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ETH Zürich
Swiss Federal Institute of Technology
Zurich, Switzerland

Axel Klar
Technische Universität
Kaiserslautern
Fachbereich Mathematik
Kaiserslautern, Germany

Enrique Zuazua
BCAM Basque Center for
Applied Mathema
Depto. Matematicas
Bilbao, Spain

ISBN 978-3-642-32159-7 ISBN 978-3-642-32160-3 (eBook)
DOI 10.1007/978-3-642-32160-3
Springer Heidelberg New York Dordrecht London

Lecture Notes in Mathematics ISSN print edition: 0075-8434
ISSN electronic edition: 1617-9692

Library of Congress Control Number: 2012949580

Mathematics Subject Classification (2010): 35R02, 35L65, 90B20

The contributions co-authored or authored by Helbing have previously been published in

The European Physical Journal B 69(4), 539–548, DOI: 10.1140/epjb/e2009-00192-5(2009),
c� EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2009, reproduction with kind permission of

The European Physical Journal (EPJ)

The European Physical Journal B 69(4), 549–562, DOI: 10.1140/epjb/e2009-00182-7 (2009),
c� EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2009, reproduction with kind permission of

The European Physical Journal (EPJ)

The European Physical Journal B 69(4), 583–598, DOI: 10.1140/epjb/e2009-00140-5 (2009),
c� EDP Sciences, Societa Italiana di Fisica, Springer-Verlag 2009, reproduction with kind permission of

The European Physical Journal (EPJ)

Networks and Heterogeneous Media 2(2), 193–210 (2007), c� American Institute of Mathematical
Sciences, Reproduction with kind permission of Networks and Heterogeneous Media (NHM).

The European Physical Journal B 70(2), 257–274, DOI: 10.1140/epjb/e2009-00213-5 (2009), c� EDP
Sciences, Societa Italiana di Fisica, Springer-Verlag 2009, reproduction with kind permission of The
European Physical Journal (EPJ)



c� Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



•



Preface

The present volume collects notes from lectures delivered for the CIME course on
Modelling and optimisation of flows on networks, held in Cetraro in the summer of
2009.

In recent years modelling of flows on networks has been the subject of many
investigations leading to an increasing number of research papers. Moreover, a wide
set of possible applications, such as vehicular traffic, blood flow, supply chains
and others, has directed the attention of mathematicians towards research domains
usually populated by engineers, physicists or researchers with other expertise.

The aim of the CIME school was to gather summer courses which could give
a wide view of modelling, analysis, numerics and control for dynamic flows on
networks. Encompassing all application domains (including irrigation channels,
data networks, air traffic management and others) was impossible, thus we focused
on mathematical approaches, which are feasible for a number of applications,
and a restricted set of specific applications, in particular vehicular traffic and
supply chains. The attempt of finding a common ground, for different mathematical
techniques to treat flows on networks, was already successful in a number of cases
both at the level of research projects (such as the Italian national INDAM project
2005) and editorial initiatives (the foundation in 2006 of a new applied math journal
entitled Networks and Heterogeneous Media).

The school took place in Cetraro, Italy, on June 15–19 2009. The course subjects
were the following:

1. Introduction to conservation laws: Alberto Bressan (PennState)
2. Optimal transportation: Luigi Ambrosio (SNS, Pisa)
3. Pedestrian motions and vehicular traffic: Dirk Helbing (ETH)
4. Control and stabilization of waves on 1-D networks: Enrique Zuazua (BCAM)
5. Modelling and optimization of scalar flows on networks: Axel Klar

(Kaiserlautern)
6. Fluid dynamic and kinetic models for supply chains: Christian Ringhofer

(Arizona State)
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viii Preface

Rationale Behind the Choice of Courses for CIME School

Taking into account the above-mentioned scientific background, courses for the
CIME school were chosen in order to give a wide view over main mathematical
techniques and their applications in specific contexts.

1. Analysis and control of linear PDEs on networks
2. Analysis of nonlinear PDEs on networks
3. Optimization techniques for complex networks
4. Numerical methods for PDEs on networks

To cover the first topic and last one for the linear PDE aspect, we decided to focus
on wave equations on networks of one-dimensional structures and, in particular, on
the use of spectral methods. Therefore, the choice was made to contact Enrique
Zuazua, Director of the Basque Center for Applied Mathematics and a world leader
on the subject. Prof. Zuazua also authored a volume on the subject (SMAI series,
Springer-Verlag, 2006).

In many applications it is natural to use conservation laws to model flows on
networks, thus for the second course we contacted Alberto Bressan of PennState
University, who was one of the major contributors of the theory of systems
of conservation laws in last 20 years and author of a well-known monograph
(Cambridge University Press, 2000).

The fourth topic for the nonlinear aspect was covered in courses dealing also
with applications, and illustrated below, of Klar and Ringhofer. Finally, for the
third topic, we individuated optimal transportation as one of the most suited
mathematical framework, and thus decided to contact Luigi Ambrosio of Scuola
Normale Superiore of Pisa, who authored various recent fundamental papers in the
subject and a monograph on the related topics of gradient flows in metric spaces
(Birkauser, 2008).

For what concerns applications related to our main theme, Dirk Helbing of
ETH of Zurich accepted to deliver a course covering both pedestrian dynamics
and vehicular traffic. Helbing was one of the pioneers in providing advanced
mathematical modelling for pedestrians with celebrated papers in Nature.

Then we focused on supply chain dynamics and thus contacted Christian
Ringhofer of Arizona State University, who coauthored a pioneering paper in 2006
providing the first model of supply chains using PDEs. The course of Ringhofer
dealt also with kinetic approaches.

Finally, Axel Klar of Kaiserlautern Technical University provided a course not
only dealing with general modelling and numerics of conservation laws on networks
but also treating coupled systems of ODEs and PDEs with examples from vehicular
traffic, supply chains and sewer systems.

The present volume contains lecture notes from the first five courses of the CIME
school. We wish readers a pleasant and fruitful reading.

Camden, NJ Benedetto Piccoli
Nice, France Michel Rascle
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A User’s Guide to Optimal Transport

Luigi Ambrosio and Nicola Gigli

Abstract This text is an expanded version of the lectures given by the first author
in the 2009 CIME summer school of Cetraro. It provides a quick and reasonably
account of the classical theory of optimal mass transportation and of its more
recent developments, including the metric theory of gradient flows, geometric and
functional inequalities related to optimal transportation, the first and second order
differential calculus in the Wasserstein space and the synthetic theory of metric
measure spaces with Ricci curvature bounded from below.

1 Introduction

The opportunity to write down these notes on Optimal Transport has been the CIME
course in Cetraro given by the first author in 2009. Later on the second author joined
to the project, and the initial set of notes has been enriched and made more detailed,
in particular in connection with the differentiable structure of the Wasserstein space,
the synthetic curvature bounds and their analytic implications. Some of the results
presented here have not yet appeared in a book form, with the exception of [44].

It is clear that this subject is expanding so quickly that it is impossible to give an
account of all developments of the theory in a few hours, or a few pages. A more
modest approach is to give a quick mention of the many aspects of the theory,
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2 L. Ambrosio and N. Gigli

stimulating the reader’s curiosity and leaving to more detailed treatises as [7]
(mostly focused on the theory of gradient flows) and the monumental book [80]
(for a—much—broader overview on optimal transport).

In chapter “A User’s Guide to Optimal Transport” we introduce the optimal
transport problem and its formulations in terms of transport maps and transport
plans. Then we introduce basic tools of the theory, namely the duality formula, the
c-monotonicity and discuss the problem of existence of optimal maps in the model
case costDdistance2.

In chapter “Hyperbolic Conservation Laws: An Illustrated Tutorial” we introduce
the Wasserstein distance W2 on the set P2.X/ of probability measures with
finite quadratic moments and X is a generic Polish space. This distance naturally
arises when considering the optimal transport problem with quadratic cost. The
connections between geodesics in P2.X/ and geodesics in X and between the time
evolution of Kantorovich potentials and the Hopf–Lax semigroup are discussed in
detail. Also, when looking at geodesics in this space, and in particular when the
underlying metric space X is a Riemannian manifold M , one is naturally lead
to the so-called time-dependent optimal transport problem, where geodesics are
singled out by an action minimization principle. This is the so-called Benamou–
Brenier formula, which is the first step in the interpretation of P2.M/ as an
infinite-dimensional Riemannian manifold, with W2 as Riemannian distance. We
then further exploit this viewpoint following Otto’s seminal work [67].

In chapter “Derivation of Non-local Macroscopic Traffic Equations and
Consistent Traffic Pressures from Microscopic Car-Following Models” we make
a quite detailed introduction to the theory of gradient flows, borrowing almost all
material from [7]. First we present the classical theory, for �-convex functionals in
Hilbert spaces. Then we present some equivalent formulations that involve only the
distance, and therefore are applicable (at least in principle) to general metric space.
They involve the derivative of the distance from a point (the (EVI) formulation)
or the rate of dissipation of the energy (the (EDE) and (EDI) formulations). For all
these formulations there is a corresponding discrete version of the gradient flow
formulation given by the implicit Euler scheme. We will then show that there is
convergence of the scheme to the continuous solution as the time discretization
parameter tends to 0. The (EVI) formulation is the stronger one, in terms of
uniqueness, contraction and regularizing effects. On the other hand this formulation
depends on a compatibility condition between energy and distance; this condition is
fulfilled in Non Positively Curved spaces in the sense of Alexandrov if the energy
is convex along geodesics. Luckily enough, the compatibility condition holds even
for some important model functionals in P2.R

n/ (sum of the so-called internal,
potential and interaction energies), even though the space is Positively Curved in
the sense of Alexandrov.

In chapter “On the Controversy Around Daganzo’s Requiem for and
Aw–Rascle’s Resurrection of Second-Order Traffic Flow Models” we illustrate
the power of optimal transportation techniques in the proof of some classical
functional/geometric inequalities: the Brunn–Minkowski inequality, the isoperi-
metric inequality and the Sobolev inequality. Recent works in this area have also
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shown the possibility to prove by optimal transportation methods optimal effective
versions of these inequalities: for instance we can quantify the closedness of E to a
ball with the same volume in terms of the vicinity of the isoperimetric ratio of E to
the optimal one.

Chapter “Theoretical vs. Empirical Classification and Prediction of Congested
Traffic States” is devoted to the presentation of three recent variants of the optimal
transport problem, which lead to different notions of Wasserstein distance: the
first one deals with variational problems giving rise to branched transportation
structures, with a “Y shaped path” opposed to the “V shaped one” typical of the mass
splitting occurring in standard optimal transport problems. The second one involves
modification in the action functional on curves arising in the Benamou–Brenier
formula: this leads to many different optimal transportation distances, maybe more
difficult to describe from the Lagrangian viewpoint, but still with quite useful
implications in evolution PDE’s and functional inequalities. The last one deals with
transportation distance between measures with unequal mass, a variant useful in the
modeling problems with Dirichlet boundary conditions.

Chapter “Self-organized Network Flows” deals with a more detailed analysis of
the differentiable structure of P2.R

d /: besides the analytic tangent space arising
from the Benamou–Brenier formula, also the “geometric” tangent space, based on
constant speed geodesics emanating from a given base point, is introduced. We also
present Otto’s viewpoint on the duality between Wasserstein space and Arnold’s
manifolds of measure-preserving diffeomorphisms. A large part of the chapter is
also devoted to the second order differentiable properties, involving curvature. The
notions of parallel transport along (sufficiently regular) geodesics and Levi–Civita
connection in the Wasserstein space are discussed in detail.

Finally, chapter “Operation Regimes and Slower-Is-Faster-Effect in the Control
of Traffic Intersections” is devoted to an introduction to the synthetic notions of
Ricci lower bounds for metric measure spaces introduced by Lott–Villani and
Sturm in recent papers. This notion is based on suitable convexity properties of a
dimension-dependent internal energy along Wasserstein geodesics. Synthetic Ricci
bounds are completely consistent with the smooth Riemannian case and stable
under measured-Gromov–Hausdorff limits. For this reason these bounds, and their
analytic implications, are a useful tool in the description of measured-GH-limits of
Riemannian manifolds.

2 The Optimal Transport Problem

2.1 Monge and Kantorovich Formulations of the Optimal
Transport Problem

Given a Polish space .X; d/ (i.e. a complete and separable metric space), we will
denote by P.X/ the set of Borel probability measures onX . By support supp.�/ of
a measure � 2 P.X/ we intend the smallest closed set on which � is concentrated.
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If X; Y are two Polish spaces, T W X ! Y is a Borel map, and � 2 P.X/

a measure, the measure T#� 2 P.Y /, called the push forward of � through T is
defined by

T#�.E/ D �.T �1.E//; 8E � Y; Borel.

The push forward is characterized by the fact that

Z
fdT#� D

Z
f ı Td�;

for every Borel function f W Y ! R [ f˙1g, where the above identity has to be
understood in the following sense: one of the integrals exists (possibly attaining the
value ˙1) if and only if the other one exists, and in this case the values are equal.

Now fix a Borel cost function c W X � Y ! R [ fC1g. The Monge version of
the transport problem is the following:

Problem 2.1 (Monge’s optimal transport problem). Let� 2 P.X/, � 2 P.Y /.
Minimize

T 7!
Z
X

c
�
x; T .x/

�
d�.x/

among all transport maps T from � to �, i.e. all maps T such that T#� D �. �

Regardless of the choice of the cost function c, Monge’s problem can be ill-posed
because:

• No admissible T exists (for instance if � is a Dirac delta and � is not).
• The constraint T#� D � is not weakly sequentially closed, w.r.t. any reasonable

weak topology.

As an example of the second phenomenon, one can consider the sequence
fn.x/ WD f .nx/, where f W R ! R is 1-periodic and equal to 1 on Œ0; 1=2/
and to �1 on Œ1=2; 1/, and the measures � WD L jŒ0;1� and � WD .ı�1 C ı1/=2.
It is immediate to check that .fn/#� D � for every n 2 N, and yet .fn/ weakly
converges to the null function f � 0 which satisfies f#� D ı0 ¤ �.

A way to overcome these difficulties is due to Kantorovich, who proposed the
following way to relax the problem:

Problem 2.2 (Kantorovich’s formulation of optimal transportation).
We minimize

� 7!
Z
X�Y

c.x; y/ d�.x; y/

in the set Adm.�; �/ of all transport plans � 2 P.X � Y / from � to �, i.e. the set
of Borel Probability measures on X � Y such that

�.A � Y / D �.A/ 8A 2 B.X/; �.X � B/ D �.B/ 8B 2 B.Y /:

Equivalently: �X# � D �, �Y# � D �, where �X; �Y are the natural projections from
X � Y onto X and Y respectively. �
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Transport plans can be thought of as “multivalued” transport maps: � DR
�x d�.x/, with �x 2 P.fxg � Y /. Another way to look at transport plans is

to observe that for � 2 Adm.�; �/, the value of �.A � B/ is the amount of mass
initially in A which is sent into the set B .

There are several advantages in the Kantorovich formulation of the transport
problem:

• Adm.�; �/ is always not empty (it contains � � �).
• The set Adm.�; �/ is convex and compact w.r.t. the narrow topology in P.X�Y /

(see below for the definition of narrow topology and Theorem 2.5), and � 7!R
c d� is linear.

• Minima always exist under mild assumptions on c (Theorem 2.5).
• Transport plans “include” transport maps, since T#� D � implies that � WD
.Id � T /#� belongs to Adm.�; �/.

In order to prove existence of minimizers of Kantorovich’s problem we recall
some basic notions concerning analysis over a Polish space. We say that a sequence
.�n/ � P.X/ narrowly converges to � provided

Z
' d�n 7!

Z
' d�; 8' 2 Cb.X/;

Cb.X/ being the space of continuous and bounded functions on X . It can be shown
that the topology of narrow convergence is metrizable. A set K � P.X/ is called
tight provided for every " > 0 there exists a compact set K" � X such that

�.X nK"/ � "; 8� 2 K :

It holds the following important result.

Theorem 2.3 (Prokhorov). Let .X; d/ be a Polish space. Then a family K �
P.X/ is relatively compact w.r.t. the narrow topology if and only if it is tight.

Notice that if K contains only one measure, one recovers Ulam’s theorem: any
Borel probability measure on a Polish space is concentrated on a �-compact set.

Remark 2.4. The inequality

�.X � Y nK1 �K2/ � �.X nK1/C �.Y nK2/; (1)

valid for any � 2 Adm.�; �/, shows that if K1 � P.X/ and K2 � P.Y / are tight,
then so is the set n

� 2 P.X � Y / W �X# � 2 K1; �
Y
# � 2 K2

o

�

Existence of minimizers for Kantorovich’s formulation of the transport problem
now comes from a standard lower-semicontinuity and compactness argument:
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Theorem 2.5. Assume that c is lower semicontinuous and bounded from below.
Then there exists a minimizer for Problem 2.2.

Proof. Compactness. Remark 2.4 and Ulam’s theorem show that the set Adm.�; �/
is tight in P.X � Y /, and hence relatively compact by Prokhorov theorem.

To get the narrow compactness, pick a sequence .�n/ � Adm.�; �/ and assume
that �n ! � narrowly: we want to prove that � 2 Adm.�; �/ as well. Let ' be
any function in Cb.X/ and notice that .x; y/ 7! '.x/ is continuous and bounded in
X � Y , hence we have

Z
' d�X# � D

Z
'.x/ d�.x; y/ D lim

n!1

Z
'.x/ d�n.x; y/ D lim

n!1

Z
' d�X# �n D

Z
' d�;

so that by the arbitrariness of ' 2 Cb.X/ we get �X# � D �. Similarly we can prove
�Y# � D �, which gives � 2 Adm.�; �/ as desired.

Lower semicontinuity. We claim that the functional � 7! R
c d� is l.s.c. with

respect to narrow convergence. This is true because our assumptions on c guarantee
that there exists an increasing sequence of functions cn W X � Y ! R continuous
an bounded such that c.x; y/ D supn cn.x; y/, so that by monotone convergence
it holds Z

cd� D sup
n

Z
cn d�:

Since by construction � 7! R
cn d� is narrowly continuous, the proof is complete.

ut
We will denote by Opt.�; �/ the set of optimal plans from � to � for the

Kantorovich formulation of the transport problem, i.e. the set of minimizers of
Problem 2.2. More generally, we will say that a plan is optimal, if it is optimal
between its own marginals. Observe that with the notation Opt.�; �/ we are losing
the reference to the cost function c, which of course affects the set itself, but the
context will always clarify the cost we are referring to.

Once existence of optimal plans is proved, a number of natural questions arise:

• Are optimal plans unique?
• Is there a simple way to check whether a given plan is optimal or not?
• Do optimal plans have any natural regularity property? In particular, are they

induced by maps?
• How far is the minimum of Problem 2.2 from the infimum of Problem 2.1?

This latter question is important to understand whether we can really consider
Problem 2.2 the relaxation of Problem 2.1 or not. It is possible to prove that if c
is continuous and � is non atomic, then

inf (Monge) D min (Kantorovich), (2)

so that transporting with plans can’t be strictly cheaper than transporting with maps.
We won’t detail the proof of this fact.
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2.2 Necessary and Sufficient Optimality Conditions

To understand the structure of optimal plans, probably the best thing to do is to start
with an example.

Let X D Y D R
d and c.x; y/ WD jx � yj2=2. Also, assume that �; � 2 P.Rd /

are supported on finite sets. Then it is immediate to verify that a plan � 2 Adm.�; �/
is optimal if and only if it holds

NX
iD1

jxi � yi j2
2

�
NX
iD1

jxi � y�.i/j2
2

;

for any N 2 N, .xi ; yi / 2 supp.�/ and � permutation of the set f1; : : : ; N g.
Expanding the squares we get

NX
iD1

hxi ; yi i �
NX
iD1

˝
xi ; y�.i/

˛
;

which by definition means that the support of � is cyclically monotone. Let us recall
the following theorem:

Theorem 2.6 (Rockafellar). A set 	 � R
d �R

d is cyclically monotone if and only
if there exists a convex and lower semicontinuous function ' W Rd ! R [ fC1g
such that 	 is included in the graph of the subdifferential of '.

We skip the proof of this theorem, because later on we will prove a much more
general version. What we want to point out here is that under the above assumptions
on � and � we have that the following three things are equivalent:

• � 2 Adm.�; �/ is optimal.
• supp.�/ is cyclically monotone.
• There exists a convex and lower semicontinuous function ' such that � is

concentrated on the graph of the subdifferential of '.

The good news is that the equivalence between these three statements holds
in a much more general context (more general underlying spaces, cost functions,
measures). Key concepts that are needed in the analysis, are the generalizations of
the concepts of cyclical monotonicity, convexity and subdifferential which fit with
a general cost function c.

The definitions below make sense for a general Borel and real valued cost.

Definition 2.7 (c-cyclical monotonicity). We say that 	 � X � Y is c-cyclically
monotone if .xi ; yi / 2 	 , 1 � i � N , implies

NX
iD1

c.xi ; yi / �
NX
iD1

c.xi ; y�.i// for all permutations�of f1; : : : ; N g:
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Definition 2.8 (c-transforms). Let  W Y ! R [ f˙1g be any function. Its
cC-transform  cC W X ! R [ f�1g is defined as

 cC.x/ WD inf
y2Y c.x; y/ �  .y/:

Similarly, given ' W X ! R [ f˙1g, its cC-transform is the function 'cC W Y !
R [ f˙1g defined by

'cC.y/ WD inf
x2X c.x; y/ � '.x/:

The c�-transform  c� W X ! R [ fC1g of a function  on Y is given by

 c� .x/ WD sup
y2Y

�c.x; y/ �  .y/;

and analogously for c�-transforms of functions ' on X .

Definition 2.9 (c-concavity and c-convexity). We say that ' W X ! R [ f�1g
is c-concave if there exists  W Y ! R [ f�1g such that ' D  cC . Similarly,
 W Y ! R [ f�1g is c-concave if there exists ' W Y ! R [ f�1g such that
 D 'cC .

Symmetrically, ' W X ! R [ fC1g is c-convex if there exists  W Y !
R[ fC1g such that ' D  c� , and  W Y ! R[ fC1g is c-convex if there exists
' W Y ! R [ fC1g such that  D 'c� .

Observe that ' W X ! R [ f�1g is c-concave if and only if 'cCcC D '. This
is a consequence of the fact that for any function  W Y ! R [ f˙1g it holds
 cC D  cCcCcC , indeed

 cCcCcC.x/ D inf
Qy2Y

sup
Qx2X

inf
y2Y c.x; Qy/� c. Qx; Qy/C c. Qx; y/�  .y/;

and choosing Qx D x we get  cCcCcC �  cC , while choosing y D Qy we get
 cCcCcC �  cC . Similarly for functions on Y and for the c-convexity.

Definition 2.10 (c-superdifferential and c-subdifferential). Let ' W X ! R [
f�1g be a c-concave function. The c-superdifferential @cC' � X �Y is defined as

@cC' WD
n
.x; y/ 2 X � Y W '.x/C 'cC.y/ D c.x; y/

o
:

The c-superdifferential @cC'.x/ at x 2 X is the set of y 2 Y such that .x; y/ 2
@cC'. A symmetric definition is given for c-concave functions W Y ! R[f�1g.

The definition of c-subdifferential @c� of a c-convex function ' W X ! fC1g
is analogous:

@c�' WD
n
.x; y/ 2 X � Y W '.x/C 'c�.y/ D �c.x; y/

o
:

Analogous definitions hold for c-concave and c-convex functions on Y .
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Remark 2.11 (The base case: c.x; y/D �hx; yi). LetX D Y DR
d and c.x; y/ D

� hx; yi. Then a direct application of the definitions show that:

• A set is c-cyclically monotone if and only if it is cyclically monotone.
• A function is c-convex (resp. c-concave) if and only if it is convex and lower

semicontinuous (resp. concave and upper semicontinuous).
• The c-subdifferential of the c-convex (resp. c-superdifferential of the c-concave)

function is the classical subdifferential (resp. superdifferential).
• The c� transform is the Legendre transform.

Thus in this situation these new definitions become the classical basic definitions of
convex analysis. �

Remark 2.12 (For most applications c-concavity is sufficient). There are several
trivial relations between c-convexity, c-concavity and related notions. For instance,
' is c-concave if and only if �' is c-convex, �'cC D .�'/c� and @cC' D
@c�.�'/. Therefore, roughly said, every statement concerning c-concave functions
can be restated in a statement for c-convex ones. Thus, choosing to work with
c-concave or c-convex functions is actually a matter of taste.

Our choice is to work with c-concave functions. Thus all the statements from
now on will deal only with these functions. There is only one, important, part of
the theory where the distinction between c-concavity and c-convexity is useful:
in the study of geodesics in the Wasserstein space (see Sect. 3.2, and in particular
Theorem 3.18 and its consequence Corollary 3.24).

We also point out that the notation used here is different from the one in
[80], where a less symmetric notion (but better fitting the study of geodesics) of
c-concavity and c-convexity has been preferred. �

An equivalent characterization of the c-superdifferential is the following: y 2
@cC'.x/ if and only if it holds

'.x/ D c.x; y/ � 'cC.y/;
'.z/ � c.z; y/ � 'cC.y/; 8z 2 X;

or equivalently if

'.x/ � c.x; y/ � '.z/� c.z; y/; 8z 2 X: (3)

A direct consequence of the definition is that the c-superdifferential of a
c-concave function is always a c-cyclically monotone set, indeed if .xi ; yi / 2 @cC'
it holds

X
i

c.xi ; yi / D
X
i

'.xi /C 'c.yi / D
X
i

'.xi /C 'c.y�.i// �
X
i

c.xi ; y�.i//;

for any permutation � of the indexes.
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What is important to know is that actually under mild assumptions on c, every
c-cyclically monotone set can be obtained as the c-superdifferential of a c-concave
function. This result is part of the following important theorem:

Theorem 2.13 (Fundamental theorem of optimal transport). Assume that c W
X � Y ! R is continuous and bounded from below and let � 2 P.X/, � 2 P.Y /

be such that
c.x; y/ � a.x/C b.y/; (4)

for some a 2 L1.�/, b 2 L1.�/. Also, let � 2 Adm.�; �/. Then the following three
are equivalent:

(i) The plan � is optimal.
(ii) The set supp.�/ is c-cyclically monotone.

(iii) There exists a c-concave function ' such that maxf'; 0g 2 L1.�/ and
supp.�/ � @cC'.

Proof. Observe that the inequality (4) together with

Z
c.x; y/d Q�.x; y/ �

Z
a.x/C b.y/d Q�.x; y/

D
Z
a.x/d�.x/C

Z
b.y/d�.y/ < 1; 8 Q� 2 Adm.�; �/

implies that for any admissible plan Q� 2 Adm.�; �/ the function maxfc; 0g is
integrable. This, together with the bound from below on c gives that c 2 L1. Q�/
for any admissible plan Q� .
.i/ ) .ii/ We argue by contradiction: assume that the support of � is not

c-cyclically monotone. Thus we can find N 2 N, f.xi ; yi /g1�i�N � supp.�/ and
some permutation � of f1; : : : ; N g such that

NX
iD1

c.xi ; yi / >

NX
iD1

c.xi ; y�.i//:

By continuity we can find neighborhoodsUi 3 xi , Vi 3 yi with

NX
iD1

c.ui ; v�.i//� c.ui ; vi / < 0 8.ui ; vi / 2 Ui � Vi ; 1 � i � N:

Our goal is to build a “variation” Q� D � C 
 of � in such a way that minimality
of � is violated. To this aim, we need a signed measure 
 with:

(A) 
� � � (so that Q� is nonnegative).
(B) Null first and second marginal (so that Q� 2 Adm.�; �/).
(C)

R
c d
 < 0 (so that � is not optimal).
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Let˝ WD ˘N
iD1Ui �Vi and P 2 P.˝/ be defined as the product of the measures

1
mi
� jUi�Vi , where mi WD �.Ui � Vi /. Denote by �Ui ; �Vi the natural projections of

˝ to Ui and Vi respectively and define


 WD mini mi

N

NX
iDi
.�Ui ; �V�.i/ /#P � .�Ui ; �V.i/ /#P:

It is immediate to verify that 
 fulfills (A), (B), (C) above, so that the thesis is proven.
.ii/ ) .iii/ We need to prove that if 	 � X � Y is a c-cyclically monotone set,

then there exists a c-concave function ' such that @c' 	 	 and maxf'; 0g 2 L1.�/.
Fix .x; y/ 2 	 and observe that, since we want ' to be c-concave with the
c-superdifferential that contains 	 , for any choice of .xi ; yi / 2 	 , i D 1; : : : ; N ,
we need to have

'.x/� c.x; y1/ � 'cC .y1/ D c.x; y1/� c.x1; y1/C '.x1/

�
�
c.x; y1/� c.x1; y1/

�
C c.x1; y2/ � 'cC .y2/

D
�
c.x; y1/� c.x1; y1/

�
C
�
c.x1; y2/ � c.x2; y2/

�
C '.x2/

� 
 
 

�
�
c.x; y1/�c.x1; y1/

�
C
�
c.x1; y2/�c.x2; y2/

�
C
 
 
C

�
c.xN ; y/�c.x; y/

�
C'.x/:

It is therefore natural to define ' as the infimum of the above expression as
f.xi ; yi /giD1;:::;N vary among all N -ples in 	 and N varies in N. Also, since
we are free to add a constant to ', we can neglect the addendum '.x/ and define:

'.x/ WD inf
�
c.x; y1/�c.x1; y1/

�
C
�
c.x1; y2/�c.x2; y2/

�
C
 
 
C

�
c.xN ; y/�c.x; y/

�
;

the infimum being taken on N � 1 integer and .xi ; yi / 2 	 , i D 1; : : : ; N .
Choosing N D 1 and .x1; y1/ D .x; y/ we get '.x/ � 0. Conversely, from the
c-cyclical monotonicity of 	 we have '.x/ � 0. Thus '.x/ D 0.

Also, it is clear from the definition that ' is c-concave. Choosing again N D 1

and .x1; y1/ D .x; y/, using (3) we get

'.x/ � c.x; y/� c.x; y/ < a.x/C b.y/� c.x; y/;

which, together with the fact that a 2 L1.�/, yields maxf'; 0g 2 L1.�/. Thus,
we need only to prove that @cC' contains 	 . To this aim, choose . Qx; Qy/ 2 	 , let
.x1; y1/ D . Qx; Qy/ and observe that by definition of '.x/ we have

'.x/ � c.x; Qy/ � c. Qx; Qy/C inf
�
c. Qx; y2/� c.x2; y2/

�
C 
 
 
 C

�
c.xN ; y/� c.x; y/

�

D c.x; Qy/� c. Qx; Qy/C '. Qx/:
By the characterization (3), this inequality shows that . Qx; Qy/ 2 @cC', as desired.
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.iii/ ) .i/. Let Q� 2 Adm.�; �/ be any transport plan. We need to prove thatR
cd� � R

cd Q� . Recall that we have

'.x/C 'cC.y/ D c.x; y/; 8.x; y/ 2 supp.�/

'.x/C 'cC.y/ � c.x; y/; 8x 2 X; y 2 Y;

and therefore

Z
c.x; y/d�.x; y/ D

Z
'.x/C 'cC .y/d�.x; y/ D

Z
'.x/d�.x/C

Z
'cC .y/d�.y/

D
Z
'.x/C 'cC .y/d Q�.x; y/ �

Z
c.x; y/d Q�.x; y/:

ut
Remark 2.14. Condition (4) is natural in some, but not all, problems. For instance
problems with constraints or in Wiener spaces (infinite-dimensional Gaussian
spaces) include C1-valued costs, with a “large” set of points where the cost is
not finite. We won’t discuss these topics. �

An important consequence of the previous theorem is that being optimal is a
property that depends only on the support of the plan � , and not on how the mass is
distributed in the support itself: if � is an optimal plan (between its own marginals)
and Q� is such that supp. Q�/ � supp.�/, then Q� is optimal as well (between its
own marginals, of course). We will see in Proposition 3.5 that one of the important
consequences of this fact is the stability of optimality.

Analogous arguments works for maps. Indeed assume that T W X ! Y is a
map such that T .x/ 2 @cC'.x/ for some c-concave function ' for all x. Then, for
every � 2 P.X/ such that condition (4) is satisfied for � D T#�, the map T is
optimal between � and T#�. Therefore it makes sense to say that T is an optimal
map, without explicit mention to the reference measures.

Remark 2.15. From Theorem 2.13 we know that given � 2 P.X/, � 2 P.Y /

satisfying the assumption of the theorem, for every optimal plan � there exists a
c-concave function ' such that supp.�/ � @cC'. Actually, a stronger statement
holds, namely: if supp.�/ � @cC' for some optimal � , then supp.� 0/ � @cC'

for every optimal plan � 0. Indeed arguing as in the proof of 2.13 one can see that
maxf'; 0g 2 L1.�/ implies maxf'cC ; 0g 2 L1.�/ and thus it holds

Z
'd�C

Z
'cCd� D

Z
'.x/C 'cC.y/d� 0.x; y/

�
Z
c.x; y/d� 0.x; y/ D

Z
c.x; y/d�.x; y/

�
supp.�/ � @cC'

� D
Z
'.x/C 'cC.y/d�.x; y/ D

Z
'd�C

Z
'cCd�:
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Thus the inequality must be an equality, which is true if and only if for � 0-a.e. .x; y/
it holds .x; y/ 2 @cC', hence, by the continuity of c, we conclude supp.� 0/ �
@cC'. �

2.3 The Dual Problem

The transport problem in the Kantorovich formulation is the problem of minimizing
the linear functional � 7! R

cd� with the affine constraints �X# � D �, �Y# � D �

and � � 0. It is well known that problems of this kind admit a natural dual problem,
where we maximize a linear functional with affine constraints. In our case the dual
problem is:

Problem 2.16 (Dual problem). Let � 2 P.X/, � 2 P.Y /. Maximize the
value of Z

'.x/d�.x/C
Z
 .y/d�.y/;

among all functions ' 2 L1.�/,  2 L1.�/ such that

'.x/C  .y/ � c.x; y/; 8x 2 X; y 2 Y: (5)

�

The relation between the transport problem and the dual one consists in the fact that

inf
�2Adm.�;�/

Z
c.x; y/d�.x; y/ D sup

'; 

Z
'.x/d�.x/C

Z
 .y/d�.y/;

where the supremum is taken among all '; as in the definition of the problem.
Although the fact that equality holds is an easy consequence of Theorem 2.13

of the previous section (taking  D 'cC , as we will see), we prefer to start with
an heuristic argument which shows “why” duality works. The calculations we are
going to do are very common in linear programming and are based on the min-max
principle. Observe how the constraint � 2 Adm.�; �/ “becomes” the functional to
maximize in the dual problem and the functional to minimize

R
cd� “becomes” the

constraint in the dual problem.
Start observing that

inf
�2Adm.�;�/

Z
c.x; y/d�.x; y/ D inf

�2MC.X�Y /

Z
c.x; y/d� C �.�/; (6)

where �.�/ is equal to 0 if � 2 Adm.�; �/ and C1 if � … Adm.�; �/, and
MC.X � Y / is the set of non negative Borel measures on X � Y . We claim
that the function � may be written as

�.�/ D sup
'; 

n Z
'.x/d�.x/C

Z
 .y/d�.y/ �

Z
'.x/C  .y/d�.x; y/

o
;
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where the supremum is taken among all .';  / 2 Cb.X/ � Cb.Y /. Indeed, if
� 2 Adm.�; �/ then �.�/D 0, while if � … Adm.�; �/ we can find .';  / 2
Cb.X/�Cb.Y / such that the value between the brackets is different from 0, thus by
multiplying .';  / by appropriate real numbers we have that the supremum is C1.
Thus from (6) we have

inf
�2Adm.�;�/

Z
c.x; y/d�.x; y/ D inf

�2MC.X�Y /sup
'; 

�Z
c.x; y/d�.x; y/

C
Z
'.x/d�.x/C

Z
 .y/d�.y/�

Z
'.x/C .y/d�.x; y/

�

Call the expression between brackets F.�; ';  /. Since � 7! F.�; ';  / is convex
(actually linear) and .';  / 7! F.�; ';  / is concave (actually linear), the min-max
principle holds and we have

inf
�2Adm.�;�/

sup
'; 

F.�; ';  / D sup
'; 

inf
�2MC.X�Y / F .�; ';  /:

Thus we have

inf
�2Adm.�;�/

Z
c.x; y/d�.x; y/ D sup

'; 

inf
�2MC.X�Y /

�Z
c.x; y/d�.x; y/

C
Z
'.x/d�.x/C

Z
 .y/d�.y/�

Z
'.x/C .y/d�.x; y/

�

D sup
'; 

�Z
'.x/d�.x/C

Z
 .y/d�.y/

C inf
�2MC.X�Y /

�Z
c.x; y/�'.x/� .y/d�.x; y/

	�
:

Now observe the quantity

inf
�2MC.X�Y /

�Z
c.x; y/ � '.x/ �  .y/d�.x; y/

	
:

If '.x/C .y/ � c.x; y/ for any .x; y/, then the integrand is non-negative and the
infimum is 0 (achieved when � is the null-measure). Conversely, if '.x/C  .y/ >

c.x; y/ for some .x; y/ 2 X � Y , then choose � WD nı.x;y/ with n large to get that
the infimum is �1.

Thus, we proved that

inf
�2Adm.�;�/

Z
c.x; y/d�.x; y/ D sup

'; 

Z
'.x/d�.x/C

Z
 .y/d�.y/;

where the supremum is taken among continuous and bounded functions .';  /
satisfying (5).

We now give the rigorous statement and a proof independent of the min-max
principle.
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Theorem 2.17 (Duality). Let � 2 P.X/, � 2 P.Y / and c W X � Y ! R a
continuous and bounded from below cost function. Assume that (4) holds. Then
the minimum of the Kantorovich problem 2.2 is equal to the supremum of the dual
problem 2.16.
Furthermore, the supremum of the dual problem is attained, and the maximizing
couple .';  / is of the form .'; 'cC/ for some c-concave function '.

Proof. Let � 2 Adm.�; �/ and observe that for any couple of functions ' 2 L1.�/
and  2 L1.�/ satisfying (5) it holds
Z
c.x; y/d�.x; y/ �

Z
'.x/C .y/d�.x; y/ D

Z
'.x/d�.x/C

Z
 .y/d�.y/:

This shows that the minimum of the Kantorovich problem is � than the supremum
of the dual problem.

To prove the converse inequality pick � 2 Opt.�; �/ and use Theorem 2.13
to find a c-concave function ' such that supp.�/ � @cC', maxf'; 0g 2 L1.�/

and maxf'cC; 0g 2 L1.�/. Then, as in the proof of .i i i/ ) .i/ of Theorem 2.13,
we have

Z
c.x; y/ d�.x; y/ D

Z
'.x/C 'cC .y/ d�.x; y/ D

Z
'.x/ d�.x/C

Z
'cC .y/ d�.y/;

and
R

cd� 2 R. Thus ' 2 L1.�/ and 'cC 2 L1.�/, which shows that .'; 'cC/ is
an admissible couple in the dual problem and gives the thesis. ut
Remark 2.18. Notice that a statement stronger than the one of Remark 2.15 holds,
namely: under the assumptions of Theorems 2.13 and 2.17, for any c-concave
couple of functions .'; 'cC/ maximizing the dual problem and any optimal plan
� it holds

supp.�/ � @cC':

Indeed we already know that for some c-concave ' we have ' 2 L1.�/, 'cC 2
L1.�/ and

supp.�/ � @cC';

for any optimal � . Now pick another maximizing couple . Q'; Q / for the dual
problem 2.16 and notice that Q'.x/C Q .y/ � c.x; y/ for any x; y implies Q � Q'cC ,
and therefore . Q'; Q'cC/ is a maximizing couple as well. The fact that Q'cC 2 L1.�/

follows as in the proof of Theorem 2.17. Conclude noticing that for any optimal
plan � it holds

Z
Q'd�C

Z
Q'cCd� D

Z
'd�C

Z
'cCd� D

Z
'.x/C 'cC.y/d�.x; y/

D
Z
c.x; y/d� �

Z
Q'd�C

Z
Q'cCd�;

so that the inequality must be an equality. �
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Definition 2.19 (Kantorovich potential). A c-concave function ' such that
.'; 'cC/ is a maximizing pair for the dual problem 2.16 is called a c-concave
Kantorovich potential, or simply Kantorovich potential, for the couple �; �.
A c-convex function ' is called c-convex Kantorovich potential if �' is a c-concave
Kantorovich potential.

Observe that c-concave Kantorovich potentials are related to the transport
problem in the following two different (but clearly related) ways:

• As c-concave functions whose superdifferential contains the support of optimal
plans, according to Theorem 2.13.

• As maximizing functions, together with their cC-transforms, in the dual problem.

2.4 Existence of Optimal Maps

The problem of existence of optimal transport maps consists in looking for optimal
plan � which are induced by a map T W X ! Y , i.e. plans � which are equal
to .Id; T /#�, for � WD �X# � and some measurable map T . As we discussed in
the first section, in general this problem has no answer, as it may very well be the
case when, for given � 2 P.X/, � 2 P.Y /, there is no transport map at all from�

to �. Still, since we know that (2) holds when� has no atom, it is possible that under
some additional assumptions on the starting measure � and on the cost function c,
optimal transport maps exist.

To formulate the question differently: given �; � and the cost function c, is that
true that at least one optimal plan � is induced by a map?

Let us start observing that thanks to Theorem 2.13, the answer to this question
relies in a natural way on the analysis of the properties of c-monotone sets, to see
how far are they from being graphs. Indeed:

Lemma 2.20. Let � 2 Adm.�; �/. Then � is induced by a map if and only if there
exists a � -measurable set 	 �X�Y where � is concentrated, such that for�-a.e. x
there exists only one yDT .x/ 2 Y such that .x; y/ 2 	 . In this case � is induced
by the map T .

Proof. The if part is obvious. For the only if, let 	 be as in the statement of the
lemma. Possibly removing from 	 a product N � Y , with N �-negligible, we can
assume that 	 is a graph, and denote by T the corresponding map. By the inner
regularity of measures, it is easily seen that we can also assume 	 D [n	n to be
�-compact. Under this assumption the domain of T (i.e. the projection of 	 on X )
is �-compact, hence Borel, and the restriction of T to the compact set �X.	n/ is
continuous. It follows that T is a Borel map. Since y D T .x/ � -a.e. in X � Y we
conclude that
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Z
�.x; y/ d�.x; y/ D

Z
�.x; T .x//d�.x; y/ D

Z
�.x; T .x//d�.x/;

so that � D .Id � T /#�. ut
Thus the point is the following. We know by Theorem 2.13 that optimal plans

are concentrated on c-cyclically monotone sets, still from Theorem 2.13 we know
that c-cyclically monotone sets are obtained by taking the c-superdifferential of a
c-concave function. Hence from the lemma above what we need to understand is
“how often” the c-superdifferential of a c-concave function is single valued.

There is no general answer to this question, but many particular cases can be
studied. Here we focus on two special and very important situations:

• X D Y D R
d and c.x; y/ D jx � yj2=2.

• X D Y D M , where M is a Riemannian manifold, and c.x; y/ D d2.x; y/=2,
d being the Riemannian distance.

Let us start with the case X D Y D R
d and c.x; y/ D jx � yj2=2. In this case

there is a simple characterization of c-concavity and c-superdifferential:

Proposition 2.21. Let ' W R
d ! R [ f�1g. Then ' is c-concave if and only

if x 7! '.x/ WD jxj2=2 � '.x/ is convex and lower semicontinuous. In this case
y 2 @cC'.x/ if and only if y 2 @�'.x/.

Proof. Observe that

'.x/ D inf
y

jx � yj2
2

�  .y/ , '.x/ D inf
y

jxj2
2

C hx;�yi C jyj2
2

�  .y/

, '.x/� jxj2
2

D inf
y

hx;�yi C

 jyj2
2

�  .y/
�

, '.x/ D sup
y

hx; yi �

 jyj2
2

�  .y/
�
;

which proves the first claim. For the second observe that

y 2 @cC'.x/ ,
�
'.x/ D jx � yj2=2 � 'cC.y/;
'.z/ � jz � yj2=2� 'cC.y/; 8z 2 R

d

,
�
'.x/ � jxj2=2 D hx;�yi C jyj2=2� 'cC.y/;

'.z/ � jzj2=2 � hz;�yi C jyj2=2� 'cC.y/; 8z 2 R
d

, '.z/ � jzj2=2 � '.x/ � jxj2=2C hz � x;�yi 8z 2 R
d

, �y 2 @C.' � j 
 j2=2/.x/
, y 2 @�'.x/

ut
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Therefore in this situation being concentrated on the c-superdifferential of a
c-concave map means being concentrated on the (graph of) the subdifferential of
a convex function.

Remark 2.22 (Perturbations of the identity via smooth gradients are optimal). An
immediate consequence of the above proposition is the fact that if  2 C1

c .R
d /,

then there exists " > 0 such that Id C "r is an optimal map for any j"j � ".
Indeed, it is sufficient to take " such that �Id � "r2 � Id . With this choice,
the map x 7! jxj2=2C " .x/ is convex for any j"j � ", and thus its gradient is an
optimal map. �

Proposition 2.21 reduced the problem of understanding when there exists optimal
maps reduces to the problem of convex analysis of understanding how the set of
non differentiability points of a convex function is made. This latter problem has a
known answer; in order to state it, we need the following definition:

Definition 2.23 (c�c hypersurfaces). A set E � R
d is called c�c hypersurface1

if, in a suitable system of coordinates, it is the graph of the difference of two real
valued convex functions, i.e. if there exists convex functions f; g W Rd�1 ! R such
that

E D
n
.y; t/ 2 R

d W y 2 R
d�1; t 2 R; t D f .y/ � g.y/

o
:

Then it holds the following theorem, which we state without proof:

Theorem 2.24 (Structure of sets of non differentiability of convex functions).
Let A � R

d . Then there exists a convex function ' W R
d ! R such that A is

contained in the set of points of non differentiability of ' if and only if A can be
covered by countably many c � c hypersurfaces.

We give the following definition:

Definition 2.25 (Regular measures on R
d ). A measure � 2 P.Rd / is called

regular provided �.E/ D 0 for any c � c hypersurfaceE � R
d .

Observe that absolutely continuous measures and measures which give 0 mass
to Lipschitz hypersurfaces are automatically regular (because convex functions are
locally Lipschitz, thus a c � c hypersurface is a locally Lipschitz hypersurface).

Now we can state the result concerning existence and uniqueness of optimal
maps:

Theorem 2.26 (Brenier). Let � 2 P.Rd / be such that
R jxj2d�.x/ is finite. Then

the following are equivalent:

(i) For every � 2 P.Rd / with
R jxj2d�.x/ < 1 there exists only one transport

plan from � to � and this plan is induced by a map T .

1Here c�c stands for “convex minus convex” and has nothing to do with the c we used to indicate
the cost function.
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(ii) � is regular.

If either .i/ or .ii/ hold, the optimal map T can be recovered by taking the gradient
of a convex function.

Proof. .ii/ ) .i/ and the last statement. Take a.x/D b.x/D jxj2 in the statement
of Theorem 2.13. Then our assumptions on�; � guarantees that the bound (4) holds.
Thus the conclusions of Theorems 2.13 and 2.17 are true as well. Using Remark 2.18
we know that for any c-concave Kantorovich potential ' and any optimal plan � 2
Opt.�; �/ it holds supp.�/ � @cC'. Now from Proposition 2.21 we know that ' WD
j 
 j2=2 � ' is convex and that @c' D @�'. Here we use our assumption on �:
since ' is convex, we know that the set E of points of non differentiability of ' is
�-negligible. Therefore the map r' W Rd ! R

d is well defined �-a.e. and every
optimal plan must be concentrated on its graph. Hence the optimal plan is unique
and induced by the gradient of the convex function '.
.ii/ ) .i/. We argue by contradiction and assume that there is some convex

function ' W Rd ! R such that the set E of points of non differentiability of ' has
positive � measure. Possibly modifying ' outside a compact set, we can assume
that it has linear growth at infinity. Now define the two maps:

T .x/ WD the element of smallest norm in @�'.x/;

S.x/ WD the element of biggest norm in @�'.x/;

and the plan

� WD 1

2

�
.Id; T /#�C .Id; S/#�

�
:

The fact that ' has linear growth, implies that � WD �Y# � has compact support.
Thus in particular

R jxj2d�.x/ < 1. The contradiction comes from the fact that
� 2 Adm.�; �/ is c-cyclically monotone (because of Proposition 2.21), and thus
optimal. However, it is not induced by a map, because T ¤ S on a set of positive �
measure (Lemma 2.20). ut

The question of regularity of the optimal map is very delicate. In general it is
only of bounded variation (BV in short), since monotone maps always have this
regularity property, and discontinuities can occur: just think to the case in which the
support of the starting measure is connected, while the one of the arrival measure is
not. It turns out that connectedness is not sufficient to prevent discontinuities, and
that if we want some regularity, we have to impose a convexity restriction on supp �.
The following result holds:

Theorem 2.27 (Regularity theorem). Assume˝1;˝2 � R
d are two bounded and

connected open sets, �D L d j˝1 , �D 
L d j˝2 with 0 < c � ; 
 � C for some c,
C 2 R. Assume also that ˝2 is convex. Then the optimal transport map T belongs
to C0;˛.˝1/ for some ˛ < 1. In addition, the following implication holds:

 2 C0;˛.˝1/; 
 2 C0;˛.˝2/ H) T 2 C1;˛.˝1/:
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The convexity assumption on ˝2 is needed to show that the convex function '
whose gradient provides the optimal map T is a viscosity solution of the Monge–
Ampere equation

1.x/ D 2.r'.x// det.r2'.x//;

and then the regularity theory for Monge–Ampere, developed by Caffarelli and
Urbas, applies.

As an application of Theorem 2.26 we discuss the question of polar factorization
of vector fields on R

d . Let ˝ � R
d be a bounded domain, denote by �˝ the

normalized Lebesgue measure on ˝ and consider the space

S.˝/ WD fBorel map s W ˝ ! ˝ W s#�˝ D �˝g :

The following result provides a (nonlinear) projection on the (nonconvex)
space S.˝/.

Proposition 2.28 (Polar factorization). Let S 2 L2.�˝ IRn/ be such that � WD
S#� is regular (Definition 2.25). Then there exist unique s 2 S.˝/ and r', with '
convex, such that S D .r'/ ı s. Also, s is the unique minimizer of

Z
jS � Qsj2d�;

among all Qs 2 S.˝/.
Proof. By assumption, we know that both�˝ and � are regular measures with finite
second moment. We claim that

inf
Qs2S.˝/

Z
jS � Qsj2d� D min

�2Adm.�;�/

Z
jx � yj2d�.x; y/: (7)

To see why, associate to each Qs 2 S.˝/ the plan �Qs WD .Qs; S/#� which clearly
belongs to Adm.�˝; �/. This gives inequality �. Now let � be the unique optimal
plan and apply Theorem 2.26 twice to get that

� D .Id;r'/#�˝ D .r Q'; Id/#�;

for appropriate convex functions '; Q', which therefore satisfy r'ır Q' D Id �-a.e..
Define s WD r Q' ı S . Then s#�˝ D �˝ and thus s 2 S.˝/. Also, S D r' ı s
which proves the existence of the polar factorization. The identity

Z
jx � yj2d�s.x; y/ D

Z
js � S j2d�˝ D

Z
jr Q' ı S � S j2d�˝ D

Z
jr Q' � Id j2d�

D min
�2Adm.�;�/

Z
jx � yj2d�.x; y/;
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shows inequality � in (7) and the uniqueness of the optimal plan ensures that s is
the unique minimizer.

To conclude we need to show uniqueness of the polar factorization. Assume that
S D .r'/ ı s is another factorization and notice that r'#�˝ D .r' ı s/#�˝ D �.
Thus the map r' is a transport map from �˝ to � and is the gradient of a convex
function. By Proposition 2.21 and Theorem 2.13 we deduce that r' is the optimal
map. Hence r' D r' and the proof is achieved. ut
Remark 2.29 (Polar factorization vs. Helmholtz decomposition). The classical
Helmholtz decomposition of vector fields can be seen as a linearized version of
the polar factorization result, which therefore can be though as a generalization of
the former.

To see why, assume that ˝ and all the objects considered are smooth (the
arguments hereafter are just formal). Let u W ˝ ! R

d be a vector field and apply
the polar factorization to the map S" WD Id C "u with j"j small. Then we have
S" D .r'"/ ı s" and both r'" and s" will be perturbation of the identity, so that

r'" D Id C "v C o."/;

s" D Id C "w C o."/:

The question now is: which information is carried on v;w from the properties of the
polar factorization? At the level of v, from the fact that r � .r'"/ D 0 we deduce
r � v D 0, which means that v is the gradient of some function p. On the other
hand, the fact that s" is measure preserving implies that w satisfies r 
 .w�˝/ D 0

in the sense of distributions: indeed for any smooth f W Rd ! R it holds

0 D d

d"
j"D0

Z
f d.s"/#�˝ D d

d"
j"D0

Z
f ı s" d�˝ D

Z
rf 
 wd�˝:

Then from the identity .r'"/ ı s" D Id C ".rpC w/C o."/ we can conclude that

u D rp C w:

�

We now turn to the case X D Y D M , with M smooth Riemannian manifold,
and c.x; y/ D d2.x; y/=2, d being the Riemannian distance on M . For simplicity,
we will assume that M is compact and with no boundary, but everything holds in
more general situations.

The underlying ideas of the foregoing discussion are very similar to the
ones of the case X D Y DR

d , the main difference being that there is no more
the correspondence given by Proposition 2.21 between c-concave functions and
convex functions, as in the Euclidean case. Recall however that the concepts of
semiconvexity (i.e. second derivatives bounded from below) and semiconcavity
make sense also on manifolds, since these properties can be read locally and changes
of coordinates are smooth.
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In the next proposition we will use the fact that on a compact and smooth
Riemannian manifold, the functions x 7! d2.x; y/ are uniformly Lipschitz and
uniformly semiconcave in y 2 M (i.e. the second derivative along a unit speed
geodesic is bounded above by a universal constant depending only on M , see
e.g. the third appendix of Chap. 10 of [80] for the simple proof).

Proposition 2.30. Let M be a smooth, compact Riemannian manifold without
boundary. Let ' W M ! R [ f�1g be a c-concave function not identically
equal to �1. Then ' is Lipschitz, semiconcave and real valued. Also, assume that
y 2 @cC'.x/. Then exp�1

x .y/ � �@C'.x/.
Conversely, if ' is differentiable at x, then expx.�r'.x// 2 @cC'.x/.
Proof. The fact that ' is real valued follows from the fact that the cost function
d2.x; y/=2 is uniformly bounded in x; y 2 M . Smoothness and compactness ensure
that the functions d2.
; y/=2 are uniformly Lipschitz and uniformly semiconcave in
y 2 M , this gives that ' is Lipschitz and semiconcave.

Now pick y 2 @cC'.x/ and v 2 exp�1
x .y/. Recall that �v belongs to the

superdifferential of d2.
; y/=2 at x, i.e.

d2.z; y/

2
� d2.x; y/

2
� ˝

v; exp�1
x .z/

˛C o.d.x; z//:

Thus from y 2 @cC'.x/ we have

'.z/ � '.x/
.3/� d2.z; y/

2
� d2.x; y/

2
� ˝�v; exp�1

x .z/
˛C o.d.x; z//;

that is �v 2 @C'.x/.
To prove the converse implication, it is enough to show that the c-superdifferential

of ' at x is non empty. To prove this, use the c-concavity of ' to find a sequence
.yn/ � M such that

'.x/ D lim
n!1

d2.x; yn/

2
� 'cC.yn/;

'.z/ � d2.z; yn/

2
� 'cC.yn/; 8z 2 M; n 2 N:

By compactness we can extract a subsequence converging to some y 2 M .
Then from the continuity of d2.z; 
/=2 and 'cC.
/ it is immediate to verify that
y 2 @cC'.x/. ut
Remark 2.31. The converse implication in the previous proposition is false if one
doesn’t assume ' to be differentiable at x: i.e., it is not true in general that
expx.�@C'.x// � @cC'.x/. �

From this proposition, and following the same ideas used in the Euclidean case,
we give the following definition:
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Definition 2.32 (Regular measures in P.M/). We say that� 2 P.M/ is regular
provided it vanishes on the set of points of non differentiability of  for any
semiconvex function  W M ! R.

The set of points of non differentiability of a semiconvex function on M can be
described as in the Euclidean case by using local coordinates. For most applications
it is sufficient to keep in mind that absolutely continuous measures (w.r.t. the volume
measure) and even measures vanishing on Lipschitz hypersurfaces are regular.

By Proposition 2.30, we can derive a result about existence and characterization
of optimal transport maps in manifolds which closely resembles Theorem 2.26:

Theorem 2.33 (McCann). Let M be a smooth, compact Riemannian manifold
without boundary and � 2 P.M/. Then the following are equivalent:

(i) For every � 2 P.M/ there exists only one transport plan from � to � and this
plan is induced by a map T .

(ii) � is regular.

If either .i/ or .ii/ hold, the optimal map T can be written as x 7! expx.�r'.x//
for some c-concave function ' W M ! R.

Proof. .ii/ ) .i/ and the last statement. Pick � 2 P.M/ and observe that,
since d2.
; 
/=2 is uniformly bounded, condition (4) surely holds. Thus from
Theorem 2.13 and Remark 2.15 we get that any optimal plan � 2 Opt.�; �/
must be concentrated on the c-superdifferential of a c-concave function '. By
Proposition 2.30 we know that ' is semiconcave, and thus differentiable �-a.e. by
our assumption on�. Thereforex 7! T .x/ WD expx.�r'.x// is well defined�-a.e.
and its graph must be of full � -measure for any � 2 Opt.�; �/. This means that � is
unique and induced by T .
.i/ ) .ii/. Argue by contradiction and assume that there exists a semiconcave

function f whose set of points of non differentiability has positive � measure. Use
Lemma 2.34 below to find " > 0 such that ' WD "f is c-concave and satisfies:
v 2 @C'.x/ if and only expx.�v/ 2 @cC'.x/. Then conclude the proof as in
Theorem 2.26. ut
Lemma 2.34. Let M be a smooth, compact Riemannian manifold without bound-
ary and ' W M ! R semiconcave. Then for " > 0 sufficiently small the function "'
is c-concave and it holds v 2 @C."'/.x/ if and only expx.�v/ 2 @cC."'/.x/.
Proof. We start with the following claim: there exists " > 0 such that for every
x0 2 M and every v 2 @C'.x0/ the function

x 7! "'.x/� d2.x; expx0.�"v//
2

has a global maximum at x D x0.
Use the smoothness and compactness of M to find r > 0 such that d2.
; 
/=2 W

f.x; y/ W d.x; y/ < rg ! R is C1 and satisfies r2d 2.
; y/=2 � cId , for every
y 2 M , with c > 0 independent on y. Now observe that since ' is semiconcave and
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real valued, it is Lipschitz. Thus, for "0 > 0 sufficiently small it holds "0jvj < r=3

for any v 2 @C'.x/ and any x 2 M . Also, since ' is bounded, possibly decreasing
the value of "0 we can assume that

"0j'.x/j � r2

12
:

Fix x0 2 M , v 2 @C'.x0/ and let y0 WD expx0.�"0v/. We claim that for "0 chosen
as above, the maximum of "0' � d2.
; y0/=2, cannot lie outside Br.x0/. Indeed, if
d.x; x0/ � r we have d.x; y0/ > 2r=3 and thus:

"0'.x/ � d2.x; y0/

2
<
r2

12
� 2r2

9
D � r

2

12
� r2

18
� "0'.x0/ � d2.x0; y0/

2
:

Thus the maximum must lie in Br.x0/. Recall that in this ball, the function d2.
; y0/
is C1 and satisfies r2.d 2.
; y0/=2/ � cId , thus it holds

r2



"0'.
/� d2.
; y0/

2

�
� ."0� � c/Id;

where � 2 R is such that r2' � �Id on the whole of M . Thus decreasing if
necessary the value of "0 we can assume that

r2



"0'.
/� d2.
; y0/

2

�
< 0 on Br.x0/;

which implies that "0'.
/ � d2.
; y0/=2 admits a unique point x 2 Br.x0/ such
that 0 2 @C.' � d2.
; y0/=2/.x/, which therefore is the unique maximum. Since
r 1
2
d 2.
; y0/.x0/ D "0v 2 @C."0'/.x0/, we conclude that x0 is the unique global

maximum, as claimed.
Now define the function  W M ! R [ f�1g by

 .y/ WD inf
x2M

d2.x; y/

2
� "0'.x/;

if y D expx.�"0v/ for some x 2 M , v 2 @C'.x/, and  .y/ WD �1 otherwise. By
definition we have

"0'.x/ � d2.x; y/

2
�  .y/; 8x; y 2 M;

and the claim proved ensures that if y0 D expx0.�"0v0/ for x0 2 M , v0 2 @C'.x0/
the inf in the definition of  .y0/ is realized at x D x0 and thus

"0'.x0/ D d2.x0; y0/

2
�  .y0/:

Hence "0' D  cC and therefore is c-concave. Along the same lines one can easily
see that for y 2 expx.�"0@C'.x// it holds
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"0'.x/ D d2.x; y/

2
� ."0'/cC.y/;

i.e. y 2 @cC."0'/.x0/. Thus we have @cC."0'/ 	 exp.�@C."'//. Since the other
inclusion has been proved in Proposition 2.30 the proof is finished. ut
Remark 2.35. With the same notation of Theorem 2.33, recall that we know that the
c-concave function ' whose c-superdifferential contains the graph of any optimal
plan from � to � is differentiable �-a.e. (for regular �). Fix x0 such that r'.x0/
exists, let y0 WD expx0.�r'.x0// 2 @cC'.x0/ and observe that from

d2.x; y0/

2
� d2.x0; y0/

2
� '.x/ � '.x0/;

we deduce that r'.x0/ belongs to the subdifferential of d2.
; y0/=2 at x0. Since we
know that d2.
; y0/=2 always have non empty superdifferential, we deduce that it
must be differentiable at x0. In particular, there exists only one geodesic connecting
x0 to y0. Therefore if � is regular, not only there exists a unique optimal transport
map T , but also for �-a.e. x there is only one geodesic connecting x to T .x/. �

The question of regularity of optimal maps on manifolds is much more delicate
than the corresponding question on R

d , even if one wants to get only the continuity.
We won’t enter into the details of the theory, we just give an example showing
the difficulty that can arise in a curved setting. The example will show a smooth
compact manifold, and two measures absolutely continuous with positive and
smooth densities, such that the optimal transport map is discontinuous. We remark
that similar behaviors occur as soon as M has one point and one sectional
curvature at that point which is strictly negative. Also, even if one assumes that
the manifold has non negative sectional curvature everywhere, this is not enough to
guarantee continuity of the optimal map: what comes into play in this setting is the
Ma–Trudinger–Wang tensor, an object which we will not study.

Example 2.36. Let M � R
3 be a smooth surface which has the following

properties:

• M is symmetric w.r.t. the x axis and the y axis.
• M crosses the line .x; y/ D .0; 0/ at two points, namelyO;O 0.
• The curvature of M at O is negative.

These assumptions ensure that we can find a; b > 0 such that for some za; zb the
points

A WD .a; 0; za/;

A0 WD .�a; 0; za/;
B WD .0; b; zb/;

B 0 WD .0;�b; zb/;
belong to M and

d2.A;B/ > d2.A;O/C d2.O;B/;
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d being the intrinsic distance onM . By continuity and symmetry, we can find " > 0
such that

d2.x; y/ > d2.x;O/Cd2.O; y/; 8x 2 B".A/[B".A0/; y 2 B".B/[B".B 0/:
(8)

Now let f (resp. g) be a smooth probability density everywhere positive
and symmetric w.r.t. the x; y axes such that

R
B".A/[B".A0/

f dvol > 1
2

(resp.R
B".B/[B".B0/

g dvol > 1
2
), and let T (resp. T 0) be the optimal transport map from

f vol to gvol (resp. from gvol to f vol).
We claim that either T or T 0 is discontinuous and argue by contradiction.

Suppose that both are continuous and observe that by the symmetry of the optimal
transport problem it must hold T 0.x/ D T �1.x/ for any x 2 M . Again by the
symmetry of M , f; g, the point T .O/ must be invariant under the symmetries
around the x and y axes. Thus it is either T .O/ D O or T .O/ D O 0, and similarly,
T 0.O 0/ 2 fO;O 0g.

We claim that it must hold T .O/ D O . Indeed otherwise either T .O/ D O 0 and
T .O 0/ D O , or T .O/ D O 0 and T .O 0/ D O 0. In the first case the two couples
.O;O 0/ and .O 0; O/ belong to the support of the optimal plan, and thus by cyclical
monotonicity it holds

d2.O;O 0/C d2.O 0; O/ � d2.O;O/C d2.O 0; O 0/ D 0;

which is absurdum.
In the second case we have T 0.x/ ¤ O for all x 2 M , which, by continuity and

compactness implies d.T 0.M/;O/ > 0. This contradicts the fact that f is positive
everywhere and T 0

#.gvol/ D f vol.
Thus it holds T .O/ D O . Now observe that by construction there must be some

mass transfer fromB".A/[B".A0/ toB".B/[B".B 0/, i.e. we can find x 2 B".A/[
B".A

0/ and y 2 B".B/[B".B 0/ such that .x; y/ is in the support of the optimal plan.
Since .O;O/ is the support of the optimal plan as well, by cyclical monotonicity it
must hold

d2.x; y/C d2.O;O/ � d2.x;O/C d2.O; y/;

which contradicts (8). �

2.5 Bibliographical Notes

G. Monge’s original formulation of the transport problem [66] was concerned with
the case X D Y D R

d and c.x; y/ D jx � yj, and L.V. Kantorovich’s formulation
appeared first in [49].

The equality (2), saying that the infimum of the Monge problem equals the
minimum of Kantorovich one, has been proved by W. Gangbo (Appendix A of [41])
and the first author (Theorem 2.1 in [4]) in particular cases, and then generalized by
A. Pratelli [68].



A User’s Guide to Optimal Transport 27

In [50] L.V. Kantorovich introduced the dual problem, and later L.V. Kantorovich
and G.S. Rubinstein [51] further investigated this duality for the case c.x; y/ D
d.x; y/. The fact that the study of the dual problem can lead to important
informations for the transport problem has been investigated by several authors,
among others M. Knott and C.S. Smith [52] and S.T. Rachev and L. Rüschendorf
[69, 71].

The notions of cyclical monotonicity and its relation with subdifferential of
convex function have been developed by Rockafellar in [70]. The generalization
to c-cyclical monotonicity and to c-sub/super differential of c-convex/concave
functions has been studied, among others, by Rüschendorf [71].

The characterization of the set of non differentiability of convex functions is due
to Zajı́ček ([83], see also the paper by G. Alberti [2] and the one by G. Alberti and
the first author [3]).

Theorem 2.26 on existence of optimal maps in R
d for the costDdistance-squared

is the celebrated result of Y. Brenier, who also observed that it implies the polar
factorization result Proposition 2.28 [18, 19]. Brenier’s ideas have been generalized
in many directions. One of the most notable one is R. McCann’s Theorem 2.33
concerning optimal maps in Riemannian manifolds for the case costDsquared
distance [64]. R. McCann also noticed that the original hypothesis in Brenier’s
theorem, which was � � L d , can be relaxed into “� gives 0 mass to Lipschitz
hypersurfaces”. In [42] W. Gangbo and R. McCann pointed out that to get existence
of optimal maps in R

d with c.x; y/ D jx�yj2=2 it is sufficient to ask to the measure
� to be regular in the sense of the Definition 2.25. The sharp version of Brenier’s
and McCann’s theorems presented here, where the necessity of the regularity of �
is also proved, comes from a paper of the second author of these notes [46].

Other extensions of Brenier’s result are:

• Infinite-dimensional Hilbert spaces (the authors and Savaré—[7]).
• Cost functions induced by Lagrangians, Bernard–Buffoni [13], namely

c.x; y/ WD inf

�Z 1

0

L.t; �.t/; P�.t// dt W �.0/ D x; �.1/ D y

�
:

• Carnot groups and sub-Riemannian manifolds, c D d2CC =2: the first author and
S. Rigot [6], A. Figalli and L. Rifford [39].

• Cost functions induced by sub-Riemannian Lagrangians A. Agrachev and
P. Lee [1].

• Wiener spaces .E;H; �/, D. Feyel–A.S. Üstünel [36].
Here E is a Banach space, � 2 P.E/ is Gaussian and H is its Cameron–

Martin space, namely

H WD ˚
h 2 E W .�h/]� � �

�
:

In this case

c.x; y/ WD
8<
:

jx � yj2H
2

ifx � y 2 H I
C1 otherwise.
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The issue of regularity of optimal maps would nowadays require a lecture note
in its own. A rough statement that one should have in mind is that it is rare to have
regular (even just continuous) optimal transport maps. The key Theorem 2.27 is due
to L. Caffarelli [21–23].

Example 2.36 is due to G. Loeper [55]. For the general case of costDsquared
distance on a compact Riemannian manifold, it turns out that continuity of optimal
maps between two measures with smooth and strictly positive density is strictly
related to the positivity of the so-called Ma–Trudinger–Wang tensor [59], an object
defined taking fourth order derivatives of the distance function. The understanding
of the structure of this tensor has been a very active research area in the last years,
with contributions coming from X.-N. Ma, N. Trudinger, X.-J. Wang, C. Villani,
P. Delanoe, R. McCann, A. Figalli, L. Rifford, H.-Y. Kim and others.

A topic which we didn’t discuss at all is the original formulation of the transport
problem of Monge: the case c.x; y/ WD jx � yj on R

d . The situation in this
case is much more complicated than the one with c.x; y/ D jx � yj2=2 as it is
typically not true that optimal plans are unique, or that optimal plans are induced by
maps. For example consider on R any two probability measures �; � such that � is
concentrated on the negative numbers and � on the positive ones. Then one can see
that any admissible plan between them is optimal for the cost c.x; y/ D jx � yj.

Still, even in this case there is existence of optimal maps, but in order to find them
one has to use a sort of selection principle. A successful strategy—which has later
been applied to a number of different situation—has been proposed by V.N. Sudakov
in [77], who used a disintegration principle to reduce the d -dimensional problem to
a problem on R. The original argument by V.N. Sudakov was flawed and has been
fixed by the first author in [4] in the case of the Euclidean distance. Meanwhile,
different proofs of existence of optimal maps have been proposed by L.C. Evans–
W. Gangbo [34], Trudinger and Wang [78], and L. Caffarelli, M. Feldman and
R. McCann [24].

Later, existence of optimal maps for the case c.x; y/ WD kx � yk, k 
 k being
any norm has been established, at increasing levels of generality, in [10, 27, 28]
(containing the most general result, for any norm) and [25].

3 The Wasserstein Distance W2

The aim of this chapter is to describe the properties of the Wasserstein distance W2

on the space of Borel Probability measures on a given metric space .X; d/. This
amounts to study the transport problem with cost function c.x; y/ D d2.x; y/.

An important characteristic of the Wasserstein distance is that it inherits many
interesting geometric properties of the base space .X; d/. For this reason we split
the foregoing discussion into three sections on which we deal with the cases in
which X is: a general Polish space, a geodesic space and a Riemannian manifold.

A word on the notation: when considering product spaces like Xn, with �i W
Xn ! X we intend the natural projection onto the i -th coordinate, i D 1; : : : ; n.
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Thus, for instance, for �; � 2 P.X/ and � 2 Adm.�; �/ we have �1#� D � and
�2#� D �. Similarly, with �i;j W Xn ! X2 we intend the projection onto the i -th
and j -th coordinates. And similarly for multiple projections.

3.1 X Polish Space

Let .X; d/ be a complete and separable metric space.
The distance W2 is defined as

W2.�; �/ WD
s

inf
�2Adm.�;�/

Z
d2.x; y/d�.x; y/

D
sZ

d2.x; y/d�.x; y/; 8� 2 Opt.�; �/:

The natural space to endow with the Wasserstein distanceW2 is the space P2.X/

of Borel Probability measures with finite second moment:

P2.X/ WD
n
� 2 P.X/ W

Z
d2.x; x0/d�.x/ < 1 for some, and thus any, x0 2 X

o
:

Notice that if either � or � is a Dirac delta, say � D ıx0 , then there exists only
one plan � in Adm.�; �/: the plan � � ıx0 , which therefore is optimal. In particular
it holds Z

d2.x; x0/d�.x/ D W 2
2 .�; ıx0/;

that is: the second moment is nothing but the squared Wasserstein distance from the
corresponding Dirac mass.

We start proving that W2 is actually a distance on P2.X/. In order to prove the
triangle inequality, we will use the following lemma, which has its own interest:

Lemma 3.1 (Gluing). LetX; Y; Z be three Polish spaces and let �1 2 P.X�Y /,
�2 2 P.Y � Z/ be such that �Y# �

1 D �Y# �
2. Then there exists a measure � 2

P.X � Y �Z/ such that
�X;Y# � D �1;

�Y;Z# � D �2:

Proof. Let � WD �Y# �
1 D �Y# �

2 and use the disintegration theorem to write
d�1.x; y/ D d�.y/d�1y.x/ and d�2.y; z/ D d�.y/d�2y.z/. Conclude defining � by

d�.x; y; z/ WD d�.y/d.�1y � �2y/.x; z/:

ut
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Theorem 3.2 (W2 is a distance). W2 is a distance on P2.X/.

Proof. It is obvious that W2.�;�/ D 0 and that W2.�; �/ D W2.�; �/. To prove
that W2.�; �/ D 0 implies � D � just pick an optimal plan � 2 Opt.�; �/ and
observe that

R
d2.x; y/d�.x; y/ D 0 implies that � is concentrated on the diagonal

of X �X , which means that the two maps �1 and �2 coincide � -a.e., and therefore
�1#� D �2#� .

For the triangle inequality, we use the gluing lemma to “compose” two optimal
plans. Let �1; �2; �3 2 P2.X/ and let �21 2 Opt.�1; �2/, �32 2 Opt.�2; �3/. By
the gluing lemma we know that there exists � 2 P2.X

3/ such that

�
1;2
# � D �21 ;

�2;3# � D �32 :

Since �1#� D �1 and �3#� D �3, we have �1;3# � 2 Adm.�1; �3/ and therefore from
the triangle inequality in L2.�/ it holds

W2.�1; �3/ �
sZ

d2.x1; x3/d�
1;3
# �.x1; x3/ D

sZ
d2.x1; x3/d�.x1; x2; x3/

�
sZ �

d.x1; x2/C d.x2; x3/
�2
d�.x1; x2; x3/

�
sZ

d2.x1; x2/d�.x1; x2; x3/C
sZ

d2.x2; x3/d�.x1; x2; x3/

D
sZ

d2.x1; x2/d�
2
1 .x1; x2/C

sZ
d2.x2; x3/d�

3
2 .x2; x3/

D W2.�1; �2/CW2.�2; �3/:

Finally, we need to prove that W2 is real valued. Here we use the fact that we
restricted the analysis to the space P2.X/: from the triangle inequality we have

W2.�; �/ � W2.�; ıx0/CW2.�; ıx0/

D
sZ

d2.x; x0/d�.x/C
sZ

d2.x; x0/d�.x/ < 1:

ut
A trivial, yet very useful inequality is:

W 2
2 .f#�; g#�/ �

Z
d2Y .f .x/; g.x//d�.x/; (9)
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valid for any couple of metric spaces X; Y , any � 2 P.X/ and any couple of
Borel maps f; g W X ! Y . This inequality follows from the fact that .f; g/#� is an
admissible plan for the measures f#�, g#�, and its cost is given by the right hand
side of (9).

Observe that there is a natural isometric immersion of .X; d/ into .P2.X/;W2/,
namely the map x 7! ıx .

Now we want to study the topological properties of .P2.X/;W2/. To this aim,
we introduce the notion of 2-uniform integrability: K � P2.X/ is 2-uniformly
integrable provided for any " > 0 and x0 2 X there exists R" > 0 such that

sup
�2K

Z
XnBR" .x0/

d 2.x; x0/d� � ":

Remark 3.3. Let .X; dX/; .Y; dY / be Polish and endow X � Y with the product
distance d2

�
.x1; y1/; .x2; y2/

� WD d2X.x1; x2/C d2Y .y1; y2/. Then the inequality

Z

.BR.x0/�BR.y0//c
d2X .x; x0/d�.x; y/ D

Z

.BR.x0//c�Y
d2X.x; x0/d�.x; y/C

Z

BR.x0/�.BR.y0//c
d2X .x; x0/d�.x; y/

�
Z

.BR.x0//c

d2X .x; x0/d�.x/C
Z

X�.BR.y0//c
R2d�.x; y/

�
Z

.BR.x0//c

d2X .x; x0/d�.x/C
Z

.BR.y0//c

d2Y .y; y0/d�.y/;

valid for any � 2 Adm.�; �/ and the analogous one with the integral of d2Y .y; y0/ in
place of d2X.x; x0/, show that if K1 � P2.X/ and K2 � P2.Y / are 2-uniformly
integrable, so is the set

n
� 2 P.X � Y / W �X# � 2 K1; �

Y
# � 2 K2

o
:

�

We say that a function f W X ! R has quadratic growth provided

jf .x/j � a.d2.x; x0/C 1/; (10)

for some a 2 R and x0 2 X . It is immediate to check that if f has quadratic growth
and � 2 P2.X/, then f 2 L1.X;�/.

The concept of 2-uniform integrability (in conjunction with tightness) in relation
with convergence of integral of functions with quadratic growth, plays a role similar
to the one played by tightness in relation with convergence of integral of bounded
functions, as shown in the next proposition.
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Proposition 3.4. Let .�n/� P2.X/ be a sequence narrowly converging to some�.
Then the following three properties are equivalent

(i) .�n/ is 2-uniformly integrable.
(ii)

R
fd�n ! R

fd� for any continuous f with quadratic growth.
(iii)

R
d2.
; x0/d�n ! R

d2.
; x0/d� for some x0 2 X .

Proof. .i/ ) .ii/. It is not restrictive to assume f � 0. Since any such f can be
written as supremum of a family of continuous and bounded functions, it clearly
holds Z

fd� � lim inf
n!1

Z
fd�n:

Thus we only have to prove the limsup inequality. Fix " > 0, x0 2 X and find
R" > 1 such that

R
XnBR" .x0/ d

2.
; x0/d�n � " for every n. Now let � be a function
with bounded support, values in Œ0; 1� and identically 1 on BR" and notice that for
every n 2 N it holds

Z
fd�nD

Z
f�d�nC

Z
f .1 � �/d�n�

Z
f�d�nC

Z
XnBR"

fd�n�
Z
f�d�nC2a";

a being given by (10). Since f� is continuous and bounded we have
R
f�d�n !R

f�d� and therefore

lim
n!1

Z
fd�n �

Z
f�d�C 2a" �

Z
fd�C 2a":

Since " > 0 was arbitrary, this part of the statement is proved.
.ii/ ) .iii/. Obvious.
.iii/ ) .i/. Argue by contradiction and assume that there exist " > 0 and Qx0 2 X

such that for every R > 0 it holds supn2N
R
XnBR.Qx0/ d

2.
; Qx0/d�n > ": Then it is
easy to see that it holds

lim
n!1

Z
XnBR.x0/

d 2.
; x0/d�n > ": (11)

For every R > 0 let �R be a continuous cutoff function with values in Œ0; 1�
supported onBR.x0/ and identically 1 onBR=2.x0/. Since d2.
; x0/�R is continuous
and bounded, we have

Z
d2.
; x0/�Rd� D lim

n!1

Z
d2.
; x0/�Rd�n

D lim
n!1


Z
d2.
; x0/d�n �

Z
d2.
; x0/.1 � �R/d�n

�

D
Z
d2.
; x0/d�C lim

n!1 �
Z
d2.
; x0/.1 � �R/d�n
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�
Z
d2.
; x0/d�C lim

n!1
�
Z
XnBR.x0/

d 2.
; x0/d�n

D
Z
d2.
; x0/d� � lim

n!1

Z
XnBR.x0/

d 2.
; x0/d�n

�
Z
d2.
; x0/d� � ";

having used (11) in the last step. Since

Z
d2.
; x0/d� D sup

R

Z
d2.
; x0/�Rd� �

Z
d2.
; x0/d�� ";

we got a contradiction. ut
Proposition 3.5 (Stability of optimality). The distance W2 is lower semicontinu-
ous w.r.t. narrow convergence of measures. Furthermore, if .�n/ � P2.X

2/ is a
sequence of optimal plans which narrowly converges to � 2 P2.X

2/, then � is
optimal as well.

Proof. Let .�n/, .�n/ � P2.X/ be two sequences of measures narrowly converging
to �; � 2 P2.X/ respectively. Pick �n 2 Opt.�n; �n/ and use Remark 2.4 and
Prokhorov theorem to get that .�n/ admits a subsequence, not relabeled, narrowly
converging to some � 2 P.X2/. It is clear that �1#� D� and �2#� D �, thus it holds

W 2
2 .�; �/ �

Z
d2.x; y/d�.x; y/ � lim

n!1

Z
d2.x; y/d�n.x; y/ D lim

n!1
W 2
2 .�n; �n/:

Now we pass to the second part of the statement, that is: we need to prove that
with the same notation just used it holds � 2 Opt.�; �/. Choose a.x/ D b.x/ D
d2.x; x0/ for some x0 2 X in the bound (4) and observe that since �; � 2 P2.X/

Theorem 2.13 applies, and thus optimality is equivalent to c-cyclical monotonicity
of the support. The same for the plans �n. Fix N 2 N and pick .xi ; yi / 2 supp.�/,
i D 1; : : : ; N . From the fact that .�n/ narrowly converges to � it is not hard to infer
the existence of .xin; y

i
n/ 2 supp.�n/ such that

lim
n!1

�
d.xin; x

i /C d.yin; y
i /
�

D 0; 8i D 1; : : : ; N:

Thus the conclusion follows from the c-cyclical monotonicity of supp.�n/ and the
continuity of the cost function. ut
Now we are going to prove that .P2.X/;W2/ is a Polish space. In order to enable
some constructions, we will use (a version of) Kolmogorov’s theorem, which we
recall without proof (see e.g. [31] Sect. 51).
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Theorem 3.6 (Kolmogorov). Let X be a Polish space and �n 2 P.Xn/, n 2 N,
be a sequence of measures such that

�
1;:::;n�1
# �n D �n�1; 8n � 2:

Then there exists a measure � 2 XN such that

�1;:::;n# � D �n; 8n 2 N:

Theorem 3.7 (Basic properties of the space .P2.X/;W2/). Let .X; d/ be com-
plete and separable. Then

W2.�n;�/ ! 0 ,
8<
:

�n! � narrowlyZ
d2.
; x0/d�n!

Z
d2.
; x0/d� for some x0 2 X:

(12)

Furthermore, the space .P2.X/;W2/ is complete and separable. Finally, K �
P2.X/ is relatively compact w.r.t. the topology induced by W2 if and only if it is
tight and 2-uniformly integrable.

Proof. We start showing implication ) in (12). Thus assume that W2.�n; �/ ! 0.
Then

ˇ̌
ˇ̌
ˇ
sZ

d2.
; x0/d�n�
sZ

d2.
; x0/d�
ˇ̌
ˇ̌
ˇDjW2.�n; ıx0/�W2.�; ıx0/j�W2.�n; �/ ! 0:

To prove narrow convergence, for every n 2 N choose �n 2 Opt.�; �n/ and2 use
repeatedly the gluing lemma to find, for every n 2 N, a measure ˛n 2 P.X �Xn/

such that

2If closed balls in X are compact, the proof greatly simplifies. Indeed in this case the inequality
R2�.X n BR.x0// � R

d2.�; x0/d� and the uniform bound on the second moments yields that
the sequence n 7! �n is tight. Thus to prove narrow convergence it is sufficient to check thatR
fd�n ! R

fd� for every f 2 Cc.X/. Since Lipschitz functions are dense in Cc.X/ w.r.t.
uniform convergence, it is sufficient to check the convergence of the integral only for Lipschitz
f ’s. This follows from the inequality

ˇ̌
ˇ̌
Z
fd� �

Z
fd�n

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌
Z
f .x/� f .y/d�n.x; y/

ˇ̌
ˇ̌ �

Z
jf .x/� f .y/jd�n.x; y/

� Lip.f /

Z
d.x; y/d�n.x; y/ � Lip.f /

sZ
d2.x; y/d�n.x; y/

D Lip.f /W2.�; �n/:
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�
0;n
# ˛n D �n;

�
0;1;:::;n�1
# ˛n D ˛n�1:

Then by Kolmogorov’s theorem we know that there exists a measure ˛ 2 P.X �
XN/ such that

�
0;1;:::;n
# ˛ D ˛n; 8n 2 N:

By construction we have

kd.�0; �n/kL2.X�XN;˛/ D kd.�0; �n/kL2.X2;�n/ D W2.�;�n/ ! 0:

Thus up to passing to a subsequence, not relabeled, we can assume that �n.x/ !
�0.x/ for ˛-almost any x 2 X �XN. Now pick f 2 Cb.X/ and use the dominated
convergence theorem to get

lim
n!1

Z
fd�n D lim

n!1

Z
f ı �nd˛ D

Z
f ı �0d˛ D

Z
fd�:

Since the argument does not depend on the subsequence chosen, the claim is proved.
We pass to the converse implication in (12). Pick �n 2 Opt.�; �n/ and use

Remark 2.4 to get that the sequence .�n/ is tight, hence, up to passing to a subse-
quence, we can assume that it narrowly converges to some � . By Proposition 3.5 we
know that � 2 Opt.�; �/, which forces

R
d2.x; y/d�.x; y/ D 0. By Proposition 3.4

and our assumption on .�n/; � we know that .�n/ is 2-uniformly integrable, thus
by Remark 3.3 again we know that .�n/ is 2-uniformly integrable as well. Since the
map .x; y/ 7! d2.x; y/ has quadratic growth in X2 it holds

lim
n!1W 2

2 .�n; �/ D lim
n!1

Z
d2.x; y/d�n.x; y/ D

Z
d2.x; y/d�.x; y/ D 0:

Now we prove that .P2.X/;W2/ is complete. Pick a Cauchy sequence .�n/ and
assume,3 without loss of generality, that

P
n W2.�n; �nC1/ < 1. For every n 2 N

choose �n 2 Opt.�n; �nC1/ and use repeatedly the gluing lemma to find, for every
n 2 N, a measure ˇn 2 P2.X

n/ such that

�n;nC1
# ˇn D �n;

�1;:::;n�1
# ˇn D ˛n�1

3Again, if closed balls in X are compact the argument simplifies. Indeed from the uniform bound
on the second moments and the inequality R2�.X n BR.x0// � R

XnBR.x0/
d2.�; x0/d� we get the

tightness of the sequence. Hence up to pass to a subsequence we can assume that .�n/ narrowly
converges to a limit measure �, and then using the lower semicontinuity of W2 w.r.t. narrow
convergence we can conclude limn W2.�; �n/ � limn limm W2.�m; �n/ D 0.
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By Kolmogorov’s theorem we get the existence of a measure ˇ 2 P.XN/ such that
�
1;:::;n
# ˇ D ˇn for every n 2 N. The inequality

1X
nD1

kd.�i ; �iC1/kL2.XN;ˇ/ D
1X
nD1

kd.�i ; �iC1/kL2.X2;�i / D
1X
nD1

W2.�i ; �iC1/ < 1;

shows that n 7! �n W XN ! X is a Cauchy sequence in L2.ˇ;X/, i.e. the space of
maps f W XN ! X such that

R
d2.f .y/; x0/dˇ.y/ < 1 for some, and thus every,

x0 2 X endowed with the distance Qd.f; g/ WD
qR

d2.f .y/; g.y//dˇ.y/. Since X

is complete,L2.ˇ;X/ is complete as well, and therefore there exists a limit map �1
of the Cauchy sequence .�n/. Define � WD �1

# ˇ and notice that by (9) we have

W 2
2 .�;�n/ �

Z
d2.�1; �n/dˇ ! 0;

so that � is the limit of the Cauchy sequence .�n/ in .P2.X/;W2/. The fact that
.P2.X/;W2/ is separable follows from (12) by considering the set of finite convex
combinations of Dirac masses centered at points in a dense countable set in X with
rational coefficients. The last claim now follows. ut
Remark 3.8 (On compactness properties of P2.X/). An immediate consequence
of the above theorem is the fact that if X is compact, then .P2.X/;W2/ is compact
as well: indeed, in this case the equivalence (12) tells that convergence in P2.X/ is
equivalent to weak convergence.

It is also interesting to notice that if X is unbounded, then P2.X/ is not locally
compact. Actually, for any measure � 2 P2.X/ and any r > 0, the closed ball of
radius r around� is not compact. To see this, fix x 2 X and find a sequence .xn/�X
such that d.xn; x/ ! 1. Now define the measures �n WD .1 � "n/� C "nıxn ,
where "n is chosen such that "nd2.x; xn/ D r2. To bound from above W 2

2 .�;�n/,
leave fixed .1 � "n/�, move "n� to x and then move "nıx into "nıxn , this gives

W 2
2 .�;�n/ � "n


Z
d2.x; x/d�.x/C d2.xn; x/

�
;

so that limW2.�;�n/ � r . Conclude observing that

lim
n!1

Z
d2.x; x/d�n D lim

n!1
.1�"n/

Z
d2.x; x/d�C"nd2.xn; x/ D

Z
d2.x; x/d�Cr2;

thus the second moments do not converge. Since clearly .�n/ weakly converges
to �, we proved that there is no local compactness. �
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3.2 X Geodesic Space

In this section we prove that if the base space .X; d/ is geodesic, then the same is
true also for .P2.X/;W2/ and we will analyze the properties of this latter space.

Let us recall that a curve � W Œ0; 1� ! X is called constant speed geodesic
provided

d
�
�t ; �s

� D jt � sjd ��0; �1�; 8t; s 2 Œ0; 1�; (13)

or equivalently if � always holds.

Definition 3.9 (Geodesic space). A metric space .X; d/ is called geodesic if for
every x; y 2 X there exists a constant speed geodesic connecting them, i.e. a
constant speed geodesic such that �0 D x and �1 D y.

Before entering into the details, let us describe an important example. Recall that
X 3 x 7! ıx 2 P2.X/ is an isometry. Therefore if t 7! �t is a constant speed
geodesic on X connecting x to y, the curve t 7! ı�t is a constant speed geodesic on
P2.X/which connects ıx to ıy . The important thing to notice here is that the natural
way to interpolate between ıx and ıy is given by this—so called—displacement
interpolation. Conversely, observe that the classical linear interpolation

t 7! �t WD .1 � t/ıx C tıy;

produces a curve which has infinite length as soon as x ¤ y (becauseW2.�t ; �s/ Dpjt � sjd.x; y/), and thus is unnatural in this setting.
We will denote by Geod.X/ the metric space of all constant speed geodesics on

X endowed with the sup norm. With some work it is possible to show that Geod.X/
is complete and separable as soon as X is (we omit the details). The evaluation
maps et W Geod.X/ ! X are defined for every t 2 Œ0; 1� by

et .�/ WD �t : (14)

Theorem 3.10. Let .X; d/ be Polish and geodesic. Then .P2.X/;W2/ is geodesic
as well. Furthermore, the following two are equivalent:

(i) t 7! �t 2 P2.X/ is a constant speed geodesic.
(ii) There exists a measure � 2 P2.Geod.X// such that .e0; e1/#� 2 Opt.�0; �1/

and
�t D .et /#�: (15)

Proof. Choose �0; �1 2 P2.X/ and find an optimal plan � 2 Opt.�; �/. By
Lemma 3.11 below and classical measurable selection theorems we know that there
exists a Borel map GeodSel W X2 ! Geod.X/ such that for any x; y 2 X the curve
GeodSel.x; y/ is a constant speed geodesic connecting x to y. Define the Borel
probability measure � 2 P.Geod.X// by

� WD GeodSel#�;

and the measures �t 2 P.X/ by �t WD .et /#�.
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We claim that t 7! �t is a constant speed geodesic connecting �0 to �1.
Consider indeed the map .e0; e1/ W Geod.X/ ! X2 and observe that from

.e0; e1/
�

GeodSel.x; y/
�

D .x; y/ we get

.e0; e1/#� D �: (16)

In particular, �0 D .e0/#�D�1#� D�0, and similarly �1 D�1, so that the curve
t 7! �t connects �0 to �1. The facts that the measures �t have finite second
moments and .�t / is a constant speed geodesic follow from

W 2
2 .�t ; �s/

.15/;.9/�
Z
d2.et .�/; es.�//d�.�/

.13/D .t � s/2
Z
d2.e0.�/; e1.�//d�.�/

.16/D .t � s/2
Z
d2.x; y/d�.x; y/ D .t � s/2W 2

2 .�
0; �1/:

The fact that .ii/ implies .i/ follows from the same kind of argument just used. So,
we turn to .i/ ) .ii/. For n � 0 we use iteratively the gluing Lemma 3.1 and the
Borel map GeodSel to build a measure �n 2 P.C.Œ0; 1�; X// such that

�
ei=2n ; e.iC1/=2n

�
#�

n 2 Opt.�i=2n ; �.iC1/=2n/; 8i D 0; : : : ; 2n � 1;

and �n-a.e. � is a geodesic in the intervals Œi=2n; .iC1/=2n�, i D 0; : : : ; 2n�1. Fix
n and observe that for any 0 � j < k � 2n it holds

d �ej=2n; ek=2n�L2.�n/ �

k�1X
iDj

d
�
ei=2n ; e.iC1/=2n

�
L2.�n/

�
k�1X
iDj

d �ei=2n ; e.iC1/=2n�L2.�n/

D
k�1X
iDj

W2.�i=2n ; �.iC1/=2n/ D W2.�j=2n; �k=2n /:

(17)

Therefore it holds

�
ej=2n ; ek=2n

�
#�

n 2 Opt.�j=2n ; �k=2n/; 8j; k 2 f0; : : : ; 2ng:

Also, since the inequalities in (17) are equalities, it is not hard to see that for
�n-a.e. � the points �i=2n , i D 0; : : : ; 2n, must lie along a geodesic and satisfy
d.�i=2n; �.iC1/=2n/ D d.�0; �1/=2

n, i D 0; : : : ; 2n � 1. Hence �n-a.e. � is a constant
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speed geodesic and thus �n 2 P.Geod.X//. Now suppose for a moment that .�n/
narrowly converges—up to pass to a subsequence—to some � 2 P.Geod.X//.
Then the continuity of the evaluation maps et yields that for any t 2 Œ0; 1� the
sequence n 7! .et /#�n narrowly converges to .et /#� and this, together with the
uniform bound (17), easily implies that � satisfies (15).

Thus to conclude it is sufficient to show that some subsequence of .�n/ has a
narrow limit.4 We will prove this by showing that �n 2 P2.Geod.X// for every
n 2 N and that some subsequence is a Cauchy sequence in .P2.Geod.X//;W2/,
W2 being the Wasserstein distance built over Geod.X/ endowed with the sup
distance, so that by Theorem 3.7 we conclude.

We know by Remarks 2.4, 3.3 and Theorem 3.7 that for every n 2 N the set
of plans ˛ 2 P2.X

2nC1/ such that �i#˛ D �i=2n for i D 0; : : : ; 2n, is compact
in P2.X

2nC1/. Therefore a diagonal argument tells that possibly passing to a
subsequence, not relabeled, we may assume that for every n 2 N the sequence

m 7!
2nY
iD0
.ei=2n/#�m

converges to some plan w.r.t. the distance W2 on X2nC1.
Now fix n 2 N and notice that for t 2 Œi=2n; .i C 1/=2n� and �; Q� 2 Geod.X/ it

holds

d
�
�t ; Q�t

� � d
�
�i=2n ; Q�.iC1/=2n

�C 1

2n

�
d.�0; �1/C d. Q�0; Q�1/

�
;

and therefore squaring and then taking the sup over t 2 Œ0; 1� we get

sup
t2Œ0;1�

d 2.�t ; Q�t / � 2

2n�1X
iD0

d 2
�
�i=2n ; Q�.iC1/=2n

�C 1

2n�2
�
d2.�0; �1/C d2. Q�0; Q�1/

�
:

(18)
Choosing Q� to be a constant geodesic and using (17), we get that �m 2
P2.Geod.X// for every m 2 N. Now, for any given �; Q� 2 P.Geod.X//, by
a gluing argument (Lemma 3.12 below with �; Q� in place of �; Q�, Y D Geod.X/,
Z D X2nC1) we can find a plan ˇ 2 P.ŒGeod.X/�2/ such that

�1#ˇ D �;

�2#ˇ D Q�;

�

e0;: : :; ei=2n ;: : :; e1
�

ı�1;
�

e0;: : :; ei=2n ;: : :; e1
�

ı�2
�

#
ˇ2Opt.

2nY
iD0
.ei=2n /#�;

2nY
iD0

.ei=2n /# Q�/

4As for Theorem 3.7 everything is simpler if closed balls in X are compact. Indeed, observe that
a geodesic connecting two points in BR.x0/ lies entirely on the compact set B2R.x0/, and that the
set of geodesics lying on a given compact set is itself compact in Geod.X/, so that the tightness of
.�n/ follows directly from the one of f�0; �1g.
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where optimality between
Q2n

iD0.ei=2n/#� and
Q2n

iD0.ei=2n/# Q� is meant w.r.t. the
Wasserstein distance on P2.X

2nC1/. Using ˇ to bound from above W2.�; Q�/ and
using (18) we get that for every couple of measures �; Q� 2 P2.Geod.X// it holds

W2
2.�; Q�/ � 2W 2

2

� 2nY
iD0
.ei=2n/#�;

2nY
iD0
.ei=2n/# Q�

�

C 1

2n�2


Z
d2.�0; �1/d�.�/C

Z
d2. Q�0; Q�1/d�. Q�/

�

Plugging �D�m, Q�D�m
0

and recalling that W2

�Q2n

iD0.ei=2n/#�m;Q2n

iD0.ei=2n/#�m
0

�
! 0 as m; m0 ! C1 for every n 2 N we get that

lim
m;m0!1

W2
2.�

m; �m
0

/ � 1

2n�2


Z
d2.�0; �1/d�

m.�/C
Z
d2. Q�0; Q�1/d�m0

. Q�/
�

D 1

2n�3W
2
2 .�0; �1/:

Letting n ! 1 we get that .�m/ � P2.Geod.X// is a Cauchy sequence and the
conclusion. ut
Lemma 3.11. The multivalued map from G W X2 ! Geod.X/ which associates to
each pair .x; y/ the set G.x; y/ of constant speed geodesics connecting x to y has
closed graph.

Proof. Straightforward. ut
Lemma 3.12 (A variant of gluing). Let Y;Z be Polish spaces, �; Q� 2 P.Y / and
f; g W Y ! Z be two Borel maps. Let � 2 Adm.f#�; g# Q�/. Then there exists a plan
ˇ 2 P.Y 2/ such that

�1#ˇ D �;

�2#ˇ D Q�;
.f ı �1; g ı �2/#ˇ D �:

Proof. Let f�zg; f Q�Qzg be the disintegrations of �; Q� w.r.t. f; g respectively.
Then define

ˇ WD
Z
Z2
�z � Q�Qz d�.z; Qz/:

ut
Remark 3.13 (The Hilbert case). If X is an Hilbert space, then for every x; y 2 X
there exists only one constant speed geodesic connecting them: the curve t 7! .1�t/
x C ty. Thus Theorem 3.10 reads as: t 7! �t is a constant speed geodesic if and
only if there exists an optimal plan � 2 Opt.�0; �1/ such that
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�t D �
.1 � t/�1 C t�2

�
#�:

If � is induced by a map T , the formula further simplifies to

�t D �
.1 � t/Id C tT

�
#�0: (19)

�

Remark 3.14. A slight modification of the arguments presented in the second part
of the proof of Theorem 3.10 shows that if .X; d/ is Polish and .P2.X/;W2/ is
geodesic, then .X; d/ is geodesic as well. Indeed, given x; y 2 X and a geodesic
.�t / connecting ıx to ıy , we can build a measure � 2 P.Geod.X// satisfying (15).
Then every � 2 supp.�/ is a geodesic connecting x to y. �

Definition 3.15 (Non branching spaces). A geodesic space .X; d/ is said non
branching if for any t 2 .0; 1/ a constant speed geodesic � is uniquely determined
by its initial point �0 and by the point �t . In other words, .X; d/ is non branching if
the map

Geod.X/ 3 � 7! .�0; �t / 2 X2;

is injective for any t 2 .0; 1/.
Non-branching spaces are interesting from the optimal transport point of view,
because for such spaces the behavior of geodesics in P2.X/ is particularly nice:
optimal transport plan from intermediate measures to other measures along the
geodesic are unique and induced by maps (it is quite surprising that such a statement
is true in this generality—compare the assumption of the proposition below with the
ones of Theorems 2.26, 2.33). Examples of non-branching spaces are Riemannian
manifolds, Banach spaces with strictly convex norms and Alexandrov spaces with
curvature bounded below. Examples of branching spaces are Banach spaces with
non strictly convex norms.

Proposition 3.16 (Non branching and interior regularity). Let .X; d/ be a
Polish, geodesic, non branching space. Then .P2.X/;W2/ is non branching as
well. Furthermore, if .�t / � P2.X/ is a constant speed geodesic, then for every
t 2 .0; 1/ there exists only one optimal plan in Opt.�0; �t / and this plan is induced
by a map from �t . Finally, the measure � 2 P.Geod.X// associated to .�t /
via (15) is unique.

Proof. Let .�t / � P2.X/ be a constant speed geodesic and fix t0 2 .0; 1/. Pick
�1 2 Opt.�0; �t0/ and �2 2 Opt.�t0 ; �1/. We want to prove that both �1 and �2

are induced by maps from �t0 . To this aim use the gluing lemma to find a 3-plan
˛ 2 P2.X

3/ such that
�
1;2
# ˛ D �1;

�2;3# ˛ D �2;

and observe that since .�t / is a geodesic it holds
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kd.�1; �3/kL2.˛/ � kd.�1; �2/C d.�2; �3/kL2.˛/
� kd.�1; �2/kL2.˛/ C kd.�2; �3/kL2.˛/
D kd.�1; �2/kL2.�1/ C kd.�1; �2/kL2.�2/
D W2.�0; �t0 /CW2.�t0 ; �1/

D W2.�0; �1/;

so that .�1; �3/#˛ 2 Opt.�0; �1/. Also, since the first inequality is actually an
equality, we have that d.x; y/C d.y; z/ D d.x; z/ for ˛-a.e. .x; y; z/, which means
that x; y; z lie along a geodesic. Furthermore, since the second inequality is an
equality, the functions .x; y; z/ 7! d.x; y/ and .x; y; z/ 7! d.y; z/ are each a
positive multiple of the other in supp.˛/. It is then immediate to verify that for
every .x; y; z/ 2 supp.˛/ it holds

d.x; y/ D .1 � t0/d.x; z/;

d.y; z/ D t0d.x; z/:

We now claim that for .x; y; z/; .x0; y0; z0/ 2 supp.˛/ it holds .x; y; z/ D .x0; y0; z0/
if and only if yDy0. Indeed, pick .x; y; z/, .x0; y; z0/ 2 supp.˛/ and assume,
for instance, that z ¤ z0. Since .�1; �3/#˛ is an optimal plan, by the cyclical
monotonicity of its support we know that

d2.x; z/C d2.x0; z0/ � d2.x; z0/C d2.x0; z/

� �
d.x; y/C d.y; z0/

�2 C �
d.x0; y/C d.y; z/

�2
D �

.1�t0/d.x; z/Ct0d.x0; z0/
�2C�.1�t0/d.x0; z0/Ct0d.x; z/

�2
;

which, after some manipulation, gives d.x; z/ D d.x0; z0/ DW D. Again from the
cyclical monotonicity of the support we have 2D2 � d2.x; z0/ C d2.x0; z/, thus
either d.x0; z/ or d.x; z0/ is � thanD. Say d.x; z0/ � D, so that it holds

D � d.x; z0/ � d.x; y/C d.y; z0/ D .1 � t0/D C t0D D D;

which means that the triple of points .x; y; z0/ lies along a geodesic. Since .x; y; z/
lies on a geodesic as well, by the non-branching hypothesis we get a contradiction.

Thus the map supp.˛/ 3 .x; y; z/ 7! y is injective. This means that there exists
two maps f; g W X ! X such that .x; y; z/ 2 supp.˛/ if and only if x D f .y/ and
z D g.y/. This is the same as to say that �1 is induced by f and �2 is induced by g.

To summarize, we proved that given t0 2 .0; 1/, every optimal plan � 2
Opt.�0; �t0 / is induced by a map from �t0 . Now we claim that the optimal plan
is actually unique. Indeed, if there are two of them induced by two different maps,
say f and f 0, then the plan
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1

2

�
.f; Id/#��t0 C .f 0; Id/#��t0

�
;

would be optimal and not induced by a map.
It remains to prove that P2.X/ is non branching. Choose � 2 P2.Geod.X//

such that (15) holds, fix t0 2 .0; 1/ and let � be the unique optimal plan in
Opt.�0; �t0 /. The thesis will be proved if we show that � depends only on � .
Observe that from Theorem 3.10 and its proof we know that

.e0; et0 /#� 2 Opt.�0; �t0 /;

and thus .e0; et0 /#� D � . By the non-branching hypothesis we know that .e0; et0 / W
Geod.X/ ! X2 is injective. Thus it invertible on its image: letting F the inverse
map, we get

� D F#�;

and the thesis is proved. ut
Theorem 3.10 tells us not only that geodesics exists, but provides also a natural

way to “interpolate” optimal plans: once we have the measure � 2 P.Geod.X//
satisfying (15), an optimal plan from �t to �s is simply given by .et ; es/#�. Now,
we know that the transport problem has a natural dual problem, which is solved
by the Kantorovich potential. It is then natural to ask how to interpolate potentials.
In other words, if .'; 'cC/ are c�conjugate Kantorovich potentials for .�0; �1/, is
there a simple way to find out a couple of Kantorovich potentials associated to the
couple �t , �s? The answer is yes, and it is given—shortly said—by the solution of
an Hamilton–Jacobi equation. To see this, we first define the Hopf–Lax evolution
semigroupHs

t (which in R
d produces the viscosity solution of the Hamilton–Jacobi

equation) via the following formula:

Hs
t . /.x/ WD

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

inf
y2X

d2.x; y/

s � t C  .y/; if t < s;

 .x/; if t D s;

sup
y2X

�d
2.x; y/

s � t
C  .y/; if t > s;

(20)

To fully appreciate the mechanisms behind the theory, it is better to introduce the
rescaled costs ct;s defined by

ct;s.x; y/ WD d2.x; y/

s � t ; 8t < s; x; y 2 X:

Observe that for t < r < s

ct;r .x; y/C cr;s.y; z/ � ct;s.x; z/; 8x; y; z 2 X;
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and equality holds if and only if there is a constant speed geodesic � W Œt; s� ! X

such that xD �t , yD �r , z D �s . The notions of ct;sC and ct;s� transforms, convexity/
concavity and sub/super-differential are defined as in Sect. 2.2, Definitions 2.8–2.10.

The basic properties of the Hopf–Lax formula are collected in the following
proposition:

Proposition 3.17 (Basic properties of the Hopf–Lax formula). We have the
following three properties:

(i) For any t; s 2 Œ0; 1� the map Hs
t is order preserving, that is � �  )

Hs
t .�/ � Hs

t . /.
(ii) For any t < s 2 Œ0; 1� it holds

Ht
s

�
Hs
t .�/

� D �c
t;s
�
ct;s

� � �;

Hs
t

�
Ht
s .�/

� D �c
t;s
C
c
t;s
C � �:

(iii) For any t; s 2 Œ0; 1� it holds

Hs
t ıHt

s ıHs
t D Hs

t :

Proof. The order preserving property is a straightforward consequence of the
definition. To prove property .ii/ observe that

Ht
s

�
Hs
t .�/

�
.x/ D sup

y

inf
x0

�
�.x0/C ct;s.x0; y/� ct;s.x; y/

�
;

which gives the equality Ht
s

�
Hs
t .�/

� D �c
t;s
�
ct;s

� : in particular, choosing x0 Dx we
get the claim (the proof of the other equation is similar). For the last property assume
t < s (the other case is similar) and observe that by .i/ we have

Hs
t ıHt

s„ ƒ‚ …
�Id

ıHs
t � Hs

t

and
Hs
t ıHt

s ıHs
t„ ƒ‚ …

�Id
� Hs

t :

ut
The fact that Kantorovich potentials evolve according to the Hopf–Lax formula

is expressed in the following theorem. We remark that in the statement below one
must deal at the same time with c-concave and c-convex potentials.

Theorem 3.18 (Interpolation of potentials). Let .X; d/ be a Polish geodesic
space, .�t / � P2.X/ a constant speed geodesic in .P2.X/;W2/ and ' a c D c0;1-
convex Kantorovich potential for the couple .�0; �1/. Then the function 's WD
Hs
0 .'/ is a ct;s-concave Kantorovich potential for the couple .�s; �t /, for any t < s.
Similarly, if � is a c-concave Kantorovich potential for .�1; �0/, then Ht

1.�/ is
a ct;s-convex Kantorovich potential for .�t ; �s/ for any t < s.
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Observe that for t D 0, s D 1 the theorem reduces to the fact thatH1
0 .'/ D .�'/cC

is a c-concave Kantorovich potential for �1, �0, a fact that was already clear by the
symmetry of the dual problem discussed in Sect. 2.3.

Proof. We will prove only the first part of the statement, as the second is analogous.

Step 1. We prove that Hs
0 . / is a ct;s-concave function for any t < s and any

 W X ! R [ fC1g. This is a consequence of the equality

c0;s.x; y/ D inf
z2X c

0;t .z; y/C ct;s.x; z/;

from which it follows

Hs
0 . /.x/ D inf

y2X c
0;s.x; y/C  .y/ D inf

z2X c
t;s.x; z/C



inf
y2X c

0;t .z; y/C  .y/

�
:

Step 2. Let � 2 P.Geod.X// be a measure associated to the geodesic .�t /
via (15). We claim that for every � 2 supp.�/ and s 2 .0; 1� it holds

's.�s/ D '.�0/C c0;s.�0; �s/: (21)

Indeed the inequality � comes directly from the definition by taking x D �0. To
prove the opposite one, observe that since .e0; e1/#� 2 Opt.�0; �1/ and ' is a
c-convex Kantorovich potential for �0; �1, we have from Theorem 2.13 that

'c�.�1/ D �c0;1.�0; �1/� '.�0/;

thus
'.x/ D sup

y2X
�c0;1.x; y/ � 'c�.y/ � �c0;1.x; �1/ � 'c�.�1/

D �c0;1.x; �1/C c0;1.�0; �1/C '.�0/:

Plugging this inequality in the definition of 's we get

's.�s/ D inf
x2X c

0;s.x; �s/C '.x/

� inf
x2X c

0;s.x; �s/ � c0;1.x; �1/C c0;1.�0; �1/C '.�0/

� �cs;1.�s; �1/C c0;1.�0; �1/� '.�0/ D c0;s.�0; �s/C '.�0/:

Step 3. We know that an optimal transport plan from �t to �s is given by
.et ; es/#�, thus to conclude the proof we need to show that

's.�s/C .'s/
c
t;s
C .�t / D ct;s.�t ; �s/; 8� 2 supp.�/;

where .'s/
c
t;s
C is the ct;s-conjugate of the ct;s-concave function 's . The inequality

� follows from the definition of ct;s-conjugate. To prove opposite inequality start
observing that
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's.y/ D inf
x2X c

0;s.x; y/C '.y/ � c0;s.�0; y/C '.�0/

� c0;t .�0; �t /C ct;s.�t ; y/C '.�0/;

and conclude by

'
c
t;s
C

s .�t / D inf
y2X c

t;s.�t ; y/ � 's.y/ � �c0;t .�0; �t /� '.�0/

D �c0;s.�0; �s/C ct;s.�t ; �s/ � '.�0/
.21/D ct;s.�t ; �s/ � 's.�s/:

ut
We conclude the section studying some curvature properties of .P2.X/;W2/. We

will focus on spaces positively/non positively curved in the sense of Alexandrov,
which are the non smooth analogous of Riemannian manifolds having sectional
curvature bounded from below/above by 0.

Definition 3.19 (PC and NPC spaces). A geodesic space .X; d/ is said to be
positively curved (PC) in the sense of Alexandrov if for every constant speed
geodesic � W Œ0; 1� ! X and every z 2 X the following concavity inequality holds:

d2
�
�t ; z

� � .1 � t/d 2
�
�0; z

�C td 2
�
�1; z

� � t.1 � t/d 2
�
�0; �1

�
: (22)

Similarly,X is said to be non positively curved (NPC) in the sense of Alexandrov if
the converse inequality always holds.

Observe that in an Hilbert space equality holds in (22).
The result here is that .P2.X/;W2/ is PC if .X; d/ is, while in general it is not

NPC if X is.

Theorem 3.20 (.P2.X/;W2/ is PC if .X; d/ is). Assume that .X; d/ is positively
curved. Then .P2.X/;W2/ is positively curved as well.

Proof. Let .�t / be a constant speed geodesic in P2.X/ and � 2 P2.X/. Let � 2
P2.Geod.X// be a measure such that

�t D .et /#�; 8t 2 Œ0; 1�;

as in Theorem 3.10. Fix t0 2 Œ0; 1� and choose � 2 Opt.�t0 ; �/. Using a gluing
argument (we omit the details) it is possible to show the existence a measure ˛ 2
P.Geod.X/ �X/ such that

�
Geod.X/
# ˛ D �;

�
et0 ; �

X
�

#˛ D �;
(23)
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where �Geod.X/.�; x/ WD � 2 Geod.X/, �X.�; x/ WD x 2X and et0 .�; x/ WD �t0 2X .
Then ˛ satisfies also �

e0; �X
�

#˛ 2 Adm.�0; �/�
e1; �X

�
#˛ 2 Adm.�1; �/;

(24)

and therefore it holds

W 2
2 .�t0 ; �/ D

Z
d2.et0 .�/; x/d˛.�; x/

.22/�
Z
.1� t0/d

2
�
�0; z

�C t0d
2
�
�1; z

� � t0.1 � t0/d 2
�
�0; �1

�
d˛.�; x/

.23/D .1 � t0/
Z
d2
�
�0; z

�
d˛.�; x/C t0

Z
d2
�
�1; z

�
d˛.�; x/

� t0.1 � t0/

Z
d2
�
�0; �1

�
d�.�/

.24/� .1 � t0/W 2
2 .�0; �/C t0W

2
2 .�1; �/� t0.1 � t0/W

2
2 .�0; �1/;

and by the arbitrariness of t0 we conclude. ut
Example 3.21 (.P2.X/;W2/ may be not NPC if .X; d/ is). Let X D R

2 with the
Euclidean distance. We will prove that .P2.R

2/;W2/ is not NPC. Define

�0 WD 1

2
.ı.1;1/ C ı.5;3//; �1 WD 1

2
.ı.�1;1/ C ı.�5;3//; � WD 1

2
.ı.0;0/ C ı.0;�4//;

then explicit computations show that W 2
2 .�0; �1/ D 40 and W 2

2 .�0; �/ D 30 D
W 2
2 .�1; �/. The unique constant speed geodesic .�t / from �0 to �1 is given by

�t D 1

2

�
ı.1�6t;1C2t/ C ı.5�6t;3�2t/

�
;

and simple computations show that

24 D W 2
2 .�1=2; �/ >

30

2
C 30

2
� 40

4
:

�

3.3 X Riemannian Manifold

In this section X will always be a compact, smooth Riemannian manifold M
without boundary, endowed with the Riemannian distance d .

