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Preface 
This book is intended to be an exposition of the modeling and control of 
electric machines, specifically, the direct current (DC) machine and the 
alternating current (AC) machines consisting of the induction motor, the 
permanent magnet (PM) synchronous motor, and the brushless DC motor. 
The particular emphasis here is on techniques used for high-performance 
applications, that is, applications that require both rapid and precise con- 
trol of position, speed, and/or torque. Traditionally, DC motors were re- 
served for high-performance applications (positioning systems, rolling mills, 
traction drives, etc.) because of their relative ease of control compared to 
AC machines. However, with the advances in control methods, computing 
capability, and power electronics, AC motors continue to replace DC mo- 
tors in high-performance applications. The intent here is to carefully derive 
the mathematical models of the AC machines and show how these math- 
ematical models are used to design control algorithms that achieve high 
performance. 

Electric machines are a particularly fascinating application of basic elec- 
tricity and magnetism. The presentation here relies heavily on these basic 
concepts from Physics to develop the models of the motors. Specifically, 
Faraday’s law (< = -d@/dt, where @ = ss B . ds ) ,  the magnetic force law 

(F = ie‘x B or, I? = qv’xB), Gauss’s law ($B.  dS = 0), Ampgre’s law 
($H . d= ifree), the relationship between B and H, properties of mag- 
netic materials, and so on are reviewed in detail and used extensively to 
derive the currently accepted nonlinear differential equation models of the 
various AC motors. The author made his best attempt to make the mod- 
eling assumptions as clear as possible and to consistently show that the 
magnetic and electric fields satisfy Maxwell’s equations (as, of course, they 
must). The classical approach to teaching electric machinery is to present 
their equivalent circuit models and to analyze these circuit models ad nau- 
seam. Further, the use of the basic Physics of electricity and magnetism to 
explain their operation is minimized if not omitted. However, the equiva- 
lent circuit is a result of assuming constant-speed operation of the machine 
and computing the sinusoidal steady-state solution of the nonlinear differ- 
ential equation model of the machine. Here, the emphasis is on explaining 
how the machines work using fundamental concepts from electricity and 
magnetism, and on the derivation of their nonlinear differential equation 
models. The derivation of the corresponding equivalent circuit assuming 
steady-state conditions is then straightforward. 

Electric machines also provide fascinating examples to illustrate con- 

+ 
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cepts from electromagnetic field theory (in contrast to electricity and mag- 
netism). In particular, the way the electric and magnetic fields change as 
one goes between reference frames that are in relative motion are vividly 
illustrated using AC machines. For this reason, optional sections are in- 
cluded to show how the electric and magnetic fields change as one goes 
between a coordinate system attached to the stator to a coordinate system 
that rotates with the rotating magnetic field produced by the stator cur- 
rents or a frame attached to the rotor. Also given in an optional section is 
the derivation of the axial electric and azimuthal magnetic fields in the air 
gap- 

This is also a book on the control of electric machines based on their 
differential equation models. With the notable exception of the sinusoidal 
steady-state analysis of the induction motor in Chapter 7, very little atten- 
tion is given to the classical equivalent circuits as these models are valid 
only in steady state. Rather, the differential equation models are used as 
the basis to develop the notions of field-oriented control, input-output lin- 
earization, flux observers, least-squares identification methods, state feed- 
back trajectory tracking, and so on. This is a natural result of the emphasis 
here on high-performance control methods (e.g., field-oriented control) as 
opposed to classical methods (e.g., V/f, slip control, etc.). 

There are of course many good books in the area of electric machines 
and their control. The author owes a debt of gratitude to Professor W. 
Leonhard for his book [l] (see the most recent edition [a]), from which he 
was educated in the modeling and control of electric drives. The present 
book is narrower in focus with an emphasis on the modeling and operation 
of electric machines based on elementary classical physics and an emphasis 
on high-performance control methods using a statespace formulation. The 
books by P. C. Krause [3] and P. C. Krause et al. [4] are complete in their 
derivation of the mathematical models of electric machines while C. B. Gray 
[5] presents electromagnetic theory in the context of electric machines. A 
comprehensive treatment using SIMULINK to simulate electric machinery is 
given in C-M. Ong’s book [6]. The graduate level books by D. W. Novotny 
and T. A. Lip0 [7], P. Vas [8], J. M. D. Murphy and F. G. Turnbull [9], 
I. Boldea and S. A. Nasar [lo], B. Adkins and R. G. Harley [ll], A. M. 
Trzynadlowski 1121, M. P. Kazmierkowski and H. Tunia [13], B. K. Bose 
[14], and R. Krishnan [15] all cover the modeling and control of electric 
machines while the books by R. Ortega et al. [16], D. M. Dawson et al. 
[17], and F. Khorrami et al. [l8] emphasize advanced control methods. 

The introductory-level books by S. J. Chapman [19], H. Woodson and J. 
Melcher [20], L. W. Matsch and J. D. Morgan [21], G. McPherson and R. D. 
Laramore [22], D. V. Richardson [23], P. C. Krause and 0. Wasynczuk [24], 
N. Mohan [25], G. R. Slemon and A. Straughn [26], J. Sokira and W. Jaffe 
[27], G. J. Thaler and M. L. Wilcox [as], V. Deltoro [29], M. El-Hawary 
[30], P. C. Sen [31], and G. R. Slemon [32] are among the many books on 
electric machines from which this author has benefited. 
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The beautifully written textbooks PSSC Physacs by the Physical Science 
Curriculum Study [33], Physzcs by D. Halliday and R. Resnick [34], Przn- 
caples of Electrodynamzcs by M. Schwartz [35],  and Electromagnetzc Faelds 
by R. K. Wangness [36] are used as references for the theory of electricity 
and magnetism. 

This book borrows from these above works and hopefully makes its own 
contribution to  the literature on electric machines. 

Part I of the book consists of the first three chapters. Chapters 1 and 2 
present a detailed review of the basic concepts of electricity and magnetism 
in the context of DC machines and an introduction to control methods, 
respectively, which will be used extensively in the remaining chapters. The 
third chapter on magnetic fields and magnetic materials is intended to be a 
detailed introduction to  the subject. For example, most textbooks assume 
that the reader understands Ampbre’s law in the form $’ H . de‘= ifree and 

that B = p H  in (soft) magnetic materials, yet it is the experience of the 
author that students do not have a fundamental understanding of these 
concepts. 

These first three chapters are elementary in nature and were written to 
be accessible to undergraduates. The reason for this is that often con- 
trol engineers do not have any background in electric machinery while 
power/electric-machine engineers often do not have any background in ba- 
sic state-space concepts of control theory. Consequently, it is hoped that 
these chapters can bring the reader “up to speed” in these areas. 

Chapter 1 reviews the basic ideas of electricity and magnetism that are 
needed to model electric machines. In particular, the notions of magnetic 
fields, magnetic force and Faraday’s law are reviewed by using them to 
derive the standard model of a DC motor. 

Chapter 2 provides an elementary introduction to the control techniques 
required for the high-performance control of electric machines. This in- 
cludes an elementary presentation of state feedback control, observers, and 
identification theory as applied to  DC machines to prepare the reader for 
the subsequent chapters. 

Chapter 3 goes into the modeling of magnetic materials in terms of their 
use in electric machines. The fundamental result of this chapter is the 
modification of Ampbre’s law jC B . de‘ = poi so that it is valid in the 
presence of magnetic material. This introduces the magnetic intensity field 
H and its relationship to magnetic induction field B via the magnetization 
vector M to obtain the more general version of Ampere’s law $’ H.de‘= ifree. 
All of this requires a significant discussion of the modeling of magnetic 
materials. The approximation H = 0 in magnetic materials is discussed, 
and then it is shown how this approximation along with Ampere’s law 
can be used to  find the radial component of B in the air gap of electric 
machines. Also presented is Gauss’s law for B; this leads to the notion of 
conservation of flux, as well as the fact that B is normal to the surface of 
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soft magnetic materials. This chapter should be read, but the reader should 
not get “bogged down” in the chapter. Rather, the main results should be 
remembered. 

Part I1 consists of Chapters 4 through 10 and presents the modeling and 
control of AC machines. 

Chapter 4 uses the results of Chapters 1 and 3 to explain how a radi- 
ally directed rotating magnetic field can be established in the air gap of 
AC machines. In particular, the notions of distributed windings and of si- 
nusoidally wound turns (phase windings) are explained. AmpGre’s law is 
then used to show that a sinusoidal (spatially) distributed radial magnetic 
field is established in the air gap by the currents in the phase windings. 
The concept of flux linkage in distributed windings is explained, and the 
chapter ends with an optional section on the azimuthal magnetic field in 
the air gap. 

Chapter 5 explains the fundamental Physics behind the working of induc- 
tion and synchronous machines. Specifically, this chapter uses a simplified 
model of the induction motor and shows how voltages and currents are 
induced in the rotor loops by the rotating magnetic field established by the 
stator currents. Then it is shown how torque is produced on these induced 
currents by the same stator rotating magnetic field that induced them in- 
troducing the idea of slip. Similarly, the synchronous machine is analyzed 
to show how the rotating radial magnetic field established by the stator 
currents produces torque on a rotor carrying constant current. 

An optional section on the microscopic point of view of the Physics of 
the induction motor is also presented. This includes a discussion of how the 
electric and magnetic fields change as one goes between coordinate systems 
that are rotating with respect to each other and how one reinterprets the 
Physics of the machine’s operation. The chapter ends with another optional 
section of the steady-state behavior of an induction machine with a squirrel 
cage rotor. 

Chapter 6 derives the systems of differential equations that mathemati- 
cally model the two-phase induction and synchronous machines. The con- 
cept of leakage is presented and accounted for in the derived models. These 
models are the accepted models used throughout the literature and form 
the basis for high-performance control of these machines. In an optional sec- 
tion it is shown that the stator and rotor magnetic fields of an induction 
motor rotate synchronously together as they do in a synchronous machine. 
The chapter ends with another optional section on the concepts of field 
energy and cuenergy, and how the expression for the torque of an electric 
machine can be derived using these notions. 

Chapter 7 presents the derivation of the models of three-phase AC ma- 
chines and their twuphase equivalent models. These derivations readily 
follow from the results of Chapter 6. The classical steady-state analysis of 
the induction motor is also presented including its equivalent circuit. The 
chapter ends with a discussion of why the standard power system is an AC 
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I - Chapter8 

sinusoidal three-phase 60-Hz (or 50-H~) system. 
Chapter 8 covers the control of induction motors presenting both field- 

oriented control and input-output linearization control. Flux observers, field 
weakening, and speed observers are also presented along with experimental 
results. The chapter ends with an optional section on how to identify the 
induction motor parameters using a nonlinear least-squares technique. 

Chapter 9 covers the control of synchronous motors describing field- 
oriented control, field weakening, speed observers and identification meth- 
ods. The operation and modeling of permanent magnet stepping motors is 
also covered. 

Chapter 10 covers the modeling and control of P M  synchronous motors 
with trapezoidal back emf, which are also known as brushless DC (BLDC) 
motors. 

The logical dependence of the chapters is shown in the block diagram 
below assuming that the optional sections are not covered. 

* 

Chapter 1 0 

Chapter 9 - 
(r 

Logical dependence of the chapters. 
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Finally, the author’s intent for this book was for the reader to understand 
how electric machines are modeled and to understand the basic techniques 
in their control. The references at the end of the book are only those directly 
referenced in the book and are not representative of (nor give proper recog- 
nition to) the many important contributions made by researchers through- 
out the world. The reader is referred to Professor Leonhard’s book [2] for 
a much more extensive reference list. 

Comments on the Use of the Book 

In using this book in a onesemester graduate-level course, the following 
material was usually covered: 

Chapter 1, Sections 1.1-1.7 
Chapter 2, Sections 2.1-2.4 
Chapter 3, Sections 3.1-3.4 
Chapter 4, Sections 4.1-4.5 
Chapter 5, Sections 5.1-5.3 
Chapter 6, Sections 6.1-6.10 
Chapter 7, Sections 7.1-7.3 
Chapter 8, Sections 8.1-8.3 
Chapter 9, Section 9.1 

Sections marked with an asterisk (*) may be omitted without loss of con- 
tinuity. Some of these optional sections assume familiarity with Maxwell’s 
equations in diflerential form. 
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The Physics of the DC Motor 
The principles of operation of a direct current (DC) motor are presented 
based on fundamental concepts from electricity and magnetism contained 
in any basic physics course. The DC motor is used as a concrete example 
for reviewing the concepts of magnetic fields, magnetic force, Faraday’s 
law, and induced electromotive forces (emf) that will be used throughout 
the remainder of the book for the modeling of electric machines. All of 
the Physics concepts referred to  in this chapter are contained in the book 
Physics by Halliday and Resnick [34]. 

1.1 Magnetic Force 

Motors work on the basic principle that magnetic fields produce forces on 
wires carrying a current. In fact, this experimental phenomenon is what 
is used to define the magnetic field. If one places a current carrying wire 
between the poles of a magnet as in Figure 1.1, a force is exerted on the wire. 
Experimentally, the magnitude of this force is found to  be proportional to 
both the amount of current in the wire and to the length of the wire that 
is between the poles of the magnet. That is, Fmagnetic is proportional to 
Ci. The direction of the magnetic field B at any point is defined to  be the 
direction that a small compass needle would point at that location. This 
direction is indicated by arrows in between the north and south poles in 
Figure 1.1. 

FIGURE 1.1. Magnetic force law. From PSSC Physics, 7th edition, by 
Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991. 
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With the direction of B perpendicular to the wire, the strength (magni- 
tude) of the magnetic induction field B is defined to be 

Fmagne t i c  B =  I B I  L! 
ei 

where Fmagnet ic  is the magnetic force, i is the current, and C is the length 
of wire perpendicular to the magnetic field carrying the current. That is, 
B is the proportionality constant so that Fmagne t i c  = iCB. As illustrated in 
Figure 1.1, the direction of the force can be determined using the right-hand 
rule. SpecificaIly, using your right hand, point your fingers in the direction 
of the magnetic field and point your thumb in the direction of the current. 
Then the direction of the force is out of your palm. 

Further experiments show that if the wire is parallel to the B field rather 
than perpendicular as in Figure 1.1, then no f2rce is exerted on the wire. 
If the wire is at some angle 6' with respect to B as in Figure 1.2, then the 
force is proportional to the component of B perpendicular to the wire; that 
is, it is proportional to BI = Bsin(0). This is summarized in the magnetic 
force law: Let fdenote  a vector whose magnitude is the length C of the 
wire in the magnetic field and whose direction is defined as the positive 
direction of current in the bar; then the magnetic force on the bar of length 
C carrying the current i is given by 

or, in scalar terms, Fmagnetic = iCBsin(6') = iQBL. Again, BI A Bsin(6') is 
the component of B perpendicular to the wire.' 

FIGURE 1.2. Only the component BI of the magnetic field which is perpendic- 
ular to the  wire produces a force on the  current. 

'Motors are designed so that the conductors are perpendicular to the external mag- 
netic field. 
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Example A Linear DC Muchine 1191 
Consider the simple linear DC machine in Figure 1.3 where a sliding bar 

rests on a simple circuit consisting of two rails. An external magnetic field 
is going through the loop of the circuit up out of the page indicated by the 
@ in the plane of the loop. Closing the switch results in a current flowing 
around the circuit and the external magnetic field produces a force on the 
bar which is free to move. The force on the bar is now computed. 

Z 
(out of page) 

FIGURE 1.3. A linear DC motor. 

The magnetic field is constant and points into the page (indicated by 8)  
so that written in vector notation, B = -Bi with B > 0. By the right hand 
rule, the magnetic force on the sliding bar points to the right. Explicitly, 
with l = -&, the force is given by 

+ 

4 

F~~~~~~~~ = i f x  B = i(-l?) x ( - ~ i )  
= itB%. 

To find the equations of motion for the bar, let f be the coefficient of 
viscous (sliding) friction of the bar so that the friction force is given by 
Ff  = - f d x / d t .  Then, with me denoting the mass of the bar, Newton’s law 
gives 

ieB - f d x / d t  = m e d 2 x / d t 2 .  

Just after closing the switch at t = 0, but before the bar starts to move, 
the current is i ( O + )  = V,(O+)/R. However, it turns out that as the bar 
moves the current does not stay at this value, but instead decreases due to 
electromagnetic induction. This will be explained later. 

1.2 Single-Loop Motor 

As a first step to modeling a DC motor, a simplistic single-loop motor 
is considered. It is first shown how torque is produced and then how the 
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current in the single loop can be reversed (commutated) every half turn to 
keep the torque constant. 

1.2.1 Torque Prodaction 

Consider the magnetic system in Figure 1.4, where a cylindrical core is cut 
out of a block of a permanent magnet and replaced with a so& iron core. 
The term “soft” iron refers to  the fact that material is easily magnetized 
(a permanent magnet is referred to as “hard” iron). 

air gap 

FIGURE 1.4. Soft iron cylindrical core placed inside a hollowed out permanent 
magnet to produce a radial magnetic field in the air gap. 

An important property of soft magnetic materials is that the magnetic 
field at the surface of such materials tends to be normal (perpendicular) to  
the surface. Consequently, the cylindrical shape of the surfaces of the soft 
iron core and the stator permanent magnet has the effect of making the 
field in the air gap radially directed; furthermore, it is reasonably constant 
(uniform) in magnitude. A mathematical description of the magnetic field 
in the air gap due to  the permanent magnet is simply 

+Bt fo rO<%<. i r  
-Bt for T < % < 27r B = {  

where B > 0 is the magnitude or strength of the magnetic field and 8 is an 
arbitrary location in the air gap.’ 

Figure 1.5 shows a rotor loop wound around the iron core of Figure 1.4. 
The length of the rotor is and its diameter is l 2 .  The torque on this rotor 
loop is now calculated by considering the magnetic forces on sides a and 
a‘ of the loop. On the other two sides of the loop, that is, the front and 

2A$ually it will be shown in a later chapter that  the magnetic field must be of the 
form B = &B(To/~)P in the air gap, that  is, it varies as 1/r in the air gap. However, as 
the air gap is small, the B field is essentially constant across the air gap. 
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back sides, the magnetic field has negligible strength so that no significant 
force is produced on these sides. A s  illustrated in Figure 1.5(b), the rotor 
angular position is taken to be the angle OR from the vertical to side a of 
the rotor loop. 

FIGURE 1.5. A single-loop motor. From Electromagnetic and Electromechanical 
Machines, 3rd edition, L. W. Matsch and J. Derald Morgan, 1986. Reprinted by 
permisson of John Wiley & Sons. 

Figure 1.6 shows the cylindrical coordinate system used in Figure 1.5. 
Here P, 8,2 denote unit cylindrical coordinate vectors. The unit vector 2 
points along the rotor axis into the paper in Figure 1.5(b), 6 is in the 
direction of increasing 8, and P is in the direction of increasing T .  

Z 
(into page) 

FIGURE 1.6. Cylindrical coordinate system used in Figure 1.5. 

Referring back to Figure 1.5, for i > 0, the current in side a of the loop 
is going into the page (denoted by @) and then comes out of the page 
(denoted by 0) on side a'. Thus, on side a, e'= i?l2 (as e'points in the 
direction of positive current flow) and the magnetic force a on side a 
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is then 

which is tangential to  the motion as shown in Figure 1.5(b). The resulting 
torque is 

+side a = (t2/2)? x $side a 

= ( & / 2 ) i & B P  x e 
= (t2/2)2!1Bt. 

Similarly, the magnetic force on side a’ of the rotor loop is 
+ 
Fside a/  = ‘h?X 6 

= i(-t,2) x (-Be) 
= ills6 

so that the corresponding torque is then 

+side a’ = (!2/2)fx@side a’ 

= ( & / 2 ) i & B P  x e 
= (t2/2)iC1B2. 

The total torque on the rotor loop is then 

-7, = ?side a $- ?side a’ 

= 2(&/2)itlB2 

= t l t z B i 2 .  

The torque points along the z axis, which is the axis of rotation. In scalar 
form, 

r,  = K T ~  

where KT 45 tlt2B. The force is proportional to the strength B of magnetic 
field B in the air gap due to the permanent magnet. 

In order to  increase the strength of the magnetic field in the air gap, 
the permanent magnet can be replaced with a soft iron material with wire 
wound around the periphery of the magnetic material as shown in Figure 
1.7(a). This winding is referred to as the field winding, and the current it 
carries is called the field current. In normal operation, the field current is 
held constant. The strength of the magnetic field in the air gap is then 
proportional to the field current if at lower current levels (i.e., B = K f i f )  
and then saturates as the current increases. This may be written as B = 



1. The Physics of the DC Motor 9 

f(if) where f(.) is a saturation curve satisfying f(0) = O,f’(O) = Kf as 
shown in Figure 1.7(b). 

+. ! 4 

B =  f ( i  ) 
I f 

FIGURE 1.7. (a) DC motor with a field winding. (b) Radial magnetic field 
strength in the air gap produced by the field current. 

1.2.2 

The above derivation for the torque rm = KTZ assumes that the current 
in the side of the rotor loop3 under the south pole face is into the page 
and the current in the side of the loop under the north pole face is out of 
the page as in Figure 1.8(a). In order to make this assumption valid, the 
direction of the current in the loop must be changed each time the rotor 
loop passes through the vertical. 

Commutation of the Single-Loop Motor 

FIGURE 1.8. (a) 0 < OR < T .  From Electromagnetic and Electromechanical Ma- 
chines, 3rd edition, L. W. Matsch and J. Derald Morgan, 1986. Reprinted by 
permisson of John Wiley & Sons. 

3The rotor loop is also referred to a:; the armature winding and the current in it as 
the armature current. 
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The process of changing the direction of the current is referred to as 
commutation and is done at OR = 0 and OR = n through the use of the slip 
rings s1, s2 and brushes b l ,  b2 drawn in Figure 1.8. The slip rings are rigidly 
attached to the loop and thus rotate with it. The brushes are fixed in space 
with the slip rings making a sliding electrical contact with the brushes as 
the loop rotates. 

Figure 1.8(b) Rotor loop just prior to commutation where 0 < OR < 7r 

I 

Figure 1.8(c) The ends of the rotor loop are shorted when OR = 7r 

Figure 1.8(d) Rotor loop just after commutation where n < OR < 2n 
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; S 4- "magnet 

To see how the commutation of the current is accomplished using the 
brushes and slip rings, consider the sequence of Figures 1.8(a)-(d). As 
shown in Figure 1.8(a), the current goes through brush bl into the slip ring 
s1. From there, it travels down (into the page @) side a of the loop, comes 
back up side a' (out of the page 0) into the slip ring s2, and, finally, comes 
out the brush b ~ .  Note that side a of the loop is under the south pole face 
while side a' is under the north pole face. Figure 1.8(b) shows the rotor 
loop just before commutation where the same comments as in Figure 1.8(a) 

Figure 1.8(c) shows that when 6~ = 7 r ,  the slip rings at the ends of the 
loop are shorted together by the brushes forcing the current in the loop to 
drop to zero. Subsequently, as shown in Figure 1.8(d), with T < OR < 27r, 
the current is now going through brush bl into slip ring s2. From there, the 
current travels down (into the page @) side a' of the loop and comes back 
up (out of the page 0) side a. In other words, the current has reversed 
its direction in the loop from that in Figures 1.8(a) and 1.8(b). This is 
precisely what is desired, as side a is now under the north pole face and 
side a' is under the south pole face. As a result of the brushes and slip 
rings, the current direction in the loop is reversed every half-turn. 

apply. 

1.3 Faraday's Law 

Figure 1.9 shows a magnet moving upwards into a wire loop producing a 
changing magnetic flux in the loop. 

FIGURE 1.9. A magnet moving upwards produces a changing flux in the loop 
which in turn results in an induced emf and current in the loop. 

Recall that a changing flux within a loop produces an induced electro- 
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motive force ( emf )  < in the loop according to Faraday’s law.4 That is, 

where 

is the flux in the loop and S is any surface with the loop as its boundary. 
Faraday’s law is now reviewed in some detail. 

1.3.1 

The surface element d S  is a vector whose magnitude is a differential (small) 
element of area d S  and whose direction is normal (perpendicular) to the 
surface element. As there are two possibilities for the normal to the surface, 
one must choose the normal in a consistent manner. In particular, depend- 
ing on the particular normal chosen, a convention is used to characterize 
the positive and negative directions of travel around the surface boundary. 
To describe this, consider Figure 1.10(a) which shows a small surface ele- 
ment with the normal direction taken to be up in the positive z direction. 
In this case, with fi = 2, d S  = dxdy ,  the surface element vector is defined 

d S  a dxdyi?. 

The corresponding direction of travel around the surface boundary is indi- 
cated by the curved arrow in the figure. 

The Surface Element Vector dg  

bY 

n 

FIGURE 1.10. (a) Positive direction of travel around a surface element with the 
normal up. (b) Positive direction of travel around a surface element with the 
normal down. 

4E is the Greek letter “xi” and is pronounced “ksi” 
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In Figure 1.10(b) a surface element with the normal direction taken to be 
down in the negative z direction is shown. In this case fi = -2, dS = dxdy 
so that the surface element vector is defined as 

The direction of positive travel around the surface element is indicated by 
the curved arrow in Figure 1.10(b) and is opposite to  that of Figure l.lO(a). 

As illustrated in Figure 1.10, the vector differential surface element dS 
is defined to be a vector whose magnitude is the area of the differential 
surface element and whose direction is normal to the surface. One may 
choose either normal, and the corresponding direction of positive travel 
around the surface is then determined. 

Two surface elements may be connected together as in Figure 1.11 and 
travel around the total surface is defined as shown. Note that along the 
common boundary of the two joined surface elements, the directions of 
travel “cancel” out each other, resulting in a net travel path around both 
surface elements. The normals for the surface elements must both be up 
or both be down; that is, the normal must be continuous as one goes from 
one surface element to the next. 

n n 

FIGURE 1.11. Positive direction of travel around two joined surface elements. 

1.3.2 Interpreting the Sign of [ 
The interpretation of positive and negative values of the induced electro- 
motive force < is now explained. Faraday’s law says that the induced emf 
(voltage) in a loop is given by 

where 

If [ > 0, the induced emf will force current in the positive direction of travel 
around the surface while if < < 0, the induced emf will force current in the 
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opposite direction. As illustrated in problems 1 and 2, this sign convention 
for Faraday’s law is just a precise mathematical way of describing Lenz’s 
law: “In all cases of electromagnetic induction, an  induced voltage will cause 
a current to  flow in a closed circuit in such a direction that the magnetic 
field which is caused by that current will oppose the change that produced 
the current” (pages 873-877 of Ref. [34]). 

Faraday’s law is now illustrated by some examples. Specifically, it is used 
to compute the induced emf in the linear DC machine, the induced emf 
in the single-loop machine and the self-induced voltage in the single-loop 
machine. 

1.3.3 Back Emf in a Linear DC Machine 

Figure 1.12 shows the linear DC machine where the back emf it generates is 
now computed. The magnetic field is constant and points into the + page, that 
is, B = - B 2 ,  where B > 0. The magnetic force on the bar is Fmagnetic = 
ieBk To compute the induced voltagejn the loop of the circuit, let ii = 2 
be the normal to the surface so that dS = d x d y i ,  where d S  = dxdy. 

4 

Direction of 
positive travel 

8 8 8 8 8  
8 8 8 8 8 +  

8 8 8 8 8E [ 8 &  
8 8  
8 8  

@ 8 8 @  
8 8 8 8 8  

> 
X 

Z 
(out of page) 

FIGURE 1.12. With dS = dzdy9, the direction of positive travel around the flux 
surface is in the counterclockwise direction. 

Then 

The induced (back) emf is therefore given by 

5 = -d#/dt = -d(-BCx)/dt = Bev. 

In the flux computation, the normal for the surface was taken to  be in +2 
direction. By putting together the differential flux surfaces dS in a fashion 
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similar to Figure 1.11, the positive direction of travel around the surface is 
counterclockwise around the loop a.s indicated in Figure 1.12. Here the sign 
conventions for source voltage VS and the back emf ( are opposite so that, 
as the back emf ( = BCv > 0,  it is opposing the applied source voltage Vs. 

Remark 4 = -Bex is the flux in the circuit due to the external magnetic 
field B = -B2. There is also a flux $ = Li due to the current i in the 
circuit. For this example, the inductance is small and one just sets L = 0. 

Electromechanical Energy Conversion 

As the back emf ( = BZv opposes the current i, electrical power is being 
absorbed by this back emf. Specifically, the electrical power absorbed by the 
back emf is i( = iBCv while the mechanical power produced is Fmagneticv = 
ieBv. That is, the electrical power absorbed by the back emf reappears as 
mechanical power, as it must by conservation of energy. Another way to 
view this is to note that Vsi is the electrical power delivered by the source 
and, as VS - Bev = Ri, one may write 

Vsi = Ri2 + i(Bf!v) = Ri2 + Fmagneticv. 

In words, the power from the source Vsi is dissipated as heat in the resis- 
tance R while the rest is converted into mechanical power. 

Equations of Motion for the Linear DC Machine 

The equations of motion for the bar in the linear DC machine are now 
derived. With the inductance L of the circuit loop taken to be zero, me the 
mass of the bar, f the coefficient of viscous friction, it follows that 

V S -  Bev = Ri 
dv 

me- dt = iCB- f v .  

Eliminating the current i, one obtains 

d2x 
m e z  = QB(Vs - BCv)/R -- fv = - 

or 
dx eB 

This is the equation of motion for the bar with VS as the control input and 
the position x at  the measured output. 

1.3.4 
The back emf induced in the single loop motor by the external magnetic 
field of the permanent magnet is now computed. To do so, consider the 

Back Emf in the Single-Loop Motor 
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flux surface for the rotor loop shown in Figure 1.13. The surface is a half- 
cylinder of radius l 2 / 2  and length l ,  with the rotor loop as its boundary. 
The cylindrical surface is in the air gap, where the magnetic field is known 
to be radially directed and constant in magnitude, that is, 

+BF forO<B<. i r  
B & {  -BI for .ir < 0 < 271 

vs 
Flux surface S 

L Rotorloop FIUX surface s 

FIGURE 1.13. Flux surface for the single loop motor. 

FIGURE 1.14. Surface element vector for the flux surface of Figure 1.13. The 
positive direction of travel around this surface is indicated by the curved arrow. 

On the cylindrical part of the surface, the surface element is chosen as 

dS  = ( & ? / 2 ) d 0 d z I  

which is directed outward from the axis of the cylinder as illustrated in 
Figure 1.14. The corresponding direction of positive travel is also indicate: 
in Figure 1.14. On the two ends (half-disks) of the cylindrical surface, the B 
field is quite weak making the flux through these two half-disks negligible. 
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Then, neglecting the flux through the two ends of the surface, the flux 
4 (8,) for 0 < 8R < 7r is given by 

45(8~) = l B . d g  

= 1x1 (BF) . (-ddedzP) e2 + i : ; + O R  (- BF) . (-d8dzF) .e2 

2 2 

e2 -B-d8dz 
2 

= -ele2B (OR - 5). (1.2) 

This derivation is based on the fact that the B field is directed radially 
outward over the length (&/2)(7r -- 8 ~ )  and radially inward over the length 
( 1 2 / 2 ) 8 ~  (see Figure 1.13). In problem 7, the reader is asked to  show that 

# ( 8 ~ )  = -el!zB ( 8~ -- T / 2  - T ) for 7r < 8~ < 27T. (1.3) 

A plot of the flux versus the rotor angle 8~ is given in Figure 1.15. 

FIGURE 1.15. The rotor flux @ ( 6 ~ )  due to the external magnetic field vs. 6 ~ .  

Equations (1.2) and (1.3) may be combined into one expression as5 

58Rmod7r is the remainder after OR is divided by x. For example, OR = 5x12 = 
4 x x + x / 2  so that 5 x / 2  mod x = x / 2 .  
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which is a correct expression for any angle O R .  By (1.2) and (1.3), the 
induced emf in the rotor loop is calculated as 

where Kb 
The total emf in the rotor loop due to the voltage source Vs and external 

magnetic field is vs - KbwR. How does one know to su6tract [ from the 
applied voltage Vs? As shown in Figure 1.14, the positive direction of travel 
around the loop is in opposition to Vs, so that if [ > 0, it is opposing the 
applied voltage Vs. The standard terminology is to call [ K ~ W R  the back 
emf of the motor. 

el&B is called the back emf constant. 

1.3.5 

The computation of the flux in the rotor loop produced by its own (ar- 
mature) current is now done. To do so, consider the flux surface shown in 
Figure 1.16. 

Self-Induced Emf in the Single-Loop Motor 

Positive 

FIGURE 1.16. Computation of the inductance of the rotor loop. The surface 
element vector is d g  = -rRdedzf with a resulting positive direction of travel 
as indicated by the curved arrow. This direction coincides with the direction of 
positive current, that is, i > 0. 

With reference to Figure 1.16, note that the magnetic field on the flux 
surface due to the armature current has the form 

B(rR, 0 - O R ,  i) = ~ K ( T R ,  0 - 0,) (-F) 

where 

K(TR,@-oR) > 0 f o r o < o - o R < x  

K(TR, 8 - O R )  < 0 for ?l 5 8 - O R  < 2'T. 
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The exact expression for K(rR,6 - OR) is not easy to compute, but it is 
not needed for the analysis here. Rather, the point is that with i > 0, the 
magnetic field B(TR, & O R ,  i )  due to the current in the rotor loop is radially 
in on the flux surface shown in Figure 1.16, that is, for O R  5 6 5 QR+T. For 
convenience, the surface element is chosen to be d S  = r R d 6 d z ( - f )  so that 
positive direction of travel around the surface coincides with the positive 
direction of the current i in the loop. The flux II, in the rotor loop is then 
computed as6 

where 

L l:+T 6’” K(rR, 6 - 6 R ) r R d 6 d z  > 0. (1.5) 

This last equation just says the flux in the loop (due to the current in the 
loop) is proportional to the current i in the loop. The proportionality con- 
stant L is the called the inductance of the loop7 If -dII,/dt = - L d i / d t  > 0,  
then the induced emf will force current into the page @ on side a and out 
of the page 0 of side a’ in Figure 1.16. That is, this induced emf has the 
same sign convention as the armature current i and the source voltage Vs. 

With the rotor locked at some angle O R  so that the external magnetic 
field cannot induce an emf in the rotor loop, the equation describing the 
current i in the rotor loop is given by Kirchhoff’s voltage law 

di 
d t  

Vs - Ri - L- = 0 

or 
d i  
d t  

Vs=Ri+L-.  

Here R is the resistance of the loop and Vs is the source voltage applied to 
the loop. The loop and its equivalent circuit are shown in Figure 1.17. 

6The notation 1c, is used to distinguish this flux from the flux 4 in the loop due to 
the external permanent magnet. However, the total flux using an inward normal would 
be + - 4 as the outward normal was used to  compute 4 in Section 1.3.4. 

71t appears from equation (1.5) and Figure 1.16 that L can vary with OR. However, 
in an actual motor, there are loops spread evenly around the complete periphery of the 
rotor and, due to symmetry, the total self-inductance does not depend on OR. 
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e21 
FIGURE 1.17. Left: Rotor loop. Right: Equivalent circuit. 

The reader should convince himselflherself that Lenz’s law holds as it 
must. For example, suppose a voltage Vs > 0 is applied to the loop resulting 
in both i > 0 and di/dt > 0, that is, the flux $ = Li is positive and 
increasing. The induced voltage is -Ldildt < 0 and opposes the current 
i producing the increasing flux $ = Li. In this circumstance, the voltage 
source Vs is forcing the current i against this induced voltage -Ldi/dt and 
the power absorbed by the induced voltage is -iLdi/dt = -d ( i L i 2 )  l d t .  
This power is stored in the energy +Li2 of the magnetic field surrounding 
the loop. 

Arcing Between the Commutator and Brushes 

Suppose the single-loop motor is rotating at constant speed wo with a 
constant current i o  in the rotating loop. Let L be the inductance of the 
loop. Now, every half-turn, the current in the loop reverses direction as 
shown in Figures 1.8(b)-(d). During this commutation, the current in the 
loop goes from i o  to 0 to -io (or vice versa) with a corresponding change 
in the loop’s flux given by A$ = L(-io) - Lio = -2Lio. By Faraday’s law, 
the self-induced emf is then -A$/At = 2Lio/At where At is the time for 
the current to change direction. Note that this time At decreases as the 
motor speed increases, so that, even if L is small, the induced emf in the 
loop (due to the reversal of current in the loop) can be quite large at high 
motor speeds. Large electric fields are produced by the induced voltage 
Ldildt when the loop is shorted which in turn ionizes the surrounding air. 
As the free electrons collide and recombine with the ionized air, light is 
given off and seen as arcing or sparking. These large voltages which cause 
the arcing between the slip rings and the brushes can damage the brushes 
as well as produce unwanted transient currents in the armature circuit. 

1.4 Dynamic Equations of the DC Motor 

Based on the simple single-loop DC motor analyzed above, the complete 
set of equations for a DC motor can be found. The total emf (voltage) in 
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the loop due to  the voltage source VS, the external permanent magnet and 
the changing current i in the rotor loop is 

This voltage goes into building up the current in the loop against the loop’s 
resistance, that is, 

Vs - K ~ W R  - L- = Ri 
di  
d t  

or 

This relationship is often illustrated by the equivalent circuit given in Fig- 
ure 1.18. Recall that the torque r ,  on the loop due to the external magnetic 
field acting on the current in the loop is 

7 ,  = KTi 

where KT 4 Ql&B is called the torque constant. By connecting a shaft 
and gears to  one end of the loop, this motor torque can be used to do work 
(lift weight, etc.). Let - f W R  model the friction torque (due to the brushes, 
bearings, etc.) where f is the coefficient of viscous friction and let T L  be 
the load torque (e.g., due to  a weight being lifted). 

R L 

vS 

FIGURE 1.18. Equivalent circuit of the armature electrical dynamics. 

Then, by Newton’s law, 

where J is the moment of inertia of the rotor (See the appendix of this 
chapter). The system of equations characterizing the DC motor is then 

d i  
d t  L- = - & - K  b W R  + V S  
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A picture of a DC motor servo system and its associated schematic is shown 
in Figure 1.19. In the schematic, R is the resistance of the rotor loop, L is 
the inductance of the rotor loop, c = KbwR is the back emf, r,  = KTi is 
the motor torque, J is the rotor moment of inertia, and f is the coefficient 
of viscous friction. The positive directions for r,, OR, and rL are indicated 
by the curved arrows. The fact that the curved arrow for r L  is opposite to 
that of r ,  just means that if the load torque is positive then it opposes a 
positive motor torque r,. 

FIGURE 1.19. DC motor drawing and schematic. 

Electromechanical Energy Conversion 

The mechanical power produced by the DC motor is T,WR = KTiWR = 
iCl&Bw~ while the electrical power absorbed by the back emf is ic = 

vation of energy to hold. That is, the electrical power absorbed by the back 
emf equals (is converted to) the mechanical power produced. Another way 
to  view this energy conversion is to write the electrical equation as 

iKbWR = Z[~[~BWR.  The fact that KT = Kb = !@? must be for conser- 

di 
dt 

Vs = Ri+ L- +[. 
The power out of the voltage source Vs(t)  is given by 

Vs(t)i( t)  = Ri2(t) + LZ- + ZKbWR 
di 
dt 

Thus the power Vs(t)i( t)  delivered by the source goes into heat loss in 
the resistance R, into stored magnetic energy in the inductance L of the 
loop and the amount it goes into the mechanical energy 7,WR. 

Remark Voltage and Current Limits 
The amount of voltage Vs that may be applied to the input terminals 

TI ,  T2 of the motor is limited by capabilities of the amplifier supplying the 
voltage, that is, 1V.l 5 V,,,. Let Vc(t) be the voltage commanded to the 
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amplifier, then the actual voltage Vs out of the amplifier to the motor is 
limited by V,,, as illustrated in Figure 1.20. 

FIGURE 1.20. Saturation model of an amplifier. 

In addition, there is a limit to  the amount of current the rotating loop 
can handle before overheating or causing problems with commutation as 
previously mentioned. Typically there are two current limits (ratings), the 
continuous current limit I m a x  - cant and the peak current limit I m a x  p e a k .  

The continuous current limit Imax~cont is the amount of current the motor 
can handle if left in use indefinitely. That is, the amount of heat dissipated 
in the rotor windings due to  ohmic losses is equal to the amount of heat 
taken away by thermal conduction through the brushes and thermal con- 
vection with the air so as to  be in a thermal equilibrium. The peak current 
limit Imax-peak is the amount of current the motor can handle for short 
periods of time (typically only a few seconds). 

1.5 Microscopic Viewpoint 

Additional insight into the back emf < is found by calculating it from a 
microscopic point of view using the ideas given in Ref. [34] (page 887). 
To illustrate this approach, the back emf in the linear DC machine is re- 
computed from the microscopic point of vgw. To proceed, r5call that the 
magnetic force on a charged particle q is Fmagnetic = qv' x B, where v is 
the velocity of the charge (see Ref. [34], page 816). 

