voltages in
orthogonal coordinates1 as

v(t) =
[
vα(t)
vβ(t)

]
= K̃vabc(t) = m

Vdc

2

[
sin(ω1t)

− cos(ω1t)

]
. (12.6)

When connecting a three-phase electrical machine to the inverter, the stator frequency equals
the fundamental frequency, that is, ωs = ω1, and the stator voltage equals the inverter voltage,
that is, vs = v. Neglecting the stator resistance, the stator flux vector ψs = [ψsα ψsβ]T at
time t is given by

ψs(t) = ψs(0) +
∫ t

0
vs(τ)dτ . (12.7)

By inserting (12.6) into (12.7), the evolution of the ideal stator flux vector can be rewritten as

ψs(t) = −m

ωs

Vdc

2

[
cos(ωst)
sin(ωst)

]
. (12.8)

It directly follows that the magnitude of the stator flux vector is

Ψs = ||ψs|| =
m

ωs

Vdc

2
. (12.9)

Recall that the influence of switching was neglected in the derivation of (12.9). Therefore, Ψs

is a pure dc quantity without harmonic components.
We observe that, in order to maintain a desired stator flux magnitude for the machine in a

variable speed drive, the modulation index should be adjusted proportionally to the stator fre-
quency. The relationship (12.9) holds true both for SI quantities and in the per unit (pu) system.

12.2.3 Relationship between Time and Angle

Before proceeding, we relate the time t with the angle θ, which is used as an argument in the
OPP. Assuming that the angle is given in radians and the time in seconds, the rule of proportions
allows us to state

θ

2π
=

t

T1
, (12.10)

where T1 = 1/f1 is the period of the fundamental waveform. With the angular stator frequency
ωs being equal to 2π/T1, (12.10) can be rewritten in SI quantities as

θ = ωst. (12.11)

1 To simplify the notation, throughout this chapter we will drop the subindex αβ from vectors in the stationary orthog-
onal coordinate system.
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Recall that in Sect. 2.2.1 we had defined the stator frequency in the pu system as ω′
s = ωs/ωB

and the time in pu as t′ = tωB , with ωB denoting the angular base frequency. Therefore,
(12.11) also holds true when adopting the pu system, assuming that the superscript ′ is dropped
as in Chap. 2.

12.2.4 Stator Flux Reference Trajectory

For the derivation of the reference trajectory of the stator flux vector, consider an electrical
machine connected to the inverter terminals and neglect the machine’s stator resistance. For
a given OPP, the stator flux reference trajectory in stationary coordinates is obtained by inte-
grating over time the switched voltage sequence of the OPP. For a three-level inverter with the
switch positions U = {−1, 0, 1}, the stator voltage in stationary coordinates is given by

v∗
s(t) =

Vdc

2
K̃u∗

abc(ωst) (12.12)

according to (2.77), where we neglected the fluctuations of the neutral point potential and
assumed the dc-link voltage to be at its nominal value. The argument of the three-phase switch-
ing waveform u∗

abc of the OPP is the angle θ. As per (12.11), the latter is equal to ωst.
By inserting (12.12) into (12.7), the reference of the stator flux vector at time t can be

stated as

ψ∗
s(t) = ψ∗

s(0) +
Vdc

2

∫ t

0
K̃u∗

abc(ωsτ)dτ . (12.13)

Changing the integrand to ϑ = ωsτ , the reference can be stated, with the angle θ as an argu-
ment, as

ψ∗
s

(
θ

ωs

)
= ψ∗

s(0) +
Vdc

2
1
ωs

∫ θ
ωs

0
K̃u∗

abc(ϑ)dϑ. (12.14)

With the help of (12.9), this statement can be further simplified to

ψ∗
s(θ) = ψ∗

s(0) +
Ψ∗

s

m

∫ θ

0
K̃u∗

abc(ϑ)dϑ. (12.15)

We have also redefined the stator flux reference as being a function of the angle θ instead of
the time t. The benefit of the representation (12.15) is that the stator flux vector reference is
independent of the drive parameters, most notably the dc-link voltage. It depends only on the
desired flux magnitude and the modulation index.

Example 12.2 Consider again the OPP with pulse number d = 5 and modulation index m =
0.6, as described in Example 12.1. By setting Ψ∗

s = 1, solving the integral (12.15), and choos-
ing ψ∗

s(0) such that the trajectory is centered on the origin, the corresponding piecewise affine
stator flux reference trajectory is obtained. The latter is shown in Fig. 12.3 over 90◦ in sta-
tionary coordinates. As the three-phase pulse pattern is piecewise constant, the stator flux
reference trajectory is piecewise affine, that is, piecewise linear with offsets.

Despite the average amplitude of the stator flux trajectory being 1, it is obvious from
Fig. 12.3 that the instantaneous amplitude oscillates around 1, as shown in Fig. 12.4(a).
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Figure 12.3 Stator flux reference trajectory in the αβ-plane for the OPP shown in Fig. 12.1
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Figure 12.4 Magnitude and angle ripple of the stator flux reference for the OPP shown in Fig. 12.1

The instantaneous angle of the stator flux vector also oscillates around its nominal value.
Figure 12.4(b) shows the angle ripple, that is, the difference between the angle of the stator
flux vector and its argument θ. This ripple is the result of variations in the instantaneous
angular speed of the stator flux vector, which necessarily arise when applying voltage vectors
of different and discrete magnitudes. Zero vectors, for example, temporarily bring the stator
flux vector to a halt. The zero vectors are indicated by small circles in Fig. 12.3.

To avoid confusion, we use ||ψ∗
s|| to denote the instantaneous magnitude of the stator flux

reference vector, which includes the ripple because of switching, while Ψ∗
s refers to the average

(or dc) flux magnitude, which excludes the switching ripple. Similarly, for the angle of the
stator flux reference, ∠ψ∗

s denotes the instantaneous angle, while θ∗ is the angle reference.
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We also observe that the stator flux trajectory exhibits a high degree of symmetry. Specif-
ically, it repeats itself every 60◦. Within the 60◦ segments, the trajectory is symmetric at 30◦,
as can be seen in Fig. 12.3. The same observations apply to the ripples on the magnitude and
angle of the stator flux vector. This ripple is optimal in the sense that it corresponds to the opti-
mum ripple current and to minimum current distortions. The angular ripple leads to a torque
ripple, while the amplitude ripple leads to a magnetization ripple.

12.2.5 Look-Up Table

OPPs can be conveniently stored in a look-up table. Because of the strong symmetry observed
here, it suffices to store for each modulation index m and pulse number d the following infor-
mation:

1. Primary switching angles αi and switch positions ui, with i = 1, 2, . . . , d, of the
single-phase pulse pattern over the first quarter of the fundamental period. Note that u0 is
always zero.

2. Corner points of the reference trajectory of the stator flux vector in stationary orthogonal
coordinates with the stator flux amplitude 1 pu. It can be shown that d + 1 corner points
over 30◦ suffice.

Based on this information, the three-phase OPP and the flux trajectory reference over the full
fundamental period can easily be constructed.

12.3 Stator Flux Control

12.3.1 Control Objectives

The requirements for a control and modulation scheme for an MV drive are fourfold.

1. At steady-state operation, the overall current distortion in the stator windings should be
minimized for a given switching frequency.

2. During transients and torque steps, fast dynamic control and a short torque response time
should be achieved.

3. A simple implementation and a high degree of reliability should be ensured by avoiding the
need for estimating the fundamental component of the stator flux or current in real time.

4. The controller should be insensitive to parameter variations and measurement noise.

12.3.2 Control Principle

By modifying the switching instants of the OPP, closed-loop control of an electrical machine
based on OPPs can be achieved by controlling the stator flux vector along its reference tra-
jectory. To illustrate this control principle, consider the stator flux in phase a. By inserting
vsa = 0.5vdcua into the phase a component of (12.7), we obtain

ψsa(t) = ψsa(0) +
vdc

2

∫ t

0
ua(τ)dτ . (12.16)
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Figure 12.5 Delaying the negative switching transition Δua = −1 in phase a by Δta, with regard to
the nominal switching time t∗a, increases the stator flux component in this phase

Note that we use here the instantaneous dc-link voltage vdc rather than the nominal one to
account for dc-link voltage fluctuations.

Assume that one switching transition occurs in phase a in the time interval between zero
and t. Let Δua = ua1 − ua0 denote this switching transition, where Δua is a nonzero integer.
The nominal switching time is t∗a, while the actual or modified switching time is

ta = t∗a + Δta. (12.17)

According to (12.16), the stator flux in phase a at time t ≥ ta is equal to

ψsa(t) = ψsa(0) +
vdc

2

(∫ ta

0
ua0dτ +

∫ t

ta

ua1dτ

)
, (12.18)

which can, by solving the integrals, be rewritten as

ψsa(t) = ψsa(0) +
vdc

2
((ua0 + Δua)t − Δuat∗a − ΔuaΔta). (12.19)

The stator flux at time t can be manipulated through the last term in (12.19) and the switching
time modification Δta. We conclude that modifying the switching transition by Δta changes
the phase a stator flux by

Δψsa(Δta) = −vdc

2
ΔuaΔta. (12.20)

Example 12.3 An example for this is shown in Fig. 12.5. Delaying the negative switching
transition Δua = −1 by Δta increases the volt-seconds and thus the stator flux in this phase
by 0.5vdcΔta. Advancing the switching event has the opposite effect, that is, it decreases the
flux amplitude in the direction of phase a. The same holds true for phases b and c.

12.3.3 Control Problem

The stator flux error is the difference between the reference of the stator flux vector and the
actual stator flux of the machine. Even at steady-state operation, this flux error is generally
nonzero because of non-idealities of the real-world drive system. These non-idealities include
fluctuations in the dc-link voltage, the presence of the stator resistance, which was neglected
in (12.15), and non-idealities of the power inverter, such as dead-time effects. For a summary
of non-idealities in inverter drive systems, the reader is referred to [9].

During transient operation, the flux error accurately reflects the change in the operating
point. A stepwise change in the torque setpoint, for example, results in a stepwise change in
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Transient pulse pattern Steady-state pulse pattern

ψs(t0) ψs(t1)

u(t0) u(t1)

Interval Tp

∗

Figure 12.6 Boundary control problem formulated over the time interval Tp. The transient pulse pattern
drives the stator flux vector from its current position ψs(t0) to the desired position on the reference
trajectory ψ∗

s(t1) with the switch position u(t1)

the flux error. By correcting this flux error, the torque is regulated to its new setpoint. The
faster this correction is achieved, the shorter is the torque response time.

The stator flux control problem can be interpreted as a boundary control problem. For this,
we introduce the three-phase switch position uabc = [ua ub uc]

T . To simplify the exposition,
we will often drop the indices from uabc and simply write u. The boundary control problem
is illustrated in Fig. 12.6. Starting at time t0 with the switch position u(t0) and the stator flux
vector ψs(t0), a transient pulse pattern over the time interval Tp needs to be derived. This
pulse pattern drives the stator flux vector to the terminal stator flux ψ∗

s(t1) and leads to the
terminal switch position u(t1) at time t1 = t0 + Tp. In general, ψ∗

s(t1) is on the reference flux
trajectory and u(t1) is the corresponding switch position. In this boundary control problem,
u(t0) and ψs(t0) are the initial conditions while u(t1) and ψs(t1) are the terminal conditions.

12.3.4 Control Approach

The control problem can be formulated as a constrained optimal control problem with a reced-
ing horizon policy or, equivalently, as a model predictive control (MPC) problem. For a review
of the concept of MPC, the reader is referred to Sect. 1.3 and the references therein.

The key idea of the proposed control approach is to associate the prediction horizon with
the time interval Tp = t1 − t0, and to drive the stator flux vector over this horizon to its desired
position, thus correcting the stator flux error. This is enforced by adding a terminal equality
constraint on the state vector. From the end of the horizon onward, steady-state operation
is assumed. In particular, the controller assumes that from t1 onward, the nominal, that is,
the steady-state pulse pattern, will be applied. Nevertheless, because of the receding horizon
policy illustrated in Fig. 12.7, the steady-state OPP will never be applied. Instead, at every
time step, the first part of the modified OPP, that is, the pulse pattern within the sampling
interval Ts < Tp, will be applied to the drive system. More specifically, at time step k, the
pulse pattern from kTs to (k + 1)Ts is applied, and switching from ua = 0 to 1 is performed
in the example shown in Fig. 12.7(a). Similarly, at time step k + 1, the pulse pattern from
(k + 1)Ts to (k + 2)Ts is applied, which is constant at ua = 1 in Fig. 12.7(b).

The stator flux error is small at steady-state operating conditions, typically amounting to
1% or 2% of the nominal flux magnitude. Only small corrections of the switching instants are
thus required to remove the flux error. This allows us to use the steady-state OPP as a base-
line pattern and to re-optimize around it locally to achieve closed-loop control. The resulting
transient pulse pattern is not optimal in the strict sense, but its derivation is computationally
much simpler than the computation of an entirely new transient pulse pattern.
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(a) Prediction horizon at time step k
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(c) Prediction horizon at time step k + 2

Figure 12.7 Illustration of the receding horizon policy for phase a. The modified pulse pattern is com-
puted over the prediction horizon Tp. Out of this, only the first part of the pulse pattern over the sampling
interval Ts is applied to the inverter

12.4 MP3C Algorithm

Following the introductory statements made in the previous section, the notion of stator flux
trajectory tracking control is generalized in this section. A model predictive controller with
the receding horizon policy is proposed, which we refer to as model predictive pulse pattern
control (MP3C). This control scheme addresses in a unified manner the tasks of the inner
control loop and modulator.

The internal model of this controller is based on two integrators of the form (12.16), one for
each axis in the stationary orthogonal coordinate system. A prediction horizon of a finite length
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in time is used, and the switching instants of the pulse pattern are shifted such that the stator
flux error is corrected within the horizon. From the end of the horizon onward, steady-state
operation is assumed. The underlying optimization problem is solved in real time, yielding a
sequence of optimal control actions within the horizon. Only the first control action of this
sequence (the pulse pattern over Ts) is applied to the drive system, in accordance with the
receding horizon policy (see Fig. 12.7). At the next sampling instant, the control sequence is
recomputed over a shifted horizon, thus providing feedback as well as robustness to model
inaccuracies and measurement noise.

To illustrate the MP3C concept, we will focus on an NPC inverter that produces at each
phase the three voltage levels {− vdc

2 , 0, vdc
2 }. These voltages can be described by the integer

variables ux ∈ {−1, 0, 1}, with x ∈ {a, b, c} denoting one of the three phases. The three-phase
switch position has already been defined as u = uabc = [ua ub uc]

T .
The three-phase inverter is connected to an induction machine with the stator flux vector

ψs = [ψsα ψsβ ]T and the rotor flux vector ψr = [ψrα ψrβ ]T . Let ∠ψ denote the (instanta-
neous) angular position of a flux vector and ||ψ|| its (instantaneous) magnitude. We use the
superscript ∗ to denote the reference value of a variable. For the dc reference of the stator flux
magnitude, we use the variable Ψ∗

s. The (average) reference for the stator flux angle is given
by θ∗. The angular electrical stator and rotor frequencies of the machine are ωs and ωr, respec-
tively. We use t0 = kTs to denote the current time instant, where k ∈ N is the current time step
and Ts is the sampling interval.

The proposed MP3C scheme is summarized by the block diagram in Fig. 12.8. The controller
operates in the discrete-time domain and is activated at the equally spaced time instants kTs.
The control problem is formulated and solved in stationary orthogonal coordinates. The seven
controller entities are described in the following.

12.4.1 Observer

In the first step, the stator currents are sampled and the stator voltage is reconstructed based
on the dc-link voltage and the applied switch position. Based on these quantities, the stator
and rotor flux vectors, ψs and ψr, respectively, can be estimated in the stationary reference
frame. According to (2.56), the torque estimate can be constructed based on these two flux
vectors as

Te =
1
pf

Xm

D
ψr × ψs. (12.21)

Recall that Xm denotes the main (or magnetizing) reactance and D is the determinant as
defined in (2.54). Preferably, a fast observer is used to avoid restricting the achievable band-
width of MP3C.

Unlike in simulations, the implementation of a controller on hardware always entails a delay
that is introduced by the time required to compute the control response. Specifically, one sam-
pling interval typically elapses between the sampling of the currents and the availability of
the new control output at the gate driver units of the inverter. To compensate for this delay,
the estimated stator and rotor flux vectors can be rotated forward in time by ωsTs. We set
∠ψs = ∠ψs + ωsTs for the stator flux and ∠ψr = ∠ψr + ωsTs for the rotor flux. Recall
that during steady-state operation, both flux vectors rotate at the constant angular velocity ωs.
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Figure 12.8 Block diagram of the MP3C scheme
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12.4.2 Speed Controller

The speed controller regulates the (electrical) angular speed ωr of the rotor along its refer-
ence ω∗

r by manipulating the setpoint of the electromagnetic torque. Recall the speed equation
(2.51b) of the drive system. Using the number of pole pairs p, we replace the mechanical speed
ωm in (2.51b) by the electrical angular speed ωr and obtain

M

p

dωr

dt
= Te − T�. (12.22)

M denotes the moment of inertia of the motor, shaft, and load, and T� is the load torque. As
(12.22) constitutes a first-order differential equation, a proportional–integral (PI) controller
usually suffices as speed controller. The latter is often augmented with an anti-windup scheme
and a torque limiter. The speed is either measured by an encoder or estimated by the observer.

12.4.3 Torque Controller

The amplitudes of the flux vectors and their angular displacement γ determine the electromag-
netic torque

Te =
1
pf

Xm

D
||ψs||||ψr|| sin(γ) (12.23)

that is produced at the rotor shaft of the machine by the interaction between the electromagnetic
fields of the stator and the rotor windings through the air gap (see also (2.57)). Conversely, for
a given torque reference T ∗

e , the desired load angle between the stator and rotor flux vectors is
calculated as

γ∗ = arcsin
(

pf
D

Xm

T ∗
e

Ψ∗
s||ψr||

)
. (12.24)

When the machine is to be fully magnetized, the magnitude of the reference stator flux vector
is effectively 1 pu, and the magnitude of the rotor flux vector is provided by the observer. In
its simplest form, the torque controller consists of a feedforward term that maps the torque
reference into a load angle reference.

12.4.4 Flux Controller

The stator flux magnitude is maintained at its reference Ψ∗
s by adjusting the amplitude of the

fundamental voltage waveform applied to the machine. Rewriting (12.9), the modulation index
is adjusted by the feedforward term

m =
2

vdc
ωsΨ

∗
s (12.25)

in proportion to the inverse of the instantaneous dc-link voltage vdc and the angular stator
frequency ωs. The instantaneous dc-link voltage is often low-pass-filtered to ensure that the
modulation index is free of any significant dc-link voltage ripple. The feedforward term can
be augmented by a conventional linear controller that regulates the error of the stator or rotor
flux magnitude to zero by manipulating the modulation index.
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12.4.5 Pulse Pattern Loader

The pattern loader provides the OPP required at the current operating point, which is deter-
mined by the modulation index m and the pulse number d. To determine the pulse number,
recall that for a three-level inverter, for example, the device switching frequency is given by
fsw = df1, where f1 denotes the fundamental frequency. The switching frequency must not
exceed its maximum, fsw,max. To ensure this, we select the pulse number d as the largest
integer not greater than fsw,max/f1, that is,

d = floor

(
fsw,max

f1

)
. (12.26)

The pattern loader provides the primary switching angles A and the corresponding
single-phase switching sequence U , which were defined in (12.2) and (12.3), respectively.
Based on these two vectors, the three-phase OPP can easily be constructed. To reduce the
number of mathematical operations that need to be performed in real time, the αβ-coordinates
of the corner points of the stator flux reference trajectory can be read in from a look-up table
instead of being calculated according to (12.15) (see also Sect. 12.2.5).

12.4.6 Flux Reference

In the next step, the stator flux reference vector ψ∗
s is computed. To achieve the desired torque,

the (average) angular position of the stator flux reference must be equal to

θ∗ = ∠ψr + γ∗. (12.27)

To achieve the desired magnetization of the machine, the (average) magnitude of the stator
flux reference vector should be equal to its reference Ψ∗

s. The stator flux reference ψ∗
s(θ

∗)
corresponding to the angle θ∗ and the magnitude Ψ∗

s can be derived by integrating up the OPP
according to (12.15). The derivation of the reference flux vector is illustrated in the vector
diagram in Fig. 12.9.

Alternatively, the stator flux reference can be computed from the corner points of the stator
flux reference trajectory. Specifically, the primary switching angles are compared with θ∗ to
identify the two adjacent corner points of the stator flux reference. Between these two flux
reference corner points, a linear interpolation is performed based on their corresponding pri-
mary switching angles and θ∗. This interpolation determines the flux reference vector ψ∗

s. To
account for flux magnitude references different from 1, the stator flux vectors of the corner
points can be scaled with Ψ∗

s.
The resulting instantaneous stator flux reference ψ∗

s has, in general, a magnitude ||ψ∗
s|| and

an angle ∠ψ∗
s, which differ slightly from their desired (average) values Ψ∗

s and θ∗. These dif-
ferences correspond to the optimal flux (and current) ripple of the OPP (see also the discussion
at the end of Sect. 12.2.4).

12.4.7 Pulse Pattern Controller

The instantaneous stator flux error is defined as the difference between its reference and the
estimated stator flux vector

ψs,err = ψ∗
s − ψs. (12.28)
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Figure 12.9 Rotor flux vectorψr , stator flux vectorψs, reference stator flux vectorψ∗
s, and stator flux

error ψs,err in stationary coordinates

The MP3C control problem of removing the stator flux error within the prediction horizon
by manipulating the switching instants of the OPP can be formulated as an optimization prob-
lem with a quadratic cost function and linear constraints, a so-called quadratic program (QP).
The quadratic cost function

J(Δt) = ||ψs,err − Δψs(Δt)||22 + ΔtT QΔt (12.29)

penalizes two terms. The first term, the uncorrected flux error at the end of the prediction
horizon, is the difference between the stator flux error ψs,err in stationary αβ coordinates at
the current time step and the flux correction Δψs(Δt) that will be achieved by the end of
the prediction horizon. The flux correction term will be further examined in Sect. 12.5. The
uncorrected flux error constitutes the controlled variable.

The second term penalizes the modifications Δt of the switching instants, using the diagonal
penalty matrix Q. This is the manipulated variable. Very small penalties are used in Q. This
ensures that the first term in the cost function is prioritized and that, as a result, the uncorrected
flux error is close to zero.2 The corrections of the switching instants are aggregated in the vector

Δt = [Δta1 Δta2 . . . Δtana
Δtb1 . . . Δtbnb

Δtc1 . . . Δtcnc
]T . (12.30)

For phase a, for example, the correction of the ith transition time is given by

Δtai = tai − t∗ai, (12.31)

2 In an alternative formulation, one could replace the first term in the cost function by the (terminal) equality constraint
ψs,err − Δψs(Δt) = 0. This, however, could lead to numerical difficulties, specifically to infeasibilities, in which
no feasible solution exists for the optimization problem. It is thus preferable to relax the terminal equality constraint,
by moving it to the cost function and by imposing a (comparably) large penalty on it.
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where tai denotes the actual and t∗ai the nominal switching instant of the ith switching transi-
tion Δuai. The latter is defined as

Δuai = ua(t∗ai) − ua(t∗ai − dt) (12.32)

with dt being an infinitesimally small time step. Moreover, in (12.30), na denotes the number
of switching transitions in phase a that fall within the prediction horizon. The quantities for
phases b and c are defined accordingly.

Several constraints need to be imposed on the switching instants. First, switching transi-
tions may not be moved into the past. To avoid this, the constraint kTs ≤ ta1 is imposed on
the first switching instant in phase a. Second, the sequence of switching transitions must be
maintained in each phase to avoid changes to the single-phase switching sequence and—in the
worst case—the creation of switch positions that exceed the capability of the inverter. To this
end, neighboring switching transitions in phase a are constrained by ta1 ≤ ta2 ≤ · · · ≤ tana

≤
t∗a(na+1), where t∗a(na+1) refers to the nominal switching time of the first switching transition
beyond the horizon. Similar constraints are imposed on the switching instants in phases b and c.

The minimization of the cost function (12.29) subject to these constraints leads to the QP

minimize
Δt

J(Δt) (12.33a)

subject to kTs ≤ ta1 ≤ ta2 ≤ · · · ≤ tana
≤ t∗a(na+1) (12.33b)

kTs ≤ tb1 ≤ tb2 ≤ · · · ≤ tbnb
≤ t∗b(nb+1) (12.33c)

kTs ≤ tc1 ≤ tc2 ≤ · · · ≤ tcnc
≤ t∗c(nc+1). (12.33d)

Note that the OPP uses the angle θ as an argument, while the MP3C controller is formulated
in the time domain. Assuming that the angular stator frequency remains constant within the
prediction horizon, we can use (12.11) to translate switching angles into switching times.

Example 12.4 Figure 12.10 provides an example to illustrate the constraints on the switching
instants (12.33b)–(12.33d). The number of transitions that fall within the prediction horizon
are na = 2, nb = 3, and nc = 1. The single switching transition in phase c within the pre-
diction horizon, tc1, is constrained by the current time instant kTs and the nominal switching
instant of the second transition in phase c, t∗c2, which lies outside of the prediction horizon.

The first switching transition in phase b, tb1, is constrained to lie between kTs and the
(actual) switching instant of the second transition in phase b, tb2. The latter is constrained
by the first switching transition, tb1, and the third one, tb3, and so on. Note that the switch-
ing instants in a given phase can be modified independently from the transitions in the other
phases.

The length of the prediction horizon Tp is a (time-invariant) design parameter. If, however,
the horizon is overly short such that it does not comprise switching transitions in all three
phases, it is temporarily increased until it includes switching transitions in all three phases.
For an example, consider again Fig. 12.10. In the case where Tp is smaller than t∗c1 − kTs, Tp

is increased to this value. This adjustment is made to avoid numerical difficulties, as pointed
out in the next section.
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Figure 12.10 MP3C problem for a three-phase, three-level OPP. Six switching transitions fall within
the horizon Tp, which is of a fixed length. The lower and upper bounds on the switching instants are
depicted by arrows

In the last step, the actual switching instants within the sampling interval are identified.
The switching sequence over the sampling interval, that is, the switching instants and their
associated switch positions, is sent to the gate units of the semiconductor switches in the
inverter.

In summary, by adopting the notion of stator flux trajectory tracking, an MPC scheme can be
formulated that regulates the stator flux vector along its given reference trajectory by modify-
ing the switching instants of the OPP within the prediction horizon. In doing so, the four control
objectives stated in Sect. 12.3.1 can be met, as will be shown in the next chapter. Specifically,
because the flux reference trajectory results from the integration of an offline-computed OPP
voltage waveform that minimizes the current distortions, a nearly optimal ratio of harmonic
current distortion per switching frequency is obtained during steady-state operation, provided
that the flux reference trajectory is accurately tracked. Second, by directly manipulating the
switching instants and inserting additional pulses if needed, which will be discussed in Sect.
12.6, a fast dynamic response during transients can be achieved. Third, thanks to the fact that
the MPC formulation is based on the instantaneous flux including the ripple component, an
estimator of the fundamental component is not required. This greatly simplifies the control
scheme. Fourth, the use of a relatively long prediction horizon reduces the sensitivity of the
controller to measurement and observer noise, by distributing the control effort over a long
time interval. The influence of such noise on the closed-loop performance of MP3C will be
investigated in Sect. 13.1.2.
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12.5 Computational Variants of MP3C

The QP (12.33) formulated in the previous section constitutes the main computational stage
of the MP3C algorithm. Before attempting to solve it, we reformulate it into a more conve-
nient form.

Recall that by shifting the ith switching transition in phase a by the time Δtai, the
volt-second correction

Δψsai(Δtai) = −vdc

2
ΔuaiΔtai (12.34)

is achieved, where we have generalized (12.20) to the ith switching transition. Assume that
na switching transitions fall within the horizon in phase a. The total flux correction in phase
a is obtained by summing up the individual volt-second modifications of the na switching
transitions. Applying (12.34) na times leads to

Δψsa(Δta) = −vdc

2

na∑

i=1

ΔuaiΔtai (12.35)

with
Δta = [Δta1 Δta2 . . . Δtana

]T . (12.36)

Similar expressions can be derived for phases b and c.
The stator flux correction in αβ is obtained by aggregating the flux corrections in the phases

a, b, and c and by using the Clarke transformation (2.13) to transform them to αβ.

Δψs(Δt) = K̃

⎡

⎣
Δψsa(Δta)
Δψsb(Δtb)
Δψsc(Δtc)

⎤

⎦ = −vdc

2
K̃

⎡

⎣

∑na

i ΔuaiΔtai∑nb

i ΔubiΔtbi∑nc

i ΔuciΔtci

⎤

⎦ . (12.37)

Based on this, the QP can be rewritten in the standard form

minimize
Δt

ΔtT HΔt + 2cT Δt (12.38a)

subject to GΔt ≤ g. (12.38b)

The detailed derivation of the QP is provided in Appendix 12.A along with the matrices H
and G and the vectors c and g. Note that H is a function of the switching transitions and the
penalty matrix Q, c is a function of the switching transitions and the stator flux error ψs,err,
and g depends on the nominal switching instants. Mathematical programming in general and
QPs in particular are reviewed in Sect. 3.8.

Now, we present two computational variations of MP3C, which differ in the penalty
matrix Q. These variations entail different approaches to solving the underlying QP.

