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Supervisors’ Foreword

In solid-state physics and material science, doped materials and compound systems
have been playing the most important roles during the last decades. The idea of
mixing different materials in order to benefit from a combination of their prop-
erties proved to be very fruitful. It is well known that even a relatively low
concentration of dopants can change some properties of a bulk material dramati-
cally: the vast majority of modern microelectronic devices are based on doped
semiconductors. Dopants are essentially small defects diluted in a bulk material
where only their averaged statistical properties matter. However, recent advances
in fabrication and measurement techniques have been opening fascinating possi-
bilities to study small systems produced in a controlled way. Modern growth
methods and nanostructure technologies allow to combine various materials,
exploiting their properties not only at the bare substance but also at the structural
level. Nanoscopic objects such as nano particles, quantum dots or even single
molecules can be produced or manipulated at the nanometer scale. Thus, these
single nanoscale systems are the main protagonists now, while the bulk starts to
play the secondary role of an environment. A combination of nanostructures based
on different materials, making use of the most prominent properties of each
constituent, is the founding idea of hybrid systems which form the backbone of
this Thesis.

Unlike many other theses which typically follow one main thread, focusing on
some aspects of it in detail, and therefore are quite homogeneous, the Thesis of
Javier Munárriz is a quest for very different and hopefully interesting effects in
totally different systems. The only characteristics that the latter have in common is
that they are all hybrid nanoscale systems. Thus, transistor effect for spin-polarised
currents and controlled spin filtering was predicted for nanostructures based on
graphene and ferromagnetics. Nonlinear effects, such as optical and electro-optical
hysteresis and bistability were predicted for hybrid systems comprising a semi-
conductor quantum dot in the proximity of a heterointerface with electrically
tunable dielectric contrast. Negative differential resistance for spin currents was
demonstrated in superlattices induced by ferromagnetic oxides deposited on top of
graphene nanoribbons. Addressing metal nanoparticle-based optical antennas,
several methods of formation and control of their highly directional radiation
patterns were proposed.
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Finally, we would like to point out that Javier Munárriz wrote the vast majority
of numerical codes used for simulations of all of these different systems almost
from scratch. These codes are technically complicated and very different in nature.
In particular, simulations of nonlinear electro-optical effects required an imple-
mentation of methods of the electrodynamics of the stratified media. To model
graphene-based devices a very efficient quantum transmission boundary method
combined with the transfer matrix approach was implemented for the first time. All
theoretical techniques and numerical methods are described in detail in the
appendices and can readily be used, providing a solid technical background for
further research work.

Madrid, April 2014 Prof. Andrey V. Malyshev
Prof. Francisco Domínguez-Adame Acosta
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Symbols and Abbreviations

a0 Interatomic distance in graphene, a0 ’ 0:142 nm
~a0 Interatomic distance between next-nearest neighbors in graphene,

~a0�
ffiffiffiffiffiffiffi

3a0
p

’ 0:246 nm
aGNR Armchair Graphene Nanoribbon
FET Field Effect Transistor
ITO Indium Tin Oxide
LCAO Linear Combination of Atomic Orbitals
MNP Metallic Nanoparticle
NDR Negative Differential Resistance
P Degree of polarization of the current
PT Degree of polarization of the transmission
QID Quantum Interference Device
QTBM Quantum Transmission Boundary Method
SET Single Electron Transistor
SPP Surface Plasmon Polariton
SQD Semiconductor Quantum Dot
TðEÞ Transmission probability
TB Tight-Binding approach
T�ðEÞ Transmission probability for electrons with spin r ¼ �1
TMM Transfer Matrix Method
zGNR Zigzag Graphene Nanoribbon
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Chapter 1
Introduction

Due to the experimental developments and the deeper understanding of the behaviour
of matter at the nanometre scale, nanoscience and nanotechnology have experienced
a huge boost over the past few decades, becoming a major research topic in multiple
fields of science. A non-exhaustive list of the latter includes material science, optics,
chemistry, biology and biomedicine.

One of the research areas where nanoscience has had a fast and ground-breaking
impact is the field of Information Technology. The constant reduction in the size
of components in the semiconductor industry has smoothly led it to the nanoscale.
However, most of the properties of bulk matter are greatly affected by this shrinking
of the dimensions. This has led to difficult technological challenges which compro-
mise future advances. Most of the investment is directed towards overcoming these
problems without changing the base technology. However, there is also a need for the
so-called blue sky research, that is, research which involves a change of paradigms
with respect to the ones in use nowadays. It is the goal of the present work to show
the results obtained in some of this new research directions.

1.1 Devices Based on Graphene

Triggered by the first successful synthesis of graphene [1], there has been an ever-
growing interest in the properties and applications of this carbon material. Among
its many remarkable properties, its truly two-dimensional geometry, high carrier
mobility [2], large mean free path [1] and long spin-coherence lengths (up to several
microns [3–5]) can be highlighted. The initial fundamental interest in its exotic
properties has cleared the way to the investigation of its appealing technological
applications.

Graphene has been intensively studied as a basematerial for energy harvesting. Its
optical transmission under conditions of normal incidence is set to 97.7% [6]. There-
fore, it is a promising candidate to replace traditional transparent conducting films,
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such as Tin-doped Indium Oxide 1 (ITO) or Aluminium-doped Zinc-Oxide (AZO),
which are expensive, or conducting polymers, less efficient and toxic. Once mass
production is achieved, graphene could enhance the efficiency and integration of
solar cells, acting as a transparent electrode [7, 8] (for a review of the optical proper-
ties of graphene, see [6]). Furthermore, the possibility of optically exciting collective
oscillations of the electron gas—plasmons—in graphene [9, 10], combined with a
convenient engineering of the edges, could lead to a strong absorption enhance-
ment of graphene flakes [11]. This could be exploited to provide atomically-thin
active-harvesting materials for photovoltaic devices. Regarding energy storing, the
possibility of adding large amounts of hydrogen to structures made out of graphene
could in turn lead to the design of high-density, close-packed fuel cells [12–14].

Electronics is another field where graphene is called to have an important impact.
Due to its outstanding electronic properties, graphene is a material of choice for
devices working at radio frequencies [15–17]. Furthermore, its transparency and
advantageous mechanical properties make it a suitable candidate to replace elements
of electronic devices, such as touch screens and displays. This application is widely
targeted as a near-term one, specially after obtaining large-scale wafers of graphene
using Chemical Vapour Deposition [18, 19]. Moreover, if the different available
methods to create band gaps in graphene are further developed [20–29], it could
also be used to produce Field Effect Transistors (FET), taking advantage of its high
thermal conductivity [30]. This promising application has been highlighted in the
2011 edition of the International Technology Roadmap for Semiconductors (ITRS)
in the Emerging Research Devices section [31].

The ability of manipulating materials at increasingly smaller scales allows new
devices to be envisioned, which exploit quantum phenomena as their principle of
operation. It is inside this category where Single Electron Transistors (SET) can be
found [32]. These transistors rely on the discretization of energy levels, which is
a common feature of extremely confined systems, generally triggered by Coulomb
repulsion. These levels can act as discrete channels connecting two leads. A transistor
can then be engineered by setting in the system a method to externally tune their
energy levels. This is usually accomplished by placing an electrostatic gate near
the device. This concept has successfully been applied to graphene in [33] (for
a review, see [34]). Another concept inherent to quantum mechanics is quantum
interference, which can be understood in terms of the particle-wave duality. This
phenomenon can be employed to engineer new electronic devices, taking designs
previously applied to opticalwaveguides. These systems are usually termedQuantum
Interference Devices (QIDs) [35]. In graphene, QIDs tuned by an external magnetic
field have been experimentally and theoretically studied [36–40]. However, devices
basedon externalmagnetic fields hold little promise to be constituents of an integrated
circuit. Therefore, a new QID is proposed in Chap.3, having an electrostatic gate as
its tuning element.

The possibility of developing devices which operate with individual electrons can
also be extended to the control of their spin degree of freedom, thus engineering

1 For all abbreviations see the glossary on page viii.
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spintronic devices. The weak spin-orbit coupling of electrons in graphene leads to
an extraordinarily long spin-coherence length [4], which allows for the coherent
manipulation of this quantum degree of freedom. It has been proposed that this
manipulation could be performed with adatoms [41, 42], as well as with ferromag-
netic strips grown on top of it [43–46], or even using the intrinsic properties of
graphene nanoribbons with zigzag edges, which may have a net magnetic moment
[47, 48]. The second approach is adopted in Chaps. 4 and 5 to design devices with a
response which depends on the spin of the charge carrier. More specifically, a tunable
source of polarized electrons is engineered, as well as a device with spin-dependent
Negative Differential Resistance (NDR).

1.2 Plasmonic Nanodevices

The enhanced control in the fabrication techniques has led to the miniaturization of a
variety of electro-optical devices, e.g., antennas, opticalmodulators or optical storage
media. However, a major drawback of this continuous process of shrinking the size
of devices is the fundamental difficulty of treating light beyond the diffraction limit,
which is of the order of half wavelength (hundreds of nanometres, for visible light).
This prevents the integration of electro-optical systems in an efficient way.

A possible circumvention for this issue is the coupling of optical plane waves
to near-field excitations via localized surface plasmons in metallic nanoparticles
(MNPs; cf. [49], Chap.6). These collective excitations of the electron gas can have,
under resonant conditions, scattering cross-sections widely surpassing the geomet-
rical cross-sections, leading to strong near-field intensities in the region surrounding
the particle. Devices whose operation relies in the energy conversion between exter-
nal electromagneticwaves and localizedmodes and vice versa have traditionally been
called antennas. Therefore, the extension to visible light or, equivalently, nanometre
scale, is termed optical antennas or nano-antennas [50, 51].

If embedded in a semiconductor, the field enhancement leads to an improve-
ment in the rate of creation of electron-hole pairs [52–55]. This finds an immediate
application in the production of photo-voltaic cells with a reduced amount of bulk
semiconducting material. Once industry-scale is attained, this should be a milestone
in the harvesting of solar energy, as the current bottleneck in the expansion of this
clean energy is the cost of bulk semiconductors (for a review, see [56]).

The excitation of localized surface plasmons has also found an application in spec-
troscopy (for a review, see [57]). The resonance is very sensitive to the surrounding
environment. Therefore, small changes of the refractive index in the surroundings
lead to strong, measurable energy shifts of the resonance [58, 59]. Moreover, the
strong field increases the absorption rate in molecules surrounding the MNP, as
well as the spontaneous emission rate—Purcell effect [60]. This, in combination
with the enhancement due to the chemical bonds formed between molecules and
metal surfaces, is the reason why MNP arrays have been used to push the signal
in Raman spectroscopy towards the limit of single-molecule spectroscopy [61, 62].

http://dx.doi.org/10.1007/978-3-319-07088-9_4
http://dx.doi.org/10.1007/978-3-319-07088-9_5
http://dx.doi.org/10.1007/978-3-319-07088-9_6
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Similarly, in fluorescence measurements, if the plasmon resonance is tuned to match
simultaneously the absorption and emission spectra, strong enhancements in the
count rates are attained [63]. These techniques rely on the optimization of the device
geometry to produce hot spots with strong field enhancement, which is a very active
research field [64, 65].

Due to the Reciprocity Theorem, the very same concept can be applied to engi-
neering optical antennas with custom radiation diagrams [66]. Different designs
have been put forward, including log-periodic optical antennas [67], coupled gold
nanorods [68] and Yagi-Uda nano-antennas [69]. Although available computational
methods—generally relying on the discretization of the space [70–72]—are able to
solveMaxwell equations in this complex systems and accurately predict the output of
the experiments, there is a lack of simple physical models to understand and predict
the properties of this systems. In Chap.6, such a model is presented for an antenna
comprising homogeneous spherical MNPs placed above an interface between two
dielectrics. The interface allows the system to be excited by evanescent waves, which
do not contribute to the measurements, provided the detector is in the far field region.

There are other possible mechanisms to integrate opto-electronic devices, among
which Semiconductor Quantum Dots (SQDs) are a prominent example [73]. In
semiconductor nanocrystals, the discretization of the energy levels is strongly size-
dependent, with level spacing reaching optical frequencies for systems with sizes in
the range 2–10nm [74, 75]. In particular, core-shell ZnSe–CdSe SQDs are a material
of choice, due to the availability of colloidal methods to produce these structures, as
well as their stable optical properties [76].

SQDs have been widely applied in the field of in vitro biology [77]. Due to their
small size, they have been used as optical labels, by functionalizing their surface
to make them attach to the target molecule. Moreover, they have also been used in
chemiluminescent measurements [78]. In this technique, chemical reactions within
the target molecule produce transference of charge carriers to the excited states of the
nanocrystals, which subsequently undergo a photoemission process. Finally, these
nanostructures have been used in Photoelectrochemical Bioanalysis. Here, the optical
excitation of electrons in SQDs produces a charge transfer into the biological system,
which is in turn detected in a connected cathode [79].

SQDs have also been targeted as fundamental constituents of the so-called Third
Generation Photovoltaic cells [80, 81]. The efficiency of previous generations is
limited by the position of the band gap: the material is transparent for photons with
energies below the band gap. On the other hand, electrons excited by photons with
higher energy decay very rapidly to the energy of the band edge, and therefore the
energy of the photon is used only partially. For the solar spectra, this leads to a
maximal theoretical efficiency of 31% for a gap placed in its optimum position,
in the infrared (∼1,200nm). However, nanocrystals can be used to produce carrier
multiplication, i.e., generation of multiple charge carriers from a single photon, thus
raising that limit [82]. Moreover, they can also be used to produce photocurrents and
therefore sensitize nanostructured solar cells in wider energy ranges [83].

The possibility of tuning the position of their energy levels, together with long
decoherence times reaching the µs scale, make SQDs an ideal platform to engineer

http://dx.doi.org/10.1007/978-3-319-07088-9_6
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quantum computers [84]. Single-electron transport through systems controlled via
external electrostatic gates has been proved and widely used (for a review, see [85]).
Interacting spin qubits have also been experimentally demonstrated in this framework
[86]. Due to the fact that SQDs can be optically controlled, the aforementioned
properties pave the way for the design of ultrafast Quantum Memories [87–89]. In
the proximity of reflecting systems, such as MNPs or interfaces, irradiated SQDs
can exhibit strong nonlinear effects, which can also be applied to the design of
electronic components. This possibility is explored in Chap.7, where the bistability
in the population of a SQD in close proximity to an interface between two media
is studied. The self-interaction which causes this nonlinear effect can be electrically
tuned by applying a back voltage. This allows electro-optical switches, modulators
or optical memory cells to be envisioned using the proposed system.

1.3 Objectives and Outline

In the first part of this Thesis, graphene is presented as a base material to build
transistors and spintronic devices. They take advantage of the quantum nature of
charge carriers, which supersedes the usual classical description as the systems scale
down. In Chap.2, some electronic properties of graphene and graphene nanoribbons
are obtained using a Tight Binding (TB) description. In addition to it, key concepts
of coherent electronic transport are presented, in order to understand the following
original results:

• In Chap.3, interference effects of electrons are used to test the possibility of build-
ing a QID based on a graphene nanoring.

• In Chap.4, the previous device is extended to provide control over the spin polar-
ization. This is accomplished by means of a ferromagnetic insulator placed close
to the arms of the ring, resulting in a tunable source of polarized electrons.

• In Chap.5, a set of ferromagnetic strips on top of a graphene nanoribbon are
shown to produce an I–V characteristic with spin-dependent NDR, which could
be of great importance for non-linear electronic applications in spintronics.

In appendix A, the numerical method used to calculate the transmission through the
studied samples is presented.

The second part of this Thesis deals with the integration of electro-optical systems
in the nanometre scale, and comprises two main results:

• In Chap.6, localized surface plasmons in MNPs are employed to modify the prop-
erties of incoming plane waves and engineer radiating patterns, thus building up
a nano-antenna.

• In Chap.7, the dynamics of a SQD in close proximity to an interface is studied. It
is shown that a back gate allows the inner state of the SQD to be controlled.

http://dx.doi.org/10.1007/978-3-319-07088-9_7
http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_3
http://dx.doi.org/10.1007/978-3-319-07088-9_4
http://dx.doi.org/10.1007/978-3-319-07088-9_5
http://dx.doi.org/10.1007/978-3-319-07088-9_6
http://dx.doi.org/10.1007/978-3-319-07088-9_7
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The two aforementioned results are accompanied by the numerical method in which
they rely, which calculates the effect of interfaces in the emission of neighbouring
systems, accomplished using Sommerfeld integrals. This is detailed in appendix B.

Finally, the main results and conclusions will be summarized, and some new
possible research directions motivated by the present work. Note that a summary
with themain points of this Thesis is also available in Spanish, before the appendices.
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Part I
Electronic Nanodevices Based

on Graphene



Chapter 2
Tight-Binding Description of Graphene
Nanostructures

In graphene, the four electrons in the outer shell of carbon atoms are arranged in
a planar hybridization sp2, with three orbitals oriented towards the vertices of a
regular triangle. Three electrons form covalent bonds with the neighbouring atoms,
thus building a hexagonal lattice. The remaining electron, corresponding to the non-
hybridized p orbital perpendicular to the structure, is responsible for the conductivity
of the system. This is due to the non-negligible overlap between the orbitals of
neighbouring atoms, which allows the electron to form extended states spanning
over multiple sites.

2.1 Dispersion Relation of Graphene

The electronic properties of graphene can be described using a simple TB model
[1]. The electrons in the covalent bonds form deep fully filled valence bands, and
thus their effects on the conductivity can be safely disregarded. The unhybridized
p orbital is only slightly perturbed by the neighbouring atoms. Therefore, the wave
function of an electron in the system can be written as a Linear Combination of
Atomic Orbitals (LCAO). Using these orbitals as the basis set to represent the wave
function, the Hamiltonian that governs the dynamics of the electron is given by:

H =
∑

i

εi |φi ∼ ∞φi | −
∑

l

∑

{∞i, j∼}l

tl
(|φi ∼

〈
φ j

∣∣ + ∣∣φ j
〉 ∞φi |

)
, (2.1)

where εi represents the onsite energy at the i th atom, |φi ∼ the atomic orbital in the
same site, {∞i, j∼}l the set of couples of lth-nearest neighbours, and tl the hopping
parameter between them that represents the overlap between orbitals. The number of
neighbours included in the calculation depends on the required accuracy, and usually
ranges from 1 to 3. For brevity, t1 is redefined as t .
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14 2 Tight-Binding Description of Graphene Nanostructures

Fig. 2.1 Characteristic
hexagonal lattice of graphene.
Different colours are used for
atoms belonging to different
sublattices. A primitive cell is
shown in grey along with the
lattice vectors a1 and a2

If the system is assumed to be infinite, and all the onsite energies are equal (system
without disorder), then theBloch theoremcanbe applied.As a consequence, extended
states with a well-defined k vector can be defined, with a wave function given by the
following ansatz:

|ψB(k)∼ =
∑

m,n

[∣∣φa
m,n

〉 + c
∣∣∣φb

m,n

〉]
eik·Rm,n (2.2)

where c is a complex variable, Rm,n = ma1 + na2 is the position of the centre of
the {m, n}-cell and |φa(b)

m,n ∼ represents the atomic orbital on the first (second) atom
of that cell (see Fig. 2.1). Both the arbitrary global phase of the wave function and
its normalization have been used to remove the coefficient associated to |φa

m,n∼.
Plugging this wave function in the usual eigenvalue equation H|ψB∼ = E |ψB∼ and
projecting it over

〈
φa
0,0

∣∣∣,
〈
φb
0,0

∣∣∣, leads to a systemof two equations and two unknowns,

E and c. This allows for the writing of the dispersion relation E(kx , ky). The analytic
expressions derived can be written in a compact way for l = 1, 2 [2]. In the case
l = 1,

E(k) = ±t

√√√√3 + 2 cos
(√

3kya0
)

+ 4 cos

(√
3

2
kya0

)
cos

(
3

2
kx a0

)
(2.3)

c(k) = E(k)
[
eikx a0 + 2e−ikx a0/2 cos

(√
3kya0/2

)]−1
, (2.4)

a0 � 0.142 nm being the distance between neighbouring carbon atoms in graphene.
Using t2 = −0.2t, t3 = 0.025t , as obtained in [3] using ab-initio calculations, the

dispersion relation was calculated, and plotted in Fig. 2.2. As the system is modelled
using two orbitals per unit cell, two energy bands show up in the dispersion relation.
Contrary to the expression derived in Eq. (2.3), in this case there is strong asymmetry
between the bands due to the non-nearest neighbour interactions.
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Fig. 2.2 Dispersion relation of graphene in the first Brillouin zone, calculated using a TB model
considering up to third-nearest neighbours interaction and hopping parameters t, t2 = −0.2t, t3 =
0.025t . Six Dirac points are observed, with only two of them—K , K ∇—being inequivalent. A zoom
in one of the Dirac points is shown in the right plot, where the linear dispersion relation can be
observed

2.1.1 Dirac Points and Dirac Cones

The calculated bands touch each other at six points, located in the vertices of the
hexagon corresponding to the first Brillouin zone. Due to the boundary conditions
in the reciprocal space, only two of them are non-equivalent. They are denoted as
K , K ∇. Contrary to the usual parabolic shape, the dispersion relation near the band
edges is linear, as seen in the zoom around K , in the right part of the same figure.

These points are called Dirac points, and the neighbouring regions, Dirac cones.
This nomenclature has its roots in the field of theoretical physics, where linear disper-
sion relations arose as solutions of the Dirac equation for massless fermions. In fact,
for each cone a massless Dirac Hamiltonian can be derived as an effective Hamil-
tonian for states close to the Dirac point [4]. This effective description is used in
Chap.5. Interestingly, due to the presence of two atoms per unit cell, a new variable
appears which is analogous to the spin of a fermion, thus being called pseudospin.
Some unusual effects can be explained by means of this effective description, such
as the Klein tunnelling [5], i.e., the perfect transmission of a particle through elec-
trostatic barriers of arbitrary height and width, for normal incidence. The anomalous
integer quantum Hall effect, i.e., the shift by 1/2 in the position of the Hall plateaus
with respect to the usual sequence, due to the presence of a Landau level at E = 0,
can also be explained using the Dirac equation.

The physical nature of the pseudospin comes from Eq. (2.4), which is a bivalued
function with constant absolute value |c(k)| = 1. This function has branch points
in the edges of the Brillouin zones, and therefore a closed loop around one of these

http://dx.doi.org/10.1007/978-3-319-07088-9_5
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Fig. 2.3 Comparison of the dispersion relation of graphene along the path �–M–K–� using two
different sets of TBmodel parameters: a simple nearest-neighbour with hopping parameter t—solid
line, and another with interaction up to third-nearest neighbours and parameters t, t2 = −0.2t, t3 =
0.025t—dashed line. In spite of the strong shifts of the bands, the simplest model captures to a very
high accuracy the behaviour close to the neutrality point, with both models showing the Dirac point
and the linear dispersion relation

points introduces a change of sign in c(k), which is analogous to the behaviour of
the spin in fermions under 2π spatial rotations.

This analogy with massless fermions is of practical importance if the linear
dispersion is stable, in contrast to being just a mathematical consequence of an
over-simplified model considering only nearest-neighbour interactions. Considering
interaction up to third-nearest neighbours, the expansion of the dispersion relation
around the Dirac point K can be made, using k = K + kρuθ:

E(kρ, θ) = (3t2 − ε0) ± 3

2
(t1 − 2t3) kρ − 18t2 ± 3 sin(3θ) (t1 + 4t3)

8
k2ρ + O(k3ρ),

(2.5)

where the different signs stand for the two bands. The expansion around K ∇ only
changes the sign of θ. The linear term proofs the stability of the Dirac cone centred
in K. It is also clear from Eq. (2.5) that t2 shifts the energy spectrum and t3 changes
the slope of the dispersion relation, but no angular dependence of the spectrum is
observed until terms of order k2ρ . This effect is named trigonal warping and, as it is
proportional to t1 ◦ t2, t3, is the main non-linear effect to be taken into account as
the energies of interest move away from the Dirac point [6] (Fig. 2.3).

2.1.2 Opening Gaps in Graphene

Despite its impressive properties, graphene is not well suited for applications in
digital electronics due to two closely related properties: the absence of a band gap
and the difficulties to confine carriers using electrostatic potentials.
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A number of methods have been proposed in the literature to circumvent these
issues:

• Stacks of graphene layers [7–9]: placing graphene layers in stacks, with optional
back gate voltages, can induce band gaps in the resulting system.

• Chemical doping: the adsorption of molecules by the p orbitals in a patterned
way, e.g., by using Moiré patterns caused by the substrate [10–12], allows for the
formation of heterostructures with band gaps.

• Strain induced band gaps [13, 14] and patterned defects [15].
• Band gaps induced by lateral confinement [16, 17]: graphene strips have a band
gap due to the lateral confinement of the charge carriers, which increases as the
system is narrowed down.