+ 

Example A Linear DC Machine 
In this example, the linear DC: machine is reanalyzed from the micro- 

scopic point of view. As before, 6 = -Bt where B > 0. Suppose the motor 
(bar) is moving to the right with a constant speed urn. Each charge q in the 
sliding bar has total velocity G = urn% ~ udf,  where ud is the drift speed of 
the charges down the wire. The magnetic force on the charge q is 
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FIGURE 1.21. Linear DC machine. 

Now, the component of force qvdBk perpendicular to the bar causes the 
bar to move to the right and the component qvmBy along the bar_opposes 
the current flow. The source voltage Vs sets up an electric field Es in the 
bar to overcome the magnetic force qv,Bf so as  to make the current flow 
(setup the drift velocity zid of the charge carriers against the resistance of 
the bar). In more detail, with TI and T2 the upper and lower terminals of 
the source voltage, respectively, and S1 and S2 the upper and lower sliding 
contact points, respectively, the source voltage is given as 

vS= J E S . d e 7  

The quantity qEs is the force on each charge carrier and qVs is the energy 
given to  the charge carrier by the source voltage as the charge goes around 
the loop. There is also a component_of the magnetic force on the charge 
carrier that opposes the electric field Es. The energy per unit charge [ that 
the magnetic force takes from the charge carrier as i t  goes down the bar 
from S1 to S2 is given by 

T i  -Si-Sz-Tz 

The fact that < is negative just indicates that the magnetic force is taking 
energy out of the charge carrier as it goes down the bar from S1 to S2. 

(Note: The sign convention for < shown in Figure 1.21 is reversed from that 
of Figure 1.12.) This energy per unit charge E taken from each charge carrier 
by the magnetic force as it goes around the loep is called the induced emf. 
The voltage Vs was computed by integrating Es in the cloclcz$se direction 
T ~ - S I - S ~ - T ~  around the loop, and < by integrating J x B  also in the 
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clockwise direction down the bar from 5’1 to 5’2; that is, they both have the 
same sign convention. This is in contrast to the macroscopic case where V ,  
and 5 had opposite sign conventions resulting in 5 = v,BC being positive. 
However, the same (physical) result occurs as in the macroscopic case. 

In general, the emf in a loop is defined as the integral of the force per 
unit charge around the loop. The total emf is the sum of the source voltage 
and the induced emf. This total emf goes into producing the current, that 
is, 

where an identical equation was found in the macroscopic case using Fara- 
day’s law. The total magnetic force on all the charge carriers in the bar in 
the 2 direction is given by 

where N is the number of charge carriers/volume and S is the cross sec- 
tional area of the sliding bar. That is, NSC is the total number of charge 
carriers in the sliding bar each experiencing the force qvdBk. As illustrated 
in Figure 1.22, in a time A t ,  the charges in the volume NS(vdAt) have 
moved along the conductor past the point P in Figure 1.22. 

FIGURE 1.22. In the time At ,  the amount of charge A Q  = qNS(vdAt) has 
moved past the point P resulting in the current i = AQ/At  = qNSvd in the bar. 

That is, the amount of charge AQ = qNS(vdAt) has moved past the 
point P in the time At resulting in the current i = AQ/At = qNSvd in 
the conductor. Consequently, the total magnetic force on the bar may be 
rewritten as 

which is identical to the expression derived from the macroscopic point of 
view. 
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1.5.1 Microscopic Viewpoint of the Single-Loop DC Motor 

FIGURE 1.23. Single loop DC motor. Adapted from Ref. [21]. 

The back emf in the single-loop DC motor of Figure 1.23 is now computed 
from the microscopic point of view. With the loop rotating at the angular 
speed W R ,  the velocity of the charge carriers that make up the current is 
given by 

G = {  vt8 A + vd2 
vt0 - V d 2  

for side a 
for side a’ 

where v d  is the drift speed of the charge carriers along the wire and vt = 

( l 2 / 2 ) w ~  is the tangential velocity due to the rotating loop. Recall that the 
drift speed has the same sign as the current, that is, v d  > 0 for z > 0. Also 
recall that the angular velocity is written as  3~ = W R ~  where 2js the axis 
the motor is turning about. The magnetic force per unit charge F m a g n e t i c / q  

on the charge carriers on the axial sides of the loop is 
d + 

F m a g n e t i c / Q  = GxB 

where 

(vt8)+vdi) x (+B)f = -vtB2+?JdB8 - {  (vt8-vd%) x (-B)P = +vtB%+vdB8 
for side a 
for side a’ 

GxB = 

or 
V d B 6  - w R ( c ~ / z ) B ~  - {  V d B 8  + ~ B ( t 2 / 2 ) ~ 2  

for side a 
for side a’. 

G x B  = 

The component v d &  is what produces the torque. In more detail, with 
N the number of charge carriers/unit volume, S the cross-sectional area 
of the wire loop, and l ,  the axial length of the loop, the quantity NSCl is 
the total number of charge carriers of each side of the loop and the current 
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due to the movement of these charges is i = qNSvd (see Figure 1.22). The 
total tangential forces on the axial sides of the rotor loop are given by 

+ 

Fside a = ( q N S e l ) V d B 8  = z(t)elB8 
+ 

Fside at = (qNsel)vdBe = i( t)els8.  

The torque is then 

which is the same result as in the macroscopic case. 
It is now shown that the P component of the magnetic force produces 

the back emf. The 2 component of Fmagnetic, that is, along the axial sides 
of the loop, is given by 

+ 

- - u ~ ( e 2 / 2 ) B %  for side a i t - ~ ~ ( e 2 / 2 ) B 2  for side a' 
+ 

(Fmagnet ic /q)zg  = 

As shown in Figure 1.23, this component of the magnetic force per unit 
charge (l?magnetic/q)z opposes the electric field 6s set up in the loop by 
the applied armature voltage Vs. The relationship between Vs and 6s is 

where 
+dC2 for side a 
-dC2 for side a'. de'= { 

Then, with E denoting the integral of the magnetic force per unit charge 
from 7'1 to T2, one has 

In this example, the (back) emf is due to  the magnetic force while Vs is 
due to the electric field set up by the voltage source. As the induced emf E 
and the source voltage Vs have the same sign convention, the minus sign 
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in the expression for 5 shows that it opposes the applied armature voltage 
Vs. The total emf (voltage) in the loop is 

vs -k < = VS - e l e 2 B W R .  

Finally, the equation governing the current in the rotor loop is 

This is the same physical result as shown in the macroscopic case using 
Faraday's law. However, here the induced emf 5 = -C&BwR is negative 
because it was chosen to have the same sign convention as Vs (i.e., both 
VS and 5 are positive going from TI to T2). This is in contrast to the 
macroscopic case in which they had opposite sign conventions so that 5 = 
e l e 2 B W R  was positive, but still opposed VS. 

Remark Voltage and Emf 
The electromotive force or emf between two points in a circuit is the 

integral of the total force per unit charge along the circuit' between those 
two points.8 The force per unit charge can be due to an electric field, a 
magnetic field or both. The term voltage (drop) was originally reserved 
for the integral of the electric field between the two points. However, this 
distinction is usually not made and the two terms (voltage and emf) are 
used interchangeably. 

1.5.2 Drift Speed 

Above, it was shown that the drift speed of the charge carriers making up 
the current is given by wd(t) = i ( t ) / ( q N S ) .  As explained in Ref. [34] (page 
781), this motion (drift speed) of the charges in the conductor is caused 
by the electric field setup in the conductor by the voltage source and/or 
induced emfs in the conducting circuit. This electric field is pushing the 
charges along the conductor against the internal resistance of the conductor. 
In metals, the outer valence electrons are free to move about the lattice of 
the metal and are called conduction electrons. For example, in copper there 
is one valence electron per atom and the other 28 electrons remain bound 
to the copper nucleus. Consequently, as there are 8.4 x loz2 atoms/cm3 in 
copper, there are N = 8.4 x loz2 electrons/cm3 that can move freely within 
the copper lattice to make up the current in the wire. To consider a simple 
numerical example, let i = 10 A, S = 0.1 cm2 so that with q = 1.6 x 
coulomb/electron, the corresponding drift speed is 

i(t> - 10 A 
- 

vd = qNS (1.6 10-19 coulomb 1022 electrons )(0.1 cm2) electron I(8.4 cm3 

= 0.74 cm/sec. 

sNote that the electromotive force is not a force, but rather an energy per unit charge. 
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That is, it takes 1/(0.74 cm/sec) == 1.35 sec for the charge carrier to travel 
one centimeter. However, it should be noted that when a voltage/emf is 
applied to a circuit, the corresponding electric field is setup around the 
circuit at a speed close to the speed of light. This is analogous to  applying 
pressure to a long tube of water. The pressure wave is transmitted down 
the tube rapidly (at the speed of sound in water) while the water itself 
moves much slower [34]. 

1.6 Tachometer for a I>C Machine*' 

A tachometer is a device for measuring the speed of a DC motor by putting 
out a voltage proportional to  the motor's speed. A tachometer for the simple 
linear DC machine is considered first. 

1.6.1 

Figure 1.24 shows a tachometer added to the linear DC machine. The 
magnetic field in the DC motor is B 1 =  -&2 with B1 > 0 while in the 
tachometer it is B2= -&L with B2 > 0. 

Tachometer for the Linear DC Machine 

- 
B = - B i  
. I  I 

Motor 

F, = i e p l  

v =e,B,v 
b 

Tachometer 

Yach = 2 B2v 

FIGURE 1.24. DC tachometer (generator). 

The two bars are rigidly connected together by the insulating material. 
The motor force (the magnetic force on the upper bar) is F, = il1B1, and 

'Sections marked with an asterisk (*) may be skipped without loss of continuity. 
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the induced (back) emf in the motor is < = vb = B1l?1v, where v is the 
speed of the motor (bar). 

The induced (back) emf in the tachometer is given by < = K a c h  = B2l?2v 

so that by measuring the voltage between the terminals TI and T2, the 
speed v of the motor can be computed. Note that the tachometer and 
motor have the same physical structure. In fact, the tachometer is nothing 
more than a generator putting out a voltage proportional to the speed. 

1.6.2 

A tachometer for the single loop DC motor is constructed by attaching 
another loop to the shaft and rotating it an external magnetic field to 
act as a DC generator. That is, the changing flux in the tachometer loop 
produces (generates) an induced emf according to Faraday’s law and this 
emf is proportional to the shaft’s speed. To see this, consider Figure 1.25, 
where a motor loop is driven by a voltage Vs and, attached to the same 
shaft, is a second loop called a tachometer. Both loops rotate in an external 
radial magnetic field which is not shown in Figure 1.25, but is shown for 
the tachometer loop in Figure 1.26. It is important to point out that no 
voltage is applied to the terminals TI and T2 of the tachometer as was the 
case for the motor. Instead, the voltage &a& between the terminals TI and 
T2 of the tachometer is measured (this voltage is proportional to the motor 
speed W R ) .  

Tachometer for the Single-Loop DC Motor 

Axel 

Tachometer loop 

vs 

- - 

FIGURE 1.25. Single loop motor and tachometer. Drawn by Sharon Katz. 

Specifically, in the same way the back emf was computed for the DC 
motor, one can calculate the flux in the loop of the tachometer due to the 
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external magnetic field. This computation is (see Figure 1.26) 

e 2  ( - B t ) . ( - d O d ~ f )  
2 

= l’ i : ( B i ) . ( T d O d i : i )  e2 + 

The induced emf is then 

where Kb tach = el&B is a constant depending on the dimensions of the 
tachometer rotor and the strength of the external magnetic field of the 
tachometer. This shows that the voltage between the terminals TI and T2 

is proportional to the angular speed and therefore can be used to measure 
the speed. - ‘tach w -- 

FIGURE 1.26. Cutaway view of the DC tachometer. From Electromagnetic and 
Electromechanical Machines, 3rd edition, L. W. Matsch and J. Derald Morgan, 
1986. Reprinted by permisson of John Wiley & Sons. 

1.7 The Multiloop DC Motor* 

The above single loop motor of Figure 1.5 was used to illustrate the basic 
Physics of the DC motor. However, it is not a practical motor. The first 
thing that must be done is to add more loops to extract more torque from 
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the machine. Further, in the single-loop motor, the magnetic field produced 
by the current in the rotor is an external magnetic field acting on the field 
windings. As the loop rotates, this magnetic field results in a changing flux 
in the field windings, which in turn induces an emf in the field windings. 
This emf is referred to as the armature reaction and makes it difficult to 
maintain a constant field current. (The term armature refers to the rotating 
current loop, and reaction refers to the induced emf in the field windings 
produced by the rotor current.) The problem of armature reaction can be 
alleviated by adding more loops to the motor. 

1.7.1 Increased Torque Production 

Figure 1.27 below shows the addition of several loops to the motor with 
each loop similar in form to the loop in Figure 1.5. As shown in the figure, 
there are now eight slots in the rotor with two loops placed in each pair of 
slots that are 180" apart for a total of eight loops. 

t 
FIGURE 1.27. A multiloop armature for a DC motor 

The torque on the rotor is now 7, = nCICzBi, where n = 8 is the number 
of rotor loops and B is the strength of the radial magnetic field in the air 
gap produced by the external magnetic field. Of course, some method must 
be found to ensure the current in each loop is reversed every half-turn so 
that (for positive torque) all the loop sides under the south pole face will 
have their current going into the page 8 and all the loop sides under the 
north pole face will have their current coming out of the page 0. This 
process is referred to as commutation and is considered next. 

1.7.2 

As seen in Figure 1.27, as a rotor loop rotates clockwise past the vertical 
position, the current in the top side of the loop must change direction from 

Commutation of the Armature Current 
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coming out of the page to  going into the page. That is, each rotor loop 
must have the current in it reversed every half-turn. This is done using 
a commutator which is illustrated in Figure 1.28 for the rotor shown in 
Figure 1.27. The commutator for this rotor consists of 8 copper segments 
(labeled a-h in 1.30(a)) which are separated by insulating material. By 
connecting each of the ends of the rotor loops of Figure 1.27 to  the ap- 
propriate copper segments of the commutator, the current will be reversed 
every half-turn as it rotates past the vertical. To explain all of this, con- 
sider Figure 1.30(a), which shows explicitly how the ends of the rotor loops 
are connected to the segments of the commutator. The eight rotor loops 
of Figure 1.27 are labeled as 1-1', ..., 8-8' in Figure 1.30(a) with the ends 
of each such loop electrically connected (soldered) to a particular pair of 
commutator segments. For example, the ends of loop 1-1' are connected 
to commutator segments a and b,  respectively. The commutator and rotor 
loops all rotate together rigidly while the two brushes (labeled bl and b2) 

remain stationary. The brushes are typically made of a carbon material and 
are mechanically pressed against thLe commutator surface, making electrical 
contact.'O That is, as the commutator rotates, the particular segment that 
is rubbing against the brush makes electrical contact. 

Rotor loops IL 

FIGURE 1.28. Commutator for the rotor in Figure 1.27. 

Figure 1.29 is a photograph of the rotor of an actual DC motor with a 
tachometer. 

'OThe figure shows a gap between the brushes and the commuator, but this was done 
for illustration and there is no gap in reality. Also, for illustrative purposes, the brushes 
are shown inside the commutator when in fact they are normally pressed against the 
commutator from the outside. 
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FIGURE 1.29. Photo of the rotor of a DC motor (left) and its tachometer (right). 
Note that the slots for the windings of the DC motor are skewed (see problem 
9). Photo courtesy of Professor J. D. Birdwell of the University of Tennessee. 

As previously explained, to  obtain positive torque, it must be that when- 
ever a side of a loop is under a south pole face, the current must be into the 
page (@) and the other side of the loop, which is under the north pole face, 
must have its current out of the page (0). When the loop side rotates from 
being under one pole face to the other pole face, the current in that loop 
must be reversed (commutated). The mechanism of how this connection 
between the armature loops, the commutator and the brushes can reverse 
the current in each rotor loop every half turn is now explained. 

With reference to Figure 1.30(a), the armature current i enters brush 
bl and into commutator segment c. By symmetry, half of this armature 
current (i.e., i/2) goes through loop 3-3’ into commutator segment d, then 
through loop 4-4’ into commutator segment e,  then through loop 5-5’ into 
commutator segment f, then through loop 6-6’ into commutator segment 
g, and, finally, out through brush b2. This path (circuit) of the current is 
denoted in bold. Similarly, there is a parallel path for the other half of the 
current armature current. Specifically, the other half of the armature cur- 
rent i /2 goes through loop 2’-2 into commutator segment b, then through 
loop 1’-1 into commutator segment a,  then through loop 8’-8 into com- 
mutator segment h, then into loop 7’-7 into commutator segment g, and 
finally, out through brush ba. This path (circuit) is denoted without bold. 
So, for the rotor in the position shown in Figure 1.30(a), there are two par- 
allel circuits from bl to b2 each made up of four loops connected in series 
and each circuit carries half of the armature current. The sides of the loops 
under the south pole face have their current into the page while the other 
side of these loops (which are under the north pole face) have their current 
out of the page so that positive torque is produced. 

The sides of the loops in Figure 1.30(a) are 45” apart. Figure 1.30(b) 
shows the rotor turned 45”/2 with respect to Figure 1.30(a). In this case, 
brush bl shorts the two commutator segment b and c together while the 
brush bz shorts together the two commutator segments f and g. The ends of 
loop 2-2’ are connected to commutator segments b and c (which are now 
shorted together) so that the current in this loop is now zero. Similarly, 
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the ends of loop 6-6' are connected to commutator segments f and g and 
the current in this loop is also zero. For the remaining loops, i / 2  goes 
through loop 3-3' into commutator segment d, then through loop 4-4' 
into commutator segment e ,  then into loop 5-5' into commutator segment 
f, and finally, out brush bz. These loops are denoted in bold in the figure. 
Similarly, i / 2  goes through loop 1.-1' into commutator segment a, then 
through loop 8'-8 into commutator segment h, then into loop 7'-7 into 
commutator segment g, and finally out brush bz. 

FIGURE 1.30. (a). Rotor loops and commutator for 4 sets of rotor loops. Brushes 
remained fixed in space, that is, they do not rotate. From Electric Machinery 
Fundamentals, 2nd edition by S. J. Chapman, McGraw-Hill 1991. Reproduced 
with permission of McGraw-Hill Companies. 

1.30(a). 
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The motor continues to rotate and consider it now after it has moved addi- 
tional 45"/2 so that it has the position shown in Figure 1.30(c). In this case, 
the current enters brush bl and into commutator segment b. By symmetry, 
half the current i / 2  goes through loop 2-2' into commutator segment c, 
then through loop 3-3' into commutator segment d, then through loop 
4 - 4' into commutator segment e ,  then through loop 5-5' into commu- 
tator segment f, and finally out through brush bz. This path (circuit) of 
the current is denoted in bold. Similarly, the other half of the current goes 
through loop 1'-1 into commutator segment a then through loop 8'-8 into 
commutator segment h then through loop 7'-7 into commutator segment 
g then into loop 6'-6 into commutator segment f and finally, out through 
brush bz. This path (circuit) is denoted without using bold. 

Figure 1.30(c). Rotor turned 45" with respect to Figure 1.30(a). 
from Chapman 1191. 

Adapted 

As the sequence of figures 1.30(a)-(c) show, the current in loops 2-2' and 
6-6' were reversed as these two loops rotated past the vertical position. In 
summary, there are two parallel paths, each consisting of four loops, and 
when any loop goes to the vertical position, the current in that loop is 
reversed. In this way, all sides of the loop under the south pole have their 
current going into the page and all sides under the north pole have their 
current coming out of the page for positive torque production. 

Remark The scheme for current commutation presented here is from 
[19]. However, there are many other schemes and the reader is referred to 
Refs. [19], [all, [24], and [26] for an introduction to other schemes. See Ref. 
[24] for a discussion of how commutation is often carried out in small PM 
DC motors. 
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Stator Iron Construction 

A more realistic depiction of the stator for a (single pole pair) permanent 
magnet DC motor is shown in Figure 1.31. The radial magnetic field in the 
air gap is produced by the two semicircular-shaped permanent magnets. 

Permanent magnet 
Permanent magnet 

tor iron 

Air (a) gap ~~~ (b) (c) 

FIGURE 1.31. (a) Stator of a PM DC motor. (b) Stator iron. (c) Stator perma- 
nent magnet. 

In the case where the DC motor has a field winding, a more realistic de- 
piction of the stator iron (single pole pair) is shown in Figure 1.32 (compare 
with Figure 1.7). 

FIGURE 1.32. (a) Stator iron for a wound field DC motor. (b) Cross-sectional 
view of the stator iron with the field windings. 
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1.7.3 Armature Reaction 

Figure 1.33 shows current in a field winding which is used to magnetize 
the iron in a fashion similar to  that shown in Figure 1.7. Closed curves are 
drawn in Figure 1.33 to show the magnetic field distribution in the iron 
and air gap due to  just the field current. Note that the magnetic field tends 
to be in the horizontal direction as it goes inside the field windings. Figure 
1.34 shows the magnetic field distribution in the iron and air gap due to 
just the armature current. By having many equally spaced loops on the 
rotor, the magnetic field distribution due to  the armature current will be 
as shown in Figure 1.34 for any rotor position. Note that this magnetic 
field tends to be vertical in the iron core inside the field windings (the 
field windings are not shown in Figure 1.34). In other words, in the stator 
iron core within the field windings, the magnetic field due to the armature 
current is perpendicular to the flux surfaces of the field windings. As a 
result, any changing magnetic field due to a changing armature current 
will not induce voltages inside the field windings. Armature reaction refers 
to  the voltage induced in the field winding by the magnetic field of the 
armature current. (This is undesirable as such a voltage would cause the 
current in the field winding to  change, and therefore not be constant as the 
analysis up to this point has assumed.) The symmetric placement of rotor 
loops around the periphery of the rotor essentially eliminates the armature 
react ion. 

FIGURE 1.33. Magnetic field due to the field current. Adapted from Ref. [23]. 
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FIGURE 1.34. Magnetic field distribution due to the armature current. Adapted 
from Ref. [23] .  

Finally, Figure 1.35 shows the s,um of the  two magnetic fields. 

FIGURE 1.35. Magnetic field due to field and armature currents. Adapted from 
Ref. [23]. 
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1.7.4 

In the separately excited DC motor of Figure 1.36, it is convenient to have 
an expression relating the radial magnetic field B in the air gap to the total 
flux in the field windings. 

Field Flux Linkage and the Air Gap Magnetic Field 

f 'f 0 
FIGURE 1.36. Separately excited DC motor. Adapted from Ref. [all. 

The magnetic field lines are shown in Figure 1.4. Figure 1.37 shows a 
closed flux surface which is now used to derive a relationship between the 
radial magnetic field B in the air gap and the field flux linkage Xf.  

Surface 2 with 
4 - B  S=Be,n(1212) area l ln (12/2)  f -  f Surface 2 

FIGURE 1.37. The flux through surface 1 is B f S  and the flux through surface 2 
is .t17r(.t2/2)B. To a good approximation, these two fluxes are equal. 

The field flux linkage Xf is defined by 

Xf(2.f)  = Nf4f = NfSBf(if) 

where N f  is the total number of field windings, S is the cross-sectional 
area of the iron core of the field winding and B f ( 2 f )  is the magnetic field 
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produced inside the magnetic material of the field circuit due to the field 
current if. With this definition of flux linkage, the total induced emf in the 
field windings produced by a changing Bf is given by 

With the two flux surfaces shown in Figure 1.37, it turns out that con- 
servation of flux“ implies the flux through the surface 1 in the iron core 
equals the flux through the half cylindrical surface 2 in the air gap. That 
is, 

4f = SBf(if) = el7r(e2/2)B(if) 

where e2 /2  is the radius of the rotor, el is the axial length of the rotor and 
B ( i f )  is the radial magnetic field in the air gap due to the field current if. 
Consequently, 

is an expression for the radial magnetic field B ( i f )  in the air gap in terms 
of the flux linkage A f ( i f )  = Nfe1&Bf(if) in the field windings. 

1.7.5 

In what follows, the multiloop motor of Figure 1.30 is considered in which 
the armature circuit consists of two parallel circuits each having n loops. 
Let 6, be referenced relative to loop 1-1’ so that 6, = 0 corresponds to 
loop 1-1’ being vertical. (Recall in Figure 1.5 that 6, = 0 corresponded 
to loop a-a’ being vertical.) For the single loop motor, the flux q5sl(if, 0,) 
in the loop 1-1’ of the rotor due to  the external magnetic field B ( i f )  is 

Armature Flux Due to the External Magnetic Field 

4sl(if, 0,) = -!11?2B(if)(B~ mod 7r - 7r/2). 

In general, let 6 k  = 0 correspond to loop k-k‘ being vertical so that the 
position of the kth rotor loop may be written as 

8 k  = 6, + ( k  - I)7r/n for k = 1, ..., n 

where n is the number of loops connected in series in each parallel circuit 
(n  = 4 in Figure 1.30). The flux in the lcth rotor loop is [see equation (1.4)] 

”See problem 6 and Chapter 3. 
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The total flux linkage A ( z f , e R )  in the n rotor loops is then 

n 

A ( i f ,  OR) = &(ift OR) 
k=l 

In Figures 1.30(a)-(c), each of the two parallel sets of n rotor loops has 
the flux linkage A(zf, OR) in it. 

Recall that the sign convention for the fluxes &(z f ,OR)  is such that if 
- d 4 , ( i f , O R ) / d t  > 0,  then it is acting in the direction opposite to positive 
current flow, that is, its sign convention is opposite to that of applied 
voltage Vs. As a consequence, the sum 

is the total emf in the loop due to  the applied voltage and the external 
magnetic field. 

For n = 4, the flux linkage A(zf, 6,) is plotted as a function of the rotor 
position OR in Figure 1.38. Note that aA(zf, OR)/BOR = -n!l!aB(if) which 
is proportional to the number of rotor loops n and to the strength of the 
external magnetic field strength B ( z f )  in the air gap. 

n e , e p  
2 

FIGURE 1.38. Flux linkage X( i , ,OR)  versus 6~ in radians with n = 4 sets of 
rotor loops and 0 5 OR 5 T. T h e  slope is 6’X(if,OR)/aOR = -nClCnB(if). 
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In the case of a permanent magnet stator, the armature flux linkage is 
simply given by 

n 

k=l 

where B > 0 is the strength of the radial magnetic field in the air gap 
produced by the permanent magnet of the stator. 

1.7.6 Equations of the PM DC Motor 

In the multiloop motor considered here, the armature circuit consists of 
two parallel circuits each having n loops. That is, there are a total of 2 n  
loops on the rotor as each of the two parallel circuits has a loop at the 
same location on the rotor. Let L denote the total inductance of the n 
rotor loops making up either of the two parallel circuits. Then, if a current 
212 is in each parallel circuit, each circuit will have a flux linkage of L i / 2  
due to its current and an addit iond flux linkage of L i / 2  due to the current 
in the other circuit. This is simply because the two sets of parallel loops 
(windings) are wound around the rotor core together so that they can be 
considered to  be perfectly (magnetically) coupled. 

The total flux linkage in the n loops making up either of the parallel 
circuits is now computed. To proceed, let i be the current into the armature 
so that i / 2  is the current in the n loops of each parallel circuit. The quantity 
L i / 2  is the flux linkage due to the c:urrent i / 2  in the loops and an additional 
flux linkage of L i / 2  is produced in these same loops by the current i / 2  in 
the other parallel circuit for a total flux of Li. By equation (1.8), X(6,) is 
the flux linkage in the n loops due to the external magnetic field produced 
by the permanent magnet of the s1,ator. Recall that the sign convention for 
the induced emf -dX(OR)/dt is opposite to that of -d (L i ) /d t .  Specifically 
(see Section 1.3.5), the normal to  the flux surface was taken to  be radially zn 
to compute the flux Li while in Section 1.3.4 the surface normal was taken 
to be radially out to compute the flux X(6,). Simply writing - X ( ~ R )  then 
gives the flux due to  the external magnetic field with the surface normal 
radially in and the induced voltages by both of these changing fluxes will 
then have the same sign convention as the applied armature voltage. Using 
the same sign convention as the applied armature voltage Vs, the total flux 
linkage in each parallel circuit of the armature may be written as 

Li - X(6R). 

Let R1 denote the resistance of the n loops connected in series making 
up either of the two parallel circuits. The equation describing the electrical 
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dynamics of the current in each of the parallel circuits is found by applying 
Kirchhoff’s voltage law to obtain 

d 
d t  

-- (L i  - A(6,))  - R l i / 2  + Vs = 0 

where Vs is the applied voltage to the armature. Finally, defining R 
the equation describing the electrical dynamics of the armature circuit is 

R 1 / 2 ,  

The quantity d A ( 6 R ) l d t  can be expanded to obtain 

where Kb a nll12B. 
Each loop carries the current i / 2  so that the torque produced by the 

two sides of each loop is 2 ( l 2 / 2 )  ( i / 2 ) l l B .  As there are 2 n  loops, the total 
torque is 

where KT a nlll2B = Kb. Finally, using (1.9) and (l.ll), the complete 
set of equations for the PM DC motor is then 

r,  = 2 n l l & B ( i / 2 )  = nl1C2Bi = KTi (1.11) 

(1 .12)  
d i  
d t  

L- = - R i - K  bWR + VS 

(1.13) 

(1.14) 

where V ,  is the applied armature voltage, r L  is the load torque on the 
motor, f is the coefficient of viscous friction and J is the rotor’s moment 
of inertia. 

1.7.7 Equations of the Separately Excited DC Motor 

The separately excited DC motor has an additional equation compared to 
the P M  DC motor which describes the flux/current in the field winding. 
Similar to  the case of the PM DC motor, the total flux linkage in either 
parallel circuit of the armature windings is given by 

LZ - x ( Z f , 6 ~ )  

where X ( i f ,  8,) now depends on i f  as given by (1.7), and L is the inductance 
the n loops connected in series making up either parallel circuit. Again, R1 

denotes the resistance of either circuit and Kirchhoff’s voltage law gives 

d 
d t  

-- (Li - A ( Z f , d R ) )  - R l i / 2  f vs = 0 
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where VS is the applied voltage to the armature. Finally, defining R 
the equation describing the electrical dynamics of the armature circuit is 

R1/2, 

(1.15) 

The quantity d X ( i f ,  6 ~ ) / d t  can be expanded to  obtain 

Here B ( i f )  is the strength of the radial magnetic field in the air gap pro- 
duced by the current in the field windings. The flux linkage in the field wind- 
ings is X f ( i f )  = N f S B f ( i f )  where B f ( i f )  is the magnetic field strength in 
the iron core of the field, N f  is the number of field windings, and S is the 
cross sectional area of this iron core. The flux S B f ( z f )  in each of the field 
windings goes through the air gap and, by conservation of flux (see Section 
1.7.4), S B f ( i f )  = !1(7r!2/2)B(if) so that the radial magnetic field in the 
air gap produced by the ,field current is 

Consequently, 

where 
2 n  K a_- 

716 - 
7r Nf  

As a result, equation (1.16) may be rewritten a s  

d X ( i f , 6 ~ )  dX d i f  
dt d i f  dt  K J  f (i f )WR. -- - - - (1.17) 

Each loop carries the current i / 2  so that the torque produced on each of 
the two sides of the loop is 2 (-&/a) (2/2)tlB(Zf). As there are 2n loops, the 
total torque is 

r ,  = 2ntl!2B(if)(i/2) = ntl t2B(i f ) i  = K,Xf(if)i (1.18) 

using the above expressions for K,n and X f ( i f ) .  Finally, using (1.15), (1.16), 
and (1.18), the mathematical model of the separately excited DC motor is 
given by 

= K,Xf(if)i - 7-L 
dWR J- 
dt 

(1.20) 

(1.21) 
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where Vf  is the applied voltage to the field, R f  is the resistance of the field 
winding, T L  is the load torque on the motor and J is the rotor’s moment 
of inertia. 

If the iron in the field is not in saturation, then one may write 

and the dynamic model simplifies to 

d i  dX dif (1.22) 
dt d i f  d t  

L- = -Ri+-- - K m L  f i f w R+VS 

h R  

dt 
J- = K m L f i f i  - T L  (1.23) 

. R f i f  + V f .  (1.24) 

dX d i f  
d i f  d t  

Under normal operating conditions, the term -- is typically negli- 

gible and the model then reduces to12 

(1.25) 
di  
dt 

L- = -Ri - KmLfi fwR + Vs 

dWR 

dt 
J- = K m L f i f i - r L  (1.26) 

(1.27) 

A typical mode of operation is to use the field voltage Vf to hold the field 
current i f  constant at some value. Then the field flux is of course constant 
and Lfdi f ld t  = 0. However, in the first equation (1.19) (or 1.25), it is 
seen that the back emf is -KmXfwR (or -KmLfifWR) which increases in 
proportion to  the speed. The input voltage VS must be at least large enough 
to overcome the back emf in order to maintain the armature current. To 
have the motor achieve higher speeds within the voltage limit IVsl 5 V,,,, 
field weakening is employed. This is accomplished by using the input voltage 
Vf to decrease the field flux Xf = L f i f  at higher speeds usually according 
to a flux reference of the form 

lWRl 5 Wbase 

(1.28) 

This is illustrated in Figure 1.39. For w > Wbase,  field weakening results in 
the back emf -KmXfWR = - K m x f o w W R  = -KmXfoWbaseSign(WR) be- 
ing constant. The trade-off is that the torque KmXfi = K m X f o w .  z IS . now 

121t will be seen later that  field-oriented control of an induction motor results in a 
mathematical model of the induction motor that  looks similar to these equations! 
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less for the same armature current i due to the decrease in the field flux link- 
age A f .  If the armature resistance is negligible and i f  is constant, then the 
base speed wbase is defined to be the speed satisfying KmXfwbase = V,,,. 
Otherwise, the base speed is chosen to  be somewhat smaller to account for 
the Ri and 2% voltage drops [see equation (1.19)]. 

FIGURE 1.39. Flux reference for field weakening. 

Appendices 

Rotational Dynamics 

The equations of motion of a rigid body that is constrained to rotate about a 
fixed axis are reviewed here briefly. Consider a cylinder which is constrained 
to rotate about a fixed axis as shown below. 

FIGURE 1.40. Cylinder const.rained to rotate about a fixed axis. 

The approach here is to obtain the equations of motion of the cylinder 
by first computing obtaining an expression for its kinetic energy. To do so, 
denote the angular speed of the cylinder by w and the mass density of the 
material making up the cylinder by p. Then consider the cylinder to be 
made up of n small pieces of material Ami where the ith piece has mass 

This is illustrated in Figure 1.41. 
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FIGURE 1.41. Cylinder is considered to be made up of small masses Ami. Drawn 
by Sharon Katz. 

Each piece of mass Ami is rotating at the same angular speed w so that 
the linear speed of Ami is vi = riw where ri is the distance of Ami from 
the axis of rotation. The kinetic energy KEi of Ami is given by 

The total kinetic energy is then 

n 1  " 1  l n  
n 

K E  = ( K E ) ,  = c -Am,$ = c -Am, (riw)2 = - w 2 x  
2=1 

2 2 
i=l 

2 
i=l 2=1 

Dividing the cylinder into finer and finer pieces so that n --f 03 and Ami --f 
0, the sum 

n 

i=l 

becomes the inteeral 

The quantity J is called the moment of inertia and the kinetic energy of 
the cylinder may now be written as 

1 
2 

K E  = -Jw2.  

Assuming the axle radius is zero, the moment of inertia of the cylinder is 
computed to be 

1 1 
2 2 

J = 1" .I" 12r r2prd8dtdr = -(rR2@)R2 = -MR2  

where M is the total mass of the cylinder. 
The above expression for the kinetic energy is now used to derive a rela- 

tionship between torque and angular acceleration. Recall from elementary 
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mechanics that the work done on a mass by an external force equals the 
change in its kinetic energy. In particular, consider an external force @ 
acting on the cylinder as shown in Figure 1.42. 

Y 

FIGURE 1.42. Force @ applied to the cylinder is resolved into a normal and 
tangential component. Drawn by Sharon Katz. 

The cylinder is on an axle and therefore constrained to rotate about the 
z axis. Figure 1.42 shows the force I? applied to  the cylinder at the position 
(r,O) (in polar coordinates) resolved into a tangential component FT and 
a normal component FN so that I? = F N ~  + F T ~  . The torque is defined as 

(1.29) - >  - 
7' a r' x F = r f  x F p ~ f  + FTe = rFT% = rF  sin($)t 

where $ is the angle between r' and @. (By definition, the magnitude of 
the cross product r' x I? is defined as rFsin($) and the direction of r' x I? 
is perpendicular to both r' and @ along the axis of rotation determined by 
the right hand rule13). As FT = Fsin($) is the tangential component, the 
torque may be rewritten as 

or, in scalar form, as 
7 = TFT. 

The motivation for the definition of torque as given by (1.29) is that it is 
the cause of rotational motion. Specifically, the rotational motion about an 
axis is caused by the applied tangential force FT and the further away from 
the axis of rotation that the tangential force FT is applied, the easier it is 
to get rotational motion. That is, the torque (cause of rotational motion) 

13Using your right hand, curl your fingers in the direction from the first vector F to 
the second vecotor F. Then your thumb points in the direction of r' x G. 
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increases if either r or FT increases which corresponds to one's experience 
(e.g., opening doors). 

To summarize, 7' is a vector pointing along the axis of rotation and the 
magnitude is given by 

17'1 = 171 = IrFTl. 

(Recall that the angular velocity vector L3 = w t  also points along the axis 
of rotation where w is the angular speed.) 

With ds' 45 dse = rdO8, the change in work done on the cylinder by the 
external force I? is 

d W = F . d s ' = F T r d O = r d e  

where r 
cylinder is given by 

rFT. Dividing by dt ,  the power (rate of work) delivered to the 

dW d8 
- = r- = rw.  
dt dt 

As the rate of work done equals the rate of change of kinetic energy, it 
follows that 

dW d8 

or 

dw 
dt 

Jw- = TW. 

This gives the fundamental relationship between torque and angular accel- 
eration: 

dw 
dt 

T =  J-. 

That is, the applied torque equal the moment of inertia times the angular 
acceleration. This is the basic equation for rigid body rotational dynamics. 

Viscous Rotational Friction 

Almost always there are frictional forces, and therefore, frictional torques 
acting between the axle and the  bearing^.'^ This is illustrated in Figure 
1.43. 

14An interesting exception are magnetic bearings where the axel is levitated by mag- 
netic fields so that there is no mechanical contact. 
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FIGURE 1.43. Viscous friction torque. 

Often the frictional force is proportional to  the angular speed and this 
model of friction is called viscous friction which is expressed mathemati- 
cally as 

4 7 = --f3 = - fwS 

or, in scalar form, 

r = - f w  

where f > 0 is the coeficient of viscous friction. 

Sign Convention for Torque 

Suppose the axis of rotation is along the z axis. Recall that the definition 
of torque is 

+ 

7' r' x F = rF  sin(+)i? = rFTi? 

where 7c) is the angle between r' and I?. The magnitude of the cross product 
r' x I? is rF sin(+) and the direction of r 'x @ is perpendicular to both r' and 
@ along the z axis. In engineering applications, the systems are designed so 
that the applied force is tangential to the rotational motion, i.e., 7c) = 7r/2, 
F = FT, and 

7' a ri? = rF2. 

If r = rF > 0 then the torque will cause the cylinder to rotate around the 
z axis in the direction indicated by the curved arrow. On the other hand, 
if r = rF  < 0 then the torque will cause the cylinder to  rotate around 
the z axis in the direction opposite to that indicated by the curved arrow. 
Typically in engineering texts, the sign convention for torque is indicated 
by a curved arrow as shown in Figure 1.44. (Physics texts prefer to write 
-7 A Ti?.) 
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FIGURE 1.44. Sign convention for torque. 

Gears 
Using the elementary rigid body dynamics developed in the previous ap- 
pendix, the model of a two gear system illustrated in Figure 1.45 below is 
now developed. 

FIGURE 1.45. Two gear system. Drawn by Sharon Katz. 

This presentation is from that given in Professor Ogata’s book [37]. In 
Figure 1.45, 

7-1 is the torque exerted on gear 1 by gear 2. 
Fl is the force exerted on gear 1 by gear 2. 
7-2 is the torque exerted on gear 2 by gear 1. 
F2 is the force exerted on gear 2 by gear 1. 
el is the angle rotated by gear 1. 
e2 is the angle rotated by gear 2. 
n1 is the number of teeth on gear 1. 
n2 is the number of teeth on gear 2. 

is the radius of gear 1. 
7-2 is the radius of gear 2. 