We study two aspects: the first one is the analysis of some important conse-
quences of Theorem 3.18 about the structure of geodesics in P2.M/, the second
one is the introduction of the so called weak Riemannian structure of .P2.M/;W2/.
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Notice that sinceM is compact, P2.M/ D P.M/. Yet, we stick to the notation
P2.M/ because all the statements we make in this section are true also for non
compact manifolds (although, for simplicity, we prove them only in the compact
case).

3.3.1 Regularity of Interpolated Potentials and Consequences

We start observing how Theorem 3.10 specializes to the case of Riemannian
manifolds:

Corollary 3.22 (Geodesics in .P2.M/;W2/). Let .�t / � P2.M/. Then the
following two things are equivalent:

(i) .�t / is a geodesic in .P2.M/;W2/.
(ii) There exists a plan � 2 P.TM/ (TM being the tangent bundle of M ) such

that Z
jvj2d�.x; v/ D W 2

2 .�0; �1/;

�
Exp.t/

�
#� D �t ;

(25)

Exp.t/ W TM ! M being defined by .x; v/ 7! expx.tv/.

Also, for any �; � 2 P2.M/ such that � is a regular measure (Definition 2.32), the
geodesic connecting � to � is unique.

Notice that we cannot substitute the first equation in (25) with .�M ; exp/#� 2
Opt.�0; �1/, because this latter condition is strictly weaker (it may be that the curve
t 7! expx.tv/ is not a globally minimizing geodesic from x to expx.v/ for some
.x; v/ 2 supp � ).

Proof. The implication .i/ ) .ii/ follows directly from Theorem 3.10 by taking
into account the fact that t 7! �t is a constant speed geodesic onM implies that for
some .x; v 2 TM/ it holds �t D expx.tv/ and in this case d.�0; �1/ D jvj.

For the converse implication, just observe that from the second equation in (25)
we have

W 2
2 .�t ; �s/ �

Z
d2
�

expx.tv/; expx.sv/
�
d�.x; v/

� .t � s/2
Z

jvj2d�.x; v/ D .t � s/2W 2
2 .�0; �1/;

having used the first equation in (25) in the last step.
To prove the last claim just recall that by Remark 2.35 we know that for �-a.e. x

there exists a unique geodesic connecting x to T .x/, T being the optimal transport
map. Hence the conclusion follows from .ii/ of Theorem 3.10. ut
Now we discuss the regularity properties of Kantorovich potentials which follows
from Theorem 3.18.
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Corollary 3.23 (Regularity properties of the interpolated potentials). Let  
be a c�convex potential for .�0; �1/ and let ' WDH1

0 . /. Define  t WDHt
0. /,

't WD Ht
1.'/ and choose a geodesic .�t / from �0 to �1. Then for every t 2 .0; 1/

it holds:

(i)  t � 't and both the functions are real valued.
(ii)  t D 't on supp.�t /.

(iii)  t and 't are differentiable in the support of �t and on this set their gradients
coincide.

Proof. For .i/ we have

't D Ht
1.'/ D .H t

1 ıH1
0 /. / D .H t

1 ıH1
t„ ƒ‚ …

�Id
ıHt

0/ � Ht
0. / D  t :

Now observe that by definition,  t.x/ < C1 and 't .x/ > �1 for every x 2 M ,
thus it holds

C1 >  t .x/ � 't.x/ > �1; 8x 2 M:
To prove .ii/, let� be the unique plan associated to the geodesic .�t / via (15) (recall
Proposition 3.16 for uniqueness) and pick � 2 supp.�/. Recall that it holds

 t.�t / D c0;t .�0; �t /C  .�0/;

't .�t / D ct;1.�t ; �1/C '.�1/:

Thus from '.�1/ D c0;1.�0; �1/ C  .�0/ we get that  t.�t / D 't.�t /. Since �t D
.et /#�, the compactness of M gives supp.�t / D f�tg�2supp.�/, so that .ii/ follows.

Now we turn to .iii/. With the same choice of t 7! �t as above, recall that it holds

 t.�t / D c0;t .�0; �t /C  .�0/

 t .x/ � c0;t .�0; x/C  .�0/; 8x 2 M;
and that the function x 7! c0;t .�0; x/ C  .�0/ is superdifferentiable at xD �t .
Thus the function x 7!  t is superdifferentiable at xD �t . Similarly, 't is
subdifferentiable at �t . Choose v1 2 @C t .�t /, v2 2 @�'t.�t / and observe that

 t.�t /C
D
v1; exp�1

�t
.x/
E

C o.D.x; �t // �  t .x/

� 't .x/

� 't .�t /C
D
v2; exp�1

�t
.x/
E

C o.D.x; �t //;

which gives v1 D v2 and the thesis. ut
Corollary 3.24 (The intermediate transport maps are locally Lipschitz). Let
.�t / � P2.M/ a constant speed geodesic in .P2.M/;W2/. Then for every
t 2 .0; 1/ and s 2 Œ0; 1� there exists only one optimal transport plan from �t to
�s , this transport plan is induced by a map, and this map is locally Lipschitz.
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Note: clearly in a compact setting being locally Lipschitz means being Lipschitz. We
wrote “locally” because this is the regularity of transport maps in the non compact
situation.

Proof. Fix t 2 .0; 1/ and, without loss of generality, let s D 1. The fact that the
optimal plan from is unique and induced by a map is known by Proposition 3.16.
Now let v be the vector field defined on supp.�t / by v.x/ D r't D r t (we are
using part .iii/ of the above corollary, with the same notation). The fact that  t is
a c0;t -concave potential for the couple �t ; �0 tells that the optimal transport map T

satisfies T .x/ 2 @c
0;t
C �t .x/ for �t -a.e. x. Using Theorem 2.33, the fact that  t is

differentiable in supp.�t / and taking into account the scaling properties of the cost,
we get that T may be written as T .x/ D expx �v.x/. Since the exponential map
is C1, the fact that T is Lipschitz will follow if we show that the vector field v on
supp.�t / is, when read in charts, Lipschitz.

Thus, passing to local coordinates and recalling that d2.
; y/ is uniformly
semiconcave, the situation is the following. We have a semiconcave function f W
R
d ! R and a semiconvex function g W Rd ! R such that f � g on R

d , f D g

on a certain closed set K and we have to prove that the vector field u W K ! R
d

defined by u.x/ D rf .x/ D rg.x/ is Lipschitz. Up to rescaling we may assume
that f and g are such that f � j 
 j2 is concave and g C j 
 j2 is convex. Then for
every x 2 K and y 2 R

d we have

hu.x/; y � xi�jx�yj2 � g.y/�g.x/ � f .y/�f .x/ � hu.x/; y � xiCjy�xj2;

and thus for every x 2 K , y 2 R
d it holds

jf .y/ � f .x/ � hu.x/; y � xi j � jx � yj2:

Picking x1; x2 2 K and y 2 R
d we have

f .x2/ � f .x1/ � hu.x1/; x2 � x1i � jx1 � x2j2;
f .x2 C y/ � f .x2/ � hu.x2/; yi � jyj2;

�f .x2 C y/C f .x1/C hu.x1/; x2 C y � x1i � jx2 C y � x1j2:
Adding up we get

hu.x1/� u.x2/; yi � jx1 � x2j2 C jyj2 C jx2 C y � x1j2 � 3.jx1 � x2j2 C jyj2/:

Eventually, choosing y D .u.x1/� u.x2//=6 we obtain

ju.x1/� u.x2/j2 � 36jx1 � x2j2:
ut

It is worth stressing the fact that the regularity property ensured by the previous
corollary holds without any assumption on the measures �0; �1.
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Remark 3.25 (A (much) simpler proof in the Euclidean case). The fact that
intermediate transport maps are Lipschitz can be proved, in the Euclidean case,
via the theory of monotone operators. Indeed if G W R

d ! R
d is a—possibly

multivalued—monotone map (i.e. satisfies hy1 � y2; x1 � x2i � 0 for every
x1; x2 2 R

d , yi 2 G.xi /, i D 1; 2), then the operator ..1 � t/Id C tG/�1 is
single valued, Lipschitz, with Lipschitz constant bounded above by 1=.1 � t/. To
prove this, pick x1; x2 2 R

d , y1 2 G.x1/, y2 2 G.x2/ and observe that

j.1 � t/x1 C ty1 � .1 � t/x2 C ty2j2

D .1 � t/2jx1 � x2j2 C t2jy1 � y2j2 C 2t.1 � t/ hx1 � x2; y1 � y2i
� .1 � t/2jx1 � x2j2;

which is our claim.
Now pick �0; �1 2 P2.R

d /, an optimal plan � 2 Opt.�0; �1/ and consider the
geodesic t 7! �t WD ..1� t/�1C t�2/#� (recall Remark 3.13). From Theorem 2.26
we know that there exists a convex function ' such that supp.�/ � @�'. Also, we
know that the unique optimal plan from �0 to �t is given by the formula

�
�1; .1 � t/�1 C t�2

�
#�;

which is therefore supported in the graph of .1 � t/Id C t@�'. Since the
subdifferential of a convex function is a monotone operator, the thesis follows from
the previous claim.

Considering the case in which �1 is a delta and �0 is not, we can easily see that
the bound .1� t/�1 on the Lipschitz constant of the optimal transport map from �t
to �0 is sharp. �

An important consequence of Corollary 3.24 is the following proposition:

Proposition 3.26 (Geodesic convexity of the set of absolutely continuous mea-
sures). Let M be a Riemannian manifold, .�t / � P2.M/ a geodesic and assume
that �0 is absolutely continuous w.r.t. the volume measure (resp. gives 0 mass to
Lipschitz hypersurfaces of codimension 1). Then �t is absolutely continuous w.r.t.
the volume measure (resp. gives 0 mass to Lipschitz hypersurfaces of codimension 1)
for every t < 1. In particular, the set of absolutely continuous measures is geodesi-
cally convex (and the same for measures giving 0 mass to Lipschitz hypersurfaces
of codimension 1).

Proof. Assume that �0 is absolutely continuous, let A � M be of 0 volume
measure, t 2 .0; 1/ and let Tt be the optimal transport map from �t to �0. Then
for every Borel set A � M it holds T �1

t .Tt .A// 	 A and thus

�t.A/ � �t.T
�1
t .Tt .A/// D �0.Tt .A//:

The claims follow from the fact that Tt is locally Lipschitz. ut
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Remark 3.27 (The set of regular measures is not geodesically convex). It is natural
to ask whether the same conclusion of the previous proposition holds for the set of
regular measures (Definitions 2.25 and 2.32). The answer is not: there are examples
of regular measures �0, �1 in P2.R

2/ such that the middle point of the geodesic
connecting them is not regular. �

3.3.2 The Weak Riemannian Structure of .P2.M/; W2/

In order to introduce the weak differentiable structure of .P2.X/;W2/, we start with
some heuristic considerations. Let X D R

d and .�t / be a constant speed geodesic
on P2.R

d / induced by some optimal map T , i.e.:

�t D �
.1 � t/Id C tT

�
#�0:

Then a simple calculation shows that .�t / satisfies the continuity equation

d

dt
�t C r 
 .vt�t / D 0;

with vt WD .T � Id/ ı ..1� t/Id C tT /�1 for every t , in the sense of distributions.
Indeed for � 2 C1

c .R
d / it holds

d

dt

Z
�d�t D d

dt

Z
�
�
.1 � t/Id C tT

�
d�0

D
Z

hr��.1 � t/Id C tT
�
; T � Id i d�0 D

Z
hr�; vtid�t :

Now, the continuity equation describes the link between the motion of the contin-
uum �t and the instantaneous velocity vt W Rd ! R

d of every “atom” of �t . It is
therefore natural to think at the vector field vt as the infinitesimal variation of the
continuum �t .

From this perspective, one might expect that the set of “smooth” curves on
P2.R

d / (and more generally on P2.M/) is somehow linked to the set of solutions
of the continuity equation. This is actually the case, as we are going to discuss now.

In order to state the rigorous result, we need to recall the definition of absolutely
continuous curve on a metric space.

Definition 3.28 (Absolutely continuous curve). Let .Y; Qd/ be a metric space and
let Œ0; 1� 3 t 7! yt 2 Y be a curve. Then .yt / is said absolutely continuous if there
exists a function f 2 L1.0; 1/ such that

Qd.yt ; ys/ �
Z s

t

f .r/dr; 8t < s 2 Œ0; 1�: (26)
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We recall that if .yt / is absolutely continuous, then for a.e. t the metric derivative
j Pyt j exists, given by

j Pyt j WD lim
h!0

Qd.ytCh; yt /
jhj ; (27)

and that j Pyt j 2 L1.0; 1/ and is the smallest L1 function (up to negligible sets) for
which inequality (26) is satisfied (see e.g. Theorem 1.1.2 of [7] for the simple proof).

The link between absolutely continuous curves in P2.M/ and the continuity
equation is given by the following theorem:

Theorem 3.29 (Characterization of absolutely continuous curves in .P2.M/;

W2/). Let M be a smooth complete Riemannian manifold without boundary. Then
the following holds.

(A) For every absolutely continuous curve .�t / � P2.M/ there exists a Borel
family of vector fields vt on M such that kvtkL2.�t / � j P�t j for a.e. t and the
continuity equation

d

dt
�t C r 
 .vt�t / D 0; (28)

holds in the sense of distributions.

(B) If .�t ; vt / satisfies the continuity equation (28) in the sense of distributions andR 1
0 kvtkL2.�t /dt < 1, then up to redefining t 7! �t on a negligible set of times,
.�t / is an absolutely continuous curve on P2.M/ and j P�t j � kvtkL2.�t / for
a.e. t 2 Œ0; 1�.

Note that we are not assuming any kind of regularity on the �t ’s.
We postpone the (sketch of the) proof of this theorem to the end of the section,

for the moment we analyze its consequences in terms of the geometry of P2.M/.
The first important consequence is that the Wasserstein distance, which was

defined via the “static” optimal transport problem, can be recovered via the
following “dynamic” Riemannian-like formula:

Proposition 3.30 (Benamou–Brenier formula). Let �0; �1 2 P2.M/. Then it
holds

W2.�
0; �1/ D inf

�Z 1

0

kvtk�t dt
�
; (29)

where the infimum is taken among all weakly continuous distributional solutions of
the continuity equation .�t ; vt / such that �0 D �0 and �1 D �1.

Proof. We start with inequality �. Let .�t ; vt / be a solution of the continuity
equation. Then if

R 1
0

kvtkL2.�t / D C1 there is nothing to prove. Otherwise we
may apply part B of Theorem 3.29 to get that .�t / is an absolutely continuous curve
on P2.M/. The conclusion follows from

W2.�
0; �1/ �

Z 1

0

j P�t jdt �
Z 1

0

kvtkL2.�t /dt;

where in the last step we used part (B) of Theorem 3.29 again.
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To prove the converse inequality it is enough to consider a constant speed
geodesic .�t / connecting �0 to �1 and apply part (A) of Theorem 3.29 to get
the existence of vector fields vt such that the continuity equation is satisfied and
kvtkL2.�t / � j P�t j D W2.�

0; �1/ for a.e. t 2 Œ0; 1�. Then we have

W2.�
0; �1/ �

Z 1

0

kvtkL2.�t /dt;

as desired. ut
This proposition strongly suggests that the scalar product in L2.�/ should be

considered as the metric tensor on P2.M/ at �. Now observe that given an
absolutely continuous curve .�t / � P2.M/ in general there is no unique choice
of vector field .vt / such that the continuity equation (28) is satisfied. Indeed, if (28)
holds and wt is a Borel family of vector fields such that r 
 .wt�t / D 0 for a.e. t ,
then the continuity equation is satisfied also with the vector fields .vt Cwt /. It is then
natural to ask whether there is some natural selection principle to associate uniquely
a family of vector fields .vt / to a given absolutely continuous curve. There are two
possible approaches:

Algebraic approach. The fact that for distributional solutions of the continuity
equation the vector field vt acts only on gradients of smooth functions suggests that
the vt ’s should be taken in the set of gradients as well, or, more rigorously, vt should
belong to n

r' W ' 2 C1
c .M/

oL2.�t /
(30)

for a.e. t 2 Œ0; 1�.
Variational approach. The fact that the continuity equation is linear in vt and the
L2 norm is strictly convex, implies that there exists a unique, up to negligible sets
in time, family of vector fields vt 2 L2.�t /, t 2 Œ0; 1�, with minimal norm for a.e. t ,
among the vector fields compatible with the curve .�t / via the continuity equation.
In other words, for any other vector field .Qvt / compatible with the curve .�t / in the
sense that (28) is satisfied, it holds kQvtkL2.�t / � kvtkL2.�t / for a.e. t . It is immediate
to verify that vt is of minimal norm if and only if it belongs to the set

n
v 2 L2.�t / W

Z
hv;wi d�t D 0; 8w 2 L2.�t / s:t: r 
 .w�t / D 0

o
: (31)

The important point here is that the sets defined by (30) and (31) are the same, as
it is easy to check. Therefore it is natural to give the following

Definition 3.31 (The tangent space). Let � 2 P2.M/. Then the tangent space
Tan�.P2.�/M/ at P2.M/ in � is defined as

Tan�.P2.�/M/ WD
n
r' W ' 2 C1

c .M/
oL2.�/

D
n
v 2 L2.�/ W

Z
hv;wid� D 0; 8w 2 L2.�/ s:t: r 
 .w�/ D 0

o
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Thus we now have a definition of tangent space for every � 2 P2.M/ and this
tangent space is naturally endowed with a scalar product: the one of L2.�/. This
fact, Theorem 3.29 and Proposition 3.30 are the bases of the so-called weak
Riemannian structure of .P2.M/;W2/.

We now state, without proof, some other properties of .P2.M/;W2/ which
resemble those of a Riemannian manifold. For simplicity, we will deal with the
case M D R

d only and we will assume that the measures we are dealing with are
regular (Definition 2.25), but analogous statements hold for general manifolds and
general measures.

In the next three propositions .�t / is an absolutely continuous curve in P2.R
d /

such that �t is regular for every t . Also .vt / is the unique, up to a negligible set
of times, family of vector fields such that the continuity equation holds and vt 2
Tan�t .P2.R

d // for a.e. t .

Proposition 3.32 (vt can be recovered by infinitesimal displacement). Let .�t /
and .vt / as above. Also, let T st be the optimal transport map from �t to �s (which
exists and is unique by Theorem 2.26, due to our assumptions on �t ). Then for a.e.
t 2 Œ0; 1� it holds

vt D lim
s!t

T st � Id

s � t ;

the limit being understood in L2.�t /.

Proposition 3.33 (“Displacement tangency”). Let .�t / and .vt / as above. Then
for a.e. t 2 Œ0; 1� it holds

lim
h!0

W2

�
�tCh; .Id C hvt /#�t

�
h

D 0: (32)

Proposition 3.34 (Derivative of the squared distance). Let .�t / and .vt / as above
and � 2 P2.R

d /. Then for a.e. t 2 Œ0; 1� it holds

d

dt
W 2
2 .�t ; �/ D �2

Z
hvt ; Tt � Id i d�t ;

where Tt is the unique optimal transport map from �t to � (which exists and is
unique by Theorem 2.26, due to our assumptions on �t ).

We conclude the section with a sketch of the proof of Theorem 3.29.

Sketch of the Proof of Theorem 3.29

Reduction to the Euclidean case Suppose we already know the result for the case
R
d and we want to prove it for a compact and smooth manifold M . Use the Nash

embedding theorem to get the existence of a smooth map i W M ! R
D whose

differential provides an isometry of TxM and its image for any x 2 M . Now
notice that the inequality ji.x/ � i.y/j � d.x; y/ valid for any x; y 2 M ensures
that W2.i#�; i#�/ � W2.�; �/ for any �; � 2 P2.M/. Hence given an absolutely
continuous curve .�t / � P2.M/, the curve .i#�t / � P2.R

D/ is absolutely
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continuous as well, and there exists a family vector fields vt such that (28) is fulfilled
with i#�t in place of �t and kvtkL2.i#�t / � j Pi#�t j � j P�t j for a.e. t . Testing the
continuity equation with functions constant on i.M/we get that for a.e. t the vector
field vt is tangent to i.M/ for i#�t -a.e. point. Thus the vt ’s are the (isometric) image
of vector fields on M and part .A/ is proved.

Viceversa, let .�t / � P2.M/ be a curve and the vt ’s vector fields in M such
that

R 1
0 kvtkL2.�t /dt < 1 and assume that they satisfy the continuity equation.

Then the measures Q�t WD i#�t and the vector fields Qvt WD di.vt / satisfy the
continuity equation on R

D . Therefore . Q�t / is an absolutely continuous curve and
it holds j PQ�t j � kQvtkL2. Q�t / D kvtkL2.�t / for a.e. t . Notice that i is bilipschitz and
therefore .�t / is absolutely continuous as well. Hence to conclude it is sufficient
to show that j PQ�t j D j P�t j a.e. t . To prove this, one can notice that the fact that i is
bilipschitz and validity of

lim
r!0

sup
x;y2M
d.x;y/<r

d.x; y/

ji.x/� i.y/j D 1;

give that
lim
r!0

sup
�;�2P2.M/
W2.�;�/<r

W2.�; �/

W2.i#�; i#�/
D 1:

We omit the details.

Part A. Fix ' 2 C1
c .R

d / and observe that for every �st 2 Opt.�t ; �s/ it holds

ˇ̌
ˇ̌Z 'd�s �

Z
'd�t

ˇ̌
ˇ̌ D

ˇ̌
ˇ̌Z '.y/d�st .x; y/�

Z
'.x/d�st .x; y/

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌Z '.y/ � '.x/d�st .x; y/

ˇ̌
ˇ̌

D
ˇ̌
ˇ̌
ˇ
Z Z 1

0
hr'.x C �.y � x//; y � xi d�d�st .x; y/

ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇ̌Z hr'.x/; y � xid�st .x; y/

ˇ̌
ˇ̌C Rem.'; t; s/

�
sZ

jr'.x/j2d�st .x; y/
sZ

jx � yj2d�st .x; y/C Rem.'; t; s/

D kr'kL2.�t /W2.�t ; �s/C Rem.'; t; s/;
(33)

where the remainder term Rem.'; t; s/ can be bounded by

jRem.'; t; s/j � Lip.r'/
2

Z
jx � yj2d�st .x; y/ D Lip.r'/

2
W 2
2 .�t ; �s/:

Thus (33) implies that the map t 7! R
'd�t is absolutely continuous for any ' 2

C1
c .R

d /.



A User’s Guide to Optimal Transport 57

Now let D � C1
c .R

d / be a countable set such that fr' W ' 2 Dg is dense
in Tan�t .P2.R

d // for every t 2 Œ0; 1� (the existence of such D follows from the
compactness of f�t gt2Œ0;1� � P2.R

d /, we omit the details). The above arguments
imply that there exists a set A � Œ0; 1� of full Lebesgue measure such that t 7!R
'd�t is differentiable at t 2 A for every ' 2 D; we can also assume that the

metric derivative j P�t j exists for every t 2 A. Also, by (33) we know that for t0 2 A
the linear functionalLt0 W fr' W ' 2 Dg ! R given by

r' 7! Lt0.r'/ WD d

dt
jtDt0

Z
'd�t

satisfies
jLt0.r'/j � kr'kL2.�t0 /j P�t0 j;

and thus it can be uniquely extended to a linear and bounded functional on
Tan�t0 .P2.R

d //. By the Riesz representation theorem there exists a vector field
vt0 2 Tan�t0 .P2.R

d // such that

d

dt
jtDt0

Z
'd�t D Lt0.r'/ D

Z
hr'; vt0id�t0 ; 8' 2 D; (34)

and whose norm in L2.�t0 / is bounded above by the metric derivative j P�t j at
t D t0. It remains to prove that the continuity equation is satisfied in the sense
of distributions. This is a consequence of (34), see Theorem 8.3.1 of [7] for the
technical details.

Part B. Up to a time reparametrization argument, we can assume that
kvtkL2.�t / � L for some L 2 R for a.e. t . Fix a Gaussian family of mollifiers "

and define

�"t WD �t � ";

v"t WD .vt�t / � "
�"t

:

It is clear that
d

dt
�"t C r 
 .v"t �"t / D 0:

Moreover, from Jensen inequality applied to the map .X; z/ 7! zjX=zj2 D jX j2=z
(X D vt�t ) it follows that

kv"t kL2.�"t / � kvtkL2.�t / � L: (35)

This bound, together with the smoothness of v"t , implies that there exists a unique
locally Lipschitz map T".
; 
/ W Œ0; 1� � R

d ! R
d , t 2 Œ0; 1� satisfying

8<
:
d

dt
T".t; x/ D v"t

�
T".t; x/

� 8x 2 R
d ; a:e: t 2 Œ0; 1�;

T".t; x/ D x; 8x 2 R
d ; t 2 Œ0; 1�:
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A simple computation shows that the curve t 7! Q�"t WD T".t; 
/#�"0 solves

d

dt
Q�"t C r 
 .v"t Q�"t / D 0; (36)

which is the same equation solved by .�"t /. It is possible to show that this fact
together with the smoothness of the v"t ’s and the equality �"0 D Q�"0 gives that Q�"t D
�"t for every t; " (see Proposition 8.1.7 and Theorem 8.3.1 of [7] for a proof of this
fact).

Conclude observing that

W 2
2 .�

"
t ; �

"
s/ �

Z
jT".t; x/� T".s; x/j2d�"0.x/ D

Z ˇ̌
ˇ̌Z s

t
v"r
�
T".r; x/

�ˇ̌ˇ̌2 d�"0.x/

� jt � sj
Z Z s

t

ˇ̌
v"r
�
T".r; x/

�ˇ̌2
dr d�"0Djt � sj

Z s

t

v"r
�
T".r; 
/�2

L2.�"0/
dr

� jt � sj
Z s

t
kv"rk2L2.�"r /dr

.35/� jt � sj2L;

and that, by the characterization of convergence (12),W2.�
"
t ; �t / ! 0 as " ! 0 for

every t 2 Œ0; 1�. ut

3.4 Bibliographical Notes

To call the distance W2 the “Wasserstein distance” is quite not fair: a much
more appropriate would be Kantorovich distance. Also, the spelling “Wasserstein”
is questionable, as the original one was “Vasershtein”. Yet, this terminology is
nowadays so common that it would be impossible to change it.

The equivalence (12) has been proven by the authors and G. Savaré in [7]. In
the same reference Remark 3.8 has been first made. The fact that .P2.X/;W2/ is
complete and separable as soon as .X; d/ is belongs to the folklore of the theory,
a proof can be found in [7]. Proposition 3.4 was proved by C. Villani in [79],
Theorem 7.12.

The terminology displacement interpolation was introduced by McCann [63] for
probability measures in R

d . Theorem 3.10 appears in this form here for the first
time: in [58] the theorem was proved in the compact case, in [80] (Theorem 7.21)
this has been extended to locally compact structures and much more general forms
of interpolation. The main source of difficulty when dealing with general Polish
structure is the potential lack of tightness: the proof presented here is strongly
inspired by the work of S. Lisini [54].

Proposition 3.16 and Theorem 3.18 come from [80] (Corollary 7.32 and
Theorem 7.36 respectively). Theorem 3.20 and the counterexample 3.21 are taken
from [7] (Theorem 3.2 and Example 3.3 respectively).
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The proof of Corollary 3.24 is taken from an argument by A. Fathi [35], the paper
being inspired by Bernand–Buffoni [13]. Remark 3.27 is due to N. Juillet [48].

The idea of looking at the transport problem as dynamical problem involving the
continuity equation is due to J.D. Benamou and Y. Brenier [12], while the fact that
.P2.R

d /;W2/ can be viewed as a sort of infinite dimensional Riemannian manifold
is an intuition by F. Otto [67]. Theorem 3.29 has been proven in [7] (where also
Propositions 3.32–3.34 were proven) in the case M D R

d , the generalization to
Riemannian manifolds comes from Nash’s embedding theorem.

4 Gradient Flows

The aim of this Chapter is twofold: on one hand we give an overview of the theory
of Gradient Flows in a metric setting, on the other hand we discuss the important
application of the abstract theory to the case of geodesically convex functionals on
the space .P2.R

d /;W2/.
Let us recall that for a smooth function F W M ! R on a Riemannian manifold,

a gradient flow .xt / starting from x 2 M is a differentiable curve solving
�
x0
t D �rF.xt /;
x0 D x:

(37)

Observe that there are two necessary ingredients in this definition: the functional F
and the metric on M . The role of the functional is clear. The metric is involved to
define rF: it is used to identify the cotangent vector dF with the tangent vector rF.

4.1 Hilbertian Theory of Gradient Flows

In this section we quickly recall the main results of the theory of Gradient flow
for �-convex functionals on Hilbert spaces. This will deserve as guideline for the
analysis that we will make later on of the same problem in a purely metric setting.

Let H be Hilbert and � 2 R. A �-convex functional F W H ! R [ fC1g is a
functional satisfying:

F
�
.1 � t/x C ty

� � .1 � t/F .x/C tF .y/ � �

2
t.1 � t/jx � yj2; 8x; y 2 H;

(this corresponds to r2F � �Id for functionals on R
d ). We denote with D.F / the

domain of F , i.e. D.F / WD fx W F.x/ < 1g.
The subdifferential @�F.x/ of F at a point x 2 D.F / is the set of v 2 H

such that

F.x/C hv; y � xi C �

2
jx � yj2 � F.y/; 8y 2 H:
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An immediate consequence of the definition is the fact that the subdifferential of F
satisfies the monotonicity inequality:

hv � w; x � yi � �jx � yj2 8v 2 @F.x/; w 2 @�F.y/:

We will denote by rF.x/ the element of minimal norm in @F.x/, which exists and
is unique as soon as @�F.x/ ¤ ;, because @�F.x/ is closed and convex.

For convex functions a natural generalization of Definition (37) of Gradient Flow
is possible: we say that .xt / is a Gradient Flow for F starting from x 2 H if it is a
locally absolutely continuous curve in .0;C1/ such that

(
x0
t 2 �@�F.xt / for a.e. t > 0

lim
t#0
xt D x: (38)

We now summarize without proof the main existence and uniqueness results in
this context.

Theorem 4.1 (Gradient Flows in Hilbert spaces—(Brezis, Pazy) ). If F W
H !R [ fC1g is �-convex and lower semicontinuous, then the following
statements hold.

(i) Existence and uniqueness for all Nx 2 D.F / (38) has a unique solution .xt /.
(ii) Minimal selection and Regularizing effects It holds dC

dt
xt D �rF.xt / for

every t > 0 (that is, the right derivative of xt always exists and realizes the
element of minimal norm in @�F.xt /) and dC

dt
F ı x.t/ D �jrF.x.t//j2 for

every t > 0. Also

F.xt / � inf
v2D.F /

�
F.v/C 1

2t
jv � Nxj2

�
;

jrF.xt /j2 � inf
v2D.@F /

�
jrF.v/j2 C 1

t2
jv � Nxj2

�
:

(iii) Energy Dissipation Equality jx0
t j; jrF j.xt /2L2loc.0;C1/, F.xt / 2

ACloc.0;C1/ and the following Energy Dissipation Equality holds:

F.xt /� F.xs/ D 1

2

Z s

t
jrF.xr /j2 dr C 1

2

Z s

t
jx0
r j2 dr 0 < t � s < 1:

(iv) Evolution Variational Inequality and contraction .xt / is the unique solution
of the system of differential inequalities

1

2

d

dt
j Qxt � yj2 C F.xt /C �

2
j Qxt � yj2 � F.y/; 8y 2 H; a:e: t;

among all locally absolutely continuous curves . Qxt / in .0;1/ converging to x
as t ! 0. Furthermore, if .yt / is a solution of (38) starting from y, it holds

jxt � yt j � e��t jx � yj:
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(v) Asymptotic behavior If � > 0 then there exists a unique minimum xmin of F
and it holds

F.xt /� F.xmin/ � �
F. Nx/� F.xmin/

�
e�2�t :

In particular, the pointwise energy inequality

F.x/ � F.xmin/C �

2
jx � xminj2; 8x 2 H

gives

jxt � xminj �
r
2.F.x/� F.xmin//

�
e��t :

4.2 The Theory of Gradient Flows in a Metric Setting

Here we give an overview of the theory of Gradient Flows in a purely metric
framework.

4.2.1 The Framework

The first thing we need to understand is the meaning of Gradient Flow in a metric
setting. Indeed, the system (38) makes no sense in metric spaces, thus we need to
reformulate it so that it has a metric analogous. There are several ways to do this,
below we summarize the most important ones.

For the purpose of the discussion below, we assume that H DR
d and that E W

H ! R is �-convex and of class C1.
Let us start observing that (38) may be written as: t 7! xt is locally absolutely

continuous in .0;C1/, converges to x as t # 0 and it holds

d

dt
E
�
xt
� � �1

2
jrEj2�xt � � 1

2
jx0
t j2; a:e: t � 0: (39)

Indeed, along any absolutely continuous curve yt it holds

d

dt
E
�
yt
� D ˝rE.yt /; y0

t

˛

� �jrEj.yt /jy0
t j .D if and only if � y0

t is a positive multiple of rE.yt //;

� �1
2

jrEj2�yt � � 1

2
jy0
t j2 .D if and only if jy0

t j D jrE.yt /j/:
(40)

Thus in particular (39) may be written in the following integral form
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E
�
xs
�C 1

2

Z s

t

jx0
r j2dr C 1

2

Z s

t

jrEj2.xr /dr � E.xt /; a:e: t < s (41)

which we call Energy Dissipation Inequality (EDI in the following).
Since the inequality (40) shows that d

dt
E
�
yt
�
< � 1

2
jrEj2�yt � � 1

2
jy0
t j2 never

holds, the system (38) may be also written in form of Energy Dissipation Equality
(EDE in the following) as

E
�
xt
�C 1

2

Z s

t

jx0
r j2dr C 1

2

Z s

t

jrEj2.xr /dr D E.xt /; 80 � t � s: (42)

Notice that the convexity of E does not play any role in this formulation.
A completely different way to rewrite (38) comes from observing that if xt

solves (38) and y 2 H is a generic point it holds

1

2

d

dt
jxt � yj2 D ˝

xt � y; x0
t

˛ D hy � xt ;rE.xt /i � E.y/ �E.xt / � �

2
jxt � yj2;

where in the last inequality we used the fact thatE is �-convex. Since the inequality

hy � x; vi � E.y/� E.x/ � �

2
jx � yj2; 8y 2 H;

characterizes the elements v of the subdifferential of E at x, we have that an
absolutely continuous curve xt solves (38) if and only if

1

2

d

dt
jxt � yj2 C 1

2
�jxt � yj2 CE.xt / � E.y/; a:e: t � 0; (43)

holds for every y 2 H . We will call this system of inequalities the Evolution
Variational Inequality (EVI).

Thus we got three different characterizations of Gradient Flows in Hilbert spaces:
the EDI, the EDE and the EVI. We now want to show that it is possible to formulate
these equations also for functionals E defined on a metric space .X; d/.

The object jx0
t j appearing in EDI and EDE can be naturally interpreted as the

metric speed of the absolutely continuous curve xt as defined in (27). The metric
analogous of jrEj.x/ is the slope of E , defined as:

Definition 4.2 (Slope). Let E W X ! R [ fC1g and x 2 X be such that
E.x/<1. Then the slope jrEj.x/ of E at x is:

jrEj.x/ WD lim
y!x

.E.x/ � E.y//C

d.x; y/
D max

�
lim
y!x

E.x/ � E.y/

d.x; y/
; 0

�
:

The three definitions of Gradient Flows in a metric setting that we are going to
use are:



A User’s Guide to Optimal Transport 63

Definition 4.3 (Energy Dissipation Inequality definition of GF—EDI). Let E W
X ! R [ fC1g and let x 2 X be such that E.x/ < 1. We say that Œ0;1/ 3
t 7! xt 2 X is a Gradient Flow in the EDI sense starting at x provided it is a locally
absolutely continuous curve, x0 D x and

E.xs/C 1

2

Z s

0

j Pxr j2dr C 1

2

Z s

0

jrEj2.xr /dr � E.x/; 8s � 0;

E.xs/C 1

2

Z s

t

j Pxr j2dr C 1

2

Z s

t

jrEj2.xr /dr � E.xt /; a:e: t > 0; 8s � t:

(44)

Definition 4.4 (Energy Dissipation Equality definition of GF—EDE). Let E W
X ! R[ fC1g and let x 2 X be such that E.x/ < 1. We say that Œ0;1/ 3 t 7!
xt 2 X is a Gradient Flow in the EDE sense starting at x provided it is a locally
absolutely continuous curve, x0 D x and

E.xs/C 1

2

Z s

t

j Pxr j2dr C 1

2

Z s

t

jrEj2.xr /dr D E.xt /; 80 � t � s: (45)

Definition 4.5 (Evolution Variation Inequality definition of GF—EVI). Let E W
X ! R [ fC1g, x 2 fE < 1g and � 2 R. We say that .0;1/ 3 t 7! xt 2 X

is a Gradient Flow in the EVI sense (with respect to �) starting at x provided it is a
locally absolutely continuous curve in .0;1/, xt ! x as t ! 0 and

E.xt /C 1

2

d

dt
d2.xt ; y/C �

2
d2.xt ; y/ � E.y/; 8y 2 X; a:e: t > 0:

There are two basic and fundamental things that one needs understand when
studying the problem of Gradient Flows in a metric setting:

(1) Although the formulations EDI, EDE and EVI are equivalent for �-convex
functionals on Hilbert spaces, they are not equivalent in a metric setting. Shortly
said, it holds

EVI ) EDE ) EDI

and typically none of the converse implication holds (see Examples 4.15
and 4.23 below). Here the second implication is clear, for the proof of the first
one see Proposition 4.6 below.

(2) Whatever definition of Gradient Flow in a metric setting we use, the main
problem is to show existence. The main ingredient in almost all existence proofs
is the Minimizing Movements scheme, which we describe after Proposition 4.6.

Proposition 4.6 (EVI implies EDE). Let E WX !R[fC1g be a lower semicon-
tinuous functional, x 2 X a given point, � 2 R and assume that .xt / is a Gradient
Flow for E starting from x in the EVI sense w.r.t. �. Then (45) holds.
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Proof. First we assume that xt is locally Lipschitz. The claim will be proved if we
show that t 7! E.xt / is locally Lipschitz and it holds

� d

dt
E.xt / D 1

2
j Pxt j2 C 1

2
jrEj2.xt /; a:e: t > 0:

Let us start observing that the triangle inequality implies

1

2

d

dt
d2.xt ; y/ � �j Pxt jd.xt ; y/; 8y 2 X; a:e: t > 0;

thus plugging this bound into the EVI we get

�j Pxt jd.xt ; y/C �

2
d2.xt ; y/C E.xt / � E.y/; 8y 2 X; a:e: t > 0;

which implies

jrEj.xt / D lim
y!xt

�
E.xt / �E.y/�C

d.xt ; y/
� j Pxt j; a:e: t > 0: (46)

Fix an interval Œa; b� � .0;1/, let L be the Lipschitz constant of .xt / in Œa; b� and
observe that for any y 2 X it holds

d

dt
d2.xt ; y/ � �j Pxt jd.xt ; y/ � �Ld.xt ; y/; a:e: t 2 Œa; b�:

Plugging this bound in the EVI we get

�Ld.xt ; y/C �

2
d2.xt ; y/C E.xt / � E.y/; a:e: t 2 Œa; b�;

and by the lower semicontinuity of t 7! E.xt / the inequality holds for every t 2
Œa; b�. Taking y D xs and then exchanging the roles of xt ; xs we deduce

ˇ̌
E.xt /� E.xs/

ˇ̌ � Ld.xt ; xs/� �

2
d2.xt ; xs/

� Ljt � sj


LC j�j

2
Ljt � sj

�
; 8t; s 2 Œa; b�;

thus the map t 7! E.xt / is locally Lipschitz. It is then obvious that it holds

� d

dt
E.xt / D lim

h!0

E.xt / �E.xtCh/
h

D lim
h!0

E.xt /� E.xtCh/
d.xtCh; xt /

d.xtCh; xt /
h

� jrEj.xt /j Pxt j � 1

2
jrEj2.xt /C 1

2
j Pxt j2; a:e: t:
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Thus to conclude we need only to prove the opposite inequality. Integrate the EVI
from t to t C h to get

d2.xtCh; y/ � d2.xt ; y/
2

C
Z tCh

t

E.xs/ ds C
Z tCh

t

�

2
d2.xs; y/ds � hE.y/:

Let y D xt to obtain

d2.xtCh; xt /
2

�
Z tCh

t

E.xt /� E.xs/ ds C j�j
6
L2h3

D h

Z 1

0

E.xt /� E.xtChr / dr C j�j
6
L2h3:

Now let A � .0;C1/ be the set of points of differentiability of t 7! E.xt / and
where j Pxt j exists, choose t 2 A\.a; b/, divide by h2 the above inequality, let h ! 0

and use the dominated convergence theorem to get

1

2
j Pxt j2 � lim

h!0

Z 1

0

E.xt /� E.xtChr /
h

dr D � d

dt
E.xt /

Z 1

0

rdr D �1
2

d

dt
E.xt /:

Recalling (46) we conclude with

� d

dt
E.xt / � j Pxt j2 � 1

2
j Pxt j2 C 1

2
jrEj2.xt /; a:e: t > 0:

Finally, we see how the local Lipschitz property of .xt / can be achieved. It is
immediate to verify that the curve t 7! xtCh is a Gradient Flow in the EVI sense
starting from xh for all h > 0. We now use the fact that the distance between curves
satisfying the EVI is contractive up to an exponential factor (see the last part of the
proof of Theorem 4.25 for a sketch of the argument, and Corollary 4.3.3 of [7] for
the rigorous proof). We have

d.xs; xsCh/ � e��.s�t /d.xt ; xtCh/; 8s > t:
Dividing by h, letting h # 0 and calling B � .0;1/ the set where the metric
derivative of xt exists, we obtain

j Pxsj � j Pxt je��.s�t /; 8s; t 2 B; s > t:
This implies that the curve .xt / is locally Lipschitz in .0;C1/. ut

Let us come back to the case of a convex and lower semicontinuous functional
F on an Hilbert space. Pick x 2 D.F /, fix � > 0 and define the sequence n 7! x�.n/
recursively by setting x�.n/ WD x and defining x�.nC1/ as a minimizer of

x 7! F.x/C jx � x�.n/j2
2�

:
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It is immediate to verify that a minimum exists and that it is unique, thus the
sequence n 7! x�.n/ is well defined. The Euler–Lagrange equation of x�.nC1/ is:

x�.nC1/ � x�.n/
�

2 �@�F.x�.nC1//;

which is a time discretization of (38). It is then natural to introduce the rescaled
curve t 7! x�t by

x�t WD x�.Œt=��/;

where Œ
� denotes the integer part, and to ask whether the curves t 7! x�t converge
in some sense to a limit curve .xt / which solves (38) as � # 0. This is the case, and
this procedure is actually the heart of the proof of Theorem 4.1.

What is important for the discussion we are making now, is that the minimization
procedure just described can be naturally posed in a metric setting for a general
functionalE W X ! R[fC1g: it is sufficient to pick x 2 fE < 1g, � > 0, define
x�.0/ WD x and then recursively

x�.nC1/ 2 argmin

(
x 7! E.x/C d2.x; x�.n//

2�

)
: (47)

We this give the following definition:

Definition 4.7 (Discrete solution). Let .X; d/ be a metric space, E W X ! R [
fC1g lower semicontinuous, x 2 fE < 1g and � > 0. A discrete solution is a
map Œ0;C1/ 3 t 7! x�t defined by

x�t WD x�.Œt=��/;

where x�.0/ WD x and x�.nC1/ satisfies (47).

Clearly in a metric context it is part of the job the identification of suitable
assumptions that ensure that the minimization problem (47) admits at least a
minimum, so that discrete solutions exist.

We now divide the discussion into three parts, to see under which conditions on
the functionalE and the metric spaceX it is possible to prove existence of Gradient
Flows in the EDI, EDE and EVI formulation.

4.2.2 General l.s.c. Functionals and EDI

In this section we will make minimal assumptions on the functional E and show
how it is possible, starting from them, to prove existence of Gradient Flows in the
EDI sense.

Basically, there are two “independent” sets of assumptions that we need: those
which ensure the existence of discrete solutions, and those needed to pass to the
limit. To better highlight the structure of the theory, we first introduce the hypotheses
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we need to guarantee the existence of discrete solution and see which properties the
discrete solutions have. Then, later on, we introduce the assumptions needed to pass
to the limit.

We will denote by D.E/ � X the domain of E , i.e. D.E/ WD fE < 1g
Assumption 4.8 (Hypothesis for existence of discrete solutions). .X; d/ is a
Polish space and E W X ! R [ fC1g be a l.s.c. functional bounded from below.
Also, we assume that there exists � > 0 such that for every 0 < � < � and x 2 D.E/
there exists at least a minimum of

x 7! E.x/C d2.x; x/

2�
: (48)

Thanks to our assumptions we know that discrete solutions exist for every starting
point x, for � sufficiently small. The big problem we have to face now is to show
that the discrete solutions satisfy a discretized version of the EDI suitable to pass to
the limit. The key enabler to do this, is the following result, due to de Giorgi.

Theorem 4.9 (Properties of the variational interpolation). Let X; E be satisfy-
ing the Assumption 4.8. Fix x 2 X , and for any 0 < � < � choose x� among the

minimizers of (48). Then the map � 7! E.x� /C d2.x;x� /

2�
is locally Lipschitz in .0; �/

and it holds

d

d�



E.x�/C d2.x; x� /

2�

�
D �d

2.x; x� /

2�2
; a:e: � 2 .0; �/: (49)

Proof. Observe that from E.x�0/C d2.x�0 ;x/

2�0
� E.x�1 /C d2.x�1 ;x/

2�0
we deduce

E.x�0 /C d2.x�0 ; x/

2�0
�E.x�1 /C d2.x�1 ; x/

2�1
�


1

2�0
� 1

2�1

�
d2.x�1 ; x/

D �1 � �0

2�0�1
d 2.x�1 ; x/:

Arguing symmetrically we see that

E.x�0 /C d2.x�0 ; x/

2�0
�E.x�1 /C d2.x�1 ; x/

2�1
� �1 � �0

2�0�1
d 2.x�0 ; x/:

The last two inequalities show that � 7! E.x�/ C d2.x;x� /

2�
is locally Lipschitz and

that (49) holds. ut
Lemma 4.10. With the same notation and assumptions as in the previous theorem,
� 7! d.x; x� / is non decreasing and � 7! E.x�/ is non increasing. Also, it holds

jrEj.x� / � d.x� ; x/

�
: (50)
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Proof. Pick 0 < �0 < �1 < � . From the minimality of x�0 and x�1 we get

E.x�0/C d2.x�0 ; x/

2�0
� E.x�1 /C d2.x�1 ; x/

2�0
;

E.x�1/C d2.x�1 ; x/

2�1
� E.x�0 /C d2.x�0 ; x/

2�1
:

Adding up and using the fact that 1
�0

� 1
�1

� 0 we get d.x; x�0 / � d.x; x�1 /. The fact
that � 7! E.x�/ is non increasing now follows from

E.x�1 /C d2.x�0 ; x/

2�1
� E.x�1 /C d2.x�1 ; x/

2�1
� E.x�0/C d2.x�0 ; x/

2�1
:

For the second part of the statement, observe that from

E.x�/C d2.x� ; x/

2�
� E.y/C d2.y; x/

2�
; 8y 2 X

we get

E.x�/� E.y/

d.x� ; y/
� d2.y; x/� d2.x� ; x/

2�d.x� ; y/
D
�
d.y; x/ � d.x� ; x/

��
d.x� ; x/C d.y; x; /

�
2�d.x� ; y/

� d.x� ; x; /C d.y; x/

2�
:

Taking the limsup as y ! x� we get the thesis. ut
By Theorem 4.9 and Lemma 4.10 it is natural to introduce the following variational
interpolation in the Minimizing Movements scheme (as opposed to the classical
piecewise constant/affine interpolations used in other contexts):

Definition 4.11 (Variational interpolation). Let X;E be satisfying Assumption
4.8, x 2 D.E/ and 0 < � < � . We define the map Œ0;1/ 3 t 7! x�t in the
following way:

• x�0 WD x.
• x�.nC1/� is chosen among the minimizers of (48) with x replaced by x�n� .
• x�t with t 2 .n�; .nC 1/�/ is chosen among the minimizers of (48) with x and �

replaced by x�n� and t � n� respectively.

For .x�t / defined in this way, we define the discrete speed Dsp� W Œ0;C1/ !
Œ0;C1/ and the Discrete slope Dsl� W Œ0;C1/ ! Œ0;C1/ by:

Dsp�t WD d
�
x�n� ; x

�
.nC1/�

�
�

; t 2 .n�; .nC 1/�/;

Dsl�t WD d
�
x�t ; x

�
n�

�
t � n� ; t 2 .n�; .nC 1/�/:

(51)
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Although the object Dsl�t does not look like a slope, we chose this name because
from (50) we know that jrEj.x�t / � Dsl�t and because in the limiting process Dsl�

will produce the slope term in the EDI (see the proof of Theorem 4.14).
With this notation we have the following result:

Corollary 4.12 (EDE for the discrete solutions). Let X; E be satisfying Assump-
tion 4.8, x 2 D.E/, 0 < � < � and .x�t / defined via the variational interpolation
as in Definition 4.11 above. Then it holds

E.x�s /C 1

2

Z s

t

jDsp�r j2dr C 1

2

Z s

t

jDsl�r j2dr D E.x�t /; (52)

for every t D n� , s D m� , n < m 2 N.

Proof. It is just a restatement of (49) in terms of the notation given in (51). ut
Thus, at the level of discrete solutions, it is possible to get a discrete form of the

Energy Dissipation Equality under the quite general Assumptions 4.8. Now we want
to pass to the limit as � # 0. In order to do this, we need to add some compactness
and regularity assumptions on the functional:

Assumption 4.13 (Coercivity and regularity assumptions). Assume that E W
X ! R [ fC1g satisfies:

• E is bounded from below and its sublevels are boundedly compact, i.e. fE � cg\
Br.x/ is compact for any c 2 R, r > 0 and x 2 X .

• The slope jrEj W D.E/ ! Œ0;C1� is lower semicontinuous.
• E has the following continuity property:

xn ! x; sup
n

fjrEj.xn/; E.xn/g < 1 ) E.xn/ ! E.x/:

Under these assumptions we can prove the following result:

Theorem 4.14 (Gradient Flows in EDI formulation). Let .X; d/ be a metric
space and letE W X ! R[fC1g be satisfying the Assumptions 4.8 and 4.13. Also,
let x 2 D.E/ and for 0 < � < � define the discrete solution via the variational
interpolation as in Definition 4.11. Then it holds:

• The set of curves f.x�t /g� is relatively compact in the set of curves in X w.r.t.
local uniform convergence.

• Any limit curve .xt / is a Gradient Flow in the EDI formulation (Definition 4.3).

Sketch of the Proof

Compactness. By Corollary 4.12 we have

d2.x�t ; x/ �
 Z T

0
jDsp�r jdr

!2
� T

Z T

0
jDsp�r j2dr � 2T

�
E.x/ � infE

�
; 8t � T;
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for any T D n� . Therefore for any T > 0 the set fx�t gt�T is uniformly bounded
in � . As this set is also contained in fE � E.x/g, it is relatively compact. The fact
that there is relative compactness w.r.t. local uniform convergence follows by an
Ascoli–Arzelà-type argument based on the inequality

d2
�
x�t ; x

�
s

� �

Z s

t
jDsp�r jdr

�2
� 2.s � t/�E.x/�infE

�
; 8tDn�; sDm�; n< m2N:

(53)

Passage to the limit. Let �n # 0 be such that .x�nt / converges to a limit curve xt
locally uniformly. Then by standard arguments based on inequality (53) it is possible
to check that t 7! xt is absolutely continuous and satisfies

Z s

t

j Pxr j2dr � lim
n!1

Z s

t

jDsp�nr j2dr 80 � t < s: (54)

By the lower semicontinuity of jrEj and (50) we get

jrEj.xt / � lim
n!1

jrEj.x�nt / � lim
n!1

Dsl�nt ; 8t;

thus Fatou’s lemma ensures that for any t < s it holds

Z s

t
jrEj2.xr/dr �

Z s

t
lim
n!1

jrEj2.x�r /dr � lim
n!1

Z s

t
jDsl�nr j2 dr � 2T

�
E.x/� infE

�
:

(55)

Now passing to the limit in (52) written for t D 0 we get the first inequality in (44).
Also, from (55) we get that the L2 norm of f .t/ WD limn!1 jrEj.x�nt / on Œ0;1/

is finite. Thus A WD ff < 1g has full Lebesgue measure and for each t 2 A we
can find a subsequence �nk # 0 such that supk jrEj.x�nkt / < 1. Then the third
assumption in 4.13 guarantees that E.x

�nk
t / ! E.xt / and the lower semicontinuity

of E that E.xs/ � limk!1E.x
�nk
s / for every s � t . Thus passing to the limit

in (52) as �nk # 0 and using (54) and (55) we get

E.xs/C 1

2

Z s

t

j Pxr j2dr C 1

2

Z s

t

jrEj2.xr /dr � E.xt /; 8t 2 A; 8s � t:

ut
We conclude with an example which shows why in general we cannot hope to

have equality in the EDI. Shortly said, the problem is that we don’t know whether
t 7! E.xt / is an absolutely continuous map.

Example 4.15. Let X D Œ0; 1� with the Euclidean distance, C � X a Cantor-type
set with null Lebesgue measure and f W Œ0; 1� ! Œ1;C1� a continuous, integrable
function such that f .x/D C 1 for any x 2 C , which is smooth on the
complement of C . Also, let g W Œ0; 1� ! Œ0; 1� be a “Devil staircase” built over C ,
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i.e. a continuous, non decreasing function satisfying g.0/ D 0, g.1/ D 1 which is
constant in each of the connected components of the complement of C . Define the
energies E; QE W Œ0; 1� ! R by

E.x/ WD �g.x/ �
Z x

0

f .y/dy:

QE.x/ WD �
Z x

0

f .y/dy:

It is immediate to verify that E; QE satisfy all the Assumptions 4.8, 4.13 (the choice
of f guarantees that the slopes of E; QE are continuous). Now build a Gradient
Flow starting from 0: with some work it is possible to check that the Minimizing
Movement scheme converges in both cases to absolutely continuous curves .xt / and
. Qxt / respectively satisfying

x0
t D �jrEj.xt /; a:e: t

Qx0
t D �jr QEj. Qxt /; a:e: t:

Now, notice that jrEj.x/ D jr QEj.x/ D f .x/ for every x 2 Œ0; 1�, therefore the
fact that f � 1 is smooth on Œ0; 1� n C gives that each of these two equations admit
a unique solution. Therefore—this is the key point of the example—.xt/ and . Qxt /
must coincide. In other words, the effect of the function g is not seen at the level
of Gradient Flow. It is then immediate to verify that there is Energy Dissipation
Equality for the energy QE , but there is only the Energy Dissipation Inequality for
the energyE . �

4.2.3 The Geodesically Convex Case: EDE and Regularizing Effects

Here we study gradient flows of so called geodesically convex functionals, which
are the natural metric generalization of convex functionals on linear spaces.

Definition 4.16 (Geodesic convexity). Let E W X ! R [ fC1g be a functional
and � 2 R. We say that E is �-geodesically convex provided for every x; y 2 X

there exists a constant speed geodesic � W Œ0; 1� ! X connecting x to y such that

E.�t / � .1 � t/E.x/C tE.y/ � �

2
t.1 � t/d 2.x; y/: (56)

In this section we will assume that:

Assumption 4.17 (Geodesic convexity hypothesis). .X; d/ is a Polish geodesic
space, E W X ! R [ fC1g is lower semicontinuous, �-geodesically convex for
some � 2 R. Also, we assume that the sublevels ofE are boundedly compact, i.e. the
set fE � cg \ Br.x/ is compact for any c 2 R, r > 0, x 2 X .
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What we want to prove is that for X; E satisfying these assumptions there is
existence of Gradient Flows in the formulation EDE (Definition 4.4).

Our first goal is to show that in this setting it is possible to recover the results of
the previous section. We start claiming that it holds:

jrEj.x/ D sup
y¤x



E.x/ �E.y/
d.x; y/

C �

2
d.x; y/

�C
; (57)

so that the lim in the definition of the slope can be replaced by a sup. Indeed, we
know that

jrEj.x/ D lim
y!x



E.x/� E.y/

d.x; y/
C �

2
d.x; y/

�C
� sup
y¤x



E.x/� E.y/

d.x; y/
C �

2
d.x; y/

�C
:

To prove the opposite inequality fix y ¤ x and a constant speed geodesic �
connecting x to y for which (56) holds. Then observe that

jrEj.x/ � lim
t#0



E.x/ �E.�t /
d.x; �t /

�C
D



lim
t#0

E.x/� E.�t/

d.x; �t /

�C

.56/�



lim
t#0



E.x/ �E.y/
d.x; y/

C �

2
.1 � t/d.x; y/

��C

D


E.x/ �E.y/
d.x; y/

C �

2
d.x; y/

�C
:

Using this representation formula we can show that all the Assumptions 4.8 and 4.13
hold:

Proposition 4.18. Suppose that Assumption 4.17 holds. Then Assumptions 4.8
and 4.13 hold as well.

Sketch of the Proof From the �-geodesic convexity and the lower semicontinuity
assumption it is possible to deduce (we omit the details) thatE has at most quadratic
decay at infinity, i.e. there exists x 2 X , a; b > 0 such that

E.x/ � �a � bd.x; x/C ��d2.x; x/; 8x 2 X:

Therefore from the lower semicontinuity again and the bounded compactness of the
sublevels of E we immediately get that the minimization problem (48) admits a
solution if � < 1=��.

The lower semicontinuity of the slope is a direct consequence of (57) and of the
lower semicontinuity of E . Thus, to conclude we need only to show that

xn ! x; sup
n

fjrEj.xn/; E.xn/g < 1 ) lim
n!1E.xn/ � E.x/: (58)
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From (57) with x; y replaced by xn; x respectively we get

E.x/ � E.xn/� jrEj.xn/d.x; xn/C �

2
d2.x; xn/;

and the conclusion follows by letting n ! 1. ut
Thus Theorem 4.14 applies directly also to this case and we get existence of

Gradient Flows in the EDI formulation. To get existence in the stronger EDE
formulation, we need the following result, which may be thought as a sort of weak
chain rule (observe that the validity of the proposition below rules out behaviors like
the one described in Example 4.15).

Proposition 4.19. Let E be a �-geodesically convex and l.s.c. functional. Then for
every absolutely continuous curve .xt / � X such that E.xt / < 1 for every t ,
it holds ˇ̌

E.xs/� E.xt /
ˇ̌ �

Z s

t

j Pxr jjrE.xr/jdr; 8t < s: (59)

Proof. We may assume that the right hand side of (59) is finite for any t; s 2 Œ0; 1�,
and, by a reparametrization argument, we may also assume that j Pxt j D 1 for a.e. t
(in particular .xt / is 1-Lipschitz), so that t 7! jrEj.xt / is an L1 function. Notice
that it is sufficient to prove that t 7! E.xt / is absolutely continuous, as then the
inequality

lim
h"0

E.xtCh/ �E.xt /
h

� lim
h"0

.E.xt /� E.xtCh//C
jhj

� lim
h"0

.E.xt /� E.xtCh//C
d.xt ; xtCh/

lim
h"0

d.xt ; xtCh/
jhj � jrE.xt /jj Pxt j;

valid for any t 2 Œ0; 1� gives (59).
Define the functions f; g W Œ0; 1� ! R by

f .t/ WD E.xt /;

g.t/ WD sup
s¤t

.f .t/ � f .s//C

js � t j
Let D be the diameter of the compact set fxt gt2Œ0;1�, use the fact that .xt / is
1-Lipschitz, formula (57) and the trivial inequality aC � .a C b/C C b� (valid
for any a; b 2 R) to get

g.t/ � sup
s¤t

.E.xt / �E.xs//C
d.xs; xt /

� jrEj.xt /C ��

2
D:

Therefore the thesis will be proved if we show that:

g 2 L1 ) jf .s/ � f .t/j �
Z s

t

g.r/dr 8t < s: (60)
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Fix M > 0 and define f M WD minff;M g. Now fix " > 0, pick a smooth mollifier
" W R ! R with support in Œ�"; "� and define f M

" ; gM" W Œ"; 1 � "� ! R by

f M
" .t/ WD f M � ".t/;

gM" .t/ WD sup
s¤t

.f M
" .t/ � f M

" .s//C

js � t j :

Since f M
" is smooth and gM" � .f M

" /0 it holds

jf M
" .s/ � f M

" .t/j �
Z s

t

gM" .r/dr: (61)

From the trivial bound .
R
h/C � R

hC we get

gM" .t/ � sup
s

R
.f M .t � r/� f M .s � r//C".r/dr

js � t j

� sup
s

R
.f .t � r/ � f .s � r//C".r/dr

js � t j

D sup
s

Z
.f .t � r/� f .s � r//C

j.s � r/� .t � r/j ".r/dr �
Z
g.t � r/".r/dr D g � ".t/:

(62)

Thus the family of functions fgM" g" is dominated in L1.0; 1/. From (61) and (62)
it follows that the family of functions ff M

" g uniformly converge to some function
Qf M on Œ0; 1� as " # 0 for which it holds

j Qf M.s/ � Qf M .t/j �
Z s

t

g.r/dr:

We know that f M D Qf M on some set A � Œ0; 1� such that L 1.Œ0; 1� n A/ D 0,
and we want to prove that they actually coincide everywhere. Recall that f M is
l.s.c. and Qf M is continuous, hence f M � Qf M in Œ0; 1�. If by contradiction it holds
f M.t0/ < c < C < Qf M.t0/ for some t0; c; C , we can find ı > 0 such that
Qf M.t/ > C in t 2 Œt0 � ı; t0 C ı�. Thus f M.t/ > C for t 2 Œt0 � ı; t0 C ı�\A and

the contradiction comes from
Z 1

0

g.t/dt �
Z
Œt0�ı;t0Cı�\A

g.t/dt �
Z
Œt0�ı;t0Cı�\A

C � c
jt � t0jdt D C1:

Thus we proved that if g 2 L1.0; 1/ it holds

jf M.t/ � f M.s/j �
Z s

t

g.r/dr; 8t < s 2 Œ0; 1�; M > 0:

LettingM ! 1 we prove (60) and hence the thesis. ut
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This proposition is the key ingredient to pass from existence of Gradient Flows
in the EDI formulation to the one in the EDE formulation:

Theorem 4.20 (Gradient Flows in the EDE formulation). LetX; E be satisfying
Assumption 4.17 and x 2 X be such that E.x/ < 1. Then all the results of
Theorem 4.14 hold.

Also, any Gradient Flow in the EDI sense is also a Gradient Flow in the EDE
sense (Definition 4.4).

Proof. The first part of the statement follows directly from Proposition 4.18.
By Theorem 4.14 we know that the limit curve is absolutely continuous

and satisfies

E.xs/C 1

2

Z s

0

j Pxj2rdr C 1

2

Z s

0

jrEj2.xr /dr � E.x/; 8s � 0: (63)

In particular, the functions t 7! j Pxt j and t 7! jrEj.xt / belong to L2loc.0;C1/.
Now we use Proposition 4.19: we know that for any s � 0 it holds

ˇ̌
E.x/� E.xs/

ˇ̌ �
Z s

0

j Pxr jjrEj.xr/dr � 1

2

Z s

0

j Pxr j2dr C 1

2

Z s

0

jrEj2.xr /dr:
(64)

Therefore t 7! E.xt / is locally absolutely continuous and it holds

E.xs/C 1

2

Z s

0

j Pxr j2dr C 1

2

Z s

0

jrEj2.xr /dr D E.x/; 8s � 0:

Subtracting from this last equation the same equality written for s D t we get
the thesis. ut
Remark 4.21. It is important to underline that the hypothesis of �-geodesic convex-
ity is in general of no help for what concerns the compactness of the sequence of
discrete solutions. �

The �-geodesic convexity hypothesis, ensures various regularity results for the limit
curve, which we state without proof:

Proposition 4.22. LetX; E be satisfying Assumption 4.17 and let .xt / be any limit
of a sequence of discrete solutions. Then:

(i) The limit

j PxC
t j WD lim

h#0
d.xtCh; xt /

h
;

exists for every t > 0.
(ii) The equation

d

dtC
E.xt / D �jrEj2.xt / D �j PxC

t j2 D �j PxC
t jjrEj.xt /;

is satisfied at every t > 0.
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(iii) The map t 7! e�2��tE.xt / is convex, the map t 7! e�t jrEj.xt / is non
increasing, right continuous and satisfies

t

2
jrEj2.xt / � e2�

�t
�
E.x0/ �Et.x0/

�
;

t jrEj2.xt / � .1C 2�Ct/e�2�t
�
E.x0 � infE

�
;

where Et W X ! R is defined as

Et.x/ WD inf
y
E.y/C d2.x; y/

2t
:

(iv) If � > 0, then E admits a unique minimum xmin and it holds

�

2
d2.xt ; xmin/ � E.xt / �E.xmin/ � e�2�t �E.x0/ �E.xmin/

�
:

Observe that we didn’t state any result concerning the uniqueness (nor about
contractivity) of the curve .xt / satisfying the Energy Dissipation Equality (45).
The reason is that if no further assumptions are made on either X or E , in general
uniqueness fails, as the following simple example shows:

Example 4.23 (Lack of uniqueness). Let X WD R
2 endowed with the L1 norm,

E W X ! R be defined by E.x1; x2/ WD x1 and x WD .0; 0/. Then it is immediate
to verify that jrEj � 1 and that any Lipschitz curve t 7! xt D .x1t ; x

2
t / satisfying

x1t D �t; 8t � 0

jx2t 0j � 1; a:e: t > 0;

satisfies also
E.xt / D �t;

j Pxt j D 1:

This implies that any such .xt / satisfies the Energy Dissipation Equality (45). �

4.2.4 The Compatibility of Energy and Distance: EVI and Error
Estimates

As the last example of the previous section shows, in general we cannot hope to have
uniqueness of the limit curve .xt / obtained via the Minimizing Movements scheme
for a generic �-geodesically convex functional. If we want to derive properties like
uniqueness and contractivity of the flow, we need to have some stronger relation
between the Energy functional E and the distance d on X : in this section we will
assume the following:
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Assumption 4.24 (Compatibility in Energy and distance).
.X; d/ is a Polish space.E W X ! R[ fC1g is a lower semicontinuous functional
and for any x0; x1; y 2 X , there exists a curve t 7! �.t/ such that

E.�t/ � .1 � t/E.x0/C tE.x1/� �

2
t.1 � t/d 2.x0; x1/;

d 2.�t ; y/ � .1 � t/d 2.x0; y/C td 2.x1; y/ � t.1 � t/d 2.x0; x1/;

(65)

for every t 2 Œ0; 1�.
Observe that there is no compactness assumption of the sublevels of E . If X is
an Hilbert space (and more generally a NPC space—Definition 3.19) then the
second inequality in (65) is satisfied by geodesics. Hence �-convex functionals are
automatically compatible with the metric.

Following the same lines of the previous section, it is possible to show that this
assumption implies both Assumption 4.8 and, if the sublevels of E are boundedly
compact, Assumption 4.13, so that Theorem 4.14 holds. Also it can be shown that
formula (57) is true and thus that Proposition 4.19 holds also in this setting, so that
Theorem 4.20 can be proved as well.

However, if Assumption 4.24 holds, it is better not to follow the general theory as
developed before, but to restart from scratch: indeed, in this situation much stronger
statements hold, also at the level of discrete solutions, which can be proved by a
direct use of Assumption 4.24.

We collect the main results achievable in this setting in the following theorem:

Theorem 4.25 (Gradient Flows for compatibleE and d : EVI). Assume thatX;E
satisfy Assumption 4.24. Then the following hold.

• For every x 2 D.E/ and 0 < � < 1=�� there exists a unique discrete solution
.x�t / as in Definition 4.7.

• Let x 2 D.E/ and .x�t / any family of discrete solutions starting from it. Then
.x�t / converge locally uniformly to a limit curve .xt / as � # 0 (so that the
limit curve is unique). Furthermore, .xt / is the unique solution of the system
of differential inequalities:

1

2

d

dt
d2. Qxt ; y/C �

2
d2. Qxt ; y/CE. Qxt / � E.y/; a:e: t � 0; 8y 2 X; (66)

among all locally absolutely continuous curves . Qxt / converging to x as t # 0. I.e.
xt is a Gradient Flow in the EVI formulation—see Definition 4.5.

• Let x; y 2 D.E/ and .xt /, .yt / be the two Gradient Flows in the EVI
formulation. Then there is �-exponential contraction of the distance, i.e.:

d2.xt ; yt / � e��t d 2.x; y/: (67)
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• Suppose that � � 0, that x 2 D.E/ and build x�t , xt as above. Then the following
a priori error estimate holds:

sup
t�0

d.xt ; x
�
t / � 8

p
�.E.x/� E.xt //: (68)

Sketch of the Proof We will make the following simplifying assumptions: E � 0,
� � 0 and x 2 D.E/. Also we will prove just that the sequence of discrete solutions
n 7! x

�=2n

t converges to a limit curve as n ! 1 for any given � > 0.

Existence and uniqueness of the discrete solution. Pick x 2 X . We have to prove
that there exists a unique minimizer of (48). Let I � 0 be the infimum of (48). Let
.xn/ be a minimizing sequence for (48), fix n; m 2 N and let � W Œ0; 1� ! X be a
curve satisfying (65) for x0 WD xn, x1 WD xm and y WD x. Using the inequalities (65)
at t D 1=2 we get

I � E.�1=2/C d2.�1=2; x/

2�

� 1

2



E.xn/C d2.xn; x/

2�
C E.xm/C d2.xm; x/

2�

�
� 1C ��

8�
d2.xn; xm/:

Therefore

lim
n;m!1

1C��
8�

d2.xn; xm/� lim
n;m!1

1

2

 
E.xn/C d2.xn; x/

2�
CE.xm/C d2.xm; x/

2�

!
�I D0

and thus the sequence .xn/ is a Cauchy sequence as soon as 0 < � < 1=��. This
shows uniqueness, existence follows by the l.s.c. of E .

One step estimates We claim that the following discrete version of the EVI (66)
holds: for any x 2 X ,

d2.x� ; y/� d2.x; y/

2�
C �

2
d2.x� ; y/ � E.y/ �E.x� /; 8y 2 X; (69)

where x� is the minimizer of (48). Indeed, pick a curve � satisfying (65) for x0 WD
x� , x1 WD y and y WD x and use the minimality of x� to get

E.x�/C d2.x; x� /

2�
� E.�t/C d2.x; �t /

2�

� .1� t/E.x� /C tE.y/ � �

2
t.1 � t/d 2.x� ; y/

C .1 � t/d 2.x; x� /C td 2.x; y/ � t.1 � t/d 2.x� ; y/

2�
:
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Rearranging the terms, dropping the positive addend td 2.x; x� / and dividing by
t > 0 we get

.1 � t/d 2.x� ; y/

2�
� d2.x; y/

2�
C �

2
.1 � t/d 2.x� ; y/ � E.y/ �E.x� /;

so that letting t # 0 we get (69).
Now we pass to the discrete version of the error estimate, which will also give the

full convergence of the discrete solutions to the limit curve. Given x; y 2 D.E/,
and the associate discrete solutions x�t , y�t , we are going to bound the distance

d.x
�=2
� ; y�� / in terms of the distance d.x; y/.

Write two times the discrete EVI (69) for � WD �=2 and y WD y: first with x WD x,
then with x WD x

�=2

�=2 to get (we use the assumption � � 0)

d2.x
�=2

�=2 ; y/ � d2.x; y/

�
� E.y/ �E.x�=2�=2/;

d 2.x
�=2
� ; y/ � d2.x�=2�=2 ; y/

�
� E.y/ �E.x�=2� /:

Adding up these two inequalities and observing that E.x�=2� / � E.x
�=2

�=2/ we obtain

d2.x
�=2
� ; y/ � d2.x; y/

�
� 2

�
E.y/ �E.x�=2� /

�
:

On the other hand, (69) with x WD y and y WD x
�=2
� reads as

d2.y�� ; x
�=2
� / � d2.y; x�=2� /

�
� 2

�
E.x�=2� / �E.y�� /

�
:

Adding up these last two inequalities we get

d2.y�� ; x
�=2
� / � d2.x; y/
�

� 2
�
E.y/� E.y�� /

�
: (70)

Discrete estimates. Pick t D n� < m� D s, write inequality (69) for x WD x�i� ,
i D n; : : : ; m � 1 and add everything up to get

d2.x�t ; y/ � d2.x�s ; y/

2.s � t/
C ��

2.s � t/
mX

iDnC1
d 2.x�i� ; y/ � E.y/� �

s � t

mX
iDnC1

E.x�i� /:

(71)
Similarly, pick t D n� , write inequality (70) for x WD x

�=2
i� and y WD y�i� for

i D 0; : : : ; n � 1 and add everything up to get

d2.x
�=2
t ; y�t / � d2.x; y/

�
� 2

�
E.y/� E.y�t /

�
:
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Now let y D x to get

d2.x
�=2
t ; x�t / � 2�

�
E.x/ �E.x�t /

� � 2�E.x/; (72)

having used the fact that E � 0.

Conclusion of passage to the limit. Putting �=2n instead of � in (72) we get

d2.x
�=2nC1

t ; x
�=2n

t / � �

2n�1E.x/;

therefore

d2.x
�=2n

t ; x
�=2m

t / � �.22�n � 22�m/E.x/; 8n < m 2 N;

which tells that n 7! x
�=2n

t is a Cauchy sequence for any t � 0. Also, choosing
n D 0 and letting m ! 1 we get the error estimate (68).

We pass to the EVI. Letting � # 0 in (71) it is immediate to verify that we get

d2.xt ; y/ � d2.xs; y/
2.s � t/

C �

2.s � t/
Z s

t

d 2.xr ; y/ � E.y/� 1

s � t

Z s

t

E.xr /dr;

which is precisely the EVI (66) written in integral form.

Uniqueness and contractivity. It remains to prove that the solution to the EVI is
unique and the contractivity (67). The heuristic argument is the following: pick .xt /
and .yt / solutions of the EVI starting from x, y respectively. Choose y D yt in the
EVI for .xt / to get

1

2

d

ds
jsDtd 2.xs; yt /C �

2
d2.xt ; yt /C E.xt / � E.yt /:

Symmetrically we have

1

2

d

ds
jsDtd 2.xt ; ys/C �

2
d2.xt ; yt /C E.yt / � E.xt /:

Adding up these two inequalities we get

d

dt
d2.xt ; yt / � �2�d2.xt ; yt /; a:e: t:

The rigorous proof follows this line and uses a doubling of variables argument á la
Kruzkhov.

Uniqueness and contraction then follow by the Gronwall lemma. ut
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4.3 Applications to the Wasserstein Case

The aim of this section is to apply the abstract theory developed in the previous
one to the case of functionals on .P2.R

d /;W2/. As we will see, various diffusion
equations may be interpreted as Gradient Flows of appropriate energy functionals
w.r.t. to the Wasserstein distance, and quantitive analytic properties of the solutions
can be derived by this interpretation.

Most of what we are going to discuss here is valid in the more general contexts of
Riemannian manifolds and Hilbert spaces, but the differences between these latter
cases and the Euclidean one are mainly technical, thus we keep the discussion at a
level of Rd to avoid complications that would just obscure the main ideas.

The secton is split in two subsections: in the first one we discuss the definition
of subdifferential of a �-geodesically convex functional on P2.R

d /, which is based
on the interpretation of P2.R

d / as a sort of Riemannian manifold as discussed in
Sect. 3.3.2. In the second one we discuss three by now classical applications, for
which the full power of the abstract theory can be used (i.e. we will have Gradient
Flows in the EVI formulation).

Before developing this program, we want to informally discuss a fundamental
example.

Let us consider the Entropy functional E W P2.R
d / ! R [ fC1g defined by

E.�/ WD
8<
:
Z
 log./dL d ; if � D L d ;

C1 otherwise:

We claim that: the Gradient Flow of the Entropy in .P2.R
d /;W2/ produces a

solution of the Heat equation. This can be proved rigorously (see Sect. 4.3.2), but
for the moment we want to keep the discussion at the heuristic level.

By what discussed in the previous section, we know that the Minimizing
Movements scheme produces Gradient Flows. Let us apply the scheme to this
setting. Fix an absolutely continuous measure 0 (here we will make no distinction
between an absolutely continuous measure and its density), fix � > 0 and minimize

� 7! E.�/C W 2
2 .�; 0/

2�
: (73)

It is not hard to see that the minimum is attained at some absolutely continuous
measure � (actually the minimum is unique, but this has no importance). Our claim
will be “proved” if we show that for any ' 2 C1

c .R
d / it holds

R
'� � R

'0

�
D
Z
�' � C o.�/; (74)

because this identity tells us that � is a first order approximation of the distribu-
tional solution of the Heat equation starting from 0 and evaluated at time � .
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To prove (74), fix ' 2 C1
c .R

d / and perturb � in the following way:

" WD .Id C "r'/#� :

The density of " can be explicitly expressed by

".x C "r'.x// D � .x/

det.Id C "r2'.x//
:

Observe that it holds

E."/ D
Z
" log."/D

Z
� log

�
"ı.IdC"r'/�D

Z
� log



�

det.IdC"r2'/

�

D E.� /�
Z
� log

�
det.IdC"r2'/

�DE.� /�"
Z
��'C o."/;

(75)
where we used the fact that det.Id C "A/ D 1C "tr.A/C o."/.

To evaluate the first variation of the distance squared, let T be the optimal
transport map from � to 0, which exists because of Theorem 2.26, and observe
that from T#� D 0, .Id C "r'/#� D " and inequality (9) we have

W 2
2 .0; 

"/ � kT � Id � "r'k2
L2.� /

;

therefore from the fact that equality holds at " D 0 we get

W 2
2 .0; 

"/ �W 2
2 .0; � / � kT � Id � "r'k2

L2.� /
� kT � Idk2

L2.� /

D �2"
Z

hT � Id;r'i � C o."/:
(76)

From the minimality of � for the problem (73) we know that

E."/C W 2
2 .

"; 0/

2�
� E.� /C W 2

2 .� ; 0/

2�
; 8";

so that using (75) and (76), dividing by ", rearranging the terms and letting " # 0

and " " 0 we get following Euler–Lagrange equation for � :

Z
��' C

Z �
T � Id

�
;r'

�
� D 0: (77)

Now observe that from T#� D 0 we get
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R
'� � R

'0

�
D �1

�

Z �
'.T .x// � '.x/�� .x/dx

D �1
�

“ 1

0

hr'..1 � t/x C tT .x//; T .x/ � xi dt � .x/ dx

D �1
�

Z
hr'.x/; T .x/ � xi � .x/ dx C Rem�

.77/D
Z
�' � C Rem� ;

where the remainder term Rem� is bounded by

jRem� j � Lip.r'/
�

“ 1

0

t jT .x/ � xj2dt � .x/ dx D Lip.r'/
2�

W 2
2 .0; � /:

Since, heuristically speaking, W2.0; � / has the same magnitude of � , we have
Rem� D o.�/ and the “proof” is complete.

4.3.1 Elements of Subdifferential Calculus in .P2.R
d /; W2/

Recall that we introduced a weak Riemannian structure on the space .P2.M/;W2/

in Sect. 3.3.2. Among others, this weak Riemannian structure of .P2.M/;W2/

allows the development of a subdifferential calculus for geodesically convex
functionals, in the same spirit (and with many formal similarities) of the usual
subdifferential calculus for convex functionals on an Hilbert space.

To keep the notation and the discussion simpler, we are going to define the
subdifferential of a geodesically convex functional only for the case P2.R

d / and
for regular measures (Definition 2.25), but everything can be done also on manifolds
(or Hilbert spaces) and for general � 2 P2.M/.

Recall that for a �-convex functionalF on an Hilbert spaceH , the subdifferential
@�F.x/ at a point x is the set of vectors v 2 H such that

F.x/C hv; y � xi C �

2
jx � yj2 � F.y/; 8y 2 H:

Definition 4.26 (Subdifferential in .P2.R
d /;W2/). Let E W P2.R

d / ! R [
fC1g be a �-geodesically convex and lower semicontinuous functional, and
� 2 P2.R

d / be a regular measure such that E.�/ < 1. The set @W E.�/ �
Tan�.P2.�/R

d / is the set of vector fields v 2 L2.�;Rd / such that

E.�/C
Z D

T �� � Id; v
E
d�C �

2
W 2
2 .�; �/ � E.�/; 8� 2 P2.R

d /;
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where here and in the following T �� will denote the optimal transport map from
the regular measure � to � (whose existence and uniqueness is guaranteed by
Theorem 2.26).

Observe that the subdifferential of a �-geodesically convex functional E has the
following monotonicity property (which closely resembles the analogous valid for
�-convex functionals on an Hilbert space):

Z D
v; T �� � Id

E
d�C

Z
hw; T �� � Id id� � ��W 2

2 .�; �/; (78)

for every couple of regular measures �; � in the domain of E , and v 2 @W E.�/,
w 2 @W E.�/. To prove (78) just observe that from the definition of subdifferential
we have

E.�/C
Z D

T �� � Id; v
E
d�C �

2
W 2
2 .�; �/ � E.�/;

E.�/C
Z

hT �� � Id;wid� C �

2
W 2
2 .�; �/ � E.�/;

and add up these inequalities.
The definition of subdifferential leads naturally to the definition of Gradient

Flow: it is sufficient to transpose the definition given with the system (38).

Definition 4.27 (Subdifferential formulation of Gradient Flow). Let E be a
�-geodesically convex functional on P2.R

d / and � 2 P2.R
d /. Then .�t / is a

Gradient Flow for E starting from � provided it is a locally absolutely continuous
curve, �t ! � as t ! 0 w.r.t. the distance W2, �t is regular for t > 0 and it holds

�vt 2 @W E.�t /; a:e: t;

where .vt / is the vector field uniquely identified by the curve .�t / via

d

dt
�t C r 
 .vt�t / D 0;

vt 2 Tan�t .P2.R
d // a:e: t;

(recall Theorem 3.29 and Definition 3.31).

Thus we have a total of four different formulations of Gradient Flows of
�-geodesically convex functionals on P2.R

d / based respectively on the Energy
Dissipation Inequality, the Energy Dissipation Equality, the Evolution Variational
Inequality and the notion of subdifferential.

The important point is that these four formulations are equivalent for
��geodesically convex functionals:

Proposition 4.28 (Equivalence of the various formulation of GF in the
Wasserstein space). Let E be a �-geodesically convex functional on P2.R

d /

and .�t / a curve made of regular measures. Then for .�t / the four definitions of
Gradient Flow for E (EDI, EDE, EVI and the Subdifferential one) are equivalent.
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Sketch of the Proof We prove only that the EVI formulation is equivalent to the
Subdifferential one. Recall that by Proposition 3.34 we know that

1

2

d

dt
W 2
2 .�t ; �/ D �

Z D
vt ; T

�
�t

� Id
E
d�t ; a:e:t

where T ��t is the optimal transport map from �t to �. Then we have

�vt 2 @W E.�t /; a:e: t;

m

E.�t /C
Z D

�vt ; T
�
�t

� Id
E
d�t C �

2
W 2
2 .�t ; �/ � E.�/; 8� 2 P2.R

d /; a:e: t

m

E.�t /C 1

2

d

dt
W 2
2 .�t ; �/C �

2
W 2
2 .�t ; �/ � E.�/; 8� 2 P2.R

d /; a:e: t:

ut

4.3.2 Three Classical Functionals

We now pass to the analysis of three by now classical examples of Gradient Flows in
the Wasserstein space. Recall that in terms of strength, the best theory to use is the
one of Sect. 4.2.4, because the compatibility in Energy and distance ensures strong
properties both at the level of discrete solutions and for the limit curve obtained.
Once we will have a Gradient Flow, the Subdifferential formulation will let us
understand which is the PDE associated to it.

Let us recall (Example 3.21) that the space .P2.R
d /;W2/ is not Non Positively

Curved in the sense of Alexandrov, this means that if we want to check whether a
given functional is compatible with the distance or not, we cannot use geodesics to
interpolate between points (because we would violate the second inequality in (65)).
A priori the choice of the interpolating curves may depend on the functional, but
actually in what comes next we will always use the ones defined by:

Definition 4.29 (Interpolating curves). Let�; �0; �1 2 P2.R
d / and assume that�

is regular (Definition 2.25). The interpolating curve .�t / from �0 to �1 with base � is
defined as

�t WD ..1 � t/T0 C tT1/#�;

where T0 and T1 are the optimal transport maps from � to �0 and �1 respectively.
Observe that if � D �0, the interpolating curve reduces to the geodesic connecting
it to �1.

Strictly speaking, in order to apply the theory of Sect. 4.2.4 we should define
interpolating curves having as base any measure � 2 P2.R

d /, and not just
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regular ones. This is actually possible, and the foregoing discussion can be applied
to the more general definition, but we prefer to avoid technicalities, and just focus
on the main concepts.

For an interpolating curve as in the definition it holds:

W 2
2 .�; �t / � .1 � t/W 2

2 .�; �0/C tW 2
2 .�; �1/ � t.1 � t/W 2

2 .�0; �1/: (79)

Indeed the map .1 � t/T0 C tT1 is optimal from � to �t (because we know that T0
and T1 are the gradients of convex functions '0, '1 respectively, thus .1� t/T0C tT1
is the gradient of the convex function .1 � t/'0 C t'1, and thus is optimal), and we
know by inequality (9) that W 2

2 .�0; �1/ � kT0 � T1k2L2.�/, thus it holds

W 2
2 .�; �t / D k.1 � t/T0 C tT1k2L2.�/

D .1 � t/kT0 � Idk2
L2.�/

C tkT1 � Idk2
L2.�/

� t.1 � t/kT0 � T1k2L2.�/
� .1 � t/W 2

2 .�; �0/C tW 2
2 .�; �1/ � t.1 � t/W 2

2 .�0; �1/:

We now pass to the description of the three functionals we want to study.

Definition 4.30 (Potential energy). Let V W Rd ! R [ fC1g be lower semicon-
tinuous and bounded from below. The potential energy functional V W P2.R

d / !
R [ fC1g associated to V is defined by

V .�/ WD
Z
Vd�:

Definition 4.31 (Interaction energy). Let W W Rd !R [ fC1g be lower semi-
continuous, even and bounded from below. The interaction energy functional W W
P2.R

d / ! R [ fC1g associated to W is defined by

W .�/ WD 1

2

Z
W.x1 � x2/d� � �.x1; x2/:

Observe that the definition makes sense also for not even functions W ; however,
replacing if necessary the functionW.x/ with .W.x/CW.�x//=2 we get an even
function leaving the value of the functional unchanged.

Definition 4.32 (Internal energy). Let u W Œ0;C1/ ! R [ fC1g be a convex
function bounded from below such that u.0/ D 0 and

lim
z!0

u.z/

z˛
> �1; for some ˛ >

d

d C 2
; (80)

let u0.1/ WD limz!1 u.z/=z. The internal energy functional E associated to u is

E .�/ WD
Z

u./L d C u0.1/�s.Rd /;
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where � D L d C �s is the decomposition of � in absolutely continuous and
singular parts w.r.t. the Lebesgue measure.

Condition (80) ensures that the negative part of u./ is integrable for � 2
P2.R

d /, so that E is well defined (possibly C1). Indeed from (80) we have
u�.z/ � az C bz˛ for some ˛ < 1 satisfying 2˛=.1� ˛/ > d , and it holds
Z
˛.x/dL d .x/D

Z
˛.x/.1C jxj/2˛.1C jxj/�2˛dL d .x/

�

Z
.x/.1Cjxj/2dL d .x/

�˛ 
Z
.1Cjxj/�2˛

1�˛ L d .x/

�1�˛
< 1:

Under appropriate assumptions on V ,W and e the above defined functionals are
compatible with the distanceW2. As said before we will use as interpolating curves
those given in Definition 4.29.

Proposition 4.33. Let � � 0. The following holds.

(i) The functional V is �-convex along interpolating curves in .P2.R
d /;W2/ if

and only if V is �-convex.
(ii) The functional W is convex along interpolating curves .P2.R

d /;W2/ if W is
convex.

(iii) The functional E is convex along interpolating curves .P2.R
d /;W2/ provided

u satisfies

z 7! zdu.z�d / is convex and non increasing on .0;C1/: (81)

Proof. Since the second inequality in (65) is satisfied by the interpolating curves
that we are considering (inequality (79)) we need only to check the convexity of the
functionals.

Let .�t / be an interpolating curve with base the regular measure �, and T0, T1
the optimal transport maps from � to �0 and �1 respectively.

The only if part of .i/ follows simply considering interpolation of deltas. For the
if, observe that5

V .�t / D
Z
V.x/d�t .x/ D

Z
V
�
.1 � t/T0.x/C tT1.x/

�
d�.x/

� .1�t/
Z
V.T0.x//d�.x/Ct

Z
V.T1.x//d�.x/��

2
t.1�t/

Z
jT0.x/�T1.x/j2d�.x/

� .1 � t/V .�0/C tV .�1/� �

2
t.1 � t/W 2

2 .�0; �1/:

(82)

5The assumption � � 0 is necessary to have the last inequality in (82). If � < 0, ��convexity
of V along interpolating curves is not anymore true, so that we cannot apply directly the results
of Sect. 4.2.4. Yet, adapting the arguments, it possible to show that all the results which we will
present hereafter are true for general � 2 R.
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For .ii/ we start claiming that W 2
2 .� � �; � � �/ D 2W 2

2 .�; �/ for any �; � 2
P2.R

d /. To prove this, it is enough to check that if � 2 Opt.�; �/ then Q� WD
.�1; �1; �2; �2/#� 2 Opt.� � �; � � �/. To see this, let ' W Rd ! R [ fC1g be a
convex function such that supp.�/ � @�' and define the convex function Q' on R

2d

by Q'.x; y/ D '.x/ C '.y/. It is immediate to verify that supp. Q�/ � @� Q', so that
Q� is optimal as well. This argument also shows that if .�t / is an interpolating curve
with base �, then t 7! �t � �t is an interpolating curve from �0 � �0 to �1 � �1 with
base � � �. Also, .x1; x2/ 7! W.x1 � x2/ is convex if W is. The conclusion now
follows from case .i/.

We pass to .iii/. We will make the simplifying assumption that � � L d and
that T0 and T1 are smooth and satisfy det.rT0/.x/ ¤ 0, det.rT1/.x/ ¤ 0 for every
x 2 supp.�/ (up to an approximation argument, it is possible to reduce to this case,
we omit the details). Then, writing � D L d , from the change of variable formula
we get that �t � L d and for its density Qt it holds

Qt .Tt .x// D .x/

det.rTt.x// ;

where we wrote Tt for .1 � t/T0 C tT1. Thus

E .�t / D
Z

u. Qt .y//dL d .y/ D
Z

u



.x/

det.rTt /.x/
�

det.rTt/.x/dL d .x/:

Therefore the proof will be complete if we show that A 7! u. .x/det.A/ / det.A/ is
convex on the set of positively defined symmetric matrices for any x 2 supp.�/.
Observe that this map is the composition of the convex and non increasing map
z 7! zdu..x/=zd / with the map A 7! .det.A//1=d . Thus to conclude it is sufficient
to show that A 7! .det.A//1=d is concave. To this aim, pick two symmetric and
positive definite matrices A0 and A1, notice that

�
det..1 � t/A0 C tA1/

�1=d D �
det.A0/ det.Id C tB/

�1=d
;

where B D p
A0.A1 �A0/

p
A0 and conclude by

d

dt
det.Id C tB/1=d D 1

d

�
det.Id C tB/

�1=d
tr
�
B .Id C tB/�1

�
;

d 2

dt2
det.Id C tB/1=d D 1

d2
tr2
�
B .Id C tB/�1

� � 1

d
tr
��
B .Id C tB/�1

�2� � 0

where in the last step we used the inequality tr2.C / � d tr.C 2/ for C D B .Id C
tB/�1. ut

Important examples of functions u satisfying (80) and (81) are:

u.z/ D z˛ � z

˛ � 1
; ˛ � 1 � 1

d
; ˛ ¤ 1

u.x/ D z log.z/:
(83)
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Remark 4.34 (A dimension free condition on u). We saw that a sufficient condition
on u to ensure that E is convex along interpolating curves is the fact that the map
z 7! zdu.z�d / is convex and non increasing, so the dimension d of the ambient
space plays a role in the condition. The fact that the map is non increasing follows
by the convexity of u together with u.0/ D 0, while by simple computations we see
that its convexity is equivalent to

z�1u.z/� u0.z/C zu00.z/ � � 1

d � 1 zu00.z/: (84)

Notice that the higher d is, the stricter the condition becomes. For applications in
infinite dimensional spaces, it is desirable to have a condition on u ensuring the
convexity of E in which the dimension does not enter. As inequality (84) shows, the
weakest such condition for which E is convex in any dimension is:

z�1u.z/ � u0.z/C zu00.z/ � 0;

and some computations show that this is in turn equivalent to the convexity of
the map

z 7! ezu.e�z/:

A key example of map satisfying this condition is z 7! z log.z/ . �

Therefore we have the following existence and uniqueness result:

Theorem 4.35. Let � � 0 and F be either V , W , E (or a linear combination of
them with positive coefficients) and �-convex along interpolating curves. Then for
every � 2 P2.R

d / there exists a unique Gradient Flow .�t / for F starting from �

in the EVI formulation. The curve .�t / satisfies: is locally absolutely continuous on
.0;C1/, �t ! � as t ! 0 and, if �t is regular for every t � 0, it holds

� vt 2 @W F.�t /; a:e: t 2 .0;C1/; (85)

where .vt / is the velocity vector field associated to .�t / characterized by

d

dt
�t C r 
 .vt�t / D 0;

vt 2 Tan�t .P2.R
d // a:e: t:

Proof. Use the existence Theorem 4.25 and the equivalence of the EVI formulation
of Gradient Flow and the Subdifferential one provided by Proposition 4.28. ut

It remains to understand which kind of equation is satisfied by the Gradient
Flow .�t /. By (85), this corresponds to identify the subdifferentials of V , W ,
E at a generic � 2 P2.R

d /. This is the content of the next three propositions.
For simplicity, we state and prove them only under some—unneeded—smoothness
assumptions. The underlying idea of all the calculations we are going to do is the
following equivalence:
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v 2 @W F .�/
�, lim

"!0

F ..Id C "r'/#�/� F .�/

"
D
Z

hv;r'i ; 8' 2 C1
c .Rd /;

(86)

valid for any �-geodesically convex functional, where we wrote
�, to intend that

this equivalence holds only when everything is smooth. To understand why (86)
holds, start assuming that v 2 @W F.�/, fix ' 2 C1

c .R
d / and recall that for "

sufficiently small the map Id C "r' is optimal (Remark 2.22). Thus by definition
of subdifferential we have

F .�/C "

Z
hv;r'id�C "2

�

2
kr'k2

L2.�/
� F ..Id C "r'/#�/:

Subtracting F .�/ on both sides, dividing by " > 0 and " < 0 and letting " ! 0

we get the implication ). To “prove” the converse one, pick � 2 P2.R
d /, let T

be the optimal transport map from � to � and recall that T is the gradient of a
convex function �. Assume that � is smooth and define '.x/ WD �.x/�jxj2=2. The
geodesic .�t / from � to � can then be written as

�t D �
.1 � t/Id C tT

�
#� D �

.1 � t/Id C tr��#� D �
Id C tr'�#�:

From the �-convexity hypothesis we know that

F .�/ � F .�/C d

dt
jtD0F .�t /C�

2
W 2
2 .�; �/;

therefore, since we know that d
dt

jtD0F .�t / D R hv;r'id�, from the arbitrariness
of � we deduce v 2 @WF .�/.

Proposition 4.36 (Subdifferential of V ). Let V W Rd ! R be �-convex and C1,
let V be as in Definition 4.30 and let � 2 P2.R

d / be regular and satisfying
V .�/<1. Then @W V .�/ is non empty if and only if rV 2 L2.�/, and in this
case rV is the only element in the subdifferential of V at �.

Therefore, if .�t / is a Gradient Flow of V made of regular measures, it solves

d

dt
�t D r 
 .rV�t /;

in the sense of distributions in R
d � .0;C1/.

Sketch of the Proof Fix ' 2 C1
c .R

d / and observe that

lim
"!0

V ..IdC"r'/#�/�V .�/

"
D lim
"!0

Z
V ı .IdC"r'/�V

"
d�D

Z
hrV;r'i d�:

Conclude using the equivalence (86). ut
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Proposition 4.37 (Subdifferential of W ). Let W W R
d ! R be convex, even

and C1, let W be defined by Definition 4.31 and � be regular and satisfying
W .�/ < 1. Then @WW .�/ ¤ ; if and only if .rW / � � belongs to L2.�/ and in
this case .rW / � � is the only element in the subdifferential of W at �.

Therefore, if .�t / is a Gradient Flow of W made of regular measures, it solves
the non local evolution equation

d

dt
�t D r 
 ..rW � �t/�t /;

in the sense of distributions in R
d � .0;C1/.

Sketch of the Proof Fix ' 2 C1
c .R

d /, let �" WD .Id C "r'/#� and observe that

W
�
�"
� D 1

2

Z
W.x � y/d�".x/d�".y/

D 1

2

Z
W.x � y C ".r'.x/� r'.y///d�.x/d�.y/

D 1

2

Z
W.x � y/d�.x/d�.y/

C "

2

Z
hrW.x � y/;r'.x/ � r'.y/id�.x/d�.y/C o."/:

Now observe that

Z
hrW.x�y/;r'.x/i d�.x/d�.y/ D

Z �Z
rW.x�y/d�.y/;r'.x/

�
d�.x/

D
Z

hrW � �.x/;r'.x/i d�.x/;

and, similarly,

Z
hrW.x � y/;�r'.y/i d�.x/d�.y/ D

Z
hrW � �.y/;r'.y/i d�.y/

D
Z

hrW � �.x/;r'.x/i d�.x/:

Thus the conclusion follows by applying the equivalence (86). ut

Proposition 4.38 (Subdifferential of E ). Let u W Œ0;C1/ ! R be convex, C2 on
.0;C1/, bounded from below and satisfying conditions (80) and (81). Let � D
L d 2 P2.R

d / be an absolutely continuous measure with smooth density. Then
r.u0.// is the unique element in @W E .�/.

Therefore, if .�t / is a Gradient Flow for E and �t is absolutely continuous with
smooth density t for every t > 0, then t 7! t solves the equation
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d

dt
t D r 
 .tr.u0.t ///:

Note: this statement is not perfectly accurate, because we are neglecting the
integrability issues. Indeed a priori we don’t know that r.u0.// belongs to L2.�/.

Sketch of the Proof Fix ' 2 C1
c .R

d / and define �" WD .Id C "r'/#�. For "
sufficiently small, �" is absolutely continuous and its density " satisfies—by the
change of variable formula—the identity

".x C "r'.x// D .x/

det.Id C "r2'.x//
:

Using the fact that d
d"

j"D0.det.Id C "r2'.x/// D �'.x/ we have

d

d"
j"D0E .�"/ D d

d"
j"D0

Z
u.".y//dy

D d

d"
j"D0

Z
u



.x/

det.Id C "r2'.x//

�
det.Id C "r2'.x//dx

D
Z

�u0./�' C u./�' D
Z ˝r.u0./� u.//;r'˛

D
Z ˝r.u0.//;r'˛;

and the conclusion follows by the equivalence (86). ut
As an example, let u.z/ WD z log.x/, and let V be a �-convex smooth function on

R
d . Since u0.z/ D log.z/ C 1, we have r.u0.// D �, thus a gradient flow .t /

of F D E C V solves the Fokker–Plank equation

d

dt
t D �t C r 
 .rVt /:

Also, the contraction property (67) in Theorem 4.25 gives that for two gradient flows
.t /, . Qt / it holds the contractivity estimate

W2.t ; Qt / � e��tW2.0; Q0/:

4.4 Bibliographical Notes

The content of Sect. 4.2 is taken from the first part of [7] (we refer to this book for a
detailed bibliographical references on the topic of gradient flows in metric spaces),
with the only exception of Proposition 4.6, whose proof has been communicated to
us by Savaré (see also [72, 73]).
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The study of geodesically convex functionals in .P2.R
d /;W2/ has been

introduced by R. McCann in [63], who also proved that conditions (80) and (81)
were sufficient to deduce the geodesic convexity (called by him displacement
convexity) of the internal energy functional.

The study of gradient flows in the Wasserstein space began in the seminal paper
by R. Jordan et al. [47], where it was proved that the minimizing movements
procedure for the functional

L d 7!
Z
 log C VdL d ;

on the space .P2.R
d /;W2/, produce solutions of the Fokker–Planck equation.

Later, F. Otto in [67] showed that the same discretization applied to

L d 7! 1

˛ � 1
Z
˛dL d ;

(with the usual meaning for measures with a singular part) produce solutions of the
porous medium equation. The impact of Otto’s work on the community of optimal
transport has been huge: not only he was able to provide concrete consequences
(in terms of new estimates for the rate of convergence of solutions of the porous
medium equation) out of optimal transport theory, but he also clearly described what
is now called the “weak Riemannian structure” of .P2.R

d /;W2/ (see also chapter
“Self-organized Network Flows” and Sect. 3.3.2).

Otto’s intuitions have been studied and extended by many authors. The rigorous
description of many of the objects introduced by Otto, as well as a general discussion
about gradient flows of �-geodesically convex functionals on .P2.R

d /;W2/ has
been done in the second part of [7] (the discussion made here is taken from this
latter reference).

5 Geometric and Functional Inequalities

In this short chapter we show how techniques coming from optimal transport can
lead to simple proofs of some important geometric and functional inequalities.
None of the results proven here are new, in the sense that they all were well known
before the proofs coming from optimal transport appeared. Still, it is interesting to
observe how the tools described in the previous sections allow to produce proofs
which are occasionally simpler and in any case providing new informations when
compared to the “standard” ones.
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5.1 Brunn–Minkowski Inequality

Recall that the Brunn–Minkowski inequality in R
d is:



L d



ACB

2

��1=d
� 1

2

��
L d .A/

�1=d C �
L d .B/

�1=d�
;

and is valid for any couple of compact sets A; B � R
d .

To prove it, let A;B � R
d be compact sets and notice that without loss of

generality we can assume that L d .A/;L d .B/ > 0. Define

�0 WD 1

L d .A/
L d jA �1 WD 1

L d .B/
L d jB;

and let .�t / be the unique geodesic in .P2.R
d /;W2/ connecting them.

Recall from (83) that for u.z/D � d.z1�1=d � z/ the functional E ./ WDR
u./dL d is geodesically convex in .P2.R

d /;W2/. Also, simple calculations
show that E .�0/D � d.L d .A/1=d � 1/, E .�1/ D �d.L d .B/1=d � 1/. Hence
we have

E .�1=2/ � �d
2

��
L d .A/

�1=d C �
L d .B/

�1=d�C d:

Now notice that Theorem 3.10 (see also Remark 3.13) ensures that �1=2 is
concentrated on ACB

2
, thus letting Q�1=2 WD .L d ..A C B/=2//�1L d j.ACB/=2 and

applying Jensen’s inequality to the convex function u we get

E .�1=2/ � E . Q�1=2/ D �d



L d
�AC B

2

�1=d � 1
�
;

which concludes the proof.

5.2 Isoperimetric Inequality

On R
d the isoperimetric inequality can be written as

L d .E/1�
1
d � P.E/

dL d .B/
1
d

;

where E is an arbitrary open set, P.E/ its perimeter and B the unitary ball.
We will prove this inequality via Brenier’s Theorem 2.26, neglecting all the

smoothness issues. Let

� WD 1

L d .E/
L d jE; � WD 1

L d .B/
L d jB;
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and T W E ! B be the optimal transport map (w.r.t. the cost given by the distance
squared). The change of variable formula gives

1

L d .E/
D det.rT .x// 1

L d .B/
; 8x 2 E:

Since we know that T is the gradient of a convex function, we have that rT .x/
is a symmetric matrix with non negative eigenvalues for every x 2 E . Hence the
arithmetic-geometric mean inequality ensures that

.det rT .x//1=d � r 
 T .x/
d

; 8x 2 E:

Coupling the last two equations we get

1

L d .E/
1
d

� r 
 T .x/
d

1

L d .B/
1
d

8x 2 E:

Integrating overE and applying the divergence theorem we get

L d .E/1� 1
d � 1

dL d .B/1=d

Z
E
r 
 T .x/dxD 1

dL d .B/1=d

Z
@E
hT .x/; �.x/idH d�1.x/;

where � W @E ! R
d is the outer unit normal vector. Since T .x/ 2 B for every x 2

E , we have jT .x/j � 1 for x 2 @E and thus hT .x/; �.x/i � 1. We conclude with

L d .E/1�
1
d � 1

dL d .B/1=d

Z
@E

hT .x/; �.x/idH d�1.x/ � P.E/

dL d .B/1=d
:

5.3 Sobolev Inequality

The Sobolev inequality in R
d reads as:


Z
jf jp�

�1=p�

� C.d; p/


Z
jrf jp

�1=p
; 8f 2 W 1;p.Rd /;

where 1 � p < d , p	 WD dp

d�p and C.d; p/ is a constant which depends only on the
dimension d and the exponent p.

We will prove it via a method which closely resemble the one just used for the
isoperimetric inequality. Again, we will neglect all the smoothness issues. Fix d; p
and observe that without loss of generality we can assume f � 0 and

R jf jp	 D 1,
so that our aim is to prove that


Z
jrf jp

�1=p
� C; (87)
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for some constantC not depending on f . Fix once and for all a smooth, non negative
function g W Rd ! R satisfying

R
g D 1, define the probability measures

� WD f p�

L d ; � WD gL d ;

and let T be the optimal transport map from � to � (w.r.t. the cost given by the
distance squared). The change of variable formula gives

g.T .x// D f p�

.x/

det.rT .x// ; 8x 2 R
d :

Hence we have
Z
g1� 1

d D
Z
g� 1

d g D
Z
.g ı T /� 1

d fp
� D

Z
det.rT / 1d .fp�

/1� 1
d :

As for the case of the isoperimetric inequality, we know that T is the gradient of a
convex function, thus rT .x/ is a symmetric matrix with non negative eigenvalues
and the arithmetic-geometric mean inequality gives .det.rT .x///1=d � r�T .x/

d
.

Thus we get

Z
g1� 1

d � 1

d

Z
r 
 T .f p�

/1� 1
d D �p

	

d



1 � 1

d

�Z
f

p�

q T 
 rf;

where 1
p

C 1
q

D 1. Finally, by Hölder inequality we have

Z
g1�

1
d � p	

d



1 � 1

d

�
Z
f p� jT jq

� 1
q

Z

jrf jp
� 1

p

D p	

d



1 � 1

d

�
Z
g.y/jyjqdy

� 1
q

Z

jrf jp
� 1

p

:

Since g was a fixed given function, (87) is proved.

5.4 Bibliographical Notes

The possibility of proving Brunn–Minkowski inequality via a change of variable is
classical. It has been McCann in his PhD thesis [62] to notice that the use of optimal
transport leads to a natural choice of reparametrization. It is interesting to notice
that this approach can be generalized to curved and non-smooth spaces having Ricci
curvature bounded below, see Proposition 8.14.

The idea of proving the isoperimetric inequality via a change of variable
argument is due to Gromov [65]: in Gromov’s proof it is not used the optimal
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transport map, but the so called Knothe’s map. Such a map has the property that
its gradient has non negative eigenvalues at every point, and the reader can easily
check that this is all we used of Brenier’s map in our proof, so that the argument
of Gromov is the same we used here. The use of Brenier’s map instead of Knothe’s
one makes the difference when studying the quantitative version of the isoperimetric
problem: Figalli et al. in [38], using tools coming from optimal transport, proved the
sharp quantitative isoperimetric inequality in R

d endowed with any norm (the sharp
quantitative isoperimetric inequality for the Euclidean norm was proved earlier by
Fusco et al. in [40] by completely different means).

The approach used here to prove the Sobolev inequality has been generalized
by Cordero-Erasquin, Nazaret and Villani in [30] to provide a new proof of the
sharp Gagliardo–Nirenberg–Sobolev inequality together with the identification of
the functions realizing the equality.

6 Variants of the Wasserstein Distance

In this chapter we make a quick overview of some variants of the Wasserstein
distance W2 together with their applications. No proofs will be reported: our goal
here is only to show that concepts coming from the transport theory can be adapted
to cover a broader range of applications.

6.1 Branched Optimal Transportation

Consider the transport problem with � WD ıx and � WD 1
2
.ıy1 C ıy2/ for the cost

given by the distance squared on R
d . Then Theorem 3.10 and Remark 3.13 tell that

the unique geodesic .�t / connecting � to � is given by

�t WD 1

2

�
ı.1�t /xCty1 C ı.1�t /xCty2

�
;

so that the geodesic produces a “V-shaped” path.
For some applications, this is unnatural: for instance in real life networks, when

one wants to transport the good located in x to the destinations y1 and y2 it is
preferred to produce a branched structure, where first the good it is transported “on
a single truck” to some intermediate point, and only later split into two parts which
are delivered to the two destinations. This produces a “Y-shaped” path.

If we want to model the fact that “it is convenient to ship things together”,
we are lead to the following construction, due to Gilbert. Say that the start-
ing distribution of mass is given by �D P

i ai ıxi and that the final one is
�D P

j bj ıyj , with
P

i ai D P
j bj D 1. An admissible dynamical transfer is then

given by a finite, oriented, weighted graph G, where the weight is a function
w W fset of edges of Gg !R, satisfying the Kirchoff’s rule:
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X
edgeseoutgoing fromxi

w.e/ �
X

edgeseincoming inxi

w.e/ D ai ; 8i

X
edgeseoutgoing fromyj

w.e/ �
X

edgeseincoming inyj

w.e/ D �bj ; 8j

X
edgeseoutgoing fromz

w.e/ �
X

edgeseincoming inz

w.e/ D 0; for any “internal” nodezofG

Then for ˛ 2 Œ0; 1� one minimizes

X
edgeseofG

w˛.e/ 
 length.e/;

among all admissible graphsG.
Observe that for ˛ D 0 this problem reduces to the classical Steiner problem,

while for ˛ D 1 it reduces to the classical optimal transport problem for cost D
distance.

It is not hard to show the existence of a minimizer for this problem. What is
interesting, is that a “continuous” formulation is possible as well, which allows to
discuss the minimization problem for general initial and final measure in P.Rd /.

Definition 6.1 (Admissible continuous dynamical transfer). Let �; � 2
P.Rd /. An admissible continuous dynamical transfer from � to � is given by
a countably H 1-rectifiable set 	 , an orientation on it � W 	 ! Sd�1, and a weight
function w W 	 ! Œ0;C1/, such that the Rd valued measure J	;�;w defined by

J	;�;w WD w�H 1j	 ;

satisfies
r 
 J	;�;w D � � �;

(which is the natural generalization of the Kirchoff rule).

Given ˛ 2 Œ0; 1�, the cost function associated to .	; �;w/ is defined as

E˛.J	;�;w/ WD
Z
	

w˛ dH 1:

Theorem 6.2 (Existence). Let �; � 2 P.Rd / with compact support. Then for all
˛ 2 Œ0; 1/ there exists a minimizer of the cost in the set of admissible continuous
dynamical transfers connecting � to �. If � D ız and � D L d jŒ0;1�d , the minimal
cost is finite if and only if ˛ > 1� 1=d .

The fact that 1 � 1=d is a limit value to get a finite cost, can be heuristically
understood by the following calculation. Suppose we want to move a Delta mass ıx
into the Lebesgue measure on a unit cube whose center is x. Then the first thing one
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wants to try is: divide the cube into 2d cubes of side length 1=2, then split the delta
into 2d masses and let them move onto the centers of these 2d cubes. Repeat the
process by dividing each of the 2d cubes into 2d cubes of side length 1=4 and so on.
The total cost of this dynamical transfer is proportional to:

1X
iD1

2id„ƒ‚…
number of segments

at the step i

1

2i„ƒ‚…
length of each

segment at the step i

1

2˛id„ƒ‚…
weighted mass on each
segment at the step i

D
1X
iD1

2i.d�1�˛d/;

which is finite if and only if d � 1 � ˛d < 0, that is, if and only if ˛ > 1 � 1
d

.
A regularity result holds for ˛ 2 .1 � 1=d; 1/ which states that far away from

the supports of the starting and final measures, any minimal transfer is actually a
finite tree:

Theorem 6.3 (Regularity). Let �; � 2 P.Rd / with compact support, ˛ 2 .1 �
1=n; 1/ and let .	; �;w/ be a continuous tree with minimal ˛-cost between � and �.
Then 	 is locally a finite tree in R

d n .supp� [ supp �/.

6.2 Different Action Functional

Let us recall that the Benamou–Brenier formula (Proposition 3.30) identifies the
squared Wasserstein distance between �0 D 0L d ; �1 WD 1L d 2 P2.R

d / by

W 2
2 .�

0; �1/ D inf
Z 1

0

Z
jvt j2.x/t .x/dL d .x/dt;

where the infimum is taken among all the distributional solutions of the continuity
equation

d

dt
t C r 
 .vt t / D 0;

with 0 D 0 and 1 D �1.
A natural generalization of the distance W2 comes by considering a new action,

modified by putting a weight on the density, that is: given a smooth function h W
Œ0;1/ ! Œ0;1/ we define

W 2
h .

0L d ; 1L d / D inf
Z 1

0

Z
jvt j2.x/h.t .x//dL d .x/dt; (88)

where the infimum is taken among all the distributional solutions of the non linear
continuity equation

d

dt
t C r 
 .vt h.t // D 0; (89)

with 0 D 0 and 1 D 1.
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The key assumption that leads to the existence of an action minimizing curve is
the concavity of h, since this leads to the joint convexity of

.; J / 7! h./

ˇ̌
ˇ̌ J
h./

ˇ̌
ˇ̌2 ;

so that using this convexity with J D vh./, one can prove existence of minima
of (88). Particularly important is the case given by h.z/ WD z˛ for ˛ < 1 from which
we can build the distance QW˛ defined by

QW˛.
0L d ; 1L d / WD



inf
Z 1

0

Z
jvt j2.x/2�˛t .x/dL d .x/dt

� 1
˛

; (90)

the infimum being taken among all solutions of (89) with 0 D 0 and 1 D 1. The
following theorem holds:

Theorem 6.4. Let ˛ > 1 � 1
d

. Then the infimum in (90) is always reached and,
if it is finite, the minimizer is unique. Now fix a measure � 2 P.Rd /. The set of
measures � with QW˛.�; �/ < 1 endowed with QW˛ is a complete metric space and
bounded subsets are narrowly compact.

We remark that the behavior of action minimizing curves in this setting is, in some
very rough sense, “dual” of the behavior of the branched optimal transportation
discussed in the previous section. Indeed, in this problem the mass tends to spread
out along an action minimizing curve, rather than to glue together.