In Chaps. 3–5 the latter method is used to create devices with band gaps.

2.2 Electronic Properties of Graphene Nanoribbons

Due to the importance of opening a gap in graphene for many applications, a number
of research groups are involved in the production of nanoribbons. There are currently
a variety of techniques which allow for atomic precision in graphene growth, which
range from the initial attempts using lithographic methods [17], to the bottom-up
growth via cyclodehydrogenation after surface-assisted coupling of molecular pre-
cursors into linear polyphenylenes [18, 19] or the unzipping of carbon nanotubes
[20, 21].

Despite the finite size of any sample, a useful method to understand its electronic
properties is to consider one of the dimensions of the sample of infinite length, keep-
ing the other finite. Then, the system becomes quasi one-dimensional, considering
unit cells with length equal to the periodicity of the structure and same width as the
structure. Then, the electronic transport can be studied using the dispersion relation
E(k), which can be obtained using a modified Transfer Matrix Method (TMM) [22].
Further details of this method are given in appendix A.

2.2.1 Relationship Between Dispersions of the 1-D and 2-D Systems

It is interesting to understand the results obtained for the nanoribbons in terms of the
properties of bulk graphene. There is a fundamental rule connecting both systems,
which states that the propagating eigenmodes of a one-dimensional system can be
written as a linear combination of the eigenmodes of its two-dimensional counterpart,
provided that complete primitive cells are used to construct the 1-D system. This is
valid as long as no edge deformation is taken into account. Within the TB model, the
boundary conditions of one cell with n = 1, . . . , N rows of atoms are equivalent to

http://dx.doi.org/10.1007/978-3-319-07088-9_3
http://dx.doi.org/10.1007/978-3-319-07088-9_5
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Fig. 2.4 Left panel shows the unit cell of an armchair graphene nanoribbon (N = 4 cells wide)
and right panel, a zigzag graphene nanoribbon (N = 3 cells wide). The primitive cells of these
structures are marked with alternate grey tones, the primitive cells of bulk graphene, in green, and
the unpaired carbon atoms, in red

setting the wave function to be 0 at n = 0, N + 1. Then, a wave function in the 1-D
system can be directly connected to a set of wave functions in the 2-D system.

The discussion above can be easily applied to the two types of graphene nanorib-
bons, with armchair edges—aGNRs, left plot of Fig. 2.4—and with zigzag edges—
zGNRs, right plot in the same figure. The confinement in the vertical direction creates
a new periodicity in both systems, a = 3a0 for aGNRs and a = √

3a0 for zGNRs.
The primitive cells of these systems aremarkedwith alternate grey tones. For aGNRs,
this cell is made up of primitive cells of the 2-D system, marked in green, while for
zGNRs, two atoms—in red—are unpaired. Therefore, for aGNRs,

e1Dn (kx , E) =
∫

dky cn(kx , ky, E)e2D(kx , ky, E), (2.6)

that is, the nth propagating eigenmode e1Dn (kx , E) can be written as a linear combi-
nation of the eigenmodes of the two-dimensional one, as they are a complete basis
set for the aGNR. On the other hand, for zGNRs, the above equation does not hold.

These arguments are tested in Fig. 2.5, by projecting the dispersion relation of
graphene in kx—aGNRs, red—and ky—zGNRs, blue. For ribbons with armchair
edges, the comparison with the 1-D dispersion—black lines in the left panel–shows
a perfect agreement, contrary to the case of zGNRs—right panel. In both cases, the
width of the GNR was chosen to be N = 23 cells.

Some additional properties can be derived from this procedure. First, the projec-
tion always mixes states from Dirac cones. In aGNRs, these cones are inequivalent,
i.e., not connected by reciprocal vectors, whereas for zGNRs, the mixed cones are
equivalent. Furthermore, the eigenmodes for aGNRs can be directly connected to
lines of the 2-D dispersion with constant ky ; the reflections in the boundary of the
Brillouin zone are due to the shrinking of the zone by a factor 2.

2.2.2 Dependence of the Dispersion Relation on the Model Used

Using the simplest TB model with nearest-neighbour interactions, very different
dispersion relations can be obtained, depending on the geometry of the system [23].
If zGNRs are chosen (black lines in the right plot of Fig. 2.5), no band gap shows
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Fig. 2.5 Central panel in grey, dispersion relation of graphene in the first Brillouin zone, calculated
using a TB model with nearest neighbours interaction. The projection of all the possible energy
values for a constant kx (ky) are plotted in red (blue) on the same panel, including the contribution
of the different Brillouin zones. Left panel projection of the dispersion relation of graphene—red
region—and dispersion relation of an aGNR N = 23 cells wide—black lines.Right panel projection
of the dispersion relation of graphene—blue region—and dispersion relation of a zGNR N = 23
cells wide—black lines

up, and the dispersion relation presents edge states (extended states fading away far
from the edge) with energy E = 0.

For aGNRs (left plot of Fig. 2.5), the dispersion relations are centred around
kx = 0, and their band edges are in general parabolic. An important exception
occurs for widths N = 3n − 1, n ∈ N, where a gapless mode with linear dispersion
appears, whereas for N 	= 3n − 1, a gap opens, as in the case plotted in the figure.

Nevertheless, if more elaborated models are used, the properties of the dispersion
relation are modified [3]. In the case of aGNRs, the three different families persist,
defined by N modulo 3, but the gapless modes fade away, and the lower edge of
the dispersion relation becomes parabolic. This is shown in Fig. 2.6, where the band
gap is plotted as a function of the width for models with increasing complexity: only
nearest neighbours—left, interactions up to third-nearest neighbours—centre, and
after the addition of hydrogenic impurities that relaxate the edges—right.

In spite of the differences between families, the band gap of each of them approx-
imately depends on the width as N−1. This is a consequence of the confinement
energy of a Dirac fermion in an infinite well being inversely proportional to the
width of the well [24]. This dependence has been obtained using first—principles
calculations [16] and experimentally verified [17]. Note that this behaviour is differ-
ent from the usual N−2 observed in other lattices, which stems from the solution of
the Schrödinger equation for a massive particle confined in a well.

Changes in the dispersion relation of zGNRs due to the different models are not
addressed here. This is due to the controversy regarding fundamental aspects such
as edge reconstruction [25], or the presence of a net magnetic moment, which would
make the dispersion relation spin-dependent [26, 27].
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Fig. 2.6 Band gap as a function of the system width for aGNRs, calculated using three different
models: nearest neighbour—left, third-nearest neighbours—middle, and third-nearest neighbours
with hydrogenation in the edges—right

2.3 Electronic Transport Through Quantum 1-D Systems

The Landauer-Büttiker scattering formalism [28–30] has been used to calculate
transport properties of the devices proposed in this work. Below, a brief summary of
this formalism is given.

First, an infinite 1-D system with N propagating channels without scattering,
that is, with perfect transmission, is considered, each channel having an associated
dispersion relation, En(k). The density of states of each mode n per unit of length
and energy is given by

ρn(E) = 2

2π

1

∂En/∂k
= 1

π�

1

vg,n(E)
, (2.7)

where vg,n(E) is the group velocity of the nth mode. The degeneracy due to the spin
has already been included. Then, the current density per unit of energy associated to
this mode can be expressed as:

jn,0 = e ρn(E) vg,n(E) = e

π�
= 2e

h
, (2.8)

which is independent of the dispersion relation. If the number of propagating channels
at energy E is N (E), the total current flowing from left to right in that perfect sample
can be written as:

I0 = 2e

h

∫
N (E) [ fl(E, VSD) − fr (E, VSD) ] dE, (2.9)

where the Fermi functions of the left and right contacts are given by fl(E, VSD) =[
1 + exp (EF − E)/kBT

]−1 and fr (E, VSD) = [1 + exp(EF − eVSD − E)/

kBT ]−1 respectively,VSD is the source-drain voltage applied across thewhole sample
in the x direction.
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Now, instead of the infinite homogeneous system, a sample between two
semi-infinite homogeneous leads is considered. Scattering within the sample makes
the current density per mode jn drop, due to the back-scattered waves. Therefore, by
defining the transmission coefficient as

T (E) =
∑

n

jn
jn,0

≡
∑

n

Tn(E) ≤ N (E), (2.10)

and plugging this definition in Eq. (2.9), the following total current is obtained:

I = 2e

h

∫
T (E) [ fl(E, VSD) − fr (E, VSD) ] dE. (2.11)

2.3.1 Spin-Dependent Transport in 1-D Systems

For systems with spin-dependent response, it is useful to define new parameters
beyond the transmission and current. Assuming that no spin flip occurs within the
considered system, the spin-dependent transmissions T± are defined as the transmis-
sion through the system of a charge carrier with spins up and down, respectively, and
the transmission polarization,

PT = T+ − T−
T+ + T−

. (2.12)

The current defined in Eq. (2.11) can be straightforwardly extended to a spin-
dependent intensity,

I± = e

h

∫
T±(E, UG)

[
f (E,μS) − f (E,μD)

]
dE. (2.13)

Then, the total current through the device is calculated as

I = I+ + I−, (2.14)

and its polarization, as

P = I+ − I−
I+ + I−

. (2.15)

2.3.2 Current Density of a Mode Within the Tight Binding Model

In a TB calculation, the usual output is the wave function ψ itself. Therefore, it is
necessary to calculate the transmission, i.e., the current density associated to ψ. In
a quasi-one-dimensional system this can be easily done by using the continuity
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equation, which relates the time evolution of the probability density ρ(x, t) =
|ψ(x, t)|2 with the divergence of the probability current [31]:

∂

∂t
ρ(x, t) = − ∂

∂x
j (x, t), (2.16)

which for a discrete system with period a can be expressed as

j (n, t) − j (n + 1, t) = a
∂

∂t
ρ(n, t). (2.17)

The system needs to be divided in slices in such a way that atoms in the nth slice
can only be connected to the atoms in the neighbouring slices n −1, n +1, that is, the
blocks of the HamiltonianH fulfilHm,n 	= 0 ⇔ |m − n| ≤ 1. The wave function at
n is defined as |ψn∼ = ∑

i cn,i
∣∣φn,i

〉
. Then,

∂

∂t
∞ψn |ψn∼ =

(
∂

∂t
∞ψn|

)
|ψn∼ + ∞ψn|

(
∂

∂t
|ψn∼

)

= i

�

∑

m

(∞ψm |Hm,n |ψn∼ − ∞ψn|Hn,m |ψm∼)

= −2

�
Im

(
c∗

n−1Hn−1,ncn
) + Im

(
c∗

n+1Hn+1,ncn
)
, (2.18)

with cn ≡ (cn,1, . . . , cn,i , . . .). In the last step the hermiticity of the Hamiltonian,
H∗

m,n = Hn,m , has been used. By simple comparison of Eqs. (2.17) and (2.18), the
following expression is obtained:

j (n) = 2a

�
Im

(
c∗

n−1Hn−1,ncn
)
. (2.19)

For stationary solutions, the current density is constant along the sample, j (n) = j .
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Chapter 3
Graphene Nanoring as a Quantum
Interference Device

In graphene, Klein tunnelling manifests itself as the occurrence of perfect
transparency of barriers at normal incidence, as predicted by Katsnelson et al. [1] and
observed in experiments later [2]. This peculiar tunnelling would lead to undesired
charge leakage in graphene-based devices. While in particle physics it is known that
there exist relativistic interactions for whichKlein tunnelling is absent [3, 4], it seems
that they have no counterpart in graphene and confining electrons is a challenging
task while being necessary for many applications. Therefore, a significant amount of
effort has been focused on graphene-based nanodevices that could enhance carrier
confinement, such as p–n junctions [5, 6], superlattices [7–9] and FET [10, 11].

Interference effects of coherent electron transport through graphene nanorings
open an alternative possibility of controlling quantum transport without relying on
potential barriers. Interference effects in graphene subjected to a perpendicular mag-
netic field, such as current revivals [12] or Aharonov-Bohm conductance oscillations
in ring-shaped devices [13–17], have already been studied. In particular, in [15] it
was pointed out that these conductance oscillations are robust under the effects of
either edge or bulk disorder. Wu et al. [16] investigated quantum transport through
a graphene nanoring theoretically and concluded that the device behaves like a res-
onant tunnelling one, in which the resonance energy can be tuned by varying the
size of the device or the external magnetic field. Effects of an electrostatic poten-
tial applied to one of the arms on the Aharonov-Bohm magnetoconductance were
discussed in [17].

In contrast to previous studies of magnetically induced interference effects
[13–16], this chapter reports on a new design of graphene interference device, where
electron transport is controlled without applying a magnetic field. In the proposed
device, charge carrier transport can be tuned instead by applying a side-gate voltage
across a graphene nanoring. This side-gate voltage introduces an asymmetry between
the arms of the ring, and therefore a change in the relative phase of the electron wave
function in the two arms, leading to a constructive or destructive interference at the
drain, which results in conductance oscillations and current modulation.

J. Munárriz Arrieta, Modelling of Plasmonic and Graphene Nanodevices, 25
Springer Theses, DOI: 10.1007/978-3-319-07088-9_3,
© Springer International Publishing Switzerland 2014
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Fig. 3.1 Left panel shows the scheme of a circular ring. The width w is constant throughout the
sample. Right panel shows the discretization of the ring inside the region marked with a green
rectangle

3.1 Background: Interference Effects in Quantum Rings

The first attempts to study interference effects in rings under the effect of external
fields were originally performed using 1-D models to characterize the behaviour of
charge carriers, if multiple trajectories were allowed [18]. This is the case of the
seminal paper by Y. Aharonov and D. Bohm [19]. However, the increase in the
computing power led to the possibility of simulating devices without disregarding
the effects due to the finite width of the structures.

In mesoscopic systems, a common method to calculate the wave function of the
carriers is by discretizing the space using a rectangular mesh. It is straightforward to
show that the second derivative present in the Schrödinger equation, upon discretiza-
tion of the length units �x,�y leads to a TB model for a square lattice, with only
nearest-neighbour interactions [20], with a hopping parameter

t = �
2

2m∼a2 , (3.1)

a being the lattice spacing and m∼ the effective mass. This type of discretization
leads to robust interference effects of the wave function in the ring.

As an example, a circular ring with constant section w was considered (see
Fig. 3.1). A discretization scheme was chosen with w split in N = 25 sites. An
extra side gate was added to the system, so that an asymmetry between the arms
could be triggered by applying a voltage VG . The effect of the side gate is modelled
by a profile linear in the y direction and exponentially decaying towards the two
leads, with a voltage drop UG across the sample (more details on the application of
the side voltage to the system are given in Sect. 3.2).

The transmission in the low-energy region, with only one propagating mode and
voltage drop UG = 0, was calculated and plotted in Fig. 3.2. It is interesting to check
that themaxima found in the transmission (central panel) correspond to an increasing
number of nodes in the part of the wave function inside each arm of the rings (left
and right panels in the same figure).

The application of a side-gate voltage breaks the symmetry between arms. For
a constant energy value, maxima and minima alternate with increasing UG . As
expected, maxima are obtained when the difference between the number of nodes in
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Fig. 3.2 Transmission versus energy in a discretized nanoring (N = 25), in the energy region with
one mode, without applying a side-gate voltage, i.e., UG = 0. The figures in the left and right part
of the plot show the real part of the propagating wave functions which are solutions of the system
for the first maxima, marked with numbers inside white disks in the central plot. The number of
nodes inside the ring increases with the energy, due to the increase in the k vector of the incoming
plane wave

Fig. 3.3 Transmission versus voltage drop due to the side-gate, UG , in the nanoring. The energy
E is fixed in the second maximum of Fig. 3.2, E = 26.75 × 10−3 t. The figures in the left and
right part of the plot show the real part of the propagating wave functions which are solutions of
the system for the first maxima and minima, marked with numbers inside white disks in the central
plot. The number of nodes inside the ring is constant, while the asymmetry between modes in the
upper and lower arms increases

one arm is an even number, odds resulting in transmission minima. This behaviour is
exemplified in Fig. 3.3, with the energy being set to the second maximum of Fig. 3.2.

The broad peaks found in the transmission and the smoothness of both T (E) and
T (UG) are a consequence of the regular circular geometry considered. This regularity
is partially lost in the edges after the discretization, with steps of different sizes, as
shown in the right plot of Fig. 3.1. However, the effect of the irregularities washes
out due to the shape of the propagating eigenmode, with a low probability density in
the edges. The propagating eigenmodes in an infinite rectangular ribbon with square
lattice can be analytically calculated, as it suffices to calculate the set of eigenmodes
of the infinite 2-D lattice, with zero probability density in the rows 0 and N + 1.
Therefore, given the full set of Bloch wave functions

∣∣∣ψ2D(k)
〉
=

∞∑

m,n=−∞
cm,n(k)

∣∣φm,n
〉 =

∞∑

m,n=−∞
eikx maeikyna

∣∣φm,n
〉
, (3.2)
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Fig. 3.4 Left dispersion relation of an infinite nanoribbon with square lattice and N = 25 atoms
per column. Right transverse section of the first four propagating eigenmodes of the structure. The
eigenmode with the smallest energy is highlighted in black

∣∣φm,n
〉
being the atomic orbital at site (m, n), the condition is

ci,0 = ci,N+1 = 0, √i ∈ Z, (3.3)

and the set of allowed eigenvectors shrinks to

∣∣∣ψ1D
i

〉
=

∞∑

m=−∞

N∑

n=1

eimkx a sin(nkya), ky = ψ

N + 1
n, n ∈ Z, (3.4)

the dispersion relation being given by

En(kx ) = −2t

[
cos(kx a) + cos

(
ψ

N + 1
n

)]
. (3.5)

These results are plotted in Fig. 3.4. As stated before, for the lowest lying eigen-
mode, the probability density is mainly in the central part of the ribbon. Therefore,
it is to be expected that edge defects in the nanoring have a minor impact on the
transmission of the wave function.

This makes an important difference with the case of graphene: as seen in Sect. 2.2,
the transport properties in GNRs strongly depend on the edge type. Therefore, for
non-regular edges there is strong scattering, which results in very low transmission
outside a few sharp resonances. This is exemplified in Fig. 3.5,where the transmission
through a circular graphene nanoring of constant width w = 63ã0 ∇ 15.4nm is
shown. The wave functions plotted in the left and right panels of the same figure
show the presence of strong resonances within the ring.

3.2 System and Modelling

In order to avoid the effect of multiple edge types in the same sample, a device
comprising a graphene nanoring with 60◦ turns attached to semi-infinite leads was
proposed. This type of edges has been shown to be experimentally feasible [21].

http://dx.doi.org/10.1007/978-3-319-07088-9_2
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Fig. 3.5 Transmission versus energy in a circular graphene nanoring (N = 63), in the energy
region with one mode, for UG = 0. The figures in the left and right part of the plot show the real
part of the propagating wave functions which are solutions of the system for the positions marked
with numbers inside white disks in the central plot. Contrary to the interference patterns found for
square lattices, the wave functions here show regions with strong resonances

Fig. 3.6 Schematic diagram of the device: a graphene nanoring attached to two leads. The geometry
is determinedby the parameters L ,W , andw. The side-gate voltageVG is applied across the nanoring
as shown in the plot. A back-gate voltage can also be applied to shift the Fermi level

The schematic diagram of the device is shown in Fig. 3.6. The total length of the
ring is L , its total width W , while the width of all nanoribbons is w. Note that these
dimensions should be large enough to avoid dielectric breakdown at used source-
drain and side-gate voltages.

As mentioned in Sect. 2.2, the electronic structure of nanoribbons is very sensitive
to the type of edges [22]. Thus, if a nanoribbon has a turn which does not preserve
the edge type, a propagating charge carrier would experience strong scattering at the
turn due to the electronic structure mismatch, which is disadvantageous for transport.
Therefore, the above mentioned design of the quantum nanoring with 60◦ turns was
proposed, which does preserve the edge type and greatly reduces such scattering at
the turns.

The devicewasmodelled using Eq. (2.1). If the device is set to operate in an energy
range close to the neutrality point for graphene, the interactions can be restricted to
nearest neighbours. Therefore,

H =
∑

i

πi |φi ∈ 〈φi | −
∑

〈i, j∈
t
(|φi ∈

〈
φ j

∣∣ + ∣∣φ j
〉 〈φi |

)
, (3.6)

The hopping parameter was set to t = 2.8eV [23], and the spin-related effects,
neglected (see, e.g., [24, 25] or [26] for a review). The site energy πi can depend
on the position of the i th atom due to the presence of the source-drain and both

http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_2
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back-gate and side-gate voltages. The profile of the electric field can be calculated
by solving the Poisson and Schrödinger equations self-consistently. However, for
simplicity, the following simplified side-gate potential profile was assumed: it is
linear in the y direction (|y| < W/2) while in the x direction it is (i) constant within
the nanoring area (|x | ≡ L/2), and (ii) exponentially decaying towards the two leads
(for |x | ≤ L/2). The voltage drop between armsUG is used as the amplitude, instead
of the applied voltage VG , so that no further assumptions need to be done.

Using the Quantum Transmission Boundary Method (QTBM) [27, 28], adapted
for graphene in appendix A, for each energy E and side-gate voltage drop UG the
wave function |ψ∈ in the whole sample was calculated. Then, using the procedure
described in Sect. 2.3, both the transmission coefficient T (UG, E) and the current-
voltage characteristics could be obtained.

Extensive numerical simulations were performed for nanorings with a variety of
sizes, geometries and edge types, which led to very different transmission coeffi-
cient patterns. These patterns are intimately related to the dispersion relation in the
nanoribbons forming the sample. As explained in Sect. 2.2.2, the dispersion relation
in a nanoribbon is very sensitive to the edge type. In this Thesis, rings made up of
ribbons with edges belonging to the three different families were studied: zGNR,
metallic aGNR and semiconducting aGNR. The allowed modes have been plotted
in Fig. 3.7. The transverse wavenumber k is measured in units of the inverse lattice
spacing a−1 along the nanoribbon (i.e., a = ⇔

3 a0 for zigzag edges and a = 3 a0
for armchair ones, a0 being the interatomic distance).

As shown below, the gapped aGNR presents more robust and promising trans-
mission patterns for transport control and applications. In all three cases, when the
ribbon width is increased, consecutive dispersion branches become closer to each
other and the energy region with a small number of propagating eigenmodes shrinks.
The focus will be set at the one-mode regime, where interference-related effects are
not smoothed out due to the superposition of several modes.

3.3 Results and Discussion

3.3.1 Resonance Transmission Bands in Armchair-Edged
Nanorings

The sample addressed in this section has armchair edges and the following geometry:
L = 214nm, W = 107nm and w = 15.1nm (which corresponds to N = 62),
comprising ∗3×105 atoms. In Fig. 3.8 the transmission coefficient as a function of
the Fermi energy and side-gate voltage drop UG is shown. The transmission pattern
consists of a series of very sharp and narrow resonance lines. Outside the resonances
the transmission is vanishingly small. To illustrate this more clearly, cross sections
of the transmission map were taken along the horizontal red and vertical blue lines

http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_2
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Fig. 3.7 Left panels Dispersion relations near the band edges for nanoribbons with armchair edges
with N = 63 �= 3n −1 and N = 62 = 3n −1, n ∈ N (upper and central panels, respectively), and
a nanoribbon with zigzag edges and N = 70 (lower panel). Middle and right panels probability
density and real part of the eigenmodes at the band edges, in one unit cell. For clarity, narrower
nanoribbons corresponding to the same families have been used, chosen in positions analogous to
the black points plotted in the dispersion relation. The edge nature of the lowest mode in zGNR is
apparent, as well as the asymmetry of the linear mode for aGNR, observed in the plot of the real
part of the wave function

in the upper panel of Fig. 3.8, which corresponds to UG = 0 (lower left panel) and
E = 19.2meV respectively (lower right panel).

The wave function of a high transmission state has a huge pile up in the region of
the nanoring, which is the typical wave function structure of a resonance state. These
results are plotted in Figs. 3.9 and 3.10, for the transmission peaks marked by letters
in the lower panels of Fig. 3.8. When no lateral voltage is applied, resonances appear
in two different sections, as seen in Fig. 3.9. By increasing the energy of the incoming
mode, thus reducing its electronic wavelength, new resonances are triggered, with
increasing number of nodes. Interestingly, if the side gate is switched on, the wave
function transmits through the ring by using alternately the two resonances states (see
Fig. 3.10). It is this swapping between resonances that produces both crossings and



32 3 Graphene Nanoring as a Quantum Interference Device

Fig. 3.8 The upper panel shows the transmission map for a system with armchair edges and
N = 62, as a function of the Fermi energy E and the side-gate voltage UG . Lower left and right
panels show a cross section of the transmission map along the horizontal red and vertical blue lines
in the upper plot, corresponding to UG = 0 and E = 19.2meV, respectively. Extra points have
been calculated along these two lines to enhance the resolution of the peaks

Fig. 3.9 Plots of the real part of the wave functions corresponding to the four peaks of the lower
left panel in Fig. 3.8, showing strong resonances. The black lines in the colour scale correspond to
the maximum and minimum real part of the incoming mode

Fig. 3.10 Same as Fig. 3.9, for the four peaks of the lower right panel in Fig. 3.8, showing also
strong resonances. The transmission through the ring is accomplished by using the two resonant
states alternately
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anti-crossings when lines with strong transmissions merge (upper panel of Fig. 3.8).
The asymmetry in the propagation of the wave function through the two arms of the
nanoring when UG = 0 might seem striking at first glance, but it has its origin in the
asymmetry of the incoming mode (central panel of Fig. 3.7).