Let $1 A a(-%) so that if F1 > 0, the force is in the -2 direction 
x F1 = 

+ 

as shown in Figure 1.45. Also, let T I ( - ? )  so that 1 1  = 
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rlFl(-f) x (-2) = r l F 1 ( - 2 )  = r l F 1 f i .  That is, ?1 = ~ l f i  where 7-1 = r l F 1  

and fi ~ 2 is a unit vector. Similarly, let F 2  4 F 2 2  so that if F 2  > 0, the 
force is in the P direction. Writing i5 7-29 i t  follows that ?2 = i3 x F 2  = 

r 2 F 2 ( - 2 )  = -7-22 = 7 2 f i  with 7-2 = 7-2F2. The reason that ? 1 , ? 1 , F 1  are 
referred to the basis vectors -2, -9, -2 while i5, ?2, F 2  are referred to 
the basis vectors k,9,2 is so that there will no minus signs in the gear 
relationships to be derived below. 

+ 

+ - 
4 

Algebraic Relationships Between Two Gears 

There are three important algebraic relationships between the gears. 

1. The gears have different radii, but the teeth on each gear are the 
same size so that they will mesh together properly. Consequently, the 
number of teeth on the surface of gears is proportional to the radius 
of the gears so that. for example, if 7-2 = 27-1, then 722 = 2721. In 
general, 

7-2 - 722 - -  - 

r 1  721 

2 .  By Newton’s third law, the forces $1 = F’1( -2 ) ,$2  LL F 2 2  are equal 
in magnitude, but opposite in direction so that F 2  = - (-Fl) = F I .  

Thus, as 7-1 = r l F 1  and 7-2 == r 2 F 2  it follows that 

7 2  - r 2  - -  - 

7-1 7-1 

3. As the teeth on each gear are meshed together at the point of contact, 
the distance traveled along the surface of the gears is the same. In 
other words, 617-1 = 827-2 or 

8 2  - 7-1 

8 1  r 2  
--- 

The first two algebraic relationships can be summarized as 

7 2  - 7-2 - 722 ----- 
7 1  7-1 n1 

and these ratios are easily remembered by thinking of gear 2 as larger in 
radius than gear 1. Then the number of teeth on gear 2 must also be larger 
(because its circumference is larger) and the torque on gear 2 is also larger 
(because its radius is larger). 

The last algebraic relationship is summarized as 

7-1 - 0 2  - w 2  

7-2 el w1 
- - -  - -  

but it is more easily remembered by writing 617-1 = 8 2 ~ 2  which just states 
the distance traveled along the surface of each gear is the same as they are 
meshed together. 
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Dynamic Relationship Between Two Gears 

Consider the two gear system shown in Figure 1.46 below. The motor torque 
7, acts on gear 1 and the torque T L  is a load torque acting on gear 2. 

Gear 2 

FIGURE 1.46. Dynamic equations for a two gear system. Drawn by Sharon Katz. 

In Figure 1.46, 
J1 is the moment of inertia of the motor shaft. 
J 2  is the moment of inertia of the output shaft. 
f 1  is the viscous friction coefficient of the motor shaft. 
f 2  is the viscous friction coefficient of the output shaft. 
8 1  is the angle rotated by gear 1. 
02 is the angle rotated by gear 2. 
w 1  is the angular speed of gear 1. 
w 2  is the angular speed of gear 2. 
7 1  is the torque exerted on gear 1 by gear 2. 
7 2  is the torque exerted on gear 2 by gear 1. 

The sign conventions for the torques 7,, 7 1 , 7 2 , 7 ~  are indicated in Figure 
1.46. In particular, if 7, > O , T ~  > 0 then they oppose each other and 
similarly, if 7 2  > O,TL  > 0 then these two torques oppose each other. A 
load torque is illustrated in Figure 1.47 in which the load torque on gear 2 
is r L  = ram9 with 7-2 the radius of the pick up reel (gear 2). 
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FIGURE 1.47. Illustration of Load torque. Drawn by Sharon Katz. 

The above development is now put together to write down differential 
equations that characterize the dynamic behavior of the gears. Recall that 
the fundamental equation of rigid body dynamics is given by 

where r is the total torque on the rigid body, J is the moment of inertia 
of the rigid body and d w l d t  is its angular acceleration about the fixed axis 
of rotation. Applying this relationship, the equations of motion for the two 
gears are then 

(1.30) 

Typically, the input (motor) torque rm is known and, the output position 
0 2  and speed w2 are measured. Consequently, the variables 7 1 , r 2 ,  w1 need 
to be eliminated which is done as follows: 

(1.31) 

Substituting this expression for 7 2  into the second equation of (1.30) results 
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Rearranging, the desired result is 

Let n = nz/nl denote the gear ratio, J J2 +n2J1 denote the total inertia 
reflected to  output shaft and f A f2 + n2fl denote the total viscous fric- 
tion coefficient reflected to the output shaft, equation (1.32) can be written 
succinctly as 

The net effect of the gears is to increase the motor torque from 7, 
motor shaft to nr, on the output shaft, to add the quantity n2J1 

(1.33) 

on the 
to the 

inertia of the output shaft and to  add n2 f1 to the viscous friction coefficient 
of the output shaft. 

Remark 

Everything could have been referred to the motor shaft instead of the out- 
put (load) shaft. To do so, simply substitute w2 = (n1/n2)w1 into (1.32) to  
obtain 

Multiply both sides by nl/n2 results in 

or, finally, the desired form is 

In this formulation, the load torque on the input shaft is reduced by n1/n2 

from that on the output shaft, and ( n 1 / 7 ~ 2 ) ~  J2 has been added to the inertia 
of the motor shaft and ( n 1 / n 2 ) ~ f 2  has been added to the viscous friction 
coefficient of the motor shaft. 
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Problems 

Faraday's Law and Induced Electromotive Force (emf) 

Problem 1 Faraday's Law 

loop of copper wire. 
Consider Figure 1.48 where a magnet is  moving up into a square planar 

n? 

FIGURE 1.48. Induced emf in a loop due to a moving magnet. 

(a) Using the normal fi1, zs the flux in the loop produced by  the magnet 
increasing or decreasing? 

(b) Using the normal fi l ,  what i s  the direction of positive travel around 
the surface whose boundary is the loop (clockwise or counterclockwise) ? 

(c) What is the direction of the induced current in Figure 1.48 (clockwise 
or counterclockwise)? Does the induced current produce a change in the flux 
in the loop that opposes the change in flux produced by  the magnet? 

(d) Using the normal f i ~ ,  is  the flux increasing or decreasing? 
(e)  Using the normal fiz, what cis the direction of positive travel around 

the surface whose boundary is the loop (clockwise or counterclockwise) ? 
( f )  What is the direction of the induced current in Figure 1.48 (clockwise 

or counterclockwise)? Does the induced current produce a change in the flux 
in the loop that opposes the change in flux produced by  the magnet? 

Problem 2 Faraday's Law 

planar loop of copper wire. 
Consider Figure 1.49 where a mugnet i s  moving down away from a square 

FIGURE 1.49. Induced emf in a loop due to a moving magnet. 
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(a) Using the normal iil, is  the flux in the loop produced by the magnet 
increasing or decreasing? 

(b) Using the normal iil, what is the direction of positive travel around 
the surface whose boundary is the loop (clockwise or counterclockwise) ? 

(c)  What is  the direction of the induced current in Figure 1.49 (clockwise 
or counterclockwise)? Does the induced current produce a change in the flux 
in the loop that opposes the change of flux produced by the magnet? 

(d)  Using the normal i i2 ,  is the flux increasing or decreasing? 
(e)  Using the normal i i2 ,  what is the direction of positive travel around 

the surface whose boundary is  the loop (clockwise or counterclockwise) ? 
(f) What is  the direction of the induced current in Figure 1.49 (clockwise 

or counterclockwise)? Does the induced current produce a change in the flux 
in the loop that opposes the change of flux produced by the magnet? 

Problem 3 The Linear DC Motor 

the surface enclosed by  the loop taken to be ii = -2. 
Consider the simple linear DC motor of Figure 1.3. Take the normal to 

(a) What is  the flux through the surface? 
(b) What is the direction of positive travel around this flux surface? 
(c)  What is the induced emf < in the loop in terms of B, C and the speed 

v of the bar? 
(d) Do VS and < have the same sign convention? Explain why E is now 

negative. With R the resistance of the circuit and the inductance L = 0,  
write down the differential equations fo r  the current i in the machine and 
the speed v of the bar. 

Problem 4 The Linear DC Motor 

B = Bi (B > 0 )  is up out of the page. 
Consider the simple linear motor in Figure 1.50 where the magnetic field 

FIGURE 1.50. Linear DC machine with B = Bii, B > 0. 

Closing the switch causes a current to flow in the wire loop. 
(a) What is the magnetic force @magnetic o n  the sliding bar in terms of 

B, i ,  and C ?  Give both the magnitude and direction of gmagnetic. 
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(b) Take the normal to the surface enclosed by the loop to be ii = 2. What 
is the flux through the surface? 

(c) What is  the induced emf < in the loop in terms of B,  C, and the speed 
v of the bar? 

(d) What is  the sign convention for the induced emf 5 drop around the 
loop? (That is, i f  < > 0 ,  would it act to push current in the clockwise or 
counterclockwise direction?) 

(e) Do VS and < have the same sign convention? Draw + and - signs 
above and below < to indicate the sign convention for 5. 

Problem 5 Back Emf in the Single-Loop Motor 
Consider the single loop motor with the flux surface as indicated in Figure 

1.51. A voltage source connected to the brushes is forcing current down side 
a (8) and up side a’ (0). 

FIGURE 1.51. Computing the flux with ii = -? 

(a) With the motor at the angular position B R  shown, that is, with 0 < 
OR < 7r, and using the inward normal (ii = -?), compute the flux through 
the surface in terms of the magnat,u.de B of the radial magnetic field in the 
air gap, the axial length C1 of the motor, the diameter C, of the motor and 
the angle BR of the rotor. 

(b) What is  the positive direction of travel around the flux surface S (C W 
or C C W ) ?  

(c)  What is the emf < induced in the rotor loop? What is the sign conven- 
tion for the induced emf 6 drop avound the loop? (That is, $ 5  > 0,  would 
it act to push current in C W  direction or the C C W  direction?) Do VS and 
< have the same sign convention? Explain why < is now negative. Draw an 
equivalent circuit of the fo rm in Figure 1.18 for the rotor loop current. 

Problem 6 Gauss’s Law and Coiiservation of Flux 
The flux surface in Figure 1.13 was chosen as the half-cylindrical sur- 

face with two half disks at either end because the B field is known on  the 
cylindrical surface being given by equation (1.1) and can be taken to be zero 
on  the two half disks. If the flux surface had been taken to be a flat planar 
surface with the rectangular loop as its boundary, then it would not be clear 
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how to compute the flux on this surface as the B field there is  unknown. 
Show, using Gauss’s law 

that both surfaces give the same flux. In  general, by  Gauss’s law, one can 
compute the flux using any surface as long as its boundary is the loop. 

Problem 7 Flux in the Single-Loop DC Motor 
Figure 1.52 shows the rotor loop with n < OR < 27r. 

I 

FIGURE 1.52. Rotor loop where 7r < t9R < 27r. 

n = r  

FIGURE 1.53. Flux surface with the normal radially out. 

(a) Using the flux surface shown in Figure 1.53 with dS  = ( l2/2)dOdzf ,  

for 0 < OR < 27r (note that f # ) ( 6 ~ )  f o r  0 < OR < 7r is computed in the 
text). Compute the back emf < and give its sign convention, that is, i f  < = 
-d$ ( O R )  / d t  > 0,  will it force current in the CW or the CCW direction? 

show that f # ) ( e ~ )  = (6, - 7r /2  - 7 r )  llezB f o r  7r < OR < 2T. Plot f # ) ( e ~ )  
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Do < and Vs have the same sign convention? (Yes! Explain!) Draw an 
equivalent circuit diagram of the fo rm of Figure 1.18 to illustrate the sign 
convention. 

show that 4 ( O R )  = - (6, - 7r/2 - T )  !1&B f o r  n < OR < 27r. 
(b) Using the fluxsurface shown in Figure 1.54 withdS = (&/2)dOdz (-P), 

FIGURE 1.54. Flux surface with the normal radially in. 

Compute the back emf and give its sign convention, that is, i f  -d4 (OR) / d t  
> 0 will it force current in the CW or the CCW direction. Do [ and Vs 
have the same sign convention? (No, they are opposite! Explain!) Draw an 
equivalent circuit diagram of the jo rm of Figure 1.18 to illustrate the sign 
convention. 

(c) Note that in part (b) the normal to the f lux surface is  taken to be 
radially in while with 0 < OR < n it was taken to be radially out (see 
Fagure 1.14). Explain why reversing the normal of the flux surface each 
half turn in this way results in an, equivalent circuit of the fo rm shown in 
Figure 1.18 which is  valid fo r  all rotor angular positions 

Hint: Note that the + side of Vs is now electrically connected to side a' 
of the loop through brush bl ,  while when 0 < OR < n in Figure 1.14, the 
+ side of Vs was electrically connected to side a of the loop through brush 
bl. That is, the sign convention for Vs in the loop changes every half-turn. 
Thus it is also necessary to change the sign convention for the flux and 
therefore for < every half-turn in order that the sign conventions for Vs 
and < have the same relationship to each other for all OR. 

for 0 < OR < 7r and dS = 
(l2/2)dOdz (-P) f o r  7r < OR < 27r, that q5 (OR) = - (OR modn - n/2) l&B 
for all OR and that < = -dq5 (OR) / d t  has the szgn convention given in Figure 
1.28 for  all OR. Verify that the plot of  OR) in Fagure 1.15 is correct. 

- 
(d) Show by taking d S  = (e2/2)dOdzf 
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Problem 8 Simulation of the DC Motor 
Let V,,, = 40 V ,  I,,, = 5 A ,  Kb = KT = 0.07 V/rad/sec (= N-m/A),  

J = 6 x kg-m2, R = 2 ohms, L = 2 mH, and f = 0.0004 N-m/rad/sec. 
Develop a simulation of the DC motor that includes the motor model given 
by (1.6) and a voltage saturation model of the amplifier as illustrated in 
Figure 1.20. Put a step input of Vs(t)  = 10 V into the motor and plot out 
( 4  q t ) ,  (b) 4 t ) l  ( 4  i(t>, and ( 4  V d t ) .  

Multiloop Motor 

Problem 9 Skewing of the Rotor Sides 
Figure 1.29 shows the sides of the rotor loops for the motor (but not the 

tachometer!) are not straight in the axial direction, but instead are skewed. 
Can you think of a reason why this is done? 

Problem 10 Neutral Plane and Brush Shifting 
I n  the commutation scheme for the multiloop motor, it was shown that 

when a rotor loop was perpendicular to the brushes, the current in the loop 
was shorted out (brought to zero). Consequently, it is highly desirable that 
the total induced voltage in that loop be as close to zero as possible to prevent 
arcing. Figure 1.35 shows the total B field distribution in the DC machine. 
If the armature current were zero, then the field would be horizontal as in 
Figure 1.33. At  very high armature currents (e.g., in large machines used 
in heavy industry), the field is skewed as shown in Figure 1.35. The neutral 
plane is the plane cutting through the axis of the rotor for which the total 
B field is perpendicular to the plane. Let $ k ( i ,  if, OR) be the total flux in 
the kth rotor loop due to both the field current and the armature current. 

FIGURE 1.55. Magnetic field due to both the field and armature currents. 
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(a) Explain why $,(i, i f ,  6 ~ )  is  a maximum (or minimum) as a function 
of the rotor position O R  when the kth loop coincides with the neutral plane, 
or equivalently, why -d$k(i ,  i f ,  6 ~ ) / d 6 ~  = 0 when the kth loop coincides 
with the neutral plane. (This is  seen more easily i f  one takes the f lux surface 
to be the plane of the loop rather than the cylindrical surface.) 

(b) As explained in Section 1.72, the current in a rotor loop is  commu- 
tated when the plane of the loop is perpendicular to the line containing the 
two brushes. Consider the situation in which the brushes of Figure 1.30(a) 
are rotated counterclockwise (shifted) so that the plane of the loop under- 
going commutation is coincident wzth the neutral plane as shown in Figure 
1.56. (After the brushes are rotated, they are held fixed at that position.) 

Neutral 

\ 

FIGURE 1.56. Rotating the brushes so that commutation in the loop occurs 
when the loop is aligned with the neutral plane. 

Show then that the induced voltage in the kth loop when it  undergoes 
commutation is 

d'd'k(i, if, O R )  - - a '$k( i ,  i f ,  O R )  _ -  di  a 'd 'k ( i ,  i f ,  OR)  dif 
- - 

d t  i3i dt d i f  dt 

(c) Explain why shifting the brushes alleviates arcing. 
(d) Does the amount that the brushes are to be rotated depend o n  the 

amount of armature current? 

Problem 11 Flux in the Multiloop Motor 
With x ( 6 ~ )  given by (1.8) and n = 4, write a program to plot x ( 6 ~ ) /  (e&B) 
versus OR to obtain a figure similar to that of Figure 1.38. 
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Separately Excited, Series and Shunt DC Machines 

Problem 12 Conservation of Energy in the Separately Excited DC Motor 
Using the equations (1.19), (1.20) and (1.21) of the separately excited DC 

motor show that energy conservations holds. Give a physical interpretation 
to the various expressions. 

Problem 13 Series DC Motor [l] 
Consider a separately excited DC motor in which the terminal TI of the 

armature is  connected to the terminal Ti of the field circuit and a single 
voltage source is applied between the two remaining terminals Ti and TZ. 
This configuration is referred to as a series DC motor and is illustrated 
in Figure 1.57. This type of connection is often used when the motor is 
employed as a traction drive, that is, f o r  subways, trolley cars, and so on. 
A n  equivalent circuit for  the series DC motor is given in Figure 1.58 where 
A f ( z f )  = L f i f  is used. 

b 1 

FIGURE 1.57. Series-connected DC motor. Adapted from Ref. [21] 

FIGURE 1.58. Equivalent circuit for a series DC motor. 
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(a) Starting f rom the model (1.22), (1.23), (1.24) of the separately ex- 
cited DC motor, derive the set of differential equations that characterize 
the series connected DC motor. 

(b) Show that the torque cannot change sign, i.e., it is always positive or 
always negative. 

(c)  What must be done to change the sign of the torque? 

Problem 14 Shunt DC Motor [3] 
Consider a separately excited DC motor in which the terminal TI of the 

armature is connected to the terminal Ti of the field circuit and similarly, 
the other two terminals T2,T; are connected together as indicated in Fig- 
ure 1.59. This configuration is  referred to as a shunt DC motor for  which 
an equivalent circuit is shown in Figure 1.60. The resistance R,d, is an 
adjustable resistance added in series with the field winding and aids in the 
control of the motor. 

FIGURE 1.59. Shunt connected DC motor. Adapted from Ref. [21]. 

R L  

I '  + l m -  

FIGURE 1.60. Equivalent, circuit for a shunt DC motor. 
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Let 
rately 
terize 

X ( i f )  = L f i f  and using the model (1.22), (1.23), (1.24) of the sepa- 
excited DC motor, derive the complete set of equations that charac- 
the shunt DC motor. 

Simple AC Generators 

Problem 15 A Three-Phase Generator [38] 

1.61 and 1.62. 
Consider a simplified model of a three-phase generator shown in Figures 

FIGURE 1.61. Simplified three-phase permanent magnet generator. 

* i  z 
(out of page) 

FIGURE 1.62. Half-cylindrical-shaped winding of phase 1. 

The rotor consists of a two-pole (one north and one south) permanent 
magnet with the pole faces shaped so that the radial magnetic field in the 
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air gap due to the rotor's permanent magnet is  given by 

B(r,6) = B R ~ ~ ~ -  r S  cos(6 ~ 6 ~ ) f  
r 

where B R ~ ~ ~  > 0,  rs = C 2 / 2  + g is the radius of the inside surface of the 
stator iron and 6 , 6 ~  are defined as in Figure 1.61. One of the stator phases 
(consisting of a single loop) is shown in Figure 1.62 where the rotor and 
stator sizes are distorted fo r  expository reasons. 

(a) Using a half-cylinder flux surface whose boundary is the stator loop 
and whose surface normal is  fi = i., compute the flux 41 in stator loop 1 
and the voltage El = -d$,/dt induced in this loop. 

(b) Also, compute the fluxes 42, & and the induced voltages E z ,  J3 in 
phases 2 and 3, respectively. 

(c)  With the ends 1',2',3' tied together (called the neutral point), show 
that i f  the machine is rotating at constant angular speed W R ,  this results 
in a three-phase generator producing three sinusoidal voltages which are 
identical except being 120" out of phase with each other. 

(d) It is shown in Chapters 4 and 5 that the magnetic field due to the 
rotating permanent magnet rotor produces an axial electrical field in the 
air gap given by 

Show that 

= / 1 ER(6 - 

1' 

Problem 16 A Two-Phase Four-Pole Generator 

which shows a two-phase twupole generator. Its rotor is  a two-pole (one 
north and one south) permanent magnet whose pole faces are shaped so 
that the radial air gap magnetic field is given by  

To introduce a two-phase four-pole generator, consider first Figure 1.63(a), 

TS 

r 

- 
B ( r , 6 )  B R ~ ~ ~ -  C O S ( ~  - 6 ~ ) e  

where B R ~ ~ ~  > 0,  rs = & / 2  + g is the radius of the inside surface of the 
stator iron, and 6 , 6 ~  are defined as in Figure 1.63(a). The stator phases 
are wound in a similar fashion to those of problem 15, and the voltages 
induced in the stator phases are computed similarly. 
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FIGURE 1.63. (a) A two-phase two-pole machine. (b) Polar coordinate system. 

Now consider a two-phase four-pole generator illustrated in Figure 1.64(a). 
The rotor is a four-pole (two north poles and two south poles) permanent 
magnet whose pole faces are shaped so that the radial air gap magnetic field 
is given by 

TS 

r 

+ 
B(r, 6 )  = B R ~ ~ ~ -  cos ( n p ( 6  - 6 ~ ) )  ?. 

Here B R ~ ~ ~  > 0,  r s  = l 2 / 2  + g is  the radius of the inside surface of the 
stator iron, O R  is defined as in Figure 1.64(a), and np (= 2 in Figure 1.64) 
is the number of pole pairs. Figure l.64(c) is a perspective view showing 
how phase a is wound while Figure 1.64(d) is a cross-sectional view of the 
same phase. 

(a) Using an outward normal f o r  the flux surface (fi = P), compute the 
flux linkage A, in phase a due to the permanent magnet rotor. (The flux 
linkage is  the sum of the fluxes in the two loops a1-a; and a2-a; making 
u p  phase a.)  

(b) Does the positive direction of travel around each of the two flux sur- 
faces of phase a coincide with the positive directzon of current? 

(c)  Compute the voltage 6, induced in phase a by the permanent magnet 
rotor. 

(d) Using the expression for  I ,  in phase a from part (c), and the fact 
that phase b is rotated n / ( 2 n P )  radians from phase a ,  give the expression 

(e)  It is shown in Chapters 4 and 5 that the magnetic field due to the 
rotating permanent magnet rotor produces an axial electrical field in the 
air gap given by 

for  6 b .  
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Show that 
I, = S a E a ( O  - OR). cz 

a’ 

t i  
(out of page) 

FIGURE 1.64. (a) A two-phase.four-pole machine. (b) Polar coordinate system. 
(c) A perspective view of the phase a winding. (d) Cross-sectional view of the 
phase a winding. 

Problem 17 Generator/Motor 

to  work this problem!) 
Do problem 6 an Chapter 5. (The  background in this chapter is suficaent 
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The DC motor model developed in the previous chapter is used to illustrate 
basic control techniques. The techniques developed here will be straight- 
forwardly generalized for the AC motor case. 

2.1 Model of a DC Motor Servo System 

A DC motor servo (positioning) system typically consists of a DC motor, 
amplifier and sensors for position and current measurements. The interest 
here is to understand how to model this system for control purposes. Recall 
the dynamic equations of the DC motor given as 

di 
dt 

L- = -Ri(t) - K b W ( t )  + v ( t )  

= w(t) 
dd 
d t  
- 

where, in this chapter, 0 and w replace 0~ and WR, respectively. Also, 
- f w  models the viscous friction torque on the motor due to both the 
bearings and to the brushes rubbing against the commutator. The voltage 
v is commanded to the motor through a power amplifier. The amplifier is 
limited in how much voltage it can actually put out. This limit is denoted 
by V,,, in Figure 2.1. 

FIGURE 2.1. Open-loop DC motor. 

A common position sensor used in industry is an optical encoder, which 
is illustrated in Figure 2.2(a) [39]. As shown, the optical encoder consists of 
a set of windows spaced equally around a circular disk with a light source 
shining through the window when it  is aligned with the source. A detector 
puts out a high voltage when there is light and a low voltage otherwise. 
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For the setup of Figure 2.2(a), there are 12 windows (lines or slots) so that 
for every complete revolution of the circular disk (i.e., of the motor), there 
will be 12 pulses. Using digital electronic circuitry, one can detect a pulse 
going high or low so that in one revolution with 12 pulses, there will be a 
total of 24 times that a pulse went either high or low. Note that each time 
a pulse goes high or low, the motor has rotated 2 ~ 1 2 4  or 360"/24 = 15". 
By simply counting the number N of rising and falling edges of the pulse, 
one can obtain the position of the rotor to within 15". 

Light source 

Light detector 1 

Light detector 2 

FIGURE 2.2. Schematic diagram of an optical encoder. (a) Encoder disk with 12 
windows. Reprinted with permission from Mechatronics: An Integrated Approach 
by Clarence W. deSilva, Copyright CRC Press, Boca Raton, Florida [40]. (b) A 
second light detector added 90" from the first one in order to detect the direction 
of rotation. 

In order to  detect the direction of rotation, two light detectors are used 
as shown in Figure 2.2(b). In detail, the length of the windows is the same 
as the length of the distance between windows. The two light detectors are 
placed a distance of 112 of a window length apart. One period of the voltage 
waveform coming out of the light detector corresponds to  the distance from 
the beginning of one window to the next and this cycle of the voltage 
waveform is considered to be 360" [see Figure 2.2(b)]. Consequently, the 
two light detectors are considered to be 90" apart and are said to  be in 
quadrature. 

Figure 2.3(a) shows the voltage waveforms out of the two light detectors 
when the rotor is turning clockwise. Note that the voltage of light detector 
1 is 90" (1/4 cycle) behind that of light detector 2; that is, the voltage 
from light detector 2 goes high first and then a quarter of a cycle later, 
the voltage from light detector 1 goes high. However, if the rotor is turning 
counterclockwise, then the voltage of light detector 2 is 90' behind that 
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of light detector 1 as shown in Figure 2.3(b). Consequently, the encoder 
electronics detects the relative phase of the two light detector voltage sig- 
nals and uses it to determine whether the rising or falling edges of a pulse 
should increase the count (clockwise motion) or decrease the count (coun- 
terclockwise motion). For example, one could monitor light detector 2. If 
light detector1 goes high before light detector 2 goes low as in Figure 2.3(a), 
then the motion is clockwise. Otherwise, if light detector 1 goes low before 
light detector 2 goes low as in Figure 2.3(b), the motion is counterclockwise. 

If an optical encoder has N, windows (lines/slots), then there are 2N, 
rising and falling edges per revolution giving a resolution of 27r/(2NW) 
radians. Problem 4 shows how using the output of both light detectors, a 
resolution of 27r/(4NW) radians is achieved. So, for example, with N, = 500, 
the resolution of the encoder is 27r/2000 radians or 360'/2000 = 0.18'. 

Lightdetector2 h h I 
Clockwise 

(a) 

Counterclockwise 

(b) 

FIGURE 2.3. (a) Detector outputs for clockwise rotation. (b) Detector outputs 
for counterclockwise rotation. 

Figure 2.4 shows a plot of the position B ( t )  and the corresponding encoder 

0.04 

Time in Seconds 

FIGURE 2.4. Plot of 6 ( t )  and the encoder output (27r/2000)N(t). 
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output (27r/2000)N(t). Due to the way the encoder works, if 6 ( t )  is increas- 
ing, the position output of the encoder is always less than or equal to the 
actual position. 

Current Command 

The input to the motor is the voltage v. However, from the above equations, 
the torque equation is Jdwldt = - f w  + KTi - r L ,  where the motor torque 
KTi is proportional to the current. Thus, it would be convenient if the 
current was the input since one could easily specify the motor’s torque by 
specifying the current. Typically, to get around the fact that the voltage 
is the input, one designs an inner current control loop that allows direct 
current command. That is, the voltage is forced by a controller to go to 
whatever value necessary to obtain the desired current. To understand how 
this is done, consider the equations (2.1) in the Laplace domain given by 

- K ~ w ( s )  + V ( S )  
i ( s )  = 

sL + R 
K T ~ ( s )  - T L ( S )  

s J +  f 
W ( S )  = 

These algebraic relationships are illustrated in the block diagram shown in 
Figure 2.5. 

I I 

FIGURE 2.5. Block diagram of a DC motor. 

Often the approximation that L = 0 is made to  simplify the analysis 
of the system. However, a standard approach in industry is to put the 
amplifier into a current command mode which results in making the effect 
of L negligible. To do so, the current is fed back (typically using analog 
electronics) through a proportional controller as shown in Figure 2.6. 
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FIGURE 2.6. DC motor with an inner current control loop. 

Here, iT(s) is the Laplace transform of the reference current, i(s) is the 
Laplace transform of the actual current in the motor, and K p  > 0 is a 
proportional gain. The transfer function G(s) = w ( s ) / i r ( s )  is easily found 
using the block diagram reduction method. In order to do so, note that this 
block diagram is equivalent to that of Figure 2.7. 

FIGURE 2.7. Equivalent block diagram. 

The block diagram of Figure 2.7 is then easily seen to  simplify to  that of 
Figure 2.8. 

FIGURE 2.8. Simplified block diagram. 
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As a result, with T L ( S )  = 0, 

G ( s )  ii w(s)/ i , (s)  
- KPKT 
- 

(sL + R + Kp)(sJ  f f) + KTKb 

(w + l)(d + f) + KTKb/Kp 
- KT 
- 

Using high-gain feedback, that is, letting K p  + 00, G(s) reduces to 

KT 
( S J  + f) . G(s) = w ( s ) / ~ , ( s )  = 

In other words, if the gain K p  can be made large enough, the actual current 
i(t) can be forced to track i,(t) quite fast. However, note that one cannot 
make the gain K p  arbitrarily large. This is easily seen by noting that the 
voltage commanded into the amplifier is 

~ ( t )  = Kp(i,(t) - i(t)) 

which, for large gains K p ,  could be greater than V,,,, causing the amplifier 
to saturate. 

In summary, with a good current controller, the voltage v( t )  is automat- 
ically adjusted to  force i(t) ---$ i,(t) fast enough that the reference (com- 
manded) current i,(t) can be considered to be equal to the actual motor 
current i(t). That is, for all practical purposes, the dynamics from i,(t) to 
i(t) can be neglected allowing one to consider the input i,(t) as equal to the 
motor current i(t). The following reduced-order system can then be used 
to  design the controller: 

The corresponding block diagram of the reduced-order system is shown in 
Figure 2.9. 

FIGURE 2.9. Reduced-order model of a DC motor. 
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Speed Controller 

Using the reduced-order model, it is straightforward to  design a simple 
proportional speed controller as illustrated in Figure 2.10. 

FIGURE 2.10. Simple speed controller for a DC motor 

From the block diagram of Figure 2.10, it follows that 

and f << K T K  were used. This is an example of where rm a ~ 

1 
K r K I J  

the classical approach to control and is described in more detail in the Ap- 
pendix of this chapter. However, in this chapter, the state-space approach 
to feedback control is pursued. 

2.2 Speed Estimation 

Typically, in a DC motor drive system, the current, voltage, and position 
are available by direct measurement. However, the speed is not usually 
measured directly. In this section, two approaches to  estimating the speed 
are given. 

2.2.1 Backward Diflerence Estimation of Speed 

The optical encoder gives the position measurement, but not the speed of 
the motor. However, one can use this measurement to  deduce the speed. 
The most straightforward way is to compute the backward diflerence of the 
position and divide by the sample period, that is, 

2.ir N ( k T )  - N ( k T  - T )  
T &d(kT)  

- 2000 ( 
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where T is the time between samples and N ( k T )  is the optical encoder 
count a t  time k T .  

The error in estimating the speed by differentiation of the position mea- 
surements can be found as follows: At any discrete time k T , N ( k T )  is in 
error by at most one encoder count. In particular, N ( k T )  can be only too 
small by at most one encoder count ( N ( k T )  is never too large because 
of the way the encoder works). Thus, with O(kT) the true position of the 
motor in radians, 

27r 27r 
2000 2000 

O(kT)  = - N ( k T )  + -e(kT)  

where e ( k T )  represents the positive fractional count that the encoder can- 
not sense; that is, 0 < e ( k T )  < 1 for all k.  Then, the speed may be written 
as 

1 e ( k T )  - e ( k T  - T )  
) 

w ( k T )  = ( O ( k T )  - :kT - T )  

N ( k T )  - N ( k T  - T )  
- - 2L( 2000 T )+&( T 

where, as 0 5 e ( k T )  5 1 and 0 5 e ( ( k  - 1 ) T )  5 1, it follows that 
l e ( kT)  - e ( k T  - T)j 5 1. 

It is now straightforward to compute a bound on the error in estimating 
the speed. As the speed estimate is given by 

27r ( N ( k T )  - N ( k T  - T )  
T 

3,,(kT) = - 
2000 

and the difference e ( k T )  ~ e ( k T  - T )  is bounded by 51, 

/Error in 3,,(kT)I = - 
2000 

As the sampling rate increases (T gets smaller), the error gets larger. Of 
course, as the sampling rate decreases, the approximation 

w ( k T )  = (O(kT)  - :kT - T )  

becomes less and less valid. The choice of T is a trade-off between the error 
and the accuracy of the finite difference in approximating the derivative. 
One way to decrease this error would be to use an encoder with higher 
resolution. Such encoders are typically more expensive and cannot operate 
at higher speeds (as the speed increases, a large number of pulses are coming 
in so fast that the pulse detection circuitry cannot keep up). 

Figure 2.11 is a plot of the speed estimated by the backward difference 
method. In this example, the sample period is T = 0.5 msec and the encoder 
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has a resolution of 27r/2000 so that error bound is (27~/2000) /T = 6.28 
radians/sec. 

FIGURE 2.11. Plot of the speed computed using the backward difference. The 
error bound in this example is (27r/2000) /(0.0005) = 6.28 radians/sec. 

2.2.2 Estimation of Speed Using an Observer 

The differentiation of the position output from the optical encoder can 
result in a low-resolution, noisy estimate of the speed. Here a different 
approach is considered. With TL = 0 (the case r L  # 0 is explored in 
problem 13), the system equations for the DC motor are 

W - - 
d6 
dt 

dw 
d t  

- 

(2.3) 

- -  - - ( f / J ) w  + (KT/J) i ( t ) .  

Now, consider an observer defined by 

d8 
- = Lj+ . t , (6 -6)  
dt 
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where 8 ( t )  = (27r/2000)N(t) is the (discretized) position measurement from 
the encoder and 8,; are the estimates of the position and speed, respec- 
tively. If t ! , , ! ~  are chosen correctly, the solution LI to (2.4) gives a good 
estimate of the speed. To motivate this approach, let t!, = 0 and t!2 0 so 
that (2.4) becomes 

and thus (2.5) is just a real-time simulation of the motor. That is, the actual 
current in the motor is sampled and brought into a computer processor, 
the equations (2.5) are integrated in realtime by the microprocessor (ini- 
tialized with the same values of speed and position as the actual motor) 
and the solution G is then used as the estimate of the speed. However, 
there are problems with using (2.5) to estimate the speed. If there is any 
disturbance that causes the actual motor speed to change, then G will no 
longer be correct as such a disturbance is not modeled in (2.5) and thus 
G will not change to respond to it. After a disturbance has acted on the 
motor (e.g., suppose the motor shaft is bumped at some time t = t d ) ,  its 
effect can be mathematically modeled as a change of initial conditions for 
equations (2.3). That is, the motor is described by the system of equations 
(2.3), but the initial condition w(td+) is unknown (8(td+) is measured and 
thus known at t d ) .  This is where the error term 8 - 8 in (2.4) becomes so 
important. For example, suppose G < w for a period of time resulting in 
8 < 6 (as 8 is computed by integrating G). Then, with [ 2  > 0, the error 
term &(8-8) > 0 will cause & to increase in (2.4) reducing the error w-&. 

A mathematical argument is now presented to show that, by choosing 
the gains el, & appropriately, the estimate &(t) from (2.4) can be made to 
converge to w ( t )  as fast as desired without knowledge of the initial condition 
for w. To this end, let 

e l ( t )  = e( t )  - B(t) 
e2(t)  = w ( t )  - G ( t )  

so that the dynamic equations for e l ( t )  and e2(t)  are found by simply 
subtracting (2.4) from (2.3) to  get 

- -  del - e2 -!,el 
d t  

- -  de2 - - ( f / ~ > e 2  -[,el 
dt 
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Notice that the motor torque terms ( l Y ~ / J ) z ( t )  in (2.3) and (2.4) canceled 
each other out. 

This system of differential equations can be solved by computing the 
Laplace transform of (2.6) to  obtain 

s E l ( s )  - e l ( ( ) )  = J%(s) - e l E l ( s )  

s&(s) - ez(0) = - ( f / J ) & ( s )  - ezEi(s). 

In matrix notation, this is written as 

-1 

Multiplying both sides of this matrix equation on the left by the inverse of 
the 2 x 2 matrix gives 

In particular, 

-&el(O) + ( s  + Cl)e2(0) 
E2(s)  = 52 + (el  + f / J ) s  + e 2  + l l ( f / J ) '  

It is required that w ( t )  - G ( t )  = ez( t )  = L p 1 ( E 2 ( s ) )  + 0 as t + 00 for'any 
values of e l ( 0 )  and ez(0) .  To do this, choose el and & so that 

s2 + (4 + f / J ) s  + e 2  + . e l ( f / J )  = ( s  + P d ( S  t P 2 )  

= s2 + ( P l  + P 2 ) S  + PlP2 

with pl  > O,p2 > 0. That is, choose 

el = Pl + P z - f / J  

.e2 = PlPZ - ! 1 ( f / J ) .  

Then 

-lzel(O) + (s + [1)e2(0) 
(. +Pl)(S +PZ) 

( S + P l )  ( S + P Z )  

Ez(s)  = 

A B +- - - 

so that 

as t 4 00 for any e l ( 0 )  = e(0)  - b(0) and ez(0) = w(0)  - G(0) .  

e&) = AecpIt + BePPZt + 0 

Remark The importance of the error term in the observer equations 
should be understood. Note that one would typically know that the initial 
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speed is zero and the initial position is also known (it is measured) so that 
e l ( 0 )  = B(0) - 6(0) = 0 and e2(0) = w(0)  - b(0) = 0. Consequently, even 
with el = !2 = 0, the solution to (2.6) would be e l ( t )  = e2(t)  = 0. However, 
in practice if the observer was implemented with the gains equal to zero, it 
would not work. For example, there could be a torque disturbance acting 
on the motor for a short period of time. Specifically, let 

Then, the second equation of (2.3) is 

During the time this disturbance torque acts on the motor, the observer’s 
speed estimate given by (2.4) will diverge from the true value since the 
observer equations (2.4) do not have this disturbance modeled. However, 
after the disturbance has quit acting on the motor at time t2,Jhe observers 
equation are again valid and the error term e l ( t )  = O ( t )  - B ( t )  will force 
the estimate w ( t )  4 w( t ) .  That is, at time t 2 ,  the motor and observer 
are correctly given by (2.3) and (2.4), respectively. Thus, the error sys- 
tem is correctly given by (2.5) with the “initial condition” b ( t 2 )  at time 
t 2  unknown. As shown above, in spite of L j ( t 2 )  being unknown, the error 
e2(t)  = w ( t )  - b(t) 4 0 if the gains c 1 , &  are chosen properly. 

Discretization of the Observer Equations 

Using a simple Euler integration routine, the observer equations (2.4) may 
be implemented in discrete time as 

6 ( ( k  + 1)T) 

ij ( ( k  + 1)T) 

= 8 ( k T )  + T i j ( k T )  + T C l e l ( k T )  

= w ( k T )  - T ( f / J ) G ( k T )  + T ( K T / J ) Z ( ~ T )  + T & e l ( k T ) .  
(2.7) 

However, the trapezoidal method described in Section 2.7.9 provides a 
more accurate method of numerical integration for a given sample period 
T .  

2.3 Trajectory Generation 

In this section, a simple way to generate a position and speed reference for 
a point-to-point move is developed. Assuming the load torque is zero, the 
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equations for the position and speed of the motor are 

W - d6 
dt 
- -  

For a point-tepoint move, it is required that the position reference trajec- 
tory 6 , , f ( t )  satisfy Oref(0) = 0 and O, , f ( t f )  = 6 f  where t f  is the final time 
and Of is the final desired position, that is, going from the “point” 0 to 
the “point” 6 f .  There are many ways to do this, but consider the simple 
symmetric trajectory shown in Figure 2.12. 

FIGURE 2.12. Reference speed and position profiles. 