6.3 An Extension to Measures with Unequal Mass

Let us come back to the Heat equation seen as Gradient Flow of the entropy
functional E./D R

 log./ with respect to the Wasserstein distance W2, as
discussed at the beginning of Sect. 4.3 and in Sect. 4.3.2. We discussed the topic for
arbitrary probability measures in R

d , but actually everything could have been done
for probability measures concentrated on some open bounded set ˝ � R

d with
smooth boundary, that is: consider the metric space .P.˝/;W2/ and the entropy
functionalE./ D R

 log./ for absolutely continuous measures andE.�/ D C1
for measures with a singular part. Now use the Minimizing Movements scheme
to build up a family of discrete solutions �t starting from some given measure
 2 P.˝/. It is then possible to see that these discrete families converge as � # 0
to the solution of the Heat equation with Neumann boundary condition:

8<
:

d
dt
t D �t ; in ˝ � .0;C1/;

t ! ; weakly as t ! 0

rt 
 
 D 0; in @˝ � .0;1/;

where 
 is the outward pointing unit vector on @˝ .
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The fact that the boundary condition is the Neumann’s one, can be heuristically
guessed by the fact that working in P.˝/ enforces the mass to be constant, with no
flow of the mass through the boundary.

It is then natural to ask whether it is possible to modify the transportation distance
in order to take into account measures with unequal masses, and such that the
Gradient Flow of the entropy functional produces solutions of the Heat equation
in ˝ with Dirichlet boundary conditions. This is actually doable, as we briefly
discuss now.

Let ˝ � R
d be open and bounded. Consider the set M2.˝/ defined by

M2.˝/ WD
n
measures � on ˝ such that

Z
d2.x; @˝/d�.x/ < 1

o
;

and for any �; � 2 M2.˝/ define the set of admissible transfer plans Admb.�; �/

by: � 2 Admb.�; �/ if and only if � is a measure on .˝/2 such that

�1#� j˝ D �; �2#� j˝ D �:

Notice the difference w.r.t. the classical definition of transfer plan: here we are
requiring the first (respectively, second) marginal to coincide with � (respectively �)
only inside the open set ˝ . This means that in transferring the mass from � to � we
are free to take/put as much mass as we want from/to the boundary. Then one defines
the cost C.�/ of a plan � by

C.�/ WD
Z

jx � yj2d�.x; y/;

and then the distance W b2 by

W b2.�; �/ WD inf
p
C.�/;

where the infimum is taken among all � 2 Admb.�; �/.
The distance W b2 shares many properties with the Wasserstein distance W2.

Theorem 6.5 (Main properties of W b2). The following hold:

• W b2 is a distance on M2.˝/ and the metric space .M2.˝/;W b2/ is Polish and
geodesic.

• A sequence .�n/ � M2.˝/ converges to � w.r.t.W b2 if and only if�n converges
weakly to � in duality with continuous functions with compact support in ˝ andR
d2.x; @˝/d�n ! R

d2.x; @˝/d� as n ! 1.
• Finally, a plan � 2 Admb.�; �/ is optimal (i.e. it attains the minimum cost

among admissible plans) if and only there exists a c-concave function ' which is
identically 0 on @˝ such that supp.�/ � @c' (here c.x; y/ D jx � yj2).
Observe that .M2.˝/;W b2/ is always a geodesic space (while from

Theorem 3.10 and Remark 3.14 we know that .P.˝/;W2/ is geodesic if and
only if ˝ is, that is, if and only if ˝ is convex).
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It makes perfectly sense to extend the entropy functional to the whole M2.˝/:
the formula is still E.�/D R

 log./ for � D L d j˝ , and E.�/ D C1 for
measures not absolutely continuous. The Gradient Flow of the entropy w.r.t. W b2
produces solutions of the Heat equation with Dirichlet boundary conditions in the
following sense:

Theorem 6.6. Let � 2 M2.˝/ be such that E.�/ < 1. Then:

• For every � > 0 there exists a unique discrete solution �t starting from � and
constructed via the Minimizing Movements scheme as in Definition 4.7.

• As � # 0, the measures �t converge to a unique measure t in .M2.˝/;W b2/

for any t > 0.
• The map .x; t/ 7! t .x/ is a solution of the Heat equation

�
d
dt
t D �t ; in ˝ � .0;C1/;

t ! �; weakly as t ! 0;

subject to the Dirichlet boundary condition t .x/ D e�1 in @˝ for every t > 0

(that is, t � e�1 belongs to H1
0 .˝/ for every t > 0).

The fact that the boundary value is given by e�1 can be heuristically guessed
by the fact that the entropy has a global minimum in M2.˝/: such minimum is
given by the measure with constant density e�1, i.e. the measure whose density is
everywhere equal to the minimum of z 7! z log.z/.

On the bad side, the entropy E is not geodesically convex in .M2.˝/;W b2/,
and this implies that it is not clear whether the strong properties of Gradient Flows
w.r.t.W2 as described in Sect. 4.3—Theorem 4.35 and Proposition 4.38 are satisfied
also in this setting. In particular, it is not clear whether there is contractivity of the
distance or not:

Open Problem 6.7. Let 1t , 
2
t two solutions of the Heat equation with Dirichlet

boundary condition it D e�1 in @˝ for every t > 0, i D 1; 2. Prove or disprove
that

W b2.
1
s ; 

2
s / � W b2.

1
t ; 

2
t /; 8t > s:

The question is open also for convex and smooth open sets ˝ .

6.4 Bibliographical Notes

The connection of branched transport and transport problem as discussed in Sect. 6.1
was first pointed out by Q. Xia in [81]. An equivalent model was proposed by
F. Maddalena et al. in [61]. In [60,81] and [15] the existence of an optimal branched
transport (Theorem 6.2) was also provided. Later, this result has been extended in
several directions, see for instance the works A. Brancolini et al. [16] and Bianchini–
Brancolini [15]. The interior regularity result (Theorem 6.3) has been proved By
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Q. Xia in [82] and M. Bernot et al. in [14]. Also, we remark that L. Brasco,
G. Buttazzo and F. Santambrogio proved a kind of Benamou–Brenier formula for
branched transport in [17].

The content of Sect. 6.2 comes from J. Dolbeault, B. Nazaret and G. Savaré [33]
and [26] of J. Carrillo, S. Lisini, G. Savaré and D. Slepcev.

Section 6.3 is taken from a work of the second author and A. Figalli [37].

7 More on the Structure of .P2.M/; W2/

The aim of this Chapter is to give a comprehensive description of the structure
of the “Riemannian manifold” .P2.R

d /;W2/, thus the content of this part of the
work is the natural continuation of what we discussed in Sect. 3.3.2. For the sake
of simplicity, we are going to stick to the Wasserstein space on R

d , but the reader
should keep in mind that the discussions here can be generalized with only little
effort to the Wasserstein space built over a Riemannian manifold.

7.1 “Duality” Between the Wasserstein and the Arnold
Manifolds

The content of this section is purely formal and directly comes from the seminal
paper of Otto [67]. We won’t even try to provide a rigorous background for the
discussion we will do here, as we believe that dealing with the technical problems
would lead the reader far from the geometric intuition. Also, we will not use the
“results” presented here later on: we just think that these concepts are worth of
mention. Thus for the purpose of this section just think that “each measure is
absolutely continuous with smooth density”, that “each L2 function is C1”, and
so on.

Let us recall the definition of Riemannian submersion. LetM; N be Riemannian
manifolds and let f W M ! N a smooth map. f is a submersion provided the map:

df W Ker?�df .x/� ! Tf.x/N;

is a surjective isometry for any x 2 M . A trivial example of submersion is given in
the case M D N � L (for some Riemannian manifold L, with M endowed with
the product metric) and f W M ! N is the natural projection. More generally, if
f is a Riemannian submersion, for each y 2 N , the set f �1.y/ � M is a smooth
Riemannian submanifold.

The “duality” between the Wasserstein and the Arnold Manifolds consists in the
fact that there exists a Big Manifold BM which is flat and a natural Riemannian
submersion from BM to P2.R

d / whose fibers are precisely the Arnold Manifolds.
Let us define the objects we are dealing with. Fix once and for all a reference

measure  2 P2.R
d / (recall that we are “assuming” that all the measures are
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absolutely continuous with smooth densities—so that we will use the same notation
for both the measure and its density).

• The Big Manifold BM is the space L2./ of maps from R
d to R

d which are
L2 w.r.t. the reference measure . The tangent space at some map T 2 BM
is naturally given by the set of vector fields belonging to L2./, where the
perturbation of T in the direction of the vector field u is given by t 7! T C tu.

• The target manifold of the submersion is the Wasserstein “manifold” P2.R
d /.

We recall that the tangent space Tan.P2./R
d / at the measure  is the set

Tan.P2./R
d / WD

n
r' W ' 2 C1

c .R
d /
o
;

endowed with the scalar product ofL2./ (we neglect to take the closure inL2./
because we want to keep the discussion at a formal level). The perturbation of a
measure  in the direction of a tangent vector r' is given by t 7! .IdC tr'/#.

• The Arnold Manifold Arn./ associated to a certain measure  2 P2.R
d / is the

set of maps S W Rd ! R
d which preserve :

Arn./ WD
n
S W Rd ! R

d W S# D g:

We endow Arn./ with the L2 distance calculated w.r.t. . To understand who
is the tangent space at Arn./ at a certain map S , pick a vector field v on R

d

and consider the perturbation t 7! S C tv of S in the direction of v. Then v is a
tangent vector if and only if d

dt
jtD0.S C tv/# D 0. Observing that

d

dt
jtD0.S C tv/# D d

dt
jtD0.Id C tv ı S�1/#.S#/

D d

dt
jtD0.Id C tv ı S�1/# D r 
 .v ı S�1/;

we deduce

TanSArn./ D
n
vector fields v on R

d such that r 
 .v ı S�1/ D 0
o
;

which is naturally endowed with the scalar product in L2./.
We are calling the manifold Arn./ an Arnold Manifold, because if  is

the Lebesgue measure restricted to some open, smooth and bounded set ˝ ,
this definition reduces to the well known definition of Arnold manifold in
fluid mechanics: the geodesic equation in such space is—formally—the Euler
equation for the motion of an incompressible and inviscid fluid in ˝ .

• Finally, the “Riemannian submersion” Pf from BM to P2.R
d / is the push

forward map:
Pf W BM ! P2.R

d /;

T 7! T#;

We claim that Pf is a Riemannian submersion and that the fiber Pf�1./ is isometric
to the manifold Arn./.
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We start considering the fibers. Fix  2 P2.R
d /. Observe that

Pf�1./ D
n
T 2 BM W T# D 

o
;

and that the tangent space TanT Pf�1./ is the set of vector fields u such that
d
dt

jtD0.T C tu/# D 0, so that from

d

dt
jtD0.T C tu/# D d

dt
jtD0.Id C tu ı T �1/#.T#/

D d

dt
jtD0.Id C tu ı T �1/# D r 
 .u ı T �1/;

we have

TanT Pf�1./ D
n
vector fields u on R

d such that r 
 .u ı T �1/ D 0
o
;

and the scalar product between two vector fields in TanT Pf�1./ is the one inherited
by the one in BM, i.e. is the scalar product in L2./.

Now choose a distinguished map T  2 Pf�1./ and notice that the right
composition with T  provides a natural bijective map from Arn./ into Pf�1./,
because

S# D  , .S ı T /# D :

We claim that this right composition also provides an isometry between the
“Riemannian manifolds” Arn./ and Pf�1./: indeed, if v 2 TanSArn./, then the
perturbed mapsSCtv are sent to SıT CtvıT , which means that the perturbation v
of S is sent to the perturbation u WD v ı T  of S ı T  by the differential of the right
composition. The conclusion follows from the change of variable formula, which
gives Z

jvj2d D
Z

juj2d:

Clearly, the kernel of the differential dPf of Pf at T is given by TanT Pf�1�Pf.T /
�
,

thus it remains to prove that its orthogonal is sent isometrically onto TanPf.T /.P2

.Rd // by dPf. Fix T 2 BM, let  WD Pf.T / D T# and observe that

Tan?
T

�
Pf�1

�

��

D
n
vector fields w W

Z
hw; ui d D 0; 8u s.t. r 
 .u ı T�1/ D 0

o

D
n
vector fields w W

Z D
w ı T �1; u ı T�1Ed D 0; 8u s.t. r 
 .u ı T �1/ D 0

o

D
n
vector fields w W w ı T �1 D r' for some ' 2 C1

c .Rd /
o
:
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Now pick w 2 Tan?
T

�
Pf�1���, let ' 2 C1

c .R
d / be such that w ı T �1 D r' and

observe that

d

dt
jtD0Pf.T C tw/ D d

dt
jtD0.T C tw/#

D d

dt
jtD0.Id C tw ı T �1/#.T#/ D d

dt
jtD0.Id C tr'/#;

which means, by definition of Tan.P2.R
d // and the action of tangent vectors,

that the differential dPf.T /.w/ of Pf calculated at T along the direction w is given
by r'. The fact that this map is an isometry follows once again by the change of
variable formula

Z
jwj2d D

Z
jw ı T �1j2d D

Z
jr'j2d:

7.2 On the Notion of Tangent Space

Aim of this section is to quickly discuss the definition of tangent space of P2.R
d /

at a certain measure � from a purely geometric perspective. We will see how this
perspective is related to the discussion made in Sect. 3.3.2, where we defined tangent
space as

Tan�.P2.�/R
d / WD

n
r' W ' 2 C1

c .R
d /
oL2.Rd ;Rd I�/

:

Recall that this definition came from the characterization of absolutely continuous
curves on P2.R

d / (Theorem 3.29 and the subsequent discussion).
Yet, there is a completely different and purely geometrical approach which leads

to a definition of tangent space at �. The idea is to think the tangent space at � as the
“space of directions”, or, which is the same, as the set of constant speed geodesics
emanating from �. More precisely, let the set Geod � be defined by:

Geod � WD
n constant speed geodesics starting from �

and defined on some interval of the kind Œ0; T �

o
= ;

where we say that .�t /  .�0
t / provided they coincide on some right neighborhood

of 0. The natural distance D on Geod � is:

D
�
.�t /; .�

0
t /
� WD lim

t#0
W2.�t ; �

0
t /

t
: (91)

The Geometric Tangent space Tan�.P2.�/R
d / is then defined as the completion

of Geod � w.r.t. the distance D.
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The natural question here is: what is the relation between the “space of gradients”
Tan�.P2.�/R

d / and the “space of directions” Tan�.P2.�/R
d /?

Recall that from Remark 2.22 we know that given ' 2 C1
c .R

d /, the map t 7!
.IdCtr'/#� is a constant speed geodesic on a right neighborhood of 0. This means
that there is a natural map �� from the set fr' W ' 2 C1

c g into Geod �, and therefore

into Tan�.P2.�/R
d /, which sends r' into the (equivalence class of the) geodesic

t 7! .Id C tr'/#�. The main properties of the Geometric Tangent space and of
this map are collected in the following theorem, which we state without proof.

Theorem 7.1 (The tangent space). Let � 2 P2.R
d /. Then:

• The lim in (91) is always a limit.
• The metric space .Tan�.P2.�/R

d /;D/ is complete and separable.
• The map �� W fr'g ! Tan�.P2.�/R

d / is an injective isometry, where on the
source space we put the L2 distance w.r.t. �. Thus, �� always extends to a natural
isometric embedding of Tan�.P2.�/R

d / into Tan�.P2.�/R
d /.

Furthermore, the following statements are equivalent:

(i) The space .Tan�.P2.�/R
d /;D/ is an Hilbert space.

(ii) The map �� W Tan�.P2.�/R
d / ! Tan�.P2.�/R

d / is surjective.
(iii) The measure � is regular (Definition 2.25).

We comment on the second part of the theorem. The first thing to notice is that
the “space of directions” Tan�.P2.�/R

d / can be strictly larger than “the space of
gradients” Tan�.P2.�/R

d /. This is actually not surprising if one thinks to the case
in which � is a Dirac mass. Indeed in this situation the space .Tan�.P2.�/R

d /;D/

coincides with the space .P2.R
d /;W2/ (this can be checked directly from the

definition), however, the space Tan�.P2.�/R
d / is actually isometric to R

d itself,
and is therefore much smaller.

The reason is that geodesics are not always induced by maps, that is, they are not
always of the form t 7! .Id C tu/#� for some vector field u 2 L2�. To some extent,
here we are facing the same problem we had to face when starting the study of the
optimal transport problem: maps are typically not sufficient to produce (optimal)
transports. From this perspective, it is not surprising that if the measure we are
considering is regular (that is, if for any � 2 P2.R

d / there exists a unique optimal
plan, and this plan is induced by a map), then the “space of directions” coincides
with the “space of directions induced by maps”.

7.3 Second Order Calculus

Now we pass to the description of the second order analysis over P2.R
d /. The

concepts that now enter into play are: Covariant Derivative, Parallel Transport
and Curvature. To some extent, the situation is similar to the one we discussed
in Sect. 3.3.2 concerning the first order structure: the metric space .P2.R

d /;W2/
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is not a Riemannian manifold, but if we are careful in giving definitions and in
the regularity requirements of the objects involved we will be able to perform
calculations very similar to those valid in a genuine Riemannian context.

Again, we are restricting the analysis to the Euclidean case only for simplicity:
all of what comes next can be generalized to the analysis over P2.M/, for a generic
Riemannian manifoldM .

On a typical course of basic Riemannian geometry, one of the first concepts intro-
duced is that of Levi–Civita connection, which identifies the only natural (“natural”
here means: “compatible with the Riemannian structure”) way of differentiating
vector fields on the manifold. It would therefore be natural to set up our discussion
on the second order analysis on P2.R

d / by giving the definition of Levi–Civita
connection in this setting. However, this cannot be done. The reason is that we don’t
have a notion of smoothness for vector fields, therefore not only we don’t know
how to covariantly differentiate vector fields, but we don’t know either which are
the vector fields regular enough to be differentiated. In a purely Riemannian setting
this problem does not appear, as a Riemannian manifold borns as smooth manifold
on which we define a scalar product on each tangent space; but the space P2.R

d /

does not have a smooth structure (there is no diffeomorphism of a small ball around
the origin in Tan�.P2.�/R

d / onto a neighborhood of � in P2.R
d /). Thus, we have

to proceed in a different way, which we describe now:

Regular curves. First of all, we drop the idea of defining a smooth vector field
on the whole “manifold”. We will rather concentrate on finding an appropriate
definition of smoothness for vector fields defined along curves. We will see that
to do this, we will need to work with a particular kind of curves, which we call
regular, see Definition 7.2.

Smoothness of vector fields. We will then be able to define the smoothness of
vector fields defined along regular curves (Definition 7.5). Among others, a notion
of smoothness of particular relevance is that of absolutely continuous vector fields:
for this kind of vector fields we have a natural notion of total derivative (not to be
confused with the covariant one, see Definition 7.6).

Levi–Civita connection. At this point we have all the ingredients we need to define
the covariant derivative and to prove that it is the Levi–Civita connection on P2.R

d /

(Definition 7.8 and discussion thereafter).

Parallel transport. This is the main existence result on this subject: we prove
that along regular curves the parallel transport always exists (Theorem 7.15). We
will also discuss a counterexample to the existence of parallel transport along a
non-regular geodesic (Example 7.16). This will show that the definition of regular
curve is not just operationally needed to provide a definition of smoothness of vector
fields, but is actually intrinsically related to the geometry of P2.R

d /.

Calculus of derivatives. Using the technical tools developed for the study of the
parallel transport, we will be able to explicitly compute the total and covariant
derivatives of basic examples of vector fields.
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Curvature. We conclude the discussion by showing how the concepts developed
can lead to a rigorous definition of the curvature tensor on P2.R

d /.
We will write kvk� and hv;wi� for the norm of the vector field v and the scalar

product of the vector fields v;w in the space L2.�/ (which we will denote by L2�),
respectively.

We now start with the definition of regular curve. All the curves we will consider
are defined on Œ0; 1�, unless otherwise stated.

Definition 7.2 (Regular curve). Let .�t / be an absolutely continuous curve and let
.vt / be its velocity vector field, that is .vt / is the unique vector field—up to equality
for a.e. t—such that vt 2 Tan�t .P2.R

d // for a.e. t and the continuity equation

d

dt
�t C r 
 .vt�t / D 0;

holds in the sense of distributions (recall Theorem 3.29 and Definition 3.31). We
say that .�t / is regular provided

Z 1

0

kvtk2�t dt < 1; (92)

and Z 1

0

Lip.vt /dt < 1: (93)

Observe that the validity of (93) is independent on the parametrization of the curve,
thus if it is fulfilled it is always possible to reparametrize the curve (e.g. with
constant speed) in order to let it satisfy also (92).

Now assume that .�t / is regular. Then by the classical Cauchy–Lipschitz theory
we know that there exists a unique family of maps T.t; s; 
/ W supp.�t / ! supp.�s/
satisfying

8<
:
d

ds
T.t; s; x/D vs.T.t; s; x//; 8t 2 Œ0; 1�; x 2 supp.�t /; a:e: s 2 Œ0; 1�;
T.t; t; x/D x; 8t 2 Œ0; 1�; x 2 supp.�t /:

(94)

Also it is possible to check that these maps satisfy the additional properties

T.r; s; 
/ ı T.t; r; 
/ D T.t; s; 
/ 8t; r; s 2 Œ0; 1�;
T.t; s; 
/#�t D �s; 8t; s 2 Œ0; 1�:

We will call this family of maps the flow maps of the curve .�t /. Observe that
for any couple of times t; s 2 Œ0; 1�, the right composition with T.t; s; 
/ provides
a bijective isometry from L2�s to L2�t . Also, notice that from condition (92) and the
inequalities
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kT.t; s; 
/ � T.t; s0; 
/k2�t �
Z  Z s0

s

vr .T.t; r; x//dr

!2
d�t .x/

� js0 � sj
Z s0

s

kvr .x/k2�r .x/dr

we get that for fixed t 2 Œ0; 1�, the map s 7! T.t; s; 
/ 2 L2�t is absolutely
continuous.

It can be proved that the set of regular curves is dense in the set of absolutely con-
tinuous curves on P2.R

d / with respect to uniform convergence plus convergence
of length. We omit the technical proof of this fact and focus instead on the important
case of geodesics:

Proposition 7.3 (Regular geodesics). Let .�t / be a constant speed geodesic on
Œ0; 1�. Then its restriction to any interval Œ"; 1�"�, with " > 0, is regular. In general,
however, the whole curve .�t / may be not regular on Œ0; 1�.

Proof. To prove that .�t / may be not regular just consider the case of �0 WD ıx and
�1 WD 1

2
.ıy1 C ıy2/: it is immediate to verify that for the velocity vector field .vt / it

holds Lip.vt / D t�1.
For the other part, recall from Remark 3.25 (see also Proposition 3.16) that for

t 2 .0; 1/ and s 2 Œ0; 1� there exists a unique optimal map T st from �t to �s . It is
immediate to verify from formula (19) that these maps satisfy

T st � Id
s � t D T s

0

t � Id

s0 � t
; 8t 2 .0; 1/; s 2 Œ0; 1�:

Thus, thanks to Proposition 3.32, we have that vt is given by

vt D lim
s!t

T st � Id

s � t
D Id � T 0t

t
: (95)

Now recall that Remark 3.25 gives Lip.T t0 / � .1 � t/�1 to obtain

Lip.vt / � t�1..1 � t/�1 C 1/ D 2 � t
t.1 � t/ :

Thus t 7! Lip.vt / is integrable on any interval of the kind Œ"; 1 � "�, " > 0. ut
Definition 7.4 (Vector fields along a curve). A vector field along a curve .�t / is a
Borel map .t; x/ 7! ut .x/ such that ut 2 L2�t for a.e. t . It will be denoted by .ut /.

Observe that we are considering also non tangent vector fields, that is, we are not
requiring ut 2 Tan�t .P2.R

d // for a.e. t .
To define the (time) smoothness of a vector field .ut / defined along a regular

curve .�t / we will make an essential use of the flow maps: notice that the
main problem in considering the smoothness of .ut / is that for different times,
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the vectors belong to different spaces. To overcome this obstruction we will define
the smoothness of t 7! ut 2 L2�t in terms of the smoothness of t 7! ut ı T.t0; t; 
/ 2
L2�t0

:

Definition 7.5 (Smoothness of vector fields). Let .�t / be a regular curve, T.t; s; 
/
its flow maps and .ut / a vector field defined along it. We say that .ut / is absolutely
continuous (or C1, or Cn, : : :, or C1 or analytic) provided the map

t 7! ut ı T.t0; t; 
/ 2 L2�t0
is absolutely continuous (or C1, or Cn, : : :, or C1 or analytic) for every t0 2 Œ0; 1�.

Since ut ı T.t1; t; 
/D ut ı T.t0; t; 
/ ı T.t1; t0; 
/ and the composition with
T.t1; t0; 
/ provides an isometry from L2�t0

to L2�t1 , it is sufficient to check the
regularity of t 7! ut ıT.t0; t; 
/ for some t0 2 Œ0; 1� to be sure that the same regularity
holds for every t0.

Definition 7.6 (Total derivative). With the same notation as above, assume that
.ut / is an absolutely continuous vector field. Its total derivative is defined as:

d

dt
ut WD lim

h!0

utCh ı T.t; t C h; 
/� ut
h

;

where the limit is intended in L2�t .

Observe that we are not requiring the vector field to be tangent, and that the total
derivative is in general a non tangent vector field, even if .ut / is.

The identity

lim
h!0

utCh ı T.t; t C h; 
/� ut
h

D



lim
h!0

utCh ı T.t0; t C h; 
/ � ut ı T.t0; t; 
/
h

�
ı T.t; t0; 
/

D


d

dt

�
ut ı T.t0; t; 
/

�� ı T.t; t0; 
/;

shows that the total derivative is well defined for a.e. t and that is an L1 vector field,
in the sense that it holds Z 1

0

 d

dt
ut


�t

dt < 1:

Notice also the inequality

kus ı T.t; s; 
/ � utk�t �
Z s

t

 ddt
.ur ı T.t; r; 
//


�t

dr D
Z s

t

d

dt
ur


�r

dr:

An important property of the total derivative is the Leibnitz rule: for any couple of
absolutely continuous vector fields .u1t /, .u

2
t / along the same regular curve .�t / the

map t 7! ˝
u1t ; u

2
t

˛
�t

is absolutely continuous and it holds
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d

dt

˝
u1t ; u

2
t

˛
�t

D
�

d

dt
u1t ; u

2
t

�
�t

C
�
u1t ;

d

dt
u2t

�
�t

; a:e: t: (96)

Indeed, from the identity
˝
u1t ; u

2
t

˛
�t

D ˝
u1t ı T.t0; t; 
/; u2t ı T.t0; t; 
/

˛
�t0
;

it follows the absolute continuity, and the same expression gives

d

dt

˝
u1t ; u

2
t

˛
�t

D d

dt

˝
u1t ı T.t0; t; 
/; u2t ı T.t0; t; 
/

˛
�t0

D
�
d

dt

�
u1t ı T.t0; t; 
/

�
; u2t ı T.t0; t; 
/

�
�t0

C
�
u1t ı T.t0; t; 
/; d

dt

�
u2t ı T.t0; t; 
/

��
�t0

D
�

d

dt
u1t ; u

2
t

�
�t

C
�
u1t ;

d

dt
u2t

�
�t

:

Example 7.7 (The smooth case). Let .x; t/ 7! �t .x/ be a C1
c vector field on R

d ,
.�t / a regular curve and .vt / its velocity vector field. Then the inequality

k�s ı T.t; s; 
/ � �tk�t � k�s � �tk�s C k�t ı T.t; s; 
/ � �tk�t
� C js � t j C C 0kT.t; s; 
/ � Idk�t ;

with C WD supt;x j@t �t .x/j, C 0 WD supt;x j�t .x/j, together with the fact that s 7!
T.t; s; 
/ 2 L2.�t / is absolutely continuous, gives that .�t / is absolutely continuous
along .�t /.

Then a direct application of the definition gives that its total derivative is
given by

d

dt
�t D @t �t C r�t 
 vt ; a:e: t; (97)

which shows that the total derivative is nothing but the convective derivative well
known in fluid dynamics. �

For � 2 P2.R
d /, we denote by P� W L2� ! Tan�.P2.�/R

d / the orthogonal
projection, and we put P?

� WD Id � P�.

Definition 7.8 (Covariant derivative). Let .ut / be an absolutely continuous and
tangent vector field along the regular curve .�t /. Its covariant derivative is defined as

D

dt
ut WD P�t



d

dt
ut

�
: (98)
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The trivial inequality D

dt
ut


�t

�
 d

dt
ut


�t

shows that the covariant derivative is an L1 vector field.
In order to prove that the covariant derivative we just defined is the Levi–Civita

connection, we need to prove two facts: compatibility with the metric and torsion
free identity. Recall that on a standard Riemannian manifold, these two conditions
are respectively given by:

d

dt
hX.�t/; Y.�t /i D ˝

.r� 0

t
X/.�t /; Y.�t /

˛C ˝
X.�t/; .r� 0

t
Y /.�t /

˛

ŒX; Y � D rXY � rY X;

where X; Y are smooth vector fields and � is a smooth curve on M .
The compatibility with the metric follows immediately from the Leibnitz

rule (96), indeed if .u1t /, .u
2
t / are tangent absolutely continuous vector fields

we have:

d

dt

˝
u1t ; u

2
t

˛
�t

D
�

d

dt
u1t ; u

2
t

�
�t

C
�
u1t ;

d

dt
u2t

�
�t

D
�
P�t



d

dt
u1t

�
; u2t

�
�t

C
�
u1t ;P�t



d

dt
u2t

��
�t

D
�

D

dt
u1t ; u

2
t

�
�t

C
�
u1t ;

D

dt
u2t

�
�t

:

(99)

To prove the torsion-free identity, we need first to understand how to calculate
the Lie bracket of two vector fields. To this aim, let �it , i D 1; 2, be two regular
curves such that �10 D �20 DW � and let uit 2 Tan�it .P2.R

d // be two C1 vector
fields satisfying u10 D v20, u20 D v10, where vit are the velocity vector fields of �it .
We assume that the velocity fields vit of �it are continuous in time (in the sense
that the map t 7! vit�

i
t is continuous in the set of vector valued measure with the

weak topology and t 7! kvitk�it is continuous as well), to be sure that (97) holds for
all t with vt D vit and the initial condition makes sense. With these hypotheses, it
makes sense to consider the covariant derivative D

dt
u2t along .�2t / at t D 0: for this

derivative we write ru10
u2t . Similarly for .u1t /.

Let us consider vector fields as derivations, and the functional � 7! F'.�/ WDR
'd�, for given ' 2 C1

c .R
d /. By the continuity equation, the derivative

of F' along u2t is equal to
˝r'; u2t ˛�2t , therefore the compatibility with the

metric (99) gives:

u1.u2.F'//.�/ D d

dt

˝r'; u2t ˛�2t jtD0 D ˝r2' 
 v20; u
2
0

˛
�

C
D
r';ru10

u2t
E
�

D ˝r2' 
 u10; u
2
0

˛
�

C
D
r';ru10

u2t
E
�
:
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Subtracting the analogous term u2.u1.F'//.�/ and using the symmetry of r2'

we get

Œu1; u2�.F'/.�/ D
D
r';ru10

u2t � ru20
u1t
E
�
:

Given that the set fr'g'2C1

c
is dense in Tan�.P2.�/R

d /, the above equation
characterizes Œu1; u2� as:

Œu1; u2� D ru10
u2t � ru20

u1t ; (100)

which proves the torsion-free identity for the covariant derivative.

Example 7.9 (The velocity vector field of a geodesic). Let .�t / be the restriction
to Œ0; 1� of a geodesic defined in some larger interval .�"; 1C "/ and let .vt / be its
velocity vector field. Then we know by Proposition 7.3 that .�t / is regular. Also,
from formula (95) it is easy to see that it holds

vs ı T.t; s; 
/ D vt ; 8t; s 2 Œ0; 1�;
and thus .vt / is absolutely continuous and satisfies d

dt
vt D 0 and a fortiori D

dt
vt D 0.

Thus, as expected, the velocity vector field of a geodesic has zero covariant
derivative, in analogy with the standard Riemannian case. Actually, it is interesting
to observe that not only the covariant derivative is 0 in this case, but also the
total one. �

Now we pass to the question of parallel transport. The definition comes naturally:

Definition 7.10 (Parallel transport). Let .�t / be a regular curve. A tangent vector
field .ut / along it is a parallel transport if it is absolutely continuous and

D

dt
ut D 0; a:e: t:

It is immediate to verify that the scalar product of two parallel transports is
preserved in time, indeed the compatibility with the metric (99) yields

d

dt

˝
u1t ; u

2
t

˛
�t

D
�

D

dt
u1t ; u

2
t

�
�t

C
�
u1t ;

D

dt
u2t

�
�t

D 0; a:e: t;
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for any couple of parallel transports. In particular, this fact and the linearity of the
notion of parallel transport give uniqueness of the parallel transport itself, in the
sense that for any u0 2 Tan�0.P2.R

d // there exists at most one parallel transport
.ut / along .�t / satisfying u0 D u0.

Thus the problem is to show the existence. There is an important analogy, which
helps understanding the proof, that we want to point out: we already know that
the space .P2.R

d /;W2/ looks like a Riemannian manifold, but actually it has also
stronger similarities with a Riemannian manifold M embedded in some bigger
space (say, on some Euclidean space RD), indeed in both cases:

• We have a natural presence of non tangent vectors: elements of L2� n
Tan�.P2.�/R

d / for P2.R
d /, and vectors in R

D non tangent to the manifold for
the embedded case.

• The scalar product in the tangent space can be naturally defined also for non
tangent vectors: scalar product in L2� for the space P2.R

d /, and the scalar
product in R

D for the embedded case. This means in particular that there are
natural orthogonal projections from the set of tangent and non tangent vectors
onto the set of tangent vectors: P� W L2� ! Tan�.P2.�/R

d / for P2.R
d / and

Px W RD ! TxM for the embedded case.
• The Covariant derivative of a tangent vector field is given by projecting the

“time derivative” onto the tangent space. Indeed, for the space P2.R
d / we know

that the covariant derivative is given by formula (98), while for the embedded
manifold it holds:

r P�t ut D P�t



d

dt
ut

�
; (101)

where t 7! �t is a smooth curve and t 7! ut 2 T�tM is a smooth tangent
vector field.

Given these analogies, we are going to proceed as follows: first we give a proof
of the existence of the parallel transport along a smooth curve in an embedded
Riemannian manifold, then we will see how this proof can be adapted to the
Wasserstein case: this approach should help highlighting what’s the geometric idea
behind the construction.

Thus, say thatM is a given smooth Riemannian manifold embedded on R
D , t 7!

�t 2 M a smooth curve on Œ0; 1� and u0 2 T�0M is a given tangent vector. Our goal
is to prove the existence of an absolutely continuous vector field t 7! ut 2 T�tM

such that u0 D u0 and

P�t



d

dt
ut

�
D 0; a:e: t:

For any t; s 2 Œ0; 1�, let trst W T�tRD ! T�sR
D be the natural translation map

which takes a vector with base point �t (tangent or not to the manifold) and gives
back the translated of this vector with base point �s . Notice that an effect of the
curvature of the manifold and the chosen embedding on R

D , is that trst .u/ may be
not tangent to M even if u is. Now define P s

t W T�tRD ! T�sM by
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P s
t .u/ WD P�s .tr

s
t .u//; 8u 2 T�tRD:

An immediate consequence of the smoothness ofM and � are the two inequalities:

jtrst .u/� P s
t .u/j � C jujjs � t j; 8t; s 2 Œ0; 1� and u 2 T�tM; (102a)

jP s
t .u/j � C jujjs � t j; 8t; s 2 Œ0; 1� and u 2 T ?

�t
M; (102b)

where T ?
�t
M is the orthogonal complement of T�tM in T�tR

D . These two inequal-
ities are all we need to prove existence of the parallel transport. The proof will be
constructive, and is based on the identity:

r�t P
t
0 .u/jtD0 D 0; 8u 2 T�.0/M; (103)

which tells that the vectors P t
0 .u/ are a first order approximation at t D 0 of the

parallel transport. Taking (101) into account, (103) is equivalent to

jP0
t .tr

t
0.u/� P t

0 .u//j D o.t/; u 2 T�.0/M: (104)

Equation (104) follows by applying inequalities (102) (note that trt0.u/ � P t
0 .u/ 2

T ?
�t
M ):

jP0
t .tr

t
0.u/� P t

0 .u//j � C t jtrt0.u/� P t
0 .u/j � C2t2juj:

Now, let P be the direct set of all the partitions of Œ0; 1�, where, for P; Q 2 P,
P � Q if P is a refinement of Q. For P D f0 D t0 < t1 < 
 
 
 < tN D 1g 2 P
and u 2 T�0M define P.u/ 2 T�1M as:

P.u/ WD P
tN
tN�1

.P
tN�1
tN�2

.
 
 
 .P t1
0 .u////:

Our first goal is to prove that the limit P.u/ for P 2 P exists. This will naturally
define a curve t ! ut 2 T�tM by taking partitions of Œ0; t � instead of Œ0; 1�: the
final goal is to show that this curve is actually the parallel transport of u along the
curve � .

The proof is based on the following lemma.

Lemma 7.11. Let 0 � s1 � s2 � s3 � 1 be given numbers. Then it holds:

ˇ̌
P s3
s1
.u/� P s3

s2
.P s2

s1
.u//

ˇ̌ � C2jujjs1 � s2jjs2 � s3j; 8u 2 T�s1M:

Proof. From P s3
s1
.u/ D P�s3 .tr

s3
s1
.u// D P�s3 .tr

s3
s2
.trs2s1 .u/// we get

P s3
s1
.u/� P s3

s2
.P s2

s1
.u// D P s3

s2
.trs2s1 .u/� P s2

s1
.u//

Since u 2 T�s1M and trs2s1 .u/ � P s2
s1
.u/ 2 T ?

�s2
M , the proof follows applying

inequalities (102). ut
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From this lemma, an easy induction shows that for any 0 � s1 < 
 
 
 < sN � 1

and u 2 T�s1M we have

ˇ̌
P sNs1 .u/� P sNsN�1

.P sN�1
sN�2

.
 
 
 .P s2s1 .u////
ˇ̌

� ˇ̌
P sNs1 .u/ � P sNsN�1

.P sN�1
s1

.u//
ˇ̌C ˇ̌

P sNsN�1
.P sN�1
s1

.u//� P sNsN�1
.P sN�1
sN�2

.
 
 
 .P s2s1 .u////
ˇ̌

� C2jujjsN1 � s1jŠsN � sN�1j C ˇ̌
P sN�1
s1

.u/ � P sN�1
sN�2

.
 
 
 .P s2s1 .u///
ˇ̌

� 
 
 


� C2juj
N�1X
iD2

js1 � si jjsi � siC1j � C2jujjs1 � sN j2: (105)

With this result, we can prove existence of the limit of P.u/ as P varies in P.

Theorem 7.12. For any u 2 T�0M there exists the limit of P.u/ as P varies in P.

Proof. We have to prove that, given " > 0, there exists a partition P such that

jP.u/� Q.u/j � juj"; 8Q � P : (106)

In order to do so, it is sufficient to find 0 D t0 < t1 < 
 
 
 < tN D 1 such thatP
i jtiC1 � ti j2 � "=C 2, and repeatedly apply (105) to all partitions induced by Q

in the intervals .ti ; tiC1/. ut
Now, for s � t we can introduce the maps T st W T�tM ! T�sM which associate

to the vector u 2 T�tM the limit of the process just described taking into account
partitions of Œs; t � instead of those of Œ0; 1�.

Theorem 7.13. For any t1 � t2 � t3 2 Œ0; 1� it holds

T
t3
t2 ı T t2t1 D T

t3
t1 : (107)

Moreover, for any u 2 T�0M the curve t ! ut WD T t0 .u/ 2 T�tM is the parallel
transport of u along � .

Proof. For the group property, consider those partitions of Œt1; t3� which contain t2
and pass to the limit first on Œt1; t2� and then on Œt2; t3�. To prove the second part of
the statement, we prove first that .ut / is absolutely continuous. To see this, pass to
the limit in (105) with s1 D t0 and sN D t1, u D ut0 to get

jP t1
t0 .ut0 /� ut1 j � C2jut0 j.t1 � t0/2 � C2juj.t1 � t0/

2; (108)

so that from (102a) we get

jtrt1t0 .ut0 /�ut1 j � jtrt1t0 .ut0 /�P t1
t0 .ut0 /jCjP t1

t0 .ut0 /�ut1 j � C jujjt1�t0j.1CC jt1�t0j/;
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which shows the absolute continuity. Finally, due to (107), it is sufficient to check
that the covariant derivative vanishes at 0. To see this, put t0 D 0 and t1 D t in (108)
to get jP t

0 .u/� ut j � C2jujt2, so that the thesis follows from (103). ut
Now we come back to the Wasserstein case. To follow the analogy with the

Riemannian case, keep in mind that the analogous of the translation map trst is the
right composition with T.s; t; 
/, and the analogous of the map P s

t is

Ps
t .u/ WD P�s .u ı T.s; t; 
//;

which maps L2�t onto Tan�s .P2.R
d // We saw that the key to prove the existence

of the parallel transport in the embedded Riemannian case are inequalities (102).
Thus, given that we want to imitate the approach in the Wasserstein setting, we
need to produce an analogous of those inequalities. This is the content of the
following lemma.

We will denote by Tan?
� .P2.�/R

d / the orthogonal complement of Tan�.P2.�/

R
d / in L2�.

Lemma 7.14 (Control of the angles between tangent spaces). Let�; � 2 P2.R
d /

and T W Rd ! R
d be any Borel map satisfying T#� D �. Then it holds:

kv ı T � P�.v ı T /k� � kvk�Lip.T � Id/; 8v 2 Tan�.P2.�/R
d /;

and, if T is invertible, it also holds

kP�.w ı T /k� � kwk�Lip.T �1 � Id/; 8w 2 Tan?
� .P2.�/R

d /:

Proof. We start with the first inequality, which is equivalent to

kr' ı T � P�.r' ı T /k� � kr'k�Lip.T � Id/; 8' 2 C1
c .R

d /: (109)

Let us suppose first that T�Id 2 C1
c .R

d /. In this case the map 'ıT is inC1
c .R

d /,
too, and therefore r.' ı T / D rT 
 .r'/ ı T belongs to Tan�.P2.�/R

d /. From
the minimality properties of the projection we get:

kr' ı T � P�.r' ı T /k� � kr' ı T � rT 
 .r'/ ı T k�

D

Z

j.I � rT .x// 
 r'.T .x//j2d�.x/
�1=2

�

Z

jr'.T .x//j2kr.Id � T /.x/k2opd�.x/
�1=2

� kr'k�Lip.T � Id/;

where I is the identity matrix and kr.Id � T /.x/kop is the operator norm of the
linear functional from R

d to R
d given by v 7! r.Id � T /.x/ 
 v.



A User’s Guide to Optimal Transport 119

Now turn to the general case, and we can certainly assume that T is Lipschitz.
Then, it is not hard to see that there exists a sequence .Tn � Id/ � C1

c .R
d / such

that Tn ! T uniformly on compact sets and limn Lip.Tn � Id/ � Lip.T � Id/. It
is clear that for such a sequence it holds kT � Tnk� ! 0, and we have

kr' ı T � P�.r' ı T /k� � kr' ı T � r.' ı Tn/k�
� kr' ı T � r' ı Tnk� C kr' ı Tn � r.' ı Tn/k�
� Lip.r'/kT � Tnk� C kr' ı Tnk�Lip.Tn � Id/:

Letting n ! C1 we get the thesis.
For the second inequality, just notice that

kP�.w ı T /k� D sup
v2Tan�.P2.�/R

d /

kvk�D1

hw ı T; vi� D sup
v2Tan�.P2.�/R

d /

kvk�D1

D
w; v ı T�1E

�

D sup
v2Tan�.P2.�/R

d /

kvk�D1

D
w; v ı T �1 � P�.v ı T �1/

E
�

� kwk�Lip.T�1 � Id/

ut
From this lemma and the inequality

Lip
�

T.s; t; 
/ � Id
�

� ej
R s
t Lip.vr /drj � 1 � C

ˇ̌
ˇ̌Z s

t

Lip.vr /dr

ˇ̌
ˇ̌ ; 8t; s 2 Œ0; 1�;

(whose simple proof we omit), where C WD e
R 1
0 Lip.vr /dr �1, it is immediate to verify

that it holds:

ku ı T.s; t; 
/ � Ps
t .u/k�s � Ckuk�t

ˇ̌
ˇ̌Z s

t

Lip.vr /dr

ˇ̌
ˇ̌ ; u 2 Tan�t .P2.R

d //;

kPs
t .u/k�s � Ckuk�t

ˇ̌
ˇ̌Z s

t

Lip.vr /dr

ˇ̌
ˇ̌ ; u 2 Tan?

�t
.P2.R

d //:

(110)
These inequalities are perfectly analogous to the (102) (well, the only difference is
that here the bound on the angle isL1 in t; s while for the embedded case it wasL1,
but this does not really change anything). Therefore the arguments presented before
apply also to this case, and we can derive the existence of the parallel transport along
regular curves:

Theorem 7.15 (Parallel transport along regular curves). Let .�t / be a regular
curve and u0 2 Tan�0.P2.R

d //. Then there exists a parallel transport .ut / along
.�t / such that u0 D u0.
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Now, we know that the parallel transport exists along regular curves, and we
know also that regular curves are dense, it is therefore natural to try to construct
the parallel transport along any absolutely continuous curve via some limiting
argument. However, this cannot be done, as the following counterexample shows:

Example 7.16 (Non existence of parallel transport along a non regular geodesic).
Let Q D Œ0; 1�� Œ0; 1� be the unit square in R

2 and let Ti , i D 1; 2; 3; 4, be the four
open triangles in which Q is divided by its diagonals. Let �0 WD �QL 2 and define
the function v W Q ! R

2 as the gradient of the convex map maxfjxj; jyjg, as in the
figure. Set also w D v?, the rotation by �=2 of v, in Q and w D 0 out of Q. Notice
that r 
 .w�0/ D 0.

Set �t WD .Id C tv/#�0 and observe that, for positive t , the support Qt of �t is
made of four connected components, each one the translation of one of the sets Ti ,
and that �t D �QtL

2.
It is immediate to check that .�t / is a geodesic in Œ0;1/, so that from Proposition

7.3 we know that the restriction of �t to any interval Œ"; 1� with " > 0 is regular. Fix
" > 0 and note that, by construction, the flow maps of �t in Œ"; 1� are given by

T.t; s; 
/ D .Id C sv/ ı .Id C tv/�1; 8t; s 2 Œ"; 1�:

Now, set wt WD w ı T.t; 0; 
/ and notice that wt is tangent at �t (because wt is
constant in the connected components of the support of �t , so we can define a
C1
c function to be affine on each connected component and with gradient given

by wt , and then use the space between the components themselves to rearrange
smoothly the function). Since wtCh ı T.t; t C h; 
/ D wt , we have d

dt
wt D 0 and

a fortiori D
dt

wt D 0. Thus .wt / is a parallel transport in Œ"; 1�. Furthermore, since
r 
 .w�0/ D 0, we have w0 D w … Tan�0.P2.R

2//. Therefore there is no way to
extend wt to a continuous tangent vector field on the whole Œ0; 1�. In particular, there
is no way to extend the parallel transport up to t D 0. �

Now we pass to the calculus of total and covariant derivatives. Let .�t / be a fixed
regular curve and let .vt / be its velocity vector field. Start observing that, if .ut / is
absolutely continuous along .�t /, then .P�t .ut // is absolutely continuous as well,
as it follows from the inequality
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�P�s .us/� ı T.t; s; 
/ � P�t .ut /

�t

�
�P�s .us/� ı T.t; s; 
/ � P�t

��
P�s .us/

� ı T.t; s; 
/
�

�t

C
P�t

��
P�s .us/

� ı T.t; s; 
/
�

� P�t
�
us ı T.t; s; 
/�


�t

C P�t .us ı T.t; s; 
// � P�t .ut /

�t

�
P?

�t

�
P�s .us/ ı T.t; s; 
/

�
�t

C
P�t

�
P?
�s
.us/ ı T.t; s; 
/

�
�t

C kus ı T.t; s; 
/ � utk�t
.110/� 2SC

Z s

t

Lip.vr /dr C
Z s

t

 d

dr
ur


�r

dr;

(111)

valid for any t � s, where S WD supt kutk�t . Thus .P�t .ut // has a well defined
covariant derivative for a.e. t . The question is: can we find a formula to express this
derivative?

To compute it, apply the Leibniz rule for the total and covariant derivatives ((96)
and (99)), to get that for a.e. t 2 Œ0; 1� it holds

d

dt

˝
P�t .ut /;r'

˛
�t

D
�

D

dt
P�t .ut /;r'

�
�t

C
�
P�t .ut /;

D

dt
r'

�
�t

;

d

dt
hut ;r'i�t D

�
d

dt
ut ;r'

�
�t

C
�
ut ;

d

dt
r'

�
�t

:

Since r' 2 Tan�t .P2.R
d // for any t , it holds

˝
P�t .ut /;r'

˛
�t

D hut ;r'i�t for
any t 2 Œ0; 1�, and thus the left hand sides of the previous equations are equal for
a.e. t . Recalling formula (97) we have d

dt
r' D r2' 
 vt and D

dt
r' D P�t .r2' 
 vt /,

thus from the equality of the right hand sides we obtain

�
D

dt
P�t .ut /;r'

�
�t

D
�

d

dt
ut ;r'

�
�t

C ˝
ut ;r2' 
 vt

˛
�t

� ˝
P�t .ut /;P�t .r2' 
 vt /

˛
�t

D
�

d

dt
ut ;r'

�
�t

C
D
P?
�t
.ut /;P?

�t
.r2' 
 vt /

E
�t
:

(112)
This formula characterizes the scalar product of D

dt
P�t .ut / with any r' when '

varies onC1
c .R

d /. Since the set fr'g is dense in Tan�t .P2.R
d // for any t 2 Œ0; 1�,

the formula actually identifies D
dt

P�t .ut /.
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However, from this expression it is unclear what is the value of
˝

D
dt

P�t .ut /;w
˛
�t

for a general w 2 Tan�t .P2.R
d //, because some regularity of r' seems required

to compute r2' 
 vt . In order to better understand what the value of D
dt

P�t .ut / is, fix
t 2 Œ0; 1� and assume for a moment that vt 2 C1

c .R
d /. Then compute the gradient

of x 7! hr'.x/; vt .x/i to obtain

r hr'; vt i D r2' 
 vt C rvt
t 
 r';

and consider this expression as an equality between vector fields in L2�t . Taking the
projection onto the Normal space we derive

P?
�t
.r2' 
 vt /C P?

�t
.rvt

t 
 r'/ D 0:

Plugging the expression for P?
�t
.r2' 
vt / into the formula for the covariant derivative

we get

�
D

dt
P�t .ut /;r'

�
�t

D
�

d

dt
ut ;r'

�
�t

�
D
P?
�t
.ut /;P?

�t
.rvt

t 
 r'/
E
�t

D
�

d

dt
ut ;r'

�
�t

�
D
rvt 
 P?

�t
.ut /;r'

E
�t
;

which identifies D
dt

P�t .ut / as

D

dt
P�t .ut / D P�t



d

dt
ut � rvt 
 P?

�t
.ut /

�
: (113)

We found this expression assuming that vt was a smooth vector field, but given
that we know that D

dt
P�t .ut / exists for a.e. t , it is realistic to believe that the

expression makes sense also for general Lipschitz vt ’s. The problem is that the
object rvt may very well be not defined �t -a.e. for arbitrary �t and Lipschitz
vt (Rademacher’s theorem is of no help here, because we are not assuming the
measures �t to be absolutely continuous w.r.t. the Lebesgue measure). To give a
meaning to formula (113) we need to introduce a new tensor.

Definition 7.17 (The Lipschitz non Lipschitz space). Let � 2 P2.R
d /.

The set LNL� � ŒL2��
2 is the set of couples of vector fields .u; v/ such that

minfLip.u/;Lip.v/g < 1, i.e. the set of couples of vectors such that at least
one of them is Lipschitz.

We say that a sequence .un; vn/ 2 LNL� converges to .u; v/ 2 LNL� provided
kun � uk� ! 0, kvn � vk� ! 0 and

sup
n

minfLip.un/;Lip.vn/g < 1:

The following theorem holds:
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Theorem 7.18 (The Normal tensor). Let � 2 P2.R
d /. The map

N�.u; v/ W ŒC1
c .R

d ;Rd /�2 ! Tan?
� .P2.�/R

d /;

.u; v/ 7! P?
� .rut 
 v/

extends uniquely to a sequentially continuous bilinear and antisymmetric map, still
denoted by N�, from LNL� in Tan?

� .P2.�/R
d / for which the bound

kN�.u; v/k� � minfLip.u/kvk�;Lip.v/kuk�g; (114)

holds.

Proof. For u; v 2 C1
c .R

d ;Rd / we have r hu; vi D rut 
 v C rvt 
 u so that taking
the projections on Tan?

� .P2.�/R
d / we get

N�.u; v/ D �N�.v; u/ 8u; v 2 C1
c .R

d ;Rd /:

In this case, the bound (114) is trivial.
To prove existence and uniqueness of the sequentially continuous extension, it

is enough to show that for any given sequence n 7! .un; vn/ 2 ŒC1
c .R

d ;Rd /�2

converging to some .u; v/ 2 LNL�, the sequence n 7! N�.un; vn/ 2
Tan?

� .P2.�/R
d / is a Cauchy sequence. Fix such a sequence .un; vn/, let L WD

supn minfLip.un/;Lip.vn/g, I � N be the set of indexes n such that Lip.un/ � L

and fix two smooth vectors Qu; Qv 2 C1
c .R

d ;Rd /.
Notice that for n;m 2 I it holds

kN�.un; vn/� N�.um; vm/k� � kN�.un; vn � Qv/k� C kN�.un � um; Qv/k�
C kN�.um; Qv � vm/k�

� Lkvn � Qvk� C Lip.Qv/kun � umk� C Lkvm � Qvk�;
and thus

lim
n;m!1

n;m2I

kN�.un; vn/� N�.um; vm/k� � 2Lkv � Qvk�;

(this expression being vacuum if I is finite). If n 2 I andm … I we have Lip.vm/ �
L and

kN�.un; vn/� N�.um; vm/k�
�kN�.un; vn�Qv/k�CkN�.un� Qu; Qv/k�CkN�.Qu; Qv�vm/k�CkN�.Qu�um; vm/k�
� Lkvn � Qvk� C Lip.Qv/kun � Quk� C Lip.Qu/kQv � vmk� C Lkum � Quk�;

which gives

lim
n;m!1

n2I; m…I

kN�.un; vn/ � N�.um; vm/k� � Lkv � Qvk� C Lku � Quk�:
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Exchanging the roles of the u’s and the v’s in these inequalities for the case in which
n … I we can conclude

lim
n;m!1 kN�.un; vn/ � N�.um; vm/k� � 2Lkv � Qvk� C 2Lku � Quk�:

Since Qu; Qv are arbitrary, we can let Qu ! u and Qv ! v in L2� and conclude that
n 7! N�.un; vn/ is a Cauchy sequence, as requested.

The other claims follow trivially by the sequential continuity. ut
Definition 7.19 (The operators Ov .
/ and O	

v .
/). Let � 2 P2.R
d / and v 2 L2�

with Lip.v/ < 1. Then the operator u 7! Ov .u/ is defined by

Ov .u/ WD N�.v; u/:

The operator u 7! O	
v .u/ is the adjoint of Ov .
/, i.e. it is defined by

˝
O	

v .u/ ;w
˛
�

D hu;Ov .w/i� ; 8w 2 L2�:

It is clear that the operator norm of Ov .
/ and O	
v .
/ is bounded by Lip.v/.

Observe that in writing Ov .u/, O	
v .u/ we are losing the reference to the base

measure �, which certainly plays a role in the definition; this simplifies the notation
and hopefully should create no confusion, as the measure we are referring to should
always be clear from the context. Notice that if v 2 C1

c .R
d ;Rd / these operators

read as
Ov .u/ D P?

� .rvt 
 u/;

O	
v .u/ D rv 
 P?

� .u/:

The introduction of the operators Ov .
/ and O	
v .
/ allows to give a precise meaning

to formula (113) for general regular curves:

Theorem 7.20 (Covariant derivative of P�t .ut /). Let .�t / be a regular curve, .vt /
its velocity vector field and let .ut / be an absolutely continuous vector field along it.
Then .P�t .ut // is absolutely continuous as well and for a.e. t it holds

D

dt
P�t .ut / D P�t



d

dt
ut � O	

vt
.ut /

�
: (115)

Proof. The fact that .P�t .ut // is absolutely continuous has been proved with
inequality (111). To get the thesis, start from (112) and conclude noticing that for
a.e. t it holds Lip.vt / < 1 and thus

P?
�t
.r2' 
 vt / D N�.r'; vt / D �N�.vt ;r'/ D �Ovt .r'/ :

ut



A User’s Guide to Optimal Transport 125

Corollary 7.21 (Total derivatives of P�t .ut / and P?
�t
.ut /). Let .�t / be a regular

curve, let .vt / be its velocity vector field and let .ut / be an absolutely continuous
vector field along it. Then .P?

�t
.ut // is absolutely continuous and it holds

d

dt
P�t .ut / D P�t



d

dt
ut

�
� P�t

�
O	

vt .ut /
� � Ovt

�
P�t .ut /

�
;

d

dt
P?
�t
.ut / D P?

�t



d

dt
ut

�
C P�t

�
O	

vt .ut /
�C Ovt

�
P�t .ut /

�
:

(116)

Proof. The absolute continuity of .P?
�t
.ut // follows from the fact that both .ut / and

.P�t .ut // are absolutely continuous. Similarly, the second formula in (116) follows
immediately from the first one noticing that ut D P�t .ut /C P?

�t
.ut / yields d

dt
ut D

d
dt

P�t .ut / C d
dt

P?
�t
.ut /. Thus we have only to prove the first equality in (116). To

this aim, let .wt / be an arbitrary absolutely continuous vector field along .�t / and
observe that it holds

d

dt

˝
P�t .ut /;wt

˛
�t

D
�

d

dt
P�t .ut /;wt

�
�t

C
�
P�t .ut /;

d

dt
wt

�
�t

;

d

dt

˝
P�t .ut /;P�t .wt /

˛
�t

D
�

D

dt
P�t .ut /;P�t .wt /

�
�t

C
�
P�t .ut /;

D

dt
P�t .wt /

�
�t

:

Since the left hand sides of these expression are equal, the right hand sides are equal
as well, thus we get

�
d

dt
P�t .ut /� D

dt
P�t .ut /;wt

�
�t

D �
�
P�t .ut /;

d

dt
wt � D

dt
P�t .wt /

�
�t

D �
�
P�t .ut /;P�t

� d

dt
wt
�

� D

dt
P�t .wt /

�
�t

.115/D � ˝P�t .ut /;O	
vt
.wt /

˛
�t

D � ˝Ovt

�
P�t .ut /

�
;wt

˛
�t
;

so that the arbitrariness of .wt / gives

d

dt
P�t .ut / D D

dt
P�t .ut /� Ovt

�
P�t .ut /

�
;

and the conclusion follows from (115). ut
Along the same lines, the total derivative of .N�t .ut ;wt // for given absolutely

continuous vector fields .ut /, .wt / along the same regular curve .�t / can be
calculated. The only thing the we must take care of, is the fact that N�t is not
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defined on the whole ŒL2�t �
2, so that we need to make some assumptions on .ut /,

.wt / to be sure that .N�t .ut ;wt // is well defined and absolutely continuous. Indeed,
observe that from a purely formal point of view, we expect that the total derivative
of .N�t .ut ;wt // is something like

d

dt
N�t .ut ;wt / D N�t



d

dt
ut ;wt

�
C N�t



ut ;

d

dt
wt

�

C



some tensor - which we may think
as the derivative of N�t - applied to the couple .ut ;wt /

�
:

Forget about the last object and look at the first two addends: given that the domain
of definition of N�t is not the whole ŒL2�t �

2, in order for the above formula to

make sense, we should ask that in each of the couples . d
dt

ut ;wt / and .ut ; d
dt

wt /,

at least one vector is Lipschitz. Under the assumption that fR 1
0

Lip.ut /dt <1
and

R 1
0

Lip. d
dt

ut /dt < C1 g, it is possible to prove the following theorem
(whose proof we omit).

Theorem 7.22. Let .�t / be an absolutely continuous curve, let .vt / be its velocity
vector field and let .ut /, .wt / be two absolutely continuous vector fields along it.
Assume that

R 1
0

Lip.ut /dt < 1 and
R 1
0

Lip. d
dt

ut /dt < C1. Then .N�t .ut ;wt // is
absolutely continuous and it holds

d

dt
N�t .ut ;wt / D N�t



d

dt
ut ;wt

�
C N�t



ut ;

d

dt
wt

�

� Ovt

�
N�t .ut ;wt /

�C P�t
�
O	

vt

�
N�t .ut ;wt /

� �
:

(117)

Corollary 7.23. Let .�t / be a regular curve and assume that its velocity vector
field .vt / satisfies: Z 1

0

Lip



d

dt
vt

�
dt < 1: (118)

Then for every absolutely continuous vector field .ut / both .Ovt .ut // and .O	
vt
.ut //

are absolutely continuous and their total derivatives are given by:

d

dt
Ovt .ut / D O d

dt vt
.ut /C Ovt



d

dt
ut

�
� Ovt .Ovt .ut //C P�t

�
O	

vt
.Ovt .ut //

�

d

dt
O	

vt
.ut / D O	

d
dt vt

.ut /C O	
vt



d

dt
ut

�
� O	

vt

�
O	

vt
.ut /

�C O	
vt

�
Ovt

�
P�t .ut /

��
(119)

Proof. The first formula follows directly from Theorem 7.22, the second from the
fact that O	

vt .
/ is the adjoint of Ovt .
/. ut
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An important feature of (117) and (119) is that to express the derivatives of
.N�t .ut ;wt //, .Ovt .ut // and .O	

vt .ut // no “new operators appear”. This implies that
we can recursively calculate derivatives of any order of the vector fields .P�t .ut //,
.P?
�t
.ut //, Ovt .ut / and O	

vt .ut /, provided—of course—that we make appropriate
regularity assumptions on the vector field .ut / and on the velocity vector field
.vt /. An example of result which can be proved following this direction is that the
operator t 7! P�t .
/ is analytic along (the restriction of) a geodesic:

Proposition 7.24 (Analyticity of t 7! P�t .
/). Let .�t / be the restriction to Œ0; 1� of
a geodesic defined in some larger interval Œ�"; 1C"�. Then the operator t 7! P�t .
/
is analytic in the following sense. For any t0 2 Œ0; 1� there exists a sequence of
bounded linear operators An W L2�t0 ! L2�t0

such that the following equality holds
in a neighborhood of t0

P�t .u/ D
X
n2N

.t � t0/n
nŠ

An
�
u ı T.t0; t; 
/

� ı T.t; t0; 
/; 8u 2 L2�t : (120)

Proof. From the fact that .�t / is the restriction of a geodesic we know that
L WD supt2Œ0;1� Lip.vt / < 1 and that d

dt
vt D 0 (recall Example 7.9). In particular

condition (118) is fulfilled.
Fix t0 2 Œ0; 1�, u 2 L2�t0

and define ut WD u ı T.t; t0; 
/, so that d
dt

ut D 0. From

(116) and (119) and by induction it follows that .P�t .ut // is C1. Also, dn

dtn
P�t .ut / is

the sum of addends each of which is the composition of projections onto the tangent
or normal space and up to n operators Ovt .
/ and O	

vt
.
/, applied to the vector ut .

Since the operator norm of Ovt .
/ and O	
vt
.
/ is bounded by L, we deduce that

 dn

dtn
P�t .ut /


�t

� kutk�t Ln D kuk�t0 Ln; 8n 2 N; t 2 Œ0; 1�:

Defining the curve t 7! Ut WD P�t .ut / ı T.t0; t; 
/ 2 L2�t0
, the above bound can be

written as  d
n

dtn
Ut


�t0

� kUt0k�t0 Ln; 8n 2 N; t 2 Œ0; 1�;

which implies that the curve t 7! Ut 2 L2�t0 is analytic. This means that for t close
to t0 it holds

P�t .ut / ı T.t0; t; 
/ D
X
n�0

.t � t0/
n

nŠ

dn

dtn
jtDt0.P�t .ut //:

Now notice that (116) and (119) and the fact that d
dt

ut � 0 ensure that dn

dtn
jtDt0

.P�t .ut //DAn.u/, where An W L2�t0 !L2�t0
is bounded. Thus the thesis follows

by the arbitrariness of u 2 L2�t0 . ut
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Now we have all the technical tools we need in order to study the curvature tensor
of the “manifold” P2.R

d /.
Following the analogy with the Riemannian case, we are lead to define the

curvature tensor in the following way: given three vector fields � 7! r'i� 2
Tan�.P2.�/R

d /, i D 1; : : : ; 3, the curvature tensor R calculated on them at the
measure � is defined as:

R.r'1�;r'2�/.r'3�/ WD rr'2�.rr'1�r'3�/ � rr'1�.rr'2�r'3�/C rŒr'1�;r'2��r'3�;
where the objects like rr'�.r �/, are, heuristically speaking, the covariant
derivative of the vector field � 7! r � along the vector field � 7! r'�.

However, in order to give a precise meaning to the above formula, we should be
sure, at least, that the derivatives we are taking exist. Such an approach is possible,
but heavy: indeed, consider that we should define what are C1 and C2 vector fields,
and in doing so we cannot just consider derivatives along curves. Indeed we would
need to be sure that “the partial derivatives have the right symmetries”, otherwise
there won’t be those cancellations which let the above operator be a tensor.

Instead, we adopt the following strategy:

• First we calculate the curvature tensor for some very specific kind of vector fields,
for which we are able to do and justify the calculations. Specifically, we will
consider vector fields of the kind � 7! r', where the function ' 2 C1

c .M/

does not depend on the measure �.
• Then we prove that the object found is actually a tensor, i.e. that its value depends

only on the ��a.e. value of the considered vector fields, and not on the fact that
we obtained the formula assuming that the functions '’s were independent on the
measure.

• Finally, we discuss the minimal regularity requirements for the object found to
be well defined.

Pick '; 2 C1
c .R

d / and observe that a curve of the kind t 7! .Id C tr'/#� is
a regular geodesic on an interval Œ�T; T � for T sufficiently small (Remark 2.22 and
Proposition 7.3). It is then immediate to verify that a vector field of the kind .r /
along it is C1. Its covariant derivative calculated at t D 0 is given by P�.r2 
r'/.
Thus we write:

rr'r WD P�.r2 
 r'/ 8'; 2 C1
c .R

d /: (121)

Proposition 7.25. Let � 2 P2.R
d / and '1; '2; '3 2 C1

c .R
d /. The curvature

tensor R in � calculated for the 3 vector fields r'i , i D 1; 2; 3 is given by

R.r'1;r'2/r'3 DP�



O	r'2

�
N�.r'1;r'3/

�

� O	r'1
�
N�.r'2;r'3/

�C 2O	r'3
�
N�.r'1;r'2/

� �
:

(122)
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Proof. We start computing the value of rr'2rr'1r'3. Let �t WD .Id C tr'2/#�
and observe, as just recalled, that .�t / is a regular geodesic in some symmetric
interval Œ�T; T �. The vector field r2'3 
 r'1 is clearly C1 along it, thus by
Proposition 7.24 also the vector field ut WD P�t .r2'3 
 r'1/ D rr'1r'3.�t / is
C1. The covariant derivative at t D 0 of .ut / along .�t / is, by definition, the value
of rr'2rr'1r'3 at �. Applying formula (115) we get

rr'2rr'1r'3 D P�
�
r.r2'3 
 r'1/ 
 r'2 � r2'2 
 P?

� .r2'3 
 r'1/
�
: (123)

Symmetrically, it holds

rr'1rr'2r'3 D P�
�
r.r2'3 
 r'2/ 
 r'1 � r2'1 
 P?

� .r2'3 
 r'2/
�
: (124)

Finally, from the torsion free identity (100) we have

Œr'1;r'2� D P�.r2'1 
 r'2 � r2'2 
 r'1/;

and thus

rŒr'1;r'2�r'3 D P�
�
r2'3 


�
P�.r2'1 
 r'2 � r2'2 
 r'1/

��
: (125)

Subtracting (125) and (124) from (123) and observing that

r.r2'3 
r'1/
r'2�r.r2'3 
 r'2/ 
 r'1Dr2'3 
r2'1 
r'2�r2'3 
 r2'2 
r'1;

we get the thesis. ut
Observe that (122) is equivalent to

hR.r'1;r'2/r'3;r'4i�D ˝
N�.r'1;r'3/;N�.r'2;r'4/

˛
�

� ˝
N�.r'2;r'3/;N�.r'1;r'4/

˛
�

C 2
˝
N�.r'1;r'2/;N�.r'3;r'4/

˛
�
;

(126)

for any '4 2 C1
c .M/. From this formula it follows immediately that the operator

R is actually a tensor:

Proposition 7.26. Let � 2 P2.R
d /. The curvature operator, given by for-

mula (126), is a tensor on Œfr'g�4, i.e. its value depends only on the ��a.e. value
of the four vector fields.

Proof. Clearly the left hand side of (126) is a tensor w.r.t. the fourth entry. The
conclusion follows from the symmetries of the right hand side. ut
We remark that from (126) it follows that R has all the expected symmetries.
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Concerning the domain of definition of the curvature tensor, the following
statement holds, whose proof follows from the properties of the normal tensor N�:

Proposition 7.27. Let � 2 P2.R
d /. Then the curvature tensor, thought as map

from Œfr'g�4 to R given by (126), extends uniquely to a sequentially continuous
map on the set of 4-ples of vector fields in L2� in which at least three vector fields
are Lipschitz, where we say that .v1n; v

2
n; v

3
n; v

4
n/ is converging to .v1; v2; v3; v4/ if

there is convergence in L2� on each coordinate and

sup
n

Lip.vin/ < 1;

for at least three indexes i .

Thus, in order for the curvature tensor to be well defined we need at least three
of the four vector fields involved to be Lipschitz. However, for some related notion
of curvature the situation simplifies. Of particular relevance is the case of sectional
curvature:

Example 7.28 (The sectional curvature). If we evaluate the curvature tensor R on
a 4-ple of vectors of the kind .u; v; u; v/ and we recall the antisymmetry of N� we
obtain

hR.u; v/u; vi� D 3
N�.u; v/

2
�
:

Thanks to the simplification of the formula, the value of hR.u; v/u; vi� is well
defined as soon as either u or v is Lipschitz. That is, hR.u; v/u; vi� is well defined
for .u; v/ 2 LNL�. In analogy with the Riemannian case we can therefore define the
sectional curvature K.u; v/ at the measure � along the directions u; v by

K.u; v/ WD hR.u; v/u; vi�
kuk2�kvk2� � hu; vi2�

D
3
N�.u; v/

2
�

kuk2�kvk2� � hu; vi2�
; 8.u; v/ 2 LNL�:

This expression confirms the fact that the sectional curvatures of P2.R
d / are

positive (coherently with Theorem 3.20), and provides a rigorous proof of the
analogous formula already appeared in [67] and formally computed using O’Neill
formula. �

7.4 Bibliographical Notes

The idea of looking at the Wasserstein space as a sort of infinite dimensional
Riemannian manifold is due to F. Otto and given in his seminal paper [67]. The
whole discussion in Sect. 7.1 is directly taken from there.

The fact that the “tangent space made of gradients” Tan�.P2.�/R
d / was not

sufficient to study all the aspects of the “Riemannian geometry” of .P2.R
d /;W2/
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has been understood in [7] in connection with the definition of subdifferential of
a geodesically convex functional, in particular concerning the issue of having a
closed subdifferential. In the appendix of [7] the concept of Geometric Tangent
space discussed in Sect. 7.2 has been introduced. Further studies on the properties
of Tan�.P2.�/M/ have been made in [43]. Theorem 7.1 has been proved in [46].

The first work in which a description of the covariant derivative and the curvature
tensor of .P2.M/;W2/, M being a compact Riemannian manifold has been given
(beside the formal calculus of the sectional curvature via O’Neill formula done
already in [67]) is the paper of J. Lott [56]: rigorous formulas are derived for the
computation of such objects on the “submanifold” PC1.M/ made of absolutely
continuous measures with density C1 and bounded away from 0. In the same paper
Lott shows that if M has a Poisson structure, then the same is true for PC1.M/

(a topic which has not been addressed in these notes).
Independently on Lott’s work, the second author built the parallel transport on

.P2.R
d /;W2/ in his PhD thesis [43], along the same lines provided in Sect. 7.3.

The differences with Lott’s work are the fact that the analysis was carried out on R
d

rather than on a compact Riemannian manifold, that no assumptions on the measures
were given, and that both the existence Theorem 7.15 for the parallel transport along
a regular curve and counterexamples to its general existence (the Example 7.16)
were provided. These results have been published by the authors of these notes
in [5]. Later on, after having been aware of Lott’s results, the second author
generalized the construction to the case of Wasserstein space built over a manifold
in [44]. Not all the results have been reported here: we mention that it is possible
to push the analysis up show the differentiability properties of the exponential map
and the existence of Jacobi fields.

8 Ricci Curvature Bounds

Let us start recalling what is the Ricci curvature for a Riemannian manifold M
(which we will always consider smooth and complete). Let R be the Riemann
curvature tensor on M , x 2 M and u; v 2 TxM . Then the Ricci curvature
Ric.u; v/ 2 R is defined as

Ric.u; v/ WD
X
i

hR.u; ei/v; ei i ;

where feig is any orthonormal basis of TxM . An immediate consequence of the
definition and the symmetries of R is the fact that Ric.u; v/ D Ric.v; u/.

Another, more geometric, characterization of the Ricci curvature is the following.
Pick x 2 M , a small ball B around the origin in TxM and let � be the Lebesgue
measure on B . The exponential map expx W B ! M is injective and smooth, thus
the measure .expx/#� has a smooth density w.r.t. the volume measure Vol on M .
For any u 2 B , let f .u/ be the density of .expx/#� w.r.t. Vol at the point expx.u/.
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Then the function f has the following Taylor expansion:

f .u/ D 1C 1

2
Ric.u; u/C o.juj2/: (127)

It is said that the Ricci curvature is bounded below by � 2 R provided

Ric.u; u/ � �juj2;
for every x 2 M and u 2 TxM .

Several important geometric and analytic inequalities are related to bounds from
below on Ricci curvature, we mention just two of them.

• Brunn–Minkowski. Suppose thatM has non negative Ricci curvature, and for any
A0;A1 � M compact, let

At WD
n
�t W � is a constant speed geodesic s.t. �0 2 A0; �1 2 A1

o
; 8t 2 Œ0; 1�:

Then it holds

�
Vol.At /

�1=n � .1 � t/
�
Vol.A0/

�1=n C t
�
Vol.A1/

�1=n
; 8t 2 Œ0; 1�; (128)

where n is the dimension of M .
• Bishop-Gromov. Suppose that M has Ricci curvature bounded from below by
.n � 1/k, where n is the dimension of M and k a real number. Let QM be the
simply connected, n-dimensional space with constant curvature, having Ricci
curvature equal to .n � 1/k (so that QM is a sphere if k > 0, a Euclidean space
if k D 0 and an hyperbolic space if k < 0). Then for every x 2 M and Qx 2 QM
the map

.0;1/ 3 r 7! Vol.Br.x//
fVol.Br. Qx// ; (129)

is non increasing, where Vol and fVol are the volume measures on M , QM
respectively.

A natural question is whether it is possible to formulate the notion of Ricci bound
from below also for metric spaces, analogously to the definition of Alexandrov
spaces, which are a metric analogous of Riemannian manifolds with bounded (either
from above or from below) sectional curvature. What became clear over time, is
that the correct non-smooth object where one could try to give a notion of Ricci
curvature bound is not a metric space, but rather a metric measure space, i.e. a
metric space where a reference non negative measure is also given. When looking
to the Riemannian case, this fact is somehow hidden, as a natural reference measure
is given by the volume measure, which is a function of the distance.

There are several viewpoints from which one can see the necessity of a reference
measure (which can certainly be the Hausdorff measure of appropriate dimension, if
available). A first (cheap) one is the fact that in most of identities/inequalities where
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the Ricci curvature appears, also the reference measures appears (e.g. (127)–(129)
above). A more subtle point of view comes from studying stability issues: consider
a sequence .Mn; gn/ of Riemannian manifolds and assume that it converges to a
smooth Riemannian manifold .M; g/ in the Gromov–Hausdorff sense. Assume that
the Ricci curvature of .Mn; gn/ is uniformly bounded below by some K 2 R. Can
we deduce that the Ricci curvature of .M; g/ is bounded below by K? The answer
is no (while the same question with sectional curvature in place of Ricci one has
affirmative answer). It is possible to see that when Ricci bounds are not preserved
in the limiting process, it happens that the volume measures of the approximating
manifolds are not converging to the volume measure of the limit one.

Another important fact to keep in mind is the following: if we want to derive
useful analytic/geometric consequences from a weak definition of Ricci curvature
bound, we should also known what is the dimension of the metric measure space
we are working with: consider for instance the Brunn–Minkowski and the Bishop–
Gromov inequalities above, both make sense if we know the dimension of M , and
not just that its Ricci curvature is bounded from below. This tells that the natural
notion of bound on the Ricci curvature should be a notion speaking both about
the curvature and the dimension of the space. Such a notion exists and is called
CD.K;N / condition, K being the bound from below on the Ricci curvature, and
N the bound from above on the dimension. Let us tell in advance that we will
focus only on two particular cases: the curvature dimension condition CD.K;1/,
where no upper bound on the dimension is specified, and the curvature-dimension
condition CD.0;N /, where the Ricci curvature is bounded below by 0. Indeed, the
general case is much more complicated and there are still some delicate issues to
solve before we can say that the theory is complete and fully satisfactory.

Before giving the definition, let us highlight which are the qualitative properties
that we expect from a weak notion of curvature-dimension bound:

Intrinsicness. The definition is based only on the property of the space itself, that
is, is not something like “if the space is the limit of smooth spaces: : :.”

Compatibility. If the metric-measure space is a Riemannian manifold equipped
with the volume measure, then the bound provided by the abstract definition
coincides with the lower bound on the Ricci curvature of the manifold, equipped
with the Riemannian distance and the volume measure.

Stability. Curvature bounds are stable w.r.t. the natural passage to the limit of the
objects which define it.

Interest. Geometrical and analytical consequences on the space can be derived
from curvature-dimension condition.

In the next section we recall some basic concepts concerning convergence of
metric measure spaces (which are key to discuss the stability issue), while in the
following one we give the definition of curvature-dimension condition and analyze
its properties.

All the metric measure spaces .X; d;m/ that we will consider satisfy the
following assumption:
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Assumption 8.1. .X; d/ is Polish, the measure m is a Borel probability measure
andm 2 P2.X/.

8.1 Convergence of Metric Measure Spaces

We say that two metric measure spaces .X; dX;mX/ and .Y; dY ;mY / are isomorphic
provided there exists a bijective isometry f W supp.mX/ ! supp.mY / such that
f#mX DmY . This is the same as to say that “we don’t care about the behavior of the
space .X; dX/ where there is no mass”. This choice will be important in discussing
the stability issue.

Definition 8.2 (Coupling between metric measure spaces). Given two metric
measure spaces .X; dX;mX/, .Y; dY ;mY /, we consider the product space .X � Y;
DXY /, where DXY is the distance defined by

DXY

�
.x1; y1/; .x2; y2/

� WD
q
d2X.x1; x2/C d2Y .y1; y2/:

We say that a couple .d; �/ is an admissible coupling between .X; dX;mX/ and
.Y; dY ;mY /, we write .d; �/ 2 Adm..dX ;mX/; .dY ;mY // if:

• d is a pseudo distance on suppmX tsuppmY (i.e. it may be zero on two different
points) which coincides with dX (resp. dY ) when restricted to suppmX�suppmX

(resp. suppmY � suppmY ).
• A Borel (w.r.t. the Polish structure given by DXY ) measure � on suppmX �

suppmY such that �1#� D mX and �2#� D mY .

It is not hard to see that the set of admissible couplings is always non empty.
The cost C.d; �/ of a coupling is given by

The distance D
�
.X; dX;mX/; .Y; dY ;mY /

�
is then defined as

D
�
.X; dX;mX/; .Y; dY ;mY /

� WD inf
p
C.d; �/; (130)

the infimum being taken among all couplings .d; �/ of .X; dX;mX/ and .Y; dY ;mY /.
A trivial consequence of the definition is that if .X; dX;mX/ and . QX; d QX;m QX/

(resp. .Y; dY ;mY / and . QY ; d QY ;m QY /) are isomorphic, then

D

�
.X; dX;mX/; .Y; dY ;mY /

�
D D

�
. QX; d QX;m QX/; . QY ; d QY ;m QY /

�
;

so that D is actually defined on isomorphism classes of metric measure spaces.
In the next proposition we collect, without proof, the main properties of D.

C.d; �/ WD
Z

supp KumX�supp KumY

d 2.x; y/d�.x; y/:
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Proposition 8.3 (Properties of D). The inf in (130) is realized, and a coupling
realizing it will be called optimal.

Also, let X be the set of isomorphism classes of metric measure spaces satisfying
Assumption 8.1. Then D is a distance on X, and in particular D is 0 only on couples
of isomorphic metric measure spaces.

Finally, the space .X;D/ is complete, separable and geodesic.

Proof. See Sect. 3.1 of [74]. ut
We will denote by Opt..dX ;mX/; .dY ;mY // the set of optimal couplings between
.X; dX;mX/ and .Y; dY ;mY /, i.e. the set of couplings where the inf in (130) is
realized.

Given a metric measure space .X; d;m/we will denote by Pa
2 .X/ � P.X/ the

set of measures which are absolutely continuous w.r.t. m.
To any coupling .d; �/ of two metric measure spaces .X; dX;mX/ and

.Y; dY ;mY /, it is naturally associated a map �# W Pa
2 .X/ ! Pa

2 .Y / defined
as follows:

� D mX 7! �#� WD 
mY ; where 
 is defined by 
.y/ WD
Z
.x/d�y.x/;

(131)
where f�yg is the disintegration of � w.r.t. the projection on Y . Similarly, there is a
natural map ��1

# W Pa
2 .Y / ! Pa

2 .X/ given by:

� D 
mY 7! ��1
# � WD mX; where  is defined by .x/ WD

Z

.y/d�x.y/;

where, obviously, f�xg is the disintegration of � w.r.t. the projection on X .
Notice that �#mX D mY and ��1

# mY D mX and that in general ��1
# �#� ¤ �.

Also, if � is induced by a map T W X ! Y , i.e. if � D .Id; T /#mX , then �#� D
T#� for any � 2 Pa

2 .X/.

Our goal now is to show that if .Xn; dn;mn/
D! .X; d;m/ of the internal

energy kind on .Pa
2 .Xn/;W2/ Mosco-converge to the corresponding functional on

.Pa
2 .X/;W2/. Thus, fix a convex and continuous function u W Œ0;C1/ ! R, define

u0.1/ WD lim
z!C1

u.z/

z
;

and, for every compact metric space .X; d/, define the functional E W ŒP.X/�2 !
R [ fC1g by

E .�j�/ WD
Z

u./d� C u0.1/�s.X/; (132)

where � D � C �s is the decomposition of � in absolutely continuous � and
singular part �s w.r.t. to �.
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Lemma 8.4 (E decreases under �#). Let .X; dX;mX/ and .Y; dY ;mY / be two
metric measure space and .d; �/ a coupling between them. Then it holds

E .�#�jmY / � E .�jmX/; 8� 2 Pa
2 .X/;

E .��1
# �jmX/ � E .�jmY /; 8� 2 Pa

2 .Y /:

Proof. Clearly it is sufficient to prove the first inequality. Let � D mX and �#� D

mY , with 
 given by (131). By Jensen’s inequality we have

E .�#�jmY / D
Z

u.
.y//dmY .y/ D
Z

u


Z
.x/d�y.x/

�
dmY .y/

�
Z Z

u..x//d�y.x/dmY .y/ D
Z

u..x//d�.x; y/

D
Z

u..x//dmX.x/ D E .�jmX/

ut
Proposition 8.5 (“Mosco” convergence of internal energy functionals). Let

.Xn; dn;mn/
D! .X; d;m/ and .dn; �n/ 2 Opt..dn;mn/; .d;m//. Then the following

two are true:

Weak � lim. For any sequence n 7! �n 2 Pa
2 .Xn/ such that n 7! .�n/#�n

narrowly converges to some � 2 P.X/ it holds

lim
n!1

E .�njmn/ � E .�jm/:

Strong � lim. For any � 2 Pa
2 .X/ with bounded density there exists a sequence

n 7! �n 2 Pa
2 .Xn/ such that W2..�n/#�n; �/ ! 0 and

lim
n!1 E .�njmn/ � E .�jm/:

Note: we put the apexes in Mosco because we prove the 	 � lim inequality only for
measures with bounded densities. This will be enough to prove the stability of Ricci
curvature bounds (see Theorem 8.12).

Proof. For the first statement we just notice that by Lemma 8.4 we have

E .�njmn/ � E ..�n/#�njm/;

and the conclusion follows from the narrow lower semicontinuity of E .
jm/.
For the second one we define �n WD .��1

n /#�. Then applying Lemma 8.4 twice
we get

E .�jm/ � E .�njmn/ � E ..�n/#�njm/;
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from which the 	 � lim inequality follows. Thus to conclude we need to show
that W2..�n/#�n; �/ ! 0. To check this, we use the Wassertein space built over the
(pseudo-)metric space .XntX; dn/: let � D mX and for any n 2 N define the plan
Q�n 2 P.Xn�X/ by d Q�n.y; x/ WD .x/d�n.y; x/ and notice that Q�n 2 Adm.�n; �/.
Thus

W2.�n;�/ �
sZ

d2n .x; y/d Q�n.y; x/ �
sZ

d2n .x; y/.x/d�n.y; x/ � p
M
p
C.dn; �n/;

where M is the essential supremum of . By definition, it is immediate to check
that the density 
n of �n is also bounded above by M . Introduce the plan �n by
d�n.y; x/ WD 
n.y/d�n.y; x/ and notice that �n 2 Adm.�n; .�n/#�n/, so that, as
before, we have

W2.�n; .�n/#�n/ �
sZ

d2n .x; y/d�n.y; x/

�
sZ

d2n .x; y/
n.y/d�n.y; x/ � p
M
p
C.dn; �n/:

In conclusion we have

W2.�; .�n/#�n/ � W2.�n; .�n/#�n/CW2.�n; �/ � 2
p
M
p
C.dn; �n/;

which gives the thesis. ut

8.2 Weak Ricci Curvature Bounds: Definition and Properties

Define the functions uN , N > 1, and u1 on Œ0;C1/ as

uN .z/ WD N.z � z1�
1
N /;

and

u1.z/ WD z log.z/:

Then given a metric measure space .X; d;m/we define the functionals EN ;E1 W
P.X/ ! R [ fC1g by

EN .�/ WD E .�jm/;
where E .
j
/ is given by formula (132) with u WD uN ; similarly for E1.

The definitions of weak Ricci curvature bounds are the following:
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Definition 8.6 (Curvature � K and no bound on dimension—CD.K;1/). We
say that a metric measure space .X; d;m/ has Ricci curvature bounded from below
by K 2 R provided the functional

E1 W P.X/ ! R [ fC1g;

is K-geodesically convex on .Pa
2 .X/;W2/. In this case we say that .X; d;m/

satisfies the curvature dimension condition CD.K;1/ or that .X; d;m/ is a
CD.K;1/ space.

Definition 8.7 (Curvature � 0 and dimension � N - CD.0;N /). We say that
a metric measure space .X; d;m/ has nonnegative Ricci curvature and dimension
bounded from above by N provided the functionals

EN 0 W P.X/ ! R [ fC1g;

are geodesically convex on .Pa
2 .X/;W2/ for everyN 0 � N . In this case we say that

.X; d;m/ satisfies the curvature dimension condition CD.0;N /, or that .X; d;m/
is a CD.0;N / space.

Note that N > 1 is not necessarily an integer.

Remark 8.8. Notice that geodesic convexity is required on P2.supp.mX// and not
on P2.X/. This makes no difference for what concerns CD.K;1/ spaces, as
E1 is C1 on measures having a singular part w.r.t. m, but is important for the
case of CD.0;N / spaces, as the functional EN has only real values, and requiring
geodesic convexity on the whole P2.X/ would lead to a notion not invariant under
isomorphism of metric measure spaces.

Also, for the CD.0;N / condition one requires the geodesic convexity of all EN 0

to ensure the following compatibility condition: if X is a CD.0;N / space, then it
is also a CD.0;N 0/ space for any N 0 > N . Using Proposition 3.16 it is not hard
to see that such compatibility condition is automatically satisfied on non branching
spaces. �

Remark 8.9 (How to adapt the definitions to general bounds on curvature the
dimension).

It is pretty natural to guess that the notion of bound from below on the Ricci
curvature byK 2 R and bound from above on the dimension by N can be given by
requiring the functional EN to beK-geodesically convex on .P.X/;W2/. However,
this is wrong, because such condition is not compatible with the Riemannian case.
The hearth of the definition of CD.K;N / spaces still concerns the properties of EN ,
but a different and more complicated notion of “convexity” is involved. �

Let us now check that the definitions given have the qualitative properties that
we discussed in the introduction of this chapter.

Intrinsicness. This property is clear from the definition.
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Compatibility. To give the answer we need to do some computations on
Riemannian manifolds:

Lemma 8.10 (Second derivative of the internal energy). Let M be a compact
and smooth Riemannian manifold, m its normalized volume measure, u W Œ0;C1/

be convex, continuous and C2 on .0;C1/ with u.0/ D 0 and define the “pressure”
p W Œ0;C1/ ! R by

p.z/ WD zu0.z/� u.z/; 8z > 0;

and p.0/ WD 0. Also, let � D m 2 Pa
2 .M/ with  2 C1.M/, pick ' 2 C1

c .M/,
and define Tt W M ! M by Tt .x/ WD expx.tr'.x//. Then it holds:

d2

dt2
jtD0E ..Tt /#�/D

Z
p0./  .�'/2�p./

�
.�'/2� ˇ̌r2'

ˇ̌2�Ric
�r';r'�� dm;

where by
ˇ̌r2'.x/

ˇ̌2
we mean the trace of the linear map .r2'.x//2 W TxM ! TxM

(in coordinates, this reads as
P

ij .@ij '.x//
2).

Proof (Computation of the second derivative). Let Dt.x/ WD det.rTt.x//, �t WD
.Tt /#�D tVol. By compactness, for t sufficiently small Tt is invertible with smooth
inverse, so that Dt ; t 2 C1.M/. For small t , the change of variable formula gives

t .Tt .x// D .x/

det.rTt .x// D .x/

Dt .x/
:

Thus we have (all the integrals being w.r.t. m):

d

dt

Z
u.t /D d

dt

Z
u





Dt

�
Dt D

Z
�u0





Dt

�
D0

t

D2
t

DtCu





Dt

�
D0
t D�

Z
p





Dt

�
D0
t ;

and

d2

dt2
jtD0

Z
u.t / D � d

dt
jtD0

Z
p





Dt

�
D0
t D

Z
p0./.D0

0/
2 � p./D00

0 ;

having used the fact that D0 � 1.

(Evaluation of D0
0

and D00
0

). We want to prove that

D0
0.x/ D �'.x/;

D00
0 .x/ D .�'.x//2 � ˇ̌r2'.x/

ˇ̌2 � Ric
�r'.x/;r'.x/�: (133)

For t � 0 and x 2 M , let Jt .x/ be the operator from TxM to Texpx.tr'.x//M
given by:

Jt .x/.v/ WD
�

the value at sD t of the Jacobi fieldjsalong the geodesic
s 7!expx.sr'.x//;having the initial conditions j0 WD v; j 0

0 WD r2' 
 v;
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(where here and in the following the apex’ on a vector/tensor field stands for
covariant differentiation), so that in particular we have

J0 D Id;

J 0
0 D r2':

(134)

The fact that Jacobi fields are the differential of the exponential map reads, in our
case, as:

rTt.x/ 
 v D Jt .x/ 
 v;

therefore we have
Dt D det.Jt /: (135)

Also, Jacobi fields satisfy the Jacobi equation, which we write as

J 00
t C AtJt D 0; (136)

where At.x/ W Texpx .tr'.x//M ! Texpx .tr'.x//M is the map given by

At.x/ 
 v WD R. P�t ; v/ P�t ;

where �t WD expx.tr'.x//. Recalling the rule .detBt/0 D det.Bt /tr.B 0
t B

�1
t /, valid

for a smooth curve of linear operators, we obtain from (135) the validity of

D0
t D Dt tr.J 0

t J
�1
t /: (137)

Evaluating this identity at t D 0 and using (134) we get the first of (133). Recalling
the rule .B�1

t /0 D �B�1
t B 0

t B
�1
t , valid for a smooth curve of linear operators, and

differentiating in time equation (137) we obtain

D00
t D Dt

�
tr.J 0

t J
�1
t /

�2 CDt tr.J 00
t J

�1
t � J 0

t J
�1
t J 0

t J
�1
t /

D Dt

��
tr.J 0

t J
�1
t /

�2 � tr
�
At C J 0

t J
�1
t J 0

t J
�1
t

��
;

having used the Jacobi equation (136). Evaluate this expression at t D 0, use (134)
and observe that

tr.A0/ D tr
n
v 7! R.r'; v/r'

o
D Ric.r';r'/;

to get the second of (133). ut
Theorem 8.11 (Compatibility of weak Ricci curvature bounds). Let M be a
compact Riemannian manifold, d its Riemannian distance and m its normalized
volume measure. Then:
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(i) The functional E1 is K-geodesically convex on .P2.M/;W2/ if and only if M
has Ricci curvature uniformly bounded from below by K .

(ii) The functional EN is geodesically convex on .P2.M/;W2/ if and only ifM has
non negative Ricci curvature and dim.M/ � N .

Sketch of the Proof We will give only a formal proof, neglecting all the issues which
arise due to the potential non regularity of the objects involved.

We start with .i/. Assume that Ric.v; v/ � Kjvj2 for any v. Pick a geodesic
.tm/ � P2.M/ and assume that t 2 C1 for any t 2 Œ0; 1�. By Theorem 2.33
we know that there exists a function ' W M ! R differentiable 0m-a.e. such that
exp.r'/ is the optimal transport map from 0m to 1m and

tm D �
exp.tr'/�#0m:

Assume that ' is C1. Then by Lemma 8.10 with u WD u1 we know that

d2

dt2
E1.tm/ D

Z �ˇ̌r2'
ˇ̌2 C Ric.r';r'/

�
0 dm � K

Z
jr'j20 dm:

Since
R jr'j20dm D W 2

2 .0; 1/, the claim is proved.
The converse implication follows by an explicit construction: if Ric.v; v/<Kjvj2

for some x 2M and v 2TxM , then for "� ı� 1 define �0 WD c0mjB".x/ (c0 being
the normalizing constant) and �t WD .Tt /#�0 where Tt .y/ WD expy.tır'.y// and
' 2 C1 is such that r'.x/ D v and r2'.x/ D 0. Using Lemma 8.10 again and the
hypothesis Ric.v; v/ < Kjvj2 it is not hard to prove that E1 is not �-geodesically
convex along .�t /. We omit the details.

Now we turn to .ii/. Let .tm/ and ' as in the first part of the argument above.
Assume that M has non negative Ricci curvature and that dim.M/ � N . Observe
that for u WD uN Lemma 8.10 gives

d2

dt2
jtD0EN .t /

D
Z

1� 1

N

�
1�

1
N .�'/2�1� 1

N

�
.�'/2� ˇ̌r2'

ˇ̌2� 1
2

Ric.r';r'/
�
dm:

Using the hypothesis on M and the fact that .�'/2 � N
ˇ̌r2'

ˇ̌2
we get d2

dt2
jtD0

EN .t / � 0, i.e. the geodesic convexity of EN . For the converse implication it is
possible to argue as above, we omit the details also in this case. ut

Now we pass to the stability:

Theorem 8.12 (Stability of weak Ricci curvature bound). Assume that

.Xn; dn;mn/
D! .X; d;m/ and that for every n 2 N the space .Xn; dn;mn/ is

CD.K;1/ (resp. CD.0;N /). Then .X; d;m/ is a CD.K;1/ (resp. CD.0;N /)
space as well.
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Sketch of the Proof Pick �0; �1 2 Pa
2 .X/ and assume they are both absolutely

continuous with bounded densities, say �i D im, i D 0; 1. Choose . Qdn; �n/ 2
Opt..dn;mn/; .d;m//. Define �ni WD .��1

n /#�i 2 Pa
2 .Xn/, i D 0; 1. Then by

assumption there is a geodesic .�nt / � Pa
2 .Xn/ such that

E1.�nt / � .1 � t/E1.�n0/C tE1.�n1/� K

2
t.1 � t/W 2

2 .�
n
0; �

n
1/: (138)

Now let �nt WD .�n/#�
n
t 2 Pa

2 .X/, t 2 Œ0; 1�. From Proposition 8.5 and its proof we
know that W2.�i ; �

n
i / ! 0 as n ! 1, i D 0; 1. Also, from (138) ad Lemma 8.4,

we know that E1.�nt / is uniformly bounded in n; t . Thus for every fixed t the
sequence n 7! �nt is tight, and we can extract a subsequence, not relabeled, such
that �nt narrowly converges to some �t 2 P2.supp.m// for every rational t . By
an equicontinuity argument it is not hard to see that then �nt narrowly converges to
some �t for any t 2 Œ0; 1� (we omit the details). We claim that .�t / is a geodesic, and
that the K-convexity inequality is satisfied along it. To check that it is a geodesic
just notice that for any partition ftig of Œ0; 1� we have

W2.�0; �1/ D lim
n!1W2.�

n
0 ; �

n
1 / D lim

n!1
X
i

W2.�
n
ti
; �ntiC1

/

�
X
i

lim
n!1

W2.�
n
ti
; �ntiC1

/ �
X
i

W2.�ti ; �tiC1
/:

Passing to the limit in (138), recalling Proposition 8.5 to get that E1.�ni / !
E1.�i /, i D 0; 1, and that limn!1 E1.�nt / � limn!1 E1.�nt / � E1.�t / we
conclude.

To deal with general �0; �1, we start recalling that the sublevels of E1 are tight,
indeed using first the bound z log.z/ � � 1

e
and then Jensen’s inequality we get

1

e
C C � m.X n E/

e
C E1.�/ �

Z
E

 log./dm � �.E/ log



�.E/

m.E/

�
;

for any� D m such that E1.�/ � C and any BorelE � X . This bound gives that
if m.En/ ! 0 then �.En/ ! 0 uniformly on the set of �’s such that E1.�/ � C .
This fact together with the tightness ofm gives the claimed tightness of the sublevels
of E1.

Now the conclusion follows by a simple truncation argument using the narrow
compactness of the sublevels of E1 and the lower semicontinuity of E1 w.r.t.
narrow convergence.

For the stability of the CD.0;N / condition, the argument is the following: we
first deal with the case of �0; �1 with bounded densities with exactly the same ideas
used for E1. Then to pass to the general case we use the fact that if .X; d;m/
is a CD.0;N / space, then .supp.m/; d;m/ is a doubling space (Proposition 8.15
below—notice that EN 0 � N 0 and thus it is not true that sublevels of EN 0 are tight)
and therefore boundedly compact. Then the inequality

R2�.supp.m/ n BR.x0// �
Z
d2.
; x0/d�;
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shows that the set of �’s in Pa
2 .X/ with bounded second moment is tight. Hence

the conclusion follows, as before, using this narrow compactness together with the
lower semicontinuity of EN 0 w.r.t. narrow convergence. ut

It remains to discuss the interest: from now on we discuss some of the geometric
and analytic properties of spaces having a weak Ricci curvature bound.

Proposition 8.13 (Restriction and rescaling). Let .X; d;m/ be a CD.K;1/

space (resp. CD.0;N / space). Then:

(i) Restriction. If Y � X is a closed totally convex subset (i.e. every geodesic
with endpoints in Y lies entirely inside Y ) such that m.Y / > 0, then the space
.Y; d;m.Y /�1mjY / is a CD.K;1/ space (resp. CD.0;N / space).

(ii) Rescaling. For every ˛ > 0 the space .X; ˛d;m/ is a CD.˛�2K;1/ space
(resp. CD.0;N / space).

Proof. .i/. Pick �0; �1 2 P.Y / � P.X/ and a constant speed geodesic .�t / �
P.X/ connecting them such that

E1.�t / � .1 � t/E1.�0/C tE1.�1/ � K

2
t.1 � t/W 2

2 .�0; �1/;

(resp. satisfying the convexity inequality for the functional EN 0 , N 0 � N ).
We claim that supp.�t / � Y for any t 2 Œ0; 1�. Recall Theorem 3.10 and pick a

measure � 2 P.Geod.X// such that

�t D .et /#�;

where et is the evaluation map defined by (14). Since supp.�0/; supp.�1/ � Y

we know that for any geodesic � 2 supp.�/ it holds �0; �1 2 Y . Since Y
is totally convex, this implies that �t 2 Y for any t and any � 2 supp.�/,
i.e. �t D .et /#� 2 P.Y /. Therefore .�t / is a geodesic connecting �0 to �1 in
.Y; d/. Conclude noticing that for any � 2 P2.Y / it holds

Z
d�

dmY

log



d�

dmY

�
dmY D log.m.Y //C

Z
d�

dm
log



d�

dm

�
dm;

Z 

d�

dmY

�1� 1
N 0

dmY D m.Y /�
1
N 0

Z 

d�

dm

�1� 1
N 0

dm;

where we wrote mY for m.Y /�1mjY .

.ii/. Fix ˛ > 0 and let Qd WD ˛d and QW2 be the Wasserstein distance on P.X/

induced by the distance Qd . It is clear that a plan � 2 Adm.�; �/ is optimal
for the distance W2 if and only if it is optimal for QW2, thus QW2 D ˛W2. Now
pick �0; �1 2 P.X/ and let .�t / � P.X/ be a constant speed geodesic
connecting them such that

E1.�t / � .1 � t/E .�0/C tE .�1/ � K

2
t.1 � t/W 2

2 .�0; �1/;
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then it holds

E1.�t / � .1 � t/E .�0/C tE .�1/� K

2˛2
t.1 � t/ QW 2

2 .�0; �1/;

and the proof is complete. A similar argument applies for the case CD.0;N /. ut
For A0;A1 � X , we define ŒA0; A1�t � X as:

ŒA0;A1�t WD
n
�.t/ W � is a constant speed geodesic such that �.0/ 2 A0; �.1/ 2 A1

o
:

Observe that if A0;A1 are open (resp. compact) ŒA0; A1�t is open (resp. compact),
hence Borel.

Proposition 8.14 (Brunn–Minkowski). Let .X; d;m/ be a metric measure space
and A0; A1 � supp.m/ compact subsets. Then:

.i/ If .X; d;m/ is a CD.K;1/ space it holds:

log.m.ŒA0; A1�t // � .1� t/ log.m.A0//C t log.m.A1//C K

2
t.1 � t/D2

K.A0;A1/;

(139)

where DK.A0;A1/ is defined as sup x02A0
x12A1

d.x0; x1/ if K <0 and as inf x02A0
x12A1

d 2.x0; x1/ if K > 0.
.i i/ If .X; d;m/ is a CD.0;N / space it holds:

m
�
ŒA0; A1�t

�1=N � .1� t/m.A0/
1=N C tm.A1/

1=N : (140)

Proof. We start with .i/. Suppose thatA0;A1 are open satisfyingm.A0/;m.A1/>0.
Define the measures �i WD m.Ai /

�1mjAi for i D 0; 1 and find a constant speed
geodesic .�t / � P.X/ such that

E1.�t / � .1 � t/E1.�0/C tE1.�1/� K

2
t.1 � t/W 2

2 .�0; �1/:

Arguing as in the proof of the previous proposition, it is immediate to see that �t is
concentrated on ŒA0; A1�t for any t 2 Œ0; 1�.

In particular m.ŒA0; A1�t / > 0, otherwise E1.�t / would be C1 and the
convexity inequality would fail. Now let �t WD m.ŒA0; A1�t /

�1mjŒA0;A1�t : an
application of Jensen inequality shows that E1.�t / � E1.�t /, thus we have

E1.�t / � .1 � t/E1.�0/C tE1.�1/� K

2
t.1 � t/W 2

2 .�0; �1/:

Notice that for a general � of the formm.A/�1mjA it holds

E1.�/ D log
�
m.A/�1

� D � log
�
m.A/

�
;
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and conclude using the trivial inequality

inf
x02A0
x12A1

d 2.x0; x1/ � W 2
2 .�0; �1/ � sup

x02A0
x12A1

d 2.x0; x1/:

The case of A0;A1 compact now follows by a simple approximation argument by
considering the "-neighborhood A"i WD fx W d.x;Ai / < "g, i D 0; 1, noticing that
ŒA0; A1�t D \">0ŒA

"
0; A

"
1�t , for any t 2 Œ0; 1� and that m.A"i / > 0 because Ai �

supp.m/, i D 0; 1.
Part .ii/ follows along the same lines taking into account that for a general � of

the formm.A/�1mjA it holds

EN .�/ D N.1�m.A/1=N /;
and that, as before, ifm.A0/;m.A1/ > 0 it cannot bem.ŒA0; A1�t / D 0 or we would
violate the convexity inequality. ut
A consequence of Brunn–Minkowski is the Bishop–Gromov inequality.

Proposition 8.15 (Bishop–Gromov). Let .X; d;m/ be a CD.0;N / space. Then it
holds

m.Br.x//

m.BR.x//
�
� r
R

�N
; 8x 2 supp.m/: (141)

In particular, .supp.m/; d;m/ is a doubling space.

Proof. Pick x 2 supp.m/ and assume that m.fxg/ D 0. Let v.r/ WD m.Br.x//.
Fix R > 0 and apply the Brunn–Minkowski inequality to A0 D fxg, A1 D BR.x/

observing that ŒA0; A1�t � BtR.x/ to get

v1=N .tR/ � m
�
ŒA0; A1�t

�1=N � tv1=N .R/; 80 � t � 1:

Now let r WD tR and use the arbitrariness of R; t to get the conclusion.
It remains to deal with the case m.fxg/ ¤ 0. We can also assume supp.m/ ¤

fxg, otherwise the thesis would be trivial: under this assumption we will prove that
m.fxg/ D 0 for any x 2 X .

A simple consequence of the geodesic convexity of EN tested with delta measures
is that supp.m/ is a geodesically convex set, therefore it is uncountable. Then there
must exist some x0 2 supp.m/ such thatm.fx0g/ D 0. Apply the previous argument
with x0 in place of x to get that

v.r/

v.R/
�
� r
R

�N
; 80 � r < R; (142)

where now v.r/ is the volume of the closed ball of radius r around x0. By definition,
v is right continuous; letting r "Rwe obtain from (142) that v is also left continuous.
Thus it is continuous, and in particular the volume of the spheres fy W d.y; x0/ D rg
is 0 for any r � 0. In particular m.fyg/ D 0 for any y 2 X and the proof is
concluded. ut
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An interesting geometric consequence of the Brunn–Minkowski inequality in
conjunction with the non branching hypothesis is the fact that the “cut-locus” is
negligible.

Proposition 8.16 (Negligible cut-locus). Assume that .X; d;m/ is a CD.0;N /

space and that it is non branching. Then for every x 2 supp.m/ the set of y’s
such that there is more than one geodesic from x to y ism-negligible. In particular,
for m � m-a.e. .x; y/ there exists only one geodesic �x;y from x to y and the map
X2 3 .x; y/ 7! �x;y 2 Geod.X/ is measurable.

Proof. Fix x 2 supp.m/, R > 0 and consider the sets At WD Œfxg; BR.x/�t . Fix
t < 1 and y 2 At . We claim that there is only one geodesic connecting it to x.
By definition, we know that there is some z 2 BR.x/ and a geodesic � from z
to x such that �t Dy. Now argue by contradiction and assume that there are two
geodesics �1; �2 from y to x. Then starting from z, following � for time 1 � t , and
then following each of �1; �2 for the rest of the time we find two different geodesics
from z to x which agree on the non trivial interval Œ0; 1 � t �. This contradicts the
non-branching hypothesis.

Clearly At � As � BR.x/ for t � s, thus t 7! m.At/ is non decreasing.
By (140) and the fact that m.fxg/ D 0 (proved in Proposition 8.15) we know that
limt!1 m.At/ D m.BR.x// which means that m-a.e. point in BR.x/ is connected
to x by a unique geodesic. Since R and x are arbitrary, uniqueness is proved.

The measurability of the map .x; y/ 7! �x;y is then a consequence of uniqueness,
of Lemma 3.11 and classical measurable selection results, which ensure the
existence of a measurable selection of geodesics: in our case there is m �m-almost
surely no choice, so the unique geodesic selection is measurable. ut
Corollary 8.17 (Compactness). Let N; D < 1. Then the family X .N;D/ of
(isomorphism classes of) metric measure spaces .X; d;m/ satisfying the condition
CD.0;N /, with diameter bounded above by D is compact w.r.t. the topology
induced by D.

Sketch of the Proof Using the Bishop–Gromov inequality with R D D we get that

m.B".x// �
� "
D

�N
; 8.X; d;m/ 2 X .N;D/; x 2 supp.mX/: (143)

Thus there exists n.N;D; "/ which does not depend on X 2 X .N;D/, such that
we can find at most n.N;D; "/ disjoint balls of radius " in X . Thus supp.mX/ can
be covered by at most n.N;D; "/ balls of radius 2". This means that the family
X .N;D/ is uniformly totally bounded, and thus it is compact w.r.t. Gromov–
Hausdorff convergence (see e.g. Theorem 7.4.5 of [20]).

Pick a sequence .Xn; dn;mn/ 2 X .N;D/. By what we just proved, up to pass
to a subsequence, not relabeled, we may assume that .supp.mn/; dn/ converges in
the Gromov–Hausdorff topology to some space .X; d/. It is well known that in this
situation there exists a compact space .Y; dY / and a family of isometric embeddings
fn W supp.mn/ ! Y , f W X ! Y , such that the Hausdorff distance between
fn.supp.mn// and f .X/ goes to 0 as n ! 1.
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The space .fn.supp.mn/; dY ; .fn/#mn// is isomorphic to .Xn; dn;mn/ by con-
struction for every n 2 N, and .f .X/; dY / is isometric to .X; d/, so we identify
these spaces with the respective subspaces of .Y; dY /. Since .Y; dY / is compact,
the sequence .mn/ admits a subsequence, not relabeled, which weakly converges
to some m 2 P.Y /. It is immediate to verify that actually m 2 P.X/. Also,
again by compactness, weak convergence is equivalent to convergence w.r.t. W2,
which means that there exists plans �n 2 P.Y 2/ admissible for the couple .m;mn/

such that Z
d2Y .x; Qx/d�n.x; Qx/ ! 0:

Therefore n 7! .dY ; �n/ is a sequence of admissible couplings for .X; d;m/ and
.Xn; dn;mn/ whose cost tends to zero. This concludes the proof. ut

Now we prove the HWI (which relates the entropy, often denoted by H ,
the Wasserstein distance W2 and the Fisher information I ) and the log-Sobolev
inequalities. To this aim, we introduce the Fisher information functional I W
P.X/ ! Œ0;1� on a general metric measure space .X; d;m/ as the squared slope
of the entropy E1:

I.�/ WD

8̂
<̂
ˆ̂:

lim
�!�

�
.E1.�/ � E1.�//C

�2
W 2
2 .�; �/

; if E1.�/ < 1;

C1; otherwise:

The functional I is called Fisher information because its value on .Rd ; j 
 � 
 j;L d /

is given by

I.L d / D
Z jrj2


dL d ;

and the object on the right hand side is called Fisher information on R
d . It is possible

to prove that a formula like the above one is writable and true on generalCD.K;1/

spaces (see [8]), but we won’t discuss this topic.

Proposition 8.18 (HWI inequality). Let .X; d;m/ be a metric measure space
satisfying the condition CD.K;1/. Then

E1.�/ � E1.�/CW2.�; �/
p
I.�/ � K

2
W 2
2 .�; �/; 8�; � 2 P.X/: (144)

In particular, choosing � D m it holds

E1.�/ � W2.�;m/
p
I.�/ � K

2
W 2
2 .�;m/; 8� 2 P.X/: (145)

Finally, if K > 0 the log-Sobolev inequality with constantK holds:

E1 � I

2K
: (146)
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Proof. Clearly to prove (144) it is sufficient to deal with the case E1.�/;
E1.�/<1. Let .�t / be a constant speed geodesic from � to � such that

E1.�t / � .1 � t/E1.�/C tE1.�/ � K

2
t.1 � t/W 2

2 .�; �/:

Then from
p
I.�/ � limt#0.E1.�/� E1.�t //=W2.�;�t / we get the thesis.

Equation (146) now follows from (145) and the trivial inequality

ab � 1

2
a2 � 1

2
b2;

valid for any a; b � 0. ut
The log-Sobolev inequality is a notion of global Sobolev-type inequality, and it is
known that it implies a global Poincaré inequality (we omit the proof of this fact).
When working on metric measure spaces, however, it is often important to have at
disposal a local Poincaré inequality (see e.g. the analysis done by Cheeger in [29]).

Our final goal is to show that in non-branchingCD.0;N / spaces a local Poincaré
inequality holds. The importance of the non-branching assumption is due to the
following lemma.

Lemma 8.19. Let .X; d;m/ be a non branchingCD.0;N / space, B � X a closed
ball of positive measure and 2B the closed ball with same center and double radius.
Define the measures � WD m.B/�1mjB and � WD � �;�

# .� � �/ 2 P.Geod.X//,
where .x; y/ 7! �x;y is the map which associates to each x; y the unique geodesic
connecting them (such a map is well defined form�m-a.e.x; y by Proposition 8.16).
Then

.et /#� � 2N

m.B/
mj2B; 8t 2 Œ0; 1�:

Proof. Fix x 2 B , t 2 .0; 1/ and consider the “homothopy” map B 3 y 7!
Homx

t .y/ WD �
x;y
t . By Proposition 8.16 we know that this map is well defined for

m-a.e. y and that (using the characterization of geodesics given in Theorem 3.10)
t 7! �xt WD .Homx

t /#� is the unique geodesic connecting ıx to �. We have

�xt .E/ D �
�
.Homx

t /
�1.E/

� D m
�
.Homx

t /
�1.E/

�
m.B/

; 8E � X Borel:

The non branching assumption ensures that Homx
t is invertible, therefore from

the fact that Œfxg; .Homx
t /

�1.E/�t DHomx
t

�
Homx

t /
�1.E/

�DE , the Brunn–
Minkowski inequality and the fact that m.fxg/ D 0 we get

m.E/ � tNm
�
.Homx

t /
�1.E/

�
;

and therefore �xt .E/ � m.E/

tNm.B/
. Given that E was arbitrary, we deduce
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�xt � m

tNm.B/
: (147)

Notice that the expression on the right hand side is independent on x.
Now pick � as in the hypothesis, and define �t WD .et /#�. The equalities

Z
X

'd�t D
Z

Geod.X/
'.�t /d�.�/ D

Z
X2
'.�

x;y
t /d�.x/d�.y/;

Z
X

'd�xt D
Z
X

'.�
x;y
t /d�.y/;

valid for any ' 2 Cb.X/, show that

�t D
Z
�xt d�.x/;

and therefore, by (147), we have

�t � m

tNm.B/
:

All these arguments can be repeated symmetrically with 1� t in place of t (because
the push forward of � via the map which takes � and gives the geodesic t 7! �1�t ,
is � itself), thus we obtain

�t � min

�
m

tNm.B/
;

m

.1 � t/Nm.B/
�

� 2Nm

m.B/
; 8t 2 .0; 1/:

To conclude, it is sufficient to prove that �t is concentrated on 2B for all t 2 .0; 1/.
But this is obvious, as �t is concentrated on ŒB; B�t and a geodesic whose endpoints
lie on B cannot leave 2B . ut
As we said, we will use this lemma (together with the doubling property, which is a
consequence of the Bishop–Gromov inequality) to prove a local Poincaré inequality.
For simplicity, we stick to the case of Lipschitz functions and their local Lipschitz
constant, although everything could be equivalently stated in terms of generic Borel
functions and their upper gradients.