The straight lines observed in the upper panel of Fig. 3.8 can be understood using
the following reasoning. The effect of the transverse electric field can be seen as a
shift in energy in the upper and lower arms of the nanoring. Therefore, if a side-
gate voltage UG is applied, then the energy shifts in the upper and lower arms can
be estimated as +UG W̃/2 and −UG W̃/2, respectively. Here W̃ is some effective
width of the nanoring. Therefore, an incoming mode with wave vector k(Ein) would
propagate through the upper branch with a wave vector k(Ein + UG W̃/2) and with
k(Ein − UG W̃/2) in the lower one. If the resonance condition without transverse
field is obtained at Eres, then when a small voltage is applied, the resonance splits
to two distinct energy points, Eres ± UG W̃/2. When the dispersion relation is
linear or almost linear, this condition leads to the occurrence of the observed straight
lines crossing at UG = 0 in the transmission map. The validity of this simplified
picture was checked by calculating the transmission for a systemwith one single arm,
which resulted in a qualitatively similar map but without the lines corresponding to
resonances of the removed branch.

The transmission in the vicinity of a resonance can be changed abruptly by a very
small variation of the side-gate voltage. This could be very attractive for applications,
but this type of device can hardly be practical because the resonances are very narrow
and can easily be affected by perturbations, such as disorder. This conjecture was
numerically confirmed. Moreover, the mode with linear dispersion is due to very
unstable boundary conditions. As stated in Sect. 2.2.2, considering the contribution
of the non-nearest neighbours, small as they might be, unavoidably opens a gap, and
something similar occurs when edge reconstruction is included. Moreover, it has
been shown using ab-initio calculations [29], that intrinsic lattice deformations due
to Peierls instabilities also destroy the linear mode.

3.3.2 Interference Transmission Bands in Armchair-Edged
Nanorings

In this section, the most promising configuration is studied: a nanoring composed
of nanoribbons with armchair edges and N �= 3n − 1 (n being a positive integer)
for which the energy spectrum has a gap at the Dirac point. The dispersion relation
in this case is parabolic in the vicinity of k = 0 (see upper left panel of Fig. 3.7),
whichmakes it similar to a conventional semiconductor. The transmission coefficient
presented in Fig. 3.11 manifests two regions: at lower Fermi energies the aforemen-
tioned resonant behaviourwith very narrowpeaks is observedwhile at higher energies
the transmission comprises wider bands, which arise from interference effects. The
lower right plot in Fig. 3.11 shows the dependence of the transmission coefficient on

http://dx.doi.org/10.1007/978-3-319-07088-9_2
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Fig. 3.11 Same as in Fig. 3.8 but for N = 63 and E = 51.9meV. The green dashed square shows
the region used to calculate the current-voltage characteristics in Sect. 3.3.4. In the lower right panel
the first two maxima and the first minimum are highlighted. The corresponding wave functions are
plotted in Fig. 3.12

Fig. 3.12 Real part of the envelope wave function corresponding to the three states with different
transmission coefficients marked by open circles and labelled a, b, c in the lower right panel of
Fig. 3.11

the gate voltage for a fixed Fermi energy (it corresponds to the cross section of the
transmission map along the vertical blue line in the upper panel). Similar plots are
obtained for other higher Fermi energies, as long as only one single mode contributes
to the transmission.

In order to study the nature of these wider bands the real part of the envelope
wave functions are plotted for the three side-gate voltages highlighted in the lower
right panel of Fig. 3.11. The system has high transmission for the first and the last
energy values (denoted a and c); the corresponding wave functions manifest clear
constructive interference patterns at the right lead (upper left and lower panels of
Fig. 3.12). Contrary to that, as the upper right panel suggests, the two parts of the
low transmission state b are propagating along the two branches of the nanoring in
such a way that they arrive to the right extreme of the nanoring out of phase, which
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Fig. 3.13 Same as in Fig. 3.8
but for zigzag edges and
N = 70

gives rise to destructive interference at the drain and practically zero transmission
coefficient. Similar patterns were obtained for all other extremes in this higher Fermi
energy region.

These interference induced bands are much wider than those having resonance
nature and therefore are expected to be more robust and stable with respect to per-
turbations, such as disorder. Effects of disorder are discussed in the next section,
where it will be shown that such a conformation of the nanoribbons comprising the
nanoring is the most favourable for applications.

3.3.3 Interference Transmission Bands in Zigzag-Edged Nanorings

For completeness, the sample with zigzag edges is also addressed; the conforming
nanoribbons have a width of w = 15nm (N = 70). Other geometrical parameters
are as follows: L = 150nm and W = 102nm. Such a nanoribbon has a gapless
dispersion relation, with low-energy excitations corresponding to highwave numbers
k (see left panel of Fig. 3.7). Similar to the previous case of the armchair edged sample,
the transmissionmap also presents interference bands (see Fig. 3.13). However, these
bands are considerably narrower than in the case of the armchair edges, which makes
them less robust under perturbations and, presumably, less suitable for applications.
Moreover, as plotted in the lower panel of Fig. 3.7, the considered mode corresponds
to an edge state, and therefore it is prone to localize for small edge distortions.

3.3.4 Current–Voltage Characteristics

In this section the calculations of the current-voltage characteristics of the device
with armchair edges and gaped spectrum are presented. The results were obtained
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Fig. 3.14 Current-voltage characteristics of the device with armchair edges and the spectrum with
a gap. The left plot shows I (UG , VSD), with the Fermi energy initially set to ES = 49.6meV.
Some cross-sections with constant VSD are highlighted, and plotted separately in the right panel.
For clarity, this lines have been shifted, the new bottom lines being plotted using the same colours.
The figures show that intensity can be very efficiently controlled by the side gate

following the guidelines of Sect. 2.3, with the temperature T set to 4K. The
calculation was restricted to the region of the SD and gate voltages marked with
the dashed green rectangle in Fig. 3.11. The Fermi energy of both contacts is set to
the working point by the back-gate voltage: to the energy ES (corresponding to the
left edge of the rectangle) and then the SD voltage is changed within the selected
window.

The corresponding I–V characteristic is presented in Fig. 3.14. The left panel
shows the complete I (UG, VSD) surface. As can be seen from the figure, the side-
gate voltage can be used to control the current through the device. The right panel
of the figure shows the dependence of the current on the side-gate voltage UG for
several fixed values of SD voltage (specified in the right side of the figure, using
the same colour). The on/off ratio of this quantum interference transistor can be as
high as about 10. It should be stressed that the current-voltage dependencies typical
for a traditional FET are monotonous functions of the gate voltage. However, the
proposed device manifests more interesting gate voltage dependence. In particular,
the I–V curves have negative differential resistance parts, which can be very useful
for applications. Another underlying difference between a traditional FET and the
proposed device is the principle of operation. In the latter case it is based upon an
essentially quantum mechanical effect: the interference between the two parts of the
wave function propagating along the two arms of the nanoring.

Several designs of nanodevices based on single organic molecules exploiting
various quantum mechanical effects have already been put forward (see, e.g.,
[30, 31] and references therein). In particular, Stafford et al. studied quantum inter-
ference effects in aromatic molecules as a method to modulate the current flow [30].
More complex organic molecules, such as the DNA, have been proposed to design
FETs and more sophisticated devices [31]. However, single-molecule electronics
often requires almost atomic level control of contacts; it can be affected greatly by
vibrations and could be subject to structural instabilities under required voltages.
Fabrication of graphene nanorings seems to be more feasible (at least nowadays),
and they can also sustain higher voltages and currents, which is advantageous for
applications.

http://dx.doi.org/10.1007/978-3-319-07088-9_2
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Fig. 3.15 Effect of disorder on the transmission. Black lines are used to plot the transmission
coefficients versus the mode energy for four different disorder realizations, as compared with the
ordered sample—light grey regions. Couples of atoms from the edges have been removed with
probability p = 0.01, 0.02, 0.05, 0.10, as illustrated in the upper panel

3.4 Effects of the Edge Disorder

The effects of edge disorder on the transport properties of the proposed device are
addressed in this section, using the sample with armchair edges and N = 63 to study
these effects. To do so, pairs of carbon atoms are removed from the edges with some
given probability p (see upper panel of Fig. 3.15). By removing pairs rather than
individual atoms the presence of dangling atoms in the sample is avoided, which
allows to neglect complicated edge reconstruction effects [32].

The transmission coefficient calculated for particular realizations of disorder for
p = 0.01, 0.02, 0.05, 0.10 and zero side-gate voltage is presented in Fig. 3.15, with
black lines representing the transmission coefficient of the disordered sample. For
comparison purposes, grey regions are plotted, representing the transmission in the
ordered sample. Two important trends are to be mentioned. First, increasing disorder
causes the transmission bands to be shifted towards higher energies with respect
to their positions in the regular sample. This is due to the fact that the removal of
atoms from the edges of the nanoribbons makes them effectively narrower, which
leads to higher quantization energy in the lateral direction. Second, anti-resonances
in the bands appear in all the disorder configurations. Several mechanisms could be
responsible for this anti-resonances. A possible explanation is the presence of edge
states localized by the disorder. However, this possibility was ruled out by perform-
ing simulations with the same type of disorder in nanoribbons. These simulations
did not show any trace of anti-resonances. Another mechanism is the symmetry
breaking between both arms, which leads to a breaking of the degeneracy of the res-
onances corresponding to both arms. This possibility is further explored in Sect. 4.3.3.

http://dx.doi.org/10.1007/978-3-319-07088-9_4
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The most important finding is that transmission bands are not destroyed by moderate
disorder, and therefore such a device (with armchair edges and gaped spectrum) is
robust under perturbations. On the other hand, nanorings having different config-
urations (zigzag edges or armchair edges with linear dispersion) were found to be
affected by the disorder to a much larger extent.

3.5 Summary

In summary, a new quantum interference device based on a graphene nanoring with
60◦ turns was proposed and studied. Transport properties of the device were found
to be very sensitive to the type of edges (zigzag or armchair). The ring comprised of
nanoribbons with armchair edges and parabolic dispersion relation with a gap proved
to be the most advantageous for electronic transport because the transmission pattern
presents wide bands of high transitivity in this case. It was shown that the current
flow through the device can be controlled by the side-gate voltage. Such a voltage
changes the relative phase of the electron wave function in the two arms of the ring
resulting in constructive or destructive interferences at the drain. Consequently, the
current flow can be modulated efficiently without applying a magnetic field, so the
device operates as a quantum interference effect transistor, which was shown to be
robust under moderate edge disorder.

It should be pointed out that the proposed device must be operating in the single
mode regime in order to use the interference effects in their most pure form. When
the second mode comes into play the interference bands smear out and the current
control is expected to be less efficient. In this regard, the dispersion relations of the
nanoribbons constituting the device provide an important starting point because they
define the appropriate energy window where one single mode is contributing to the
transport. For the considered nanoribbon width of about 15nm such a window is on
the order of 40meV (see upper left panel of Fig. 3.7). As the width w increases the
window shrinks while its lower edge approaches the Dirac point. On the other hand,
electronic transport through wider nanoribbons is less affected by the edge disorder.
These considerations should be taken into account when designing and fabricating
the real world device.
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Chapter 4
Graphene Nanoring as a Source
of Spin-Polarized Electrons

As outlined in the introduction to this Thesis, graphene is a material with a combi-
nation of many remarkable properties, in particular, large electron mobility and long
spin-coherence lengths (up to several microns) [1–3]. These features have spurred the
interest in graphene as amaterial for spintronic devices which exploit both the charge
and the spin degrees of freedom as the basis of their operation. Geim and co-workers
used soft magnetic NiFe electrodes to inject polarized electrons into graphene and
found spin valve effects [4]. Later, Cho et al. performed four-probe spin-valve exper-
iments on graphene contacted by ferromagnetic Permalloy electrodes [5]. The differ-
ent geometries of the contacts resulted in different coercive fields. Then, they could
perform measurements with both parallel and antiparallel configurations. The obser-
vation of sign switchings in the nonlocal resistance indicates the presence of a spin
current between injector and detector. The drift of electron spins under an applied dc
electric field in spin valves in a field-effect transport geometry at room temperature
was studied in [6]. These experiments were found to be in quantitative agreement
with a drift-diffusion model of spin transport. More recently, Dedkov et al. proposed
that the Fe3O4 /graphene/Ni trilayer can also be used as a spin-filtering device, where
the half-metallicmagnetite filmwas used as a detector of spin-polarized electrons [7].

With the development of the nanoscale technology of graphene, a number of nan-
odevices have been proposed to explore novel spin-dependent transport phenomena.
Spin filter effects in graphene nanoribbons with zigzag edges were investigated the-
oretically by Niu and Xing using a non-equilibrium Green’s function method [8].
They found a fully polarized spin current through ferromagnetic graphene/normal
graphene junctions, whose spin polarization could be manipulated by adjusting the
chemical potential of the leads. Ezawa investigated similar effects in a system made
of graphene nanodisks and leads, where the magnetic moment of the nanodisk can be
controlled by the spin current [9]. Guimarães et al. studied spin diffusion in metallic
graphene nanoribbons with a strip of magnetic atoms substituting carbon ones in
the honeycomb lattice [10]. They found that the system behaves as a spin-pumping
transistor without net charge current. More recently, Zhai and Yang have shown that
the combined effects of strained and ferromagnetic graphene junctions can be used
to fabricate a strain-tunable spin filter [11]. All these findings open the possibility of
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Fig. 4.1 Schematic view of the graphene nanoring fabricated above a ferromagnetic strip (shown
as the blue bar in the figure). Source and drain terminals are denoted as S and D respectively.
Dimensions w, W and L are given in the text

designing spintronic devices based on graphene nanostructures for memory storage
and spin diodes. A more complete and detailed review on the electronic and spin
properties of mesoscopic graphene structures and control of the spin can be found
in [12] and references therein.

In this chapter, the QID studied in Chap. 3 is modified, so that it can be used
as an efficient spin filter device. The latter can be achieved by depositing a ferro-
magnetic insulator below (or above) the nanoring. This deposition has been done
experimentally for EuO above graphene [13], and the results suggest that, to a large
extent, the structure of graphene remains unaffected. In this case, the combination of
the exchange splitting due to the interaction of the electron spin with the magnetic
ions and the effect of the side-gate voltage can result in a controllable spin-polarized
electric current.

4.1 System and Modelling

TheQID to be used is based in the one fromChap.3. It consists of a graphene nanoring
with 60∼ bends attached to two graphene nanoribbons. The latter are connected to
source and drain terminals, as shown in Fig. 4.1. The width of all nanoribbons is w.
Two lateral electrodes allow a side-gate voltage to be applied. The total length of the
ring is L while the total width is W .

The sample used throughout this work consists of nanoribbons with armchair
edges N cells wide, N ∞= 3n − 1. As shown in Fig. 3.7, this type of nanoribbons
presents a gap, with the band edges centred around k = 0. In Chap.3, this type
of nanoribbon was found to be the most advantageous one for electronic transport
because the transmission spectrum of such a system presents wide bands of high
transmission probability.

As a reminder, it should be pointed out that the applied side-gate voltage results
in different energy shifts of the electronic states in the two arms of the ring. Thus,
a charge carrier injected from the source nanoribbon couples to different modes of
the two arms. These two modes can interfere constructively or destructively at the
drain, giving rise to conductance and current modulation depending on the side-gate

http://dx.doi.org/10.1007/978-3-319-07088-9_3
http://dx.doi.org/10.1007/978-3-319-07088-9_3
http://dx.doi.org/10.1007/978-3-319-07088-9_3
http://dx.doi.org/10.1007/978-3-319-07088-9_3
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Fig. 4.2 Schematic representation of the potential profile along one of the arms of the ring for spin
up (left) and spin down (right) states. The potential (solid line) is spin dependent in the middle
section of the ring due to the exchange splitting. Dispersion relations of a nanoribbon with armchair
edges and band fillings up to the Fermi energy (dashed line) are also shown schematically. The
exchange interaction shifts locally the wave vector of the mode towards lower (higher) k-values,
thus resulting in smaller (bigger) wavelengths

voltage. This form of current control relies on interference effects which depend
quantitatively on details of device geometry, material parameters, perturbations, such
as the disorder, etc. However, the underlying principle of operation is very basic and,
as long as propagating modes exist in the two arms of the ring, the control is expected
to be feasible. Therefore, simple models are used which grasp the main features of
the different system components.

In the present design the nanoring is fabricated above a strip of a ferromagnetic
insulator, such as EuO. The exchange interaction between Eu2+ ions and charge
carriers can be described as an effective Zeeman splitting of the spin sublevels [14].
This creates spin-dependent potential profiles along the arms of the ring (see Fig. 4.2).
An injected electron couples to different modes of the arms depending on its spin.
Therefore, for some side-gate voltages, the interference governing the conductance
can be constructive for spin-up and destructive for spin-down states (or vice versa),
resulting in a spin-polarized total current.

The device was modelled using Eq. (2.1) and set to operate at a Fermi energy
close to the one for intrinsic graphene. Therefore, the interatomic interactions can
be limited to l = 1, that is, restricted to nearest neighbours:

H =
∑

i

εi |i√ 〈i | −
∑

〈i, j√
t |i√ 〈 j | + φ �ex

∑

i∇L
|i√ 〈i | , (4.1)

where the site energy εi depends on the position of the i th carbon atom, in particular,
due to the side-gate voltage. The same simplified side-gate potential profile as in
Chap.3 is used: if the origin of the coordinate system is in the geometrical centre of the
ring (as indicated in Fig. 4.1), this potential is linear in the y direction for |y| < W/2
while in the x direction it is (i) constant within the nanoring area (|x | ◦ L/2) and
(ii) decays exponentially towards the two leads (for |x | ∈ L/2). The contacts are
assumed to be far enough from the ring, so that the side-gate potential can be safely
set to zero at the leads. The total potential drop between the outer edges of the two
arms (separated by the distance W ) is denoted asUG and is referred to as the side-gate
voltage from now on.

http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_3
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The effect of the ferromagnet is taken into account in the third term of Eq. (4.1).
It affects the site energies εi , shifting them by the amount φ�ex, where �ex is the
exchange splitting amplitude and φ = +1 (φ = −1) for spin up (spin down) states.
The value �ex = 3meV was used, which is of the order of the values known from
the literature, 3–10meV [14–16]. The characteristic length scale of the exchange
interaction is of the order of one monolayer thickness [14]. Then, only the sites
which are in touch with the ferromagnetic strip are affected by the interaction. The
set of such sites belonging to the longitudinal sections of the arms (see Fig. 4.1)
is denoted as L in Eq. (4.1). Due to such local splitting, a spin up (down) electron
propagating along one of the arms is subjected to the potential with a rectangular
barrier (well). Such potential profile is shown schematically in Fig. 4.2 for the case
of zero side-gate voltage. As the size of the sample is much smaller than the spin-
coherence length, no spin-flip is considered, resulting in independent propagation
channels for each spin.

The graphene lattice is known to undergo reconstruction at nanoribbon edges,
which affects the corresponding site energies εi and hoppings [17]. These effects
are not expected to play a crucial role for transport properties of realistic disordered
samples, and therefore are neglected and anundistortedhoneycomb lattice considered
with the usual nearest neighbour coupling t = 2.8 eV [18].

The wave functions and spin-dependent transmission coefficients T± for spin
up (+) and spin down (−) electrons were calculated using the same numerical tech-
niques as in the previous chapter (see appendix A for details). These coefficients
depend on the energy of the injected carrier E and the side-gate voltage UG . Using
them, the degree of transmission polarization PT defined in Eq. (2.12), as well as
the spin-polarized currents I± Eq. (2.11), can be calculated. The source-drain volt-
age VSD is assumed to drop in the leads, which agrees with recent experimental
results [19], and therefore the effect of this voltage drop is modelled as a shift of the
Fermi level of the source, µS , with respect to that of the drain, µD .

In this work, the set of parameters was chosen so that the system operated in
the one-mode regime. This implies that the lateral quantization energy (due to the
finite nanoribbon width w) is much larger than the source-drain potential drop eVSD
and the thermal energy kBT . Further constraints for the latter two parameters are
discussed below.

4.2 Results and Discussion

The geometry of the considered sample is the same as in Sect. 3.3.2, i.e., a nanoring
made of nanoribbons of width w = 15.5 nm with armchair edges, with full ring
length set to L = 179 nm and width W = 108 nm (see Fig. 4.1 for the schematics of
the device).

http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_3
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Fig. 4.3 Upper panel shows the transmission coefficient calculated without the exchange splitting
(solid black line) and with it (dashed red and dotted blue lines correspond to T+ and T−, respec-
tively). Lower panel shows the transmission polarization PT of the nanoring (dot-dashed line) and
that of a single nanoribbon (solid). All quantities are calculated at UG = 0

4.2.1 Spin-Dependent Transmission Without Side-Gate Voltage

First, the device properties at zero side-gate voltage were addressed. Transmission
coefficients as functions of the carrier energy E are shown in the upper panel of
Fig. 4.3. If the substrate is not ferromagnetic there is no exchange splitting (�ex = 0)
and the spin does not play any role, so T± are degenerate (see the black curve in
the figure, the same as the lower left panel of Fig. 3.11). In this reference case the
transmission is characterized by a series of peaks which become wider as the carrier
energy increases. The interaction with the ferromagnet shifts these features towards
lower or upper energies depending on the sign of the carrier spin (see the red dashed
curve giving T+ and the blue dotted one giving T−). However, the transmission
spectrum remains qualitatively the same except for the energy shift. Peak shifts are
shown using arrows above the curves in the upper panel.

Lower panel of Fig. 4.3 shows the transmission polarization, as defined by
Eq. (2.12), demonstrating that the transmission is highly polarized within some
energy ranges. The latter can give rise to the spin-polarized electric current. The
polarization degree is higher at lower energies. However, the transmission coeffi-
cient in this energy range comprises narrow resonance peaks which can easily be
destroyed by perturbations such as disorder, as shown below. The higher energy range
with its wider transmission bands, which was proved in Sect. 3.4 to be more robust
under the effects of disorder, is more promising for applications. For comparison,
the transmission polarization for a single nanoribbon of the same widthw and length
L as those of the quantum ring was also calculated (see the solid black line in the
lower panel of the figure). As expected, the interference effects are absent and the
transmission polarization disappears quickly as the carrier energy increases.

http://dx.doi.org/10.1007/978-3-319-07088-9_3
http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_3
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Fig. 4.4 Transmission coef-
ficients T± and degree of the
transmission polarization PT
as functions of the carrier
energy E and the side-gate
voltage UG

4.2.2 Control of the Current Polarization via the Side-Gate Voltage

Next, the effect of the side-gate voltage on the polarization of the electric current is
studied. To this end, the transmission coefficient maps were calculated for spin up
and spin down electrons. These results are shown in the upper and middle panels of
Fig. 4.4. Using them, the transmission polarization degree PT was calculated, and
presented in the lower panel of the figure, which demonstrates that the polarization
can be controlled by the side-gate voltage. Hereafter, the focus is set on the higher
energy range (E > 50meV in the considered case) where wider transmission bands
have the interference nature. As shown in that figure, the sign of the polarization is
almost independent of the side-gate voltage for some energies (see the leftmost and
the middle shadowed strips), while for others both the polarization degree and its
sign can be changed by the side-gate (see, e.g., the rightmost shadowed strip), which
opens the possibility to control the polarization of the current by the electrostatic gate.