In order to have a smooth trajectory, that is, the acceleration reference 
is a continuous function of time, it is required that 

w , e f ( O )  = 0 b , e f ( O )  = 0 
W r e f ( t 1 )  1 Wmax b r e f ( t 1 )  = 0 
W r e f ( t )  = u m a x  tl L t I t 2  

~ r e f ( t 2 )  = wmax h r e f ( t 2 )  0 
~ T e f ( t 3 )  = 0 h r e f ( t 3 )  = 0. 

It is also required that t 3  - t 2  = t l  (i.e., t 3  = t l  + t z )  so that the time 
required to decelerate the motor is the same as the amount of time to 
accelerate it. The speed reference is made symmetric by setting 

~ r e f ( t )  = ~ r e f ( t 3  - t )  

for t 2  5 t 5 t 3 .  As the final position is to be O T e f ,  the following must also 
hold: 

L ’ W , , f ( T ) d T  = 6 f .  

There are still many ways to define a reference trajectory and still satisfy all 
these conditions. To be specific, consider a polynomial reference trajectory 
given by 

w r e f ( t )  = c1t2 + e2t3 for o I t I t l  
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which clearly satisfies w T e f ( 0 )  = O,Ljref(0) = 0. The conditions at tl be- 
come 

2 
W r e f ( t 1 )  = c l t 1 +  cat: = w m a x  

bTef(tl) = + 3C2t;  = 0 

or 

This has the unique solution 

The distance traveled at  time tl is then 

The speed reference trajectory is 

As the total distance traveled at time t 3  must be O f ,  it follows that 

W m a x t l  

2 
= 2- + w m a x  ( t 2  - t l )  

wrnax t2 .  
- - 

This then puts a constraint on the choices of wmax and t 2 .  For example, if 
O f  is specified, then wmax = O f / t 2 .  

The position reference is just the integral of the speed reference. Conse- 
quently, 

cl t3/3 + c 2 t 4 / 4  O I t I t l  
w m a x t 1 / 2  + W m a x ( t  - t l )  O r e f ( t )  tl I t I t 2  { w m a x t 2  - C l ( t 3  - t ) 3 / 3  - CZ( t3  - t ) 4 / 4  t 2  5 t 5 t 3 .  

Finally, the reference acceleration is just the derivative of the speed refer- 
ence given by 

O < t l t l  
tl I t 5 t 2  

- 2 C l ( t g  - t )  - 3 C 2 ( t 3  - t )2  t 2  5 t 5 t 3 .  
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The corresponding current reference iTef is then found setting w equal wTef 
in (2.8) and solving for the current to  obtain 

By design, the acceleration, speed, and position references are continuous 
functions of time. Figure 2.13 is a plot of the acceleration reference aTef ( t )  
and the jerk reference j,,, = dcx,,f/dt, where it is seen that j T e f  is not 
continuous a t  t = 0, t l ,  t 2 ,  and t 3 .  In the figure 

A 

Qmax = (3/2)wmax/tl  

j m a x  = -6wrnax / tT.  

Problem 17 considers a trajectory design for which the jerk is continuous. 

FIGURE 2.13. Left: a,,f versus time. Right: j , , ,  versus time. 

Specifying a Reference Trajectory 

A typical scenario is that 6 f  is given and that one chooses tl and t:! with 
tl < t 2 .  Then t 3  and w,,, are specified by t 3  = t 2  + tl and wmax = 6 f / t l ,  
respectively. This results in a mechanical reference trajectory 

('ref ( t )> wTe f ( t ) ,  a T e f ( t )  7 jTe f ( t )  ). 
The electrical reference trajectory is then determined by 

How does one choose t l , t 2 ?  One typically wants to rotate the motor as 
fast as possible and therefore chooses tl and t 2  to  be small. However, the 
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smaller the values of tl and t 2 ,  the larger the peak values of w T e f ( t ) ,  arer(t) 
and therefore the peak values of i re f ( t )  and vTef ( t ) .  It is then a little trial 
and error to  choose values for tl and t 2  and check that lirefl 5 I m a x ,  

Iurefl 5 V m a x  . 

2.4 Design of a State Feedback Tracking Controller 

Assuming current command, a state-space model of the DC motor is 

where the state variables are O,w, the input is i, and the disturbance is 
T L .  The terminology “state-space” model refers to having a system of first- 
order differential equations, that is, a first-order derivative on one side of 
the equation and a (possibly) nonlinear function of the state variables, 
inputs, and disturbances on the other side of the equation. 

The reference trajectory and reference input are chosen to satisfy 

(2.10) 

Define 

e l ( t )  = Q r e f ( t )  - o( t )  
e d t )  = W r e f ( t )  - w ( t )  

so that subtracting (2.9) from (2.10) results in the error system 

(2.11) 

with 
A KT . w = -(z J Tef  (2.12) 
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Here, i, is the input the control engineer is free to specify. However, the 
approach here is to specify w such that e l ( t )  ---t 0 and ez(t) + 0 as t --f m. 
Then i, is chosen so that (2.12) holds. Specifically, w is specified by 

which results in accurate tracking of the trajectory (2.10) provided that 
the gains are chosen appropriately. By (2.12), this then requires choosing 
the input i, as  

t J 

KT 
i, = i,,f + - ( K O  1 eI(7)dT + Klel( t )  + K2e2(t) (2.14) 

To find the gains, define 

t 

eo(t) a 1 e l ( 7 ~ 7  

so that with the state feedback (2.13) and the system (2.11), one may write 

- = el de0 
dt 

- = e2 de1 
dt 

(2.15) 

- de2 
dt 

= - ( f / J ) e 2  - Koeo - Klel - K2e2 + T L / J .  

To solve (2.15), its Laplace transform is computed as 

sEo(s) - eo(0) = &(s)  
s&(s) - el(0) = &(s)  
s&(s) - e2(0) = -KoEo(s) - KlEl(s )  - (K2 + f / J )  E2(s) + ~ L ( s ) / J -  

In matrix notation, one has 

0 
-1 

KO KI s + f / J + K 2  
(2.16) 

where the inverse of the 3 x 3 matrix on the left-hand side of (2.16) is given 
bY 

X 
1 

s3 + (K2 + f / J )  s2 + K i s  + KO 

s ~ + ( K ~ + ~ / J ) s  
- ( K l s + K o )  

s + K2 + f / J  s2 + (K2 + f / J ) s  + K1 

- KOS 



88 2. Feedback Control 

Let 7~ = 0 (the case 7~ # 0 is explored in problems 21 and 22). Multiplying 
both sides of (2.16) on the left by this inverse matrix, the Laplace transform 
of the state variables are found to be 

(s2 + (K2 + f / J )  s t K1) eo(0) + ( s  + K2 + f / J )  el(0) + e2(0) 
53 + (K2 + f / J )  s2 + KlS + KO 

-Koeo(O) + (s2 + (K2 + f / J )  s )  el@) + sez(0) 

-Koseo(O) - ( K l s  + K O )  el(O) + s2e2(0) 
53 + (K2 + f / J )  s2 + KlS + KO 

Eo(s) = 

El(S) = 

E 2 ( S )  = 

(2.17) 
s3 + (K2 + f / J )  s2 + Kis  t KO 

Note that all three Laplace transforms have the same denominator given 
by s3 + (K2 + f / J )  s2 + Kls + KO. This is the characteristic equation of 
the system. Using the gains KO, K1, and K2, the roots of the characteristic 
equation may be assigned to any desired values. For example, let 

a(.) = ( s  + T l ) ( S  + T 2 ) ( S  + T 3 )  

= s3 + (TI f r2 f r3)s2 + ( T I T 2  + T I T 3  + T Z T 3 ) s  f TlrZTQ 

be the desired characteristic polynomial and then choose the gains as 

K2 = T I + T ~ + T ~ -  f / J  
K1 = r1r2 +rlr3 t r2r3 (2.18) 

KO = ~ 1 ~ 2 ~ 3 .  

With this choice of gains, the closed-loop poles are p l  = + - I ,  p2 = -7-2, 

and p3 = -7-3. Assuming these poles are distinct, El(s )  in (2.17) becomes 

-Koeo(O) + (s2 + (K2 + f / J )  s )  el(0) + se2(0) 

( s  + n ) ( s  + 7-2)(s + 7-3) 
El(S) = 

A B C +-+- 
s+r1  s+r2 s+r3 

- - 

where A ,  B,  and C are constants. The inverse Laplace transform of El(s )  
is then 

e l ( t )  = AePTlt + Be-r2t + Ce-T3t + 0 

as t + 00. The further the closed-loop poles are in the left-half plane, 
the faster e l ( t )  + 0 and thus, the faster 6 ( t )  -+ 6,,f(t). However, note 
that the further in the left-half plane the closed-loop poles are chosen, 
the larger r1,r2, and 7-3 and, thus, the larger the gains Ko,K1 and K2. 

The difficulty with choosing large values for the feedback gains is that the 
resulting feedback 
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can be quite large and saturate the amplifier,’ even if the errors eo, e l ,  and 
e2 are small. The complete system is illustrated in the block diagram of 
2.14. 

i r ( t L  PI Current 
Controller 

- DCMotor 

- 

A I r -  
Observer 

FIGURE 2.14. Block diagram for the state-space controller. 

Note that if the desired characteristic equation had been of the form 

a(s )  = ( s  + T1)(S2 + 2(-w,s + w?) 

where 0 < (- < l , ~ ,  > 0, then it is again easy to find the corresponding 
gains. It is up to  the control engineer to choose the closed-loop pole loca- 
tions, or equivalently, the gains. Typically, if the poles are not far enough 
in the left-half plane, the response is too slow. On the other hand, if the 
poles are chosen too far in the left-half plane, the amplifier might saturate 
due to the large value of the gains. This procedure of varying the location 
of the closed-loop poles by varying the gains is referred to as “tuning the 
system”. 

The control designer also must choose the observer poles -pl, -p2. One 
typically wants b(t) + w ( t )  much faster than the rate at which uref(t) - 
&(t)  4 0. This is simply because one wants the estimate b(t) to close to the 
value w ( t )  so that feeding back K1 ( w r e f ( t )  - b(t)) will be essentially the 
same as feeding back K1 ( w r e f ( t )  - w ( t ) ) .  In practice, the observer poles 
-pi are taken to  be 5-10 times further in the left-half plane than the 
controller poles -ri. 

’That is, a current which is larger than the amplifier can produce would be com- 
manded to  the amplifier. The  voltage output of the amplifier will increase (in order to 
increase the current) until it  reaches the maximum possible value V,,, and then it will 
saturate at this maximum value. 
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2.5 Nested Loop Control Structure* 

A nested loop control structure is shown in Figure 2.15. This controller 
has two nested2 PID (proportional, integral plus derivative) control loops 
and is common in industrial applications. Part of its popularity is due to 
the simplicity in tuning (adjusting) the gains of the controller. Specifically, 
with the position loop gains set to zero, the gains Kwp and Kwr of the 
speed loop can be tuned first online until a satisfactory speed response is 
~ b t a i n e d . ~  With these values set, the gains Kep and KO1 of the position 
loops are then tuned until a satisfactory position response is obtained. The 
signal denoted as W,,f (the output of the position loop) is referred to as 
the “speed reference” since this would be the speed reference if the position 
loop was r e m ~ v e d . ~  

FIGURE 2.15. Nested loop control structure. The gains of the speed loop are 
tuned first and then the gains of the position loop are tuned. 

Taking the transfer function of the system equations 

K T .  f 7 L  
---ar - -w - - 

dw 
dt J J J  
d0 
dt 

- - - 

W - - - 

gives 

W ( S )  = G,(s) 

6 (s )  = -W(S)  
1 
S 

where 

(2.19) 

2The terminology “nested” just refers to one of the loops being inside the other. 
3That is, the response from W r e f ( t )  ---t w( t ) .  
4However, if the position loop is intact, then there is no guarantee that W r e f  (defined 

as the output of the position loop) equals u,,f dere,/dt .  
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To simplify the discussion, let K w ~  = 0 (see problem 24) and substitute 

G(s)  = K ~ P  ( W r e f ( S )  - ~ ( s ) )  

into the previous expression for w(s)  to obtain 

The output w(s) in terms of the transfer functions from WTef (s )  to O(s) and 
T L ( S )  to  O(s) is then 

The position output is then simply 

With E(s )  4 O,,f(s) -O(s) and wre f ( s )  = ( Keps:KeL) E(s ) ,  it follows that 

E ( s )  f eTef(s) - e ( s )  

or 

- ,  
s 1 + Kwp( 
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S2 1 1  
- - 

s2 ( s  + f / J  + KWpKT/J)  + (KWpKT/J)  (Keps + Ker) S J  

S 3  4- S2 ( f l J  + KwpKT/J)  + ( K B P K ~ P K T I J )  S 4- K ~ I K w P K T / J .  
- S l J  - 

Both G1 ( s )  and Gz(s) have the same denominator (characteristic polyno- 
mial) given by 

s3 + 5’ ( f / J  + KWpKT/J)  + ( K B P K ~ P K T / J )  + K ~ I K w P K T / J .  

Suppose it is desired to have the closed-loop poles at -r1, -rz, and -7-3 

with r1 > 0, rz > O , r 3  > 0. The closed-loop characteristic polynomial is 
then of the form 

( s  +r l )  ( s  +rz)(s +r3) = s3 + (r1 +rz +r3)s2 + (rlrz +rlr3 +r2r3)s +rlr2r3. 

This requires setting 

f / J + K w P K T / J  = r l + r z + r g  

K e p K W p K ~ / J  = rlrz + ~ 1 r 3  + 7-273 (2.22) 

K ~ I K , P K T / J  = rirzr3. 

Solving (2.22) for the gains gives 

(2.23) 

~ 1 ~ 2 ~ 3  

KwPKTIJ 
K6I = 

With‘this choice of  gain^,^ the error becomes 

E(s)  = El(S) +Ez(s) (2.24) 

5However, as noted in the beginning of this section, the gains for this controller are 
not usually chosen according to (2.23). Rather, Kwp is varied until a satisfactory speed 
response is obtained. With Kwp fixed at this value, the gains Kep and K ~ I  are varied 
until the position response is satisfactory. 
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WreAt) = { 

The objective here is to have e(t) = L- ' {E( s ) }  + 0 as t ---f 00. To study 
this, expressions for 6,,f(s) and T L ( S )  are needed. To proceed, consider a 
trajectory where it is desired to have the motor rotate from 6(0)  = 0 to 
6( t f )  = 6 f .  A reference trajectory to do this is given in Figure 2.16. The 
position reference 6,,f.(t) is given by 

@ r e f  (t) = 

-t O l t l t l  

Wmax tl I t I t2 
wmax (2.26) 

t2 I t I tf 

t l  

-(tf -- t) 
tl 

, o  t 2 tf  

FIGURE 2.16. (a) Position reference. (b) Speed reference. 
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The expression for O , , f ( t )  can also be obtained by simply integrating 
the speed reference wref( t )  a dO,,f(t)/dt. Note that although wref( t )  is 
continuous, aref( t )  = dwref( t ) /dt  is not and j T e f ( t )  = da, , f ( t ) /d t  has 
impulses at t = 0, t l ,  t2, t f  . The various components of O r e f  ( t )  have Laplace 
transforms given by [us(t) is the unit step function] 

Finally, the Laplace transform of a constant load torque T L ( ~ )  = T L O U , ( ~ )  

acting on the motor is 

The interest here is to analyze the system for tracking and disturbance 
rejection, that is, to see if it can track O , , f ( t )  while a constant load distur- 
bance TLO acts on the motor. 

€+om the above Laplace transform expressions, O,,f(s) and T L ( S )  are of 
the form (more precisely, see problem 26) 

A B C  
s s2 s3 

O,,f(S) = - + - + - 

for some constants A ,  B,  and C. Substituting into the above expression for 
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E(s )  gives 

E ( s )  = El(S)  + E2(s) 

s2 ( S  + f / J  + K W p K ~ / J )  A B 
- - (- + - + ") 

( s + T ~ ) ( s  + T ~ ) ( s  +r3) s s2 s3 
1 TLO 

( s  + q ) ( s  + r2)(s + 7-3) J s 
-- S + 

S + f / J + K W P K T / J  

(s + 7-1)(s + 7-2)(s + 7-3) 

TLO 

- - 

1 

(s + T l ) ( S  + ?-2)(s + 7-3) J 
C1 c2 c3 +-+- c4 di d2 d3 

+ 

+-+- 
s + r l  s+r2 S + T ~  s s+r l  s+r2 S + T ~  

-+-+- - - 

where 

C # 0 if C # 0. - 7-1 + 7-2 + 7-3 - 
T l T 2 r 3  

Note that C # 0 if there is a parabolic term in the input (i.e., t 2 / 2 ) .  
However, if 7-1,7-2 and 7-3 are large so that the closed-loop poles are far in 
the left-half plane, then c4 will be small. In the time domain, 

e ( t )  = c1e-'lt + c ~ e - ' ~ ~  + c3eCst + ~ 4 u , ~ ( t )  + d1e-'lt + d2eCTZt + d3eCrst 

+ c4 as t --j 00. 

This control structure cannot track parabolic type inputs (i.e., t 2 / 2 )  
with zero steady-state error, but if the poles are far enough in the left-half 
plane, then it will track such an input for all practical purposes. Thus good 
tracking of the reference input with a constant load torque on the motor 
can be obtained if the poles can be put far enough in the left-half plane 
(i.e., if the gains can be chosen large enough without causing the amplifier 
to saturate). 

Using the state space approach, it was shown that any  reference tra- 
jectory of the form O,,f(t),w,,f(t) = dB, , f ( t ) /dt ,  aref( t )  = d w r e f ( t ) / d t  
with reference input i r e f ( t )  = ( Jare f ( t )  + f w r e p ( t ) )  /KT can be tracked 
with zero steady-state error even with a constant load torque acting on 
the motor. Recall that the reference trajectory used for the state feedback 
controller had a continuous acceleration and the corresponding position 
reference had the polynomial terms t3 /3  and t 4 /4  with Laplace transforms 
2/s4,  6 / s5 ,  respectively. The PID nested loop controller above cannot track 
this reference profile with zero steady-state error. 

Another important comparison with the state feedback controller is that 
of setting the gains. The relationship between the feedback gains and the 
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coefficients of the desired closed-loop characteristic polynomial is always 
linear in the case of the state feedback controller as illustrated in (2.18). 
However, in the case of the feedback structure of Figure 2.15, the relation- 
ship between the gains and the closed-loop poles is nonlinear [see equation 
(2.22) and problem 231. Though (2.22) was readily solvable for the gains, 
higher-order systems will not be (see problems 24 and 27). 

2.6 Identification of the DC Motor Parameters* 

Recall the mathematical model of the DC motor given. by 

- w ( t ) .  
d8 
d t  
- -  

(2.27) 

In order to  design a controller based on these equations, the values of the 
motor parameters L,  R, Kb = KT,  J ,  and f need to be found. This can be 
done by an experiment in which a voltage is commanded into the amplifier 
of the motor and the measured data v( t ) , i ( t ) ,  and w ( t )  is then used to 
determine the parameters. To understand how this is accomplished, the 
first two equations above are rewritten as 

O I  
d i ld t  i ( t )  w ( t )  0 [ 0 0 -i(t) dw/dt  w ( t )  

R 

KT I = [ J 
1. (2.28) 

This is a system of two linear algebraic equations in the unknowns L,  R, KT,  3 
and f .  The coefficients of this system of linear equations are found from 
the measured/calculated data 8 ( t ) ,  w ( t ) ,  dwld t ,  i ( t ) ,  d i l d t ,  ZJ. 

If the model of the motor is precisely given by (2.27) and the quanti- 
ties O(t),i(t),  and v( t )  can be measured exactly along with the derivatives 
de ld t ,  dwld t ,  and d i ld t  computed exactly, then equation (2.28) must hold 
for all time t .  Let w ( n T )  denote the speed at time nT, i(nT) denote the 
current at time nT, d i ( n T ) / d t  the derivative of the current at time nT, 
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- 
0 d i ( n T )  

d t  
i(nT) 0 
w ( n T )  -i(nT) 

d w ( n T )  

0 w$T)  - 

and so on. Define 

= 

so that equation (2.28) above may be written in the form 

(2.31) 

- (dildt)’ i d i l d t  wd i ld t  0 
i d i l d t  i2 W i  0 
wd i /d t  wi w2 f a 2  -idw/dt -wi 

0 0 -idw/dt (o!wldt)2 wdwldt  
0 0 -wi wdwldt  w2 

W(nT)K = y ( n T ) .  (2.29) 

W is referred to  as the regressor matrix. The desire here is to  find the 
constant vector K that satisfies this for all n! To do so, multiply both sides 
of (2.29) by WT(nT) to  obtain 

where 

O I  

0 

dt 

d i ( n T )  . 
z(nT) w ( n T )  

dt  
0 0 -i(nT) - dw(nT) w ( n T )  
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= 

- v(nT)di(nT)/dt - 
u (nT)i ("T) 
v(nT)w(nT) . 

0 
0 - - 

or 
[ -i(nT) d i ( n T ) / d t  0 0 0 ] = [ 0 0 0 0 0 ] 

which is a contradiction, as the current does not have to be zero. 
Something else has to  be done. As equation (2.30) must hold for all n with 

K a fixed parameter vector, sum up equation (2.30) for N time instants to 
obtain 

N 

WT(nT)W(nT) K = c WT(nT)g(nT) (2.33) (2 ) n=l 

Define 

N 

Rw WT(nT)W(nT) E Rsx5 
n=l 

(2.34) 
N 

RwY WT(nT)y(nT) E RSx1 
n= 1 
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Then rewrite (2.33) as 
RwK = Rwy. (2.35) 

Suppose the matrix sum Rw A C,”==, W’(nT)W(nT) is invertible, then 

to  ob- 

K = R$RwY. (2.36) 

The key to this method is making sure Rw is invertible. This requires 
choosing a suitable input to  the motor, that is, any arbitrary input will not 
work. For example, suppose v( t )  = 0 so t,hat i(t) = 0 and thus w ( t )  = 0. In 
this case, W(nT) = 0 for all n so that Rw a C;=, W’(nT)W(nT) = 0 
and is therefore not invertible. As a less trivial example, suppose i ( t )  = io is 
constant. Then, equation (2.31) shows that the first row of W’(nT)W(nT) 
is identically zero for all n and therefore, the first row of Rw is identically 
zero for all n so that Rw is not invertible. Finally, if an experiment was 
performed where w ( t )  = wo is constant, then the fourth row of Rw is 
identically zero and thus again, Rw is not invertible. It is up to  the control 
engineer to design an input so that the iiivertibility condition holds. If such 
an input results in Rw being invertible, then one says the system has been 
su@ciently excited. 

-1 
multiply both sides of (2.35) by Rkl a [xCz1 W’(nT)W(nT)) 
tain K as 

2.6. I Least-Squares Approxamation 

The above analysis was based on the equation W(nT)K = y ( n T )  being true 
for all n. However, in the “real-world” that engineers work, this is never 
true. The model (2.27) is not an exact description of the motor (i.e., it was 
derived assuming ideal magnetic materials, etc.), the voltage v( t ) ,  current 
i ( t )  and position 6 ( t )  cannot be measured perfectly, and the derivatives 
w ( t )  = dO/dt,dw/dt,  and d i ld t  cannot be computed exactly. Thus, there 
will not be a parameter vector K that satisfies W(nT)K = y ( n T )  for all 
n. One can still run an experiment and collect the data v( t ) ,  i ( t ) ,  and 6 ( t )  
to compute Rw and RwY, and thus determine 

K = 

The key question is then “How well does K = RG1Rwy satisfy W(nT)K = 

y ( n T )  for all n?” To answer this question, let 

d i ( n T ) / d t  i(nT) w ( n T )  0 
0 -i(nT) d w ( n T ) / d t  w ( n T )  

W(nT) 

and define the error 

e ( n T )  y ( n ~ )  - W ( ~ T ) K  E I W ~  
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The problem is then one of finding the value of K that makes this difference 
as small as possible for all n. Specifically, the goal is to find the value of K 
that minimizes the squared error given by 

N 

E 2 ( K )  2 (y(nT) - W ( T Z T ) K ) ~  ( y ( n T )  - W(nT)K)  
n=l 

N 
= c MnT) - Y(nWT MnT) - Y(nT)) 

c (y1(nT) - Y1(nT)I2 + (yz(nT) - Y2(nT))2 

n=l 

N 

= 
n=l 

N 

n=l 

where e l ( n T )  yl(nT) - &(nT),ez(nT) a yz(nT) - jjz(nT). 
In the jargon of identification theory, y(nT) is considered the output while 

ij(nT) = W(nT)K is the predicted output based on K as the estimate of 
the parameters. Consequently, 

e ( n T )  a y(nT) - W(nT)K = y(nT) - jj(nT) E R2 

is the error and 

N 
E 2 ( K )  2 (y(nT) - W ( T Z T ) K ) ~  (y(nT) - W(nT)K)  (2.37) 

n= 1 

is the total squared error. If a K can be found that minimizes equation 
(2.37), it is referred to as the least-squares estimate. 

It is now shown that there is a unique solution and it equals RGIRwy. 
To do so, expand equation (2.37) above to obtain [recall the matrix fact 
(AB)T = BTAT] 

N 

E y K )  = c (yT(nT)y(nT) - yT(nT)W(nT)K - KTWT(nT)y(nT) 
n=l 

+ KT WT (nT) W (  nT) K )  

N / N  
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Adding to the definitions given in (2.34), define 

N 

R,w a C y ' ( n T ) W ( n T )  E RlX5  
n=l 

N 

R, f x y T ( n T ) y ( n T )  EIR 

where it is clear that R,w = RG,. Then E 2 ( K )  is written compactly as 

E 2 ( K )  = R, - R,wK - KTRwy  + KTRwK 

n=l 

= R, - R , ~ R F / ~ R ~ ,  + ( K  -- R F / ~ R ~ , ) ~  R~ ( K  - R ~ ~ R ~ , ) .  
(2.38) 

For a fixed N ,  the matrices R,, R,W, Rw,, and Rw are constant and do 
not depend K .  Also, Rw is a symmetric positive semidefinite matrix. 

Digression [41] A matrix Q is synimetric if QT = Q. A symmetric 
matrix Q E R"'" is positive semidefinite if for all x E Rm, zTQz 2 0. 
Further, Q is positive definite if xTQx 2 0 for all z E Rm and x'Qx = 0 
if and only if x is the zero vector (i.e., :c = 0). 

and note that Q1 = QT. Also, 

for all x E R2 and the only way it can equal zero is if 5 1  = 0, x2 = 0. That 
is, Q1 is positive definite. 

As another example, let 

0 0 
Q 1 =  [ 0 21 

and note that Qz = QT. Also, 

for all x E R2. Thus Q2 is positive semidefinite. However, in this case, the 
nonzero vector z = [ 1 0 1' makes zTQ2x = 0; that is, Q2 is not positive 
definite. 
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As a final example, let 

and note that Q3 = 05. Also, 

T In this case, xTQ3x can be positive (e.g., x = [0 11 ) or negative (e.g., 
x = [l O I T )  depending on the chosen value of the vector x. Consequently, 
Q 3  is neither positive definite nor positive semidefinite. 

To show that Rw is positive semidefinite, for any x E R5, it follows that 

zTWT(nT)W(nT)x = .(W(nT)x)T (W(nT)x) = zT(nT)z(nT)  
= &nT) + &nT) 2 0 

where z(nT) a W(nT)x E EX2. Thus, 

N 

= c xTWT(nT)W(nT)x 2 0. 
n=l 

The control engineer will design the experiment, that is, the specification 
of v(t) and i(t), so that Rw is invertible. It turns out that if a symmet- 
ric, positive semidefinite matrix is also invertible, then it must be positive 
definite. Consequently, Rw is then positive definite so that second term in 
(2.38) satisfies . 

( K  - R ~ ~ R ~ ~ ) ~  R~ ( K  - R ; ~ R ~ ~ )  2 o 
for all K E R5. This equals zero if and only if 

T 
K - R $ R w y = [ O  0 0 0 0 1  . 

That is, by inspection of equation (2.38), E2(K)  is minimized for K = I? = 
R$Rwy! Thus, choosing K = K = R$Rwy results in the least-squared 
error. The " ,." in k is used to  denote an estimate of K.  However, the least 
squares estimate is an optimal estimate as it minimizes the least-squares 
error. Then the convention is to use an asterisk * to  denote an optimal 
estimate and so K* a R&'RwY is now used. 
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2.6.2 Error Index 

How good is the least-squares estimate? Well, the exact value of K is not 
known so the error between the LLexact'' value of the parameter vector and 
its estimate (i.e., K - K * )  is unknown. However, an indication of how 
good the estimate K* is can be found by comparing it to  a given (and 
thus known) value of K .  Specifically, if K = 0, then the squared error is 
E(0) = R, as seen by putting K = 0 in equation (2.38) above. Using the 
least-squares estimate K * ,  that is, setting K = K* a Rk1RwY in equation 
(2.38), the error is given by 

This is called the residual error; that is, it is the total squared error after 
using the value of K that minimizes the squared error. As Rw is positive 
definite] it turns out that its inverse RG must also be positive definite. 
Further, R,w E R 1 x 5 1 R ~ y  E with R,w = R&,, it follows that 

R,wR&~Rw, 2 0 so that E2(K*)  = R, - R,wR&~Rw, 5 R, = E2(0).  
As a result, the quantity 

E ~ ( K * )  R, - 
E2(0) 12, 

5 1. -- - 

The ratio E2(K*) /E2(0)  is a measure of the minimum squared error rel- 
ative to the squared error obtained from taking the parameter vector K 
to  be the zero vector. By taking the square root, a measure of the relative 
error rather than squared error is obtained. This motivates the definition 
of the so-called error index as 

Note that if the error index is close to 1, then the estimate is not much 
better than taking all the parameter values equal to  zero! Thus, the error 
index must be much less than one for the estimate to be of any value. If 
the error index is close to one, then one would suspect that the original 
model of the system is incorrect. 

2.6.3 Parametric Error Indices 

In addition to the overall error index, if, is important to  know how sensitive 
the error is to each parameter. That is, does a change 6Kz in the ith 
parameter Ki produce a large or small change in E2(K)?  A small change 
indicates that the parameter estimate could vary greatly without a large 
change in the residual error. Thus, the accuracy of the parameter estimate 
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of Ki would be in doubt.6 On the other hand, a large cha.nge indicates that 
the residual error is very sensitive to changes in the parameter Ki so that 
such a parameter estimate may be considered more accurate. 

In addressing the issue of sensitivity of the full parametric vector K* to 
errors, the method in Ref. [42] is considered. If follows from (2.38) that K" 
satisfies 

so that, in particular, 

= 0. (2.40) 

Therefore, it is not possible to use the derivative dE2(K)/dKiIK=,,  of 
the residual error as a measure of how sensitive the error is with respect to 
Ki as it is always zero. 

An alternative is to define 6K as the variation in K such that the increase 
of error is equal to the residual error E2(K*)  itself. To explain, recall that 

E2(K* + 6 K )  = 

= E2(K*)  + 6 K T R w 6 K .  (2.41) 

R, - 2 R G y  (K* + 6 K )  + (K*  + c ~ K ) ~ R w ( K *  + 6 K )  

The 6K's  that lead to a doubling of the residual error satisfy 

G K ~ R ~ G K  = E ~ ( K * ) .  (2.42) 

This is illustrated in Figure 2.17. 

E*(K * + 6 ~ )  

FIGURE 2.17. Illustrating the choice of 6K that doubles the minimum mean 
square error. 

The points 6K E R5 that satisfy (8.116) define an ellipsoid as illustrated 
in Figure 2.18. 

61n other words, if K ,  + SK, produces essentially the same value of E 2 ( K )  as K,, 
then one is not sure if K, + 6K, or K ,  is the better estimate. 
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FIGURE 2.18. bK1 = J E 2 ( K * ) ( R ~ ) 1 1  is the largest value of bK1 that is on the 
ellipsoid bKTRwbK = E 2 ( K * ) .  This is defined as the parametric error indes for 
Ki . 

Define the parametric error index associated to the parameter Ki as the 
maximum value of 6Ki such that (8.116) is satisfied. That is, bKi is the 
solution to a constrained maximization problem that requires maximizing 
the quantity 

b K,  

subject to the constraint 

~ K ~ R ~ G K  = E ~ ( K * ) .  

This is simply the largest possible value for bKi that would result in 
E2(K*  + b K )  = 2E2(K*).  This constrained optimization problem can be 
solved as an unconstrained maximization problem with the help of La- 
grange multipliers. To do so, let (see Ref. [42]) 

with respect to bK and A.  To fix ideas, let i = 1, and successively differen- 
tiate (2.43) with respect to bK1,. . . , bK5, X so that a t  the maximum point 
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-2ARw6K= 

of (2.43), it follows that 

- -  
0 
0 
0 
0 
0 - 

BC(6K, A) = 1 - 2 A [  1 0 0 0 O]RwbK=O 
BbKl 

BC(6K, A) 
a6 Kz 

BC(6K, A) 
dbK3 

BC(GK, A) 
B6K4 

ac(m, A) = - 2 A [  0 0 0 0 1 ]Rww6K=0 
d6K, 

BC(bK, A) 
a 

= - 2 A [ O  1 0 0 O]RwGK=O 

= -2A[  0 0 1 0 O]RwGK=O 

= - 2 A [  0 0 0 1 O]RwSK=O 

= E ~ ( K * )  - ~ K ~ R ~ ~ K  = 0. 

This can then be rewritten as 

(2.44) 

Solving for bK gives 

(2.45) 

To compute A, multiply both sides of (2.44) by 6KT to obtain 

6K1= 2X6KTRw6K = 2AE2(K*) 

and rearranging results in 

2x  = ~ K ~ / E ~ ( K * ) .  

Substitute this expression for 2X back into (2.45) to obtain 

bK= (2.46) 
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With (RG1)ll denoting the (1,l) element of the matrix RG, the first row 
of (2.46) gives 

or 

where the + sign was chosen to maximize 6K1. In general (see Ref. [42]) 

6Ki = .\/E2(K*)(R;1)ii. (2.47) 

The parametric error index 6Ki indicates the maximum amount by which 
Ki, the ith component of K ,  could vary without causing more than a 
doubling of the residual error. A large parametric error index indicates that 
the parameter estimate could vary greatly without a large change in the 
residual error and thus making the accuracy of the parameter estimates 
suspect. On the other hand, a small parametric error indicates that the 
residual error is very sensitive to the changes in the parameter estimates 
and that the parameter estimates may be considered to be more accurate. 
In any case, the error indices should not be considered as actual errors, but 
rather as  orders of magnitude of the errors to be expected, to guide the 
identification process and to warn about unreliable results. 

The choice of a parametric error index as corresponding to a doubling 
of the residual error is arbitrary. A different level of residual error would 
lead to a scaling of all the components of the parametric error index by a 
common factor. 
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2.7 Filtering of Noisy Signals* 

This section gives a concise discussion of the various ideas in the area of 
signals and systems that are needed to analyze/process data for implemen- 
tation of identification and control algorithms. This material is covered in 
any basic “signals and systems” book such as references [43] [44][45]. 

Recall that the identification algorithm required computing derivatives 
of the measured data. However, these measured signals typically contain 
high-frequency low-amplitude noise and the differentiation of such a signal 
amplifies the noise! That is, a measured signal m(t) is often of the form 
m(t) = s ( t )  + n(t) ,  where s ( t )  is the signal of interest and n(t) is high- 
frequency low-amplitude noise. For example, Figure 2.19 is a plot of the 
simulated position measurement of a motor as given by an optical encoder. 
This signal m(t) = (27r/2000) N ( t )  is the measured signal and appears to 
be right on top of the true signal s ( t )  = O ( t ) .  

Time in Seconds 

7 

FIGURE 2.19.t9(t) and the encoder output (27r/2000)N(t) in radians versus time 
in seconds. 

Figure 2.20 is a magnification of Figure 2.19 clearly illustrating the dis- 
crete nature of the encoder output. The smooth curve s ( t )  = O ( t )  is the 
“actual” position of the motor from the simulation and again the measured 
signal is m(t) = (27r/2OOO)N(t). 
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FIGURE 2.20. $( t )  and the encoder output (27r/2000)N(t) in radians vs. time in 
seconds. Magnification of Figure 2.19. 

As this “data set” is from a simulation, the true signal s ( t )  is known and 
thus one can calculate the noise n(t) as nit) = m(t)-s(t) = (27r/2000)N(t)-  
6 ( t ) ,  so that m(t) = s ( t )  + n(t). Figure 2.21 is a plot of the noise n(t) = 

(27r/2000)N(t)  - e( t ) ,  where it is seen that 0 5 n(t) 5 3.14 x lop3  radians, 
that is, it is quite small. 

3 
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FIGURE 2.21. Position error/noise computed as n(t) = (27r/2000)N(t) - 6( t ) .  
The encoder error is bounded by 271./2000~ = 3.14 x lop3 radians. 
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To obtain an estimate of S ( t ) ;  the measured signal m(t) = s ( t )  +n(t) can 
be numerically differentiated to obtain 

s ( t )  - ~ ( t  - T )  + n(t) - n(t - T )  
T 

= i ( t )  + jL(t). 

However, as the difference n(t) - n(t - T )  may be of the same order (or 
higher) of magnitude as s( t )  - s(t - T ) ,  it follows that n(t) can be of the 
same order of magnitude as s( t ) .  Going back to the encoder example of 
Section 2.2, the encoder resolution (error) is 27r/2000 radians where 2000 is 
the number of counts per revolution so that the noise (error) in the position 
measurement is bounded by 27r/2000. Computing the speed by numerically 
differentiating the encoder output results in a tight error bound given by 

27r 
2000T 

where T is the sample period. The sample period T is usually small (on 
the order of a millisecond) so that 1/T is large showing that differentiation 
amplifies the noise. This is illustrated in Figure 2.22 which was found by 
differentiating m(t) = (27r/2000)N(t) from Figure 2.19 with T = 0.5 msec. 

2503 

FIGURE 2.22. Estimated angular speed in rads/sec versus time in seconds. Here 
w is estimated as (O(nT) ~ O((n - 1)T)) /T with T = 0.5 msec resulting in a 
speed error bound of - = 6.28 radians/sec. 

A common way to remove additive high frequency noise is to use a 
low-pass filter that works as long as the signal s ( t )  has a much lower 
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frequency content than the noise n(t). For example, let s( t )  = sin(l0t) 
and n(t) = O.Olsin(1000t) so that m(t) = s ( t )  + n(t) is the measured 
signal. Then m(t) = S(t) + iz(t) = lOcos(l0t) + lOcos(1000t). Although 
In(t)l << j s ( t ) l ,  the differentiated noise iz(t) is of the same order of magni- 
tude as the differentiated signal S ( t ) .  However, by setting the cutoff of the 
low-pass filter at (say) 100 rad/sec, then s ( t )  will make it through the filter 
essentially unchanged and n(t) will be filtered out. Before going into detail 
of how to design such a filter, some basic facts about filtering are reviewed. 

2.7.1 Filter Representations 

Let m(t) be the input to the filter and y(t) the output. There are three 
useful ways to  characterize (represent) a causal filter: 

t 
(1) Impulse response g ( t )  so that y(t) = s-, g ( t  - ~ ) m ( ~ ) d 7 .  

(2) Transfer function G(s) so that Y ( s )  = G ( s ) M ( s )  
where Y ( s )  = e c s t y ( t ) d t ,  G(s)  = JF e-s tg( t )d t ,  M ( s )  = ST;" eCs tm( t )d t .  

(3) Differential equation k ( t )  = Az(t) + bm(t), y(t) = cx(t)  + dm(t) 
where z E R", y E R, m E R, A E E X n x n ,  b E Rn, c E RWlxn. 

Example 
Consider an impulse response given by 

In terms of g ( t ) ,  the filter is given by the convolution integral 

The corresponding transfer function is 

The state space (differential equation) representation is 
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2.7.2 Causality 

A more general representation of a linear filter is y(t) = s-", g ( t - r ) m ( . r ) d r .  
However, recall that for a filter to be causal, the output y(t) of the filter 
can only depend on the input m(r) up to time t ,  that is, on m(r) for -m < 
r < t. As a consequence of this causality requirement, in the representation 
y(t) = s_",g(t - T)m(?-)dr, it follows that g(t) = 0 for t < 0. If this were 
not the case, then for some r > t (i.e., t - r < O),g( t  - r )  would not be 
zero and g(t - ~ ) m ( ~ ) d r  would be the contribution of the input at time 
r > t to the output response y(t) at time t!  Consequently, a causal filter 
may be written as y(t) = J_",g(t - r ) m ( r ) d r  = J-,g(t - r)m(r)d.r as 
g(t - r )  = 0 for r > t. 