For f W X ! R Lipschitz, the local Lipschitz constant jrf j W X ! R is
defined as

jrf j.x/ WD lim
y!x

jf .x/ � f .y/j
d.x; y/

:

For any ball B such that m.B/ > 0, the number hf iB is the average value of f
on B:

hf iB WD 1

m.B/

Z
B

f dm:
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Proposition 8.20 (Local Poincaré inequality). Assume that .X; d;m/ is a
non-branching CD.0;N / space. Then for every ball B such that m.B/ > 0 and
any Lipschitz function f W X ! R it holds

1

m.B/

Z
B

jf .x/ � hf iB j dm.x/ � r
22NC1

m.2B/

Z
2B

jrf jdm;

r being the radius of B .

Proof. Notice that

1

m.B/

Z
B

jf .x/ � hf iB jdm.x/ � 1

m.B/2

Z
B�B

jf .x/ � f .y/j dm.x/dm.y/

D
Z

Geod.X/
jf .�0/� f .�1/j d�.�/;

where � is defined as in the statement of Lemma 8.19. Observe that for any
geodesic � , the map t 7! f .�t / is Lipschitz and its derivative is bounded above
by d.�0; �1/jrf j.�t / for a.e. t . Hence, since any geodesic � whose endpoints are in
B satisfies d.�0; �1/ � 2r , we have

Z
Geod.X/

jf .�0/� f .�1/j d�.�/ � 2r

Z 1

0

Z
Geod.X/

jrf j.�t / d�.�/dt

D 2r

Z 1

0

Z
X

jrf jd.et /#�dt:

By Lemma 8.19 we obtain

2r

Z 1

0

Z
X

jrf jd.et /#�dt � 2NC1r
m.B/

Z
2B

jrf jdm:

By the Bishop–Gromov inequality we know that m.2B/ � 2Nm.B/ and thus

2NC1r
m.B/

Z
2B

jrf jdm � 22NC1r
m.2B/

Z
2B

jrf jdm;

which is the conclusion. ut

8.3 Bibliographical Notes

The content of this chapter is taken from the works of Lott and Villani on one side
[57, 58] and of Sturm [74, 75] on the other.
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The first link betweenK-geodesic convexity of the relative entropy functional in
.P2.M/;W2/ and the bound from below on the Ricci curvature is has been given
by Sturm and von Renesse in [76]. The works [74,75] and [58] have been developed
independently. The main difference between them is that Sturm provides the general
definition of CD.K;N / bound (which we didn’t speak about, with the exception
of the quick citation in Remark 8.9), while Lott and Villani focused on the cases
CD.K;1/ and CD.0;N /. Apart from this, the works are strictly related and the
differences are mostly on the technical side. We mention only one of these. In giving
the definition of CD.0;N / space we followed Sturm and asked only the functionals
m 7! N 0 R .� 1�1=N 0

/dm, N 0 � N , to be geodesically convex. Lott and Villani
asked for something more restrictive, namely they introduced the displacement
convexity classes DCN as the set of functions u W Œ0;1/!R continuous, convex
and such that

z 7! zN u.z�N /;
is convex. Notice that u.z/ WD N 0.z � z1�1=N 0

/ belongs to DCN . Then they say that
a space is CD.0;N / provided

m 7!
Z

u./dm;

(with the usual modifications for a measure which is not absolutely continuous) is
geodesically convex for any u 2 DCN . This notion is still compatible with the
Riemannian case and stable under convergence. The main advantage one has in
working with this definition is the fact that for a CD.0;N / space in this sense, for
any couple of absolutely continuous measures there exists a geodesic connecting
them which is made of absolutely continuous measures.

The distance D that we used to define the notion of convergence of metric
measure spaces has been defined and studied by Sturm in [74]. This is not the only
possible notion of convergence of metric measure spaces: Lott and Villani used a
different one, see [58] or Chap. 27 of [80]. A good property of the distance D is
that it pleasantly reminds the Wasserstein distance W2: to some extent, the relation
of D to W2 is the same relation that there is between Gromov–Hausdorff distance
and Hausdorff distance between compact subsets of a given metric space. A bad
property is that it is not suitable to study convergence of metric measure spaces
which are endowed with infinite reference measures (well, the definition can easily
be adapted, but it would lead to a too strict notion of convergence—very much like
the Gromov–Hausdorff distance, which is not used to discuss convergence of non
compact metric spaces). The only notion of convergence of Polish spaces endowed
with �-finite measures that we are aware of, is the one discussed by Villani in
Chap. 27 of [80] (Definition 27.30). It is interesting to remark that this notion of
convergence does not guarantee uniqueness of the limit (which can be though of as
a negative point of the theory), yet, bounds from below on the Ricci curvature are
stable w.r.t. such convergence (which in turn is a positive point, as it tells that these
bounds are “even more stable”).

The discussion on the local Poincaré inequality and on Lemma 8.19 is extracted
from [57].
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There is much more to say about the structure and the properties of spaces with
Ricci curvature bounded below. This is an extremely fast evolving research area,
and to give a complete discussion on the topic one would probably need a book
nowadays. Two things are worth to be quickly mentioned.

The first one is the most important open problem on the subject: is the property of
being a CD.K;N / space a local notion? That is, suppose we have a metric measure
space .X; d;m/ and a finite open cover f˝i g such that .˝i ; d;m.˝i/

�1mj˝i / is a
CD.K;N / space for every i . Can we deduce that .X; d;m/ is a CD.K;N / space
as well? One would like the answer to be affirmative, as any notion of curvature
should be local. ForK D 0 orN D 1, this is actually the case, at least under some
technical assumptions. The general case is still open, and up to now we only know
that the Conjecture 30.34 in [80] is false, being disproved by Deng and Sturm in
[32] (see also [11]).

The second, and final, thing we want to mention is the case of Finsler manifolds,
which are differentiable manifolds endowed with a norm—possibly not coming
from an inner product—on each tangent space, which varies smoothly with the base
point. A simple example of Finsler manifolds is the space .Rd ; k 
 k/, where k 
 k is
any norm. It turns out that for any choice of the norm, the space .Rd ; k 
 k;L d / is
a CD.0;N / space. Various experts have different opinion about this fact: namely,
there is no agreement on the community concerning whether one really wants or
not Finsler geometries to be included in the class of spaces with Ricci curvature
bounded below. In any case, it is interesting to know whether there exists a different,
more restrictive, notion of Ricci curvature bound which rules out the Finsler case.
Progresses in this direction have been made in [9], where the notion of spaces with
Riemannian Ricci bounded below is introduced: shortly said, these spaces are the
subclass of CD.K;N / spaces where the heat flow (studied in [8, 45, 53]) is linear.

Acknowledgements Work partially supported by a MIUR PRIN2008 grant.
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9. L. Ambrosio, N. Gigli, G. Savaré, Spaces with riemannian ricci curvature bounded below,
Comm. Pure and Applied Math. (2011)

10. L. Ambrosio, B. Kirchheim, A. Pratelli, Existence of optimal transport maps for crystalline
norms. Duke Math. J. 125 207–241 (2004)

11. K. Bacher, K.T. Sturm, Localization and tensorization properties of the curvature-dimension
condition for metric measure spaces. J. Funct. Anal. 259, 28–56 (2010)

12. J.-D. Benamou, Y. Brenier, A numerical method for the optimal time-continuous mass transport
problem and related problems, in Monge Ampère Equation: Applications to Geometry and
Optimization (Deerfield Beach, FL, 1997). Contemporary Mathematics, vol. 226 (American
Mathematical Society, Providence, 1999), pp. 1–11

13. P. Bernard, B. Buffoni, Optimal mass transportation and Mather theory. J. Eur. Math. Soc.
(JEMS), 9, 85–127 (2007)

14. M. Bernot, V. Caselles, J.-M. Morel, The structure of branched transportation networks. Calc.
Var. Partial Differ. Equat. 32, 279–317 (2008)

15. S. Bianchini, A. Brancolini, Estimates on path functionals over Wasserstein spaces. SIAM
J. Math. Anal. 42, 1179–1217 (2010)

16. A. Brancolini, G. Buttazzo, F. Santambrogio, Path functionals over Wasserstein spaces. J. Eur.
Math. Soc. (JEMS), 8, 415–434 (2006)

17. L. Brasco, G. Buttazzo, F. Santambrogio, A Benamou-Brenier approach to branched transport.
SIAM J. Math. Anal. 43(2), 1023–1040 (2011). doi:10.1137/10079286X
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33. J. Dolbeault, B. Nazaret, G. Savaré, On the Bakry-Emery criterion for linear diffusions and
weighted porous media equations. Comm. Math. Sci 6, 477–494 (2008)

34. L.C. Evans, W. Gangbo, Differential equations methods for the Monge-Kantorovich mass
transfer problem. Mem. Am. Math. Soc. 137, viii+66 (1999)

35. A. Fathi, A. Figalli, Optimal transportation on non-compact manifolds. Isr. J. Math. 175, 1–59
(2010)
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des Sciences de Paris (1781), pp. 666–704

67. F. Otto, The geometry of dissipative evolution equations: the porous medium equation. Comm.
Partial Differ. Equat. 26, 101–174 (2001)

68. A. Pratelli, On the equality between Monge’s infimum and Kantorovich’s minimum in optimal
mass transportation. Ann. l’Institut Henri Poincare B Probab. Stat. 43, 1–13 (2007)
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Fig. 1 Flow across two points

1 Conservation Laws

1.1 The Scalar Conservation Law

A scalar conservation law in one space dimension is a first order partial differential
equation of the form

ut C f .u/x D 0: (1)

Here u D u.t; x/ is called the conserved quantity, while f is the flux. The variable
t denotes time, while x is the one-dimensional space variable. Integrating (1) over a
given interval Œa; b� one obtains

d

dt

Z b

a

u.t; x/ dx D
Z b

a

ut .t; x/ dx D �
Z b

a

f
�
u.t; x/

�
x
dx

D f
�
u.t; a/

� � f �u.t; b/� D Œinflow at a� � Œoutflow at b�:
(2)

According to (2), the quantity u is neither created nor destroyed: the total amount
of u contained inside any given interval Œa; b� can change only due to the flow of u
across the two boundary points (Fig. 1).

Using the chain rule, (1) can be written in the quasilinear form

ut C a.u/ux D 0; (3)

where aDf 0 is the derivative of f . For smooth solutions, the two (1) and (3) are
entirely equivalent. However, if u has a jump at a point �, the left hand side of (3)
will contain the product of a discontinuous function a.u/ with the distributional
derivative ux, which in this case contains a Dirac mass at the point �. In general,
such a product is not well defined. Hence (3) is meaningful only within a class of
continuous functions. On the other hand, working with the equation in divergence
form (1) allows us to consider discontinuous solutions as well, interpreted in
distributional sense.
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ρ  density of cars

xa b

Fig. 2 The density of cars can be described by a conservation law

A function u D u.t; x/ will be called a weak solution of (1) provided that

Z Z ˚
u�t C f .u/�x

�
dxdt D 0 (4)

for every continuously differentiable function with compact support � 2 C 1
c . Notice

that (4) is meaningful as soon as both u and f .u/ are locally integrable in the
t-x plane.

Example 1 (traffic flow). Let .t; x/ be the density of cars on a highway, at the point
x at time t . For example, u may be the number of cars per kilometer (Fig. 2). In the
classic Lighthill–Witham model [33,43], one assumes that the velocity v of the cars
depends only on their density, say

v D v./; with
dv

d
< 0:

Given any two points a; b on the highway, the number of cars between a and b
therefore varies according to the law

Z b

a

t .t; x/ dx D d

dt

Z b

a

.t; x/ dx D [inflow ata� � [outflow atb�

D v
�
.t; a/

� 
 .t; a/� v
�
.t; b/

� 
 .t; b/ D �
Z b

a

�
v./ 

�
x
dx:

(5)
Since (5) holds for all a; b, this leads to the conservation law

t C �
v./ 

�
x

D 0;

where  is the conserved quantity and f ./ D v./ is the flux function.



160 A. Bressan

1.2 Strictly Hyperbolic Systems

The main object of our study will be the n � n system of conservation laws

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

@

@t
u1 C @

@x
f1.u1; : : : ; un/ D 0;


 
 


@

@t
un C @

@x
fn.u1; : : : ; un/ D 0:

(6)

To shorten notation, it is convenient to write this system also in the form (1).
However, one should keep in mind that now u D .u1; : : : ; un/ is a vector in IRn

while f D .f1; : : : ; fn/ is a map from IRn into IRn. Calling

A.u/
:D Df.u/ D

0
B@
@f1
@u1


 
 
 @f1
@xn


 
 

@fn
@u1


 
 
 @fn
@xn

1
CA ;

the n� n Jacobian matrix of the map f at the point u, the system (6) can be written
in the quasilinear form

ut CA.u/ux D 0: (7)

A C 1 function u D u.t; x/ provides a classical solution to (6) if and only if it solves
(7). In addition, for the conservative system (6) one can also consider weak solutions
u 2 L1loc in distributional sense, according (4).

In order to achieve the well-posedness of the initial value problem, a basic
algebraic property will now be introduced.

Definition 1 (strictly hyperbolic system). The system of conservation laws (6) is
strictly hyperbolic if, for every u, the Jacobian matrix A.u/ D Df.u/ has n real,
distinct eigenvalues: �1.u/ < 
 
 
 < �n.u/.

If the matrixA.u/ has real distinct eigenvalues, one can find bases of left and right
eigenvectors, denoted by l1.u/; : : : ; ln.u/ and r1.u/; : : : ; rn.u/. The left eigenvectors
are regarded as row vectors, while right eigenvectors are column vectors. For every
u 2 IRn and i D 1; : : : ; n, we thus have

A.u/ri .u/ D �i.u/ri .u/; li .u/A.u/ D �i .u/li .u/:

It is convenient to choose dual bases of left and right eigenvectors, so that

jri j D 1; li 
 rj D
(
1 if i D j;

0 if i ¤ j:
(8)
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u(t)
tλ

u(0)Fig. 3 A traveling wave
solution to the linear, scalar
Cauchy problem (10)–(11)

Example 2 (gas dynamics). The Euler equations describing the evolution of a non
viscous gas take the form

8<
:

t C .v/x D 0 (conservation of mass)
.v/t C .v2 C p/x D 0 (conservation of momentum)

.E/t C .Ev C pv/x D 0 (conservation of energy)

Here  is the mass density, v is the velocity while E D e C v2=2 is the energy
density per unit mass. The system is closed by a constitutive relation of the form
p D p.; e/, giving the pressure as a function of the density and the internal energy.
The particular form of p depends on the gas under consideration. Denoting by u D
.u1; u2; u3/ D .; v; E/ the vector of conserved quantities, one checks that for
physically meaningful functionsp D p.; e/ the above system is strictly hyperbolic
[26, 57].

1.3 Linear Systems

We describe here two elementary cases where the solution of the initial value
problem can be written explicitly.

Consider the initial value problem for a scalar conservation law

ut C f .u/x D 0; (9)

u.0; x/ D Nu.x/: (10)

In the special case where the flux f is an affine function, say f .u/ D �u C c, the
(9) reduces to

ut C �ux D 0: (11)

The Cauchy problem (10)–(11) admits an explicit solution, namely

u.t; x/ D Nu.x � �t/: (12)

As shown in Fig. 3, this has the form of a traveling wave, with speed � D f 0.u/. If
Nu 2 C 1, the function u D u.t; x/ defined by (12) is a classical solution. On the other
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u1

u2

Fig. 4 The solution to the
linear hyperbolic system (13)
is obtained as the
superposition of n traveling
waves

hand, if the initial condition Nu is not differentiable and we only have Nu 2 L1loc , the
above function u can still be interpreted as a weak solution in distributional sense.

Next, consider the linear homogeneous system with constant coefficients

ut C Aux D 0; u.0; x/ D Nu.x/; (13)

where A is a n�n hyperbolic matrix, with real eigenvalues �1 < 
 
 
 < �n and right
and left eigenvectors ri ; li , chosen as in (8).

Call ui
:D li 
 u the coordinates of a vector u 2 IRn w.r.t. the basis of right

eigenvectors fr1; 
 
 
 ; rng. Multiplying (13) on the left by l1; : : : ; ln we obtain

.ui /t C �i.ui /x D .liu/t C �i .liu/x D liut C liAux D 0;

ui .0; x/ D li Nu.x/ :D Nui .x/:

Therefore, (13) decouples into n scalar Cauchy problems, which can be solved
separately in the same way as (10)–(11). The function

u.t; x/ D
nX
iD1

Nui .x � �i t/ ri (14)

now provides the explicit solution to (13), because

ut .t; x/ D
nX
iD1

��i
�
li 
 Nux.x � �i t/

�
ri D �Aux.t; x/:

Observe that in the scalar case (11) the initial profile is shifted with constant
speed � D f 0.u/. For the system (13), the initial profile is decomposed as a sum of
n waves (Fig. 4), each traveling with one of the characteristic speeds �1; : : : ; �n.
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u(t)

x

u(T)

u(0)

Fig. 5 If the wave propagation speed depends on u, the profile of the solution changes in time,
eventually leading to shock formation at a finite time T

nonlinear

x

t

linear

Fig. 6 Left: for the linear hyperbolic system (13), the solution is a simple superposition of
traveling waves. Right: For the general non-linear system (6), waves of different families have
nontrivial interactions

1.4 Nonlinear Effects

In the general case where the matrix A depends on the state u, new features will
appear in the solutions.

(a) Since the eigenvalues �i now depend on u, the shape of the various components
in the solution will vary in time (Fig. 5). Rarefaction waves will decay, and
compression waves will become steeper, possibly leading to shock formation in
finite time.

(b) Since the eigenvectors ri also depend on u, nontrivial interactions between
different waves will occur (Fig. 6). The strength of the interacting waves may
change, and new waves of different families can be created, as a result of the
interaction.

The strong nonlinearity of the equations and the lack of regularity of solutions,
also due to the absence of second order terms that could provide a smoothing effect,
account for most of the difficulties encountered in a rigorous mathematical analysis
of the system (1). It is well known that the main techniques of abstract functional
analysis do not apply in this context. Solutions cannot be represented as fixed points
of continuous transformations, or in variational form, as critical points of suitable
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functionals. Dealing with vector valued functions, comparison principles based on
upper or lower solutions cannot be used. Moreover, the theory of accretive operators
and contractive nonlinear semigroups works well in the scalar case [25], but does
not apply to systems. For the above reasons, the theory of hyperbolic conservation
laws has largely developed by ad hoc methods, along two main lines.

1. The BV setting, considered by J. Glimm [34]. Solutions are here constructed
within a space of functions with bounded variation, controlling the BV norm by
a wave interaction functional.

2. The L1 setting, considered by L. Tartar and R. DiPerna [29], based on weak
convergence and a compensated compactness argument.

Both approaches yield results on the global existence of weak solutions. However,
the method of compensated compactness appears to be suitable only for 2 � 2

systems. Moreover, it is only in the BV setting that the well-posedness of the
Cauchy problem could recently be proved, as well as the stability and convergence
of vanishing viscosity approximations. In these lecture we thus restrict ourselves to
the analysis of BV solutions, referring to [29] or [50,56] for the alternative approach
based on compensated compactness.

1.5 Loss of Regularity

A basic feature of nonlinear systems of the form (1) is that, even for smooth initial
data, the solution of the Cauchy problem may develop discontinuities in finite time.
To achieve a global existence result, it is thus essential to work within a class of
discontinuous functions, interpreting the (1) in their distributional sense (4).

The loss of regularity can be seen already in the solution to a scalar equation with
nonlinear flux. Consider the scalar Cauchy problem

ut C f .u/x D 0 u.0; x/ D �.x/: (15)

In the case of smooth solutions, the equation can be written in quasilinear form

ut C f 0.u/ux D 0: (16)

Geometrically, this means that the directional derivative of u.t; x/ in the direction
of the vector .1 ; f 0.u// vanishes. Hence u is constant on each line of the formn
.t; x/ I x D x0 C tf 0.u.x0//

o
. For each x0 2 IR we thus have

u



t; x0 C t f 0.�.x0//

�
D �.x0/: (17)

This is indeed the solution to the first order PDE (16) provided by the classical
method of characteristics, see for example [31]. In general, beyond a finite time T ,
the map

x0 7! x0 C t f 0.�.x0//
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T

t

xx0

Fig. 7 At time T when
characteristics start to
intersect, a shock is produced

is no longer one-to-one, and the implicit (17) does not define a single valued function
u D u.t; x/. At time T a shock is formed, and the solution can be extended for t > T
in the weak sense, as in (4).

Example 3 (shock formation in Burgers’ equation). Consider the scalar conserva-
tion law (inviscid Burgers’ equation)

ut C



u2

2

�
x

D 0 (18)

with initial condition

u.0; x/ D Nu.x/ D 1

1C x2
:

For t > 0 small the solution can be found by the method of characteristics. Indeed,
if u is smooth, (18) is equivalent to

ut C uux D 0: (19)

By (19) the directional derivative of the function u D u.t; x/ along the vector .1; u/
vanishes. Therefore, u must be constant along the characteristic lines in the t-x
plane:

t 7! �
t; x C t Nu.x/� D



t; x C t

1C x2

�
:

For t < T
:D 8=

p
27, these lines do not intersect (Fig. 7). The solution to our

Cauchy problem is thus given implicitly by

u



t; x C t

1C x2

�
D 1

1C x2
: (20)

On the other hand, when t > T , the characteristic lines start to intersect. As a result,
the map
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x 7! x C t

1C x2

is not one-to-one and (20) no longer defines a single valued solution of our Cauchy
problem.

An alternative point of view is the following (Fig. 5). As time increases, points
on the graph of u.t; 
/ move horizontally with speed u, equal to their distance from
the x-axis. This determines a change in the profile of the solution. As t approaches
the critical time T

:D 8=
p
27, one has

lim
t!T�

n
inf
x2IR ux.t; x/

o
D �1;

and no classical solution exists beyond time T . The solution can be prolonged for
all times t � 0 only within a class discontinuous functions.

1.6 Wave Interactions

Consider the quasilinear, strictly hyperbolic system

ut D � A.u/ux: (21)

If the matrix A is independent of u, then the solution can be obtained as a
superposition of traveling waves. On the other hand, if A depends on u, these
waves can interact with each other, producing additional waves. To understand this
nonlinear effect, define the i -th component of the gradient ux as

uix
:D li 
 ux: (22)

We regard uix as the i -th component of the gradient ux w.r.t. the basis of eigenvectors
fr1.u/; : : : ; rn.u/g. Equivalently, one can also think of uix as the density of i -waves
in the solution u. From (22) and (8), (21) it follows

ux D
nX
iD1

uixri .u/ ut D �
nX
iD1

�i .u/u
i
xri .u/

Differentiating the first equation w.r.t. t and the second one w.r.t. x, then equating
the results, one obtains a system of evolution equations for the scalar components
uix, namely

.uix/t C .�iu
i
x/x D

X
j>k

.�j � �k/



li 
 Œrj ; rk�

�
ujxukx: (23)
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See [8] or [42] for details. Notice that the left hand side of (23) is in conservation
form. However, here the total amount of waves can increase in time, due to the
source terms on the right hand side. The source term

Sijk
:D .�j � �k/

�
li 
 Œrj ; rk�

�
ujxukx

describes the amount of i -waves produced by the interaction of j -waves with
k-waves. Here

�j � �k D Œdifference in speed�
D Œrate at whichj � waves andk � waves cross each other�

ujxukx D [density ofj � waves� � Œdensity ofk � waves]

Œrj ; rk� D .Drk/rj � .Drj /rk (Lie bracket)
D Œdirectional derivative of rk in the direction of rj �

� Œdirectional derivative of rj in the direction of rk�:

Finally, the product li 
 Œrj ; rk� gives the i -th component of the Lie bracket Œrj ; rk�
along the basis of eigenvectors fr1; : : : ; rng.

2 Weak Solutions

A basic feature of nonlinear hyperbolic systems is the possible loss of regularity:
solutions which are initially smooth may become discontinuous within finite time. In
order to construct solutions globally in time, we are thus forced to work in a space of
discontinuous functions, and interpret the conservation equations in a distributional
sense.

Definition 2 (weak solution). Let f W IRn 7! IRn be a smooth vector field.
A measurable function u D u.t; x/, defined on an open set ˝ � IR � IR and
with values in IRn, is a weak solution of the system of conservation laws

ut C f .u/x D 0 (24)

if, for every C 1 function � W ˝ 7! IR with compact support, one has

ZZ
˝

˚
u �t C f .u/ �x

�
dxdt D 0: (25)

Observe that no continuity assumption is made on u. To make sense of the
integral in (25) we only need that u and f .u/ be locally integrable in˝ . Notice also
that weak solutions are defined up to L1 equivalence. A solution is not affected by
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changing its values on a set of measure zero in the t-x plane. An easy consequence
of the above definition is the closure of the set of solutions w.r.t. convergence in L1loc.

Lemma 1. Let .um/m�1 be a uniformly bounded sequence of distributional solu-
tions of (24). If um ! u and f .um/ ! f .u/ in L1loc then the limit function u is also
a weak solution.

Indeed, for every � 2 C 1
c one has

ZZ
˝

˚
u �t C f .u/ �x

�
dxdt D lim

m!1

ZZ
˝

˚
um �t C f .um/ �x

�
dxdt D 0:

ut
We observe that, in particular, the assumptions of the lemma are satisfied if um !

u in L1loc and the flux function f is bounded.
In the following, we shall be mainly interested in solutions defined on a strip

Œ0; T � � IR, with an assigned initial condition

u.0; x/ D Nu.x/: (26)

Here Nu 2 L1loc.IR/. To treat the initial value problem, it is convenient to require some
additional regularity w.r.t. time.

Definition 3 (weak solution to the Cauchy problem). A function u W Œ0; T � �
IR 7! IRn is a weak solution of the Cauchy problem (24), (26) if u is continuous as
a function from Œ0; T � into L1loc, the initial condition (26) holds and the restriction of
u to the open strip �0; T Œ�IR is a distributional solution of (24).

Remark 1 (classical solutions). Let u be a weak solution of (24). If u is contin-
uously differentiable restricted to an open domain e̋ � ˝ , then at every point
.t; x/ 2 e̋ , the function u must satisfy the quasilinear system

ut C A.u/ux D 0; (27)

with A.u/
:D Df.u/. Indeed, from (25) an integration by parts yields

ZZ �
ut C A.u/ux

�
�dxdt D 0:

Since this holds for every � 2 C 1
c .
e̋/, the identity (27) follows.

2.1 Rankine–Hugoniot Conditions

Next, we look at a discontinuous solution and derive some conditions which must
be satisfied at points of jump. Consider first the simple case of a piecewise constant
function, say
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t

x

n

n+

Ω−

=λx t
u = u+

u = u
Supp φ

Ω+

−
−

Fig. 8 Deriving the
Rankine–Hugoniot equations.
Here the shaded area
describes the support of the
test function �

U.t; x/ D
(

uC if x > �t;

u� if x < �t;
(28)

for some u�; uC 2 IRn, � 2 IR.

Lemma 2. If the functionU in (2.5) is a weak solution of the system of conservation
laws (2.1), then

� .uC � u�/ D f .uC/� f .u�/: (29)

Proof. Let � D �.t; x/ be any continuously differentiable function with compact
support. Let ˝ be an open disc containing the support of � and consider the two
domains

˝C :D ˝ \ fx > �tg; ˝� :D ˝ \ fx < �tg ;
as in Fig. 8. Introducing the vector field v

:D �
U�; f .U /�

�
, and recalling that U is

constant separately on˝� and on ˝C, we write the identity (25) as

ZZ
˝C[˝�

n
U�t C f .U /�x

o
dxdt D


ZZ
˝C

C
ZZ

˝�

�
div v dxdt D 0: (30)

We now apply the divergence theorem separately on the two domains ˝C;˝�.
Call nC;n� the outer unit normals to˝C;˝�, respectively. Observe that � D 0 on
the boundary @˝ . Therefore, the only portion of the boundaries @˝�; @˝C where
v 6D 0 is the line where x D �t . Denoting by ds the differential of the arc-length,
along the line fx D �tg we have

nC ds D .�; � 1/ dt n� ds D .��; 1/ dt ;

0 D
ZZ

˝C[˝�

div v dxdt D
Z
@˝C

nC 
 v ds C
Z
@˝�

n� 
 v ds

D
Z �

�uC � f .uC/
�
�.t; �t/ dt C

Z � � �u� C f .u�/
�
�.t; �t/ dt:
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Therefore, the identity

Z �
�.uC � u�/� f .uC/C f .u�/

�
�.t; �t/ dt D 0

must hold for every function � 2 C 1
c . This implies (29). ut

The vector equations (29) are the famous Rankine–Hugoniot conditions. They
form a set of n scalar equations relating the right and left states uC; u� 2 IRn and
the speed � of the discontinuity, namely:

[speed of the shock] � Œjump in the state� D Œjump in the flux]:

An alternative way of writing these conditions is as follows. Denote by A.u/ D
Df.u/ the n � n Jacobian matrix of f at u. For any u; v 2 IRn, define the averaged
matrix

A.u; v/
:D
Z 1

0

A
�
�v C .1 � �/u� d� (31)

and call �i .u; v/, i D 1; : : : ; n, its eigenvalues. We observe that A.u; v/ D A.v; u/
and A.u; u/ D A.u/. Equation (29) can now be written in the equivalent form

� .uC � u�/ D f .uC/ � f .u�/ D
Z 1

0

Df
�
�uC C .1 � �/u�� 
 .uC � u�/ d�

D A.u�; uC/ 
 .uC � u�/: (32)

In other words, the Rankine–Hugoniot conditions hold if and only if the jump uC �
u� is an eigenvector of the averaged matrix A.u�; uC/ and the speed � coincides
with the corresponding eigenvalue.

Remark 2. In the scalar case, one arbitrarily assign the left and right states u�; uC 2
IR and determine the shock speed as

� D f .uC/� f .u�/
uC � u� D 1

uC � u�

Z uC

u�

f 0.s/ ds: (33)

A geometric interpretation of these identities (see Fig. 9) is that

[speed of the shock] D [slope of secant line through u�; uC on the graph of f �

D [average of the characteristic speeds between u� and uC�:

We now consider a more general solution u D u.t; x/ of (24) and show that the
Rankine–Hugoniot equations are still satisfied at every point .�; �/ where u has an
approximate jump, in the following sense [32].
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Fig. 9 The Rankine–Hugoniot equation in the scalar case

.
λx  

x

t
−u

+uτ

ξ

Fig. 10 A point of approximate jump. Looking through a microscope, i.e. rescaling the variables
t; x in a neighborhood of the point .�; �/, the function u becomes arbitrarily close (in an integral
sense) to the piecewise constant function U in (28)

Definition 4 (approximate jump). We say that a function u D u.t; x/ has an
approximate jump discontinuity at the point .�; �/ if there exists vectors uC 6D u�
and a speed � such that, defining U as in (28), there holds

lim
r!0C

1

r2

Z r

�r

Z r

�r

ˇ̌
ˇu.� C t; � C x/ � U.t; x/

ˇ̌
ˇ dxdt D 0: (34)

Moreover, we say that u is approximately continuous at the point .�; �/ if the above
relations hold with uC D u� (and � arbitrary).

Observe that the above definitions depend only on the L1 equivalence class of u.
Indeed, the limit in (34) is unaffected if the values of u are changed on a set N �
IR2 of Lebesgue measure zero.

Example 4 (a piecewise smooth function). Let g�; gC W IR2 7! IRn be any two
continuous functions and let x D �.t/ be a smooth curve, with derivative P�.t/ :D
d
dt
�.t/. Define the function (see Fig. 10)

u.t; x/
:D
(
g�.t; x/ if x < �.t/;

gC.t; x/ if x > �.t/:
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At a point .�; �/, with � D �.�/, call u� :D g�.�; �/, uC :D gC.�; �/. If uC D u�,
then u is continuous at .�; �/, hence also approximately continuous. On the other
hand, if uC 6D u�, then u has an approximate jump at .�; �/. Indeed, writing P�.t/ D
d�

dt
, the limit (34) holds with � D P�.�/ and U as in (28).

We now prove the Rankine–Hugoniot conditions in the more general case of a
point of approximate jump.

Theorem 1 (Rankine–Hugoniot equations). Let u be a bounded distributional
solution of (24) having an approximate jump at a point .�; �/. In other words,
assume that (34) holds, for some states u�; uC and a speed �, with U as in (28).
Then the Rankine–Hugoniot equations (29) hold.

Proof. For any given � > 0, the rescaled function

u� .t; x/
:D u.� C � t; � C �x/

is also a solution to the system of conservation laws. We claim that, as � ! 0, the
convergence u� ! U holds in L1loc.IR

2I IRn/. Indeed, for any R > 0 one has

lim
�!0

Z R

�R

Z R

�R

ˇ̌
u� .t; x/ � U.t; x/

ˇ̌
dxdt

D lim
�!0

1

�2

Z �R

��R

Z �R

��R

ˇ̌
u.� C t; � C x/ � U.t; x/ˇ̌ dxdt D 0

because of (34). Lemma 1 now implies that U itself is a distributional solution of
(24), hence by Lemma 2 the Rankine–Hugoniot equations (29) hold. ut

2.2 Construction of Shock Curves

In this section we consider the following problem. Given u0 2 IRn, find the states
u 2 IRn which, for some speed �, satisfy the Rankine–Hugoniot equations

�.u � u0/ D f .u/ � f .u0/ D A.u0; u/.u � u0/: (35)

Trivially, the (35) are satisfied by setting u D u0, with � 2 IR arbitrary. Our aim is
to construct non-trivial solutions with u close to u0, relying on the implicit function
theorem. Since this goal cannot be achieved by looking directly at the system (35),
we adopt an alternative formulation.

Fix i 2 f1; : : : ; ng. By a classical result in linear algebra, the jump u � u0 is a
right i -eigenvector of the averaged matrix A.u0; u/ if and only if it is orthogonal to
all left eigenvectors lj .u0; u/ of A.u0; u/, for every j 6D i . This means

 j .u/
:D lj .u0; u/ 
 .u � u0/ D 0 for all j 6D i: (36)
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ri (u0)

u0 u = Si(s)(u0)

Fig. 11 Parameterization of
the i -th shock curve through a
point u0

Instead of the system (35) of n equations in the n C 1 variables .u; �/ D
.u1; : : : ; un; �/, we thus look at the system (36), consisting of n � 1 equations for
the n variables .u1; : : : ; un/.

The point u D u0 is of course a solution. Moreover, the definition (31) trivially
implies A.u0; u0/ D A.u0/, hence lj .u0; u0/ D lj .u0/ for all j . Linearizing the
system (36) at u D u0 we obtain the linear system of n � 1 equations

lj .u0/ 
 .u � u0/ D 0 j 6D i: (37)

Since the left eigenvectors lj .u0/ are linearly independent, this has maximum rank.
We can thus apply the implicit function theorem to the nonlinear system (36)

and conclude that, for each i 2 f1; : : : ; ng, there exists a curve s 7! Si .s/.u0/
of points that satisfy (36). At the point u0, this curve has to be perpendicular to all
vectors lj .u0/, for j 6D i . Therefore, it must be tangent to the i -th eigenvector ri .u0/
(Fig. 11).

2.3 Admissibility Conditions

To motivate the following discussion, we first observe that the concept of weak
solution is usually not stringent enough to achieve uniqueness for a Cauchy problem.
In some cases, infinitely many weak solutions can be found, all with the same initial
condition.

Example 5 (multiple weak solutions). For Burgers’ equation

ut C .u2=2/x D 0 ; (38)

consider the Cauchy problem with initial data

u.0; x/ D
(
1 if x � 0;

0 if x < 0:

As shown in Fig. 12, for every 0 < ˛ < 1, a weak solution is

u˛.t; x/ D

8̂
<̂
ˆ̂:
0 if x < ˛t=2;

˛ if ˛t=2 � x < .1C ˛/t=2;

1 if x � .1C ˛/t=2:

(39)
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u= α  

u=1

xx0

α
1

0

u = 0

t
x= α t / 2Fig. 12 For every ˛ 2 Œ0; 1�

one obtains a different weak
solution of Burgers’ equation,
always with the same initial
data

Indeed, the piecewise constant function u˛ trivially satisfies the equation outside
the jumps. Moreover, the Rankine–Hugoniot conditions hold along the two lines of
discontinuity fx D ˛t=2g and fx D .1C ˛/t=2g, for all t > 0.

From the previous example it is clear that, in order to achieve the uniqueness of
solutions and their continuous dependence on the initial data, the notion of weak
solution must be supplemented with further “admissibility conditions”. Three main
approaches can be followed.

I: Singular limits.
Assume that, by physical considerations, the system of conservation laws (24)

can be regarded as an approximation to a more general system, say

ut C f .u/x D "�.u/; (40)

for some " > 0 small. Here �.u/ is typically a higher order differential operator.
We then say that a weak solution u D u.t; x/ of the system of conservation laws

(24) is “admissible” if there exists a sequence of solutions u" to the perturbed (40)
which converges to u in L1loc , as " ! 0C.

A natural choice is to take the diffusion operator�.u/
:D uxx . This leads to

Admissibility Condition 1 (vanishing viscosity). A weak solution u of (24) is
admissible in the vanishing viscosity sense if there exists a sequence of smooth
solutions u" to

u"t C f .u"/x D "u"xx (41)

which converge to u in L1loc as " ! 0C .

The main drawback of this approach is that it is very difficult to provide a priori
estimates on general solutions to the higher order system (40), and characterize
the corresponding limits as " ! 0C. For the vanishing viscosity approximations
(41), this goal has been reached only recently in [7], within the class of solutions
with small total variation. From the above condition, however, one can deduce other
conditions which can be more easily verified in practice.

II: Entropy conditions.
An alternative approach relies on the concept of entropy.

Definition 5 (entropy and entropy flux). A continuously differentiable function

 W IRn 7! IR is called an entropy for the system of conservation laws (24), with
entropy flux q W IRn 7! IR, if for all u 2 IRn there holds
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D
.u/ 
Df.u/ D Dq.u/: (42)

An immediate consequence of (42) is that, if u D u.t; x/ is a C 1 solution of
(24), then


.u/t C q.u/x D 0: (43)

Indeed,


.u/t C q.u/x D D
.u/ut CDq.u/ux D D
.u/
��Df.u/ux

�CDq.u/ux D 0:

In other words, for a smooth solution u, not only the quantities u1; : : : ; un are
conserved but the additional conservation law (43) holds as well. However one
should be aware that, when u is discontinuous, the quantity 
.u/ may not be
conserved.

Example 6. Consider Burgers’ equation (38). Here the flux is f .u/ D u2=2. Taking

.u/ D u3 and q.u/ D .3=4/u4, one checks that the (42) is satisfied. Hence 
 is an
entropy and q is the corresponding entropy flux. We observe that the function

u.0; x/ D
(
1 if x < t=2;

0 if x � t=2;

is a (discontinuous) weak solution of (38). However, it does not satisfy (43) in
distribution sense. Indeed, calling u� D 1, uC D 0 the left and right states, and
� D 1=2 the speed of the shock, one has

3

4
D q.uC/� q.u�/ 6D �

h

.uC/� 
.u�/

i
D 1

2
:

We now study how a convex entropy behaves in the presence of a small diffusion
term. Assume 
; q 2 C 2, with 
 convex. Multiplying both sides of (41) on the left
by D
.u"/ and using (42) one finds

�

.u"/

�
t
C �
q.u"/

�
x

D "D
.u"/u"xx D "
n�

.u"/

�
xx

�D2
.u"/ 
 �u"x ˝u"x
�o
: (44)

Observe that the last term in (44) satisfies

D2
.u"/
�
u"x ˝ u"x

� D
nX

i;jD1

@2
.u"/

@ui @uj

 @u"i
@x

@u"j
@x

� 0;

because 
 is convex, hence its second derivative at any point u" is a positive
semidefinite quadratic form. Multiplying (44) by a nonnegative smooth function
' with compact support and integrating by parts, we thus have

ZZ ˚

.u"/'t C q.u"/'x

�
dxdt � � "

ZZ

.u"/'xx dxdt:
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If u" ! u in L1 as " ! 0, the previous inequality yields
ZZ ˚


.u/'t C q.u/'x
�
dxdt � 0 (45)

whenever ' 2 C 1
c , ' � 0. The above can be restated by saying that 
.u/t C

q.u/x � 0 in distribution sense. The previous analysis leads to:

Admissibility Condition 2 (entropy inequality). A weak solution u of (24) is
entropy-admissible if


.u/t C q.u/x � 0 (46)

in the sense of distributions, for every pair .
; q/, where 
 is a convex entropy for
(24) and q is the corresponding entropy flux.

For the piecewise constant function U in (28), an application of the divergence
theorem shows that 
.U /t C q.U /x � 0 in distribution if and only if

�
�

.uC/� 
.u�/

� � q.uC/� q.u�/: (47)

More generally, let u D u.t; x/ be a bounded function which satisfies the
conservation law (24). Assume that u has an approximate jump at .�; �/, so that
(34) holds with U as in (28). Then, by the rescaling argument used in the proof of
Theorem 1, one can show that the inequality (47) must again hold.

We remark that the above admissibility condition can be useful only if some
nontrivial convex entropy for the system (24) is known. For n � n systems of
conservation laws, the (42) can be regarded as a first order system of n equations for
the two scalar variables 
, q, namely

�
@


@u1

 
 
 @


@un

�
0
B@
@f1
@u1


 
 
 @f1
@un


 
 

@fn
@u1


 
 
 @fn
@un

D

1
CA
�
@q

@u1

 
 
 @q

@un

�
:

When n � 3, this system is overdetermined. In general, one should thus expect
to find solutions only in the case n � 2. However, there are important physical
examples of larger systems which admit a nontrivial entropy function.

III: Stability conditions.
Admissibility conditions on shocks can also be derived purely from stability

consideration, without any reference to physical models.
We consider first the scalar case. Let U D U.t; x/ be the piecewise constant

solution introduced in (28), with left and right states u�, uC. Let us slightly perturb
the initial data by inserting an intermediate state u	 2 Œu�; uC�, as in Fig. 13. The
original shock is thus split in two smaller shocks, whose speeds are determined by
the Rankine–Hugoniot equations.

To ensure that the L1 distance between the original solution and the perturbed
one does not increase in time, we need:

[speed of jump behind] � [speed of jump ahead].
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Fig. 13 In both cases
u� < uC or u� > uC, the
solution is stable if the speed
of the shock behind is greater
or equal than the speed of the
one ahead

__
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Fig. 14 Geometric
interpretation of the stability
conditions (48). In both cases,
the jump with left state u�

and right state uC is
admissible

By (33), this is the case if and only if

f .u	/� f .u�/
u	 � u� � f .uC/� f .u	/

uC � u	 for all u	 2 Œu�; uC�: (48)

From (48) we thus obtain the following stability conditions (see Fig. 14).

1. If u� < uC, on the interval Œu�; uC� the graph of f should remain above the
secant line.

2. If uC < u�, on the interval ŒuC; u�� the graph of f should remain below the
secant line.

Next, we seek a generalization of this stability conditions, valid also for n�n
hyperbolic systems. Observe that, still in the scalar case, the condition (48) is
equivalent to

f .u	/� f .u�/
u	 � u� � f .uC/ � f .u�/

uC � u� for all u	 2 Œu�; uC�: (49)

In other words, the speed of the original shock .u�; uC/ should be not greater
than the speed of any intermediate shock .u�; u	/, where u	 2 Œu�; uC� is any
intermediate state (Fig. 15).

Next, we consider n�n hyperbolic systems. As in Sect. 2.2, we let s 7! Si .s/.u�/
describe the i -shock curve through u�. This is the curve of all states u that can be
connected to u� by a shock of the i -th family (Fig. 16).

Observe that, if uC D Si .�/.u�/ and u	 D Si.s/.u�/ are two points on the
i -shock curve through u�, in general it is not true that the two states uC and u	 can
be connected by a shock. For this reason, a straightforward generalization of the
condition (48) to systems is not possible. However, the equivalent condition (49)
has a natural extension to the vector valued case, namely:
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f(u)

−u
−u+u+u*u u*

f(u)

Fig. 15 Geometric interpretation of the stability conditions (49)

+u− u* −u   = S (σ) (u  )i

Fig. 16 The i -shock .u�; uC/ satisfies the Liu admissibility conditions if its speed satisfies
�i .u�; uC/ � �i .u�; u�/ for every intermediate state u� along the i -shock curve through u�

Admissibility Condition 3 (Liu condition). Let uC D Si.�/.u�/ for some � 2
IR. We say that the shock with left and right states u�; uC satisfies the Liu
admissibility condition provided that its speed is less or equal to the speed of every
smaller shock, joining u� with an intermediate state u	 D Si .s/.u�/, s 2 Œ0; ��.

This condition was introduced by T.P. Liu in [45]. Much later, the paper [7]
showed that, among solutions with small total variation, the Liu condition com-
pletely characterizes the ones which can be obtained as vanishing viscosity limits.

We conclude this section by mentioning another admissibility condition, intro-
duced by Lax in [40] and widely used in the literature.

Admissibility Condition 4 (Lax condition). A shock of the i -th family, connect-
ing the states u�; uC and traveling with speed � D �i.u�; uC/, satisfies the Lax
admissibility condition if

�i .u
�/ � �i .u

�; uC/ � �i .u
C/: (50)

To appreciate the geometric meaning of this condition, consider a piecewise
smooth solution, having a discontinuity along the line x D �.t/, where the solution
jumps from a left state u� to a right state uC (see Fig. 17). According to (32),
this discontinuity must travel with a speed �

:D P� D �i .u�; uC/ equal to the
i -eigenvalue of the averaged matrix A.u�; uC/, for some i 2 f1; : : : ; ng. If we now
look at the i -characteristics, i.e. at the solutions of the O.D.E.

Px D �i
�
u.t; x/

�
;

we see that the Lax condition requires that these lines run into the shock, from
both sides.
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x

Fig. 17 Left: a shock
satisfying the Lax condition.
As time increases,
characteristics run toward the
shock, from both
sides. Right: a shock
violating this condition

3 The Riemann Problem

In this chapter we construct the solution to the Riemann problem, consisting of the
system of conservation laws

ut C f .u/x D 0 (51)

together with the simple, piecewise constant initial data

u.0; x/ D Nu.x/ :D
(

u� if x < 0;

uC if x > 0:
(52)

This will provide the basic building block toward the solution of the Cauchy problem
with more general initial data.

This problem was first studied by B. Riemann in [52], in connection with the
2� 2 system of isentropic gas dynamics. In [40], P. Lax constructed solutions to the
Riemann problem for a wide class of n � n strictly hyperbolic systems. Further
results were provided by T. P. Liu in [44], dealing with systems under generic
assumptions. The paper [6] by S. Bianchini provides a fully general construction,
valid even for systems not in conservation form. In this case, “solutions” are
interpreted as limits of vanishing viscosity approximations.

The central role played by the Riemann problem, within the general theory of
conservation laws, can be explained in terms of symmetries. We observe that, if
u D u.t; x/ is a weak solution of (51), then for every � > 0 the rescaled function

u� .t; x/
:D u.� t; �x/ (53)

provides yet another solution. Among all solutions to a system of conservation laws,
the Riemann problems yield precisely those weak solutions which are invariant
w.r.t. the above rescaling: u� D u for every � > 0 (see Fig. 18).

3.1 Some Examples

We begin by describing the explicit solution of the Riemann problem (51)–(52) in a
few elementary cases.
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3ω = u+
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0

Fig. 18 The solution to a
Riemann problem is constant
along rays through the origin,
in the t -x plane. Hence it is
invariant w.r.t. the symmetry
transformation (53)
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Fig. 19 A contact
discontinuity. Here the
characteristic speed
f 0.u/ 
 � is constant, for all
values of u 2 Œu�; uC�
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u+
f (u)

f (u)’

u(t)

t

0

Fig. 20 The centered
rarefaction wave defined at
(54)

Example 7. Consider a scalar conservation law with linear flux f .u/ D �u C c.

As shown in Fig. 19, the solution of the Riemann problem is

u.t; x/ D
(

u� if x < �t;

uC if x > �t:

It consists of a single jump, called a contact discontinuity, traveling with speed �.

Example 8. Consider a scalar conservation law with strictly convex flux, so that
u 7! f 0.u/ is strictly increasing. Moreover, assume that uC > u�.

The solution is then a centered rarefaction wave, obtained by the method of
characteristics (Fig. 20).

u.t; x/ D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

u� if x
t
< f 0.u�/;

uC if x
t
> f 0.uC/;

! if x
t

D f 0.!/ for some ! 2 Œu�; uC�:

(54)
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Fig. 21 A shock satisfying the admissibility conditions

Since the mapping ! 7! f 0.!/ is strictly increasing, for x
t

2 Œf 0.u�/ ; f 0.uC/�
there exists a unique value ! 2 Œu�; uC� such that x

t
D f 0.!/. The above function

u is thus well defined.

Example 9. Consider again a scalar conservation law with strictly convex flux.
However, we now assume that uC < u�.

The solution consists of a single shock:

u.t; x/ D
(

u� if x < �t;

uC if x > �t;
(55)

As usual, the shock speed is determined by the Rankine–Hugoniot equations
(33). We observe that this shock satisfies both the Liu and the Lax admissibility
conditions.

Remark 3. The formula (55) defines a weak solution to the Riemann problem
also in Example 8. However, if u� < uC, this solution does not satisfy the Liu
admissibility condition. The Lax condition fails as well.

On the other hand, if uC < u�, the formula (54) does not define a single valued
function (Fig. 21). Hence it cannot provide a solution in Example 9.

Example 10. Consider the Riemann problem for a linear system:

ut CAux D 0 u.0; x/ D
(

u� if x < 0;

uC if x > 0:

For linear systems, the general solution to the Cauchy problem was already
constructed in (14).

For this particular initial data, the solution can be obtained as follows. Write the
vector uC � u� as a linear combination of eigenvectors of A, i.e.

uC � u� D
nX

jD1
cj rj :
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Fig. 22 Solution to the
Riemann problem for a linear
system

Define the intermediate states

!i
:D u� C

X
j�i

cj rj ; i D 0; : : : ; n:

The solution then takes the form

u.t; x/ D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

!0 D u� for x=t < �1;

: : :

!i for �i < x=t < �iC1;
: : :

!n D uC for x=t > �n:

(56)

Notice that, in this linear case, the general solution to the Riemann problem consists
of n jumps. The i -th jump: !i � !i�1 D ci ri is parallel to the i -eigenvector of the
matrixA and travels with speed �i , given by the corresponding eigenvalue (Fig. 22).

3.2 A Class of Hyperbolic Systems

We shall consider hyperbolic systems which satisfy the following simplifying
assumption, introduced by P. Lax [40].

(H) For each i D 1; : : : ; n, the i -th field is either genuinely nonlinear, so that
D�i.u/ 
 ri .u/ > 0 for all u, or linearly degenerate, with D�i.u/ 
 ri .u/ D 0 for
all u.

We recall that D�i denotes the gradient of the scalar function u 7! �i.u/.
HenceD�i.u/ 
 ri .u/ is the directional derivative of �i in the direction of the vector
ri . Notice that, in the genuinely nonlinear case, the i -th eigenvalue �i is strictly
increasing along each integral curve of the corresponding field of eigenvectors ri .
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Fig. 23 Integral curves of the
vector fields r1.u/; r2.u/

In the linearly degenerate case, on the other hand, the eigenvalue�i is constant along
each such curve (see Fig. 23). With the above assumption (H), we are ruling out the
possibility that, along some integral curve of an eigenvector ri , the corresponding
eigenvalue �i may partly increase and partly decrease, having several local maxima
and minima.

Example 11 (isentropic gas dynamics). Denote by  the density of a gas, by v D �1
its specific volume and by u its velocity. A simple model for isentropic gas dynamics
(in Lagrangian coordinates) is then provided by the so-called “p-system”

�
vt � ux D 0 ;

ut C p.v/x D 0:
(57)

Here p D p.v/ is a function which determines the pressure in terms of of the
specific volume. An appropriate choice is p.v/ D kv�� , with 1 � � � 3. In the
region where v > 0, the Jacobian matrix of the system is

A
:D Df D



0 �1

p0.v/ 0

�
:

The eigenvalues and eigenvectors are found to be

�1 D �p�p0.v/ ; �2 D p�p0.v/ ; (58)

r1 D
0
@ 1

p�p0.v/

1
A ; r2 D

0
@ �1
p�p0.v/

1
A : (59)

It is now clear that the system is strictly hyperbolic provided that p0.v/ < 0 for all
v > 0. Moreover, observing that

D�1 
 r1 D p00.v/
2
p�p0.v/

D D�2 
 r2 ;

we conclude that both characteristic fields are genuinely nonlinear if p00.v/ > 0 for
all v > 0.
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As we shall see in the sequel, if the assumption (H) holds, then the solution
of the Riemann problem has a simple structure consisting of the superposition of n
elementary waves: shocks, rarefactions or contact discontinuities. This considerably
simplifies all further analysis. On the other hand, for strictly hyperbolic systems
that do not satisfy the condition (H), basic existence and stability results can still be
obtained, but at the price of heavier technicalities [44].

3.3 Elementary Waves

Fix a state u0 2 IRn and an index i 2 f1; : : : ; ng. As before, let ri .u/ be an i -
eigenvector of the Jacobian matrix A.u/DDf.u/. The integral curve of the vector
field ri through the point u0 is called the i -rarefaction curve through u0. It is
obtained by solving the Cauchy problem in state space:

du

d�
D ri .u/; u.0/ D u0: (60)

We shall denote this curve as

� 7! Ri.�/.u0/: (61)

Clearly, the parametrization depends on the choice of the eigenvectors ri . In
particular, if we impose the normalization

ˇ̌
ri .u/

ˇ̌ � 1, then the rarefaction curve
(61) will be parameterized by arc-length. In the genuinely nonlinear case, we always
choose the orientation so that the eigenvalue �i .u/ increases as the parameter �
increases along the curve.

Next, for a fixed u0 2 IRn and i 2 f1; : : : ; ng, we consider the i -shock curve
through u0. This is the set of states u which can be connected to u0 by an i -shock.
As in Sect. 2.2, this curve will be parameterized as

� 7! Si.�/.u0/: (62)

Using a suitable parametrization (say, by arclength), one can show that the two
curves Ri; Si have a second order contact at the point u0 (see Fig. 24). More
precisely, the following estimates hold.

�
Ri.�/.u0/ D u0 C �ri .u0/C O.1/ 
 �2;
Si .�/.u0/ D u0 C �ri .u0/C O.1/ 
 �2; (63)

ˇ̌
ˇRi.�/.u0/� Si.�/.u0/

ˇ̌
ˇ D O.1/ 
 �3; (64)

�i

�
Si.�/.u0/; u0

�
D �i .u0/C �

2
D�i .u0/ 
 ri .u0/C O.1/ 
 �2: (65)
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Fig. 24 The i -shock curve
and the i -rarefaction curve
through a point u0

Here and throughout the following, the Landau symbol O.1/ denotes a quantity
whose absolute value satisfies a uniform bound, depending only on the system (51).

Toward the general solution of the Riemann problem (51)–(52), we first study
three special cases.

1. Centered Rarefaction Waves. Let the i -th field be genuinely nonlinear, and
assume that uC lies on the positive i -rarefaction curve through u�, i.e. uC D
Ri.�/.u�/ for some � > 0. For each s 2 Œ0; ��, define the characteristic speed

�i.s/ D �i
�
Ri.s/.u

�/
�
:

Observe that, by genuine nonlinearity, the map s 7! �i .s/ is strictly increasing.
Hence, for every � 2 ��i .u�/; �i .uC/

�
, there is a unique value s 2 Œ0; �� such that

� D �i .s/. For t � 0, we claim that the function

u.t; x/ D

8̂
<̂
ˆ̂:

u� if x=t < �i .u�/;
Ri .s/.u�/ if x=t D �i .s/ 2 ��i .u�/; �i .uC/

�
;

uC if x=t > �i .uC/;
(66)

is a piecewise smooth solution of the Riemann problem, continuous for t > 0.
Indeed, from the definition it follows

lim
t!0C

u.t; 
/� NuL1 D 0:

Moreover, the (51) is trivially satisfied in the sectors where x < t�i .u�/ or x >
t�i .uC/, because here ut D ux D 0. Next, assume x D t�i .s/ for some s 2 �0; �Œ .
Since u is constant along each ray through the origin fx=t D cg, we have

ut .t; x/C x

t
ux.t; x/ D 0: (67)

We now observe that the definition (66) implies x=t D �i
�
u.t; x/

�
. By construction,

the vector ux has the same direction as ri .u/, hence it is an eigenvector of the
Jacobian matrix A.u/

:D Df.u/ with eigenvalue �i.u/. On the sector of the t-x
plane where �i .u�/ < x=t < �i .uC/ we thus have
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Fig. 25 A solution to the Riemann problem consisting of centered rarefaction wave. Left: the
profile of the solution at a fixed time t , in the x-u space. Right: the values of u in the t -x plane

ut C A.u/ux D ut C �i.u/ux D 0 ;

proving our claim. As shown in Fig. 25, at a fixed time t > 0, the profile x 7!
u.t; x/ is obtained as follows. Consider the rarefaction curve Ri joining u� with
uC, on the hyperplane where x D 0. Move each point of this curve horizontally,
in the amount t �i .u/. The new curve yields the graph of u.t; 
/. Notice that the
assumption � > 0 is essential for the validity of this construction. In the opposite
case � < 0, the definition (66) would yield a triple-valued function in the region
where x=t 2 ��i.uC/ ; �i .u�/

�
.

2. Shocks. Assume again that the i -th family is genuinely nonlinear and that the
state uC is connected to the right of u� by an i -shock, i.e. uC D Si.�/.u�/. Then,
calling �

:D �i .uC; u�/ the Rankine–Hugoniot speed of the shock, the function

u.t; x/ D
(

u� if x < �t;

uC if x > �t;
(68)

(Fig. 26) provides a piecewise constant solution to the Riemann problem. Observe
that, if � < 0, than this solution is entropy admissible in the sense of Lax. Indeed,
since the speed is monotonically increasing along the shock curve, recalling (65) we
have

�i .u
C/ < �i.u

�; uC/ < �i .u
�/: (69)

Hence the Lax admissibility conditions (50) hold. In the case � > 0, however, one
has �i .u�/ < �i.uC/ and the conditions (50) are violated.

3. Contact discontinuities. Assume that the i -th field is linearly degenerate and
that the state uC lies on the i -th rarefaction curve through u�, i.e. uC D Ri.�/.u�/
for some � . By assumption, the i -th characteristic speed �i is constant along this
curve. Choosing � D �.u�/, the piecewise constant function (68) then provides a
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t

u = u − u = u +

x =    tλ

x0

Fig. 26 A solution
consisting of a single shock,
or a contact discontinuity

solution to our Riemann problem. Indeed, the Rankine–Hugoniot conditions hold at
the point of jump:

f .uC/� f .u�/ D
Z �

0

Df .Ri .s/.u
�// ri .Ri .s/.u�// ds

D R �
0
�.u�/ ri

�
Ri.s/.u�/

�
ds D �i .u�/ 


�
Ri.�/.u�/� u�

�
:

(70)
In this case, the Lax entropy condition holds regardless of the sign of � . Indeed,

�i .u
C/ D �i.u

�; uC/ D �i .u
�/: (71)

Observe that, according to (70), for linearly degenerate fields the shock and
rarefaction curves actually coincide: Si .�/.u0/ D Ri.�/.u0/ for all � .

The above results can be summarized as follows. For a fixed left state u� and
i 2 f1; : : : ; ng define the mixed curve

�i.�/.u
�/ D

(
Ri.�/.u�/ if � � 0;

Si .�/.u�/ if � < 0:
(72)

In the special case where uC D �i.�/.u�/ for some � , the Riemann problem
can then be solved by an elementary wave: a rarefaction, a shock or a contact
discontinuity.

3.4 General Solution of the Riemann Problem

Relying on the previous analysis, the solution of the general Riemann problem (51)–
(52) can now be obtained by finding intermediate states !0 D u�; !1; : : : ; !n D uC
such that each pair of adjacent states !i�1; !i can be connected by an elementary
wave, i. e.

!i D �i.�i /.!i�1/ i D 1; : : : ; n: (73)
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Fig. 28 A solution to the Riemann problem, consisting of a 1-shock, a 2-contact, and a
3-rarefaction

This can be done whenever uC is sufficiently close to u�. Indeed, consider the map

�.�1; : : : ; �n/ D �n.�n/ ı 
 
 
 ı �1.�1/.u�/:

Taking a first order Taylor expansion at the point .�1; : : : ; �n/ D .0; : : : ; 0/ we
obtain the affine map

.�1; : : : ; �n/ 7! u� C
nX
iD1

�i ri .u
�/:

Since fr1; : : : ; rng is a basis of the space IRn, the above map has full rank (it is
one-to-one and surjective). We can thus apply the implicit function theorem and
conclude that the nonlinear mapping� is a continuous bijection of a neighborhood
of the origin in IRn onto a neighborhood of u� (Fig. 27).

Therefore, for uC sufficiently close to u�, there exist unique wave strengths
�1; : : : �n such that

uC D �n.�n/ ı 
 
 
 ı �1.�1/.u�/: (74)

In turn, these determine the intermediate states !i in (73). The complete solution is
now obtained by piecing together the solutions of the n Riemann problems (Fig. 28)
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ut C f .u/x D 0; u.0; x/ D
(
!i�1 if x < 0;

!i if x > 0;
(75)

on different sectors of the t-x plane. By construction, each of these problems has
an entropy-admissible solution consisting of a simple wave of the i -th characteristic
family. More precisely:

CASE 1: The i -th characteristic field is genuinely nonlinear and �i > 0. Then the
solution of (75) consists of a centered rarefaction wave. The i -th characteristic
speeds range over the interval Œ��

i ; �
C
i �, defined as

��
i

:D �i .!i�1/; �C
i

:D �i.!i /:

CASE 2: Either the i -th characteristic field is genuinely nonlinear and �i � 0, or
else the i -th characteristic field is linearly degenerate (with �i arbitrary). Then
the solution of (75) consists of an admissible shock or a contact discontinuity,
traveling with Rankine–Hugoniot speed

��
i

:D �C
i

:D �i .!i�1; !i /:

The solution to the original problem (51)–(52) can now be constructed by piecing
together the solutions of the n Riemann problems (75), i D 1; : : : ; n. Indeed, for
�1; : : : ; �n sufficiently small, the speeds ��

i ; �
C
i introduced above remain close to

the corresponding eigenvalues �i.u�/ of the matrix A.u�/. By strict hyperbolicity
and continuity, we can thus assume that the intervals Œ��

i ; �
C
i � are disjoint, i.e.

��
1 � �C

1 < ��
2 � �C

2 < 
 
 
 < ��
n � �C

n :

Therefore, a piecewise smooth solution u W Œ0;1/ � IR 7! IRn is well defined by
the assignment

u.t; x/ D

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

u� D !0 if x=t 2 � � 1; ��
1

�
;

Ri .s/.!i�1/ if x=t D �i
�
Ri.s/.!i�1/

� 2 ���
i ; �

C
i

�
;

!i if x=t 2 �
�C
i ; �

�
iC1
�
;

uC D !n if x=t 2 �
�C
n ; 1�

:
(76)

Observe that this solution is self-similar, having the form u.t; x/ D  .x=t/, with
 W IR 7! IRn possibly discontinuous.
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3.5 The Riemann Problem for the p-System

Example 12 (the p-system). Consider again the equations for isentropic gas dynam-
ics (in Lagrangian coordinates)

�
vt � ux D 0 ;

ut C p.v/x D 0:
(77)

Writing U D .v; u/, the Riemann problem takes the form

U.0; x/ D
(
U� D .v�; u�/ if x < 0;

UC D .vC; uC/ if x > 0:
(78)

Here u�; uC are the velocities to the left and to the right of the initial jump, while
v�; vC > 0 are the specific volumes.

By (59), the 1-rarefaction curve through U� is obtained by solving the Cauchy
problem

du

dv
D p�p0.v/; u.v�/ D u�:

This yields the curve

R1 D
n
.v; u/I u � u� D

Z v

v�

p�p0.y/ dy
o
: (79)

Similarly, the 2-rarefaction curve through the point U� is

R2 D
n
.v; u/I u � u� D �

Z v

v�

p�p0.y/ dy
o
: (80)

The shock curvesS1; S2 through the left stateU� are obtained from the Rankine–
Hugoniot conditions

�.v � v�/ D � .u � u�/; �.u � u�/ D p.v/� p.v�/: (81)

One can use the first equation in (81) to obtain the shock speed �. From the second
equation, the shock curves are then computed as

S1 D
�
.v; u/I �.u � u�/2 D .v � v�/

�
p.v/ � p.v�/

�
; �

:D � u � u�
v � v� < 0

�
;

(82)

S2 D
�
.v; u/I �.u � u�/2 D .v � v�/

�
p.v/� p.v�/

�
; �

:D � u � u�
v � v� > 0

�
:

(83)
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Fig. 29 Shocks and
rarefaction curves through the
point U� D .v�; u�/

By (58)–(59) and the assumptions p0.v/ < 0, p00.v/ > 0, the directional deriva-
tives of the eigenvalues �1; �2 in the direction of the corresponding eigenvectors
r1; r2 are found to be

.D�1/r1 D .D�2/r2 D p00.v/
2
p�p0.v/

> 0: (84)

Therefore, the Riemann problem (77)–(78) admits a solution in the form of a
centered rarefaction wave provided that UC 2 R1, vC > v�, or else UC 2 R2,
vC < v�. On the other hand, a shock connecting U� with UC will be admissible if
either UC 2 S1 and vC < v�, or else UC 2 S2 and vC > v�.

Taking the above admissibility conditions into account, we thus obtain four
curves originating from the point U� D .v�; u�/. Namely, the two rarefaction
curves

� 7! R1.�/; R2.�/ � � 0;

and the two shock curves

� 7! S1.�/; S2.�/ � � 0:

In turn, these curves divide a neighborhood of U� into four regions (Fig. 29):

˝1 W bounded by R1; S2; ˝2 W bounded by R1;R2;

˝3 W bounded by S1; S2; ˝4 W bounded by S1;R2:

For UC D .vC; uC/ sufficiently close to U� D .v�; u�/, the structure of the
general solution to the Riemann problem is now determined by the location of the
state UC, with respect to the curves Ri , Si (Fig. 30).
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Fig. 30 Solution to the
Riemann problem for the
p-system. The four different
cases

CASE 1: UC 2 ˝1. The solution consists of a 1-rarefaction wave and a 2-shock.
CASE 2: UC 2 ˝2. The solution consists of two centered rarefaction waves.
CASE 3: UC 2 ˝3. The solution consists of two shocks.
CASE 4: UC 2 ˝4. The solution consists of a 1-shock and a 2-rarefaction wave.

Remark 4. Consider a 2�2 strictly hyperbolic system of conservation laws. Assume
that the i -th characteristic field is genuinely nonlinear. The relative position of
the i -shock and the i -rarefaction curve through a point u0 can be determined as
follows (Fig. 24). Let � 7! Ri.�/ be the i -rarefaction curve, parameterized so that
�i
�
Ri.�/

� D �i .u0/C � . Assume that, for some constant ˛, the point

Si.�/ D Ri.�/C �
˛�3 C o.�3/

�
rj .u0/ (85)

lies on the i -shock curve through u0, for all � . Here the Landau symbol o.�3/
denotes a higher order infinitesimal, as � ! 0. The wedge product of two vectors

in IR2 is defined as



a

b

�
^


c

d

�
:D ad � bc. We then have

�.�/
:D
h
Ri.�/C

�̨
�3Co.�3/�rj .u0/�u0

i
^
h
f
�
Ri.�/C

�̨
�3Co.�3/�rj .u0/

�
�f .u0/

i
:D A.�/^B.�/ � 0:
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Indeed, the Rankine–Hugoniot equations imply that the vectors A.�/ and B.�/ are
parallel. According to Leibnitz’ rule, the fourth derivative is computed by

d4

d�4
� D



d4

d�4
A

�
^ B C 4



d3

d�3
A

�
^


d

d�
B

�
C 6



d2

d�2
A

�
^


d2

d�2
B

�

C4


d

d�
A

�
^


d3

d�3
B

�
CA ^



d4

d�4
B

�

By the choice of the parametrization, d
d�
�i
�
Ri.�/

� � 1. Hence

d

d�
f
�
Ri.�/

� D �i
�
Ri.�/

� d
d�
Ri .�/ ;

d 2

d�2
f
�
Ri.�/

� D d

d�
Ri .�/C �i

�
Ri.�/

� d2
d�2

Ri .�/ ;

d 3

d�3
f
�
Ri.�/

� D 2
d2

d�2
Ri .�/C �i

�
Ri.�/

� d3
d�3

Ri .�/:

For convenience, we write ri � rj :D .Drj /ri to denote the directional derivative of
rj in the direction of ri . At � D 0 we have

A D B D 0 ;
d

d�
Ri D ri .u0/ ;

d 2

d�2
Ri D .ri � ri /.u0/:

Using the above identities and the fact that the wedge product is anti-symmetric, we
conclude

d4

d�4
�

ˇ̌
ˇ̌
ˇ
�D0

D 4

 
d3

d�3
RiC6˛rj

!
^


�i

d

d�
Ri

�
C6

 
d2

d�2
Ri

!
^
 
d

d�
Ri C �i

d2

d�2
Ri

!

C4


d

d�
Ri

�
^
 
2
d2

d�2
Ri C �i

d3

d�3
Ri C 6˛�j rj

!

D 24˛.�i � �j /.rj ^ ri / � 2.ri � ri / ^ ri D 0:

The i -shock curve through u0 is thus traced by points Si .�/ at (85), with

˛ D .ri � ri / ^ ri
12.�i � �j /.rj ^ ri / : (86)
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The sign of ˛ in (86) gives the position of the i -shock curve, relative to the
i -rarefaction curve, near the point u0. In particular, if .ri � ri / ^ ri 6D 0, it is clear
that these two curves do not coincide.

3.6 Error and Interaction Estimates

In this final section we provide two types of estimates, which will play a key role in
the analysis of front tracking approximations.

Fix a left state u�, a right state uC, and a speed �. If these satisfy the Rankine–
Hugoniot equations, we have

�.uC � u�/ � Œf .uC/� f .u�/� D 0:

On the other hand, if these values are chosen arbitrarily, the only available
estimate is

�.uC � u�/� Œf .uC/� f .u�/� D O.1/ 
 juC � u�j: (87)

Here an throughout the sequel, the Landau symbol O.1/ denotes a quantity which
remains uniformly bounded as all variables u�; uC; �; � : : : range on bounded sets.
The next lemma describes by how much the Rankine–Hugoniot equation fail to be
satisfied, if the point uC lies on the i -rarefaction curve through u� and we choose �
to be the i -th characteristic speed at the point u�.

Lemma 3 (error estimate). For � > 0 small, one has the estimate

�k.u
�/
h
Rk.�/.u

�/� u�� �
h
f
�
Rk.�/.u

�/
� � f .u�/

i
D O.1/ 
 �2: (88)

Proof. Call E.�/ the left hand side of (88). Clearly E.0/ D 0. Differentiating
w.r.t. � at the point � D 0 and recalling that dRk=d� D rk , we find

dE

d�

ˇ̌
ˇ̌
�D0

D �k.u
�/rk.u�/�Df.u�/rk.u�/ D 0:

Since E varies smoothly with u� and � , the estimate (88) follows by Taylor’s
formula. ut

Next, consider a left state ul , a middle state um and a right state ur (Fig. 31, left).
Assume that the pair .ul ; um/ is connected by a j -wave of strength � 0, while the pair
.um; ur / is connected by an i -wave of strength � 00, with i < j . We are interested in
the strength of the waves .�1; : : : ; �n/ in the solution of the Riemann problem where
u� D ul and uC D ur . Roughly speaking, these are the waves determined by the



Hyperbolic Conservation Laws: An Illustrated Tutorial 195

l

m

σi
σj

m

l

σk σi

kσ

r

r

σ

u
u

u

u

u

σ σ
σ

u

Fig. 31 Wave interactions.
Strengths of the incoming and
outgoing waves

interaction of the � 0 and � 00. The next lemma shows that �i  � 00, �j  � 0 while
�k  0 for k 6D i; j .

A different type of interaction is considered in Fig. 31, right. Here the pair
.ul ; um/ is connected by an i -wave of strength � 0, while the pair .um; ur / is
connected by a second i -wave, say of strength � 00. In this case, the strengths
.�1; : : : ; �n/ of the outgoing waves satisfy �i  � 0 C � 00 while �k  0 for
k 6D i . As usual, O.1/ will denote a quantity which remains uniformly bounded
as u�; � 0; � 00 range on bounded sets.

Lemma 4 (interaction estimates). Consider the Riemann problem (51)–(52).

(i) Recalling (72), assume that the right state is given by

uC D �i.�
00/ ı �j .� 0/.u�/: (89)

Let the solution consist of waves of size .�1; : : : ; �n/, as in (74). Then

j�i � � 00j C j�j � � 0j C
X
k 6Di;j

j�kj D O.1/ 
 j� 0� 00j: (90)

(ii) Next, assume that the right state is given by

uC D �i.�
00/ ı �i.� 0/.u�/; (91)

Then the waves .�1; : : : ; �n/ in the solution of the Riemann problem are
estimated by

j�i � � 0 � � 00j C
X
k 6Di

j�kj D O.1/ 
 j� 0� 00j�j� 0j C j� 00j�: (92)

For a proof we refer to [11].
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4 Global Solutions to the Cauchy Problem

In this chapter we study the global existence of weak solutions to the general Cauchy
problem

ut C f .u/x D 0; (93)

u.0; x/ D Nu.x/: (94)

Here the flux function f W IRn 7! IRn is smooth, defined on a neighborhood of
the origin. We always assume that the system is strictly hyperbolic, and that the
assumption (H) introduced in the previous chapter holds.

A fundamental result proved by Glimm [34] provides the global existence of an
entropy weak solution, for all initial data with suitably small total variation.

Theorem 2 (Global existence of weak solutions). Assume that the system (93) is
strictly hyperbolic, and that each characteristic field is either linearly degenerate or
genuinely nonlinear.

Then there exists a constant ı0 > 0 such that, for every initial condition Nu 2
L1.IRI IRn/ with

Tot.Var.fNug � ı0 ; (95)

the Cauchy problem (93)–(94) has a weak solution u D u.t; x/ defined for all t � 0.

In addition, one can prove the existence of a global solution satisfying all the
admissibility conditions introduced in Sect. 2.3. A proof of Theorem 2 requires two
main steps:

(a) Construct a sequence of approximate solutions u� .
(b) Show that a subsequence converges in L1loc to a weak solution u of the Cauchy

problem.

Approximate solutions can be constructed by piecing together solutions to several
Riemann problems. Two techniques have been developed in the literature:

– In the Glimm scheme (Fig. 40) one considers a fixed grid of points .tj ; xk/ D
.j �t ; k �x/ in the t-x plane, and solves a Riemann problem at each node of
the grid.

– In a front tracking approximation, one constructs a piecewise constant approx-
imate solution u D u.t; x/, whose jumps are located along a finite number of
segments in the t-x plane (Fig. 33). A new Riemann problem is solved at each
point where two fronts interact. These points depend on the particular solution
being constructed.

Having constructed a sequence of approximate solutions .u�/��1 (Fig. 32), one
needs to extract a subsequence converging to some limit u D u.t; x/ in L1loc . By
Helly’s compactness theorem, this can be achieved by establishing an a priori bound
on the total variation Tot.Var.fu�.t; 
/g, uniformly valid for t > 0 and � � 1.



Hyperbolic Conservation Laws: An Illustrated Tutorial 197

ν
u u

u
1 2
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Fig. 33 An approximate solution obtained by front tracking

4.1 Front Tracking Approximations

In this section we describe the construction of front tracking approximations. This
method was developed in [26, 28], and in [9] respectively for scalar conservation
laws, for 2 � 2 systems, and for general n � n systems satisfying the assumptions
(H). Further versions of this algorithm can also be found in [5,37,55]. An extension
to fully general n � n systems, without the assumptions (H), is provided in [3].

Let the initial condition Nu be given and fix " > 0. We now describe an algorithm
which produces a piecewise constant approximate solution to the Cauchy problem
(93)–(94). The construction (Fig. 33) starts at time t D 0 by taking a piecewise
constant approximation u.0; 
/ of Nu, such that

Tot.Var.
˚
u.0; 
/� � Tot.Var.fNug ;

Z ˇ̌
u.0; x/ � Nu.x/ˇ̌ dx � ": (96)

Let x1 < 
 
 
 < xN be the points where u.0; 
/ is discontinuous. For each ˛ D
1; : : : ; N , the Riemann problem generated by the jump

�
u.0; x˛�/; u.0; x˛C/

�
is

approximately solved on a forward neighborhood of .0; x˛/ in the t-x plane by a
piecewise constant function, according to the following procedure.

Accurate Riemann Solver. Consider the general Riemann problem at a point
.Nt ; Nx/,
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The centered rarefaction wave of the 3-d family has been replaced by a rarefaction fan

vt C f .v/x D 0; v.Nt ; x/ D
(

u� if x < Nx;
uC if x > Nx; (97)

Recalling (72), let !0; : : : ; !n be the intermediate states and �1; : : : ; �n be the
strengths of the waves in the solution, so that

!0 D u�; !n D uC; !i D �i.�i /.!i�1/ i D 1; : : : ; n: (98)

If all jumps .!i�1; !i / were shocks or contact discontinuities, then this solution
would be already piecewise constant. In general, the exact solution of (97) is not
piecewise constant, because of the presence of centered rarefaction waves. These
will be approximated by piecewise constant rarefaction fans, inserting additional
states !i;j as follows.

If the i -th characteristic field is genuinely nonlinear and �i > 0, we divide the
centered i -rarefaction into a number pi of smaller i -waves, each with strength
�i=pi . Here we choose the integer pi big enough so that �=pi < ". For
j D 1; : : : ; pi , we now define the intermediate states and wave-fronts (Fig. 34)

!i;j D Ri.j�i =pi/.!i�1/; xi;j .t/ D Nx C .t � Nt/�i .!i;j�1/: (99)

Replacing each centered rarefaction wave with a rarefaction fan, we thus obtain
a piecewise constant approximate solution to the Riemann problem (Fig. 35).
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Fig. 36 Left: the number of wave fronts can become infinite in finite time. Right: by using the
simplified Riemann solver at two interaction points P and Q, the total number of fronts remains
bounded

We now resume the construction of a front tracking solution to the original
Cauchy problem (93)–(94). Having solved all the Riemann problems at time t D 0,
the approximate solution u can be prolonged until a first time t1 is reached, when
two wave-fronts interact (Fig. 33). Since u.t1; 
/ is still a piecewise constant function,
the corresponding Riemann problems can again be approximately solved within the
class of piecewise constant functions. The solution u is then continued up to a time t2
where a second interaction takes place, etc: : : We remark that, by an arbitrary small
change in the speed of one of the wave fronts, it is not restrictive to assume that at
most two incoming fronts collide, at each given time t > 0. This will considerably
simplify all subsequent analysis, since we don’t need to consider the case where
three or more incoming fronts meet together.

The above construction can be continued for all times t > 0, as long as

(a) The total variation Tot.Var.fu.t; 
/g remains small enough. This guarantees
that all jumps u.t; x�/; u.t; xC/ are small, hence the corresponding Riemann
problems admit a solution.

(b) The total number of fronts remains finite.

Bounds on the total variations will be discussed in the next section. Here we observe
that a naive implementation of the front tracking algorithm can produce an infinite
number of fronts within finite time (Fig. 36).

As shown in [9], this can be avoided by occasionally implementing a Simplified
Riemann Solver, which introduces one single additional front (Fig. 37). In this case,
the solution is continued by means of two outgoing fronts of exactly the same
strength as the incoming one. All other waves resulting from the interaction are
lumped together in a single front, traveling with a constant speed O�, strictly larger
than all characteristic speeds.

In the end, for a given " > 0, this modified front tracking algorithm generates a
piecewise constant "-approximate solution u D u.t; x/, defined as follows.
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Fig. 37 Left: the solution to a Riemann problem obtained by the Accurate Riemann Solver
introduces several new wave fronts. Right: the Simplified Riemann solver produces two outgoing
fronts of the same strength as the incoming ones, plus a small Non-Physical front

Definition 6 (front tracking approximate solution). A piecewise constant func-
tion u D u.t; x/, defined for t � 0, x 2 R, is called an "-approximate front tracking
solution to the Cauchy problem (93)–(94) provided that

(i) The initial condition is approximately attained, namely ku.0; 
/� NukL1 � ".
(ii) All shock fronts and all contact discontinuities satisfy the Rankine–Hugoniot

equations, as well as the admissibility conditions.
(iii) Each rarefaction front has strength � ".
(iv) At each time t > 0, the total strength of all non-physical fronts in u.t; 
/ is � ".
(v) The total variation of u.t; 
/ satisfies a uniform bound, depending only on

Tot.Var.fNug.

– By a shock front we mean a jump whose right and left states satisfy
uC D Si .�/.u�/ for some � 2 IR and i 2 f1; : : : ; ng. This travels with

Rankine–Hugoniot speed � D �i .u�; uC/ D f .uC/�f .u�/

uC�u�
.

– By a rarefaction front we mean a jump whose right and left states satisfy uC D
Ri.�/.u�/ for some �; i . This travels with speed � D �i .uC/, i.e. with the
characteristic speed of its right state.

– By a non-physical front we mean a jump whose right and left states uC, u� are
arbitrary. This travels with a fixed speed O�, strictly greater than all characteristic
speeds.

4.2 Bounds on the Total Variation

In this section we derive bounds on the total variation of a front tracking approxi-
mation u.t; 
/, uniformly valid for all t � 0. These estimates will be obtained from
Lemma 4, using an interaction functional.

We begin by introducing some notation. At a fixed time t , let x˛ , ˛ D 1; : : : ; N ,
be the locations of the fronts in u.t; 
/. Moreover, let j�˛j be the strength of the
wave-front at x˛ , say of the family k˛ 2 f1; : : : ; ng. Following [34], consider the
two functionals
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Fig. 38 Estimating the
change in the total variation
at a time where two fronts
interact

V.t/
:D V

�
u.t/

� :D
X
˛

j�˛j ; (100)

measuring the total strength of waves in u.t; 
/, and

Q.t/
:D Q

�
u.t/

� :D
X

.˛;ˇ/2A

j�˛�ˇj ; (101)

measuring the wave interaction potential. In (101), the summation ranges over the
set A of all couples of approaching wave-fronts:

Definition 7 (approaching fronts). Two fronts, located at points x˛ < xˇ and
belonging to the characteristic families k˛; kˇ 2 f1; : : : ; ng respectively, are
approaching if k˛ > kˇ or else if k˛ D kˇ and at least one of the wave-fronts
is a shock of a genuinely nonlinear family.

Roughly speaking, two fronts are approaching if the one behind has the larger
speed (and hence it can collide with the other, at some future time).

Now consider the approximate solution u D u.t; x/ constructed by the front
tracking algorithm. It is clear that the quantities V

�
u.t/

�
, Q

�
u.t/

�
remain constant

except at times where an interaction occurs. At a time � where two fronts of strength
j� 0j; j� 00j collide, the interaction estimates (90) or (92) yield

�V.�/
:D V.�C/ � V.��/ D O.1/ 
 j� 0� 00j; (102)

�Q.�/
:D Q.�C/ �Q.��/ D � j� 0� 00j C O.1/ 
 j� 0� 00j 
 V.��/: (103)

Indeed (Fig. 38), after time � the two colliding fronts � 0; � 00 are no longer approach-
ing. Hence the product j� 0� 00j is no longer counted within the summation (101).
On the other hand, the new waves emerging from the interaction (having strength
O.1/ 
 j� 0� 00j) can approach all the other fronts not involved in the interaction (which
have total strength � V.��/ ).

If V remains sufficiently small, so that O.1/ 
V.��/ � 1=2, from (103) it follows

Q.�C/ �Q.��/ � � j� 0� 00j
2

: (104)
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By (102) and (104) we can thus choose a constant C0 large enough so that the
quantity

� .t/
:D V.t/C C0Q.t/

decreases at every interaction time, provided that V remains sufficiently small.
We now observe that the total strength of waves is an equivalent way of

measuring the total variation. Indeed, for some constant C one has

Tot.Var.
˚
u.t/

� � V
�
u.t/

� � C 
 Tot.Var.
˚
u.t/

�
: (105)

Moreover, the definitions (100)–(101) trivially imply Q � V 2. If the total variation
of the initial data u.0; 
/ is sufficiently small, the previous estimates show that the
quantity V C C0Q is nonincreasing in time. Therefore

Tot.Var.
˚
u.t/

� � V
�
u.t/

� � V
�
u.0/

�C C0Q
�
u.0/

�
: (106)

This provides a uniform bound on the total variation of u.t; 
/ valid for all times
t � 0.

An important consequence of the bound (106) is that, at every time � where two
fronts interact, the corresponding Riemann problem can always be solved. Indeed,
the left and right states differ by the quantity

juC � u�j � Tot.Var.
˚
u.�/

�
;

which remains small.
Another consequence of the bound on the total variation is the continuity of t 7!

u.t; 
/ as a function with values in L1loc. More precisely, there exists a Lipschitz
constant L0 such that

Z 1

�1

ˇ̌
u.t; x/� u.t 0; x/

ˇ̌
dx � L0jt � t 0j for all t; t 0 � 0: (107)

Indeed, if no interaction occurs inside the interval Œt; t 0�, the left hand side of (107)
can be estimated simply as

u.t/ � u.t 0/


L1 � jt � t 0jP˛ j�˛j j Px˛j

� jt � t 0j 
 Œtotal strength of all wave fronts� 
 Œmaximum speed�

� L0 
 jt � t 0j;
(108)

for some uniform constant L0. The case where one or more interactions take place
within Œt; t 0� is handled in the same way, observing that the map t 7! u.t; 
/ is
continuous across interaction times.
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4.3 Convergence to a Limit Solution

Given any sequence "� ! 0C, by the front tracking algorithm we obtain a sequence
of piecewise constant functions u� , where each unu is an "�-approximate solution to
the Cauchy problem (93)–(94).

By (107) the maps t 7! u�.t; 
/ are uniformly Lipschitz continuous w.r.t. the L1

distance. We can thus apply Helly’s compactness theorem (see Theorem A.1 in the
Appendix) and extract a subsequence which converges to some limit function u in
L1loc , also satisfying (107).

By the second relation in (96), as "� ! 0 we have u�.0/ ! Nu in L1loc. Hence the
initial condition (94) is clearly attained. To prove that u is a weak solution of the
Cauchy problem, it remains to show that, for every � 2 C 1

c with compact support
contained in the open half plane where t > 0, one has

Z 1

0

Z 1

�1
�t .t; x/u.t; x/C �x.t; x/f .u.t; x// dxdt D 0: (109)

Since the u� are uniformly bounded and f is uniformly continuous on bounded sets,
it suffices to prove that

lim
�!0

Z 1

0

Z 1

�1

n
�t .t; x/u�.t; x/C �x.t; x/f

�
u�.t; x/

�o
dxdt D 0: (110)

Choose T > 0 such that �.t; x/ D 0 whenever t … Œ0; T �. For a fixed �, at any time
t call x1.t/ < 
 
 
 < xN .t/ the points where u�.t; 
/ has a jump, and set

�u�.t; x˛/
:Du�.t; x˛C/�u�.t; x˛�/;

�f
�
u�.t; x˛/

� :Df �u�.t; x˛C/��f �u�.t; x˛�/�:
Observe that the polygonal lines x D x˛.t/ subdivide the strip Œ0; T � � IR into

finitely many regions 	j where u� is constant (Fig. 39). Introducing the vector

˚
:D �
� 
 u� ; � 
 f .u�/

�
;

by the divergence theorem the double integral in (110) can be written as

X
j

ZZ
	j

div ˚.t; x/ dtdx D
X
j

Z
@	j

˚ 
 n d�: (111)

Here @	j is the oriented boundary of 	j , while n denotes an outer normal. Observe
that nd� D ˙. Px˛;�1/dt along each polygonal line x D x˛.t/, while �.t; x/ D 0

along the lines t D 0; t D T . By (111) the expression within square brackets in
(110) is computed by
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Fig. 39 Estimating the error in an approximate solution obtained by front tracking

Z T

0

X
˛

h
Px˛.t/ 
�u�.t; x˛/ ��f �u�.t; x˛/�

i
�
�
t; x˛.t/

�
dt: (112)

Here, for each t 2 Œ0; T �, the sum ranges over all fronts of u�.t; 
/. To estimate the
above integral, let �˛ be the signed strength of the wave-front at x˛ . If this wave is a
shock or or contact discontinuity, by construction the Rankine–Hugoniot equations
are satisfied exactly, i.e.

Px˛.t/ 
�u�.t; x˛/��f
�
u�.t; x˛/

� D 0: (113)

On the other hand, if the wave at x˛ is a rarefaction front, its strength will satisfy
�˛ 2 �0; "�Œ . Therefore, the error estimate (88) yields

ˇ̌
ˇ Px˛.t/ 
�u�.t; x˛/��f

�
u�.t; x˛/

�ˇ̌ˇ D O.1/ 
 j�˛j2 D O.1/ 
 "� j�˛j: (114)

Finally, if the jump at x˛ is a non-physical front of strength j�˛j :D ju�.x˛C/ �
u�.x˛�/j, by (87) we have the estimate

ˇ̌
ˇ Px˛.t/ 
�u�.t; x˛/ ��f �u�.t; x˛/�

ˇ̌
ˇ D O.1/ 
 j�˛j: (115)

Summing over all wave-fronts and recalling that the total strength of waves in u�.t; 
/
satisfies a uniform bound independent of t; �, we obtain
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lim sup
�!1

ˇ̌
ˇ̌
ˇ
X
˛

h
Px˛.t/ 
�u�.t; x˛/��f

�
u�.t; x˛/

�i
�
�
t; x˛.t/

�ˇ̌ˇ̌
ˇ

�
�

max
t;x

ˇ̌
�.t; x/

ˇ̌� 
 lim sup
�!1

(
O.1/ 


X
˛2R

"�j�˛j C O.1/ 

X

˛2N P

j�˛j
)

D 0:
(116)

The limit (110) is now a consequence of (116). This shows that u is a weak solution
to the Cauchy problem. For all details we refer to [11].

5 The Glimm Scheme

The fundamental paper of Glimm [34] contained the first rigorous proof of existence
of global weak solutions to hyperbolic systems of conservation laws. For several
years, the Glimm approximation scheme has provided the foundation for most of
the theoretical results on the subject. We shall now describe this algorithm in a
somewhat simplified setting, for systems where all characteristic speeds remain
inside the interval Œ0; 1�. This is not a restrictive assumption. Indeed, consider any
hyperbolic system of the form

ut C A.u/ux D 0;

and assume that all eigenvalues of A remain inside the interval Œ�M;M�. Perform-
ing the linear change of independent variables

y D x CMt; � D 2Mt;

we obtain a new system

u� C A	.u/uy D 0; A	.u/ :D 1

2M
A.u/C 1

2
I

where all eigenvalues of the matrix A	 now lie inside the interval Œ0; 1�.
To construct an approximate solution to the Cauchy problem

ut C f .u/x D 0; u.0; x/ D Nu.x/; (117)

we start with a grid in the t-x plane having step size �t D �x, with nodes at the
points

Pjk D .tj ; xk/
:D .j�t; k�x/ j; k 2 ZZ:
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Moreover, we shall need a sequence of real numbers �1; �2; �3; : : : uniformly
distributed over the interval Œ0; 1�. This means that, for every � 2 Œ0; 1�, the
percentage of points �i , 1 � i � N which fall inside Œ0; �� should approach �
as N ! 1, i.e.:

lim
N!1

#
˚
j I 1 � j � N; �j 2 Œ0; �� �

N
D � for each � 2 Œ0; 1�: (118)

By #I we denote here the cardinality of a set I .
At time t D 0, the Glimm algorithm starts by taking an approximation of the

initial data Nu, which is constant on each interval of the form
�
xk�1; xkŒ , and has

jumps only at the nodal points xk
:D k �x. To fix the ideas, we shall take

u.0; x/ D Nu.xk/ for all x 2 Œxk; xkC1Œ: (119)

For times t > 0 sufficiently small, the solution is then obtained by solving the
Riemann problems corresponding to the jumps of the initial approximation u.0; 
/
at the nodes xk . Since by assumption all waves speeds are contained in Œ0; 1�, waves
generated from different nodes remain separated at least until the time t1 D �t .
The solution can thus be prolonged on the whole time interval Œ0; �tŒ . For bigger
times, waves emerging from different nodes may cross each other, and the solution
would become extremely complicated. To prevent this, a restarting procedure is
adopted. Namely, at time t1 D �t the function u.t1�; 
/ is approximated by a new
function u.t1C; 
/ which is piecewise constant, having jumps exactly at the nodes
xk

:D k �x. Our approximate solution u can now be constructed on the further time
interval Œ�t; 2�tŒ , again by piecing together the solutions of the various Riemann
problems determined by the jumps at the nodal points xk . At time t2 D 2�t , this
solution is again approximated by a piecewise constant function, etc: : :

A key aspect of the construction is the restarting procedure. At each time
tj

:D j �t , we need to approximate u.tj�; 
/ with a a piecewise constant function
u.tjC; 
/, having jumps precisely at the nodal points xk . This is achieved by a
random sampling technique. More precisely, we look at the number �j in our
uniformly distributed sequence. On each interval Œxk�1; xkŒ , the old value of our
solution at the intermediate point x	

k D �j xk C.1��j /xk�1 becomes the new value
over the whole interval:

u.tjC; x/ D u
�
tj�; �j xkC.1��j /xk�1

�
for all x 2 Œxk�1; xkŒ: (120)

An approximate solution constructed in this way is shown in Fig. 40. The asterisks
mark the points where the function is sampled. For sake of illustration, we choose
�1 D 1=2, �2 D 1=3.

For a strictly hyperbolic system of conservation laws, satisfying the hypotheses
(H) in Sect. 3, the fundamental results of J. Glimm [34] and T.P. Liu [46] have
established that
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Fig. 41 Applying the Glimm
scheme to a solution
consisting of a single shock

1. If the initial data Nu has small total variation, then an approximate solution can
be constructed by the above algorithm for all times t � 0. The total variation of
u.t; 
/ remains small.

2. Letting the grid size �t D �x tend to zero and using always the same sequence
of numbers �j 2 Œ0; 1�, one obtains a sequence of approximate solutions u� .
By Helly’s compactness theorem, one can extract a subsequence that converges
to some limit function u D u.t; x/ in L1loc.

3. If the numbers �j are uniformly distributed over the interval Œ0; 1�, i.e. if (118)
holds, then the limit function u provides a weak solution to the Cauchy problem
(117).

The importance of the sequence �j being uniformly distributed can be best
appreciated in the following example.

Example 10. Consider a Cauchy problem of the form (117). Assume that the exact
solution consists of exactly one single shock, traveling with speed � 2 Œ0; 1�, say

U.t; x/ D
(

uC if x > �t;

u� if x < �t:

Consider an approximation of this solution obtained by implementing the Glimm
algorithm (Fig. 41). By construction, at each time tj

:D j�t , the position of the
shock in this approximate solution must coincide with one of the nodes of the grid.
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Fig. 42 Approximations
leading to the Godunov
scheme

Observe that, passing from tj�1 to tj , the position x.t/ of the shock remains the
same if the j -th sampling point lies on the left, while it moves forward by�x if the
j -th sampling point lies on the right. In other words,

x.tj / D
(
x.tj�1/ if �j 2 ��; 1�;
x.tj�1/C�x if �j 2 Œ0; ��: (121)

Let us fix a time T > 0, and take �t
:D T=N . From (121) it now follows

x.T / D #
˚
j I 1 � j � N; �j 2 Œ0; �� � 
�t

D #
˚
j I 1 � j � N; �j 2 Œ0; �� �

N

 T:

It is now clear that the assumption (118) on the uniform distribution of the sequence
f�j gj�1 is precisely what is needed to guarantee that, as N ! 1 (equivalently, as
�t ! 0), the location x.T / of the shock in the approximate solution converges to
the exact value �T .

Remark 7. At each restarting time tj we need to approximate the BV function
u.tj�; 
/ with a new function which is piecewise constant on each interval
Œxk�1; xkŒ . Instead of the sampling procedure (120), an alternative method consists
of taking average values:

u.tjC; x/ :D 1

�x

Z xk

xk�1

u.tj�; y/ dy for all x 2 Œxk�1; xkŒ: (122)

Calling ujk the constant value of u.tjC/ on the interval Œxk�1; xkŒ , an applica-
tion of the divergence theorem on the square 	jk (Fig. 42) yields

ujC1;k D uj;k C �
f .uj;k�1/� f .uj;k/

�
(123)

Indeed, all wave speeds are in Œ0; 1�, hence
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u.t; xk�1/ D uj;k�1; u.t; xk/ D uj;k for all t 2 Œtj ; tjC1Œ:

The finite difference scheme (122) is the simplest version of the Godunov (upwind)
scheme. It is very easy to implement numerically, since it does not require the
solution of any Riemann problem. Unfortunately, as shown in [22], in general it is
not possible to obtain a priori bounds on the total variation of solutions constructed
by the Godunov method. Proving the convergence of these approximations remains
an outstanding open problem.

The remaining part of this chapter will be concerned with error bounds, for
solutions generated by the Glimm scheme.

Observe that, at each restarting time tj D j �t , the replacement of u.tj�/ with
the piecewise constant function u.tjC/ produces an error measured by

u.tjC/� u.tj�/L1

As the time step �t D T=N approaches zero, the total sum of all these errors
does not converge to zero, in general. This can be easily seen in Example 10, where
we have

NX
jD1

u.tjC/ � u.tj�/L1 �
NX
jD1

juC � u�j 
�t 
 min
˚
.1 � �/; �

�

D juC � u�j 
 T 
 min
˚
.1 � �/; �

�
:

This fact makes it difficult to obtain sharp error estimates for solutions generated
by the Glimm scheme. Roughly speaking, the approximate solutions converge to
the correct one not because the total errors become small, but because, by the
randomness of the sampling choice, small errors eventually cancel each other in
the limit.

Clearly, the speed of convergence of the Glimm approximate solutions as
�t;�x! 0 strongly depends on how well the sequence f�ig approximates a
uniform distribution on the interval Œ0; 1�. In this connection, let us introduce

Definition 8. Let a sequence of numbers �j 2 Œ0; 1� be given. For fixed integers
0 � m < n, the discrepancy of the set f�m; : : : ; �n�1g is defined as

Dm;n
:D sup
�2Œ0;1�

ˇ̌
ˇ̌
ˇ� � #

˚
j I m � j < n; �j 2 Œ0; �� �

n �m

ˇ̌
ˇ̌
ˇ : (124)

We now describe a simple method for defining the numbers �j , so that the
corresponding discrepanciesDm;n approach zero as n�m ! 1, at a nearly optimal
rate. Write the integer k in decimal digits, then invert the order of the digits and put
a zero in front:



210 A. Bressan

�1 D 0:1 ; : : : ; �759 D 0:957 ; : : : ; �39022 D 0:22093 ; : : : (125)

For the sequence (125) one can prove that the discrepancies satisfy

Dm;n � C 
 1C ln.n �m/

n �m
for all n > m � 0; (126)

for some constant C . For approximate solutions constructed in terms of the above
sequences .�j /, using the restarting procedures (119)–(120), the following estimates
were proved in [18].

Theorem 3 (Error estimates for the Glimm scheme). Given any initial data Nu 2
L1 with small total variation, call uexact.t; 
/ D St Nu the exact solution of the Cauchy
problem (117). Moreover, let uGlimm.t; 
/ be the approximate solution generated by
the Glimm scheme, in connection with a grid of size �t D �x and a fixed sequence
.�j /j�0 satisfying (126). For every fixed time T � 0, letting the grid size tend to
zero, one has the error estimate

lim
�x!0

uGlimm.T; 
/� uexact.T; 
/L1p
�x 
 j ln�xj D 0: (127)

In other words, the L1 error tends to zero faster then
p
�x 
 j ln�xj, i.e. just slightly

slower than the square root of the grid size.
To prove Theorem 6, using a fundamental lemma of T.P. Liu [46], one first

constructs a front tracking approximate solution u D u.t; x/ that coincides with
uGlimm at the initial time t D 0 and at the terminal time t D T . The L1 distance
between u.T; 
/ and the exact solution ST Nu can then be estimated using the error
formula (7). For all details we refer to [18]. See also the recent paper [4] for a more
general result.

6 Continuous Dependence on the Initial Data

Consider again the Cauchy problem (93)–(94), for a strictly hyperbolic system
of conservation laws, satisfying the assumptions (H). Given two solutions u; v, in
order to estimate the difference ku.t/ � v.t/kL1 one could try to follow a standard
approach. Namely, set w D u � v, derive an evolution equation for w, and show that

d

dt
kw.t/k � C kw.t/k: (128)

By Gronwall’s lemma, this implies

ku.t/ � v.t/k � eC tku.0/� v.0/k:
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|| u(t) − v(t) ||

x

t1

t

2t

0 t21
t t

jumps in  v
jumps in  u

L1

Fig. 43 Left: the solutions u and v differ only in the location of the shocks, and for the time of
interaction. Right: even if u and v are very close, during the short time interval between interaction
times, the distance ku � vkL1 can increase rapidly

In particular, if u.0/ D v.0/, then u.t/ D v.t/ for all t > 0, proving the uniqueness
of the solution to the Cauchy problem.

The above approach works well for smooth solutions of the hyperbolic system
(93), but fails in the presence of shocks. Indeed, for two solutions u; v of a hyperbolic
system containing shocks, the L1 distance can increase rapidly during short time
intervals (Fig. 43).

6.1 Unique Solutions to the Scalar Conservation Law

In the case of a scalar conservation law, the fundamental works of A.I. Volpert [59]
and S. Kruzhkov [39] have established:

Theorem 4 (Well posedness for the scalar Cauchy problem). Let f W IR 7! IR

be any smooth flux. Then, for any initial data Nu 2 L1, the Cauchy problem (93)–(94)
has a unique entropy-admissible weak solution, defined for all times t � 0.
The corresponding flow is contractive in the L1 distance. Namely, for any two
admissible solutions, one has

ku.t/ � v.t/kL1 � ku.0/� v.0/kL1 for all t � 0: (129)

For a proof in the one-dimensional case, see [11]. We observe that the L1 distance
between two solutions u; v remains constant in time, as long as shocks do not appear.
An intuitive way to understand this fact, shown in Fig. 44, is as follows. Think of
the x-u plane as filled by an incompressible fluid, moving horizontally with speed
. Px; Pu/ D .f 0.u/; 0/. Consider the fluid particles that at time t D 0 lie in the region
enclosed between the graphs of u.0; 
/ and v.0; 
/ (the shaded areas in Fig. 44). As
long as these solutions remain continuous, the method of characteristics shows that
at any positive time t these same particles of fluid will have moved to the region
enclosed between the graphs of u.t; 
/ and v.t; 
/. Hence the area of these region
remains constant in time.
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Fig. 44 The L1 distance between two continuous solutions remains constant in time
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Fig. 45 The L1 distance decreases when a shock in one solution crosses the graph of the other
solution

On the other hand, if a shock in one of the solutions crosses the graph of the other
solution, then the L1 distance ku � vkL1 decreases in time (Fig. 45).

6.2 Linear Hyperbolic Systems

We consider here another special case, where the system is linear with constant
coefficients.

ut C Aux D 0 u 2 IRn: (130)

Let fl1; : : : ; lng and fr1; : : : ; rng be dual bases of left and right eigenvectors of the
matrix A, as in (8). Instead of the norm
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kukL1
:D
Z

ju.x/j dx

where juj is the Euclidean norm of a vector u D .u1; : : : ; un/ 2 IRn, one can use the
equivalent norm

kukA :D
nX
iD1

Z
jli 
 u.x/j dx: (131)

By linearity, for any two solutions u; v, the difference w D u � v satisfies still the
same equation:

wt C Awx D 0:

From the explicit representation (14), it now follows that

kw.t/kA D kw.0/kA for all t 2 IR:

In other words, the flow generated by the linear homogeneous equation (130) is a
group of isometries w.r.t. the distance ku � vkA, namely

ku.t/ � v.t/kA D ku.0/� v.0/kA for all t 2 IR:

6.3 Nonlinear Systems

We always assume that the system (93) is strictly hyperbolic, and satisfies the
hypotheses (H), so that each characteristic field is either linearly degenerate or
genuinely nonlinear. The analysis in the previous chapter has shown the existence
of a global entropy weak solution of the Cauchy problem for every initial data with
sufficiently small total variation. More precisely, recalling the definitions (100)–
(101), consider a domain of the form

D
:D cl

n
u 2 L1.IRI IRn/I u is piecewise constant; � .u/

:D V.u/C C0 
Q.u/ < ı0
o
;

(132)

where cl denotes closure in L1. With a suitable choice of the constants C0 and
ı0 > 0, for every Nu 2 D , one can construct a sequence of "-approximate front track-
ing solutions converging to a weak solution u taking values inside D . Observe that,
since the proof of convergence relied on a compactness argument, no information
was obtained on the uniqueness of the limit. The main goal of the section is to show
that this limit is unique and depends continuously on the initial data.
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Theorem 5. For every Nu 2 D , as " ! 0 every sequence of "-approximate solutions
u" W Œ0;1Œ 7! D of the Cauchy problem (93)–(94), obtained by the front tracking
method, converges to a unique limit solution u W Œ0;1Œ 7! D . The map .Nu; t/ 7!
u.t; 
/ :D St Nu is a uniformly Lipschitz semigroup, i.e.:

S0 Nu D Nu; Ss.St Nu/ D SsCt Nu; (133)

St Nu�Ss Nv


L1 � L 
 �kNu� NvkL1 Cjt�sj� for all Nu; Nv 2 D ; s; t � 0: (134)

This result was first proved in [14] for 2 � 2 systems, then in [21] for general n�n
systems, using a (lengthy and technical) homotopy method. Here the idea is to
consider a path of initial data �0 W � 7! u� .0/ connecting u.0/ with v.0/. Then
one constructs the path �t W � 7! u� .t/, parameterized by � 2 Œ0; 1�, connecting
the corresponding solutions at time t . By careful estimates on the tangent vector
z� .t/

:D du� .t/=d� , one shows that the length of �t can be uniformly bounded in
terms of the length of the initial path �0 (Fig. 46).

Relying on ideas introduced by T.P. Liu and T. Yang in [48, 49], the paper [20]
provided a much simpler proof of the continuous dependence result, which will be
described here. An extension of the above result to initial-boundary value problems
for hyperbolic conservation laws has recently appeared in [30]. All of the above
results deal with solutions having small total variation. The existence of solutions,
and the well posedness of the Cauchy problem for large BV data was studied
respectively in [54] and in [41].

To prove the uniqueness of the limit of front tracking approximations, we need
to estimate the distance between any two "-approximate solutions u; v of (93). For
this purpose we introduce a functional ˚ D ˚.u; v/, uniformly equivalent to the
L1 distance, which is “almost decreasing” along pairs of solutions. Recalling the
construction of shock curves at (62), given two piecewise constant functions u; v W
IR 7! Rn, we consider the scalar functions qi defined implicitly by

v.x/ D Sn
�
qn.x/

� ı 
 
 
 ı S1
�
q1.x/

��
u.x/

�
: (135)
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Fig. 47 Decomposing a
jump .u.x/; v.x// in terms of
n (possibly non-admissible)
shocks

Remark 5. If we wanted to solve the Riemann problem with data u� D u.x/ and
uC D v.x/ only in terms of shock waves (possibly not entropy-admissible), then the
corresponding intermediate states would be

!0.x/ D u.x/; !i .x/ D Si
�
qi .x/

� ı 
 
 
 ı S1
�
q1.x/

��
u.x/

�
i D 1; : : : ; n:

(136)

Moreover, q1.x/; : : : ; qn.x/ would be the sizes of these shocks (Fig. 47). Since
the pair of states .!i�1; !i / is connected by a shock, the corresponding speed
�i .u�; uC/ is well defined. In particular, one can determine whether the i -shock
qi located at x is approaching a j -wave located at some other point x0. It is useful
to think of qi.x/ as the strength of the i -th component in the jump

�
u.x/; v.x/

�
.

In the linear case (130) we would simply have qi D li 
 .v � u/, and our functional
would eventually reduce to (131).

If the shock curves are parameterized by arc-length, on a compact neighborhood
of the origin one has

ˇ̌
v.x/� u.x/

ˇ̌ �
nX
iD1

ˇ̌
qi .x/

ˇ̌ � C
ˇ̌
v.x/ � u.x/

ˇ̌
(137)

for some constant C . We now consider the functional

˚.u; v/
:D

nX
iD1

Z 1

�1

ˇ̌
qi .x/

ˇ̌
Wi.x/ dx; (138)

where the weightsWi are defined by setting:

Wi.x/

:D 1C�1 
�total strength of waves in u and in v which approach the i � wave qi .x/
�

C�2 
 �wave interaction potentials of u and of v
�

:D 1C �1Ai .x/C �2
�
Q.u/CQ.v/

�
:

(139)



216 A. Bressan

Since these weights remain uniformly bounded as u ranges in the domain D , from
(137)–(139) it follows

ku � vkL1 � ˚.u; v/ � C1 
 kv � ukL1 (140)

for some constantC1 and all u; v 2 D . A key estimate proved in [20] shows that, for
any two "-approximate front tracking solutions u; v W Œ0; T � 7! D , there holds

d

dt
˚.u.t/; v.t// � C2"; (141)

for some constant C2.
Relying on this estimate, we now prove Theorem 5. Let Nu 2 D be given. Consider

any sequence .u�/��1, such that each u� is an "�-approximate front tracking solution
of the Cauchy problem (93)–(94). For every �; � � 1 and t � 0, by (140) and (141)
it now follows

u�.t/ � u�.t/


L1 � ˚
�
u�.t/; u�.t/

�
� ˚

�
u�.0/; u�.0/

�C C2t 
 maxf"�; "�g
� C1

u�.0/� u�.0/


L1 C C2t 
 maxf"�; "�g:
(142)

Since the right hand side of (142) approaches zero as �; � ! 1, the sequence
is Cauchy and converges to a unique limit. The semigroup property (133) is an
immediate consequence of uniqueness. Finally, let Nu; Nv 2 D be given. For each
� � 1, let u�; v� be "�-approximate front tracking solutions of the Cauchy problem,
with initial data Nu and Nv, respectively. Using again (140) and (141) we deduce

u�.t/ � v�.t/


L1 � ˚
�
u�.t/; v�.t/

�
� ˚

�
u�.0/; v�.0/

�C C2t"�

� C1

�
ku�.0/� NukL1 C kNu � NvkL1 C kNv � v�.0/


L1

�
C C2t"�:

Letting � ! 1 we obtain
u.t/ � v.t/


L1 � C1 
 kNu � NvkL1 , proving the Lipschitz

continuous dependence w.r.t. the initial data.

7 Uniqueness of Solutions

According to the analysis in the previous chapters, the solution of the Cauchy
problem (93)–(94) obtained as limit of front tracking approximations is unique and
depends Lipschitz continuously on the initial data, in the L1 norm. This basic result,
however, leaves open the question whether other weak solutions may exist, possibly
constructed by different approximation algorithms. We will show that this is not the
case: indeed, every entropy admissible solution, satisfying some minimal regularity
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Fig. 48 The exact solution (dotted lines) which, at time � , coincides with the value of a piecewise
constant front tracking approximation

assumptions, necessarily coincides with the one obtained as limit of front tracking
approximations.

7.1 An Error Estimate for Front Tracking Approximations

As a first step, we estimate the distance between an approximate solution, obtained
by the front tracking method, and the exact solution of the Cauchy problem
(93)–(94), given by the semigroup trajectory t 7! u.t; 
/ D St Nu . Let u" W Œ0; T � 7!
D be an "-approximate front tracking solution, according to Definition 6. We claim
that the corresponding error can then be estimated as

u".T; 
/� ST NuL1 D O.1/ 
 ".1C T /: (143)

To see this, we first estimate the limit

lim
h!0C

u".� C h/� Shu".�/


L1

h

at any time � 2 Œ0; T � where no wave-front interaction takes place. Let u".�; 
/ have
jumps at points x1 < 
 
 
 < xN .

For each ˛, call !˛ the self-similar solution of the Riemann problem with data
u˙ D u.�; x˛˙/ . We observe that, for h > 0 small enough, the semigroup
trajectory h 7! Shu.�/ is obtained by piecing together the solutions of these
Riemann problems (Fig. 48). Splitting the set of all wave-fronts into shocks,
rarefactions, and non-physical fronts, we estimate
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x

Fig. 49 In a forward neighborhood of a point .�; �/ where u has a jump, the admissible solution u
should be asymptotically equivalent to the solution of a Riemannn problem

lim
h!0C

u".� C h/ �eShu".�/L1

h

D
X

˛2R[S [N P



lim
h!0C

1

h

Z x˛C

x˛�

ˇ̌
u".� C h; x/ � !˛.h; x � x˛/

ˇ̌
dx

�

D
X
˛2R

O.1/ 
 " j�˛j C
X

˛2N P

O.1/ 
 j�˛j D O.1/ 
 ":
(144)

Here  can be any suitably small positive number. From the bound (144) and the
error formula (7) in the Appendix, we finally obtain

u".T; 
/�ST NuL1 �ST u".0; 
/� ST NuL1C
u".T; 
/� ST u".0; 
/L1

�L 
 u".0; 
/� NuL1CL

Z T

0

(
lim inf
h!0C

u".� C h/�Shu".�/


L1

h

)
d�

D O.1/ 
 "C O.1/ 
 "T:

7.2 Characterization of Semigroup Trajectories

In this section, we describe a set of conditions which, among all weak solutions
of the system (93) characterizes precisely the ones obtained as limits of front
tracking approximations. These conditions, introduced in [10], are obtained by
locally comparing a given solution with two types of approximations.