To demonstrate this possibility, the total current I , together with its polarization
degree P , were calculated, using Eqs. (2.14) and (2.15). The Fermi energies of both
the source and the drain were set to some value by a back-gate voltage and then,
one of these levels shifted with respect to the other by the source-drain voltage
VSD. Upper and lower limits of the three shadowed strips in Fig. 4.4 give the source
and drain Fermi energies µS and µD , respectively, which were used to calculate
electric currents using Eq. (2.13) for VSD = 1mV and T = 4K. This choice of
values was suggested by the following reasoning. At T = 0 the Fermi distributions
are step functions, so only the energy range between µS and µD contributes to
the current [see the integrand in Eq. (2.13)]. If this range is greater than the typical
energy separation between the transmission bands of T+ and T− (see Fig. 4.4), then
both polarizations would contribute to the total current to a similar extent and its

http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_2
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Fig. 4.5 Total electric current
I through the device (dotted
lines) and its polarization
degree (solid lines) as func-
tions of the side-gate voltage
UG . I is given in units of the
current obtained for the case
of a perfectly transmitting
sample [T±(E, UG) ≡ 1].
Upper, middle and lower pan-
els correspond to the leftmost,
middle and rightmost shad-
owed strips in Fig. 4.4 (see
text for details)

polarizationwould be reduced. Therefore, to observe substantial current polarization,
eVSD should be smaller than the typical energy scale �E in the transmission maps.
Figure4.4 suggests that this scale is of the order of 5meV, which justifies our choice
of VSD = 1mV. Similar arguments apply to the temperature which smooths the
Fermi distribution (a step function at T = 0). This increases the range of energies
contributing to the current and reduces its polarization. Thus, the temperature should
be smaller than �E/kB ≡ 60K. Note that this ranges of parameters scale with the
exchange interaction. Thus, they would be broadened if the exchange interaction is
found to be greater than our conservative estimation.

The total current I (dotted lines) and its polarization degree P (solid lines) are
shown in Fig. 4.5. Upper, middle and lower panels correspond to the leftmost, middle
and rightmost shadowed strips in Fig. 4.4, respectively. As expected, the electric
current can be highly polarized. For some combinations of the source and drain Fermi
energies, the sign of the current polarization was found to remain the same within
wide ranges of the side-gate voltage (see the upper and the middle panels of Fig. 4.5).
Nevertheless, as can be seen from the lower panel, the Fermi energies at the source
and drain can be adjusted in such a way that the current polarization can be changed
in almost its entire possible range [−1, 1] by the side-gate voltage, suggesting that
the proposed device operates as a controllable source of spin-polarized electrons.
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Fig. 4.6 Transmission coefficients T± of the regular sample (solid black lines) and those of a dis-
ordered one (curves with filling), after removing couples of atoms from the edges with probabilities
p = 0.01 (left) and p = 0.05 (right). The side-gate voltage UG is set to zero

4.3 Effect of Edge Disorder and Geometric Imperfections

In the aforementioned calculations, an ideal symmetric nanoring was considered,
while different imperfections or perturbations, in particular, the disorder, could affect
the electric current and its polarization. There are various possible sources of disorder,
for example, charged impurities in the substrate or defects of the device fabrication,
such as imperfections of the device edges. While the former would provide some
additional smooth electrostatic potential and can hardly deteriorate the transmission
through the device to a large extent, the impact of the latter on the transport properties
is probably stronger, especially for small devices.

4.3.1 Edge Disorder

In order to estimate a possible impact of the edge disorder on the transport properties,
pairs of carbon atoms from the nanoring edges were removed with some given
probability p, following the recipe given in Sect. 3.4. Transmission coefficients T±
calculated for two particular realizations of such a disorder (p = 0.01, 0.05) and
zero side-gate voltage are presented in Fig. 4.6, respectively. Solid black lines show
the transmission coefficients of the reference ordered sample while lines with filling
show those of a disordered one. The results are similar to those obtained in the
previous chapter, i.e., in the disordered sample all transmission bands are shifted to
higher energies with respect to their positions in the regular one, as the ribbons are
made effectively narrower. This leads to higher quantization energy in the lateral
direction that manifests itself in the observed shifts. As expected, narrow resonance
peaks in the lower energy range (E < 47meV) are smashed as the disorder increases,
while wider interference-related bands at higher energies are not destroyed by the
disorder. These bands are affected by the disorder to a comparable degree for both
spin up and spin down electrons, which suggests that a moderate disorder would not
deteriorate polarization properties of the spin filter to a large extent.

http://dx.doi.org/10.1007/978-3-319-07088-9_3
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Fig. 4.7 Transmission coefficients T± (upper left and lower left panels) and transmission polar-
ization PT (lower right panel) for an asymmetric nanoring. The ring was engineered by setting the
total width of every arm to W ± �W (see upper right panel), while keeping fixed the parameters
L , W, w and the 60∼ turns. In all the graphs, the output of the asymmetric structure is plotted using
filled lines, while those corresponding to the symmetric one use solid black lines

4.3.2 Geometric Imperfections

Finally, possible effects of a different kind of imperfections in the device fabrication
on its performance were addressed. The analysis is performed by dividing these
imperfections in different fundamental types. One of them could be a change of the
length of the arms for a fixed nanoribbon width w. In order to gain insight into the
system behaviour, this was done by keeping the total ring length fixed. A change in
the total of the upper arm, from W/2 to W/2 + �W , led to a change in the lower,
W/2 ≤ W/2−�W (see upper right panel of Fig. 4.7). Interestingly, the position of
the transmission peaks did not significantly change. This is a reasonable behaviour:
as the total number of wavelengths which fit inside the ring is kept constant, the
position with constructive interference in the ring is also fixed. On the other hand,
Fano-like resonances show up between the maxima [20].

Another fabrication imperfection that could have a profound impact on transport
is a change of the width of one of the arms. In this case, the lateral quantization in this
wider (or narrower) section of the ring is different, resulting in amodemismatch at the
boundary, which can reduce the transmission. In order to estimate the corresponding
effect, an extra layer of atoms was added to the horizontal section of the upper arm.
The results are presented in Fig. 4.8, where the left panels show the transmissions T±
for the asymmetric sample—filled lines—and the symmetric—solid black, for zero
side-gate voltage,UG = 0.As can be expected, the asymmetry shifts the transmission
peaks. Besides, the overlaps between the transmission bands are reduced in the case
of the asymmetric nanoring. These bands are more isolated, which results in the most
important effect: the sign of the polarization can be switched much more abruptly.
Therefore, the asymmetric design could be more advantageous for applications.

To conclude the discussion of the impact of fabrication imperfections on the device
properties, it should be pointed out that, because the interference is very sensitive
to many details, different samples could be expected to have quantitatively different
current-voltage characteristics. However, as shown above, the qualitative behaviour
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Fig. 4.8 Same as in Fig. 4.7, for an asymmetric nanoring engineered by changing the width of the
upper arm to N +1 = 64 cells. This geometry leads to an enhanced, abruptly changing transmission
polarization PT

of the transmission coefficient and its polarization is robust under perturbations. It
can then be expected that as long as the size of the ring, temperature, and applied
voltages are such that the system remains within the one-mode regime, the device
can operate as a tunable spin filter.

4.3.3 Origin of Fano Resonances in Asymmetric Rings

A general trend observed in the device is that the introduction of an asymmetry
between the rings induces new resonances, characterized by points where the trans-
mission exactly cancels. These resonances can be very sharp, as in Fig. 4.6, where
couples of atoms were removed from the edges, or they can be comparable to the
distance between transmission peaks, as in Fig. 4.8, where a geometric asymmetry
was considered.

The origin of these resonances can be shown to be an intrinsic characteristic of
systems having two scattering paths, each with a resonance at different energies.
Under this condition, Fano resonances occur, thus showing up in a huge variety of
physical systems, as reviewed in [21]. As a simple toy model to understand the effect
of resonances in the systems, the ring sketched in Fig. 4.9 was used. It comprises
two arms, each with two sites, connected to semi-infinite linear chains (the minimal
model would only need to have one site per arm). The asymmetry has been included
using a site dependent energy, +�ε for the upper arm and −�ε for the lower. Once
again, the change in the energy of only one site is sufficient to induce an asymmetry,
but the symmetric energy landscape in Fig. 4.9 was chosen to avoid shifts in the
transmission when comparing different asymmetry strengths.

The resonant modes in the ring correspond to the eigenvalues of the subsystem
comprised by the six sites in the ring. For �ε = 0, they can be straightforwardly
calculated, leading to stationary waves with constant phase between the sites in the
ring, ψn = 2πn/6, n = 0, . . . , 5, shown in the left panel of Fig. 4.10. States labelled
1 and 4 are degenerate states with E1 = E4 = −t , and the same occurs for the states
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Fig. 4.9 The left panel shows the scheme of the system used to study the effects of asymmetries,
whereas the dispersion relation of a linear chain with hopping parameter t is shown in the right one.
The system comprises a ring with two arms, each with two sites, connected to semi-infinite linear
chains. The labels ±�ε represent the energy shift with respect to the default εi = 0

Fig. 4.10 Left panel eigenmodes of the symmetric ring (�ε = 0), with its index n given by the
phase between neighbouring sites, ψn = 2πn/6. Right panel transmission through the ring for
different values of the asymmetry parameter�ε, showing a strong shift at E = t, 3t , corresponding
to the positions where the eigenmodes of the ring are degenerate in the symmetric case �ε = 0

2 and 3, with E2 = E3 = t . Finally, E0 = −2t and E5 = 2t . It should be noted
that the degeneracy in the eigenstates is a necessary condition to fulfil the invariance
under rotations of the system.

The degeneracy in the eigenstates is broken when an asymmetry is introduced in
the system, and this has a profound effect in the transmission for energies close to
those points, as plotted in the right panel of Fig. 4.10. For any finite value of �ε,
there is an energy value with transmission T = 0.

The typical width of the perturbation in the transmission scales with the strength
of the asymmetry. This has a very simple physical meaning: if the asymmetry is
small, the dephasing in the wave function after following both paths is very small.
Therefore, if one needs to have a strong destructive interference (dephasing by π),
the electrons need to stay a very long time inside the ring, so that it runs over the arms
many times, and this only occurs when the energy is very close to the resonance.
This is the case of the disorder in the edges of the rings, which mildly changes the
effective wavelength of the wave function in the arms. On the other hand, strong
asymmetries between the arms (see Figs. 4.7 and 4.8) relax the condition of being
close to the resonance, as very few runs over the arms lead to a sufficient dephasing.
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4.4 Summary

A novel spin filter which exploits quantum interference effects was proposed and
studied. The device comprises a graphene nanoring with 60∼ bends fabricated above
a ferromagnetic strip. It was shown that, due to the exchange splitting induced by the
magnetic ions of the ferromagnetic layer, the transmission coefficient is different for
spin up and spin down electrons, giving rise to the polarization of the conductance and
the electric current. The ring geometry strongly enhances the current polarization,
compared to a simple aGNR with a ferromagnetic layer on top of it, and it allows
the current and its polarization to be controlled by a side-gate voltage.

A detailed study was made regarding the effect of edge disorder and other fabri-
cation imperfections, such as the asymmetry of the ring. The predicted effects were
shown to be robust under moderate perturbations. Under some circumstances, asym-
metries in the ring enhance the behaviour of the polarization, particularly in the case
where one of the arms is made wider than the other. Finally, a simple model was
considered to explain the observation of Fano resonances in the transmissions T±,
as well as their relative width.
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Chapter 5
Spin-Dependent Negative Differential
Resistance in Graphene Superlattices

Since the pioneering work by Esaki in the late fifties [1], negative differential
resistance (NDR) has been the principle of operation of many quantum devices.
Usually, the underlying mechanism of the NDR is related to the resonant tunnelling
of carriers through the device. As the chemical potential of a lead approaches to
one of the resonant levels of the device, the current I increases. However, the res-
onant level position depends on the applied voltage V which can finally drive the
system out of resonance. Then, the current can decrease dramatically with a further
increase of the voltage. The resulting I–V characteristics are typicallyN-shapedwith a
region ofNDR.Many devices display such non-monotonous I–V curves, for example,
superconductor junctions [2], semiconductor superlattices [3], resonant tunnelling
diodes [4], resonant interband tunnelling diodes [5], conductor/superconductor junc-
tions [6], molecular films [7], carbon nanotubes [8], organicmolecule/semiconductor
junctions [9] and DNA molecules [10].

In this chapter, a spin-dependent superlattice, realized by ferromagnetic strips
deposited on top of an Armchair Graphene Nanoribbon, is considered. The
spin-dependent transmission and I–V curves are computed using both the full TB
calculation and the approximate Dirac Hamiltonian. The two approaches are com-
plementary: the former is more exact while the latter provides qualitative insight
in the underlying physics. The model is similar to those studied by Niu et al. [11]
and Ferreira et al. [12] but it goes beyond them in some important aspects. Gapless
graphene with a periodic array of magnetic insulator strips was considered by Niu
et al. They found that spin polarization of tunnelling conductance and magnetoresis-
tance exhibit oscillatory behaviour as a function of the gate voltage. However, they
did not take into account the finite width of theGNR and the quantization of the trans-
verse momentum, which turns out to be an important effect. In the case of an aGNR,
the quantized transverse momentum k∼ fixes the incidence angle θ̃ = arcsin(k∼/k)

as a function of the energy �kvF, which is an essential feature of the system.
Ferreira et al. [12] considered appropriate boundary conditions for the aGNRs and
found NDR, but their superlattice is implemented by electrostatic gates and the NDR
shows no spin dependence. Furthermore, the potential barriers required to obtain
NDR in their system can not be attained using exchange interactions.

J. Munárriz Arrieta, Modelling of Plasmonic and Graphene Nanodevices, 55
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Fig. 5.1 Upper panel shows a schematic view of an aGNR with N = 5 strips of a ferromagnetic
insulator placed on top of it (depicted using green bars). Source and drain leads are denoted as S and
D, respectively. Lower panels show the spin-dependent potential profile in the unbiased (VSD = 0,
middle panel) and biased devices (lower panel).Dashed red and dotted blue lines show the potential
profile for the spin-up and spin-down electrons, respectively. The grey line in the lower panel shows
the electrostatic potential energy φSD(x) [see Eq. (5.1) in the text]

5.1 System and Modelling

The system under study is a GNR of width w connected to the source and drain
leads. N strips of a ferromagnetic insulator of width a are arranged periodically
on top of it, with spacing b between them, as shown schematically in the upper
panel of Fig. 5.1. The choice of the width and the edge type of the GNR strongly
affects its electronic properties. Here, GNRs with armchair edges, aGNRs, are used.
Both experimental evidence [13] and ab-initio calculations [14] show that aGNRs
present band gaps, which scale inversely with the width w of the GNR. The energy
structure depends also on the remainder (w/ã0 mod 3), where ã0 = 0.246nm is
the distance between next-nearest neighbours C atoms, namely the width of the
hexagon in the honeycomb lattice. Moreover, contrary to the zGNRs, the dispersion
relation is centred on k = 0. The conclusions of Chap.3 suggest that this should be
advantageous when the superlattice is considered, as the resonant levels are expected
to be broader.

As described in Chap.4, the strips of ferromagnetic insulator—EuO—lead to an
effective Zeeman splitting of the spin sublevels, which results in spin-dependent
potential profiles along the aGNR, as shown in the lower panels of Fig. 5.1, with two
different energy level structures for electrons with opposite spins.

Contrary to the previous chapters, here it is necessary to go beyond the linear
response theory to observe NDR, i.e., there must be a finite voltage drop along the
ribbon. For simplicity, the source-drain voltage VSD is assumed to drop at the edges of

http://dx.doi.org/10.1007/978-3-319-07088-9_3
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5.1 System and Modelling 57

the ferromagnetic strips only, as shown by the grey line in the lower panel of Fig. 5.1.
This is a reasonable assumption because other perturbations, such as functional
groups, lead to measurable voltage drops [15]. However, a set of calculations was
performed to check that the results do not depend crucially on the details of the
potential profile: amodifiedmodel with VSD falling homogeneously across thewhole
sample leads to very similar results.

5.1.1 Tight-Binding Hamiltonian and the QTBM

Analogously to the two previous chapters, the system was modelled following the
recipe of Eq. (2.1). Only low-energy excitations were considered, and therefore the
interactions between neighbouring atoms were restricted to the nearest ones, i.e.,
l = 1:

H = −t
∑

∞i, j√
|i√ ∞ j | +

∑

i

φSD(xi ) |i√ ∞i | + ψ �ex

∑

i∈L
|i√ ∞ j | . (5.1)

The on-site energy is the superposition of the following two terms: the bias-voltage
induced electrostatic potential φSD(xi ), where xi is the coordinate of the i th atom
along the direction of the aGNR (grey line in the lower panel of Fig. 5.1), and the
exchange-interaction shift ψ�ex induced by the ferromagnetic strips, introduced
following the guidelines of Sect. 4.1. A spin-up (down) electron propagating along
the sample is subjected to a potential comprising a set of rectangular barriers (wells),
as plotted in the middle panel of Fig. 5.1. Hereafter, �ex = 5meV is used, which
lies in the range of values known from the literature, 3–10meV [16–18]. It should
be noted that different choices for this parameter lead to similar results if the ribbon
width and/or strips geometry is changed accordingly.

Using the Landauer-Büttiker scattering formalism presented in Sect. 2.3, the elec-
tric current across the sample was calculated, following the method detailed in
Appendix A. This allowed the spin-dependent transmission coefficients T± for spin-
up (+) and spin-down (−) electrons, and the spin-polarized currents, I±, to be cal-
culated.

5.1.2 Dirac Theory for aGNRs

For not-too-narrow aGNRs (w � 3nm), it is possible to compute the transmission
coefficient very efficiently using the Dirac theory. For energies close to the Dirac
points, electrons in graphene can be described effectively by a two-dimensional two-
valley Dirac equation [19, 20]. The boundary conditions of aGNRs require the wave
function to vanish on the (hypothetical) sites just outside the aGNR, i.e., at y = 0
and y = w + ã0, with ã0 ∇ ◦

3a0. The lower edge of the aGNR is located at
y = ã0/2 (see Fig. 5.2). In the case of armchair aGNRs, this affects both sublattices

http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_4
http://dx.doi.org/10.1007/978-3-319-07088-9_2
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Fig. 5.2 Scheme of a ribbon, with white disks and black lines representing real sites and bounds,
respectively. Grey disks and lines represent the hypothetical sites just outside the aGNR, added to
set the wave function to 0 in them and fulfil the boundary conditions. The heights of consecutive
rows are ã0/2 apart, and range from y = 0 to y = w + ã0, with the extremes corresponding to the
hypothetical sites

and the boundary conditions can be fulfilled by a superposition of two states from
different valleys with the same energy E = �vF(k2∼ + k2∈)1/2 and equal longitudinal
momentum �k∈, but with opposite transverse momentum ±�k∼, measured from the
Dirac points [21, 22].

5.1.2.1 Quantization of Transverse Momentum

Since the valley momentums K and K ′ can be chosen parallel to k∼,

K =
(
0,− 4π

3ã0

)
K ′ =

(
0,

4π

3ã0

)
, (5.2)

the transverse wave function can be written ρ∼(y) = sin
[
(K + k∼)y

]
where

K = 4π/(3ã0). This function is evaluated on the honeycomb lattice with 2y/ã0 ∈ N

and oscillates rapidly. The transverse momentum k∼ is quantized by the conditions
ρ∼(w + ã0) = ρ∼(0) = 0. The allowed values for k∼ are given by (K + k∼n)

(w + ã0) = nπ, n ∈ Z, and the spectrum is En(k∈) = ±�vF

√
k2∼n + k2∈ .

Taking into account that w is an integer multiple of ã0/2, one finds that the
spectrum is gapless if [22],

w = (3n′ + 1)ã0/2 , n′ ∈ N . (5.3)

For asymmetric aGNR, as in [21], n′ is even. For symmetric aGNR, w is an integer
multiple of ã0 and n′ is odd, such that w = (3n − 1)ã0, n ∈ N implies a gapless
spectrum. This result agrees with the results obtained for Tight Binding calculations
and presented in Sect. 2.2.2, where it is also explained that in real samples there are
small gaps even in the cases which fulfil Eq. (5.3), which are due to edge effects not
included in the simple Dirac ansatz nor the homogeneous tight-binding formulation
[13, 14]. In the following, the only ribbons that are taken into account are sym-
metric aGNRs of width w = n′′ã0, where the integer n′′ is different from 3N − 1,

http://dx.doi.org/10.1007/978-3-319-07088-9_2
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Fig. 5.3 Transmission across
a series of M potential steps.
The incident plane wave with
amplitude A0 splits into a
reflected and a transmitted
component with amplitudes
B0 and AM+1, respectively

e.g., w = 40ã0. These have a gap anyway and are quite robust against edge effects.
Then, the allowed values of the transverse momentum are

|k∼n| = πn

3(w + ã0)
, n = 1, 2, 4, 5, 7, 8, . . . , (5.4)

and the half-gap is E0 = E1(0) = �vFπ/[3(w+ ã0)]. For energies E from the range
[E1(0), E2(0)], only the lowest transverse mode with k∼1 can propagate.

5.1.2.2 Transfer-Matrix Description of Transmission

For geometries like the one shown in Fig. 5.1, where the (spin-dependent) potential
depends only on the longitudinal coordinate x , the transversemomentum k∼ together
with thewave functionρ∼(y) is conserved, and it suffices to solve for the longitudinal
wave function ρ∈(x). Then, it is necessary to calculate the transmission across a
piecewise constant potential profile, as sketched in Fig. 5.3. The solution of the Dirac
equation for each spin ψ = ±1 and in each interval of constant potential value V is
the superposition of two counter-propagating sublattice pseudo-spinors

θ∈(x) = A

(
e−iθ/2

−eiθ/2

)
eik∈x + B

(
e+iθ/2

−e−iθ/2

)
e−ik∈x , (5.5)

with tan θ = k∈/k∼ and k∈ = [(E − V )2/(�vF)
2 − k2∼]1/2. The solution may be

evanescent becauseEq. (5.5) holds also for |E−V | < �vF|k∼|, when k∈ and θ become
imaginary. The general form of the wave function in each slab j with potential Vj

and momentum k∈ = k j then is

(
e−iθ j /2 eiθ j /2

−eiθ j /2 −e−iθ j /2

) (
A j (x)

B j (x)

)
∇ S j

(
A j (x)

B j (x)

)
, (5.6)
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where A j (x) = Aeik j x and B j (x) = Be−ik j x , such that

(
A j (x j+1)

B j (x j+1)

)
= G j

(
A j (x j )

B j (x j )

)
, (5.7)

with G j = diag
(
exp(ik j L j ), exp(−ik j L j )

)
and L j = x j+1 − x j . At each junction,

k j changes, but the wave function remains continuous,

S j

(
A j (x j )

B j (x j )

)
= S j−1

(
A j−1(x j )

B j−1(x j )

)
. (5.8)

Then, the transfer matrix for the whole system can be written with the help of
Eqs. (5.7) and (5.8)

(
AM+1
BM+1

)
= S−1

M+1G̃ M . . . G̃2G̃1S0

(
A0
B0

)
, (5.9)

with G̃ j = S j G j S−1
j .

For the transmission problem depicted in Fig. 5.3, the boundary condition is no
incident current from the right, BM+1 = 0. The reflection coefficient at the left is
the ratio of reflected to incident current, R = |B0|2/|A0|2. For the transmission
coefficient one has to take into account that the longitudinal momentums kM+1 and
k0 are different if V0 ≡= VM+1, such that the ratio of transmitted to incident current
is T = (|AM+1|2kM+1)/(|ã0|2k0).

5.1.2.3 Band Structure of the Unbiased Lattice

For an unbiased latticewith identical barriers ofwidth l1 and spacing l0, there are only
two different transfer matrices involved, G̃0 and G̃1. In the limit N ≤ ⇔, the super-
lattice eigenfunctions have the Bloch phases exp(±i Kxl) that are the eigenvalues of
the transfer matrix G̃ = G̃0G̃1 over one lattice period l = l0 + l1,

G̃ = 1

sin(θ1) sin(θ2)

(S(−θ1,−θ2; 0, 0) S(0,−θ2; θ1, 0)
S(0, θ2;−θ1, 0) S(θ1, θ2; 0, 0)

)
, (5.10)

with

S(∂1,∂2;∂3,∂4) ∇ sin(k1l1 + ∂1) sin(k2l2 + ∂2) − sin(k1l1 + ∂3) sin(k2l2 + ∂4).

The dispersion relation E(Kx , Ky = k∼) is calculated by solving the eigenvalue
problem G̃θ∈,Kx = ei Kx lθ∈,Kx , which leads to the implicit relation cos(Kxl) =
Tr(G̃)/2, or again [23, 24]
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Fig. 5.4 Dispersion relation
of a nanoribbon of width w =
40ã0, calculated using the TB
Hamiltonian (solid lines) and
the Dirac approximation (dot-
dashed lines). The inset shows
the dispersion relation near the
band edge, showing the small
shift due to the assumptions
of the Dirac approximation

cos(Kxl) = cos k0l0 cos k1l1 + cos θ0 cos θ1 − 1

sin θ0 sin θ1
sin k0l0 sin k1l1. (5.11)

If |Tr(G̃)/2| > 1, there is no propagating solution with Kx ∈ R, and E falls
into the band gap of the superlattice. In Fig. 5.5 below, the bands of the infinite
superlattice are shown together with the transmission across a finite sample of five
barriers. Physically, this bands stem from the resonant levels placed in the regions
with lowest potentials, which, for the potential steps V0 < V1, are given by the
expression (G̃0)2,2 = 0.