12.5.1 MP3C based on Quadratic Program

The QP formulated in (12.33) and stated in vector representation in (12.38) can be greatly
simplified when applying the same penalty to all switching transitions, that is, by setting

Q = qI . (12.39)
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The simplified QP can then be solved efficiently by adopting the so-called active set method.
This is a standard approach to solve QPs of small to medium scale. The active set method is
described in detail, for example, in [10, Sect. 16.4].

12.5.1.1 Unconstrained Solution

We start by computing the unconstrained solution, that is, we minimize (12.38a), while neglect-
ing the timing constraints (12.38b). Assume for the time being that the step size of all switching
transitions is ±1, that is, |Δuxi| = 1, with x ∈ {a, b, c}. In a given phase, each switching
transition then provides the same volt-second correction provided that the modifications of the
switching instants are the same. This fact can also be observed from (12.37). As all these mod-
ifications are penalized with the same weight q, it is clear that it is optimal in the unconstrained
case to modify in each phase the switching instants by the same absolute value. Therefore, for
phase a, for example, we have

|Δta1| = |Δta2| = · · · = |Δtana
|. (12.40)

Equivalently, the required per-phase volt-second correction is equally distributed among all
switching transitions in a given phase. This implies that

Δψsa1 = Δψsa2 = · · · = Δψsana
(12.41)

holds for phase a. Similar statements hold for phases b and c.
As a result, we can define one new variable that corresponds to the volt-second correction

of any of the na switching transitions in phase a, that is,

δa = Δψsai, i ∈ {1, 2, . . . , na}. (12.42)

With this, (12.35) can be simplified to

Δψsa(δa) = naδa, (12.43)

where we have also changed the argument of the volt-second correction. The same reasoning
applies to phases b and c, with the variables δb and δc being defined accordingly.

The stator flux correction in αβ, (12.37), can then be rewritten as

Δψs(δ) = K̃

⎡

⎣
naδa

nbδb

ncδc

⎤

⎦ = K̃ N δ, (12.44)

where we have aggregated the per-phase variables δa, δb, and δc to the three-phase vector
δ = [δa δb δc]

T . We have also introduced N = diag(na, nb, nc).
The second term in the cost function (12.29), which penalizes the modifications of the

switching instants, can be rewritten with the help of (12.39) and (12.40) as

ΔtT QΔt = q(na(Δta1)
2 + nb(Δtb1)

2 + nc(Δtc1)
2). (12.45)
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To relate the switching instant modifications with δ, we insert (12.34) into (12.42) and square
it. As the step size of all switching transitions is 1, this leads to

δ2
a =

(vdc

2

)2
(Δtai)

2 (12.46)

for phase a. Similar expressions can be obtained for phases b and c. With this, and by defining
the scaled weight

q′ = q

(
2

vdc

)2

, (12.47)

(12.45) can be further simplified to

ΔtT QΔt = q′(naδ2
a + nbδ

2
b + ncδ

2
c) = q′δT Nδ. (12.48)

The cost function (12.29) can then be restated as a function of δ as

J(δ) = ||ψs,err − K̃Nδ||22 + q′δT Nδ, (12.49)

where we have replaced the stator flux correction by (12.44) and the penalty on modifying the
switching instants by (12.48).

As shown in Appendix 12.B, the unconstrained minimum of (12.49) is obtained for

δ = M−1K̃
T

ψs,err (12.50)

with

M =
2
9

⎡

⎣
2na + 4.5q′ −nb −nc

−na 2nb + 4.5q′ −nc

−na −nb 2nc + 4.5q′

⎤

⎦ . (12.51)

The expression M−1K̃
T

can be derived algebraically. In particular, the inverse of the matrix
M does not need to be computed in real time.

12.5.1.2 Active Set Method

The active set method tailored to solving the QP involves a few iterations of the following
three steps:

Step 1. The number of switching transitions that fall within the prediction horizon, na, nb,
and nc, are determined for each phase. If required, the prediction horizon is extended
until at least one switching transition per phase occurs.

Step 2. The timing constraints are neglected and the unconstrained volt-second correction δ is
computed according to (12.50). The volt-second correction is converted into uncon-
strained switching instants, taking the sign of the switching transition into account.
For the ith transition in phase a, this implies tai = t∗ai + Δtai with

Δtai = − 2
vdc

δa

Δuai

. (12.52)

The latter expression is obtained from (12.34) and (12.42). The respective values for
the unconstrained switching instants in phases b and c are obtained accordingly.
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Step 3. The timing constraints (12.33b)–(12.33d) are imposed on the unconstrained switching
instants. The switching instants that violate one or more of the constraints are the
so-called active constraints, for which the following operations are performed:
1. The unconstrained switching instants are limited by imposing the constraints. This

yields the final solution for these switching instants.
2. These switching instants and their associated switching transitions are removed

from the optimization problem by reducing the relevant entries in N accordingly.
3. The flux correction that results from these modified switching instants is computed

and the remaining (as-yet-uncorrected) flux error is updated accordingly.

Steps 2 and 3 are repeated until the solution remains unchanged. In general, two iterations
suffice.

The active set method is computationally simple, and its complexity is independent of the
number of switching transitions and thus of the length of the horizon. Specifically, the dimen-
sions of the matrix M−1K̃

T
is always 3 × 2 (see (12.B.7)). In the subsequent sections, we

will refer to this MP3C variation as MP3C based on QP, or simply as QP MP3C.

12.5.1.3 Optimality

At the beginning of this section, we had assumed that the step size of all switching transitions
is ±1, that is, |Δuxi| = 1. Under this assumption, the active set method provides the optimal
solution Δt to the QP (12.33) in the practical cases observed, even though a formal proof for
this statement is not available. When the step size exceeds 1, a subtle difference in the solution
arises, as shown in the following example.

Example 12.5 Consider phase a, as illustrated in Fig. 12.11, with the second switching tran-
sition being Δua2 = −2. The switching transitions in phase b and c along with their impact
on the flux error and thus on phase a are ignored to simplify the exposition. In the original
QP formulation (12.33), the modifications to the switching instants are penalized, regardless
of the step size of the switching transition. As a result, as shown in Fig. 12.11(a), the switch-
ing instants are modified by the same absolute value provided that the timing constraints are
inactive. In the figure, we have Δta1 = −Δta2.

When formulating and solving the active set method, however, the volt-second modifica-
tions are penalized. In any given phase, the switching transitions are modified by the same
volt-second modification, as exemplified in Fig. 12.11(b). When the absolute value of the
switching transition exceeds 1, the time modification is reduced according to (12.52). In this
example, we have Δta1 = −2Δta2.

This difference is subtle and arises only for step sizes exceeding ±1. In effect, the active
set method solves a different QP, in which the modifications to the switching instants are also
weighted by the absolute value of their step size. Apart from this, the volt-second modification
per phase is the same in this example for both approaches. When considering all three phases,
however, additional small differences arise.

We conclude that the proposed active set method provides the optimal solution to the QP
(12.33), provided that all switching transitions are limited to Δuxi = ±1.
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Figure 12.11 Comparison of the phase a switching instants that result from the original QP formulation
and the active set method, when ignoring the phases b and c

12.5.2 MP3C based on Deadbeat Control

Another alternative is to set the penalty matrix Q in (12.29) to zero. As a result, the amount
by which the switching instants are modified is not penalized. The unconstrained solution
to (12.33) is then to fully remove the flux error. This is achieved by the flux correction
Δψs(Δt) = ψs,err.

The horizon is kept as short as possible. Specifically, the horizon is redefined as the min-
imum time interval starting at the current time instant such that at least two phases exhibit
switching transitions. This leads to a pulse pattern controller with DB characteristic and a
time-varying prediction horizon. The control algorithm is computationally and conceptually
simple, as summarized in the following.

Step 1. The two phases that have the next scheduled switching transitions are determined. We
refer to those as the active phases. There are three pairs of active phases, namely ab,
bc, or ac. All switching transitions within the horizon are determined. In Fig. 12.10,
for example, phases a and b have the next switching transitions and are thus the active
phases. Their nominal switching instants are t∗b1, t∗b2, and t∗a1. The horizon thus spans
the time interval from kTs to t∗a1.

Step 2. The required stator flux correction is translated from αβ to abc by mapping the flux
correction into the two active phases. The flux correction of the third phase is set to
zero. In example shown in Fig. 12.5, with the active phases a and b, the mapping is
given by

Δψs,abc = K̃
−1
ab Δψs (12.53)

with

K̃
−1
ab =

1
2

⎡

⎣
3

√
3

0 2
√

3
0 0

⎤

⎦ . (12.54)
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The derivation of this matrix, along with the matrices K̃
−1
bc and K̃

−1
ac of the other two

pairs of active phases, is provided in Appendix 12.C.
Step 3. The flux correction is scaled by the inverse of the instantaneous dc-link voltage to make

it independent thereof. To this end, we introduce Δψ′
s,abc = [Δψ′

sa Δψ′
sb Δψ′

sc]
T

and define
Δψ′

s,abc =
2

vdc
Δψs,abc. (12.55)

For phase a, for example, this implies

Δψ′
sa = −

na∑

i=1

ΔuaiΔtai, (12.56)

which extends (12.35). Similar statements hold for phases b and c.
Step 4. The first active phase x, with x ∈ {a, b, c}, is identified. For its first switching transi-

tion, set i = 1. The DB controller aims at translating all of the required volt-second
correction Δψ′

sx into a modification of the first switching instant in phase x. Specifi-
cally, for the ith switching transition in this phase with the nominal switching instant
t∗xi and the switching transition Δuxi, the following operations are performed:
1. The desired modification Δtxi = −Δψ′

sx/Δuxi is computed.
2. The switching instant is modified to txi = t∗xi + Δtxi.
3. The switching instant txi is constrained by imposing the respective timing con-

straints on txi, according to (12.33b)–(12.33d).
4. The phase x component of the desired volt-second correction is updated by replac-

ing Δψ′
sx with Δψ′

sx + Δuxi(txi − t∗xi).
While the desired volt-second correction Δψ′

sx in this phase is nonzero, this procedure
is repeated for the next switching transition and i = i + 1 is set.

Step 5. The second active phase is identified, and the procedure in Step 4 is repeated for this
phase.

Note that txi − t∗xi equals the desired modification Δtxi only when the associated con-
straints are not active. For the DB controller, no assumption has been made regarding the
step size of the switching transitions. In particular, the DB version of MP3C is applicable to
arbitrary (nonzero integer) switching transitions Δuxi ∈ Z \ 0.

As the DB controller aims to remove the stator flux error as quickly as possible, and because
corrections in the switching instants are not penalized, the DB controller tends to be very fast
and aggressive. There is, however, no guarantee that the flux error is fully removed within
the horizon, because the horizon is as short as possible and the constraints on the switching
instants have to be met.

12.6 Pulse Insertion

In an OPP, the switching transitions are not evenly distributed in time. Particularly at very
low switching frequencies of a few hundred hertz, long time intervals might arise between
two switching transitions. When a reference torque step is applied at the beginning of such an
interval, a significant amount of time might elapse before the torque starts to change, resulting
in a long initial time delay and often also in a prolonged settling time.
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Once the controlled variable has started to change, the torque response might be sluggish and
significantly slower than when using DB control such as DTC (see Section 3.6.3). The sluggish
response is typically due to the absence of a suitable voltage vector that moves the controlled
flux vector in the direction with the velocity that ensures the fastest possible compensation of
the flux error. In order to ensure a very fast torque response during transients, at least one phase
needs to be switched to the upper or lower dc-link rail. In a low-voltage ride-through setting,
for example, this might imply reversing the voltage in at least one phase during the majority
of the transient.

Directly related to the issue of sluggish torque responses is the risk of current excursions.
Such excursions might occur when the switching transitions, which are to be shifted in time
so as to remove the flux error, are spread over a long time interval. This increases the risk
that the flux vector is not moved along the shortest path from its current position to its new
and desired one. Instead, the flux vector might temporarily deviate from this path, exceed-
ing its nominal magnitude. This is equivalent to a large current, which might result in an
overcurrent trip.

This section proposes a solution to improve the performance of MP3C during transients
and (quasi) steady-state operation. When the flux error exceeds a given threshold, additional
switching transitions are added to the OPP. As will be shown in Sect. 13.1.3, with the insertion
of additional switching transitions, the merits of OPPs and DB control can be combined.

The concept of introducing additional switching transitions has been previously mentioned
in the literature in the context of trajectory tracking control, albeit only very briefly in the
form of short remarks in [2, 5], and [11]. This section formally introduces the notion of insert-
ing switching transitions and generalizes this concept by performing closed-loop rather than
(open-loop) feedforward transition insertion.

12.6.1 Definitions

As previously, we refer to Δux(t) = ux(t) − ux(t − dt) as a single-phase switching tran-
sition in phase x, with x ∈ {a, b, c}. Any nonzero integer step size is allowed. Three-phase
switching transitions are defined accordingly as Δu(t) = u(t) − u(t − dt). A pulse consists
of two consecutive switching transitions in the same phase. The two switching transitions have
opposite signs but do not necessarily have the same magnitude, as will be shown in the next
section.

To illustrate the notion of pulse insertion, we will focus on a five-level inverter that produces
at each phase the five voltage levels {0,±vdc

4 ,± vdc
2 }. These voltages can be described by the

integer variables ux ∈ {0,±1,±2}, with x ∈ {a, b, c} denoting one of the three phases.

12.6.2 Algorithm

The standard MP3C algorithm proposed in Sect. 12.4 is augmented by an additional unit that
inserts additional switching transitions when required. This unit is added as a preprocessing
stage to the pulse pattern controller. It consists of four computational steps.
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Figure 12.12 Definition of the per-phase error bands on the stator flux error in phase x, with x ∈
{a, b, c}. The switching transition to be inserted is denoted by Δux,ins

Step 1. After the computation of the stator flux error ψs,err in (12.28), the flux error is mapped
from the orthogonal αβ coordinate system into the three-phase abc system

ψs,abc,err = K̃
−1

ψs,err, (12.57)

where K̃
−1

denotes the 3 × 2 matrix of the reduced inverse Clarke transformation
(2.13).

Step 2. In each phase, error bands on the stator flux error are introduced, as shown in
Fig. 12.12. Based on these bands, it is determined whether an incremental switching
vector, the three-phase switching transition Δuins, is to be inserted. If this is the case,
the magnitude and sign of the switching transition is determined for each phase.
These two statements can be expressed in a compact way as

Δuins = round(ciψs,abc,err), (12.58)

where the gain ci is a user-defined scalar parameter. Note that the gain and rounding
operation implicitly define the error bands. As the stator flux is the integral of the
inverter switch positions weighted with half the dc-link voltage (see (12.13)) the term
0.5vdc is implicitly included in the gain ci.

As shown in Fig. 12.12, the magnitude and sign of the flux error in abc determine
the magnitude and sign of the additional switching transition Δuins. This is performed
for each phase separately. If the switching transition is zero in all three phases, that
is, when |ciψsx,err| < 0.5, with x ∈ {a, b, c}, then no additional switching transition
is inserted.
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If the flux error is positive, which is caused by too small a stator flux, additional
volt-second needs to be added, which is equivalent to adding a positive switching
transition and hence a positive pulse. Specifically, an additional switching transition
of magnitude 1 is required in phase x, Δux,ins = 1, if 0.5 ≤ ciψsx,err < 1.5. Corre-
spondingly, a transition of magnitude Δux,ins = 2 is added in the case where 1.5 ≤
ciψsx,err < 2.5, and so on. Negative switching transitions are added in the presence
of negative flux errors.

Step 3. The repeated insertion of short pulses might produce a chattering phenomenon and
unnecessarily increase the switching frequency. This issue can be avoided by impos-
ing the restriction that, when switching transitions are inserted, the magnitude of the
inserted transitions decreases in each phase while their sign is maintained. Specifi-
cally, for each phase, the required additional switching transition is modified when
required, according to the following three rules:
1. If ||Δuins(k − 1)|| > 0 and Δux,ins(k − 1) = 0, then Δux,ins(k) = 0.
2. If Δux,ins(k − 1) > 0, then Δux,ins(k) = min(max(Δux,ins(k), 0),Δux,ins

(k − 1)).
3. If Δux,ins(k − 1) < 0, then Δux,ins(k) = max(min(Δux,ins(k), 0),Δux,ins

(k − 1)).
The first rule ensures that, when a pulse insertion campaign has ended in phase x but
is still going on in another phase, it is not to be restarted in phase x, before it has
ended in all three phases. The second and third rules impose that the absolute values
of the magnitudes of the inserted switching transitions decrease monotonically until
they reach zero.

Step 4. The additional switching transition Δuins is added to the nominal pulse pattern (with
the nominal switch positions and the nominal switching instants). This process is
shown in Fig. 12.13(a) and entails the following three steps:
1. The nominal OPP is read out from the look-up table, and the nominal switch-

ing sequence starting at time instant t0 is built sufficiently far into the future. In
Fig. 12.13(a), the nominal switching sequence in phase x is shown as the dotted
line.

2. The value of the switch position at time t0 is determined, which is given by u(t0) =
u(t0 − dt) + Δuins(t0). Here, the switch position currently applied to the inverter
is denoted by u(t0 − dt). In the case where u(t0) exceeds the set of available
switch positions of the inverter, u(t0) is saturated at the maximum or minimum
attainable switch position.

This implies that it might not be possible to implement the inserted switching
transition to the full extent requested. As an example for this, assume that the cur-
rently applied switch position in phase x is ux(t0 − dt) = 1 and that the additional
switching transition Δux(t0) = 3 has been requested. For a five-level inverter, for
example, it is only possible to implement the switch position ux(t0) = 2, which
corresponds to an inserted transition of Δux(t0) = 1.

3. A pulse of the infinitesimally small width dt is inserted, by adding a switching
transition at time t0 from u(t0 − dt) to u(t0) and another switching transition with
the opposite sign at time t0 + dt from u(t0) to u(t0 + dt).
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(a) Insertion of an additional pulse to the nominal OPP. The width of the
pulse is zero

(b) Modification of the additional pulse by MP3C to generate the required
volt-seconds

ux

ux(t0−dt)

t

1

2

ux(t0)

tx1
∗t0

Figure 12.13 Insertion of a pulse of amplitude 2 and width dt at the current time instant t0 and modi-
fication by MP3C to achieve fast closed-loop control

Special care must be taken to ensure that the magnitude of the second switch-
ing transitions (at time t0 + dt) is correct, because the first and second switching
transitions do not necessarily sum up to zero. This case arises, for example, when
a nominal switching transition is scheduled at t0. The switch position u(t0 + dt)
must match the nominal switch position at time t0 + dt.

The resulting switching sequence consists of the nominal switching transitions of the OPP
and an additional pulse of width dt at time t0. The volt-second of the inserted pulse is zero.
The added pulse is shown as a solid line in Fig. 12.13(a).

Lastly, the pulse pattern controller is executed by formulating and solving the QP as shown
in Sect. 12.4. Alternatively, the DB version of MP3C can be used with pulse insertion. Starting
at time t0, the pattern controller modifies the switching instants of the three-phase switching
sequence (including inserted pulses) such that the required volt-second correction is generated
that removes the flux error. This process is illustrated in Fig. 12.13(b). By inserting pulses, the
stator flux vector can be driven back to its reference trajectory as quickly as possible. This
characteristic will be shown in Sect. 13.1.3 when evaluating and discussing the closed-loop
performance of pulse insertion.
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Appendix 12.A: Quadratic Program

In this appendix, the matrices H and G and the vectors c and g of the QP (12.38) are derived.
The stator flux correction (12.37) in the orthogonal coordinate system can be simplified to

Δψs(Δt) = −V Δt (12.A.1)

with the voltage matrix

V =
vdc

6

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2Δua1 0
...

...
2Δuana

0
−Δub1

√
3Δub1

...
...

−Δubnb

√
3Δubnb

−Δuc1 −
√

3Δuc1
...

...
−Δucnc

−
√

3Δucnc

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

. (12.A.2)

Using (12.A.1), the cost function (12.29) can be rewritten as

J(Δt) = (ψs,err + V Δt)T (ψs,err + V Δt) + ΔtT QΔt, (12.A.3)

which can be further simplified to

J(Δt) = ΔtT (V T V + Q)Δt + 2ψT
s,errV Δt + ψT

s,errψs,err. (12.A.4)

Comparing (12.A.4) with (12.38a), the terms

H = V T V + Q and c = V T ψs,err (12.A.5)

directly follow. Note that the third term in (12.A.4) constitutes a constant offset and thus can
be neglected in (12.38a).

With the definition (12.31), it is straightforward to rewrite the constraints (12.33b) on the
switching instants for phase a in matrix form. This results in

GaΔta ≤ ga (12.A.6)

with

Ga =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 0 . . .
1 −1 0 . . .
0 1 −1 0 . . .

. . .
. . .

. . .
. . .

. . . 0 1 −1 0
. . . 0 1 −1

. . . 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, ga =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t∗a1 − kTs

t∗a2 − t∗a1
t∗a3 − t∗a2

...
t∗a(na−1) − t∗a(na−2)

t∗ana
− t∗a(na−1)

t∗a(na+1) − t∗ana

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (12.A.7)
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Ga is of dimension (na + 1) × na, while ga is a row vector of length na. The vector of switch-
ing time modifications in phase a, Δta, was defined in (12.36).

Similarly, the constraints associated with phases b and c, (12.33c) and (12.33d), can be
expressed by

GbΔtb ≤ gb (12.A.8a)

GcΔtc ≤ gc. (12.A.8b)

The matrices Gb, Gc and vectors gb, gc are defined according to (12.A.7).
The single-phase constraints (12.A.6) and (12.A.9) can be aggregated to (12.38b) with

G =

⎡

⎣
Ga 0 0
0 Gb 0
0 0 Gc

⎤

⎦ and g =

⎡

⎣
ga

gb

gc

⎤

⎦ , (12.A.9)

where 0 denotes zero matrices of appropriate dimensions.

Appendix 12.B: Unconstrained Solution

The unconstrained solution to the minimization of the cost function (12.49) is derived in this
appendix. The cost function can be rewritten as

J(δ) = (ψs,err − K̃Nδ)T (ψs,err − K̃Nδ) + q′δT Nδ (12.B.1a)

= δT Hδ + 2cT δ + ψT
s,errψs,err, (12.B.1b)

where we have introduced

H = NT K̃
T
K̃N + q′N (12.B.2a)

c = −NT K̃
T
ψs,err. (12.B.2b)

As the prediction horizon is required to be long enough to cover switching transitions in all
three phases, the diagonal entries of N = diag(na, nb, nc) are nonzero. This implies that N
is invertible.

In Sect. 3.8, we had recalled the definition of positive definite matrices. H is positive definite
if ξT Hξ > 0 holds for all nonzero ξ ∈ R

3. We can rewrite this term as

ξT Hξ = ||K̃Nξ||22 + q′(naξ2
1 + nbξ

2
2 + ncξ

2
3). (12.B.3)

The first term in (12.B.3) is positive definite, while the second term is positive semidefinite
because q′ ≥ 0. We conclude that H is positive definite.

As shown in Sect. 3.8, the unconstrained minimum of (12.B.1) is obtained for

Hδ = −c. (12.B.4)

As N is symmetric and invertible, (12.B.4) is equivalent to

(K̃
T
K̃N + q′I3)δ = K̃

T
ψs,err, (12.B.5)
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which leads to the unconstrained solution

δ = M−1K̃
T

ψs,err (12.B.6)

with

M = K̃
T
K̃N + q′I3 =

2
9

⎡

⎣
2 −1 −1

−1 2 −1
−1 −1 2

⎤

⎦ N + q′I3

=
2
9

⎡

⎣
2na + 4.5q′ −nb −nc

−na 2nb + 4.5q′ −nc

−na −nb 2nc + 4.5q′

⎤

⎦ .

The expression M−1K̃
T

can be computed algebraically as

M−1K̃
T

=
2
√

3
det

⎡

⎣

√
3(nb + nc + 3q′) nb − nc

−
√

3(nc + 1.5q′) 2na + nc + 4.5q′

−
√

3(nb + 1.5q′) −2na − nb − 4.5q′

⎤

⎦ (12.B.7)

with the determinant

det = 4na(nb + nc + 3q′) + 4nb(nc + 3q′) + 12ncq
′ + 27(q′)2. (12.B.8)

Therefore, to compute the unconstrained solution (12.B.6), the matrix inversion of M can be
avoided. Only one division along with a few multiplications, additions, and shift operations
needs to be performed in a real-time implementation.

Appendix 12.C: Transformations for Deadbeat MP3C

In the DB MP3C algorithm, the required flux correction is mapped from the orthogonal αβ
coordinate system to the two active phases. The three pairs of active phases are ab, bc, and ac.

Consider the first case, in which the quantity ξα, ξβ is mapped into ξa and ξb, with ξc = 0.
According to the reduced Clarke transformation (2.12), we can write

[
ξα

ξβ

]
=

2
3

[
1 − 1

2 − 1
2

0
√

3
2 −

√
3

2

] ⎡

⎣
ξa

ξb

0

⎤

⎦ =
1
3

[
2 −1
0

√
3

] [
ξa

ξb

]
. (12.C.1)

Its inverse is [
ξa

ξb

]
=

1
2

[
3

√
3

0 2
√

3

] [
ξα

ξβ

]
, (12.C.2)

which directly leads to

K̃
−1
ab =

1
2

⎡

⎣
3

√
3

0 2
√

3
0 0

⎤

⎦ . (12.C.3)
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The transformations from αβ to bc and ac can be derived in a similar way. They are given by

K̃
−1
bc =

1
2

⎡

⎣
0 0
−3

√
3

−3 −
√

3

⎤

⎦ and K̃
−1
ac =

1
2

⎡

⎣
3 −

√
3

0 0
0 −2

√
3

⎤

⎦ . (12.C.4)
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13
Performance Evaluation of Model
Predictive Pulse Pattern Control

The performance of the model predictive pulse pattern controller (MP3C) is evaluated in this
chapter through simulations and experiments on medium-voltage (MV) drives. Key perfor-
mance criteria, such as the switching frequency and the current distortions, are compared with
those of state-of-the-art control and modulation schemes, including carrier-based pulse width
modulation (CB-PWM), space vector modulation (SVM), and direct torque control (DTC).

More specifically, simulation results are provided for a neutral-point-clamped (NPC)
inverter drive system during steady-state operation and transients. When compared to SVM
operating at the same switching frequency, MP3C reduces the current distortions by up to
50%. The benefit of inserting pulses during transients is illustrated. Experimental results for a
five-level active NPC inverter drive system are shown in the second part of the chapter, with
the MV induction machine operating at up to 1 MVA. A summary and discussion of the main
benefits and characteristics of MP3C is provided at the end of this chapter.

13.1 Performance Evaluation for the NPC Inverter Drive System

The steady-state performance of MP3C is evaluated through simulations of an NPC inverter
drive system. The impact of flux observer noise and machine parameter variations on the
drive’s performance is also investigated. The performance of deadbeat (DB) and quadratic
programming (QP) MP3C are compared with each other. The closed-loop response of MP3C
during transients is evaluated, and the benefit of inserting pulses is shown.

13.1.1 Simulation Setup

As a case study, consider a three-level NPC voltage source inverter driving an induction
machine with a constant mechanical load, as shown in Fig. 13.1. A 3.3 kV, 50 Hz squirrel-cage
induction machine rated at 2 MVA with a total leakage reactance of 0.25 per unit (pu) is used

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/geyermodelpredictivecontrol
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Figure 13.1 NPC inverter driving an induction machine (IM)

as an example of a typical MV induction machine. The nominal dc-link voltage is Vdc = 5.2
kV. The drive system case study is summarized and the pu system is defined in Sect. 2.5.1.
The detailed parameters of the machine and the inverter are provided in Table 2.10. The
floating neutral point potential is not actively controlled. The sampling interval Ts = 25 μs
is used.

13.1.2 Steady-State Operation

13.1.2.1 Operation under Nominal Conditions

At nominal speed and rated torque, closed-loop simulations were run to evaluate the perfor-
mance of MP3C under steady-state operating conditions. The key performance criteria are
the harmonic distortions of the current and torque for a given switching frequency. Nominal
conditions are assumed, that is, the stator flux observations are free of noise and the machine
parameters are precisely known. DB MP3C is considered, which yields closed-loop results at
steady-state operation and nominal conditions, which are effectively identical to that of the
QP version of MP3C. Optimized pulse patterns (OPPs) were calculated offline, following the
procedure described in Sect. 3.4. The modulation index is equal to m = 1.04.

The performance of MP3C is compared with that of CB-PWM and SVM. Specifically, a
three-level, asymmetric, regularly sampled CB-PWM was implemented with two triangular
carriers that are in phase, the so-called phase disposition. It is generally accepted that for mul-
tilevel inverters CB-PWM with phase disposition results in the lowest harmonic distortion.
According to (3.14), a third harmonic component is added to the modulating reference sig-
nals to boost the differential-mode voltage. The SVM is obtained by adopting the approach
proposed in [1]: A common-mode voltage, which is of the min/max type plus a modulus
operation, is added to the reference voltage (see (3.16)). For a review of CB-PWM, third har-
monic injection, and the equivalence between CB-PWM and SVM, the reader is referred to
Sect. 3.3.

We start by comparing the steady-state performance of MP3C with that of SVM. Opera-
tion is at a device switching frequency of 250 Hz, which is typically used in MV drives. This
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Figure 13.2 Stator currents for MP3C and SVM with the switching frequency 250 Hz
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Figure 13.3 Stator current spectrum for MP3C and SVM with the switching frequency 250 Hz

switching frequency is achieved by choosing the pulse number d = 5 for MP3C and the car-
rier frequency fc = 450 Hz for SVM. The resulting stator current waveforms and spectra of
MP3C and SVM along with the phase leg switch positions are shown in Figs. 13.2–13.4.