1. Comparison with solutions to a Riemann problem.

Let u D u.t; x/ be a weak solution. Fix a point .�; �/. Define U ] D U
]

.�;�/ as the
solution of the Riemann problem corresponding to the jump at .�; �/ (Fig. 49):
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Fig. 50 The solution to a linearized hyperbolic system

wt C f .w/x D 0; w.�; x/ D
(

uC :D u.�; �C/ if x > �

u� :D u.�; ��/ if x < �

We expect that, if u satisfies the admissibility conditions, then u will be
asymptotically equal to U ] in a forward neighborhood of the point .�; �/. More
precisely, for every O� > 0, one should have

lim
h!0C

1

h

Z �ChO�

��hO�

ˇ̌
ˇ̌
ˇu.� C h; x/ � U ]

.�;�/.� C h; x/

ˇ̌
ˇ̌
ˇ dx D 0: (E1)

2. Comparison with solutions to a linear hyperbolic problem.

Fix again a point .�; �/, and choose O� > 0 larger than all wave speeds. Define
U [ D U [

.�;�/ as the solution of the linear Cauchy problem (Fig. 50)

wt CeAwx D 0 w.�; x/ D u.�; x/

with “frozen” coefficients: eA :D A
�
u.�; �/

�
. Then, for a < � < b and h > 0, we

expect that the difference between these two solutions should be estimated by

1

h

Z b�O�h

aCO�h

ˇ̌
ˇ̌
ˇu.�Ch; x/�U [.�Ch; x/

ˇ̌
ˇ̌
ˇ dx D O.1/ 


 
Tot.Var. fu.�; 
/I �a; bŒ g

!2

(E2)
A heuristic motivation for the above estimate is as follows. The functions u;w

satisfy

ut D �A.u/ux ; wt D �eAwx ; u.�/ D w.�/:

Hence

Z b�O�h

aCO�h

ˇ̌
ˇ̌
ˇu.� C h; x/�U [.� C h; x/

ˇ̌
ˇ̌
ˇdx 

Z �Ch

�

Z
J.t/

ˇ̌
ˇ̌A.u.t; x//ux�A.u.�; �//wx

ˇ̌
ˇ̌dxdt;

(145)
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where J.t/
:D �a C .t � �/ O� ; b � .t � �/ O� Œ . We now have

Z
J.t/

 
jux.t; x/j C jwx.t; x/j

!
dx D O.1/ 
 Tot.Var.

�
u.�; 
/I �a; bŒ

�
;

sup
�<t<�Ch; x2J.t/

ˇ̌
ˇ̌
ˇA.u.t; x// �A.u.�; �//

ˇ̌
ˇ̌
ˇ D O.1/ 
 Tot.Var.

˚
u.�; 
/I �a; bŒ �:

Therefore, for each time t 2 Œ�; � Ch�, the integrand on the right hand side of (145)
is of the same order of magnitude as the square of the total variation. This yields
(E2).

It can be proved that all solutions obtained as limits of front tracking approxi-
mations satisfy the estimates (E1)–(E2), for every �; �; a; b. The following theorem,
proved in [10], shows that the estimates (E1)–(E2) completely characterize semi-
group trajectories, among all Lipschitz continuous functions u W Œ0; T � 7! L1 with
values in the domain D defined at (132) .

Theorem 6 (Characterization of semigroup trajectories). Let u W Œ0; T � 7! D be
Lipschitz continuous w.r.t. the L1 distance. Then u is a weak solution to the system
of conservation laws

ut C f .u/x D 0

obtained as limit of front tracking approximations if and only if the estimates
(E1)–(E2) are satisfied for a.e. � 2 Œ0; T �, at every � 2 IR.

The proof is based on the fact that the two estimates (E1) and (E2) together
imply that

lim
h!0C

ku.� C h/ � Shu.�/kL1

h
D 0 for a.e. �: (146)

Hence, by the error formula (7) in the Appendix,

ku.t/ � Stu.0/kL1 � L 

Z T

0

(
lim inf
h!0C

u.� C h/� Shu.�/


L1

h

)
d� D 0

for all t � 0.
In order to prove (146), choose points xi such that Tot.Var.

n
u.�/ I �xi�1 ; xi Œ

o
< "

for every i . For h > 0 small, we split an integral over the entire real line into a sum
of integrals over different intervals, as shown in Fig. 51:
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Fig. 51 Proving the asymptotic error estimate (146)

1

h

Z 1

�1

ˇ̌
ˇ̌u.� C h; x/� Shu.�/.x/

ˇ̌
ˇ̌ dx

D
X
i

1

h

Z xiCO�h

xi�O�h

( ˇ̌
ˇu.� C h; x/� U

]
i .� C h; x/

ˇ̌
ˇC

ˇ̌
ˇShu.�/.x/ � U

]
i .� C h; x/

ˇ̌
ˇ
�
dx

C
X
i

1

h

Z xi�O�h

xi�1CO�h

� ˇ̌
ˇu.� C h; x/�U [i .� C h; x/

ˇ̌
ˇC
ˇ̌
ˇShu.�/.x/�U [i .� C h; x/

ˇ̌
ˇ
�
dx

D
X
i

Ai C
X
i

Bi :

The estimate (E1) implies Ai ! 0 as h ! 0, while the estimate (E2) implies

Bi � " 
 Tot.Var.
n
u.�/ I �xi�1 ; xi Œ

o
, and hence

X
i

Bi � " 
 Tot.Var.
n
u.�/ I IR

o
D O."/:

Since " > 0 is arbitrary, this proves (146).

7.3 Uniqueness Theorems

Relying on Theorem 6, there is a natural strategy in order to prove uniqueness of
solutions to the Cauchy problem:

1. Introduce a suitable set of admissibility + regularity assumptions.
2. Show that these assumptions imply the estimates (E1) and (E2).

For sake of clarity, a complete set of assumptions is listed below.

(A1) (Conservation Equations) The function u D u.t; x/ is a weak solution
of the Cauchy problem (93)–(94), taking values within the domain D of a
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semigroup S . More precisely, u W Œ0; T � 7! D is continuous w.r.t. the L1

distance. The identity u.0; 
/ D Nu holds in L1, and moreover

ZZ �
u't C f .u/'x

�
dxdt D 0 (147)

for every C 1 function ' with compact support contained inside the open strip
�0; T Œ�IR.

(A2) (Lax Admissibility Conditions) Let u have an approximate jump discontinu-
ity at some point .�; �/ 2 �0; T Œ�IR. More precisely, assume that there exists
states u�; uC 2 IRn and a speed � 2 IR such that, calling

U.t; x/
:D
(

u� if x < �t;

uC if x > �t;
(148)

there holds

lim
r!0C

1

r2

Z r

�r

Z r

�r

ˇ̌
ˇu.� C t; � C x/ � U.t; x/

ˇ̌
ˇ dxdt D 0: (149)

By Theorem 1, the piecewise constant function U must be a weak solution to
the system of conservation laws, satisfying the Rankine–Hugoniot equations
(29). In particular, the jump uC �u� should be an eigenvector of the averaged
matrixA.u�; uC/, say of the i -th family, for some i 2 f1; : : : ; ng. In this case,
we assume that the following shock admissibility conditions hold:

�i .u
�/ � � � �i .u

C/: (150)

(A3) (Tame Oscillation Condition) For some constants C , O� the following holds.
For every point x 2 IR and every t; h > 0 one has

ˇ̌
u.t C h; x/ � u.t; x/

ˇ̌ � C 
 Tot.Var.
n
u.t; 
/ I Œx � O�h; x C O�h�

o
: (151)

(A4) (Bounded Variation Condition) There exists ı > 0 such that, for every
space-like curve

˚
t D �.x/

�
with jd�=dxj � ı a.e., the function x 7!

u
�
�.x/; x

�
has locally bounded variation.

Remark 6. The condition (A3) restricts the oscillation of the solution. An equiva-
lent, more intuitive formulation is the following (see Fig. 52). For some constant
O� larger than all characteristic speeds, given any interval Œa; b� and t � 0, the
oscillation of u on the triangle�

:D ˚
.s; y/ W s � t; aCO�.s�t/ < y < b�O�.s�t/�,

defined as
Osc

˚
uI �� :D sup

.s;y/;.s0 ;y0/2�

ˇ̌
u.s; y/ � u.s0; y0/

ˇ̌
;
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Fig. 52 Illustrating the tame
oscillation and the bounded
variation condition

is bounded by a constant multiple of the total variation of u.t; 
/ on Œa; b�.

The assumption (A4) simply requires that, for some fixed ı > 0, the function u
has bounded variation along every space-like curve � which is “almost horizontal”
(Fig. 52). Indeed, the condition is imposed only along curves of the form

˚
t D

�.x/I x 2 Œa; b�� with

ˇ̌
�.x/ � �.x0/

ˇ̌ � ıjx � x0j for all x; x0 2 Œa; b�:

One can prove that all of the above assumptions are satisfied by weak solutions
obtained as limits of Glimm or wave-front tracking approximations [11]. The
following result shows that the entropy weak solution of the Cauchy problem (93)–
(94) is unique within the class of functions that satisfy either the additional regularity
condition (A3), or (A4).

Theorem 7. Assume that the function u W Œ0; T � 7! D is continuous (w.r.t. the L1

distance), taking values in the domain of the semigroup S generated by the system
(93). If (A1), (A2) and (A3) hold, then

u.t; 
/ D St Nu for all t 2 Œ0; T �: (152)

In particular, the weak solution that satisfies these conditions is unique. The same
conclusion holds if the assumption (A3) is replaced by (A4).

The first part of this theorem was proved in [15], the second part in [17]. Both of
these papers extend the result in [16], where this approach to uniqueness was first
developed.

8 The Vanishing Viscosity Approach

In view of the previous uniqueness and stability results, one expects that the entropy-
admissible weak solutions of the hyperbolic system

ut C f .u/x D 0 (153)
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εFig. 53 A discontinuous
solution to the hyperbolic
system and a viscous
approximation

should coincide with the unique limits of solutions to the parabolic system

u"t C f .u"/x D " u"xx (154)

letting the viscosity coefficient " ! 0. For smooth solutions, this convergence
is easy to show. However, one should keep in mind that a weak solution of the
hyperbolic system (153) in general is only a function with bounded variation,
possibly with a countable number of discontinuities. In this case, as the smooth
functions u" approach the discontinuous solution u, near points of jump their
gradients u"x tend to infinity (Fig. 53), while their second derivatives u"xx become
even more singular. Therefore, establishing the convergence u" ! u is a highly
nontrivial matter. In earlier literature, results in this direction relied on three different
approaches:

1. Comparison principles for parabolic equations. For a scalar conservation
law, the existence, uniqueness and global stability of vanishing viscosity solutions
was first established by Oleinik [51] in one space dimension. The famous paper by
Kruzhkov [39] covers the more general class of L1 solutions and is also valid in
several space dimensions.

2. Singular perturbations. This technique was developed by Goodman and
Xin [36], and covers the case where the limit solution u is piecewise smooth, with a
finite number of non-interacting, entropy admissible shocks. See also [58] and [53],
for further results in this direction.

3. Compensated compactness. With this approach, introduced by Tartar and
DiPerna [29], one first considers a weakly convergent subsequence u" * u. For
a class of 2 � 2 systems, one can show that this weak limit u actually provides
a distributional solution to the nonlinear system (153). The proof relies on a
compensated compactness argument, based on the representation of the weak limit
in terms of Young measures, which must reduce to a Dirac mass due to the presence
of a large family of entropies.

Since the hyperbolic Cauchy problem is known to be well posed within a
space of functions with small total variation, it is natural to develop a theory of
vanishing viscosity approximations within the same space BV. This was indeed
accomplished in [7], in the more general framework of nonlinear hyperbolic systems
not necessarily in conservation form. The only assumptions needed here are the
strict hyperbolicity of the system and the small total variation of the initial data.

Theorem 8 (BV estimates and convergence of vanishing viscosity approxima-
tions). Consider the Cauchy problem for the hyperbolic system with viscosity

u"t CA.u"/u"x D " u"xx u".0; x/ D Nu.x/: (155)
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Assume that the matrices A.u/ are strictly hyperbolic (i.e., they have real, distinct
eigenvalues), and depend smoothly on u in a neighborhood of the origin. Then there
exist constants C;L;L0 and ı > 0 such that the following holds. If

Tot.Var.fNug < ı ; kNukL1 < ı; (156)

then for each " > 0 the Cauchy problem (155)" has a unique solution u", defined for
all t � 0. Adopting a semigroup notation, this will be written as t 7! u".t; 
/ :D S"t Nu.

In addition, one has:

BV bounds : Tot.Var.
˚
S"t Nu� � C Tot.Var.fNug: (157)

L1 stability :
S"t Nu � S"t NvL1 � L

Nu � NvL1 ; (158)
S"t Nu � S"s NuL1 � L0

�
jt � sj C ˇ̌p

"t � p
"s
ˇ̌�
: (159)

Convergence: As " ! 0C, the solutions u" converge to the trajectories of a
semigroup S such that

St Nu � Ss Nv


L1 � L kNu � Nvk L1 C L0 jt � sj: (160)

These vanishing viscosity limits can be regarded as the unique vanishing
viscosity solutions of the hyperbolic Cauchy problem

ut C A.u/ux D 0; u.0; x/ D Nu.x/: (161)

In the conservative case A.u/ D Df.u/, every vanishing viscosity solution is a
weak solution of

ut C f .u/x D 0; u.0; x/ D Nu.x/ ; (162)

satisfying the Liu admissibility conditions.
Assuming, in addition, that each characteristic field is genuinely nonlinear or

linearly degenerate, the vanishing viscosity solutions coincide with the unique limits
of Glimm and front tracking approximations.

In the genuinely nonlinear case, an estimate on the rate of convergence of these
viscous approximations was provided in [19]:

Theorem 9 (Convergence rate). For the strictly hyperbolic system of conservation
laws (162), assume that every characteristic field is genuinely nonlinear. At any time
t > 0, the difference between the corresponding solutions of (155) and (162) can be
estimated as

u".t; 
/� u.t; 
/L1 D O.1/ 
 .1C t/
p
"j ln "j Tot.Var.fNug:
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In the following sections we outline the main ideas of the proof of Theorem 8.
For details, see [7] or the lecture notes [12].

8.1 Local Decomposition by Traveling Waves

As a preliminary, observe that u" is a solution of (155) if and only if the rescaled
function u.t; x/

:D u"."t; "x/ is a solution of the parabolic system with unit viscosity

ut C A.u/ux D uxx ; (163)

with initial data u.0; x/ D Nu."x/. Clearly, the stretching of the space variable has
no effect on the total variation. Notice however that the values of u" on a fixed
time interval Œ0; T � correspond to the values of u on the much longer time interval
Œ0; T="�. To obtain the desired BV bounds for the viscous solutions u", it suffices to
study solutions of (163). However, we need estimates uniformly valid for all times
t � 0 , depending only on the total variation of the initial data Nu.

To provide a uniform estimate on Tot.Var.fu.t; 
/g D kux.t; 
/kL1 , we decompose
the gradient ux along a basis of unit vectors Qr1; : : : ; Qrn, say

ux D
X
i

vi Qri : (164)

We then derive an evolution equation for these gradient components, of the form

vi;t C . Q�ivi /x � vi;xx D �i i D 1; : : : ; n ; (165)

Since the left hand side of (165) is in conservation form, we have

kux.t/k �
nX
iD1

kvi .t; 
/kL1 �
X
i



kvi .0; 
/kL1 C

Z t

0

k�i .s; 
/kL1 ds

�
: (166)

A crucial point in the entire analysis is the choice of the unit vectors Qri . A natural
guess would be to take Qri D ri .u/, the i -th eigenvector of the hyperbolic matrix
A.u/. This was indeed the decomposition used in Sect. 1.6. As in (22), we thus
write

ux D
X
i

uixri uix
:D li 
 ux ; (167)

so that (163) takes the form

ut D �
X
i

�iu
i
xri C

X
i

.uixri /x: (168)
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u(t)u(0)

x

Fig. 54 For a viscous traveling wave, the source terms �i are usually not integrable

Differentiating the first equation in (167) w.r.t. t and the equation in (168)
w.r.t. x, and equating the results, we obtain an evolution equation for the gradient
components uix, namely

.uix/t C .�iuix/x � .uix/xx D �i.u; u1x; : : : ; u
n
x/

:D li 

X
j<k

�kŒrk; rj �u
j
xukx

C l i 

8<
:2

X
j;k

.rk � rj /.ujx/xukx C
X
j;k;`

 
r` � .rk � rj / � .r` � rk/ � rj

!
ujxukxu`x

9=
; :

(169)
Here rk � rj :D .Drj /rk denotes the directional derivative of rj along rk , while
Œrk; rj �

:D .Drj /rk � .Drk/rj is the Lie bracket of the two vector fields. Relying on
the above formula, in order to achieve BV bounds uniformly valid for t 2 Œ0;1Œ , we

would need
Z 1

0

Z
j�i j dxdt < 1. Unfortunately this does not hold, in general.

Indeed, for a typical solution having the form of a traveling wave u.t; x/ D Nu.x �
�t/, as in Fig. 54, the source terms do not vanish identically: �i 6� 0. Therefore

Z t

0

Z
j�i.�; x/j dxd� D t 


Z
j�i.0; x/j dx ! 1 as t ! 1

To readdress this situation, a key idea is to decompose ux not along the
eigenvectors r1; : : : ; rn ofA.u/, but along a basis fQr1; : : : Qrng of gradients of viscous
traveling waves.

We recall that a traveling wave solution of the viscous hyperbolic system (163)
is a solution of the form

u.t; x/ D U.x � �t/: (170)

Here the constant � D �Ut=Ux is the speed of the wave. Inserting (170) in (163),
we see that the function U should satisfy the second order O.D.E.

U 00 D �
A.U /� ��U 0: (171)

As shown in Fig. 55, we wish to decompose ux D P
i U

0
i locally as sum of

gradients of traveling waves. More precisely, given .u; ux; uxx/ at a point x, we seek
traveling wave profiles U1; : : : ; Un such that
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Fig. 55 Decomposing the
function u as the
superposition of two viscous
traveling profiles, in a
neighborhood of a point x

U 00
i D �

A.Ui /� �i
�
U 0
i ; Ui .x/ D u.x/ i D 1; : : : ; n;

(172)
X
i

U 0
i .x/ D ux.x/ ;

X
i

U 00
i .x/ D uxx.x/: (173)

Observe that, having fixed u.x/, the system (172)–(173) yields

• nC n scalar equations.
• n2 C n free parameters: the vectors U 0

1.x/; : : : ; U
0
n.x/ 2 IRn, describing the

first derivatives of the traveling waves, and the scalars �1; : : : ; �n, describing the
speeds.

For n > 1, the system is under-determined. To achieve a unique decomposition,
further restrictions must thus be imposed on the choice of the traveling wave
profiles. Indeed, for each given state u 2 IRn and i D 1; : : : ; n, we should select
a two-parameter family of traveling waves through u. This is done using the center
manifold theorem [13].

To begin with, we replace the second order O.D.E. (171) describing traveling
waves with an equivalent first order system:

8<
:

Pu D v ;
Pv D �

A.u/� ��v ;
P� D 0:

(174)

This consists of n C n C 1 O.D.E’s. Notice that the last equation simply says that
the speed � is a constant. Fix a state u	 2 IRn. Linearizing (171) at the equilibrium
point P 	 D .u	; 0; �i .u	//, one obtains the system

0
BBBBB@

Pu

Pv

P�

1
CCCCCA

D

0
BBBBB@

0 I 0

0 A.u	/� �i.u	/I 0

0 0 0

1
CCCCCA

0
BBBBB@

u

v

�

1
CCCCCA

2 IRnCnC: (175)
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Fig. 56 The linear subspace
Ni and the center manifold
Mi tangent to Ni at the
equilibrium point P �

Recalling that A.u	/ is a n � n matrix with real and distinct eigenvalues, one
checks that the center subspace Ni for the .2nC 1/� .2nC 1/ matrix in (175) (i.e.,
the invariant subspace corresponding to all generalized eigenvalues with zero real
part) has dimension nC 2.

By the center manifold theorem, for each i D 1; : : : ; n, the nonlinear system
(174) has a center manifold Mi of dimension nC 2, tangent to the center subspace
Ni at P 	 (Fig. 56).

A more detailed analysis shows that on Mi we can choose coordinates
.u; vi ; �i / 2 IRnC1C1. Here vi is the signed strength of the traveling wave profile
through u, and �i is its speed. In other words, at any given point Nx, for every
.u; vi ; �i / in a neighborhood of .u	; 0; �i .u	//, there exists a unique solution to
(171) such that

Ui. Nx/ D u; U 00
i D .A.Ui /� �i /U

0
i ; U 0

i . Nx/ D vi Qri
for some unit vector Qri D Qri .u; vi ; �i /.

The previous construction in terms of center manifold trajectories provides a
decomposition of ux along a basis of generalized eigenvectors: Qri .u; vi ; �i /. These
are unit vectors, close to the usual eigenvectors ri .u/ of the matrix A.u/, which
depend on two additional parameters.

Defining the corresponding generalized eigenvalues in terms of a scalar product:

Q�i .u; vi ; �i / :D ˝ Qri ; A.u/Qri ˛;
one can prove the key identity

.A.u/� Q�i
� Qri D vi

�Qri;u Qri C Qri;v. Q�i � �i /
�
: (176)

This replaces the standard identity

�
A.u/� �i

�
ri D 0 (177)

satisfied by the eigenvectors and eigenvalues of A.u/. The additional terms on the
right hand side of (176) play a crucial role, achieving a cancellation in the source
terms �i in (165). Eventually, this allows us to prove that these source terms are
globally integrable, in t and x.
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8.2 Evolution of Gradient Components

Let .u; ux; uxx/ 2 IR3n be given, in a neighborhood of the origin. For convenience,
instead of the decomposition (172)–(173), it is convenient to set ut D uxx �A.u/ux
and seek a decomposition of the form

8̂
<
:̂

ux D
X

vi Qri .u; vi ; �i /

ut D
X

wi Qri .u; vi ; �i /
with �i  �wi

vi
:

After a lengthy computation, one finds that these components satisfy a system of
evolution equations of the form

�
vit C . Q�ivi /x � vixx D �i

wit C . Q�iwi /x � wixx D  i
(178)

A detailed analysis of the right hand sides of (178) shows that these source terms
can be estimated as

�i ;  i D O.1/ 
Pj jwj C �j vj j 

�
jvjwj j C jvjx j C jwjx j

�
(wrong speed)

CO.1/ 
Pj jwjxvj � vjxwj j (change in speed, linear)

CO.1/ 
Pj

ˇ̌
ˇvj

�
wj

vj

�
x

ˇ̌
ˇ2 (change in speed, quadratic)

CO.1/ 
Pj 6Dk
�
jvj vkj C jvjxvkj C jvjwk j C jvjxwkj C jwjwkj

�
(interaction of waves of different families)

See [7] for detailed computations. Here we can only give an intuitive motivation
for how these source terms arise. If u is precisely a j -traveling wave profile on the
center manifold Mj , say u.t; x/ D Uj .x � �j t/, then by the key identity (176)
it follows that all source terms vanish identically (Fig. 57). In essence, the size of
these source terms is determined by how much the second order jet .u; ux; uxx/ in
our solution u differs from the jet of a traveling wave profile (Fig. 58).

Wrong speed. In a traveling wave profile u.t; x/ D U.t � �t/, the speed is the
constant value � D �Ut=Ux. However, near a point x0 where ux D 0, the speed of
a traveling wave would be � D �ut =ux ! 1. Since we want �i  �i .u	/, i.e.,
close to the i -th characteristic speed, a cut-off function must be used. These source
terms describe by how much the identity �i D �wi =vi is violated.

Change in wave speed. These terms account for local interactions of waves of
the same family. Think of the viscous traveling j -wave that best approximates u at a
point x, and at a nearby point x0. In general, these two profiles will not be the same,
hence some local interaction between them will occur. A measure of how much the
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Fig. 57 If u coincides with a
traveling wave profile, say of
the j -th family, then all
source terms vanish
identically
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Fig. 58 Source terms arise
because of (1) Interactions of
j -waves with k-waves, (2)
Interactions between waves
of the same j -th family, if
their speed varies with x, (3)
Points x0 where the
decomposition in traveling
profiles cannot be performed
exactly

j -traveling profile changes, as the point x varies, is provided by the change in speed:
.�j /x

Assuming that the speed satisfies �j D �wj =vj , one has

ˇ̌
ˇ.�j /x

ˇ̌
ˇ D jwjxvj � vjxwj j

jvj j2 :

The terms related to change in wave speeds can thus be written as products:

Œstrength of the wave�2 � Œrate of change of the speed�˛

with ˛ D 1; 2. More precisely,

O.1/ 

nX

jD1
jvj j2

ˇ̌
ˇ.�j /x

ˇ̌
ˇC O.1/ 


nX
jD1

jvj j2
ˇ̌
ˇ.�j /x

ˇ̌
ˇ2:

Transversal wave interactions. In general, at a given point x, waves of
distinct families j 6D k are present. These terms model interactions between these
different waves.

8.3 Lyapunov Functionals

We seek uniform bounds on the norms kvi .t/kL1 , kwi .t/kL1 , independent of time.
Since the left hand sides of (178) are in conservation form, it suffices to show that
all source terms are uniformly integrable in both variables t , x. To prove that
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Z 1

0

k�i .�/kL1 d� < 1 ;

Z 1

0

k i .�/kL1 d� < 1 ;

we construct suitable Lyapunov functionals �.u/ � 0 such that

k�i .t/kL1 ; k i.t/kL1 � � d

dt
�.u.t//

In other words, at each time t , the L1 norm of source terms should be controlled
by the rate of decrease of the functional. A summary of the basic estimates is as
follows:

Wrong speed H) Parabolic energy estimates
Change in wave speed, linear H) Area functional

Change in wave speed, quadratic H) Curve length functional
Interaction of waves of different families H) Wave interaction potential

In the remainder of this section we describe the main ideas involved in the
construction of these functionals.

1. Lyapunov functionals for a pair of linear parabolic equations.
Consider the system of two linear, scalar parabolic equations

(
zt C �

�.t; x/ z
�
x

� zxx D 0;

z	
t C �

�	.t; x/ z	�
x

� z	
xx D 0:

Assume that the propagation speeds � and �	 are strictly different:

inf
t;x
�	.t; x/ � sup

t;x

�.t; x/ � c > 0:

It is useful to think of z.
/ as the density of waves with slow speed �, while z	.
/ is
the density of waves with fast speed �	. The instantaneous amount of interaction
between z and z	 is defined as (Fig. 59)

I.t/
:D
Z ˇ̌

z.t; x/
ˇ̌ 
 ˇ̌z	.t; x/

ˇ̌
dx:
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1/c

K(s)

s0

Fig. 60 The interaction
kernel K defined at (180)

In order to bound the total amount of interaction, we introduce a potential for
transversal wave interactions with :

Q.z; z]/
:D
ZZ

K.x � y/ ˇ̌z.x/ˇ̌ ˇ̌z].y/ˇ̌ dxdy ; (179)

with (Fig. 60)

K.s/
:D
(
1=c if s � 0;

ecs=2=c if s < 0:
(180)

Computing the distributional derivatives of the kernelK , one checks that cK 0 �2K 00
is precisely the Dirac distribution, i.e. a unit mass at the origin. We now compute

d

dt
Q
�
z.t/; z].t/

� D d

dt

ZZ
K.x � y/ˇ̌z.x/ˇ̌ ˇ̌z].y/ˇ̌ dxdy

D
ZZ
K.x�y/

��
zxx�.�z/x

�
sgnz.x/

ˇ̌
z].y/

ˇ̌Cˇ̌z.x/ˇ̌�z]yy�.�]z]/y
�

sgnz].y/

�
dxdy

�
ZZ

K0.x � y/
n
�
ˇ̌
z.x/

ˇ̌ ˇ̌
z].y/

ˇ̌� �]
ˇ̌
z.x/

ˇ̌ ˇ̌
z].y/

ˇ̌o
dxdy

C
ZZ

K00.x � y/
nˇ̌

z.x/
ˇ̌ ˇ̌

z].y/
ˇ̌C ˇ̌

z.x/
ˇ̌ ˇ̌

z].y/
ˇ̌o
dxdy

� �
ZZ �

cK0 � 2K00�ˇ̌z.x/ˇ̌ ˇ̌z].y/ˇ̌dxdy D �
Z ˇ̌

z.x/
ˇ̌ ˇ̌

z].x/
ˇ̌
dx

Therefore, since Q � 0, for every T � 0 we have

R T
0

R ˇ̌
z.t; x/

ˇ̌ ˇ̌
z].t; x/

ˇ̌
dxdt � Q

�
z.0/; z].0/

��Q �
z.T /; z].T /

�
� 1

c

z.0/


L1
z].0/


L1 :

Using functionals of the form (179), one can control the source terms

O.1/ 

X
j 6Dk

h
jvj vkj C jvjxvkj C jvjwk j C jvjxwkj C jwjwkj

i

accounting for interaction of waves of different families.
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Fig. 61 As t ! C1, the solution to a scalar viscous conservation law is expected to approach a
traveling wave profile

da b c

f

γ

x

u(x)
b
c

d

a

f(u)−ux

u

Fig. 62 Left: the graph of a function u D u.x/. Right: the corresponding curve x 7! �.x/ D�
u.x/; f .u.x//� ux.x/

�

2. Lyapunov functionals for a scalar viscous conservation law
Consider a scalar conservation law with viscosity:

ut C f .u/x D uxx: (181)

We seek functionals that decrease in time, along every solution of (181). As
t ! C 1, we expect that the solution will approach a viscous traveling wave
profile. One could thus look for a Lyapunov functional describing how far u is from
a viscous traveling wave profile (Fig. 61).

For this purpose, it is convenient to adopt a variable transformation. Given a
scalar function u D u.x/, consider the curve (Fig. 62)

�
:D



u
f .u/� ux

�
D



conserved quantity

flux

�
(182)

Observe that u.
/ is a traveling wave profile if and only if the corresponding curve �
is a segment. Indeed

� ut
ux

D f .u/x � uxx
ux

D constant D [wave speed]

if and only if

d

du

�
f .u/ � ux

	
D
�
f .u/� ux

	
x


 1
ux

D constant:
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Fig. 63 Defining the area
functional

If now u D u.t; x/ provides a solution to the viscous conservation law (181), the
corresponding curve � in (182) evolves according to the vector equation

�t C f 0.u/�x D �xx: (183)

Recalling that

�
:D



u
f .u/ � ux

�
; �x D



v
w

�
:D



ux
�ut

�
: (184)

we find two functionals associated with (183). One is

Curve Length: L.�/
:D
Z

j�xj dx D
Z p

v2 C w2 dx: (185)

Indeed, a direct computation yields

d

dt
L
�
�.t/

� D �
Z jvj

�
.w=v/x

	2
�
1C .w=v/2

�3=2 dx:

Using functionals of this type, one controls the source terms

O.1/ 

ˇ̌
ˇ̌vj



wj

vj

�
x

ˇ̌
ˇ̌2 (change in wave speed, quadratic).

The second functional is (see Fig. 63)

Area functional: Q.�/
:D 1

2

ZZ
x<y

ˇ̌
ˇ̌�x.x/ ^ �x.y/

ˇ̌
ˇ̌ dx dy (186)

If � evolves in the direction of curvature, then Q controls the area swept by
the curve: jdAj � �dQ. This can best be understood thinking of polygonal
approximations (Fig. 64). If � is a polygonal with sides vj , the double integral in
(186) is computed by a finite sum:
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Fig. 64 The decrease in the
area functional bounds the
area swept by the curve in its
motion

Q.�/ D 1

2

X
i<j

ˇ̌
vi ^ vj

ˇ̌
: (187)

If we now replace two consecutive edges vh; vk by a single segment, the area of the
corresponding triangle is

jdAj D 1

2

ˇ̌
vh ^ vk

ˇ̌ � �dQ

Indeed, the term 1
2

ˇ̌
vh ^ vk

ˇ̌
is now missing from the sum in (187), while the sum of

all other terms remains the same, or decreases.
Recalling (183)–(184), we now compute

�dQ
dt

�
ˇ̌
ˇ̌dA
dt

ˇ̌
ˇ̌ D

Z
j�t ^ �x j dx D

Z
j�xx ^ �x j dx D

Z
jvxw � vwx j dx:

As a consequence, the integral over time of the right hand side can be estimated by

Z 1

0

Z
jvxw � vwx j dx dt �

Z 1

0

ˇ̌
ˇ̌ d
dt
Q
�
�.t/

�ˇ̌ˇ̌ dt � Q
�
�.0/

�

Using functionals of this type, one can control the source terms

O.1/ 
 jvjxwj � vjwjx j (change in wave speed, linear).

8.4 Continuous Dependence on the Initial Data

The techniques described in the previous section provide uniform estimates on the
total variation of a solution u to the system (163). Similar techniques can also be
used to estimate the size of first order perturbations.

Indeed, let u be solution of (163) and assume that, for each " > 0, the function

u".t; x/ D u.t; x/C " z.t; x/C o."/
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is also a solution, with o."/ denoting an infinitesimal of higher order w.r.t. ".
Inserting the above expansion in (163) and collecting terms of order ", one finds
that the function z must satisfy the the linearized variational equation

zt C �
DA.u/ 
 z

�
ux CA.u/zx D zxx: (188)

Assuming that the total variation of u remains small, one can prove the estimate

z.t; 
/L1 � L
z.0; 
/L1 for all t � 0 ; (189)

for a uniform constant L. The above estimate is valid for every solution u of (163)
having small total variation and every L1 solution of the corresponding system
(188).

Relying on (189), a standard homotopy argument yields the Lipschitz continuity
of the flow of (163) w.r.t. the initial data, uniformly in time. Indeed, let any two
solutions u; v of (163) be given (Fig. 46). We can connect them by a smooth path of
solutions u� , whose initial data satisfy

u� .0; x/
:D �u.0; x/C .1 � �/v.0; x/ � 2 Œ0; 1�:

The distance
u.t; 
/ � v.t; 
/L1 at any later time t > 0 is clearly bounded by

the length of the path � 7! u� .t/. In turn, this can be computed by integrating the
norm of a tangent vector. Calling z�

:D du�=d� , each vector z� is a solution of the
corresponding (188), with u replaced by u� . Using (190) we thus obtain

u.t; 
/� v.t; 
/L1 �
Z 1

0

 dd� u� .t/


L1
d� D

Z 1

0

z� .t/


L1 d�

� L

Z 1

0

z� .0/


L1 d� D L
u.0; 
/� v.0; 
/L1 : (190)

8.5 The Semigroup of Vanishing Viscosity Limit Solutions

The estimates on the total variation and on the continuous dependence on the initial
data, obtained in the previous sections were valid for solutions of the system (163)
with unit viscosity matrix. By the simple rescaling of coordinates t 7! "t , x 7! "x,
all of the above estimates remain valid for solutions u" of the system (155)". In this
way one obtains the a priori bounds (157) and (158).
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As soon as the global BV bounds are established, by a compactness argument
one obtains the existence of a strong limit u"m ! u in L1loc , for some sequence
"m ! 0. In the conservative case where A D Df , by Lemma 1 in Sect. 2 this limit
u D u.t; x/ provides a weak solution to the Cauchy problem (162).

At this stage, it only remains to prove that the limit is unique, i.e. it does not
depend on the choice of the sequence "m ! 0. For a system in conservative form,
and with the standard assumption (H) that each field is either genuinely nonlinear
or linearly degenerate, we can apply Theorem 7 in Sect. 7, and conclude that the
limit of vanishing viscosity approximations is unique and coincides with the limit
of Glimm and of front tracking approximations.

To handle the general non-conservative case, some additional work is required.
Relying on the analysis in [6], one first considers Riemann initial data and shows that
in this special case the vanishing viscosity solution is unique and can be accurately
described. In a second step, one proves that any weak solution obtained as limit
vanishing viscosity approximations is also a “viscosity solution”, i.e. it satisfies
the local integral estimates (E1)–(E2) in Sect. 7.2, where U ] is now the unique
solution of a Riemann problem obtained as limit of viscous approximations [6]. By
an argument introduced in [10], a Lipschitz semigroup is completely determined
as soon as one specifies its local behavior for piecewise constant initial data.
Characterizing its trajectories as “viscosity solutions” one thus establishes the
uniqueness of the semigroup of vanishing viscosity limits.

9 Extensions and Open Problems

With the papers [7,20,34], the well-posedness of the Cauchy problem for hyperbolic
conservation laws in one space dimension has been essentially settled, within the
class of solutions with small total variation. Extensions of these well-posedness
results to the initial-boundary value problem and to balance laws with source terms
can be found in [30] and in [1], respectively.

A major remaining open problem concerns the solutions with large total vari-
ation. Results in this direction can be found in [23] and [35]. As proved by
M. Lewicka [41], for a large class of hyperbolic systems the solutions are unique
and depend continuously on the initial data, as long as their total variation remains
bounded. The key question is whether the total variation can blow up in finite time,
if the initial data is sufficiently large. An example constructed by K. Jenssen [38]
shows that this can indeed happen, for some strictly hyperbolic system. One should
remark, however, that the 3 � 3 system considered in [38] does not come from any
realistic physical model. In particular, it does not admit any strictly convex entropy.
One may thus conjecture that the presence of a strictly convex entropy restricts
the possibility of a finite time blow up. More specifically, it is an important open
problem to understand whether finite blow up in the total variation norm can occur
for solutions to the Euler equations of gas dynamics.

We remark that, since hyperbolic conservation laws are a class of nonlinear
evolution equations, one might expect to observe some rich dynamics: periodic
orbits, bifurcation, chaotic behavior, etc: : : However, the present theory does not
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include any of this. The reason is that, as long as one considers only solutions with
small total variation, the dynamics is mostly trivial. As proved by T.P. Liu [47],
letting time t ! C1, every solution with small total variation converges
asymptotically to the solution of a Riemann problem. It is only for large BV
solutions that some interesting dynamics will likely be observed—provided that
some global existence theorem can be established.

In connection with vanishing viscosity approximations, uniform BV bounds for
systems of balance laws with dissipative sources were established in [24]. Viscous
approximations to the initial-boundary value problem, with suitable boundary
conditions, have been studied by Ancona and Bianchini [2].

Up to now, all results on a priori BV bounds, stability and convergence of viscous
approximations have dealt with “artificial viscosity”, assuming that the diffusion
coefficient is independent of the state u. A more realistic model would be

ut C f .u/x D .B.u/ux/x ; (191)

where B is a positive definite viscosity matrix, possibly depending on the state u. It
remains an outstanding open problem to establish similar results in connection with
the more general system (191).

Appendix

We collect here some results of mathematical analysis, which were used in previous
sections.

9.1 Compactness Theorems

Let ˝ be an open subset of IRm. We denote by L1loc.˝I IRn/ the space of locally
integrable functions on ˝ . This is the space of all functions u W ˝ 7! IRn whose
restriction to every compact subset K � ˝ is integrable. The space L1loc is not
a normed space. However, it is a Fréchet space: for every compact K � ˝ , the
mapping

u 7!
Z
K

ju.x/j dx

is a seminorm on L1loc .
Next, consider a (possibly unbounded) interval J � IR and a map u W J 7! IRn.

The total variation of u is defined as

Tot.Var.fug :D sup

8<
:

NX
jD1

ˇ̌
u.xj / � u.xj�1/

ˇ̌
9=
; ; (1)
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where the supremum is taken over allN � 1 and all .NC1/-tuples of points xj 2 J
such that x0 < x1 < 
 
 
 < xN . If the right hand side of (1) is bounded, we say that
u has bounded variation, and write u 2 BV .

Lemma A.1 (properties of functions with bounded variation). Let u W �a; bŒ 7!
IRn have bounded variation. Then, for every x 2 �a; bŒ , the left and right limits

u.x�/ :D lim
y!x� u.y/; u.xC/ :D lim

y!xC u.y/

are well defined. Moreover, u has at most countably many points of discontinuity.

By the above lemma, if u has bounded variation, we can redefine the value of u at
each point of jump by setting u.x/

:D u.xC/. In particular, if we are only interested
in the L1-equivalence class of a BV function u, by possibly changing the values of
u at countably many points we can assume that u is right continuous.

We state below a version of Helly’s compactness theorem, which provides the
basic tool in the proof of existence of weak solutions. For a proof, see [11].

Theorem A.1 (Compactness for a family of BV functions). Consider a sequence
of functions u� W Œ0;1Œ�IR 7! IRn with the following properties.

Tot.Var.
˚
u�.t; 
/

� � C;
ˇ̌
u�.t; x/

ˇ̌ � M for all t; x; (2)

Z 1

�1

ˇ̌
u�.t; x/ � u�.s; x/

ˇ̌
dx � Ljt � sj for all t; s � 0; (3)

for some constants C;M;L. Then there exists a subsequence u� which converges to
some function u in L1loc

�
Œ0;1/ � IRI IRn�. This limit function satisfies

Z 1

�1

ˇ̌
u.t; x/� u.s; x/

ˇ̌
dx � Ljt � sj for all t; s � 0: (4)

The point values of the limit function u can be uniquely determined by requiring that

u.t; x/ D u.t; xC/ :D lim
y!xC u.t; y/ for all t; x: (5)

In this case, one has

Tot.Var.
˚
u.t; 
/� � C;

ˇ̌
u.t; x/

ˇ̌ � M for all t; x: (6)

9.2 An Elementary Error Estimate

Let D be a closed subset of a Banach space E and consider a Lipschitz continuous
semigroup S W D � Œ0;1Œ 7! D . More precisely, assume that
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Fig. 65 Comparing the
approximate solution w with
the trajectory of the
semigroup having the same
initial data

(i) S0u D u; SsStu D SsCtu.
(ii) kStu � Ssvk � L 
 ku � vk C L0 
 jt � sj.

Given a Lipschitz continuous map w W Œ0; T � 7! D , the following theorem
estimates the difference between w and the trajectory of the semigroup S starting at
w.0/. For the proof we again refer to [11].

Theorem A.2 (Error estimate for a Lipschitz flow). Let S W D � Œ0;1Œ 7! D be
a continuous flow satisfying the properties (i)–(ii). For every Lipschitz continuous
map w W Œ0; T � 7! D one then has the estimate

w.T / � S
T

w.0/
 � L

Z T

0

(
lim inf
h!0C

w.t C h/ � Shw.t/


h

)
dt: (7)

Remark 9. The integrand in (7) can be regarded as the instantaneous error rate for w
at time t . Since the flow is uniformly Lipschitz continuous, during the time interval
Œt; T � this error is amplified at most by a factor L (see Fig. 65).

9.3 The Center Manifold Theorem

Let A be an n � n matrix and consider the Cauchy problem for a linear system of
O.D.E’s with constant coefficients

Px D Ax ; x.0/ D Nx: (8)

The explicit solution can be written as

x.t/ D etA Nx ; etA
:D

1X
kD0

tkAk

kŠ
:

We say that a subspace V � IRn is invariant for the flow of (8) if x 2 V implies
eAtx 2 V for all t 2 IR. A natural way to decompose the space IRn as the sum of
three invariant subspaces is now described. Consider the eigenvalues of A, i.e. the
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Vcφ (x )c

cx

V  + Vs u

M

Fig. 66 The center subspace
V c and the center manifold
M , tangent to V c at the
origin

zeroes of the polynomial p.�/
:D det.�I �A/. These are finitely many points in the

complex plane.
The space IRn can then be decomposed as the sum of a stable, an unstable

and a center subspace, respectively spanned by the (generalized) eigenvectors
corresponding to eigenvalues with negative, positive and zero real part. We thus
have

IRn D V s ˚ V u ˚ V c

with continuous projections

�s W IRn 7! V s ; �u W IRn 7! V u ; �c W IRn 7! V c ;

x D �sx C �cx C �ux:

These projections commute with A and hence with the exponential eAt as well:

�se
At D eAt�s ; �ue

At D eAt�u ; �ce
At D eAt�c:

In particular, these subspaces are invariant for the flow of (8).
Next, consider the nonlinear system

Px D f .x/: (9)

Assume that f .0/ D 0 and Df.0/ D A, so that (8) provides a first order Taylor
approximation to (9). According to the center manifold theorem, the nonlinear
system (9) admits an invariant manifold M , which at the origin is tangent to the
center subspace V c , as shown in Fig. 66. In the following theorem, the solution of
(9) with initial data x.0/ D x0 will be denoted by t 7! x.t; x0/. For a proof we refer
to [13].

Theorem A.3 (Existence and properties of center manifold). Let f W IRn 7!
IRn be a vector field in C kC1 (here k � 1), with f .0/ D 0. Consider the matrix
A D Df.0/, and let V s; V u; V c be the corresponding stable, unstable, and center
subspaces. Then there exists ı > 0 and a local center manifold M with the
following properties.
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(i) There exists a C k function � W V c 7! IRn with �c �.xc/ D xc such that

M D
n
�.xc/ I xc 2 V c ; jxc j < ı

o
:

(ii) The manifold M is locally invariant for the flow of (9), i.e. x0 2 M implies
x.t; x0/ 2 M , for all t sufficiently close to zero.

(iii) M is tangent to V c at the origin.
(iv) Every globally bounded orbit remaining in a suitably small neighborhood of

the origin is entirely contained inside M .
(v) Given any trajectory such that x.t/ ! 0 as t ! C1, there exists 
 > 0 and

a trajectory t 7! y.t/ 2 M on the center manifold such that

e
t
ˇ̌
x.t/ � y.t/j ! 0 as t ! C1:
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Derivation of Non-local Macroscopic Traffic
Equations and Consistent Traffic Pressures
from Microscopic Car-Following Models�

Dirk Helbing

Abstract This contribution compares several different approaches allowing one to
derive macroscopic traffic equation directly from microscopic car-following models.
While it is shown that some conventional approaches lead to theoretical problems,
it is proposed to use an approach reminding of smoothed particle hydrodynamics
to avoid gradient expansions. The derivation circumvents approximations and,
therefore, demonstrates the large range of validity of macroscopic traffic equations,
without the need of averaging over many vehicles. It also gives an expression for
the “traffic pressure”, which generalizes previously used formulas. Furthermore, the
method avoids theoretical inconsistencies of macroscopic traffic models, which have
been criticized in the past by Daganzo and others.

1 Introduction

In order to describe the dynamics of traffic flows, a large number of mathematical
models has been developed. The analysis of the spatio-temporal features and statis-
tics of traffic patterns has often been done with methods from non-linear dynamics
and statistical physics. An overview of modeling approaches and methods is, for
example, given in [5, 9, 19, 20]. Among these are cellular automata, “microscopic”
car-following models, “mesoscopic” gas-kinetic, and macroscopic traffic models.
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Cellular automata can often be interpreted as discretized versions of
car-following models, while gas-kinetic models have frequently been used to
derive macroscopic from microscopic models. Such derivations were driven by the
desire to improve phenomenological specifications of macroscopic traffic models
[15, 16, 22], which were criticized to have unrealistic properties [6]. However, the
derivation of gas-kinetic models from car-following models usually simplifies the
interactions among vehicles by a collisional approach assuming immediate braking
maneuvers. Moreover, the derivation of macroscopic traffic models from gas-kinetic
ones terminates an infinite and poorly converging series expansion, which replaces
dynamical equations for higher moments of the velocity distribution by simplified
equilibrium relationships [12].

Although this leads to macroscopic equations which work well in most theoret-
ical and practical aspects [26], the implications of the approximations are hardly
known. Moreover, the approach seems to require an averaging over at least 100
vehicles for each speed class and spatial location. While this constitutes no problem
for gases with 1023 particles within a small volume, for traffic flows this would
require an averaging over spatial intervals much greater than the scale on which
traffic flow changes. Hence, it is not well understood, whether or why macroscopic
traffic equations can be used at all.

In this paper, we will therefore focus on attempts to derive macroscopic traffic
equations directly from microscopic ones. Doing so, we will compare three different
approaches: First, we study the gradient expansion approach in Sect. 2. Second, we
turn to the linear interpolation approach in Sect. 3. Third, we discuss an approach
reminding of smoothed particle hydrodynamics in Sect. 4 and compare the results
with macroscopic traffic models such as the Payne model, the Aw–Rascle model,
and a non-local traffic model. In the conclusions of Sect. 5, we summarize and
discuss our results, in particular with regard to the mathematical form of the traffic
pressure and the theoretical consistency of macroscopic traffic models.

2 The Gradient Expansion Approach

Already in the 1970s, Payne [23, 24] used a gradient expansion approach to derive
a macroscopic velocity equation complementing the continuity equation

@

@t
C @

@x
Œ.x; t/V .x; t/� D 0: (1)

It relates the vehicle density .x; t/ at location x and time t with the average velocity
V.x; t/ or the vehicle flow

Q.x; t/ D .x; t/V .x; t/; (2)

respectively, and describes the conservation of the number of vehicles [28].
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Payne derived his model from Newell’s car-following model [21]

vi .t C �/ D vo
�
di.t/

�
; (3)

which assumes that the speed vi .t/ of vehicle i at time t will be adjusted with a delay
of � to some optimal speed vo, which depends on the distance di.t/ D xi�1.t/�xi .t/
between the location of the leading vehicle xi�1.t/ and the location xi .t/ of the
following car.

Payne identified microscopic and macroscopic velocities as follows:

vi .t C �/ D V.x C V �; t C �/

 V.x; t/C V �
@V.x; t/

@x
C �

@V.x; t/

@t
: (4)

Then, Taylor approximations (gradient expansions) were used in several places. For
example, Payne substituted the inverse of the distance di to the leading vehicle by
the density  at the place x C di .t/=2 in the middle between the leading and the
following vehicle. In this way, he obtained

1

di .t/
D 



x C di.t/

2
; t

�
D 



x C 1

2
; t

�

 .x; t/C 1

2

@.x; t/

@x
: (5)

When defining the so-called equilibrium velocity Ve./ through

Ve./ D vo



1



�
or Ve



1

di

�
D vo.di / ; (6)

a first order Taylor approximation and (5) imply

vo
�
di.t/

� D Ve



1

di .t/

�

 Ve
�
.x; t/

�C 1

2.x; t/

dVe./

d

@.x; t/

@x
: (7)

Starting from the previous equations, one finally arrives at Payne’s macroscopic
velocity equation

@V

@t
C V

@V

@x
D 1

�

�
Ve./� D./



@

@x
� V.x; t/

	
; (8)
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where we have introduced the density-dependent diffusion

D./ D �1
2

dVe./

@
D 1

2

ˇ̌
ˇ̌dVe./

d

ˇ̌
ˇ̌ � 0 : (9)

The single terms of (8) have the following interpretation: The term V @V=@x is
called the transport term and describes a motion of the velocity profile with the
vehicles. The term �ŒD./=. �t/�@=@x is called anticipation term, as it reflects
the reaction of drivers to the traffic situation in front of them. The relaxation term
ŒVe./ � V �=�t delineates the adaptation of the average velocity V.x; t/ to the
density-dependent equilibrium velocity Ve./ with a delay � .

Other authors have applied similar gradient expansions to the optimal velocity
model defined by

dvi .t/

dt
D 1

�

h
vo
�
di.t/

� � vi .t/
i

(10)

with ddi =dt D vi�1.t/�vi .t/, see e.g. [4,17]. Equation (10) results from the Newell
model (3) by a first-order Taylor approximation vi .t C �/  vi .t/ C � dvi =dt.
Regarding the derivation of macroscopic traffic equations from the optimal velocity
model, it is also worth reading [4, 17].

One weakness of the gradient expansion approach is that its validity implicitly
requires small gradients. However, it is well-known that many microscopic and
macroscopic traffic equations give rise to emergent traffic jams, which are related
with steep gradients. That calls for the consideration of higher-order terms and leads
to macroscopic traffic equations that are not anymore simple and well tractable (even
numerically). Let us, therefore, study other approaches to determine macroscopic
from microscopic equations.

3 The Linear Interpolation Approach

The optimal velocity model may be also written in the form

dvi
dt

D ai .t/ D v0 � vi .t/

�
C f

�
di .t/

�
; (11)

where ai .t/ denotes the acceleration, v0 the “desired velocity” or “free speed”, and

f .di / D vo.di / � v0

�
� 0 (12)

the repulsive interaction among the leading vehicle i � 1 and its follower i .
In [14], it has been suggested to establish a micro-macro link between micro-

scopic and macroscopic traffic variables by the definitions
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.x; t/ D
1

xi .t/ � xiC1.t/
�
xi�1.t/ � x

�

xi�1.t/ � xi .t/

C
1

xi�1.t/ � xi .t/
�
x � xi .t/

�

xi�1.t/ � xi .t/
; (13)

V.x; t/ D vi .t/
�
xi�1.t/ � x

�C vi�1.t/
�
x � xi .t/

�
xi�1.t/ � xi .t/ ; (14)

A.x; t/ D ai .t/
�
xi�1.t/ � x�C ai�1.t/

�
x � xi .t/

�
xi�1.t/ � xi .t/

: (15)

These definitions assume that the macroscopic variables in the vehicle locations
x D xi .t/ would be given by the microscopic ones, while in locations x between
two vehicles, they would be defined by linear interpolation.

Let us consider the consequences of such an approach. For this, we determine
the partial derivative of

G.x; t/ D gi .t/
�
xi�1.t/ � x

�C gi�1.t/
�
x � xi .t/

�
xi�1.t/ � xi .t/

(16)

with respect to x, which gives

@G.x; t/

@x
D �gi .t/C gi�1.t/

xi�1.t/ � xi .t/ (17)

for any specification of gi .t/, for example, gi .t/ D vi .t/. The partial derivative with
respect to time is

@G.x; t/

@t
D

dgi .t /
dt

�
xi�1.t/ � x

�C gi .t/
dxi�1.t/

dt

xi�1.t/ � xi .t/

C
dgi�1.t/

dt

�
x � xi .t/

� � gi�1.t/ dxi .t /
dt

xi�1.t/ � xi .t/

�
�

dxi�1.t/
dt � dxi .t /

dt

�
gi .t/

�
xi�1.t/ � x

�
�
xi�1.t/ � xi .t/

�2

�
�

dxi�1.t/
dt � dxi .t /

dt

�
gi�1.t/

�
x � xi .t/

�
�
xi�1.t/ � xi .t/

�2 : (18)
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For gi .t/ D vi .t/ D dxi =dt and with dvi =dt D ai .t/, this formula simplifies to the
following expression:

@V.x; t/

@t
D ai .t/

�
xi�1.t/ � x�C vi .t/vi�1.t/
xi�1.t/ � xi .t/

Cai�1.t/
�
x � xi .t/

� � vi�1.t/vi .t/
xi�1.t/ � xi .t/

� vi�1.t/ � vi .t/

xi�1.t/ � xi .t/

�vi .t/
�
xi�1.t/ � x

�C vi�1.t/
�
x � xi .t/

�
xi�1.t/ � xi .t/

D A.x; t/ � @V.x; t/

@x
V.x; t/: (19)

As a consequence, we find the exact relationship

@V.x; t/

@t
C V.x; t/

@V .x; t/

@x
D A.x; t/: (20)

This would be fully compatible with Payne’s macroscopic traffic equation (8), if

A.x; t/ D 1

�

h
Ve./� V.x; t/

i
� D./

�.x; t/

@

@x
: (21)

However, the expression for gi .t/ D 1=Œxi�1.t/� xi .t/� does not simplify in a way
that would finally lead to the continuity equation (1). Therefore, a micro-macro link
based on the linear interpolation (16) of the microscopic variables gi .t/ does not
exactly imply the conservation of the number of vehicles, i.e. it is theoretically not
consistent. Nevertheless, it works surprisingly well in practise [14].

In the next section, we will see that the interpolation approach fails because
it does not reflect the non-locality of the correct macroscopic traffic equations,
see (39) or (47). The dependence on gradients makes the model too isotropic, while
vehicles should only respond to the traffic situation ahead of them, but not behind
them. This problem is usually taken care of by hyperbolic schemes such as the
Godunov scheme, as used for example in [2]. This scheme naturally discretizes the
velocity in a downwind way, which avoids the isotropy problem of Payne’s model
and similar ones [6].

To avoid this problem, [18] suggests a hybrid Lagrangian approach. This is
based on a transformation into Lagrangian coordinates, i.e. a moving coordinate
system. As a result, the continuity equation (1) becomes linear. For piecewise linear
 and V , the result can then be transformed back into Eulerian coordinates, i.e. into
the stationary frame of reference. In the following, we will present an alternative
method that yields macroscopic traffic equations from microscopic ones directly,
without the need of transformation into Lagrangian coordinates.
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4 An Approach Reminding of Smooth Particle
Hydrodynamics

4.1 Derivation of the Continuity Equation

In this section, we will start with the derivation of the continuity equation from the
equation of motion dxi =dt D vi , using a “trick” that I learned from Isaac Goldhirsch.
For this, we represent the location xi .t/ of an element i in space by a delta function
ı.x � xi .t//, which may be treated here like a very narrow Gaussian distribution.
Moreover, we introduce a symmetrical smoothing function

s.x0 � x/ D s.jx0 � xj/ D s.x � x0/; (22)

for example, a Gaussian distribution with a finite variance or a differentiable
approximation of a triangular function or a rectangular one. The smoothing function
shall be normalized by demanding

1Z

�1
dx0 s.x0 � x/ D 1 (23)

for any value of x. With this, we define the local density

.x; t/ D
1Z

�1
dx0 s.x0 � x/

X
i

ı
�
x0 � xi .t/

�
(24)

D
X
i

s.xi .t/ � x/ : (25)

Herein, we sum up over all particles i . Note that the replacement of the conventional
formula

P
i ı.xi .t/ � x/ for the vehicle density by the formula

P
i s.xi .t/ � x/

reminds of a substitution of point-like particles by “fuzzy” particles, which is
the idea behind smoothed particle hydrodynamics. Nevertheless it should be
remembered that we have formally related the smoothing function s.x0 � x/ to
locations x0 in the stationary frame of reference, and not to the moving vehicles
themselves.

Now, we define the average velocity V.x; t/ as usual via a weighted average with
the weight function ı.x0 � xi .t//s.x

0 � x/:
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V.x; t/ D

1R
�1

dx0 X
i

vi .t/ı
�
x0 � xi .t/

�
s.x0 � x/

1R
�1

dx0 X
i

ı
�
x � xi .t/

�
s.x0 � x/

D

1R
�1

dx0 X
i

vi .t/ı
�
x0 � xi .t/

�
s.x0 � x/

.x; t/

D

X
i

vi .t/s.xi .t/ � x/
X
i

s.xi .t/ � x/

D

X
i

vi .t/s.xi .t/ � x/

.x; t/
: (26)

This implies the well-known fluid-dynamic flow relationship

Q.x; t/ D .x; t/V .x; t/: (27)

Differentiation of (24) with respect to time and application of the chain rule gives

@.x; t/

@t

D
1Z

�1
dx0 X

i



�dxi

dt

�


�
@

@x0 ı
�
x0 � xi .t/

�	
s.x0 � x/

D
1Z

�1
dx0 X

i

vi .t/ı
�
x0 � xi .t/

� � @

@x0 s.x
0 � x/

	
; (28)

where we have applied partial integration to obtain the last results. That is, we have
used the theorem

1Z

�1
dx0

�
@

@x0 u.x0/
	

v.x0/

D
h
u.x/v.x/

i1
�1 �

1Z

�1
u.x0/

�
@

@x0 v.x0/
	
; (29)
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considering the vanishing of the first term after the equality sign due to the vanishing
of u.x/v.x/ at the boundaries. Taking into account the symmetry of the smoothing
function s.x0 �x/, we may replace @s.x0 �x/=@x0 by �@s.x0 �x/=@x, which finally
yields (1) as follows:

@.x; t/

@t
D � @

@x

1Z

�1
dx0 X

i

vi .t/ı
�
x0 � xi .t/

�
s.x0 � x/

D � @

@x

h
.x; t/V .x; t/

i
: (30)

To obtain this desired result, we have finally applied the definition (26) of the
average velocity V.x; t/. As a consequence of this, the validity of the continuity
equation does not require an averaging over large numbers of entities, i.e. macro-
scopic volumes to average over. This makes the equation absolutely fundamental
and explains its large range of validity.

4.2 Derivation of the Macroscopic Velocity Equation

In order to derive the equation for the average velocity, we start by deriving the
formula

.x; t/V .x; t/ D
X
i

vi .t/s
�
xi .t/ � x� (31)

for the vehicle flow with respect to time. This gives

@

@t

�
.x; t/V .x; t/

� D
X
i

dvi .t/

dt
s
�
xi .t/ � x

�

C
X
i

vi .t/
@

@xi

h
s
�
xi .t/ � x�idxi .t/

dt

D
X
i

ai .t/s
�
xi .t/ � x

�

� @

@x

X
i

Œvi .t/�
2s
�
xi .t/ � x

�
: (32)

Introducing ıvi .x; t/ D vi .t/ � V.x; t/ and defining the velocity variance
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�.x; t/ D

1R
�1

dx0 P
i Œvi .t/ � V.x; t/�2ı

�
x0 � xi .t/

�
s.x0 � x/

1R
�1

dx0 P
i ı
�
x0 � xi .t/

�
s.x0 � x/

D
P

i Œvi .t/ � V.x; t/�2s.xi .t/ � x/P
i s.xi .t/ � x/

D
P

i Œıvi .x; t/�
2s.xi .t/ � x/

.x; t/
(33)

similarly to the average velocity (26), we can make the decomposition

X
i

Œvi .t/�
2s
�
xi .t/ � x

�

D
X
i

ŒV .x; t/ C ıvi .x; t/�
2s
�
xi .t/ � x�

D
X
i

n
ŒV .x; t/�2 C 2V.x; t/ıvi .x; t/

CŒıvi .x; t/�2
o
s
�
xi .t/ � x

�

D .x; t/ŒV .x; t/�2 C 2.x; t/V .x; t/
�
V.x; t/ � V.x; t/

�

C.x; t/�.x; t/ ; (34)

where we have considered

X
i

ıvi .x; t/s
�
xi .t/ � x

�

D
X
i

h
vi .t/ � V.x; t/

i
s
�
xi .t/ � x

�

D Q.x; t/ � .x; t/V .x; t/ D 0 ; (35)

see (26) and (25). Altogether, we get

@

@t

�
.x; t/V .x; t/

� D � @

@x

n
.x; t/

�
V.x; t/2 C �.x; t/

�o

C
X
i

ai .t/s
�
xi .t/ � x

�
: (36)

Now, we carry out the partial differentiation applying the product rule of Calculus.
Taking into account
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.x; t/
@V .x; t/

@t
D �V.x; t/@.x; t/

@t
C @

@t

�
.x; t/V .x; t/

�
(37)

and

@

@x

n�
.x; t/V .x; t/�V .x; t/

o

D .x; t/V .x; t/
@V

@x

CV.x; t/ @
@x

h
.x; t/V .x; t/

i
; (38)

with (36) we obtain the following:

.x; t/
@V .x; t/

@t

D �V.x; t/@.x; t/
@t

� V.x; t/ @
@x

�
.x; t/V .x; t/

�

�.x; t/V .x; t/@V .x; t/
@x

� @

@x

�
.x; t/�.x; t/

�

C
X
i

ai .t/s
�
xi .t/ � x� : (39)

Inserting the continuity equation (30) for @=@t and dividing the above equation by
.x; t/ finally yields the velocity equation

@V.x; t/

@t
C V.x; t/

@V .x; t/

@x

D � 1

.x; t/

@

@x

�
.x; t/�.x; t/

�

C 1

.x; t/

X
i

ai .t/s
�
xi .t/ � x� : (40)

Inserting (11) for ai .t/, we find

X
i

ai .t/s
�
xi .t/ � x

�

D
X
i

"
v0 � vi
�

C
X
i

f
�
di.t/

�#
s
�
xi .t/ � x

�

D v0 � V.x; t/

�
C
X
i

f
�
di .t/

�
s
�
xi .t/ � x

�
: (41)
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Fig. 1 Illustration of rectangular (—), triangular (– –), and Gaussian (� � � ) smoothing functions
s.x0 � x/. xk and xk�1 are the locations of the two closest vehicles k and k � 1 with respect to a
reference location x. Their distance 1=% D xk�1 � xk determines the size 2=% of the smoothing
range chosen in the calculations of the main text

For further simplification, let us now specify the smoothing function by the
rectangular function

s.xi � x/ D %

2


�
1 if jxi � xj � 1=%

0 otherwise,
(42)

with a large enough smoothing window of length�x D 2=% (see Fig. 1). Then, the
number of vehicles i within the smoothing interval Œx � 1=%; x C 1=%� is expected
to be �x D 2=%, where  represents the average vehicle density in this interval.
Therefore,

.x; t/ D
X
i

s
�
xi .t/ � x

� D 2

%

%

2
D ; (43)

which shows the consistency of this approach.
If the smoothing parameter % is specified via the inverse vehicle distance

% D %k D 1

dk
D 1

xk�1 � xk D .x; t/ for xk < x � xk�1; (44)

the smoothing window of length �x D 2=% will usually contain only two vehicles
k � 1 and k with xk < x � xk�1 (see Fig. 1). With this, the sum over i reduces to
two terms with i D k and i D k � 1 only. This finally yields

.x; t/V .x; t/ D
X
i

vi .t/s
�
xi .t/ � x�

D vk.t/s
�
xk.t/ � x�C vk�1.t/s

�
xk�1.t/ � x

�

D %

2

�
vk�1.t/C vk.t/

�

D .x; t/
vk�1.t/C vk.t/

2
(45)
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and, considering (44),

X
i

s.xi .t/ � x/f �di .t/� D %

2
f .dk/C %

2
f .dk�1/

D %

2
f



1

%k

�
C %

2
f



1

%k�1

�

D .x; t/

2
f



1

.x; t/

�

C.x; t/

2
f



1

.x C 1=; t/

�
: (46)

In summary, the macroscopic velocity equation related to the optimal velocity model
corresponds to1

@V.x; t/

@t
C V.x; t/

@V .x; t/

@x

D � 1

.x; t/

@

@x

�
.x; t/�.x; t/

�C v0 � V.x; t/
�

C1

2
f



1

.x; t/

�
C 1

2
f



1

.x C 1=; t/

�
: (47)

Note that the last line of this equation contains more terms, if more than two vehicles
are located in the spatial interval between x � 1=% and x C 1=%, as it can happen
due to density variations. Since this does not affect a numerical implementation of
the macroscopic equations (40) and (41), we do not need to be concerned about this.
Equation (43) anyway remains unchanged.

At the cost of less straight-forward analytical evaluation, it is also possible to use
other than rectangular smoothing functions (see Fig. 1). A triangular function, for
example, puts less weight on the boundaries of the smoothing window, so it will
make little difference whether there are two or three cars in the smoothing range.
Using the specification

s.xi � x/ D max
�
%.1 � %jxi � xj/; 0� (48)

and considering

1If another smoothing function is applied, the last term of (47) is replaced by a similar weighted
mean value, as (41) reveals, but the essence stays the same. That is, the way of looking at the
microscopic equations (i.e. the way of defining the density and velocity moments) potentially has
some influence on the dynamics, but it is expected to be small.
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jxk�1 � xj C jx � xk j D .xk�1 � x/C .x � xk/ D xk�1 � xk D 1

%
(49)

shows that a triangular specification leads to the same consistent density measure-
ment:

.x; t/ D s
�
xk�1.t/ � x

�C s
�
xk.t/ � x

�
D 2%� %2.xk�1 � xk/ D %: (50)

4.3 Discussion of the Non-locality

The crucial point of (47) is its non-locality. The dependence on xC1=.x; t/ reflects
the anticipatory behavior of drivers, who react to the traffic situation ahead of them.
From the point of view of traffic simulation, the non-locality does not constitute
a problem. Non-local traffic models such as the gas-kinetic based traffic model
summarized in Appendix 5 can be even more efficient numerically than second-
order models with diffusion terms, that would result from a gradient expansion.

In fact, the reason for the numerical inefficiency of explicit solvers for partial
differential equations is the diffusion instability, which must be avoided by small
time discretizations [13]. As pointed out by Daganzo [6], a diffusion term also
implies theoretical inconsistencies such as the possible occurrence of negative
velocities at upstream jam fronts. Therefore, it should be underlined that numerical
inefficiencies and theoretical inconsistencies can be avoided by working with the
non-local velocity equation rather than with the gradient expansion of it, which will
be looked at in the next section.

4.4 Comparison with Other Macroscopic Traffic Models

4.4.1 The Payne Model

Despite the before-mentioned problems, we will now carry out a Taylor expansion
of the non-local terms in (47), exclusively for the sake of comparison with other
traffic models. A first-order approximation gives

f



1

.x C 1=; t/

�

 f

 
1

.x; t/C @.x;t/

@x
1

.x;t/

!
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1 � @.x; t/
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1

.x; t/2

��

 f



1

.x; t/

�
C df .d/
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�@.x; t/
@x

1

.x; t/3

�
; (51)

where we have applied the geometric series expansion 1=.1� z/ 1C zC : : : Note
that the relation  D 1=d and

Ve./ D Ve



1

d

�
D vo.d/ D v0 C �f .d/ D v0 C �f



1



�
(52)

imply

df .d/

dd
D


d

d

Ve./ � v0

�

�
d
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D 1

�

dVe./

d





� 1

d2

�

D �
2

�

dVe./

d
: (53)

Therefore, using (46), we finally obtain:

X
i

s.xi .t/ � x/f .t/  .x; t/f



1

.x; t/

�
C 1

2�

dVe./

d

@.x; t/

@x
: (54)

Considering Ve./ D v0 C �f ./ and defining the “traffic pressure” as

P.x; t/ D .x; t/�.x; t/C v0 � Ve./

2�
; (55)

the corresponding macroscopic velocity equation becomes

@V.x; t/

@t
C V.x; t/

@V .x; t/

@x

D � 1

.x; t/

@P.x; t/

@x
C Ve./� V.x; t/

�
: (56)

If the velocity variance � is zero, this model corresponds exactly to Payne’s
macroscopic traffic model with the pressure term [23, 24]

P./ D V 0 � Ve./

2�
: (57)

As a check of consistency between the Payne model and the optimal velocity
model, one may perform an instability analysis of both models. Such an analysis
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is carried out in [10] and demonstrates indeed that the instability conditions and the
characteristic velocities are compatible, as expected.

4.4.2 The Macroscopic Traffic Model by Aw and Rascle

Note that Daganzo has seriously criticized macroscopic traffic equations of the
type (56) [1]. For example, he studied the case of a vehicle queue of maximum
density D jam and speed V DVe.jam/D 0, the end of which was assumed to
be at some location xDx0. In this situation, (56) predicts V D 0 and dV=dt D
@V=@t C V @V=@x < 0 for the last vehicle in the queue, i.e. the occurrence of
negative velocities, if pressure relations such as P D �0 � 
0@V=@x with non-
negative parameters �0 and 
0 are assumed [15].

In order to overcome Daganzo’s criticism, Aw and Rascle have proposed the
macroscopic velocity equation

@

@t
ŒV C p./�C V

@

@x
ŒV C p./� D 0 (58)

with p./D � [1]. Let us study, how this model relates to the previous macroscopic
models. For this purpose, let us apply the chain rule of Calculus to obtain

@V.x; t/

@t
C V.x; t/

@V .x; t/

@x

D �dp./
d

@.x; t/

@t
� V.x; t/dp./

d

@.x; t/

@x
: (59)

Inserting the continuity equation (30) for @=@t on the right-hand side, we get

@V.x; t/

@t
C V.x; t/

@V .x; t/

@x

D dp./

d

@

@x

�
.x; t/V .x; t/

� � V.x; t/
dp./

d

@.x; t/

@x

D .x; t/
dp./

d

@V.x; t/

@x
: (60)

This model can be rigorously derived from particular car-following models [2]. By
comparison with the macroscopic velocity equation (56) we see that the model by
Aw and Rascle does not have a relaxation term ŒVe./ � V.x; t/�=� , which would
correspond to the limit � ! 1. Moreover, we find

� 1

.x; t/

@P.x; t/

@x
D .x; t/

dp./

d

@V.x; t/

@x
: (61)
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Therefore, the traffic pressure according to the model of Aw and Rascle is a function
of the velocity gradient rather than the density gradient, in contrast to Payne’s
pressure term (57). Consequently, Aw’s and Rascle’s pressure term must result in
a different way than Payne’s one, i.e. from a different kind of car-following model
[2]. In order to illustrate this, let us now discuss a generalization of the optimal
velocity model and its macroscopic counterpart.

4.4.3 Non-local Macroscopic Traffic Models

It is well-known [11] that the optimal velocity model may produce accidents, if
the initial condition, the optimal velocity function vo.d/, and the parameter � are
not carefully chosen. In order to have both, the emergence of traffic jams and the
avoidance of accidents, we need to assume that the repulsive interaction force among
vehicles does not only depend on the vehicle distance di .t/ D xi�1.t/ � xi .t/, but
also on the vehicle velocity vi .t/ (to reflect the dependence of the safe distance on
the vehicle speed) or on the relative velocity

�vi .t/ D vi .t/ � vi�1.t/ D �ddi
dt
: (62)

The corresponding generalization of the acceleration equation (11) reads

dvi
dt

D ai .t/ D v0 � vi .t/

�
C f

�
di.t/; vi .t/; �vi .t/

�
: (63)

This also changes the associated macroscopic traffic equation. Namely, (47) has to
be replaced by

@V.x; t/

@t
C V.x; t/

@V .x; t/
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D � 1
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@
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�
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�

C1

2
f



1

.x; t/
; V .x; t/;�V.x; t/

�

C1

2
f



1

.x C 1=; t/
; V .x C 1=; t/;�V.x C 1=; t/

�
:

(64)

For the sake of comparison with other macroscopic traffic models and linear stability
analyses, let us perform a Taylor approximation of this. First, we may write
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f
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h
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C @f

@�v

h
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i
: (65)

Then, we may insert dd=d D �1=2,

.x C 1=; t/� .x; t/  @

@x

1


; (66)

and

V.x C 1=; t/� V.x; t/  @V

@x

1


: (67)

Furthermore, considering�vi .t/ D �ddi =dt, .x; t/ D 1=di.t/, and the continuity
equation d=dt D @=@t C V @=@x D � @V=@x, we get

�V.x; t/ D � d
dt
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D 1
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2
@2V
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; (69)

since a linearization drops products of gradient terms such as .@=@x/.@V=@x/
(which are assumed to be smaller than the linear terms). Altogether, with
dd=dD � 1=2 we can write
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: (70)

With the definition

Vo.; V;�V / D v0 C �f



1


; V;�V

�
; (71)

we may finally write
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: (72)

Furthermore, let us assume that the variance can be approximated as a function of
the density and the average velocity:

�.x; t/ D �e
�
.x; t/; V .x; t/

�
: (73)

With the definitions

@P1

@
D �e.; V /C 

@�e.; V /

@
C 1

22
@f .1=; V;�V /

@d
; (74)

@P2

@V
D 

@�e.; V /

@V
� 1

2

@f .1=; V;�V /

@v
; (75)


 D � 1

22
@f .1=; V;�V /

@�v
(76)

(where 
 should be greater than zero), we may also write the linearized macroscopic
traffic equations as
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@V.x; t/
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C V.x; t/

@V .x; t/
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D �1


@P1
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@
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� 1
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@V

@V
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CVo.;�V; V /� V.x; t/

�
: (77)

The term 
@2V=@x2 can be interpreted as viscosity term and has a smoothing effect.
Further viscosity (and diffusion) terms may be derived by second-order Taylor
expansions. It is interesting to note that the pressure term containing P2 looks
similar to (61). Therefore, it is possible to derive Aw’s and Rascle’s model from
a suitably specified microscopic traffic model [2].

5 Summary, Discussion, and Conclusions

In this paper, we have discussed several approaches to derive macroscopic traffic
equations from microscopic car-following models. It has been pointed out that
a Taylor approximation may be used only for linear stability analyses, as the
gradients would otherwise often be too large for the approximation to work. Further
undesirable consequences of a gradient expansion are the possible occurrence
of negative velocities, diffusion instabilities, and inefficient numerical solution
methods.

The linear interpolation approach often works well in practise [14], but it is
theoretically inconsistent as it violates the continuity equation which is required
for the conservation of the vehicle number. In contrast, the approach reminding
of smoothed particle hydrodynamics was suited in all respects. It led to a non-
local macroscopic traffic model, which partially reminds of the non-local gas-kinetic
based traffic model [26] (see Appendix). In order to reach a realistic traffic dynamics
(in particular accident avoidance if a vehicle with speed v0 approaches a standing
car), one needs to take into account that the repulsive vehicle interactions not only
depend on the vehicle distance, but also on the relative velocity and the vehicle
velocity. This leads to a specification of the traffic pressure which contains variance-
dependent terms, additional terms proportional to @=@x as in Payne’s model, and
further terms proportional to @V=@x as in Aw’s and Rascle’s model. While the
variance-dependent term describes dispersion effects, Payne’s, Aw’s and Rascle’s
terms reflect effects of vehicle interactions. Furthermore note that, in case of multi-
lane traffic, the additional inter-lane variance

�.x; t/ D 1

L

LX
lD1

l .x; t/

.x; t/
ŒVl .x; t/ � V.x; t/�2; (78)
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must be added to the inner-lane variance �.x; t/, where l .x; t/ is the density and
Vl.x; t/ the average velocity in lane l at location x and time t [9, 25].

Let us finally discuss whether the above “smoothed particle hydrodynamics
approach” may lead to inconstencies such as extremely high densities. An unrealis-
tic car-following model may, in fact, imply a theoretically inconsistent macroscopic
traffic model, but a plausible microscopic model should generate a plausible
macroscopic one: Specifically, the preservation of the order of vehicles requires
a car-following model that does not produce accidents. Examples for this are the
intelligent driver model (IDM) [27] or the Gipps model [7]. Furthermore, if the car-
following model implies that vehicles keep a minimum distance of dmin, as the IDM
does, this will translate into a maximum density jam D 1=dmin in the equivalent
macroscopic traffic model. This can be seen from (43) with  D 1=dmin. Therefore,
in order to obtain a realistic macroscopic traffic model, one needs to make a suitable
specification of the repulsive interaction force f . Generally, it is advised to work
with speed-dependent interaction forces. An example for a microscopically derived
macroscopic traffic model that takes into account the finite space requirements of
vehicles is the non-local gas-kinetic-based traffic model (see Appendix).
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Appendix: The Non-local, Gas-Kinetic Based Traffic Model

For comparison, let us shortly recall the form of the non-local gas-kinetic based
traffic model (GKT model). This has been derived via a collision approximation
[26] and can be written in the form of (56) with P.x; t/ D .x; t/�.x; t/, but Ve./

must be replaced by a non-local expression

Vg.; V; �; C
; V

C
; �

C
/ D v0 ��Œ1 � p.

C
/��.

C
/

C
B.�/„ ƒ‚ …

repulsive interaction term

: (79)

Here, the index “C” indicates evaluation at the advanced “interaction point”
x C s0 C T V , where s0 represents the minimum vehicle distance and T V the
velocity-dependent safety distance. The related non-locality has some effects that
other macroscopic models generate by their pressure and viscosity terms. The
dependence of the non-local repulsive interaction on the effective dimensionless
velocity difference

� D V � V
Cq

� � 2r
p
��

C
C �

C

(80)
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takes into account effects of the velocity variances � , �
C

, and velocity correlations
r among successive cars [25]. Furthermore, the “Boltzmann factor”

B.�/ D
�
� � 2r

q
��

C
C �

C

�h
�N.�/C �

1C�2
�
E.�/

i
(81)

in the braking term is monotonically increasing with �V . It contains the normal
distribution

N.�/ D e��2=2
p
2�

(82)

and the Gaussian error function

E.�/ D
�Z

�1
d zN.z/: (83)

To close the system of equations, the velocity correlation r is specified as a
function of the density in accordance with empirical observations. Moreover, for
a description of the presently known properties of traffic flows it seems sufficient to
set

� D A./V 2 : (84)

This guarantees that the velocity variance will vanish whenever the average velocity
goes to zero, but it will be positive otherwise. It should be noted that the variance
prefactor A is higher in congested traffic than in free traffic [26]. The “effective
cross section” is, finally, specified via

Œ1 � p./��./ D v0T 2

�A.jam/.1 � =jam/2
; (85)

where T is the safe time headway and jam the maximum vehicle density. This
formula makes also sense in the low-density limit  ! 0, where � ! 1 and p ! 1.

A linear stability analysis of the non-local traffic model can be done via a gradient
expansion. It results in equations of the kind (77) and further viscosity and diffusion
terms [8].
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a dynamic velocity equation appear to predict two characteristic speeds, one of
which is faster than the average velocity. This has been claimed to constitute a
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1 Introduction

Understanding traffic congestion has puzzled not only traffic engineers, but also
a large number of physicists [1–4]. Scientists have been particularly interested
in emergent traffic jams, which are related to instabilities in the traffic flow.
Such instabilities have been found in empirical data [5], but also in recent
experiments [6].

The theoretical analysis is usually done by computer simulation or by linear
stability analysis. Both techniques have been used since the early days of traffic
engineering [7] and traffic physics [8, 9]. Here, we will perform the analysis for
macroscopic and microscopic models in parallel, as there should be a correspon-
dence between the properties of both kinds of models. In contrast to previous
publications, the analysis of macroscopic traffic equations is done for a model that
considers a dependence of the optimal velocity function and the traffic pressure on
the average velocity, not only the density. Such a dependence results for models
which represent vehicle interactions realistically, taking into account a velocity-
dependent safety distance [10]. This is, for example, important to avoid accidents,
and it changes the instability conditions significantly (see Sect. 3).

Besides determining the stability threshold, a particular focus will be put on the
calculation of the group velocities of the partial differential equations underlying
the macroscopic traffic model (see Sect. 3.2). For clarity, the definition of the group
velocities will be compared with those of phase velocities and of characteristic
speeds. All three definitions describe propagation processes of waves. It will be
shown, that they lead to identical results under certain circumstances, but not
necessarily so.

Furthermore, we will derive conditions under which one of the group velocities
is greater than the average velocity. In Sect. 2, we will shortly summarize the
main points of the controversial discussion that this observation has triggered.
We will also address Daganzo’s other criticisms of second-order fluid approxi-
mations of traffic flow [11]. After the formal analysis in Sect. 3, Sect. 4 will be
dedicated to a careful discussion of the results. In particular, we will analyze
different conceivable reasons for characteristic speeds faster than the vehicle
speeds: (1) artifacts due to approximations underlying second-order macroscopic
traffic models, (2) indirect long-range forward interactions with followers on a
circular road, (3) the definition of the propagation speed of perturbations, (4) the
variability of vehicle velocities, (5) the interpretation of characteristic speeds.
Since characteristic speeds are primarily perceived as a problem of second-order
macroscopic traffic models, in Sect. 5 we will compare them with the group
velocities predicted by microscopic traffic models. Finally, we will summarize our
results in Sect. 6.
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2 Summary of the Controversy Regarding Second-Order
Traffic Flow Models

In the area of macroscopic traffic flow modeling, it is common to formulate
equations for the vehicle density .x; t/ as a function of space x and time t and
for the average velocity V.x; t/. The most well-known model, sometimes called the
LWR model, was proposed by Lighthill, Whitham, and Richards [12,13]. It is based
on the continuity equation

@.x; t/

@t
C V.x; t/

@.x; t/

@x
D �.x; t/@V .x; t/

@x
(1)

for the density and a speed-density relationship

V.x; t/ D Ve
�
.x; t/

�
(2)

or, alternatively, a “fundamental diagram” Q.x; t/ D Qe..x; t// for the vehi-
cle flow Q.x; t/ D .x; t/V .x; t/. Obviously, the LWR model is based on a
(hyperbolic) partial differential equation of first order. A detailed analysis is given
in [12, 14]. It is well-known, that it describes the generation of shock waves
characterized by discontinuous density changes.

Therefore, in his famous “Requiem for Second-Order Fluid Approximations of
Traffic Flow” [11], Carlos Daganzo correctly notes on page 285 that, “Besides
a coarse representation of shocks, other deficiencies of the LWR theory include
its failure to describe platoon diffusion properly : : : and its inability to explain
the instability of heavy traffic, which exhibits oscillatory phenomena on the order
of minutes.” However, he also criticizes theoretical inconsistencies of alternative
models, which, at that time, were mainly second-order models containing diffusion,
pressure, or viscosity terms. The Payne–Whitham model [15, 16, 28], for example,
has a dynamic velocity equation of the form

@V.x; t/

@t
C V.x; t/

@V .x; t/

@x

D � �

.x; t/

@.x; t/

@x
C 1
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h
Ve
�
.x; t/

� � V.x; t/
i

(3)

with

� D � 1

2�

dVe./

d
D 1

2�

ˇ̌
ˇ̌dVe./

d

ˇ̌
ˇ̌ � 0 : (4)

Here, the term containing � is called anticipation term, while the last term is known
as relaxation term. Ve./ denotes the equilibrium velocity and � the relaxation time.

Some of the second-order models, including the Payne–Whitham model [15,16],
can be derived from car-following models by certain approximations. This involves
gradient expansions of non-local, forwardly directed (i.e. anisotropic) vehicle
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interactions [10]. Such approximations are problematic, since they lead to terms
containing spatial derivatives, which imply undesired backward interaction effects
as well. The related theoretical inconsistencies were elaborated by Daganzo. In the
following, we will summarize his critique by quotes from [11] (page numbers in
square brackets):

1. Lack of anisotropy: “A fluid particle responds to stimuli from the front and from
behind, but a car is an anisotropic particle that mostly responds to frontal stimuli”
[p. 279].

2. Insufficient description of jam fronts: “The width of a traffic shock only
encompasses a few vehicles”, while second-order models involving viscosity
terms would typically imply extended jam fronts [p. 279]. Daganzo argues that
“the smoothness of the shock is inherently unreasonable” [p. 282], because
“spacings and density must change abruptly whenever the road behind is empty”
[p. 282]. Based on the analysis of concrete examples, Daganzo further finds that
“the cars at the end of the queue move back and the behavior spreads to the
remaining vehicles in the queue : : : from the back to the front!” [p. 283]. Further
on, new arrivals of vehicles would “compress a queue from behind” [p. 283].

3. Insufficient representation of acceleration processes and driver character-
istics: According to the “relaxation” mechanism for the velocity distribution
assumed in the gas-kinetic traffic model by Prigogine et al. [17], the “desired
speed distribution is a property of the road and not the drivers, as noted by
Paveri-Fontana (1975)” [p. 280]. However, “Unlike molecules, vehicles have
personalities (e.g., aggressive and timid) that remain unchanged by motion”
[p. 279], and models should make sure “that interactions do not change the
‘personality’ (agressive/timid) of any car” [p. 280]. Therefore, “a slow car should
be virtually unaffected by its interaction with faster cars passing it (or queueing
behind it) : : :” [p. 280].

A further criticism concerns the propagation speeds of perturbations in the traffic
flow, predicted by second-order traffic models, which will be addressed after we
have replied to the above, well-taken points:

1. The lack of anisotropy is a consequence of gradient expansions and can be
avoided by non-local macroscopic traffic models [10], such as the gas-kinetic-
based traffic model (GKT model) [18, 19].

2. Non-local traffic models can represent sharp shock fronts well, as has been
demonstrated for the GKT model [20]. They are also capable of avoiding negative
vehicle velocities, if properly specified [20]. For example, the speed variance �
appearing in some macroscopic traffic models, in particular in the “pressure
term” (see below) must vanish, whenever the average velocity V vanishes. This
can be reached by a relationship of the form �.; V / D ˛./V 2 with a suitable,
density-dependent function ˛./ � 0 [18, 19].

3. The personality of drivers can be represented by multi-class traffic models [19,
21, 22]. Moreover, the unrealistic acceleration-behavior implied by Prigogine’s
gas-kinetic traffic model [17] has been overcome by the gas-kinetic model by
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Paveri-Fontana [23] and its generalizations to different driver-vehicle classes
[19, 21]. In these models, it is not the velocity distribution which relaxes to a
desired velocity distribution (which would imply discontinuous velocity jumps at
a certain rate). Rather they describe a continuous adaptation of individual vehicle
velocities to their desired speeds.

Let us now turn to the discussion of the “characteristic speeds”. Characteristic
speeds relate to the eigenvalues of hyperbolic partial differential equations. They
determine the solutions for given initial and boundary conditions, in particular
which locations influence the solution at other locations at a given time [24, 25]
(see Appendix 1). The characteristic speeds are also important for the stability of
numerical solution schemes for partial differential equations [26].

What implications does this have for macroscopic traffic models based on
systems of hyperbolic partial differential equations with source terms? In his
“Requiem for second-order fluid approximations of traffic flow” [11], Daganzo
argues that “high-order models always exhibit one characteristic speed greater than
the macroscopic fluid velocity. : : : This is highly undesirable because it means
that the future conditions of a traffic element are, in part, determined by what is
happening : : : BEHIND IT! : : : it is a manifestation of the erroneous cause and
effect relationship between current and future variables that is at the heart of all
high-order models” [p. 281].

Is this violation of causality a result of crude approximations underlying second-
order macroscopic traffic models? Or could the assumption of circular boundary
conditions explain an influence from behind, even in the case where vehicle
interactions are exclusively directed to the front? Or is the faster characteristic
speed related to vehicle interactions at all? Until today, the problem of characteristic
speeds is puzzling, and it has stimulated many scientists to develop and investigate
improved macroscopic traffic models [27–36]. Here, we restrict our discussion to
the most prominent example: In their “Resurrection of ‘second order’ models of
traffic flow” [27], Aw and Rascle propose a new model with two characteristic
speeds, one of which is smaller than and the other one equal to V , where V denotes
the macroscopic vehicle speed. Details are discussed in Sect. 4.1. While, without
any doubt, such an approach is interesting and worth pursuing, we will address the
question, whether it is necessary to overcome the problem pointed out by Daganzo.
This issue must be analyzed very carefully in order to exclude misunderstandings
and to avoid jumping to a conclusion. To provide a complete chain of arguments,
the main text of this paper is supplemented by several appendices.

3 Linear Instability of Macroscopic Traffic Models

Let us start our analysis with the continuity equation (1) for the vehicle density
.x; t/ and a macroscopic equation for the average velocity V.x; t/ of the type
derived at the end of Sect. 4.4.3 of [10]: Assuming repulsive vehicle interactions
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that depend on the vehicle distance and vehicle speed, but (for simplicity) not on the
relative velocity, it reads

@V.x; t/

@t
C V.x; t/

@V .x; t/

@x

D �1


@P1.; V /

@

@.x; t/

@x
� 1



@P2.; V /

@V

@V.x; t/

@x

CVo.; V / � V.x; t/
�

: (5)

Herein, P1 and P2 are contributions to the “traffic pressure”, and Vo.; V / is the
“optimal velocity” function.

Our stability analysis starts with an initial state of uniform vehicle density e. The
related stationary and homogeneous (i.e. time- and location-independent) solution
is obtained by setting the partial derivatives @=@t and @=@x to zero. In this way,
(5) yields the implicit equation

Ve.e/ D Vo
�
e; Ve.e/

�
(6)

for the equilibrium speed Ve.e/. With this, we can define the deviations

ı.x; t/ D .x; t/ � e and ıV .x; t/ D V.x; t/ � Ve : (7)

Inserting .x; t/ D e C ı.x; t/ and V.x; t/ D Ve C ıV .x; t/ into the continuity
equation, performing Taylor approximations, where necessary, and dropping all
non-linear terms because of the assumption of small deviations ı.x; t/=e � 1

and ıV .x; t/=Ve � 1, we end up with the following linearized equation:

@ ı.x; t/

@t
C Ve.e/

@ ı.x; t/

@x
D �e

@ ıV.x; t/

@x
: (8)

Analogously, the linerarized dynamical equation for the average velocity becomes

@ ıV.x; t/

@t
C Ve

@ ıV.x; t/

@x

D � 1

e

�
@P1.e; Ve/

@

@ ı.x; t/

@x
C @P2.e; Ve/

@V

@ ıV.x; t/

@x

	

C1

�

�
@Vo.e; Ve/

@
ı.x; t/

C@Vo.e; Ve/

@V
ıV.x; t/ � ıV .x; t/

	
: (9)



On the Controversy Around Second-Order Traffic Flow Models 277

The terms on the right-hand side in the first square bracket may be considered to
describe dispersion and interaction effects contributing to the “traffic pressure”,
while the terms in the second square bracket result from the so-called relaxation
term, i.e. the adaptation of the average velocity V.x; t/ to some “optimal velocity”
Vo.; V / with a relaxation time � .

As is shown in Appendix 2, a linear stability analysis of (8) and (9) leads to the
characteristic polynomial

. Q�/2 C Q�
�

i�

e

@P2

@V
C 1

�



1 � @Vo

@V

�	

Ci�e



� i�

e

@P1

@
C 1

�

@Vo

@

�
D 0 : (10)

It has the two solutions (eigenvalues)

Q�˙.e; �/ D �˙.e; �/� i Q!˙.e; �/

D � 1

2 O� � i�

2e

@P2

@V
˙
p

< ˙ ij=j (11)

with

1

O�.e; �/
D 1

�



1� @Vo

@V

�
� 0 ; (12)

<.e; �/ D 1

4 O�2 � �2 @P1
@

� �2

42e



@P2

@V

�2
; (13)

˙j=.e; �/j D ��e

�

dVo

d
C �

2e O�
@P2

@V
: (14)

Here, we have used the abbreviations

Q� D � � i Q! and Q! D ! � �Ve.e/ : (15)

As the square root contains a complex number, it is difficult to see the sign of the
real value � of Q�. However, we may apply the formula

p
< ˙ ij=j D

r
1

2

�p
<2 C =2 C <

�

˙ i

r
1

2

�p
<2 C =2 � <

�
; (16)

which is derived in Appendix 3. From this and (11), we get the following
relationship for the real part of the eigenvalues Q�˙.e; �/:

�˙.e; �/ D Re
� Q�˙.e; �/

� D � 1

2 O� ˙
r
1

2

�p
<2 C =2 C <

�
: (17)
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The expression for the imaginary part gives

� Q!˙.e; �/ D Im
� Q�˙.e; �/

�

D � �

2e

@P2

@V
˙
r
1

2

�p
<2 C =2 � <

�
: (18)

3.1 Derivation of the Instability Condition

A transition from stable to unstable behavior, i.e. the change from negative to
positive values of �˙.e; �/ occurs only for the eigenvalue Q�

C
.e; �/, namely under

the condition

�C.e; �/ D � 1

2 O� C
r
1

2

�p
<2 C =2 C <

�
D 0 : (19)

This implies 

1

4 O�2 � <
2

�2
D 1

4
.<2 C =2/ (20)

and, therefore,
1

16 O�4 D <
4 O�2 C =2

4
: (21)

Inserting the above definitions of = and <, we eventually find

�2

4 O�2
"
@P1

@
C 1

42e



@P2

@V

�2#

D 1

4



��e

�

@Vo

@
C �

2e O�
@P2

@V

�2
: (22)

From this and definition (12), we can derive the following condition for the
instability threshold:

1

O�

s
@P1

@
C 1

42e



@P2

@V

�2
D �e

�

@Vo

@
C 1

2e O�
@P2

@V
: (23)

Assuming the relationships @Vo./=@ � 0, @Vo=@V � 0, and @P2=@V � 0, the
condition for Re. Q�

C
/ > 0 becomes

e

ˇ̌
ˇ̌@Vo

@

ˇ̌
ˇ̌ >

2
4
s
@P1

@
C 1

42e



@P2
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�2
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ˇ̌
ˇ̌@P2
@V

ˇ̌
ˇ̌
3
5

�


1C

ˇ̌
ˇ̌@Vo

@V

ˇ̌
ˇ̌
�
: (24)
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We notice that this instability condition is not fulfilled, if the average velocity
Vo.; V / changes little with the density , which is typically the case for small
densities and, in many models, also for large ones. However, �C.e; �/ may
be greater than zero at medium densities, where jdVe=dj is large according to
empirical observations. The related instability mechanism is based on a reduction
of the average velocity with increasing density. Due to the continuity equation, this
tends to cause a further compression (but the “traffic pressure” terms P1 and P2
partially counteract this re-inforcement mechanism).

As a consequence of the inequality (24), we can state that the speed-dependence
of the traffic pressure term P2 and the optimal velocity Vo tends to make traffic
flow more stable with respect to perturbations. The speed-dependence also resolves
problems related to the fact that @P1=@ may become negative in a certain density
range. This would imply a negative discriminant of the square root, if the negative
contribution @P1=@ < 0 was not compensated for by .@P2=@V /2=.42e/ [10]. The
case @P1=@ < 0 could also cause negative accelerations and speeds, particularly at
the end of congestion areas, which would not be realistic [11]. Again, the second
pressure contribution P2 can resolve the problem, if properly chosen.

3.2 Characteristic Speeds, Phase, and Group Velocities

When neglecting the relaxation term (i.e. in the limit � ! 1), the so-called
characteristics may be imagined as (parametrized) space-time lines, along which
the solution of a macroscopic traffic model based on partial differential equations
does not change in time. In Appendix 1, we derive the characteristics of the
linearlized equations (8) and (9). In the following, we will compare the characteristic
speeds Cj .e/ D Ve.e/ C cj .e/ given by (66) with the phase velocities
Ve.e/ C Q!˙.e; �/=� and the group velocities Ve.e/ C @ Q!˙.e; �/=@� resulting
from the above linear instability analysis. While the phase velocity describes the
propagation of a single wave mode, the group velocity describes the propaga-
tion of a wave packet composed of waves with different wave numbers � (see
Appendix 4 for details). The group velocity is usually considered to represent
the speed of information propagation.1 Due to dispersion effects, we may have
@ Q!˙.e; �/=@� ¤ Q!˙.e; �/=�.

Let us first study the situation in the limit � ! 1 of arbitrarily slow adaptation
to changed traffic conditions. Considering the definitions (12) to (14), we find
1= O�.�/ D 0, j=.e; �/j D 0, and

<.e; �/ D ��2 @P1
@

� �2

42e



@P2

@V

�2
: (25)

1A typical example is the modulation of electromagnetic waves used to transfer information via
radio.
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For < � 0, we have
p<2 C =2 D j<j D �< and, due to (17) and (18), we obtain

�˙ D 0 and Q!˙ D � �

2e

ˇ̌
ˇ̌@P2
@V

ˇ̌
ˇ̌�

p
j<.e; �/j (26)

in the limit � ! 1. This implies
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42e



@P2

@V

�2
: (27)

Therefore, group and phase velocity in the limit � ! 1 are the same. A comparison
with (66) shows that they also agree with the characteristic speeds. This is expected,
because of �˙ D 0, which means that the wave amplitudes do not grow or decay—
they just propagate along the characteristics.

For finite values of � , which are typical for real traffic flows, the phase and group
velocities may be different, and they also do not need to agree with the characteristic
speeds, as we will see below: The group velocities, i.e. the propagation speeds of
small perturbations, are given by

Cl.e; �/ D @!l.e; �/

@�
D Ve.e/C @ Q!l.e; �/

@�

D Ve.e/C cl .e; �/ ; (28)

as derived in Appendix 4. Obviously, there are two group velocities C˙ D Ve C c˙,
which can be determined by differentiation of the expression for Q!˙.e; �/ given
in (18):
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Considering @P2=@V � 0 and
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which is implied by (17) and (18), we may also write

c˙.e; �/ D � 1

2e
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ˇ̌
ˇ̌� @
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s

�˙ C 1

2 O�
�2

� < : (31)

Taking into account (13), this is generally not the same as Q!˙.e; �/=�, i.e. the phase
velocities differ. Interestingly enough, however, at the stability threshold given by
�

C
D 0, we find
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c
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At the stability threshold we furthermore have �� D �1= O� . Inserting this into (31)
reveals
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The same expressions are found for the phase velocities. A comparison with (66)
shows that they also agree with the characteristic speeds. Note that cC is smaller
than zero. However, we have c� � 0 (corresponding to characteristic speeds slower
than the average vehicle velocity or equal to it) only if

s
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or
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� 1

42e



@P2

@V

�2
: (35)

4 Discussion

For the discussion of our results regarding the characteristic speeds, let us study two
particular models first, the Payne model [15, 16] and the Aw–Rascle model [27].

4.1 Characteristic Speeds in the Aw–Rascle Model

The model proposed by Aw and Rascle [27] corresponds to (1) and (5) with � ! 1,

@P1.; V /

@
D 0 and

@P2.; V /

@V
D ��.x; t/�C1 � 0 ; (36)

see [10]. � is a positive constant.
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This implies 1= O� D 0, <.�/ D ��2.@P2=@V /2=.42e/ < 0 and j=.�/j D 0.
Therefore, (29) implies
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2e
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ˇ̌@P2
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ˇ̌
ˇ̌ : (37)

This leads to cC D ��.x; t/� and c� D 0, corresponding to the characteristic
speeds V ��.x; t/� and V , in agreement with Aw’s and Rascle’s calculations [27].
That is, their model does not have a characteristic speed faster than the average
vehicle speed, which elegantly avoids the problem raised by Daganzo [11].

However, is it really necessary to exclude the existence of a characteristic speed
faster than the vehicle speeds? In order to address this problem, we will now study
Payne’s macroscopic traffic model, which has received most of the criticism. We do
this primarily for the sake of illustration, while we are well aware of the weaknesses
of this model (like the possibility of backward moving vehicles at upstream jam
fronts for certain initial conditions). Therefore, the authors of this paper generally
prefer the use of non-local macroscopic traffic models [10], but this is not the issue
to be discussed, here.

4.2 Payne’s Traffic Model

Payne’s macroscopic traffic model [15, 16] has a solely density-dependent optimal
velocity

Vo.; V / D Ve./ (38)

and the pressure gradients
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This simplifies the instability condition (24) considerably, and we get

e

ˇ̌
ˇ̌dVe.e/

d

ˇ̌
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2e�
: (40)

Traffic flow becomes unstable, if the equilibrium velocity Ve./ decreases too
rapidly with an increase in the density , and greater relaxation times � tend to imply
larger instability regimes. For the characteristic speeds at the instability threshold,
with ejdVe=dj D 1=.2e�/ we find
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Clearly, c�./ is non-negative, i.e. the related characteristic speed Ve./ C c�./
tends to be larger than the average vehicle speed Ve./. Nevertheless, by demanding
Ve./C c�./ � V 0, e.g. by assuming a linear speed-density function

Ve./ D V 0



1 � 

jam

�
; (42)

one could still reach that the characteristic speed Ve./ C c�./ lies within
the variability of the vehicle speeds. In fact, we have c˙ D 0 whenever the
vehicle speed cannot vary, namely at density zero and at maximum density, where
ejdVe.e/=dj D 0. However, do we need to impose such conditions on the
characteristic speed and the speed-density relationship? This shall be addressed in
the following and in Sect. 5.

In connection with this question, it is interesting to note that, according to (33)
and (41), the group velocity c

C
corresponding to the solution with the unstable

eigenvalue �
C

is negative with respect to the average velocity Ve. In contrast,
propagation at the positive speed c

�
with respect to the average velocity Ve is

related with an eigenmode that decays quickly, basically at the rate at which the
vehicle speeds adjust. Therefore, the forwardly propagating mode cannot emerge by
itself. It could only be produced by a particular specification of the initial condition,
enforcing a finite amplitude of the forwardly moving mode. We will come back to
this in Sect. 5.

It is noteworthy that already Whitham performed a thorough analysis of the
speeds characterizing the traffic dynamics in what is known as the Payne model
today (see [14], Chaps. 3 and 10). He showed that the linearized partial differential
equations (8) and (9), when specified in accordance with (38) and (39), can be cast
into the equation
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@t
C �
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� @
@x

�
ı.x; t/ : (43)

Whitham was perfectly aware of the fact that the characteristic speed Ve./C c�./
was faster than the average vehicle velocity Ve./, but not at all worried about
this. His perception was that all three velocities were meaningful, and that the
kinematic speed Ve./ C  dVe=d would dominate in the limit of small values
of � (which implies stable vehicle flows). However, the open problem is still, how
a characteristic speed Ve./C c�./ > Ve./ can be interpreted, without violating
causality.
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4.3 Characteristic Speeds Vs. Vehicle Speeds

In physical systems, it is not necessarily surprising to find characteristic speeds
faster than the average speed. Let us illustrate this for the example of sound propa-
gation. In one spatial dimension, this is described by the continuity equation (1) in
combination with the one-dimensional velocity equation

@V.x; t/

@t
C V.x; t/

@V .x; t/

@x
D �1



@P./

@x
: (44)

These so-called Euler equations [37] can be considered to model frictionless fluid
or gas flows in one dimension. Compared to the velocity equation (5), we have
dropped the relaxation term ŒVe./�V �=� . Therefore, we do not have an equilibrium
velocity-density relation Ve./, now.

In order to determine the solution of the above equations, one can derive
linearized equations for the case of small deviations ı.x; t/ D .x; t/ � e and
ıV .x; t/ D V.x; t/�Ve from the stationary and homogeneous solution .x; t/ D e

and V.x; t/ D Ve D 0. The quantity e corresponds to the average density of the
fluid or gas.

Inserting (7) into (1) and (44) and neglecting non-linear terms in the small
deviations ı, ıV results in
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(45)

and
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Considering Ve D 0, deriving (45) with respect to t , and (46) with respect to x
yields
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D 0 (47)

and
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: (48)

Inserting (48) into (47) finally gives the so-called wave equation

@2ı.x; t/

@t2
� Oc2 @

2ı.x; t/

@x2
D 0 ; (49)

which is well-known from one-dimensional sound propagation. The constant

Oc D
s
dP.e/

d
; (50)
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corresponds to the speed of sound. In order to determine the spatio-temporal
solution of (49), we rewrite this equation, inspired by the relationship .a2 � b2/ D
.aC b/.a � b/:



@

@t
C Oc @

@x

�

@

@t
� Oc @

@x

�
ı.x; t/ D 0 : (51)

According to this equation, perturbations propagate backward and forward at the
speed ˙Oc, although the average speed is V D 0. However, for gases we may assume
an approximate pressure law of the form P D �0 [37], where �0 is the velocity
variance of gas molecules. Hence, the speed of sound is given by Oc D p

�0, i.e.
by the standard deviation of velocities. As a consequence, the speed of sound can
actually be propagated by the mobility of gas molecules.

In a similar way, we can understand characteristic speeds faster than the average
vehicle speed in the macroscopic model of Phillips [38] or Kühne [8], Kerner and
Konhäuser [39], and Lee et al. [40]. Their pressure functions are also given by the
formula “density times velocity variance”. Therefore, the faster characteristic speed
of these macroscopic traffic models is expected to lie within the range of individual
vehicle speeds.2

As we have seen above, the situation is generally different for Payne’s model.
However, it is illustrative to note that Vo./ C c

C
./ may become negative, even

when all vehicles move forward. That is, it is possible to have characteristic speeds
outside of the range of vehicle speeds: According to (41) and (15), the slower
characteristic speed at the instability threshold is

Ve./C c
C
./ D Ve./� 

ˇ̌
ˇ̌dVe./

d

ˇ̌
ˇ̌

D Ve./C 
dVe./

d
D dQe./

d
: (52)

Since Qe./ D Ve./ represents the “fundamental diagram”, dQe./=d

describes the negative speed of kinematic waves in the congested regime [14]. This
does not constitute any theoretical inconsistency, even if Ve.e/ C c

C
./ < 0. In

fact, we all know situations involving negative group velocities from dissolving
congestion fronts, e.g. when a traffic light turns green: There, the negative
propagation speed just results from the fact that the congestion front moves
backward, whenever vehicles leave a congested area with some delay. Hence,
the negative characteristic speed does not describe the speed of cars. It reflects the
propagation of gaps rather than vehicles.

Therefore, could we have a similar mechanism that generates characteristic
speeds faster than the vehicle speeds? If vehicles would react to their leaders

2Note that the existence of perturbations in the traffic flow always implies a variation of the vehicle
speeds.
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with a negative delay, this would in fact be the case, but it would violate
causality. Therefore, all possible explanations for characteristic speeds faster than
the vehicle speeds considered so far have failed to resolve the problem. However,
the problem may still be a result of the approximations underlying second-order
macroscopic traffic models. As we have indicated before, the gradient expansion
required to derive them implies some degree of backward interactions. Therefore, it
is conceivable that following vehicles would cause their leaders to accelerate, even
beyond their desired speed V 0.

If this would be the explanation of a characteristic speed faster than the average
speed V or free speed V 0, we should not observe it in microscopic traffic models
with forward interactions only. Therefore, we will now determine the characteristic
speeds of the optimal velocity model [3]. This car-following is chosen, because
the Payne model can be considered as a macroscopic approximation of it (see [10]
and references therein). Besides, we will compare the instability conditions of both
models.

5 Linear Instability and Characteristic Speeds
of the Optimal Velocity Model

We have seen that macroscopic traffic models behave unstable with respect to small
perturbations in a certain density range, where the average velocity changes too
rapidly with the density. The same is true for many car-following models. As an
example, we will shortly discuss the dynamic behavior of the optimal velocity
model. While its stability has been already studied in the past [3], we will focus
here on the characteristic speeds, in order to show that characteristic speeds greater
than the average velocity are not an artifact of macroscopic traffic models.

According to the optimal velocity model, the change of the speed vi .t/ of vehicle
i is given by

dvi
dt

D vo
�
di.t/

� � vi .t/

�
(53)

and the temporal change of the distance di .t/ D xi�1.t/ � xi .t/ to the leading
vehicle i � 1 is determined by

ddi

dt
D vi�1.t/ � vi .t/ : (54)

In the above equations, the distance-dependent function vo.di / is called the optimal
velocity function and � is again the relaxation time for adjustments of the speed.

Appendix 5 sketches the linear stability analysis of the optimal velocity model. In
the following, we will focus on the analysis of the group velocity c˙ with respect to
the average velocity vo.de/, i.e. the velocity at which perturbations are expected
to propagate. Relative to the average motion of vehicles with speed ve.de/, the
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characteristic speeds are

c˙.de; k/ D @ Q!˙.de; �/

@�
D L

2�

@ Q!˙.de; k/

@k

D � L

2�

@

@k

r
1

2

�p
<2 C =2 � <

�
: (55)

This can be derived analogously to (29), using (16) and � D 2�k=L. According
to (31) and due to the series expansion cos.x/  1�x2=2, at the instability threshold
with �C D 0 and dvo.de/=dd D 1=.2�/, we obtain with (105)

c˙.de; k/ D � L

2�

@

@k

s

1

2�

�2
� <

D � L

2�

@

@k

r
1

�

dvo.de/

dd

�
1 � cos.2�k=N/

�

 � L

2�

@

@k

s
1

�

dvo.de/

dd

1

2



2�k

N

�2

D � L

N

r
1

2�

dvo.de/

dd
D �de

r
1

2�

dvo.de/

dd
(56)

D �de

s

dvo.de/

dd

�2
D �de

dvo.de/

dd
: (57)

It is remarkable that the group velocity of the optimal velocity model can again
exceed the average vehicle velocity vo.de/, namely by an amount c

�
.de/ D

de dvo.de/=de > 0. Moreover, it can be shown that the instability thresholds and the
related characteristic speeds are the same as for the Payne model (see Appendix 6).
This confirms that the Payne model may be viewed as macroscopic approximation
of the optimal velocity model (see [10] and references therein). In view of these
results, it is hard to argue that a characteristic speed faster than the vehicle speeds
constitutes primarily a theoretical inconsistency of certain kinds of macroscopic
traffic models. Quite unexpectedly, it also occurs for microscopic traffic models
that, according to computer simulations, behave reasonably well.

Therefore, the approximations underlying the Payne model cannot be the
problem for the existence of a characteristic speed faster than the vehicle speeds.
However, it is interesting to note that the larger group velocity vo.de/ C c�.de/

is related to a negative real part �
�

of the eigenvalue Q��. According to (29), the
fast characteristic speed Ve.e/ C c�.e/ of macroscopic second-order models is
related to a negative eigenvalue ��.e/ as well, see (17). Therefore, the related
eigenmode decays quickly, and it will be hard to observe in reality. In particular, the
faster propagating mode may not emerge by itself. A closer analysis shows that both,
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Fig. 1 Simulation result of the optimal velocity model with vo.d/ D v0
˚

tanhŒ.d � l/=s0 �1:2�C
tanh.1:2/

�
=2, v0 D 115 km/h, s0 D 50m, and l D 4m. We have chosen a particular initial

condition, where all vehicles started with a distance de D 200m to their respective leader, but some
vehicles i had a speed vi .0/ < vo.de/ in the beginning. As a consequence, these vehicles adjusted
their speeds to the optimal velocity. The relevant point here is that followers reach the optimal
velocity (or certain fractions of it) earlier than their respective leaders. That is, for the particular
initial condition chosen here, the perturbation in the speeds propagates faster than the vehicle
speeds. This effect, however, does not violate causality, as the earlier acceleration of upstream cars
is not triggered by interactions with followers—it just results from the relaxation term. Therefore,
the perturbation disappears on a time scale that is determined by the relaxation time � D 1 s, as
predicted by the real part of the eigenvalue Q��, see (104). The relaxation takes longer for larger
values of � . In the limit � ! 1, the perturbation does not decay anymore, but according to (104),
we then have c

˙
! 0. Therefore, despite its fast speed, the perturbation did not overtake the first

car upstream of the initial perturbation in our simulations, when the parameters were chosen in a
way that avoided accidents. This confirms the validity of the causality principle

for the optimal velocity model and the Payne model, �� is of the order �1=� , i.e.
related to the relaxation time � of vehicles. We will see that this observation is highly
relevant for understanding perturbations that move faster than the vehicles do.

After all, does the fast characteristic speed really constitute a theoretical inconsis-
tency? Not so, if we can find initial conditions, for which a following car accelerates
or decelerates earlier than the leading car does, although the leader does not react
to the follower. In fact, such initial condition can be constructed: Fig. 1 shows the
result of a computer simulation with N vehicles on a circular road of length L. We
assume that all vehicles have the distance d D de D L=N initially. Moreover, all
vehicles, with the exception of ten subsequent vehicles, are assumed to have the
initial speed vo.de/. Furthermore, the speed of the last of the ten vehicles is set to 0
(or v0), the speed of the first one to vo.de/. The speeds of the vehicles in between are
determined by linear interpolation. For this scenario, it is quite natural that the last
of the 10 vehicles accelerates (or decelerates) first, since it experiences the largest
deviation of its actual velocity vi .0/ from the optimal velocity vo.de/. However,
as this earlier acceleration (or deceleration) is not interaction-induced, it does not
violate causality. The large characteristic speed in macroscopic traffic models can
be understood in a similar way.



On the Controversy Around Second-Order Traffic Flow Models 289

6 Summary, Conclusions, and Outlook

In this paper, we have started with a discussion of Daganzo’s sharp criticism of
second-order macroscopic traffic flow models [11]. We have argued that most of
the deficiencies identified by Daganzo were fully justified, but could be overcome
in the course of time by improved macroscopic traffic models, particularly by non-
local multi-class models. However, the issue of characteristic speeds faster than the
average vehicle speed was still an open, controversial problem, as it seems to violate
causality. In order to study it, we have performed a linear instability analysis of a
generalized macroscopic traffic model, which took into account speed-dependencies
of the optimal velocity and the traffic pressure terms. Such speed-dependencies
occur, for example, in Aw’s and Rascle’s model [27]. They result when realistic
vehicle interactions are considered, and when the possibility of accidents and
negative vehicle speeds shall be avoided [10, 41]. Requirements for reasonable
models seem to be

@Vo.; V /

@
� 0 ;

@Vo.; V /

@V
� 0 ;

@P2.; V /

@V
� 0 ; (58)

and
@P1.; V /

@
C 1

42



@P2.; V /

@V

�2
> 0 : (59)

These conditions are, for example, fulfilled by the gas-kinetic-based traffic model
(GKT model), see [43].