5.2 Results and Discussion

The sample considered consists of an aGNR of width w = 40ã0 ∗ 9.84 nm and
N = 5 ferromagnetic strips of width a = 23.9 nm and inter-strip spacing
b = 55.8 nm (Fig. 5.1 shows a schematic view of the device). For this width, the
dispersion relation of the ribbon shows a half-gap E0 = 61.7meV.

5.2.1 Transmission for Zero Bias

First, the transmission of electrons through the sample was calculated, using the two
methods outlined in Sect. 5.1. In the upper panel of Fig. 5.5, the transmissions T± are
shown for unbiased aGNRs (VSD = 0). Comparing the results of the TB to those of
the Dirac model, a very good agreement is found, which validates the Dirac theory
applied to aGNRs. It should be noted that the Dirac model slightly overestimates
the band gap (E0 = 61.9meV; see Fig. 5.4). As detailed in [21], this is due to the
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Fig. 5.5 Transmission coefficients as a function of energy for the unbiased device with N = 5
strips. There is a very good agreement between the TB calculation (solid black lines) and Dirac
transfer-matrix theory (filled lines). The letters a–f in the upper part of the figure label the energies
with particularly high or low transmission; the corresponding wave functions are plotted in Fig. 5.6.
The horizontal bars in the lower part of the figure indicate the bands of the infinite superlattice,
calculated using Eq. (5.11)

Fig. 5.6 Probability density for the states with energies marked by letters a–f and red (blue) arrows
for ψ = +1 (ψ = −1) in Fig. 5.5. In the resonant cases with full transmission (solid black and
dotted orange), the in- and out-going waves couple to a quasi-bound state, which manifests itself
in a typical concentration of the density in the scattering region (i.e., within the superlattice). In the
cases of strong reflection (dashed red), the probability density decays across the sample

k · p approximation in the derivation of the Dirac equation, which breaks down for
very narrow aGNRs. In Fig. 5.5, the energy is measured from the respective band
edges for each data set, which eliminates the shift of E0 from the plots. Since the
transfer-matrix calculation in Eq. (5.9) requires much less computational resources
than the full TB calculation, only the Dirac theory is used in the following.

The transmission strongly depends both on the energy E of the injected carrier
and its spin. The obtained transmission pattern is typical for a superlattice. Already
for N = 5, the regions of high transmission coincide quite well with the bands of
the infinite superlattice obtained in Eq. (5.11) and given by the horizontal bars at the
bottom of the figure. As illustrated in Fig. 5.6, the states with full transmission appear
due to the resonant coupling of the propagating waves to quasi-bound states of the
superlattice.
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Fig. 5.7 Transmission
polarization PT , given by
Eq. (2.12), as a function of
energy for VSD = 0 and
different numbers N of ferro-
magnetic strips. For N � 3,
the curves manifest abrupt
polarization switching within
narrow energy intervals

Due to the level repulsion, these regions with high transmission have in general
N − 1 peaks in the case of a superlattice of barriers, and N in the case of wells.
However, the first transmission band for ψ = −1 shows only one maximum. This
is due to the fact that the corresponding band of the infinite superlattice is placed
at [E0 − 1.71meV, E0 + 1.47meV], and therefore it falls only partially above the
subband edge.

The energies of the transmission peaks and transmission bands depend on the
spin ψ, which manifests itself clearly in the transmission polarization PT , defined in
Eq. (2.12). The latter quantity is shown in Fig. 5.7. When the system parameters are
chosen such that the overlap between transmission bands corresponding to different
spins is small, PT presents abrupt switching from −1 to 1, and vice versa, within
narrow energy intervals. The energy of band edges is only slightly affected by the
number of barriers N , as long as a and b are kept fixed. But as N is increased, the
transmission of modes with energies outside the transmission bands tends rapidly to
0, thus leading to an enhanced transmission polarization. This is shown in Fig. 5.7,
for N = 1, 2, 3, 5. Interestingly, the first transmission band for ψ = −1 (vertical
arrow labelled a in Fig. 5.5) only appears if N ≥ 3.

5.2.2 Currents and Spin Polarization for Finite Bias

Next, the current response of the device to a bias VSD between source and drain is
described. The chemical potentials in the leads, μS = eVSD + μ and μD = μ have
the same offset μ from their respective band-gap centres, resulting in a piecewise
constant potential profile as shown in the lower panel of Fig. 5.1, and discussed in
Sect. 5.1. The transmission coefficients T± as functions of E and VSD are computed
with the transfer-matrix description. The bias then results in a distortion of the trans-
mission bands shown in Fig. 5.5. Basically, the transmission bands move towards
lower energies and finally go away (see Fig. 5.8a–b).

http://dx.doi.org/10.1007/978-3-319-07088-9_2
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Fig. 5.8 Transmission and currents for finite bias. Panels a and b show that the transmissions for
both spins with finite bias VSD are shifted and distorted compared to Fig. 5.5. Panels c and d show
the currents I± at T = 4K in units of I0 = 104e/(ht) as function of VSD for different values of the
chemical potential μ. Panels e and f represent the total current I and current polarization P for the
same parameters

Within the Landauer-Büttiker scattering formalism, the spin-polarized currents I±
are obtained using Eq. (2.13). The currents I± as function of VSD are plotted in the
panels c and d of Fig. 5.8. The spin-dependent transmission bands and the distortion
due to the bias lead to regions of NDR at different values of the bias voltage for
the different spins. For spin down (ψ = −1), the NDR occurs at a low bias voltage
and its slope is particularly steep. This is due to the fact that the single transmission
peak labelled a in Fig. 5.5 is still very sharp when it suddenly disappears. The lowest
transmission band of spin up (ψ = +1) disappears only at a rather high bias voltage,
when its profile has already become washed out. This is the reason why the NDR of
ψ = −1 is much sharper than the one of ψ = +1.

It is also interesting to calculate the properties of the current due to initially
unpolarized charge carriers. Therefore, the total current through the device I , defined

http://dx.doi.org/10.1007/978-3-319-07088-9_2
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in Eq. (2.14), as well as its output polarization P , taken from Eq. (2.15), were
calculated. These quantities are plotted in the panels e and f of Fig. 5.8. The polar-
ization shows an initial range with negative values, followed by a second region
dominated by spin-up electrons, until the system reaches an unpolarized regime.
Regarding the total current, regions with NDR are also found. This is due to the
slope in the NDR region of I− (I+) being much steeper than the positive slope of
the I+ curve (I− curve).

5.3 Effect of Geometric Disorder

The properties of the considered system heavily rely on the geometry of the super-
lattice. However, deviations from the values set for a and b are to be expected in the
fabrication of the device. Therefore, it is important to find out if the loss of the regu-
larity in the sample destroys the predicted effect, or these are robust under moderate
perturbations of the geometry.

Contrary to previous chapters, the Dirac formalism developed here allows the
effect of disorder to be calculated very efficiently using transfer matrices, provided
that the strips remain perpendicular to the aGNR. Therefore, the properties of a
large number of samples can be studied within relatively low computational time.
As discussed previously, the separation of the transmission bands for different spins
is the main ingredient to obtain a spin-polarized current with good characteristics.
Therefore, in order to study the ensemble, it is necessary to define a fitness function
which allows these separations to be quantified. The following function is proposed:

W (T±) = 1

Emax

E0+Emax∫

E0

dE |T+ − T−|2 . (5.12)

The value Emax = 6meVwas chosen, because this is the position of theminimum for
T+ in the ordered sample, after its corresponding transmission band. The functional
form of W (T±) was chosen so that strong overlaps between T± or low values for the
transmission lead to W (T±) ∗ 0.

A very general type of geometric disorder was considered, with the strip width
at the i th cell, ai , and inter-spacing bi , independently varying by up to 10% of the
total cell width l = a + b. For the parameters chosen in the ordered configuration,
ai ∈ [0.25l, 0.35l], and bi ∈ [0.65l, 0.75l]. The middle panel of Fig. 5.9 shows
the probability distribution of W (T±), with the value of the ordered configuration
marked with a solid black line. The average value of W (T±) shifts towards lower
values. However, an important subset of the ensemble shows an enhancement of the
transmission properties. The main mechanism contributing to this enhancement is
the broadening of the first transmission band in T−, as exemplified in the lower right
panel of Fig. 5.9.

http://dx.doi.org/10.1007/978-3-319-07088-9_2
http://dx.doi.org/10.1007/978-3-319-07088-9_2
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Fig. 5.9 Effect of geometric disorder on the transmission. The middle panel shows the distribution
probability of W (T±), for the strip widths ai and inter-spacings bi varying up to l/20 around the
values of the ordered configuration. The value for the ordered configuration is marked using a solid
black line. The transmissions T± for four particular configurations, labelled a–d, are shown in the
left and right columns, with black lines representing the ordered case

5.4 Summary

In summary, a novel graphene-based device comprising an aGNR and a regular
array of ferromagnetic strips grown on top of it has been proposed and studied. The
strips introduce a short-range exchange splitting of electronic states in the aGNR
and create a spin-dependent superlattice. It has been shown that the electric current
through the device can be highly polarized. Moreover, the two polarized components
of the current manifest non-monotonic dependencies on the source-drain voltage. In
particular, both spin-dependent current-voltage characteristics present regions with
negative differential resistance for the source-drain voltage in the range of a few
millivolts. The device operates therefore as a low-voltage regular Esaki diode for the
spin-polarized currents.

Moreover, there are several additional advantages of the proposed device design.
In particular, the usage of a superlattice induced by ferromagnets rather than by usual
electrostatic gates is very attractive from the point of view of the circuit integration
and device density. Unlike the long-range electrostatic gate potentials which can
interfere with each other, setting a practical lower limit for the inter-device distance,
the exchange interaction is very short-ranged. Its characteristic length scale is on
the order of one monolayer, which allows for very close packing of circuits and,
consequently, considerably higher device densities.

Finally, it should be noted that in a true spintronic device the degree of freedom
that carries information is the polarization of the current rather than its magnitude.
It was shown that the current polarization is also a non-monotonic function of the
source-drain voltage in our proposed device, which makes it an Esaki spin diode.
The latter opens a possibility to design a whole new class of true spintronic circuits
such as spin oscillators, amplifiers and triggers.
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Part II
Electro-Optical Nanodevices



Chapter 6
Optical Nanoantennas with Tunable
Radiation Patterns

Radio and microwave antennas operate as receivers or emitters of electromagnetic
radiation within the corresponding wavelength ranges. The size of these devices is
typically on the order of the wavelength, which enables one to convert the freely
propagating electromagnetic energy into a localized excitation of the antenna and
vice versa. Fabricating an optical antenna requires technology of producing objects
with sub-wavelength size, down to several tens of nanometres, which is now possible
with modern methods of nanotechnology [1–6].

Recently, plasmonic antennas, operating in the visible range of the spectrum,
have received a great deal of attention [7–9]. Among others, resonator [10], bow-tie
[11, 12], Yagi-Uda [13], graded [14, 15], cross-resonant [16], core-shell [17] and
nanorod [18] configurations have been investigated. Nonlinear plasmonics [19],
nanoantenna-enhanced gas sensing [20] as well as nanoscale spectroscopy [21] with
optical antennas have also been discussed.

Usually, plasmonic antennas comprise arrays of metallic nanoparticles or
nanowires, which convert propagating optical signals into surface plasmon modes
or vice versa. One of the challenging tasks here is the antenna excitation. Several
schemes have been proposed, ranging from excitation by an adjacent point emitter
(such as a single molecules or quantum dots) [18], which requires a very high pre-
cision of positioning of the point source, to the excitation by a beam of an electron
microscope [13]. Other important and challenging aspects are the design and con-
trol of the radiation patterns of such antennas [13, 18]. In this chapter both issues
are addressed theoretically. An antenna, consisting of a regular linear array of metal
nanospheres located close to the interface of two materials with high dielectric con-
trast, is considered. It is shown that the radiation pattern of such a system can be
controlled and tuned in a variety of ways, in particular, by changing the angles of
incidence and polarization of the excitation beam. The system is illuminated using
evanescent waves, which is advantageous from the view point of separation of the
excitation from the antenna signal. The radiation pattern of the considered antenna is
strongly directional and highly sensitive on the excitation parameters, which can be
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explained by the interference between the field created by the nanoparticle electric
dipoles and their images induced by the interface.

6.1 Model and Formalism

The systemconsidered comprises an array ofMNPs in close proximity to the interface
of two dielectrics with permittivities ε1 and ε2 > ε1 (see Fig. 6.1). The array is a linear
chain of N equally spaced identical metal spheres with radii a and centre-to-centre
distances d, which are embedded in a dielectric with permittivity φ1 at a centre-to-
interface distance h (the chain is parallel to the interface). The ratios a/d ∼ 1/3
and a/h ∼ 1/3 are chosen in such a way that the point dipole approximation for
the interactions between different particles can be used. The former condition on the
sphere radius and the centre-to-centre distance was discussed in [22, 23]. The latter
relationship is analogous; to verify its validity, results obtained within the point
dipole approximation were compared with those calculated using the boundary-
elements method [24], which were in good agreement. As methods based on the
point dipole approximation use simpler and numerically less demanding, they will
be used henceforth.

The nanospheres are characterized by their polarizabilities ψ(π), where π is the
frequency of the incident field. The polarizability of small particles (compared with
the wavelength) in a homogeneous environment can be described retaining the first
two correction terms [25, 26]:

1

ψ(π)
= 1

ψ(0)(π)
− k21

a
− i

2

3
k31 , (6.1)

where ψ(0)(π) is the bare quasi-static polarizability of the sphere, k1 = (π/c)
∞

ε1 is
the wave number of light in the medium embedding the spheres, and c is the speed
of light in vacuum. The term quadratic in k1 describes the depolarization shift of
the plasmon resonance, while the cubic one accounts for the radiative damping [26].
Dielectric or metallic surfaces in the proximity of a sphere can also modify its polar-
izability (see below). Within the quasi-static approximation, the bare polarizability
ψ(0) is expressed in terms of the frequency dependent dielectric constant of the bulk
nanoparticle material, φM (π), and that of the embedding dielectric [27, 28]:

ψ(0)(π) = a3 φM (π) − φ1

φM (π) + 2 φ1
. (6.2)

In the point dipole approximation, the induced dipole moment of the n-th sphere
pn can be obtained by solving the following set of equations:
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Fig. 6.1 System schemat-
ics: a regular linear array
of identical spherical MNPs
located parallel to the inter-
face between two dielectrics
with permittivities ε1 and ε2
(ε1 < ε2), a is the nanosphere
radius,d is the centre-to-centre
and h is the centre-to-interface
distance

pn = ε1ψ(π)

[
E0(rn) +

∑

m

Ĝ(rn, rm) pm

]
(6.3)

where m and n run from 1 to N , rn is the position vector of the centre of the n-th
sphere,E0(rn) is the total external electric field (either the refractedone, if illuminated
from the φ2 side, or a superposition of the direct excitation and that reflected from
the interface, if excited from the φ1 side), and Ĝ(r, r√) is Green’s tensor of the total
secondary dipole field:

Ĝ(r, r√) =
{

Ĝ0(r, r√) + Ĝr(r, r√) r �= r√
Ĝr(r, r√) r = r√ . (6.4)

Here, Ĝ0(r, r√) is Green’s tensor in a homogeneous medium giving the electric field
created at point r by a unit dipole located at r√ [29]:

Ĝ0(r, r√) = 1

ε1

(
∇∇ + k211

) exp(i k1
∣∣r − r√∣∣)

|r − r√| , (6.5)

where ∇∇ is the dyadic product of the nabla operators and 1 is the unit dyadic.
Ĝr(r, r√) is Green’s tensor of the reflected dipole field, which describes the interac-
tion between nanoparticles mediated by the interface. This tensor can be calculated
numerically using the Sommerfeld integrals formalism, as explained in Appendix B.
The self-interaction term Ĝr(rn, rn) corrects the polarizability, Eq. (6.1), for the
presence of the interface and guarantees, in particular, the correct energy balance.

For any given external field E0(r), the system of equations in Eq. (6.3) is linear
in pn , and the induced dipole moments can be computed by standard numerical
methods. Once they are obtained, it is straightforward to calculate the total electric
field at an arbitrary point r (located outside the volumes of the spheres):
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E(r) = E0(r) +
∑

m

Ĝ(r, rm) pm . (6.6)

In this work, the focus will be set in the radiation of the antenna (i.e., in the far-
zone component of the scattered field) above the interface. Excitations from the φ2
side (from below) under conditions of total reflection will be considered. Then, the
incident fieldE0(r) is an evanescentwave in the upper half-space, and its contribution
to the total field is negligible if the detection point is sufficiently far from the interface.
In this case, the far field is governed by the second term in Eq. (6.6). To obtain the
antenna radiation pattern, one should calculate the angular dependence of the radiant
intensity U (ρ,θ) on an enclosing sphere centred at the system and having a radius
R ◦ ∂1, where ∂1 = 2π/k1 is the excitation wavelength in the medium. This
intensity is given by

U (ρ,θ) ∈ R2

∣∣∣∣∣
∑

m

Ĝ(R, rm) pm

∣∣∣∣∣

2

. (6.7)

As shown below, radiation patterns of the antenna considered here can be highly
directional: typically, they have a narrow main lobe and a set of much weaker side
lobes. In order to characterize the directionality of the antenna radiation quantita-
tively, the standard directivity parameter will be used:

D = maxU (ρ,θ)∫
2π U (ρ,θ) d�/2π

, (6.8)

which is the ratio between the maximum radiant intensity and the average one. The
integration in Eq. (6.8) is performed over the solid angle of 2π (instead of the usual
4π), because only the radiation in a half-space will be studied.

6.2 Numerical Results

The radiation patterns for an antenna comprising a linear array of N = 15 identical
silver nanospheres were calculated. The array was in the proximity to an interface
between two media with refractive indices n1 = ∞

φ1 = 1.5 (above the interface)
and n2 = ∞

φ2 = 2.1 (below the interface). Other parameters of the model were
chosen as follows: the nanosphere radius a = 45nm, the inter-particle separation
d = 180nm, and the array-to-interface distance h = 135nm. Tabulated data for the
permittivity of silver [30] was used to calculate the polarizability of the nanospheres.

The system is illuminated by a plane wave with the wavelength in vacuum
∂0 = 610nm, incident from the medium below the interface, and the radiation
is detected in the upper half space. Let the spherical coordinates of the detection
point be (R, ρ,θ) with ρ ∈ [0,π/2] and θ ∈ [0, 2π] (θ = 0 in the direction of the
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Fig. 6.2 The geometry of the
excitation and detection: E0
is the excitation field, n̂0 =
k2/k2 describes the direction
of its incidence, 0 ∼ � ∼ π/2
and −π/2 ∼ � ∼ π/2 are
the polar and azimuth angles
of incidence. The blue cone
represents the detector whose
angular coordinates are ρ
and θ

array), while � and � are the polar and azimuth angles of incidence of the incoming
plane wave (see Fig. 6.2). To excite the system by an evanescent wave the incidence
polar angle � should lie within an interval (�c ,π/2), where �c = arcsin(n1/n2) is
the angle of the total reflection; for the considered system �c = 45.6≡. Finally, the
effect of the polarization of the excitation—s and p—will also be taken into account.

Figure6.3 shows radiation patterns calculated for an s-polarized excitation inci-
dent at a polar angle � = 50≡ > �c and different azimuth angles: � = 0≡, 30≡,
45≡, 60≡, 75≡, 90≡. The figure demonstrates that in all cases the radiation is highly
directional; the directivity D is written in each plot. The interference between the
fields scattered by the nanoparticles is constructive only within a relatively narrow
solid angle, giving rise to the formation of the main lobe of the pattern. As shown
below, its shape can be obtained analytically. It is clear from the comparison of the
incidence geometry (see green arrows in Fig. 6.3) and the position of the main lobe
that the latter is formed by the forward scattered light.

As can be seen from Fig. 6.3, the orientation of the main lobe is varying smoothly
with the azimuth angle of incidence �. Much more pronounced and abrupt changes
can occur if the incidence is more oblique. For example, for � = 60≡ the antenna
main lobe orientation can be almost reversed by a relatively small change of the
azimuth angle �, as shown in the lower panels of Fig. 6.4. In the corresponding
upper panels, cross sections of the main lobes were plotted for the three different
excitation conditions, which demonstrate that the predominant scattering switches
from the forward to the backward one when the azimuth angle � changes from 30≡
to 10≡. A similar switching effect is observed in the lower optically denser medium
too (see Fig. 6.5). Note that the angles of the main radiation lobes are different from
the angles of incidence and reflection; therefore, the excitation will not interfere with
the signal, which can facilitate measurements.

The power radiated by a dipole in the proximity of a dielectric interface is higher
in the optically denser medium. For the considered system about 10% of the total
scattered power goes into the upper half-space. The scattered intensity is proportional
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Fig. 6.3 Polar plots of the radiation patterns of the antenna described in the text. The colour gives
the far-field intensity as a function of the detection angles ρ and θ. The polar angle ρ changes
linearly along the radius from 0 to π/2 (dashed circles are drawn each 30≡). The system was
excited by an s-polarized plane wave with angles of incidence � = 50≡ and (from left to right)
� = 0≡, 30≡, 45≡ (upper row), 60≡, 75≡, 90≡ (lower row). The excitation propagation direction is
represented schematically by the green vector; its end point has the angle coordinates (�,�). The
directivity D of the radiation pattern is given in the upper left corner of each plot.Blue lines represent
the main lobe position calculated within the image dipole and stationary phase approximations, as
described in the next section (see text for more details)

Fig. 6.4 Lower row—same as in Fig. 6.3, but for incidence at � = 60≡ and � = 30≡, 20≡, 10≡.
Switching of the antenna radiation direction is observed when the azimuth angle� changes within a
relatively narrow range. The upper plots show the cross sections of the radiation patterns computed
along the black thick lines of the lower plots, i.e., θ = 0, using grey filled areas. The black solid
lines represent the same cross sections calculated according to the approximate formula Eq. (6.13)
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Fig. 6.5 Same as in Fig. 6.4, but for the lower half-space. The polar angle ρ is measured from the
normal to the interface pointing down

Fig. 6.6 The directivity ver-
sus the incidence angles� and
�. The dashed line shows the
incidence at which the phase
difference between adjacent
induced dipoles is π. The dots
correspond to the illumination
conditions used in Fig. 6.4

to the incident one and is limited therefore by themaximumpossible dissipated power
determined by the melting threshold of the MNPs.

Figure6.6 shows the dependence of the directivity on the incidence angles �

and �. The switching effect takes place in the vicinity of the pronounced dip in
the directivity; the directivity is decreased when the phase difference induced by the
external field between adjacent dipoles,E0(rn) andE0(rn+1), equals π (see the white
dashed line in the figure). In this case there is mirror symmetry in the far-field pattern
with respect to the plane ρ = π/2 and two identical lobes of forward and backward
scattered light co-exist. The two neighbouring light-coloured quarter-circle features
are determined by the strong forward or backward scattering condition, when the
far-field pattern is characterized by a single highly directional lobe. When the dip is
crossed, the direction of the main lobe is switched abruptly.
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Fig. 6.7 Upper plots—radiation patterns for � = 46≡ � �c and � = 90≡ for two different
polarizations of the excitation: s (left panel) and p (right panel). The lower, centred plot shows
cross sections of the two patterns at θ = π/2: red dashed and solid blue lines correspond to s and
p-polarized excitation, respectively

Finally, the effect of the polarization of the incoming light on the radiation
pattern will be addressed. The polarization affects the direction of the induced par-
ticle dipoles, whose far field interference determines the shape of the pattern. The
effect of polarization is expected to be most pronounced for� = 90≡, because in this
case the s-polarized light induces dipoles almost parallel to the antenna axis, while
the p-polarized excitation favours the dipole orientation perpendicular to the axis.
The radiation patterns for the two excitation polarizations were calculated in the case
of� = 46≡ and� = 90≡; the results are shown in Fig. 6.7. The upper panels present
the full polar patterns, while the lower one shows their cross sections for θ = π/2.
As expected, the most pronounced difference between the two cases is observed in
the vicinity of the polar angle ρ = 0 where the pattern has a pronounced dip in the
case of p-polarized excitation while the radiation is strong in the other case.

Thus, the radiation pattern of the systemcan be adjusted by changing the excitation
parameters, such as, the geometry of incidence or polarization, which can easily be
controlled in experiment.