As just explained, the impulse response model provides a simple way of 
characterizing the causality of a filter. The differential equation representa- 
tion provides the means of actually implementing a filter as will be shown 
below. On the other hand, the transfer function representation is particu- 
larly easy to work with as it allows one to just do algebraic manipulations 
a s  opposed to working with a differential equation or a convolution integral. 
I t  is also quite useful for filter design and specification as is shown in the 
next section. 

t 

2.7.3 Frequency Response 

Consider a filter represented as y(t) = s-", g ( t  - r ) m ( ~ ) d ~  with an input 
given by m(t) = est for -m < t < 03 and s = 0 + j w  is constant. Then, 
the response is given by 

00 M 

g ( t  - r ) e s r d r  = g ( t  - T)e-S( t -T)es tdr  1, 03 

Y(t )  = 1, 
00 

- - e s t L  g ( t  - r)e-S('-T)dT = es' s_, g ( u ) e - s u d u  
00 

= g(u)e-s"du 

= G ( s ) e s t .  

In particular, if s = j w  so that m(t) = ejwt = cos(wt) + j sin(wt), 

y(t) = G ( j w ) e j w t  = IG(jw)I e jLG(jw)ejwt  

= IG(jw)I (cos(wt + L G ( j w ) )  + j sin(wt + L G ( j w ) ) )  

Considering just the real part, the input m(t) = cos(wt) for -m < t < 03 

results in the output y(t) = jG(jw)I cos(wt + L G ( j w ) )  for -m < t < m. 
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2.7.4 
Suppose for a given bandwidth specification wb, one is able to  design a filter 
G(jw) such that its magnitude response satisfies 

Low-Pass Filters with Linear Phase 

[G(jw)I 5 1 for all w 

IG(jw)I M 1 f o r O i w 5 W b < w c  

M O  for w 2 2wc 

where w, is referred to as the cutoflfrequency (see Figure 2.23). Further, 
suppose the phase response of the filter has the property that 

where y > 0. LG(jw) = -yw for 0 5 w :; wb 

W / W c  
0 0.5 ' 1 1.5 2.0 

FIGURE 2.23. Magnitude and phase of a low-pass filter 

Then, if the input to this filter is m(t)  = cos(wt) with w 5 wb, the output 
is given by 

y(t) = IG(jw)l cos(wt + LG(jw)) 

SZ cos(wt - zyw) 

= cos (w(t  -- y)) 

that is, the output is the same as the input except delayed by the time 
y. Carrying this idea further, consider the input m(t) = Alcos(w1t) + 
A2 cos(w2t) where w1 < w2 5 wb < w,. Then, the corresponding output is 

y(t) = lG(jw1)l A i  cos(wit + LG(jwi)) + [G(jwz)l  A2 cos(w2t + LG(ju2)) 
M Ai cos (wi( t  - 7)) + A2 cos ( ~ 2 ( t  - 7)) 
= m(t - y). 

Again, the output of the filter is the same as the input except delayed by 
the time y. 

The usual application of a low-pass filter is to the following situation: 
There is a signal s ( t )  with high-frequency additive noise n(t) corrupting it. 
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That is, the signal measured is m(t) = s(t)+n(t)  and the desire is to extract 
the signal s ( t )  from m(t). For example, let s ( t )  = A1 cos(wlt)+Az cos(wat), 
n(t) = NO c o s ( w ~ t )  with w1 < w2 << W N  and m(t) = s ( t )  + n(t). Suppose 
a low-pass linear-phase filter can be found (as described above) with w1 < 
w2 5 wb < w, << W N .  Then the output of the filter is given by 

as l G ( j w ~ ) I  M 0. The desired signal has been extracted from the noise, but 
it is delayed by y seconds. 

2.7.5 Distortion 

The magnitude specification of the filter as (G(jw)l = 1 for 0 5 w 5 
wb < w, and lG(jw)I M 0 for w 2 2w, is necessary to remove the high- 
frequency noise. The angle specification of LG(jw) M -yw for 0 < w < 
wb < w,, y > 0 (linear phase) is required to prevent distortion of the 
signal. That is, suppose G(jw) did not have linear phase so that LG(jw1) M 

-ylwl, LG(jw2) M -y2w2 with y1 # y2, then with m(t) = A1 cos(w1t) + 
A2 cos(w2t) -L No cos (w~t )  applied to the filter, the output would be 

for some y > 0. That is, distortion in the signal results since the output of 
the filter is not an exact (delayed) reproduction of the desired signal. 

2.7.6 Low-Pass Filtering of High-Frequency Noise 
Now consider an arbitrary signal s ( t )  where the measured signal is given by 
m(t) = s ( t )  +n(t) and the noise n(t) is assumed to have a much higher fre- 
quency content than s( t ) .  To understand the filter’s effect on these signals, 
Fourier transform theory is used. The Fourier transforms of these signals 
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are 

where M ( j w )  = S ( j w )  + N ( j w ) .  Their inverse Fourier transforms are given 
bY 

Recall that & M ( j w ) &  is interpreted as the frequency content of m(t) 
between w and w+&. As shown in (2.48), when &ejWtM(jw)dw is passed 
through the filter, the output is &ejWtG( jw)M( jw)dw.  Consequently, when 
m(t) is input to the filter, the output y ( t )  of the filter is given by 

As explained above, to have a low-pass filter remove the noise, the frequency 
content of n(t) must be much higher than that of s ( t ) .  Thus, assuming that 
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l o "  

2.rr -" y(t) = - 1 e j ' " tG( jw)S( jw)dw + e j w t G ( j w ) N ( j w ) d w  

+Wb 

- - / e j " 'G( jw)S( jw)dw + - e j " 'G ( jw )N( jw )dw 

e j w t G ( j w ) N ( j w ) d w  (as IN(ju)[  M 0 for IwI < 2wc) 

e jU tG( jw )S( jw )dw as IG ( jw ) l  M 0 for [wI > 2w, 

21r - W b  21r -" 

- -  - 

= s ( t  -7). 

The effect of passing m(t)  through the filter is to reproduce s ( t ) ,  that is, 
remove the noise from m(t) delayed by y seconds. 

Remark 
The "ideal" low-pass filter is specified by 

1 for IwI < w, 
0 for jwl > w, 

G ( j w )  = 

That is, the frequency content of a signal below w c  passes through un- 
affected while the frequency content of the signal above w, is removed. 
However, the ideal filter is neither causal nor stable (see problem 34). 

2.7.7 Butterworth Falters 

The class of filters known as Butterworth Filters have, to a good approxi- 
mation, the two necessary properties; that is, the magnitude response has 
the low-pass characteristic along with a linear-phase. Below are the mag- 
nitude (Figure 2.24) and phase plots (Figure 2.25) for Butterworth filters 
of orders n = 1,2 ,4 ,6 ,8 ,10 ,  where w, denotes the filter cutoff frequency. 
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FIGURE 2.24. Plots of the magnitude versus w/wc for Butterworth filters of order 
n = 1,2,4,6,8,10. 

FIGURE 2.25. Plots of the phase in degrees versus w/wc  for Butterworth filters 
of order n = 1,2,4,6,8,10. 
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Note that for Butterworth filters of order n = 4 or greater, 

I G n ( j W ) l  M 1 for O 5 W 5 wb = 0.6wc 

= o  for w 2 2wc 

and 

where the delays yn  = m,/wc (m, = the slope of the LG,( jw) vs. w / w c )  
are monotonically increasing. In other words, y1 < y 2  < y4 < 7 6  < ys < 
ylo so that the time delay increases as the order of the filter increases. 

Let's consider the specific example of a third-order Butterworth filter 
given by 

LG,(jW) M -ynW for O 5 W 5 wb = 0.6wc 
A 

1 
G 3 ( S )  = 

(s/wc + 1) ( ( s / w d 2  + s/wc + 1) 

- 4 - 
( s  + wc)(s2 + WCS + w : ) -  

Note that /G3( j~) j , ,~  = 1 and IG~(~w)I ,=,~ = 1/&. By direct compu- 
tation (tedious!), one can verify that d" IG3(jw)I / d u k  IW=o= 0 for k = 
1,2,3,4,5 and d6 IG3(jw)I /du6 Iw=o= - (1 /2) (6! ) .  The third-order Butter- 
worth filter is the only third-order, causal, rational (i.e., ratio of two poly- 
nomials) filter that has its first five derivatives zero at w = 0. For this rea- 
son, the Butterworth filter is known as being maximally flat. In general, if 
G,(jw) denotes an nth-order Butterworth filter, then d" [G,(jw)l /dwl",=, = 

0 for k = 1,2,3,4,5 ,..., 2n  - 1 and 
d2" ]G, ( j~ ) l  /du2, Iw=o= - (1 /2) (2n! ) .  

2.7.8 Implementation of the Filter 

To actually implement the filter, a differential equation representation of 
the filter is used. For a transfer function of the form 

b1s2 + b2s + b3 

s3 + u1s2 + (22s + u3' 
G ( s )  = 

a state space representation (called the control canonical form) is given by 

0 1 0  

-a3 -a2 -a1 

y(t) = [ b3 b2 b l  I+) 
which may be written in a more compact form as 

i ( t )  = Az(t)  + bm(t) 

Y(t)  = c 4 t )  
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where 

A = [  0 1  0 0 ] 1 b = [ ! ] 1 c = [ b 3  b2 b l ]  
-a3 -a2 -a1 

The characteristic polynomial of the system is given by 

-1 0 
det(s1-A) = det[ i3 ;2 -1 ] 

s + a t  

s -1 0 - 1  0 s  
a2 s + a 1  j - (--I) 1 a3 s+a1 l + o l  a3 a2 1 = S j  

= s3 + a152 + a2s + a3 

and the transfer function is computed a.s 

Y ( s )  = G(s)  = C ( S ~  - A)-’b 
- 1  

-1 0 

= [ b3 b2 bi ] 

- bis2 + b2s + b3 
- 

s3 + U l S 2  + a2s + a.3 

where the “x”  means the specific value of each of these elements is not 
needed. For the third-order Butterworth filter given by 

w : 
- 4 

s3 + 2 4 8 2  + 2 w 3  + w? 

G 3 ( S )  = ( s  + wcj(s2 + wcs + wz) 

- 

direct computation shows that a state- space representation is given by 

0 1 0 
X(t) = [ 0 0 

-w: -2w: -2w, 

(2.49) 

y(t) = [ w: 0 0 ]x(tj. 
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2.7.9 Discretization of Differential Equations 

In order to implement a filter on a computer, the continuous time differ- 
ential equation representing the filter must be discretized, that is, put into 
a discrete-time equivalent. There are many ways to do this, but only the 
trapezoidal method (also known as the bilinear transformation) is discussed 
here. 

Consider y(t) = m(t) or y ( t )  = S , ' r n ( ~ ) d ~  and let the sample period 
be T.  The trapezoidal method of integration uses the average value of the 
integrand over the sample period to compute the area under the curve. 
This is illustrated in Figure 2.26. 

m(nT) + m((n - l)T) 

m((n - 1): 

m(3T) 

T 2T 3T 

i-- m(nT) + m((n - 

-t ni  

2 
W T  

FIGURE 2.26. Trapezoidal method of integration. 

Denote the area under the curve m(t) at time nT by y ( n T ) .  The average 

that the approximate area under the curve in this same time period is 
T.  Thus, one can (approximately) find the area under m(t) m(nT)+m((n-l)T) 

at any time nT as 

value of m(t) between the times (n ~ l)T and nT is m(nr)+m((n-l)Tl 2 so 

2 

Let 

Y ( z )  = C y ( n T ) z P  
n=O 
00 

M ( z )  = Cm(nT)z-"  
n=O 

be the z transform of {Y(nT)}  and { M ( n T ) } ,  respectively. Take the z 
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transform of (2.50) to obtain 

03 00 

n=O n=O 

03 

n=O n=O 
2 

Note that with y ( - 1 )  = 0, 

00 00 

n=O n=l 
= C y ( k T ) z - k  00 

k=O 

= Y ( z ) .  

Similarly, with m(-1) = 0, C,"==, m((n - ~ ) T ) z - ( ~ - ' )  = M ( z )  so that 

T 
Y ( z )  = z - ' Y ( z )  + z ( M ( z )  + z - I M ( z ) )  

or 

where the right-hand side is known as the bilinear transformation. The 
general case is now considered where the state-space representation 

k ( t )  = Az(t) + bm(t )  

of the filter is used. To numerically integrate this differential equation, the 
trapezoidal integration algorithm is used as follows: 

k(nT) $- k ( ( n  - 1)T) 
2 

z(nT) = ~ ( ( n  - 1)T) + T 

= ~ ( ( n  - l )T )  
T 
2 

+- (Az(nT) + bm(nT) + Az((n - 1 ) T )  + h ( ( n  - 1)T)) 

Take the z transform of both sides to  obtain 

T T 
2 

X ( Z )  = z - ' X ( Z )  + - ( A X ( 2 )  + A z - . ' X ( z ) )  + 2 ( b M ( z )  + bz- 'M(z) )  

or 

T T 
2 2 

( 1  - .-')X(Z) - - ( 1  + z - ' ) A X ( z )  = -(1 + z - ' ) b M ( z )  

2 1 - 2-1 

T 1 + ~ P I  
X ( Z )  - A X ( 2 )  = b M ( z )  -- 

( ( $ & ) I - A ) X ( z )  = bM(z )  
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Then, as Y ( z )  = c X ( z ) ,  

The remarkable result is that the discrete-time transfer function is found 
by simply evaluating the continzlous-time transfer function G ( s )  = c(s1- 

2 1 - z-1 
A)- 'b at s = --I 

T 1 + 2 - l '  
Going back to the third-order Butterworth filter 

w ," 
G 3 ( S )  = s3 + 2wcs2 + 2 w 3  + w: ' 

the discrete-time transfer function for this filter (corresponding to  integrat- 
ing the differential equation (2.49) using the trapezoidal approximation) is 
given by 

where 
3 3  3 3  3 3  bi = w C T  , b2 = 3w;T3, b3 = 3wCT , b4 = w C T  

a1 = w2T3 + 4w:T2 + 8wcT + 8 
a2 = 3w:T3 + 4w:T2 - 8wcT - 24 (2.51) 

a3 = 3w:T3 - 4w,2T2 - 8wcT + 24 

a4 = w%T3 - 4w:T2 + 8w,T - 8. 

Usually, the filter coefficients are normalized so that leading coefficient in 
the denominator is 1. The coefficients are then given by a; = 1, a', = a2/al ,  
a$ = a3/a1, a& = a4/a1, b; = b l / a l ,  b', = bn/al,  bh = bs /a l ,  bl, = b4/al.  

In order to implement this discrete-time filter, it needs to be reformulated 
as a discrete-time difference equation. This can be done either as a input- 
output difference equation or as a state-space difference equation. Both of 
these representations are considered in the next section. 

2.7.10 Digital Filtering 

A general second-order digital filter may be represented in input-output 
form as (a1 = 1)  

y ( n T )  = b l m ( n T )  + b z m ( ( n  - l ) T )  + b3m((n  - 2 ) T )  

- a z y ( ( n  - 1 ) T )  - a3y((n - 2 ) T )  (2.52) 
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That is, to  get the output of the filter a.t time nT, one needs to know the 
current input m(nT), have stored the previous two inputs m((n - 1)T), 
m((n - 2 ) T )  and outputs y((n - l)T),y((n - 2 ) T ) ,  and then carry out the 
calculation. Rewrite (2.52) as 

y ( n T )  + a z y ( ( n  - 1 ) T )  + a 3 y ( ( n  - 2 ) T )  = b1m(nT)) + b2m((n - 1)T 

+ b3m((n - 2 ) T ) .  (2.53) 

To compute the discrete transfer funct.ion, multiply both sides by z and 
sum from n = 0 to n = co to  obtain 

00 M 

n=O n=O 
M 

+ a3z-2 c y((n - 2 ) T )  z - (n-2)  

n=O 

M 

+ b32-2 c m((n - 2)T)z-(n-? 
n=O 

Let Y ( z )  = C,"=oy(nT)z-n so that with y ( -1 )  = 0 it follows that 

00 00 M -- 
C y ( ( n - l ) T ) z - ( n - l )  = - y y ( ( n - l ) T ) z - ( n - ' )  = C y ( ( k ) T ) z - k  = Y ( z ) .  
n=O n= 1 k=O 

In addition, if y ( -2 )  = 0, it then follows that Y ( z )  = C,"=oy((n - 
~ ) T ) z - ( " - ~ ) .  Similarly, with m ( - 1 )  = 7 4 - 2 )  = 0 ,  it follows that 

M M _ _  
M ( z )  = c m ( n T ) z P  = 2-l c m((n - l ) T ) z - ( n - 1 )  

n=O n=O 
M 

= c2 C m((n - 2)T) z - (n -2 ) ,  
n=O 

Using these expressions, (2.53) becomes 

Y ( z )  = a2z- 'Y(z)  + u3z-2Y(z) = b1M(z)  + b&M(z) + b3ZY2M(Z) 

or 
bl + b2z-l+ b3z-2 
1 + a:!z-l + u3z-2 . 

H ( z )  = (2.54) 

Thus, the filter represented by this transfer function may be implemented 
on a computer using the difference equation (2.52). 
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Example Consider the computation of speed by differentiation of posi- 
tion: 

6(nT) - 6((n - 1)T) 
T Wbd (nT) = 

Let m(nT) = 6(nT) and y(nT) = w ( n T )  so that this becomes 

1 1 
y(nT) = -m(nT) - -m((n - 1)T) 

T T 

that is, bl  = 1/T, b2 = -1/T,al = l,a2 = 0. The transfer function is given 
by 

Y ( z )  - bl + b22-l 
-- 
M ( z )  1 

2.7.11 State-Space Representation 
Consider a third-order discrete-time transfer function of the form 

With 

0 1 0  0 
A = [ 0 0 1 1 ,  b = [ O  1 

c = [ b3 - boa3 b2 - boa2 bl  - boa1 

d = bo 

-a3 -a2 -a1 

a state-space realization of this transfer function is given by 

5 ( (n  + 1)T)) = Az(nT) + bm(nT), z(nT) E R3 

(2.56) 
y ( n T )  = cz(nT) + dm(nT), y(nT) E R. 

To see this, the z transform of (2.56) is now computed to obtain the transfer 
function. Proceeding, let 

X ( 2 )  = Cz(nT)zY'" E R3 
n=O 
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and note that 

n=O n=O 

= z ( 2 5 ( (n  + 1)T) z-(n+l) - 

= 2 ( 2 3 : ( k T ) 2 - k  - 5(0) 

n=-I 

k=O 

= z X ( z )  -- zz (0) .  

Thus, taking the z transform of (2.56) results in 

z X ( z )  - z z (0 )  = r l X ( 2 )  + bM(z ) .  

Solve for X ( z )  to  obtain 

X ( z )  = (21 - A)- 'bM(z )  + ( z I  - A)-'zs(O) 

or 

Y ( z )  = c X ( z )  + d M ( z )  = ( ~ ( 2 1 -  A:)-'b + d )  M ( z )  + z ( z 1 -  A)- 'z(O).  

With x(0)  = 0, the transfer function is 

where 
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where the “x”  denotes values that do not affect the final result. Simplifying, 
this becomes 

In summary, the state-space representation (2.56) can used to  implement 
the digital filter (2.55) in real time on a computer. 

2.7.12 Noncausal Filtering 

It has been shown how to use a Butterworth filter to realize a filter with 
low-pass magnitude characteristics and a linear phase. One can get around 
the problem of requiring a linear phase by filtering the signal twice in an 
appropriate manner as is now described. 

Let m(t) = s ( t )  + n(t) be the input to a filter whose transfer function is 
G(s)  and let the output be y(t) so that y(t) = f , g ( t  - T ) ~ ( T ) ~ T .  Also, 
let Tf be a large final time such that [0, T f ]  contains the period of time over 
which the signal s ( t )  is nonzero. The plots of m(t), s ( t )  and y(t) are given 
below in Figure 2.27. Note that the filtered signal y(t) is shifted to the right 
from s ( t )  corresponding to a time delay. Next, let yb(t) 6 y(Tf - t )  (the 
subscript b stands for backwards) and then pass this signal through G ( s )  
once again and call the output gffb(t) (the f f  stands for filter-filter, i.e., 
double filtering). Finally, let yff(t) yffb(Tf - t ) .  Figure 2.28 illustrates 
these different signals. 

It is now shown that yff(t)  is a good estimate of s( t ) .  To explain how this 
double filtering works, the transfer function from m to y is now computed. 
The filter may be represented as a convolution or in the s domain as 

where G ( j w )  = /G( jw) j  e jLG( ju) .  
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FIGURE 2.27. m(t) = ( 6 ( n T )  - 6 ( ( n  - 1)T)) /T with T = 0.5 msec is the mea- 
sured speed. s ( t )  is the “true” speed from a simulation and y ( t )  is the filtered 
version of m(t). Note that y ( t )  is delayed -with respect to s(t) .  

0 

fn 

U 

c 
U Q) 

CJY 

. 
P 
._ 

a 

200L 

180- 

160 - 
140 - 

120 - 
100 - 

80 - 

60 ~ 

40 - 

20 - 

OO 0.05 0.1 0.15 0.2 0.25 

Time in seconds 

FIGURE 2.28. y ( t ) ,  yb ( t )  - y ( T f  - t ) ,  Y f f b ( t ) ,  y f f ( t )  versus t .  
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- - ePsT fY( - s )  

- - e-"TfG(-s)M(-s) .  

Thus, 

Then, with 

it follows that' 

Y f f b ( S )  = G(s)Yb(s) = eCSTf G(s )G( - s )M( - s ) .  

Yff = Y f f b ( T f  - t ,  

Y f f ( s )  = e P T f Y f f b ( - s )  = eCSTf ( e sT fG( - s )G(s )M(s ) )  
= G( - s)G( S )  M (  S )  

or 

As 

Y f f ( j ~ )  = G ( - ~ L J ) G ( ~ u ) M ( ~ u ) .  

G ( j w )  = jG(ju)l ejLG(jw) 
G(-ju) = IG(-ju)[ , jLG(-jw) = IG(ju)I .-jLGbw) 

it follows that 

Y f f ( j U )  = G ( - j w ) G ( j u ) M ( j u )  
- - 

= [G(jw)12 M ( j u ) .  

jG(ju)l e - j L G ( j w )  [G( ju ) [  ejLG(jw)M(jw) 

That is, there is no phase shift from m(t) to  yff( t )  and thus no distortion. 
Of course, this filter is noncausal as all of the data m(t) must be collected 
before the computations can be done. 

7Recall that  by assumption y ( t )  = 0 for t < 0 and t > Tf , which implies y(Tf -t) = 0 

81f L{s ( t ) }  = X ( s ) ,  then L{z( - t ) }  = X ( - s )  and L{z(t   to)} = ePtosX(s) so that 
for t < 0 and t > Tf. 

L{s ( - ( t  - t o ) ) }  = e - t o s L { z ( - t ) }  = ePtosX(-s) .  
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Appendix - Classical Feedback Control 

Tracking and Disturbance Rejectioa 

In order to explain the ideas of tracking and disturbance rejection, consider 
the block diagram of Figure 2.9 which is redrawn in a standard form in 
Figure 2.29. 

FIGURE 2.29. DC motor block diagram. 

In Figure 2.29 U ( s )  4 iT(s ) ,C(s )  a O(s), and D ( s )  f T L ( s ) / K T .  Note 
that, though this system is mathematically equivalent to the system of 
Figure 2.9, there is not a one-to-one physical equivalence. Specifically, the 
disturbance D(s )  = T L ( S ) / K T  has the units of amperes, which is consistent 
with the above drawing, as it is being subtracted from the input current 
V ( s )  = ir(s). This is not to say that the load is a current, but rather, if 
a current given by -TL/KT is input to the motor, then the effect on the 
output position c( t )  is the same as the actual load torque. 

A block diagram for a simple proportional control system for the motor 
is given in Figure 2.30, where R(s)  45 O,,,(s) is the reference input and 

FIGURE 2.30. Simple proportional control system 

A sensor is used to feed back the motor position to obtain the error signal 

E ( s )  R(s )  - C(S).  
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A simple proportional controller is specified by 

U ( s )  = KE(s )  

that is, the current commanded to the motor [ U ( s )  = iT(s)] is proportional 
to the difference between the reference (desired) position and the actual 
position. 

The simple proportional controller is often replaced by a more gen- 
eral controller (compensator) specified by a transfer function G,(s) = 
b,(s)/a,(s) where the subscript "c" stands for controller (or compensator). 
In fact, the whole point of automatic control theory is to provide a method- 
ology on how to specify G,(s). A general block diagram form for a control 
system is given in Figure 2.31. 

FIGURE 2.31. Standard block diagram of a control system. 

The error E ( s )  is given by 

1 Gm(s) D( s ) .  
E ( s )  = R(s)  - C ( S )  = 1 + Gc(s)Gm(s) R(s) + 1 + Gc(s)Gm(s) 

(2.58) 
Typically, the compensator G,(s) is chosen to achieve two objectives: 

1. Tracking If the reference position is set as r ( t )  = 30" (R( s )  = 30"/s), 
then it is required that c( t )  + 30" as t 4 m, i.e., the output must 
track the input 
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2. Disturbance Rejection If the reference position is set as r ( t )  = 30", 
then it is required that c ( t )  -+ 30" as t ----t 00 despite any load on the 
motor. For example, if a robot arm is to move 30", it must do so no 
matter how much weight it is carrying. 

PID Control of a Simple DC Servo Motor 

The ideas of tracking and disturbance rejection are now illustrated through 
a series of simple examples. This is done by considering a fixed physical 

system given by G,(s) = ~ which could be the model of a DC 

servo motor system. Various controllers are considered for both tracking 
and disturbance rejection. 

s(s + 1) ' 

Tracking Control 

A simple proportional controller given by G,(s) = K is considered first. 
Example Tracking a step input 
Consider the unity feedback system control system of Figure 2.32 where 

D ( s )  = 0 and a constant gain controller. 
1 

G,(s) = - 
s(s + 1) 

FIGURE 2.32. Tracking a step input. 

The output and error transfer functions are, respectively, 

Suppose the objective is to track a step input. Let us( t )  denote the unit 
step function and let r ( t )  = Rou,(t) $50 that R ( s )  = Ro/s. The objective 
is to force the error e ( t )  + 0 as t 4. 03 as this means that c ( t )  --f Ro. 
Evaluating E ( s ) ,  one obtains 

s + l  
Ro . 1 Ro - 5(s+1)  3 - - E(s) = 

1 s s ( s + l ) + K  s s 2 + s + K  l+K- 
s(s + 1) 
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Note that the poles of the forward open-loop transfer function KG,(s) = 

K- reappear in the numerator of E(s)  after clearing the fractions 

in the denominator. In particular, the “s” in K- cancelled the “s” 

in the denominator of R(s) .  For K > 0, s2 + s + K is a stable polynomial 

so that sE(s)  = ’(‘ + ’) Ro is stable. By the final value theorem, 

1 

s (s  + 1) 
1 

s(s  + 1) 

s 2 + s + K  

= 0. 
S(S  + 1) Ro 

s-o S(S + 1) + K T e(m) = lim sE(s )  = lim s 
s-0 

Where does stability come in? Let K = 1 so that 

S 2 + S + 1  = ( s -  ( - 1 / 2 + j h / 2 ) )  ( s -  (-1/2-j&/2)) 

= (. - Pl)(S - P2) 

with p1 = - l / 2  + j & / 2  and p2 = pT = -1/2 - j&/2. Then a partial 
fraction expansion of E ( s )  gives 

P* +- Ro = - 

where /3 = PI + j/3, = 1/31 ej‘p and /PI2 = P: + P i ,  L/3 = tan-l(P2/P1) 

s + l  P s ( s +  1) Ro - E(s )  = - _  
s ( s + l ) + K  (S-Pl)l)(S-P2) (3 - Pl) ( s  - P2) 

In the time domain, 

e(t) = + / 3 * e P Z t  

= lPle jLpe-(l/w+j(fi/z)t + e - j ~ ~ e - ( 1 / 2 ) t - j ( ~ / 2 ) t  

- - 2 e-(1/2)tcos ( ( h / 2 ) t  + LP) + o as t + o3. 

Recall that the poles of the closed-loop transfer function determine the 
form of the transient response. As the closed-loop poles pl and p2 are in 
the open left-half plane (LHP), the transients die out. The real part of 
the closed-loop poles (Re{pl} = Re{p2} = -l /2) determine how fast the 
transient e(t) dies out and typically one chooses the amplifier gain K such 
that the poles of the closed-loop system are as far as possible in the LHP. 

Example Tracking a ramp input  
Consider the same system as in the previous example, but let the input 

be a ramp function. Specifically, the input is given by T ( t )  = wot where wo 
is a constant ( R ( s )  = w0/s2 )  and D ( s )  = 0. The error E(s)  is then 

wo - s ( s +  1) wo - s + l  wo - - - 1 
E(s )  = 

l+K- 1 5 2  s ( s + l ) + K s 2  s 2 + s + K T ‘  
s ( s  + 1) 
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FIGURE 2.33. Tracking a ramp input. 

Note again that the pole at  s = 0 of KGm(s )  cancelled one of the poles at  

wo is 
s + l  

s 2 + s + K  
s = 0 of R(s) .  As s2 + s + K is stable for K > 0, sE(s )  = 

stable. By the final value theorem, 

WO 

K 
WO = -. s + l  

e ( m )  = lim sE(s )  = lim - 
s-0 s-o S ( S  + 1) + K 

Consequently, asymptotic tracking is not achieved as e ( t )  does not go to 
0 as t + 03. However, the motor does follow the input with a finite error 
which can be made small if K can be made large. 

Where does stability c,me in? Let K = 1 so that pi = (-1 * j f i )  /2 
and 

for some complex constant p and wo = lim,,o sE(s ) .  Then 

as t + a, as the poles are in the open left-half plane (Re(p1) = Re(p2) < 
0). Again, as the closed-loop poles are in the left-half plane, the transients 
die out. 

The simple proportional controller is not adequate to track a ramp in- 
put r ( t )  = wot with zero steady-state error. The answer to achieving zero 
steady-state error for this system lies in considering a different controller! 

Example Integral Controller 
Consider the controller G,(s) = K / s ;  that is, an integrator. 
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FIGURE 2.34. An integral controller. 

Then 

wo s2(s+1) wo - s + l  - =  - 
1 

1+-- 
K 1 s2 s 2 ( s + I ) + K S 2  s3+s2+Kw0 '  

E ( s )  = 

s S ( S + l )  

reappeared in the where note that the denominator (poles) of -- 

numerator of E(s )  after clearing fractions. As a consequence, the s2 in the 

is in denominator of the forward open-loop transfer function - - 
the numerator of E(s)  and cancels the s2 in the denominator of R(s ) .  If 
s3 + s2 + K were stable, then by the final value theorem, 

K 1  
s s(s + 1) 

K 1  
s s(s  + 1) 

wo = 0. 
s + l  

e(m) = Iim sE(s )  = Iim s 
s+o s+o s3+s2+K 

The difficulty here is that s3+s2+K = s3+s2+0s+K is never stable for any 
value of K as a necessary condition for stability is that all the coefficients 
of the closed-loop characteristic polynomial be positive. To emphasize the 
stability aspect, let K = 1 for which s3+s2+l has roots -1.47,0.23fj0.79. 
The error response is found by doing a partial fraction expansion of E ( s )  
as 

- s + l  

- A P P* 
E(s )  - (s + 1.47)(s - 0.23 - j0.79)(s - 0.23 +j0.79)wo 

- 
s + 1.47 + s - 0.23 - j0.79 + s - 0.23 + j0.79 

for some complex constant P. The time response then has the form 

e ( t )  = ~ ~ - 1 . 4 7 t  + pe0.23tej0.79t + ~ * ~ 0 . 2 3 t  e --j0.79t 

= Ae-1.47t + 2 IPI e0.23t~o~(0.79t  + LP). 

The error e(t) does not go to zero due to  the unstable closed-loop poles at 
-0.23 f j0.79. Remember, the fact that Zim,,~ sE(s )  = 0 says nothing 
about the steady-state error unless sE(s)  is stable! 
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As this example demonstrates, the d.ifficult problem is not in getting 
lims,osE(s) = 0, but instead, it is in making the closed-loop system sta- 
ble. As shown above, a constant gain (proportional) controller will give 
closed-loop stability, but not lim,-o sE(s)  = 0. On the other hand, an 
integral controller gives lim,,osE(s) == 0, but not closed-loop stability. 
Let's combine the two and see if that will work. Specifically, let 

This is called a proportional ( K )  plus integral ( a K / s )  compensator or PI  
compensator. 

Example PI controller 
Again, consider the same system as in the previous examples, except use 

a PI  compensator. 

FIGURE 2.35. A proportional plus integral (PI) controller. 

From the block diagram, the error E(s)  is seen to be given by 

1 s2(s + 1) WO 

s + a  1 R ( s ) =  s2(s  + 1) + K ( s  + a )  2 E ( s )  = 
1 + K-- 

s s ( s f 1 )  

- s+l 
- 

s3 + s2 + Ks  + aKWo'  

s + a  1 
Again note that denominator of the open-loop system K-- 

reappears in the numerator of E(s) .  Consequently, the factor of s2 in the 
denominator of G,(s)Gm(s) cancels the "s" in the denominator of R ( s ) .  
Then, i f  s3 + s2 + K s  + a K  is stable, the final value theorem gives 

s s(s+ 1) 

WrJ = 0. 
s+l 

e(m) = lim sE(s )  = 1' im s--; 
s-0 s-o S" + s2 + K S  + a K  

To check stability of s3 + s2 + K s  + a K ,  the Routh 
The Routh table is 

s3 1 K 
S 2  1 a K  
s K - Q K  0 
so a K  

test is used [37][46][47]. 
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The first column is positive if and only if aK > 0 and K-aK = K(l-a) > 
0 or 

K > 0 and 0 < a < 1. 

For example, with K = 1 and a = l / 2 ,  the closed-loop characteristic 
equation is 

s3 + s2 + s + 1/2 = ( S  + 0.65)(s + 0.176 - jO.86l)(s + 0.176 +j0.861). 

Then, letting r = -0.65,pi = -0.176 f j0.861, the partial fraction expan- 
sion of E ( s )  gives 

s + l  A P P* 
wo = - + - + -. E ( s )  = 

( s - - ) ( s -pd ( s -p2 )  s - 7 -  s - p 1  s - p 2  

The corresponding time response is then 
~ ~ - 0 . 6 5 t  + pe-0.1i6te~0.861t + ~ * ~ - 0 . 1 7 6 t  e -j0.86lt e(t) = 

- - ~ ~ - 0 . 6 5 t  + 2 1/31 eC0.1i6t cos(0.861t + LP) 4 0 as t + 00. 

In general, adding integrators to  the compensator tends to destabilize the 
closed-loop system while adding a proportional (constant gain) compen- 
sator tends to stabilize the closed-loop system. In the above example, an 
integrator is added to obtain zero steady-state error and the proportional 
compensator is added to make the closed-loop system stable. 

Disturbance Rejection 

Consider now the problem of having the motor to rotate Ro radians with 
an external load acting on it (Figure 2.37 illustrates such cases). 

Example Constant Load Torque with a Proportional Controller 
Consider the control system in the block diagram below. Let 

1 
Gm(s)  = ~ 

s(s + 1) 

and let the disturbance be the constant load torque 

FIGURE 2.36. A proportional controller with a load acting on the system 
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Gear 2 

External torque 

Joiiit motor torque 

FIGURE 2.37. Examples of torque loads on DC motors. 

It was shown in (2.58) that E ( s )  = ER(s)  + Eo(s)  where 

and 

1 

I + KG,(s) 

E D ( s )  a 1 + KG,(s) 

R(s )  E R ( S )  = -- A 

Gm(s) D(s ) .  

It was also shown that C 1 { E ~ ( s ) }  = eR( t )  + 0 as long as K > 0. 
The interest here is disturbance rejection, that is, whether or not e o ( t )  = 
C1{E~(s )}  + 0 as t + 00. The Laplace transform of e o ( t )  is 

1 

In words, ED(s)  is the error in the position response due to the load torque. 
With a constant load torque T L ( S )  = T O / S  and, as s2 + s + K is stable for 
K > 0, the final position error due to the load torque is 

The error 

7-0 ~ ( t )  - c( t )  = e ( t )  = eR( t )  + e o ( t )  -+ eR(oo) + e D ( o 0 )  = 0 + - 
KKT 

as t + 00. Rearranging, the steady-state output is 

TO c(00) = r(00) - e(m) = RO - -. 
KKT 

The conclusion here is that the final output position depends on the value 
of the load torque TO. This is usually not acceptable as typically the load 
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torque is unknown and it is important to precisely position the motor re- 
gardless of the load.g As is now shown, a PI controller can achieve zero 
steady-state error for this system even with unknown constant load torques 
acting on the system. 

Example Constant Load Torque with a PI Controller 

Let G,(s) = K p  + K I / S  = K- where Kp = K and KI = aK.  
S 

FIGURE 2.38. PI controller for disturbance rejection. 

The error due to the disturbance is calculated as 

1 

1+K-- 
s s ( s +  1) 

S 7 0  1 - 1 7 0  -- - - - 
s2(s  + 1) + K ( s  + a )  KT s s3 + s 2  + K s + a i K K ’  

Note that, in contrast to the tracking case, only the denominator of G,(s) 
(i.e., s )  reappears in the numerator after clearing the fractions in ED(s) .  
This “s” cancels the l /s  in T L ( S ) .  Now, by the Routh test, s3+s2+Ks+aK 
is stable for K > 0 and 0 < a < 1, and so S E D ( S )  is also stable. Again, by 
the final value theorem, 

ro = o .  1 

s-o s3 + s2 + K S  + c t K K  
e D ( o 3 )  = lim S E D ( S )  = lim s 

s-0 

Consequently, the load torque 7 0  has no effect on the final position. 
Interpretation of the PI Controller 
For the system of Figure 2.38, it was shown that K and cx can be chosen 

so that the closed-loop system is stable and e ( m )  = lims-osE(s) = 0. 
U ( s )  = ir(s) is the input current to the motor and is given by 

s + a  f f K  
U ( S )  = K-E(s) = KE(s )  + -E(s).  

S S 

gNote that if the gain K can be made large, then the disturbance term TO,’ ( K T K )  
perhaps could he made negligible. 
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In the time domain, 

u(t)  = Ke( t )  + aK e( t )d t .  I" 
The limiting value of u(t)  is 

u(00) = lim sU(s)  = aKE(0)  

which is due only to the output of the integrator. With R(s)  = Ro/s and 
T L ( S )  = T O / S ,  the error is given by 

s-0 

7 0  1 -- s2(s+ 1) Ro S 
E ( s )  = -+  

S 3  + S2 -k KS -I- aK S S 2 ( S  + 1) + K(S + a)  KT S 

and, therefore, E(0)  = T ~ / ( ~ K K T ) .  Consequently, u(00) = TO/KT which 
shows that the output of the integrator goes to exactly the value needed 
to cancel the load disturbance. 

FIGURE 2.39. The error e( t )  
u(m) = cuK Som e( t )d t  = TO/KT. 

-+ 0. The shaded area is S,"e(t)dt and 

Summary of the PI Controller for a DC Servo 

It has been shown that the controller G,(s) = K ( s  + a )  / s  with K > 0 and 

0 < a < 1, will force the motor with transfer function G,(s) = - 

to track inputs of the form ~ ( t )  = Ro + wot with zero steady-state error 
in spite of any constant load disturbances. The control system designer 
then wants to choose K and QI so that the closed-loop poles are far in the 
left-half plane in order have the transients die out quickly. Remember, the 
closed-loop poles determine the transient response! Recall from (2.57) and 
(2.58) that 

1 

s (s  + 1) 

7 0  1 
_.- 

KL .!I (? + 3) + S 3  4- S2 + KS + aK KT S '  
E ( s )  = 

53 + 52 + K s  pr aK 
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The gains K and Q are chosen so that the poles of the closed-loop charac- 
teristic polynomial 

s3 + s2 + KS + CIK = ( S  - - ) ( s  - P ~ ) ( s  - p2) 

satisfy T < O,Re(pl) = Re(p2) < 0. The error E(s )  is then 

1 TO 

( s - - ) ( s - P l ) ( S - P z )  (s--)(S-P1)(s-P2) KT 
+ ( s  + 1)(Ros + wo) E ( s )  = 

or, in the time domain, 

e ( t )  = Aert + BePlt + B*ePZt + (Cert + Deplt + D*ePzt)KL70 

so that 

as - < O,Re(pl) = Re(p2) < 0. 

e ( t )  4 0 tts t + 00 

Proportional Plus Integral Plus Derivative (PID) Control 

A proportional plus integral plus derivative (PID) controller is defined by 

K D S ~  + KPS + KI 
G,(s) = ( K P  + K I / S  + KDS)  = 

S 

or, in the time domain, 

va( t )  = Ke( t )  + aK 

FIGURE 2.40. A proportional plus integral plus derivative controller. 

The advantages of Proportional plus Integral (PI) controllers of the form 
Kp + K ~ / S  has been discussed. The derivative control term KDS is used to 
force the transients to die out faster. That is, as will be shown below, the 
term KDS allows the control designer to put the closed-loop poles further 
in the left-half plane. However, before this is done, some practical issues 
concerning the derivative controller KDS are considered. 
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Pmctical Problem with Derivative Con.trollers 
Differentiation of a signal with noise amplifies the noise!! Most signals 

contain a high-frequency low-amplitude noise. For example, a DC power 
supply takes a 60-Hz AC signal and rectifies it into a DC voltage. Due to 
this process (Full-Wave Rectification) there is a small amplitude 120 Hz 
signal (i.e., noise) added onto the DC output. 