Our main attention was dedicated to the characteristic speeds (or group veloci-
ties) rather than the instability thresholds. In the following, we summarize the main
results:

1. While the characteristic speeds may generally differ from the group and the phase
velocities, in the limit � ! 1 of a vanishing source (relaxation) term, they
are all the same. Therefore, using a different definition of propagation speeds
does not resolve the problem of characteristic speeds faster than the (average or
maximum) vehicle speed.

2. Velocity-dependent pressure terms tend to reduce the characteristic speeds,
see (31). This is best illustrated by Aw’s and Rascle’s model, where the fast
characteristic agrees with the average vehicle speed.

3. Most macroscopic traffic models have a characteristic speed faster than the
average velocity, but it may still be within the variability of the vehicle speeds,
see (42) and Sect. 4.3.

4. In some models like the Payne model, the characteristic speeds can move slower
than the slowest vehicle and faster than the fastest vehicle. The first case is related
to delayed acceleration maneuvers at jam fronts and related to gap propagation
during jam dissolution, but the second case remained a mystery for a long time.

5. The faster characteristic speed is related with a negative real part of the
eigenvalue. This causes a quick decay of the corresponding eigenmode, basically



290 D. Helbing and A. Johansson

at the rate, at which the vehicle speed is adjusted. Therefore, this eigenmode will
not emerge by itself (see Sect. 3.2).

6. If the faster characteristic speed were a result of interactions with following
vehicles in a circular road geometry (where following vehicles influence the
downstream flow as well), the fast eigenmode should decay with the length L
of the circular road, not with the relaxation time � . Therefore, periodic boundary
conditions cannot be responsible for a characteristic speed faster than the vehicle
speeds. This has also been verified with simulations.3

7. A characteristic speed faster than the vehicle speeds cannot be explained as a
result of the approximations underlying macroscopic second-order models, as it
is also found for microscopic car-following models, in which vehicle interactions
are forwardly directed and velocities are restricted to a range between zero
and some maximum speed. For the macroscopic Payne model and the optimal
velocity model, we have shown a correspondence not only of the instability
thresholds, but also of formulas for the group velocities (see Appendix 6).

8. Assuming particular initial conditions, characteristic speeds faster than the
average vehicle speed could be demonstrated to exist in computer simulations,
where followers accelerate (or decelerate) before their leaders do (see Fig. 1).
As these acceleration (or deceleration) processes are induced by artificial initial
perturbations rather than by vehicle interactions, this does not imply a violation
of causality.

Given these findings, we conclude that characteristic speeds faster than the
average speed of vehicles do not constitute a theoretical inconsistency of traffic
models and do not need to be “healed” by particularly constructed traffic models.4

From our point of view, the problem is that characteristic speeds are hard to imagine.
In fact, there is no direct correspondence to particle or vehicle velocities (see
Sects. 4.3 and Appendix 4). The group velocity is nothing more than a matter of
phase relations between oscillations of successive vehicles in an eigenmode, and
the interpretation as speed of information transmission is sometimes misleading.
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3Simulations for open boundary conditions basically yield the same results as for periodic
boundary conditions, given the system (in terms of the road length L) is sufficiently large.
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Appendix 1 Hyperbolic Sets of Partial Differential Equations
and Characteristic Speeds

Let us rewrite (8) and (9) in the form of a system of linear partial differential
equations. With

S.ı; ıV / D 1

�

�
@Vo.e; Ve/

@
ı.x; t/

C@Vo.e; Ve/

@V
ıV.x; t/ � ıV .x; t/

	
(60)

we obtain

@

@t

0
@ ı.x; t/
ıV .x; t/

1
AC

0
@A11 A12
A21 A22

1
A @

@x

0
@ ı.x; t/
ıV .x; t/

1
A D

0
@ 0
S

1
A (61)

with

A D
0
@A11 A12
A21 A22

1
AD

0
@ Ve.e/ e

1
e

@P1.e;Ve/

@
Ve.e/C 1

e

@P2.e;Ve/

@V

1
A: (62)

As will be shown below, the solution of this system of partial differential equations
is given by the initial condition ı.x; 0/ and ıV .x; 0/. The solution procedure
consists basically of two steps: On the one hand, we must determine the so-called
characteristics, and on the other hand, we must solve a set of ordinary differential
equations to find the solutions along them (see [42] and footnote 3): With u.x; t/ D�
ı.x; t/; ıV .x; t/

�0
and S D .0; S/0 (where the prime indicates a transposed, i.e. a

column vector), we can rewrite (61) as

@u.x; t/
@t

C A
@u.x; t/
@x

D S D B u.x; t/ : (63)

The source term can be rewritten as S D B u.x; t/ with

B D
0
@B11 B12
B21 B22

1
AD

0
@ 0 0

1
�

@Vo.e;Ve/

@
1
�

�
@Vo.e;Ve/

@V
� 1

�
1
A: (64)

Now, let Cj denote the eigenvalues of the matrixA. The values of Cj D Ve.e/Ccj
satisfying det.A� Cj1/ D 0 are given by the characteristic polynomial

c2j � cj

e

@P2

@V
� @P1

@
D 0 ; (65)
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which results in

cj D 1

2e

@P2

@V
˙
s

1

42e



@P2

@V

�2
C @P1

@
: (66)

Furthermore, let zj be the eigenvectors related with the eigenvalues Cj D Ve C cj ,
i.e.

A zj D Cj zj : (67)

Finally, let R D .Rij / be the matrix containing the eigenvectors zj as their j th
column, and y.x; t/ D R�1u.x; t/ or u.x; t/ D R y.x; t/. Then, inserting this
into (63) and multiplying the result with the inverse matrix R�1 of R yields

@yj .x; t/

@t
C Cj

@yj .x; t/

@x
D .R�1S/j D .R�1B R y/j : (68)

For S D 0 (corresponding to the limiting case � ! 1), we have

yj .x; t/ D yj .x � Cj t; 0/ ; (69)

which means that the solution does not change in time along the characteristics
xj .t/ D Cj t . The quantities Cj are called the characteristic speeds.5 If u.x; 0/ is
the initial condition, the solution of the set of partial differential equations is

ui .x; t/ D
X
j

Rij yj .x � Cj t; 0/ (70)

with y.x; 0/ D R�1u.x; 0/.6 Therefore, the spatio-temporal solution u.x; t/ is fully
determined by the initial condition. In other words, the future state of the system is
given by its previous state, and the principle of causality should be valid.

5The idea behind the characteristics is to introduce a parameterization t .s1; s2/, x.s1; s2/, which is

defined by @t=@sj D 1 and @x=@sj D Cj . Then, one can rewrite (68) as
@yj

@sj
D @yj .x;t/

@t
@t
@sj

C
@yj .x;t/

@x
@x
@sj

D .R�1B R y/j : In the generalized coordinates s1 and s2, the partial differential
equations in x and t we were starting with, turn into ordinary differential equations. These are
much easier to solve.
6Note that formulas (69) and (70) only apply to the limiting case � ! 1, where the relaxation
term of the macroscopic traffic model vanishes.
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Appendix 2 Stability Analysis for Macroscopic Traffic
Models

In order to understand the dynamics of traffic flows, it is important to find out
whether and under what conditions variations in the traffic flow can grow and
eventually cause traffic congestion. For this, it is useful to make the solution ansatz

ı.x; t/ D ı0 exp
�
i�x C .� � i!/t

� D ı0 e�t ei.�x�!t/ ;

ıV .x; t/ D ıV0 exp
�
i�x C .� � i!/t

� D ıV0 e�t ei.�x�!t/ :

(71)

Because of exp.i�x/ D cos.�x/C i sin.�x/ (see Appendix 3), ansatz (71) assumes
that the perturbation of the stationary and homogeneous traffic situation can be
represented as a periodic function with the wave number � and wavelength 2�=�.
The wave frequency of (71) is !, while ı0 exp.�t/ and ıV0 exp.�t/ are the
amplitudes at time t . That is, if the “growth rate” � is greater than zero, even small
perturbations will eventually grow, which can give rise to “phantom traffic jams”.
For � < 0, however, the initial perturbation will be damped out and the stationary
and homogeneous solutions will be re-established, i.e. it is stable with respect to
small perturbations.

Below we will see that, for each specification of � and the average density e,
there exist two solutions l 2 fC;�g with the frequencies !l.�/ and the growth
rates �l.�/. All the corresponding specifications of ansatz (71) are solutions of the
linearized partial differential equations. The same applies to their superpositions.
The general solution for an arbitrary initial perturbation is of the form

ı.x; t/ D
X

l2fC;�g

Z
d� ıl0.�/ exp

�
i�x C �

�l.�/� i!l.�/
�
t
�
;

ıV .x; t/ D
X

l2fC;�g

Z
d� ıV l

0 .�/ exp
�
i�x C �

�l .�/� i!l.�/
�
t
�
:

(72)

In order to find the possible �-dependent wave numbers ! and growth rates �, we
insert ansatz (71) into the linearized macroscopic traffic equations (8) and (9) and
use the relationship i2 D �1. The result can represented as an eigenvalue problem:

0
@M11 M12

M21 M22

1
A
0
@ ı0
ıV0

1
A ŠD



0

0

�
; (73)
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where

M11 D �Q� ; (74)

M12 D �i�e ; (75)

M21 D � i�

e

@P1

@
C 1

�

@Vo

d
; (76)

M22 D �Q� � i�

e

@P2

@V
C 1

�

@Vo

@V
� 1

�
(77)

and
Q� D � � i Q! with Q! D ! � �Ve.e/ : (78)

Equation (73) is fulfilled only for certain values of Q�.�/, the so-called “eigenvalues”.
These depend on the average density e and solve the characteristic polynomial of
second order in Q�, which is obtained by determining the determinant

det.M/ D M11M22 �M21M12 (79)

of the matrixM and requiring that it becomes zero. The corresponding characteristic
polynomial is given by (10).

Appendix 3 Derivation of Formula (19)

Remember that a complex number

z D < C i= D rei' D r cos.'/C ir sin.'/ (80)

can be represented in two-dimensional space with coordinates < D Re.z/ D
r cos.'/ and = D Im.z/ D r sin.'/, respectively, called the real part and the
imaginary part. The absolute value is given as

r D
p

<2 C =2 D p
.< C i=/.< � i=/ D p

z z D jzj ; (81)

where z D < � i= D re�i' is the conjugate complex number. The angle ' is
determined by

tan.'/ D sin.'/

cos.'/
D =

< D Im.z/

Re.z/
; (82)

and the exponential functions is defined as for real numbers by the infinite series
expansion

exp.z/ D ez D
1X
lD0

zl

l Š
; (83)
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where lŠ D l 
 .l � 1/ : : : 2 
 1. Therefore, the relationships for exponential functions
apply also to the case of complex numbers, i.e. the product of two complex numbers
z1 D <1 C i=1 D r1ei'1 and z2 D <2 C i=2 D r2ei'2 is given by

z1z2 D �<1<2 � =1=2
�C i

�<1=2 C =1<2

�
D r1ei'1r2ei'2 D r1r2ei.'1C'2/

D r1r2 cos.'1 C '2/C ir1r2 sin.'1 C '2/ : (84)

As the real and imaginary part are linearly independent of each other, this implies
<1<2 � =1=2 D r1r2 cos.'1 C '2/ and <1=2 C =1<2 D r1r2 sin.'1 C '2/. The
inverse of a complex number is given by

1

z
D 1

rei'
D e�i'

r
: (85)

The imaginary unit i has the property i2 D �1 and may, therefore, be written as
i D p�1 D ei�=2.

The square of complex numbers

z D re˙i' D r
�

cos.'/˙ i sin.'/
�
; (86)

can, on the one hand, be written as

z2 D r2
h

cos2.'/˙ 2i cos.'/ sin.'/ � sin2.'/
i
: (87)

On the other hand, using the well-known law ex1 
 ex2 D ex1Cx2 for the exponential
function, we find the alternative representation

z2 D r2
�
e˙i'

�2 D r2e˙i2' D r2
�

cos.2'/˙ i sin.2'/� : (88)

Comparing the real parts and using the trigonometric relationship sin2.x/ C
cos2.x/ D 1, we find

cos.2'/ D 1 � 2 sin2.'/ D 1 � 2�1 � cos2.'/
� D 2 cos2.'/� 1 ; (89)

from which we can derive the trigonometric formulas

sin2.'=2/ D 1

2

�
1 � cos.'/

�
(90)

and

cos2.'=2/ D 1

2

�
1C cos.'/

�
: (91)
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Therefore, the square root of a complex number is given by

p
z D p
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�
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�
: (92)

Considering < D r cos.'/, = D r sin.'/, and <2 C =2 D r2, we end up with the
desired equation
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< ˙ ij=j D
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�p
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˙ i
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2

�p
<2 C =2 � <

�
: (93)

Appendix 4 Meaning of the Group Velocity

Let us start with the representation (72) of the general solution of the linearized
system of equations, focussing (for simplicity) on the case �l.�/ D 0 and assuming
a “Gaussian wave packet” with

ıl0.�/ D e�.���0/2=.2�/
p
2��

: (94)

Via the linear Taylor approximation !l.�/ D !l.�0/ C Cl �� with Cl D
d!l.�0/=d� and �� D .� � �0/, from (72) we get
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While the single waves of frequency !l.�/ move with the “phase velocity” x=t D
!l.�/=�, it turns out that their superposition behaves like a wave with frequency
!l.�0/ and speed x=t D !l.�0/=�0. However, the wave packet or, more exactly
speaking, its amplitude e��.x�Cl t/2=2 is moving with the group velocity x=t D Cl D
d!l.�/=d�. Note that the case Cl > !l .�0/=�0, in which the group velocity is
greater than the phase velocity (wave velocity), is possible. It is called “anomalous
dispersion”.

Appendix 5 Linear Stability Analysis of the Optimal
Velocity Model

For a linear stability analysis of the optimal velocity model, we imagine the situation
of N vehicles i distributed over a circular road of length L. This allows us to
assume periodic boundary conditions. The stationary solution for this case is given
by dvi =dt D 0 and ddi=dt D 0, which implies

di .t/ D de D L=N D const.

vi�1.t/ D vi .t/ D vo.de/ D const. (96)

We are now interested how the deviations from this solution, i.e. the variables

ıdi .t/ D di .t/ � de ;

ıvi .t/ D vi .t/ � vo.de/ ; (97)

develop in time, assuming that the initial deviations are small, i.e. ıdi .0/ � de and
ıvi .0/ � ve.de/. For this, we linearize the model equations (53) and (54) around
the stationary and homogeneous solution. This results in

dıvi .t/

dt
D 1

�



dvo.de/

dd
ıdi.t/ � ıvi .t/

�
;

dıdi .t/

dt
D ıvi�1.t/ � ıvi .t/ : (98)

For the analysis of stability, we use the solution ansatz

ıvj .t/ D ıv0 ei2�jk=NCQ�t D ıv0 eij�L=NCQ�t ;

ıdj .t/ D ıd0 ei2�jk=NCQ�t D ıd0 eij�L=NCQ�t ; (99)

where � D 2�k=L is the so-called wave number, which is inversely proportional
to the wave length 2�=� D L=k. Note that, due to the assumed periodic boundary
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conditions, possible wavelength are fractions L=k of the length L or the circular
road. The shortest wave length is given by the average vehicle distance de D L=N ,
i.e. k 2 f1; 2; : : : ; N g. Summing up the functions (99) over these values of k results
in the Fourier representation of ıvj .t/ and ıdj .t/:

ıvj .t/ D
NX
kD1

ıvkei2�jk=NCQ�t ;

ıdj .t/ D
NX
kD1

ıdkei2�jk=NCQ�t : (100)

The parameters ıvk and ıdk are determined by the initial conditions of all
vehicles j . Q� D � � i Q! are the so-called eigenvalues, whose real part � describes
an exponential growth (if � > 0) or decay (if � < 0), and whose imaginary part Q!
reflects oscillation frequencies. ıd0 and ıv0 denote oscillation amplitudes. Inserting
this into (98) and dividing by ei2�jk=NCQ�t , we finally obtain

Q�ıv0 D 1

�



dvo.de/

dd
ıd0 � ıv0

�
; (101)

Q�ıd0 D ıv0e�i2�k=N � ıv0 D ıv0
�

e�i2�k=N � 1
�
: (102)

Multiplying (101) with Q� and inserting (102) for Q� ıd0 in the square brackets gives,
after division by ıv0, the characteristic polynomial in the eigenvalues Q�, namely

Q�2 C 1

�
Q� � 1

�

dvo.de/

dd

�
e�i2�k=N � 1

�
D 0 : (103)

The solutions Q�.de; k/ of this polynomial are the eigenvalues. They read

Q�˙.de; k/ D � 1

2�
˙
r

1

4�2
C 1

�

dvo.de/

dd

�
e�i2�k=N � 1

�
: (104)

Again, the square root contains a complex number, which makes it difficult to see
the sign of the real value �˙ of Q�˙. However, considering e˙i' D cos.'/˙ i sin.'/
and defining the real part

< D 1

4�2
� 1

�

dvo.de/

dd

�
1 � cos.2�k=N/

�
(105)

of the expression under the root and its imaginary part

= D � sin.2�k=N/

�

dvo.de/

dd
; (106)
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we can again apply the useful formula (16). From this we can conclude that � D
Re. Q�/ D 0 if

1

16�4
D <
4�2

C =2
4
; (107)

see (21). Inserting (105) and (106), we find

sin2.2�k=N/

4�2



dvo.d/

dd

�2
D 1

4�3
dvo.d/

dd

�
1 � cos.2�k=N/

�
; (108)

which finally results in the condition

dvo.de/

dd
D 1 � cos.2�k=N/

� sin2.2�k=N/
k!0D 1

2�
: (109)

The limit 2�k=N ! 0 follows from cos.'/  1 � '2=2 and sin.'/  ' in the
limit of small wave numbers � D 2�k=L, i.e. large wave lengths 2�=� D L=k.

It can be demonstrated by numerical analyses that

dvo.de/

dd
>

1

2�
(110)

constitutes the instability condition of the optimal velocity model (53) [3]. In other
words, if the velocity changes too strongly with the distance, small variations of
the vehicle distance or speed will grow and finally cause emergent waves, i.e. the
formation of one or several traffic jams. Since the origin of such a breakdown
can be infinitesimally small, these traffic jams seem to have no origin. In such
situations, one speaks of “phantom traffic jams”. A closer analysis for realistic
speed-distance relationships vo.d/ shows that traffic tends to be unstable at medium
densities D 1=d , while it tends to be stable at small and large densities (where
the speed does not change much with a variation in the distance). Only a sufficient
reduction in the adaptation time � can avoid an instability of traffic flow, while large
delays in the velocity adjustment lead to growing perturbations of traffic flow.

Appendix 6 Correspondence of the Optimal Velocity Model
with the Macroscopic Payne Model

As the Payne model has been claimed to be a macroscopic approximation of the
optimal velocity model (see [10] and citations therein), it is interesting to compare
the instability conditions and characteristic speeds of both models. Therefore, let us
make the identifications

 D 1

d
; Ve./ D vo



1



�
: (111)
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Then, with the chain rule and the quotient rule of Calculus we can derive

ˇ̌
ˇ̌dVe./

d

ˇ̌
ˇ̌ D �dVe./

d
D �dvo.1=/

d
D �dvo.d/

dd

dd

d

D dvo.d/

dd

 1
2
: (112)

Inserting this into (40) gives

e

ˇ̌
ˇ̌dVe

d

ˇ̌
ˇ̌ D 1

e

dvo.d/

dd
>

1

2e�
(113)

or
dvo.de/

dd
>

1

2�
and e

ˇ̌
ˇ̌dVe.e/

d

ˇ̌
ˇ̌ D de

dvo.de/

dd
; (114)

where de D 1=e. This shows the agreement of the instability conditions (40) and
(110) and of the characteristic speeds (41) and (57) at the instability threshold.
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Dirk Helbing, Martin Treiber, Arne Kesting, and Martin Schönhof

Abstract Starting from the instability diagram of a traffic flow model, we derive
conditions for the occurrence of congested traffic states, their appearance, their
spreading in space and time, and the related increase in travel times. We discuss
the terminology of traffic phases and give empirical evidence for the existence of a
phase diagram of traffic states. In contrast to previously presented phase diagrams, it
is shown that “widening synchronized patterns” are possible, if the maximum flow is
located inside of a metastable density regime. Moreover, for various kinds of traffic
models with different instability diagrams it is discussed, how the related phase
diagrams are expected to approximately look like. Apart from this, it is pointed
out that combinations of on- and off-ramps create different patterns than a single,
isolated on-ramp.

1 Introduction

While traffic science makes a clear distinction between free and congested traffic,
the empirical analysis of spatiotemporal congestion patterns has recently revealed
an unexpected complexity of traffic states. Early contributions in traffic physics
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Fig. 1 Examples of elementary patterns of congested traffic measured on the German freeway A5
close to Frankfurt. For better illustration of the traffic patterns, speeds are displayed upside down.
The driving direction is indicated by arrows. Top row: (a) Moving clusters (MC), (b) stop-and-go
waves (SGW), (c) oscillating congested traffic (OCT). Bottom row: (d) Widening synchronized
pattern (WSP), (e) pinned localized cluster (PLC), and (f) homogeneous congested traffic (HCT).
The spatiotemporal velocity fields have been reconstructed from 1-min data of double-loop
detector cross sections using the “adaptive smoothing method” protect[50]

focussed on the study of so-called “phantom traffic jams” [56], i.e. traffic jams
resulting from minor perturbations in the traffic flow rather than from accidents,
building sites, or other bottlenecks. This subject has recently been revived due to
new technologies facilitating experimental traffic research [48]. Related theoretical
and numerical stability analyses were—and still are—often carried out for setups
with periodic boundary conditions. This is, of course, quite artificial, as compared
to real traffic situations. Therefore, in response to empirical findings [27], physicists
have pointed out that the occurrence of congested traffic on real freeways normally
results from a combination of three ingredients [13, 31]:

1. A high traffic volume (defined as the freeway flow plus the actual on-ramp flow,
see below).

2. A spatial inhomogeneity of the freeway (such as a ramp, gradient, or change in
the number of usable lanes).

3. A temporary perturbation of the traffic flow (e.g. due to lane changes [30] or
long-lasting overtaking maneuvers of trucks [12, 44]).

The challenge of traffic modeling, however, goes considerably beyond this. It would
be favorable, if the traffic dynamics could be understood on the basis of elementary
traffic patterns [44] such as the ones depicted in Fig. 1, and if complex traffic
patterns (see, e.g., Fig. 2) could be understood as combinations of them, considering
interaction effects.

It was proposed that the occurrence of elementary congested traffic states could
be classified and predicted by a phase diagram [13, 53]. Furthermore, it was
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Fig. 2 Two examples of complex traffic states measured on the German freeway A5 close to
Frankfurt. Top: On the A5 North, an accident occurs at x D 487:5 km at the time t D 17:13 h,
which causes a HCT pattern that turns into an OCT pattern as the upstream traffic flow goes down.
The capacity drop related to the congestion pattern reduces the downstream flow and leads to a
dissolution of the previous SGW pattern over there around t D 18:00 h. Bottom: On the freeway
A5 South, the stop-and-go waves induced by a bottleneck at x D 480 km replace the OCT at the
bottleneck near x D 470 km. At time t D 9:50 h, the waves induce an accident at x D 478:33 km,
which triggers a new OCT pattern further upstream. The related capacity drop, in turn, causes the
previous OCT state at x � 480 km to dissolve

suggested that this phase diagram can be derived from the instability diagram of
traffic flow and the outflow from congested traffic. This idea has been taken up in
many other publications, also as a means of studying, visualizing, and classifying
properties of traffic models [3, 15, 35, 36]. However, it has been claimed that the
phase diagram approach would be insufficient [20]. While some of the criticism is
due to misunderstandings, as will be shown in Sect. 7.1, the classical phase diagrams
lack, in fact, the possibility of “widening synchronized patterns” (WSP) proposed
by Kerner and Klenov [23], see Fig. 1d.

In this paper, we will start in Sect. 2 with a discussion of the somewhat contro-
versial notion of “traffic phases” and the clarification that we use it to distinguish
congestion patterns with a qualitatively different spatiotemporal appearance. In
Sect. 3 we will show that existing models can produce all the empirically observed
patterns of Fig. 1, when simulated in an open system with a bottleneck. We will
then present a derivation and explanation of the idealized, schematic phase diagram
of traffic states in Sect. 4. In contrast to previous publications, we will assume that
the critical density c2, at which traffic becomes linearly unstable, is greater than
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the density max, where the maximum flow is reached (see Appendix 1 for details).
As a consequence, we will find that “widening synchronized pattern” do exist within
the phase diagram approach, even for models with a fundamental diagram. While
this analysis is carried out for single, isolated bottlenecks, Sect. 5 will introduce
how to generalize it to the case of multi-ramp setups. In Sect. 6, we will discuss
other possible types of phase diagrams, depending on the stability properties of
the considered model. Afterwards, in Sect. 7, we will present recent empirical
data supporting our theoretical phase diagram. Sections 7.1 and 8 will finally try
to overcome some misunderstandings regarding the phase diagram concept and
summarize our findings.

2 On the Definition of Traffic Phases

Before we present the phase diagram of traffic states, it must be emphasized that
some confusion arises from the different use of the term “(traffic) phase”. In
thermodynamics, a “phase” corresponds to an equilibrium state in a region of the
parameter space of thermodynamic variables (such as pressure and temperature),
in which the appropriate free energy is analytic, i.e., all first and higher-order
derivatives with respect to the thermodynamic variables exist. One speaks of a first-
order phase transition, if a first derivative, or “order parameter”, is discontinuous,
and of a “second-order” or “continuous” phase transition, if the first derivatives
are continuous but a second derivative (the “susceptibility”) diverges. What conse-
quences does this have for defining “traffic phases”?

Although traffic flow is a self-driven nonequilibrium system, it has been
shown [1] that much of the equilibrium concepts can be transferred to driven
or self-driven non-equilibrium systems by appropriately redefining them.
Furthermore, concepts of classical thermodynamics have been successfully applied
to nonequilibrium physical and nonphysical systems, yielding quantitatively
correct results. This includes, for example, the application of the fluctuation-
dissipation theorem [33] (originally referring to equilibrium phenomena) to
vehicular traffic [51].

In contrast to classical thermodynamics, nonequilibrium phase transitions are
possible in one-dimensional systems [7]. However, according to the definition of
phase transitions, one needs to make sure that details of the boundary conditions or
finite-size effects do not play a role for the characteristic properties of the phase.
Furthermore, one must define suitable order parameters or susceptibilities. While
the first propositions have been already made a decade ago [38], there is no general
agreement regarding the quantity that should be chosen for the order parameter.
Candidates include the density, the fraction of vehicles in the congested state [38],
the average velocity or flow, or the variance of density, velocity, or flow. Whenever
one observes a discontinuous or hysteretic transition in a large enough system, there
is no need to define an order parameter, as this already implies a first-order phase
transition. For continuous, symmetry-braking phase transitions, the deviation from
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the more symmetric state (e.g. the amplitude of density variations as compared to
the homogeneous state) seems to be an appropriate order parameter.

To summarize the above points, it appears that thermodynamic phases can, in
fact, be defined for traffic flow. In connection with transitions between different
traffic states at bottlenecks, we particularly mention the notion of boundary-induced
phase transitions [32,43,46]. Here, the boundary conditions have been mainly used
as a means to control the average density in the open system under consideration.

In publications on traffic, a “phase” is often interpreted as “traffic pattern”
or “traffic state with a typical spatio-temporal appearance”. Such states depend
on the respective boundary conditions. In this way, models with several phases
can produce a multitude of spatiotemporal patterns. It should become clear from
these considerations that the various proposed “phase diagrams” do not relate
to thermodynamic phases, but classify spatio-temporal states, as is common in
systems theory. In these non-thermodynamic phase diagrams, the “phase space”
is spanned by certain control parameters, e.g. by suitably parameterized boundary
conditions, by inhomogeneities (bottleneck strengths), or by model parameters [54].
For example, the phase diagrams discussed in [13, 20] and this paper contain the
axes “main inflow” (i.e., an upstream boundary condition) and “on-ramp flow”
(characterizing the bottleneck strength).

In any case, empirical observations of the traffic dynamics relate to the spa-
tiotemporal traffic patterns, and not to the thermodynamic phases. Therefore, the
quality of a traffic model should be assessed by asking whether it can produce
all observed kinds of spatio-temporal traffic patterns, including the conditions for
their appearance.

3 Congested Traffic States

When simulating traffic flow with the “microscopic” intelligent driver model
(IDM) [53], the optimal velocity model (OVM) [2], the non-local, gas-kinetic-based
traffic model (GKT) [52], or the “macroscopic” Kerner–Konhäuser model [24] (with
the parameter set chosen by Lee et al. [34]), we find free traffic flow and different
kinds of congestion patterns, when the ramp flowQon and the upstream arrival flow
Qup on the freeway are varied. The diversity of traffic patterns is

1. Due to the possibility of having either locally constraint or spatially extended
congestion.1

2. Due to the possibility of having stable, unstable or free traffic flows.

1Note that traffic patterns which appear to be localized, but continue to grow in size, belong to the
spatially extended category of traffic states. Therefore, “widening moving clusters” (WMC) are
classified as extended congested traffic, while the similarly looking “moving localized clusters”
(MLC) are not. According to Fig. 6, however, the phases of both states are located next to each
other, so one could summarize both phases by one area representing “moving clusters” (MC).
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Fig. 3 Simulation of traffic on a freeway with an on-ramp at location x D 0 km using the
intelligent driver model (IDM) [53] with parameters corresponding to an instability diagram as
illustrated in Fig. 4d. The macroscopic velocity field was extracted from the simulated trajectories
by placing virtual detectors every 500 m and determining the velocity with the same method [50]
that has been used for the data. Depending on the respective traffic flows on the ramp and on
the freeway, different kinds of congested traffic states emerge: a moving cluster (MC), a pinned
localized cluster (PLC), (“triggered”) stop-and-go waves (SGW), oscillating congested traffic
(OCT), or homogeneous congested traffic (HCT). During the first minutes of the simulation, the
flows on the freeway and the on-ramp were increased from low values to their final values. Since
the assumed flows fall into a metastable traffic regime, the actual breakdown was initiated by
additional perturbations of the ramp flow

Typical representatives of congested traffic patterns obtained by computer simu-
lations with the intelligent driver model [53] are shown in Fig. 3. Notice that all
empirical patterns displayed in Fig. 1 can be reproduced.

One can distinguish the different traffic states (i.e. congestion patterns) by
analyzing the temporal and spatial dependence of the average velocity V.x; t/: If
V.x; t/ stays above a certain thresholdVcrit, where x is varied within a homogeneous
freeway section upstream of a bottleneck, we call the traffic state free traffic (FT),
otherwise congested traffic.2 If these speeds fall below Vcrit only over a short freeway
subsection, and the length of this section is approximately stable or stabilizes
over time, we talk about localized clusters (LC), otherwise of spatially extended
congestion states (see also footnote 1).

According to our simulations, there are two forms of localized clusters: Pinned
localized clusters (PLC) stay at a fixed location over a longer period of time,
while moving localized clusters (MLC) propagate upstream with the characteristic

2A typical threshold for German freeways would be Vcrit � 80 km/h.
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speed c0. These states have to be contrasted with extended congested traffic3:
Stop-and-go waves (SGW) may be interpreted as a sequence of several moving
localized clusters. Alternatively, they may be viewed as special case of oscil-
lating congested traffic (OCT), but with free traffic flows of about Qout &
1;800 vehicles/h/lane between the upstream propagating jams. Generally, however,
OCT is just characterized by oscillating speeds in the congested range, i.e. unstable
traffic flows. If the speeds are congested over a spatially extended area, but not
oscillating,4 we call this homogeneous congested traffic (HCT). It is typically related
with low vehicle velocities.

In summary, besides free traffic, the above mentioned and some other traffic
models predict five different, spatio-temporal patterns of congested traffic states at a
simple on-ramp bottleneck: PLC, MLC, SGW, OCT, and HCT. Similar traffic states
have been identified for flow-conserving bottlenecks in car-following models [8,14],
and for on-ramps and other types of bottlenecks in macroscopic models [13, 34].

In contrast to this past work, we have also simulated an additional traffic pattern
(Fig. 3d). This pattern has a similarity to the widening synchronized pattern (WSP)
proposed by Kerner in the framework of his three-phase traffic theory [22]. In the
following section, we show how this pattern may be understood in the framework
of models with a fundamental diagram.

4 Derivation and Explanation of the Phase Diagram
of Traffic States

It turns out that the possible traffic patterns in open systems with bottlenecks are
mainly determined by the instability diagram (see Fig. 4), no matter if the model is
macroscopic or microscopic. This seems to apply at least for traffic models with a
fundamental diagram, which we will focus on in the following sections. Due to the
close relationship with the instability diagram, the preconditions for the possible
occurrence of the different traffic states can be illustrated by a phase diagram.
Figures 5 and 6 show two examples. Each area of a phase diagram represents the
combinations of upstream freeway flows Qup and bottleneck strengths �Q, for
which a certain kind of traffic state can exist.

It is obvious that an on-ramp flow Qon.t/, for example, causes a bottleneck,
as it consumes some of the capacity of the freeway. Qon.t/ represents the flow
actually entering the freeway via the on-ramp, i.e. the flow leaving the on-ramp
and not the flow entering the on-ramp.5 We assume that Qon.t/ is known through a

3Which includes “widening moving clusters” (see Fig. 1a and footnote 1).
4When averaging over spatial and temporal intervals that sufficiently eliminate effects of hetero-
geneity and pedal control in real vehicle traffic.
5When the freeway is busy, it may happen that these two flows are different and that a queue
of vehicles forms on the on-ramp. Of course, it is an interesting question to determine how the
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Fig. 4 Illustration of stable, linearly unstable, and metastable density regimes within velocity-
density diagrams Ve./ (top) and the flow-density diagrams Qe./ (bottom). Traffic is stable for
 < c1 and  > c4 and linearly unstable for c2 <  < c3. These two regimes are separated
by a low-density and a high-density region of metastable traffic given by the intervals c1 <  <

c2 and c3 <  < c4, respectively. In the metastable regimes, perturbations in the traffic flow
grow, if their size is larger than a certain critical amplitude [10], otherwise they fade away. The
critical amplitude is largest towards the boundaries c1 and c4 of unconditionally stable traffic flow,
while it goes to zero towards the boundaries c2 and c3 of linearly unstable traffic. Note that the
metastable and unstable regimes may vanish for certain traffic models or parameter specifications.
The possible types of congested traffic patterns depend on the existence of the different stability
regimes and on the relative position of their boundaries with respect to the density max at capacity
Qmax (maximum flow). The left figures show the situation for c2 < max, the right figures the
situation for c2 > max

suitable measurement. Having clarified this, we define the bottleneck strength due to
an on-ramp by the entering ramp flow, divided by the number Ifr of freeway lanes:

�Q.t/ D �Qon.t/ D Qon.t/

Ifr
: (1)

This is done so, because the average flow�Q added to each freeway lane by the
on-ramp flow corresponds to the capacity that is not available anymore for the traffic
flowQup coming from the upstream freeway section. As a consequence, congestion

entering ramp flow depends on the freeway flow, but this is not the focus of attention here, as this
formula is not required for the following considerations.
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Fig. 5 Schematic (idealized) phase diagrams for the expected traffic patterns as a function of the
upstream freeway flow Qup and the ramp flow �Q, as studied in [13, 53]. The left figure is for
negligible, the right figure for large perturbations. The situation for medium-sized perturbations
can lie anywhere between these two extremes. For example, in the area marked as PLC, one may
find free traffic or pinned localized clusters, or in some of the area attributed to HCT, one may
find SGW or OCT states. The assumed instability diagram underlying the above schematic phase
diagrams is depicted in Fig. 4a, b. With c1 < c2 < max < c3 < c4 < jam, it assumes
no degeneration of the critical densities ck and a stable flow at high densities. Note that, for
illustrative reasons, we have set aside the exact correspondence of the flow values Qck
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Fig. 6 Schematic phase diagram as in Fig. 5, but for the instability diagram represented by
Fig. 4c, d. In contrast to Fig. 5, traffic flow at capacity is metastable (c1 < max < c2),
which leads to a greater variety of traffic states in the upper left corner of the phase diagram.
In particularly, we find “widening synchronized patterns” (WSP). “OCT, SGW” means that
one expects to find oscillating congested traffic or stop-and-go waves, but not necessarily both.
Together with “widening moving clusters” (WMC, see footnote 1) they form the area of extended
oscillatory congestion. However, the WMC and MLC phases may also be summarized by one area
representing “moving clusters” (MC)

may form upstream of the ramp. In the following, we will have to determine the
density inside the forming congestion pattern and where in the instability diagram
it is located. It will turn out that, given certain values of Qup and �Q, the different
regions of the phase diagram can be related with the respectively observed or
simulated spatiotemporal patterns. We distinguish free traffic and different kinds of
localized congested traffic as well as different kinds of extended congested traffic.
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When contrasting our classification of traffic states with Kerner’s one [20], we find
the following comparison helpful:

1. According to our understanding, what we call “extended congested traffic” may
be associated with Kerner’s “synchronized flow”. In particular, the area where
Kerner’s phase diagrams predict a “general pattern” matches well with the area,
where we expect OCT and HCT states.

2. “Moving clusters”6 may be associated with “wide moving jams” and/or “moving
synchronized patterns” (MSP).

3. “Stop-and-go waves” appear to be related with multiple “wide moving jams”
generated by the “pinch effect”.

4. “Pinned localized clusters” may related to Kerner’s “localized synchronized
pattern” (LSP).

5. Kerner’s “widening synchronized pattern” (WSP) and “dissolving general pat-
tern” (DGP) did not have a correspondence with results of our own computer
simulations so far. These states are predicted to appear for high freeway flows
and low bottleneck strengths. In the following subsections, we report that,
quite unexpectedly, similar results are found for certain traffic models having
a fundamental diagram.

The phase diagram can not only be determined numerically. It turns out that the
borderlines between different areas (the so-called phase boundaries) can also be
theoretically understood, based on the flows

Qck D Qe.ck/ (2)

at the instability thresholds ck (k D 1; : : : ; 4), the maximum flow capacity Qmax

under free flow conditions, and the dynamic flow capacity, i.e. the characteristic out-
flow Qout from congested traffic [25] (see Fig. 4). Qe./ represents the equilibrium
flow-density relationship, which is also called the “fundamental diagram”.

The exact shape and location of the separation lines between different kinds of
traffic states depend on the traffic model and its parameter values.7 Furthermore,
the characteristic outflow Qout typically depends on the type and strength of the
bottleneck.8 For the sake of simplicity of our discussion, however, we will assume
constant outflowsQout in the following.

The meaning of the different critical density thresholds ck and flow thresholds
Qck D Qe.ck/, respectively, is described in the caption of Fig. 4. Note that the

6That is, “moving localized clusters” (MLC) and “widening moving clusters” (WMC), see footnote
1 and Sect. 4.2.
7Since the model parameters characterize the prevailing driving style as well as external conditions
such as weather conditions and speed limits, the separation lines (“phase boundaries”) and even
the existence of certain traffic patterns are subject to these factors, see Sect. 7.
8For example, in most models, the outflow Qout downstream of an on-ramp bottleneck decreases
with the bottleneck strength and increases with the length of the on-ramp [53, 55].
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density c2 may be smaller or larger than the density max at capacity, where
the maximum flow Qmax is reached. Previous computer simulations and phase
diagrams mostly assumed parameters where traffic at capacity is linearly unstable
(c2 < max<c3), which is depicted in Figs. 4a, b. However, in some traffic models
such as the IDM [53], the stability thresholds can be controlled in a flexible way by
varying their model parameters (see Appendix 2). In the following, we will focus on
the case where traffic at capacity is metastable (c2>max >c1), cf. Fig. 4c, d.9 As
will be shown in the next subsection, this appears to offer an alternative explanation
of the “widening synchronized pattern” (WSP) introduced in [22], see Fig. 3d.
Simpler cases will be addressed in Sect. 6 below.

4.1 Transition to Congested Traffic for Small Bottlenecks

In the following, we restrict our considerations to situations with one bottleneck
only, namely a single on-ramp. Combinations of off- and on-ramps are not covered
by this section. They will be treated later on (see Sect. 5).

For matters of illustration, we assume a typical rush hour scenario, in which the
total traffic volume

Qtot.t/ D Qup.t/C�Q.t/ ; (3)

i.e. the sum of the flow Qup.t/ sufficiently upstream of the ramp bottleneck and the
on-ramp flow �Q.t/ per freeway lane, is increasing with time t . As long as traffic
flows freely, the flow downstream of the bottleneck corresponds to the total flow
Qtot.t/, while the upstream flow is Qup.t/.

When the total flow Qtot.t/ exceeds the critical density c1, it enters the
metastable density regime. That is, large enough perturbations may potentially grow
and cause a breakdown of the traffic flow. However, often the perturbations remain
comparatively small, and the total traffic volume rises so quickly that it eventually
exceeds the maximum freeway capacity

Qtot D Qup C�Q > Qmax D max

Qe./ D Qe.max/ : (4)

This is reflected in the left phase diagram in Fig. 6 by the diagonal line separating
the states “FT” and “WSP”. (Note that max represents the density, for which the
maximum free traffic flow occurs, not the jam density jam.)

When the total traffic volume Qtot exceeds the maximum capacity Qmax, a
platoon of vehicles will form upstream of the bottleneck. Since, in this section,
we assume metastable traffic at maximum capacity Qmax (see Fig. 7 in [12]), this
will not instantaneously lead to a traffic breakdown with an associated capacity

9The IDM parameters for plots (a) and (b) are given by v0 D 128 km/h, T D 1 s, s0 D 2m,
s1 D 10m, a D 0:8m/s2, and b D 1:3m/s2. To generate plots (c) and (d), the acceleration
parameter was increased to a D 1:3m/s2, while the other parameters were left unchanged.
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drop. Thus, the flow downstream of the bottleneck remains limited toQmax (at least
temporarily). As the on-ramp flow takes away an amount �Q of the maximum
capacityQmax, the (maximum) flow upstream of the bottleneck is given by

Qbot D Qmax ��Q : (5)

When the actual upstream flow Qup exceeds this value, a mild form of congestion
will result upstream of the ramp. The density of the forming vehicle platoon is
predicted to be

bot D cg.Qbot/ D cg
�
Qmax ��Q� > max ; (6)

where cg.Q/ is the density corresponding to a stationary and homogeneous
congested flow of value Q (i.e. it is the inverse function of the “congested branch”
of the fundamental diagram).

According to the equation for the propagation speed of shockwaves (see [57]),
the upstream front of the forming vehicle platoon is expected to propagate upstream
at the speed

C1.t/ D Qup �Qbot

fr.Qup/ � cg.Qbot/
; (7)

where fr.Q/ is the density of stationary and homogeneous traffic at a given flowQ

(i.e. the inverse function of the “free branch” of the fundamental diagram.)
Note that this high-flow situation can persist for a significant time period only,

if the flow Qbot in the platoon is stable or metastable. This is the case if one of the
following applies:

(a) The traffic flow is unconditionally stable for all densities such as in the
Lighthill–Whitham model [37]. This will be discussed in Sect. 6 below.

(b) Traffic flow at capacity is metastable and the bottleneck is sufficiently weak.
This gives rise to the widening synchronized pattern (WSP), as will be discussed
in the rest of this subsection.

By WSP, we mean a semi-congested extending traffic state without large-scale
oscillations or significant velocity drops below, say, 30–40 km/h [20]. Putting
aside stochastic accelerations or heterogeneous driver-vehicle populations, this
corresponds to (meta-)stable vehicle platoons at densities greater than, but close to
the density max at capacity. This can occur when bot lies in the metastable density
range, i.e. max < bot < c2, corresponding to Qmax > Qbot D Qmax � �Q >

Qc2 or
�Q < Qmax �Qc2: (8)

In Fig. 6, this condition belongs to the area left of the vertical line separating the
WSP and OCT states. If the bottleneck strength �Q becomes greater than Qmax �
Qc2, or if cg.Qbot/ lies in the metastable regime and perturbations in the traffic flow
are large enough, traffic flow becomes unstable and breaks down. After the related
capacity drop by the amount
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�Qdrop D Qmax �Qout ; (9)

the new, “dynamic” capacity will be given by the outflow Qout from congested
traffic [53]. Obviously, the capacity drop causes the formation of more serious
congestion.10 This is illustrated in the right phase diagram of Fig. 6 by the offset
between the diagonal lines separating free traffic from WSP and the other extended
congested states (OCT, SGW, and HCT). In the following, we will focus on the
traffic states after the breakdown of freeway capacity from Qmax to Qout has
taken place.

4.2 Conditions for Different Kinds of Congested Traffic After
the Breakdown of Traffic Flow

For the sake of simplicity, we will assume the case

Qc4 < Qc3 < Qc1 � Qout � Qc2 < Qmax ; (10)

which seems to be appropriate for real traffic (particularly in Germany). However,
depending on the choice of model parameters, other cases are possible. The
conclusions may be different, then, but the line of argumentation is the same. In
the following, we will again assume c2 � max, so that the maximum flow Qmax is
metastable. Therefore, it can persist for some time, until the maximum flow state is
destabilized by perturbations or too high traffic volumes Qtot.t/, which eventually
cause a breakdown of the traffic flow. (For c2 < max, the capacity drop happens
automatically, wheneverQtot.t/ > Qmax.)

After the breakdown of traffic flow, the traffic situation downstream is given by
the outflow Qout from (seriously) congested traffic. As the actually entering ramp
flow requires the capacity �Q per lane, the flow upstream of the bottleneck is
limited to

Qcong D Qout ��Q : (11)

In analogy to (7), the upstream front of this congested flow is expected to propagate
with the velocity

C2.t/ D Qup �Qcong

fr.Qup/� cg.Qcong/
; (12)

as the upstream freeway flowQup is assumed to be free. The downstream end of the
congested flow Qcong remains located at the bottleneck [9].

Figure 7 shows that the propagation of the upstream front according to (12)
agrees remarkably well with empirical observations, not only for homogeneous

10And the condition Qup C �Q < Qout for the gradual dissolution of the resulting congestion
pattern is harder to fulfil than the condition Qup C�Q < Qmax implied by (4).
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Fig. 7 Examples of congestion patterns on the German freeway A5 close to Frankfurt, for which
data have been provided to the authors between kilometers 465 and 492. The figures analyze the
propagation of the upstream front of a region of congested traffic (white solid line) according to
(12), for empirical HCT (left) and OCT (right). In both plots, the driving direction is upwards (as
indicated by the arrows). The upstream flow Qup was determined from a detector cross section
whose location is indicated by a dotted white line, while the bottleneck flow was determined from
detectors of a nearby cross section (dashed white line). When determining the flows, the time
delay caused by the finite propagation velocities dQe./=d from the detectors to the upstream
front was taken care of. The congestion patterns were chosen such that there were no ramps at
or between the two detector cross sections. Otherwise, the determination of Qup and Qcong would
have been more complicated. The free and congested densities were calculated with a simple,
triangular fundamental diagram. Therefore, fr.Q/ D Q=V0 and cg.Q/ D jam.1�QT /, where
the following parameters were chosen: V0 D 120 km/h, jam D 100 vehicle/km/lane, and T D 2 s

congested flow but also for the OCT pattern. Since the location of the congestion
front is given by integration of (12) over time, oscillations of the input quantities of
this equation are automatically averaged out.

The resulting congestion pattern depends on the stability properties of the
vehicle density

cong D cg.Qcong/ D cg
�
Qout ��Q

�
(13)

in the congested area, where the outflow Qout from seriously congested traffic
represents the effective freeway capacity under congested conditions and �Q the
capacity taken away by the bottleneck. In view of this stability dependence, let us
now discuss the meaning of the critical densities ck or associated flows Qck D
Qe.ck/, respectively, for the phase diagram.

If c2 < cong < c3, we expect unstable, oscillatory traffic flow (OCT or
SGW). For c3 � cong < c4, the congested flow is metastable, i.e. it depends
on the perturbation amplitude: One may either have oscillatory patterns (for large
enough perturbations) or homogeneous ones (for small perturbations). Moreover,
for cong � c4 (given that the critical density c4 is smaller than jam), we expect
homogeneous, i.e. non-oscillatory traffic flows.

Expressing this in terms of flows rather than densities, one would expect the
following: Oscillatory congestion patterns (OCT or SGW) should be possible for
Qc2 > Qcong D Qout ��Q > Qc4, i.e. in the range

Qout �Qc2 < �Q < Qout �Qc4 ; (14)

where we have consideredQc2 � Qout.
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The assumption that the densities between out with Qe.out/ D Qout and Qmax

are metastable, as we assume here, has interesting implications: A linear instability
would cause a single moving cluster to trigger further local clusters and, thereby,
so-called “triggered stop-and-go waves” (TSG or SGW) [13]. A metastability, in
contrast, can suppress the triggering of additional moving clusters, which allows the
persistence of a single moving cluster, if the bottleneck strength �Q is small. As,
for Qtot > Qout, the related flow conditions fall into the area of extended congested
traffic, the spatial extension of such a cluster will grow. Therefore, one may use the
term “widening moving cluster” (WMC).

Furthermore, according to our computer simulations, the capacity downstream of
a widening moving cluster may eventually revert fromQout toQmax. This happens in
the area, where “widening synchronized patterns” (WSP) can appear.11 Therefore,
rather than by (14), the bottleneck strengths characterizing OCT or SGW states are
actually given by

Qmax �Qc2 < �Q < Qout �Qc4 ; (15)

where the lower boundary corresponds to the boundary of the WSP state, see (8). We
point out that a capacity reversion despite congestion is a special feature of traffic
models with c2 > max.

Homogeneous congested traffic (the definition of which does not cover the
homogeneous WSP state) is expected to be possible forQcong D Qout ��Q < Qc3,
i.e. (meta-) stable flows at high densities. This corresponds to

�Q > Qout �Qc3 : (16)

The occurrence of extended congested traffic like HCT and OCT requires an
additional condition: The total flow must exceed the freeway capacity Qout during
serious congestion,12 i.e. we must have

Qtot D Qup C�Q > Qout : (17)

Localized congestion patterns, in contrast, requireQtot � Qout and can be triggered
forQtot > Qc1, which implies

Qc1 < Qtot D Qup C�Q � Qout : (18)

11In this connection, it is interesting to remember Kerner’s “dissolving general pattern” (DGP),
which is predicted under similar flow conditions.
12One may also analyze the situation with the shock wave equation: Spatially expanding congested
traffic results, if the speed of the downstream shock front of the congested area (which is usually
zero) minus the speed of the upstream shock front (which is usually negative) gives a positive
value.



318 D. Helbing et al.

We can distinguish at least two cases: On the one hand, if

Qc1 < Qup < Qmax ; (19)

the flow upstream of the congested area is metastable, which allows jams (and large
enough perturbations) to propagate upstream. In this case, we speak of moving
localized clusters (MLC). Their propagation speed c0 D �15 ˙ 5 km/h is given
by the slope of the jam line [17].

On the other hand, if
Qup � Qc1 (20)

or fr.Qup/ < c1, traffic flow upstream of the bottleneck is stable. Under such
conditions, perturbations and, in particular, localized congestion patterns cannot
propagate upstream, and they stay at the location of the bottleneck. In this case,
one speaks of pinned localized clusters (PLC).13

We underline that the actual outflow QQout from localized clusters corresponds, of
course, to their inflow Qup C �Q (otherwise they would grow or shrink in space).
Therefore, the actual outflow QQout of localized congestion patterns can be smaller
than Qout, i.e. smaller than the outflow of serious congestion.

5 Combinations of On- and Off-Ramps

We see that the instability diagram implies a large variety of congestion patterns
already in the simple simulation scenario of a homogeneous freeway with a
single ramp. The possible congestion patterns are even richer in cases of complex
freeway setups. All combinations of the previously discussed, “elementary” traffic
patterns are possible. Furthermore, we expect particular patterns due to interactions
among patterns through spillover effects. For illustration, let us focus here on the
combination of an on-ramp with an off-ramp further upstream. This freeway design
is illustrated in Fig. 8 and often built to reduce the magnitude of traffic breakdowns,
since it is favorable when vehicles leave the freeway before new ones enter.
Nevertheless, the on-ramp and the off-ramp bottleneck can get coupled, namely
when congestion upstream of the on-ramp reaches the location of the off-ramp.

13 Since pinned localized clusters rarely constitute a maximum perturbation, they can also occur at
higher densities and flows, as long as Qup < Qc2. Therefore, MLC and PLC states can coexist in
the range Qc1 < Qup < Qc2. For most traffic models and bottleneck types, congestion patterns
with Qtot � Qc1 do not exist, since localized congestion patterns do not correspond to maximum
perturbations. The actual lower boundary QQc1 for the overall traffic volume Qtot that generates
congestion is somewhat higher thanQc1, but usually lower thanQc2. Considering the metastability
of traffic flow in this range and the decay of the critical perturbation amplitude from c1 to c2 [10],
this behavior is expected. However, for some models and parameters, one may even have QQc1 >

Qout. In such cases, PLC states would not be possible under any circumstances.
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Fig. 8 Combination of an on-ramp bottleneck with an upstream off-ramp. (a) When the flow
Qup D Q0

up ��Qoff upstream of the on-ramp exceeds Qcong, which is defined as the outflow Qout

from congested traffic minus the on-ramp flow �Qon D Qon=Ifr , congested traffic upstream of the
on-ramp (dark grey area) is expected to grow. (b) As soon as the congested area extends up to the
location of the off-ramp, the off-ramp bottleneck is activated. Its effective outflow Q0

out is given by
the congested flowQcong upstream of the on-ramp, while congested flowQ0

cong upstream of the off-
ramp is higher by the amount �Qoff D Qoff=Ifr of the off-ramp flow. (c) Spatiotemporal velocity
field resulting from a computer simulation with the gas-kinetic-based traffic model (GKT) [52],
which allows to treat ramps easily. The arrow indicates the driving direction. One can clearly see
pronounced stop-and-go waves emanating from an area of oscillating congested traffic

What would a bottleneck analysis analogous to the one in Sect. 4 predict for this
setup? In order to discuss this, let us again denote the outflow capacity downstream
of the on-ramp by Qout, its bottleneck strength equivalent to the on-ramp flow
Qrmp D Qon by �Qon D Qrmp=Ifr � 0, the upstream flow by Qup, and the average
congested flow resulting immediately upstream of the on-ramp byQcong. In contrast,
we will denote the same quantities relating to the area of the off-ramp by primes (0),
but we will introduce the abbreviation ��Qoff D Q0

rmp=Ifr � 0 for the effect of the
off-ramp flow Q0

rmp � 0.
According to Fig. 8, we observe the following dynamics: First, traffic breaks

down at the strongest bottleneck, which is the on-ramp. If Qup > Qout � �Qon,
congested flow of size Qcong D Qout � �Qon expands, and eventually reaches the
location of the off-ramp, see Fig. 8a. Afterwards, the freeway capacity downstream
of the off-ramp suddenly drops from Q0

out D Qout to the congested flow
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Q0
out D Qcong D Qout ��Qon (21)

due to a spillover effect. This abrupt change in the bottleneck capacity restricts the
capacity for the flow upstream of the off-ramp to

Q0
cong D Qcong C�Qoff � Qcong : (22)

This higher flow capacity implies either free flow or milder congestion upstream
of the off-ramp. If Q0

cong is smaller than the previous outflow capacity Qout, we
have a bottleneck along the off-ramp, and its effective strength �Q is given by the
difference of these values:

�Q D Qout � .Qcong C�Qoff/ D �Qon ��Qoff : (23)

That is, the bottleneck strength is defined as the amount of outflow from congested
traffic which cannot be served by the off-ramp and the downstream freeway flow.
ForQcong C�Qoff � Qout, no bottleneck occurs, which corresponds to a bottleneck
strength�Q D 0. This finally results in the expression

�Q D max.�Qon ��Qoff; 0/ � �Qon (24)

[9]. Whenever�Qoff > �Qon, there is no effective bottleneck upstream of the off-
ramp, i.e. the off-ramp bottleneck is de-activated. For �Q D �Qon � �Qoff > 0,
however, the resulting congested flow upstream of the off-ramp becomes

Q0
cong D Q0

out C�Qoff D Qout ��Qon C�Qoff D Qout ��Q : (25)

In conclusion, if congested traffic upstream of an on-ramp reaches an upstream off-
ramp, the off-ramp becomes a bottleneck of strength �Q, which is given by the
difference between the on-ramp and the off-ramp flows (or zero, if this difference
would be negative).

Since �Q � �Qon according to (24) and Q0
cong � Qcong according to (22),

the congestion upstream of the off-ramp tends to be “milder” than the congestion
upstream of the on-ramp. The resulting traffic pattern is often characterized by
homogeneous or oscillating congested traffic between the off-ramp and the on-
ramp, and by stop-and-go waves upstream of the off-ramp, i.e. it has typically the
appearance of a “pinch effect” [26] (see Fig. 8c). For this reason, Kerner also calls
the “pinch effect” a “general pattern” [20].14

14Oscillatory congestion patterns upstream of off-ramps are further promoted by a behavioral
feedback, since drivers may decide to leave the freeway in response to downstream traffic
congestion.
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Fig. 9 Schematic phase diagram for traffic flow without an extended linearly unstable density
regime (c2 D c3), when the traffic flow at capacity (at the density max corresponding to the
maximum flow) is assumed to be metastable (c1 < max < c4)

6 Other Phase Diagrams and Universality Classes of Models

The phase diagram approach can also be used for a classification of traffic models.
By today, there are hundreds of traffic models, and many models have a similar
goodness of fit, when parameters are calibrated to empirical data [4,5,11,29,41,42].
It is, therefore, difficult, if not impossible, to determine “the best” traffic model.
However, one can classify models according to topologically equivalent phase
diagrams. Usually, there would be several models in the same universality class,
producing qualitatively the same set of traffic patterns under roughly similar
conditions. Among the models belonging to the same universality class, one
could basically select any model. According to the above, the differences in the
goodness of fit are usually not dramatic. Models with many model parameters
may even suffer from insignificant parameters or parameters, which are hard to
calibrate, at the cost of predictive power. Therefore, it is most reasonable to choose
the simplest representative of a universality class which, however, should fulfil
minimum requirements regarding theoretical consistency.

Before we enter the comparison with empirical data, let us discuss a number of
phase diagrams expected for certain kinds of traffic models. Particular specifications
of the optimal velocity model, for example, are linearly unstable for one density
c2 D c3 only, but show unstable behavior in an extended density regime
for sufficiently large perturbations (i.e. extended metastable regimes) [10]. The
schematic phase diagram expected in this case is shown in Fig. 9. Some other
traffic models have linearly unstable and metastable regimes, but do not show a
restabilisation at very high densities, i.e. c4 D jam (see Fig. 10), and sometimes one
even has c3 D jam [28,47] (see Fig. 11). In the latter case, homogeneous congested
traffic does not exist. In models such as the IDM, the restabilisation depends on the
chosen parameter values [55], see also Appendix 2.
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Fig. 11 Schematic phase diagram for traffic flow exhibiting both, metastable and linearly unstable
density regimes, with unstable flow at capacity (c1 < c2 < max), but no restabilisation for very
high densities (c3 D c4 D jam)

In most of the currently studied traffic models, one has either both, linearly
unstable and metastable density ranges, or unconditionally stable traffic. In prin-
ciple, however, models with linearly unstable but no metastable regimes are
conceivable. For example, they may be established by taking a conventional model
and introducing a dependence on the square of the velocity gradient (in macroscopic
models) or the velocity difference (in microscopic models).

A linearly unstable model without metastable ranges would correspond to c2 D
c1 and c4 D c3. For such models, we do not expect any multi-stability (see
Fig. 12), and localized congested traffic would only be possible under special
conditions [36, 44] (e.g. on freeway sections between off- and on-ramps). If, in
addition, there is no restabilisation (i.e. c3 D jam), only free traffic and oscillating
congested traffic should exist. This seems to reflect the situation for the classical
Nagel–Schreckenberg model [39], although the situation is somewhat unclear, since
this model is stochastic and an exact distinction between free and congested states
is difficult in this model.
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The most prominent example is the Lighthill–Whitham model [37], but many other models
(including the gas-kinetic-based traffic model (GKT) [52] and the IDM) can be parameterized
to reproduce this case

Finally, we would like to discuss the fluid-dynamic model by Lighthill and
Whitham [37], which does not display any instabilities [8] and, consequently, has
only homogeneous patterns, namely free traffic forQtot � Qmax and (homogeneous)
extended congested traffic forQtot > Qmax (which corresponds to a vehicle platoon
behind the bottleneck). This is illustrated in Fig. 13. The two phases can also be
distinguished locally, if temporal correlations are considered: While perturbations in
free traffic travel in forward direction, in the congested regime they travel backward.

We underline again that, by changing model parameters (corresponding to
different driving styles), the resulting instability and phase diagrams of many
traffic models change as well. For example, the IDM can be parameterized to
generate most of the stability diagrams discussed in this contribution. Since different
parameter values correspond to different driving styles or prevailing velocities, this
may explain differences between empirical observations in different countries. For
example, oscillating congested traffic seems to occur less frequent in the United
States [6, 58].
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Finally, note that somewhat different phase diagrams result for models that are
characterized by a complex vehicle dynamics and no existence of a fundamental
diagram [21, 28]. Nevertheless, similarities can be discovered (see Sect. 4).

7 Empirical Phase Diagram

The remaining challenge in this paper is to find the universality class that fits the
stylized facts of traffic dynamics well. Here, we will primarily demand that it fits
the empirical phase diagram, i.e. reproduces all elementary congestion patterns
observed, and not more. We have evaluated empirical data from the German freeway
A5 close to Frankfurt. Due to the weather-dependence of the outflows Qout (see
Fig. 14), it is important to scale all flows by the respective measurements of Qout.
This naturally collapses the area of localized congested traffic states to a line. As
Fig. 15 shows, the phase diagram after scaling the flows is very well compatible
with the theoretical phase diagrams of Figs. 5 and 6. Since the determination of the
empirical phase diagram did not focus on the detection of “widening synchronized
patterns”, it does not allow us to clearly distinguish between the two phase diagrams,
i.e. to decide whether c2 > max or c2 < max. However, the empirical WSP
displayed in Fig. 1 suggests that Fig. 6 corresponding to c2 > max would be
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as expected, while the extended traffic states are above this line. Moreover, pinned localized
clusters, moving localized clusters, and stop-and-go waves/oscillating congested traffic are well
separated from each other. Homogeneous congested traffic, but not other traffic states were
observed for �Q=Qout & 0:5 (see [44])

the right choice. Another piece of evidence for this is the metastability of vehicle
platoons forming behind overtaking trucks (see [12]).15

7.1 Reply to Criticisms of Phase Diagrams for Traffic Models
with a Fundamental Diagram

In the following, we will face the criticism of the phase diagram approach by
Kerner [16, 20]:

1. Models containing a fundamental diagram could not explain the wide scattering
of flow-density data observed for “synchronized” congested traffic flow. This is
definitely wrong, as a wide scattering is excellently reproduced by considering
the wide distribution of vehicle gaps, partially due to different vehicle classes
such as cars and trucks [40, 49]. Note that, for a good reproduction of empirical

15The existence of “widening moving clusters”, see Sect. 4.2 and Fig. 1a, supports this view as
well.
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measurements, it is important to apply the same measurement procedure to
empirical and simulated data, in particular the data aggregation over a finite time
period.

2. As the ramp flow or the overall traffic volume Qtot is increasing, the phase
diagram approach would predict the transitions free traffic ! moving or
pinned localized cluster ! stop-and-go traffic/oscillating congested traffic !
homogeneous congested traffic. However, this would be wrong because (i)
homogeneous congested traffic would not exist [18,19], and (ii) according to the
“pinch effect”, wide moving jams (i.e. moving localized clusters) should occur
after the occurrence of “synchronized flow” (i.e. extended congested traffic) [17].

We reply to (i) that it would be easy to build a car-following model with a
fundamental diagram that produces no HCT states,16 but according to empirical
data, homogeneous congested traffic does exist (see Fig. 1f), but it occurs very
rarely and only for extremely large bottleneck strengths exceeding �Q 
0:5Qout [44]. As freeways are dimensioned such that bottlenecks of this size
are avoided, HCT occurs primarily when freeway lanes are closed after a serious
accident. In other words, when excluding cases of accidents from the data set,
HCT states will normally not be found.

Moreover, addressing point (ii), Kerner is wrong in claiming that our the-
oretical phase diagram would necessarily require moving localized clusters to
occur before the transition to stop-and-go waves or oscillating congested traffic.
This misunderstanding might have occurred by ignoring the dependence of the
resulting traffic state on the perturbation size. The OCT pattern of Fig. 3c clearly
shows that a direct transition from free traffic flow to oscillating congested traffic
is possible in cases of small perturbations. The same applies to a fast increase in
the traffic volumeQtot.t/, which is typical during rush hours.

3. The variability of the empirical outflowQout would not be realistically accounted
for by traffic models with a fundamental diagram. This variability, however, does
not require an explanation based on complex vehicle dynamics. To a large extent,
it can be understood by variations in the weather conditions (see Fig. 14) and in
the flow conditions on the freeway lanes in the neighborhood of ramps [44],
which is particularly affected by a largely varying truck fraction [49].

In summary, the phase diagram approach for traffic models with a fundamental
diagram has been criticized with invalid arguments.

7.2 On the Validity of Traffic Models

In the past decades, researchers have proposed a large number of traffic models
and it seems that there often exist several different explanations for the same
observation(s) [55]. As a consequence, it is conceivable that there are models

16An example would be the IDM with the parameter choice s1 D 0.
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which are macroscopically correct (in terms of reproducing the observed congestion
patterns discussed above), but microscopically wrong. In order to judge the validity
of competing traffic models, we consider it necessary to compare models in a
quantitative way, based on empirical data. This should include

• A definition of suitable performance measures (such as the deviation between
simulated and measured travel times or velocity profiles).

• The implementation and parameter calibration of the competing models with
typical empirical data sets.

• The comparison of the performance of the competing models for different test
data sets of representative traffic situations.

Based on data sets of car-following experiments, such analyses have, for example,
been performed with a number of follow-the-leader models [4,5,11,29,41,42], with
good results in particular for the intelligent driver model (IDM) [4, 5, 29]. If there
is no statistically significant difference in the performance of two models (based on
an analysis of variance), preference should be given to the simpler one, according
to Einstein’s principle that a model should be always as simple as possible, but
not simpler.

We would like to point out that over-fitting of a model must be avoided. This may
easily happen for models with many parameters. Fitting such models to data will,
of course, tend to yield smaller errors than fitting models with a few parameters
only. Therefore, one needs to make a significance analysis of parameters that
adjusts for the number of parameters, as it is commonly done in statistical analyses.
Reproducing a certain calibration data set well does not necessarily mean that an
independent test data set will be well reproduced. While the descriptive capability
of models with many parameters is often high, models with fewer parameters may
have a higher predictive capability, as their parameters are often easier to calibrate.

This point is particularly important, since it is known that traffic flows fluctuate
considerably, especially in the congested regime. So, one may pose the question
whether these fluctuations are meaningful dynamical features of traffic flows or just
noise. To some extent, this depends on the question to be addressed by the model,
i.e. how fine-grained predictions the model shall be able to make. There are certainly
systematic sources of fluctuations, such as lane-changes, in particular by vehicles
entering or leaving the freeway via ramps, different types of vehicles, and different
driver behaviors [29, 42]. Such issues would most naturally be addressed by multi-
lane models considering lane changes and heterogeneous driver-vehicle units [30].
Details like this may, in particular, influence the outflow Qout of congested traffic
flow (see Fig. 17 in [44]). When trying to understand the empirically observed
variability of the outflow, however, one also needs to take the variability of the
weather conditions and the visibility into account (see Fig. 14). In order to show that
car-following models with a fundamental diagram are inferior to other traffic models
in terms of reproducing microscopic features of traffic flows (even when multi-
lane multi-class features are considered), one would have to show with standard
statistical procedures that these other models can explain a larger share of the
empirically observed variance, and that the difference in the explanation power
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is significant, even when the number of model parameters is considered. To the
knowledge of the authors, however, such a statistical analysis has not been presented
so far.

8 Summary, Conclusions, and Outlook

After a careful discussion of the term “traffic phase”, we have extended the phase
diagram concept to traffic models with a fundamental diagram that are not only
capable of reproducing congestion patterns such as localized clusters, stop-and-go
waves, oscillatory congested traffic, or homogeneous congested traffic, but also
“widening synchronized patterns” (WSP) and “widening moving clusters” (WMC).
The discovery of these states for the case, where the maximum traffic flow lies in the
metastable density regime, was quite unexpected. It offers an alternative and—from
our point of view—simpler interpretation of some of Kerner’s empirical findings.
A particular advantage of starting from models with a fundamental diagram is the
possibility of analytically deriving the schematic phase diagram of traffic states from
the instability diagram, which makes the approach predictive.

Furthermore, we have discussed how the phase diagram approach can be
used to classify models into universality classes. Models within one universality
class are essentially equivalent, and one may choose any, preferably the simplest
representative satisfying minimum requirements regarding theoretical consistency.
The universality class should be chosen in agreement with empirical data. These
were well represented by the schematic phase diagram in Fig. 6. Furthermore,
we have demonstrated that one needs to implement the full details of a freeway
design, in particularly all on- and off-ramps, as these details matter for the resulting
congestion patterns. Multi-ramp designs lead to congestion patterns composed of
several elementary congestion patterns, but spillover effects must be considered.
In this way, a simple explanation of the “pinch effect” [17] and the so-called
“general pattern” [20] results. We have also replied to misunderstandings of the
phase diagram concept.

In conclusion, the phase diagram approach is a simple and natural approach,
which can explain empirical findings well, in particular the dependence of traffic
patterns on the flow conditions. Note that the phase diagram approach is a metathe-
ory rather than a model. It can be theoretically derived from the instability diagram
of traffic flows and the self-organized outflow from seriously congested traffic. This
is not a triviality and, apart from this, the phase diagram approach is more powerful
than the instability diagram itself: It does not only allow predictions regarding
the possible appearance of traffic patterns and possible transitions between them.
It also allows to predict whether it is an extended or localized traffic pattern, or
whether a localized cluster moves or not. Furthermore, it facilitates the prediction
of the spreading dynamics of congestion in space, as reflected by (7) and (12). This
additionally requires formula (11), which determines how the bottleneck strength
�Q determines the effective flow capacityQcong of the upstream freeway section.
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Appendix 1 Modeling of Source and Sink Terms
(In- and Outflows)

In this appendix, we will focus on the case of a freeway section with a single
bottleneck such as an isolated on-ramp. Scenarios with several bottlenecks are
discussed in Sect. 5.

In order to derive the appropriate form of source and sink terms due to on- or
off-ramps, we start from the continuity equation, which reflects the conservation
of the number of vehicles. If 	.x; t/ represents the one-dimensional density of
vehicles at time t and a location x along the freeway, and if Q	.x; t/ represents the
vehicle flow measured at a cross section of the freeway, the continuity equation can
be written as follows:

@	.x; t/
@t

C @Q	.x; t/
@x

D 0 : (26)

Now, assume that I.x/ is the number of freeway lanes at location x. We are
interested in the density .x; t/ D 	.x; t/=I.x/ and traffic flow Q.x; t/ D
Q	.x; t/=I.x/ per freeway lane. Inserting this into the continuity equation (26) and
carrying out partial differentiation, applying the product rule of Calculus, we get

@

@t

�
I.x/.x; t/

� D I.x/
@.x; t/

@t

D � @

@x

h
I.x/Q.x; t/

i

D �Q.x; t/dI.x/
dx

� I.x/
@Q.x; t/

@x
: (27)

Rearranging the different terms, we find

@.x; t/

@t
C @Q.x; t/

@x
D �Q.x; t/

I.x/

dI.x/

dx
: (28)

The first term of this equation looks exactly like the continuity equation for the
density 	.x; t/ over the whole cross section at x. The term on the right-hand side
of the equality sign describes an increase of the density .x; t/ per lane, whenever
the number of freeway lanes is reduced (@I.x/=@x < 0) and all vehicles have to
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squeeze into the remaining lanes. In contrast, the density per lane .x; t/ goes down,
if the width of the road increases (@I.x/=@x > 0).

It is natural to treat on- and off-ramps in a similar way by the continuity equation

@.x; t/

@t
C @Q.x; t/

@x
D �

C
.x; t/ � �

�
.x; t/ (29)

with source terms �
C
.x; t/ and sink terms ��

�
.x; t/. For example, if a one-lane

on-ramp flow Qon.t/ is entering the freeway uniformly over an effectively used
ramp length of Leff, we have dI.x/=dx D 1=Leff, which together with (27)
and (29) implies

�
C
.x; t/ D

8<
:
Qon.t/

IfrLeff
for xrmp � Leff

2
< x < xrmp C Leff

2
;

0 otherwise.
(30)

Ifr D I.xrmp ˙ Leff=2/ denotes the number of freeway lanes upstream and
downstream of the ramp, which is assumed to be the same, here. The sink term
due to off-ramp flowsQoff.t/ � 0 has the form

��.x; t/ D
8<
:
Qoff.t/

IfrLeff
for xrmp � Leff

2
< x < xrmp C Leff

2
;

0 otherwise.
(31)

Appendix 2 Parameter Dependence of the Instability
Thresholds in the Intelligent Driver Model

The acceleration function aIDM.s; v; �v/ of the intelligent driver model (IDM) [53]
depends on the gap s to the leading vehicle, the velocity v, and the velocity
difference�v (positive, when approaching). It is given by

aIDM.s; v; �v/ D a

"
1 �



v

v0

�4
�


s	.v; �v/

s

�2#
; (32)

where

s	.v; �v/ D s0 C s1

r
v

v0
C T v C v�v

2
p
ab
: (33)

For identical driver-vehicle units, there exists a one-parameter class of homogeneous
and stationary solutions defining the “microscopic” fundamental diagram ve.s/ via
aIDM.s; ve.s/; 0/ D 0. From a standard linear analysis around this solutions it
follows that the IDM is linearly stable if the condition
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@aIDM

@s
� @aIDM

@v



@aIDM

@�v
C 1

2

@aIDM

@v

�
(34)

is fulfilled. With the micro-macro relation

s D 1


� lveh; where lveh D 6 m; (35)

this defines the stability boundariesc2 and c3 as a function of the model parameters
v0 (desired velocity), T (desired time headway), a (desired acceleration), b (desired
deceleration), s0 (minimum gap), and s1 (gap parameter; if nonzero, the fundamental
diagram has an inflection point). The overall stability can be controlled most
effectively by the acceleration a. Setting the other parameters to the values used
in Fig. 4 [v0 D 128 km/h, T D 1 s, s0 D 2m, s1 D 10m, and b D 1:3m/s2,
we obtain

• Unconditional linear stability for a � 1:68m/s2.
• Linear instability in the density range c2 �  � c3 for 0:95 m/s2 � a �
1:68 m/s2, where c2 > max and c3 < jam. In this situation, corresponding
to Fig. 4c, d, the instability range lies completely on the “congested” side of the
fundamental diagram.

• Finally, for a � 0:95m/s2, the linear instability also extends to the “free branch”
of the fundamental diagram (c2 < max), corresponding to Fig. 4a, b.

The upper instability threshold c3 can be controlled nearly independently from
the lower instability threshold c2 by the gap parameters s0 and s1. Generally, c3

increases with decreasing values of s1. In particular, if s1 D 0, one obtains the
analytical result c3 D .lveh C s0/

�1 for any a < s0=T
2, and unconditional linear

stability for a > s0=T
2. As can be seen from the last expression, the instability

generally becomes more pronounced for decreasing values of the time headway
parameter T , which is plausible.

The additional influence of the parameter b according to computer simulations
is plausible as well: With decreasing values of b, the sensitivity with respect
to velocity differences increases, and the instability tends to decrease. Further
simulations suggest that the IDM has metastable density areas only when linearly
unstable densities exist. Metastability at densities above the linear instability range
additionally requires s1 > 0.
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Self-Organized Network Flows�

Dirk Helbing, Jan Siegmeier, and Stefan Lämmer

Abstract A model for traffic flow in street networks or material flows in supply
networks is presented, that takes into account the conservation of cars or materials
and other significant features of traffic flows such as jam formation, spillovers, and
load-dependent transportation times. Furthermore, conflicts or coordination prob-
lems of intersecting or merging flows are considered as well. Making assumptions
regarding the permeability of the intersection as a function of the conflicting flows
and the queue lengths, we find self-organized oscillations in the flows similar to the
operation of traffic lights.

1 Introduction

Material flows are found in many places of the world. This concerns, for example,
traffic flows in urban areas or flows of commodities in logistic systems. There is
also some similarity with material flows in production or biological systems, from
cells over bodies upto ecological food chains. Many of these material flows are
not of diffusive nature or going on in continuous space. They are often directed
and organized in networks. In comparison with data flows in information networks,
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however, there are conservation laws, which can be used to set up equations
for material flows in networks. It turns out, however, that this is not a trivial
task. While there is already a controversial discussion about the correct equations
representing traffic flows along road sections [6, 11, 25, 31], their combination in
often complex and irregular networks poses further challenges. In particular, there
have been several publications on the treatment of the boundary conditions at nodes
(connections) of several network links (i.e. road sections) [4,7,9,10,16,21–24,26].
In particular, the modelling of merging and intersecting flows is not unique, as
there are many possible forms of organization, including the use of traffic lights.
Then, however, the question comes up how these traffic lights should be operated,
coordinated, and optimized. In order to address these questions, in Sect. 2 we
formulate a simple model for network flows, which contains the main ingredients
of material or traffic flows. Section 3 will then discuss the treatment of diverges,
merges, and intersections. Equations for the interaction-dependent permeability at
merging zones and intersections will be formulated in Sect. 4. We will see that,
under certain conditions, they lead to spontaneous oscillations, which have features
similar to the operation of traffic lights. Finally, Sect. 5 summarizes and concludes
this paper.

2 Flows in Networks

The following section will start with a summary of the equations derived for traffic
flows in networks in a previous paper. These equations are based on the following
assumptions:

• The road network can be decomposed into road sections of homogeneous
capacity (links) and nodes describing their connections.

• The traffic dynamics along the links is sufficiently well described by the
Lighthill–Whitham model, i.e. the continuity equation for vehicle conservation
and a flow-density relationship (“fundamental diagram”). This assumes adiabatic
speed adjustments, i.e. that acceleration and deceleration times can be neglected.

• The parameters of vehicles such as the maximum speed V 0
i and the safe time

headway T are assumed to be identical in the same road section, and who enters
a road section first exits first (FIFO principle). That is, overtaking is assumed to
be negligible.

• The fundamental diagram can be well approximated by a triangular shape, with
an increasing slope V 0

i at low densities and a decreasing slope c in the congested
regime. This implies two constant characteristic speeds: While V 0

i corresponds
to the free speed or speed limit on road section i ,

� c D � 1

maxT
(1)

the dissolution speed of the downstream front of a traffic jam and the velocity of
upstream propagation of perturbations in congested traffic. While max denotes
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the maximum vehicle density in vehicle queues, T  1:8s is the safe time gap
between two successive vehicles.

• The vehicle density in traffic jams is basically constant.

These assumptions may be compensated for by suitable corrections [11], but
already the model below displays a rich spectrum of spatio-temporal behaviors and
contains the main elements of traffic dynamics we are interested in here.

2.1 Flow Conservation Laws

In the following, we will introduce our equations for traffic flows in networks
very shortly, as a detailed justification and derivation has been given elsewhere
[12, 13, 16]. These equations are also meaningful for pipeline networks [3] (if
complemented by equations for momentum conservation), logistic systems [20],
or supply networks [15]. Our notation is illustrated in Fig. 1.

Compared to [16], we will use a simplified notation, here.1 The arrival flowAj .t/
denotes the actual inflow of vehicles into the upstream end of road section j , while
Oj .t/ is the actual departure flow, i.e. the flow of vehicles leaving road section j at
its downstream end. The quantity

bQj D
 
T C 1

V 0
j max

!�1
D max

1=c C 1=V 0
j

(2)

represents the maximum in- or outflow of road section j . All the above quantities
refer to flows per lane. Ij is the number of lanes and Lj the length of road section
j . lj .t/ � Lj is the length of the congested area on link j (measured from the
downstream end), and �Nj is the number of stopped or delayed vehicles, see (16)
and (14). With these definitions, we can formulate constraints for the actual arrival
and departure flows, which are given by the potential arrival flows bAj .t/ and the
potential departure flows bOi.t/, respectively.

The actual arrival flow Aj .t/ is limited by the maximum inflow bQj , if road
section j is not fully congested (lj .t/ < Lj ). Otherwise (if lj D Lj ) it is limited
by the actual departure flowOj .t �Lj =c/ a time period Lj =c before, as it requires
this time period until the downstream flow value has propagated upto the upstream
end of the road section by forward movement of vehicles under congested traffic
conditions. This implies

1The arrival flow Aj .t/ has previously been denoted by Qarr
j .t /, the potential arrival flowbAj .t/

by Qarr;pot
j .t /, the departure flow Oj .t/ by Qdep

j .t / and the potential departure flow bOj .t/ by

Q
dep;pot
j .t /.
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0 � Aj .t/ � bAj .t/ WD
� bQj if lj .t/ < Lj
Oj .t �Lj =c/ if lj .t/ D Lj :

(3)

Moreover, the potential departure flow bOi.t/ of road section i is given by its
permeability �i .t/ times the maximum outflow bQi from this road section, if vehicles
are queued up (�Ni > 0) and waiting to leave. Otherwise (if�Ni D 0) the outflow
is limited by the permeability times the arrival flow Ai a time period Li=V 0

i before,
as this is the time period that entering vehicles need to reach the end of road section
i when moving freely at the speed V 0

i . This gives the additional relationship

0 � Oi.t/ � bOi.t/ WD �i .t/

�
Ai.t �Li=V 0

i / if �Ni.t/ D 0
bQi if �Ni.t/ > 0 :

(4)

The permeability �i.t/ for traffic flows at the downstream end of section i can
assume values between 0 and 1. In case of a traffic light, �i .t/ D 1 corresponds
to a green light for road section i , while �i .t/ D 0 corresponds to a red or amber
light.

Alternatively and shorter than (3) and (4) one can write

bAj .t/ D max
hbQj�.lj .t/ < Lj /;Oj .t �Lj =c/

i
(5)

and bOi.t/ D �i .t/max
hbQi�.�Ni > 0/; Ai.t � Li=V

0
i /
i
; (6)

where the Heaviside function � is 1, if the argument (inequality) has the logical
value “true”, otherwise it is 0. Note that the above treatment of the traffic flow in a
road section requires the specification of the boundary conditions only, as we have
integrated up Lighthill’s and Whitham’s partial differential equation over the length
of the road section. The dynamics in the inner part of the section can be easily
reconstructed from the boundary conditions thanks to the constant characteristic
speeds. However, a certain point of the road section may be determined either
from the upstream boundary (in the case of free traffic) or by the downstream
boundary (if lying in the congested area, i.e. behind the upstream congestion front).
Therefore, we have a switching between the influence of the upstream and the
downstream boundary conditions, which makes the dynamics both, complicated
and interesting. This switching results from the maximum functions above and
implies also that material flows in networks are described by hybrid equations.
Although the dynamics is determined by linear ordinary differential equations in
all regimes, the switching between the regimes can imply a complex dynamics and
even deterministic chaos [30].

Complementary to the above equations, we have now to specify the constraints
for the nodes, i.e. the connection, merging, diverging or intersection points of the
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homogeneous road sections. Let the ingoing links be denoted by the index i and the
outgoing ones by j . To distinguish quantities more easily when we insert concrete
values 1; 2; : : : for i and j , we mark quantities of outgoing links additionally by a
prime (0).

Due to the condition of flow conservation, the arrival flow into a road section j
with I 0

j lanes must agree with the sum of the fractions ˛ij of all outflows IiOi .t/
turning into road section i . Additionally, the arrival flows are limited, i.e. we have

I 0
jA

0
j .t/ D

X
i

IiOi .t/˛ij � I 0
j
bA0
j .t/ (7)

for all j . Of course, the turning fractions ˛ij � 0 are normalized due to flow
conservation: X

j

˛ij .t/ D 1 : (8)

In cases of no merging flows, (7) simplifies to

I 0
jA

0
j .t/ D IiOi .t/˛ij � I 0

j
bA0
j .t/ (9)

for all j . At the same time, 0 � Oi.t/ � bOi.t/ must be fulfilled for all i . Together,
this implies

Oi.t/ � min

"
bOi.t/;min

j

 
I 0
j
bA0
j

Ii˛ij

!#
(10)

for all i .
The advantage of the above model is that it contains the most important

elements of the traffic dynamics in networks. This includes the transition from
free to congested traffic flows due to lack of capacity, the propagation speeds of
vehicles and congested traffic, spillover effects (i.e. obstructions when entering fully
congested road sections) and, implicitly, load-dependent travel times as well.

2.2 Two Views on Traffic Jams

Let us study the traffic dynamics on the road sections in more detail. Traffic jams
can be handled in two different ways: First by determining the number of cars that
are delayed compared to free traffic or, second, by determining fronts and ends of
traffic jams. The former method is more simple, but it cannot deal correctly with
spill-over effects, when the end of a traffic jam reaches the end of a road section.
Therefore, the first method is sufficient only in situations where the spatial capacity
of road sections is never exceeded.
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2.2.1 Method 1: Number of Delayed Vehicles

The first method just determines the difference between the number N in
i .t/ of

vehicles that would reach the end of road section i upto time t and the number
N out
i .t/ of vehicles that actually leave the road section upto this time. N in

i .t/ just
corresponds to the number of vehicles which have entered the road section upto
time t � Li=V

0
i , as Li=V 0

i is the free travel time. This implies

N in
i .t/ D

tZ

0

dt 0 Ai.t 0 � Li=V
0
i / ; (11)

while the number of vehicles that have actually left the road section upto time t is

N out
i .t/ D

tZ

0

dt 0 Oi.t 0/ : (12)

Hence, the number�Ni.t/ of delayed vehicles is given by

�Ni.t/ D
tZ

0

dt 0 ŒAi .t 0 �Li=V 0
i /�Oi.t

0/� � 0 : (13)

Alternatively, one can use the following differential equation for the temporal
change in the number of delayed vehicles:

d�Ni

dt
D Ai.t � Li=V

0
i /�Oi.t/ : (14)

In contrast, the number of all vehicles on road section i (independently of whether
they are delayed or not) changes in time according to

dNi

dt
D Ai.t/ �Oi.t/ : (15)

2.2.2 Method 2: Jam Formation and Resolution

In our simple macroscopic traffic model, the formation and resolution of traffic jams
is described by the shock wave equations, where we have the two characteristic
speeds V 0

i (the free speed) and c (the jam resolution speed). According to the theory
of shock waves [27,35], the upstream end of a traffic jam, which is located at a place
li .t/ � 0 upstream of the end of road section i , is moving at the speed
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dli

dt
D �Ai

�
t � ŒLi � li .t/�=V 0

i

� �Oi
�
t � li .t/=c

�
1.t/ � 2.t/

(16)

with the (free) density

1.t/ D Ai
�
t � ŒLi � li .t/�=V

0
i

�
=V 0

i (17)

immediately before the upstream shock front and the (congested) density

2.t/ D Œ1 � TOi
�
t � li .t/=c

�
�max (18)

immediately downstream of it. This is, because free traffic is upstream of the shock
front, and congested traffic downstream of it (for details see (1.6) and (1.4) in [16]).
In contrast, the downstream front of a traffic jam is moving at the speed

� 0 �Oi
�
t � li .t/=c

�
max �Oi

�
t � li .t/=c

�
=V 0

i

D Oi
�
t � li .t/=c

�
max �Oi

�
t � li .t/=c

�
=V 0

i

; (19)

since congested traffic with zero flow is upstream of the shock front and free traffic
flow occurs downstream of it.

2.2.3 Comparison of the Two Methods

Let us discuss a simple example to make the differences of both descriptions clearer.
For this, we assume that, at time t D 0, traffic flow on the overall road section i is
free, i.e. any traffic jam has resolved and there are no delayed vehicles. The flow
shall be stopped by a red traffic light for a time period t0. At time t D t0, the traffic
light shall turn green, and the formed traffic jam shall resolve. For the arrival flow,
we simply assume a constant value Ai , and the road section shall be long enough
to take up the forming traffic jam. Moreover, the departure flow shall be Oi . Then,
according to method 1, the number of delayed vehicles at time t0 is

�Ni.t0/ D Ait0 ; (20)

and it is reduced according to

�Ni.t/ D Ai t0 � .Oi � Ai/.t � t0/ : (21)

Therefore, any delays are resolved after a time period

t � t0 D Ai t0

Oi � Ai
D �Ni.t0/

Oi � Ai
; (22)

i.e. at time

t2 D t0
Oi

Oi � Ai
: (23)

Afterwards,�Ni.t/ D 0.
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In contrast, the end of the traffic jam grows with the speed

dli

dt
D � Ai � 0

Ai=V
0
i � .1 � 0/max

D 1

max=Ai � 1=V 0i
DW Ci : (24)

Therefore, we have li .t0/ D Ci t0. Surprisingly, this is greater than �Ni.t0/=max,
i.e. the expected length of the traffic jam based on the number of delayed vehicles.
The reason is that the delay of a vehicle joining the traffic jam at location xi D Li�li
is noticed at the downstream end of the road section only after a time period li =V 0

i .
The resolution of the traffic jam starts from the downstream end with the speed

0 � bQi

max � bQi=V
0
i

D �1
max=bQi � 1=V 0i

D �c ; (25)

if the outflow is free (i.e. Oi D bQi ), otherwise with the speed

0 �Oi
max � .max �Oi=c/

D �c ; (26)

since congested traffic with zero flow and maximum density is upstream of the shock
front.

Obviously, the jam resolution has reached the further growing, upstream jam
front when Ci t D c.t � t0/. Therefore, the jam of density max has disappeared after
a time period t � t0 D Ci t0=.c � Ci/, i.e. at time

t1 D ct0=.c � Ci/ : (27)

Surprisingly, it can be shown that t1 < t2, i.e. the traffic jam resolves before the
number of delayed vehicles reaches a value of zero. In fact, it still takes the time
Cit1=bV 0

i until the last delayed vehicle has left the road section, where

bV 0
i D Ai �Oi

Ai=V
0
i � .max �Oi=c/

(28)

is the shock front between free upstream traffic flow and the congested outflow Oi ,
which usually differs from the speed Vi DOi=Œ.1�TQi/max� of outflowing vehi-
cles. For Oi D bQi , we have bV 0

i D V 0
i because of 1=c D max=bQi � 1=V 0i .

Undelayed traffic starts when this shock front reaches the end of the road section,
i.e. at time

t2 D t1

 
1C Ci

bV 0
i

!
D t0

1 � Ci=c



1C Ci.Ai=V

0
i � max/C CiOi=c

Ai �Oi

�
: (29)



Self-Organized Network Flows 343

Inserting Ci.Ai=V
0
i � max/ D �Ai eventually gives t2 D t0Oi=Oi � Ai/.

This agrees perfectly with the above result for the first method (based on vehicle
delays rather than traffic jams).

In conclusion, both methods of dealing with traffic jams are consistent, and
delayed vehicles occur as soon as traffic jam formation begins. However, according
to method 1, a queued vehicle at position xi D Li � li is counted as delayed only
after an extra time period li =V 0

i , but it is counted as undelayed after the same extra
time period. This is because method 1 counts on the basis of vehicle arrivals at the
downstream end of road section i .

As it is much simpler to use the method 1 based on determining the number of
delayed vehicles than using method 2 based on determining the movement of shock
fronts, we will use method 1 in the following. More specifically, in (3) we will
replace lj .t/ < Lj by �Nj .t/ < Nmax

j WD Lj max and lj .t/ D Lj by �Nj .t/ D
Nmax
j . This corresponds to a situation in which the vehicles would not queue up

along the road section, but at the downstream end of the road section, like in a wide
parking lot or on top of each other. As long as road section j is not fully congested,
this difference does not matter significantly. If it is fully congested, the dynamics
will potentially be different, defining a modified model of material network flows.
However both, the original and the modified model fulfill the conservation equation
and show spillover effects.

2.2.4 Calculation of Cumulative and Maximum Individual Waiting Times

In [12], we have derived a delay differential equation to determine the travel time
Ti.t/ of a vehicle entering road section i at time t (see also [1, 2, 5]):

dTi.t/

dt
D Ai.t/

Oi .t C Ti.t//
� 1 : (30)

According to this, the travel time Ti .t/ increases with time, when the arrival rate Ai
at the time t of entry exceeds the departure rateOi at the leaving time tCTi .t/, while
it decreases when it is lower. It is remarkable that this formula does not explicitly
depend on the velocities on the road section, but only on the arrival and departure
rates.

Another method to determine the travel times is to integrate up over the number
of vehicles arriving in road section i ,

NA
i .t/ D

tZ

0

dt 0 Ai.t 0/ D N in
i .t C Li=V

0
i / ; (31)

and over the number of vehicles leaving it,

NO
i .t/ D

tZ

0

dt 0 Oi.t 0/ D N out
i .t/ ; (32)
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starting at time t D 0 when there are no vehicles in the road. If T 0
i .t/ denotes the

time at which NO
i .t C T 0

i .t// D NA
i .t/, then T 0

i .t/ is the travel time of a vehicle
entering road section i at time t and

Ti .t/ D T 0
i .t/ � Li=V

0
i (33)

is its waiting time.
Another interesting quantity is the cumulative waiting time T c

i .t/, which is
determined by integrating up over the number �Ni of all delayed vehicles. We
obtain

T c
i .t/ D

tZ

0

dt 0 �Ni.t 0/ D
tZ

0

dt 0 ŒN in
i .t

0 � Li=V
0
i /�N out

i .t 0/�

D
tZ

0

dt 0
t 0Z

0

dt 00 ŒAi .t 00 �Li=V 0
i /�Oi.t

00/� (34)

and the differential equation

dT c
i .t/

dt
D �Ni.t/ D

tZ

0

dt 0 ŒAi .t 0 � Li=V
0
i / �Oi.t 0/� : (35)

For a constant arrival flow Ai and a red traffic light from t D 0 to t D t0 (i.e.
Oi.t/ D 0), we find

T c
i D Ai t

2

2
: (36)

In this time period, a number of Ni.t/ D Ait vehicles accumulates, which gives an
average waiting time of

T c
i .t0/

�N.t0/
D t0

2
(37)

at the end of the red light. The first vehicle has to wait twice as long, namely, a time
period t0.

3 Treatment of Merging, Diverging and Intersection Points

While the last section has given general formulas that must be fulfilled at nodes
connecting two or more different links, in the following we will give some concrete
examples, how to deal with standard elements of street networks. For previous
treatments of traffic flows at intersections see, for example, [7, 9, 24, 26].
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Fig. 1 Schematic illustration
of the (a) diverging,
(b) merging, and (c)
intersecting flows discussed
in this paper

3.1 Diverging Flows: One Inflow and Several Outflows

In the case of one road section i diverging into several road sections j (see
Fig. 1a), (10) and (5) to (7) imply

Oi.t/ � min

�
�i.t/max

�
bQi�.�Ni > 0/; Ai



t � Li

V 0
i

�	
;

min
j

"
I 0
j

Ii˛ij
max

�bQj�.lj < Lj /;Oj .t �Lj =c/
�#)

(38)

for all i . If we assume that downstream road sections are never completely
congested, this simplifies to

Oi.t/ D min
n
Qi; �i max

hbQi�.�Ni > 0/; Ai
�
t �Li=V 0

i

�io
(39)

with

Qi D min
j

 
I 0
j
bQj

Ii˛ij

!
: (40)

Otherwise

Qi.t/ D min
j

"
max

 
I 0
j
bQj

Ii˛ij
�.lj < Lj /;

I 0
jOj .t � Lj

c
/

Ii˛ij

!#
: (41)

3.2 Merging Flows: Two Inflows and One Outflow

We assume a flow I1O1.t/ that splits into two flows I1O1.t/˛11 (going straight)
and I1O1.t/˛12 (turning right), but a right-turning flow I2O2.t/ merging with flow
I1O1.t/˛11, as in turn-right-on-red setups (see Fig. 1b). For this situation, we have
the equations

I 0
1A

0
1.t/ D I1O1.t/˛11 C I2O2.t/ � I 0

1
bA0
1.t/ ; (42)

I 0
2A

0
2.t/ D I1O1.t/˛12 � I 0

2
bA0
2.t/ : (43)
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One can derive

0 � O1 D min
hbO1.t/;

I 0
1
bA0
1.t/ � I2O2.t/

I1˛11
;
I 0
2
bA0
2.t/

I1˛12

i
(44)

and

0 � O2 D min
hbO2.t/;

I 0
1
bA0
1.t/ � I1O1.t/˛11

I2

i
: (45)

Let us set

O1 D min
hbO1;

I 0
1
bA0
1.t/

I1˛11
;
I 0
2
bA0
2.t/

I1˛12

i
(46)

and

O2.O1/ D min
hbO2.t/;

I 0
1
bA0
1.t/ � I1O1˛11

I2

i
: (47)

Then, it can be shown that O2.t/ � 0 andO1.t/ � ŒI 0
1
bA0
1.t/ � I2O2.t/�=.I1˛11/, as

demanded. If O1.t/ is chosen a value �O1 smaller than specified in (46), but O2 is
still set to the maximum related valueO2.O1 ��O1/ according to (47), the overall
flow

F D I1O1 C I2O2 (48)

is reduced as long as ˛11 < 1, since this goes along with additional turning flows
(while the number of lanes does not matter!). Therefore, it is optimal to give priority
to the outflowO1.t/ according to (46) and to add as much outflowO2.t/ as capacity
allows. This requires suitable flow control measures, otherwise the optimum value
of the overall flow F could not be reached. In fact, the merging flow would “steel”
some of the capacity reserved for the “main” flow (i D 1), which would reduce the
possible outflow O1.t/ and potentially cause a breakdown of free traffic flow, as it
is known from on-ramp areas of freeways [32] .

3.3 A Side Road Merging with a Main Road

Compared to the last section, the situation simplifies, if we have just a side road or
secondary turning flow merging with a the flow of a main road without any turning
flow away from the main road. In this case, we have ˛11 D 1 and ˛12 D 0, which
leaves us with the relationships

O1 D min
hbO1;

I 0
1
bA0
1.t/

I1

i
(49)

and

O2.O1/ D min
hbO2.t/;

I 0
1
bA0
1.t/ � I1O1
I2

i
: (50)

according to (46) and (47).
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Fig. 2 Three examples for
intersection-free designs of
urban road networks

3.4 Intersection-Free Designs of Road Networks

With the formulas for the treatment of merges and diverges in the previous sections,
it is already possible to simulate intersection-free designs of urban road networks,
which do not need any traffic light control. The most well-known design of
intersection-free nodes are roundabouts (see the upper left illustration in Fig. 2).
It is, however, also possible to construct other intersection-free designs based on
subsequent merges and diverges of flows with different destinations. Two examples
are presented in Fig. 2b, c.

Although intersection-free designs require the driver to take small detours, such
a road network will normally save travel time and fuel, given that the traffic volume
is not too low. This is because intersections then need to be signalized in order to
be safe and efficient.2 Traffic signals, however, imply that vehicles will often be
stopped for considerable time intervals. This causes significant delays, at least for
vehicles not being served by a green wave. Intersection-free designs, in contrast, do
not necessarily require vehicles to stop. Therefore, the average speeds are expected
to be higher and the travel times lower than for road networks with intersections.
This has significant implications for urban transport planning, if intersections cannot
be avoided by bridges or tunnels.

2Of course, a first-come-first-serve or right-before-left rule will be sufficient at small traffic
volumes.
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3.5 Two Inflows and Two Outflows

The treatment of intersecting flows is more complicated than the treatment of merges
and diverges. Moreover, the resulting flows are only uniquely defined, if additional
rules are introduced such as the optimization of the overall flow. Let us here treat the
case of an intersection with two inflows and two outflows (see Fig. 1c). Equation (5)
implies the inequalities

0 � I 0
1A

0
1.t/ D I1O1.t/˛11 C I2O2.t/˛21 � I 0

1
bA0
1.t/ ;

0 � I 0
2A

0
2.t/ D I1O1.t/˛12 C I2O2.t/˛22 � I 0

2
bA0
2.t/ (51)

with the constraints

0 � O1.t/ � bO1.t/ ;

0 � O2.t/ � bO2.t/ ; (52)

so that I 0
jA

0
j .t/ � 0 is automatically fulfilled. The constraints (52) define an

rectangular area of possible Oi -values in the O1-O2 plane, where the size of the
rectangle varies due to the time-dependence of bOi.t/. The inequalities (51) can be
rewritten as

O2.t/ � I 0
1
bA1.t/ � I1O1.t/˛11

I2˛21
DW a1 � b1O1.t/ ; (53)

and

O2.t/ � I 0
2
bA2.t/ � I1O1.t/˛12

I2˛22
DW a2 � b2O1.t/ : (54)

They potentially cut away parts of this rectangle, and the remaining part defines the
convex set of feasible points .O1;O2/ at time t . We are interested to identify the
“optimal” solution .O	

1 ; O
	
2 /, which maximizes the overall flow

X
j

I 0
jA

0
j .t/ D

X
i

IiOi .t/ : (55)

As this defines a linear optimization problem, the optimal solution corresponds to
one of the corners of the convex set of feasible points, namely the one which is
touched first by the line

O2 D Z � I1O1
I2

; (56)

when we reduce Z from high to low values.
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Fig. 3 Illustration of the
possible optimal solutions for
two intersecting flows (see
text for details)

Let us, therefore, determine all possible corners of the convex set and the
conditions, under which they correspond to the optimal solution. We will distinguish
the following cases:

(a) None of the boundary lines (53) and (54) corresponding to the equality signs
cuts the rectangle defined by 0 � O1.t/ � bO1.t/ and 0 � O2.t/ � bO2.t/ in
more than 1 point. This case applies, if a1 � b1bO1 � bO2 and a2 � b2bO1 � bO2,
as ai � 0 and bi � 0 implies that both lines are falling or at least not increasing.
Since the line (56) reflecting the goal function is falling as well, the optimal
point is

.O	
1 ; O

	
2 / D .bO1; bO2/ ; (57)

i.e. the outer corner of the rectangle corresponding to the potential or maximum
possible departure flows (see Fig. 3).

(b) Only one of the two boundary lines/border lines, O2.t/ D a1 � b1O1.t/ or
O2.t/ D a2 � b2O1.t/, cuts the rectangle in more than one point. Let us assume,
this holds for line i , i.e. ai � bibO1 < bO2. Then, the left cutting point

.Oi l
1 ; O

i l
2 / D

( �
.ai � bO2/=bi ; bO2

�
if ai > bO2 ;

.0; ai / otherwise
(58)

is the optimal point if I1=I2 < bi , i.e. if the slope I1=I2 of the goal function (56)
is smaller than the one of the cutting border line. Otherwise, if I1=I2 > bi , the
optimal point is given by the right cutting point

.Oi r
1 ; O

i r
2 / D

�
.bO1; ai � bibO1/ if ai > bibO1 ;

.ai=bi ; 0/ otherwise
(59)

(see Fig. 3).
(c) If both border lines cut through the rectangle, but one of them lies above the

other line, then only the lower line determines the optimal solution, which can
be obtained as in case (b). Case (c) occurs if a2 � b2O

1l
1 > a1 � b1O

1l
1 and

a2 � b2O1r
1 > a1 � b1O1r

1 (line 1 is the lower one) or if a2 � b2O1l
1 < a1 � b1O1l

1

and a2 � b2O
1r
1 < a1 � b1O1r

1 (line 2 is the lower one).
(d) The boundary lines cut each other in the inner part of the rectangle. This occurs

if a1 � b1bO1 < bO2 and a2 � b2bO1 < bO2. Then, the left-most cutting point
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.Oi l
1 ; O

i l
2 / is the optimal solution, if the slope I1=I2 of the goal function is smaller

than the smallest slope of the two boundary lines, while it is the lower right
cutting point .Oi r

1 ; O
i r
2 /, if I1=I2 is greater than the steepest slope of the two

boundary lines, otherwise, the cutting point of the two boundary lines,

.O 0
1; O

0
2/ D



a2 � a1

b2 � b1
;
a1b2 � b1a2
b2 � b1

�
(60)

is the optimal point (see Fig. 3). Mathematically speaking, we have

.O	
1 ; O

	
2 / D

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

.O1l
1 ; O

1l
2 / if I1=I2 < b1 < b2;

.O 0
1; O

0
2/ if b1 < I1=I2 < b2;

.O2r
1 ; O

2r
2 / if b1 < b2 < I1=I2;

.O2l
1 ; O

2l
2 / if I1=I2 < b2 < b1;

.O 0
1; O

0
2/ if b2 < I1=I2 < b1;

.O1r
1 ; O

1r
2 / if b2 < b1 < I1=I2;

(61)

It is astonishing that the simple problem of two intersecting traffic flows has
so many different optimal solutions, which sensitively depend on the parameter
values. This can reach from situations where both outgoing road sections experience
the maximum possible outflows upto situations, where the outflow in the system-
optimal point becomes zero for one of the road sections. A transition from one
optimal solution to another one could easily be triggered by changes in the turning
fractions ˛ij entering the parameters ai and bi , for example due to time-dependent
turning fractions ˛ij .t/.

3.6 Inefficiencies Due to Coordination Problems

An interesting question is how to actually establish the flows corresponding to
the system optima that were determined in the previous sections on merging and
intersecting flows. Of course, zero flows can be enforced by a red traffic light, while
maximum possible flows can be established by a node design giving the right of
way to one road (the “main” road). However, it is not so easy to support an optimum
point corresponding to mixed flows, such as .O 0

1; O
0
2/. That would need quite tricky

intersection designs or the implementation of an intelligent transportation system
ensuring optimal gap usage, e.g. based on intervehicle communication. Only in
special cases, the task could be performed by a suitable traffic light control.

In normal merging or intersection situations, there will always be coordination
problems [19] when entering or crossing another flow, if the traffic volumes reach a
certain level. This will cause inefficiencies in the usage of available road capacity,
i.e. mixed flows will not be able to use the full capacity. Such effects can be
modelled by specifying the corresponding permeabilities �i .t/ as a function of
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the merging flows, particularly the main flow or crossing flow. The deviation of
�i.t/ from 1 will then be a measure for the inefficiency. A particularly simple,
phenomenological specification would be

�2.t/ D 1

1C aeb.O1�O2/
; (62)

where the own outflowO2 supports a high permeability and the intersecting outflow
O1 suppresses it. However, rather than using such a phenomenological approach, the
permeability could also be calculated analytically, based on a model of gap statistics,
since large enough vehicle gaps are needed to join or cross a flow. Such kinds of
calculations have been carried out in [18, 28, 33, 34].

4 Towards a Self-Organized Traffic Light Control

In [16], it has been pointed out that, for not too small arrival flows, an oscillatory
service at intersections reaches higher intersection capacities and potentially shorter
waiting times than a first-in-first-out service of arriving vehicles. This is due to
the fact that the outflow of queued vehicles is more efficient than waiting for the
arrival of other freely flowing vehicles, which have larger time gaps. For similar
reasons, pedestrians are passing a bottleneck in an oscillatory way [14], and also
two intersecting flows tend to organize themselves in an oscillatory way [17, 18].

Therefore, using traffic lights at intersections is natural and useful, if operated in
the right way. However, how to switch the traffic lights optimally? While this is a
solvable problem for single traffic lights, the optimal coordination of many traffic
lights [29] is a really hard (actually NP hard) problem [8]. Rather than solving a
combinatorial optimization problem, here, we want to suggest a novel approach,
which needs further elaboration in the future. The idea is to let the network flows
self-organize themselves, based on suitable equations for the permeabilities �i .t/ as
a function of the outflows Oi.t/ and the numbers�Ni.t/ of delayed vehicles.

Here, we will study the specification

�1.t/ D 1

1C aeb.O2�O1/�cD
(63)

and

�2.t/ D 1

1C aeb.O1�O2/CcD
; (64)

which generalizes formula (62). While the relative queue length

D.t/ D �N1.t/ ��N2.t/ (65)

quantifies the pressure to increase the permeability �1 for road Sect. 1, the outflow
O2.t/ from the road Sect. 2 resists this tendency, while the flowO1.t/ on road Sect. 1
supports the permeability. The increasing pressure eventually changes the resistance
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Fig. 4 Illustration of the dynamics of self-organized oscillations in the permeabilities and the
resulting flows for a single intersection with constant inflows (see text for details). Note that the
road section with the higher inflow (arrival rate) is served longer, and its queues are shorter (see
solid lines)

threshold and the service priority. An analogous situation applies to the permeability
�2 for road Sect. 2, where the pressure corresponds to �D, which is again the
difference in queue length. a, b, and c are non-negative parameters. a may be set
to 1, while c must be large enough to establish a sharp switching. Here, we have
assumed c D 100. The parameter b allows to influence the switching frequency f ,
which is approximately proportional to b. We have adjusted the frequency f to the
cycle time

T cyc D 2�

1 � .A1 C A2/=bQ ; (66)

which results if the switching (setup) time (“yellow traffic light”) is � D 5s and a
green light is terminated immediately after a queue has dissolved after lifting the
red light.3 The corresponding parameter value is

b D 500

bQ � .A1 C A2/
: (67)

Figure 4 shows a simulation result for A1=bQ D 0:3 and A2=bQ D 0:4. The
properties of the corresponding specification of the permeabilities �i.t/ are as
follows:

• �i .t/ is non-negative and does not exceed the value 1.
• For the sum of permeabilities and a � 1, we have

3If �T1 and �T2 denote the green time periods for the intersecting flows 1 and 2, respectively,
the corresponding red time periods for a periodic signal control are �T2 and �T1, to which the
switching setup time of duration � must be added. From formula (23) and with Oi D bQ we
obtain �T1 D .�T2 C �/bQ=.bQ �A1/ and �T2 D .�T1 C �/bQ=.bQ �A2/. Using the definition
T cyc D �T1 C � C�T2 C � for the cycle time, we finally arrive at (66).
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�1 C �2 D 2C a.eE C e�E/
1C a2 C a.eE C e�E/

� 1 ; (68)

where we have introduced the abbreviation

E D b.O1 �O2/C c.�N1 ��N2/ : (69)

The sum is close to 1 for large absolute values of E , while for E  0 the overall
permeability �1 C �2 is small.

• For large enough values of ab and for c; A1; A2 > 0, the equations for the
permeability do not have a stable stationary solution. This can be concluded from

dE

dt
D b



dO1

dt
� O2

dt

�
C c



d�N1

dt
� d�N2

dt

�
(70)

together with
d�Ni

dt
D Ai �Oi.t/ (71)

and
Oi.t/ D �i.t/maxŒbQ�.�Ni > 0/; Ai � ; (72)

see (14) and (6). As dD=dt D d�N1=dt � d�N2=dt varies around zero, the
same applies to D.t/, which leads to oscillations of the permeabilities �i .t/.

• With the specification (67) of parameter b, the cycle time is approximately
proportional to the overall inflow .A1 C A2/.

• The road section with the higher flow gets a longer green time period (see Fig. 4).

If the above self-organized traffic flows shall be transfered to a new principle of
traffic light control, phases with �i.t/  1 could be interpreted as green phases
and phases with �i .t/  0 as red phases. Inefficient, intermediate switching time
periods for certain choices of parameter values could be translated into periods of a
yellow traffic light.

5 Summary and Outlook

We have presented a simple model for conserved flows in networks. Although our
specification has been illustrated for traffic flows in urban areas, similar models are
useful for logistic and production system or even transport in biological cells or
bodies. Our model considers propagation speeds of entities and congestion fronts,
spill-over effects, and load-dependent transportation times.

We have also formulated constraints for network nodes. These constraints
contain several minimum and maximum functions, which implies a multitude of
possible cases even for relatively simple intersections. It turns out that the arrival
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and departure flows of diverges have uniquely defined values, while merges or
intersections have a set of feasible solutions. This means, the actual result may
sensitively depend on the intersection design. For mathematical reasons, we have
determined flow-optimizing solutions for two merging and two intersecting flows.
However, it is questionable whether these solutions can be established in reality
without the implementation of intelligent transport systems facilitating optimal gap
usage: In many situations, coordination problems between vehicles in merging or
intersection areas cause inefficiencies, which reduce their permeability.

In fact, at not too small traffic volumes, it is better to have an oscillation between
minimum and maximum permeability values. Therefore, we have been looking
for a mechanism producing emergent oscillations between high and low values.
According to our proposed specification (which is certainly only one of many
possible ones), the transition between high and low permeability was triggered,
when the difference between the queue lengths of two traffic flows competing
for the intersection capacity exceeded a certain value. The resulting oscillatory
service could be used to define traffic phases. One potential advantage of such an
approach would be that the corresponding traffic light control would be based on
the self-organized dynamics of the system. Further work in this direction seems
very promising.
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Operation Regimes and Slower-is-Faster-Effect
in the Control of Traffic Intersections�

Dirk Helbing and Amin Mazloumian

Abstract The efficiency of traffic flows in urban areas is known to crucially
depend on signal operation. Here, elements of signal control are discussed, based
on the minimization of overall travel times or vehicle queues. Interestingly, we find
different operation regimes, some of which involve a “slower-is-faster effect”, where
a delayed switching reduces the average travel times. These operation regimes
characterize different ways of organizing traffic flows in urban road networks.
Besides the optimize-one-phase approach, we discuss the procedure and advantages
of optimizing multiple phases as well. To improve the service of vehicle platoons
and support the self-organization of “green waves”, it is proposed to consider the
price of stopping newly arriving vehicles.

1 Introduction

The study of urban traffic flows has attracted the interest of physicists for quite a
while (see, e.g., [3, 9, 36, 45]). This includes the issue of traffic light control and the
resulting dynamics of vehicle flows [5,7,12,15,37,41,49]. Theoretical investigations
in this direction have primarily focussed on single intersections and grid-like street
networks, e.g. adaptive control [1, 13, 14] of a single traffic light or coordination of
traffic lights in Manhattan-like road networks with unidirectional roads and periodic
boundary conditions. Some of the fascination for traffic light control is due to the
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relationship with the synchronization of oscillators [10, 29, 34] and other concepts
of self-organization [16, 17, 24, 25, 28, 33, 38, 44].

The efficiency of traffic light control is essential to avoid or at least delay the
collapse of traffic flows in traffic networks, particularly in urban areas. It is also
crucial for attempts to reduce the fuel consumption and CO2 emissions of vehicles.
Both, delay times and acceleration maneuvers (i.e. the number of stops faced by
vehicles)1 cause additional fuel consumption and additional CO2 emissions [32].
Within the USA alone, the cost of congestion per year is estimated to be 63.1 billion
US$, related with 3.7 billion hours of delays and 8.7 billion liters of “wasted” fuel
[43]. Climate change and political goals to reduce CO2 emissions force us to rethink
the design and operation of traffic systems, which contributes about one third to
the energy consumption of industrialized countries. On freeways, traffic flows may
eventually be improved by automated, locally coordinated driving, based on new
sensor technologies and intervehicle communication [31, 42].

But what are options for urban areas? There, traffic lights are used to resolve
conflicts of intersecting traffic streams. In this way, they avoid accidents and
improve the throughput at moderate or high traffic volumes. For a discussion of
the related traffic engineering literature, including the discussion of traffic light
coordination and adaptive signal control, see [25, 33] and references therein. In
the following, we will focus our attention on some surprising aspects of traffic
flow optimization.