It is apparent from the current waveforms that MP3C produces a much lower current ripple.
Correspondingly, the harmonic components of the MP3C current spectrum are much reduced,
particularly the harmonics around fc and the 17th harmonic. This improvement is also reflected
in the total demand distortion (TDD) of the current, which is reduced from 7.71% for SVM to
4.13% for MP3C—a reduction of 46%.

Table 13.1 compares the current distortions that result from CB-PWM, SVM, and MP3C
for three different switching frequencies. The data shows that for low switching frequencies of
a few hundred hertz, MP3C effectively halves the current distortions for the same switching

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

450 Model Predictive Control of High Power Converters and Industrial Drives

0 5 10 15 20

−1

−1

−1

0

0

0

1

1

1

Time (ms)
(a) MP3C

0 5 10 15 20

−1

−1

−1

0

0

0

1

1

1

Time (ms)
(b) SVM

Figure 13.4 Switch positions for MP3C and SVM with the switching frequency 250 Hz

Table 13.1 Comparison of DB MP3C with CB-PWM and SVM in terms of the switching frequency
fsw, the stator current TDD ITDD, and the torque TDD TTDD

Scheme Setting fsw (Hz) ITDD (%) TTDD (%) ITDD (%) TTDD (%)

CB-PWM fc = 250 Hz 150 16.1 11.0 100 100
SVM fc = 250 Hz 150 15.5 9.83 96.8 89.6
MP3C d = 3 150 7.29 6.54 45.4 59.6

CB-PWM fc = 450 Hz 250 7.94 5.79 100 100
SVM fc = 450 Hz 250 7.71 5.35 97.1 92.4
MP3C d = 5 250 4.13 3.41 52.0 58.9

CB-PWM fc = 750 Hz 400 4.68 3.41 100 100
SVM fc = 750 Hz 400 4.52 3.06 96.6 89.7
MP3C d = 8 400 2.94 2.75 62.8 80.9

The center section shows absolute values, while the values in the right section are relative to the CB-PWM
baseline. The pulse number is given by d and the carrier frequency by fc. The operating point is at nominal
speed and rated torque. Nominal conditions (noise-free flux estimates and accurate machine parameters)
are assumed.

frequency, when compared to CB-PWM or SVM. It can also be seen that the harmonic perfor-
mance of CB-PWM is similar to that of SVM. When increasing the switching frequency, the
performance benefit of MP3C abates. At a switching frequency of 400 Hz, for example, the
reduction of the current TDD that MP3C achieves with respect to SVM amounts to 35%.

To further investigate the switching-frequency-dependent performance improvement of
MP3C, simulations were run for DB MP3C during steady-state operation at nominal speed
and rated torque for different OPPs with pulse numbers ranging from d = 2 to d = 10. The
individual simulations are indicated by diamonds in Fig. 13.5. Similarly, several simulations
were run for SVM with the carrier frequencies fc = 250, 300, . . . , 950 Hz, which are integer
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Figure 13.5 Stator current TDD for SVM and MP3C as a function of the switching frequency, when
operating the NPC inverter drive system at nominal speed and rated torque

multiples of the fundamental frequency. These simulation results are shown by squares. The
three sets of comparisons made in Table 13.1 at d = 3, 5, and 8 are indicated in the figure by
vertical arrows.

The performance benefit of MP3C is at its maximum when the device switching frequency
compared to the fundamental frequency is low, that is, for low pulse numbers. As the pulse
number and thus the switching frequency increases, the performance benefit is reduced. Nev-
ertheless, even at the (hypothetical) switching frequency of 1 kHz, MP3C reduces the current
distortions by 26% when compared to SVM. More specifically, SVM with the carrier fre-
quency fc = 1950 Hz and MP3C with an OPP of pulse number d = 20 yield current TDDs of
1.69% and 1.25%, respectively. Yet, computing OPPs for such high pulse numbers is numer-
ically challenging. This is reflected in the fact that earlier results shown in [2], which were
based on a preliminary set of OPPs, indicated that OPPs and SVM have effectively the same
harmonic performance for pulse numbers exceeding 15.

13.1.2.2 Operation with Flux Observer Noise

MP3C requires an accurate estimate of the stator flux vector, which is provided by a flux
observer, as shown in Fig. 12.8. The flux estimate is typically affected by noise, which is
the difference between the actual flux and its estimate. This section investigates the impact
observer noise has on the closed-loop performance of MP3C, particularly with regard to the
current TDD.

To this end, DB MP3C was run at nominal speed and torque under steady-state operating
conditions on a 1 MVA MV drive in the laboratory. The evolution of the stator flux vector was
measured along with that of the stator flux reference vector. The difference between the two
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Figure 13.6 Probability density function of the flux observer noise as measured in the MV laboratory

stator flux vectors was defined in (12.28) as the stator flux error ψs,err. At steady-state opera-
tion, MP3C removes the flux error almost completely—the residual error typically amounts to
less than 1% of the nominal flux magnitude. This residual error is dominated by noise from the
flux observer. In the following analysis, we therefore refer to ψs,err as the flux observer noise,
which includes various noise sources in the path of the stator flux observer. These include
the noise in the current and voltage measurements, the discretization noise introduced by the
analog-to-digital conversion, drifts in the current measurement probes, and a ripple in the angu-
lar velocity signal. Uncompensated for non-idealities of the power inverter also contribute to
the residual noise.

Figure 13.6 shows the probability density function of the flux observer noise in the α-axis,
with the noise in the β-axis being very similar. Note that the integral of the probability density
function is 1. The noise can be well approximated as Gaussian noise with a zero mean value
and a standard deviation of σ = 0.0044 pu, as shown by the solid line in Fig. 13.6. However,
the noise exhibits a certain degree of auto-correlation, implying that the noise amplitude at
time step k somewhat depends on the noise amplitude at the previous time step k − 1. This
auto-correlation is not described by the Gaussian noise. Therefore, we distinguish between
Gaussian noise and measured noise. The Gaussian noise is characterized by a given stan-
dard deviation and exhibits zero auto-correlation. The measured noise is the measured flux
error ψs,err, whose probability density function is effectively Gaussian, but features a nonzero
auto-correlation.

Before proceeding, we define the (angular) prediction horizon

θp =
180
π

ωsTp, (13.1)

which is given in degree and refers to the stator flux angle over which MP3C looks into the
future. In contrast, the (time) prediction horizon Tp is given in the pu system. Equation (13.1)
follows directly from (12.11).
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Using the same setting as in the previous section (nominal speed, rated torque, pulse num-
ber d = 5), the impact of Gaussian observer noise on the current TDD was evaluated through
simulations. The result is shown in Fig. 13.7(a). Without noise, the current TDD is 4.13%,
which is also stated in the sixth row in Table 13.1. When increasing the standard deviation
of the observer noise, the harmonic performance quickly deteriorates for DB MP3C. For σ =
0.0044 pu, for example, the current TDD increases by 10% to 4.57%. When using QP MP3C,
however, the deterioration because of flux observer noise can be significantly reduced, particu-
larly when adopting long prediction horizons. For the horizon of θp = 60◦ and σ = 0.0044 pu,
for example, the noise deterioration can effectively be avoided altogether—the current TDD
is 4.19%, which is equivalent to a deterioration of only 1.5% with respect to the noise-free
baseline of 4.13%. Note that at nominal speed, θp = 60◦ is equivalent to Tp = 1.047 pu or
3.33 ms.

The impact of the measured noise on the current TDD is shown in Fig. 13.7(b). The noise
measured in the MV laboratory is scaled with the so-called noise scaling factor. This allows us
to study the effect of different noise intensities. A scaling factor of 1 implies that the original
MV laboratory noise is applied to the flux observer. In this case, DB MP3C results in a current
TDD of 4.65%, which is 13% worse than the nominal case. For QP MP3C with θp = 60◦

and the same noise scaling factor, the current TDD can be brought down to 4.24%, which
corresponds to a mere 2.7% deterioration.

It can be seen in Fig. 13.7 that the resilience to flux observer noise changes significantly
for QP MP3C when the (angular) prediction horizon is increased from θp = 20◦ to 30◦. The
reason for this is that for θp = 20◦, in 14% of the cases the prediction horizon needs to be
extended to capture switching transitions in all three phases. This implies that in several cases
only one switching transition per phase is available. As a result, the switching instants need to
be modified significantly to achieve the required flux correction.

However, when multiple switching transitions per phase are considered, the flux error
compensation mechanism is less vulnerable to noise, because the required flux correction
is achieved by manipulating many switching transitions by small amounts. The intuitive
hypothesis that a longer prediction horizon makes the control scheme more robust to noise is
thus confirmed.

Summing up, on one hand, the DB version is affected by flux observer noise, which is a
common characteristic of aggressive control schemes. The QP approach, on the other hand, is
less susceptible to noise, particularly for long horizons, because the controller carefully weighs
in the objective of removing the flux error within the horizon versus the penalty on modifying
the switching transitions. This is a fundamental characteristic of the so-called optimal con-
trol schemes, such as QP MP3C, which are based on the trade-off between good tracking
performance and low control effort. In this case, this trade-off is determined by the length of
the horizon. Note that the penalty on modifying the switching instants implicitly determines
the penalty on the terminal soft constraint, while the penalty has only a mild impact on this
trade-off.

In the investigations done previously, we assumed σ = 0.0044 pu and the noise scaling fac-
tor of 1 to be representative for flux observer noise in a real-world MV drive setting. This
assumption might be pessimistic, because the recorded noise also includes uncompensated
stator flux errors. The real observer noise is thus probably smaller. When assuming Gaussian
noise with σ = 0.003 pu, the corresponding deterioration of the current TDD is reduced to 5%
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Figure 13.7 Influence of flux observer noise on the closed-loop performance of MP3C. For Gaussian
noise, the stator current TDD is shown as a function of the standard deviation, while for the measured
noise the current TDD is shown as a function of the noise scaling factor. The lines refer to DB MP3C
and to QP MP3C with the angular prediction horizons θp = 10◦, 20◦, 25◦, 30◦, and 60◦

for DB MP3C and to 1% for the QP controller with a long horizon. It can be concluded that
MP3C is robust to flux observer noise.

13.1.2.3 Operation under Machine Parameter Variations

Another potential source of control performance degradation is variations in the machine
parameters that are unaccounted for by the controller. In the following, we investigate the
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Table 13.2 Robustness of MP3C to machine parameter variations under steady-state operating
conditions, using DB and QP MP3C with θp = 30◦

Control Variation Variation Deviation Deviation Deviation
scheme of Rs (%) of Rr (%) of Te (%) of ||ψs|| (%) of ||ψr|| (%)

DB 75 100 0.19 0.03 0.02
DB 125 100 −0.18 −0.04 −0.02
QP 75 100 0.24 0.12 0.11
QP 125 100 −0.24 −0.12 −0.11

DB 100 75 0.13 0.00 −0.02
DB 100 125 −0.08 0.00 0.02
QP 100 75 0.42 0.06 0.03
QP 100 125 −0.36 −0.05 −0.03

The deviations of the electromagnetic torque Te, stator flux magnitude ||ψs||, and rotor flux magnitude
||ψr|| from their nominal values are shown in percent, when altering the stator and rotor resistance by
±25%, respectively.

impact that changes in the stator and rotor resistances, Rs and Rr, have on the steady-state
tracking accuracy of MP3C. As previously, operation at nominal speed and rated torque
with an OPP of pulse number d = 5 is assumed. The resistances are altered by ±25%. The
performance of DB MP3C is compared with that of the QP version with the angular horizon
θp = 30◦. The steady-state deviations of the electromagnetic torque, stator flux magnitude,
and rotor flux magnitude from their nominal values are used as performance indices. To
highlight the performance of MP3C, the outer flux and torque control loops in Fig. 12.8 are
disabled.

As shown in Table 13.2, the steady-state errors are barely measurable. For DB MP3C, the
errors are below 0.2%, while for QP MP3C they are below 0.5%. In general, DB MP3C per-
forms better in the presence of machine parameter variations than QP MP3C. The steady-state
tracking errors because of parameter variations affect only the fundamental components, not
the ripple components. As a result, these variations neither have an impact on the harmonic
distortions nor do they influence the device switching frequency.

The model used in MP3C consists of two integrators—one integrator for the component
of the stator flux vector in the α-axis and another one for the β-axis. The stator resistance
is neglected. As can be seen in Table 13.2, variations in the stator resistance are indeed of
minor importance, because the resulting voltage drop is in any case small for MV applications.
Variations in the rotor resistance also have only a minor impact, because they merely alter the
time-constant of the coupling between the stator and rotor. By forcing the stator flux vector
along its desired trajectory, both errors can be mostly compensated for. To compensate for the
residual small errors, the outer control loops and their integral terms are used.

13.1.3 Operation during Transients

The dynamic performance of MP3C during torque reference steps is investigated now. At 50%
speed, steps of magnitude 1 pu are imposed on the torque reference. An OPP with pulse number
d = 10 is used, which results in a device switching frequency of fsw = 250 Hz. In a first step,
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the performance of DB MP3C is compared with that of QP MP3C for different prediction
horizons. In a second step, the benefit of inserting pulses during transients is investigated.

13.1.3.1 Operation without Pulse Insertion

Figure 13.8 shows the performance of DB MP3C during torque steps, with the torque refer-
ence steps being applied at time instants t = 0 and 20 ms. As can be seen in Fig. 13.8(a), the
settling time is less than 2 ms and thus similar to that of hysteresis control schemes, such
as DTC (see Sect. 3.6.3). Over- and undershoots in the torque response are avoided. The
torque and the stator flux magnitude are perfectly decoupled, with the stator flux magnitude in
Fig. 13.8(b) remaining unaffected by the torque steps. To achieve this fast torque response, the
stator currents are driven quickly to their new values. This can be seen in Fig. 13.8(c) for the
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Figure 13.8 Operation of DB MP3C during torque reference steps. The torque, stator flux magnitude,
stator currents, and switch positions are shown versus the time axis in milliseconds. Operation is at 50%
speed with an OPP of pulse number d = 10, which yields a device switching frequency of 250 Hz
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Figure 13.9 Stator currents in stationary orthogonal coordinates during the torque steps shown in
Fig. 13.8

three-phase currents and in Fig. 13.9 for the currents in orthogonal coordinates plotted against
each other.

When applying the negative torque reference step at t = 0 ms, the reference angle of the
stator flux vector must be reduced by 13.7◦, as per (12.24). At 50% speed, this reduction is
equivalent to delaying the nominal OPP by 1.52 ms. As can be seen in Fig. 13.9, the sta-
tor current’s α-component must be increased by almost 0.7 pu, whereas the β-component
needs to be increased by about 0.45 pu. To achieve this, additional volt-second contributions
are required—a large positive contribution from phase a and a significant negative contribu-
tion from phase c. Phase b is almost orthogonal to the required volt-second modification and
thus contributes little. The same can be concluded by inspecting the three-phase currents in
Fig. 13.8(c).

Figure 13.10(a) shows the switch positions around the negative torque reference step. The
open-loop switch positions of the nominal OPP are shown as dash-dotted lines, while the
closed-loop and modified switch positions are shown as solid lines. As can be seen, DB MP3C
achieves the required volt-second modifications in a DB fashion by removing the first pulse in
phase a and by significantly shortening the second pulse. As the original pulses would reduce
the volt-seconds in phase a, their removal adds positive volt-seconds. Similarly, in phase c, the
first pulse is removed and the second one is shortened, thus reducing the volt-second contri-
bution in phase c. As no switching transition is available in phase b, only the phases a and c
are modified.

In the next step, the performance of DB MP3C is compared with that of QP MP3C for
different (angular) prediction horizons. Figure 13.11 shows the respective torque responses
for the negative torque reference step. The corresponding switch positions are shown in Fig.
13.10. The time axis is shown between −4 and 12 ms.

As expected, QP MP3C leads to slower torque responses than DB MP3C. For DB MP3C, the
torque becomes zero 1.6 ms after the torque reference step, while for QP MP3C with θp = 10◦
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Figure 13.10 Switch positions for DB and QP MP3C, corresponding to the torque step response in Fig.
13.11. The dash-dotted lines refer to the switching sequence of the unmodified original OPP, whereas
the solid lines correspond to the closed-loop switching sequence modified by MP3C

it takes 3.1 ms for the torque to achieve this. Nevertheless, in practice, the difference between
DB and QP MP3C with short horizons is small. For longer angular horizons, however, the set-
tling time is significantly longer, amounting to 8.4 ms for θp = 30◦ and 10.6 ms for θp = 60◦.
As the prediction horizon is increased, the required volt-second correction is distributed evenly
over multiple switching transitions—this becomes evident when comparing the closed-loop
switch positions in Figs. 13.10(b), 13.10(c), and 13.10(d).

13.1.3.2 Operation with Pulse Insertion

The merits of pulse insertion during torque reference steps are investigated now. We compare
the torque response of MP3C with pulse insertion with that of standard MP3C. The closed-loop
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Figure 13.11 Torque responses to a torque reference step at time t = 0 ms for DB and QP MP3C with
the angular prediction horizons θp = 10◦, 30◦, and 60◦. The drive operates at 50% speed

response of the latter is shown in Fig. 13.8. To facilitate a direct comparison with the former,
we adopt the previously used simulation settings: operation at 50% speed, torque steps of
magnitude ±1 pu and pulse number d = 10. Pulse insertion is turned on with the insertion
gain ci = 25. For DB MP3C, the closed-loop results are shown in Fig. 13.12.

For the negative torque step at t = 0 ms, pulse insertion reduces the torque settling time
from 1.6 to 0.6 ms. This can be seen in Fig. 13.13, which zooms in on the time axis between
−2 and 4 ms. Figure 13.14 compares the closed-loop switch positions of DB MP3C with pulse
insertion to the switch positions without it. The nominal OPP at t = 0 ms corresponds to the
switch position u = [−1 0 0]T . As shown in Fig. 13.14(b), without pulse insertion, DB MP3C
applies the zero vector u = [0 0 0]T instead, which momentarily halts the rotating stator flux
vector.

With pulse insertion, however, as shown in Fig. 13.14(a), a positive pulse is inserted in phase
a at t = 0 ms. Similarly, but with the opposite sign, a negative pulse is inserted in phase c. A
short pulse is also added to phase b. This results in the switch position u = [1 1 − 1]T , which
corresponds to a voltage vector of full magnitude in a direction that is almost opposite to that
of the nominal voltage vector with u = [−1 0 0]T . In doing so, pulse insertion temporarily
inverts the voltage applied to the machine during the negative torque step, thus fully utilizing
the available dc-link voltage and achieving the fastest possible torque response.

The drastic speed-up of the torque response is at the expense of a temporary increase in
the switching effort. Over the time window of 40 ms, the switching frequency is temporarily
increased from 250 to 275 Hz. Such a short and relatively modest increase in the switching
frequency is usually tolerable, because pulse insertion is required only during torque steps of
significant magnitude and thus is rarely exercised.
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Figure 13.12 Operation of DB MP3C with pulse insertion during torque reference steps. The figures
use the same scaling and simulation setup as in Fig. 13.8 to allow a direct comparison with DB MP3C
without pulse insertion

During the positive torque reference step at t = 20 ms, the stator flux vector needs to be
rotated forward. This is achieved by maintaining the angle of the voltage vector while increas-
ing its magnitude. As the voltage margin is small, the insertion of additional pulses has only
a minor effect. As a result, the torque settling time of 1.2 ms remains almost unchanged when
compared to DB MP3C without pulse insertion (see Fig. 13.8(a)).

Pulse insertion can lead to large voltage steps, for example, from vdc/2 to −vdc/2. In a
practical converter setting, such large steps are neither desirable nor feasible. Restrictions are
usually imposed in order to limit the rate of change of the voltage, dv/dt. This is due to the
fact that high dv/dt values are detrimental to the lifetime of the machine windings. Apart
from that, per-phase switching by more than one step up or down is prohibited for the NPC
converter.

To impose these switching restrictions, the switching commands issued by MP3C are
post-processed before being applied to the inverter. For example, the large steps of magnitude
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Figure 13.13 Torque responses to a torque reference step at time t = 0 ms with and without pulse
insertion for DB and QP MP3C with the angular prediction horizon θp = 60◦. The drive operates at 50%
speed
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Figure 13.14 Three-phase switch positions for DB MP3C with and without pulse insertion, corre-
sponding to the torque step responses in Fig. 13.13. The dash-dotted lines refer to the unmodified and
nominal OPP, whereas the solid lines correspond to the OPP modified by MP3C

2 that MP3C requests for phase c in Fig. 13.14(a) are reduced to steps of magnitude 1 in the
post-processing stage. Specifically, instead of switching from uc = 1 to −1 at time t = 0 ms
as requested by MP3C, the switch position uc = 0 is applied. At the next sampling instant,
at t = 25 μs, MP3C requests again to switch to uc = −1, which is then permitted by the
post-processing stage. As the width of the pulse amounts to several hundred microseconds and
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thus exceeds the sampling interval by an order of magnitude, the impact of these modifications
on MP3C and the torque response are minor. Importantly, the feedback characteristic inherent
to MP3C is well suited to address these modifications in the switching commands.

The performance improvement that pulse insertion carries is even more pronounced for QP
MP3C. As can be seen in Fig. 13.13 for the angular prediction horizon of 60◦, pulse insertion
reduces the torque settling time during the negative torque reference step from 10.6 to 0.7 ms.
This is a 15-fold reduction. As a result, even for long horizons, QP MP3C with pulse insertion
achieves closed-loop performances during transients similar to that of DB MP3C. As with DB
MP3C, the switching frequency is temporarily increased from 250 to 275 Hz over the time
window of 40 ms.

13.2 Experimental Results for the ANPC Inverter Drive System

DB MP3C has been successfully implemented and tested on a five-level MV drive system,
which is shown in Fig. 13.15. Experimental results that were obtained with the MV drive
being operated at power levels of up to 1 MVA are provided in this section.

13.2.1 Experimental Setup

Consider the five-level active neutral-point-clamped (ANPC) inverter drive system shown in
Fig. 13.16. The dc-link is comprised of two identical dc-link capacitors with the pu equivalence

Figure 13.15 Five-level ANPC inverter with a rated voltage of up to 6.6 kV and a rated current of
98 A. The three phase models of the inverter and of the active front end, respectively, are shown on the
right-hand side. Source: ABB Image Bank. Reproduced with permission of ABB Ltd
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Figure 13.16 Five-level ANPC inverter drive system with an MV induction machine (IM)

Xdc. These dc-link capacitors form the neutral point N in between them. The total instanta-
neous dc-link voltage is vdc = vdc,up + vdc,lo, where vdc,up and vdc,lo denote the voltages over
the upper and lower dc-link capacitors, respectively. The ANPC inverter comprises the neutral
point potential υn = 1

2(vdc,lo − vdc,up) and three flying phase capacitors Xph with the voltages
vph,x, where x ∈ {a, b, c} denotes the three phases. The neutral point potential and the phase
capacitor voltages are floating and must be actively controlled.

The inverter produces the five voltage levels ±vdc/2, ±vdc/4, and 0 at its phase termi-
nals. Owing to the floating phase capacitor voltages and the generally nonzero neutral point
potential, the phase voltages exhibit significant voltage variations around their nominal volt-
age levels. We refer to the nominal voltage levels by their phase levels ux ∈ {−2,−1, 0, 1, 2}.
The three-phase vector of phase levels is defined as u = uabc = [ua ub uc]

T .
Owing to the single-phase redundancy in the inverter, eight (rather than five) feasible

switching combinations exist per phase. The single-phase switch positions are denoted
by sx ∈ {0, 1, . . . , 7}, and the corresponding three-phase switch position is given by
s = sabc = [sa sb sc]

T . For an in-depth review of the ANPC topology, the redundancy it
offers, and the switching constraints it entails, the reader is referred to Sect. 2.4.2.

The drive encompasses a 6 kV, 50 Hz squirrel-cage induction machine rated at 1.424 MVA.
The rated values of the machine are summarized in Table 13.3. The pu system is estab-
lished using the base quantities VB =

√
2/3VR = 4899 V, IB =

√
2IR = 193.7 A, and

ωB = ωsR = 2π50 rad/s. The machine and inverter parameters are summarized in Table 13.4
as SI quantities and pu values, along with their respective symbols. Note that the induction
machine used for the experimental results is overrated and differs from the machine of the
five-level ANPC case study in Sect. 2.5.3.

13.2.2 Hierarchical Control Architecture

The control problem of the ANPC inverter drive system is complicated by the requirement
for balancing the neutral point potential and the three phase capacitor voltages around their
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Table 13.3 Rated values of the induction machine

Parameter Symbol SI value

Voltage VR 6000 V
Current IR 137 A
Real power PR 1.2 MW
Apparent power SR 1.424 MVA
Angular stator frequency ωsR 2π50 rad/s
Rotational speed ωmR 1488 rpm
Air-gap torque TR 7.976 kNm

Table 13.4 Parameters in the SI (left) and per unit system (right) of the five-level ANPC inverter drive
system

Parameter SI symbol SI value pu symbol pu value

Stator resistance Rs 203 mΩ Rs 0.008
Rotor resistance Rr 203 mΩ Rr 0.008
Stator leakage inductance Lls 8.579 mH Xls 0.107
Rotor leakage inductance Llr 8.579 mH Xlr 0.107
Main inductance Lm 246.8 mH Xm 3.066
Number of pole pairs p 2
dc-link voltage Vdc 9.8 kV Vdc 2.000
dc-link capacitor Cdc 200μF Xdc 1.589
Phase capacitor Cph 140μF Xph 1.112

nominal values. To achieve this, MP3C is augmented by a subsequent balancing controller.
Specifically, a hierarchical control architecture is adopted, which is shown in Fig. 13.17. The
MP3C block refers to the controller structure shown in the block diagram in Fig. 12.8 excluding
the speed controller and the flux observer.

In the top layer, MP3C regulates the stator flux vector along its optimal trajectory. In doing
so, the electromagnetic torque Te and the stator flux magnitude Ψs are controlled. MP3C
issues a switching sequence that starts at the current time instant kTs and covers the sampling
interval Ts. This switching sequence can be described by the sequence of phase levels U =
[uT

1 uT
2 . . .]T and the corresponding vector of the switching instants tu = [tu1 tu2 . . .]T . In

its simplest form, one phase level vector is issued at the current time instant, that is, U = u1
and tu = kTs.

The balancing controller of the bottom layer maintains the neutral point potential υn and
the three phase capacitor voltages vph = [vph,a vph,b vph,c]

T within upper and lower bounds
around their reference values. The reference of the neutral point potential is zero, while the ref-
erence for the phase capacitor voltages is, in general, a quarter of the nominal dc-link voltage,
that is, Vdc/4.

To achieve its objective, the balancing controller exploits the single-phase and three-phase
redundancies of the ANPC inverter. Specifically, the single-phase redundancy is used to control
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Figure 13.17 Hierarchical control architecture used for the five-level ANPC inverter drive system

the phase capacitor voltages and the neutral point potential, while the three-phase redundancy
can be exploited to control the neutral point potential. The balancing controller also imposes
switching constraints that are induced by the topology. In doing so, the reference phase level
sequence {U , tu} is translated into the switching sequence {S, ts}, where S = [sT

1 sT
2 . . .]T

denotes the sequence of three-phase switch positions and ts = [ts1 ts2 . . .]T is the vector of
the switching instants.

In the majority of cases, a switching sequence {S, ts} is available that achieves the requested
differential-mode voltage, which corresponds to {U , tu}. If required, the common-mode volt-
age is adjusted to control the neutral point potential. Matching the desired differential-mode
voltage is, however, not always possible, for example, when switching constraints are active.
In this case, the differential-mode voltage requested by MP3C can be synthesized only in an
approximate manner. These mismatches constitute output disturbances in the MP3C stator flux
control loop, which are captured by the flux observer and fed back to MP3C. Through the use
of feedback, the differential-mode voltage disturbances are corrected for by MP3C.

For more details on the redundancy offered by the ANPC topology, the reader is referred to
Sect. 2.4.2. Some details on the balancing controller can be found in [3]. Alternatively, a deriva-
tive of the model predictive direct torque control (MPDTC) methodology—model predictive
direct balancing control (MPDBC)—can be used to address the balancing control problem, as
proposed in [4].

13.2.3 Steady-State Operation

The steady-state performance of MP3C is compared with that of DTC using experimental
results on the five-level ANPC inverter MV drive system. For DB MP3C, an OPP with pulse
number d = 9 and the balancing controller shown in Fig. 13.17 is used. For DTC, the same
control hierarchy is adopted, but the MP3C block in Fig. 13.17 is replaced by DTC.
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Figure 13.18 Performance comparison between DTC and DB MP3C in terms of the switching fre-
quency and the current distortions, when operating at steady-state with a quadratic torque profile

Figure 13.18(a) shows the performance comparison of DTC and DB MP3C for fundamental
frequencies between 0.6 and 1 pu, or equivalently between 30 and 50 Hz. A quadratic torque
profile was used that reaches its maximum torque at 0.8 pu fundamental frequency. As the rated
current corresponds to the 137 A machine current while the inverter phase current is limited
to 98 A, the maximum torque achievable with this drive system is 0.6 pu.