6.3 Analytical Results and Discussion

In this section an approximate analytical approach for the calculation of the antenna
radiation pattern is presented, combining the image dipole and stationary phase
approximations. Analytical results offer the opportunity of gaining insight into the
physics of the system response and understanding qualitatively the numerical results
obtained in the previous section. Moreover, the simple analytical formulas derived
can be used to solve the inverse problem: engineer the geometry of the system and
excitation meeting particular requirements, such as, a desired radiation pattern.
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The radiation pattern is determined by the intensity of the secondary scattered
field in the far zone. If a single dipole p is located at (0, 0, h) (for convenience,
Cartesian coordinates are used for dipole positions) and R ◦ h, its radiation field
reads

Ed(ρ,θ) ≤ k21
[

p − (p · n) n
]

ε1R
e−ik1h cos ρ eik1R , (6.9)

where n is the unit vector, pointing in the direction of the detection (ρ and θ are its
angular coordinates). The last exponential factor, determined by the overall phase
k1R, is an angle-independent common factor and therefore it is irrelevant for the
field intensity. Being in close proximity to the interface, the dipole induces surface
charge densitywhose electric field contributes to the radiation aswell. This secondary
reflected field Er is given by the Sommerfeld integrals which can be calculated in the
far-zone of the upper medium by making use of the stationary phase approximation
[31]. The result reads:

Er(ρ,θ) = e2ik1h cos ρ
[Fs(ρ) (Ed(ρ,θ) · es) es + Fp(ρ)

(
Ed(ρ,θ) · ep

)
ep

]
. (6.10)

It this expression, es and ep are the normalized vectors of the s- and p-polarized
components of the radiated field,

es = n × nz

|n × nz | ep = n × es , (6.11)

nz being the normal to the interface pointing up, andFs(ρ) andFp(ρ) are the Fresnel
reflection coefficients for the s- and p-polarized waves incident from the upper
medium onto the interface [2],

Fs(ρ) = n1 cos ρ − n2 cos ρt

n1 cos ρ + n2 cos ρt
Fp(ρ) = n2 cos ρ − n1 cos ρt

n2 cos ρ + n1 cos ρt
, (6.12)

with ρt given by Snell’s law, n1 sin(ρ) = n2 sin(ρt ). As seen from the comparison of
Eq. (6.9) and Eq. (6.10), the secondary field Er is equivalent to that produced by an
image dipole placed at (0, 0,−h) in a homogeneous mediumwith the dielectric con-
stant ε1. However, the s and p components of the reflected field Er are renormalized
by the corresponding Fresnel reflection coefficients.

The radiation of an array of dipoles is the superposition of their far fields; its inten-
sity angular distribution depends exclusively on the relative phases of the contributing
fields (a relatively small shift of the coordinate origin would result in an additional
common angular independent, and therefore irrelevant, phase of the field).When such
dipoles are arranged in a regular linear chain and R ◦ Nd, the total secondary far
field can be calculated analytically, using the following additional approximations.
First, the phase and orientation of the n-th dipole are assumed to be determined by
the phase and polarization of the external field E0(rn) acting upon it and, second,
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that all dipoles have the same amplitude. It turns out that for the considered system,
excitation geometries and wavelengths these approximations are reasonable.1 In this
case, the phase difference between two dipoles located at (x1, 0, h) and (x2, 0, h) is
k1n21(x2 − x1) sin� cos� with n21 = n2/n1. On the other hand, the phase differ-
ence in the far fields of the two dipoles is k1(x2 − x1) sin ρ cosθ. Using all the above
assumptions and the corresponding phase relations, one can sum the fields produced
by all dipoles and their images, arriving finally at the following expression for the
radiation2:

E(ρ,θ,�,�) = sin (β N/2)

sin (β/2)
[Ed(ρ,θ) + Er(ρ,θ) ] , (6.13)

where β is the phase difference of the radiation of two neighboring particles,

β = k1d (sin ρ cosθ − n21 sin� cos�) . (6.14)

In the adopted approximation, the orientation of the induced dipoles is dictated by
the polarization of the incident field E0. If the excitation is s-polarized, the dipoles
are oriented along � + π/2 and no field is radiated in this direction. If the detection
angle θ is not close to � + π/2, the fields in the square brackets in Eq. (6.13) are
smooth functions of ρ and θ. Therefore, it is the fraction of the two sine functions
in Eq. (6.13) that determines the lobe structure of the radiation pattern (a detailed
discussion of this pre-factor can be found, for example, in [32]). This fraction is large
when β = 2πn with an integer n, in which case the interference is constructive and
the far-field of N dipoles is about N times larger than that of a single dipole. Hence,
the enhancement factor of the radiated intensity over that of a single nanoparticle is
on the order of N 2. Strong far-field lobes are formed in the vicinity δβ ⇔ 2/N of the
scattering angles giving solutions to the equation β = 2πn. This vicinity becomes
smaller as N increases, resulting in the narrowing of the lobes. On the contrary, if ρ
and θ are such that βN = 2πn where n is not a multiple of N , the interference is
destructive, and the antenna is only weakly radiating in these directions. Essentially,
Eq. (6.13) gives the far-field of a double chain of identical dipoles and their images.

The upper panels of Fig. 6.4 show the radiation pattern cross-sections calculated
numerically, according to Eq. (6.7), (solid grey regions) and those obtained using the
approximate analytical expression in Eq. (6.13) (solid black lines). The amplitude of
the analytical result was scaled to get the samemaximum as the numerical result. The
figure demonstrates that the analytical expression gives an excellent description of
the main lobes of the patterns. For the chosen polar angle of incidence � = 60≡, the
main lobe almost reverses its direction when the azimuth angle of incidence changes
from� = 10≡ to� = 30≡. Below, a simple qualitative explanation of this behaviour
is provided, based on the analysis of our approximate formula.

1 These approximations are exact for an infinite system.
2 The derivation of the formula is analogous to the one made by Von Laue to study the X-ray
diffraction in crystalline structures.
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To understand the underlying physics of the predominant scattering direction
switching, it is useful to rewrite the phase β in terms of the projection of the incoming
and outgoing wave vectors onto the chain axis: β = (k1x − k2x ) d. The interference
is constructive when β = 2πn, which can be interpreted as the refraction condition:
k1x − k2x = 2πn/d, where 2πn/d are the vectors of the reciprocal lattice with the
lattice constant d. The latter relationship is the momentum conservation law for a
periodic structure where the k-vector is conserved to within a vector of the reciprocal
lattice.

In the system studied, the fact that the lower media is optically denser than the
upper one (i.e., k2 > k1) plays the key role and results in the appearance of qual-
itatively new solutions as compared to the traditional refraction in a homogeneous
environment. As long as k2x ∼ k1 the condition β = 0 can be met for ρ ≤ � and
θ ≤ �, i.e., the direction of the main lobe is close to that of the incidence resulting in
strong “forward” scattering. Moreover, for the range of parameters chosen, k1d < π,
and therefore the scattering pattern is always characterized by a single strong lobe.

On the other hand, for k2x > k1, forward scattering is forbidden because it would
require a wave vector larger than the one allowed in the upper medium. In this
qualitatively new situation, the constructive interference occurs for the outgoing
wave vectors which differ from the incoming ones by a vector of the reciprocal
lattice. In particular, the condition β = −2π can be met when k1x and k2x have
opposite signs. The latter is the “backward” scattering observed in Fig. 6.4.

Figure6.7 demonstrates that the antenna radiation patterns can be controlled also
by the polarization of the incident light, which is a parameter that can easily be
changed in an experiment. In Fig. 6.7, the polar angle of incidence � is only slightly
larger than the angle of total reflection while the azimuth angle � = π/2 implies
incidence normal to the chain axis. Under these conditions, the main lobe of the
pattern is determined by the equation β = 0, having the obvious solution θ = π/2.
The ρ-dependence of the patterns in this case is dictated by the excitation polarization.
For the s-polarized excitation, all dipoles are oriented along the chain, that is, along
θ = 0, and the radiation is efficient within a continuous broad range of polar angles
ρ (see the dashed red line in the lower panel of Fig. 6.7). Contrary to that, when the
excitation is p-polarized, all dipoles are almost perpendicular to the chain axis and
to the interface plane; that is, along ρ = 0. According to Eq. (6.9), a dipole does
not radiate in its own direction, which explains the appearance of a pronounced dip
around ρ = 0 in the radiation pattern (see the blue solid line in the lower panel of
Fig. 6.7).

6.4 Summary

The radiation patterns of a plasmonic antenna were studied. The antenna comprised a
regular linear chain of identical metal nanospheres in close proximity to an interface
between two media with high dielectric contrast. When such a system is illuminated
from the higher refractive index side of the interface it can be excited by evanescent
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waves. In this case the excitation does not mask the useful antenna signal, which
is advantageous for measurements and applications. It was proved that the radia-
tion pattern and its directivity can be controlled by changing the incidence angles
and/or polarization of the excitation. In particular, for some excitation geometries,
the antenna pattern is characterized by a very narrow main lobe whose direction can
be changed abruptly by a relatively small change of incidence angles.

Initially, the antenna radiation patterns were calculated using the traditional, much
more numerically elaborated and accurate, Sommerfeld integrals approach. Then a
much simpler one, based on the image dipole and the stationary phase approxima-
tions was proposed. It was shown that, despite the complexity of the system, the
analytical expression for the radiation patterns gives an excellent description of the
main features of the antenna response. These simple formulas can become a useful
tool for solving the inverse problem: engineering a system that has a desired radiation
pattern.

An antenna comprising identical MNPs operates within a relatively narrow band
width; however, the spectral range can be broadened by using graded plasmonic
arrays [14, 15]. It should be noted that, although the theoretically simplest case of
the chain of nanospheres was considered, the results are expected to be valid for
arrays of particles with more complex shapes, such as discs, which can be easier to
fabricate.

Similar ideas and approaches can be applied to more complicated nanostructures,
such as 2D arrays or metamaterials [33]. The dielectric interface would still play its
key role, contributing two important aspects: the dielectric contrast is an additional
degree of freedom allowing radiation patterns of the nanoscopic sources of light to
be controlled, while excitation by evanescent waves results in the conversion of a
macroscopic plane wave into a narrow beam of light with adjustable characteristics
and direction. Apart from being an interesting fundamental phenomenon, this opens
new possibilities in optical nano-devices design and new opportunities to control the
flow of electromagnetic energy at the nanometre scale, in particular, for precisely
addressing and exciting nanoscopic objects such as nanostructures, quantum dots,
single molecules, etc.
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Chapter 7
Electro-Optical Hysteresis of Nanoscale
Hybrid Systems

Semiconductor Quantum Dots have many applications in optics due to their
atomic-like spectra and have long been pledged to be an essential constituent of
future quantum logical systems [1]. The latter is due to their most celebrated char-
acteristics, such as long decoherence times reaching tenths of nanoseconds [2], spin
decoherence times in themillisecond range [3], or typical sizes below10nm.The shift
of the energy levels (discrete due to quantum confinement effects) under the effect of
electrostatic gates has allowed single-electron transport through arrays of SQDs to be
experimentally tested in numerous occasions [2, 4]. Nowadays, it is possible to engi-
neer their energy levels by varying their shape and size [5–7]. Typically, nanocrystals
with sizes in the range 1–10nm have allowed transitions laying in the optical range,
which paves the way for the design of ultrafast quantum memories [8–10].

In the proximity of reflecting systems, such as MNPs or interfaces, irradiated
SQDs can exhibit strong nonlinear effects, which can be used to design electronic
components. In the simplest quasi-static approximation such systems can be consid-
ered as an artificial hybrid quasi-molecule: when it is optically excited, the dipole
moment of the optical transition in the SQD generates image dipoles whose elec-
tric field acts back upon the real dipole, providing an electromagnetic feedback.
This mechanism has long been studied for SQD-MNP systems: the presence of a
“resonator”, the MNP in the latter case, also leads to self action (feedback) of the
SQD. Together with the nonlinearity of the SQD itself, this can give rise to a variety
of interesting optical properties [11–15]. In particular, if the coupling between two
nanoparticles is strong enough, the self-action can result in hysteresis in the optical
response [16].

In this chapter, a simple hybrid system comprising a SQD placed close to an
interface between two materials is considered. It is shown that the SQD-interface
quasi-dimer, which seems to be simpler to fabricate than the previously consid-
ered SQD-MNP complexes, can manifest nonlinear optical properties. If one of the
materials forming the interface allows for the control of the electron concentra-
tion, and therefore of the local refractive index, the optical bistability and hysteresis
manifesting itself at nanoscale can be controlled macroscopically, e.g., by changing
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Fig. 7.1 Schematics of the hybrid SQD-interface system, the SQD is embedded into a homogeneous
dielectric background with permittivity ε1 and subjected to an external field Et . μ and εs denote
the SQD optical transition dipole moment and the semiconductor dielectric constant, respectively,
while ε2(Vg, z) is the tunable gradient corresponding to the dielectric permittivity of the substrate.
The curved arrows symbolize the dipole self-interaction of the optical transition dipole of the SQD,
governed by Green’s tensor of the reflected field Ĝr

the gate voltage. Such a control of the refractive index has been demonstrated in an
indium tin oxide (ITO)—SiO2 heterostructure [17]. Below, it is shown that in the case
of the latter interface the system canmanifest not only optical but also electro-optical
bistability and hysteresis. The fact that the inorganic systems can sustain high elec-
tric fields suggests such possible applications of the hybrid system as electro-optical
switches, modulators or memory cells at the nanoscale in the visible spectrum.

7.1 Approximations and Formalism

A SQD embedded in a dielectric host grown on top of a substrate material is consid-
ered. Its centre is set to be at r = (0, 0, z). The host and the substrate are characterized
by their dielectric permittivities ε1 and ε2(Vg, z), respectively (see Fig. 7.1). The sys-
tem is driven by an incident electric field with direction of incidence k̂0, amplitude
E0 and frequency φ0.

We consider aCdSe (orCdSe/ZnSe) SQD,widely used in the literature [6, 18–20].
If the detuning between the driving and the transition frequency φ, � ∼ φ0 − φ, is
small compared to the separation between excited states, the SQD can be treated as
a two-level system. Its interaction with an external field is governed by the dipole
moment μ of the optical transition between the ground and the first excited state.

The spontaneous decay and dephasing are key elements which govern the dynam-
ics of these systems, and need to be included in any realistic model. Here, this is done
by means of their corresponding relaxation constants, ψ (decay) and � (dephasing).
As a consequence, the time evolution of the two-level system alone is no longer uni-
tary, and its state needs to be defined statistically, using the density matrix formalism,

ρ̂ =
(

πee πeg

πge πgg

)
. (7.1)
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Within the semiclassical formulation, the electric field is considered classically, and
the dynamics of the system is governed by the optical Bloch equations [21], which
read:

Ż = −ψ (Z + 1) − 1

2

[
� P∞ + �∞P

]

Ṗ = −(i � + �) P + � Z . (7.2)

Here, Z and P are the population difference between the excited and ground state
and the amplitude of the off-diagonal density matrix element, respectively:

Z = πee − πgg P = 2iπeg exp(iφt) , (7.3)

and � = μE/�, with E being the electric field acting inside the SQD.
Using the density matrix formalism, PSQD = √p〉 = Tr(ρ̂ p) = −iμ P. Due to its

size, the action of the SQD optical dipole moment PSQD upon the rest of the system
is considered within the point dipole approximation. Nevertheless, when treating
the electric field inside the SQD and its electric polarization, it is important to take
into account the finite size of the dot. The exciton radius aB in CdSe is about 5nm
[5], so the wave functions involved in the optical transition are extended over the
whole dot. Therefore, the approximation of a homogeneous electric polarization of
the whole SQD volume by the optical transition dipole moment PSQD can be used.
Finally, the screening needs to be taken into account, which is done including the
factor ε∇

s = (εs + 2ε1)/(3ε1), where εs is the dielectric permittivity of the SQD [22].
These considerations yield the following expression for the electric field inside the
quantum dot:

E = 1

ε∇
s

[
E0,in(r) + Ĝr(r, r) PSQD

]
, (7.4)

where E0,in(r) is the field at r due to the external excitation, and Ĝr(r, r) PSQD, the
field due to the reflection of the dipole moment PSQD in the substrate, written in
terms of reflected Green’s tensor Ĝr(r, r) (for further details, see Appendix B.2).

The field E0,in(r) due to the incoming plane wave is calculated using the trans-
mitted plane wave, if the excitation comes from the lower medium, or summing up
the incident and the reflected ones, for waves coming from above. Both terms can be
calculated using the TMM detailed in Appendix B.1, and written in compact form
as

E0,in(r) = T̂(r) · E0 ,

where T̂(r) is the tensor that returns the field at r due to the incoming plane wave.
Therefore, the Rabi frequency � which enters the optical Bloch equations in

Eq. (7.2) can be represented in the following form:

� = �̃0 − iGP, (7.5)
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Fig. 7.2 Left variation of the dielectric permittivity at an SiO2-ITO interface as a function of the
distance z and applied gate voltage, Vg , for ρ = 525nm. Right behaviour of the feedback parameter
G as a function of the gate voltage is shown, with the SQD placed at different heights above the
interface. The rest of parameters are given in the text

with �̃0 and G given by

�̃0 = μ · T̂(r) · E0

ε∇
s �

, G = μ · Ĝr(r, r) · μ

ε∇
s �

, (7.6)

where G is the feedback parameter.
Here, a SiO2–ITO interface is considered, with a dielectric constant of the host

ε1 = 2.16. The dielectric permittivity for the substrate θ2(Vg, z) has been obtained
from tabulated data [17], as shown in the left panel of Fig. 7.2. It is important to
stress that the change in the permittivity close to the interface is due to the creation
of an accumulation layer with depth ◦5nm and carrier concentrations as high as
2.8 × 1022 cm−3. The small depth, compared to the wave length, produces only a
very small change in the reflection of plane waves at the interface, but it strongly
affects the near field, leading to a large shift in the feedback parameter, as shown in
the right panel of Fig. 7.2.

In the calculations, exact Green’s tensor of the reflected dipole field is determined
using Sommerfeld integrals containing Fresnel coefficients appropriate for the stud-
ied heterostructure. For the case of a stratifiedmedia, these integrals can be calculated
following [23], substituting the continuously varying dielectric gradient θ2(Vg, z) by
an appropriate number of layers with constant dielectric permittivity such that G(Vg)

converges to a constant value as the number of layers increases. The same result can
be approximated by using the multiple-scattering integral formalism presented in
[24]. The convergence for the parameters used in this work is shown in Fig. 7.3.

The effect of the feedback on the dynamics of the system governed by the optical
Bloch equations with such self-action has been discussed in detail in [11–16, 25, 26].
It is well known that it plays a key role in many nonlinear effects predicted for hybrid
systems. For example, the feedback should exceed a certain threshold for the optical
bistability to occur [25, 27]. Note also that the the feedback should be compared to
the damping rate � which increases with temperature [28], so the larger is the value
of G the higher the temperature at which the predicted effects would be observed.
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Fig. 7.3 Convergence of
Re(G)—blue—and Im(G)—
red—with the number of
layers used to simulate the
dielectric permittivity profile
of the substrate, for the 4
black points marked in the
right panel of Fig. 7.2. Dashed
horizontal lines represent a
continuous approximation,
calculated using [24]

7.2 Bistability Due to Self-Interaction

ACdSe/ZnSe SQD in the proximity of a SiO2-ITO interface, excited by a plane wave
with ρ = 525nm, is considered. The plane wave propagates from the lower to the
upper medium forming an angle of 45∈ with the interface, and is polarized parallel
to it (s polarization). The following parameter set will be used: the transition energy
�φ0 = 2.36 eV (corresponding to the optical transition in a 3.3nm SQD), the SQD
dielectric constant εs = 6.2, the SQD centre-to-interface distance z = 6 nm, the
SQD transition dipole moment μ = 0.65 eV · nm [11] and the relaxation constants
1/ψ = 0.8 ns and 1/� = 0.3 ns [12].

Figure7.4 shows the population difference Z and the polarization intensity |P|2
of the stationary state (Ż = Ṗ = 0, see [16]) versus the excitation intensity for the
set of parameters specified above, Vg = 0V and different detunings from resonance
�. The excitation intensity is given in terms of the bare Raby frequency,

�0 = |μ||E0|
�

,

whereE0 is thefield at z = 0, if the spacewere homogeneous,with θ = θ2(Vg = 0, z).
Figure7.5 shows the regions of the parameter space {Vg, �, z} which manifest

optical bistability. This means that, for a range of excitation intensities �0, they
present two stable stationary solutions. The figure shows that the bistability is a
common feature of the simulated system for a wide range of parameters, as long as
the feedback parameter G is large enough.

For Vg = 0V, the field dependences of Z and P, have three allowed values for a
given intensity |�0|2/(ψ�) within a window −1.7� ≤ � ≤ 12.9�. This bistability
range shrinks to −1.1� ≤ � ≤ 8.4� for Vg = 1.3V (see the black dashed vertical
lines in Fig. 7.5). From now on this parameter will be set to � = 0, i.e., the system
will be excited with the frequency given by the SQD resonance.
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Fig. 7.4 Population difference Z = πee − πgg (left) and SQD polarization intensity |P|2 (right) for
different detunings �, as functions of the external field intensity �0/

≡
ψ�, with no gate voltage Vg

Fig. 7.5 Regions with optical
bistability versus Vg , �, z. For
each z, the region enclosed
by the lines can sustain stable
states with different popula-
tions and polarizations

7.3 Electro-Optical Hysteresis

Using the configuration described above, the stationary solutions were calculated
for a wide range of values {Vg,�0}, as shown in Fig. 7.6, where the regions without
bistability are marked in blue, whereas the bistable regions are plotted in red (stable
branches) and grey (unstable one). If the parameters Vg, �0 are adiabatically swept
back and forth across the bistable region, the time evolution of Z and P, calculated
integrating Eq. (7.2), shows hysteresis loops, with sharp changes at the boundaries of
the bistable regions. This is addressed in Fig. 7.7 for the case of constant Vg = 0V,
plotting both the stationary solutions and the behaviour of the dynamic simulation.
The intensity of the incoming light is changed using a triangular profile, going from
|�0|2 /(ψ�) = 0 to a maximum value of 60 and then returning to 0. The comple-
mentary time-domain simulation, with constant |�0|2 /(ψ�) = 21 and Vg being
swept back and forth across the bistable region using the triangular profile, with the
maximum voltage Vg = 1.65V, is shown in Fig. 7.8.

To observe the hysteresis, the initial and final points should be monostable, so
that the system can be flipped in both directions. This is easily met when Vg is kept
constant and�0 sweeps back and forth, as shown in Fig. 7.6. It is possible to find full
hysteresis loops for any fixed value of Vg , but the bistability region narrows as the
gate voltage is raised. This is due to the fact that the self-interaction term G decreases,
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Fig. 7.6 Stationary solutions
of the population difference Z
in the system, as a function of
the incoming field and the gate
voltage, for � = 0�, z =
6nm. The regions without
bistability are marked in blue,
whereas the bistable regions
are plotted in red (stable
branches) and grey (unstable
one). For a constant voltage
Vg = 0 (black dashed line) and
a constant external incoming
field |�0|2/(ψ�) = 21 (dash-
dotted line), hysteresis loops
are shown in Figs. 7.7 and 7.8,
respectively

because the profile of the dielectric gradient becomes smoother. As a consequence,
the layer turns more transparent to the evanescent waves, which dominate the self-
interaction when z ≤ ρ. Both the change in the dielectric permittivity θ(z) and its
effect on the self-interaction term are shown in Fig. 7.2.

Hysteresis loops controlled by the gate voltage require a careful choice of the
excitation intensity �0, as there is a narrow region for which hysteresis loops can
be attained. Nevertheless, this region can be widened by placing the SQD closer to
the interface. As the dipole and its image get closer, the fastest decaying evanescent
waves dominate the interaction, and these waves are the most affected by changes
of the local permittivity at the interface.

7.4 Non-Adiabatic Branch Flips

The speed at which the system can be flipped back and forth is among its most
prominent features, both for its fundamental interest and its possible integration in
devices operating at high frequencies. It can be tested by setting a constant illumi-
nation where electro-optical hysteresis is known to occur, e.g., |�0|2 /(ψ�) = 22.
Then, and initial voltage is chosen approximately in themiddle of the bistable region,
Vg,0 = 1.1V. For this parameters, the system shows bistability. Then, a voltage pulse
is applied, using a Gaussian profile,

Vg(t) = Vg,0

[
1 ± exp

(
− t2

∂2

)]
,
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Fig. 7.7 Hysteresis loops (solid lines) for the population difference Z and the squared dipole
amplitude |P|2, when the external incoming field is swept adiabatically back and forth across the
bistable region (arrows show the direction of sweeping), with a constant gate voltage Vg = 0. The
stationary solutions are plotted using dashed black lines (the same line style as in Fig. 7.6)

Fig. 7.8 Hysteresis loops (solid lines) for the population difference Z and the squared dipole
amplitude |P|2, when the gate voltage is swept adiabatically back and forth across the bistable
region (arrows show the direction of sweeping), with a constant incoming field |�0|2/(ψ�) = 17.
The stationary solutions are plotted using dot-dashed black lines (the same line style as in Fig. 7.6)

where ∂ defines the pulse duration. The plus sign applies for flips from the lower to
the upper branch, whereas the minus is set for the opposite branch flip. The evolution
of the system, for 2∂ = 1, 2, 3 ns, is plotted in Fig. 7.9. For 2∂ = 1 ns, the flipping
does not occur in any direction, whereas for 2∂ = 3 ns it always happens. However,
there is an intermediate regime, exemplified by 2∂ = 2 ns, where the system can
only flip from the lower to the upper branch.