FIGURE 2.41. Left: Error signal. Right: 
low-amplitude noise. 

Error signal containing high-frequency 

If one measures the error signal e ( t )?  the signal e( t )  + n(t) is actually 
obtained where n(t) is a noise term. Numerically differentiating this signal 
gives the approximation 

e ( t )  - e( t  - At) + n(t)  - n(t - At) 
at &(t)  + j l( t)  2 

As the difference n(t) - n(t - At) may be of the same order (or higher) 
of magnitude as e ( t )  - e(t  - At), it follows that 7i(t) can be of the same 
order of magnitude as 6 ( t ) .  For example, let this noise" be given by n(t)  = 

0.01 sin(2~(120t)) = 0.01 sin(754t). Thus, even though n(t) is quite small, 
h(t) = 7.54sin(754t) is large and can swamp out the value of e( t ) .  

Practical Implementation of Derivative Feedback for DC Motors 

Consider the control structure shown in Figure 2.42. Using a tachometer, 
a; direct measurement of the speed w ( t )  is obtained which is then used as a 
feedback signal. Kt is an adjustable gain set by the control system designer. 
Note that, in contrast to the general PID controller structure originally 
introduced above, the tachometer is feeding back only the derivative of the 
output C ( t )  not the derivative of the error e( t ) .  

'OThis could be a model for the noise on the DC bus of an amplifier when it uses a 
full-wave rectifier to convert the 120-Hz AC outlet to DC. 
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I '  I 

I 

FIGURE 2.42. Implementation of a derivative controller using a tachometer. 

To compute the transfer functions from R(s) and D(s )  to the error E ( s ) ,  
the block diagram of Figure 2.42 is reduces to 

FIGURE 2.43. Block diagram reduction of Figure 2.42. 

Thus E(s)  = ER(s) + ED(s)  where 

R(s)  - s2 (s + 1 + Kt)  
- 

s3 + (1 + Kt)  s2 + K S  + aK 

and 

1 1  
s + 1 + Kt s 
s + a  1 1+K- - 

s s + l + K t s  

E D ( s )  = 

As the parameters Kt ,K,  and a are chosen by the control engineer, the 
coefficients of the closed-loop characteristic polynomial s3 + (1 + Kt)  s2 + 
K s  + aK may be chosen arbitrarily. In other words, the location of the 
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closed-loop poles can be placed anywhere in the left-half plane by the con- 
trol system designer. 

In summary, a PID controller for a DC servomotor allows one to achieve 
tracking of step and ramp inputs, and rejection of constant load torque 
disturbances, with the closed-loop poles placed in any desired location. 
Typically, one desires the closed-loop poles to be as far in the left-half plane 
as possible so that the transients die out quickly. However, this typically 
means the control gains must be quite large. To see this, consider the 
above DC servomotor with tachometer feedback. As derived above, the 
error ER(s)  is given by 

R(s).  
s2 ( S  + 1 + Kt)  

E R ( S )  = 53 + (1 + K,) s2 + K s  + aK 

Suppose it is desired to put the closed-loop poles at -10, -10 + j l 0  and 
-10 - j l 0 .  Set 

s3 + (1 + Kt)  s2 + K S  + a K  = ( S  + 10) ( S  - (-10 + j l O ) )  ( S  - (-10 - j l 0 ) )  

= ( s  + lo)(.? + 20s + 200) 

= s3 + 30s2 + 400s + 2000. 

That is, 1 + Kt = 30 or Kt = 29, K = 400, and a K  = 2000 or a = 5. 

FIGURE 2.44. Example of a PID controller design. 

At t = 0+, c(0+) = O,w(O+) = O.Then, e(O+) = ~ ( 0 ~ )  - c(0+) = Ro, where 
r ( t )  = Rou,(t). The input a t  t = 0+ is then given by 

PO+ 

.(of) = 400e(0+) + 2000 e ( t ) d t  - 29w(Of) = 400Ro. l o  
This shows that right after the reference input r ( t )  = Rous(t) is applied, the 
output of the controller (the current commanded to the motor amplifier) 
is 400& amperes. In particular, if Ro = 1 radian, then the amplifier is 
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required to put out 400 A which would most certainly be beyond the limit 
of the amplifier. The point here is that, in practice, one cannot place the 
closed-loop poles arbitrarily, but is limited by physical constraints such as 
the amplifier limits. These physical constraints were not included in the 
model on which the design was based. 

General Theory of Tracking and Disturbance Rejection 

With the above examples as background, a general approach to tracking 
and disturbance rejection in now presented. First, some definitions are re- 
quired. 

Definition Type N u m b e r  of a S y s t e m  
Let 

where u(0)  # 0. Then G(s) is said to be a type j systems which simply 
means it has j poles at the origin. 

Examples 

1 
S 2  

G ( s )  = - Type 2 %(s) = I 

1 
G(s )  = 

s (s  + 1 ) 2  
Type 1 a ( s )  = ( s  + 1)2 

Type 0 % ( s )  = ( s  + 2) 

G(s )  = '+' Type1 a ( s ) = s 2 + 2 s + 2  
s(s2 + 2s + 2) 

Definition Type N u m b e r  of a n  Input  
If the input to a system R ( s )  has j poles at the origin (i.e., at s = 0) 

and the rest of the poles of R ( s )  are stable, then R ( s )  is said to be a type 
input- 
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Examples 

1 
R(s)  = - Type 1 

S 

1 
S j  

R ( s )  = - 

Type 1 
1 

R(s) = ~ 

s ( s  + 2) 

Type number not assigned (unstable pole a t  2) 
1 

R(s)  = ____ 
s(s - 2) 

so that r ( t )  = 1/2 - Remark Consider R(s)  = - - -- - -- 

(1/2)ePzt. To asymptotically track this ~ ( t ) ,  the output signal c ( t )  must 
just go to l / 2  as t + 00 as -(l/2)e-2t dies out. However, if R(s)  = 

then ~ ( t )  = -1/2 + (1/2)e2t so that c ( t )  must + -- 
asymptotically got to -1/2+(1/2)eZt as t + 03 in order to track the input. 

Consider now the general tracking and disturbance rejection problem as 
setup in the block diagram of Figure 2.45. 

1 1  1 1 - 1 
s ( s + 2 )  2 s  2 s + 2 ’  

11 1 1 - 1 - - --- 
s ( s - 2 )  2 s  2 s - 2 ’  

FIGURE 2.45. Block diagram for tracking a type j input 

Let G,(s) = Kb,(s)/a,(s) and G(s)  = b(s ) /a ( s )  be the transfer func- 
tions of the controller and plant (physical system), respectively. First, the 
disturbance is taken to be zero and the asymptotic tracking of type j in- 
puts is considered. Then the asymptotic rejection of type j disturbances is 
addressed. 

Theorem Tracking with Zero Steady-State Error 

Let R(s)  = Ro/sJ be a type j input so ~ ( t )  = - R0tj-l 

( j  - l)! 
the error e(t)  satisfies 

and with D ( s )  = 0, 

lim e(t)  = lim ( r ( t )  - 
t-cc t-oo 

c ( t ) )  = 0 
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if and only if the closed-loop system is stable; that is, the roots of 

a,(s)a(s) + Kb,(s)b(s) = 0 

are in the open left-half plane and the type number of the forward open- 
loop transfer function G,(s)G(s) is j or greater. 

Remark The input is R(s)  = R/sJ ,  and the second condition says that 
the forward open-loop transfer function G,(s)G(s) must also contain at 
least a factor of l/sj 

Proof 
(if) Assume that the conditions hold. To show that e(t) 4 0 as t + 00, 

consider the error E ( s )  given by 

RO 
a,(s)a(s) + Kb,(s)b(s) S J  

- . .  - a,(s)a(s) 
- 

By hypothesis, G,(s)G(s) is at least type j, so that a,(s)a(s) = sjii(s). 
Using this expression, the S J  terms cancel resulting in 

a(s)  E ( s )  = 
a,(s)a(s) + Kb,(s)b(s) Ro. 

Also, by hypothesis, the roots of the closed-loop characteristic polynomial 

ac(s)a(s) + Kbc(s)b(s)  = (s - PI) ' .  ( S  - P n )  

satisfy Re(pi) < 0 for i = 1, ... n. A partial fraction expansion'' of E(s )  
then gives 

Ai +-+...+- A2 An 
( S  - P I )  . . ( S  - P n )  S-Pl  s - P2 S - P n  

Ro = - a(s)  E ( s )  = 

or, in the time domain, 

e(t) = A1ePlt + . . . A,ePnt. 

As Re(pi) < 0 for i = 1, ..., n, e(t)  + 0 as t + 00. 

(only if) Here it must be shown that if e(t) + 0 as t + 00, then 

a,(s)a(s) = s ja(s )  

l1This is assuming the poles are distinct. If they are not, the proof is easily modified 
with the same final result. 
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where a(s )  is a polynomial and the closed-loop characteristic polynomial is 
stable, that is, 

satisfies Re(pi) < 0 for i = 1, ..., n. Proceeding, the error e ( t )  is the inverse 
Laplace transform of 

(2.59) 

Computing e ( t )  using a partial fraction expansion of E ( s ) ,  it is clear that 
e ( t )  -+ 0 as t + 03 only if E(s )  is asymptotically stable; that is, E(s )  
must have all of its poles in the open left-half plane. Now, by equation 
(2.59), E(s )  will have j poles at the origin (unstable) due to the input 
R(s)  = R o / s ~  unless a,(s)a(s) = sJa(s ) .  It is given that e ( t )  + 0 as 
t -+ 03, so it follows that a,(s)a(s) must contain a factor sj. Thus, E(s )  is 
of the form 

RO . %(s) 
ac(s>a(s) + Kbc(s)b(s) 

E ( s )  = 

Further, by doing a partial-fraction expansion of this last expression for 
E ( s ) ,  it is seen that Re(pi) < 0 for i = 1, ..., n in order that e ( t )  + 0 as 
t + 03. 

Consider now the disturbance rejection problem. The block diagram be- 
low illustrates the setup. 

D(s) = Do Is’ 
I 

FIGURE 2.46. Block diagram with a type j disturbance. 

As before, G(s )  = b(s) /a(s )  and G,(s) = Kbc(s) /ac(s) .  The error E ( s )  is 
then 
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The error E D ( s )  due to  the disturbance is 

D(s )  = 

D(s ) .  
- ac(s)b(s)  - 

a,(s)a(s) + Kbc(s)b(s) 

Consider a t y p e j  disturbance D ( s )  = Do/sj and denote e ( t )  = ~ - ' { E D ( s ) } .  
The following theorem shows how such a disturbance signal can be rejected 
asymptotically. 

Theorem Disturbance Rejection with Zero Steady-State Error 
The error eD(t)  satisfies 

lim eD( t )  = 0 
t-m 

if and only if the closed-loop system is stable; that is, the roots of 

a,(s)a(s) + Kb,(s)b(s) = 0 

are all in the open left-half plane and the type number of the compensator 
transfer function G,(s) is j or greater. 

Remark In contrast to the tracking problem where G,(s)G(s) must be 
type j ,  the compensator G,(s) by itself must contain at  least the factor 
l/d. 

Proof 
By the above, 

It is assumed here that b(0) # 0 which is true of most physical systems.12 
Thus a,(s) must have a factor of s j  to cancel the denominator of D ( s )  in 
order to achieve zero steady-state error. With a,(s) = s ja(s ) ,  it follows 
that 

The time response 

eD( t )  = AleP1t +.  . . + AnePnt -+ 0 

as t + 00 if and only if Re(pi) < 0 for i = 1, ..., n. 
rn 

121f b ( s )  = skb(s) ,b(0)  # 0, then G,(s) need only b e  type j - k so that a,(s)b(s) = 
s3 -",(s)s"(s) = ii,(s)b(s). 
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Internal Model Principle 
The proofs of the tracking and disturbance rejection theorems suggest how 
one can achieve the same results with more general types of reference 
and disturbance signals. This is illustrated in the following example and 
is known as the internal model principle. 

Example Tracking a Sinusoid 
RO 

Consider a sinusoidal input given by r ( t )  = Rosin(t) or R ( s )  = - 
s2 + 1' 

Let G ( s )  = - and the problem is to  design a compensator so that 

the output (asymptotically) tracks the input signal. The block diagram of 
the system is shown in Figure 2.47. 

1 
s ( s  + 1) 

FIGURE 2.47. Ilustrating the internal model principle by tracking a sinusoidal 
input. 

Consider the compensator 

S+Ck 
G,(s) = K- 

s2 + 1 

which was chosen to have a denominator that was the same as that of the 
input. The reason for this is clear when the error E(s )  is computed as 

- 1 RO 
- 

s+a! 1 s 2 + 1  

s2 + 1 s(s  + 1) 
1+K---- 

- - s ( s  + 1)(s2 + 1) RO 
s4 + 53 + 5 2  + ( K  + 1)s + a!K s2 + 1 

s(s  + 1) 
s4 + 53 + s2 + ( K  + 1)s + a!K Ro . - - 

That is, the factor s2 + 1 in the denominator of G,(s) reappears in the 
numerator of E(s )  to cancel the factor s2 + 1 in the denominator of R(s).  
Then e ( t )  + 0 if the closed-loop characteristic polynomial is stable. The 
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Routh table for s4 + s3 + s2 + ( K  + 1)s + a K  is 

54  1 

s3 1 

-K(K + 1) - aK - K(K + 1 + “ K )  
- 

K 
S 

-K 

1 

K + l  

f f K  

0 

f f K  

0 

0 

1 a K  

Stability requires -K > 0, K + 1 + a > 0 and aK > 0 or 

K < 0 ,  - ( K + a ) < l ,  a < 0 .  

For example, choose Q! = -0.25 and K = -0.6 so that the closed-loop 
characteristic polynomial is s4 + s3 + s2 + 0.4s + 0.15 which has roots 
-0.17 f j0.63, -0.33 f j0.49. The error response is 

e(t) = 4.7e-0.17tsin(0.63t + 0.37) - 4.1e-0.33tsin(0.49t + 0.4) 4 0 

as t + 00. Note, however, the transients die out slowly. 
Remark General procedures exist that allow one to design a compen- 

sator that asymptotically tracks any given input signal and, at the same 
time, arbitrarily place the closed-loop poles in the open left-half plane. The 
reader is referred to  Refs. [47] [48] [49] [50] for this theory. 

This example and the previous results can be summarized as the Internal 
Model Principle. This just says that in order to (asymptotically) track a 
given reference signal, the forward open-loop transfer function G,(s)G(s) 
must contain the same unstable poles as the reference signal and the closed- 
loop system must be stable. (The terminology “internal model” refers to 
the poles of the transfer function as they determine the form of the time 
response of a transfer function model.) 

Similarly, in order to achieve (asymptotic) steady-state rejection of a 
given disturbance signal, the forward open-loop controller (compensator) 
G,(s) must (by itself) contain the same unstable poles as the disturbance 
signal along with the closed-loop system being stable. 
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Problems 

PI Current Controller for a DC Motor 

Problem 1 Simulation of the DC Motor 
Let V,,, = 40 V, I,,, = 5 A, Kb = KT = 0.07 V/rad/sec (= N-m/A) ,  

J = 6 x kg-m2, R = 2 ohms, L = 2 mH, and f = 0.0004 N-m/rad/sec. 
Develop a simulation of the DC motor that includes the motor and amplifier 
(with saturation) as well as an encoder with 2000 pulses/rev. Put a step 
input of v ( t )  = 10 V into the motor and plot out (a) O ( t )  = & N ( t )  ( N ( t )  
is the encoder output), (b) w ( t ) ,  (c)  i ( t ) ,  and (d) v ( t ) .  Also, zoom in on  
O(t) to show the staircase waveform similar to that shown in Figure 2.4. 
(Hint: If it does not show a staircase waveform, then the step size in the 
simulator’s integration algorithm may be too large.) 

Problem 2 Load-Torque Transfer Function 
(a) Compute the transfer function from T L ( S )  to d ( s )  in Figure 2.5. 
(b) Compute the transfer function from T L ( S )  to d ( s )  in Figure 2.6. What 

does it reduce to as K p  --f 03? 

Problem 3 Transfer Function i ( s ) / i T ( s )  

does i t  reduce to as Kp --$ co? 

Problem 4 Encoder Resolution 
It was shown that if there are N,  windows (lines/slots) equally spaced 

around the encoder disk (wheel), then there are N,  pulses per revolution 
so that there are 2N, rising and falling edges of the output signal. With 
the length of the windows the same as the length between the window, the 
resolution of the encoder is then 27r/(2Nw) radians. A second light detector 
is added to determine the direction of rotation. Show that by  using the 
outputs of both light detectors, a resolution of 27r/(4NW) radians can be 
achieved. Hint: Add the two waveforms of Figure 2.3(a) [or Figure 2.3(b)] 
and show that there is a rising or falling edge every 2rr/(4NW) radians. 

Problem 5 Load-Torque Transfer Function 
(a) Find the transfer function from T L ( S )  to d ( s )  in Figure 2.6. 
(b) What does i t  reduce to as K p  --f oo? 

With T L ( S )  = 0 in Figure 2.6, find the transfer function i ( s ) / i T ( s ) .  What 

Problem 6 High-Gain Current Control 
Consider a PI current controller given by  K p  + K l / s  = Kp(s  + Q)/S 

where K I  = aKp.  This is illustrated in the block diagram given in Figure 
2.48. 

(a) Using the block diagram reduction method, find G(s) = w ( s ) / i T ( s ) .  
Let K p  + 03 and show that G(s) = w ( s ) / i r ( s )  + KT/(sJ  + f). 

(b) With T L ( S )  = 0 in Figure 2.48, find the transfer function i ( s ) / i r ( s ) .  
What does it reduce to as K p  --f C O P  
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FIGURE 2.48. PI current controller. 

Problem 7 Amplifier Saturation 
With i ( t )  = io constant and rL = 0,  f i nd  the steady-state values of the 

speed w ( m )  and voltage v(m) in terms of i o  and the motor parameters. 
With i o  = 1 A,  V,,, = 40 V and the values of the motor parameters 
in problem 1, can this steady-state speed be achieved? Explain. Redo this 
exercise with i o  = 4 A .  Note: You can easily answer this question using the 
original state space equations: 

di 
Lz = -Ri(t) - K b W ( t )  + v ( t )  

dw 
dt 
dB 
dt 

J -  = -f w ( t )  + KTi(t) 

= w ( t ) .  - 

Problem 8 PI Current Controller 
Add the P I  current controller to the DC motor simulation of problem I .  

Also, add a saturation block to the input of the P I  current controller that 
limits the command current ir(t)  between *I,,,. Let i r ( t )  be a square wave 
current reference where one period i s  specified by  

0 5 t 5 0.25 
0.25 5 t 5 0.50. { T:t ir(t)  = 

Try I1 = 0.1 A and I1 = 1.0 A in a simulation. Plot (a) i ( t)  and ir(t)  on  
the same plot and (b) ir(t)  - i( t)  on a separate plot. How well does i( t)  
respond to step changes in ir(t)  ? 

Problem 9 Current Controller Tracking 
With the parameter values as given in problem 1, this motor i s  capable 

of turning 180” in 0.065 sec (i.e., 65 msec). Consequently, the current con- 
troller must respond significantly faster than this if i( t)  i s  to be considered as 
the input, that is, if the dynamics i r ( t )  + i( t)  are to be neglected. To test the 
curren,t controller under these conditions, consider i ( t )  = i o  s i n ( t / T )  with 
io = 1 A ,  T = 27r/ (65 x lop3) sec in the simulation. How well does i ( t )  
track this reference? Use your “best” controller design (i.e., your choice of 
Kp and a )  and plot i r ( t )  and i( t)  on the same graph. Also plot out v ( t )  to 
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show it does not saturate. If you have problems with saturation, reduce your 
gains until you can achieve “good7’ tracking without exceeding the voltage 
limits. 

Problem 10 Proportional Speed Control 

2.10. 

state error e ( m )  = ( f / K K T ) w o  for K large. 

K K T / J  = 100, compute e ( t )  = L - l { E ( s ) }  with w r e f ( t )  = l O O s i n ( 5 t ) .  

Find the error transfer function E( s ) /w , , f ( s )  for the system in Figure 

(a) With e ( t )  = L- ’ {E(s ) }and  u T e f ( s )  = W O / S ,  show that the steady- 

(b) Using the parameter values given in problem 1 and K chosen such that 

Estimating the Motor Speed 

Problem 11 Backward Difference Speed Estimator 
(a) Simulate the backward difference method of computing speed with 

T = 0.0002 sec (fs = 5000). Let i, = 1 A and plot u ( k T )  and 3, ,(kT).  
What are some of the problems with this way of measuring speed? Repeat 
with i ,  = 0.5sin ((27rl0.2) t ) .  

(b) With i, = 1 A ,  use the output of a simulation to plot the speed and 
speed error to show it is bounded by  (27r/2000)/T when using the backward 
difference approximation to compute the speed. Do this for T = 0.001 sec 
and T = 0.0002 sec. 

Problem 12 Recovery from a Load-Torque Disturbance 
Add the load torque disturbance 

0.0 5 t 5 0.5 
r L ( t )  = TLO 0.5 5 t 5 0.6 { :  0.6 5 t 

to the torque equation of simulation of the D C  motor. Run the simulation 
with i, = 1 A and TLO = 0.035 N-m. Plot Lj(kT),oibd(kT) and w ( k T )  on 
the same graph. Redo this with el = 0,e2 = 0.  Do you see a difference? 

Problem 13 Speed and Load-Torque Estimator 
(a) Consider the modification of the speed observer to estimate any con- 

stant (or? slowly varying) load-torque. That is, consider the situation where 
there is an unknown constant load torque acting on the motor. This may 
be modeled as 

W - - d0 
dt 
- 

= ( K T / J ) i  - ( f / J ) w  - T L / J  
dw 
dt 
- 
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Let a speed and load-torque estimator be given by  

d8 
dt 
- = & + e l ( @  - 8 )  

Define the estimation errors to be el = 0 - 0, e2 = w - 6 and e3 = r L /  J - 
T L / J .  Subtract the above sets of equations to the find the system of equa- 
tions describing the dynamics of observer error e ( t )  = ( e l ( t ) ,  e2 ( t ) ,  e3 ( t ) ) .  
Find E l ( s ) ,  E 2 ( s ) ,  and E 3 ( s )  and show that the observer gains e l ,  & ,  and 
k3 can be chosen so that e z ( t )  + 0,  e3(t)  + 0 as t + 00 but that e l ( t )  + 0.  

(b) Add the load-torque disturbance 

to the torque equation of simulation of the DC motor. Run the simulation 
with i, = 1 A and TLO = 0.035 N-m. Plot &(kT),&,d(kT),  and w ( k T )  
on  the same graph. Redo this with el = O , &  = O , &  = 0. Do you see a 
difference ? 

Problem 14 Speed Observer Versus Backward Differentiation 
Implement the observer (2.7) in the D C  motor simulation and com- 

pare it with the calculation &bd(kT) & ( T( 1). Specifi- 

cally, let i, = 0.1 A ,  w ( 0 )  = &(O) = 0 and plot w ( k T )  and its esti- 
mates &(kT) ,&bd(kT) .  You need to choose values for and e,! Repeat 
with i, = 0.5sin((2-ir/0.2) t). 

Problem 15 Position Cannot Be Estimated from Speed Measurements 
Suppose a tachometer is available to measure speed, but there is no posi- 

tion measurement. Can the position be estimated from the speed measure- 
ments? Well, the answer is no. An easy way to understand this is to realize 

that O ( t )  = O(0) + sofw(T)dT, but that d ( c  + Jiw(,)d,> = w ( t )  for any 

constant c. That is, there are an infinite number of position signals with the 
same speed signal. Consequently, the speed signal does not contain enough 
information to obtain an estimate for the position. &om the point of view 
of observer theory, consider a position estimator given by 

N ( k T ) -  N kT-T  

dt 

d8 
dt 
- = & + l 1 ( w - & )  

d& 
dt 
- -  - ( K T / J ) i  - ( f  / J ) &  + &(w - 2) .  

Show that e l ,  & cannot be chosen so that 0 + 8. 
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Problem 16 Discretization of the Observer Equations 
Discretize the speed observer equations 

de 
dt 
- = cj+e,(e - 8 )  

= (KT/J ) i  - (f / J ) G  + &(8 - e) & 
dt 
- 

using the trapezoidal method of integration. 

Design of a State Feedback Tracking Controller 

Problem 18 Simulation of a Fast Point-to-Point Move 
Implement the complete state feedback controller of Figure 2.14 in con- 

tinuous time using the parameter values of problem 1. Specifically, use the 
speed observer given in equation (2.4), the feedback controller given in equa- 
tion (2.14) and the trajectory generator of Section 2.3. Be sure to have a 
saturation block f o r  the current commanded into the P I  current controller 
and for  the voltage out of the amplifier. Design a trajectory such that the 
motor turns Of = 7r radians in under 70 msec (by choosing the time tl to 
reach maximum speed and the time t 2  to begin decelerating) and does not 
violate the voltage or current constraints. Find the control gains KO,  K1 

and K2 (by choosing rl,rz,rQ) and the observer gains e l ,& (by choosing 
p,,p2) to track the trajectory. Plot (a) O ( t ) ,  O r e f ( t ) ,  ( b )  G ( t ) , w ( t ) , w r e f ( t ) ,  
(c) G(t>, i r e f ( t > ,  (d) O v e f ( t >  - Q ( t ) ,  (el  u r e f ( t >  - &(t),  (9) G(t)  - i(t>. 

Problem 19 Simulation Study of Feedback 
I n  order to understand the importance of the controller and reference 

inputs, carry out the following simulation runs using the simulation setup 
of problem 18 except in the trajectory generator, use Of = 30 radians, 
wmaX = 100 rads/sec, and tl = 0.2 and run the simulation for 0.6 sec. 

(a)  With KO = O,K1 = O,K2 = 0 ,  w(0 )  = O , B ( O )  = O , T L  = 0 run 
the simulation with i, = iTef and plot O ( t ) ,  e,,f(t),cj(t),w(t),w,,f(t), i,(t), 
i r e f ( t )  U S  well U S  e,,f(t) - B ( t ) , w ( t )  - ; i ( t ) , W r e f ( t )  - w ( t ) , i , ( t )  -i(t). This 
is referred to as running the system open-loop. 
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(b) Redo (a) with w ( 0 )  = 0,  Q(0) = 0.1 , rL  = 0. 
(c) Redo (a) with w ( 0 )  = 5,0(0) = 0, r L  = 0.  
(d) Redo (a) with w ( 0 )  = O , d ( O )  = 0, r L  = 0.035 N-m. 
(e) With r1 = 1 0 0 , ~  = 1OO,r3 = 100 find the corresponding gains 

KO,  K1, K2 using given by equation (2.18). Run the simulation with these 
gains f o r  the following cases: 

(i) Set w(0)  = O , d ( O )  = 0 and r L  = 0.  
(i i)  Set w(0)  = 0,  Q(0) = 0.1 and r L  = 0.  
(iii) Set w ( 0 )  = O,O(O)  = 0 and r L  = 0.035 N-m. 
For each case, plot Q(t) ,  Q,,,(t),Lj(t),w(t),w,,f(t), i r ( t ) , i re f ( t )  as well as 

( f )  Remove the integrator term in the feedback expression (2.13) (or 
(2.14)) to study its effect. That is, substitute w = K l e l ( t )  + K2e2(t)  f o r  
w into (2.11) and choose the gains as K2 = r1 + r2 - f / J ,  K1 = r1r2 so 
that the closed-loop characteristic equation is then (s + r 1 ) ( s  + r2). With 
r1 = 100,rz = 100, redo cases (i), (ii) and (iii) of part (e). 

Problem 20 Final Value Theorem 
Let E ( s )  = n ( s ) / d ( s )  with d e g { n ( s ) }  < deg{d(s)} and e ( t )  a C-' { E ( s ) } .  

The final value theorem says 
I f s E ( s )  is stable, then 

Q , , f ( t )  - Q(t ) ,w( t )  - W ) , w , e f ( t )  - w ( t ) , i r ( t )  - i ( t ) .  

e(o0) = lim s E ( s ) .  
s-0 

(a) Let 
1 

E ( s )  = 
s(s + l)(s + 2) 

and compute the final value two ways: (1) Do a partial fraction expansion 
to compute the inverse Laplace transform e ( t )  and let t + 00 and (2) Use 
the final value theorem. 

(b) Let 
1 

E ( s )  = 
s(s - l)(s + 2) 

and do a partial fraction expansion to compute the inverse Laplace trans- 
f o rm e ( t )  and let t 4 00. How does this compare with computing 
lims+o sE(s)  ? Explain. 

(c)  Let 

where d e g { n ( s ) }  < deg{d(s)} .  Prove the final value theorem by  doing apar- 
tial fraction expansion of E ( s ) .  To simplify the presentation of the partial 
fraction expansion, assume that the poles of E ( s )  are distinct, that is, d(s)  
has no repeated roots. [Hint: Note then that lim,,o sE(s)  is the coeficient 
of the 1/s term in the partial fraction expansion of E(s).]  
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Problem 21 State Feedback with a Constant Load Torque 
(a) For the case where T L  # 0,  give the appropriately modified version of 

(2.17). Also, with T L ( S )  s T L O / S ,  find the steady-state values eo(co), el(co), 
and e2(co) using the final-value theorem. With the constant load-torque 
disturbance acting on  the motor, explain why the steady-state error in speed 
and position are both zero, that is, eZ(co) = 0 and e l ( m )  = 0,  but that 
eo(o0) # 0. With 

Show that z f b ( W )  = TLO/KT and give an interpretation to this value. 

back. That is, consider the system [compare with (2.15)] 
(b) Consider state feedback control, but now without the integrator feed- 

- e2 
de 1 

dt 
- -  

With T L ( S )  = T L O / S ,  find E l ( s )  and Ez(s).  Show that e z ( t )  ---f 0 ,  but 
e l ( t )  7 ~ f  0 as t 4 00. Comparing with your solution to part (a), what can 
you conclude about using integrator feedback? 

Problem 22 State Feedback with a Ramp Load Torque 

Explain your answers. 
With ~ ~ ( 5 )  = T L O / S ~ ,  that is, 7 ~ ( t )  = 7 L O t ,  find eo(cm), eI(o0), ez(o0).  

Problem 23 State Feedback Design with Voltage as Input 

model 
Design a state feedback voltage controller for the DC motor based on  the 

The reference trajectory satisfies 
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Let 

and consider a controller of the fo rm 

With T L ( t )  = TLOu,(t) ,  for i = 0,1 ,2 ,3  compute Ei(s) and e i ( m ) .  I n  
particular, does the steady-state position error e l ( t )  go to zero as t + ca? 

Nested Loop Controllers 

Problem 24 Nested PI Controllers 
Consider the PID nested loop controller given in Figure 2.49. 

FIGURE 2.49. Control structure where the gains of the speed loop are tuned first 
and then the gains of the position loops are tuned. The speed reference W,,f is 
the output of the position loop rather than the stored value of wrEf  = dO,,f/dt. 

(u) wi th  eTef ( t )  = ( t 2 / 2 )  us( t )  (Or,, (5) = i/s3), T~ = o and Kw1 = 0, 
can the other gains be chosen so that steady-state error is  zero for this type 
of input? Explain by  computing E(s)/O,,f(s) with r L  = 0 and Kwl = 0.  

(b)  With @,,f(t) = O , T L ( t )  = T o t  ( T L ( S )  = T ~ / s ’ )  and Kwl # 0 ,  can 
the gains be chosen such that steady-state error is zero for this type of load 
torque disturbance? Explain by  computing E(s)/B,,f(s) with e,,f(t) = 0.  
How does your answer change if K,I = 02 

(c) With T L  = 0 ,  can this controller track O , , f ( t )  = cos(w0t) or, equiva- 
lently, Q,,f(s) = wg/ (sz + wg) with zero steady-state error? Explain. 

(d) Repeat (a), (b), and (c) with Kwl # 0. 

Problem 25 Simulation of the Nested Loop Controller 
Do a simulation of the complete system (i.e., motor, controller, and tra- 

jectory) given in problem 24. Use the same motor parameters as in prob- 
lem 1. Take % f  = n radians and find the control gains Kop, Ker, Kwp 
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(K,I = 0),  w,,,, and tl fo r  the trajectory (2.25) such that the motor 
turns T radians as fast as possible without violating the voltage or current 
constraints. Plot (a) V ) ,  e,,f(t), (b) G( t ) ,w( t ) ,w ,e f ( t ) ,  (c) G ( t ) , G e f ( t ) ,  
(d) e , e f ( t )  - e( t ) ,  (e)  w ( t )  - G ( t ) ,  ( f )  W T e f ( t )  - ~ ( t ) ,  (9) G( t )  - i( t) .  Corn- 
pare with problem i8. I n  particular, can this move be carried out in under 
70 msec? 

Problem 26 Laplace 'Bansform of the Reference Trajectory 

unit step function) 
The reference trajectory given in (2.25) can be rewritten as (us is the 

t 2  
e e f ( t )  = Wmaz-  (us(t) - us(t - t l ) )  

2tl 

+ Wmaxt2 'LLd t  - t f )  

where w,,, = B f / t 2  to ensure Q T e f ( t f )  = O f .  
Show that the Laplace transform of O,,f( t)  i s  given by  

Explain why the presence of the terms e- t ls ,  eP t z s ,  and e c t f  does not affect 
the analysis of the steady-state error given in the text. 

Problem 27 Nested Loop Control Structure With Voltage Input 
I n  this problem, the P I  current loop of the amplifier is included in the 

analysis of a nested loop controller for a DC motor. The P I  current con- 
troller in Figure 2.50 can be equivalently considered a torque controller as 
r = K T ~ .  First, both the speed and position loops are opened in order to 
tune (choose) the torque (current) controller gains. After tuning the gains 
for  this controller, the gains of the speed controller are tuned with the input 
t o  the torque controller being the output of the speed controller. Finally, the 
gains of the position loop are tuned with the input to the speed controller 
being the output of the position controller. Use the full motor model (2.1) 
in the analysis below. 
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FIGURE 2.50. The gains of the torque (current) loop are tuned first. Next the 
gains of the speed loop are tuned and finally the gains of the position loop are 
tuned. 

(a) Find the transfer functions G l ( s ) ,  G2(s) such that the error E ( s )  = 

(b) Can the gains be chosen to arbitrarily place the closed-loop poles? 
(c) What kinds of inputs can be tracked? I n  particular, what is the largest 

GI ( S ) o r e f  (s) + G2 ( S ) ~ L  (s). 

power n such that 
tn-1 

or, equivalently, 

can be tracked with zero steady-state error? What is the largest value of n 
i f  i t  is only required to have constant steady-state error? 

(d) What kinds of disturbances can be rejected? That is, with 

or 
tm-l 

(m - I)! 

what is the largest value o f m  such that there is no steady-state error due 
to this disturbance? 

Identification of the Motor Parameters 

Problem 28 Identification of the Motor Parameters 

with the current reference given by  
With a PI current controller implemented, run the DC motor simulation 

m i n (  gt) for 0 5 t 5 0.5 

for 0.5 5 t 5 1. 

i, ( t )  = 
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Store %(nT) in counts (from the encoder model), i(nT) and w(nT) with a 
sample period of T = 0.001 sec. 

FIGURE 2.51. Block diagram of an open-loop DC motor with a current-command 
controller. 

(a) Save the “data” f rom the simulation into a file. Using this “data 
set”, write a program to  implement the least-squares identification algo- 
rithm given in the text. I t  will be necessary to  compute w = d%/dt ,dw/d t  
and d i ld t  using the “data” f rom the simulation. Due to  the encoder resolu- 
tion, dO/dt and dwldt are noisy and d i ld t  is also noisy. I t  will be necessary 
to  filter these computed quantities. Show the double filtering method (e.g., 
the fi 1 tfi 1 t command in MAT L A B) with a second order Butterworth jil- 
ter will work with an appropriate choice of the cutoff frequency. Compare 
your parameter estimates to the actual values in the simulation. B e  sure to 
compute the error index and the parametric error indices of your estimates. 

(b) Do the identification of the parameters using “ideal” data by  saving 
d%/d t ,  dwldt and d i ld t  f r o m  the simulation (rather than computing them 
of l ine)  and show that this results in a h o s t  perfect agreement with the 
parameter values in the simulation. Compute the error index and the para- 
metric error indices for this case. This is a way to  check your identification 
program for errors. 

Problem 29 Insufficient Excitation 

procedure work? Explain why or why not. 

Problem 30 Completing the Square 
Show that equation (2.38) is true. 

Redo problem 28 with i, = i o  where i o  = 2.5 A. Does the identification 

Problem 31 Matrix Transpose Property 
Show by direct computation that 

(y’( nT) W (  nT)) = WT (nT)v( nT) 

Use this to show that R,w = R&, 

Problem 32 Parametric Error Indices [42] 
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and show that one 

for  the maximum. 

still obtains 

Filtering of Noisy Signals 

Problem 33 Transfer Functions 
(a)  Starting f rom the representation y ( t )  = f, g ( t  - T)m(T)dT ,  take the 

Laplace transform of both sides to show that Y ( s )  = G ( s ) M ( s ) .  
(b) Starting f rom the representation k ( t )  = Az(t)  + b m ( t ) ,  y ( t )  = c z ( t )  + 

d m ( t )  show that G(s) = c(s1-  A)-'b, where A E Rnxn,  b E R", c E Rlxn. 

Problem 34 Ideal Filters 
Consider a unit impulse response given by  

a sin(w,t) 
h(t)  = - 

T t  

so with input m(t), the output y ( t )  is defined to be 

y ( t )  = h(T)m(t - T)dT. 
-03 

This integral is defined as the Cauchy principal value, that is, 

T 

y ( t )  = Sm h(-r)m(t - T)dT i% 
-m 

(a) Wi th  m(t) = cos(wt),  compute y ( t )  = h(t)  * cos(wt) directly by  eval- 

to show 

cos(wt) for IwI < w,  
for w = w, 
for / w /  > w,. 

cos (w( t  - T ) )  dt = 

This is the reason it i s  called an  ideal filter as it passes any frequency below 
w,  unchanged and any frequency above w, is zeroed out. 

W h y  is it necessary to  use the Cauchy principal value in the definition 
of the integral? 



2. Feedback Control 163 

(b) Compute the Fourier transform of h(t) in the Cauchy principal value 
sense, that is, show 

T 1 for JwI < w, 

0 for  IwI > w,. 
H ( j w )  = 5 { T }  sin(w,t) A l im 1 e-jwt sin(w,r) 7r7 d t = {  f o r w = w c  

T-CC 

-T 

(c) Is this filter causal? Show why or why not. 
(d) Is this filter stable? Hint: Consider the input signal 

m(t) = ml(t)ma(t). 

where ml(t) is a periodic function with period 2n /w ,  speczfied on one period 
bw 

and mz(t) is  defined by  

-1 f o r t  2 0 
= { 1 for t < 0. 

This input signal is bounded as Im(t)I = 1. Compute the response to this 
input at time t = 0; that is, evaluate 

sin(w,r) 
y ( t )  = l im m(t - r ) d r  

T - * . ~ T  7rT 

for  t = 0 to obtain 

(e)  Evaluate the inverse Fourier transform of H ( j w )  from part (b) as 

to get back h(t)  = sin(w, t ) / (r t ) .  

Problem 35 Butterworth Filters 
For the third-order Butterworth filter, find the value of Y~ that best ap- 

proximates L G n ( j w )  = - Y ~ w .  For what range of values of w is this ap- 
proximation a good one? 

Problem 36 Butterworth Filters f rom MATLAB 

the coeficients of a third-order Butterworth filter using (2.51). 
(a) With w, = 27rfc, f c  = 100 Hz and T = 1/5000 sec, explicitly compute 
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(b) I n  MATLAB, use the butter command to design a third-order But- 
terworth filter with a cutoff  frequency of 100 Hz and a sample rate of 5000 
Hz. That is, use the command [b,al = butter(3, fc/(fs/2)) and MAT- 
LAB will return two vectors of the f o r m  b = [bl b2 b3 b4 I and a = C l  

(c)  Compare the coeficients obtained f rom MATLAB with those obtained 
f rom the above design. Are they the same? Do you need to normalize the 
coeficients obtained using (2.51) ? 

Recall that the cutoff frequency in MATLAB is specified as fcmatlab = 
f c / ( f s / 2 )  where f s  = 5000 Hz. The MATLAB command is then [a,b] = 

butter(3,100/2500). 

a3 a4 1 which contain the coeficients of.the filter. 