1.1 Paradoxical Behavior of Transport Systems

Besides Braess’ paradox (which is related to selfish routing) [4, 40, 48], the slower-
is-faster effect is another counter-intuitive effect that seems to occur in many
transport networks. It has been found for pedestrian crowds, where a rush of people
may delay evacuation [22].

Slower-is-faster effects have fascinated scientists for a long time. Smeed [46],
for example, discussed “some circumstances in which vehicles will reach their des-
tinations earlier by starting later”, but Ben-Akiva and de Palma [2] showed that this
effect disappeared under realistic assumptions. Moreover, it is known from queuing
theory that idle time can decrease the work in process (i.e. basically the queue
length) in cyclically operated production systems under certain circumstances,
particularly when the variance in the setup times is large [8]. These circumstances,
however, do not seem to be very relevant for traffic light control. Nevertheless, there
are many examples of slower-is-faster effects in traffic, production, and logistic
systems, and it has been suggested that the phenomenon is widespread in networked
systems with conflicting flows that are competing for prioritization [21, 27].

1For formulas to estimate these quantities as a function of the utilization of the service capacity of
roads see [20].
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While there are numerical algorithms to exploit this effect systematically to improve
the performance of these systems [21], there have been only a few analytical
studies of the slower-is-faster effect [23, 26, 47]. Therefore, we will put a particular
focus on the study of conditions leading to this counterintuitive, but practically
relevant effect.

Our paper is structured as follows: While Sect. 2 specifies the traffic system
investigated in this paper, Sect. 3 discusses the throughput of intersections. Section 4
continues with the problem of minimizing travel times, while Sect. 4.5 discusses the
minimization of queue lengths. The challenge in these sections is to come up with
a concept that still leads to reasonably simple formulas, allowing one to study the
behavior of the proposed signal control analytically. A successful approach in this
respect is the “optimize-one-phase approach”, which seems justified by the short
intervals, over which traffic flows can be anticipated reliably. Among the operation
regimes resulting from the optimization process are also some with extended
green times, corresponding to a “slower-is-faster effect” (see Sect. 4.4). A further
improvement of signal operation is reached by applying multi-phase optimization,
when flow constraints are taken into account. As Sect. 5 shows, this approach leads
to a variety of plausible operation regimes. A summary and discussion is presented
in Sect. 6. Complementary, Appendix 1 will discuss the “price” of stopping vehicles,
which is an interesting concept to support moving vehicle platoons (and, thereby, the
self-organization of “green waves”). For a more sophisticated, but analytically less
accessible approach to the self-organization of coordinated traffic lights and vehicle
streams in road networks see [21, 33, 35].

2 Specification of the Traffic System Under Consideration

In this paper, we will first focus on the study of a single traffic intersection with
uniform arrival flows, before we discuss later how to extend our control concept
in various ways. Furthermore, for simplicity we will concentrate on the study of a
traffic light control with two green phases only, which is generalized in Appendix
2. As the traffic organization in parts of Barcelona shows, a two-phase control
is sufficient, in principle, to reach all points in the road network: Just assume
unidirectional flows in all streets with alternating directions. Then, in each phase,
traffic either flows straight ahead and/or turns (right or left, depending on the driving
direction in the crossing road). Hence, two intersecting unidirectional roads imply
two possible traffic phases, which alternate (see Fig. 1).

While the optimization approach discussed in the following can be also applied to
time-dependent arrival flows A1 and A2 per lane, when numerical solution methods
are applied, for the sake of analytical tractability and closed formulas we will
focus here on the case of constant flows over the short time periods involved
in our optimization. Ij will represent the number of lanes of road section j ,
and it will be assumed that vehicles passing a green light can freely enter the
respective downstream road section. Analogously to [18,20,28], the departure flows
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Fig. 1 Top: Schematic
illustration of the
unidirectional street layout in
the center of Barcelona.
Center and bottom:
illustration of the two traffic
phases, during which vehicles
can move straight ahead or
turn (either right or left,
depending on the direction of
the crossing road)
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�j .t/Oj .t/ (as long as the traffic flows are not obstructed by the downstream traffic
conditions) are given by the possible outflows Oj .t/ (which vary with time t),
multiplied with the permeabilities �j .t/. The latter reflect the states of the traffic
lights. During amber and red time periods, the permeabilities �j .t/ are zero, as there
is no outflow, while �j .t/ D 1 during green phases. Note that the departure flows
�j .t/Oj .t/ may split up into a straight and a turning flow after the traffic light, but
for our further considerations, this is not relevant. The possible outflows Oj .t/ are
determined by the equation

Oj .t/ D
( bQj if�Nj.t/ > 0;
Aj .t � T 0

j / otherwise.
(1)

Herein, bQj is the service rate per lane during the green phase as long as there is
a finite number �Nj .t/ > 0 of delayed vehicles behind the traffic light (i.e. bQj

corresponds to the characteristic outflow from congested traffic). Aj .t/ represents
the time-dependent arrival rate of vehicles per lane and Aj .t � T 0

j / the rate of
vehicles arriving at the traffic light under free flow conditions, where T 0

j denotes
the free travel time needed to pass road section j . In case of constant arrival rates
Aj , the dependence on the time point t and the delay by the free travel time T 0

j can
be dropped.

In the following, we will use some additional variables and parameters: Tj shall
denote the minimum green time, after which the vehicle queue in road section j is
fully dissolved (i.e. after which �Nj D 0 and Oj D Aj ). In contrast, �Tj will
stand for the actual green time period. Consequently,

�tj D �Tj � Tj (2)

(if greater than zero) represents the excess green time, during which we have a free
vehicle flow with �j .t/Oj .t/ D Aj . �j shall be the setup time before the green
phase �Tj for road section j . For illustrative reasons, it is also called the “amber
time (period)”, although it is usually somewhat longer than that. The sum

Tcyc D �1 C�T1 C �2 C�T2 (3)

is normally called the cycle time. Note, however, that we do not need to assume
periodic operation. Within the framework of our model assumptions, we may
consider stepwise constant flows. That is, the arrival flows may vary from one cycle
(or even one green time period) to the next. Under such conditions, each green phase
is adjusted to the changing traffic situation.

Finally note that we do not consider pedestrian flows in this paper. In order to
take them into account, one would have to consider additional traffic phases for
the service of pedestrians. Alternatively, one could select the setup times �j for
vehicles so large that they cover the amber time for vehicles plus a sufficient time
for pedestrians to cross the road.
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3 Consideration of Traffic Flows

The art of traffic control is to manipulate the permeabilities �j .t/ in a way that
optimizes a given goal function. In fact, when the traffic volume is high enough,
an oscillatory service corresponding to the operation of a traffic light can increase
the effective intersection capacity as compared to the application of a first-come-
first-serve rule for arriving vehicles [25, 28]: While the red and amber lights
(corresponding to �j .t/ D 0) cause vehicles to queue up and wait, this implies
a high flow rate and an efficient service of vehicles when the traffic light turns
green s(i.e. �j .t/ D 1).

One natural concept of traffic flow optimization would be to maximize the
average overall throughput. This is measured by the function

Gt.t/ D 1

t

X
j

tZ

0

dt 0 �j .t 0/Oj .t 0/ : (4)

Due to (1), Gt.t/ depends not only on the outflows Oj .t/, but also on the inflows
Aj .t/ to the system. This makes Gt.t/ basically dependent on the time-dependent
origin-destination matrices of vehicle flows.

The numbers of vehicles accumulating during the red and amber time periods are

I1�N
max
1 D I1A1.�2 C�T2 C �1/ (5)

and
I2�N

max
2 D I2A2.�1 C�T1 C �2/ ; (6)

where�Nmax
j represents the maximum number of delayed vehicles per lane in road

section j , if the vehicle queue in it has been fully cleared before. Ij is the number
of lanes. As the service rate of queued vehicles during the green time �Tj is bQj ,
andAj is the arrival rate of additional vehicles at the end of the queue, the minimum
green time required to dissolve the queue is given by

Tj D �Nmax
j

bQj � Aj
: (7)

From (5) to (7) we obtain

T1 D A1

bQ1 � A1



�2 C�T2 C �1

�
: (8)

Assuming�Tj D Tj (i.e. no excess green times) and inserting (7) yields
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T1 D A1

bQ1 � A1



�2 C A2.�1 C T1 C �2/

bQ2 �A2
C �1

�
(9)

for the clearing time T1, or

T1 D .�1 C �2/

A1bQ1�A1

�
1C A2bQ2�A2

�

1 � A1A2

.bQ1�A1/.bQ2�A2/
: (10)

With the analogous formula for T2 we can determine the related cycle time, if the
traffic light turns red immediately when all queued vehicles have been served. After
a few intermediate mathematical steps, we finally get

T cyc D �1 C T1 C �2 C T2 D �1 C �2

1 � A1=bQ1 � A2=bQ2

: (11)

Moreover, one can show [20]

Tj D Aj

bQj

T cyc : (12)

We can see that the cycle time and the clearing times Tj diverge in the limit

A1

bQ1

C A2

bQ2

! 1 : (13)

If this expression (11) becomes negative, the vehicle queues in one or both ingoing
road sections are growing larger and larger in time, as the intersection does not have
enough capacity to serve both arrival flows. See [20] for a discussion of this case.

Note that (11) determines the smallest cycle time that allows to serve all queued
vehicles within the green time periods. Let us study now the effect of extending the
green time periods �Tj beyond Tj : The average throughput of the intersection is
given by the overall flow of vehicles during one cycle time Tcyc D �1 C �T1 C
�2 C �T2. During that time period, a total number .I1A1 C I2A2/Tcyc of vehicles
is arriving in the two considered road sections. If all arriving vehicles are served
during the cycle time Tcyc, the average throughput is

Gt D .I1A1 C I2A2/Tcyc

T cyc
D I1A1 C I2A2 : (14)

Therefore, in the case where we do not have an accumulation of vehicles over
time, which requires sufficient green times (�Tj > Tj ) and a sufficient resulting
service capacity
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I1bQ1 �T1 C I2bQ2 �T2

Tcyc
� I1A1 C I2A2 ; (15)

the throughput is determined by the sum I1A1 C I2A2 of the overall arrival flows.
Consequently, excess green times �tj D �Tj � Tj > 0 do not lead to smaller or
larger intersection throughputs. But under what conditions should a green phase be
extended, if at all? This shall be addressed in the next sections.

4 Travel-Time-Oriented Signal Operation

Rather than on a consideration of the flow, we will now focus on the cumulative
waiting time

F.t/ D
X
j

Ij

tZ

0

dt 0
t 0Z

0

dt 00ŒAj � �j .t
00/Oj .t 00/� (16)

and minimize its average growth over a time period t to be defined later. This
corresponds to a minimization of the function

G.t/ D 1

t

X
j

Ij

tZ

0

dt 0�Nj .t 0/

D 1

t

X
j

Ij

tZ

0

dt 0
t 0Z

0

dt 00ŒAj � �j .t 00/Oj .t 00/� ; (17)

which quantifies the time average of the overall delay time. The term on the right-
hand side describes the increase of the overall waiting time proportionally to the
number �Nj of delayed cars, which is given by the integral over the difference
between the arrival and departure flows [20, 28].

Note that the formula (17) makes an implicit simplification by assuming that
delays occur only in the vehicle queues behind traffic lights, while no delays
accumulate under uncongested flow conditions. This assumes a triangular flow-
density diagram, which, however, seems to be sufficiently justified for urban traffic
flows [18, 28]. Moreover, while approaching a vehicle queue, it usually does not
matter, when vehicles travel more slowly than the speed limit allows: If they would
travel faster, they would be queued earlier, i.e. the delay would stay the same. In
other words, most of the time it is irrelevant, whether vehicles lose their time in the
vehicle queue or by decelerating before.
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4.1 The Optimize-One-Phase Approach

When minimizing the goal function G.t/, it is essential upto what time t we
extend the integral. In principle, it is possible to integrate over a full cycle or
even many cycles of traffic operation, but the resulting formulas do not provide
an intuitive understanding anymore. We will, therefore, focus on the optimization
of a single phase, with full amber time periods �j in the beginning and �jC1 at
the end. This turns out to result in explicit and plausible formulas, while some
other approaches we have tried, did not result in well interpretable results. Besides
this practical aspect, when analytical results shall be obtained, the specification
t D �1C�Tj C�2 chosen in the following makes sense: It “charges” the switching-
related inefficiencies to the road that “wants” to be served. The switching of a traffic
light should lead to a temporary increase in traffic performance. After completion of
each green phase, the travel time optimization is repeated, so that one can compose
the traffic light schedule as a sequence of optimized single phases (see Appendix 2
for details).

In Sect. 5, we will show that a multi-phase optimization yields better results,
but requires a higher degree of sophistication. The treatment of situations with
varying or pulsed traffic flows is even more difficult and can usually be solved only
numerically. This issue is addressed in [33].

In our calculations, we will assume that the green time for road Sect. 2 lasted for
a time period �T2 and ended at time t D 0. That is, we have now to determine the
optimal duration�T1 of the green phase for road Sect. 1 after an intermediate amber
time period �1. For this, we minimize the function

G1.�1 C�T1 C �2/ D F1.�1 C�T1 C �2/

�1 C�T1 C �2
; (18)

where the subscript “1” of G and F refers to road Sect. 1, for which the green
phase is determined. Assuming a step-wise constant outflow with �jOj DbQj ,
if �Nj > 0, but �jOj DAj , if �Nj D 0, and �jOj D 0, if �j D 0, the integral
over t 00 results in a stepwise linear function, and the function F1.t/ is characterized
by quadradic dependencies. We will distinguish two cases: (a) The green time is
potentially terminated before all queued vehicles have been served (i.e. �Ti � Ti ),
or (b) it is potentially extended (i.e. �Ti � Ti ). Let us start with the first case.

(a) No excess green time (�T1 � T1): In this case, A2.t 00/ � �2.t
00/O2.t 00/ D A2

for 0 � t 00 � �1 C�T1 C �2, i.e. over the period�T1 of the green time for road
Sect. 1 and the amber time periods �j and �jC1 before and after it. In addition,

A1 � �1.t 00/O1.t 00/ D
8<
:
A1 if 0 � t 00 < �1;
A1 � bQ1 if �1 � t 00 < �1 C�T1;

A1 otherwise.
(19)
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Using the abbreviation

�Nmax
1 D �N1.�1/ D �N1.0/C A1�1 ; (20)

we get

F a
1 .�1 C�T1 C �2/ D I1

�
�N1.0/�1 C A1

�1
2

2

C�Nmax
1 �T1 � .bQ1 � A1/

�T1
2

2

CŒ�Nmax
1 � .bQ1 � A1/�T1��2 CA1

�2
2

2

�

CI2
�
�N2.0/.�1 C�T1 C �2/CA2 .�1 C�T1 C �2/

2

2

	

D I1

�
�N1.0/.�1 C�T1 C �2/C A1

2
.�1 C�T1 C �2/

2

�
bQ1

2
�T1.�T1 C 2�2/

	

CI2
�
�N2.0/.�1 C�T1 C �2/CA2 .�1 C�T1 C �2/

2

2

	
;

(21)

where the superscript “a” refers to case (a). Dividing the above function by
.�1 C�T1 C �2/ and making the plausible assumption �1 D �2 of equal amber
time periods for simplicity, we gain

Ga
1.�1 C�T1 C �2/ D I1

�
�N1.0/C bQ1�2

�.bQ1 �A1/�1 C�T1 C �2

2

	

CI2
�
�N2.0/CA2 �1 C�T1 C �2

2

	
: (22)

If I1.bQ1 � A1/ < I2A2, i.e. when the number of queued vehicles in road
section2 grows faster than it can be reduced in road Sect. 1, the minimum of
this function is reached for �T1 D 0, corresponding to a situation where it is
not favorable to turn green for section j D 1. For

I1.bQ1 � A1/ > I2A2 ; (23)



Operation Regimes and Slower-is-Faster-Effect in Traffic Control 367

the value of Ga
1 goes down with growing values of �T1, and the minimum is

reached for a value �T1 � T1.
(b) Potential green time extension (�T1 � T1): Let us assume that we (possibly)

have an excess green time, i.e. �ti D �Ti � Ti � 0. In this case,

A1 � �1.t
00/O1.t 00/ D

8̂
<̂
ˆ̂:

A1 if 0 � t 00 < �1;
A1 � bQ1 if�1 � t 00 < �1 C T1;

A1 if t 00 � �1 C�T1;

0 otherwise.

(24)

Considering that now, �N1.t 0/ D 0 for �1 C T1 � t 0 < �1 C �T1, and
introducing the clearing time

T1 D �Nmax
1bQ1 �A1

D �N1.0/C A1�1

bQ1 � A1
; (25)

we obtain

F b
1 .�1 C�T1 C �2/ D I1

�
�N1.0/�1 C A1

�1
2

2
C�Nmax

1 T1

�.bQ1 �A1/T1
2

2
C A1

�2
2

2

	

CI2
"
�N2.0/.�1 C�T1 C �2/C A2

.�1 C�T1 C �2/
2

2

#

D I1

"
�Nmax

1 �1 C A1

2
.�2

2 � �12/C .�Nmax
1 /2

2.bQ1 � A1/

#

CI2
"
�N2.0/.�1 C�T1 C �2/C A2

.�1 C�T1 C �2/
2

2

#

(26)

Assuming again �1 D �2 for simplicity, introducing the abbreviation

E1 D �Nmax
1 �1 C .�Nmax

1 /2

2.bQ1 � A1/
; (27)

and dividing (26) by .�1 C�T1 C �2/ yields

Gb
1 .�1 C�T1 C �2/ D I1E1

�1 C�T1 C �2

CI2
�
�N2.0/C A2

�1 C�T1 C �2

2

	
: (28)
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This expression shall be minimized under the constraint �T1 � T1. In order
to determine the minimum, we set the derivative with respect to �T1 to zero
and get

0 D dGb
1.�1 C�T1 C �2/

d �T1
D � I1E1

.�1 C�T1 C �2/2
C I2A2

2
: (29)

The minimum is located at

.�1 C�T1 C �2/
2 D 2I1E1

I2A2
; (30)

if �T1 � T1. Considering (25),�T1 � T1 implies

.�1 C�T1 C �2/
2 �

 
�1 C �Nmax

1bQ1 � A1
C �2

!2
: (31)

With (30) this leads to the condition

.�Nmax
1 /2

bQ1 � A1

 
I1

I2A2
� 1

bQ1 � A1

!

C2�Nmax
1

 
I1�1

I2A2
� �1 C �2

bQ1 � A1

!
� .�1 C �2/

2 : (32)

If inequality (32) is not fulfilled, we must have �T1 < T1.

For completeness, we note that

Ga
1.�1 C T1 C �2/ D Gb

1 .�1 C T1 C �2/ ; (33)

i.e. the goal function G1 is continuous in �T1 D T1, while it must not be smooth.
Moreover, �N1.0/ D A1.�2 C �T2/ and �N2.0/ D 0, if the vehicle queues have
been fully cleared before the traffic light is switched. The case where the queue is
not fully dissolved is treated in [20].

4.2 Transformation to Dimensionless Variables
and Parameters

For an analysis of the system behavior, it is useful to transform variables and
parameters to dimensionless units. Such dimensionless units are, for example, the
capacity utilizations
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ui D Ai

bQi

(34)

of the road sections i and the relative size

� D I1A1

I2A2
D I1u1bQ1

I2u2bQ2

D u1
u2
K (35)

of the arrival flows, where

K D I1bQ1

I2bQ2

: (36)

Furthermore, we may scale the green times �Ti by the sum of amber time periods
�1 C �2, which defines the dimensionless green times

�i D �Ti

�1 C �2
(37)

and the dimensionless clearing times

O�j D Tj

�1 C �2
D �Nmax

1

.1 � u1/bQi.�1 C �2/
: (38)

In order to express the previous relationships exclusively by these quantities, we
must consider that a number A1.�2 C �T2 C �1/ of vehicles per lane accumulates
during the time period .�2 C�T2 C �1/, in which the vehicle flow on road Sect. 1 is
not served. With (20) this implies

�Nmax
1 D �N1.0/C A1�1 D A1.�2 C�T2 C �1/ ; (39)

if the vehicle queue in road Sect. 1 has been fully cleared during the previous green
time. Then, we have

�Nmax
1

�1 C �2
D A1.1C �2/ ; (40)

and from (27) and (22) we get

2E1

.�1 C �2/2
D A1.1C �2/

2�1

�1 C �2
C .A1/

2.1C �2/
2

bQ1 �A1
: (41)

With A1 D u1bQ1 and �1 D �2, (30) belonging to the case of extended green time
for road Sect. 1 can be written as

.1C �1/
2 D Œ1C Q�1.�2/�2 D �

�
.1C �2/C u1

1 � u1
.1C �2/

2

	
: (42)
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The solution of this equation defines the relationship Q�1.�2/ for the optimal scaled
green time period �1 as a function of �2, if the green time for road Sect. 1 is
extended. Moreover, in dimensionless variables, the condition (32) for green time
extension becomes

u1
1 � u1

.1C �2/
2



� � u1

1 � u1

�
C .1C �2/



� � 2u1

1 � u1

�
� 1 (43)

or �
u1.1C �2/

2

1 � u1
C .1C �2/

	

� � u1

1 � u1

�
� 1C u1�2

1 � u1
: (44)

However, we can check for green time extension also in a different way, since the
extension condition�T1 > T1 can be written as Q�1 > O�1. Using (25), (38) and (39),
the dimensionless green time �1 for the case of no green time extension may be
presented as

�1 D O�1.�2/ D A1.1C �2/

bQ1 �A1
D u1.1C �2/

1 � u1
(45)

or

1C �1 D 1C u1�2
1 � u1

: (46)

Moreover, from �1 D O�1.�2/ follows

�1

1C �1 C �2
D u1.1C �2/

.1 � u1/
h
1C u1

1�u1
.1C �2/C �2

i D u1 : (47)

That is, in the case where road Sect. 1 is completely cleared, but there is no green
time extension, the green time fraction

�T1

Tcyc
D �1

1C �1 C �2
(48)

agrees with the utilization u1. Moreover, one can show

@

@�1



�1

1C �1 C �2

�
D 1C �2

.1C �1 C �2/2
> 0 : (49)

Therefore, �1 > O�1 implies a green time fraction greater than u1, and we have excess
green time for road Sect. 1, if

Q�1.�2/
1C Q�1.�2/C �2

> u1 : (50)

An analogous condition must be fulfilled, if excess green times on road Sect. 2 shall
be optimal. It reads
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Q�2.�1/
1C �1 C Q�2.�1/ > u2 ; (51)

where

Œ1C Q�2.�1/�2 D 1

�

�
.1C �1/C u2

1 � u2
.1C �1/

2

	
; (52)

which has been gained by interchanging indices 1 and 2 and replacing � by 1=�
in (42).

4.3 Control Strategies and Slower-is-Faster Effect

Based on the results of Sect. 4.1 and the scaled formulas of Sect. 4.2, we can
now formulate control strategies for a single traffic light within the optimize-one-
phase approach:

(i) Terminate the green light for road Sect. 1 immediately, corresponding to
�1 D 0, if condition (23) is violated, i.e. if

1� u1 � u2
K

(53)

is fulfilled. To obtain the dimensionless form of this inequality, we have
considered Aj D uj IjbQj and (36). In case (i), travel time optimization for
one phase advises against turning green for road Sect. 1. Of course, in reality,
drivers cannot be stopped forever. Either, one would have to give them a short
green phase after a maximum tolerable time period, or at least one would have
to allow vehicles to turn on red, i.e. to merge the crossing flow, whenever there
is a large enough gap between two successive vehicles. Alternatively, one may
apply an optimize-multiple-phases approach, see Sect. 5. It implies a service
of side roads even when the intersection capacity is insufficient to satisfy all
inflows completely.

(ii) Terminate the green phase for road Sect. 1, when the vehicle queue is
completely resolved, if conditions (53) and (44) are violated. In this case, the
scaled green time �1 is given by (45).

(iii) Extend the green times for road Sect. 1 in accordance with formula (42), if
the condition (44) is fulfilled. The recommended delay in the switching time
constitutes a slower-is-faster effect. In this situation, it takes some additional
time to accumulate enough vehicles on road Sect. 2 to guarantee an efficient
service in view of the inefficiencies caused by the setup times �j .

In Fig. 2, operation regime (i) is indicated in white and operation regime (iii) in red,
while operation regime (ii) is shown in green, if road Sect. 2 is served, otherwise
in orange.
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Fig. 2 Operation regimes of (periodic) signal control for K D 1 (left) and K D 3 (right) as a
function of the utilizations uj of both roads j according to the one-phase travel time optimization
approach. For each combination of u1 and u2, the operation regime has been determined after
convergence of the signal control procedure described in Appendix 2. The separating lines are
in good agreement with our analytical calculations. For example, the solid falling lines are given
by (54), while the dotted parabolic line in the right illustration corresponds to u2 D Ku1.1� u1/
and results by equalizing (42) with the square of (46), assuming �2 D 0 (i.e. no service of road
section 2). The different operation regimes are characterized as follows: In the green triangular or
parabolic area to the left of both illustrations, where the utilization u1 of road Sect. 1 is sufficiently
small, the service of road Sect. 2 is extended. In the adjacent red area below the white area (left) or
the solid line (right), road Sect. 2 is just cleared, while above the separating line u2 D 1�Ku1, road
Sect. 2 is not served at all. Road Sect. 1, in contrast, gets just enough green time to clear the vehicle
queue in the green area (and the orange area towards the top of the right illustration), while it gets
extended green time in the red area towards the bottom, where the utilization u2 of road Sect. 2
is sufficiently small. In the white area given by u2 > K.1 � u1/, road Sect. 1 gets no green time
anymore. Between the dashed and the solid white lines, road Sect. 2 is not served, although there
would be enough capacity to satisfy the vehicle flows in both roads. Improved operation regimes
are presented in Fig. 4

4.4 Operation Regimes for Periodic Operation

In the previous section, we have determined the optimal green time period �1
for road Sect. 1, assuming that the last green time period �2 for road Sect. 2 and
N1.0/ were given. Of course, �1 will then determine �2, etc. If the utilizations uj
are constant and not too high, the sequence of green phases converges towards a
periodic signal operation (see Fig. 3). It will be studied in the following. While the
formulas for the determination of �1 were derived in Sect. 4.2, the corresponding
formulas for �2 can be obtained by interchanging the indices 1 and 2 and replacing �
by 1=� in all formulas. In principle, there could be the following cases, if we restrict
ourselves to reasonable solutions with �j � 0:

(0) According to travel time minimization, one or both road sections should not
be served, if (53) is fulfilled for one or both of the road sections. This case
occurs if
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Fig. 3 Green time fraction �2=.1C�1C�2/ for road Sect. 2 vs. green time fraction �1=.1C�1C�2/
for road Sect. 1, if we apply the signal control algorithm described in Appendix 2 to a randomly
chosen initial queue length �N1.0/ in road Sect. 1 and K D 2 (i.e. road Sect. 1 has two times
as many lanes as road Sect. 2). One can clearly see that the green time fractions quickly converge
towards values that do not change anymore over time. The solution corresponds to periodic signal
operation

1 � u1 � u2
K

� 0 or 1 �Ku1 � u2 � 0 (54)

(see the area above the white solid line in the right illustration of Fig. 2).
According to this, service should focus on the main flow, while crossing flows
should be suppressed, thereby enforcing a re-routing of traffic streams when
this would be favorable to minimize travel times. Of course, in such situations
vehicles should still be allowed to turn on red and to merge the crossing flow,
when vehicle gaps are large enough.

(1) Both green time periods are terminated as soon as the respective vehicle queues
are fully dissolved. In this case, we should have the relationships �1 D O�1.�2/
and �2 D O�2.�1/, where O�j is defined in (45). After a few steps, the condition
�1 D O�1. O�2.�1// implies

�j D O�j D uj
1 � u1 � u2

(55)

and
�j

1C �1 C �2
D uj : (56)

According to (56), the green time fraction of each road section in case (1) should
be proportional to the respective utilization uj of the flow capacity.

(2) Road Sect. 2 gets an excess green time, while the green phase of road Sect. 1
ends after the dissolution of the vehicle queue (see green area in Fig. 2). In this
case we should have �1 D O�1. Q�2.�1//, where .1CQ�2/ is defined by formula (52).
This gives
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�1 D u1
1 � u1

s
1

�

�
.1C �1/C u2

1 � u2
.1C �1/2

�
; (57)

which eventually leads to a quadratic equation for �1, namely

�
u1u2

2 �K.1 � u1/
2.1 � u2/

�
�1
2

Cu1u2.1C u2/�1 C u1u2 D 0 : (58)

To determine �2, we can either use the relationship �2 D Q�2.�1/ or invert the
formula �1 D O�1.�2/. Doing the latter, (45) gives

�2 D 1 � u1
u1

�1 � 1 : (59)

According to (47) and (51), the occurrence of case (2) requires that the resulting
solution satisfies

�1

1C �1 C �2
D u1 and

�2

1C �1 C �2
> u2 : (60)

(3) Road Sect. 1 gets an excess green time, while the green phase of road Sect. 2
ends after the dissolution of the vehicle queue (see red area in Fig. 2). The
formulas for this case are obtained from the ones of case (2) by interchanging
the indices 1 and 2 and replacing � by 1=�.

(4) Both road sections get excess green time periods. This case would correspond
to �1 D Q�1. Q�2.�1//, and the solutions should fulfil

�1

1C �1 C �2
> u1 and

�2

1C �1 C �2
> u2 : (61)

According to numerical results (see Fig. 2), cases (0), (2), and (3) do all exist, while
the conditions for cases (1) and (4) are not fulfilled. Note, however, that small
vehicle flows should better be treated as discrete or pulsed rather than continuous
flows, in order to reflect the arrival of single vehicles (see [19] for their possible
treatment within a continuous flow framework). In other words, for rare vehicle
arrivals, we either have u1 > 0 and u2 D 0, or we have u2 > 0 and u1 D 0. Hence,
the case of small utilizations uj will effectively imply green time extensions for both
road sections due to the discreteness of the flow, and it allows single vehicles to pass
the traffic light without previously stopping at the red light.

Summarizing the above, one-phase optimization provides extra green times for
road sections, as long as both of them are fully served. While in one road section, this
slower-is-faster effect allows some vehicles to pass the traffic light without stopping,
in the other road section it causes the formation of a longer vehicle queue, which
supports an efficient service of a substantial number of vehicles after the traffic light
turns green. In this connection, it is useful to remember that switching is costly due
to the amber times, which are “lost” service times.
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4.5 Minimization of Vehicle Queues

We have seen that travel time minimization implies the possibility of case (0),
where one of the road sections (the side road) in not being served. This case should
not occur as long as the intersection capacity is not fully used. According to (13)
and (34), the intersection capacity is sufficient, if

u1 C u2 � 1 (62)

As the inequalities (54) and (62) do not agree, conditions may occur, where the
vehicle queue in one road section (a side road) continuously increases, even though
the intersection capacity would allow to serve both flows (see the orange and red
areas above the dashed white line in Fig. 2). This can result in an “unstable” signal
control scheme, which causes undesired spillover effects and calls for a suitable
stabilization strategy [33]. As we will see in the following, this problem can be
overcome by minimizing vehicle queues rather than travel times.

Conditions (54) and (62) agree, if K D 1, particularly when I1 D I2 and bQ1 DbQ2. Therefore, let us assume this case in the following, corresponding to

� D I1A1

I2A2
D I1u1bQ1

I2u2bQ2

D u1
u2
: (63)

bQ1 D bQ2 holds, when the street sections downstream of the intersection do not
impose a bottleneck. Furthermore, I1 D I2 D 1 corresponds to a minimization of
the average queue length rather than the average delay time. Such a minimization
of the queue length makes a lot of sense and means that the optimization is made
from the perspective of the traffic network rather than from the perspective of the
driver. This minimizes spillover effects and, at the same time, keeps travel times low.

4.6 Complexity of Traffic Light Control

It is interesting that already a single intersection with constant arrival flows shows
a large variety of operation regimes. In order to get an idea of the complexity
of optimal traffic light control in general, let us ask about the dimension of the
phase space. For such an analysis, it is common to transform all parameters to
dimensionless form, as above. In this way, all formulas are expressed in terms of
relative flows such as

� D I1A1

I2A2
; u1 D A1

bQ1

; u2 D A2

bQ2

: (64)

Parameters like
I2.bQ2 � A2/

I1A1
and

I1.bQ1 �A1/
I2A2

(65)
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can be expressed through the previous set of parameters. A single intersection
with two phases only is characterized by the two parameters u1 and u2, if queue
minimization is performed, and one additional parameter �, if travel time is
minimized. Therefore, the optimal operation of n intersections depends on 2n (or
even 3n) parameters. In view of this, it is obvious that the optimal coordination of
traffic lights in an urban road network constitutes a hard computational problem
[39].

The consideration of non-uniform arrival flows further complicates matters. If
the traffic flows are not constant, but characterized by vehicle platoons, the phase of
traffic light control can be significant for intersection capacity [20]. Therefore, the
mutual coordination of neighboring traffic lights has a significant impact [20]. This
issue is, for example, addressed in [25, 33].

5 Optimize-Multiple-Phases Approach

Under certain circumstances, it may be reasonable to interrupt the service of a
vehicle queue to clear the way for a large flow of newly arriving vehicles in the other
road section. Such an interruption may be interpreted as another slower-is-faster
effect, occurring in situations where the interruption-induced delay of vehicles in
one road section is overcompensated for by the avoidance of delay times in the other
road section. Such effects involving several green phases can clearly not be studied
within the optimization of a single phase. One would rather need an approach that
optimizes two or more phases simultaneously.

In the optimize-two-phases approach, it appears logical to optimize the goal
function

G12.�1 C�T1 C �2 C�T2/ D F12.�1 C�T1 C �2 C�T2/

�1 C�T1 C �2 C�T2
; (66)

which considers the waiting times in the successive green phase �T2 as well. The
average delay time G12.�1 C �T1 C �2 C �T2/ is minimized by variation of both
green time periods, �T1 and �T2. The optimal green times are characterized by
vanishing partial derivatives @G12=@�Tj . Therefore, we must find those values�T1
and�T2 which fulfil

@G12

@�Tj
D

@F12

@�Tj
.�1 C�T1 C �2 C�T2/� F12

.�1 C�T1 C �2 C�T2/2
D 0 : (67)

This implies the balancing principle

@F12.�1 C�T1 C �2 C�T2/

@�T1
D @F12.�1 C�T1 C �2 C�T2/

@�T2
(68)
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which is known from other optimization problems as well, e.g. in economics [11].
Condition (68) allows one to express the green time �T2 as a function of the green
time �T1. Both values can then be fixed by finding minima of Gw.�1 C �T1 C
�2 C �T2.�T1//. When this optimization procedure is applied after completion of
each phase, it is expected to be adaptive to changing traffic conditions. However, a
weakness of the above approach is its neglecting of the flows in the optimization
procedure. Therefore, the resulting intersection throughput may be poor, and flows
would not necessarily be served, when the intersection capacity would allow for
this. Therefore, we will now modify the multiple-phase optimization in a suitable
way, focussing on the two-phase case.

5.1 Combined Flow-and-Delay Time Optimization

The new element of the following approach is the introduction of flow constraints
into the formulation of the delay time minimization. For this, let us start with the
formula for the average delay time T av

j in road section j derived in [20]. It reads

T av
j D .1� fj /

2

.1 � uj /

Tcyc

2
(69)

with
Tcyc D �1 C�T1 C �2 C�T2 D .�1 C �2/.1C �1 C �2/ (70)

and

1 � fj D Tcyc ��Tj

Tcyc
D .1C �1 C �2/� �j

1C �1 C �2
: (71)

As the number of vehicles arriving on road section j during the time period Tcyc is
given by IjAjTcyc D Ijuj bQjTcyc, the scaled overall delay time of vehicles over
the two green phases �T1;�T2 and amber time periods �1; �2 covered by the cycle
time Tcyc.�T1;�T2/ is given by

G D

2X
jD1

T av
j IjujbQjTcyc

Tcyc

D
2X

jD1

Œ.1C �1 C �2/� �j �
2

2.1� uj /.1C �1 C �2/
Ij ujbQj .�1 C �2/ : (72)

Let us now set �j D �j .�1; �2/ D 0, if �j � O�j (corresponding to �j =.1 C �1 C
�2/ � uj ), and �j D 1 otherwise. The dimensionless clearing time
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O�j D uj
.1 � uj /

.1C �1 C �2 � �j / (73)

was defined in (45). With this, we will minimize the scaled overall delay time (72)
in the spirit of the optimize-two-cycles approach, but under the constraint that the
average outflow

OD
2X

jD1

Ij bQj

˚
�Tj .1 � �j /C ŒTj C uj .�Tj � Tj /��j

�
Tcyc

D
2X

jD1

Ij bQj

˚
�j .1 � �j /C Œ.1 � uj / O�j C uj �j ��j

�
1C �1 C �2

(74)

reaches the maximum throughput

bO.u1; u2/ D min
�
Gt.u1; u2/; Omax.u1; u2/

�
: (75)

The maximum throughput corresponds to the overall flow Gt.u1; u2/ D I1A1 C
I2A2 D u1I1bQ1 C u2I2bQ2, as long as the capacity constraint (62) is fulfilled.
Otherwise, if the sum of arrival flows exceeds the intersection capacity, the
maximum throughput is given by2

Omax.u1; u2/ D max
xj �uj

x1Cx2D1

�
x1I1bQ1 C x2I2bQ2

�
(76)

D max
1�u2�x1�u1

I2bQ2

�
Kx1 C .1 � x1/

�

D
(
I2bQ2

�
.K � 1/u1 C 1

�
if K � 1

I2bQ2

�
1 � .1 �K/.1� u2/

�
if K < 1:

Demanding the flow constraint

O
�
�1.u1; u2/; �2.u1; u2/

�
D bO.u1; u2/ (77)

and considering (73), we can derive

bO D
X
j

IjbQj

�
�j .1� �j /

1C �1 C �2
C uj �j

	
: (78)

2If the cycle time Tcyc is limited to a certain maximum value T max
cyc , one must replace the constraint

x1 C x2 � 1 by x1 C x2 � 1� .�1 C �2/=T
max

cyc and 1� u2 by 1� u2 � .�1 C �2/=T
max

cyc .
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This implies a linear relationship between �1 and �2. If the denominator is non-zero,
we have:

�1.�2/ D �1u1I1bQ1 C �2u2I2bQ2 � bO
bO � .1 � �1/I1bQ1 � �1u1I1bQ1 � �2u2I2bQ2

C .1 � �2/I2bQ2 C �1u1I1bQ1 C �2u2I2bQ2 � bO
bO � .1 � �1/I1bQ1 � �1u1I1bQ1 � �2u2I2bQ2

�2:

(79)

By demanding the flow constraint, we can guarantee that all arriving vehicles are
served as long as the intersection capacity is sufficient, while we will otherwise use
the maximum possible intersection capacity. As a consequence, operation regime
(0) of the one-phase optimization, which neglected the service of at least one road
section, cannot occur within this framework. Instead, it is replaced by an operation
regime, in which the vehicle queue in one road section is fully cleared, while the
vehicle queue in the other road section is served in part.3 Of course, this will happen
only, if the intersection capacity is insufficient to serve both flows completely (i.e.
in the case 1�u1�u2 < 0). IfK > 1 (i.e. the main flow is on road Sect. 1), we have

�1

1C �1 C �2
D u1 and

�2

1C �1 C �2
D .1 � u1/ : (80)

If K < 1, the indices 1 and 2 must be interchanged.
Operation regime (1) is still defined as in Sect. 4.4 and characterized by

�j D uj
1 � u1 � u2

;
�j

1C �1 C �2
D uj : (81)

In contrast to the one-phase optimization approach, this “normal case” of signal
operation occurs in a large parameter area of the two-phase optimization approach
(see blue area in Fig. 4). It implies that both green times are long enough to dissolve
the vehicle queues, but not longer.

The case, where both green phases are extended, is again no optimal solution.
We will, therefore, finally focus on case (2), where the vehicle queue in road Sect. 1
is just cleared (�1 D 0), while road Sect. 2 gets an excess green time (�2 D 1).

3In this case, we do not expect a periodic signal control anymore, as the growing vehicle queue in
one of the road sections, see [20], has to be considered in the signal optimization procedure. Our
formulas for one-phase optimization can handle this case due to the dependence on�Nj .0/. In the
two-phase optimization procedure, we would have to add

P
j Ij �Nj .0/ to formula (72), where

�Nj .0/ D Aj T
k
cyc �bQj �T

k
j denotes the number of vehicles that was not served during the kth

cycle T kcyc D �1C�T k1 C �2C�T k2 . This gives an additional term
P

j uj IjbQj .�1C �2/
P

k.1C
�k1 C �k2 � �kj =uj / in (72).
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Fig. 4 Operation regimes of periodic signal control as a function of the utilizations uj of both
road sections according to the two-phase optimization approach, assuming K D 1, corresponding
to equal roads (left), and K D 3, corresponding to a three-lane road 1 and a one-lane road 2
(right). For most combinations of utilizations (if u1 is not too different from u2), the green phases
are terminated as soon as the corresponding road sections are cleared (see the blue area below the
falling diagonal line). However, extended green times for road Sect. 1 result (see the red area along
the u1 axis), if the utilization of road Sect. 2 is small. In contrast, if the utilization of road Sect. 1 is
small, extended green times should be given to road Sect. 2 (see the green area along the u2 axis).
The white separating lines between these areas correspond to (94), (95) fit the numerical results
well. Above the line u2 D 1� u1, the intersection capacity is insufficient to serve the vehicle flows
in both road sections. In this area, the two-phase optimization gives solutions where road Sect. 1
is fully cleared, but road Sect. 2 is served in part (orange area towards the right), or vice versa
(yellow area towards the top in the left figure)

With bO D Gt D u1I1bQ1 C u2I2bQ2, (79) yields the simple constraint

�1.�2/ D u1
1 � u1

.1C �2/ ; (82)

which corresponds to (45). It implies

d�1

d�2
D u1
1 � u1

; 1C �1 D 1C u1�2
1 � u1

; (83)

and

1C �1 C �2 D 1C �2

1 � u1
;

�1

1C �1 C �2
D u1 : (84)

We will now determine the minimum of the goal functionG by setting the derivative
@G=@�1 to zero, considering

d O�2.�1/
d�1

D u2
1 � u2

: (85)
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Fig. 5 Optimal green time fractions �Tj =Tcyc D �j =.1 C �1 C �2/ for road section j D 1

(left) and road section j D 2 (right) as a function of the utilizations uj of both roads j , assuming
periodic signal operation according to the two-phase optimization approach with K D 1. For
combinations .u1; u2/ with several solutions (with extended green time and without), we display
the solution which minimizes the goal function (72). The results are qualitatively similar to the
ones belonging to the one-phase optimization approach displayed in Fig. 7, but we find periodic
solutions above the capacity line u2 D 1 � u1, where one road section (the one with the greater
utilization) is fully cleared, while the other one is served in part

Multiplying the result with 2.1 � u1/3.1 � u2/.1C �1 C �2/
2=.I2bQ2/, we find the

following relationship:

2u1u2.1C �2/.1C u1�2/C 2Ku1.1 � u1/.1 � u2/.1C �2/
2

D u2.1C u1�2/
2 CKu1.1 � u1/.1� u2/.1C �2/

2 ; (86)

which finally leads to

.1C �2/
2 D u2.1 � u1/2

u12u2 CKu1.1 � u1/.1� u2/

D .1 � u1/2

u12 C �.1� u1/.1 � u2/
: (87)

According to (60), for an extended green time on road Sect. 2, the condition

�2

1C �1 C �2
> u2 (88)

must again be fulfilled. If the solution �2.u1; u2/ of (87) satisfies this requirement,
it can be inserted into (82) to determine the scaled green time period �1.u1; u2/
as a function of the capacity utilizations u1 and u2 within the framework of
the optimize-two-phases approach. The corresponding results are displayed in
Figs. 4–6. A generalization to signal controls with more than two phases is
straight forward.
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Fig. 6 Same as Fig. 5, but for K D 3, corresponding to a three-lane road Sect. 1 (arterial road)
and a one-lane road Sect. 2 (crossing side road)

Finally, let us calculate the separating line between case (1) and case (2).
Inserting (82) into (72), we can express the goal function G as a function H of
a single variable �2:

H.�2/ D G. O�1.�2/; �2/ : (89)

As (82) holds for both cases, an exact clearing of road Sect. 2 or an excess green
time for it, the functional dependence of goal function (89) on �2 must be the same
for both cases. Now, on the one hand, we may apply (81) for the case without excess
green time, which yields

1C �2 D 1 � u1
1� u1 � u2

and .1C �2/
2 D .1 � u1/2

.1 � u1 � u2/2
: (90)

On the other hand, in the case of excess green time, we may use (87). The goal
function must be the same along the separating line between both cases, which
requires

.1 � u1/2

.1� u1 � u2/2
D .1 � u1/2

u12 C �.1 � u1/.1 � u2/
: (91)

This implies
�.1 � u1/.1 � u2/ D .1 � u1 � u2/

2 � u1
2 (92)

or
�.1 � u1/.1 � u2/ D .1 � 2u1 � u2/.1 � u2/ : (93)

The finally resulting equation for the separating line between the regimes with and
without excess green time is given by

1

�
D u2
Ku1

D 1 � u1
1 � 2u1 � u2

: (94)
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As Fig. 4 shows, this analytical result fits the result of our numerical optimization
very well. The separating line between case (1) and case (3) is derived analogously.
It may also be obtained by interchanging the subscripts 1 and 2 and substituting �
by 1=�, yielding

� D K
u1
u2

D 1 � u2
1 � 2u2 � u1

: (95)

6 Summary, Discussion, and Outlook

We have studied the control of traffic flows at a single intersection. Such studies have
been performed before, but we have focussed here on some particular features:

• For the sake of a better understanding, we were interested in deriving analytical
formulas, even though this required some simplifications.

• A one-phase minimization of the overall travel times in all road sections tended
to give excess green times to the main flow, i.e. to the road section with the larger
number of lanes or, if the number of lanes is the same (K D 1), to the road
section with the larger utilization (see Fig. 2). The excess green time can lead to
situations where one of the vehicle flows is not served, although there would be
enough service capacity for all flows.

• A minimization of vehicle queues rather than travel times simplifies the relation-
ships through the special settings bQj D bQ and Ij D 1, resulting in K D 1.
Moreover, these settings guarantee that the case of no service only occurs, if the
intersection capacity is exceeded.

• An optimize-multiple-phases approach considering flow constraints gives the
best results among the optimization methods considered. It makes sure that both
roads are served even when the intersection capacity is exceeded.

• For all considered optimization approaches, we have derived different operation
regimes of traffic signals control: One of them is characterized by ending a green
time period upon service of the last vehicle in the queue, which implies that
all vehicles are stopped once by a traffic signal. However, we have also found
conditions under which it is advised to delay switching for one of the road
sections (“slower-is-faster effect”), which allows some vehicles to pass the signal
without stopping.

• Compared to the one-phase optimization, a two-phase optimization tends to give
much less excess green times, in particular if the utilizations of the road sections
are comparable. We hypothesize that this is an effect of the short-sightedness
of the one-phase optimization: It does not take into account future delay times
caused by current excess green times. This hypothesis is confirmed by Fig. 7
(which is to be contrasted with the left illustration in Fig. 2). It specifies the green
time durations according to (42) and (45) of the one-phase optimization, but
selects the solution that minimizes the average delay time (72) over two phases.
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Fig. 7 Operation regimes of periodic signal control as a function of the utilizations uj of both
roads, if one specifies the clearing times and excess green times according to (45) and (42) of the
one-phase optimization, but selects the solution that minimizes the overall delay time (72) over
two successive phases. For most combinations of utilizations (if u1 is not too different from u2),
the green phases are terminated as soon as the corresponding road sections are cleared (see the
blue area below the falling diagonal line). However, extended green times for road Sect. 1 result
(see the red area along the u1 axis), if the utilization of road Sect. 2 is small. In contrast, if the
utilization of road Sect. 1 is small, extended green times should be given to road Sect. 2 (see green
area along the u2 axis) [6]. Above the line u2 D 1� u1, the intersection capacity is insufficient to
serve the vehicle flows in both road sections

• Although the multi-phase optimization approach provides extended green times
in a considerably smaller area of the parameter space spanned by the utilizations
uj , the slower-is-faster effect still persists when signal settings are optimized over
a full cycle time (as we effectively did with the periodic two-phase optimization
approach). The slower-is-faster effect basically occurs when the utilization of a
road section is so small that it requires some extra time to collect enough vehicles
for an efficient service during the green phase, considering the efficiency losses
by switching traffic lights during the amber phases.

• In complementary appendices, we discuss traffic controls with more than two
phases and an exponentially weighted goal function for short-term traffic opti-
mization. Furthermore, we propose how to take into account the effect of
stopping newly arriving vehicles and how to assess its impact as compared to
queues of waiting vehicles. As stopping vehicles causes additional delay times,
it becomes often favorable to implement excess green times (i.e. to apply the
slower-is-faster effect”).

In summary, our approach successfully delivers analytical insights into various
operation regimes of traffic signal control, including the occurring slower-is-faster
effects. Moreover, as the two-phase optimization approach takes care of side roads
and minor flows, it has similar effects as the stabilization rule that was introduced
in [33] to compensate for unstable service strategies. This stabilization rule tries to
avoid spillover effects via an earlier green time by the next traffic light downstream.
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Note that spillover effects imply growing delay times even in road sections
which have a green light. Therefore, if the utilization is greater than the intersection
capacity, travel time minimization may additionally demand to interrupt the green
times of the next traffic lights upstream (in favor of a road section that could be
successfully left by vehicles when a green light would be given to them). This
effectively requires to generalize the traffic light control principle discussed before
towards a consideration of the traffic conditions in upstream and downstream road
sections. Such a control is considerably more complicated and will be addressed in
future publications, based on formulas and principles developed in [20, 21].

6.1 Self-Organized Traffic Light Control

Our restriction to analytical calculations implied certain simplifications such as the
assumption of two traffic phases, the assumption of constant arrival flows, and no
obstructions of the outflow. However, these restrictions can be easily overcome
by straight-forward generalizations (see Appendices). The assumption of constant
arrival flows, for example, is not needed. Assuming a short-term prediction based on
upstream flow measurements [35], the expected delay times or queue lengths can be
determined via the integral (17). The optimal solution must then be numerically
determined, which poses no particular problems. Although the behavior may
become somewhat more complicated and the boundaries of the operation regimes
may be shifted, we expect that the above mentioned signal operation modes and the
control parameters u1 D A1=bQ1, u2 D A2=bQ2, and � D I1A1=.I2A2/ still remain
relevant.

In the following, we show that the optimize-one-phase approach works surpris-
ingly well, when it is applied to signal-controlled networks with their typical, pulsed
vehicle flows. Rather than performing strict travel time optimization, however, we
use a simplified approach that determines exponential averages A0

j .t/ of the arrival
flows Aj .t/ according to

A0
j .t/ D ˛jAj .t/C .1 � ˛j /A

0
j .t � 1/ ; (96)

and inserts these values into the formulas for the control strategies that were derived
for constant arrival flows. The averaging parameters ˛j are specified such that the
average vehicle speed over 30 min is maximized.

Figure 8 shows simulation results for a Barcelona kind of road network (see
Fig. 1) with 72 links, the lengths of which are uniformly distributed between 100 and
200 m. For simplicity, the turning fractions have been set to 1/2 for all intersections,
the setup times �j to � D 5 s. Traffic flows were simulated in accordance with
the section-based traffic model [18, 28]. The parameters determining the assumed
triangular flow-density relationship on the road sections are the safe time headway
T D 1:8 s, the maximum density max D 140 vehicles/km, and the speed limit V 0

j ,
which is either set to 50 or to 70 km/h. As one can see, the average speed for the
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Fig. 8 Comparison of the
average velocity resulting for
an optimized fixed cycle time
control (red circles) with a
self-organized control based
on the optimize-one-phase
approach (blue squares) for a
speed limit V 0

j D 50 km/h
(top) and V 0

j D 70 km/h
(bottom). Both control
approaches perform similarly
well. Error bars represent
standard deviations. Details
of the simulation scenarios
are given in the main text

self-organized traffic light control performs similarly well as a fixed cycle strategy,
where the cycle time is adjusted to the traffic volume. Specifically, the green times
�Tj are linearly increased from 15 s for an average number of 1 car per road section
up to 60 s for an average number of 10 cars per road segment. The offsets of the
green phases are optimized by means of Particle Swarm Optimization (PSO) [30].
This serves to minimize the stopping of moving vehicle platoons.

A more detailed, numerical comparison of fixed cycle control schemes with
self-organized traffic light controls for urban road networks will be presented in
forth-coming publications. Note that, in [33], a somewhat more sophisticated self-
control principle has been studied, which involves a short-term anticipation based on
measurements of the arrival flows Aj . This self-control performs particularly well
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in cases of heterogeneous road networks and stochastically varying arrival flows,
and it can create coordinated flow patterns similar to “green waves” (where vehicle
platoons are not stopped at every traffic light).
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Appendix 1 Considering the Price of Stopping Vehicles

The previous considerations have only taken into account delays by vehicles in a
vehicle queue. However, it would also make sense to consider the price of stopping
vehicles. In particular, it must be possible that a large flow of moving vehicles in
one road section is prioritized to a short queue of standing vehicles in the other road
section. But how can we assess the relative disadvantage of stopping newly arriving
vehicles as compared to stopping the service of a vehicle queue at the intersection?
If the arrival flow is not large enough, it would certainly be better to continue serving
the standing vehicle queue in the other road until it is fully dissolved.

We pursue the following approach: While the flow model used before implic-
itly assumes instantaneous vehicle accelerations and decelerations, we will now
consider that, in reality, a finite vehicle acceleration a causes additional delays of
V 0
j =.2a/, where V 0

j denotes the free speed or speed limit. Furthermore, the reaction
time Tr must be taken into account as well. This leads to an additional delay of

T 0
j D Tr C V 0

j

2a
(97)

for each vehicle that leaves a queue. Tr is of the order of the safe time gap T . Note
that delays V 0

j =.2b/ due to a finite deceleration b do not additionally contribute
to the delay times, as it does not matter whether delayed vehicles spend their time
decelerating or stopped.4

Furthermore, we must determine the rate at which such additional delays are
produced. This is given by the rate at which freely moving vehicles join the end of
a traffic jam, i.e. by

4The finite deceleration only matters slightly, when the exact moment must be determined when a
road section becomes fully congested.
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jamjCj j D jam

jam=Aj � 1=V 0
j

� Aj ; (98)

where jam denotes the density of vehicles per lane in a standing queue. The
propagation speed

Cj D Aj � 0

Aj =V
0
j � jam

(99)

of the upstream front of the queue corresponds to the propagation speed of shock
fronts, see [18,28,50]. Depending on the values ofCj (orAj ) and T 0

j , newly arriving
vehicles can have an impact T 0

j Cj jam equivalent to about �Nj D 10 queued
vehicles.

Summarizing the above considerations, we suggest to replace the goal function
G1.t/ by the generalized formula

bG1.t/ D 1

t

X
j

Ij

tZ

0

dt 0
h
�Nj .t

0/C T 0
j jCj jjam�.�Nj > 0/

i
; (100)

where �.�Nj > 0/ D 1, if �Nj > 0, and �.�Nj > 0/ D 0 otherwise. In case
(a) with �Ti � Ti , we find

bF a
1.�1 C�Ti C �2/ D F a

1 .�1 C�Ti C �2/

CI1T 0
1jC1jjam.�1 C�T1 C �2/

CI2T 0
2jC2jjam.�1 C�T1 C �2/ : (101)

This implies

bGa
1.�1 C�Ti C �2/ D Ga

1.�1 C�Ti C �2/

CI1T 0
1 jC1jjam C I2T

0
2 jC2jjam (102)

withGa
1.�1C�TiC�2/ according to (22). Therefore, the partial derivative of bGa

1.�1C
�Ti C �2/ with respect to �T1 remains unchanged, and we find the same optimal
green time period �T1 D 0 or �T1 � T1. However, in case (b) with �T1 � T1,
we obtain

bF b
1.�1 C�Ti C �2/ D F b

1 .�1 C�Ti C �2/

CI1T 0
1 jC1jjam.�1 C T1 C �2/

CI2T 0
2 jC2jjam.�1 C�T1 C �2/ ; (103)
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which implies

bGb
1.�1 C�Ti C �2/ D Gb

1.�1 C�Ti C �2/

CI1T 0
1jC1jjam C I2T

0
2C2jam

�I1T 0
1 jC1jjam

�T1 � T1

�1 C�T1 C �2
(104)

with Gb
1 .�1 C�Ti C �2/ according to (28). In cases where an excess green time is

favorable, the corresponding formula for the green time duration becomes

.�1 C�T1 C �2/
2 D 2I1

I2A2
ŒE1 C T 0

1jC1jjam.�1 C T1 C �2/� ; (105)

i.e. the optimal green times tend to be longer. In order to support excess green times,
the condition .�1 C �T1 C �2/

2 � .�1 C T1 C �2/
2 must again be fulfilled, which

requires

.�Nmax
1 /2

bQ1 � A1

 
I1

I2A2
� 1

bQ1 � A1

!
C 2�Nmax

1

 
I1�1

I2A2
� �1 C �2

bQ1 �A1

!

� .�1 C �2/
2 � 2I1T

0
1jC1jmax

I2A2

 
�1 C �Nmax

1bQ1 �A1
C �2

!
:

(106)

Comparing this with formula (32), we can see that the threshold for the implementa-
tion of excess green times�Tj > Tj is reduced. Therefore, excess green times will
be implemented more frequently, as this reduces the number of stopped vehicles.

Appendix 2 More Than Two Traffic Phases

The above formulas for the optimize-one-phase approach can be easily generalized
to multiple traffic phases of more complicated intersections as in the case of
Barcelona’s center (see Fig. 1). For

�Ti � Ti D �Nmax
ibQi � Ai

(107)

with
�Nmax

i D �Ni.0/CAi�i ; (108)
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for example, we can derive from (102)

bGa
i .�i C�Ti C �iC1/ D Ii

�
�Ni.0/C bQi�iC1

�.bQi �Ai/�i C�Ti C �iC1
2

	

C
X
j.¤i /

Ij

�
�Nj .0/C Aj

�i C�Ti C �iC1
2

	

C
X
j

Ij T
0
j jCj jjam : (109)

In contrast, for �Ti � Ti and with

Ei D �Nmax
i �i C .�Nmax

i /2

2.bQi � Ai/
; (110)

from (104) and (28) we obtain

bGb
i .�i C�Ti C �iC1/ D IiEi

�i C�Ti C �iC1

C
X
j.¤i /

Ij

�
�Nj .0/C Aj

�i C�Ti C �iC1
2

	

C
X
j

Ij T
0
j jCj jjam � IiT 0

i jCi jjam
�Ti � Ti

�i C�Ti C �iC1
:

(111)

The minimum of this function is reached for

.�i C�Ti C �iC1/2 D IiEi C IiT
0
i jCi jjam.�i C Ti C �iC1/P
j.¤i / Ij Aj =2

: (112)

The occurrence of excess green time requires .�iC�TiC�iC1/2 � .�iCTiC�iC1/2,
i.e.

.�Nmax
i /2

bQi � Ai

 
IiP

j.¤i / Ij Aj
� 1

bQi � Ai

!
C 2�Nmax

i

 
Ii �1P

j.¤i / Ij Aj
� �i C �iC1
bQi � Ai

!

� .�i C �iC1/2 � 2Ii T
0
i jCi jjamP

j.¤i / Ij Aj

 
�i C �Nmax

ibQi � Ai
C �iC1

!
:

(113)

It can be seen that the existence of more traffic phases is unfavorable for providing
excess green times. For their existence, a small number of phases is preferable.
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Procedure of Traffic Signal Control

Based on the above formulas, the next green phase i is determined as follows:

1. Set the time t to zero, after the last green phase i 0 has been completed.
2. Apply the required service time (amber time) of duration �i 0C1 and set �j D
�i 0C1 for all road sections j . Then, calculate �Nmax

j and Ej for all j with
formulas (108) and (110).

3. During the service time, determine the green times�Tj and Tj with and without
green time extension, for each road section j with formulas (112) and (107).

4. If �Tj > Tj and bGb
j .�j C �Tj C �jC1/ < bGa

j .�j C Tj C �jC1/, see (111)
and (109), consider the implementation of the extended green time �Tj and set
bGj D bGb

j .�j C �Tj C �jC1/. Otherwise consider the implementation of the

clearing time Tj and set bGj D bGa
j .�j CTj C�jC1/, but if bGa

j .�j C�jC1/ < bGj ,

set �Tj D 0 and bGj D bGa
j .�j C �jC1/.

5. Among all road sections j 0 different from the previously selected one i 0, choose
that one i for service, for which the expected average travel time bGi is smallest
(i.e. bGi D minj.¤i 0/ bGj ). Implement the selected green phase�Ti .

6. Update the length of the vehicle queue in road section i according to

�Ni.�i C�Ti/ D 0 (114)

and the queue lengths in all other road sections j ¤ i according to

�Nj .�i C�Ti/ D �Nj .0/CAj .�i C�Ti/ : (115)

If road section was not served (�Ti D 0), update the vehicle queues in all road
sections j (including i ) according to (115).

7. At the end of the corresponding green time duration�Ti , set i 0 D i and continue
with step 1.

The optimize-multiple-phases approach can be generalized in a similar way. Then,
among all solutions satisfying preset flow constraints, that multi-phase solution is
chosen, which minimizes the goal function and does not start with a service of
the previously served road section. In order to flexibly adjust to varying traffic
conditions, one may repeat the optimization after completion of one phase rather
than after completion of all the phases considered in the multi-phase optimization.

Appendix 3 Limited Forecast Time Horizon

While traffic light optimization is an NP-hard problem [39], we have simplified it
here considerably by restricting ourselves to local optimization and to limited time
horizons. Both simplifications may imply a potentially reduced traffic performance
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in the urban street network, but this loss of performance is small if traffic lights
adjust to arriving vehicle platoons [33]. The reliable look-ahead times are anyway
very limited for fundamental reasons (see the Appendix in [33]). Therefore, one can
restrict traffic light optimization to time periods 1=�, over which the traffic forecast
can be done with sufficient accuracy. When traffic lights are switched frequently,
the value of 1=� of the forecast time horizon will go down.

Note that an optimization based on unreliable long-term forecasts will yield
bad results. Therefore, it is not only justified, but also successful to replace the
optimization of one or several full cycles by the optimization of, say, two phases.
Alternatively, one may minimize the exponentially weighted travel times, i.e.
minimize the function

eG D
X
j

�Ij

1Z

0

dt e��th�Nj.t/C T 0
j jCj jjam�.�Nj > 0/

i
(116)

by variation of the duration and sequence of green phases. While this approach is
less suited for an analytical optimization, it reminds of formulations of discounted
functions in economics [11]. Goal function (116) can be optimized numerically,
limiting the evaluation of the integral to the range t < 3=� .
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Modeling and Optimization of Scalar Flows
on Networks

Simone Göttlich and Axel Klar

Abstract Detailed models based on partial differential equations characterizing
the dynamics on single arcs of a network (roads, production lines, etc.) are
considered. These models are able to describe the dynamical behavior in a network
accurately. On the other hand, for large scale networks often strongly simplified
dynamics or even static descriptions of the flow have been widely used for traffic
flow or supply chain management due to computational reasons. In this paper, a
unified presentation highlighting connections between the above approaches are
given and furthermore, a hierarchy of dynamical models is developed including
models based on partial differential equations and nonlinear algebraic equations or
even combinatorial models based on linear equations. Special focus is on optimal
control problems and optimization techniques where combinatorial and continuous
optimization approaches are discussed and compared.

1 Introduction

Modeling and simulation of flows on networks, like traffic flow on highways or
supply chain models have been investigated intensively during the last decade.

On the one hand detailed models based on partial differential equations describ-
ing the dynamics on single arcs of the network have been constantly developed
and improved. These models are able to describe the dynamical behavior accu-
rately including special features of the dynamics like jam/shock propagation or
stop-and-go waves in traffic flow. To describe flows on networks these detailed
models have also been used. However, the number of arcs which can be treated
by such an approach is restricted, in particular, if optimization problems have to
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be solved. On the other hand large scale networks with strongly simplified dynamics
or even static descriptions of the flow have been widely investigated for traffic flow
or supply chain management. In particular, optimal control problems for traffic flow
on networks arising from traffic or supply chain management are a major focus of
research in this field.

The purpose of this paper is to give a unified presentation highlighting connec-
tions between the above approaches. A hierarchy of simplified dynamical models is
developed for different fields of applications starting with the “correct” dynamical
description based on partial differential equations and ending with nonlinear
algebraic equations or even combinatorial models based on linear equations. These
models give a reasonably accurate description of the dynamics and, at the same
time, are solvable for large scale networks.

Special focus is on optimal control problems and optimization techniques.
Various combinatorial and continuous optimization techniques, like adjoint calculus
and solution methods for mixed–integer problems, are discussed. Using strongly
simplified models large scale networks can be optimized with combinatorial
approaches in real-time. However, including more complex (in particular nonlinear)
dynamics reduces the advantage of the combinatorial algorithms compared to
continuous optimization procedures.

These topics are illustrated for two different fields: traffic networks and supply
chains.

Concerning traffic flow, modelling and simulation has been investigated inten-
sively during the last years, see, for example, [5, 11, 19–22, 38, 43, 47, 48, 52] and
many others. Macroscopic models using partial differential equations have been
developed for cumulative (averaging over all lanes) or multi-lane descriptions of
traffic on unidirectional roads. For the present investigations we are interested
in traffic flow models for road networks using scalar models based on partial
differential equations. That means we use a cumulative description of traffic on each
road not distinguishing between single lanes and a scalar macroscopic traffic model.
First several possibilities to define suitable conditions at the junctions are presented
to obtain well posed network solutions. Then simplified models are derived. Finally
this hierarchy of models is used to optimize the distribution of traffic through the
network.

For the simulation of PDE-based supply chain models different approaches have
been introduced during the last years; see for example [1, 3, 4, 13, 14, 17, 18]. These
models describe the evolution of flows, in particular the flow of goods, in supply
networks. However, in many applications the simulation and prediction of long time
behavior is only one important item. A further important aspect in supply chain
decision making are optimization problems, for example maximizing output of a
production process or minimizing used buffers. These optimization problems can be
formulated on a continuous level with constraints consisting of partial or ordinary
differential equations. Then, naturally an adjoint calculus is used for the efficient
computation of optimal control parameters. Alternatively, we will see that models
based on mixed–integer programming (MIP) can be used to find the optimal load
balance on the interconnections between different entities.
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The paper is organized along the following lines: In Sect. 2 traffic flow networks
are considered. Section 2.1 considers scalar PDE’s for traffic flow and the associated
network models. In particular, the coupling conditions are considered in detail. In
Sect. 2.2 and also in Sect. 2.3 a hierarchy of simplified network models is developed.
Finally, Sect. 2.3 looks at optimization and control procedures for these models.
In Sect. 3, we focus on supply chain models. We start with the introduction of
a network model governed by scalar partial differential equations in Sect. 3.1.
Similarities and differences to traffic flow models are addressed. Optimization
techniques will be discussed in Sect. 3.2. The Lagrange formalism (i.e. adjoint
equations) is compared to a mixed–integer approach.

Parts of this work have been taken from the articles [15, 24, 25] (traffic flow
models) as well as [16, 17, 36] (supply chain models).

2 Traffic Flow Networks

This section is organized in the following way: in Sect. 2.1 traffic network models
based on partial differential equations are discussed. This includes, in particular, the
dynamic models and the statement and comparison of different coupling conditions
at junctions. Section 2.2 describes several simplifications of the models developed in
the previous subsection. Finally, Sect. 2.3 is concerned with optimization procedures
for the different models of the model hierarchy developed before. Additionally,
linearized models are considered and related to mixed-integer problems. Finally,
the optimization routines are compared numerically.

2.1 Network Models Based on Scalar Partial Differential
Equations

First several definitions concerning the network are given. Moreover, the equations
used to describe the flow on the network are specified.

Definition 2.1 (Network definition).1;2 A traffic flow network is a finite, connected
directed graph, where, in addition, we may attach a finite number of directed curves
extending to infinity. The roads are numbered by i and the set of all roads is
I D .1; 2; : : : ; K/: The junctions are numbered by j and the set of junctions is
J D .J1; J2; : : : ; JM /: Each road is modelled by the interval Œai ; bi �, where ai and
bi can be infinity.

1Follow Holden and Risebro in [32].
2See Fig. 1.
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Continuous traffic models have been introduced by several people. A classical
model is due to Aw/Rascle [5], see also [6,19]. The cumulative form of the model is

@tC @x.u/ D 0 (1)

@t .u/C @x.u2/C c./@x D 1

T ./
ŒU./ � u�

where  describes the density on the whole road, and u the mean velocity. f ./ D
U./ is the so called fundamental diagram and T is a relaxation time. c D c./

describes the anticipation of the drivers. As long as T is small, the above model is
approximated by the well-known Lighthill–Whitham equations [45]:

@t C @xf ./ D 0 (2)

with f ./ D U./.

Remark 2.2. Here we use the Lighthill–Whitham model (2). We note that a traffic
network definition based on the full (1) can be done as well, see [26].

From now on, we assume that the Lighthill–Whitham equation holds on the
network away from intersections, i.e.,

@ti .x; t/C @xf .i .x; t// D 0 8i 2 I; x 2 .ai ; bi /; t � 0 (3)

i .x; 0/ D i;0.x/ 8x 2 .ai ; bi /

where the density on road i is denoted by i : The maximal density is for the
following assumed to be max D 1, if not otherwise stated. We consider entropic
solutions on each of the single roads. A weak solution of the network problem has
been defined in [32] as a solution in the sense of distributions with test functions
which are smooth at the intersections: Let �i D �i .x; t/; i D 1; : : : ; K be smooth
test functions with compact support in Œai ; bi �� RC. Suppose that the test functions
are smooth across the junctions, i.e., for example for an ingoing road i and an
outgoing road j of the same junction they fulfill

�i .bi ; t/ D �j .aj ; t/ and @x�i.bi ; t/ D @x�j .aj ; t/; t � 0:

figiD1;:::;K is called a weak solution if it satisfies

KX
iD1

 Z 1

0

Z bi

ai

Œi @t�i C f .i /@x�i � dxdt C
Z bi

ai

i;0.x/�i .x; 0/dx

!
D 0:

One is looking now for a well defined problem on the whole network. To do so
one has to give a formulation of a well defined problem at each junction. Consider
a junction in the network with n incoming roads labeled by i D 1; : : : ; n and m
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outgoing roads labeled by i D nC1; : : : ; nCm:One obtains (the Rankine–Hugoniot
condition) that the following condition is satisfied for the above weak solutions:

nX
iD1

f .i .bi ; t// D
nCmX
iDnC1

f .i .ai ; t// 8t: (4)

We define, following again [32],

Definition 2.3 (Weak solutions of a Riemann problem at a junction). By the
definition of a weak solution of the Riemann problem for a junction Jj 2 J; we
mean a weak solution of the initial value problem (3) for the network consisting of
the single junction with n incoming and m outgoing roads all extending to infinity.
The initial data are given by

i;0.x/ D Qi ; 8x 2 Œai ; bi �; i D 1; : : : nCm; (5)

where Qi are constants.

Consider now the Riemann initial data (5) with Qi D i;0.x D bi / for incoming
roads and Qi D i;0.x D ai / for outgoing roads for a single junction. Assuming
a unique solution for the problem at the junction, we denote the solution at the
junction, i.e., at x D bi for incoming and at x D ai for outgoing roads, by

.1; : : : ; nCm/:

If suitable restrictions on the i are imposed, see below, it turns out that these states
are independent of time, see [10, 32].
Once the i are determined the original problem at the junction is solved in the usual
way by solving a Riemann problem with initial data i;0.x/; x < bi and i ; x D bi
for incoming roads and the corresponding procedure for outgoing roads.
However, the above coupling condition (4) is obviously not sufficient to obtain a
unique weak solution 1; : : : ; nCm at the junction. The main question in defining
traffic flow on a network is the definition of suitable additional coupling conditions
at the junctions to obtain unique values for .1; : : : ; nCm/, i.e., a unique solution
of the Riemann problem at each junction. The difference between the models
considered in this survey is the way extra conditions are imposed at the junctions.
For the following we assume as in [32] that

f .0/Df .1/D0 and 9� 2 .0; 1/ W f 0.�/D0 and .��/f 0./<0 8 6D� (6)

This condition is fulfilled by any reasonable model for the fundamental diagram,
see for example [39].

We will now give a brief summary of two traffic network models, the
Holden/Risebro and Coclite/Piccoli models. For further details we refer to [32]
and [10].
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2.1.1 The Approach of Holden and Risebro

We consider as before a junction with n incoming roads and m outgoing roads
labeled by i D 1; : : : ; n C m: Given the constant initial values i;0, we need to
determine a unique solution i satisfying the coupling condition. After determining
the state i the solution to the junction is the solution of the Riemann problem on
each road i as described above. Thus the solution consists of waves emerging from
the junction. The following restrictions are necessary to obtain reasonable speed
directions for the emerging waves, i.e., negative speeds on incoming and positive on
outgoing roads.

i 2 Œ�; 1� i;0 � � i D 1; : : : ; n

i 2 fi;0g [ Œ�.i;0/; 1� i;0 � � i D 1; : : : ; n

i 2 Œ0; �� i;0 � � i D nC 1; : : : ; nCm

i 2 Œ0; �.i;0/� [ fi;0g i;0 � � i D nC 1; : : : ; nCm

(7)

where for each  6D �;  2 Œ0; 1� the value �./ is the unique number �./ 6D ; s.t.
f ./ D f .�.//: Thus  < � ) �./ > � and vice versa. The coupling condition
(4) reads

nX
iD1

f .i / D
nCmX
iDnC1

f .i /: (8)

To obtain a unique weak solution Holden and Risebro introduced an additional
“entropy condition” at the junction: Let g be a differentiable, strictly concave
function of a single variable and define E as follows:

E.1; : : : ; nCm/ D
nCmX
iD1

g.�i / (9)

where �i D �.i / D f .i /=f .�/: Then one can prove,3 that the solution of the
following problem yields a unique solution in the sense of Definition 2.3:

Maximize E subject to (8) and (7) (10)

Remark 2.4. The Holden/Risebro approach describes a general framework for
defining well-posed traffic network problems. In particular, they show that the main
task is to find a condition to replace the “entropy condition” at the junction. To
obtain applicable conditions one has to be more specific in the choice of suitable

3Theorem 1.1 in [32].
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conditions at the junctions. This has been done by Coclite and Piccoli in the model
described below.

2.1.2 The Approach of Coclite/Piccoli

Consider again a junction with n incoming roads and m outgoing roads. Coclite
and Piccoli use the same basic idea, i.e., find i to given i;0 and solve a Riemann
problem on each road. Therefore, similar restrictions of the possible values of i are
necessary:

i 2 Œ�; 1� i;0 � � i D 1; : : : ; n

i 2 fi;0g [ .�.i;0/; 1� i;0 � � i D 1; : : : ; n

i 2 Œ0; �� i;0 � � i D nC 1; : : : ; nCm

i 2 Œ0; �.i;0//[ fi;0g i;0 � � i D nC 1; : : : ; nCm:

(11)

Instead of the function g; a matrix A D .˛ki / 2 Rm�n is introduced in this model.
A describes the percentages of drivers who want to drive from road i to k and is
assumed to fulfill the following assumptions

˛ki 6D ˛ki 0 ;8i 6D i 0 and 0 < ˛kn < 1 and
nCmX
kDnC1

˛ki D 1 8i: (12)

Then the following additional coupling condition is assumed to be satisfied for the
junction j 2 J

f .k/ D
nX
iD1

˛ki f .i / 8k D nC 1; : : : ; nCm: (13)

Furthermore, Coclite/Piccoli introduce a function E; which measures the flux of
the incoming roads

E.1; : : : ; n/ D
nX
iD1

f .i /: (14)

Then it is proved 4 that the following problem has a unique solution in the sense of
definition (2.3)

Maximize E subject to (13) and (11) (15)

4Theorem 3.1 in [10].
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Remark 2.5. As mentioned in [10] for example a junction with two incoming
(n D 2) and one outgoing (m D 1) road is not covered by this model. In this case
condition (12) is not fulfilled anymore. The result is not unique, as simple examples
show. A solution has been suggested in [10], see below.

The Coclite/Piccoli Model for Two Ingoing and One Outgoing Road

We consider a junction with two incoming roads nD 2 and one outgoing road
mD 1: The initial densities on roads i are given by 1;0; 2;0; 3;0: The corresponding
fluxes are denoted as �i;0 D f .i;0/: Denote the maximum of the flux by f .�/. We
denote the sets of valid resulting fluxes �i by ˝i : For the incoming roads i D 1; 2

this is

i;0 � � ) ˝i D Œ0; �i;0� (16)

and

i;0 � � ) ˝i D Œ0; f .�/� (17)

For the outgoing road i D 3

i;0 � � ) ˝i D Œ0; f .�/� (18)

and

i;0 � � ) ˝i D Œ0; �i;0�: (19)

It is easy to see, that if we define ci such that

˝i D Œ0; ci � (20)

and if c1 C c2 > c3; the solution of the Coclite/Piccoli conditions is not unique:
Assume c1 < c2; then the family (�1; �2), where �1 2 Œc3 � c2; c1� and �2 D c3 � �1;
maximizes E.�1; �2/ and are admissible solutions in the sense of Coclite/Piccoli.

The above problem can be solved for example by the following simple procedure
suggested in [10]: Obviously the problem only arises, if the possible flux on the
incoming roads is larger than the maximal flux, the outgoing road can handle. In
this dense traffic situation one may assume that the cars of the incoming roads
move to the outgoing road in an alternating way resulting in an equal flux on the
two incoming lanes. Thus we get the following conditions for the fluxes at the
junction:

(1) �1 C �2 2 ˝3 , �1 2 ˝1; �2 2 ˝2.
(2) If c1 C c2 � c3 W Maximize E w.r.t. (1).
(3) If c1 C c2 > c3 W Maximizes E w.r.t. (1) and �1 D �2.
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The corresponding densities i are then found as usual in the Coclite/Piccoli
model: Using condition (11) they are uniquely determined, iff the �i are uniquely
determined. To see that the above set of conditions yields indeed unique �i ; i D
1; : : : ; 3 for arbitrary �i;0 we have to consider the case c1 C c2 > c3: Then we have
to look for �1; �2 such that

max �1 C �2 w.r.t.

�1 D �2

0 � �1 � c1; 0 � �2 � c2; �1 C �2 � c3:

Obviously, the unique solution is �1 D minfc1; c2; c3=2g; �2 D �1; �3 D �1 C �2:

Remark 2.6. The above conditions for example for two outgoing and one ingoing
road are called FIFO (first in, first out) in the traffic engineering literature, see for
example [12].

One Ingoing and Two Outgoing Roads, FIFO Versus NONFIFO Models

We consider a junction with one incoming road n D 1 and two outgoing roads
mD 2:We use the same notation as in the previous section, i.e. we define �i;0 and the
sets ˝i as above depending on whether incoming or outgoing roads are considered.
In this case the matrixA in the notation of Coclite/Piccoli is A D .˛2;1; ˛3;1/; where
˛2;1 C ˛3;1 D 1: The conditions of Coclite and Piccoli are

(1) �1 2 ˝1; ˛j;1�1 2 ˝j for j D 2; 3.
(2) Maximize �1 w.r.t. (1).
(3) �j D ˛j;1�1; j D 2; 3.

Using as in the previous appendix˝i D Œ0; ci �; i D 1; 2; 3 we obtain

�1 D minfc1; c2=˛2;1; c3=˛3;1g: (21)

This is exactly, what is known as the FIFO (first in, first out) model of a junction
[12].

A typical situation is the following: suppose one of the outgoing roads is
completely filled, i.e. j;0 D max. Then the resulting flux at the junction will be
�i;0 D 0; i D 1; 2; 3: No car can pass the junction.

For highways one observes, that this is not always an appropriate description.
Drivers wishing to go for the full road will not necessarily block the whole junction.
Models treating such a situation are so-called NON-FIFO models, [44]. Such a
model can be included in the above context by setting

(1) �j 2 ˝j and �j =˛j;1 2 ˝1 for j D 2; 3.
(2) Maximize �j w.r.t. (1) for j D 2; 3.

(3) �1 D
3P

jD2
�j .
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We obtain as before that �i 2 ˝i for i D 1; 2; 3. Moreover

�j D minf˛j;1c1; cj g; j D 2; 3

�1 D minf˛2;1c1; c2g C minf˛3;1c1; c3g:

We observe that the flux generated by the NON-FIFO conditions is greater or
equal to the flux of the FIFO conditions.

2.1.3 A Smooth Approximations of Junctions by Multi-Lane Models

Traffic flow on unidirectional roads at a motorway junction is in reality described
by a number of roads, which merge or disperse. A suitable accurate model for these
intersections are multi-lane equations. Examples can be found in [37] or [23]. For
the Aw/Rascle approach the full multi-lane equations withN roads labeled by ˛ and
with ˛.x; t/ as density and u˛.x; t/ as velocity on lane ˛ read using the Kronecker
symbol ı˛;ˇ:

@t˛ C @x.˛u˛/ D � 1

T L˛�1
˛�1 � 1

T R˛
˛
�
.1 � ı˛;1/

C� 1

T R˛C1
˛C1 � 1

T L˛
˛
�
.1 � ı˛;N /

@t .˛u˛/C @x.˛u2˛/C c.˛/@xu˛ D � 1

T L˛�1
u˛�1˛�1 � 1

T R˛
u˛˛

�
.1 � ı˛;1/

C� 1

T R˛C1
u˛C1˛C1 � 1

T L˛
u˛˛

�
.1� ı˛;N /

C 1

T .˛/
˛ŒU.˛/� u˛�;

where T L˛ and T R˛ are lane changing rates from lane ˛ to the left or right. They
depend on ˛C1 and ˛�1. For a detailed derivation of these lane changing rates and
of T and c from microscopic/kinetic models we refer the reader to [37]. Similar to
the above considerations the following scalar multi-lane model is a simplification of
these equations:

@t˛ C @x.˛U.˛// D 1cm
� 1

T L˛�1
˛�1 � 1

T R˛
˛
�
.1 � ı˛;1/

C� 1

T R˛C1
˛C1 � 1

T L˛
˛
�
.1 � ı˛;N /:
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Fig. 1 Prototype of a network

In general, on the whole network, traffic is accurately described by these multi-lane
equations. The basic idea of the approach is to use the following simplifications:
On the roads of the network a cumulative model, treating the whole road by one
equation not resolving the single lanes, is assumed to be sufficient as in the models
described in the previous sections.

Near the junctions we introduce a zooming, i.e., a more detailed description of
the situation. This is done by introducing—as usual in boundary layer theory, see,
for example, [9]—a new enlarged spatial coordinate. Then, the asymptotic values of
the resulting problem are used to determine the desired new states i at the junctions.
A more detailed description of the procedure is given in Sect. 2.1.3.
To simplify the following discussion we focus on the prototype network of Fig. 1
with only two different types of junctions. As usual the number of incoming roads
is denoted by n and the outgoing by m: The flux f of the above models is given by
f ./ D U./:

Modelling in the Case nD1 and mD2

We consider the case of two outgoing and one ingoing road. Similar to the model
by Coclite/Piccoli it is assumed that the drivers have a tendency to take one of the
outgoing roads, but in the multi-lane model the final decision depends also on the
local traffic situation at the junction.

Example 1. The junction is modeled by two lane traffic, where the first lane splits
into two roads, see Fig. 2. In the area .x0; x1/ vehicles are changing only from the
first to the second lane, i.e., we have N D 2, T R2 D 0, T L1 is chosen as a linearly
increasing function for x 2 .x0; x1/: The dependence of 1=T L1 on 2 is

1=T L1 D !.1 � 2/=T
	.x/ (22)
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Fig. 2 Schematic diagram for examples 1 (left) and 2 (right)

with 1=T 	 as before. Here the tendency of the drivers to take one of the two lanes
is modeled by the variable ! 2 Œ0; 1�.

Thus, the equations are for ˛ D 1; 2 and 8t > 0

x < x0 @t 1 C @x.1U.1// D 0

x 2 .x0; x1/ @t ˛ C @x.˛U.˛// D .�1/˛!.1 � 2/1=T 	.x/
2U.2/.x0; t/ D 0

x > x1 @t ˛ C @x.˛U.˛// D 0

(23)

with the initial conditions

x < x1 1.x; 0/ D 1;0; x > x1 1.x; 0/ D 2;0; (24)

f < x1 2.x; 0/ D 0; x > x1 2.x; 0/ D 3;0:

Example 2. A more symmetric three-lane approach is the following, see Fig. 2:
From x0 to x1 we consider three roads i D 1; 2; 3, where the left and right lanes
are emerging from the middle one. The vehicles change from the middle lane to the
other two lanes for x 2 .x0; x1/. At x1 the middle lane is closed. There are two
nonzero interaction rates 1=T L2 ; 1=T

R
2 . They differ, according to different desired

distributions of the incoming traffic to the two outgoing lanes. Thus the thresholds
are with 1=T 	 linear increasing in x 2 .x0; x1/ W

1=T R2 D !1.1 � 1/=T
	.x/ (25)

1=T L2 D !3.1 � 3/=T 	.x/; (26)

where !1 C!3 D 1; !i 2 .0; 1/ controls the distribution of the vehicles. This yields
the following set of equations
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x < x0 @t2 C @x.2U.2// D 0

x 2 .x0; x1/ @t˛ C @x.˛U.˛// D !˛.1 � ˛/2=T
	.x/; for ˛ D 1; 3

@t2 C @x.2U.2// D �Œ!1.1 � 1/C !3.1 � 3/�2=T 	.x/
x > x1 @t˛ C @x.˛U.˛// D 0; ˛ D 1; 3

x D x0 1U.1/ D 3U.3/ D 0

x D x1 2U.2/ D 0

(27)

with the initial conditions

x < x1 1.x; 0/ D 0; x > x1 1.x; 0/ D 2;0; (28)

x < x1 2.x; 0/ D 1;0; x > x1 3.x; 0/ D 3;0;

x < x1 3.x; 0/ D 0:

Remark 2.7. In both models the final choice of the drivers which road to take
depends on the actual density of the respective road. The drivers decide according
to the local traffic situation. This is different to the treatment in the model of
Coclite/Piccoli.

Remark 2.8. In a similar way a junction with two incoming and one outgoing road
is treated, see [24].

Derivation of the Coupling Conditions

We consider the above problems and assume that the region of the junction is of
order " << 1, i.e., Œx0; x1� is rescaled like Œ"x0; "x1�. The lane changing rates have
to be rescaled accordingly with 1=":

1

T
L;R
˛

! 1

"T
L;R
˛

:

As mentioned before we introduce near the junctions a zooming, i.e., a more
detailed description of the situation. This is achieved by introducing a new enlarged
spatial coordinate

xJ D x

"
: (29)

Introducing xJ into the above problems and introducing a new time scale tj D t
"

leads to the same problems as before with time and spatial ranges extended to
infinity. Thus, we are looking now for the asymptotic values, i.e., the solutions at
x D ˙1 and t D 1 of the problems defined in the above subsection. Numerically,
we determine the solutions at x D xC

1 and x D x�
0 , respectively. These values are

then used as definition for the final values i at the junctions for the in- and outgoing
lanes. More exactly, the desired asymptotic states i are given by
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n D 1;m D 2 (Ex. 1) W 1 D 2.x D x�
0 /; 2 D 1.x

C
1 /; 3 D 2.x

C
1 /

n D 1;m D 2 (Ex. 2) W 1 D 2.x D x�
0 /; 2 D 1.x

C
1 /; 3 D 3.x

C
1 /

where 1.x/; 2.x/ and 3.x/ are the solutions of the different problems described in
the last subsections at time t D 1. After calculating these values the solution in the
sense of Definition 2.3 is calculated as solution to the problems defined by the initial
values i;0 and i for each road i as in the previous approaches by Holden/Risebro
and Coclite/Piccoli.

Remark 2.9. One observes easily that the coupling condition (4) is fulfilled.

2.1.4 Comparison of the Models

Here we show a numerical comparison of the scalar multi-lane model with the
Coclite/Piccoli model.

We compare both models for the junction with n D 1;m D 2: For comparison
we use the simple flux-function f .x/ D 4x.1� x/, i.e., U./ D 4.1� /:

We consider the Coclite/Piccoli model with an equal distribution of vehicles to
the two outgoing lanes:

A D .1=2; 1=2/T

and determine the resulting states N1; N2; N3 for different initial states 1;0; 2;0; 3;0.
For the scalar multi-lane model we use Example 2 and assume an equal tendency

of the drivers to choose one of the two lanes:

!1 D !3:

With this choice of parameters a simulation of the full system is done using
a second order method for hyperbolic equations with relaxation term, see [34].
The asymptotic states N1; N2; N3 are determined using the same initial states as
before. For the simulation the multi-lane model was calculated until the residuum
(res D f .2.x0// � f .1.x1// � f .3.x1//) was less than a small constant h and
the time derivative was less than h:

The results are compared in Figs. 3 and 4. The figures show the differences
between the final states N1; N2; N3 of both models.

In Fig. 3 the above differences in final values N1; N2; N3 are shown for initial
values 3;0 D 0 and 10�10 different initial states 1;0 and 2;0. Since the differences
are very small, we use in three of the four pictures in Fig. 3 a logarithmic scale. The
last picture shows the absolute difference in normal scale between both models.

One observes that the two models give nearly coinciding results if the outgoing
roads were initially empty. In case the roads are initially not empty larger differences
in the behaviour of the models can be seen. For example in Fig. 4 the case 3;0 D 7=9
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Fig. 3 Comparison of multi-lane and Coclite/Piccoli models for 3;0 D 0

is shown. The same 10�10 initial states 1;0 and 2;0 on road 1 and 2 are considered.
One observes that the differences of the final state 3 on the outgoing road are in
this case of order 1 for large values of 1;0 and 2;0.
To conclude a simple analytically solvable case with 1;0 D 1

9
; 2;0 D 8

9
; 3;0 D 1

is considered: the resulting stationary values of the multi-lane model are 1 D 1
9
;

2 D 8
9
; 3 D 1, since f .1/Df .2/. Road 3 is already full such that no vehicle

can change to this lane. The results of the Coclite/Piccoli model are in contrast:
1 D 1; 2 D 0; 3 D 1, since by the definition of the admissible sets, it is 3 2 f1g
and thus 0Df .3/ D 1

2
f .1/: Therefore we must have f .i / D 0 for all i .

Obviously, the different behaviour is due to the fact, that the choice of the drivers
which way to take is fixed in the Coclite/Piccoli model, whereas in the multi-lane
model the choice of the drivers depends on the local traffic situation.

Comments

• With the multi-lane approach one obtains results which are qualitatively compa-
rable with the existing models. However, the quantitative comparison also shows
that there are several situations where this model gives different results: we
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Fig. 4 Comparison of multi-lane and Coclite/Piccoli models for 3;0 D 7=9

observe differences between the Coclite/Piccoli approach and the multi-lane
model for dense traffic situations. This is partially due to the fact that the wishes
of the drivers are fixed in the Coclite/Piccoli model, whereas they depend on the
local traffic situation in the multi-lane model.

• To circumvent the high computation times of the multilane model, the necessary
data (the asymptotic values) have to be stored before the computation of a large
network in lookup tables.

2.2 Simplified Dynamics on the Network

In the following the roads are labeled by j D 1; : : : ; J and junctions are labeled
by i D 1; : : : ; I: Variables without index indicate the whole vector of all indexed
quantities. We assume for sake of simplicity to have a network with only one
incoming and one outgoing road. This assumption is not strict, all results can be
easily obtained in the case of several ingoing and outgoing roads.

We allow only junctions with a total of three roads. Thus having two different
situations, i.e. a junction where two roads merge to one or a junction, where a road
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disperses in two others. The coupling conditions from the last section imply for a
dispersing junction i; that the matrix A D A.i/ is given by

A.i/ D
�

˛i

1 � ˛i

	
2 R2�1: (30)

The value 0 < ˛i < 1 distributes the flux from the ingoing to the outgoing roads.
We derive from the PDE model two different simplifications of traffic flow on a

network. The first one is based on a simple finite volume spatial discretization of the
PDE model. The second one is based on Front-Tracking.

2.2.1 An ODE-Type Model

We derive an approximate model by considering the evolution of density averages
on the road. Consider the equation .j /t C fj .j /x D 0 for x 2 Œa; b�; t 2 Œ0; T �:

Integrating over Œa;m� and Œm; b�; a < m D a C b�a
2
< b yields

@t
.a/
j .t/ D � 2

L

�
fj .j .m; t//� fj .j .a; t//

�
(31)

@t
.b/
j .t/ D 2

L

�
fj .j .m; t//� fj .j .b; t//

�
(32)

where L D b � a and .a/j .t/ D 2
L

R m
a
j .x; t/dx and .b/j .t/ D 2

L

R b
m
j .x; t/dx:

We use the following approximation for j .m; t/:

j .m; t/ D 1

2

�

.a/
j .t/C 

.b/
j .t/

�
: (33)

Thus, one obtains in a straightforward way a coupled system of two ordinary dif-
ferential equations. Initial conditions are .a/j .0/ D 2

L

R m
a
j;0.x/dx and .b/j .0/ D

2
L

R b
m
j;0.x/dx:

The above ODE model is then closed using for j .a; t/ and j .b; t/ the coupling
conditions. We set

@t
.a/
j .t/ D � 2

L

�
fj .j .m; t// � fj . Naj .t//

�
(34)

@t
.b/
j .t/ D 2

L

�
fj .j .m; t//� fj . Nbj .t//

�
(35)

with the following approximation of the coupling conditions:

Naj .t/ D F j
a .

.a/
j .t/; 

.a=b/

k .t/; 
.a=b/

l .t// (36)

Nbj .t/ D F
j

b .
.b/
j .t/; 

.a=b/
m .t/; .a=b/n .t// (37)
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where a or b are chosen for in- and outgoing roads at the junctions respectively.
In the above formulas we assume that road j connects two junctions. At x D a we
have a junction with the roads j; k; l and the function Fa for the coupling. Similarly
at the junction at x D b we have the roads j;m; n and the function Fb:

Finally, we discretize in time with stepwidth �: We call this time the “update
time” of the ODE model. The full model for a road j with fixed time � reads


.a/
j .t C �/ � 

.a/
j .t/ D �2�

L

�
fj .


.a/
j .t/C 

.b/
j .t/

2
/ � fj . Naj .t//

�


.b/
j .t C �/� 

.b/
j .t/ D 2�

L

�
fj .


.a/
j .t/C 

.b/
j .t/

2
/ � fj . Nbj .t//

�

Naj .t/ D F j
a .

.a/
j .t/; 

.a=b/

k .t/; 
.a=b/

l .t//

Nbj .t/ D F
j

b .
.b/
j .t/; 

.a=b/
m .t/; .a=b/n .t//

We have the following remark on the choice of the update time �:

Remark 2.10. The above approach can be seen as Finite-difference-discretization
of the partial differential equation with only three points in space. Considering the
CFL condition for the scheme we have a restriction to the update time in the ODE
model, i.e. to be more precise we have

� � L

2max
x;j

ff 0
j .x/g

(38)

Remark 2.11. The model presented in this section is based on a coarse discretiza-
tion of the PDE model. Thus, in particular, features like the speed of propagation of
disturbances are not any more the same as in the original model.

2.2.2 An Algebraic Approach

In this section the traffic flow model is reduced to a system of algebraic equations.
This is achieved by considering a simplified situation concerning the inflow into
the network and tracking single waves through the network. In contrast to the static
network models often used by traffic engineers the present approach still contains
simplified dynamics—being at the same time not much more complicated and
expensive from a computational point of view. For the following we assume that
no backwards going shock wave appears, this means optimizing in a way, s.t. no
traffic jam occurs. We start with an initially empty network and refer to the end of
the section for the case of partially filled networks. Moreover, we restrict for the
moment to constant inflow 0:
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We assign two values j;0 2 R and tj 2 RC to each road j in the network. The
value j;0 is an approximation of the density j .x; t/ while tj denotes the arrival
time of a wave at road j , see below.

We use the following bounds for j;0 and tj :

0 � j;0 � �; 0 � tj � T: (39)

The assumption on tj is obvious, but the assumption on j;0 is critical. It ensures,
that the direction of the flow through the network is one-way only. For the ingoing
road j0 to the network we set j0;0 D 0: Then we set the values j;0 such that they
satisfy the coupling conditions at the junctions. This determines the values j;0 and
the conditions simplify under the restriction (39) and formula (30). We can express
them as algebraic equations:

For a node i 2 f1; : : : ; I g with the roads k; l;mwhere k is the incoming and l; m
are the outgoing roads we have

l;0 D f �1
l .˛.i/fk.k;0//; m;0 D f �1

m ..1 � ˛.i//fk.k;0//; (40)

when 0 < ˛ < 1 distributes in direction of road l: For a junction with two incoming
k; l and one outgoing roadm we obtain

m;0 D f �1
m .fl .l;0/C fk.k;0//: (41)

The solution to (40), resp. (41) is unique, iff it exists. If the capacity of the outgoing
roads of any junction is not sufficient there is no solution j;0 subject to (39) and
(40), resp. (41). This reflects the occurrence of a backwards going shock wave.

Remark 2.12. As an example note, that for a flux functions of the type fk.x/ D
4x.1�x=Mk/ the conditions read 2l;0 D Ml�

q
M2
l � ˛.i/Mlfk.k;0/ and similar

for m;0: For the other junction we obtain 2m;0 D Mm � p
M2
m �Mm�, � D

fl.l;0/C fk.k;0/:

The arrival times tj defined by (42) and (43) describe an approximation of the
time when the step function arrive at road j . Starting with a Riemann problem

@tj C @xfj .j / D 0; j .x; 0/ D
�
j;0 x � a

0 x > a

	

with concave fluxfunction fj , a rarefaction wave is the correct solution. We
simplify this by approximating the wave by a discontinuity. We restrict ourselves
to track only one shock on each road. The speed of the wave is approximated with
the Rankine-Hugoniot speed sj D fj .j;0/

j;0
: The arrival times are approximated as

follows: For the ingoing road j0 we set tj0 D 0: In the case of a junction, where one
road j disperse in two others k; l we set
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tk D tl D tj C b � a

sj
(42)

where sj D fj .j;0/

j;0
:

In the case of a junction with two incoming roads k; l and one outgoing road j
the situation is more complicated. We set

tj D .tl C b � a

sl
/

l;0

l;0 C k;0
C .tk C b � a

sk
/

k;0

l;0 C k;0
: (43)

This choice is motivated by the following calculations: Let t .1/ < t.2/ denote the
time, when the shocks from road k and l reach the beginning of road j: Thus
we have the values k;0; l;0 given. We again assume to have one shock on road
j instead of rarefaction waves. The travelling speeds are given by s1 D f .k;0/

k;0
and

s2 D fj .j;0/�fj .k;0/
j;0�k;0 : The values j;0 are determined by the coupling condition, i.e.

f .j;0/ D f .k;0/C f .l;0/: Then we have

Z T

0

Z b

a

j .x; t/dxdt D .T � t .1//.b � a/1;0 � k;0

2s1
.b � a/2

C.T � t .2//.b � a/.j;0 � k;0/� j;0 � k;0

2s2
.b � a/2

The idea is to approximate the above integral by .T � tj /.b � a/j;0 � j;0
2sj
.b � a/2:

If f is linear, then the correct choice for tj would be:

tj D t .1/
1;0

1;0 C 2;0
C t .2/

2;0

1;0 C 2;0
(44)

This is used as well as an approximation in the nonlinear case. Finally, to obtain
formula (43) we use (44) together with t .1/ D .tl C b�a

sl
/ and t .2/ D .tk C b�a

sk
/:

Thus we have defined a purely algebraic model for traffic flow on road networks
without backwards going shock waves.

Remark 2.13. The treatment of a partially filled network is also possible. Assume
we have the initial densities pj;0 on the road j given, where all values are consistent
with the conditions at the junctions. pj;0 is constant for the whole road and such
that pj;0 < �j : We start, as before, with an inflow 1;0 < � as above. Then similar
considerations as the above, yield the following expression for an integral on j with
.L WD b � a/

Z T

0

Z b

a

.x; t/dxdt D Ltj pj;0 C Lj;0.T � tj / � j;0 � pj;0
2sj

L2 (45)
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where now sj is given by

sj D fj .j;0/� fj .pj;0/

j;0 � pj;0
(46)

Using this definition of sj one can approximate the arrival times of the ingoing wave
tj in the same way as before with sj as in (46).

Remark 2.14. Nonconstant initial data, for example piecewise constant initial data,
can be treated in the same way. For each wave the arrival times have to be tracked
and we have to assume that the waves do not interact.

Remark 2.15. The above model contains simplifications at several points. However,
still the dynamical behaviour is similar to that of the PDE model in the simple case
considered here. If the ingoing flow structure is becoming more complicated, in
particularly time dependent as discussed in Remark 2.14 the present procedure will
be similar to a Front-Tracking approximation of the PDE.

2.3 Optimization

In this section we consider the optimal distribution of traffic flow in a given network.
The notation is as in Sect. 2.2. As mentioned above the network consists of junctions
with three roads with either two joining or two dispersing roads. The junctions with
two dispersing roads are numbered with i D 1; : : : ;M . Junction i is assumed to
have an ingoing road j and outgoing roads k; l . Using again the notation of Sect. 2.2,
i.e. formula (30) we haveM matrices A.i/; i D 1; : : : ;M given. Each matrix A.i/ is
described by ˛i 2 R giving the flux distribution. These are the control parameters to
optimize the flow in the network. Hence, we have a total of M real-valued controls
˛ D .˛1; : : : ; ˛M /: The set of all possible controls is given by S D Œ0; 1�M : These
parameters are given by recommendations to the drivers to take one of the outgoing
roads.

2.3.1 Cost Functionals

A Cost Functional Measuring the Outflow

A first functional could be obtained by measuring the flow on the outgoing road. For
a given time period Œ0; T � we want to distribute the traffic in the network, such that
the maximal possible outflow is achieved for a given inflow 0 D 0.t/: we define
the cost functional J1 as
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J1.˛IT; 0/ D
Z T

0

f .out .x0; t//dt: (47)

The minimization problem to be solved is

min
˛2S .�J1/

where S is the set of controls.

A Cost Functional Measuring the Time Cars Remain in the Network

Another functional is given by considering the time and space averaged densities.
Minimizing this functional means finding the fastest way through the network, since
by the fundamental diagram a low density is connected to high velocities. One
obtains the functional

J2.˛IT; 0/ D
JX
jD1

Z T

0

Z b

a

j .x; t/dxdt: (48)

The problem to be solved is min
˛2S J2; S .

Relations Between the Functionals

A relation between the two functionals (47) and (48) is given by

Lemma 2.16. J2 D �c1J1 C c2 with c1 D c1.˛/ � 0 and c2 � 0; c2 depending
only on the inflow to the network.

Density and flux are related via the hyperbolic conservation law, i.e. we have on
each road j

@tj C @xfj .j / D 0 8x 2 .a; b/t 2 Œ0; T � (49)

Assume an empty network at time t D 0 and 1.a; t/ D 0.t/; where road 1 is the
ingoing road to the network. Using the conservation law we have

Z t

0

@tj .x; s/ds D j .x; t/ � j .x; 0/ D �
Z t

0

@xfj .j .x; s//ds:
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We get using the initial conditions

J2 D
JP
jD1

R T
0

R b
a
j .x; t/dxdt D �

JP
jD1

R T
0

R b
a

R t
0
@xfj .j .x; s//dsdxdt

D R T
0

R t
0

JP
jD1

�fj .j .b; s//C fj .j .a; s//dsdt

(50)

For a simplification we consider a network with only one ingoing and one outgoing
road. Then one of the two cases hold for all interior roads j of the network.

1. fj .j .a; t// D fk.k.b; t// C fl.l .b; t// for a junction, where road k and l
merge to j:

2. fl .l .a; t//C fk.k.a; t// D fj .j .b; t// for a junction, where road j disperse
to k and l:

Let us denote the incoming road as road 1 and the outgoing as road n0: Then we
have 8s

n0X
jD2

fj .j .a; s// D
n0�1X
jD1

fj .j .b; s//: (51)

The index j D 1 appears in the second sum, since two roads j1; j2 > 1 are connected
to the incoming road. Using the above equality (51) in (50):

J2 D
Z T

0

Z t

0

�fn0.n0.b; s//C f1.1.a; s//dsdt (52)

Thus, minimizing J2 means maximizing a functional, which only depends on the
out- and inflow of the network. To obtain the lemma we use the following equality
for � 2 .0; T / and g continuous and positive.

Z T

0

Z t

0

g.s/dsdt D
Z T

0

Tg.t/� tg.t/dt D .T � �/
Z T

0

g.t/dt

Since bn0 > an0 is arbitrary we finally derive

J2 D �c1
Z T

0

fn0.n0.b; t//dt C c2 D �c1J1 C c2; (53)

where c1 D T � �, � D �.˛/ depending on the control parameters and

c2 D
Z T

0

Z t

0

f1.1.a; s//dsdt

depending only on the inflow.
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Functional for the ODE Model

The functional J2 reads in the context of the ode model for a total of J roads and
t 2 Œ0; T �

J2.˛IT I 0/ D
Z T

0

JX
jD1

b � a
2

�

.a/
j .t/C 

.b/
j .t/

�
dt (54)

where .a/j .t/ D 2
b�a

R m
a j .x; t/dx and .b/j D 2

b�a
R b
m j .x; t/dx and m denotes

the midpoint of the interval Œa; b�:

Functional for the Algebraic Model

We derive an expression for the functional J2 in the context of the algebraic model.
In Sect. 2.2 we assumed, that we have only one wave of height j;0 on each road j:
This step arrives at road j at time tj and travels with speed sj on road j: Hence we
have the following approximation of the functional.

Z T

0

Z b

a

j .x; t/dxdt D .T � tj /.b � a/j;0 � j;0

2sj
.b � a/2 (55)

Summing up over all roads yields

J2.˛IT; 0/ D
JX
jD1

.T � tj /Lj;0 � j;0

2sj
L2 (56)

where sj Dfj .j;0/=j;0; L D b � a and j;0; tj are given by the expressions in
Sect. 2.2. One proceeds similarly for partially filled networks.

2.3.2 The Optimization Problem for the PDE Network

On each edge j; the traffic dynamics are described by the Lighthill Whitham equa-
tions. For the following considerations we restrict ourselves to the Coclite/Piccoli
model of junctions. Here, we restrict ourselves for simplicity to networks with only
two types of junctions with a total of three incident roads, see Fig. 5. We use the
following notations.

Mj D maxfj ./; �j D argmaxfj ./: (57)

We consider the case of a single junction v and constant initial data Nj : We denote
the given values by Qpj 2 RC and the initial value by Nj 2 RC. ı�

v denote the set
of incoming roads and ıC

v the set of outgoing roads. Then, we consider the problem



Modeling and Optimization of Scalar Flows on Networks 419

� v �
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Fig. 5 Considered types for a junction v. The used notation is ı�

v D fj0g; ıC

v D fj1; j2g (left)
and ı�

v D fj1; j2g; ıC

v D fj3g (right), respectively

@t j C @xfj .j / D 0

j 2 ıC
v W j .x; 0/ D

� Nj x > aj
Qpj x � aj

	
resp. (58)

j 2 ı�
v W j .x; 0/ D

� Qpj x � bj

Nj x � bj

	

A solution j of (58) satisfies also (3). Since the conservation of flux holds, there
are certain restriction on Qpj : They can be expressed explicitly by (60) using the
following definition of the function  7! �./:

for given  define � D �j ./ to be � 6D ; fj .�/ D fj ./: (59)

The restrictions are

j 2 ı�
v W Qpj 2

� f Nj g[��j . Nj /; j;max� if Nj < �j�
�; j;max

�
if Nj � �j

	

(60)

j 2 ıC
v W Qpj 2

�
Œ0; �j / if Nj < �j

f Nj g [ Œ0; �j . Nj /Œ if Nj � �j

	
:

Depending to which intervall Qpj belongs, the wave generated by the Riemann
problem (58) is either a shock wave or a rarefaction wave. As additional constraints
we use
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Case 1: Consider a single junction v where road j0 disperse in two roads j1 and j2.
A value ˛v 2 R with 0 < ˛v < 1 specifying the percentage of drivers coming from
road j0 and driving to j1 is introduced. Then

fj1.j1.aj1C; 
// D ˛vfj0.j0.bj0�; 
//
fj2.j2.aj2C; 
// D .1 � ˛v/fj0.j0.bj0�; 
//: (61)

Unique values Qpj ; j D j0; j1; j2; are be found by solving the maximization problem

maxfj0. Qpj /s:t:(60); (61); (58) (62)

Expression (62) does not allow an explicit representation of the boundary condi-
tions. If we neglect the possibility of shock waves, especially backwards going
shock waves on the incoming street j0; the situation is much simpler. Therefore
we assume the following

Nj ; j .x; t/ � �j ; 8j: (63)

Since we omit shock waves on j0 we obtain instead of the maximization problem
(62) an explicit formula for calculating Qpj W

Qpj0 D Nj0 ; fj1. Qpj1/ D ˛vfj0. Qpj0/; fj2. Qpj2/ D .1 � ˛v/fj0. Qpj0/:

Equation (64) is well-defined due to (63) and yields unique values Qpj1; Qpj2 :
Case 2: Consider a single junction v where roads j1 and j2 merge to j3. Flux
conservation through the junction implies

fj3.j3.aj3C; 
// D fj1.j1.bj1�; 
//C fj2.j2.bj2�; 
//: (64)

The unique values Qpj ; j D ji ; i D 1; 2; 3; are chosen as before. Define maximal
possible fluxes by

j 2 ı�
v D fj1; j2g W �j D



fj . Nj / if Nj < �j
Mj if Nj � �j

	

j 2 ıC
v D fj3g W �j D

�
Mj if Nj < �j
fj . Nj / if Nj � �j

	

and solve the maximization problem:

If �j1 C �j2 > �j3 max
X
j2ı�

v

fj . Qpj / s.t. (64); (60) and fj1. Qpj1/ D fj2. Qpj2/

If �j1 C �j2 � �j3 max
X
j2ı�

v

fj . Qpj / s.t. (64); (60): (65)
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Again we obtain an explicit representation of the boundary conditions when
assuming (63).

Qpj D Nj j D j1 and j D j2

fj3. Qpj3/ D
X
j2ı�

v

fj . Qpj / (66)

Thus, in this simple case of no backwards travelling wave, the coupling conditions
at the junctions are essentially given by the drivers wishes for a diverging junction.
For a converging junction they are given by the equality of fluxes together with the
requirement that the fluxes from the two ingoing roads are equal in the dense case.

Now, optimal control problems can be investigated. Typically, the average time
spent by the drivers in the network is minimized. This means we consider the
objective function

J.˛1; : : : ; ˛jV j/ D
Z T

0

jEjX
jD1

Z bj

aj

j .x; t/dxdt: (67)

This function has to be minimized with respect to the control variables ˛v. We solve
the problem:

min
0<˛1;:::;˛jV j

<1
J.˛1; : : : ; ˛jV j/ (68)

subject to: j is solution of (3) with coupling conditions

at the junctions given by (62) and (65):

A solution to this problem yields an optimal distribution of a traffic flow in a network
including all dynamics, like jam propagation etc.

Alternatively we can optimize the above function in the case of no backwards
going shock wave. This implies replacing conditions (62) and (65) by (64) and (66).
However, even in this case optimization of networks with a large number of roads
in reasonable time is beyond any computational possibility.

The Optimization Problem for the Simplified Nonlinear Model

In this section we consider the simplified model from Sect. 2.2. We start with an
initially empty network and refer to the end of the section for the case of partially
filled networks. Moreover, for simplicity, we restrict to constant inflow j;0 applied
as boundary condition at the incoming road to the network. For the geometry of the
network we use the same assumptions as in the previous section, i.e. we assume to
have only junctions connecting at most three roads, like in Fig. 5.
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The assumption of no backwards going shock waves is imposed as in (63), i.e.

j .x; t/ � �j 8j:

We assign two values pj 2 R and tj 2 RC to each road j of the network. The value
pj is an approximation of the density j .x; t/ while tj denotes the arrival time of a
wave at road j . The following bounds are obvious.

0 � pj � �j ; 0 � tj � T: (69)

Due to (63) we can express the coupling conditions (64) and (66) in the form (64).
We translate them in terms of pj and obtain:

Case 1:

ı�
v D fj0g; ıC

v D fj1; j2g
pj1 D f �1

j1
.˛vfj0.pj0//; pj2 D f �1

j2
..1 � ˛v/fj0.pj0//:

Case 2:

ı�
v D fj1; j2g; ıC

v D fj3g
pj3 D f �1

j3
.fj1.pj1/C f �1

j2
.fj .pj2///

For the ingoing roads to the network we set pj D j;0: In Case 1 the parameters
0 < ˛v < 1 distribute traffic at junction v in the direction of road i: Hence, pj is
determined solely by fulfilling the coupling conditions at the junctions. The arrival
times of the waves tj are defined as in Sect. 2.2 using

sj D fj .pj /

pj

by the formula

tj1 D tj2 D tj0 C b � a

sj0
: (70)

In the case of a junction with two incoming roads j1; j2 and one outgoing road j3
the situation is more complicated. We set as in Sect. 2.2

tj3 D .tj1 C b � a

sj1
/

pj1

pj1 C pj2
C .tj2 C b � a

sj2
/

pj2

pj1 C pj2
: (71)

Finally, the full simplified nonlinear model reads with Lj D bj � aj and sj D
fj .pj /=pj :
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For junctions of merging type:

tk D .ti C Li
si
/

pi
piCpj C .tj C Lj

sj
/

pj
piCpj

pk D f �1
k .fi .pi /C fj .pj //:

For junctions of dispersing type:

ti D tj D tk C Lk
sk

pi D f �1
i .˛vfk.pk//; pj D f �1

j ..1 � ˛v/fk.pk//:

For the road entering the network:

pj D 0; tj D 0:

9>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>;

(72)

The objective function reads

J.˛IT; 0/ D P
j2E.T � tj /Lj pj � pj

2sj
L2j : (73)

Herein T is a fixed time and 0 is the inflow to the network. It turns out that also for
this simplification the minimization problem minJ subject to the constraints above
still needs large computation times for very large networks due to the nonlinearities
in the coupling conditions for pj and tj : For numerical results we refer to the
subsequent sections.