Figure 13.18(a) shows the maximum device switching frequency fsw,max, which is obtained
by monitoring the respective device switching frequencies of the semiconductor devices and
recording the switching frequency with the highest value. Recall that the insulated-gate bipolar
transistors (IGBTs) of the five-level ANPC topology (c.f. Fig. 13.16) can be divided into two
groups. The switches Sx1–Sx4 form the ANPC part, while the IGBTs Sx5–Sx8 constitute the
flying capacitor (FC) part in phase x, with x ∈ {a, b, c}. Switching in the FC part is not only
required to synthesize the desired phase voltages but is also instrumental in maintaining the
phase capacitor voltages close to their nominal values. The IGBTs Sx5–Sx8 carry the majority
of the switching burden and thus constitute the limiting factor in terms of the maximal switch-
ing frequency. Their switching frequency fsw,FC is defined as the average switching frequency
of the IGBTs in the FC part. Assuming that the switching burden is well balanced,

fsw,FC ≈ fsw,max (13.2)

holds.
Each transition in a phase level ux entails exactly one on transition in the FC part, as can be

seen in Fig. 2.24. Given that there are four IGBTs in the FC part, the switching frequency con-
tribution of MP3C is expected to be fsw,FC = df1, where f1 denotes the fundamental frequency
in hertz. As per (13.2), one would expect fsw,max ≈ df1.

As can be seen in Fig. 13.18(a), the maximum device switching frequency is significantly
higher than df1. Indeed, for the range of fundamental frequencies shown in this figure, the
switching frequency is increased by a factor of 1.25 at nominal speed, while it is a factor of
almost 2 at 60% speed. These additional switching transitions are required to balance the phase
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capacitor voltages and the neutral point potential, particularly at low fundamental frequencies
and at high phase currents. To gain more insight into the closed-loop characteristics of the
phase capacitor voltages, see the simulation results of MPDTC discussed in Sect. 8.2.

Figure 13.18(b) compares the stator current distortions that result from applying the two
control methods. Normalized current distortions are shown, which are obtained by dividing
the measured current TDD by DTC’s current TDD at nominal speed. A particularly difficult
operating point is around 80% speed, at which full current is provided, albeit at a fundamen-
tal frequency of 40 Hz. In this region, MP3C provides the largest performance benefit when
compared to DTC. At 77% speed, for example, the current distortions are reduced by 38%. At
nominal speed, the reduction is by 30%. Note that by using an OPP with the single pulse num-
ber d = 9, MP3C does not fully utilize the available device switching frequency. By selecting
OPPs with higher pulse numbers, the current distortions could be further reduced.

A more detailed comparison between MP3C and DTC is provided at 80% speed and 60%
torque, which corresponds to the maximum inverter current of 98 A rms. The maximum device
switching frequency is in both cases 640 Hz. The stator currents are shown in Fig. 13.19 over
one fundamental period, and their harmonic spectra are shown in Fig. 13.20. The (peak) mag-
nitude of the fundamental component is in both cases 0.715 pu, which corresponds to the full
98 A (rms) inverter current. Compared to DTC, MP3C reduces the current distortions by 31%
and exhibits significantly smaller fifth and seventh harmonics.

Despite the characteristic current harmonics of the OPP at odd and non-triplen integer
multiples of the fundamental frequency, the harmonic spectrum exhibits a noise floor, which
worsens the current TDD. This noise floor is due to non-idealities of the inverter system, such
as dead-time effects [5], delays in the feedback loop, and disturbances that result from the bal-
ancing controller when enforcing switching constraints. Another root cause for the noise floor
is the fluctuating voltages at the inverter’s phase terminals, which are shown in Fig. 13.21 with
respect to the dc-link midpoint. As discussed, these voltage fluctuations are due to deviations
of the phase capacitor voltages and neutral point potential from their reference values. These
non-idealities and disturbances manifest themselves as deviations of the stator flux vector from
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Figure 13.19 Stator currents of DTC and MP3C, when operating at 80% speed and 60% torque in an
MV laboratory

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

468 Model Predictive Control of High Power Converters and Industrial Drives

Frequency (Hz)
0 500 1000 1500 2000

0

0.01

0.02

0.03

(a) DTC

Frequency (Hz)
0 500 1000 1500 2000

0

0.01

0.02

0.03

(b) DB MP3C with pulse number d = 9

Figure 13.20 Spectra of the stator currents of DTC and MP3C shown in Fig. 13.19
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Figure 13.21 Phase voltages of DTC and MP3C, corresponding to the experimental results in Fig.
13.19

its reference trajectory. This results in an increased harmonic content in the stator currents of
the machine despite the utilization of OPPs and the fast volt-second corrections of MP3C.

13.3 Summary and Discussion

Chapter 12 proposed a new model predictive control (MPC) method based on OPPs, which
resolves the classic contradiction in power electronics control—very fast control during tran-
sients on one hand, and optimal performance at steady-state operation on the other; that is,
minimum current distortions for a given switching frequency. The former is typically achieved
by DB control schemes and DTC, while the latter is in the realm of OPPs.
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The proposed controller, MP3C, achieves both objectives by adopting the principles of con-
strained optimal and receding horizon control. The latter provides feedback and a high degree
of robustness to disturbances and inverter non-idealities, ensuring that the optimal volt-second
balance of the OPP is maintained at (quasi) steady-state operation and during transients. As
a result, MP3C achieves both very low harmonic distortion levels per switching frequency at
steady-state operating conditions and fast current and torque responses during transients.

To achieve the latter, the notion of pulse insertion is instrumental, as it provides the con-
troller with an additional degree of freedom when required to remove the flux error as quickly
as possible. Switching transitions can be inserted and switching patterns synthesized, which
correspond to voltage vectors with magnitudes and angles that differ greatly from the voltage
vectors inherent to the precalculated OPP. Specifically, the phase voltage applied to the stator
windings of the machine can be temporarily increased to its maximum value and its sign can
be inverted, thus fully exploiting the available dc-link voltage of the inverter.

General-purpose drive applications, such as fans and pumps, increasingly impose stringent
harmonic performance requirements. Owing to the use of OPPs, this goal is easily achieved
with MP3C. Special-purpose drive applications, such as rolling steel mills, require a high
dynamic performance and very fast torque responses. To achieve this, pulse insertion is bene-
ficial. This makes MP3C an ideal choice for both general-purpose and special-purpose drives.

Moreover, MP3C can be extended to inverters with LC filters, which require an active
damping loop to attenuate the filter resonance. To this end, a linear quadratic regulator can
be added, which injects a damping signal to the stator flux error [6]. The principle of MP3C
is also applicable to grid-side converters [7] and modular multilevel converters [8].

13.3.1 Differences to the State of the Art

The proposed MP3C controller differs from state-of-the-art trajectory controllers in the fol-
lowing important aspects.

13.3.1.1 Fundamental Flux Component

State-of-the-art techniques such as [9] control the fundamental component of the stator flux
separately from its ripple component. To achieve this, the fundamental flux component must
be estimated, which greatly complicates the task of the flux observer [10].

The separation between fundamental and ripple components is avoided in MP3C. Instead,
the instantaneous value of the stator flux vector, which encompasses both its fundamental and
ripple components, is regulated along its optimal trajectory. The stator flux error (12.28) is
then simply the difference between the reference and the estimated (instantaneous) stator flux
vector. As a result, a standard flux observer can be used. For the experimental results shown in
Sect. 13.2, for example, the same flux observer was employed that is commonly used for DTC.

In summary, MP3C treats the flux error (12.28) as a single quantity that encompasses both
the harmonic flux error and the fundamental flux error. The harmonic flux error relates to ripple
current errors at quasi-steady-state operation. These errors are caused, for example, by dc-link
voltage fluctuations, discontinuities in the OPP, and changes in the pulse number. Fundamental
flux errors result from changes in the operating point, such as changes in the load torque or
the angular velocity of the machine.
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13.3.1.2 Penalty on the Manipulated Variable

State-of-the-art trajectory control methods [9, 11] only penalize the controlled variable, that is,
the stator flux error, according to the principle of DB control. QP MP3C, however, also penal-
izes changes in the manipulated variable, that is, modifications to the nominal time instants of
the switching transitions. In doing so, the required volt-second correction is distributed over
the prediction horizon, thus attempting to preserve the volt-second balance of the precalculated
OPP. This also reduces the sensitivity of QP MP3C to flux observer noise.

To ensure that the predicted stator flux error at the end of the prediction horizon is effectively
zero, the penalty on modifying the switching instants is set to a small value, thereby prioritiz-
ing the correction of the stator flux error. Penalizing both the controlled and the manipulated
variable is performed in accordance with the principle that changes to the manipulated variable
also incur a cost. Indeed, in optimal control, a trade-off between good tracking performance
and little use of the manipulated variable arises. This trade-off is adjusted by the penalty matrix
Q.

13.3.1.3 Receding Horizon Policy

Even though a sequence of switch positions is planned over a long prediction horizon, only the
switching sequence over the sampling interval is applied to the inverter. The predictions are
recomputed at the next sampling instant using new measurements; a shifted—and if necessary
revised—sequence of switch positions is derived. This is referred to as the receding horizon
policy (see Fig. 12.7). The receding horizon policy provides feedback and makes MP3C robust
to flux observer noise and modeling errors. Longer horizons reduce the controller sensitivity
to flux observer errors, as shown in Sect. 13.1.2.

As a result, when operating on an experimental drive setup with measurement and observer
noise, the steady-state current distortions are expected to be lower, when compared with an
overly aggressive controller. Examples for the latter include controllers that operate with a
very short prediction horizon or a DB controller that does not penalize the corrective actions
at all. Under idealized simulation conditions without noise and without a significant voltage
ripple on the neutral point potential (and the phase capacitor voltages), all MP3C variations
provide almost identical current distortions.

13.3.1.4 Deadbeat Controller

The DB version of MP3C might appear to bear some similarities with state-of-the-art methods
[9, 10]. These, however, typically construct the flux error every 500 μs, map the αβ flux error
into all three phases (using the inverse Clarke transformation (2.11)), modify the time instants
of the switching transitions within these 500 μs, and send the modified switching sequence
over the entire subsequent 500 μs to the inverter. Feedback is thus only applied every 500 μs.

In contrast to this, the proposed DB MP3C method adopts the receding horizon policy. The
modified switching sequence is applied to the inverter over a very short time interval, typically
25 μs. Therefore, feedback is provided every 25 μs. Even for DB MP3C, the prediction horizon
is typically quite long and in the range of 500 μs to 1 ms. Moreover, the αβ flux error is mapped
only into two phases, namely the two phases that feature the first switching transitions. This
type of mapping tends to reduce the time required to correct the stator flux error.
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13.3.1.5 Pulse Insertion

When inserting a pulse in MP3C, a virtual pulse is added with zero volt-second contribution.
While applying the inserted pulse, the volt-second generated by the pulse is modified in a
closed-loop fashion by adjusting the time instant of the second switching transition. According
to the receding horizon policy, at subsequent sampling instants, the pulse width is readjusted
to account for flux observer noise, disturbances affecting the stator flux, further changes in the
torque reference, and restrictions on the allowed dv/dt.

As a consequence, the step size of the second switching transition leading back to the nom-
inal OPP is not determined at the time the pulse is inserted. This can be seen, for example, in
Fig. 12.13(b). When shifting the second transition of the pulse beyond the nominal switching
instant of the next transition t∗x1, the step size is reduced from 2 to 1.

The closed-loop control paradigm of the proposed pulse insertion method is in stark contrast
to the method previously mentioned in the literature [12–14]. The latter appears to rely on
open-loop pulse insertion, using a feedforward approach, in which both switching transitions
are determined at the time they are inserted. In addition to this, depending on the flux error
and the error bounds, in the proposed method switching transitions are inserted in one, two, or
three phases, rather than always in two phases, as described in the literature.

13.3.2 Discussion

In the following section, further aspects and features of the proposed MP3C scheme are clar-
ified and discussed.

13.3.2.1 Optimality

It is important to point out that optimality, that is, minimum current TDD, is achieved when the
reference stator flux trajectory is accurately tracked. Optimality is thus defined in terms of the
flux trajectory rather than in terms of the voltage waveform of the OPP. These two quantities
match only at steady-state operation under ideal conditions. Optimality can also be achieved at
quasi-steady-state conditions, by ensuring that the reference flux trajectory is closely tracked.
By manipulating the width of the pulses, the optimal volt-second balance can be maintained
despite voltage fluctuations in the dc-link, neutral point, and phase capacitors.

During transients, however, defining optimality in terms of minimum current TDD is not
meaningful, because the notion of harmonic distortion is based on frequency analysis, requir-
ing (quasi) steady-state operation. Large transients typically arise when large torque steps are
imposed, switching between different OPPs is performed, or when the operating point is moved
across discontinuities in the switching angles. The stator flux error tends to be large in all
three cases, necessitating significant corrections of the switching instants. When such tran-
sients occur, the controller aims to achieve a very fast dynamic response by rapidly regulating
the stator flux vector to its new reference. Strictly speaking, however, re-optimizing around
the existing OPP or inserting pulses might be suboptimal, in the sense that a more suitable
switching sequence might exist that achieves the same torque response but at a lower switch-
ing burden. Owing to the additional computational and implementation-related complexity
such an approach might entail, it has not been further pursued.
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13.3.2.2 Operation at Low Modulation Indices

The MP3C method is conceptually applicable to the whole speed range. At the upper end of
the modulation index, OPPs can reach six-step operation. At the lower end, however, practical
considerations limit the applicability of OPPs. Specifically, low modulation indices and low
fundamental frequencies lead to very high pulse numbers, making the computational proce-
dure of deriving such OPPs challenging. Moreover, the advantage of OPPs over CB-PWM
becomes minor in terms of harmonic distortions. Therefore, the standard practice is to switch
to CB-PWM with field-oriented control at low modulation indices, as explained in detail
in [10].

13.3.2.3 Computational Requirements

In general, the computational burden is often high for MPC methods, requiring a powerful
control platform to solve the underlying optimization problem within the sampling interval.
By precomputing OPPs, however, the majority of the computations is moved offline for MP3C
at the expense of increased memory requirements to store these patterns. During runtime, the
OPP is modified by the controller so as to compensate for non-idealities and to achieve fast
control during transients.

DB MP3C is well suited to implementation on a field-programmable gate array (FPGA).
Additions, shift operations and if-then-else statements are computationally cheap, because
they require little space on the FPGA and just one clock cycle. Divisions and multiplications,
however, are computationally expensive on an FPGA, requiring multiple clock cycles and ded-
icated multiplier units, which are often scarce. Of those expensive computations, DB MP3C
requires only one division and a few multiplications to compute the controller output. There-
fore, the computational effort required by DB MP3C to modify the precomputed OPPs is
roughly the same as the effort required to establish control by field orientation.

The QP version of MP3C is computationally more demanding than the DB version. To
facilitate implementation, an active set method can be adopted that is tailored to the optimiza-
tion problem at hand, as explained in Sect. 12.5.1. The computational burden of the active set
method is only slightly higher than that of DB MP3C. Alternatively, a fast gradient solver can
be implemented on an FPGA to solve the QP, as proposed in [15].
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14
Model Predictive Control
of a Modular Multilevel Converter

14.1 Introduction

The modular multilevel converter (MMC) topology [1] has recently received significant inter-
est in the literature [2, 3]. This converter has many attractive properties, chiefly the series
connection of modules. Series connection allows one to scale the converter output voltage
and to achieve high output voltages, despite the relatively low voltages typically used for
the modules. Moreover, increasing the number of series-connected modules directly increases
the number of voltage levels available at the converter’s output terminals, which significantly
reduces the harmonic distortions in the output voltages and currents as compared to standard
two- or three-level voltage source converters [4]. As a result, the size of the harmonic filter
can be reduced and the switching frequency can be lowered in order to reduce the total losses
in the converter. These properties make the MMC topology well suited to high-power and
high-voltage applications, such as high-voltage direct current (HVDC) transmission systems
[5, 6]. In the medium-voltage (MV) area, promising applications include static VAR compen-
sators (STATCOMs) [7, 8] and railway interties [9], which do not require a transformer.

The control and modulation problem of the MMC is to regulate the load currents along
their time-varying references, to balance the capacitor voltages around their nominal values, to
minimize the converter and switching losses, and to meet harmonic requirements of the load.
The MMC must be operated within its safe operating limits, particularly with regard to the
branch currents and capacitor voltages. Owing to the multiple-input multiple-output (MIMO)
structure of the converter and its various internal dynamics, this control problem is intrinsically
difficult to solve. State-of-the-art hierarchical controllers can be grouped into current, average,
and energy-based schemes.

In the upper layer of a hierarchical current controller, as developed and implemented in [10],
the voltage references of the branches are computed in view of the desired time-varying out-
put load currents and the elimination of circulating currents. A subsequent carrier-based pulse
width modulator (CB-PWM) or space vector modulator (SVM) in conjunction with a capacitor

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
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voltage balancing controller translates the references signals of the branch currents into gat-
ing commands for the converter. In [11], a hierarchical scheme that combines averaging and
balancing control is presented. The controller splits the effort between the number of mod-
ules per branch. A subsequent pulse width modulator (PWM) is used to generate the switch-
ing sequences. The hierarchical energy-regulating controller drives the total branch energies
along time-varying reference values, thus guaranteeing the equalization of capacitor voltages
within and among the branches. The reference signals are derived as functions of the desired
time-varying load currents and the measured dc-link voltage. The energy balance is achieved
by exploiting the circulating currents and the common-mode voltage. Examples of hierarchical
energy-regulating controllers can be found in [12] and [13].

Hierarchical schemes with multiple proportional–integral (PI) control loops tend to perform
poorly when fast control actions are required during transient operation or when the switching
frequency is very low. This shortcoming motivates the investigation of modern control meth-
ods formulated in the time domain, most notably model predictive control (MPC) [14]. The
literature on MPC schemes for the MMC topology is scarce and restricted to direct MPC meth-
ods that do not use a modulator. Direct MPC methods with a prediction horizon of one step
were proposed in [15] for the single-phase ac–ac MMC topology and in [5] for a back-to-back
HVDC system. Both approaches follow the enumeration-based direct MPC paradigm, which
is summarized in Chap. 4. Longer prediction horizons were achieved in [16] for a three-phase
dc–ac MMC.

This chapter proposes an indirect model predictive current controller for the MMC, which
is based on a PWM. A prediction horizon of 5–10 steps is used. The underlying optimiza-
tion problem is a quadratic program (QP), which can be solved efficiently using off-the-shelf
solvers. The control problem is addressed in a hierarchical manner. The MPC scheme con-
stitutes the upper layer that provides voltage references to the subsequent PWM stage. The
capacitor voltages are balanced within the branches by balancing controllers that operate on
the lower layer.

This MPC scheme provides optimal control actions both at steady-state operation as well
as during transients, such as power up, load steps, and faults. Owing to the ability of MPC to
address constraints, the proposed controller achieves fast transient responses while respecting
constraints on the branch currents and capacitor voltages, thus ensuring that the converter
operates under safe conditions even during transient operation. This stands in stark contrast to
the traditionally used hierarchical controllers with multiple PI loops (see, e.g., [11] and [17])
whose dynamic response tends to be slow in order to avoid violations of the safe operating area.

14.2 Preliminaries

14.2.1 Topology

The three-phase dc–ac MMC topology under investigation is shown in Fig. 14.1. Each phase
leg x ∈ {a, b, c} of the converter is divided into an upper and a lower branch. Each of the
six branches r ∈ {1, . . . , 6} consists of n series-connected unipolar modules Mrj , with j ∈
{1, . . . , n}. A (small) branch inductor Lbr is added to each branch. Its ohmic resistance and
the conduction losses in the branches are modeled by the resistor Rbr.

As shown in Fig. 14.2, each module Mrj consists of the capacitor Cm with the voltage vrj

and two insulated-gate bipolar transistors (IGBTs). The IGBTs form a half-bridge with two
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Figure 14.1 Three-phase dc–ac MMC topology with n series-connected unidirectional modules per
branch

switching states. During the on state of the module, when the upper IGBT is turned on and the
lower one is turned off, the capacitor Cm is connected to the branch, and the terminal voltage
of the module is equal to the capacitor voltage vrj . During the off state, when the lower IGBT
is turned on and the upper one is off, the module is bypassed and the terminal voltage of the
module is zero. Note that in order to avoid a potential shoot-through, a short blanking time is
introduced in which both IGBTs are off.

The MMC is fed by a dc source with the supply voltage vdc. Parasitic inductances and
resistances in the dc supply are modeled by the inductor Ldc and the resistor Rdc, respectively,
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Cm

ir

vrj

Figure 14.2 Unipolar MMC module Mrj consisting of a half-bridge and the capacitor Cm

which are connected in series to the dc supply. The three-phase output terminals of the MMC
are connected to the grid, which is represented by the grid inductor Lg in series with the
grid resistor Rg and the three-phase grid voltage vg = [vga vgb vgc]

T . Alternatively, the grid
parameters can be interpreted to represent an active resistive–inductive load, such as an elec-
trical machine.

14.2.2 Nonlinear Converter Model

For each branch r, we define the branch current ir. The grid currents are linear combinations
of the branch currents. The phase a grid current, for example, is given by

iga = i1 − i2. (14.1)

The grid currents for the phases b and c are defined accordingly. The circulating current icirc,x
is defined as the current circulating through the upper and lower branches of the phase leg x
and the dc-link. For phase leg a, for example, the circulating current is defined as

icirc,a =
i1 + i2

2
− idc

3
, (14.2)

where idc denotes the dc-link current. The circulating currents in phase legs b and c are defined
accordingly.

We also define the (discrete) insertion index νr ∈ {0, 1
n , 2

n , . . . , 1}, which specifies the pro-
portion of modules inserted into the rth branch [10]. Specifically, νr = 0 implies that none of
the modules in the rth branch is inserted (all are bypassed), whereas νr = 1 means that all n
modules in the branch are inserted.

We assume that all modules have the same capacitance Cm and that all voltages across
the capacitors are the same; that is, the capacitor voltages are balanced. Following [18], this
assumption allows us to describe the series connection of the modules inserted into branch r
by the (time-varying) branch capacitance

Cr =
1
νr

Cm

n
(14.3)

with the voltage
vr = νrv

Σ
r . (14.4)
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Figure 14.3 Equivalent representation of the three-phase dc–ac MMC topology, in which the series-
connected branch modules were replaced by the equivalent controlled capacitors Cr with the voltages
vr. The index r ∈ {1, . . . , 6} denotes the branch number

With this, the MMC topology shown in Fig. 14.1 can be simplified to the equivalent represen-
tation shown in Fig. 14.3, in which the inserted modules in the rth branch are replaced with a
controlled capacitor with the capacitance Cr and the voltage vr .

The last term in (14.4) is the sum over all capacitor voltages in branch r, which is defined as

vΣ
r =

n∑

j=1

vrj . (14.5)

Note that vΣ
r is independent of the number of modules that are actually inserted into the

branch. The evolution of vΣ
r is a function of the branch current ir and the inserted branch

capacitance Cr, that is,
dvΣ

r

dt
=

ir
Cr

=
n

Cm

νrir, (14.6)

where we have used (14.3).
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For a sufficiently large number of modules and/or a high switching frequency, the insertion
index νr can be approximated by the real-valued and bounded variable νr ∈ [0, 1] (see also
[19]). This allows the derivation of a nonlinear, continuous-time dynamic model of the MMC
with real-valued variables.

In the sequel of this chapter, we use the definition νr ∈ [0, 1] for the insertion indices of
the six branches. These insertion indices constitute the input vector to the nonlinear system
model. As there are five linearly independent currents, we choose as state variables the upper
and lower branch currents of phase legs a and b (i.e., i1, i2, i3, and i4), the dc-link current idc,
the sums of the capacitor voltages vΣ

r of the six branches, and the grid voltages vgα, vgβ in the
orthogonal αβ coordinate system. The outputs of the model are the grid currents igα, igβ in
the orthogonal coordinate system, along with the six sums of the capacitor voltages per branch
vΣ

r . To this end, we define the state and output vectors as

x = [i1 . . . i4 idc vΣ
1 . . . vΣ

6 vgα vgβ ]T (14.7a)

y = [igα igβ vΣ
1 . . . vΣ

6 ]T . (14.7b)

The grid currents are defined as

[
igα

igβ

]
= K̃

⎡

⎣
iga

igb

igc

⎤

⎦ = K̃

⎡

⎣
i1 − i2
i3 − i4
i5 − i6

⎤

⎦ , (14.8)

where K̃ denotes the reduced Clarke transformation as defined in (2.13).
Inspired by the modeling procedure described in [16], the differential equations of the five

independent currents can easily be derived by applying Kirchhoff’s voltage law to five meshes
in the circuit. We choose the meshes EADNE, EBDNE, ECDNE, DASBD, and DASCD,
which are defined by their corresponding nodes as indicated in Fig. 14.3. The five differential
equations are provided in Appendix 14.A.

The six differential equations of the sums of the capacitor voltages per branch vΣ
r are stated

in (14.6). The evolution of the grid voltages in the αβ frame is given by

d
dt

[
vgα

vgβ

]
= ωg

[
0 −1
1 0

] [
vgα

vgβ

]
, (14.9)

where ωg = 2πfg is the angular electrical frequency of the grid.
We conclude that, by representing the number of modules inserted into a branch by the inser-

tion index νr, each branch can be described by its time-varying branch capacitance Cr and its
time-varying voltage vr. This greatly simplifies the modeling and subsequent controller design.

14.3 Model Predictive Control

14.3.1 Control Problem

A controller is to be developed for the MMC topology that regulates the grid currents along
their sinusoidal references and maintains the capacitor voltages close to their nominal values.
At steady-state operation, a low total demand distortion (TDD) of the grid current and a low
device switching frequency are required, with the latter being in the range of a few hundred
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hertz. During transients, a very fast current response is to be achieved. Furthermore, the branch
currents, dc-link current, and the capacitor voltages must be kept within given bounds, which
are due to the physical limitations of the switching devices and passive components.

14.3.2 Controller Structure

To address the control problem of the MMC, a hierarchical control scheme with three layers
is proposed, as depicted in Fig. 14.4. The MPC scheme on the upper layer regulates the grid
currents and the sums of the capacitor voltages in the six branches. The MPC scheme is based
on the principle of constrained optimal control. Given the state vector x and the output refer-
ence vector y∗, a quadratic cost function is minimized subject to constraints and the evolution
of a linearized state-space model of the MMC. The resulting optimization problem is a QP,
which is formulated and solved in real time. The result of this optimization stage is a sequence
of manipulated variables over the prediction horizon. In accordance with the receding horizon
policy (see Sect. 1.3.2), only the first element of this sequence is applied to the MMC, namely
the real-valued insertion indices νr for the six branches.

On the middle level, six multilevel CB-PWM units translate the insertion indices into the
six integer variables nr. The latter denote the number of modules to be inserted per branch.
On the lower layer, six independently operating balancing controllers balance the capacitor
voltages within each branch, by equally distributing the energy per branch. These controllers
exploit the redundancy present within the branches and choose the gating commands for the
individual MMC modules.

x

y∗

ν1

ν2

ν3

ν4

ν5

ν6
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Figure 14.4 Structure of the proposed control scheme. Based on the state vector x and the output
reference vector y∗, the model predictive controller regulates the grid currents and the sums of the
capacitor voltages in the six branches by manipulating the six real-valued insertion indices νr ∈ [0, 1].
Carrier-based PWM translates these indices into the discrete number of modules nr ∈ {0, 1, . . . , n} to
be inserted into each branch. Six balancing controllers maintain the capacitor voltages within each branch
at their nominal levels by deciding which module to turn on or off
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14.3.3 Linearized Prediction Model

The differential equations describing the dynamic behavior of the MMC contain nonlinear
terms, namely the multiplications νrv

Σ
r in the current equations (14.A.1) (see Appendix 14.A)

and νrir in the capacitor voltage equations (14.6). At time t = t0, a linearization of these
nonlinear terms can be done around the current operating point of the system, which is given
by νr(t0), vΣ

r (t0), and ir(t0). Specifically, the first-order Taylor series expansions

νr(t)v
Σ
r (t) = νr(t0)v

Σ
r (t0) + Δνr(t)v

Σ
r (t0) + νr(t0)(v

Σ
r (t) − vΣ

r (t0))

= νr(t0)v
Σ
r (t) + Δνr(t)v

Σ
r (t0) (14.10a)

νr(t)ir(t) = νr(t0)ir(t) + Δνr(t)ir(t0) (14.10b)

are performed, where Δνr(t) = νr(t) − νr(t0) is the variation in the insertion index.
The resulting linearized, continuous-time prediction model is of the form

dx(t)
dt

= F (t0)x(t) + G(t0)u(t) + g(t0) (14.11a)

y(t) = Cx(t) (14.11b)

with the state, input, and output vectors

x = [i1 . . . i4 idc vΣ
1 . . . vΣ

6 vgα vgβ ]T (14.12a)

u = [Δν1 . . . Δν6]
T (14.12b)

y = [igα igβ vΣ
1 . . . vΣ

6 ]T . (14.12c)

Note that the state and output vectors remain the same as for the nonlinear model (see (14.7)).
The input vector u, however, comprises the variations in the insertion indices, rather than the
insertion indices. As νr ∈ [0, 1], the input vector is constrained to u ∈ [−ν1(t0), 1 − ν1(t0)] ×
· · · × [−ν6(t0), 1 − ν6(t0)]. Note that x ∈ R

13, u ∈ R
6 and y ∈ R

8. The time-varying matri-
ces F (t0), G(t0), and C, and the vector g(t0) are provided in Appendix 14.B.

Using Euler’s exact discretization method (see, e.g., (5.5)) with the sampling interval Ts,
the discrete-time representation of the linearized model

x(k + 1) = A(t0)x(k) + B(t0)u(k) + b(t0) (14.13a)

y(k) = Cx(k) (14.13b)

can be derived.

14.3.4 Cost Function

The cost function maps the control objectives into a scalar cost. The proposed cost function
consists of four terms. The first three terms are defined in this section, while the fourth term is
introduced in the following section.