The dynamics of the system out of equilibrium is governed by the position of the
stationary solution. The stable branches act as attractors, and the unstable as repeller.
Therefore, after switching off the pulse, the system will prefer to move to the stable
branch that can be reached without crossing the instability. This is apparent in the
plots of the population: before reaching the initial voltage, the evolution bends in the
opposite direction to the unstable branch.

However, more features become evident after a careful inspection of Fig. 7.9.
The dynamics of the flips with positive voltage pulse (red lines) is faster than
the one with negative pulses (blue). This question has been thoroughly addressed
for an SQD+MNP system with optical hysteresis in [26]. The authors proved that
the switching time from the lower to the upper branch is proportional to ψ, and that
the opposite switching time diverges if the excitation does not move far from the
equilibrium position. For the system studied here, the critical point for this switching
lies at Vg ⇔ 0.6V. Although the negative pulse reaches Vg = 0V, which might seem
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Fig. 7.9 Time evolution of the system under gate voltage pulses of different durations. Dot-dashed
lines represent the stationary solutions. The gate-voltage pulse has a Gaussian profile Vg(t) =
1.1[1 ± exp(−t2/∂2)] V, with ∂ = 0.5 ns (upper panels), ∂ = 1.0 ns (central) and ∂ = 1.5 ns
(lower). Blue lines correspond to an initial condition in the upper stable branch which is subjected
to a negative voltage pulse, whereas red ones start in the lower stable branch and are subjected to a
positive pulse. Insets in the right panels show the pulses shape, along with the characteristic pulse
duration 2∂

a large shift, the evolution of the feedback parameter G with the applied voltage is
smooth (right panel of Fig. 7.2), and the renormalization of E0,in is negligible, and
therefore the net effect on the SQD is small.

7.5 Summary

A SQD embedded in a dielectric host grown on top of a substrate material was
studied. The redistribution of charges at the interface, due to the dipole moment
of the SQD results in a feedback mechanism for the SQD. It was shown that this
self-action results in bistability and optical hysteresis.
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The substrate was chosen to be a degenerate semiconductor, namely ITO. The
application of a gate voltage to the ITO creates an accumulation layer close to
the interface, which locally changes the optical response of the material [17], and
therefore modulates the self-action of the SQD. Using that gate voltage, it was
proved that for a fixed external illumination, the hysteresis of the system can be
electrically controlled, providing a novel mechanism to control quantum dots, with
possible applications such as electro-optical switches, modulators or memory cells
at nanoscale in the visible.

To conclude, this work can be extended to systems with multiple interacting
SQDs. The modulation of the refractive index in the substrate allows for a tuning of
the interaction between neighbouring SQDs, with possible exciting applications in
quantum information processing.
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Chapter 8
Conclusions and Prospects

In this chapter the conclusions of this Thesis are put together and summarized.
A critical analysis will be made, exploring the possible limitations of our proposals.
Finally, some currently ongoing research, as well as prospects, will be commented.

8.1 Conclusions Regarding Electronic Nanodevices
Based on Graphene

In Chap.3, a new quantum interference device based on a graphene nanoring with
60∼ turns was proposed and studied. Transport properties of the device were found
to be very sensitive to the type of edges (zigzag or armchair). The ring comprised
of nanoribbons with armchair edges and parabolic dispersion relation with a gap
proved to be the most advantageous for electronic transport because, in that case, the
transmission pattern presented wide bands of high electronic transmittance. It was
shown that the current flow through the device can be controlled by the side-gate
voltage. Such a voltage changes the relative phase of the electronwave function in the
two arms of the ring resulting in constructive or destructive interferences at the drain.
Consequently, itwas proved that the current flowcan bemodulated efficientlywithout
applying a magnetic field, so the device operates as a quantum interference effect
transistor. Its performance was shown to be robust under moderate edge disorder.
It should be noted that the most prominent feature of this setup, 60∼ turns, has been
experimentally observed [1].

The former device was extended in Chap.4 to be used as a novel spin filter,
by placing a graphene ring with the same geometry above a ferromagnetic strip.
It was shown that, due to the exchange splitting induced by the magnetic ions of
the ferromagnetic layer, the transmission coefficient is different for spin up and spin
down electrons, giving rise to the polarization of the conductance and the electric
current. The ring geometry strongly enhances the current polarization, compared to
a simple aGNR with a ferromagnetic layer on top of it, and it allows the current
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and its polarization to be controlled by a side-gate voltage. A detailed study was
made regarding the effect of edge disorder and other fabrication imperfections, such
as the asymmetry of the ring. The predicted effects were shown to be robust under
moderate perturbations. Under some circumstances, asymmetries in the ring enhance
the behaviour of the polarization, particularly in the case where one of the arms is
made wider than the other. Finally, a simple model was introduced to explain the
observed Fano resonances in the transmissions, as well as their relative width.

The possibility of getting a spin-dependent response using ferromagnetic strips
led to the idea of designing a spintronic device based on graphene nanoribbons.
This would strongly simplify the fabrication process. However, an aGNR with a
ferromagnetic strip does not provide a strong spin-dependent response. That is why
an aGNR and a regular array of ferromagnetic strips grown on top of it was proposed
and studied in Chap.5. This regular array creates a spin-dependent superlattice.
It was shown that the electric current through the device can be highly polarized.
Moreover, the two polarized components of the current manifest non-monotonic
dependencies on the source-drain voltage. In particular, both spin-dependent current-
voltage characteristics present regions with negative differential resistance for the
source-drain voltage in the range of a few millivolts. The device operates therefore
as a low-voltage regular Esaki diode for the spin-polarized currents. The usage of
a superlattice induced by ferromagnets rather than by usual electrostatic gates is
very attractive from the point of view of the circuit integration and device density.
Unlike the long-range electrostatic gate potentialswhich can interferewith eachother,
setting a practical lower limit for the inter-device distance, the exchange interaction
is very short-ranged. Its characteristic length scale is on the order of one monolayer,
which allows for very close packing of circuits and, consequently, considerably
higher device densities. Finally, it was shown that the current polarization is also a
non-monotonic function of the source-drain voltage in our proposed device, which
makes it an Esaki spin diode. This is a key feature, as in a true spintronic device the
degree of freedom that carries information is the polarization of the current rather
than its magnitude.

All of the above designs must be operating in the single mode regime in order to
use the interference effects. When the second mode comes into play the interference
bands smear out and the current control is expected to be less efficient. In this regard,
the dispersion relations of the nanoribbons forming the devices provide an important
starting point because they define the appropriate energy window where one single
mode is contributing to the transport. As the width of the nanoribbon increases the
window shrinks while its lower edge approaches the Dirac point. As an example, in
Chaps. 3 and 4, which used ribbons of width w ∞ 15 nm, such a window was on the
order of 40meV, whereas in Chap.5 (w ∞ 10 nm), it widened to about 60meV. On
the other hand, electronic transport through wider nanoribbons is less affected by the
edge disorder. These considerations should be taken into account when designing
and fabricating the real world devices.

In this Thesis, charge carriers are treated as non-interacting particles. The role
of interactions in graphene is a very active research field, with special focus on
electron-electron and electron-phonon interactions. However, the inclusion of these
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effects lies beyond the scope of this Thesis. Moreover, the non-interacting picture
has undergone a number of tests to compare with experimental measurements, with
satisfactory results.

There is also a concern regarding the feasibility of the deposition of ferromagnets
above (or below) graphene nanoribbons. It is difficult to state to which extent the
electric properties of graphene are affected by the presence of the ferromagnet. How-
ever, a recent experimental work [2] suggests that this deposition does not strongly
alter the structure of graphene, which shows a minor decrease in the mobility.

Finally, it should be pointed out that the presence of disorder in any graphene-
based device is unavoidable. Electric measurements performed in graphene nanorib-
bons show I–V characteristics with strong resonances close to the neutrality point,
as well as conductance gaps larger than the energy bands calculated theoretically
[3]. The latter is a feature that can be mapped to a transport mechanism dominated
by variable range hopping between localized state, and cannot be accounted for by
simply removing atoms from the sample edges. However, this is a field in constant
progress, and the fabrication of samples with increasing edge regularity has led to
devices where quantum transport dominates [4].

8.2 Conclusions Regarding Electro-Optical Nanodevices

The radiation patterns of a plasmonic antenna were studied in Chap. 6. The antenna
comprised a regular linear chain of identical metal nanospheres in close proximity to
an interface between two media with high dielectric contrast. When such a system is
illuminated from the higher refractive index side of the interface it can be excited by
evanescent waves. In this case the excitation does not mask the useful antenna signal,
which is advantageous for measurements and applications. It was proved that the
radiation pattern and its directivity can be controlled by changing the incidence angles
and/or polarization of the excitation. In particular, for some excitation geometries,
the antenna pattern is characterized by a very narrow main lobe whose direction can
be changed abruptly by a relatively small change of incidence angles.

Initially, the antenna radiation patterns were calculated using the traditional, much
more numerically elaborated and accurate, Sommerfeld integrals approach. Then a
much simpler one, based on the image dipole and the stationary phase approxima-
tions, was proposed. It was shown that, despite the complexity of the system, the
analytical expression for the radiation patterns gives an excellent description of the
main features of the antenna response. These simple formulas can become a useful
tool for solving the inverse problem: engineering a system that has a desired radiation
pattern.

Deviations from regularity in the size and shape of the particles and in the inter-
sphere distance are to be expected in the experimental realization of this proposal. It is
quite clear that disorder would lead to some smearing of the sharp features. However,
plasmon resonances of nanoparticles are broad and a relatively small change of their
sizes would not affect the polarizability to a large extent. The same can be said about
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the interaction: being a long range one it is not very sensitive to small deviations of
particle positions.

In Chap.7, an SQD embedded in a dielectric host grown on top of a substrate
material was studied. The redistribution of bonded charges and currents at the inter-
face, due to the dipole moment of the quantum dot results in a feedback mechanism
for the SQD. It was shown that this self-action results in bistability and optical
hysteresis. The substrate was chosen to be Indium Tin Oxide, a degenerate semicon-
ductor. The application of a gate voltage to the ITO creates an accumulation layer
close to the interface, which locally changes the optical response of the material
[5], and therefore modulates the self-action of the SQD. Using that gate voltage, it
was proved that for a fixed external illumination, the hysteresis of the system can be
electrically controlled, providing a novel interaction mechanism with quantum dots,
with possible applications such as electro-optical switches, modulators or memory
cells at nanoscale in the visible.

In order to keep the number of parameters as small as possible, a number of
assumptions were made in this work. First, the SQDwas assumed to have a spherical
symmetry. However, real CdSe-based SQDs feature a small ellipticity. In addition
to it, its wurtzite structure produces an emission transition dipole moment which
is degenerate only in two dimensions [6] (the excitation transition dipole moment
remains 3-D isotropic). This feature could easily be implemented in the calculations
but, for clarity, the simpler model was chosen.

The presence of an accumulation layer in the substrate is due to an applied back
voltage. This requires adding a couple of leads to the system, which could be incom-
patible with the excitation via plane waves. However, it would be straightforward
to implement a different type of illumination, e.g., via the guided modes of the
structure [5].

8.3 Prospective Research

During this Thesis, a number of projects related to the ones presented here have been
envisioned. A non-exhaustive list of them is:

• As an extension of Chaps. 3 and 4, it would be interesting to study the effect of
a constant magnetic field in the ring devices. A system with both electric and
magnetic fields could show some very interesting fundamental properties, such as
electrically suppressed Aharonov-Bohm oscillations.

• The geometry in Chap.5 was chosen to be symmetrical with respect to the axis
of the nanoribbon. This simplified the usage of the Dirac formalism, as well as
the analysis of the superlattice created. However, devices comprising asymmetri-
cally placed ferromagnets could induce very exotic outputs. As an example, if the
output carriers were angle-resolved, an angle-dependent spin polarization could
be observed. Spin puddles, i.e., regions with higher probability of finding carriers
with one spin sign, could also be found.
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• Due to the limitations of the point dipole approximation, MNPs in Chap. 6 were
restricted to be at a distance d √ 3r for neighbouring particles, and the centres
were at a distance z √ 3r from the interface. If these limitations were avoided by
using a more advanced numerical technique, new fascinating phenomena could
be added to the system. As an example, particles placed closer to the interface
are known to produce strong shifts of the resonances. Furthermore, if the bounds
to the centre-to-centre distance were removed, multipolar contributions are to
be expected, which would enrich the radiation patterns with new features. The
replacement of the spheres by ellipsoids would increase the band width of the
device.

• In the literature, it is widely accepted that the point dipole approximation holds
for centre-to-centre distance d ≤ 3r [7, 8]. However such a criterion does not
exist for the centre-to-interface distance. By studying the dipole moment with the
Boundary Element Method, evidence was found that, for the parameters used in
Chap.6, the criterion is z � 3r . However, a general criterion, regardless of the
materials chosen, would be a fundamental breakthrough in this field.

• The work presented in Chap.7 can be easily extended to systems with multiple
interacting quantum dots. The modulation of the refractive index in the substrate
allows for a tuning of the interaction between neighbouring SQDs, with possible
exciting applications in quantum information processing.
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Appendix A
TMM and QTBM Methods

Throughout part I, the following problem has been put forward a number of times:

Given a discrete system governed by a TB Hamiltonian, and connected to N = 2 semi-
infinite leads, calculate the wave function |ψ∼ of the whole system, if the set of eigenmodes
entering in the system through the leads is known.

Only the easiest case needed to be considered, i.e., a mode
∣
∣vS,n(E)

〉

with a given
wave number kS,n entered the system through the source lead, and no modes entered
through the drain lead. Then, the wave function in the whole system that matched
the boundary conditions was calculated. Using this wave function, it was possible to
calculate the outgoing modes, both in the left lead—reflection—and in the right—
transmission.

This typeof systems is a subset of the one sketched inFig.A.1, comprising N leads,
labelled Li , i = 1, . . . , N . Each lead Li is a quasi-one dimensional system with
spatial period �i , made up of identical cells, named Ci, j , j = 0, 1, . . . . The number
of atoms in each cell is Mi . In the method described below, the atoms belonging to
the cell Ci, j can only be connected to the atoms in the previous, in the same or in
the next cell, i.e., Ci, j−1, Ci, j , Ci, j+1. In order to fulfil this condition, the cell can
span multiple primitive cells of the quasi-one dimensional lead. It is the goal of the
present appendix to develop a method to calculate the scattering states of the system,
extending the method considered in [1] to systems with non-rectangular lattices. The
appendix is structured as follows. First, the QTBM is formally presented in Sect.A.1.
This method requires the calculation of the eigenmodes corresponding to the leads,
a topic covered in Sects. A.2 and A.3, and illustrated with simple examples.

A.1 Quantum Transmission Boundary Method

First, the i th lead is considered as an isolated system. At any given energy E , there
are 2Mi eigenmodes, comprising:
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Fig. A.1 Scheme of the
system where the QTBM
is applied. It comprises N
rectangular, perfect leads of
infinite length, labelled Li .
Each lead i can be split in
sets of atoms of identical
size Mi , labelled (from the
outermost to the innermost),
Ci, j , j = 0, 1, . . . , each with
the same width �i

• Mi ingoing eigenmodes
∣
∣
∣vini,n

〉

, with wavenumber kini,n ,

• Mi outgoing eigenmodes
∣
∣
∣vouti,n

〉

, with wavenumber kouti,n ,

where
∣
∣
∣vin(out)i,n

〉

is defined as the wave vector at Ci,0. If the wave vector kin/outi,n is real,

then the eigenmode is propagating, otherwise being evanescent. For propagating
eigenmodes, the test to see if it is going in or out of the system is the sign of
its associated current (see Sect. 2.3.2), whereas for evanescent eigenmodes, they
are considered ingoing if their amplitude decrease as they approach the system. It
should be noted that this classification, though physically meaningful, is arbitrary:
the formalism could also be applied to 2Mi generic eigenmodes, without further
classifications.

The wave functions in two consecutive cells of the i th lead can be written in terms
of the eigenmodes:

∣
∣Ci,0

〉 =
Ni∑

n=1

ai,n

∣
∣
∣vini,n

〉

+
Ni∑

n=1

bi,n
∣
∣vouti,n

〉 ∞ V̂in
i · ai + V̂out

i · bi

∣
∣Ci,1

〉 =
Ni∑

n=1

ai,n

∣
∣
∣vini,n

〉

eikini,n�i +
Ni∑

n=1

bi,n
∣
∣vouti,n

〉

eikouti,n �i ∞ Ŵin
i · ai + Ŵout

i · bi ,

(A.1)

where the following matrix notation, with vectors aligned in columns, has been used:

(

V̂in(out)
i

)

m,n
∞

(

vin(out)i,n

)

m

(

Ŵin(out)
i

)

m,n
∞ eikin(out)i,n �i

(

vin(out)i,n

)

m
. (A.2)

In the problem considered, the amplitudes of the incoming modes ai,n are known,
and the wave functions need to be calculated. Therefore, it is useful to use the above
equations to remove the unknown outgoing amplitudes bi,n :
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∣
∣Ci,1

〉 − Ŵout
i

(

V̂out
i

)−1 ∣
∣Ci,0

〉 =
[

Ŵin
i − Ŵout

i

(

V̂out
i

)−1
V̂in

i

]

· ai , (A.3)

which form a set of Ni equations with 2Ni unknowns (the wave function in the atoms
belonging to both cells).

Setting M to be the total number of atoms in the system, i.e., the total number of
unknowns, M independent equations are needed:

• The time-independent Schrödinger equation

H |ψ∼ = E |ψ∼ (A.4)

provides M − ∑N
i=1 Mi equations. They can be obtained by projecting the wave

function in any given atomic orbital
∣
∣φ j

〉

, i.e., left multiplying
〈

φ j
∣
∣ at both sides of

Eq. (A.4). This cannot be done for the atoms belonging to the first cell of each lead
Ci,0, as the HamiltonianH is ill-defined: the atoms in these cells are connected to
atoms outside the section of the system chosen as basis set.

• Equation (A.3) provides
∑N

i=1 Mi equations.

It is possible to write this set of equations in a compact way. Starting with

(H − E) |ψ∼ ∞ M̂0 |ψ∼ = 0 , (A.5)

the rows of M̂0 which correspond to atoms belonging to the cells Ci,0 are replaced
by the left side of the corresponding equation in Eq. (A.3). The element of the vector
0 in the same row is replaced by the independent term of the same equation, i.e.,
its right-hand side. Therefore, the scattering state |ψ∼ is obtained by solving a linear
system,

M̂ |ψ∼ = b , (A.6)

with both M̂ and b being sparse arrays. Numerous numerical algorithms are available
for solving this type of systems.

A.2 Eigenmodes in the Leads: Transfer Matrix Method

In the literature, the eigenmodes in the system for a given energy E are usually
obtained by means of the Transfer Matrix Method [2]. Let Ĥl,l−1, Ĥl,l , Ĥl,l+1 be the
blocks of the full Hamiltonian for the lead, Ĥ , which connect the atoms in the cell l
with the atoms in the previous, in the same and in the next cells, respectively. If the
Hamiltonian is projected on the basis formed by the atoms belonging to the lth cell,
the following matrix equation is obtained:

Ĥl,l−1ψl−1 + Ĥl,lψl + Ĥl,l+1ψl+1 = Eψl , (A.7)
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Fig. A.2 Left panel shows the scheme of an infinite ribbon with square lattice. For simplicity, the
number of rows is set to 2. The lth cell and their neighbouring cells are highlighted using alternate
grey tones. Right panel sketches the dispersion relation of the system

where ψl is the set of coefficients of the wave function in that basis. This equation
can be rewritten as the following block matrix:

(

ψl+1
ψl

)

=
(

−Ĥ−1
l,l+1

(

Ĥl,l − E
)

−Ĥ−1
l,l+1 Ĥl,l−1

1̂ 0̂

)(

ψl

ψl−1

)

= eik�

(

ψl

ψl−1

)

,

(A.8)

where � is the cell width and the latter equality has been obtained using Bloch’s
theorem. Therefore, the eigenmodes in Eq. (A.8) correspond to the propagating (or
evanescent) eigenmodes in the structure.

However, this method requires a matrix inversion. If there are atoms in the cell
that are not connected both to the following cell, then there will be rows of the matrix
Hl,l+1 with all their elements equal 0, which results in a singular matrix. This is the
case of graphene.

A.2.1 Application: Square Lattice

As a simple example of the TMM, an infinite ribbon with square lattice and two rows
is considered (see Fig.A.2). Setting the hopping t = −1 and the onsite energy to 0,
the part of the Hamiltonian which affects the lth cell reads
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⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
...

...
... . · ·

· · · Hl−1,l−1 Hl−1,l Hl−1,l+1 · · ·
· · · Hl,l−1 Hl,l Hl,l+1 · · ·
· · · Hl+1,l−1 Hl+1,l Hl+1,l+1 · · ·
. · · ...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎠

= −

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
...

...
...

...
...

... . · ·
· · · 0 1 1 0 0 0 · · ·
· · · 1 0 0 1 0 0 · · ·
· · · 1 0 0 1 1 0 · · ·
· · · 0 1 1 0 0 1 · · ·
· · · 0 0 1 0 0 1 · · ·
· · · 0 0 0 1 1 0 · · ·
. · · ...

...
...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(A.9)

The transfer matrix T can be constructed using the definition in Eq. (A.8):

T =

⎛

⎜
⎜
⎝

−E −1 −1 0
−1 −E 0 −1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠

. (A.10)

The eigenvalues of this matrix are

ψ1 = 1

2

(

1 − E ±
√

−3 − 2E + E2
)

ψ2 = 1

2

(

−1 − E ±
√

−3 + 2E + E2
)

, (A.11)

and setting ψi = eik�, the following dispersion relations for the two bands are
obtained:

E(k) = ±1 − 2 cos(k�). (A.12)

Note that the four allowed values in Eq. (A.11) lead to only two bands, due to the
k √ −k symmetry of the two possible sign choices of the square root. The band
structure is plotted in the right panel of Fig.A.2. The same result can be obtained
by using symmetric and antisymmetric ansatz wave functions, i.e., a wave function
with the equal values (1, 1) in the two atoms of the unit cell, or with opposite signs,
(1,−1).

A.3 Effective Transfer Matrix Method

A generalization of the TMM allows the eigenmodes of more general structures to be
calculated (see [3], appendix A, for its application to graphene). It requires a careful
analysis of the unit cell to divide it into two sub-cells, labelled L and R. The sites in
both of them must only be connected to sites belonging to the same subcell or to its
nearest neighbours. Furthermore, all the sites belong to L must be connected to both
neighbouring R subcells.
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Then, the time-independent Schrödinger equation reads

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

. . .
...

...
...

... . · ·
· · · hL sL ,R 0 0 · · ·
· · · s∗

L ,R h R dR,L 0 · · ·
· · · 0 d∗

R,L hL sL ,R · · ·
· · · 0 0 s∗

L ,R h R · · ·
. · · ...

...
...

...
. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

...

ψl,L

ψl,R

ψl+1,L
ψl+1,R

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= E

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

...

ψl,L

ψl,R

ψl+1,L
ψl+1,R

...

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, (A.13)

where the discrete translation symmetry of the infinite ribbon and the hermiticity
of the Hamiltonian, have been used. It should be noted that hL , h R are square
matrices, whereas sL ,R, dR,L are in general rectangular. Two different equations can
be obtained from this eigenvalue equation:

s∗
L ,Rψn,L + h Rψn,R + dR,Lψn+1,L = E ψn,R

d∗
R,Lψn,R + hLψn+1,L + sL ,Rψn+1,R = E ψn+1,L . (A.14)

It is possible to combine both equations to get one which only involves wave
functions in the L sub-cells, but it is necessary to calculate left inverses of rectangular
matrices. It can be shown that the left inverse of amatrixwith dimensionsm×n exists
if and only if the rows (columns) are linearly independent, for m > n(m < n) [4].
This requirement is fulfilled by setting the atoms to be connected as described before.
Then:

sL ,R (E − h R) −1dR,Lψn+2,L

=
(

E − d∗
R,L (E − h R) −1dR,L − sL ,R (E − h R) −1s∗

L ,R − hL

)

ψn+1,L

− d∗
R,L (E − h R) −1s∗

L ,Rψn,L

∇ ψn+2,L = T̂1,1ψn+1,L + T̂1,2ψn,L , (A.15)

which can be rewritten as a transfer matrix,

(

ψn+2,L
ψn+1,L

)

=
(

T̂1,1 T̂1,2
1̂ 0̂

)(

ψn+1,L
ψn,L

)

. (A.16)

A.3.1 Application: Hexagonal Lattice

• aGNR with N = 1
Using the previous approach, the dispersion relation of the simplest aGNR will be
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Fig. A.3 Scheme of an infinite aGNR (zGNR) is shown in the left (right) panel. For simplicity, the
width of both samples has been set to one cell. A valid separation of the unit cells in two sub-cells
is plotted using alternative light grey—L regions— and dark—R

Fig. A.4 Dispersion relations
of the nanoribbons shown in
Fig.A.3, obtained using the
eigenvalues of the matrices
Eqs. (A.18) and (A.20)

studied. This ribbon is plotted in the left panel of Fig.A.3. The atoms are numbered
from left to right, and if they belong to the same column, from the lower to the
upper. The elements of the Hamiltonian defined by Eq. (A.13) read:

hL = (

0
)

sL ,R = (−1 −1 0 0 0
)

h R =

⎛

⎜
⎜
⎜
⎜
⎝

0 0 −1 0 0
0 0 0 −1 0

−1 0 0 0 −1
0 −1 0 0 −1
0 0 −1 −1 0

⎞

⎟
⎟
⎟
⎟
⎠

dR,L =

⎛

⎜
⎜
⎜
⎜
⎝

0
0
0
0

−1

⎞

⎟
⎟
⎟
⎟
⎠

.