The Optimization Problem for Linearized Models

In this section the previously introduced model is further simplified obtaining a
linear model accessible to discrete optimization techniques. The basic idea is the
reformulation of the above model in terms of the flux qj WD pjue.pj /:We introduce
the notation

�j .qj / WD 1

ue.f �1
j .qj //

(74)

and obtain pj D qj �j .qj /:

The coupling conditions at the junctions read

For junctions of merging type:

qk D qi C qj

For junctions of dispersing type:

qi C qj D qk:

For all roads

Mj � qj � 0:

9>>>>>>>>>>=
>>>>>>>>>>;

(75)
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Note that the control variable ˛v does not appear in the above formulation. Therefore
the values of qi ; qj are not solely defined by qk: The function J is given in terms of
qj by

J.qj IT; 0/ D
X
j2E

�
TLj � tj Lj � �j .qj /L

2
j

2

�
�.qj /qj : (76)

Then the complete model and the optimization problem reads

min
qj j2E J.qj IT; 0/

where for junctions of dispersing type:

ti D tj D tk C Lk�k.qk/

qi C qj D qk

where for junctions of merging type:

tk D .ti C Li�i .qi //
qi �i .qi /

qi �i .qi /Cqj �j .qj / C .tj C Lj �j .qj //
qj �j .qj /

qi �i .qi /Cqj �j .qj /
qk D qi C qj

where for roads ingoing to the network:

qj D f0.0/; tj D 0

where for all roads:

Mj � qj � 0

9>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>;

(77)

This model is still equivalent to the nonlinear model described above. We derive
different (linear!) models from this formulation and refer to the subsequent sections
for numerical results.

Linear Models with Dynamics

The coupling conditions at the junctions are linear in qj but nonlinear in tj : We use
different possibilities to linearize the coupling tj : In the numerical tests it turns out
that the crucial point is the proper discretization of the weight w appearing in the
case of merging junctions, i. e.

wi .qi ; qj / WD qi �i .qi /

qi �i .qi /C qj �j .qj /
; wj .qi ; qj / WD qj �j .qj /

qi �i .qi /C qj �j .qj /

We propose two different approaches and compare the results numerically in the
next section.
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(A) We approximate

wi ;wj � Qw D 1

2

and calculate the first order Taylor expansion Q�j .q/ D �j .0/ C q� 0
j .0/ as an

approximation for �j .q/. That means we linearize the model globally around 0.
Neglecting higher order terms, we obtain the following linear equations:

Dispersing junctions

ti D tj D tk CLk Q�k.qk/
Merging junctions

tk D �
ti CLi Q�i .qi /

� 
 Qw C �
tj CLj Q�j .qj /

� 
 Qw:

(78)

(B) Instead of linearizing the functions globally, we discretize the problem using
piecewise linear approximations. The junctions of merging type are now
approximated by piecewise linear functions on triangles, a more refined
approximation as in case A. For each junction k of the merging type consider

ak.qi ; qj / WD Li�i .qi /
qi �i .qi /

qi �i .qi /C qj �j .qj /
C Lj �j .qj /

qj �j .qj /

qi �i .qi /C qj �j .qj/

(79)

As an example note that for f ./ D 4.1 � =Mi/ and Mi D Mj D 1 the
contour lines of ak are given in Fig. 6.

We introduce Ni 
 Nj discretization points .�kv ; 

k
w/ with 0D �k1 < �

k
2 < : : :

< �kNi�1 < �
k
Ni

DMi and 0D 
k1 <

k
2 < : : : < 
kNj�1 < 
kNj DMj . Denote � a

partition of the grid of discretization points into triangles and introduce a binary
variable yk.p1;p2;p3/ 2 f0; 1g for each triangle .p1; p2; p3/2�. The identification
of the proper triangle corresponding to the incoming fluxes qi ; qj is done by the
next equations. Exactly one triangle has to be selected:

X
.p1;p2;p3/2�

yk.p1;p2;p3/ D 1: (80)

Once one triangle is selected, the values of qi ; qj can be encoded as convex
combination of its corners. For this, introduce a continuous variable �kv;w � 0

for each discretization point .�kv ; 

k
w/, which are coupled to qi and qj as follows:

qi D
NiX

vD1

NjX
wD1

�kv 
 �v;w; qj D
NiX

vD1

NjX
wD1


kw 
 �v;w: (81)
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qi
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Fig. 6 Contour lines of the nonlinear weight function ak.qi ; qj / for qi ; qj 2 Œ0; 1�

The convex combination condition is

NiX
vD1

NjX
wD1

�v;w D 1: (82)

Only those three values �p1 ; �p2 ; �p3 may be non-zero that correspond to the
selected triangle by (80):

yk.p1;p2;p3/ � �p1 C �p2 C �p3; 8 .p1; p2; p3/ 2 �: (83)

To introduce Qak as a piecewise linear approximation of ak.qi ; qj /, we add the
following equation to the model:

Qak D
NiX

vD1

NjX
wD1

ak.�v; 
w/ 
 �v;w (84)

The junctions of dispersing type are approximated as in case A, whereas for the
junctions of merging type, we use a blending of Qa as above and Qw as in case A:
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Dispersing junctions

ti D tj D tk C Lk Q�k.qk/
Merging junctions

tk D .ti C tj / 
 Qw C Qak:

(85)

For any linearization A or B we linearize the objective function (76) as follows.
For every j 2 E we introduce Dq variables 0 � y

j
i � Mj

Dq
and let the flux be

represented by

qj D
DqX
iD1

y
j
i : (86)

Functional J is approximated by

QJ .qj IT; 0/ WD
X
j2E

zj ; (87)

where we introduce for every edge j 2 E and every k D 1; : : : ;Dt the inequality

DqX
iD1



G



.i C 1/ 
Mj

D
; T 
 2k�Dt

�
�G



i 
Mj

D
; T 
 2k�Dt

��

 D
Mj


 yji

� zj CM 
 .1 � ujk/; (88)

whereM is a sufficiently big value and G is defined by

G.�; �/ WD


T � � � �.�/Lj

2

�

Lj �.�/�; (89)

and we assume thatG.
; �/ is convex for every � 2 Œ0; T �. Moreover, ujk is a binary
variable for every j 2 E and k D 1; : : : ;Dt , where ujk D 1 if tj � T 
 2k�Dt . Thus
we add the following inequalities to the model:

tj � T 
 2k�Dt .1 � ujk/; (90)

for all j 2 E and k D 1; : : : ;Dt . Summarizing we obtain a linear mixed-integer
model with dynamics given by



428 S. Göttlich and A. Klar

min
zj ;y

j
i ;ujk ;�

k
v;w;qj ;tj

QJ
where for junctions of dispersing type:

ti D tj D tk C Lk Q�k.qk/
qi C qj D qk

where for junctions of merging type:

case A: tk D �
ti C Li Q�i .qi /

� 
 Qw C �
tj C Lj Q�j .qj /

� 
 Qw
case B: tk D .ti C tj / 
 Qw C Qak

qk D qi C qj

where for roads ingoing to the network:

qj D f0.0/; tj D 0

where for all roads:

Mj � qj � 0

and where ujk; zj ; �kv;w are coupled as introduced.

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

(91)

Remark 2.17. In the above modelling we set the discretization points as T 2k�Dt
for k D 1; : : : ;Dt : This produces a log-scale distribution of discretization points in
Œ0; T �: Other distributions are also possible. For example, if we identically distribute
we obtain

tj � T
k � 1
Dt � 1

.1 � ujk/ (92)

instead of (90). The proper choice depends on the size of the network geometry and
the scaling of T:

Linear Model Without Dynamics

We assume tj D 0 which models a static traffic flow network. We obtain a linear
function QJ from (76) by a piecewise linear approximation of J . For this, we
introduce D variables 0 � y

j
i � Mj

D
for every edge j 2 E . Then the flux qj is

represented by

qj D
DX
iD1

y
j
i : (93)

Now J is approximated by

QJ .qj IT; 0/ WD
X
j2E

DX
iD1



G



.i C 1/ 
Mj

D

�
�G



i 
Mj

D

��

 D
Mj


 yji ; (94)
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where G is defined by

G.�/ WD
 
TLj � �.�/L2j

2

!

 �.�/ 
 �: (95)

Again, we assume G.
/ to be convex. Summarizing, we have the following model

min
y
j
i ;qj

QJ
where for roads connected to a junction v:P

j2ıC

v

qj D P
j2ı�

v

qj

where for roads ingoing to the network:
qj D f0.0/

where for all roads:

Mj � qj � 0

and yji satisfies (93)

9>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>;

(96)

Remark 2.18. Min cost flow model
We again assume tj D 0; i.e. the static network case. Instead of a piecewise linear

approximation of our objective function (76) we additionally assume a simplified
dynamic: If the function

uej ./ D cj

is constant for all j , then by definition

�.qj / D 1

cj
:

The function (76) reads

NJ .qj IT; 0/ D
X
j2E

!j qj ; (97)

where !j are constants given by

!j D T
Lj

cj
� L2j

2c2j
:

Together with the linear coupling conditions and the lower bounds for qj we obtain
the classical min cost flow problem:
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min
qj

P
j2E

!j qj

where for roads connected to a junction v:P
j2ıC

v

qj D P
j2ı�

v

qj

where for roads ingoing to the network:

qj D f0.0/

and where for all roads:

Mj � qj � 0

9>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>;

(98)

Unfortunately the assumption uej D constantj is not a realistic approximation
of a typical fundamental diagram. For reasonable fundamental diagrams we refer
to [39]. At least we have to assume uej .x/ is linear.

Remark 2.19. We note that for the linear models there is a strong connection to
the traffic flow models proposed by Möhring et al. see, for example [40, 41].
Especially the occurrence of the so-called transit-times shows the close relation
between the models. However, the cost function for the linear problem differs due
to the derivation starting with partial differential equations. The starting point of
the models introduced in [41] are the “transit times” �e which are assumed to be
known functions. They describe the time needed by a flow to pass the arc e: In our
formulation the “transit times” are the functions derived by (74), i.e.

q ! �j .q/Lj :

The case of constant transit times is named “static flow problems” in [41]. In
our introduced model this reflects the situation uej ./ constant. As pointed out by
Möhring, et. al. this can not be a realistic assumption. Therefore, they introduced
“static traffic flows with congestion” by assuming a dependency of �e on q: In our
model this approach is reflected by the introduced linear model without dynamics.
However, we see by our derivation that congestion in form of backwards going
shock waves are not covered by those models, c.f. numerical results below.

2.3.3 Numerical Comparison of Approaches

In this subsection we compare the computing times for different models and
networks.

Testcase for Comparing Network Models

For the purpose of comparing the models we introduce a network with two controls
and seven roads as in Fig. 7. As an example we use the smooth and concave family
of flux functions
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Fig. 7 Example of a network

fj ./ D uej ./ D 4.1 � =Mj /: (99)

The function �j ./ is then given by,

�j .q/ D Mj

2
�
Mj C

q
M2
j �Mjq

� ; 0 � q � Mj : (100)

If not stated otherwise we assume

T D 5 and Lj WD bj � aj D 1 8j D 1; : : : ; 7: (101)

We define q0 to be the known inflow given at x D a1:

Comparison of the Values of the Objective Function

We compare the derived models on the sample network. We compute the objective
function of the corresponding model for all admissible choices of the control
variables ˛1 and ˛2: In the context of the linear models this implies to compute
the objective for all choices q1; : : : ; q7 satisfying the constraints. As described in
Sect. 2.3.2 the fluxes qj and the controls are related. For example we obtain for the
first roads of our sample network

q1 D q0; q2 D ˛1q1; q3 D .1 � ˛1/q1:

In all subsequent plots we draw contour lines of the objective function against ˛1
and ˛2:We choose different maximal fluxesMj on the roads to obtain different test
cases.
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Fig. 8 Test Case 1: Contour lines of the functions for partial differential equation, simplified
nonlinear, linear without dynamics and min cost flow model (top left to bottom right)

Test Case 1: Free Flow

We set Mj D 1 for all roads and q0 D 96%M1: We compute the objective func-
tion (67) by a trapezoid rule. The underlying partial differential equations is solved
by a first-order Godnuov scheme with N D 100 discretization points for each road
j: The objective function (73) is computed by the formulas given in Sect. 2.3.2. For
the linear models we computed the function with D D 1;000 variables for each
edge j: Note, that the function � ! G.�/ is at least monotone for the choice (99).
For comparison we include a plot of the function for the min cost flow problem (97)
where we set uej ./ D 2 for this calculation. The results are given in Fig. 8. The

minimizer of all problems is .˛1; ˛2/ D . 1
2
; 0/: In case of the min cost flow problem

we loose the uniqueness of the minimizer. Furthermore, the qualitative behaviour
differs significantly from the other models.

Test Case 2: Backwards Going Shock Waves

When deriving the simplified models we neglected backwards going shock waves.
This was an essential part of the simplification of the dynamics. We compare
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Fig. 9 Test Case 2: Contour lines for the functions for pde and simplified nonlinear model (left to
right)

the simplified nonlinear model (72) with the model based on partial differ-
ential equations (68) in a case with backwards going shock waves. We set
M1 DM2 DM4 DM6 D 2; M3 D 1; M5 D 0:5 and q0 D 75%M1: We used the
same discretization as previously and compare the contour lines of (67) and (73)
in Fig. 9. We observe that in the pde case the domain of admissible controls is
larger than in the case of the simplified nonlinear model. This effect is due to
backwards going shock waves which occur on some roads in the pde model.
Controls generating these waves are not admissible in the simplified nonlinear
model. In our special case the region for the optimal control coincides. We skip
results on the linear model since they approximate the algebraic model.

Test Case 3: Linearization of the Dynamics

In this case we consider the influence of the linearizations. We use the following
setting Mj D 2; q0 D 96%M1 and L1 D L7 D L5 D 2;L4 D L6 D 1;L2 D
2:5; L3 D 15: We compare the qualitative behaviour of the objective function for
the simplified nonlinear model with the linear models with dynamics given in
Sect. 2.3.2. We compare the different discretization, Cases A and B. The results
are given in Fig. 10. We used Dq D Dt D 100 variables for the discretization of
the flux and the time on each road for any linearized model. We calculate Cases B
with Ni D Nj D 5 and Ni D Nj D 25, respectively, discretization points for each
junction of the merging type.

Optimization on the Sample Network

We consider the optimization problems introduced and compare computing times
on the sample network.
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Fig. 10 Test Case 3: Contour lines for the functions for simplified nonlinear (73) and different
linear models with dynamics (87). Simplified nonlinear (upper left), Case A (upper right), Case B
with Ni D Nj D 5; resp. Ni D Nj D 25 (lower row left to right)

As in the previous section we solved the partial differential equations model (68)
with a Godunov scheme with N discretization points. The objective function is
discretized using the trapezoid rule. For standard nonlinear optimization routines we
need at least the gradient of the objective function. We compute an approximation by
finite differences. Other approaches (using adjoint calculus) are investigated in [27,
28]. In case of the simplified nonlinear model (72) the gradient can be calculated
analytically.

For all nonlinear optimization problems the L-BFGS-B optimizer of Byrd, Lu,
Nocedal and Zhu [7,8,53] is used. This method is a gradient projection method with
a limited memory BFGS approximation of the Hessian and is capable to consider
bound constraints. The default settings are m D 17; fact r D 1:d C 5; pgtol D
1:d � 8 and isbmin D 1:

The linear model without dynamics (96) is a pure linear programming problem.
We solved it using ILOG CPLEX 8.1 [33]. As a default strategy, we set the
network simplex method to solve the linear programs. For our test-cases, this
method outperforms other solution techniques, such as primal or dual simplex. In
case of the linear model with dynamics (91) we have a mixed-integer problem.
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Model and Scheme Parameters CPU time

Godunov scheme for pde model N=100 135.65 s
Godunov scheme for pde model N=50 45.17 s
Simplified nonlinear model 0:05 s
Linear Model with dynamics (B) Dq D Dt D 100; Ni �Nj D 25 0:02 s
Linear Model without dynamics Dq D 100 0:01 s

Fig. 11 CPU times for sample network and different models

� �˛v

� �� �

: : :

: : :

�

�� �

Fig. 12 General layout of a large scale network

Among the currently most successful methods for solving these problems are linear
programming based branch-and-bound algorithms, where the underlying linear
programming relaxations are possibly strengthened by cutting planes. Fortunately,
todays state-of-the-art commercial MIP-solvers (such as CPLEX [33]) are able to
handle mixed-integer programs even for our large size problem instances.

For the setting of Test Case 1 we have the following result on the computational
times (CPU times), see Fig. 11. The parameters (Dq;Dt ) describes the discretization
of the nonlinear function. The parameter Ni 
 Nj describes the total number of
discretization points for the function ak.
; 
/ at the merging junctions. Therefore, the
only models reasonable to test on large scale networks are the simplified nonlinear
and the linear models.

Large Scale Network Optimization

The network considered next is shown in Fig. 12.
There, every node in the top row is controlable via a separate control ˛v: There

are only one source and one sink. The prescribed inflow is again q0 D 96%M1 and
all streets have the same maximal flux, Mj D 1:0 Then, the optimal controls are
˛1 D 0:5 and ˛v D 1:0; 8v 6D 1: The results are given in Fig. 13. The number of
discretization points for the flux q per road is denoted byDq and for the time byDt :

The number of discretization points for each function ak , c.f. (79), in model B is
denoted by NiNj : Note that all nodes in the bottom row are of the merging type. To
improve the performance of CPLEX we increased the optimality gap from 0:001%
(default setting) to 10%: We present results for other optimality gaps, too.
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Model # Roads Dq Dt NiNj Gap CPU time

Simplified nonlinear model 240 n.a. n.a. n.a. n.a. 6 s
Linear with dynamics (B) 10 10 25 1% 11 m

10 10 25 10% 3.8 m
10 10 9 0.1% 2.6 m
10 10 9 10% 57 s

Linear with dynamics (A) 100 10 n.a. 0.1% 33.08 s
10 10 n.a. 0.1% 4.78 s

Linear without dynamics 100 n.a. n.a. 0.1% <0.01 s
Simplified nonlinear model 1’500 n.a. n.a. n.a. n.a. 57 m
Linear with dynamics (B) 10 10 25 10% 4.7 h

10 10 9 10% 26 m
5 5 9 10% 5 m

Linear with dynamics (A) 100 10 n.a. 0.1% 180.01 m
10 10 n.a. 0.1% 13.69 m

Linear without dynamics 1000 n.a. n.a. 0.1% 24.98 s
100 n.a. n.a. 0.1% 12.75 s

5 n.a. n.a. 0.1% 1.8 s
Simplified nonlinear model 15’000 n.a. n.a. n.a. n.a. >4d
Linear with dynamics (B) 5 5 9 10% 6.2 h
Linear without dynamics 100 n.a. n.a. n.a. 22.79 m

10 n.a. n.a. n.a. 7.33 m
Linear without dynamics 150’000 10 n.a. n.a. n.a. 16.77 h

Fig. 13 CPU times for large scale networks. n.a. is short for not available since those quantities
do not appear in the corresponding models.

2.4 Summary

• A hierachy a traffic network models ranging from PDE models to simple
combinatorial models of min cost flow type has been developed.

• A variety of different network topologies has been investigated. Combinatorial
and continuous optimization approaches using these models have been imple-
mented and compared.

• The investigation shows the advantages and disadvantages of the different models
and optimization procedures. In particular, for very large networks discrete
optimization procedures are superior in terms of computation time.

• However, the simplified models developed here do not contain more complicated
dynamic situations like backwards going shocks, i.e., traffic jams. To include
such situations one has to use the original PDE model or to derive more
sophisticated models from the PDE network.

• One could combine the models described here in a coupling strategy for very
large networks. The main part of the network can be simulated using simple
linear models. More complicated dynamic models may be used in regions where
the detailed dynamic behaviour is important.
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e1 e2 e3Fig. 14 A serial supply chain

3 Modeling Supply Networks

Continuous models are used to describe many physical problems as for example
traffic flow on road networks (cf. Sect. 2), gas transportation through pipelines,
telecommunications networks, drinking water systems and many more. In the con-
text of supply chains, we introduce continuous models which are computationally
feasible and accurately describe the dynamic behavior of the system. The presented
approaches are reasonable in the situation of a large number of parts and can be
derived formally from particle simulations (so-called Discrete Event Simulations),
see [3]. Therein, a detailed time recursion is derived and used to deduce a model
consisting of continuous equations. This model will serve as a basis for extensions
to more general supply chains. We present the final continuous network model for
supply chains, as stated in [17, 18].

This chapter is organized as follows. Section 3.1 introduces basic terminology
and the way how to model supply chains with scalar partial differential equa-
tions. We develop coupling conditions and discuss their necessity. In Sect. 3.2 we
introduce the continuous optimal control problem that is to be investigated. We
present the optimality system for the discrete as well as the continuous supply chain
model and discuss the discretization leading to a mixed-integer model. Numerical
experiments contain results of the adjoint-based method and the mixed-integer
problem.

3.1 Network Models Based on Scalar Conservation Laws

To derive a first network model we consider a particular simple situation: a serial
supply chain consisting of M suppliers.
Here, each supplier ships all its goods directly to the next supplier as in Fig. 14.
Basically, every supplier is now characterized by the parameters length L, process-
ing time T and maximal processing rate �. Here, the processing time T is the time
which is needed to finish a single production stage. It is assumed that each supplier
is available at all times and there will be no unexpected shut-downs. Since suppliers
may have different processing rates, it may happen that goods have to wait until
the next operations can be performed. Therefore, buffers are installed between the
suppliers. In our approach the buffers have unlimited capacity. We treat the problem
of limited capacities later. The total amount of goods in the system is denoted byN .
To start introducing continuous supply chain models, we briefly summarize the
work of Armbruster, Degond and Ringhofer [3]. Therein, they propose a continuous
model (a conservation law for the part density) for interacting processors in a serial
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m
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L

Fig. 15 The fundamental diagram of (105)

production line. This model provides the basis for the derivation of a general supply
network model.

@t.x; t/C @x min
˚L
T
.x; t/; �.x/

� D 0; (102)

.x; 0/ D 0.x/; (103)

with inflow conditions
f .0; t/ D f in.t/: (104)

Due to different processing rates � in the system, one obtains ı-distributions on the
level of the solution for . These ı-distributions (bottlenecks) are natural, modeling
the queues in the system, but do not allow for a simple theoretical treatment of the
equation.

Note that the flux function is given by

f W RC
0 ! Œ0; ��; f ./ D min

˚
�;
L

T

�
: (105)

with positive constants �; T;L. Clearly, f is Lipschitz with constant Lf D L
T

(Fig. 15).
For some notational convenience we denote v WD L=T in the following.
We now define weak solutions for the general Cauchy problem (102) in the sense

of Kruzkov [42]:

Definition 3.1 (Weak solution). A locally bounded and measurable function
.x; t/ on R � RC

0 is called an admissible weak solution to (102), if for any non-
decreasing function h./ and any smooth non-negative function � with compact
support in R � RC

0 ,
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Z 1

0

Z 1

�1
.I./�t C F./�x/ dx dt C

Z 1

�1
I.0/�.x; 0/ dx � 0 (106)

where I./ D R 
h.�/ d� and F./ D R 

h.�/f 0.�/ d�:

We consider the Riemann problem for (102) with initial data

0.x; 0/ D
(
l ; x � 0

r ; x � 0
(107)

where l ; r 2 RC
0 .

For the flux function (105) with v D 1, the solution of Riemann problems for
(102) and (105) is either given by (108) or by (109) (Fig. 16):

If l < r , then the weak admissible solution to (102), (105) and (107) is given by

.x; t/ D
8<
:
l �1 < x

t
� f .r /�f .l /

r�l
r

f .r /�f .l /
r�l < x

t
< 1

(108)

If instead r < l , we distinguish three cases. If l � � or if r � � the solution
is given by (108). In the remaining case r < � < l we obtain the solution (Fig. 17)

.x; t/ D

8̂
<̂
ˆ̂:

l �1 < x
t

� f .l /��
l��

�
f.l /��
l�� < x

t
� ��f .r /

��r
r

��f .r /
��r < x

t
< 1

(109)

Note that the Rankine–Hugoniot condition is either f .l /��
l�� D 0 or ��f .r /

��r D 1:
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Fig. 17 The solution to the Riemann problem if r < � < l

Summarizing, this scalar PDE-model describes the production process within a
serial supply chain. However, different processing rates may lead to ı-distributions
in the density which do not allow for a simple theoretical treatment. To avoid these
bottlenecks and to extend the model to more complex supply chain geometries we
present an alternative modeling approach.

3.1.1 General Network Topologies

We present an extension of the model mentioned above. By adding extra equations
for the queues we obtain new equations for the density avoiding the above
ı-distributions. This leads to a system of conservation laws coupled to ordinary
differential equations. In this framework, situations with real networks having
multiple incoming and outgoing arcs for each vertex are easily included. One further
advantage is the easy accessibility to existence theory of the network problem,
see [29].

We give a definition of a supply network and explain the different scenarios.

Definition 3.2 (Supply network definition). A supply network is a directed graph
.V ;A / consisting of a set of arcs A and a set of vertices V . Each supplier is
mapped on to one arc. The length of the supplier corresponding to arc e 2 A is
given by the interval Le D Œae; be�.

The maximal processing rate �e and the processing velocity ve WD Le=T e of
each supplier are constant parameters on each arc. According to the assumption that
each supplier possesses a buffer, we locate the buffer at the vertex v in front of the
supplier. For a fixed vertex v, the set of ingoing arcs is denoted by ı�

v and the set
of outgoing arcs by ıC

v . In the case of more than one outgoing arc, we introduce
distribution rates Av;e.t/; v 2 Vd , where Vd � V denotes the set of dispersing
junctions, cf. Fig. 18. Those rates describe the distribution of incoming parts among
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Fig. 18 Possible types of intersections in the network labeled as ordinary (a), merging (b) and
dispersing (c) nodes (from left to right)

the outgoing suppliers and are later subject to optimization. The functions Av;e are
required to satisfy 0 � Av;e.t/ � 1 and

P
e2ıC

v
Av;e.t/ D 1 for all times t > 0.

Next, we introduce the continuous supply network model which consists of a
coupled system of differential equations. These kind of equations arise whenever
the relationship between changing quantities (modeled by functions) and their rates
of change (expressed as derivatives) is known. This relationship can be derived from
particle simulations, see [3].

The continuous model describes the evolution of the density of goods e.x; t/ at
x in time t inside each supplier e and the time evolution of the buffer qe.t/ belonging
to supplier e. On each arc e, the density e.x; t/ is transported with velocity ve; if the
flux of goods is less than the maximal processing rate, i.e., e satisfies the transport
equation

@t
e C @xf

e.e/ D 0; (110)

where the relation between flux and density is given by

f e.e/ D vee:

Whenever a supplier is connected to another supplier of possibly different process-
ing rate �e; we introduce a buffering zone for the incoming but not yet processed
goods. To describe the buffering we introduce the time–dependent function qe.t/
describing the load of the buffer at time t .

@t q
e.t/ D Av;e.t/

X
Ne2ı�

v

f Ne. Ne.x Ne
v ; t// � f e.e.xev ; t// (111)

The dynamics of the buffering is governed by the difference of all incoming and
outgoing goods at the connection point xv: If the queue is empty, the outgoing flux
is either a percentage of the sum of all incoming fluxes given by Av;e.t/ or the
maximal processing rate �e . In the first case the buffer remains empty, in the second
case the buffer increases. Last, if the buffer is full, the buffer is always reduced
with a capacity determined by the distribution rates Av;e and the capacities of the
connected arcs.

f e.e.xev ; t// D
(

minfAv;e.t/
�P

Ne2ı�

v
f Ne. Ne.x Ne

v ; t//
�
; �egI qe.t/ D 0

�eI qe.t/ > 0
(112)
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Finally, we obtain the continuous supply chain model for the evolution of
.e; qe/e2A on the network .V ;A / by (110)–(112). The implementation of this
model is done by applying standard numerical schemes, see e.g. [17]. So far, the
proposed continuous model is based on only a few assumptions and thus extendible
to more complicated settings.

Remark 3.3. Note that applying a left-sided Upwind scheme to (102), a straightfor-
ward computation shows that (102) and (110)–(112) are equivalent.

3.2 Optimization Problems

A fundamental question arising in the context of managing supply chains is
the optimal design. Depending on the actual application several aspects are of
importance: inventory costs, storage limitations, distribution of goods or external
supply and demand.

In this subsection, we concentrate on the optimal routing of goods through the
network in order to achievemaximal output atminimumcost and further constraints.
The formulation of an optimization problem is based on the continuous model
presented before. In summary, (113)–(117) constitute a constrained optimal control
problem where the constraints are given by linear transport and ordinary differential
equations. The controls are the distribution rates Av;e and the dependent states are
the vectors �e WD .e/e2A and Av WD .Av;e/

e2 ıC

v
.

min
Av;e .t /;v2Vd

X
e2A

Z T

0

Z be

ae
f e.e.x; t// dx dt C

Z T

0

qe.t/ dt (113)

subject to e 2 A ; v 2 V ; t 2 .0; T /; x 2 Œae; be� (114)

@t
e.x; t/C @xf

e.e.x; t// D 0 (115)

@tq
e.t/ D Av;e.t/

X
Ne2ı�

v

f Ne. Ne.x Ne
v ; t// � f e.e.xev ; t// (116)

f e.e.xev ; t// D
(

minfAv;e.t/
�P

Ne2ı�

v
f Ne. Ne.x Ne

v ; t//
�
; �egI qe.t/ D 0

�eI qe.t/ > 0
(117)

To solve this PDE–ODE restricted optimization problem, two ways are of interest:
adjoint equations or mixed–integer programming. The former has been successfully
applied in different areas. Among the variety of literature we only mention
some examples, like optimal control of fluid flows [30], optimal semiconductor
design [31] or general initial value control of hyperbolic equations [50, 51]. For
optimal control in the context of networks we refer to [27] for an adjoint calculus
in the context of traffic flow networks. To compute the optimal control, the
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continuous optimality system is discretized and usually solved by a descent type
method, see [35, 46, 49]. This approach can therefore be seen as optimize-then-
discretize. Alternatively, we can proceed by first discretizing the constraints and
cost functional and then optimize the finite-dimensional optimization problem; this
strategy is known as discretize-then-optimize. For our supply network model the
discretization can be chosen, such that the optimization problem is in fact a mixed-
integer programming problem, see Sect. 3.2.2. This is mainly due to the fact that
the governing dynamics in the supply network are linear in the state (but not in the
control) variables. Moreover, further extensions to the mixed-integer problem have
been investigated, e.g., finite size buffers, inflow profile optimization or processor
shut-down due to maintenance.

In Sect. 3.2.1, we derive the discrete as well as the continuous optimality system
and show that the former is a valid discretization of the discretized continuous
optimality system, i.e., both approaches discretize-then-optimize and optimize-then-
discretize lead to the same continuous optimal control if the discretization width
tends to zero. Furthermore, we investigate the numerical properties of the two
approaches by comparing computing times for the solution to the mixed-integer
model with a steepest descent method based on the adjoint equations.

3.2.1 Adjoint Equations

We are concerned with the numerical solution to the previous optimal control
problem. For further investigation we apply the following modifications and
simplifications: First, in order to avoid the discontinuous dependence on the queue-
length in (117), we make use of the reformulation presented in [2]. There, (117) has
been replaced

f e.e.xev ; t// D minf�e; q
e.t/

"
g with " � 1: (118)

See [2] for further remarks. Since adjoint calculus requires the constraints to be
differentiable, we replace the function y ! min.y="; �e/ in (118) by any smooth
approximation  e;ı.y/ for the computations following. To be more precise, we
assume there are families of smooth functions f e;ıg such that

lim
ı!0

 e;ı.y/ D min.y="; �e/ 8y;8e: (119)

For notational convenience we drop the superindex ı in the following, since the
calculations remain true for all ı > 0: Third, we simplify the notation by introducing
functions he.�;Av;e/ for each edge e (resp. Qe) and fixed v 2 V such that e 2 ıC

v
(resp. Qe 2 ıC

v ). We define
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he.�e;Av/ D Av;e.t/
X
Ne2ı�

v

f Ne. Ne/;8e 2 ıC
v nf Qeg; (120)

hQe.�e;Av/ D
0
@1 �

X
e 6DQe

Av;e.t/

1
A X

Ne2ı�

v

f Ne. Ne/: (121)

Note that with this definition the assumption
P

e2ıC

v
Av;e D 1 can be omitted. For

example, for an intersection with ı�
v D f1g and ıC

v D f2; 3g we have the more
explicit form

h2.�e;Av/ D Av;2.t/f 1.1/; h2.�e;Av/ D .1 �Av;2.t//f 1.1/: (122)

Finally, we summarize the previous modifications and restate the optimal control
problem for all e 2 A ; v 2 V ; t 2 .0; T /; x 2 Œae; be� W

min
Av;e .t /;v2Vd

X
e2A

Z T

0

Z be

ae
vee.x; t/ dx dt C

Z T

0

qe.t/ dt (123)

subject to

@t
e.x; t/C ve@x

e.x; t/ D 0; e.x; 0/ D 0; vee.a; t/ D  e.qe/ (124)

@tq
e.t/ D he.�e;Av/ �  e.qe/; qe.0/ D 0: (125)

As technical detail we need to introduce boundary data for those arcs e 2 A which
are incoming to the network, i.e., such that ı�

v D ;: Here, we assume inflow data
0.t/ to be given and set e.a; t/ D 0.t/ for all v 2 V and e 2 ıC

v and ı�
v D ;.

From now on we neglect this technical point.

Derivation of Optimality Systems for the Optimal Control Problem

We first derive a discrete optimality system and solve the latter directly by nonlinear
optimization methods. This approach is known as first discretize then optimize.
Formally, one can also derive the continuous optimality system and discretize the
latter. This method is referred to as first optimize then discretize. We present the
corresponding results in the following and comment on the relation between the two
approaches first discretize then optimize and first optimize then discretize.

Optimality System of the Discrete Optimal Control Problem

First, we consider the discrete optimality system. A coarse grid discretization in
space of (124) is obtained by just a two-point Upwind discretization and (125) is
discretized using the explicit Euler method. Each arc has lengthLe and we introduce
a step size �t such that the CFL condition for each arc and the stiffness restriction
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of the ordinary differential equation are met. The time steps tj are numbered by
j D 0; : : : ; T . We use the following abbreviations for all e; j W


e;b
j WD e.be; tj /; 

e;a
j WD e.ae; tj /; q

e
j WD qe.tj /; A

v;e
j WD Av;e.tj / (126)

hej WD he.�e.x; tj /;Av.tj //: (127)

Due to the boundary condition vee.a; t/D e.qe.t// we replace the discrete
variable e;aj by  e.qej / and therefore, e;aj does not appear explicitly in the discrete
optimal control problem below. For the initial data we have


e;b
0 D 

e;a
0 D qe0 D 0; 8e: (128)

Finally, the discretization of problem (123)–(125) reads for j � 1; e 2 A ; v 2 V W

min
Av; v2Vd

X
e2A

T�1X
jD1

�t



Le

2
. e.qej /C vee;bj /C qej

�
(129)

subject to


e;b
jC1 D 

e;b
j C �t

Le
. .qej / � vee;bj / (130)

qejC1 D qej C�t.hej �  e.qej // (131)

For deriving the discrete optimality system we state the precise definition of he in
the case of the following intersections, see Fig. 18. In case A h2 is independent of Av

and we have h2.�e;Av/ D v11.b; t/: Similarly, in case B we obtain h3.�e;Av/ D
v11.b; t/C v22.b; t/. Finally, as already stated, we have in the controlled case C W
h2.�e;Av/ D Av;2.t/v11.b; t/; h3.�e;Av/ D .1 �Av;2.t//v11.b; t/.

Now it is straightforward to derive the discrete optimality system for (129)–
(131). We denote the Lagrange multipliers for the discretized partial differential
equation by �ej and for the discretized ordinary differential equation by pej : The
discrete Lagrangian is given by

L.�ej ;q
e
j ;A

v
j ;�

e
j ;p

e
j / D

X
e2A

T�1X
jD1

�t



Le

2
. e.qej /C vee;bj /C qej

�
(132)

�
X
e2A

TX
jD1

�tLe�ej

 

e;b
jC1 � e;bj
�t

�  .qej / � vee;bj
Le

!

(133)

�
X
e2A

TX
jD1

�t pej



qejC1 � qej

�t
� .hej �  .qej //

�
; (134)
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if we set �eT D peT D 0. Assuming sufficient constraint qualifications the first–order
optimality system is given by (130) and (131) and the following additional equations
for j � T; e 2 A and v 2 V W

�ej�1 D �t
ve

2
C �ej � �t

Le

�
�ej � ve�ej

�
; (135)

�ej WD
X

Ne2ıC

v s.t. e2ı�

v

p Ne
j

@

@e
hNe
j ; (136)

pej�1 D �t.1C Le

2
. e/0.qej //C pej ��t

�
pej � �ej

�
. e/0.qej /; (137)

0 D
X
e2ıC

v

pej
@

@Av;Ne h
e
j (138)

The summation in the definition of the function �e is understood in the following
way: For a fixed intersection v 2 V such that e 2 ı�

v we sum over all Ne 2 ıC
v :

Hence, the function �e depends on the type of intersection and for clarity we state
its explicit form for the cases A � C introduced above: In case A we have �2j D 0

and �1j D p1j v1: In case B we obtain �1j D p3j v3 and �2j D p3j v3: Finally, for the
interesting case C we find e D 1 which implies �1j D Av;2p2j v2 C .1 � Av;2/p3j v3:
Furthermore, we obtain with the previous definitions for Ne 6D Qe:

X
e2ıC

v

pej @Av;Ne hej D
�
p Ne
j � p Qe

j

� X
e2ı�

v

veej : (139)

Summarizing, the optimality system to (129)–(131) is given by (130),(131), and
(135)–(138). Changing the objective functions only affects the first term on the right
hand side in formulas (135) and (137).

Optimality System of the Continuous Optimal Control Problem

We turn our attention to the continuous optimality system for (123)–(125); we will
show that the optimality system (130), (131) and (135)–(138) derived above is a
valid discretization of the former. For the derivation of the continuous optimality
system to (123)–(125) the Lagrangian reads

L.�e;Av;qe; �e;Pe/ D
X
e2A

Z T

0

Z be

ae
veedxdt C

Z T

0

qedt (140)



Modeling and Optimization of Scalar Flows on Networks 447

�
X
e2A

Z T

0

Z be

ae
�e@t

e C�eve@x
edxdt (141)

�
X
e2A

Z T

0

P e .@tq
e � he.�e;Av/C  e.qe// dt

(142)

In this setup the adjoint variables are denoted as �e.x; t/ and P e.x; t/; we use
capital letters to highlight their difference from the previously introduced quantities
�ej and pej . The relation between these variables is discussed below. We formally
obtain the continuous optimality system for all t; x 2 Œae; be�; e 2 A as

@t
e C ve@x

e D 0; e.x; 0/ D 0; vee.a; t/ D  e.qe/; (143)

@tq
e D he.�e;Av/ �  e.qe/; qe.0/ D 0; (144)

�@t�e � ve@x�
e D ve; �e.x; T / D 0; (145)

ve�e.b; t/ D
X

Ne2ıC

v s.t. e2ı�

v

P Ne.t/
@

@ Ne h
Ne.�e;Av/; (146)

�@tP e D 1 � .P e ��e.a; t// . e/0.qe/; P e.T / D 0; (147)

X
e2ıC

v

P e @

@Av;Ne h
e.�e;Av/ D 0: (148)

Recall that in the limit case ı D 0; we have by definition  e.y/ ! minfy="; �eg:
Therefore, we obtain

. e/0.qe/ ! 1

"
H.�e � qe="/; ı ! 0; (149)

where H.x/ is the Heaviside function. Hence, in the limit the dynamics of the
adjoint queue P e is governed by a discontinuous right–hand side.

Finally, we show that in fact (135)–(138), (130), (131) is a suitable discretization
of (143)–(148). We proceed by reformulating the discrete optimal control problem
in the introduced variables defined by

�e;a
j WD �ej � Le

2
; P e

j WD pej ; (150)



448 S. Göttlich and A. Klar

Then, (135)–(138),(130), (131) read


e;b
jC1 � e;bj
�t

D � ve

Le
.
e;b
j � 

e;a
j /; 

e
0 D 0; vee;aj D  e.qej /; (151)

qejC1 � qej
�t

D hej �  e.qej /; q
e
0 D 0 (152)

�
e;a
j�1 ��e;a

j

�t
D ve � ve

Le

�
�
e;b
j ��

e;a
j

�
; �

e;a
T D 0; (153)

ve�e;b
j D

X
Ne2ıC

v s.t. e2ı�

v

p Ne
j

@

@e
hNe
j ; (154)

P e
j�1 � P e

j

�t
D 1 �

�
P e
j ��e;a

j

�
. e/0.qej /; (155)

0 D
X
e2ıC

v

P e
j

@

@Av;Ne h
e
j (156)

Obviously, (151)–(156) is an Upwind and explicit Euler discretization of (143)–
(148). Note that the discrete Lagrangian multiplier �ej and the discretized Lagrange
multiplier�e;a

j satisfy
�
e;a
j D �ej CO.Le/ (157)

and Le is in fact the discretization stepwidth in space. Therefore, if we formally let
Le;�t ! 0 for Le=�t fixed, we see that �e ! �e and furthermore, the discrete
Lagrangian tends to the continuous Lagrangian.

3.2.2 Mixed-Integer Model

We focus on the issue of reformulating the optimal control problem (123)–(125).
As an alternative to the adjoint equations, the optimal control problem can been
expressed as an mixed-integer model. This is possible, if one introduces a coarse
grid discretization of (123)–(125).

This is possible, since (115) does not allow for complex dynamics like backwards
travelling shock waves. Hence, we propose a two-point Upwind discretization of
each arc e. Finally, a reformulation of (118) using binary variables yields the mixed–
integer model for supply chains. The details are as follows: For each fixed arc e 2 A
we introduce two variables for the flux at the boundary and a single variable for the
queue for each time t of a timegrid t D 1; : : : ; NT

fet WD f e.e.ae; t//; get D f e.e.be; t//; qet WD qe.t/ 8e; t: (158)
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A two-point Upwind discretization in space and time of (115) is given by

getC1 D get C �t

Le
ve
�
fet � get

�
; 8e; t; (159)

where we use the same time discretization �t for all arcs e: Condition (118) is
reformulated by introducing binary variables �et 2 f0; 1g for e 2 A ; t D 1; : : : ; NT
and given by

�e�et � fet � �e; (160)

qet
"

�M�et � fet � qet
"
; (161)

�e�et � qet
"

� �e.1 � �et /CM�et ; (162)

where M is a sufficiently large constant. To be more precise, M may be set to
T
"

maxe2A �e .
Next, we need to reformulate the coupling conditions (116). We introduce

variables het for the total inflow to arc e at xD ae and require the following equalities
for each vertex v 2 V W

X
e2ıC

v

het D
X
e2ı�

v

get 8v; t (163)

qetC1 D qet C�t
�
het � fet

�
;8e; t: (164)

Note that we use an explicit time discretization of the ordinary differential equation.
This is mainly due to the fact that an implicit discretization would introduce an
additional coupling between different arcs on the network. On the contrary, the
explicit discretization introduces only a local coupling between the arcs connected at
a fixed vertex v 2 V . From condition (118), we observe that the ordinary differential
equation is stiff, whenever 0 < qe.t/ � "�e: A suitable discretization of the
ordinary and partial differential equation should satisfy a stiffness condition and
the CFL condition as well. Hence, we choose�t as

�t D minf"ILe=ve W e 2 A g: (165)

in the case of the coarsest discretization. A natural choice for " is " D �x=ve , since,
as already mentioned above, qe.t/=" represents a relaxed flux. More detailed, we
know that a flux can be rewritten as the product of the part density and the processing
velocity, f e D vee . Due to the fact that the density at the first discretization point
x D ae of the processor is the same as qe=�x, the parameter " is determined.

This leads to the condition

�t D minfLe=ve W e 2 A g: (166)
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Moreover, we have the following box constraints for all e 2 A ;8t D 1; : : : ; NT

0 � fet � �e; 0 � get � �e; 0 � qet : (167)

Finally, we assign initial data to fe1; g
e
1 and qe1. For a discretization of the cost

functional we use a trapezoid rule in space and a rectangle rule in time and obtain:

X
e;t

�t
Le

2

�
F .fet =ve; qet /C F .get =ve; qet /

�
: (168)

Summarizing, the mixed–integer model derived by discretization of the network
formulation of the supply chain dynamics is given by

min
A

v;e
t ;v2Vd

(168)

subject to (159) � (164); (167):
(169)

A few remarks are added. First, it is a matter of simple calculations to recover
the entries of the distribution vectors Av;e

t from the values of het : Second, other
objective functionals can be envisioned and in the case of a nonlinearity in (113),
we might have to introduce additional binary variables to obtain a mixed–integer
approximation. This is standard and can be found for example in [15]. Third, if we
use an implicit discretization of the ordinary differential equation (116),

qetC1 D qet C�t
�
hetC1 � fetC1

�
; (170)

we end up with no restriction on the time step. From the continuous point of
view such an approach is not favorable due to the additional introduced strong
coupling between all arcs in the network. We conclude the modeling with the
following remark: In the particular case of a supply chain consisting of a sequence
of processors and vertices of degree at most two, there is no possibility to distribute
parts. In this case, the mixed–integer model coincides with the two-point Upwind
discretization of the partial differential equation and both yield the same dynamics.
The mixed–integer problem reduces to a feasibility problem in this case.

Model Extensions

In real-world examples the introduced model is too simple to give realistic results.
Hence, we propose a few extensions to the mixed–integer model (169) on an
arbitrary network.

1. Finite size buffers
Usually, in the design of production lines, it is mandatory to limit the size of the
buffering queues qet . This condition can be implemented in the mixed–integer
context by adding box constraints as follows:
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qet � const ; 8e; t: (171)

Similarly, we can add the constraints qe.t/ � const to the continuous prob-
lem (123)–(125) and obtain a state constrained optimal control problem.

2. Optimal inflow profile
Under the assumption of finite sizes in the buffering queues, the question arises
to find the maximum possible inflow to the network, such that the buffering
capacities of the queues are not exceeded.
This can be modeled by replacing the cost functional (168) or (123), respectively,
by the following objective function

max
X
e2A 0;t

fet ; (172)

where A 0 � A is the set of all inflow arcs of the network.
3. Processor Shut-Down due to maintenance

Maintenance of processors can also be included in the mixed–integer model:
Assume that processor Qe has to be switched off for maintenance for N consecu-
tive time intervals. Further assume that this period can be chosen freely during the
whole simulation time t D 1; : : : ; NT : Then, we supplement the mixed–integer
model with the following condition

hQe
tCl � maxf�e W e 2 A gjA j 
 .1 � � Qe

t /;8t;8l D 0; : : : ; N � 1; (173)

NTX
tD1

� Qe
t D 1; (174)

where for each processor e 2 A and every time t we introduce a binary variable
�et 2 f0; 1g that indicates whether process e is shut-down at time t . If � Qe

t0
D 1,

then the maintenance interval starts at time t0, and in the time interval t0; t0 CN;

the processor Qe is not available.

3.3 Numerical Results

As we have seen, there are two numerical approaches for solving the optimal
control problem. On the one hand, we use a steepest descent method for a suitable
cost functional.We consecutively solve the equations of state (130) and (131) for
a given initial control Av

0 � 0 and the adjoint equations (135)–(137) which in
turn are needed to evaluate the gradient (139). Using the Armijo–Goldstein rule
for the choice of the stepsizes we update the controls Av

0 and iterate the described
procedure.
On the other hand, we reformulate the original problem as a mixed–integer
programming (MIP) model that is usually solved by a Branch-and-Bound algorithm.
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e3

e4

e5

e7

e6e2

e1
A1,2

A2,6Fig. 19 Sample network
with controls A1;2j and A2;6j

The essential difference to (131) is to rewrite the nonlinearity in (118) by
introducing binary variables �et . This leads finally to a mixed–integer problem and
not just a linear programming (LP) model. For solving the mixed-integer problem
the standard optimization software solver ILOG CPLEX [33] is used.

3.3.1 Gradient Computations

At first we compare the gradient of the cost functional obtained by finite differences
to the gradient obtained by the adjoint equations for a suitable network. We use the
network depicted in Fig. 19 for this test since it has only two variable controls A1;2j
and A2;6j at time j (recall that A1;3j D 1 � A

1;2
j and A2;5j D 1 � A

2;6
j due to the

coupling conditions). We discretize the control–space Œ0; 1� � Œ0; 1� using 16 points
in both the A1;2j and A2;6j component.

We set the time–horizonT D 4, useNT D 200 time–intervals and set " D 1. We
use a one–sided forward difference scheme to compare the gradient at time–interval
j , j D 1; : : : ; NT :

@Av;e
j
J.Av/ WD J.Av C ı/� J.Av/

ı
(175)

where ı D 0:001. For the cost–functional we chose the nonlinear function

J.Av/ WD
0
@X
e2A

X
j

�t



Le

2
. .qej /C vee;bj /C qej

�1
A
2

: (176)

Further, we setL3 D L6 D 10 andLe D 1 for e 2 A nfe3; e6g. The processing rates
are �e D 1; 8e. This implies that the lowest functional value should be attained for
A1;2j D 1 and A2;6j D 0 for all j as confirmed in Fig. 20. The inflow–profile on e1 is
chosen as

f in.t/ D
�
0:852 t � 2

0 t > 2
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Fig. 20 Plot of the cost functional (176) corresponding to Fig. 19
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Fig. 21 First component of the gradient computed by the adjoint scheme at j D 50

With this inflow profile the gradient w.r.t. A1;250 is nonzero and is depicted in
Fig. 21. The controls A1;2j with j > 2 can be chosen arbitrarily since the inflow
is zero and hence the gradient w.r.t. these controls needs to vanish. However, since
in this particular setup queue 2 is nonempty at time j D 200, the gradient w.r.t.A2;6200
does not vanish, cf. Fig. 22. The relative error in the second component is of order
1e�8 and can be found in Fig. 23.
Finally, we mention that we have conducted extensive test with different objective–
functionals and varying the parameters " 2 Œ0:01; 1�, ı 2 f1e�2; 1e�3; 1e�4; 1e�5g
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Fig. 22 Second component of the gradient computed by the adjoint scheme at j D 200
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Fig. 23 Relative error in partial w.r.t. A2;6200 at j D 200

and NT 2 Œ20; 400�; we never encountered a relative error in the gradient larger
than 1e�6.

Quality of Solutions of Discrete Adjoint Calculus Compared
with the Mixed–Integer Model

As a next step, we compare results computed by the adjoint approach and the mixed–
integer programming (MIP) model. We show that this kind of discretization induces
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Fig. 24 Sample network

Table 1 Processing rates �e

e 1 2 3 4 5 6 7 8 9 10 11 12

�e 100 8 10 0.5 0.5 10 0.5 2 20 3.5 2.5 8

same results for the cost functional as the discrete adjoint approach by focussing on
the optimal control problem of routing of goods through a network.

In the following, we consider the network in Fig. 24. It consists of 11

processors and queues and we have the six free controls A2;3.t/; A2;4.t/; A2;5.t/;
A2;6.t/; A2;7.t/ andA9;10.t/. The artificial arc 1 is used to prescribe an inflow profile
which is given by

f .t/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

0:5 0 � t � T
4

0:1 T
4
< t � T

2

0:3 T
2
< t � 3

4
T

0 3
4
T < t � T

(177)

Our goal is to maximize the output of processor 12 on a given time–interval Œ0; T �.
We use an equidistant time–discretization with NT time–intervals and choose the
following reduced cost functional

J.Av/ D
NTC1X
jD2

�v1212;bj

j
: (178)

In the example below we define T D 200, NT D 400, " D 1 and set Le D ve D 1

for all edges except for e D 2; here we use L2 D 1 and v2 D 2. The corresponding
processing rates are given in Table 1.

In the following we present results for the optimal routing problem by pointing
out similarities and differences between the adjoint and discrete approach. The
computation of the adjoint approach takes 37:781s using 32 iterations and for the
MIP 16:60s using 16 iterations. In the adjoint approach, we terminate the iteration
if the relative error of two consecutive iterates is less than tol WD 1e�6—consistent
with the default accuracy in ILOG CPLEX [33]. Both approaches yield an optimal
functional value of J 	.Av/ D �6:49.
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Fig. 25 Optimal output for processor 12

In Fig. 25 we plot the optimal outflow profile computed by the two approaches.
We observe that for this particular example the curves coincide. However, the
computed optimal controls and time evolution of the queues differ considerably. In
Figs. 26 and 27 we plot the optimal control feeding parts into queue 10. Furthermore,
we present the evolution over time for the queue 10 in Figs. 28 and 29 for the MIP
and the adjoint approach, respectively, and the maximum queue–length in Figs. 28
and 29.

Although the optimal functional values coincide we see that we do not have a
unique minimizer to our optimal control problem.

Computational Times

The numerical results conclude with a comparison of computational times of
the adjoint–based approach and the mixed–integer formulation. Our computa-
tions are performed on the network given in Fig. 24 with default parameters
ve DLe D 1; eD 2; : : : ; 12, " D 1 and time horizon T D 200. To obtain a stable
discretization both models have to satisfy the following restriction:

�t � minf"I L
e

ve
W e 2 A g: (179)

Resulting from (179) the parameterNT describes the number of time intervals. We
increase NT by varying the ratio of L1=v1. The MIP is solved using the interior
point method implemented in ILOG CPLEX [33].
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Fig. 26 Plot of the distribution rate A9;10j computed by the MIP
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Fig. 27 Plot of the distribution rate A9;10j computed by the adjoint approach

As Table 2 indicates the MIP is superior if one wants to use up to approximately
600 time-steps (corresponding to �t 2 Œ0:3; 1�). As NT increases the adjoint
approach becomes more attractive. For values of �t < 0:3 it computes an optimal
solution faster than the MIP. At present the MIP fails to compute a solution for
�t � 0:05 since the system becomes too large and the preprocessing procedure
produces infeasible solutions.
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Fig. 28 Optimal queue length q10j computed by the MIP
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Fig. 29 Optimal queue length q10j computed by the adjoint approach

Table 2 CPU times in
seconds for sample network
Fig. 24

NT Adjoint MIP

200 7.31 5.52
400 26.10 17.06
800 45.10 68.09

2,000 124.58 592.61
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3.4 Summary

• Based on the supply chain model of Armbruster et al. [3] we have presented a
reformulation consisting of queues and processors modeled as a coupled system
of partial and ordinary equations. The new model allows for an existence theory
directly for the density  since ı-distributions are avoided, see [29].

• Different optimization techniques to supply networks have been applied. We have
derived a continuous and a discrete optimality system and shown that the latter
can be interpreted as an upwind and explicit Euler discretization of the former. On
the other hand, we have deduced a simplified model by using a straightforward
two point discretization of the equations on each arc. For the optimization of the
supply chain model the resulting equations are interpreted as a mixed–integer
problem.

• The results of the adjoint equations are compared to the ones obtained by a
mixed-integer formulation. For the testcases under consideration, the optimal
solutions (i.e., the optimal values of the objective function) of the adjoint
approach and the MIP formulation introduced coincide. However, the opti-
mal controls differ qualitatively since they are not unique. The usage of the
adjoint method as presented here is limited. With the MIP more complex and
praxis-relevant questions can be modeled and solved quite easily; processor
shutdown due to maintenance or storage limitations are just two examples.

Acknowledgements We wish to thank all our collaborators and co-authors, in particular Michael
Herty, Armin Fügenschuh and Alexander Martin. Parts of this work have been taken from the
articles [15, 24, 25] as well as [16, 17, 36].

References

1. D. Armbruster, D. Marthaler, C. Ringhofer, Kinetic and fluid model hierarchies for supply
chains. SIAM J. Multiscale Model. 2, 43–61 (2004)

2. D. Armbruster, C. de Beer, M. Freitag, T. Jagalski, C. Ringhofer, Autonomous control of
production networks using a pheromone approach. Phys. A 363, 104–114 (2006)

3. D. Armbruster, P. Degond, C. Ringhofer, A model for the dynamics of large queuing networks
and supply chains.. SIAM J. Appl. Math. 66, 896–920 (2006)

4. D. Armbruster, P. Degond, C. Ringhofer, Kinetic and fluid models for supply chains supporting
policy attributes. Bull. Inst. Math. Acad. Sinica 2, 433–460 (2007)

5. A. Aw, M. Rascle, Resurrection of second order models of traffic flow. SIAM J. Appl. Math.
60, 916–938 (2000)

6. A. Aw, A. Klar, T. Materne, M. Rascle, Derivation of continuum flow traffic models from
microscopic follow the leader models. SIAM J. Appl. Math. 63, 259–278 (2002)

7. R. Byrd, J. Nocedal, R. Schnabel, Representations of quasi-newton matrices and their use in
limited memory methods. Math. Program. 63, 129–156 (1994)

8. R. Byrd, P. Lu, J. Nocedal, C. Zhu, A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput. 16, 1190–1208 (1995)

9. C. Cercignani, The Boltzmann Equation and its Applications (Springer, New York, 1988)
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Control and Stabilization of Waves
on 1-d Networks

Enrique Zuazua

Abstract We present some recent results on control and stabilization of waves on
1-d networks.

The fine time-evolution of solutions of wave equations on networks and,
consequently, their control theoretical properties, depend in a subtle manner on the
topology of the network under consideration and also on the number theoretical
properties of the lengths of the strings entering in it. Therefore, the overall picture
is quite complex.

In this paper we summarize some of the existing results on the problem
of controllability that, by classical duality arguments in control theory, can be
reduced to that of observability of the adjoint uncontrolled system. The problem
of observability refers to that of recovering the total energy of solutions by means
of measurements made on some internal or external nodes of the network. They
lead, by duality, to controllability results guaranteeing that L2-controls located
on those nodes may drive sufficiently smooth solutions to equilibrium at a final
time. Most of our results in this context, obtained in collaboration with R. Dáger,
refer to the problem of controlling the network from one single external node.
It is, to some extent, the most complex situation since, obviously, increasing the
number of controllers enhances the controllability properties of the system. Our
methods of proof combine sidewise energy estimates (that in the particular case
under consideration can be derived by simply applying the classical d’Alembert’s
formula), Fourier series representations, non-harmonic Fourier analysis, and number
theoretical tools.
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These control results belong to the class of the so-called open-loop control
systems.

We then discuss the problem of closed-loop control or stabilization by feedback.
We present a recent result, obtained in collaboration with J. Valein, showing that
the observability results previously derived, regardless of the method of proof
employed, can also be recast a posteriori in the context of stabilization, so to derive
explicit decay rates (as t ! 1) for the energy of smooth solutions. The decay rate
depends in a very sensitive manner on the topology of the network and the number
theoretical properties of the lengths of the strings entering in it.

In the end of the article we also present some challenging open problems.

1 Introduction and Main Results

This article is devoted to the presentation of some results on wave propagation
phenomena in multi-link or multi-body structures constituted by a planar network
of linear vibrating strings and undergoing vertical displacements.

There exists a rich mathematical literature on multi-body mechanical systems
constituted by coupled flexible or elastic elements as strings, beams, membranes
or plates since their practical relevance is huge. In most cases they are systems of
Partial Differential Equations (PDE) on networks or graphs. The interested reader is
referred to the books [10,37] for an introduction to the theory of Partial Differential
Equations on networks which is an active subject since the early 1980s [32, 38].
In [23] wide information may be found on modeling and control issues. We also
refer to [24] for a systematic analysis of the application of domain decomposition
techniques for networks. But elasticity and flexible structures are not the only
motivation for dealing with wave equations on graphs or networks. This topic is
also closely related to many other applications such as water supply and irrigation,
in which case the relevant models are often the Saint Venant equations, a first order
hyperbolic system (see [15, 16]).

The model we address in these notes is, to some extent, the simplest one in this
context but, as we shall see, it is complex enough to present a rich variety of new
qualitative properties. Indeed, the interaction between the different components of
the multi-link structure generates new dynamics that can not be predicted by simply
analyzing the dynamics of each component separately. Doing that requires taking
into account various ingredients as the topology of the graph of the network, the
lengths of the strings entering in it, the boundary conditions on the external nodes,
the joint conditions, etc.

The goal of these notes is to present some by now well-known results that
illustrate this complex dynamics, indicating the needed analytical tools and pointing
towards some open problems and directions of research. We mainly focus on the
control theoretical problems of observation, control and stabilization. These issues
are intrinsically interesting but, in fact, constitute a way of analyzing and describing
the fine propagation properties of waves in these media. We mainly focus on the case
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where controllers, observers and dampers are located in one single external node
of the network. This is somehow the most degenerate situation, in which, control
theoretical properties are harder to be fulfilled. The methods and ideas we develop
for addressing this case can then easily be adapted to deal with other problems in
which, in particular, several controllers are located in different nodes (internal or
external ones) of the network.

We follow closely our previous book on the subject [7], devoted mainly to the
problem of controllability and our more recent article on the stabilization [41],
incorporating some new results and material.

As we mentioned before, we consider the scalar 1-d wave equation on a finite
planar network of strings. Deformations are assumed to be perpendicular to the
reference plane. The main advantage of considering this model, as compared
to other more complex equations or systems along the graph, is that, while
waves propagate within one of the strings, one can have a complete and explicit
representation through the classical d’Alembert formula. This allows to easily
follow the propagation of the energy along each individual string. But, the overall
dynamics turns out to be rather complex, due to the interaction of the various strings
at the joints. Indeed, when waves reach a node or junction point, part of the energy
bounces back and part of it is transmitted to the other strings with the same common
node. This occurs whenever some wave reaches a node or the external boundary (in
which, in the case of conservative boundary conditions, the whole energy bounces
back).

Then, the overall picture necessarily depends on a number of ingredients:

• The topology of the graph.
• The lengths of the various strings constituting the graph.
• The boundary conditions imposed at the extremes of the graph.
• The joint conditions.

In these notes we consider the simplest model involving the so-called Kirchhoff
type joint conditions. Other joint conditions can also be considered so that the model
under consideration is well-posed. That is for instance the case when imposing
dynamical point-mass equations on the joints. But, in that case, the dynamics is
even more complex since the phenomena we address here have to be complemented
with the possibility that waves have a different degree of regularity on the various
strings involved in the network, a fact that was observed in [17] in the simplest
case of two vibrating strings connected by a point mass and later extended to the
multi-dimensional case in [21, 27].

Thus, the results we present here are not exhaustive, by any means. However,
most of the ideas and methods we develop here can be adapted and extended to
more sophisticated and realistic wave models in networks.

As we mentioned above, one of the issues we address is that of observability.
It concerns, roughly speaking, the issue of determining whether one can estimate
the total energy of vibrations by partial measurements made, for instance, in one or
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several interior or external nodes of the network.1 It is therefore intimately related
to the way the energy of solutions is distributed along the various components of the
multi-structure, as time evolves. This problem is relevant, not only because it is a
way of analyzing deeply the nature of vibrations, but because it is also of immediate
application in the context of inverse and control problems.

We also present the consequences of the observability properties in what con-
cerns controllability issues. In this context, we are interested in driving the solutions
to a given final state by means of the action of one or several controllers located
in some of the internal nodes and/or the extremes of the network.2 The problems
of observability and controllability are dual one to each other and, therefore,
the observability inequalities have immediate consequences in the controllability
setting.

It is however important to underline that one of the difficulties related to dealing
with networks and not the standard wave equation in an open domain of the
Euclidean space or a smooth manifold is that, even if observability holds, the
observed norm is weaker than the energy of the system, in analogy of the well-
known behavior for the 1-d wave equation with point-wise interior observations.3

As we shall see, for instance, when the network is a tree, observing/controlling
in all but one external vertices suffices to get full observation or control in the
natural energy spaces (see [25]). This case is similar to that of the wave equation
in a bounded domain with a control on a sufficient large subset of the boundary,
fulfilling the so called Geometric Control Condition (GCC) by Bardos, Lebeau and
Rauch [4]. But the problem becomes immediately much more complex when the
control misses two external vertices. Then, diophantine approximation issues enter,
as it happens for the internal point-wise control of the 1-d wave equation [13]. The
situation is even more complex when the graph contains closed circuits. Then there
may exist eigen-vibrations of the network that remain concentrated and trapped in
that circuit, without being propagated to the rest of the network. In those cases,
obviously, it is impossible to achieve the observation and/or control property if the
observer or controller is not located on the circuit where the solution is trapped. But
whether a circuit may support a localized eigen-vibration depends also strongly on
the number theoretical properties of the lengths of the strings composing the circuit.
This is an issue that is not completely well understood.

Our main result for general networks asserts that the problem of observability or
controllability for a sufficiently large time (twice the total length of the network) is
equivalent to the property that all eigen-vibrations to be observable. The later is,
obviously, a necessary condition for observability and controllability. Our result

1As mentioned above, most of this article is devoted to the case in which the observation is only
done on one external node of the network.
2Once more, we shall focus in the case in which one single controller acts on one of the external
nodes of the network.
3We refer to [48, 50] for relatively complete and updated surveys on the state of the art of the
observability and controllability of PDE’s.
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shows that it is also sufficient for observability/controllability to take place in
spaces that can be described in Fourier series in terms of a summability condition
of the Fourier coefficients with suitable weights. This is done using a corollary
due to Haraux and Jaffard [18] of the celebrated Beurling–Malliavin’s Theorem.
However, characterizing the rate of decay of these weights for high frequencies (or,
in other words, the spaces in which observability/controllability holds) in terms of
the topological and geometrical properties of the graph is an open problem.

The overall picture is quite complex, and still not complete. We shall summarize
the known results in this topic in Sect. 3.

In what concerns the problem of stabilization, recently, a black-box strategy
has been developed in [41] allowing to automatically transfer the known observ-
ability/controllability results into stabilization ones. This provides a new way
of getting stabilization results and complements the existing literature on the
subject (some of the main references are collected in the bibliography at the end
of the paper). Roughly speaking, whenever the wave process in the network is
observable/controllable by some internal or exterior nodes, then the system can also
be stabilized by feedback laws acting on the same nodes. But, of course, there is
also a price to pay for the fact that the observation/control properties only hold in
weaker spaces. In the context of stabilization, this amounts to get slow decay rates
for smooth solutions (say, in the domain of the generator of the semigroup) and
not exponential ones. The decay rate, roughly speaking, is polynomial when there
is a loss of a finite number of derivatives in the observation/control process, but
it may be even slower, say, logarithmic, when an infinite number of derivatives is
lost in the observation/control process. Once again, the precise weak norm in which
observability and/or controllability holds, depends on diophantine properties of the
mutual lengths of the strings of the network.

The same issues arise for all other models like beams, Schrödinger or heat
equations. The theory of observation and control of these models in open domains
of Rn is by now quite well developed (we refer to the survey articles [47, 48, 50]
for an updated account of the developments in this field). However, very little is
known in the context of PDE’s on networks. However, as pointed out in [7], one
can transform the results obtained in the context of the wave equation in networks
into results on the control of these systems in the same networks. In [7] this was
proved to be true using the classical strategy by D.L. Russell [39] that was the
first one to observe that the control to zero of the heat equation can be derived
as a consequence of the exact controllability of the wave equation in domains of
the Euclidean space. Recently, this issue has been further developed and clarified
by L. Miller by the so-called transmutation method (see [35]), using the Kannai
transform. We shall not develop this issue here but, for these models, as expected,
due to the infinite speed of propagation, the observability inequalities hold in an
arbitrarily small time [7]. It is however important to underline that, so far, the direct
analysis of the control/observation properties of the Schrödinger and heat equations
on networks has not been addressed.
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As we have already mentioned, this article collects the existing results on simple
1-d models on networks. Much remains to be done in this field. At the end of this
article we include a list of open problems and possible subjects of future research.

For those who will address these topics for the first time, we refer to [34] for an
introduction to some of the most elementary tools on the controllability of PDE’s
and to the survey articles [47, 48, 50], for a description of the state of the art in this
field.

This article is organized as follows. Section 2 is devoted to present the model
under consideration: the wave equation on a 1-d network of strings. In Sect. 3 we
make a brief presentation of known results on the observability and controllability
of this model. In Sect. 4 we present known results on the problem of stabilization. In
Sect. 5 we present and discuss some possible further developments of the methods
and results in the paper and some open problems and future directions of research.

2 The Wave Equation on a Network

Let us first recall some definitions and notations about 1-d networks used in the
paper. We refer to [7, 33, 36, 42] for more details.

A 1-d network N is a connected set of Rn, n � 1, defined by

N D
M[
jD1

ej

where ej is a curve that we identify with the interval .0; lj /; lj > 0; and such that
for k ¤ j; ej \ ek is either empty or a common end called a vertex or a node (here
ej stands for the closure of ej ).

For a function u W N �! R;we set uj D ujej the restriction of u to the edge ej .

We denote by E D fej I 1 � j � M g the set of edges of N , by V the set
of external nodes of N ; and by N the number of these external nodes. For a fixed
vertex v; let

Ev D fj 2 f1; :::;M g I v 2 ej g

be the set of edges having v as vertex. If card .Ev/ D 1; v is an exterior node, while if
card .Ev/ � 2; v is an interior one. We denote by Vext the set of exterior nodes and by
Vint the set of interior ones. For v 2 Vext, the single element of Ev is denoted by jv.

Now we consider a planar network of elastic strings that undergo small perpen-
dicular vibrations. At rest, the network coincides with a planar graph G contained
in that plane.

Let us suppose that the function uj D uj .t; x/ W R � Œ0; `j � ! R describes the
transversal displacement in time t of the string that coincides at rest with the edge
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ej . Then, for every t 2 R, the functions uj , j D 1; :::;M , define a function Nu.t/ on
G with components uj W R � Œ0; `j � ! R given by uj .t; x/ D uj .t; xj .x//.

As a model of the motion of the network, we assume that the displacements uj

satisfy the following non-homogeneous system
8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

ujt t � ujxx D 0 in R � Œ0; `j �; j D 1; :::;M;

ujv1 .t; v1/ D h.t/ t 2 R;

ujvi .t; vi / D 0 t 2 R; i D 2; :::; N;

uj .t ; v/ D uk.t ; v/ t 2 R; v 2Vint; j; k 2 Ev;P
j2Iv

@nui .t ; v/ D 0 t 2 R; v 2 Vint;

uj .0; x/ D uj0 .x/; ujt .0; x/ D uj1 .x/ x 2 Œ0; `j �; j D 1; :::;M:

(1)

The first equation in this system represents the classical 1-d wave equation on the
network. Within each of the M strings of the network the d’Alembert equation is
fulfilled. The second and third equalities reflect the condition that over the exterior
node v1 a control h D h.t/ acts to regulate its displacement, while the remaining
N�1 exterior nodes, are fixed. The fourth and fifth relations constitute the Kirchhoff
joint conditions, expressing the continuity of the network and the balance of forces
at the interior nodes. Finally, the last equation imposes the initial deformation and
velocity of the strings (i.e., at time t D 0). The pair .Nu0; Nu1/ is called initial state of
the network.

Here and in the sequel @nuj .t ; v/ denotes the exterior normal derivative of uj at
the node v.

Thus, (1) corresponds to a network with one controlled exterior node. Similar
problems can be formulated when the controller acts on an interior node or when
several controllers act simultaneously, either on interior or exterior nodes. We refer
to [7] for a discussion of some of these problems.

For a proper functional analysis of this system, it is convenient to introduce the
following Hilbert spaces:

V D fNu 2
MY
iD1

H1.0; `i / W ui .v/ D uj .v/ if v 2Vint and ui .v/ D 0 if v 2Vextg;

H D
MY
iD1

L2.0; `i /;

endowed with the Hilbert structures

< Nu; Nw >V WD
MX
iD1

< ui ;wi >H1.0;`i / D
MX
iD1

Z `i

0

uixwixdx;

< Nu; Nw >H WD
MX
iD1

< ui ;wi >L2.0;`i / D
MX
iD1

Z `i

0

uiwi dx;
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respectively. Besides, we will denote by U D L2.0; T /; the space of controls. We
also denote by W the product eergy space W D V �H .

Since the imbedding V � H is dense and compact, when H is identified with
its dualH 0 by means of the Riesz–Fréchet isomorphism, we can define the operator
��G W V ! V 0 by

h��G Nu; NviV 0�V D hNu; NviV :
The operator ��G is an isometry from V to V 0: The notation ��G is justified by
the fact that, for smooth functions Nu 2 V , the operator ��G coincides with the
Laplace operator.

The spectrum of the operator ��G is formed by an increasing positive sequence
.�n/n2N of eigenvalues. The corresponding eigenfunctions . N�n/n2N may be chosen
to form an orthonormal basis of H:

The spaces V and H may be characterized as

V D
(

Nu D
X
n2N

un N�n W jjNujj2V WD
X
n2N

�nu2n < 1
)
;

H D
(

Nu D
X
n2N

un N�n W jjNujj2H WD
X
n2N

u2n < 1
)
;

and the norms of V and H are equivalent to jj:jjV and jj:jjH , respectively. The
spaces V and H are Hilbert spaces with respect to the scalar products that generate
the corresponding norms.

System (1) can be shown to be well-posed in an appropriate functional setting by
means of the standard transposition method (see [30]).

To implement the method of transposition we need to consider the adjoint
system4:

8̂
ˆ̂̂̂
<
ˆ̂̂̂
:̂

�
j
t t � �

j
xx D 0 in R � Œ0; `j �; j D 1; :::;M;

�
jvj .t; vj / D 0 t 2 R; j D 1; :::; N;

�j .t ; v/ D �k.t; v/ t 2 R; v 2Vint; j; k 2 Ev;P
j2Iv

@n�
j .t ; v/ D 0 t 2 R; v 2Vint;

�j .0; x/ D �
j
0 .x/; �

j
t .0; x/ D �

j
1 .x/ x 2 Œ0; `j �; j D 1; :::;M:

(2)

The solution of the adjoint system (2) with initial data

N�0 D
X
n2N

�0;n
N�n; N�1 D

X
n2N

�1;n
N�n; (3)

4More rigorously, for the adjoint system, the initial data should be given at time t D T , but the
system under consideration being time-reversible, we may consider equally that the initial data are
given at t D 0.
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can be written in Fourier series as follows:

N�.t; x/ WD
X
n2N
.�0;n cos

p
�nt C �1;np

�n
sin

p
�nt/ N�n.x/: (4)

When . N�0; N�1/ 2 V � H; by standard variational or semigroup methods it can be
shown that the solution N� satisfies

N� 2 C.Œ0; T �IV /
\
C1.Œ0; T �IH/; (5)

for all T > 0.
For a classical smooth solution Nu of (1), the energy is defined as the sum of the

energies of its components, that is,

ENu.t/ WD
MX
jD1

Euj .t/ with Euj .t/ WD 1

2

Z `j

0


ˇ̌
ˇujt .t; x/

ˇ̌
ˇ2 C ˇ̌

ujx.t; x/
ˇ̌2�

dx:

This energy satisfies

d

dt
ENu.t/ D

MX
jD1

ujt .t; vj /@nuj .t ; vj /: (6)

In particular, for the adjoint system (2), the energy is conserved for all t :

E N�.t/ D E N�.0/;

for every t 2 R. Besides, if the initial data are as in (3) then

E N� D 1

2

X
n2N
.�n�

2
0;n C �21;n/ D 1

2
.jj N�0jj2V C jj N�1jj2H /: (7)

For every s 2 R we also consider the Hilbert spaces

V s WD
(

Nu D
X
n2N

un N�n W kNuk2s WD
X
n2N

�snjunj2 < 1
)
; (8)

hs WD
(
.un/ W k.un/k2s WD

X
n2N

�snjunj2 < 1
)
; (9)

endowed with the norms k
ks , where .un/ denotes a sequence of real numbers un.
The canonical isomorphism

P
n2N un N�n ! .un/ is an isometry between V s and hs .
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Let us observe that V s is the domain of .��G/
s
2 considered as an unbounded

operator fromH to H . Besides, V D V 1 and H D V 0.
Further, we introduce the Hilbert spaces

W s WD V s � V s�1;

endowed with the natural product structures. We then have

W 1 D V �H; W 0 D H � V 0:

For initial state . N�0; N�1/ 2 W s the solution of the homogeneous problem (2) may be
defined by (5) and

N� 2 C.RIV s/
\
C1.RIV s�1/:

Furthermore, the solutions of the adjoint system, for all T > 0 finite and every
exterior node v 2 Vext satisfy the following hidden regularity inequality

Z T

0

j@n�j .t; v/j2dt � CE N�: (10)

The inequality (10) may be proved using d’Alembert formula for the representation
of the solutions of the wave equation in each string of the network, or multiplier
techniques (see [25]).

If we multiply the first equation in (2) by uj and integrate over Œ0; t � � Œ0; `i � it
holds, after integration by parts,

Z t

0

h@n�
1.�; v1/d� D

MX
jD1

Z `j

0

�
uj .t; x/�jt .t; x/ � ujt .t; x/�

j .t; x/
�
dx jt0:

We consider this identity as the definition of weak solution Nu of (1) in the sense of
distributions. Given h 2 L2.0; T /, as a consequence of (10), this solution is well-
defined, unique and, by (10), has the property

Nu 2 C.Œ0; T � W H/
\
C1.Œ0; T �IV 0/; (11)

together with the estimate

jjNujjL1.0;T WH/ C jjNut jjL1.0;T WV 0/ � C Œjj.Nu0; Nu1/jjH�V 0 C jjhjjL2.0;T /�: (12)

The control problem in time T consists in determining for which initial states
it is possible to choose the control h 2 L2.0; T /, such that the system reaches
the equilibrium position at time T . Depending on how strict we are on requiring
the state to reach equilibrium, several notions or degrees of controllability may be
distinguished.
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More precisely, given T > 0, we say that the initial state .Nu0; Nu1/ 2 H � V 0, is
exactly controllable (or simply controllable) in time T , if there exists a function
h 2 L2.0; T /, such that the solution of (1) with initial state .Nu0; Nu1/ satisfies

NujtDT D Nut jtDT D N0:

The system is said to be approximately controllable in time T when for every
" > 0 there exists a control h such that the corresponding solutions Nu" verifies

�Nu"jT ; Nu"t jT
�
H�V 0

< ":

Here we shall mainly focus on the problem of controllability and present the
existing results guaranteeing that the system is controllable within a class of initial
data that one might identify.

Using the definition of solutions of the state equation by means of transposition
the control property can be characterized in the following manner:

Proposition 2.1. The initial state .Nu0; Nu1/ 2 H � V 0 is controllable in time T with
control h 2 U if, and only if, for every . N�0; N�1/ 2 V � H the following equality
holds

� hNu0; N�1iH C hNu1; N�0iV 0�V D
Z T

0

h.t/@n�
jv1 .t; v1/dt; (13)

where N� is the solution of system (2) with initial state . N�0; N�1/.
The relation (13) suggests a minimization algorithm for the construction of the

control h. If we look for the control in the form h D �@n N .v1; t/, where N is a
solution of the homogeneous system (2), then the equality (13) is the Euler equation
I 0. N 0; N 1/ D 0 corresponding to the quadratic functional I W V �H !R defined by

I. N�0; N�1/ D 1

2

Z T

0

j@n�i .t; v1/j2dt C hNu0; N�1i � hNu1; N�0i:

Therefore, if . N 0; N 1/ is a minimizer of I , the relation (13) will be verified. The
functional I is continuous and convex. So, in order to guarantee the controllability
of an initial state .Nu0; Nu1/ 2 H � V 0 it is sufficient that I be coercive. This is the
central idea of the Hilbert Uniqueness Method (HUM) introduced by J.-L. Lions
in [29].

The coercivity of the functional is equivalent to the following observability
inequality:

jj. N�0; N�1/jj2	 � C

Z T

0

j@n�i .t; v1/j2dt; (14)

for all solutions of the adjoint system, where jj 
 jj	 stands for a norm to be identified.
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Once the norm jj 
 jj	 has been identified and the observability inequality (14)
proved, the controllability property can be guaranteed to hold for all initial data
.Nu0; Nu1/ in .W 	/0, the dual of W 	, the Hilbert space obtained as the closure of W 1

with respect to the norm jj 
 jj	.
The main issue is then the obtention of inequalities of the form (14), giving quan-

titative informations about the norm jj 
 jj	, so that the spaces in which observability
and controllability hold, W 	 and .W 	/0, respectively, might be identified. These
issues depend in a very sensitive manner on the topological and number theoretical
properties of the network under consideration.

As we shall see later, the problem of stabilization can also be solved once the
observability inequality (14) is well understood. Indeed, we shall present a black-
box strategy recently developed in collaboration with J. Valein [41], allowing to get
observability inequalities (and, consequently, decay properties) for the solutions of
wave equations in networks with dissipative boundary conditions, as a consequence
of their conservative counterparts.

3 Main Results on Observability and Controllability

3.1 Summary of Known Results

The state of the art in what concerns the observability/controllability problem is
more or less the one presented in [7], where the following three cases, in increasing
complexity, were discussed. We summarize here the known main results.

• The star. In the star-like network a finite number of strings are connected on
a single point by one of their extremes. This is a particular case of a tree-like
network that we shall discuss below (Fig. 1).

If the observation/control acts on all but one external vertices of the star, one
gets observability/controllability in the optimal energy spaces. In other words,
we get (14) with W 	 D W 1.

To the contrary, in the opposite case in which the observation/control is
only applied in one external vertex, as we are doing here, then the space
of observation and/or control can be described in Fourier series by means
of suitable weights depending on the lengths of the strings entering in the
star. These weights depend on the ratios of the lengths of the strings and,
in particular, on their irrationality properties. In case when some of the non-
controlled strings are mutually rational, some of these weights vanish and then
the observability/controllability properties fail to hold. To the contrary, when
they are all mutually irrational, all these weights are strictly positive but their
lower envelop tends to zero for high frequencies so that there is always some loss
in the spaces in which the observability/controllability problems are solvable.
How important this loss is depends on the diophantine approximation properties
of the quotients of the lengths. In particular, the weights may degenerate
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Fig. 1 A star-shaped network

exponentially when some of the quotient of the lengths is a Liouville number.
But, regardless of the diophantine properties and the nature of the spaces in which
the observability/controllability properties hold, the time needed for observation
turns out to be twice the sum of all the lengths of the strings of the networks.

It is interesting to analyze the relation of this result with the so-called
Geometric Control Condition (GCC) introduced by Bardos, Lebeau and Rauch
[4] in the context of the boundary observation and/or control of the wave equation
in bounded domains of R

n. The GCC requires that all the rays of Geometric
Optics enter the observation region in a finite, uniform time, which turns out to
be the minimal one for observation/control. In the case of the star shaped network
this would correspond to the maximum of sum of the lengths of any pair of two
strings.

But this time is insufficient for the control from only one end-point. As we
mentioned, above, indeed, the time needed is twice the sum of all the lengths of
all the strings of the star-shaped network. This control time is closer to the one
gets when one string is controlled at an interior point or two strings are controlled
by a single control on a common vertex. In that case the minimal control time is
2.`1 C `2/ and not 2max.`1; `2/, `1; `2 being the lengths of the two strings.
The wave equation is a second order problem and therefore, even in 1-d, for a
point-wise observation mechanism to be efficient we need to measure not only
the position, but also the space derivative. This implies that a necessary condition
for observation/control is that all waves pass twice through the observation point.
This is guaranteed when the time of control is larger than 2.`1C`2/. But, in fact,
passing twice by the observation point is not sufficient either. The irrationality of
the ratio `1=`2 is needed to guarantee that, when passing through the observation
point the second time, the solution is not exactly at the configuration as in the first
crossing, which, of course, would make the second observation to be insufficient
too. Finally, even when `1=`2 is irrational, we cannot get a uniform bound of
the energy of the solution but rather a weaker measurement in a weaker norm.
The nature of this norm, which is represented in Fourier series by means of some
weights depending on `1=`2, depends very strongly on the irrationality class to
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v1
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e5

Fig. 2 A tree-shaped network

which the number `1=`2 belongs. In fact, even in the most favorable case, i.e.,
when `1=`2 is an algebraic number of degree two, one looses one derivative with
respect to the expected energy norm.

We refer to [7] for an in depth discussion of the problem of simultaneous
control of a finite number of strings and its connections with the problem of the
control of star networks.

• The tree. The tree-like network is a generalization of the star-like one. As we
said above, it is well known that, when all but one external nodes of the network
are observed on a tree-like configuration, the whole energy of solutions may
be observed (see [25]). This can be easily seen by sidewise energy estimates for
the solutions of the wave equation. In this case the observation inequality holds
in the sharp energy space in a time which is twice the length of the longest path
joining the points of the network with some of the observed ends, which is much
smaller than twice the total length of the network, which was the time needed
for the observation from a single end in the case of stars mentioned above. This
smaller observability time is the one that coincides with the one given by the
GCC in the case of waves in domains of the Euclidean space (Fig. 2).

In the opposite case in which the observation is made at one single extreme of
the tree-like network, the observation time turns out to be, again, twice the sum
of the lengths of the strings forming the network.

But for the observability inequality to be true in the case of the tree one needs
a condition extending the one that, in the case of stars, requires the strings to
have mutually irrational lengths. In [7] it was observed that this condition can be
recast in spectral terms: two strings have mutually irrational lengths if and only
if their Dirichlet spectra have empty intersection.

The latter condition turns out to be the appropriate one to be extended to
general trees: the wave equation on a tree is observable from one end if and
only if the spectra of all pairs of subtrees of the tree that match on an interior
node are disjoint.

This allows showing, in particular, that, generically within the class of trees
(i. e. for almost all tress), this property is satisfied and then, the wave process
is observable/controllable from one single node. But the space in which the
observability/controllability holds depends in a subtle manner on the distance
between the various spectra of the corresponding subtrees and how it vanishes
asymptotically at high frequencies.
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Note however that the identification of the precise norm jj 
 jj	 in which the
observability inequality (14) holds is a delicate issue.

• General networks. The characterization we have given of controllable stars
and trees is hard to be extended to general graphs. Indeed, in the general
case, we lack of a natural ordering on the graph to analyze the propagation of
waves and, for instance, when the graph contains cycles, the condition of empty
intersection of subgraphs is hard to extend. Actually, as we mentioned above,
the presence of closed circuits may trap the waves thus making impossible the
controllability/observability properties to hold from an external node.

Thus, in the analysis of general graphs, we proceed in a different way by
applying a consequence of the celebrated Beurling–Malliavin’s Theorem on the
completeness of families of real exponentials obtained by Haraux and Jaffard
in [18] when analyzing the control of plates. Using the min-max principle, one
can show that the spectral density of a general graph is the same as that of a
single string whose length,L, is the sum of the lengths of all the strings entering
in the network. Then, when the time is greater than twice the total length, as
a consequence of Beurling–Malliavin’s Theorem, we deduce that there exist
some Fourier weights so that the observation property holds in the corresponding
weighted norm if and only if all the eigenfunctions of the network are observable.

So far we do not know of any necessary and sufficient condition guaranteeing
that all the eigenfunctions are observable in the general case. However, this
condition, in the particular case of stars and trees discussed above turns out to
be sharp and equivalent to the ones we have identified in each particular case:
(a) the condition that lengths of the strings are mutually irrational in the case of
stars or (b) that the spectra of all pairs of subtrees with a common end-point to
be mutually disjoint in the more general case of trees.

3.2 The Weighted Observability Inequality

In the previous section we have described the main existing results on the observ-
ability of graphs distinguishing three different cases, in increasing complexity:
the star, the tree and general graphs. In each case, under suitable assumptions,
we obtain the observability inequality (14) for a suitable norm jj 
 jj	. This norm
can be characterized in terms of the Fourier coefficients by suitable weights. This
subsection is devoted to explain this fact, which plays a critical role in the control
and stabilization results one can get out of this analysis, and that will be discussed
in the next section.

Recall that if we suppose that . N�.0/; N�.1// 2 W 1, then problem (2) admits a
unique solution

N� 2 C.RI V /\ C1.RI H/:
The observability inequalities we have described can be rewritten in terms of the
Fourier expansion (4) as follows:
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X
n�1
c2n.�n�

2
0;n C �21;n/ � C

Z T

0

ˇ̌
ˇ̌@�1
@x

.v1; t/

ˇ̌
ˇ̌2 dt: (15)

This holds in the situations described above, under the corresponding assumptions
on the network, for T large enough (twice the sum of the lengths of all the strings
entering in the network,T > 2L) and for a suitable observability constantC >0 and
weights fcngn�1. The norm jj 
 jj	 arising in the observability inequality is therefore
as follows:

jj. N�0; N�1/jj	 D
2
4X
n�1

c2n.�n�
2
0;n C �21;n/

3
5
1=2

: (16)

Obviously, the nature of this norm depends on how fast the weights fcngn�1 tend to
zero as n ! 1.

Recall however that, in each case, extra assumptions are needed to ensure that
the weights c2n are strictly positive for every n 2 N

	.
One of the most interesting open problems in this context is to give sharp

sufficient conditions on the network so that these weights have a given asymptotic
lower bound as n ! 1. At this respect, the case of the star network is the simplest
one: it then suffices to impose diophantine conditions on the quotients of the lengths
of the strings entering in the network to get those lower bounds.

4 Stabilization

4.1 Problem Formulation

So far we have considered an open-loop control problem. In this section we
discuss the closed-loop counterpart in which the goal is to find suitable feedback
mechanisms ensuring the decay as t ! 1 of solutions.

Recall that, in the control and observation problems above we have distinguished
one vertex v1 among all the exterior ones Vext: the one in which the control or
the observation is being applied. The rest of the nodes in which the homogeneous
Dirichlet boundary condition holds for the control problem is denoted by VD . In
this way, we distinguish the conservative exterior nodes, VD , in which we impose
Dirichlet homogeneous boundary conditions, and the one in which the damping
term is effective, v1. To simplify the notation, we will assume that v1 is located at
the end 0 of the edge e1.
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The system under consideration then reads as follows:

8̂
ˆ̂̂̂
ˆ̂̂̂
<
ˆ̂̂̂
ˆ̂̂̂
:̂

@2yj

@t2
� @2yj

@x2
D 0 0 < x < lj ; t > 0; 8j 2 f1; :::;M g;

yj .v; t/ D yl .v; t/ 8j; l 2 Ev; v 2 Vint; t > 0;X
j2Ev

@yj

@nj
.v; t/ D 0 8v 2 Vint; t > 0;

yjv.v; t/ D 0 8v 2 VD ; t > 0;
@y1

@x
.0; t/ D @y1

@t
.0; t/ 8t > 0;

Ny.0/ D Ny0; @ Ny
@t
.0/ D Ny1;

(17)

where @yj =@nj .v; :/ stands for the outward normal (space) derivative of yj at
the vertex v. Similarly the normal derivative at the vertex v1 D 0 where the
dissipative boundary condition is imposed is denoted by �@y1.0; t/=@x, y1 being
the deformation of the first edge with extreme v1 D 0. The deformation of the
network at that point is given by y1.0; t/. As usual, we denote by y the vector
y D .yj /jD1;:::;M :

The above system has been considered in a number of articles where the decay
rate of solutions has been investigated in some specific examples and, recently, an
unified treatment has been given in [41]. We briefly present here the main ideas and
results.

In order to study system (17) we need a proper functional setting which is slightly
different to the one considered until now because of the damped boundary condition
on one of the nodes. To be more precise, the space V above has to be replaced by:

VD Df Ny 2
MY
jD1

H1.0; `j / W yj .v/ D yk.v/ if

v 2 Vint;8j; k 2 Ev and yjv.v/ D 0 if v 2VDg:

The only difference between the space V above and the new one VD is that, in the
later, we do not impose the homogeneous Dirichlet boundary condition on v1 D 0.

It is easy to see by semigroup methods that this dissipative system is well posed
in in the Hilbert space

WD WD VD �H;
equipped with the canonical norm.

Then, for an initial datum in WD WD VD �H , there exists a unique solution such
that

y 2 C.Œ0;1/IVD/
\
C1.Œ0;1/IH/: (18)

Moreover, the solutions remain in D.AD /, the domain of the operator AD , for all
t > 0 whenever the initial data belong to D.AD /:
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D.AD / WD f.y; z/ 2 .VD \
MY
jD1

H2.0; lj // � VD W @y
1

@x
.0/

D z1.0/ I
X
j2Ev

@yj

@nj
.v/ D 0; 8v 2 Vintg:

For this dissipative system the energy satisfies the energy dissipation law

d

dt
E Ny.t/ D �



@y1

@t
.0; t/

�2
� 0; (19)

and therefore it is decreasing.
Integrating the expression (19) between 0 and T , we obtain

Z T

0



@y1

@t
.0; t/

�2
dt D E Ny.0/� E Ny.T / � E Ny.0/:

This estimate implies that @y
1

@t
.0; 
/ belongs to L2.0; T / for finite energy solutions.

The main goal of this section is to show how the results of previous sections on
observability/controllability can be used to derive energy decay rates as t ! 1 for
smooth solutions in D.AD /. Obviously, the better the observability/controllability
results, faster decay rates will be obtained.

Note, however, that in the context of observability/controllability we have
considered only Dirichlet boundary conditions while in here we are imposing a
dissipative boundary condition on one node. Thus, we need to reduce the problem
of getting decay results for the damped systems into the one of observability
inequalities for the conservative one with Dirichlet boundary conditions on all the
exterior nodes. To do this we proceed in two steps:

• We first reduce it to the case of conservative Dirichlet–Neumann boundary
conditions.

• To later reduce it to the case of purely Dirichlet conditions.

As we shall see, overall, this reduction argument allows obtaining an observabil-
ity inequality for Ny out of the known ones for the solutions of the Dirichlet problem.
The obtained observability inequality reads

E�Ny .0/ � C

Z T

0



@y1

@t
.0; t/

�2
dt; (20)

for an energy E�Ny .0/ that we shall make precise below but that, definitely, will be
weaker than the energy norm.

To obtain explicit decay rates out of this weak observability inequality we use
an interpolation inequality which is a variant of the one from Bégout and Soria [5]
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and which is a generalization of Hölder’s inequality. For this to be done we need to
assume more regularity of the initial data.

To be more precise we shall consider initial data . Ny0; Ny1/2Xs WD
ŒD.AD /;WD �1�s for 0 < s < 1=2 and deduce an interpolation inequality of
the form

1 � ˚s

 
E�Ny .0/
CE Ny.0/

!
k. Ny0; Ny1/k2Xs
C 0E Ny.0/

; (21)

where ˚s is an increasing function which depends on s and on the weak energy E�Ny
under consideration.

The previous interpolation inequality implies

E�Ny .0/ � CE Ny.0/˚�1
s

 
E Ny.0/

C 0 k.. Ny0; Ny1/k2Xs

!
:

With (19) and (20), we obtain

E Ny.0/� E Ny.T / � CE Ny.0/˚�1
s

 
E Ny.0/

C 0 k. Ny0; Ny1/k2Xs

!
;

which implies, by the semigroup property (see Ammari and Tucsnak [1])

8t > 0; E Ny.t/ � C˚s



1

t C 1

�
k. Ny0; Ny1/k2Xs : (22)

Obviously, the decay rate in (22) depends on the behaviour of the function ˚s
near 0. Thus, in order to determine the explicit decay rate, we need to have a sharp
description of the function ˚s , which depends on s and on the energies E Ny and E�Ny
and thus on the nature of the weak energy E�Ny in an essential way and this depends
on the topology of the network and the number theoretical properties of the lengths
of the strings entering in it.

This approach allows getting in a systematic way decay rates for the energy
of smooth solutions of the damped system as a consequence of the observability
properties of the undamped one.

The key ingredients of the proof that remain to be developed are the following:

• To get the weak observability inequality (20) out of the previous results on the
observability of the Dirichlet problem.

• To derive the interpolation inequality (21) with a precise estimate on the behavior
of ˚s .
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4.2 Observability for the Damped System

This subsection is devoted to explain how the weak observability inequality (20)
can be proved as a consequence of the results of previous sections on the Dirichlet
problem on the same network.

Let us explain how the observability results of the purely Dirichlet case discussed
in the previous sections can be applied directly to get an inequality of the form (20)
for the solutions of (17).

For that, we decompose Ny, the solution of (17), as the sum of N�, solution of (2),
and a reminder term N�:

Ny D N� C N�:
Recall that N� is a solution of (2) with appropriate initial data . Ny0 � y10.0/ N�; Ny1/,
where N� is a given smooth function such that �1.0/ D 1 and vanishing on all other
external nodes.

Applying (15) to the solution N� of (2), we obtain the following weighted
observability estimate (note that y1.0; 0/ D y10 .0/)

jj. Ny0 � y10.0/ N�; Ny1/jj2	 � CT

Z T

0



@�1

@x
.0; t/

�2
dt; (23)

where the weak norm jj 
 jj	 is defined with weights .c2n/n that tend to zero as n !
1, depending on the network, as described in the previous sections. It is however
important to underline that (23) holds under the same assumptions on the network
needed for observability to hold for the Dirichlet problem (2) and provided T > 2L.

The reminder term � is the solution of the following non-homogeneous Dirichlet
problem:

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

@2�j

@t2
� @2�j

@x2
D 0 8x 2 .0; lj /; t > 0; 8j 2 f1; :::;M g;

�j .v; t/ D �l .v; t/ 8j; l 2 Ev; v 2 Vint; t > 0;P
j2Ev

@�j

@nj
.v; t/ D 0 8v 2 Vint; t > 0;

�jv.v; t/ D 0 8v 2 VD ; t > 0;

�.0; t/ D y.0; t/ t > 0;

N�.0/ D y10 .0/ N�; @N�
@t
.0/ D N0:

(24)

Note that � satisfies a non-homogeneous Dirichlet boundary condition at x D 0.
Actually it coincides with the initial value of the solution y1 of (17) at that point.
We know that the solution Ny of the dissipative problem, because of the energy
dissipation law, is such that @y1.0; 
/=@t 2 L2.0; T /; so that the non-homogeneous
Dirichlet boundary condition belongs to H1.0; T /:

Proceeding in this manner, the following result was proved in [41]:
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Theorem 4.1. ([41]). Assume that the network is such that the weighted observ-
ability inequality (23) is satisfied for T > 2L for the conservative system (2) with
Dirichlet boundary conditions at all the exterior nodes. Define the weak energy
E�Ny .0/ by

E�Ny .0/ WD 1

2

�jj. Ny0 � y10.0/ N�; Ny1/jj2	 C y10.0/
2
�
: (25)

Then for all T > 2L, there exists CT > 0 such that all solution Ny of (17) satisfies
the weak observability inequality (20).

Note that
�

E�Ny .0/
� 1
2

as above defines a norm in the space of initial data . Ny0; Ny1/ 2
WD . Indeed, when E�

Ny .0/ vanishes, y10.0/ D 0. Thus . Ny0; Ny1/ 2 W and then

E�Ny .0/ D E Ny.0/, and, by assumption,
�
E Ny.0/

� 1
2 defines a norm in W .

Let us now present a sketch of the proof of Theorem 4.1.
Note that, standard results on the hidden regularity of the wave equation

guarantee that, for all T > 0 there exists CT > 0 such that the solutions Ny of
(17) and N� of (24) satisfy the following estimate

Z T

0



@�1

@x
.0; t/

�2
dt � CT

Z T

0

"

@y1

@t
.0; t/

�2
C �

y1.0; t/
�2#

dt: (26)

Despite of the fact that we are here working with the wave equation on a network,
this result is of local nature and therefore it is sufficient to apply the standard
multiplier techniques of the scalar wave equation in the string with vertex at v1 D 0.
With a little extra work the right hand side term of this inequality can be slightly
weakened to yield

Z T

0



@�1

@x
.0; t/

�2
dt � CT

 Z T

0



@y1

@t
.0; t/

�2
dt C �

y10.0/
�2!

: (27)

Combining (23) and (27) and the fact that

Z T

0



@�1

@x
.0; t/

�2
dt � 2

Z T

0



@y1

@x
.0; t/

�2
dt C 2

Z T

0



@�1

@x
.0; t/

�2
dt

and that, due to the choice of the dissipative boundary condition,

Z T

0



@y1

@x
.0; t/

�2
dt D

Z T

0



@y1

@t
.0; t/

�2
dt

we have

E�Ny .0/ � C

"Z T

0



@y1

@t
.0; t/

�2
dt C ˇ̌

y10.0/
ˇ̌2#

: (28)
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In fact, we can remove the last term in the right hand side of (28). To do this, it
is sufficient to show that

ˇ̌
y10.0/

ˇ̌2 � CT

Z T

0



@y1

@t
.0; t/

�2
dt

for a positive constant CT depending on T .
This can be done by a classical compactness-uniqueness argument using the fact

that the perturbation is of rank one (and therefore compact with respect to any norm)
and the fact that whenever @y1.0; t/=@t and @y1.0; t/=@x vanish for t 2 .0; T /

during a sufficiently long time interval (T > 2L), then, necessarily, y0.0/ D 0.
In this way, we conclude that the wanted inequality (20) is true.

4.3 The Interpolation Inequality

In this subsection we recall the main ingredients of the proof of the interpolation
inequality (21). Its proof uses a discrete interpolation inequality, similar to that in
[5], introduced in [41] and a description of the various energies and norms entering
in the estimates we have obtained so far in terms of Fourier series.

The discrete interpolation inequality reads as follows:
Let m 2 Œ0; 1/, 0 < s < 1=2 and assume that

! W .m; 1/ ! .0; !.m// is convex and decreasing with !.1/ D 0; (29)

˚s W .0; !.m// ! .0; 1/ is concave and increasing with ˚s.0/ D 0; (30)

8t 2 Œ1; 1/; 1 � ˚s.!.t//t
2s ; (31)

The function t 7! 1

t
˚�1
s .t/ is nondecreasing on .0; 1/: (32)

Under the conditions (30)–(31), we have the following result which is a
generalized Hölder’s inequality, a variant of Theorem 2.1 given in [5]:

Lemma 4.2. Let .!; ˚s/ be as above satisfying (29)–(31). Then for any f D
.fn/n2N� 2 l1.N	/, f ¤ 0, we have

1 � ˚s

0
BB@

X
n�1

jfnj!.n/
X
n�1

jfnj

1
CCA

X
n�1

jfnjn2s
X
n�1

jfnj
; (33)

as soon as .fn!.n//n 2 l1.N	/ and .fnn2s/n 2 l1.N	/.
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We now give some examples of pairs .!; ˚s/ satisfying (29)–(32):

1. If
!.t/ D c

tp
;

for some p � 1, we can take ˚s of the form

˚s.t/ D


t

c

� 2s
p

:

We can easily prove that .!; ˚s/ satisfy (29)–(30) with m D 0 and (31)–(32).
2. If

!.t/ D Ce�At

where A > 2.2s C 1/ and C > 0, we can take ˚s of the form

˚s.t/ D
 

A

ln
�
C
t

�
!2s

:

We can easily prove that t 7! 1
t
˚�1
s .t/ is nondecreasing on .0; 1/ and that

the pair .!; ˚s/ satisfies (31) on Œ1; 1/: Thus .!; ˚s/ satisfy (29)–(32) with
mD 1=2.

When applying this argument,
P

n�1 jfnj!.n/ will play the role of the weak
energy E�Ny ,

P
n�1 jfnj the role of the standard energy E Ny and

P
n�1 jfnj n2s that of

the norm in Xs . But for this to be done, these energies and norms have to written in
a suitable discrete manner.

We explain how this can be done distinguishing each of the terms:

• The Xs-norm. At this level, the fact that 0 < s < 1=2 plays a key role. The
following Lemma was proved in [41]:

Lemma 4.3. ([41]) Assume that . Ny0; Ny1/ belongs to Xs , where 0 < s < 1=2,
and . N�0; N�1/ D . Ny0 � y10 .0/ N�; Ny1/, where N� is a given smooth function such that
�1.0/ D 1 and vanishing on all other external nodes. Then there exists a positive
constant C such that

� N�0; N�1
�2
D..��G/s/ C ˇ̌

y10 .0/
ˇ̌2 � C k. Ny0; Ny1/k2Xs ;

whereD..��G/
s/ is the domain of the operator .��G/

s , which is the s-th power
of the Laplacian on the graph, ��G , with Dirichlet boundary conditions at all
exterior nodes.

This means that it is sufficient to prove the interpolation inequality (21) with

the norm in Xs replaced by
h� N�0; N�1

�2
D..��G/s/ C ˇ̌

y10.0/
ˇ̌2i1=2

.
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On the other hand, the norm
� N�0; N�1

�2
D..��G/s/ can be written easily in terms

of the Fourier coefficients of
� N�0; N�1

�
in the basis of eigenfunctions of ��G :

� N�0; N�1
�2
D..��G/s/ D

X
n�1

�
�1Csn j�0;nj2 C �snj�1;nj2

�
;

where .�0;n; �1;n/ are the Fourier coefficients of the data
� N�0; N�1

�
.

• The weak energy E�Ny . According to the results of the previous sections and, in
particular, (15), the observed weak energy can be rewritten as

E�Ny .0/ D
X
n�1

c2n.�n�
2
0;n C �21;n/C ˇ̌

y10 .0/
ˇ̌2
: (34)

• The energy E Ny . Similarly, the energy E Ny is equivalent to the discrete norm:

E Ny � � N�0; N�1
�2

W
C ˇ̌
y10.0/

ˇ̌2 D
X
n�1

�
�nj�0;nj2 C j�1;nj2

�C ˇ̌
y10 .0/

ˇ̌2
:

Once this is done, the interpolation inequality (21) is a consequence of the abstract
discrete interpolation result (33).

In the next subsection we state the main stabilization result that this analysis
yields.

4.4 The Main Result

Before moving further we observe that, as proved in [41], for 0 < s < 1=2,

Xs D
0
@VD \

Y
j

H1Cs.0; lj /

1
A �

Y
j

Hs.0; lj /:

Thus, the spaceXs of smooth initial data can be identified in classical Sobolev terms.
We assume that the network is such that the weighted observability inequality

(15) holds. In the previous sections we have given sufficient conditions on the
network for that to hold with positive weights cn > 0.

The main stabilization result is as follows:

Theorem 4.4. Assume that the weighted observability inequality (15) holds for
every solution of (2) with lim infn!1 cn D 0 and cn ¤ 0 for all n 2 N

	. Let ! be
defined by a lower envelope of the sequence of weights .c2n/ satisfying (29). Assume
that the initial data . Ny0; Ny1/ belong to Xs where 0 < s < 1=2. Let ˚s be a function
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such that the pair .!; ˚s/ satisfies (29)–(32). Then there exists a constant C > 0

such that the corresponding solution Ny of (17) verifies

8t � 0; E Ny.t/ � C˚s



1

t C 1

�
k. Ny0; Ny1/k2Xs : (35)

We see that the decay rate of the energy directly depends on the behavior of the
interpolation function ˚s near 0 and thus of ! and of the weights c2n as n ! 1.

Using (35) and making a particular and explicit choice of the concave function
˚s , we obtain a more explicit decay rate. To be more precise, we set

8t > 0; '.t/ D !.t/

t2
:

Then there exists a constant C > 0 such that for any initial data . Ny0; Ny1/ 2 Xs
(0 < s < 1=2), the corresponding solution Ny of (17) verifies

8t � 0; E Ny.t/ � C�
'�1 � 1

tC1
��2s k. Ny0; Ny1/k2Xs : (36)

We refer to [7, 41] for explicit examples of networks in which explicit estimates
on the rate of vanishing on the weights .c2n/ and, accordingly, of the decay rate of
the energy for the dissipative system are given.

5 Further Comments and Open Problems

As we have mentioned throughout the article, there are many interesting questions
(most of them are difficult) to be investigated in connection with the topics we have
addressed here and some other closely related ones, in connection with PDE in
networks. We mention here some of them. Of course the list is non exhaustive. We
refer to [22], for instance, for a recent survey on this area.

• Lower bounds on the weights. As we have seen, the weights entering the
observability inequalities, and, more precisely, their decay at high frequencies,
play a key role when identifying the control/observation spaces and also the
decay rates on the dissipative framework. It would be very interesting to
analyze how the degeneracy of these weights at high frequencies depends on
the properties of the network under consideration.

• Wave equations with potentials. We have considered here the pure wave model.
What happens when the equations are perturbed by lower order terms? In the
context of the equation in domains of the Euclidean space, it is well known that
these lower order perturbations do not matter in the sense that they add compact
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perturbations that can be get rid-of by a compactness-uniqueness argument. But
the situation is different in networks because the best expected observability
results are weak and require the loss of at least one derivative. This derivative is
precisely the one that the zero order potentials allow gaining, but it is not enough
to ensure the compactness of the perturbations. Note moreover that this happens
in very special situations where the diophantine theory can be applied. But, in
general, the loss of derivatives can be arbitrary. Thus, the problem of whether the
observability/controllability/stabilizability properties we have proved here are
preserved when one adds arbitrary bounded potentials on the various strings of
the network is open.

• Wave equations with variable coefficients. The same problem above can be
formulated for wave equations on 1-d networks with variable and sufficiently
smooth coefficients (say BV -ones). Note that, even for the 1-d wave equation on
an interval the BV -regularity is the minimal one required for the observability
property to holds [6].

• Semilinear wave equations. Similar issues arise for semilinear wave equations.
In the case of domains of the Euclidean space, sharp estimates on the cost of
controlling wave equations with potentials, together with fixed point techniques,
allow proving the controllability of semilinear wave equations, under suitable
growth conditions on the nonlinearity at infinity. This is an open issue in the
context of networks, the first difficulty being, as mentioned above, that of dealing
with wave equations with potentials.

• Transmutation. As we have mentioned above, most of the analysis of control
problems on networks has been developed for the wave equation. Then, the
obtained result, using the method of transmutation based on Kannai’s transform,
leads to null control results for the heat equation. This can also be done
establishing a continuity result on the property of null controllability between
the wave and the heat equation through the damped wave equation (see [28]).

But, in the case of the heat equation in bounded domains of the Euclidean
space, the corresponding observability inequalities are often obtained applying
Carleman inequalities directly to the heat model. This is still to be done in the
context of the heat equation on graphs. Note however that the evidence that
the expected results need to depend on the topological and number theoretical
properties of the network makes this method very hard to be applied in this
context. In any case the issue of applying Carleman inequalities to obtain directly
observability inequalities for PDE in networks is widely open.

• Multipliers. The results in this paper were obtained using a fine analysis of
the propagation properties of waves along the network. However, in the context
of the wave equation in the Euclidean space, relevant results can be obtained
much more easily by using the method of multipliers (see [31]). It would be
interesting to explore if the observability results for waves on networks (other
than the one guaranteeing the observability of the energy of a tree-like network
when measurements are done on all but one external node) can be obtained by
the method of multipliers.
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• Thermoelasticity. In the context of PDE in domains of the Euclidean space
one can combine the theory of the wave and heat equations to obtain results
on the controllability of several relevant systems, including the system of
thermoelasticity (see [26]).

• Hyperbolic–Parabolic systems. Recently, motivated by problems of fluid-
structure interaction, there has been work done for models coupling a wave and
a heat equation along an interface. The coupling turns out to be quite weak so
that the corresponding system does not even decay uniformly exponentially [43].
Similar issues could be considered on networks where, in principle, one could
choose arbitrarily the location of the heat and wave equations. In the context of
the control of those systems in 1-d (a wave equation and a heat equation coupled
through a point-wise interface) it is well known that the controllability properties
depend on the location of the controller. In particular, the system is much more
easily controllable when the control is on the external boundary of the wave
domain than in the one of the heat domain (see [44]). Using the methods in [44],
which combine sidewise energy estimates with known controllability results on
the heat equation, and the results on the heat equation that one can derive from
the results on the wave equation we have presented here by transmutation, one
could prove controllability results on general networks provided: (a) All the
wave components are located on external segments so that the system under
consideration is the heat equation on a graph surrounded by external vibrating
controlled strings; (b) the resulting heat-like configuration is controllable. But all
the other situations are still to be investigated.

• Other joint conditions. All the results presented here refer to the Laplacian on
networks defined through the so-called Kirchhoff conditions. But the systems
under consideration have a physical meaning and are well-posed for other joint
conditions. In particular we could assume that the external and/or internal nodes
contain point masses. Very likely similar results will hold in that case but, even in
the case of two strings connected by a point-mass it is well-known that the control
theoretical properties change dramatically because of the presence of the mass.
In particular it is well known that, in those cases, the observability/controllability
spaces are asymmetric to both sides of the point-mass (see [17]). Similar
asymmetry properties may be expected in the case of networks with point masses
on the joints.

• Switching control. Recently, a theory of switching controls has been developed
for PDE with various actuators or controllers. This is particularly suited for
networks endowed with different controllers, located in various nodes (internal or
external ones). It would be interesting to analyze systematically the possibilities
of controlling networks (in particular for the heat equation in which the time-
analiticity of solutions can be guaranteed) by means of switching controls (see
[46]). The same can be said in the context of stabilization, in which the various
feedback controllers are requested to be activated in a switching manner. At
this respect, the work [11] is worth mentioning. There the authors consider a
star-like network composed byM strings endowed with M feedback controllers
on the exterior nodes, each of which can be deactivated by a time-dependent
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Fig. 3 A graph-like thin manifold or a 3� d branching-domain

switching law. They provide conditions on the switching laws guaranteeing that
the network can be stabilized asymptotically to rest.

• Infinite networks of finite length. It would be interesting to investigate the
possible extension of the results of this paper to networks involving an infinite
number of strings, but of finite total length.

• Optimal placement of controllers. We have discussed here the problem of
observation, control or stabilization from a given external vertex. But it would
be of interest to discuss the problem of the choice of the optimal placement of
the controller. This is a widely open subject. We refer to [20] for some of the few
existing results in context of the string equation on a segment.

• Graph-like thin manifolds. In these notes we have considered the control and
stabilization of the wave equation on 1-d networks. We have also discussed
similar issues for other models as the heat or Schrödinger equations. It is very
natural to analyze the same issues in thin 2 � d domains obtained by simply
adding a thickness of size " to the network on the perpendicular direction to
each string (Fig. 3).

The control of PDE’s in thin cylinders is reasonably understood. In the case
of the wave equation, due to the existence of trapped rays in the perpendicular
directions, the wave and plate process can not be controlled from the lateral
boundary and the filtering of the high frequency trapped rays is needed to get
uniform controllability results [14]. To the contrary, in the case of the heat
equation, the intrinsic strongly dissipative effect damps out the high frequency
components that the added dimension generates, and the limit of null controls in
thin domains is a null control in the limit cross section (see [8, 45]).

It would be natural and interesting to analyze similar questions in the context
of “thick networks” when the thickness tends to zero. The subject will however
be more complex than in domains of the Euclidean space since, as the results
concerning 1-d networks show (see [7]), the results one has to expect when
passing to the limit, necessarily, will depend on the number theoretical properties
of the lengths of the edges of the network.

We refer to [9] for recent results on the behavior of the spectrum of the Lapla-
cian under this singular perturbation and to [12] for a recent survey on the subject.
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• Numerics. In recent years the problem of numerical approximation of control
problems, especially for waves, has been the object of intensive research
(see [49]). But very little is known in the context of networks. The abstract
results in [40] can be applied in this context and we can obtain controllability
results for time-discrete wave equations on networks, provided the high
frequency components are appropriately filtered out. But the analysis of space-
discretizations is a widely open subject.

• Strichartz inequalities. There are other interesting features of PDE on domains
of the Euclidean space that are badly understood in the context of networks.
That is for instance the case of the dispersive or Strichartz estimates for the
Schrödinger equation. This issue is still to be investigated in a systematic manner
in the context of networks. We refer to [19] for the first results in this direction
in the case of some particular tree like infinite networks.

Note also that these dispersive estimates play a key role when analyzing
the solvability of the corresponding nonlinear problems and in their numerical
approximation [19].

• Inverse problems. Inverse problems for waves on networks are intimately
related to the control problems we have considered in this paper. The issue
consists roughly on determining the topological and geometric properties of
the network through measurements done on the exterior vertices. We refer to
the recent paper [2] for the analysis of tree-like networks through the so-called
boundary-control-approach developed in [3] and to the references in [22]. These
kind of problems are widely open in the case of networks containing circuits.
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