The first cost function term penalizes the predicted evolution of the tracking error, which
is the difference between the time-varying reference of the output vector y∗ and the predicted
output vector y. The output reference is defined as
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y∗(�) = [i∗gα(�) i∗gβ(�) Vdc Vdc Vdc Vdc Vdc Vdc]
T , (14.14)

where i∗gα and i∗gβ are the desired grid currents expressed in the αβ coordinate system. The
nominal dc-link voltage Vdc is the reference for the sums of the capacitor voltages per branch.

The predicted tracking errors y∗ − y are squared and weighted with the penalty matrix Qy .
Summing up these quadratic terms from time step k until the end of the prediction horizon Np

yields the cost function term

J1(x(k),U) =
k+Np−1∑

�=k

(y∗(�) − y(�))T Qy (y∗(�) − y(�)). (14.15)

We require Qy to be positive semidefinite and symmetric. The future output vectors y(�) are
a function of the state vector x(k) and the sequence of manipulated variables

U = [uT (k) uT (k + 1) . . . uT (k + Np − 1)]T (14.16)

over the prediction horizon Np. This dependency is explained in Sect. 5.6 (see (5.38)).
The second term of the cost function

J2(x(k),U ) =
k+Np−1∑

�=k

(i(�))T Qi(k)i(�) (14.17)

adds an operating-point-dependent penalty on the branch current vector i = [i1 i2 . . . i6]
T .

The penalty matrix
Qi(k) = (1 − ||i∗g,αβ(k)||2) Q′

i (14.18)

inversely depends on the amplitude of the grid current reference i∗g,αβ = [i∗gα i∗gβ ]T , where
Q′

i is a constant penalty matrix. Note that we adopt the per unit (pu) system as defined in
Sect. 14.4.1. Therefore, the rated grid current is of the magnitude 1.

A reference-dependent penalty is beneficial for the following reason. As the grid currents are
equal to the differences between the respective upper and lower branch currents, the branch
currents constitute an uncontrolled quantity when controlling only the grid currents. When
operating at low-load or no-load conditions, the desired small grid currents can be achieved
for a wide range of branch currents, including some large ones. By imposing the penalty Q′

i on
the branch currents, these currents are minimized, and the switching and conduction losses are
reduced. When the converter operates at full load, however, the converter must provide high
grid currents, which require high branch currents. In this case, trying to minimize the branch
currents would conflict with the cost function term J1, resulting in a grid current tracking error.

The third term of the cost function penalizes changes in the manipulated variable within the
prediction horizon Np:

J3(u(k − 1),U) =
k+Np−1∑

�=k

(Δu(�))T R Δu(�). (14.19)

Specifically, changes Δu(�) = u(�) − u(� − 1) in the insertion index are penalized with
the matrix R. Penalizing changes in the manipulated variable rather than the manipulated
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variable itself is preferred, because time-varying references need to be tracked that require
nonzero manipulated variables during steady-state operation. Because we penalize changes
in the manipulated variable, J3 is a function of the previously applied manipulated variable
u(k − 1). Note that the trade-off between tracking accuracy and control effort is determined
by the ratio between Qy and R.

14.3.5 Hard and Soft Constraints

A considerable advantage of the proposed control framework is its ability to address hard
or soft constraints during the controller synthesis. Hard constraints relate to strict physical
limitations of the converter, such as limits on the modulation or bounds on the safe operating
area. The latter directly relate to trip levels, such as overvoltage or overcurrent trip levels.
Hard constraints are added as inequality constraints to the optimization problem and limit the
admissible state-input space. We impose the hard constraints

0 ≤ νr(�) ≤ 1 (14.20)

on the six insertion indices νr.
As hard constraints on state and output variables might lead to feasibility issues, we impose

soft rather than hard constraints on these variables to restrict the operation of the MMC to
the limits of the safe operating area. A soft constraint is an (in)equality constraint that can
be relaxed using the so-called slack variable. The degree of the constraint violation corre-
sponds to the value of the nonnegative slack variable. As such, the slack variable maps the
constraint violation into a nonnegative real number. To minimize the constraint violation, the
slack variable is penalized heavily in the cost function.

As shown in Fig. 14.5(a), we impose soft constraints on the branch currents ir . Specifically,
we introduce upper and lower constraints at imax and −imax using the slack variable ξr and the
three inequality constraints

ξr(�) ≥ ir(�) − imax (14.21a)

ξr(�) ≥ − (ir(�) + imax) (14.21b)

ξr(�) ≥ 0. (14.21c)

The three constraints are indicated by the three thick lines in Fig. 14.5(a), while the feasible
space of the slack variable is indicated by the shaded area. Although the slope of the

−imax imax

ir

ξr

(a) Upper and lower soft constraints on ir

vmax

vΣ
r

ζr

(b) Upper soft constraint on vΣ
r

Figure 14.5 Soft constraints on the branch current ir and on the sum vΣ
r of the capacitor voltages of

the rth branch, using the slack variable ξr and ζr , respectively
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soft constraints is only 45◦, we will weigh the slack variables with a large penalty, thus
achieving—in effect—very steep slopes. As a result of this, the soft constraints keep the
branch currents almost as strictly within their bounds as hard constraints do, while avoiding
potential numerical and feasibility issues.

Similar to (14.21), upper and lower soft constraints are imposed on the dc-link current idc,
using the slack variable ξdc

ξdc(�) ≥ idc(�) − imax (14.22a)

ξdc(�) ≥ − (idc(�) + imax) (14.22b)

ξdc(�) ≥ 0. (14.22c)

Moreover, an upper soft constraint at vmax is imposed on the sum of the capacitor voltages
per branch vΣ

r , by introducing the slack variable ζr and the two inequality constraints

ζr(�) ≥ vΣ
r (�) − vmax (14.23a)

ζr(�) ≥ 0. (14.23b)

This soft constraint is depicted in Fig. 14.5(b).
By aggregating the slack variables in the two vectors

ξ = [ξ1 . . . ξ6 ξdc]
T ∈ R

7
+ (14.24a)

ζ = [ζ1 . . . ζ6]
T ∈ R

6
+, (14.24b)

the fourth term of the cost function can be written as

J4(x(k),U ,Ξ) =
k+Np−1∑

�=k

λξ||ξ(�)||1 + λζ ||ζ(�)||1, (14.25)

in which the slack variables are penalized using the 1-norm and the scalar penalties λξ and λζ .
Large positive values are chosen for these penalties. The sequence of slack variables over the
prediction horizon is defined as

Ξ = [ξT (k) ζT (k) ξT (k + 1) ζT (k + 1) . . . ξT (k + Np − 1) ζT (k + Np − 1)]T

(14.26)
similar to U .

14.3.6 Optimization Problem

Minimizing the sum of the four cost function terms leads to the optimization problem

Uopt(k) = arg minimize
U(k),Ξ(k)

J1 + J2 + J3 + J4 (14.27a)

subject to (14.13), (14.20)–(14.23) (14.27b)

∀� = k, . . . , k + Np − 1. (14.27c)

As the cost function is quadratic and minimized subject to the evolution of a linear state-
space model with linear inequality constraints, the resulting optimization problem (14.27a)
is a QP.
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To write the QP in the standard form (3.94), the procedure summarized in Sect. 5.2.1 is
followed. Specifically, the cost function is expressed as a function of the sequence of manip-
ulated variables U(k) and the sequence of slack variables Ξ(k). These two vectors constitute
the optimization vector. As there are 6 manipulated variables and 13 slack variables at each
time step, the optimization vector is of the dimension 19Np. The cost function also depends
on the initial state vector x(k) and the previously chosen manipulated variable u(k − 1).

The QP can be solved efficiently, for example, by using an active set method or an interior
point solver. For more details on QPs and optimization techniques to solve them, the reader
is referred to Sect. 3.8 and the references therein. The result of the optimization stage is the
sequence of optimal manipulated variables U at time step k.

The first element of this sequence is implemented at time step k and sent to the PWM.
At the next time step k + 1, new measurements are obtained and the optimization problem is
solved again over a shifted prediction horizon. This so-called receding horizon policy provides
feedback and ensures that the controller is robust—both to parameter uncertainties and to the
linearization errors because of the Taylor series approximation.

14.3.7 Multilevel Carrier-Based Pulse Width Modulation

The middle level of the hierarchical control scheme shown in Fig. 14.4 performs the CB-PWM.
Specifically, regularly sampled multilevel CB-PWM with phase disposition is used with the
carrier frequency fc, as summarized in Sect. 3.3. The different triangular carrier waveforms
are not interleaved within each branch, but a phase shift of 180◦ is applied between the carrier
waveforms of the upper and lower branches.

The MPC controller is executed at the (upper and lower) peaks of the triangular carrier
waveform, that is, at the time instants t = kTs, with Ts = 1

2fc
. New insertion indices are pro-

vided to the modulator at these time instants. The insertion index νr can be interpreted as the
modulation index of a multilevel PWM scheme. A scaling by the sum of all capacitor voltages
per branch, vΣ

r , is not required, because variations in vΣ
r are captured in the prediction model

thanks to the choice of vΣ
r as a state variable (see (14.12a)). Based on νr and vΣ

r , the branch
voltages vr in the current equations (14.A.1) are manipulated.

Each insertion index is compared with n triangular carrier signals, which are of the magni-
tude 1/n. In doing so, the PWM translates the real-valued insertion index νr ∈ [0, 1] into the
integer nr ∈ {0, 1, . . . , n}, which specifies the number of modules to be inserted into the rth
branch. Using six independent PWM stages, each branch is modulated independently of the
others, which results in six decision variables for the control scheme.

Note that many state-of-the-art controllers, such as the ones reported in [12] and [20], add a
dependency between the control signals of the upper and lower branches of each phase leg, by
imposing that the number of modules inserted per phase leg is always equal to n. For the phase
leg a, for example, this constraint can be written as n1 + n2 = n. As a result, the number of
manipulated variables is reduced to 3.

In the case of MPC, however, imposing such a per-phase constraint is deemed to be an
unnecessary and conservative choice. Using six instead of three manipulated variables enables
MPC to control the energies in the branch capacitors independently of the grid currents. Soft
constraints on the branch currents and on the sums of the capacitor voltages ensure that the
MMC is operated within its safe operating limits. The benefit of adopting six independently
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operating PWM stages becomes evident particularly during transients, as will be shown and
discussed in Sect. 14.4.

14.3.8 Balancing Control

The lower control layer exploits the per-branch redundancy of the modules to balance the
capacitor voltages within the branches while minimizing the switching events. Each branch
uses its own balancing controller, which receives as input from the modulation stage the num-
ber of modules nr to be inserted into the rth branch. The balancing algorithm is executed at
the switching events of the modulator.

The adopted balancing method is based on the sorting algorithm presented in [1]. For each
branch, two ordered sets are maintained that contain the branch modules that are currently on
(i.e., inserted into the branch) and off (i.e., bypassed), respectively. We denote these two sets
by Lon and Loff . The intersection of the sets is empty. Let non

r and noff
r denote the number of

modules contained in Lon and Loff , respectively. It holds that non
r + noff

r = n for each branch r.
The modules contained in each set are sorted in an ascending order of their capacitor voltages.

The switching of modules is performed following the requested nr and the polarity of the
branch current. If nr > non

r , then nr − non
r modules in Loff are switched on. If the branch

current is positive (negative), then the nr − non
r modules with the smallest (highest) capacitor

voltages are chosen from Loff and moved to Lon.
Conversely, if nr < non

r , then non
r − nr modules in Lon are switched off. If the branch cur-

rent is positive (negative), then the non
r − nr modules with the highest (smallest) capacitor

voltages are chosen from Lon and moved to Loff .

14.4 Performance Evaluation

The performance of the proposed control scheme is evaluated at steady-state operating con-
ditions and during transients. At steady state, the grid current TDD and the device switching
frequency of the MMC modules serve as performance metrics. During transient operation,
the dynamic response of the converter is used as a metric. To this end, quantities such as the
overshoot, rise time, and settling time of the response to step changes are examined.

14.4.1 System and Control Parameters

Consider a three-phase MV MMC with n = 8 modules per branch that is connected to the grid.
The MMC operates in dc–ac inverter mode, and has a rated apparent power of 4.28 MVA.
The input of the MMC is connected to a dc supply with the constant and nominal voltage
Vdc = 6.8 kV. The rated values of the MMC are provided in Table 14.1. The pu system is
established using the base voltage VB =

√
2/3VR = 3.10 kV, the base current IB =

√
2IR =

919 A, and the angular base frequency ωB = ωgR = 2π50 rad/s. The MMC parameters are
summarized in Table 14.2. The MMC, grid, MPC scheme, CB-PWM, and balancing controller
were implemented in MATLAB/SIMULINK and PLECS. The full nonlinear model of the
MMC shown in Fig. 14.1 was simulated in PLECS. This model contains 48 modules and
captures their switching characteristic.
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Table 14.1 Rated values of the MMC

Parameter Symbol SI value

Voltage VR 3800 V
Current IR 650 A
Apparent power SR 4.278 MVA
Angular grid frequency ωgR 2π50 rad/s

Table 14.2 Parameters in the SI (left) and per unit system (right) of the
grid-connected MMC system

Parameter SI symbol SI value pu value

dc-link voltage Vdc 6800 V 2.192
dc-link resistance Rdc 0.1 mΩ 2.963 · 10−5

dc-link inductance Ldc 50 μH 4.654 · 10−3

Branch resistance Rbr 0.25 mΩ 7.407 · 10−5

Branch inductance Lbr 1 mH 0.093
Module capacitance Cm 8.2 mF 8.695
Number of modules per branch n 8
Grid voltage Vg 3800 V 1
Grid resistance Rg 67.51 mΩ 0.02
Grid inductance Lg 1.61 mH 0.15

The carrier frequency fc = 2.5 kHz is used, unless otherwise specified. The MPC scheme is
executed at the (upper and lower) peaks of the triangular carrier, implying a sampling interval
of Ts = 200 μs for MPC. The state vector x is assumed to be available to the controller along
with the time-varying reference signal y∗. Measurement and computational delays are assumed
to be fully compensated for. The computed control actions are kept constant between the time
steps k and k + 1 and are sent to the PWM stage.

When choosing the weights in the cost function, the ratio between these weights rather
than their absolute value determines the control actions. For the penalty matrix R on the
manipulated variable, without loss of generality, we choose the identity matrix. To achieve
accurate tracking of the grid currents, the latter are prioritized over the balancing of the capac-
itor voltages by imposing large penalties on the current error tracking terms in Qy . Moreover,
a relatively small weight is associated with the penalty on the branch currents Q′

i to avoid a
deterioration in the tracking performance of the grid currents. This choice leads to the penalty
matrices

Qy =
[
10I2 02×6
06×2 I6

]
, Q′

i = 0.1I6 and R = I6. (14.28)

To ensure that the soft constraints are met, the very high penalties λξ = λζ = 105 are used.
The soft constraints are activated at imax = 1.1 pu and vmax = 1.1Vdc.

The prediction horizon is selected as Np = 6. As discussed in Sect. 14.5.2, shorter horizons
might impact on the system stability, while very long horizons achieve diminishing returns
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in terms of performance gains. Long horizons also increase the computational burden when
solving the QP. For the prediction horizon Np = 6, the optimizer of the QP is of the dimension
114, facilitating a relatively fast solution process. The Multi-Parametric Toolbox 3.0 [21] and
the Gurobi Optimizer [22] were used to formulate and solve the QP problem.

14.4.2 Steady-State Operation

The performance of the MPC scheme at steady-state operating conditions is evaluated in this
section. All quantities are provided in the pu system. At full active power and zero reactive
power, Fig. 14.6(a) shows the three-phase grid currents over two fundamental periods. The
grid currents are effectively sinusoidal waveforms. The discrete Fourier transform (DFT) of
the three-phase grid currents is computed over a time window of 100 ms. The resulting grid
current spectrum is shown in Fig. 14.6(b). Note that the magnitude of the harmonics is given
in percent of 1 pu, that is, their amplitudes are below 0.1% of the amplitude of the rated current
and thus negligible. The sidebands around the carrier frequency fc = 2.5 kHz can be identi-
fied. Additional harmonics of low magnitude are present, which are a result of the fluctuations
in the capacitor voltages. The TDD of the grid current is 0.40%, and the average device switch-
ing frequency of the IGBTs is 351 Hz. To compute the latter, the number of on transitions is
counted per switching device, and it is divided by the length of the simulated time interval.
This yields the device switching frequency of each IGBT. By averaging over these switching
frequencies, the average device switching frequency is obtained.

Figures 14.6(c) and 14.6(d) show the upper and lower branch currents of phase leg a. The
upper and lower soft constraints at ±1.1 pu are indicated by straight lines. At steady-state
operation, these constraints are typically inactive. The branch currents of the phase legs b and
c are the same as that of phase leg a, albeit phase-shifted by 120◦ and 240◦, respectively. To
facilitate a direct comparison, the time-domain current waveforms shown in Fig. 14.6 are all
scaled to the interval between −1.25 and 1.25 pu.

The circulating current of phase leg a is shown in Fig. 14.6(e), with the circulating currents
of phase legs b and c matching that shown in the figure, except for a phase shift. The circulating
currents are not directly controlled by the MPC scheme—they result from the branch currents,
which are controlled by MPC to synthesize the demanded grid currents and to achieve the
required energy balancing between the capacitors of the upper and the lower branches.

The dc-link current is shown in Fig. 14.6(f) with the straight lines indicating the upper and
lower bounds at ±1.1 pu. Unlike [18], for example, it is notable that the dc-link current is not
constant but exhibits a ripple with a significant sixth harmonic component. This sixth harmonic
tends to ease the provision of a constant grid power, thus slightly reducing the grid current
TDD, while maintaining the energy stored in the module capacitors at a level as constant as
possible. If the dc-link ripple current proved to be undesirable, the term

J5(x(k),x(k − 1),U) =
k+Np−1∑

�=k

(Δidc(�))
T Qdc Δidc(�) (14.29)

could be added to the cost function. Penalizing the changes Δidc(�) = idc(�) − idc(� − 1)
with the positive semidefinite and symmetric penalty matrix Qdc reduces the ripple on the
dc-link current.
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Figure 14.6 Current waveforms during steady-state operation
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Figure 14.7 Capacitor voltage waveforms during steady-state operation

Figures 14.7(a) and 14.7(b) depict the sums of the capacitor voltages of the three upper and
the three lower branches, respectively. In each branch, the MPC scheme maintains the sum of
the capacitor voltages vΣ

r around the dash-dotted reference Vdc. The ripple amounts to less than
±5%. The upper soft constraint at 1.1Vdc = 2.412 pu is inactive during steady-state operation.

The effective operation of the lower layer balancing algorithm can be observed in
Fig. 14.7(c), which shows the capacitor voltages v1j of the eight modules of the upper branch
of phase leg a. The capacitor voltages of these modules closely match each other. The small
differences between the capacitor voltages are due to the relatively low switching frequency
and the fact that the balancing controller is activated only when a new switching command
is issued by the PWM stage. These differences are pronounced around 15 and 35 ms, when
the corresponding branch current is high (see Fig. 14.6(c)). This also leads to steep capacitor
voltage slopes when inserting modules into the branch. Nevertheless, the capacitor voltage
ripple is about ±5% and thus relatively small. The same observations hold for the capacitor
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voltages of the other five branches, with the capacitor voltages of the lower branch of phase
leg a shown in Fig. 14.7(d).

The insertion indices of the three upper branches are shown in Fig. 14.8(a), while the ones of
the lower branches are displayed in Fig. 14.8(b). The upper and lower hard constraints at 1 and
0, respectively, are shown as straight lines. The insertion indices are translated by the PWM
stage into the numbers of modules to be inserted into the branches. These integers are shown
in Figs. 14.8(c) and 14.8(d) for the phase legs of the upper and lower branches, respectively.
To better visualize the switching signals, all waveforms in Fig. 14.8 are shown over the first
20 ms of the 40 ms interval used in the previous two figures.

As discussed in Sect. 14.3.7, the number of modules inserted per phase leg is not restricted
to the number of branch modules n. Lifting this restriction provides the controller with an
additional degree of freedom, which can be used, for example, to control the circulating cur-
rent. When considering phase leg a and comparing the sum n1 + n2 shown in Fig. 14.8(e)
with that of the corresponding circulating current in Fig. 14.6(e), it can be seen that the MPC
scheme uses this degree of freedom to control the circulating current. Nevertheless, as shown
in Figs. 14.8(e) and 14.8(f) for the phase legs a and b, the number of modules inserted per
phase leg is approximately n when operating at steady state.

14.4.3 Operation during Transients

To investigate the dynamic behavior of the closed-loop system, grid current reference steps of
magnitude 1 pu are applied. At 40 ms, the grid current reference is changed from 1 to 0 pu and
back to 1 pu at t = 100 ms. These transients are equivalent to steps in the real power from 1 to
0 pu and back to 1 pu. The reactive power reference is kept at zero.

The resulting dynamic response of the three-phase grid currents is shown in Fig. 14.9(a).
The MPC scheme achieves very fast current responses without overshoots. For the negative
reference step, when sufficient voltage margin is available, the settling time of the current
transient is 0.75 ms. To step up the current from zero to the rated current takes 2.1 ms, which
is still an impressive result.

The upper branch current of the phase leg a is shown in Fig. 14.9(b). The upper soft con-
straint at 1.1 pu is activated during the positive current step shortly after t = 100 ms. During
no-load operation, the branch current is very small, thanks to the cost function term J2. As a
result, the circulating current shown in Fig. 14.9(c) is effectively zero during no-load operation.

The dc-link current shown in Fig. 14.9(d) exhibits significant overshoots. During the nega-
tive current step, the branch inductors in the lower branch of phase leg b and in the upper branch
of phase leg c must be demagnetized, necessitating a negative dc-link current during the tran-
sient. Similarly, during the positive current step, the branch inductors in the upper branch of
phase leg a and in the two branches of phase leg b need to be magnetized, requiring a significant
current contribution from the dc-link. As the latter is limited to 1.1 pu, the controller compen-
sates for the missing current contribution by drawing some reactive current from the grid.

This can be seen in Fig. 14.10, which shows in detail all relevant currents during the positive
current step around t = 100 ms. Note that when considering a dq reference frame rotating in
synchronism with the grid voltage and when aligning the d-axis with the grid voltage phasor,
the real and reactive power components shown in Fig. 14.10(b) directly correspond to the d-
and q-components of the grid current.

www.ebook3000.com

http://www.ebook3000.org


�

� �

�

492 Model Predictive Control of High Power Converters and Industrial Drives

Time (ms)
5 15 20

1

0

0 10

0.25

0.5

0.75

(a) Insertion indices ν1, ν3, and ν5 of the upper
branches

Time (ms)
5 15 20

1

0

0 10

0.25

0.5

0.75

(b) Insertion indices ν2, ν4, and ν6 of the lower
branches

Time (ms)
5 15 20

0

0

2

4

6

8

10

(c) Number of modules n1, n3, and n5 inserted into
the upper branches

Time (ms)
5 15

0

0

2

4

6

8

10

(d) Number of modules n2, n4, and n6 inserted into
the lower branches

Time (ms)
5 15 200

4

6

8

10

10

12

(e) Number of modules n1 + n2 inserted into phase
leg a

Time (ms)
5 15 200

4

6

8

10

10

12

(f) Number of modules n3 + n4 inserted into phase
leg b

20

Figure 14.8 Insertion indices and number of modules inserted during steady-state operation
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Figure 14.9 Current waveforms during the transients

The ability of the MPC scheme to respect operational constraints on the branch currents and
the dc-link current can be appreciated in Fig. 14.10(c), (d), and (f). In particular, the dc-link
current is in effect clamped by the controller to its upper limit at 1.1 pu for about 2 ms during
the transient.

Figure 14.11(a) and (b) shows the sums of the capacitor voltages of the upper and the lower
branches, respectively. In general, these voltages are kept close to their dash-dotted reference
Vdc. The negative current step occurs, however, when the ripple on the capacitor voltages in
the phase leg a is high. This leads to a visible offset in vΣ

1 and vΣ
2 , which is corrected within

about two fundamental periods. This shift of energy from the capacitors in the upper branch to
those in the lower branch of phase leg a can also be observed in Fig. 14.11(c) and (d). During
the positive current step, a short transient in vΣ

4 is visible in Fig. 14.11(a). Its peak remains
below the soft constraint at 1.1Vdc = 2.412 pu, which remains inactive during this transient.

The insertion indices, which are manipulated by the MPC scheme, are shown in Fig. 14.11(e)
for the upper branches and in Fig. 14.11(f) for the lower branches. The hard constraints at 0
and 1 are activated during the current steps, particularly during the second one.
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Figure 14.10 Current waveforms during the positive power step
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Figure 14.11 Capacitor voltage waveforms and insertion indices during the transients
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To achieve the very fast responses shown in Figs. 14.9 and 14.10, the MPC scheme modifies
the insertion indices in a stepwise manner. This behavior is demonstrated in Fig. 14.12(a) and
(b), which zoom in on the insertion indices during the positive current step. When the reference
step is applied at t = 100 ms, all six insertion indices are modified by 0.1 or more within one
sampling interval, which is of the length Ts = 200 μs. The effect this modification has on the
number of modules inserted into the branches is shown in Fig. 14.12(c) and (d).

We had seen in Fig. 14.11(a) and (b) that the positive current step results in a short imbalance
in the capacitor voltages between the upper and the lower branch of phase leg b. To account
for this, the total number of modules inserted into phase leg b differs significantly during the
transient, as can be seen in Fig. 14.12(f). This degree of freedom is also used by the con-
troller to drive a circulating current that compensates for the capacitor voltage imbalance. In
phase leg a, the capacitor voltages remain balanced, not requiring any such control action (see
Fig. 14.12(e)).

14.5 Design Parameters

The impact of the prediction horizon on the closed-loop performance will be investigated
and discussed in this section. As will be shown, because of the linearization of the predic-
tion model, long prediction horizons lead to significant open-loop prediction errors, with the
actual state variables deviating considerably from the predicted ones. As a result, very long
horizons achieve diminishing returns in terms of steady-state performance gains. Nevertheless,
because of some slow MMC dynamics, such as the capacitor voltages, a relatively long predic-
tion horizon is required to ensure a good steady-state and transient performance. In particular,
very short horizons tend to lead to system instabilities.

14.5.1 Open-Loop Prediction Errors

To investigate the accuracy of the linearized prediction model, open-loop simulations based on
the prediction model were compared with closed-loop simulations using the nonlinear MMC
model. While operating at rated power, more than 1000 insertion indices of the six branches
were randomly generated at different time steps within the fundamental period. We define the
open-loop prediction error of a state variable as the difference between the predicted value and
the actual one.

The prediction errors were computed for the branch currents, the dc-link current, and the
sums of the capacitor voltages. Figure 14.13 shows the errors for the branch current and the
sum of the capacitor voltages in the upper branch of phase leg a. More specifically, the median
and the 50% confidence intervals of the errors at the end of the prediction horizon are shown for
a set of prediction horizons ranging from 1 to 9. The range between the whiskers captures all
errors except for a few outliers, that is, 99.3% of the data points. As the errors have an approxi-
mately Gaussian distribution, the upper and lower whiskers correspond to approximately ±2.7
standard deviations from the mean value.

The errors in the six branch currents are similar to that shown in Fig. 14.13(a), while the
error in the dc-link current is about twice as large. Accordingly, the prediction errors in the six
sums of the capacitor voltages are similar to that shown in Fig. 14.13(b).
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Figure 14.12 Insertion indices and number of modules inserted during the positive power step
at t = 100 ms
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Figure 14.13 Open-loop prediction errors (difference between the predicted and the actual value) of
the branch current i1 and the sum vΣ

1 of the capacitor voltages as a function of the length of the prediction
horizon Np. The central line in the box is the median, the lower (upper) edge of the box corresponds to
the 25th (75th) percentile, and the range between the whiskers captures all errors except for outliers

Obviously, the predictions obtained from the linearized prediction model begin deviating
considerably from the actual state variables when extending the prediction horizon. These
errors are pronounced for the dc-link and the branch currents, while they are small for the
capacitor voltages. Figure 14.13 indicates that a prediction horizon exceeding 10 steps should
be avoided. For a prediction horizon of Np = 6, however, the errors in the capacitor voltages
are almost negligible. The relatively large current errors at the time steps k + 5 and k + 6 can
be tolerated by the MPC scheme because of its use of the receding horizon policy, and because
the branch current errors at the time steps k + 1, k + 2, and k + 3 are very small.

14.5.2 Closed-Loop Performance

The sensitivity of the closed-loop performance to variations in the carrier frequency and the
length of the prediction horizon will be investigated in this section. To this end, simulation
results obtained at rated power and steady-state operating conditions will be analyzed and dis-
cussed.

First, for the prediction horizon Np = 6, the carrier frequency of the multilevel PWM is var-
ied between 500 and 2500 Hz with steps of 500 Hz. The average device switching frequency
fsw and the grid current TDD are used as performance metrics, which are shown in Table 14.3.
This data is illustrated in Fig. 14.14 along with a linear function that approximates the switch-
ing frequency and a cubic polynomial curve that approximates the current TDD.

On one hand, as expected, the current TDD increases significantly when lowering the carrier
frequency. On the other hand, the use of a regularly sampled PWM scheme implies that the
switching frequency depends linearly on the carrier frequency. It is notable that the device
switching frequency can be lowered down to 167 Hz with the current TDD remaining as low
as 1.05%. This is a promising result, because it shows that the proposed MPC scheme can be
used in applications that require very low device switching frequencies.
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Table 14.3 Influence of the PWM carrier
frequency fc on the device switching
frequency fsw and the grid current TDD
ITDD for the prediction horizon Np = 6

fc (Hz) fsw (Hz) ITDD (%)

500 106 2.55
1000 167 1.05
1500 231 0.66
2000 290 0.49
2500 350 0.40
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Figure 14.14 Device switching frequency and grid current TDD as a function of the carrier frequency
when using the prediction horizon Np = 6

Second, the carrier frequency is set to 2.5 kHz and the prediction horizon is varied between
3 and 10. As previously, the average device switching frequency and the current TDD are used
as performance metrics. Table 14.4 confirms that the length of the prediction horizon has no
influence on the switching frequency and that it has only a minor influence on the current TDD.
Note that the MPC scheme tends to become unstable for short horizons, such as four or less.
This is due to the presence of the slow capacitor voltage dynamics, which require a relatively
long prediction horizon.