Problem 37 The filter Command in MATLAB 
(a) Use the MATLAB command butter to design a third-order Butter- 

worth filter with f s  = 5000 Hz and f c  = 100 Hz (wc = 2.rr x 100 rads/sec). 
That is, use the command Cb,al = butter(3,fc/(fs/2)) and MATLAB 
will return two vectors of  the fo rm b = [bl b2 b3 b4 I and a = [I a3 
a4 I which contain the coeficients of the filter. 

(b) Write a MATLAB program to implement the state space equations 
(2.56) f rom n = 0 to n = N using the coeficients given in part (a). With 
T = l / f s ,  run your program on  some particular input data file {m(nT)} 
with x (0)  = 0 and plot out the response y(nT) versus time nT. 

(c) Using the filter designed in part (a) and the MATLAB command 
f i 1 ter to filter the same input file used in part (b), that is, y2 = 

f il ter(b, a,m). Plot y2(nT) versus time nT. Compare y from part (b) to 
Y2 .  

Problem 38 Signal Flow Diagrams 
Consider the second-order discrete-time transfer function 

(a) A signal flow diagram for  this system is shown in Figure 2.52. Find 
the transfer function Y ( z ) / M ( z )  from the signal flow (block) diagram. Give 
a discrete-time state space realization of the transfer function based on the 
signal flow diagram. 
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FIGURE 2.52. Signal flow diagram for a second-order filter. 

(b) Show that the signal flow (block) diagram in Figure 2.53 is equivalent 
to the one in part (a) by  finding a discrete-time state space realization 
based on  the signal flow diagram and then compu.ting the transfer function 
Y ( z ) / M ( z )  from the state space realization. 

FIGURE 2.53. Equivalent signal flow diagram for a second-order filter. 

Problem 39 How the f iltf ilt Command is Implemented 

w, = fc / (  fs/2)) to design a third-order Butterworth filter with fs = 5000 
Hz and fc = 100 Hz (wc = 27r x 100 rads/sec). Write a MATLAB program 
to implement this filter using the state space equations (2.56) (from n = 0 
to n = N )  and the coeficients given b y  the b u t t e r  command. R u n  your 
program on  some particular input data file {m(nT)} with x (0)  = 0 and plot 
out the response y(nT) uersus time nT. Store the final value of x ,  that is, 
x(NT).  

(b)  Take the output {y(nT), n = 0,  ..., N }  of the filter in part (a), and 
compute {yb(nT), n = 0,  ..., N }  { y ( ( N  - n)T) ,  n = 0,  ..., N } .  Use this as 
input to the (state space) filter designed in part (a), except initialize the 
filter with the final conditions x(NT) found in part (a). Let {yffb(nT),ri = 

0 ,  ..., N }  be the output of this second filtering process and finally compute 
{ y f f ( n T ) , n  = 0,  ..., N }  4 {Yf fb((N-n)T) ,n  = 0, ..., N } .  Plot y f f ( n T )  for  
n = 0,  ..., N versus time nT. 

(a) Use the MATLAB command b u t t e r  (i.e., [b,  a ] = b u t t e r [ 3 ,  w n l ,  where 
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(c )  Compare the output y f f (nT)  from part (b )  with the output using the 
MATLAB command f i l t f i l t  as yffz f i l t f i l t [ b , a , m ] ,  where [b ,a]= 

b u t t e r C 3 , w n l  with w, = fc/(fs/2) = 100/(5000/2). (They should be the 
same!) 

Control of Separately Excited, Series and Shunt DC motors 

Problem 40 Armature Control of a Separately Excited DC Motor [2][51] 

Recall f rom the previous chapter, the full mathematical model for the 
separately excited DC motor is 

where X ( i f , O )  is the flux linkage in the armature loops due to the field 
current i f  and X f ( i f )  is the flux linkage in the field windings due to the 
field current i f .  

T'2 7 8 

2 

FIGURE 2.54. DC motor with a field winding. 

I n  normal operation of a separately excited DC motor, d i f l d t  varies 

term is often neglected. Wi th  X f ( i f )  = f ( i f )  the 
dX d i f  

slowly and the -- 
d i f  d t  

saturation (magnetization) curve for  the field flux linkage so that if = 
f - ' (Af ) ,  the model written in terms of the state variables ( i , w , X f )  be- 
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di  
dt 

dw 
dt 

dXf dt 

L- = -Ri - K m X f w  + 'U 

J-  = KmXf i - rL  

- = -Rf f - l ( X , )  + vf.  

Interestingly, it will be shown in a later chapter that a field-oriented control 
of an induction motor results in a model of this form! With x1 = i,x2 = 
Xf,x3 = w,u1 = v / L  and u2 = vf, the model becomes 

R Km - - - X I  - -1~2x3 + ui d X l  

d t  L L 
dx2 
dt 

- -  

- -Rf f - l (Xz)  +uz - -  

(a) Show that the nonlinear transformation 

results in the system being equivalent to 

- -  *'a g(x)  + ul(Km/J)xz  + ( K r n / J ) x ~ u ~  

- = - R f f - l ( x a ) f u z  

- 

d t  
d Z 3  

dt 

A RKm KmRf j .- 1 ( X 2 ) X 2  - -x;x3. K k  
J L  

where g (x )  = --xlxa - - 
J L  J 

(b) Show that the nonlinear feedback 

131n the case that there is no magnetic saturation, Af(z f )  = L f i f  so that if = Af/Lf. 
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results in the linear system 

- = v2. 
dZ3 
dt 

This is referred to as exact linearization or feedback linearization. 
(c)  Show that i f  the load torque is constant, then choosing 

with the gains chosen appropriately results in z1 + wTef and 23 + Xf- 
(d) Draw a block diagram for  the complete (i.e., nonlinear and linear 

feedback) control system. 
Remarks: If position control is desired, one simply appends dzoldt = 21 

to the system where 20 = 0. The feedback is singular only i f  x2 = Xf = 0.  
However, one chooses the input v2 to ensure Xf > 0.  The importance of this 
approach is that the control of the speed through the input v1 is decoupled 
from the control of the flux (22 = x2 = A,) through the input 212. The linear 
control techniques of this chapter are directly applicable to this linear model. 

Problem 41 Field Control of a Separately Excited DC Motor [51][52] 
Another approach to controlling a separately excited DC motor is the so- 

called method of field control. I n  this approach the armature voltage is held 
constant while the field voltage is varied to control the speed. This is often 
used in large DC drives (e.g., rolling mills) since the armature circuit can 
require 2000-3000 A and 250 V while the field circuit may require only 20 A .  
Consequently, it is of great economic advantage to use an amplifier that only 
has to handle the 20 A of the field circuit together with a large generator 
at constant voltage to produce the armature current. A mathematical model 
for a field controlled motor model in terms of the state variables ( i , w ,  A,) 
is then 

di 
dt 

dw 
dt 

L- = -Ri - KmXfw + VaO 

J-  = K,Xfi-rL 

where Vao is constant (typically the output of a generator). 
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(a) Consider the nonlinear transformation [52] 

,251 = ( L i 2 + J w 2 ) / 2  

z2 = i (-Ri - K,Xfw + V,O) + wK,Xfi = -Ri2 + iV,o 

23 = ( -2Ri  + V,o) (-Ri - K,XfW + Vao) / L  

and show that the system equations become 

Here f (i ,  w ,  Af),  g ( i ,  w ,  A,) are nonlinear functions of the state (i, w ,  Xf) .  
Show that application of the feedback 

results in a linear system. This is referred to as exact linearization or a 
feedback linearization controller. 

(b) When  is g ( i , w , X f )  singular (i.e., when does g ( i , w , X f )  = O ) ?  Can 
this singularity be avoided in normal operation of the motor? 

(c )  Show how to pick the gains of the controller 

such that z1 - zlref ---f 0 with a constant load torque. 
(d) What are some practical problems with this approach to controlling 

the machine? (Hint: How does one choose z l re f ,  ZZ,,~, zSref so that w + 

W r e f  2) 

Problem 42 Series Connected DC Motor [2] [51] [53] [54] 
A D C  motor in which the field circuit is connected in series with the 

armature circuit is referred to as a series DC motor. This connection is 
shown in the equivalent circuit of the series DC motor shown in Figure 
2.55 and is typically used in applications that require high torque at low 
speed such as traction drives (e.g., subway trains) [2]. Comparing with the 
separately excited motor of Figure 2.54, i t  is seen that the terminal T; is 
connected to the terminal TI with the voltage v applied between terminals 
Ti and T2. The resistor Rp put in parallel wath the field circuit is switched 
in at higher speeds to  achieve field weakening (see problem 43). 
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FIGURE 2.55. Equivalent circuit for a series DC motor. 

With  the switch for Rp open, the equations describing electrical circuit 
of the field and armature winding i s  

d (Li - X ( i ,  0) + X f ( i ) )  
- ( R f  + R ) i  + ZI = 0. - 

dt . 
Using the fact that d X ( i f ,  0)/80 = -KmXf ( i f )  and that the torque i s  given 
by  KmXf( i f ) i ,  the equations of the series connected DC motor are then 

dX d i f  
dt dif dt 

= - ( R f  + R) i + -- - KmXf(i)w + ZJ d (Li + X f ( i ) )  

I n  the case of the series winding, the armature f lux  Li can be neglected 

compared to  the field f lux X f ( i ) .  Also -- zs neglected to obtain 
aX d i f  . 

d i f  dt 

- -  dXf (2) - ( R f  + R) i - K m X f ( i ) w  + v - 
dt 

dw 
J -  dt = KmXf(i)i  - 7 L .  

(In the case of no magnetic saturation in the field winding X f ( i )  = L f i . )  
(a)  Show that the nonlinear transformation 

z1 = W 

22 = ( Km/ J )  Xf (i)i 
gives 

z2 
dz1 - - -  
dt 

dz2 
dt 
- = f ( i ,  W )  + g ( i ,  W ) V  - T L / J .  
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What are the expressions for f ( i ,  w ) ,  g ( i ,  w)? 

Show that the nonlinear feedback 

U f  = 

(b) When is g ( i , w )  singular? Can this be avoided in normal operation? 

- f ( i , w ) + u  

d i ,  w) 

results in the linear system 

- z2 
dzl 
dt 
- -  

- u - r ~ / J .  dz2 
dt 
- -  

This is called a feedback linearizing controller or an exact linearization 
controller. 

(c) Show how to choose the gains for the controller 

so that wr,f - w 4 0 with a constant load torque. 

and linear feedback. 

Problem 43 Field Weakening Control for a Series DC Motor [2][53] 
Consider the series connected D C  motor described in problem 42 running 

at high speed with the switch closed and Xf > 0.  The current in the field 
winding is now less that the armature current ( i f  < ia)  so that the field flux 
linkage X f ( i f )  and therefore the back emf K m X f ( i f ) w  is now less than it 
would have been carrying full armature current. Consequently, this provides 
a way to achieve higher speeds than otherwise without having the back emf 
exceed the voltage limit. This i s  referred to as field weakening as the field 
flux linkage X f ( i f )  is now “weakened” compared to the value X f ( i )  with full 
armature current. 

(a) Using the state variables ( i , X f , w ) ,  derive a nonlinear state space 
model of the system. 

(b) Let L = 0 and use the equation f o r  the current i (setting Ldi ldt  = 0 )  
to solve for a = (v + R,if - K,Xfw) / (R  + Rp) .  Use this to write a second 
order state space model in terms of the state variables ( X f , w ) .  

(c) Consider an input-output linearization controller of the form u = 
-Rpif + K m X f w  + u(R + R p ) / ( K m X f / J )  where u is a new input. Explain 
how to control the speed and why the flux must satisfy 0 < c1 < Xf < c2, 

that i s ,  it must be bounded from below and above. 

(d) Draw a complete block diagram of the system including the nonlinear 
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Problem 44 Speed and Load-Torque Observer for the Series DC Motor 

A n  estimator f o r  the speed and load torque of a series DC motor can be 
constructed using only a measurement of the current. To see this, consider 
the equations of the series DC motor with L = 0 

[511[531 [541 

dw 
dt 

J -  = KmXfi-TL.  

Model the load torque as an unknown constant so that the equation 

is appended to the system. 
(a) Show that the nonlinear change of coordinates 

21 = ln(Xf) 
2 2  = W 

23 = T L / J  

results in 

i = AZ + h( ia , i f ,  Xf, V )  

Y =  CZ 

where 

I = [  : : ] , A =  [ 0 -K, ; l ] , c = [  0 1 0 0 1  

(b) Show that the gain vector e = [ el 
the observer defined by  

d i l d t  

e2 e3 1' can be chosen so that 

= A2 + h(i, i f ,  Xf,  v) + e(y - 6 )  
y = c i  

results in i + z and, in particular, ij + w and ? L / J  + r L / J .  

(Hint: When is h(i, i f ,  Xf , v) singular?) 
(c) Is there a practical problem with using such an observer? Explain. 
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Problem 45 Speed and Load-Torque Observer for the Field-Weakened 
Series DC Motor [53] 

Consider the state space model using the state variables ( i ,  X f ,  w )  as de- 
veloped in problem 43. Add the first two equations together with L = 0 to 
show that 

d X f -  - -Rf i f  - Ri - K,Xfw + Y 
dt 
dw 
dt 

J -  = K,Xfi-rL. 

Similar to the construction in problem 4.4, show that a speed and load-torque 
observer can be designed. 

Problem 46 Shunt-Connected DC Machine [51] [55] 
A shunt-connected D C  motor is one in which the armature and field 

circuits are connected in parallel. Specifically, using the separately excited 
D C  motor of Figure 2.54, one adds an adjustable resistance R,dj to the field 
circuit and then ties together terminals TI and Ti as well as the terminals 
T2 and Ti resulting in the equivalent circuit shown in Figure 2.56. 

FIGURE 2.56. Equivalent circuit for a shunt DC motor. 

The mathematical model i s  fou.nd to  be 

dw 
dt 

J -  = K,Xfi-rL 

where RF = Rf+Radj. As in the case of the series D C  motor, the armature 
inductance is negligible so that setting L = 0 and i = (Y - K,Xfw) / R  
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results in the reduced-order system 

K& 2 Km T L  
-- X f W  + - X f w  - -. - dw 

dt J R  J R  J 
- -  

(a) Show that the nonlinear transformation [where g ( X f )  a f - ' ( X f )  = i f ]  

results in the system dynamics 

= 22 
dz1 
dt 

dz2 
dt J 

- 

TL - a ( w ,  X f )  + P ( W ,  X f ) W  - -. - -  

Show that application of the feedback 

-a(w, X f )  + u 
P(w, X f  1 

W =  

results in a linear system. This is called a feedback linearizing controller. 

linear magnetics, that is, X f  4 L f i f .  I n  particular, show that 
(b) Compute the expressions for a ( w ,  X f ) ,  P(w, X f )  for the special case of 

It  turns out that the condition P(w,  X f )  # 0 is  satisfied for a region of the 
state space fo r  which one would operate such a motor 1551. 

(c) Show how to pick the gains of the controller 

d~2ref 
( ~ 1  - Z1ref)dt - K l ( z 1  - Z l r e f )  - KZ(ZZ - zzref)  + 7 U f  = -KO I" 

such that z1 - zlref  + 0 with a constant load torque. 
(d) What are some practical problems with this approach to controlling 

the machine? (Hint: How does one choose Z I T e f ,  ~ 2 ~ ~ f  S O  that w + W T e f  ?) 

Problem 47 Input-Output Linearization of a Shunt DC Motor [51][55] 

motor (see problem 46) is an input-output linearization controller. 
An alternative to the feedback linearizing controller for  the shunt D C  
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(a) Show that applying the feedback 

(Kk/JR)X;w + u 
(Km / J R )  Xf 

V =  

to the mathematical model in problem 46 results in the system 

- U - T L / J  
dw 
dt 
_ -  

which is still a nonlinear system. The controller is nonsingular for Xf > 0. 
(b) The stability of the first equation, the so-called zero dynamics, can 

be ascertained by multiplying it through by Xf to obtain 

dX2 J R  f =  -RXf f - l (Xf )  - KmX?w + -U 
dt Km 

= - ($ -Kmw)h?+-u  J R  

Km 

where the second line assumes linear magnetics. Show that Xf is bounded 
if u is bounded and w < w,,, 4 R / ( K m L f ) ,  (Note that the adjustable 
resistor allows the designer to  accommodate any specified maximum speed.) 

(c) Show how to pick the gains of the controller 

such that w - wTef  -+ 0 with a constant loa,d torque. 
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Magnetic Fields and Materials 
The goal of this chapter is to  present a concise, but relatively complete, 
introduction to the modeling of magnetic materials. The Fagyetic intensity 
field H is introduced as way to modify Ampkre’s law f B . de = poienclosed 

so that it is valid in the presence of magnetic materials. The difference 
between the magnetic intensity field H and the magnetic induction field 
B is explained. It is shown that B = poH in air while in ideal magnetic 
materials H = 0 with B # 0. The distinction between “soft” and “hard” 
magnetic materials is explained. 

3.1 Introduction 

In this introductory section, an attempt is made to review the basic con- 
cepts of magnetic fields. Magnetic materials include iron (Fe), cobalt (Co), 
and nickel (Ni). All magnetic fields are produced by the motion of charged 
particles. The concern here will be with those magnetic fields setup by the 
flow (motion) of currents in wires and those due to the spin (motion) of 
electrons in the atoms making up magnetic materials. A common way one 
is introduced to magnetic fields is in the form of magnetic materials such as 
iron. That is, pieces of iron can be magnetized so that they attract or repel 
one another depending on their orientation with respect to each other. In 
Figure 3.1, the familiar bar magnet is shown. 

FIGURE 3.1. The direction of the compass needle specifies the direction of the 
magnetic field. From Figure 11-1 of PSSC Physics, 7th edition, by Haber-Schaim, 
Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991. 
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The curves shown in the figure are drawn to show the direction of the 
magnetic field. As shown in the figure, the direction of the magnetic field 
is simply defined to be the direction that a small compass needle (which 
is just another bar magnet) points. That is, the large bar magnet exerts a 
force/torque on the compass needle such that in equilibrium it is aligned 
in a particular direction which is taken by definition to be the direction of 
the magnetic field at that point. 

Figures 3.2 through 3.7 show some simple experiments to demonstrate 
the direction of the magnetic fields produced by currents and magnetic 
materials. In these experiments, small iron filings (i.e., compass needles!) 
are uniformly spread over a piece of smooth paper so that when a magnetic 
field is applied, the iron filings will align themselves with the direction of 
the magnetic field. Of course, the field must be strong enough to make 
the filings turn against the friction force of the paper. In Figure 3.2, the 
magnetic field of a long straight wire carrying a current is seen to consist 
of concentric circles around the wire. 

i 
t 

FIGURE 3.2. Magnetic field lines of a long straight wire carrying a current. 
Near the wire, concentric circles of iron filings are visible. At right is an  illus- 
tration of the right-hand rule for the direction of the magnetic field lines around 
a wire carrying a current. From Figures l l -2(b)  and 11-8, respectively, of PSSC 
Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by 
Kendall/Hunt, 1991. 

Close to the wire where the magnetic field is strong, the concentric circles 
following the magnetic field are visible. However, as the distance from the 
wire increases, the magnetic field weakens to the point that it cannot align 
the iron filings against the friction forces of the paper. 

Figure 3.2 also illustrates the right-hand rule for the direction of the 
magnetic field due to current in a wire. Simply, one puts their right thumb 
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along the wire in the direction of the current and the fingers curl around 
the wire in the direction of the magnetic field. 

Figure 3.3 shows another view of Figure 3.2 along with a simple drawing 
to illustrate the magnetic field lines. 

FIGURE 3.3. Iron filing experimental view and drawing of the magnetic field 
lines produced by a long straight wire carrying a current. From Figures 11-5 and 
ll-6(a) of PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and 
Shore, published by Kendall/Hunt, 1991. 

In Figure 3.4, the magnetic field due to  a loop carrying a current is shown 
along with a drawing illustrating the magnetic field lines. 

FIGURE 3.4. Iron filing experimental view and drawing of the magnetic field 
lines produced by a loop of wire carrying a current. From Figure ll-2(c) of PSSC 
Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by 
Kendall/Hunt, 1991. 



180 3 .  Magnetic Fields and Materials 

Figure 3.5 depicts the magnetic field produced by a coil of wire carrying 
a current. Such a coil is referred to as a solenoid. Notice that inside the 
solenoid, the field follows straight lines and then flares out at the ends. Fig- 
ure 3.6 is another experimental example of a tightly wound short solenoid. 

FIGURE 3.5 .  (a) Experimental view of the magnetic field lines of a solenoid 
using iron filings. Reprinted from Figure 43 of Textbook of Physics, R. Kronig, 
Editor, Pergamon Press, 1959 with permission from Elsevier. (b) Drawing of the 
magnetic field lines produced by a coil of wire carrying a current. From Figure 
ll-6(c) of PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and 
Shore, published by Kendall/Hunt, 1991. 

FIGURE 3.6. Experimental view of the magnetic field lines of a tightly wound 
solenoid using iron filings. From A n  Introduction to Electrical Machines and 
Transformers, 2nd edition, G. McPherson and R. D. Laramore, 1990. Reprinted 
by permisson of John Wiley & Sons. 
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FIGURE 3.7. Experimental view of the magnetic field lines of a cylindrical bar 
magnet using iron filings. From Figure ll-2(b) of PSSC Physics, 7th edition, by 
Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991. 
(b) Drawing of the magnetic field produced by a cylindrical-shaped bar magnet. 

Figure 3.7 shows the magnetic field of a cylindrical-shaped bar magnet 
along with a drawing illustrating the magnetic field lines. Note that the 
magnetic field lines are similar in shape to  the air-filled solenoid coil of 
Figure 3.5. Figures 3.8(a) and 3.8(b) compare the magnetic field lines of 
an air filled coil with that of an iron core coil. The magnetic field lines 
of the coil with the iron core are drawn closer together to  illustrate that 
its magnetic field is much stronger than that of the air filed coil due to  
the iron. In other words, for the same current in the coil, an iron core coil 
results in a much stronger magnetic field. 

FIGURE 3.8. (a) Coil with air core. (b) Coil with iron core. From Electric Ma- 
chines: Dynamics and Steady State by G. J. Thaler and M. L. Wilcox, 1966. 
Reprinted by permission of John Wiley & Sons. 

Figure 3.9 illustrates the important property of iron that it can be used to 
make the magnetic field lines follow a specific path. In this case, the current 
in the coil magnetizes the iron making a strong magnetic field inside the 
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iron that follows the path of the iron to the air gap. If the air gap is small, 
the strength of the magnetic field there is approximately the same as in 
the iron. 

t 

FIGURE 3.9. Iron core with air gap. From Electric Machines: Dynamics and 
Steady State by G. J. Thaler and M. L. Wilcox, 1966. Reprinted by permission 
of John Wiley & Sons. 

An experimental verification of the setup in Figure 3.9 is the photograph 
in Figure 3.10. Note that the magnetic field does not actually stay confined 
to the iron core and air gap. However, the large number of iron filings 
oriented by the magnetic field in and around the air gap compared to those 
oriented outside the iron core indicates that the magnetic field is much 
stronger in the core and air gap. 

FIGURE 3.10. Experimental verification of the magnetic field produced by the 
setup of Figure 3.9. From An Introduction to Electrical Machines and Trans- 
formers, 2nd edition, G. McPherson and R. D. Laramore, 1990. Reprinted by 
permisson of John Wiley & Sons. 
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An experimental verification of the magnetic field lines of a horseshoe 
magnet is given in Figure 3.11(a). 

(a) 

FIGURE 3.11. Magnetic field lines of a horseshoe magnet using iron filings. From 
PSSC Physics, 7th edition, by Haber-Schaim. Dodge, Gardner, and Shore, pub- 
lished by Kendall/Hunt, 1991. (b) Drawing illustrating the magnetic field lines 
of a horseshoe magnet. 

Remark Normally a solenoidal coil is tightly wound so that there is 
no space between successive turns as shown in Figure 3.10. It was loosely 
wound in Figure 3.5 so that the orientation of the iron filings inside the 
coil could be shown. In Figure 3.5, the field outside the coil is too weak to 
align the iron filings against the friction of the paper, but the direction in 
this region is indicated in the drawing. 

3.2 The Magnetic Field B and Gauss’s Law 

Before going into the details of modeling magnetic material, the definition 
of the magnetic field is reviewed along with the concept of conservation of 
flux. 

Recall that the direction of the magnetic field is defined to be the direc- 
tion that a small compass needle points. The magnitude of the magnetic 
field is defined in terms of the forces it produces. Magnetism was discov- 
ered because naturally occurring magnets (e.g., the earth) exerted forces 
on each other. In 1819, the Danish physicist Hans 0ersted discovered that 
magnets can also exert forces on currents in wires and that currents in 
wires produces magnetic fields. This is illustrated in Figure 3.12, where a 
wire carrying a current is placed in a magnetic field. The conducting wire 
is oriented so that it is perpendicular to the magnetic field. The experimen- 
tally determined rule for determining the direction of the force is shown 
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in the figure as another right-hand rule. Specifically, extend the f'ingers 
of the right hand in the direction of the magnetic field and the thumb in 
the direction of the current. Then the force is in the direction up out of 
the palm. Another experimental fact is that if the wire was placed parallel 
to the magnetic field, one finds that there is no force. That is, only the 
component of the magnetic field perpendicular to the current produces a 
force. 

FIGURE 3.12. Direction of the magnetic force on currents. From Figure 11-3 
of PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, 
published by Kendall/Hunt, 1991. 

It is exactly this force phenomena that is used to define the magnetic 
field strength. In more detail, consider the experimental setup shown in 
Figure 3.13 which consists of an air-core solenoid coil carrying a current that 
produces a nearly constant magnetic field B inside the coil in the direction 
shown. A wire is strung along a rectangular shaped pivot of width e carrying 
a current i as shown in the figure. Only the part of the wire of length e 
at the back end of the rectangular shaped pivot experiences a force since 
the other two sides are parallel to the field and thus experience no force. 
One then measures the force I?. Experimentally, one finds that the force 
is proportional to the current i in the wire, i.e., if the current is doubled, 
then the force is doubled. Also, the force is proportional to the length of 
wire perpendicular to the field. That is, if the width was decreased to e/2, 
then one would find that the force is decreased by 1/2 also. Consequently, 
one needs to divide out the length of the wire and current in the wire to 
find the intrinsic quantity producing the force. This leads to the following 
definition of the magnetic field. 
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FIGURE 3.13. Apparatus to measure the magnetic field by the force it produces. 
From Figure 11-12 of PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gard- 
ner, and Shore, published by Kendall/Hunt, 1991. 

Definition of the Magnetic Induction Field B 

1. The direction of the magnetic field B is defined by the direction a 
small compass needle points. 

2. The magnitude B 4 of the magnetic field B is defined by 

where F is the force on the conductor of length e carrying the current 
i. Here, the length of wire e carrying the current i is assumed to be 
perpendicular to the direction of B. 

3. The units of the magnet& field are 

a N weber 
m-A m2 
- = lo4 gauss. tesla = - - - 

Magnetic Force Law 

As stated above, magnetic fields were discovered because of the forces they 
produce and this phenomena is used to define the magnetic field. The ex- 
periments with magnetic forces and the definition of the magnetic field can 
be turned around to obtain the magnetic force law. To repeat, the force on 
the current carrying wire is proportional40 the component of B perpen- 
dicular to the wire. One defines a vector l whose magnitude is the length 
e of the wire in the magnetic field and its direction is that of the positive 
current flow in the wire. Then, the magnetic force on a wire of length l 
carrying a current i in a magnetic field B is given by 

* 
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Let 8 denote the angle between e‘and B as shown in Figure 3.14. The 
magnitude of the force F =I $’ I may be written as 

F = ilBsin(8) = ilBl 

where B l  = Bsin(8) is just the component of B perpendicular to the wire. 

FIGURE 3.14. F = ilBsin(0) = i l B l .  

3.2.1 Conservation of Flux 

One of Maxwell’s equations is that integral of the flux over a closed surface 
is zero, that is, 

B . dg = 0. 

This fundamental property of magnetic fields is referred to as Gauss’s law 
for magnetic fields or as the conservation offlux. To explain the notion 
of conservation of flux, consider the closed surface S shown in Figure 3.15 
consisting of two disk-shaped ends connected by the tube-shaped surface. 

The two disk-shaped surfaces making up the closed surface S are denoted 
by S1 and 5’2, respectively, while the tube-shaped surface is denoted by 5’3. 

This particular surface S was purposely chosen so that on the surface 5’3 

the magnetic field B points along the suriace S3 resulting in B . dS = 0 
there. At all points of the surface S ,  let dS  be the outward normal to the 
surface. Then, by Gauss’s law, it follows that 

4’, B . dS = L, B . dS + Lz B . dS + L, B . dS = 0 

L, B . dS + Lz B .dS = 0 

or 

as B . dd = 0 on S3. 
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FIGURE 3.15. Conservation of flux in a flux tube. 

Then 

where 
d g  

is the inward normal to the closed surface S on S1. Equation (3.1) shows 
that the flux 4sl through surface S1 equals the flux 4sz through the surface 
S2 if their surface normals are chosen as above. The volume enclosed by 
SI,S2, S3 is called aflux tube and is characterized by B . d g  = 0 on the tube 
shaped part of the surface S3. This results in the flux through 5’1 equaling 
that through Sz and is simply a consequence of conservation of flux applied 
to this closed surface. 

In the above derivation, it was crucial that the flux through Ss was zero. 
Magnetic materials provide the capability of being able to approximately 
construct such a situation, that is, of being able to (approximately) direct 
the magnetic field. This is illustrated in Figure 3.16, where a coil has been 
wrapped around an iron core containing an air gap. The point here is 
that the axially directed magnetic field inside the coil produced by the 
current and magnetized iron follows along the path of the iron to the air 
gap. That is, to a reasonable approximation, the magnetic material keeps 
the magnetic field inside the magnetic material following the path of the 
material. As a result, the tube-shaped surface of t_he m_agnetic material in 
Figure 3.16 forms a surface for which for which B . dS = 0’ so that the 
magnetic flux through any cross section of the iron tube is approximately 

‘It turns out tha t  there will always be some B field leaving the tube-shaped outer 
surface of the irof (leakage). However, by magnetizing the material as shown in the 
figure, the main B field strength goes around to  the air gap and the part  tha t  leaves the 
tube-shaped outer surface of the iron is much weaker. 
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the same throughout the tube and in particular at the air gap. As the figure 
shows, the magnetic field spreads out across the air gap, but this spreading 
can be kept small by keeping the air gap small. In summary, magnetic 
materials give the capability to create a magnetic field/flux at one location 
and transport it to another location where it can be used, for example, 
to produce a force on a wire carrying a current. However, it is important 
to note that all of this is only approximately true in that the magnetic 
field does not stay completely within the material so that the field/flux is 
actually weaker at the air gap than the field/flux in the coil. 

FIGURE 3.16. Creating and directing a magnetic field. From Electric Machines: 
Dynamics and Steady State by G. J. Thaler and M. L. Wilcox, 1966. Reprinted 
by permission of John Wiley & Sons. 

Continuity of the Normal Component of B 

As another application of Gauss’s flux law fS B . dS = 0, it is now shown 
that at the interface (boundary) between air and magnetic material, the 
normal (perpendicular) component of B to the surface is continuous across 
the boundary. Figure 3.17 shows a piece of magnetic material and a closed 
cylindrical-shaped surface, of which half is inside the magnetic material and 
the other half in the air. Let B1 = Bl,ji+ Bl,f+ Blz2 denote the magnetic 
field on the surface 5’1 in the air and B 2  = B2,ji + B2yf + B2,i denote the 
magnetic field on the surface S2 just inside the magnetic material. Note 
that coordinate system has been chosen so that the normal component 
to the surface is the z component of the field. The conservation of flux 
fS B . clS = 0 is then applied to the closed cylindrical surface S shown 
in Figure 3.17 consisting of the four pieces 5’1 (disk-shaped in air with 
area m2), 5’2 (disk-shaped in the magnetic material with area m2), 5’3 

(cylindrical-shaped in air with area 27rr(h/2)) , and S, (cylindrical-shaped 
in the magnetic material with area 2 m ( h / 2 ) ) .  



3. Magnetic Fields and Materials 189 

FIGURE 3.17. (a) Closed cylindrical surface at the interface of a s  and magnetic 
material (b) Cros_s-sectional view of the flux surface. As h --t 0, B1 is just above 
the surface and Bz is just below the surface. 

It follows that 

+ +  

B . dS = .6, B . d S  + L2 B . d S  + L, B . d S  + L4 B . dS  = 0. 

With T finite, but small, let the length h of the cylinder go to zero with the 
consequence that the area of sides Ss and S, go to  zero, and the disk-shaped 
sides S1 and 5’2 are just above and just below the air-magnetic material 
interface, respectively. Letting h + 0, it follows that 

Evaluating these integrals results in 

so that 
B 1 z  = B 2 Z .  

That is, the component of B perpendicular to the surface is continuous 
across the surface. 

As an example, consider Figure 3.18 [from Figure 3.19(a)] showing the 
magnetic fields due to a cylindrical-shaped permanent magnet. For refer- 
ence, use a cylindrical coordinate system whose origin is at the center of 
the magnet with the z axis pointing up along the axis of the magnet. Note 
that on the cylindrical side of the magnet, the tangential component ( z  
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component) of fi is not continuous. In particular, consider the point P 
in Figure 3.18 where just inside the surface of the magnet, the tangential 
component of B is up (+2 direction) while just outside the surface, it is 
down (-2 direction). However, the normal component (i' direction) must 
be the same on both sides of the surface by Gauss's law. 

FIGURE 3.18. (a) Cylindrical coordinate system for the magnet. (b) Magnetic 
field lines for a cylindrical-shaped magnet. At the point P,  the normal component 
(P direction) is continuous while the tangengal compofent (2 direction) is not. 
Adapted from Figure 37-4 of Ref. [34]. ( c )  Bin and Bout are, respectively, the 
magnetic field just inside and just outside the surface at the point P. Note that 
& - i n  = Br-out, but Bz-in # B z - o u t .  

3.3 Modeling Magnetic Materials 

Figures 3.19(a) and 3.19(b) compare the magnetic field lines of a cylindrical 
shaped bar magnet and a cylindrical-shaped air-filled solenoid coil, respec- 
tively. The interesting and important observation here is that the magnetic 
field outside the bar magnet has the same shape as that of the coil of wire 
carrying a current. This leads one to conjecture that the magnetic field 
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inside the bar magnet of Figure 3.19(a) follows straight lines as they do 
inside the coil of Figure 3.19(b). Perhaps one can picture the bar magnet 
as having some kind of “bound” current which goes around its periphery 
producing the bar magnet’s field analogous to the current in the coil of the 
air filled solenoid. 

Pursuing this conjecture, consider an iron atom in the bar magnet as a 
small current loop as in Figure 3.20. That is, the motion of the electrons in 
the individual iron atoms are considered to be equivalent to a current loop 
as drawn in Figure 3.20(a). As illustrated in Figures 3.20(a) and 3.20(b), 
inside the material, the current in the adjacent sides of neighboring loops 
go in opposite directions so that their effects cancel. However, the part of 
the loops on the surface of the material have no corresponding neighboring 
loop to cancel and the net effect is a current around the periphery of the 
magnetic material as illustrated in Figure 3.20(c). This is a so-called bound 
current, since an individual electron does not go around the surface of the 
magnet, but stays with the particular iron atom. It is only the net effect 
of all the current loops being aligned that results in a current around the 
surface of the bar magnet. This is in contrast to free currents associated 
with current flow in copper conductors where individual electrons actually 
move down the wire through the crystal lattice of the copper. 

FIGURE 3.19. (a) Magnetic field lines for a bar magnet. (b) Magnetic field lines 
for a short air-filled solenoid coil. From Physics, 2nd edition, by D. Halliday and 
R. Resnick, 1962. Reprinted by permission of John Wiley & Sons. 

To reiterate, the point here is that in magnetic materials, the motion 
(spin) of the electrons in the atoms are able to align themselves as shown 
in Figure 3.20 so that the current loops are all in the same plane with the 
currents circulating clockwise. This is in contrast to nonmagnetic materials 
where the current loops are at random orientations with respect to each 
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other and are unable to align themselves so their net effect cancels. 

UU 

FIGURE 3.20. Viewing the atoms of magnetic materials as current loops which 
are able to align themselves. From PSSC Physcis, 7th edition, by Haber-Schaim, 
Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991. 

Figure 3.21 again illustrates this idea of representing the magnetic mate- 
rial by current loops which results in an equivalent bound current ib going 
around the periphery of the cylinder. 

FIGURE 3.21. (a) View of magnetic material consisting of aligned dipole mo- 
ments. (b) Magnetic material represented by an equivalent bound current i b  go- 
ing around the periphery of the cylinder that produces the same magnetic field 
as the magnetic material. This interpretation is motivated by Figure 3.20. 

3.3.1 Magnetic Dipole Moments 

To develop a mathematical model to go along with the pictures in Figures 
3.20 and 3.21, the concept of a magnetic dipole moment is reviewed. Con- 
sider a small planar loop of area S with a current i going around the loop 
such as illustrated in Figure 3.22. The scalar magnetic moment is defined 
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to be 
m b is. 

The direction of the magnetic moment is taken to be normal to the loop. 
A unique normal fi is specified by direction of the current using the right- 
hand rule. That is, curl the fingers of the right-hand around the loop in 
the direction of positive current flow and the normal fi is defined to be the 
direction of the extended thumb. Putting this all together, the magnetic 
moment vector is defined as 

where fi is a unit normal to the loop determined by the right-hand rule. 
Magnetic material (such as iron) is now pictured by modeling the atoms as 
magnetic moments which are able to align themselves in the same direction. 
As shown in Figure 3.21, the net effect is then a (bound) surface current 
that produces the external magnetic field analogous to a current-carrying 
coil with air inside. 

FIGURE 3.22. Small current loop as a magnetic dipole momentt. S is the area 
of the loop, i is the current in the loop and fi is the normal to the loop given by 
the right-hand rule. The dipole moment is d 4! iSfi .  

The model of the iron atom as a magnetic dipole moment will be used to 
construct a macroscopic picture of the magnetic properties of iron. How- 
ever, the magnetic property of iron (ferromagnetism) is only explained 
through Quantum Mechanics. Quoting from Melvin Schwartz [35] “Iron has 
two remarkable atomic properties that have far-reaching consequences with 
respect to its macroscopic magnetic behavior. First, 4 of the 26 electrons 
in an isolated atom of iron hade their intrinsic angular momenta lined up. 
Second, within solid iron, there are very strong quantum-mechanical forces 
tending to make the intrinsic angular momenta of neighboring atoms line 
up. This results in domains of macroscopic size having net magnetizations 
corresponding to about two aligned electron moments per atom on  the av- 
erage. Applying a magnetic field causes those domains, which are aligned 
in the same direction as the field, to grow until the iron finally reaches a 
saturated state of magnetization. Typically, saturation occurs at fields in 
the neighborhood of 10,000 to 20,000 gauss. Needless to say, removal of the 
applied field does not lead to complete randomization oJ the domains. The 
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residual magnetization can be quite large, as in the case of special perma- 
nent magnetic alloys, or it can be quite small, as in the case of soft iron. 
These phenomena are characteristic of ferromagnetism.” 

3.3.2 

The picture adopted here for iron and other magnetic materials is one in 
which they consist of small current loops with a magnetic dipole moment 
associated with each one as illustrated in Figure 3.21. It is emphasized 
that one could model any material with such current loops, but that in the 
case of magnetic materials, the loops (dipole moments) align themselves 
when an external magnetic field is applied. This alignment of the current 
loops can be viewed as a net bound current which goes around the surface 
and produces a magnetic field.* Nonmagnetic materials have their dipole 
moments in random orientations with respect to each other and are not able 
to align to  produce any significant magnetic field even under the presence 
of an external magnetic field. Consequently, there is no net bound surface 
current or magnetic field. When an external magnetic field is applied to a 
magnetic dipole moment (loop of current), the moment tends to align itself 
with the external field. This is illustrated in Figure 3.23, which shows two 
current loops whose normals ii are not aligned with the external magnetic 
field B. In Figure 3.23(a), the forces I?l,I?2 provide a torque + to align 
the dipole moment (i.e., the normal ii to  the surface of the loop) with 
the direction of the external field B. Similarly, in 3.23(b) the forces I?3,@4 

provide a torque i to  align the dipole moment with the direction of the 

The Magnetization M and Ampkre’s Law 

external field B. 

f $1 

FIGURE 3.23. Magnetic dipole in an external magnetic field. (a) Dipole tilted 
vertically. (b) Dipole tilted laterally. 

2This ability of materials such as iron to  align their magnetic moments together 
to  form domains which grow and align in the same direction as an externally applied 
magnetic field is succesfully explained only by quantum mechanics. 
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As a specific example of this viewpoint, consider the magnetic circuit 
of Figure 3.16. Here the current in the coil magnetizes the iron, that is, 
causes the dipole moments of the iron atoms to align themselves with the 
(external) magnetic field produced by the coil current. This results in a 
much larger magnetic field in the iron than that which would be produced 
by the current in the coil alone. 