Defining the effective transfer matrix T as in Eq. (A.16),

T =
( 1

2

(

5 − 6E2 + E4
) −1

1 0

)

(A.18)

is obtained. Then, setting the eigenvalues to be eik�, the dispersion relation is
obtained, and plotted in the left panel of Fig.A.4. The symmetry E √ −E is due
to det(T ) being a biquadratic polynomial of E . The number of bands being smaller
than the number of atoms in the unit cell is due to the symmetric configuration,
which produces degenerate bands.
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• zGNR with N = 1

The same procedure can be applied to calculate the dispersion relation of a zGNR
with N = 1. In this case, the elements of the Hamiltonian read:

hL =
(

0 −1
−1 0

)

sL ,R =
(−1 0

0 −1

)

h R =
(

0 0
0 0

)

dR,L =
(−1 0

0 −1

)

. (A.19)

The resulting effective Transfer Matrix,

T =

⎛

⎜
⎜
⎝

−2 + E2 E −1 0
E −2 + E2 0 −1
1 0 0 0
0 1 0 0

⎞

⎟
⎟
⎠

, (A.20)

allows the dispersion relation to be obtained (right panel of Fig.A.4).
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Appendix B
Green’s Tensor in a Stratified Media

In the second part of this Thesis, corresponding to Chaps. 6 and 7, it has been neces-
sary to calculate the radiation of a dipole on top of a stratified medium. This problem
traces back more than a century, to the seminal work by Sommerfeld [1]. Originally,
it was formulated to understand the effect of the Earth on the transmission of signals
through wireless telegraphy. If the electromagnetic excitation is a plane wave, the
problem can easily be solved by using the Fresnel coefficients, which connect the
incident, reflected and transmitted waves with the appropriate boundary conditions.
However, the case of dipoles is far more complex, with the algebra leading to final
expressions which involve the integration of non-trivial functions in the complex
plane.

Due to the central importance of this problem in different fields of science and
engineering, a variety of rigorous treatments can be found in the literature [5–10]. In
these references, the full problem is considered, i.e., the dipole and the measurement
can be at any position within the stratified media. In this appendix, a simpler, more
intuitive formalism will be provided, with both r0 and r lying in the upper semi-
infinite medium (see Fig.B.1). Green’s tensor (also called Green’s dyadic), which
relates the field at r with the source dipole p at r0 will be obtained.

The procedure followed is conceptually simple. A spectral decomposition of
Green’s dyadic in a homogeneous medium can be made, following the recipe of [3],
decomposing the dipole radiation in an infinite set of propagating and evanescent
waves. Every component of this decomposition can be forced to fulfil the boundary
conditions at the interfaces, which are given by the Fresnel coefficients. The resulting
expression will need to be numerically integrated.
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Fig. B.1 Schematics of the
system studied: a dipole is
placed in the upper, semi-
infinite layer of an stratified
system of N + 1 layers,
labelled from the upper to
the lower (0, . . . , N ), and N
interfaces, labelled 1, . . . , N

Fig. B.2 Schematics of the
waves. For any layer l fulfilling
0 < l < N , N being the num-
ber of interfaces, the up-going
and down-going waves, with
amplitudes labelled A�, B�,
are formally constructed by
the superposition of an infinite
set of reflected and transmitted
waves. The lower left inplot
shows the polarization vectors
ŝ—red—and p̂—blue—for a
down-propagating plane wave
with unitary wave vector k̂

B.1 Reflection and Transmission of a Plane Wave Due
to a Stratified Media

First, the behaviour of a plane wave arriving to the upper interface will be studied.
The geometry considered here is given by a set of N interfaces, placed at z =
di , i = 1, . . . , N , separating N + 1 different media. The properties of the media are
given by their corresponding (scalar) permittivities and permeabilities, π�,μ�. This
constants determine the norm of the wave vector in each media, k� = (ρ/c)n�, with
n� ∞ ◦

π�μ� being the refractive index.
Let a plane wave arrive to the the upper interface. The incidence of this excitation

in the stratum produces a cascade of reflection and transmission events, as sketched in
Fig.B.2. The energy and horizontal momentum conservation in these events lead to
two important consequences, namely: (i) the components of the horizontal momen-
tum kθ are conserved across the interface, and (ii) the amplitudes of the reflected and
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transmitted waves can be related via the Fresnel coefficients:

Rs
�,�+1 = μ�+1k�,z − μ� k�+1,z

μ�+1k�,z + μ� k�+1,z
Rp

�,�+1 = π�+1k�,z − π� k�+1,z

π�+1k�,z + π� k�+1,z
(B.1)

T s
�,�+1 = 2μ�+1k�,z

μ�+1k�,z + μ� k�+1,z
T p

�,�+1 = n�+1

n�

2π� k�,z

π�+1k�,z + π� k�+1,z
,

with k�,z = (k2� − k2θ)
1/2, and the superscripts s, p standing for waves with electric

field polarized along ŝ (TE modes) and p̂ (TM modes; see the lower left inplot of
Fig.B.2). If the wave vector is given by k̂ = (kx , ky,±kl,z), then

k̂(kθ, k�,z) = k
k

ŝ(kθ, k�,z) = k̂ × ẑ

|k̂ × ẑ| p̂(kθ, k�,z) = k̂ × ŝ . (B.2)

Due to the conservation of horizontal momentum kθ, the superposition of plane
waves in each layer can be represented by a set of only two different waves for
each polarization: the up-going one, given by (kθ,+k�,z), and the down-going,
(kθ,−k�,z), which, for a point placed at r = (ρ, z), read:

A�(r) = A�e
ik�,z zeikθ·ρê ∞ A�(z)e

ikθ·ρê (B.3)

B�(r) = B�e
−ik�,z zeikθ·ρê ∞ B�(z)e

ikθ·ρê ,

where the indices s, p have been dropped, and ê = ŝ, p̂ in each case. Note that the
dephasing of the plane waves in each layer has been arbitrarily taken in such a way
that it would be 0 at r = 0 if all the space was filled with the medium in that layer.
This induces an “artificial” dephasing between plane waves in neighbouring layers,
which must be accounted for in the coefficients A�, B�.

The boundary conditions to be met at the �th interface are

B�(d�) = R�,�−1A�(d�) + T�−1,�B�−1(d�) (B.4)

A�−1(d�) = R�−1,�B�−1(d�) + T�,�−1A�(d�) ,

which can be written as a transfer matrix:
(A�(d�)

B�(d�)

)

= 1

T�,�−1

(

1 R�,�−1
R�,�−1 1

)(A�−1(d�)

B�−1(d�)

)

∞ ŝ�

(A�−1(d�)

B�−1(d�)

)

,

(B.5)

where the identities

R�−1,� = −R�,�−1 T�−1,� T�,�−1 − R�−1,� R�,�−1 = 1 ,

have been used to simplify the expression. The propagation along the lth layer, from
z1 to z2, can be directly obtained from Eq. (B.3), yielding:
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(A�(z2)
B�(z2)

)

=
(

eik�,z(z2−z1) 0
0 e−ik�,z(z2−z1)

)(A�(z1)
B�(z1)

)

=
(

eik�,z z2 0
0 e−ik�,z z2

)(

e−ik�,z z1 0
0 eik�,z z1

)(A�(z1)
B�(z1)

)

∞ Ĝ−1
� (z2)Ĝ�(z1)

(A�(z1)
B�(z1)

)

, (B.6)

which finally allows the upper and lower layers of the stratum to be connected:

(AN (zN )

BN (zN )

)

= Ĝ−1
N (zN )

(
1

∏

�=N

Ĝ�(d�)ŝ�Ĝ−1
�−1(d�)

)

Ĝ0(z0)

(A0(z0)
B0(z0)

)

(B.7)

∞ T̂(zN , z0)

(A0(z0)
B0(z0)

)

(B.8)

From the elements of the matrix T̂(zN , z0) of the latter expression, generalized
transmitted and reflected coefficients can be derived by settingAN (z2) = 0 (no plane
wave coming from z = −∈), z0 = d1 and zN = dN :

R0,N = − (T̂)1,2

(T̂)1,1
T0,N = det(T̂)

(T̂)1,1
(B.9)

The validity of these expressions can be checked by comparing them with calcu-
lations using a formalism of multiple scattering. As an example, the reflection of a
plane wave in a system with three media (two interfaces separated by a distance d),
can be calculated by summing up the optical paths of rays that undergo a reflection
in the first interface (∝ R0,1), initial transmission followed by a reflection in the sec-
ond interface (∝ T0,1eik1dR1,2eik1dT1,0), etc. An analogous procedure can be used
to calculate the transmission:

R0,2 = R0,1 + T0,1eik1dR1,2e
ik1dT1,0 + T0,1eik1dR1,2e

ik1dR1,0e
ik1dR1,2e

ik1dT1,0 + · · ·

= R0,1 + T0,1eik1dR1,2

[ ∈
∑

n=0

(

eik1dR1,0e
ik1dR1,2

)n
]

eik1dT1,0

= R0,1 + e2ik1dT0,1T1,0
1 − e2ik1dR1,0R1,2

(B.10)

T0,2 = T0,1eik1dT1,2 + T0,1eik1dR1,2e
ik1dR1,0e

ik1dT1,2 + · · ·

= eik1dT0,1T1,2
1 − e2ik1dR1,2R1,0

, (B.11)

which are the results obtained using the transfer matrix method.
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B.2 Electric Field Due to a Dipole on Top of a Substrate

The derivation of Green’s tensor that relates the electric field at r with a source dipole
at r0 has been presented in the literature in a number of ways [8, 9]. Here, a method
based on the simultaneous calculation of the scalar and vector potentials has been
chosen.

First, the Maxwell equations will be used to obtain independent expressions for
the potentials in terms of the sources. In gaussian units and frequency domain, the
equations read:

≡ · E = 4∂
θ

π
≡ × H + iρπ

c
E = 4∂

c
j (B.12)

≡ · H = 0 ≡ × E − iρμ

c
H = 0 ,

where the dependence e−iρt has been assumed for all the quantities. For simplicity,
E and H are derived in terms of potentials:

E = iρ

c
A − ≡φ H = 1

μ
≡ × A . (B.13)

By using the Lorenz gauge ≡ · A = iρπμφ/c, it is possible to write two separate
differential equations for the potentials [7]:

(

≡2 + k2
)

φ = −4∂

(
θ

π
+ 1

4∂
D · ≡ 1

π

)

(B.14)

(

≡2 + k2
)

A = −4∂

c

(

μj − 1

4∂
[iρφ≡ (πμ) + c H × ≡μ]

)

, (B.15)

with k2 = (ρ2/c2)πμ being the wave vector in the medium.
In a homogeneous and isotropic medium, both μ and π are constant scalars, the

second terms in the right side of Eqs. (B.14) and (B.15) vanish, and the potentials
can be obtained using Green’s function formalism,

φ(r) = 1

π

∫

dr≤G H (|r − r≤|)θ(r≤) A(r) = 1

c

∫

dr≤G H (|r − r≤|)j(r≤) , (B.16)

where

G H (r) = eikr

r
(B.17)

is Green’s function in a homogeneous environment, given by the wave equation

[

≡2 + k2
]

G H (r) = −4∂δ(r) . (B.18)
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By using this definition for Green’s function, it is necessary to have k values yielding
positive imaginary parts, so that Green’s function vanishes as r ⇔ ∈.

For an oscillating dipole p(t) = pe−iρt placed at r0, the current density is given
by

j(r, t) = dp(t)

dt
δ(r − r0) = −iρδ(r − r0) p , (B.19)

and, by using the continuity equation,

iρθ(r) = ≡ · j(r) , (B.20)

the charge density can also be derived. Then, the potentials due to an electric dipole
can be obtained by substituting this sources in Eq. (B.16), leading to:

φ(r) = −1

π

∫

dr≤G H (|r − r≤|)≡r≤
[

δ(r≤ − r0)p
]

(B.21)

= −1

π
p ·

∫

dr≤G H (|r − r≤|)≡r≤δ(r≤ − r0) = 1

π
p ·

∫

dr≤δ(r≤ − r0)≡r≤ G H (|r − r≤|)

= 1

π
p · ≡r≤ G H (|r − r≤|)

∣
∣
∣
∣
r≤=r0

= −1

π
(≡rG H (|r − r0|)) · p

A(r) = − iρ

c
G H (|r − r0|)p .

By substituting this expressions in Eq. (B.13), the fields can be expressed in the
following tensorial form:

E(r) =
[(

ρ2

c2
11 + 1

π
≡r≡r

)
eik(|r−r0|)

|r − r0|

]

· p ∞ ĜH (r, r0) · p (B.22)

H(r) = − iρ

μ c
≡ ×

[

G H (|r − r0|)p
]

=
(

− iρ

μ c
≡rG H (|r − r0|)

)

× p , (B.23)

where ĜH (r, r0) stands for Green’s tensor which calculates the electric component
of the radiation at r due to a dipole at r0, in a homogeneous environment. From now
on, non-magnetic material will be considered, resulting in wave vectors in each layer
given by ki = ρ

◦
πi/c. In order to avoid confusions with the wave vector in vacuum,

the subscript corresponding to the upper medium will be “up” instead of “0”. Thus,
the tensor can be rewritten as:

ĜH (r, r0) = ρ2

c2

(

11 + ≡r≡r

k2up

)

eikup(|r−r0|)

|r − r0| . (B.24)

Full Green’s tensor Ĝ(r, r0) will be calculated by including the effect of the
substrate. The transfer matrix formalism described in the previous section fulfils the
boundary conditions for plane waves with a given k wave vector. However, the dipole
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does not emit a plane wave, and it is necessary to decompose the radiation in terms
of plane waves. Here, the method used closely follows the one presented in [7],
which uses a Fourier transform, converting the spatial dependence of Eq. (B.24)
into the (spatial) frequency domain. This is accomplished by using the following
substitutions:

f (x) = eikupx

x
∇ f̂ (k) = 4∂

k2 − k2up

f (x) = βxg(x) ∇ f̂ (k) = ik f̂ (k) ,

which, together with the linearity of the Fourier transform, lead to:

ĜH (k) = 4∂

πup

(

k2up11 − kk

k2 − k2up

)

, (B.25)

with k = |k|2 and M̂ = kk meaning dyadic product, (M̂)i, j = ki k j . Therefore, the
spatial Green’s tensor can be written down using the following integral:

ĜH (r, r0) = 1

2∂2πup

∫∫∫

dk

(

k2up11 − kk

k2 − k2up

)

ei k·(r−r0) . (B.26)

Here, the tensor is written in terms of plane waves, but they are not physical,
as they admit any wave vector k. This is due to the fact that radiation is an
intrinsically two-dimensional phenomenon: the integration along one coordinate
will yield the right expression. This integration can be performed using Cauchy’s
residue theorem. If the integration coordinate chosen is kz , the integrands have poles

kz = ±
√

k2up − k2x − k2y . Outside the real axis, the integral must vanish, and therefore

the choice of the upper (Im(kz) > 0) or lower (Im(kz) < 0) integration plane depends
on the sign of z − z0. Care must be taken in the integration of the ẑẑ component,
which has a singularity at r = r≤ that must be manually removed. The result of the
integration reads:

ĜH (r, r0) = i

2∂πup

∫∫

dkx dky
k2up11 − kupkup

kup,z
eikup·(r−r0) − 4∂

πup
ẑẑ δ(r − r0) ,

(B.27)

with kup,z =
√

k2up − k2x − k2y and

kup = kx x̂ + ky ŷ + sign(z0 − z)kup,z ẑ . (B.28)

The plane waves in the integrand of Eq. (B.27) are already bounded to have the
wave vector allowed by the medium. In order to replace them with the expressions
obtained in Sect.B.1, it is necessary to separate the contributions of the two possible
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polarizations, s and p. This can be done by introducing a new orthonormal system,
given for each point (kx , ky) by k̂ ∞ k̂up, ŝ and p̂, as defined in Eq. (B.2). These three
vectors form an orthonormal basis, i.e., k̂k̂ + ŝŝ + p̂p̂ = 11. Therefore, Eq. (B.27)
can be rewritten as:

ĜH (r, r0) = iρ2

2∂c2

∫∫

dkx dky
ŝŝ + p̂p̂

kup,z
eikup·(r−r0) − 4∂

πup
ẑẑ δ(r − r0) . (B.29)

Understanding the meaning of this expression is the key point in the procedure
followed. Given a dipole d, the dyadic products ŝŝ and p̂p̂ fulfil (ŝŝ)d = ŝ(ŝ · d).
Therefore, the amplitude of the planewave for a particularwave vector is proportional
to the projection of the dipole on the polarization directions. The reflection will be
obtained by means of the following steps:

1. projecting the dipole in the down-going wave polarizations ŝ(−kup,z), p̂(−kup,z)
2. adding the dephasing of the wave as it goes from the source to the upper interface
3. multiplying it by the generalized reflection coefficient in Eq. (B.9)
4. adding the dephasing due to position of the measurement point

Thus, the total field at point r0 will be given by a direct contribution, calculated using
Eq. (B.24), and the reflected contribution of the down-going waves, i.e.,

Ĝ(r, r0) = ĜH (r, r0) + Ĝrefl(r, r0) (B.30)

with reflected Green’s tensor being

Ĝrefl(r, r0) = iρ2

2∂c2

∫∫

dkx dky
ŝ(+kup,z)Rs

0,N ŝ(−kup,z) + p̂(+kup,z)Rp
0,N p̂(−kup,z)

kup,z

× exp
[

i
(

kx (x − x0) + ky(y − y0) + kup,z(z + z0)
)]

. (B.31)

Using polar coordinates, with kx = kθ cos kφ, ky = kθ sin kφ, the dyadic products
are given by:

ŝ(+kup,z)ŝ(−kup,z) =
⎛

⎝

sin2 kφ − sin kφ cos kφ 0
− sin kφ cos kφ cos2 kφ 0

0 0 0

⎞

⎠ (B.32)

p̂(+kup,z)p̂(−kup,z) = kup,z

k2up

⎛

⎝

−kup,z cos2 kφ −kup,z cos kφ sin kφ −kθ cos kφ

−kup,z cos kφ sin kφ −kup,z sin2 kφ −kθ sin kφ

kθ cos kφ kθ sin kφ k2θ/kup,z

⎞

⎠ .

As kup,z and the reflection coefficients depend only on kθ, the kφ-dependent parts of
the integrands are a product of trigonometric functions times an exponential. These
integrals define the Bessel functions, and therefore the integration can be performed.
For simplicity x − x0 ∞ θ cosφ, y − y0 ∞ θ sin φ, and the result reads
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Ĝrefl(r, r0) = iρ2

c2

∫ ∈

0
dkθ

[

Rs
0,N f̂s + Rp

0,N f̂ p
]

eikup,z(z+z0) , (B.33)

with the components of the tensors f̂s, f̂ p given by

f s
x,x = 1

kup,zθ

[

kθθ sin
2(φ)J0(kθθ) + cos(2φ)J1(kθθ)

]

f s
x,y = f s

y,x = − 1

kup,zθ
sin(φ) cos(φ)

[

kθθJ0(kθθ) − 2J1(kθθ)
]

f s
y,y = 1

kup,zθ

[

kθθ cos
2(φ)J0(kθθ) − cos(2φ)J1(kθθ)

]

f s
x,z = f s

y,z = f s
z,x = f s

z,y = f s
z,z = 0 (B.34)

f p
x,x = −kup,z

k2upθ

(

kθθ cos
2(φ)J0(kθθ) − cos(2φ)J1(kθθ)

)

f p
x,y = f p

y,x = −kup,z
k2upθ

sin(φ) cos(φ)
[

kθθJ0(kθθ) − 2J1(kθθ)
]

f p
x,z = f p

z,x = − ik2θ
k2up

cos(φ)J1(kθθ)

f p
y,y = −kup,z

k2upθ

(

kθθ sin
2(φ)J0(kθθ) + cos(2φ)J1(kθθ)

)

f p
y,z = f p

z,y = − ik2θ
k2up

sin(φ)J1(kθθ)

f p
z,z = k3θ

k2upkup,z
J0(kθθ) . (B.35)

These integrals are the so-called Sommerfeld integrals [5]. By making a spatial
rotation in the system, so that φ = 0 and using the symmetries of the system, the
number of independent terms can be reduced to 6: f s

x,x , f s
y,y, f p

x,x , f p
x,z, f p

y,y, f p
z,z .

B.3 Numerical Integration of the Sommerfeld Integrals

The numerical evaluation of the integrals defined by Eq. (B.33) is in general compli-
cated, due to a variety of factors:

• Branch cuts: the presence of square roots
√

k2i − k2θ produces branch cuts in the
integrand region, which represent lateral waves (kθ = ±ki ). As shown in [4] using
symmetry considerations, only the upper and lower media produce branch cuts.
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Fig. B.3 Schematics of a possible integration path. The path itself is shown with a solid green
arrow. A branch cut due to the upper medium (dielectric) is shown in red, whereas two different
possibilities are shown for the lower one, using solid blue (dielectric medium) and dashed blue
(lossy medium) lines. Some illustrative poles are plotted using grey disks. Finally, dashed green
arrows represent an alternative to the last segment of the integration path, if the Bessel functions
are replaced by Hankel functions

As the integration runs over the positive real axis, only two branch cuts will need
to be considered, lying at+kup, +kN . Physically, they represent lateral waves [8].

• Poles: the generalized reflection coefficient can be expressed as a fraction, whose
denominator can vanish for different values of kθ. These values represent guided
modes supported by the layers of the structure. The best known example is the SPP
for TM waves in systems with one interface, for which the generalized reflection
coefficient is simplyRp

0,1 in Eq. (B.1), whose denominator vanishes for

πdownkup,z = −πupkdown,z .

• Highly oscillatory integrand: for kθθ ∗ 1, the Bessel functions become highly
oscillatory.

For passive media (Im(ki ) < 0) and in the region of interest for the integration
�(kθ) ≥ 0, both the branch points and the poles are in the real axis or in the first
quadrant of the complex plane, i.e., they satisfy Im(kθ) ≥ 0. Therefore, the integra-
tion path can be deformed to run in the fourth quadrant and avoid the region of the
real axis with branch cuts or poles, and then make it return to the real axis. This is
illustrated in Fig.B.3, with the integration path plotted with a solid green arrow.

For measurement points close to the interface, the exponential term exp(ikup,z z)
decays very slowly. If, at the same time, the horizontal distance to the emitter θ is
large, the integrals turn out to be very complicated to evaluate along the real axis. In
this situation, it is convenient to rewriteBessel functions in terms ofHankel functions,

H (1)
n (x) = Jn(x) + iYn(x) H (2)

n (x) = Jn(x) − iYn(x) , (B.36)
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with Yn(x) being Bessel functions of the second kind. The following identity is
directly obtained from the definition:

Jn(x) =
(

H (1)
n (x) + H (2)

n (x)
)

/2 . (B.37)

The advantage of this substitution is that the asymptotic expansion of the Hankel
function is exponential, whereas for Bessel functions it is an inverse square root
times a cosine [8]:

lim
x⇔∈ Jn(x) ∼

√

2

∂x
cos

(

x − ∂n

2
− ∂

4

)

, Im(x) = 0

lim|z|⇔∈ H (1)
n (z) ∼

√

2

∂z
exp

[

i
(

z − ∂n

2
− ∂

4

)]

lim|z|⇔∈ H (2)
n (z) ∼

√

2

∂z
exp

[

−i
(

z − ∂n

2
− ∂

4

)]

. (B.38)

Therefore, each integral is split in two parts: the path of the one containing H (1)
n (kθθ)

is deformed to run parallel to the positive imaginary axis, whereas the other, with the
terms H (1)

n (kθθ), runs parallel to the negative imaginary axis (dashed green lines in
Fig.B.3).
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