14.6 Summary and Discussion

An MPC scheme with a subsequent PWM stage was proposed in this chapter for the MMC
topology. This versatile control approach is applicable to any MMC topology regardless of its
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Table 14.4 Influence of the prediction horizon
Np on the device switching frequency fsw and the
grid current TDD ITDD for the carrier frequency
fc = 2500 Hz

Np (time steps) fsw (Hz) ITDD(%)

3 Unstable Unstable
4 Unstable Unstable
5 350 0.42
6 350 0.40
7 350 0.40
8 350 0.40
9 350 0.38
10 350 0.37

circuit parameters, phase configuration, or number of modules. The controller is conceptually
simple with a linearized converter prediction model based on first principles, constraints on
the main physical quantities, and an easy-to-devise cost function. The underlying optimization
problem is a QP, which can be solved efficiently using off-the-shelf solvers.

The proposed MPC scheme is formulated in such a way that it is independent of the number
of modules per branch. The use of a modulator ensures an effectively constant device switching
frequency and a deterministic harmonic spectrum of the grid currents. Along with the low
device switching frequency of a few hundred hertz, which the MPC scheme can operate at,
these features make the developed framework suitable for high-power MMC applications.

The performance benefits of the MPC scheme over existing approaches, which are mostly
based on multiple PI control loops, can be attributed to the following three key features. First,
MPC is a MIMO control method that is ideally suited to control multiple variables simulta-
neously, even when they relate to conflicting control objectives. Second, MPC is capable of
handling soft and hard constraints on state, input, and output variables. Third, by adopting the
receding horizon policy, a significant degree of robustness to modeling errors is achieved.

These features entail that the MPC scheme is capable of simultaneously regulating the grid
currents along their references, balancing the module capacitor voltages and respecting the
safety constraints on the branch currents, dc-link current, and capacitor voltages—even dur-
ing large transients. This is achieved by independently manipulating the number of modules
that are inserted into each branch and by adopting a scalar cost function, which captures the
(conflicting) control objectives. By minimizing this cost function, an optimal consensus is
achieved among the various control objectives.

As a result, the MPC scheme tends to outperform most of the existing control approaches
for the MMC, particularly during transients such as power up, load steps, and faults [17, 20,
23]. Very fast responses close to the physical limits of the MMC are achieved, with settling
times in the range of 2 ms and below. Overshoots in the branch currents are avoided, and the
operation of the converter within safe operating limits is ensured under all circumstances. At
steady-state operation, a very low grid current TDD of about 0.40% is achieved while operating
the semiconductor devices at a switching frequency of about 350 Hz.



�

� �

�

Model Predictive Control of a Modular Multilevel Converter 501

Appendix 14.A: Dynamic Current Equations

The differential equations of the five independent currents of the nonlinear MMC system
model are provided here. These five equations relate to the meshes EADNE, EBDNE, ECDNE,
DASBD, and DASCD of the equivalent representation of the MMC shown in Fig. 14.3.

Lbr

(
di1(t)

dt
+

di2(t)
dt

)
+ Ldc

didc(t)
dt

= −Rbr (i1(t) + i2(t)) − Rdcidc(t) − ν1(t)v
Σ
1 (t) − ν2(t)v

Σ
2 (t) + vdc (14.A.1a)

Lbr

(
di3(t)

dt
+

di4(t)
dt

)
+ Ldc

didc(t)
dt

= −Rbr (i3(t) + i4(t)) − Rdcidc(t) − ν3(t)v
Σ
3 (t) − ν4(t)v

Σ
4 (t) + vdc (14.A.1b)

− Lbr

(
di1(t)

dt
+

di2(t)
dt

+
di3(t)

dt
+

di4(t)
dt

)
+ (Ldc + 2Lbr)

didc(t)
dt

= Rbr (i1(t) + i2(t) + i3(t) + i4(t)) − (Rdc + 2Rbr)idc(t)

− ν5(t)v
Σ
5 (t) − ν6(t)v

Σ
6 (t) + vdc (14.A.1c)

Lg

di1(t)
dt

− (Lbr + Lg)
di2(t)

dt
− Lg

di3(t)
dt

+ (Lbr + Lg)
di4(t)

dt

= −Rgi1(t) + (Rbr + Rg)i2(t) + Rgi3(t) − (Rbr + Rg)i4(t)

+ ν2(t)v
Σ
2 (t) − ν4(t)v

Σ
4 (t) − vga(t) + vgb(t) (14.A.1d)

2Lg

di1(t)
dt

− 2(Lbr + Lg)
di2(t)

dt
+ Lg

di3(t)
dt

− (Lbr + Lg)
di4(t)

dt
+ Lbr

didc(t)
dt

= −2Rgi1(t) + 2(Rbr + Rg)i2(t) − Rgi3(t) + (Rbr + Rg)i4(t)

− Rbridc(t) + ν2(t)v
Σ
2 (t) − ν6(t)v

Σ
6 (t) − vga(t) + vgc(t) (14.A.1e)

Appendix 14.B: Controller Model of the Converter System

The derivation of the matrices F (t0), G(t0), and C, and the vector g(t0) of the linearized
continuous-time state-space model (14.11) is briefly outlined here. The five differential
equations (14.A.1) of the currents are linearized using the Taylor series (14.10a). Similarly,
the six differential equations (14.6) of the sums vΣ

r of the capacitor voltages are linearized
using (14.10b).

The dynamic evolution of the grid voltages is modeled in (14.9) in stationary and orthog-
onal αβ coordinates, while the three-phase representation of the grid voltages is used in the
differential equations of the currents (14.A.1d) and (14.A.1e). We use the reduced Clarke trans-
formation K̃ and its pseudo-inverse K̃

−1
to transform the αβ grid voltages into their three-

phase representation vga, vgb, and vgc, and vice versa, according to (2.13).
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We define the auxiliary time-invariant matrices as

L =

⎡

⎢⎢⎢⎢⎣

Lbr Lbr 0 0 Ldc
0 0 Lbr Lbr Ldc

−Lbr −Lbr −Lbr −Lbr Ldc + 2Lbr
Lg −(Lbr + Lg) −Lg Lbr + Lg 0
2Lg −2(Lbr + Lg) Lg −(Lbr + Lg) Lbr

⎤

⎥⎥⎥⎥⎦
(14.B.1a)

R =

⎡

⎢⎢⎢⎢⎣

−Rbr −Rbr 0 0 −Rdc
0 0 −Rbr −Rbr −Rdc

Rbr Rbr Rbr Rbr −(Rdc + 2Rbr)
−Rg Rbr + Rg Rg −(Rbr + Rg) 0
−2Rg 2(Rbr + Rg) −Rg Rbr + Rg −Rbr

⎤

⎥⎥⎥⎥⎦
(14.B.1b)

E1 =

⎡

⎢⎢⎢⎢⎣

0 0 0
0 0 0
0 0 0

−1 1 0
−1 0 1

⎤

⎥⎥⎥⎥⎦
E2 =

⎡

⎣
1 −1 0 0 0
0 0 1 −1 0

−1 1 −1 1 0

⎤

⎦ (14.B.1c)

and the auxiliary time-varying matrices as

N 1(t0) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

ν1(t0) 0 0 0 0
0 ν2(t0) 0 0 0
0 0 ν3(t0) 0 0
0 0 0 ν4(t0) 0

−ν5(t0) 0 −ν5(t0) 0 ν5(t0)
0 −ν6(t0) 0 −ν6(t0) ν6(t0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14.B.2a)

N 2(t0) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎣

−ν1(t0) −ν2(t0) 0 0 0 0
0 0 −ν3(t0) −ν4(t0) 0 0
0 0 0 0 −ν5(t0) −ν6(t0)
0 ν2(t0) 0 −ν4(t0) 0 0
0 ν2(t0) 0 0 0 −ν6(t0)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14.B.2b)

V 1(t0) =
[
vdc(t0) vdc(t0) vdc(t0) 0 0

]T
(14.B.2c)

V 2(t0) =

⎡

⎢⎢⎢⎢⎢⎢⎣

−vΣ
1 (t0) −vΣ

2 (t0) 0 0 0 0
0 0 −vΣ

3 (t0) −vΣ
4 (t0) 0 0

0 0 0 0 −vΣ
5 (t0) −vΣ

6 (t0)
0 vΣ

2 (t0) 0 −vΣ
4 (t0) 0 0

0 vΣ
2 (t0) 0 0 0 −vΣ

6 (t0)

⎤

⎥⎥⎥⎥⎥⎥⎦
(14.B.2d)

Ii(t0) = diag(i1(t0), i2(t0), i3(t0), i4(t0), i5(t0), i6(t0)) (14.B.2e)
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with

i5(t0) = idc(t0) − i1(t0) − i3(t0) (14.B.3a)

i6(t0) = idc(t0) − i2(t0) − i4(t0). (14.B.3b)

We can then write the system matrix, input matrix, and offset vector of the state-space
model as

F (t0) =

⎡

⎢⎢⎢⎢⎣

L−1R L−1N 2(t0) L−1E1K̃
−1

n
Cm

N 1(t0) 06×6 06×2

02×5 02×6 ωg

[
0 −1
1 0

]

⎤

⎥⎥⎥⎥⎦
(14.B.4a)

G(t0) =

⎡

⎢⎣
L−1V 2(t0)

n
Cm

Ii(t0)
02×6

⎤

⎥⎦ g(t0) =

⎡

⎢⎣
L−1V 1(t0)

06×1

02×1

⎤

⎥⎦ . (14.B.4b)

The output matrix is given by

C =

[
K̃E2 02×6 02×2

06×5 I6 06×2

]
. (14.B.5)

Recall that 0n×m denotes the zero matrix of the dimensions n × m, and In is the
n-dimensional identity matrix.

This controller model needs to be translated into the pu system, following the steps explained
in Sects. 2.2.3 and 2.4.1. The pu system is established using the base quantities stated in
Sect. 14.4.1.
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15
Summary and Conclusion

In this last chapter, we review the steady-state performance of the proposed model predictive
control (MPC) schemes and benchmark them with space vector modulation (SVM). To facil-
itate the selection of a control and modulation method for a given power electronics problem,
we provide a critical assessment of the strengths and weaknesses of each of the proposed
methods. To provide a comprehensive view, we extend this assessment to direct torque con-
trol (DTC) and field-oriented control (FOC) with SVM. To conclude the book, we outline the
commercial benefits MPC is expected to bring to power electronics products. We also discuss
requirements for, and obstacles to, the successful commercialization of MPC. In lieu of an
outlook, we suggest a few research directions which we consider to be particularly relevant.

15.1 Performance Comparison of Direct Model Predictive Control
Schemes

In this section, the direct MPC schemes proposed in this book are compared with each other
when applied to a machine-side inverter. These MPC schemes include one-step predictive
current control with reference tracking, model predictive direct torque control (MPDTC),
model predictive direct current control (MPDCC), and model predictive pulse pattern control
(MP3C). For MPDTC and MPDCC, both short and long switching horizons will be consid-
ered. MP3C is based on optimized pulse patterns (OPPs) that minimize the current distortions
for a given switching frequency. The comparison is extended to FOC with SVM, which is
arguably the most commonly used control and modulation scheme. The comparison is per-
formed during steady-state operation. The key performance criteria are the switching losses
in the inverter, and the harmonic current and torque distortions in the machine. We chose the
total demand distortion (TDD), see the definitions (3.1) and (3.2), to quantify the harmonic
distortions.

The trade-off between switching losses and harmonic distortions is well understood.
Indeed, as was shown in Sect. 3.5 for carrier-based pulse width modulation (CB-PWM)
and SVM, the product of these two quantities is equal to a constant. This gives rise to

Model Predictive Control of High Power Converters and Industrial Drives, First Edition. Tobias Geyer.
© 2017 John Wiley & Sons, Ltd. Published 2017 by John Wiley & Sons, Ltd.
Companion Website: www.wiley.com/go/geyermodelpredictivecontrol
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a hyperbolic trade-off curve that characterizes the steady-state performance of a given
modulation scheme. For modulation techniques other than CB-PWM and SVM, the notion of
the trade-off curve is equally applicable, but the shape of the curve matches a hyperbola only
in an approximate manner.

Other possible performance criteria include the controller’s sensitivity to parameter varia-
tions and flux observer noise. These aspects were examined in Sect. 3.1.2 for MP3C, and a
related analysis was performed in [1] for MPDCC. The dynamic control performance, which
includes the torque settling time during torque steps, was investigated for each of the con-
trol schemes in the relevant chapters. Specifically, we have seen that all direct MPC schemes
achieve torque and current transients that are similar to those of DTC and deadbeat control.
Most notably, these MPC schemes all fully exploit the available dc-link voltage. During neg-
ative torque steps, for example, the controllers temporarily invert the voltage applied to the
stator windings of the machine to achieve a torque transient that is as short as possible.

In the following, we will first determine the characteristic trade-off curve for each modula-
tion method. This will be done through simulations at steady-state operation. In a second step,
by comparing the trade-off curves of the different control and modulation schemes with each
other, we will provide insight into the steady-state performance of these methods. It will be
shown that long predictions horizons significantly enhance the control performance by shifting
the performance trade-off curves towards the origin, thus lowering both the switching losses
and the harmonic distortions. Conversely, overly short horizons often lead to a worse perfor-
mance than SVM.

15.1.1 Case Study

The case study is intended to be as general as possible to ensure that the conclusions drawn
are both meaningful and sufficiently generalizable to be of value. The comparison focuses
on the core performance characteristic of the different control and modulation methods, in
order to establish their theoretical baseline performance. To achieve this, we will neglect
non-idealities and second-order effects that typically arise in a real-world drive setting, such
as dc-link voltage ripples, neutral point potential fluctuations, interlocking times, minimum on
and off times, saturation of the machine’s magnetic material, controller delays, measurement
errors, flux observer noise, and load torque variations. In an industrial controller implemen-
tation, techniques are available to largely compensate for these adverse effects. This applies
both to traditional as well as predictive control and modulation methods.

To this end, we select as a case study a three-level neutral-point-clamped (NPC) voltage
source inverter that drives a medium-voltage (MV) induction machine. This drive setup is
shown in Fig. 15.1. In the arena of MV drives, this drive configuration is the one that is most
commonly used. The total dc-link voltage is Vdc = 5.2 kV. Switching between the upper and
the lower rail is prohibited, but all other switching transitions are allowed. A summary of the
machine and inverter parameters is provided in Sect. 2.5.1.

15.1.2 Performance Trade-Off Curves

With the help of simulations run at steady-state operating conditions, the trade-off curves are
derived for the investigated control and modulation schemes. All simulations were run at 60%
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Figure 15.1 Three-level NPC voltage source inverter driving an induction machine with a fixed neutral
point potential

speed with a 100% torque setpoint. As we have seen previously, the performance differences
between the different control and modulation methods tend to be pronounced at this operating
point. The sampling interval of the controller is set to Ts = 25 μs, unless otherwise noted.

15.1.2.1 Rotor FOC with SVM

As explained in Sect. 3.6.2, rotor FOC is formulated in an orthogonal reference frame that
rotates synchronously with the rotor flux vector. Two (orthogonal) control loops are used—one
for the flux and another one for the torque-producing current. A subsequent modulator trans-
lates the reference of the stator voltage into gating commands for the inverter. A three-level,
asymmetric, regularly sampled CB-PWM with two triangular carrier signals is used. The two
carrier waveforms are in phase, and a common-mode voltage is added to the reference voltage.
By deriving this common-mode voltage through a min/max plus modulo operation, the same
gating signals as with SVM are generated. For more details on CB-PWM and the relationship
with SVM, the reader is referred to Sect. 3.3.

The switching frequency was varied between 100 and 500 Hz in this analysis. Synchronous
modulation was used, with the carrier frequency being an integer multiple of the fundamental
frequency. After reaching steady-state operating conditions, the stator currents, stator voltages,
electromagnetic torque, and the switch positions were recorded. The inverter switching losses
Psw were computed based on these measurements and in accordance with Sect. 2.5.1. The
current and torque TDDs were derived using Fourier transformations over integer multiples
of the fundamental period. The switching losses were normalized using the rated apparent
power SR = 2.035 MVA. Normalized switching losses of 0.1%, for example, correspond to
the switching losses 2.035 kW.

Figure 15.2 shows the resulting harmonic distortions of the stator currents and of the torque
as a function of the normalized switching losses. The individual simulation results are denoted
by circles, which can be approximated by hyperbolic functions of the form

ITDD · Psw

SR

= 1.3 and TTDD · Psw

SR

= 0.55. (15.1)
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Figure 15.2 Performance trade-off for FOC with SVM (◦ data points) and MP3C using OPPs (� data
points)

This implies that when reducing the switching frequency with the objective to reduce the
switching losses, for example, by 50%, the current and torque TDDs are increased by 50%, and
vice versa. A small offset in the normalized switching losses is neglected in (15.1). This offset
accounts for the fact that the switching losses cannot be reduced to zero. In order to synthesize
the desired amplitude and phase of the voltage waveform, at least one switching transition
per phase and quarter of the fundamental period is required. This modulation regime is com-
monly referred to as a six-step operation. Its switching frequency is equal to the fundamental
frequency.

Alternatively, the FOC loops can be replaced by an MPC scheme, which is sometimes
referred to as indirect MPC, because it manipulates the switch positions indirectly via an
intermediate modulator. Examples for such MPC schemes include [2] and [3], which replace
the inner current control loop by MPC. During steady-state operation, when neglecting
second-order effects, the harmonic performance of indirect MPC schemes is determined
solely by the modulator. When using SVM, the harmonic performance of indirect MPC is
thus the same as stated in (15.1) and shown in Fig. 15.2.

15.1.2.2 MP3C

Alternatively, OPPs can be calculated in an offline procedure for a range of modulation indices
and pulse numbers. Recall that the pulse number of a single-phase switching pattern is defined
as the number of switching transitions within a quarter of the fundamental period. The opti-
mization criterion is the minimization of the weighted voltage distortion, which is proportional
to the current distortion of an inductive load. For a given pulse number and modulation index,
the minimization procedure leads to the optimal switching angles (see Sect. 3.4). These sets
of switching angles can be stored in look-up tables.
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OPPs are typically used in slow control loops such as V/f control or non-aggressively tuned
FOC loops. By combining the notion of trajectory control with the receding horizon policy, an
OPP-based controller with a very high dynamic performance can be designed. The proposed
control method, MP3C, is explained in detail in Chap. 12. Figure 15.2 shows the steady-state
performance of MP3C in terms of the harmonic distortions versus the normalized switching
losses. The individual simulations are denoted by stars, and the resulting trade-off curves are
indicated by dashed lines.

15.1.2.3 MPDTC

Similar to DTC, MPDTC directly controls the electromagnetic torque and the stator flux mag-
nitude by imposing upper and lower bounds on them. Using a dynamic model and an optimiza-
tion stage, MPDTC predicts candidate switching sequences that maintain the torque and the
stator flux magnitude within their respective bounds. When considering NPC inverters with
floating neutral point potentials, this principle can be extended to the neutral point potential,
in order to balance it around zero.

The principle of MPDTC is to freeze the switch positions and extend the output trajectories
until a bound violation is predicted to occur. In doing so, very long prediction horizons can be
achieved at a modest computational burden. By minimizing a cost function, which captures
the predicted switching frequency or the switching losses, the optimal switching sequence is
selected. The MPDTC algorithm is described in detail in Chap. 7. Branch-and-bound tech-
niques can be used to further reduce the computation time (see Chap. 10).

For the performance analysis, we penalize the switching losses in the cost function. Addi-
tional terms in the cost function, such as penalties on bound violations or weights on terminal
states, are not used and are set to zero. The bounds on the torque and stator flux magnitude were
randomly selected within large intervals. Hundreds of simulations were run for the switching
horizons eSE and eSESESE. Each data point in Fig. 15.3 corresponds to one such simulation
with a certain combination of torque and flux bounds.

The envelopes of the data points can again be described by hyperbolic functions, despite
them being shifted further along the horizontal axis. Owing to the random selection of the
bound widths, many points lie far away from their envelope and are thus suboptimal. It is clear
that the existence of two tuning parameters—the width of the torque bounds and the width of
the stator flux magnitude bounds—complicates the tuning process, particularly if minimum
current distortions are to be achieved. When choosing very wide bounds, MPDTC locks into
fundamental frequency switching and provides a switching pattern akin to the six-step opera-
tion. The corresponding data points correspond to normalized switching losses of about 0.04%.

Sets of bounds that achieve low torque distortions do not necessarily achieve low current
distortions. To highlight this, we define the stator ripple current

irip = i∗s − is (15.2)

in stationary orthogonal coordinates as the difference between the stator current reference i∗s
and the actual stator current is. Recall from (11.6) that the torque can be expressed in terms
of the rotor flux vector and the stator current vector as

Te =
1
pf

Xm

Xr

ψr × is = T ∗
e − 1

pf
Xm

Xr

ψr × irip, (15.3)
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Figure 15.3 Performance trade-off for MPDTC with the switching horizons eSE (◦ data points) and
eSESESE (� data points)

where we have used (15.2) and introduced the torque reference T ∗
e = 1

pf
Xm

Xr
ψr × i∗s. The

torque ripple is then given by

Trip = T ∗
e − Te =

1
pf

Xm

Xr

ψr × irip =
1
pf

Xm

Xr

(ψrαirip,β − ψrβirip,α). (15.4)

Zero torque ripple is (hypothetically) achieved when the right-hand side of (15.4) is zero.
Neglecting the special case when any of the β-components is zero allows us to write

irip,α

irip,β

=
ψrα

ψrβ

. (15.5)

The torque ripple is zero when the α- and β-components of the ripple current have the same
ratio as the α- and β-components of the rotor flux vector. When the aim is to minimize the
torque ripple, the stator ripple current vector must rotate synchronously with the rotor flux
vector. On the other hand, in order to achieve minimum current distortions, the ripple current
components should be of a similar magnitude. As these are conflicting requirements, it is clear
that the torque ripple cannot be minimized without impacting on the current distortions.

This analysis suggests that very low torque distortions can be achieved in MPDTC, albeit
at the expense of pronounced current distortions. As a result, for a specific switching loss, the
data points in Fig. 15.3(b) that minimize the torque TDD do not, in general, also minimize the
current TDD in Fig. 15.3(a). On the other hand, minimum current TDDs usually also imply
low torque TDDs.
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15.1.2.4 MPDCC

A derivative of MPDTC, MPDCC imposes upper and lower bounds on the three-phase sta-
tor currents. These bounds are symmetrical around the three-phase current references. The
width of the bounds directly determines the current ripple, which in turn is proportional to the
current TDD (see Sect. 11.1.8). The control objectives are to keep the instantaneous currents
within their bounds and to minimize the switching losses. The bound width is the (only) tuning
parameter. It determines the point on the trade-off curve between the current distortions and
the switching losses. The existence of one (instead of two) bound widths greatly simplifies the
tuning process.

Figure 15.4 depicts the simulation results for the switching horizons eSE and eSESESE,
respectively. The widths of the current bounds were varied between 0.035 and 0.22 pu. These
numbers indicate the difference between the upper (or lower) bound and the reference—they
thus correspond to half the current ripple. The data points can be described by hyperbolic
trade-off functions, particularly when operating at high switching losses. Six-step operation
is represented by a second set of trade-off curves, which are given by the almost vertical lines
in Fig. 15.4.

MPDCC tends to lock into certain fixed values of switching losses, despite significant vari-
ations in the bound width. This phenomenon is particularly apparent with the short switching
horizon eSE at 0.135%, 0.18%, and 0.225% of the normalized switching losses. The corre-
sponding switching frequencies are 90, 120, and 150 Hz, that is, 3, 4, and 5 times the fun-
damental frequency. A similar phenomenon has previously also been identified for predictive
current control with reference tracking—both for the single-phase case (see Fig. 4.7(b)) and
for the three-phase case in Sect. 6.1.4.
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Figure 15.4 Performance trade-off for MPDCC with the switching horizons eSE (◦ data points) and
eSESESE (� data points)
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15.1.2.5 Predictive Current Control with Reference Tracking

The optimization problem underlying MPDCC can be greatly simplified by setting the bound
width to zero, using a prediction horizon of length 1 and minimizing the number of switching
transitions. This scheme operates in the stationary αβ reference frame and regulates the α-
and β-current components along their references. The tuning parameter λu is used to adjust
the trade-off between tracking accuracy and the number of switching transitions. This control
scheme is described in detail in Sect. 4.2.

Note that, as stated in (4.19), the current error is penalized using the squared 2-norm, instead
of the 1-norm as initially proposed in [4] and [5]. The 2-norm avoids stability issues and
reduces the current and torque distortions significantly. At 0.3% of the normalized switching
losses, for example, the 2-norm reduces the current TDD from about 5% to 4.5%.

Hundreds of simulations were performed, while varying the tuning parameter λn between
0.001 and 0.03, and the controller sampling interval between 25 and 100 μs. Figure 15.5 depicts
the resulting current and torque distortions versus the normalized switching losses for each
simulation. As previously, the envelope of these data points can be accurately approximated by
hyperbolic trade-off curves. The phenomenon of the current controller locking into fixed values
of the switching losses is again visible, particularly at 0.135% of the normalized switching
losses. This operating point corresponds to a switching frequency of about 90 Hz, which is
equal to 3 times the fundamental frequency.

Alternatively, long prediction horizons can be adopted for the predictive current controller.
A branch-and-bound method based on sphere decoding was proposed in Chap. 5 to solve
the underlying integer optimization problem. Long horizons provide a significantly better
steady-state performance by lowering the current distortions per switching losses. The result-
ing performance is between that of SVM and OPPs, as indicated in Sect. 6.1.4.

2

4

6

8

10

12

14

Predictive current
control with Np = 1

(a) Current distortions vs switching losses

Predictive current
control with Np = 1

0

1

2

3

4

5

6

7

(b) Torque distortions vs switching losses

I T
D

D
 (%

)

T
T

D
D

 (%
)

0
0

0.1 0.2 0.3 0.4 0.5 0.6

Psw/SR (%)

0 0.1 0.2 0.3 0.4 0.5 0.6

Psw/SR (%)

Figure 15.5 Performance trade-off for predictive current control with reference tracking and the pre-
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15.1.3 Summary and Discussion

The characteristic trade-off curves of five control and modulation schemes were derived in the
previous section. These schemes include FOC with SVM, MP3C based on OPPs, MPDTC,
MPDCC, and one-step predictive current control. Short and long switching horizons were
investigated for MPDTC and MPDCC. Figure 15.6(a) summarizes the obtained trade-off
curves in terms of the (absolute) current TDD and the normalized switching losses.

To better illustrate the differences between the trade-off curves, we recall from (6.2) the
definition of the relative current TDD

I rel
TDD =

ITDD − ITDD,OPP

ITDD,OPP
. (15.6)

This measure represents the current TDD degradation with respect to OPPs. Under ideal-
ized simulation conditions, the closed-loop harmonic performance of MP3C and the nominal
(open-loop) performance of OPPs are the same. Figure 15.7(a) depicts the trade-off curves in
terms of the relative current TDD (in percent) and the normalized switching losses.

Between 0.1% and 0.6% of the normalized switching losses, SVM uses switching frequen-
cies between 90 and 480 Hz. With the fundamental frequency being 30 Hz, these switching
frequencies correspond to the pulse numbers 3–15. In this range, MP3C significantly reduces
the current distortions thanks to the use of OPPs. Notably, the current distortions are halved
at pulse number 3 with respect to SVM. For high pulse numbers of 15 and beyond, the differ-
ences in the harmonic performance between SVM and MP3C are less significant, but they do
persist. However, the computational effort required to solve offline the nonconvex optimiza-
tion problems of OPPs with pulse numbers in excess of 15 increases significantly, making it
difficult to derive the optimal switching angles of such OPPs.

At high switching losses, MPDCC with the long switching horizon eSESESE achieves cur-
rent distortions that are similar to those of MP3C. MPDCC also slightly outperforms MPDTC
in this operating regime. When approaching six-step operation, MPDCC and MPDTC both
outperform MP3C. This was demonstrated for MPDCC in Sect. 11.1.7. This somewhat sur-
prising result is due to the difference in the cost functions. OPPs minimize the current dis-
tortions for a given switching frequency, whereas MPDCC minimizes the switching losses
for a given current ripple, which implies a certain current distortion. Provided that the torque
and flux bounds in MPDTC are set such that they approximate the bounds in MPDCC, this
statement also holds true for MPDTC.

Short switching horizons are less effective at achieving low current distortions, as can be
seen in Fig. 15.7(a). Nevertheless, MPDCC with the switching horizon eSE consistently out-
performs SVM. Predictive current control with reference tracking, the squared 2-norm, and a
horizon of one step exhibits a harmonic performance that is not dissimilar to that of SVM. For
switching frequencies below 280 Hz, this predictive controller tends to have a small advantage
over SVM, while the opposite is true above that threshold.

Figures 15.6(b) and 15.7(b) depict the torque trade-off curves in terms of the absolute and
the relative torque TDDs, respectively, versus the normalized switching losses. The relative
torque TDD is defined similar to (15.6). MP3C halves the torque distortions of SVM when
operating at very low switching losses. At high switching losses, however, MP3C provides no
harmonic benefit in terms of the torque distortions when compared to SVM. This is in contrast
to the current distortions, in which MP3C always outperforms SVM.
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Figure 15.7 Relative current and torque distortions versus the normalized switching losses, summariz-
ing the trade-off curves of the investigated control and modulation schemes
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MPDTC with long switching horizons achieves a large reduction in the torque TDD of up
to 50% compared to MP3C. Even MPDTC with the short switching horizon eSE slightly out-
performs MP3C, provided that operation at high switching losses is considered. Yet, these
improvements in the torque distortions come at the expense of inferior current TDDs, as dis-
cussed in the previous section. Close to six-step operation, MPDTC is capable of performing
as well as MP3C.

The torque distortions of MPDCC are, in general, much larger than those of MPDTC. In
Fig. 15.7(b), the torque trade-off curves of MPDCC are shifted by about 50 percentage points
upward compared to those of MPDTC. As a result, MPDCC with the short switching hori-
zon eSE entails almost twice the torque distortions of MP3C. Nevertheless, long switching
horizons significantly reduce the torque TDD, with MPDCC with eSESESE achieving torque
distortions that are not dissimilar to those of SVM. The predictive current controller with ref-
erence tracking and the prediction horizon Np = 1 causes even higher torque distortions than
MPDCC with the short switching horizon. As a result, the control and modulation scheme
with the worst torque distortions in this analysis is one-step predictive current control.

In summary, and unsurprisingly, predictive current control schemes tend to excel at reduc-
ing the current distortions. To a lesser extent, they also reduce the torque distortions, because
low current distortions imply low torque distortions. The reverse statement, however, does not
hold true. Very low torque distortions can be achieved, albeit at the price of pronounced current
distortions. The differences between the control approaches are emphasized at low switching
frequencies and low switching losses. At high switching losses, the differences in the cur-
rent distortions become smaller in both absolute and relative terms. For the torque distortions,
however, significant differences also persist at higher switching losses. When the aim is to
minimize both the current and the torque distortions, MP3C outperforms all the other control
and modulation schemes that were assessed. SVM provides a good overall balance between
acceptable current and torque distortions.

One might argue that the main benefit of MPC schemes is the performance improvement
they bring when compared to traditional schemes such as FOC with SVM or DTC. To achieve
this, long prediction horizons are mandatory to enable the optimization-based controller to
make well-informed decisions when choosing the next switching state. In contrast, short
prediction horizons appear to be often less effective than established methods. The one-step
predictive control family is nevertheless attractive in light of its conceptual and computational
simplicity.

The derived trade-off curves are effectively independent of the machine and inverter parame-
ters used, because only the relative performance of the control and modulation schemes matters
in this comparison. For a machine with a smaller total leakage inductance, for example, the
absolute TDD values would be higher, thus stretching the trade-off curves on the vertical axis
in Fig. 15.6. Yet, the percentage-wise (relative) differences between the curves in Fig. 15.7
would remain the same.

In an alternative performance analysis, the current and torque distortions are depicted
versus the switching frequency rather than the switching losses. Such an analysis was
performed in [6], using the same drive system with the same parameters and running the drive
at the same operating point (60% speed and rated torque). The cost function of MPDTC and
MPDCC was modified accordingly, in that the switching frequency was minimized instead
of the switching losses. The overall result is similar to the trade-off curves provided here,
but the advantage of MPDTC and MPDCC over SVM and MP3C is reduced. In particular,
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MPDTC and MPDCC are unable—as one would expected—to outperform MP3C in terms
of harmonic distortions per switching frequency.

15.2 Assessment of the Control and Modulation Methods

In the previous section, we compared the nominal steady-state performance of the main direct
MPC schemes with each other and with the classic methods. This was done in an idealized
setup. We will next assess the advantages and disadvantages of the various methods in an indus-
trial setup. Despite the somewhat subjective nature of this classification, it should nevertheless
serve as a rough guide to narrow down the set of candidate control and modulation methods
that are most suitable for a specific problem at hand. To this end, the main determining char-
acteristics are the converter topology, the type of load connected to it, whether a machine-side
inverter or a grid-connected converter is considered, and the pulse number. Recall that the latter
is defined as the number of switching transitions in the single-phase switching pattern within
a quarter of the fundamental period.

15.2.1 FOC and VOC with SVM

The most commonly used control and modulation method is SVM with a current controller
that is formulated in a rotating and orthogonal dq reference frame. On the machine side, the
reference frame is aligned with a flux vector, giving rise to FOC, while on the grid side the
reference frame is typically aligned with the voltage vector at the point of common coupling
(PCC). The latter concept is commonly referred to as voltage-oriented control (VOC). These
control methods are well understood and provide a good dynamic performance during current
transients, provided that the control loops in the d- and q-axes are fully decoupled not only
during steady-state operation but also during transients [7].

In general, SVM provides acceptable current and torque distortions and lower harmonic
distortions than CB-PWM with third-harmonic injection. Numerous variants of CB-PWM
and SVM have been proposed, many of which aim to reduce the switching losses. However,
because of the fixed-length modulation cycle, the scope of these improvements is limited.
At low pulse numbers, say below 15, the harmonic performance of SVM is inferior to that
of OPPs.

SVM provides a harmonic spectrum with exclusively discrete frequencies, making it a suit-
able modulation technique for grid-connected inverters. In the presence of LC filters, the
current control loop can be augmented with an active damping loop to dampen the filter res-
onance. For the damping loop to be effective, the switching frequency must be significantly
higher than the resonance frequency of the filter.

15.2.2 DTC and DPC

DTC presents for machine-side converters an alternative to FOC with SVM. DTC provides
a superior robustness to machine parameter variations, dc-link voltage ripples, measurement
noise, and flux observer noise. DTC also achieves an unmatched dynamic performance during
torque transients and faults. The torque distortions are typically relatively low.
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However, DTC also carries a few notable disadvantages. Operation at very high modula-
tion indices is challenging, the switching frequency is not directly controlled, and the current
distortions are often pronounced. Except for a few non-triplen odd harmonics that are of a
low order, such as the fifth and seventh harmonics, the harmonic spectrum of DTC is flat and
exhibits even as well as non-integer harmonics. The grid-side equivalent of DTC, direct power
control (DPC) [8], is therefore ill suited to meet grid standards on harmonics, such as the ones
summarized in Sect. 3.1.2. DPC is thus rarely used in practice.

Nevertheless, the DTC concept represents an attractive alternative to FOC and remains an
active research topic. Several extensions have been proposed to alleviate some of the shortcom-
ings of DTC. In particular, by imposing a fixed-length switching interval, constant switching
frequency operation is achieved. For a brief summary of the main extensions of DTC, the
reader is referred to Sect. 3.6.3.

15.2.3 Direct MPC with Reference Tracking

Direct MPC with reference tracking is a control and modulation method that has become popu-
lar in academia. When adopting a prediction horizon of 1, exhaustive enumeration can be used
to solve the underlying optimization problem. This facilitates the use of a nonlinear prediction
model that may be adapted online when required—for example, during faults and changing
grid conditions. Various and diverse control objectives can be represented in the cost function.
As a result, this MPC scheme is easy to devise, implement, and use. Its dynamic performance
during transients is superb, resembling that of deadbeat control and DTC.

To achieve acceptable current distortions for a given switching frequency, a penalty on the
switching effort is mandatory. As switching is restricted to the regularly spaced discrete time
instants at which the controller is executed, experience indicates that the sampling frequency
must exceed the switching frequency by at least two orders of magnitude to avoid a deteriora-
tion of the harmonic performance. This requirement becomes a limiting factor when operating
at high switching frequencies. One way to overcome this issue is to adopt the technique of
variable switching points, as proposed in [9].

The current distortions of one-step predictive control are similar to those of SVM, whereas
its torque distortions are, in general, up to twice as high (see Fig. 15.7). The harmonic spec-
trum is flat and exhibits even and non-integer harmonics. Hence, this concept is generally
not suitable for grid-connected converters. To reduce the harmonic distortions, long predic-
tion horizons are required. Indeed, when operating at low pulse numbers, long-horizon direct
MPC with reference tracking outperforms SVM, as shown in Sect. 6.1. Solving the underly-
ing optimization problem is, however, a nontrivial task, even when using branch-and-bound
techniques such as sphere decoding, as proposed in Sect. 5.3.

Direct MPC with reference tracking is a suitable choice for complicated systems such as
back-to-back converter systems [10] and inverters that are connected via an intermediate LC
filter to a machine or the grid. It allows one to address such systems through one control
loop, which can be relatively easily designed. Specifically, cascaded control loops or addi-
tional active damping loops can be avoided. To ensure stability and low harmonic distortions,
however, long prediction horizons are typically required (see Sect. 6.3).

The tuning of direct MPC schemes with reference tracking is difficult, particularly when
the cost function includes conflicting terms and multiple weighting factors. The weighting
factors in such multi-criterion optimization problems can be tuned by exploring the trade-off
surface (see [11, Sect. 4.7]). It is often overlooked that the choice of the sampling interval has
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a profound impact on the closed-loop performance, particularly when the ratio between the
sampling frequency and the switching frequency is below 100.

15.2.4 Direct MPC with Bounds

Instead of regulating the controlled variables along time-varying references, this requirement
can be relaxed by imposing upper and lower bounds on the controlled variables. The bound
widths determine the ripple on the controlled quantities. In the case of MPDCC, this allows
one to set the current ripple and thus the current TDD with one parameter. The second control
objective, that is, the minimization of the switching effort, is captured by the cost function,
which minimizes either the switching frequency or the switching losses. As the sampling
interval is not a tuning parameter, a sampling interval as short as is permitted by the con-
trol hardware is usually selected. As it involves only one parameter, the tuning procedure
is straightforward. Other examples of the direct MPC family with bounds include MPDTC
and model predictive direct power control (MPDPC).

The family of direct MPC with bounds shares a number of additional advantages with direct
MPC with reference tracking. These advantages include the possibility of using nonlinear and
time-varying prediction models, as well as the excellent dynamic performance during load
transients, faults, and reference steps, as demonstrated in Sects. 8.1.3, 8.2.5, 11.1.7, and 11.2.5.
Furthermore, thanks to the use of bounds, these direct MPC schemes are robust to model
parameter mismatches [1], measurement noise, and flux observer noise. This high degree of
robustness is inherited from DTC and DPC.

Direct MPC with bounds achieves long prediction horizons thanks to the concept of
extending the predicted output trajectories between the switching transitions. As a result, the
harmonic distortions are generally low. For short horizons, it often outperforms SVM, while
for long horizons, current distortions per switching losses are achieved that are akin to those
of OPPs.

As with the other direct MPC schemes, however, the harmonic spectrum contains even and
non-integer harmonics. Another disadvantage is that direct MPC with bounds is conceptually
and computationally more involved than predictive control with reference tracking. In par-
ticular, solving the underlying optimization problem in real time for long switching horizons
is computationally demanding. Branch-and-bound techniques lend themselves to reduce this
computational burden (see Chap. 10), but they require additional tuning parameters.

Imposing bounds on the controlled variables in conjunction with integer manipulated vari-
ables leads to one conceptual disadvantage—the emergence of deadlocks. Deadlocks refer to
situations in which the control problem is infeasible. To nevertheless facilitate the derivation of
a suitable manipulated variable in the case of a deadlock, the control algorithm is augmented
by a deadlock resolution mechanism. As explained in Sect. 9.4, in the case of a deadlock, the
bounds on the controlled variables are relaxed and treated as soft constraints. Techniques are
also available to reduce the likelihood of deadlocks (see Sect. 9.5).

15.2.5 MP3C based on OPPs

The two direct MPC schemes discussed here derive their switching patterns exclusively by
means of online computations. In an alternative approach, optimal switching patterns can be
precomputed offline in the form of OPPs for all relevant pulse numbers and modulation indices.
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To achieve fast closed-loop control, the switching pattern is modified online using MP3C.
In particular, MP3C compensates for phase voltage fluctuations and preserves the optimal
volt-second balance of the OPP during steady-state operation. During transients and load steps,
by temporarily modifying the volt-second balance, very fast transient response times akin to
DTC can be achieved.

Basing the controller on precomputed OPPs carries three major advantages. First, an excel-
lent harmonic performance is achieved during steady-state operation, provided that the power
electronic system fulfills the following requirements.

• The voltage steps at the inverter phase terminals should be of equal magnitude. A ripple on
the phase voltages can be tolerated, because it only mildly affects the harmonic performance,
but a bias or a persistent offset leads to a significant harmonic deterioration.

• The noise levels in the current measurements, voltage measurements, and flux observer
should be low. For higher noise levels, the bandwidth of the controller has to be reduced,
for example, by resorting to MP3C based on a quadratic program (QP) with a long horizon.

• The three-phase load should be balanced, symmetric, and free of significant harmonics.
Three-phase machines comply with this requirement unless they are faulty. The PCC
voltages on the grid-side, however, are often imbalanced and typically include low-order
harmonics.

• The delays in the closed-loop system should be either small or fully compensated for. Rel-
evant delays include the measurement, computation, and actuation delays.

Second, thanks to the use of OPPs, the harmonic spectrum of MP3C features only har-
monics at odd and non-triplen integer multiples of the fundamental frequency. This makes
MP3C well suited for grid-connected inverters. Furthermore, the harmonic spectrum is prede-
termined and known in advance. In particular, OPPs not only allow one to minimize the current
TDD but also facilitate the shaping of the harmonic spectrum. For grid-connected inverters,
for example, OPPs can be computed with the aim of meeting specific grid standards. This can
be accomplished by imposing upper bounds on specific harmonics while minimizing the volt-
age or current TDD of the remaining harmonics. Similarly, in the presence of an LC filter,
harmonics close to the filter resonance can be minimized.

Note that OPPs provide a more versatile modulation framework than the commonly used
concept of selective harmonic elimination (SHE), in which the low-frequency harmonics are
set to zero (see also Sect. 3.4). For grid-connected inverters with an LC filter, an OPP allows
one to optimally distribute the harmonic energy over the frequency range. The grid standards
can be met and the size and weight of the filter can be minimized by placing a high proportion
of the harmonic content above the filter cut-off frequency.

Third, the online modification of the OPPs requires only a few computations. A streamlined
deadbeat version of MP3C can be based on a few multipliers, adders, and logic operations. As
a result, the execution time of MP3C is in the range of a few microseconds.

On the other hand, the use of OPPs entails several disadvantages. First, and foremost, basing
the controller on an offline-computed OPP limits the controller’s flexibility and adaptability,
particularly in the presence of nonuniformly spaced phase voltages, imbalances in the PCC
voltages, and unforeseen events such as faults. In such cases, the performance of long-horizon
direct MPC schemes might match, if not surpass, the performance of MP3C. Basing the con-
trol decisions exclusively on online optimization facilitates a superior adaptation to changing
operating conditions, parameter changes, disturbances, or even faults. Furthermore, direct
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MPC schemes also provide the optimal switching pattern during transients, while OPPs fail to
do so, as they were computed assuming steady-state operating conditions. Nevertheless, the
notion of pulse insertion largely mitigates this issue.

Second, the computation of nontrivial OPPs constitutes a challenging task. To this end, a
dedicated and versatile toolbox is required, which should be based on state-of-the-art nonlinear
optimization tools. Computing OPPs for pulse numbers exceeding 20 or for inverters with a
large number of voltage levels remains a time-consuming undertaking even when employing
a powerful computer.

Third, as with synchronous PWM, the switching frequency of OPPs is restricted to integer
multiples of the fundamental frequency. This prevents one from fully exploiting the available
switching frequency, particularly when operating at very low pulse numbers.

15.2.6 Indirect MPC

In the two direct MPC schemes and MP3C, the inner (current, flux, or torque) control loop
and the modulation of the switching signal are addressed in one computational stage. Alter-
natively, the modulator can be kept as a separate entity, and an MPC scheme can be devised
that manipulates the input to the modulator. This input is the voltage reference, which is a
real-valued variable.

The modulation stage conceals the switching nature of the inverter from the controller,
allowing one to design a control loop based on averaging. This greatly simplifies the controller
design, because the control problem includes only real-valued variables. Even though the sys-
tem dynamics are often linear, constraints on states and manipulated variables are usually
present. MPC is ideally suited to address such constrained linear systems, and it is relatively
straightforward to formulate a corresponding MPC scheme. Solving the underlying optimiza-
tion problem in real time is, however, a challenging task, particularly in the presence of short
sampling intervals. Arguably, this is the reason why indirect MPC for power electronic systems
remains largely unexplored.

A few notable exceptions for three-phase systems include [12], in which the optimization
problem is solved online using a fast gradient solver, and [2, 13–15], which solves the MPC
problem offline by computing the corresponding piecewise affine state-feedback control law,
that is, the explicit solution of MPC. In the case of a linear system without constraints, MPC
can be replaced by a linear quadratic regulator (LQR), as proposed in [16].

All these methods address either the machine-side or the grid-side converter. Alternatively,
the back-to-back converter with its load can be treated as one large system, for which one
controller is formulated. To this end, a nonlinear MPC scheme was proposed in [17] for a
back-to-back load-commutated inverter with a synchronous machine. The problem was for-
mulated and solved using the ACADO toolbox [18].

The harmonic performance of indirect MPC schemes is determined by their modulator.
Indirect MPC schemes are thus best suited to either relatively high pulse numbers or when
the system to be controlled is complex, requires a superior performance during transients, and
includes constraints. These conditions are met for the modular multilevel converter (MMC) in
Chap. 14, making indirect MPC a promising control technique for MMCs with a high module
count. Similarly, indirect MPC can be applied to MMC-based static VAR compensators
(see [19]).
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15.3 Conclusion

This book has focused predominantly on high-performance MPC schemes for high-power con-
verter systems. These systems are characterized by low pulse numbers, multilevel converters,
and demanding control problems. Examples for the latter include multilevel converters with
internal voltages to be balanced (five-level active NPC inverter), multilevel converters with
internal voltages and currents to be controlled (MMCs), and inverter systems with additional
passive components such as LC filters.

The use of standard modulation techniques, such as CB-PWM or SVM, the separation of
the control and modulation problem into two distinct tasks, and the use of linear single-input
single-output (SISO) controllers limits the performance that can be achieved for such systems.
During steady-state operation, a suboptimal ratio between harmonic distortions and switching
losses results. During transients and faults, the dynamic response is either slow, or it is poorly
decoupled, exhibiting overshoots and often violating safety constraints.

The proposed high-performance MPC schemes are ideally suited to address such systems.
Their commercial benefits can be summarized as follows.

• Minimal harmonic distortions per switching losses, or vice versa.
• Superior performance during transients, load steps, and faults. Operation within the safe

operating area can be ensured thanks to the imposition of constraints.
• Minimization of the size, weight, and cost of passive components, such as LC filters and

dc-link capacitors.
• Model-based design that reduces the controller design effort.

These advantages all translate into cost savings. The MPC methods have, however, one disad-
vantage in common—they are conceptually and often also computationally demanding. This
slows down the adoption rate by industry mainly for the following reasons.

• Knowledge, skills, and an in-depth experience related to the design, analysis, and
implementation of MPC schemes must be built up through training, education, and hiring.
This is a lengthy process that requires a significant long-term commitment. A successful
team combines expertise in optimal control, MPC, power electronics, electrical machines,
mathematical programming, numerical optimization, and embedded systems. The latter
includes proficiency in Assembler, C, VHDL, communication protocols, and hardware
architectures.

• Any new MPC-based control and modulation method must be available for the whole prod-
uct range. For a drive product, for example, this includes machine-side and grid-side con-
verters, multiple converter units operating in parallel, different types of machines such as
induction machines and (permanent magnet) synchronous machines, and LC filters, which
often require active damping.

The most significant obstacle, however, is the fact that decision makers and industrial R&D
personnel are intrinsically risk-averse and favor established and well-proven control and mod-
ulation methods over emerging and unproven ones. This is compounded by the observation that
researchers often overestimate the benefit of their favorite technique. Any new method must
therefore promise to provide massive commercial benefits and a significant positive return
on investment. Without such a performance promise, the investment required and the risk
involved in the development and productization of the new control and modulation method
cannot be justified.



�

� �

�

Summary and Conclusion 525

This observation also indicates that computational and conceptual simplicity is desirable but
not sufficient. This statement is underlined in [20], in which the authors assess the technology
readiness levels of different emerging MPC methods for high-power applications. Their anal-
ysis highlights that MPC methods that promise significant performance benefits have achieved
higher technology readiness levels—and are thus closer to commercialization—than the sim-
pler methods.

15.4 Outlook

MPC emerged from the process industry in the 1970s. It has since matured into a well-
established control paradigm and has become the method of choice to address constrained
linear and nonlinear systems. Today, model predictive controllers are used in thousands of
industrial applications [21]. It is difficult to envision MPC not also playing a significant role
in power electronics in the future. As such, the open question is not so much if MPC will
be adopted by the power electronics industry, but which variety of MPC will prove to be
particularly successful.

Despite a recent surge in research activities and publications, the field of MPC for power
electronics remains largely unexplored. Challenges that could form the basis for future
research activities abound. A few challenges are summarized in the following, which we
consider to be particularly meaningful and important.

• Fast solvers for the optimization problems underlying MPC, including quadratic, nonlinear,
and mixed-integer programs. These solvers must provide real-time guarantees and must run
on small, inexpensive embedded systems.

• Direct MPC methods with discrete harmonic spectra, which avoid even and non-integer
harmonics.

• Control methods with performance and stability guarantees for power electronic systems
with high-dimensional state vectors and multiple constraints.

• Estimation schemes with performance and stability guarantees for state variables and
time-varying parameters.

• OPPs that address a wide range of control objectives and can be adapted to varying operating
conditions.

This book is intended to serve as a starting point for this quest and aims to encourage the
reader to advance the exciting field of high-performance MPC for power electronics.
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αβ0 reference frame, see stationary
reference frame

Abbreviations, xxi
ACS6000, 5

phase module, 55
Active damping, 10, 234, 390, 402, 469

virtual resistor, 403
Active front end (AFE), 62
Active neutral-point-clamped (ANPC)

inverter, 62–68
commutation path, 68
di/dt snubber, 67
dc-link, 63

capacitor, 63
voltage, 63, 64

flying capacitor, 62, 63
minimum on-time, 66
neutral point, 63

current, 66
potential, 63, 66

parameter, 72
phase

capacitor, 62
leg, 63
level, 64
voltage, 64

switch position, 64
switching
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constraint, 66
frequency, 305, 466
transition, 66, 67

topology, 63
voltage, 64

capacitor, 65
dc-link, 63, 64
vector, 65

Active rectifier unit (ARU), see active front
end

Algorithm
active set, 435–436
deadlock

avoidance, 342, 343
resolution, 339

gridding, 323, 418
heuristic, 284
model predictive

direct current control (MPDCC), 379
direct power control (MPDPC), 395
direct torque control (MPDTC), 276,

304, 357
pulse pattern control (MP3C), 426,

435–437, 439
optimized pulse pattern (OPP), 111, 114
recursive, 206
reference tracking

current, 157, 168, 180, 200, 206
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Algorithm (continued)
torque and flux, 186

sorting, 486
sphere decoding, 206

Apparent power, 31
Asymmetric regular sampling, 88–90, 93
Averaging, 10, 103, 523

Base
angular frequency, 46
current, 45
impedance, 47
moment of inertia, 47
quantity, 31, 45
torque, 47
voltage, 45

Baseband harmonic, 92, 97, 101
Bound

lower
on the cost of an incomplete

switching sequence, 352
on the electromagnetic torque, 264, 319
on the neutral point potential, 319
on the stator

current, 373–376
flux magnitude, 319

on the switching instant, 431
set of, 335
upper

on the computation time, 356
on the computational burden, 356,

357
on the length of the prediction

horizon, 352
on the optimal cost, 352

violation, 264
degree of, 264, 322, 378, 394
diminishing, 264
root-mean-square (rms), 266, 304

Boundary control problem, 424
Branch, 475

capacitance, 477
inductor, 475
voltage, 477

Branch-and-bound, see mathematical
programming

Capacitor
branch, 475
dc-link, 54, 63
voltage, 65, 235, 476

Carrier
frequency, 87, 118
(half-)interval, 87, 89
multiple harmonic, 92
phase (opposite) disposition, 87, 95
signal, 87, 95

Carrier-based pulse width modulation
(CB-PWM)

asynchronous, 102
carrier, see carrier
equivalence with space vector

modulation (SVM), 99
harmonic, see harmonic
modulating signal, see modulating signal
modulation, see modulation
natural sampling, 87, 88
performance metric, 120
phase (opposite) disposition, 87, 95
properties, 101–103
regular sampling, 88

asymmetric, 88–90, 93
symmetric, 88

single-phase, 87–91
synchronous, 102
three-phase, 95
time delay, 90, 103
trade-off, 117–121

Cascaded control, 8, 10, 84, 85, 165, 372
Case study

drive
active neutral-point-clamped (ANPC)

inverter, 71
neutral-point-clamped (NPC) inverter,

68, 69, 70
grid-connected converter, 72

Cholesky decomposition, 202
Circulating current, 477
Clamping diode, 55
Clarke transformation, 33

amplitude invariant, 35
reduced, 34

Closed-loop cost, 219, 223–225
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Commercial benefit, 524
Common-mode

current, 79
modulating signal, 98
voltage, 79, 95, 96, 129

harmonic, 96, 97, 106
Commutation path, 68
Computational burden

enumeration, 212
model predictive control (MPC), 19
model predictive direct torque control

(MPDTC), 350, 351
computationally efficient, 355, 357,

363, 368
model predictive pulse pattern control

(MP3C), 472, 522
reference tracking, 351
sphere decoding, 207, 211–213, 239, 247

Computational complexity, 200, see also
computational burden

Conduction losses, 54, 62, 70, 83
Constrained finite-time optimal control

problem, 15
Constraint, 14

active, 436
equality, 108, 142

terminal, 424
hard, 14, 483
inequality, 108, 142, 483, 484
on the current, 483, 484
on the voltage, 484
soft, 14, 338, 483, 484

terminal, 341
switching, 160, 199
violation

degree of, 483
Control

active damping, 10, 234, 390, 402, 403,
469

algorithm
current reference tracking, 157, 168,

180, 200, 206
deadlock avoidance, 342, 343
deadlock resolution, 339
model predictive direct current

control (MPDCC), 379

model predictive direct power control
(MPDPC), 395

model predictive direct torque control
(MPDTC), 276, 304, 357

model predictive pulse pattern control
(MP3C), 426, 435–437, 439

torque and flux reference tracking, 186
balancing, 129–130, 137, 305, 348, 464,

475, 480, 486
cascaded loops, 8, 10, 84, 85, 165, 372
classification, 121, 122
controlled variable, 11
direct, 12, see also direct model

predictive control
power control (DPC), see direct

power control
self-control (DSC), 139
torque control (DTC), see direct

torque control
field-oriented control (FOC), see

field-oriented control
finite control set (FCS), see reference

tracking
grid-side, 84
hierarchical, 300, 464, 474, 480
hysteresis, 133, 139
indirect, 12, see also indirect model

predictive control
input, 154

optimal, 154, 156
sequence of, 264

linear quadratic regulator (LQR), 523
machine-side, 85, 121
manipulated variable, 11
model, 13, see also controller model

predictive control (MPC), see model
predictive control

of the current, 127–129
of the electromagnetic torque, 135, 428
of the flux magnitude, 135, 428
of the neutral point potential, 129–130,

137, 464
of the speed, 123, 428
reference tracking, see reference tracking
scalar, 122–123
state-feedback law, 15, 320, 322–331, 523
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Control (continued)
trajectory tracking, 416
voltage per frequency (V/f), 123
voltage-oriented control (VOC), 389, 415

Control and modulation
assessment, 519–523
averaging, 10, 103, 523
challenges, 9–11, 525
commercial benefit, 524
control, see control
discussion, 515–519
modulation, see pulse width modulation
outlook, 525
requirements, 7–8

converter, 83
grid, 80–82
machine, 77–80

state-of-the-art, 8–9
structure, 84–85

Control problem
boundary, 424
indirect model predictive control (MPC),

479–480
infeasibility, 332
model predictive

direct current control (MPDCC),
372–373

direct power control (MPDPC),
392–393

direct torque control (MPDTC), 259
pulse pattern control (MP3C),

423–424
reference tracking

LC filter, 237
single-phase current, 153–154
three-phase current, 165–166
torque and flux, 184

Controlled variable, 11
Controller model

indirect model predictive control (MPC),
481

model predictive
direct current control (MPDCC), 377
direct power control (MPDPC), 394
direct torque control (MPDTC), 261,

303

pulse pattern control (MP3C), 423
reference tracking

LC filter, 237
single-phase current, 155
three-phase current, 167, 197
torque and flux, 185

Converter, 85, see also grid-connected
converter

back-to-back, 5, 79, 520, 523
current, 391
front end

active (AFE), 62, 70
diode (DFE), 70

inverter, see inverter
voltage, 72, 391

Coordinate system, see reference frame
Cost

closed-loop, 219, 223–225
optimal, 352

histogram, 364
upper bound on the, 352

saving, 524
Cost function, 14–15, 142

analysis, 187–188
comparison, 188–191
geometrical representation, 187
indirect model predictive control (MPC),

481–483, 488
model predictive

direct current control (MPDCC), 379
direct power control (MPDPC), 395
direct torque control (MPDTC),

265–266, 304, 351
pulse pattern control (MP3C), 430,

435
optimized pulse pattern (OPP), 103, 107,

113
reference tracking

LC filter, 238
single-phase current, 156, 161
three-phase current, 167, 168, 175,

197, 201
torque and flux, 185

Cross product, 45
Current

circulating, 477
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common-mode, 79
control, 127–129
converter, 391
dc-link, 477
grid, 477, 479
harmonic, 79, 107

limit, 80, 81, 399
path, 58
ripple, 373, 511

optimal, 422
rotor, 48
stator, 48, 373, 376
total demand distortion (TDD), 79, 107,

416
relative, 220, 225–229, 515

total harmonic distortion (THD), 79

di/dt clamp, see di/dt snubber
di/dt snubber, 60, 67, 70
dq0 reference frame, see rotating reference

frame
dc-link, 54, 63

capacitor, 54, 63
voltage

instantaneous, 54, 63
nominal, 64, 68, 71

Deadlock
avoidance, 340–343

algorithm, 342, 343
cost function, 341
critical region, 341
deadlock prediction, 342, 343
terminal soft constraint, 341
terminal weight, 342

definition, 331
frequency, 337, 343
location, 335
resolution, 337–339

algorithm, 339
cost function, 338

switching
burst, 340, 343
horizon, 338
instantaneous frequency, 340
relative frequency, 345

type, 335

Delay, 178–183, 426
compensation, 180

Determinant, 49
Differential-mode

harmonic, 106
voltage, 95

Direct axis, 37
Direct model predictive control (MPC), 12,

see also model predictive direct
current/power/torque control, see also
model predictive pulse pattern
control, see also reference tracking

Direct online machine, 5, 7, 62, 79, 80
Direct power control (DPC), 390

assessment, 520
virtual flux vector, 390

Direct self-control (DSC), 139
Direct torque control (DTC), 130–139

active neutral-point-clamped (ANPC)
inverter, 300, 301, 305, 306,
310–312, 465

assessment, 519
electromagnetic torque, 132
harmonic spectrum, 520
hysteresis

bounds, 134
controller, 133

neutral-point-clamped (NPC) inverter,
290, 293–296, 298

rotor flux magnitude, 131
stator flux, 132
switching table, 135

Discretization
exact, 13, 155
forward Euler, 13, 155

Distortion
total demand (TDD)

of the current, 79, 107, 118, 416
of the electromagnetic torque, 78,

120
total harmonic (THD)

of the electromagnetic torque, 78

Educated guess, 205
Electromagnetic torque, 44, 45, 49, 50, 183

controller, 428
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Electromagnetic torque, (continued)
derivative, 333
ripple, 512
total demand distortion (TDD), 78, 120
total harmonic distortion (THD), 78

Enumeration, 156, 168, 187, 200, 275
computational burden, 212

Estimator, see observer
Euclidean distance, 207
Exhaustive search, see enumeration
Experimental results of model predictive

direct current control (MPDCC), 403
direct power control (MPDPC), 403
direct torque control (MPDTC), 280, 314
pulse pattern control (MP3C), 465–468

Explicit control law, 15, 523
Extension mechanism, 269, see also

extrapolation, see also interpolation
Extrapolation

linear, 279–280
quadratic, 280–282

Feasibility, 142, 264, 356
Field-oriented control (FOC), 123–127, 415

control of the
current, 127–129
neutral point potential, 129–130

field orientation, 123
condition of, 125

(in)direct, 125
reference frame, 123

Field-programmable gate array (FPGA), 6,
18, 144, 315, 472

Finite control set (FCS) control, see
reference tracking

Five-level inverter, see active
neutral-point-clamped inverter

Flux
magnitude

controller, 428
observer, 426, 451

noise, 452
probability density function, 452

rotor, 45, 46
stator, 45, 46

magnitude reference, 429

reference, 319
virtual, 390

Flying capacitor, 62, 63
Fourier

coefficient, 105, 139
series, 105, 139, see also harmonic

analysis
Freewheeling diode, 54
Frequency

angular, 44
base, 44
carrier, 118
fundamental, 86, 118

angular, 419
grid, 479
of deadlocks, 337, 343
sampling, 138
slip, 123, 125
stator

angular, 44
switching, 138, 429

Fundamental
component, 79, 92, 97, 106
frequency, 86, 118

angular, 419

Gate-commutated thyristor (GCT), see
integrated-gate-commutated thyristor

Generator matrix, 202, 203, 207
Gradient, 145
Grid, 72, 477

code, see grid standard
current, 477, 479, see also stator current
disturbance, 82
fault, 82
frequency, 479
impedance, 73, 82

ratio, 73
inductance, 72
model

state-space, 392
voltage, 479

reactance, 74
resistance, 72, 74
short circuit, see short circuit
standard, 399
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IEC 61000–2-4, 80, 81, 400
IEEE 519, 80, 81, 399

strong, 73, 82
voltage, 72, 391, 479
weak, 73, 82

Grid-connected converter, 72, 75
grid, see grid
parameter, 74
point of common coupling (PCC), 72,

80
voltage, 72

Gridding, 323, 418

Half-wave symmetry, 89, 104
Harmonic

analysis
carrier-based pulse width modulation

(CB-PWM), 91–94, 96–97
optimized pulse pattern (OPP),

105–107
baseband, 92, 97, 101
carrier multiple, 92
current, 79, 107
differential-mode, 106
frequency, 91
fundamental component, 92, 97
machine losses, 79
order, 105
phase of component, 93
sideband, 91, 92, 97
subharmonic, 102
voltage, 106

common-mode, 96, 97, 106
differential-mode, 416

Hessian matrix, 144, 201
High power electronics

electrification, 5
market trends, 5–6
medium-voltage (MV) drive, see

medium-voltage drive
technology trends, 6

Histogram
computationally efficient model

predictive direct torque control
(MPDTC), 364

sphere decoding, 213

Hybrid system, 18
switched nonlinear system, 9–10

Implementation, 180, 256, 314, 315, 403,
472, 508

Index
insertion, 477

Indirect model predictive control (MPC),
12, 475, 510

assessment, 523
averaging, 523
carrier-based pulse width modulation

(CB-PWM), 485
constraint, 483, 484

degree of violation, 483
control

balancing, 486
hierarchical, 480
problem, 479–480
structure, 480

cost function, 481–483, 488
fast gradient solver, 523
grid current/voltage, 479
Gurobi Optimizer, 488
harmonic spectrum, 523
input vector, 481
insertion index, 477
linearization, 481
manipulated variable

sequence of, 482
model

accuracy, 496
controller, 481

modular multilevel converter (MMC),
see modular multilevel converter

multi-parametric toolbox, 488
number of modules, 475, 480
optimization problem, 484
output (reference), 481
penalty matrix, 482, 487
performance

evaluation, 488–496
sensitivity, 498

quadratic program (QP), 484
receding horizon policy, 485
slack variable, 483
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Indirect model predictive control (MPC),
(continued)

sorting algorithm, 486
state vector, 479, 481
state-feedback control law, 523
tracking error, 482
voltage margin, 491

Inductance
branch, 475
leakage, 43

total, 51, see also total leakage
reactance

main/magnetizing, 43
self, 43

Induction machine, 42–51
angular frequency, 44
angular speed, 44
bearing, 79
determinant, 49
electromagnetic torque, 44, 45, 49, 50,

183
electromotive force, 44
equivalent circuit

matrix notation, 46
space vector notation, 43

flux equation, 43, 45
inductance

leakage, 43
main/magnetizing, 43
self, 43

losses, 79
model

harmonic , 50
matrix notation, 44–45
per unit system, 45–48
space vector notation, 42–44
state-space, 48–50, 164, 183, 258,

371
number of pole pairs, 44
parameter, 51, 69, 72

variation, 454
rated value, 69, 72
rotational motion, 44
saturation, 42, 305
slip, 44
speed voltage, 43
squirrel-cage rotor, 43

time constant
rotor, 50
transient stator, 50

total leakage
factor, 51
reactance, 51

voltage equation, 43, 45
Induction motor, see induction machine
Industrial power electronics, see high power

electronics
Infeasibility exit strategy, see deadlock

resolution algorithm
Infeasible

control problem, 332, 483
state, see deadlock

Initial state prediction, 180
Input

matrix, 13
vector, 12, 48, 197, 260

Insertion index, 477
Insulated-gate bipolar transistor (IGBT), 51,

62, 475
Integer quadratic program, 203
Integrated-gate-commutated thyristor

(IGCT), 51–53
blocking voltage, 52
losses, 52, 53
on-state resistance, 52, 53
schematic, 52
snubber, 52

Interlocking time, 59
Interpolation

quadratic, 282–284
Inverter

active neutral-point-clamped (ANPC),
see active neutral-point-clamped
inverter

current, 235
five-level, see active

neutral-point-clamped inverter
neutral-point-clamped (NPC), see

neutral-point-clamped inverter
three-level, see neutral-point-clamped

inverter
voltage, 56, 64

ideal, 419



�

� �

�

Index 535

LC filter, 10, 402
grid-side, 403
machine-side, 234, 235, 315, 469
resonance frequency, 237
state-space model, 235, 250

Leakage inductance, 43
Line

constant electromagnetic torque,
334

constant stator flux magnitude,
334

Line-to-line voltage, 30
Linear quadratic regulator

(LQR), 523
Linearization, 481
Load

angle, 428
balanced, 30
capacitive, 393
inductive, 393, 416
resistive–inductive, 30, 153–154,

477
torque, 44

Logic variable, 315, 316
Look-up table, 422

Main inductance, 43
Manipulated variable, 11

sequence of, 15, 482
optimal, 15

Mathematical programming, 141–145
branch-and-bound, 142, 206 see also

computationally efficient model
predictive direct torque control

branching heuristic, 356
closeness to optimality, 357
stopping criteria, 356
warm-start, 356

constraint, see constraint
convex, 143
cost function, see cost function
enumeration, 114, 156, 168, 187, 200,

275
feasibility, 142
integer quadratic, 203
method, see mathematical programming

solver

mixed-integer, 114, 142
multi-parametric, 15

toolbox, 321, 488
optimal solution/value, 142
optimality condition, 145
optimization

problem, see optimization problem
variable, 142

optimum, see optimum
quadratic program (QP), 144, 431, 484

unconstrained, 144, 434
solver

active set, 144, 435–436, 485
gradient, 112, 144
interior point, 144, 485

sphere decoding, 206
trigonometric, 108

Matrix
generator, 202, 203, 207
Hessian, 144, 201
input/system/output, 13
lower triangular, 202
penalty, 201, 238, 243
positive (semi)definite, 144

Mechanical angular speed
of the shaft, 44

Medium-voltage (MV) drive, 3–5
ACS6000, 5

phase module, 55
case study, 68, 70, 71
commercial benefit, 524
direct online machine, 5, 7, 62, 79,

80
front end

active (AFE), 62, 70
diode (DFE), 70

general purpose, 5, 123
harmonic model, 236
parameter, 69, 72
rated value, 69, 72
retrofit, 62, 79
special purpose, 5
structure, 3
with LC filter, 234, 235

Minimum, see optimum
Minimum on–time, 60, 66
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Model, see controller model, see state-space
model

Model predictive control (MPC)
advantages, 17–18
challenges, 18, 525
commercial benefit, 524
computational burden, 19
constraints, see constraints
controlled variable, 11
cost function, see cost function
cost saving, 524
deadlock, see deadlock
direct, 12, see direct model predictive

control
explicit, 15, 523, see also state-feedback

control law
finite control set (FCS), see reference

tracking
history, 11
indirect, see indirect model predictive

control
internal model, 13, see also controller

model
manipulated variable, 11
model, see controller model
model predictive

direct current control (MPDCC), see
model predictive direct current
control

direct power control (MPDPC), see
model predictive direct power
control

direct torque control (MPDTC), see
model predictive direct torque
control

pulse pattern control (MP3C), see
model predictive pulse pattern
control

multi-parametric
programming, 15
toolbox, 321, 488

optimization
problem, see optimization problem
stage, 15

outlook, 525
prediction, see prediction
principle, 12–16

problem, 11–12 see also control problem
receding horizon policy, 16, 199
reference tracking, see reference

tracking
state-feedback control law, 15, 320,

322–331, 523
Model predictive direct balancing control

(MPDBC), 347
Model predictive direct current control

(MPDCC)
algorithm, 379
assessment, 521
control problem, 372–373
controller model, 377
cost function, 379
current bounds, 373–376

degree of violation, 378
experimental results, 403
harmonic spectrum, 521
optimization problem, 378
performance evaluation, 380–388, 513
robustness, 521
switching sequence, 378
target set, 405
trade-off curve, 513
tuning, 388–389, 521
virtual resistor, 402

Model predictive direct power control
(MPDPC)

algorithm, 395
bound, 393, 394

degree of violation, 394
control problem, 392–393
controller model, 394
cost function, 395
experimental results, 403
optimization problem, 394
output vector, 393
performance evaluation, 395–401
stability, 403
state vector, 393
target set, 405
virtual flux, 403
virtual resistor, 403

Model predictive direct torque control
(MPDTC)

algorithm, 276, 304
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computationally efficient, 357
deadlock avoidance, 342, 343
deadlock resolution, 339

assessment, 521
bound, 264, 319

degree of violation, 264, 322
root-mean-square (rms) violation,

266, 304
set of, 335
violation, 264

computational burden, 350, 351
computationally efficient

branching heuristic, 356
certificate, 352, 354, 355, 367
closeness to optimality, 357
computational burden, 355, 357, 363,

368
cost function, 351
feasibility, 356
histogram, 364
lower bound, 352
node, 351
node counter, 357
optimal cost, 352
optimality of the solution, 355
stability, 356
stopping criteria, 356
switching sequence, 351, 352
upper bound, 352, 356, 357
warm-start, 356

control problem, 259
controller model, 261, 303
cost function, 265–266, 304, 338
critical region, 341
deadlock, 521, see deadlock
enumeration, 275
experimental results, 280, 314
extension, 269

linear extrapolation, 279–280
quadratic extrapolation, 280–282
quadratic interpolation, 282–284

gridding, 323
harmonic spectrum, 521
implementation, 256, 314, 315, 403
LC filter, 315
optimization problem

naive, 263
simplified, 268

output variable, 263
feasible, 264

performance evaluation, 290–298,
305–312, 359–363, 511

deadlock avoidance, 343–347
performance metric, 296
prediction horizon, 266, 270
robustness, 521
search tree, 274

node, 274, 351
sequence of actions, 274
state-feedback control law, 320,

322–331
region, 323, 327

stator
flux trajectory, 323
ripple current, 511

switching
effort, 262
frequency, 262, 305
horizon, 268, 338
losses, 262, 263
sequence, 264, 267, 268, 274, 343,

351
target set, 319, 404
torque ripple, 512
trade-off curve, 511

Model predictive pulse pattern control
(MP3C), 425

active constraint, 436
active set method, 435–436
algorithm, 426

active set, 435–436
deadbeat, 437
pulse insertion, 439

angle, 419
ripple, 421
switching, 417

assessment, 521
boundary control problem, 424
computational burden, 472, 522
control

balancing, 464
deadbeat, 437
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Model predictive pulse pattern control
(MP3C) (continued)
hierarchical, 464
of the electromagnetic torque, 428
of the flux magnitude, 428
of the speed, 428
problem, 423–424

controller model, 423
cost function, 430, 435
current, 426

optimal ripple, 422
deadbeat control, 437
delay, 426, 522
experimental result, 465–468
flux observer, 426, 451

noise, 452
probability density function, 452

frequency
fundamental, 419
switching, 429, 466

harmonic spectrum, 522
shaping of, 522

implementation, 472
inverter voltage, 419
load angle, 428
look-up table, 422
noise scaling factor, 453
optimality, 436, 471
optimization problem, 430–431
optimized pulse pattern (OPP), see

optimized pulse pattern
overcurrent, 415, 439
performance evaluation, 448–462,

465–468, 511
prediction horizon, 424

angular, 452
pulse, 439

insertion, 438–442, 458–462, 471
number, 417

quadratic program (QP), 431
receding horizon policy, 424, 470
robustness, 454
solution

unconstrained, 434, 435, 445
stator flux

angle ripple, 421

correction, 430, 433
error, 429, 440
magnitude, 419, 421
magnitude reference, 429
magnitude ripple, 421, 422
reference, 420
trajectory, 420

switching
angle, 417
frequency, 429, 466
instant, 431
sequence, 417
time, 423
transition, 431, 439

symmetry, 422
time, 419

switching, 423
trade-off curve, 511

Modular multilevel converter (MMC)
branch, 475, 477

capacitance, 477
voltage, 477

control, see indirect model predictive
control

current
circulating, 477
dc-link, 477
grid, 477, 479

grid voltage, 479
insertion index, 477
model

linearized, 481
nonlinear, 479
state-space, 481

module, 475
phase leg, 475
topology, 475–477

Modulating signal, 87, 95, 99
common-mode, 98, 99

Modulation
cycle, 102
index, 87
region, 102

extended linear, 101
linear, 87, 92, 97, 101
nonlinear, 100, 101
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overmodulation, 100, 101
six-step, 101

six-step, 101, 106, 139
Module, 475

number of, 475, 479, 480
Moment of inertia, 44
Monte Carlo simulation, 230
Multi-parametric

programming, 15
toolbox, 321, 488

Multiple-input multiple-output (MIMO),
10, 18, 85, 234

Natural sampling, 87
Neutral point, 54, 63

current, 58, 66
potential, 54, 58, 63, 66

control, 129–130
Neutral-point-clamped (NPC) inverter,

54–62
admissible switching transition, 60,

61
clamping diode, 55
conduction losses, 62
current path, 57, 58
di/dt snubber, 60, 70
dc-link, 54

capacitor, 54
voltage, 54, 68, 71

freewheeling diode, 54
grid-connected, 75
interlocking time, 59
neutral point, 54

current, 58
potential, 54, 58

parameter, 69
phase

current, 57
leg, 54
voltage, 55

switch position, 56
switching

constraint, 59
losses, 60, 61
transition, 59–61

topology, 54

voltage, 56
vector, 56, 57

Noise
Gaussian, 452
scaling factor, 453

Norm
choice of, 175–178

Number of
modules, 475, 479, 480
pole pairs, 44

Objective function, see cost function
Observer, 426, 451

noise, 452
probability density function, 452

On-state voltage drop, 54
Operations, xxv
Optimal cost, 352

histogram, 364
upper bound on the, 352

Optimal solution, 142, 144, 207
incumbent, 206

Optimal switch position, 156, 199
sequence of, 264

Optimality, 436
certificate, 355, 367
closeness to, 357
condition, 145

Optimization, see mathematical
programming

Optimization problem, 15
convex, 143
general, 142
indirect model predictive control (MPC),

484
model predictive

direct current control (MPDCC), 378
direct power control (MPDPC), 394
direct torque control (MPDTC), 263,

268
pulse pattern control (MP3C),

430–431
optimized pulse pattern (OPP), 108, 113
reference tracking

LC filter, 239
single-phase current, 156, 161
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Optimization problem (continued)
three-phase current, 168, 198, 203
torque and flux, 186

Optimized pulse pattern (OPP)
algorithm, 111, 114
angle, 419
constraint, 108
control, see model predictive pulse

pattern control
trajectory tracking, 416

cost function, 103, 107, 113
discontinuity, 110, 112, 114, 116
Fourier, see Fourier
gridding, 418
look-up table, 117, 422
optimization problem, 108, 113
properties, 117
pulse

number, 104, 417
pattern, 105

switch position, 105
switching

angle, 104, 417
frequency, 117
sequence, 112, 417
transition, 104, 106, 140

symmetry
half-wave, 104
quarter-wave, 104, 417

synchronous modulation, 117
time, 419

Optimum, 108–110, 144
unconstrained, 202

Orthogonal reference frame, see reference
frame

Output
function, 261
matrix, 13
reference

trajectory, 200, 201, 214
vector, 12, 198, 237, 250,

481
trajectory, 200, 267
variable, 237

feasible, 264
vector, 12, 48, 197, 237

Overcurrent, 415, 439
Overmodulation, 101
Overshoot, 10, 243, 245, 312, 486, 491,

500, 524

Park transformation, 37
amplitude invariant, 39
reduced, 39

Penalty
matrix, 201, 238, 243, 487
scalar, 156, 167

Per unit (pu) system, 31–33
base, see base
reactance, 46

Percentile, 213
Performance evaluation, 508–514

field-oriented control (FOC), 509
indirect model predictive control (MPC),

488–496
sensitivity, 498

model predictive
direct current control (MPDCC),

380–388, 513
direct power control (MPDPC),

395–401
direct torque control (MPDTC),

290–298, 305–312, 343, 347,
359, 363, 511

pulse pattern control (MP3C), 448,
462, 465, 468, 511

reference tracking
LC filter, 239–245
single-phase current, 158–161
three-phase current, 170–175,

220–223, 225–232, 514
torque and flux, 191–193

space vector modulation (SVM), 509
Performance metric, 120, 296
Phase

capacitor, 62
current, 57
leg, 54, 63, 86, 475
level, 64
(opposite) disposition, 87, 95
terminal, 30
voltage, 30, 55, 64, 86
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Point of common coupling (PCC), 72, 80,
391

Power
apparent, 31
diode, 53–54
factor, 31
reactive, 31

instantaneous, 392, 407
real, 31

instantaneous, 392, 407
semiconductor, 51–54

insulated-gate bipolar transistor
(IGBT), see insulated-gate
bipolar transistor

integrated-gate-commutated thyristor
(IGCT), see integrated-gate-
commutated thyristor
power diode, see power diode

short circuit, 73
Prediction

horizon, 15, 197, 266, 270, 424
angular, 452
upper bound on the length of the,

352
initial state, 180
interval, 246
step, 269

Predictive control, see model predictive
control

Probability density function, 452
Projection, 35
Pulse, 439

insertion, 438–442, 471
number, 104, 417
pattern

optimal, see optimal pulse pattern
Pulse width modulation (PWM)

asynchronous, 102
carrier-based (CB-PWM),

see carrier-based pulse width
modulation

optimized pulse pattern (OPP), see
optimized pulse pattern

space vector modulation (SVM), see
space vector modulation

synchronous, 102, 117

Quadratic program (QP), 144, 431, 484
unconstrained, 144, 434

Quadrature axis, 37
Quarter-wave symmetry, 89, 95, 104

Reactance, 46
Reactive power, 31

instantaneous, 392, 407
Real power, 31

instantaneous, 392, 407
Receding horizon policy, 16, 199, 424, 485
Recursive algorithm, 206
Reduced Clarke transformation, 34
Reduced Park transformation, 39
Reference frame, 33–40

angular position, 37
angular speed, 37, 44, 123
axis, 37
rotating, 36–40

synchronously, 38, 123
stationary, 33–36

Reference tracking
accuracy, 156, 198
assessment, 520
computational burden, 351
control problem

LC filter, 237
single-phase current, 153–154
three-phase current, 165–166
torque and flux, 184

controller model
LC filter, 237
single-phase current, 155
three-phase current, 167, 197
torque and flux, 185

cost function
LC filter, 238
single-phase current, 156, 161
three-phase current, 167, 168, 175,

197, 201
torque and flux, 185

error, 201, 214
harmonic spectrum, 520
LC filter, 237
of the current

algorithm, 157, 168, 180, 200, 206
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Reference tracking (continued)
single-phase, 154
sphere decoding, 206
three-phase, 165, 198

of the torque and flux, 185
algorithm, 186

optimization problem
LC filter, 239
single-phase current, 156, 161
three-phase current, 168, 198, 203
torque and flux, 186

performance evaluation
LC filter, 239–245
single-phase current, 158–161
three-phase current, 170–175,

220–223, 225–232, 514
torque and flux, 191–193

rounding, 232
suboptimal solution, 232
trade-off curve, 514
variable switching point, 520

Region
critical, 341

Regular sampling, 88
asymmetric, 88–90, 93
symmetric, 88

Resonance
frequency, 237
of the system, 236

Reverse recovery losses, 53
Ripple

current, 373
optimal, 422

stator flux
angle, 421
magnitude, 422

Rotating reference frame, 36–40
angular position, 37
angular speed, 37, 123
axis, 37
synchronously, 38, 123

Rotation matrix, 40
Rotational motion, 44
Rotor

current, 48
flux, 45, 46

voltage, 45
Rounding, 204, 232

Sampling
frequency, 138
instant, 10, 13, 277
interval, 10, 13, 84, 154
natural, 87
regular, 88

asymmetric, 88–90, 93
symmetric, 88

Scalar control, 122–123
Search tree, 209, 274

node, 209, 274, 351, 357
counter, 357

number of nodes, 211
histogram, 213, 367
upper bound on the, 357

visualization, 209, 210
Selective harmonic elimination

(SHE), 103
Self-inductance, 43
Semiconductor, see power semiconductor
Sequence of

actions, 274
switch positions, see switching sequence

Short circuit, 59
power, 73
ratio, 73, 80

Sideband harmonic, 92, 97
Six-step operation, 101, 106, 139
Slack variable, 483
Slip, 44

frequency, 123, 125
Solution

optimal, 142, 144, 207
incumbent, 206

suboptimal, 232
unconstrained, 202, 232, 434,

435, 445
Solver

active set, 144, 435–436
fast gradient, 523
gradient, 144
Gurobi Optimizer, 488
multi-parametric, 321, 488
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Space vector, 40–42
modulation (SVM)

assessment, 519
equivalence with carrier-based pulse

width modulation (CB-PWM),
99

performance evaluation, 509
trade-off curve, 509

Speed
controller, 428
reference frame

angular, 44
rotor

electrical, 44
mechanical, 44

shaft
mechanical, 44

Sphere, 205
decoding

algorithm, 206
certificate, 206
computational burden, 207, 211–213,

239, 247
histogram, 213
suboptimal solution, 232
visualization, 208

Stability, 175, 356, 403
Star point, 30, 95, 97, 106
State

infeasible, see deadlock
prediction

initial, 180
trajectory, 267
vector, 12, 48, 197, 237, 260

State-feedback control law, 15, 320,
322–331, 523

region, 323, 327
State-space model, 13

accuracy, 496
discretization, 13
grid, 392, 479
induction machine, 48–50, 164, 183, 371

approximate, 278
LC filter, 235, 250
modular multilevel converter (MMC),

481

Stationary reference frame, 33–36
Stator current, 48, 235

bounds, 373–376
reference, 373, 376
ripple, 511

Stator flux, 45, 46
angle ripple, 421
correction, 430, 433
error, 429, 440
magnitude, 184, 258, 334, 419, 421

derivative of the, 334
ripple, 422

reference, 319, 420
trajectory, 420

trajectory, 323
Subharmonic, 102
Subscripts, xxiv
Superscripts, xxv
Switch position, 56, 64, 105

admissible, 156
set of, 156

optimal, 156, 199
sequence of, 198

optimal, 264
Switched nonlinear system, 9–10
Switching

angle, 104, 417
burst, 340, 343
constraint, 59, 66
effort, 198, 262
frequency, 83, 138, 305, 429, 466

device, 262
instantaneous, 340
optimized pulse pattern (OPP),

117
relative, 345

granularity of, 173, 239, 246, 267
horizon, 268, 338
losses, 53, 60, 61, 68, 83, 119, 262,

263
parameter, 70

sequence, 112, 161, 198, 267, 378,
417

admissible, 268
candidate, 205, 268, 274, 343, 351,

352
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Switching (continued)
incomplete, 352
lower bound on the, 352
optimal, 199, 206

signal, 86
time, 423
transition, 59, 104, 106, 140, 431, 439

admissible/allowed, 60, 61, 66, 67
number of, 431

Symbols, xxii
Symmetric regular sampling, 88
Symmetry

60◦, 336, 422
carrier-based pulse width modulation

(CB-PWM), 89
half-wave, 89, 104
quarter-wave, 89, 95, 104, 417

System matrix, 13

Target set, 319, 403–405
Technology readiness level, 525
Terminal penalty, 342
Three-level inverter, see

neutral-point-clamped inverter
Three-phase system, 29–31
Time

computation
upper bound on the, 356

constant
rotor, 50
transient stator, 50

delay, 178–183
carrier-based pulse width modulation

(CB-PWM), 90, 103
compensation, 180

interlocking, 59
step, 13
switching, 423

Torque, see electromagnetic torque
Total demand distortion (TDD)

of the current, 79, 107, 118, 416
relative, 220, 225–229, 515

of the electromagnetic torque, 78, 120

Total harmonic distortion (THD)
of the current, 79
of the electromagnetic torque, 78

Total leakage
factor, 51
reactance, 51

Tracking error, 482
Trade-off, 117–121, 219, 389

curve, 7, 226, 230, 233, 508–519
Trajectory

output, 200, 267
reference, 200, 201, 214

state, 267
stator flux, 323

reference, 420
tracking, 104, 416

Transformation
amplitude invariant, 35, 39
Clarke, 33, 34
Park, 37, 39

Transformer, 73, 74
rated value, 74
series leakage reactance, 74

Unconstrained solution, 202, 434, 435, 445
Unit vector, 35

Variable, xxii
Variable-speed drive (VSD), see

medium-voltage drive
Vector control

direct torque control (DTC), see direct
torque control

field-oriented control (FOC), see
field-oriented control

voltage-oriented control (VOC), see
voltage-oriented control

Virtual resistor, 402, 403
Voltage

branch, 477
capacitor, 476
common-mode, 79, 95, 96, 129
converter, 391
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differential-mode, 95
divider, 82, 400
grid, 391, 479
harmonic, 106

frequency, 118
limit, 80, 81, 400
magnitude, 417

index, 102
inverter, 56, 64

ideal, 419

margin, 231, 243, 298, 387, 401, 460,
491

oriented control (VOC), 389, 415
per frequency (V/f) control, 123
reference, 86
rotor, 45
source inverter, see inverter
stator, 45
vector, 56, 57, 65, 135

relaxed, 332
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