The Magnetization Vector Ph 
Define the magnetization vector M as follows: At any arbitrary point 
(z’, y’, z’) inside the magnetic material (see Figure 3.24) define 

A 
rii(z’, y’, z’) = Average magnetic dipole moment of the atoms 

in a neighborhood of the point (z’, y’, 2’). 

A N ,  = Number of atoms (e.g., iron) per unit volume. 

Then, the magnetization M(z’, y‘, z’) is defined as 

M(z’, y’, z’) 4? Nm&(z’, y’, z’). 

The magnitude A4 = I M 1 of the magnetization vector is simply the mag- 
netic dipole moment per unit volume. The fundamental issue here is to 
determine the magnetic field B(z, y, 2 )  at the point (2, y, z )  outside the 
material due to the magnetization M(z’, y’, z’) at the point (z’, y’, z’) in- 
side the material. To do so, it is necessary to relate the magnetization 
vector M(z’, y’, z’) to the magnetic field it produces. First, Ampere’s law 
is reviewed as it is the Maxwell equation that relates currents to magnetic 
fields. 

FIGURE 3.24. Magnetic field _produced by magnetic material. How does one 
compute B at (z,y,z) due to M at (z’,y’,z’)? 
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Ampere’s Law 

When magnetic materials are not present, Ampere’s law is 

where &closed is the current enclosed by the path C. 

determine the magnetic field from currents. 
Some examples are now given to recall how Amptke’s law is used to 

Example Long Straight Wire 
Consider a long straight wire carrying a current as in Figure 3.25(a). 

Z 

FIGURE 3.25. Sign convention in Ampere’s law for positive current through 
a closed curve C. From PSSC Physics, 7th edition, by Haber-Schaim, Dodge, 
Gardner, and Shore, published by Kendall/Hunt, 1991. 

This figure shows a closed curve C with a direction of positive travel for 
going around the curve indicated as well as  a direction for positive current 
in the wire. For Ampere’s law to apply, these two sign conventions must 
be related to each other by another right-hand rule. Specifically, as shown 
in Figure 3.25(a), if one takes their right hand and curls the fingers in the 
positive direction of travel around the curve, then the thumb points in the 
positive direction of current through the surface enclosed by this curve. 

Ampere’s law is now used to compute the magnetic field due to a current 
in a long straight wire. A cylindrical coordinate system whose 2 axis is 
along the wire is appropriate for the geometry of this problem [see Figure 
3.25(b)]. To proceed, first note that due to symmetry, the B field cannot 
depend on the axial position z nor the azimuthal position 8 so that 

To find the azimuthal component Be(r), apply Ampere’s law to the closed 
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curve C in Figure 3.25(b) to obtain 

In problem 3, using Gauss’s law for B, the reader is asked to show that 
BT(r)  = 0. 

It is now shown that B,(r) 5 0. To do so, apply Ampkre’s law to the 
curve C shown in Figure 3.26, to obtain 

lz (B,(rl)P) . (dhP) + (B,(rz)P). (-dhP) = 0 

B Z ( q ) h -  B,(rz)h = 0 

B Z ( 7 - l )  = B,(rz) 

where the fact that s,” B . a?+ s,’ B . de’= 0 was used. 

l- 

FIGURE 3.26. (a) Cylindrical coordinate system. (b) Long straight wire carrying 
a current. 

That is, the z component of B is constant. However, as one goes to  
infinity in the radial direction (r  --f m), the magnetic field will be zero as 
one is infinitely far from the source i of the magnetic field. Consequently, B, 
must be zero at infinity and, as it is constant, it must equal zero everywhere. 
Thus, the form of the magnetic field of an infinitely long straight wire 
reduces to 

Poi ,. B(r, e,  Z) = -8. 
27rr 

+ 
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Example Ideal Infinitely Long Solenoid [34] 
Recall that a solenoid coil is a long wire which is wrapped in a close- 

packed helix-shaped coil where the length of the coil is very long compared 
to its diameter. An ideal solenoid is one in which the helix is infinitely long 
with no spacing between coils as shown in Figure 3.27. 

i 

\ 
Solenoid 

FIGURE 3.27. Infinitely long coil with an air core. (a) Curves ci, cz, C3, and C4 
for applying Ampere’s law. (b) Cylindrical coordinate system. ( c )  Curve C5 for 
applying Ampere’s law. 

In this example, a current is put through the wire and the goal is to 
compute the magnetic field inside and outside the coil. In this case of an 
ideal solenoid coil, the magnetic field can be computed using symmetry 
arguments and Ampere’s law. To do so, Figure 3.27 shows five closed curves 
C1,C2,C3,C4 and Cs that are used to apply Ampere’s law to compute 
B. Figure 3.27(b) shows a cylindrical coordinate system chosen for the 
solenoid. 

Proceeding, first note that due to symmetry, the B field cannot depend 
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on the axial position z nor on the azimuthal angle 9 so that 

B = B,(T)P + B( j I (T)8  + Bz(T)2.  

The reader is asked in problem 4 to show using Gauss’s law for B that 
B,(T) = 0. To compute B, inside the solenoid, Ampkre’s law is applied to 
the curve C1 (side 2-2 is a radial distance TI  from the center of the coil 
and side 3-4 is a radial distance 7-2 from the center of the coil) and one 
obtains 

B z ( T 1 ) h  - B Z ( r 2 ) h  = 0 

B Z ( T 1 )  = B z ( T 2 )  

where the fact that Ji B.dt?+J: B.de‘= 0 was used. Thus, B, = &inside is 
constant inside the solenoid. Similarly, applying Ampere’s law to the curve 
C 2 ,  one finds that B, = Bzou t s ide  is also constant outside the solenoid. As 
one goes io infinity in the radial direction (T + GO), the magnetic field 
will be zero as one is infinitely far from the source i of the magnetic field. 
Consequently, Bzon t s ide  must be equal to  zero. 

Applying Ampere’s law to the curves C, and C g ,  the reader can show 
that Be(.) = 0 inside the solenoid and &(r)  = pOi/(27rr) outside the 
cylinder (see problem 5). Thus, 

Bz ins ide2  inside the solenoid 
B =  { poi -8 outside the solenoid. 

21rr 
Finally, to determine Bzinside in terms of the solenoid current i, consider 
the curve C4. Let n be the number of coil turns per unit length and i be 
the current in the coil, so that in the length h of the coil, the current nhi 
is going through the curve abcda in Figure 3.27(a). Applying Amp6re’s law 
to the curve C4, one obtains 

+ [fi ‘ de = poienclosed 

B z i n s i d e h  = Ponhi 

Bz ins ide  = poni. 

The final expression for the magnetic field is given by 

poni2 inside the solenoid { out,side the solenoid. 
B ( r , O , z )  = po2 - 
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This expression is consistent with the iron filings experiment of Figure 3.5 
which shows the field inside the solenoid is along the axis and outside the 

solenoid the field is weaker (by a factor of -) compared to the field inside. 

The quantity X = ni is the surface current (on the surface defined by 
the coil) per unit length of the coil going around it in the azimuthal (8) 
direction. It is referred to as the surface current density and, for an infinitely 
long solenoid, B = p,,X inside. 

Example Toroidal Solenoid 
A toroidal solenoidal coil with an air core is shown in Figure 3.28. It has 

an inside radius of 7-1, an outside radius of r2 and a core diameter of d. 
Figure 3.28(b) shows an iron filing experiment of the lines of B of an air 
filled toroidal solenoid. The toroid does not possess as much symmetry as 
the previous examples making the complete derivation of the magnetic field 
everywhere more difficult. However, it turns out that outside of the toroid, 
the magnetic field is quite weak. Inside the toroid, the reader is asked to 
show that the magnetic field is only nonzero in the azimuthal direction (see 
problem 6). 

n 
27rr 

FIGURE 3.28. (a) Cross-sectional view of a toroidal coil wi5h an air core. Adapted 
from [34]. (b) Experimental verification of the lines of B for a loosely wound 
toroid with an air core. Reprinted from Figure 44 of Textbook of Physics, R. 
Kronig, Editor, Pergamon Press, 1959 with permission from Elsevier. 

Let i denote the current in the toroid wire and n denote the number 
of loops (turns) per unit length along the radius r1 of the toroid so that 
27rrln the total number of loops wound around the toroid. Application of 
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Amp6re’s law to the circular curve C at ra.dius r gives 

B 0 2 m  = po27rr1ni 
r1 . Bo(r) = -ponz. 
r 

This is valid for r1 < T < 7-2 and, if d = 7-2 - r1 << r1, then r I / r  M 1 and 
B pon i  inside the toroid just as in the case of the long straight solenoid. 

Remark 
In the examples in this chapter using a toroid, it will always be assumed 

that d = 7-2 - r1 << r1 so that the approximation r1/r M 1 is valid. 

3.3.3 Relating B to M 
Using Ampere’s law, it was shown in the previous example that B M p0ni 
in an air core toroidal coil. It is now shown how this relationship can be 
experimentally verified. To do so, a secondary coil is wrapped around the 
toroid as shown in Figure 3.29 to carry out the experiment. 

Secondary ’coil 

-. 
FIGURE 3.29. Experimental setup for determining B versus i in an air-filled 
toroid. Adapted from [34]. 

The secondary coil is used to  measure B = Be inside the toroid as 
f01lows:~ With N,  the number of turns in the secondary coil, S = ~ ( d / 2 ) ~  
the cross sectional area of the toroidal coil, the flux linkage A, through the 
secondary coil is 

A, = N,B(t)S 

3The subscript 6 on Be has now been dropped without confusion because the other 
components of the magnetic field are insignificant (see problem 6).  
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where, as it is assumed that d = 7-2 - r1 << r1, B is taken to be constant 
across the cross section S of the toroid as well as in the azimuthal direction. 
Now, by Faraday’s law, the voltage induced in the secondary coil is given 
bY 

V, = -2 dX = -- d (N,B(t)S) = -NsS- d B ( t )  
d t  d t  d t  

so that 

B(t )  = -- V, ( r ) d r .  

By measuring the current i( t)  in the primary windings and the voltage 
K ( t )  between the terminals of the secondary coil, the magnetic field B 
inside the toroid can be found as a function of the current i. That is, one 
would ramp up the primary current i(t) from 0 to some Immax as in Figure 
3.30(a), while at the same time measure/store the secondary voltage Vs(t) 
(see Figure 3.30(b). B(t)  is then computed using (3.2) as in Figure 3.30(c) 
and one then plots B versus i as in Figure 3.30(d). In this case in which 
the toroid is air filled, these measurements simply verify that B M poni.  

FIGURE 3.30. (a) Current in primary winding. (b) Voltage measured in sec- 
ondary winding. (c) Magnetic field inside the toroid versus time calculated ac- 
cording to equation (3.2). (d) Magnetic field plotted versus the primary current 
(slope = pan). 

This same experimental setup can also be used to measure the magnetic 
field inside the toroidal coil when it has an iron core. The experiment is now 
repeated, but with the toroid filled with an iron core a: shown in Figure 
3.31. Of course, there is then a non zero magnetization M in the iron core. 
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FIGURE 3.31. Iron-filled toroid with secondary coil. Adapted from [34]. 

The magnetic field strength B inside the toroid is computed as a function 
of the current i just as before. In this case, the primary current is as shown 
in Figure 3.32(a) and is the same as in Figure 3.30(a). 

B 
I 

B 
1 

(d) 'max 
1 

FIGURE 3.32. (a) Current in primary winding. (b) Voltage measured in sec- 
ondary winding. (c) Magnetic field inside the toroid calculated according to (3.2). 
(d) Magnetic field plotted versus the primary current (slope = p,ponz). 

Again, the voltage induced in the secondary winding is measured [see 
3.32(b)] and is now much greater in value than the measured voltage in 
the case of the air filled toroid. The magnetic field B is again found by 
integrating the voltage Vs(t) in the secondary coil according to equation 
(3.2) and is shown in Figure 3.32(c). Finally, the magnetic field B is plotted 
versus the primary current i as shown in Figure 3.32(d). In this case, with 
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the toroid filled with magnetic material, the slope is greater by a factor pT 
than that of Figure 3.30(d). The factor pT is called the relative permeability 
and is typically on the order of 1000. Rewrite B in the iron core 

B = B o + B M  (3.3) 

where Bo = poni denotes the magnetic field when no magnetic material 
is present and BM represents the additional strength in the magnetic field 
due to the magnetic material. The strength B of the magnetic field in the 
toroid is then plotted versus Bo = poni (rather than i) resulting in a curve 
of the form shown in Figure 3.33. The slope of the straight line part of the 
curve is then the relative permeability pT so that B = pTB0 = pTponi for 
i 5 isat. If one continues to increase the current above some current level 
isat, B no longer increases at the rate pTpon, but only as pon. 

B 

FIGURE 3.33. B versus Bo. 

Again, the important point here is that the field BM is typically on 
the order of a 1000 times greater than BO in good magnetic materials 
(i.e., pT > 1000). This is, of course, the reason magnetic materials are 
used! This phenomena can be pictured as the magnetic field inside the 
toroid produced by the current i aligns (magnetizes) the magnetic dipoles 
moments [see Figures 3.21 and 3.23)] of the iron so that they produce a 
magnetic field that adds to that produced by the current. As the current 
in the wire of the toroid is increased, more magnetic dipoles are aligned 
increasing the B field more. As a result, the magnetic field due to the 
current and magnetic material is much larger (on the order of a thousand 
times) than that produced by just the current. As the current increases to 
a level isat, all of the dipole moments of the iron atoms are aligned so that 
increasing the current beyond this level does not result in a large increase 
in the magnetic field as it did below this level of current. 

Reiterating, for the same current in the toroidal coil, the one filled with 
magnetic material will have a B field that is typically more than a 1000 
times that of the coil with only air inside. As will be described shortly, the 
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quantity H a Bo/po = ni is the magnetic field intensity and M 
turns out to  be the magnetization so that 

BM/&,  

B = Bo + BM = poH +poM 

where H << M as Bo << B M .  Consequently, in soft4 magnetic materials, 
one can take H = 0 as a reasonable approximation. In other words, in 
such magnetic materials, the B field is primarily due to the magnetization 
(alignment of the magnetic dipoles) of the magnetic material rather than 
the current that magnetizes the magnetic material. 

3.4 The Magnetic Intensity Field Vector H 

Here the definition of the magnetic intensity vector H is given in terms of 
the magnetization vector M (defined in Section 3.3.2) and the magnetic 
induction vector B. To proceed, consider the toroid in Figure 3.34 which 
shows a toroid with an iron core 3.34(a) and redrawn in 3.34(b) with the 
iron core replaced by an equivalent coil carrying the bound current i b .  

Ampere’s law must be modified to account for magnetic materials. Recall 
that when the iron core was not present inside the toroid, Ampere’s law 
showed that B M poni. However, when the iron core was present, experi- 
ments showed that the B field was on the order of a 1000 times greater. The 
discussion concerning Figure 3.21 showed that the magnetization (dipole 
moment per unit volume) can be pictured as an equivalent bound current 
going around the surface of the toroidal core. Following Ref. [34], consider 
the modification to Ampkre’s law as 

where iMenc]osed is the equivalent bound current enclosed by the curve c 
(see Figure 3.34). 

As before, it is assumed the core diameter d = 7-2 - T I  << r1 so that 
r1 M r M 1-2 is valid. With n b  the number of loops/coils per unit length of 
the equivalent coil in Figure 3.34(b), i&fenclosed = 27rrlnbib. The next step 
is to relate this bound current to  the magnetization M .  To do so, define 
the surface current density 

and is simply the (average) amount of bound current per unit length around 
the toroid coil coming out of (or going into) the page. 

4For now, consider a “soft” magnetic material to be one that has a B versus BO curve 
similar to that of Figure 3.33 and whose slope is orders of magnitude greater than one. 
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FIGURE 3.34. (a) Toroidal coil with an iron core. Adapted from [34]. (b) Iron core 
replaced with an equivalent coil carrying the bound current ib. The bound current 
produces the same magnetic field as the magnetized iron in Figure 3.34(a). 

This is analogous to X = ni being the free current in the wire per unit 
length around the circumference of the toroid. As shown in Section 3.3.1, 
the magnetic dipole moment is the product of the current around a loop 
times the area of the loop. The amount of bound current going around the 
periphery of the toroid between 6 and 6 + d6 is X ~ ( r l d 6 )  and, with S = 
~ ( d / 2 ) ~  the cross-sectional area of the toroid, it follows that the magnetic 
dipole moment d m  due to the bound surface current density AM in the 
volume between 6 and 13 + d6 is 

d m  = XM(rld6)S. 

However, by definition, the magnetization M is the amount of magnetic 
dipole moment per unit volume, so that the magnetic dipole moment d m  
in the volume between 6 and 6 + d6 is also given by 

d m  = M ( r l d 6 ) S  

which results in 
XM = M .  

That is, in this example, the surface current density AM is equal to the 
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magnetization A4 of the iron material. As a result, 

iMenclosed = X ~ 2 7 r r  = M27rr = M 8  . rd68 = - >  ( -1 iM.d 

Equation (3.4) therefore becomes 

Rearranging this equation gives 

This leads to the definition of the magnetic intensity field H given by 

- * B  - 
H = - - M .  

PO 

Ampere’s law in its most general form is then 

H . de‘= ifree (3.5) 

where ifree = ienclosed represents the enclosed free current in the wire in 
contrast to the bound current in the magnetic material. Both B and M 
were defined in terms of physical phenomena. However, H is defined as the 
difference between B/po and M which does not lend itself to a physical 
interpretation. It is simply defined as a quantity whose line integral around 
a closed curve depends only on the free current through the curve. The 
next section shows how B and H can be related experimentally. 

3.4.1 The B-H Curve 

With the definition H 4? B/p0 - M, Amp6re’s law was modified to 

i fi . de‘= ifree. 

Ampere’s law can be used to  calculate H, but B is the desired quantity as it 
produces forces on currents and magnetic materials. As M is typically not 
known, one cannot compute B from the definition o,f H. As a consequence, 
empirical/experimental methods are used to relate B and H. The empirical 
method to  determine this relationship is typically done using the toroidal 
coil setup of the previous section. Specifically, consider the setup of Figure 
3.31 in which the initial magnetization is zero (this can be done by heating 
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up the iron core so that the magnetic dipole moments become randomly 
oriented with respect to each other). Application of Amp&re’s law gives5 

H . d i  = ifree 

H27rr = 27rrlni 
TI H = -ni ~ n i  
r 

so that H = Bo/po as in equation (3.3). Equation (3.2) given by 

i r t  

is again used to find the value of B as a function of H = ni resulting in the 
so-called B - H curve as shown in Figure 3.35(a). This is now considered 
in more detail. (Note that as H = nil one can specify the value of H by 
simply specifying the current i.) 

First, the current i is increased from 0 to I,,, so that H goes from 0 
to H,,, = nImax along the curve a-b in Figure 3.35(a), where H,,, = 

. As the current is increased, the voltage V, in the secondary 
coil is measured and B is calculated according to (3.2). Plotting B versus 
H one obtains the curve a-b shown in Figure 3.35(a). Along the curve 
a-6, H > 0 ,  B > 0, and M > 0. 

Next, H (or equivalently i) is decreased from HmaX to 0. Again, B is 
computed according to (3.2), resulting in the curve b-c shown in Figure 
3.35(a). At the point c, B > 0 with H = 0 and therefore i = 0, that is, 
there is a magnetic field in the core without any current in the coil. In 
words, the toroidal is core is permanently magnetized. The corresponding 
value of the magnetic field is denoted B, and is called the remanence or 
retentivity. Along the curve 6-c, H > 0, B > 0, and M > 0. 

In the next step, H is made negative by putting negative current in the 
coil (i < 0), and B decreases along the curve c-d where at the point d ,  
the magnetic field strength is zero in the core ( B  = 0). The magnetic field 
produced by the (negative) current in the coil is canceling the magnetic 
field produced by the aligned dipoles of the magnetic material. At this 
point, H = -H, where H, > 0 is called the coercive force or coercivzty.6 
Along the curve c-d, H < 0,  B > 0, and M > 0. 

Continuing, H is decreased even more (i.e., i < 0 is decreased more) 
resulting in the magnetic dipoles of the material realigning in the opposite 

amp;;;,urn 

5By definition H B/po - M and on physcial grounds B and M point in the same 
direction whicb in this case is the 8 direction inside the tzroid. Consequently, H will 
also be in the 8 direction and may be written in the form H = H e .  

6 H c  is not a force so “coercive force” is not a good name. The value of Hc depends 
on the particular B-H loop that the system is going through. 
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direction to add to  the magnetic field produced by the current in the coil 
(see path d - e ) .  At the point e where H = -H,,, = -100” ”p , ”~~~~ ‘ ”  , the 
value of B is the negative of that given at the point b. Along the curve 
d-e ,  H < O,B < 0, and M < 0. 

Finally, in a similar fashion, H is brought from -H,,, to  0 to H,,, and 
the plot of B versus H follows the curve e-f-g-b. 

In summary, letting H vary from H,,, to 0 to -H,,, and then from 
-H,,, to 0 back to Hmax, the plot of B versus H follows the curve 
b-c-d-e-f-g-b. This is called the hysteresis  loop. If the hysteresis loop 
of the iron is quite thin, it is considered to be “soft” iron as in Figure 
3.35(b) while if the hysteresis loop is quite thick, then it is considered to 
be “hard” iron as in Figure 3.35(a). 

In the case of soft iron magnetic material such as Figure 3.35(b), the 
hysteresis loop is thin enough that it can be approximated by a single 
curve lying only in the first and third quadrants. 

H 

FIGURE 3.35. B versus H curve. (a) Hysteresis curve for a “hard” magnetic 
material. (b) Hysteresis curve for a “soft” magnetic material. 

Figure 3.36 shows experimentally determined B- H curves for the two 
soft magnetic materials M-19 29-gauge steel and a soft steel iron casting 
where, as B is an odd function of H ,  only the first quadrant need be 
given. Note that at smaller values of H ,  the B-H curves in Figure 3.36 are 
approximately linear. 

Remark Figure 3.33 would correspond to a soft magnetic material in 
which the hysteresis can be ignored. 
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X l d  
H in ampere-turns 

FIGURE 3.36. B (tesla) versus H (ampere-turns) curves for two different soft 
magnetic materials. From An Zntroductzon to Electrical Machines and Trans- 
formers, 2nd edition, G. McPherson and R. D. Laramore, 1990. Reprinted by 
permisson of John Wiley & Sons. 

Example 
Consider the experimental B versus H curves for two different soft iron 

materials as given in Figure 3.36. As B and M (and therefore H) tend to 
point in the same direction in soft iron, the relationship - 

B = p o H + p 0 M  

may be written approximately as 

or 

B = PrPoH 

where pr  is that empirically determined number that makes this equation 
valid. For example, using the soft steel casting material with i chosen in 
the primary coil of the toroidal solenoid so that H = 1000 ampere-turns, 
the data curve in Figure 3.36 gives B = 1.2 tesla. Thus, 

1.2 
= 955. - 

B 
(4T x 10-7) x 1000 POH - 

Pr = - 

The important observation from this numerical example is that pr  is quite 
large. In a coil carrying a current i with an air core, 

Binside = PoHinside = Poni 
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while in an identical coil carrying the same current i with an iron core, 

Binside = &pOHinside = &poni. 

The H field is the same in both coils as the current is the same in each 
coil. However, as pr is on the order of 1000, the magnetic field B in the coil 
with the iron core is much larger. The terminology “ideal” soft magnetic 
material is one in which pT = CXI while a LLgood” magnetic material just 
means pT is very large. 

3.4.2 Computing B and H in Magnetic Circuits 

Based on the previous sections, a simple procedure is now given that gives 
an accurate enough computation of B and H for modeling the magnetic 
circuits of electric machines. To start with a simple example, consider the 
toroidal coil with an iron core shown in Figure 3.37 in which a small air 
gap of length g has been cut out. 

il 

FIGURE 3.37. Coil wrapped around a torus with an air gap. From Electric Mu- 
chines: Dynamics and Steady State by G. J. Thaler and M. L. Wilcox, 1966. 
Reprinted by permission of John Wiley & Sons. 

Ampere’s law 

is applied to a circular curve C of radius r in Figure 3.37. In the magnetic 
material, B = Bm6 while in the air gap B = Ba6. Though azimuthal 
symmetry does not hold because of the air gap, it turns out that if the air 
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gap is small, it is still approximately true that B, has a constant value as 
a function of the azimuthal angle 6 in the magnetic material and, similarly, 
B, is constant as a function of 8 in the air gap. Further, with the standing 
assumption that the diameter of the core is much smaller than the inner 
radius of the toroidal coil, B, and B, are essentially constant across the 
cross section of the core. In the same way, M = M e  is constant as a 
function of 6 in the iron core while it is, of course, zero in the air gap. 
Thus H ,  and Ha are also approximately constant as functions of 6 and 
over the cross-sectional area of the core. With N the total number of coil 
turns, Ampere’s law applied to the circular curve C of radius r in Figure 
3.37 gives 

with 

Hm(27rr - g )  + Hag = N i  (3.6) 

B, = poHm + pLoM = pTpoH, (from the measured B-H curve) 

Ba = PoHa. 

It is assumed that the air gap is small enough that B, is essentially con- 
stant across it. Recall that by Gauss’s law for B, B, = B, at the air-iron 
interface. As B, is approximately constant in the iron and B, is constant 
in the air gap, B, = B,. Thus, 

poHa = B a  = Bm = pTP0Hrn 

or 
Ha H m -  
Pr 

Again, in good magnetic materials, pT is greater than 1000 so that H ,  
is more than a thousand times smaller than Ha. Consequently, one often 
takes H ,  = 0 in good magnetic materials. In this case, taking H ,  = 0 in 
(3.6) leads to 

Hag = Ni 

so that 

This last expression is important because it gives us the magnetic field in 
air gap in terms of known quantities. The value of B in the air gap is the 
important quantity since, for example, a current carrying wire can be run 
through the air gap and the value of B will determine how much force can 
be exerted on the wire. 

It is important to note that to use the approximation H, = 0, one must 
check that 27rr - g is not too large. For example, with pT = 1000, if 27rr - g 
is a thousand times longer than g, then 

Ha 
1000 

Hm(27rr - g )  + Hag = -1OOOg + Hag = 2H,g = Ni 
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or 

This large error (a factor of 2)  in the calculation of the magnetic field in 
the air gap due to the fact that Hm(27rr - 9 )  is not negligible. However, if 
the designer of this magnetic circuit made sure that 27rr - g = 1009, then 

5 1 0 0 9  + Hag 
1000 

Hm(27rr - 9 )  + Hag = 

= l . lHag 

resulting in 

which is not much different from (3.7) where H ,  = 0 was assumed. 
In summary, B in the air gap is the fundamental quantity of interest as 

it is the field that can produce forces on currents in wires placed in the air 
gap, or can induce voltages in wire loops, and so on. Here, Ampere’s law 

was used to find a relation between H ,  ( H  in the magnetic material) and 
Ha ( H  in the air gap). The free currents (currents in the wires) are known 
or easily measured. Assuming that the magnetic paths in the iron are not 
too long, one can use the approximation that H ,  = 0 in the magnetic 
material. Then, Ha can be found in the air gap from Ampere’s law which 
in turn is used to obtain the magnetic field in  the air gap from Ba = poHa. 

Example (Adapted from Chapman [19]) 
Following Chapman 1191, Figure 3.38 shows a setup to produce the ra- 

dial magnetic field in the air gap of a separately excited DC motor. The 
objective here is to determine the strength of the field B in the air gap in 
terms of the current i f  in the field coil. Ampere’s law gives 

H,e + Hag + H,e2 + Hag = N i f  (3.8) 

where C is the length of the path in the field iron, el is the length of the 
rotor, l 2  is the diameter of the rotor iron, and g is the air gap length. Here 
N = 200, e = 0.5 m, 9 = 5 x 1 0 - ~  m, e,  = 2.4 x 
m, and S = e l l 2  = 12 x l op4  m2. Equation (3.8) is an approximation as it 
is being assumed that H ,  is constant in magnitude everywhere inside the 
magnetic material and that it follows the path of the iron. 

m, e2 = 5 x 
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‘f 

N turns 

s = e,a, 

S=C,P, 

FIGURE 3.38. Magnetic circuit for producing the magnetic field in the air gap 
of a DC motor. Figure 3.38(a) from Electrzc Machinery Fundamentals by S .  J. 
Chapman, 2nd edition, 1991, McGraw-Hill. Reproduced by permission of Mc- 
Graw-Hill Companies. 

Assuming ideal magnetic material so that H,  is taken to be zero inside 
the magnetic materia1, 

Evaluating, 
(471. x x 200 

Ba = if = 0.25if tesla 
2 x 5 x m 

where 1 weber/m2 = 1 tesla. 
Example (Chapman [ 191) 
The previous example is redone without setting H,  = 0 in the magnetic 

material. It is still assumed that H,  is constant in magnitude everywhere 
inside the magnetic material and that it follows the path of the iron. Sup- 
pose that for the iron used in the rotor and the core of the field winding, 
the relative permeability is pT = 2000 so that Bm = prpoHm. As before, 
N = 200, C = 0.5 m, 9 = 5 x m, !I = 2.4 x lo-’ m, !, = 5 x m, 
and S = ClC2 = 12 x m2. The path ! + CZ = 55 cm is 550 times longer 
than the path 29 = 0.1 cm in the air gap. From Ampere’s law 

H,C + Hag + HmC2 + Hag = N i f .  (3.9) 

The problem here is that this is only one equation with two unknowns 
Hm, Ha. However, another relation is found by making use of the assump- 
tion (approximation) that the flux # in the cross-section of the magnetic 
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circuit is constant. That is, it is assumed that the magnetic material es- 
sentially keeps the magnetic field either in the core itself or within the air 
gap in the radial direction. This assumption is usually stated as saying the 
magnetic circuit has no (flux) leakage. In the iron core of the field, 

4 = BmS = pTp0HrnS 

where S = 

cross-section. Then 
is the core cross sectional area and B, is constant in the 

Here R, is called the reluctance of the core path and it has been used to 
relate H ,  to the flux 4. Evaluating this expression for R, gives 

50 x lop2 m A-turns 
prpoS ( 2 0 0 0 ) ( 4 ~  x 10-7)(12 x m2) Wb . 

- 
e 

= 166 x 103 ___ Rc=-- 

Because of the cylindrical shape of the rotor core and conservation of flux, 
B, (and therefore H ,  = p,poBm) is not constant as one goes through 
the rotor [see Figure 3.38(c)]. Specifically, B,RSR = B,S where SR = 

7r(e2/2)t1 is the surface area of the top (or bottom) side of the rotor core, 
B,R is the magnetic field at the surface of the rotor core and B,S is the 
flux computed in the middle of the core [which has the same cross section 
as the field core as indicated in Figure 3.38(b)]. By conservation of flux, 
H ,  in the rotor core has a minimum value at the (inside) surface of the 
rotor iron and a maximum value in the middle of the rotor on the surface 
S in Figure 3.38(b). The maximum value of H ,  in the middle of the core 
is used because it leads to a larger value for the reluctance of the core and 
therefore a more conservative (higher) estimate of the current needed to 
set up a specified magnetic field in the air gap. So, with H ,  taken as its 
value in the middle of the core on the surface S in Figure 3.38(b), in the 
rotor iron 

4 = Rr4- Hme2 Hme2 4=- .e2 HmC2 = -4 = 
4 PrpOHrnS PTPOS 

Evaluating the expression for R, gives 

5 x m A-turns 
Wb . 

e 2  - - = 16.6 103- R, = ~ 

p,poSr (2000)(4.ir x 10-7)(12 x m2) 

The flux in the air gap is Basg = poHaSg where Sg = .ir(e2/2 + g/2)el = 
19.0 cm2 is the surface area of the top (bottom) stator side of the air gap. 
Further this flux is equal to  the flux 4 = B,S = prpoH,S in the iron 
core. It then follows that 
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Then 

9 -  0.05 x 10W2 m 
= 209.4 x lo3-. A- t urns R, = - - 

poSg (47r x 10-7)(19.0 x m2) Wb 

With this information, equation (3.9) may be rewritten as 

(R, + R, + 2R,) 4 = N ZJ ' 

which evaluates to 

(166 + 16.6 + 2(209.4)) x lo3$ = 601.4 x 1034 = N i f .  

Solving for 4, one obtains 

4 = 3.3 x lOP4if Wb. 

The magnetic field in the air gap is then 

4 3.3 x 10-4 . Wb 
s, 19.0 x 10-4 m2 

B,=-= Zf = 0.17if - 

which is significantly less than the 0.25if Wb/m2 found assuming H,  = 0. 
However, suppose that the magnetic circuit is redesigned so that C = 10 
cm instead of 50 cm. Then 

R, = 
5 x m 

-- - 
e 

pTpoS (2000)(47r x 10-7)(12 x m2) 
A-turns 

Wb 
= 33.2 x 103 - 

and equation (3.9) reduces to 

(R ,  + R, + 2R,) 4 = N i f  

and evaluates to 

(33.2 + 16.6 + 2(209.4) ) x 1034 = 468.6 x 1034 = N i f .  

The flux is then 
4 = 4.23 x lOP4if Wb 

resulting in the magnetic field in the air gap being 

Wb B, = = 4.23 x Zf = 0.22if - m2 S, 19.0 x 10-4 

which is much closer to 0.25if Wb/m2 
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The point of this example is that taking H ,  = 0 in magnetic materials 
and then using Ampere’s law to find B, in the air gap depends on the 
proper design of the magnetic circuit. Machine designers spend a great 
deal of effort trying to make the reluctance in the magnetic material as 
small as possible by making the path length small, the cross sectional area 
large and using highly permeable magnetic material (i.e., pT large). Figure 
3.38 is not a practical design for the stator iron of a DC motor. Figures 1.31 
and 1.32 of Chapter 1 depict actual stator iron cores for a DC motor. It 
will be assumed in all that follows that good machine designs have resulted 
in making the approximation H ,  = 0 valid. 

3.4.3 B is Normal to the Surface of Soft Magnetic Material 

It is now shown that B is normal (perpendicular) to the surface at an 
air/magnetic-material interface under two assumptions: (1) The magnetic 
material is assumed to be ideal (soft) magnetic material so that pr  = m, or 
equivalently, H = 0. (2) There are no current carrying wires on the surface. 

For example, it is not true for toroids as wire is wrapped around surface 
of the magnetic material. Also, typically H # 0 inside a permanent magnet. 

Consider the closed rectangular-shaped curve C in Figure 3.39 for which 
half is in the air and the other half is in the magnetic material. 

FIGURE 3.39. Closed rectangular-shaped curve enclosing the air and magnetic 
material. As w + 0, HI is just above the surface and H 2  is just below the surface. 

Ampere’s law is applied to the rectangular-shaped curve C, which in this 
instance is given by 

h H . d z = O  (3.10) 

as there is no free current, that is, no wires on the surface carrying current. 
With H(z, y, z )  = H,ji + Hyf + H,Z and the coordinate system defined as 
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shown in Figure 3.39, it is seen that H,i is the part of H normal to  the 
surface while H x k  + H y y  is the tangential component to the surface. 

Expanding (3.10) results in 

1 31,Ei. de'= 12H. d+ L3H. de'+ 14H. de'+ 1 H . de'= 0 (3.11) 

where side 1-2 is in the magnetic material and side 3-4 is in the air. Sides 
2-3 and 4-1 are short segments of length w going between the air and 
magnetic material. The interest here is in the tangential component of H 
just above and just below the surface. Making the rectangular curve C very 
thin (w 4 0) so that the lengths of sides 2-3 and 4-1 go to  zero, equation 
(3.11) reduces to 

(3.12) 

as w + 0. Also, as  
d l y  side 1-2 

d= { - d l y  side 3-4 

it follows that 

r 2  

or 
H2y = Hi,. 

But H2y = 0 in ideal soft magnetic materials so that H I ,  = 0. Similarly, 
one can show that Hix  = 0 by taking a curve C that is in the x--z plane. 
That is, at the surface of the magnetic material 

H : 1 ( 5 , Y l 4  = H l z Z  

and, as this is in the air, 
+ 

B l  = POH1 = P o  H 1 ,i 

so that B is normal to the surface. 
Remark 
The magnetic circuit of Figure 3.10 has a soft iron core. Note that the 

lines of B are perpendicular at the surface of the iron core, but not at  the 
coil surface. Figures 3.7 and 3.11 of the bar and horseshoe magnets, respec- 
tively, are permanent (hard) magnets for which the above assumptions do 
not necessarily hold (in particular, H = 0 is not usually true in permanent 
magnets). For example, note that B is not perpendicular to the surface of 
the cylindrical permanent magnet shown in Figure 3.18. 

4 
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3.5 Permanent Magnets* 

Consider the cylindrical-shaped permanent magnet in Figure 3.40 where 
there is no free current. 

Z 

1 f z  

FIGURE 3.40. (2) Cylindrical coordinate system for the bar magnet. (b) Mag- 
netic field lines B around a cylindrical-shaped permanent magnet. Adapted from 
Figures 37-4(a) and 37-4(b) of Ref. [34]. 

Ampere's law applied to  the path C in the figure gives 

f I ' . ~ = J  H . ~ + J  H.& '=O 
C C,i, Cm,,,,, 

where de'= drf. + rd& + dz2 and the curve has been decomposed into its 
part in the air and its part in the magnet. As H = B/po in the air, 

Consequently, 

J H.de'<O 
G a g n e t  

in order that 

the closed curve of one of the magnetic lines of B. As a result, 

H . de'= 0. Note that the path C was chosen to  foIlow 
!C 

f H . d= f (H,i  + H&+H,i) . de'= f (H,f + El ,%) .  d 
C C c 
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as the 8 component of d i s  zero. Thus 

(HTF + H,t )  .dZ= 0. (3.13) 

Figure 3.40 shows that on Cair, dzand  H = B/po point in the same di- 
rection so that the first integral in (3.13) must be positive. As a result, 
the second integral in (3.13) must be negative meaning that on Cmagnet, 
the component of H tangent to the curve Cmagnet points opposite to d z  
In other words, in Figure 3.40, H must be pointing downwards inside the 
magnet while B is pointing upwards inside the magnet. Physically, the 2 

components of B and M are in the +i direction inside the magnet which 
means that M,  > B,/p0 as H ,  = B,/po - M,  < 0. This is in contrast to 
the air-filled solenoid coil shown in Figure 3.19(b) where B and H point in 

the same direction inside the coil and H . de = ifree # 0 as there is free 

current on the surface of the solenoid going through the closed curve C. 
Consequently, in the case of the permanent magnet, the magnetic material 
is operating in the second quadrant of the B-H curve ( B  > 0, H < 0) at 
some point strictly between points c and d in Figure 3.35(a) while the air- 
filled solenoid is operating in the first quadrant ( B  > 0, H > 0) ,  at some 
point strictly between points b and c in Figure 3.35(a). How can this be 
understood? Consider a process to  make a cylindrical magnet as shown in 
Figure 3.41. To begin, take an iron alloy such as carbon steel (used for per- 
manent magnets) and make it into an oblong shape closed solid as shown 
in Figure 3.41(a). Note that the straight segments are already "cut out" 
and will become the cylindrical magnets. Wire is wrapped around this iron 
core (like a toroid) and the current applied to the winding to magnetize the 
iron as shown in Figure 3.41(b). Assuming that the core diameter is small 
compared to  the overalilength of the core, it is a reasonable approximation 
to assume that B and H are constant in magnitude over the cross section of 
the core and that they follow the closed path around the core. As a result, 

H(2el + 2C2) = ni (3.14) 

where H is the magnitude of H in the core, el is the length of each cylinder 
and C2 is the length of each end piece. Using the setup shown in Figure 
3.41(b), the current is increased up to the saturation point of the core 
(point b in Figure 3.42) and then it is brought back down to zero (point c 
in Figure 3.42). At this point, the magnet is operating at the point c of the 
B-H curve so that H = 0 as i = 0 from equation (3.14). The winding is 
now removed and this does not affect the B- H relationship in the magnetic 
material of the core as i = 0. At each point of the core, 

I (HTF + H z t )  .d+ 
C m a g " e 1  

4 

k -  - 

(3.15) 
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- + 
that is, 

B=poM or B = p , M .  (3.16) 

Recall this same result was shown for the toroidal cylindrical core where 
B = poAm = p0M with A, = M an equivalent (bound) surface current 
density going around core periphery due to the magnetization M (magnetic 
dipole moment per unit volume). 

N total 

L- 
/- 
turns 

FIGURE 3.41. (a) Oblong shaped iron core with two cylinders cut out. (b) Wind- 
ing wrapped around the core to magnetize the iron. (c) Current is brought to zero, 
windings removed and the end pieces removed in the direction shown. (d) Two 
cylindrical-shaped permanent magnets. 

Next, as shown in Figure 3.41(c), the two end pieces of the iron core 
are pulled away in the direction shown. By pulling apart the end pieces 
in this manner, the magnetization M in each of the remaining cylindrical 
cores stays pretty much the same, i.e., the magnetic dipoles of the iron 
tend to stay aligned. However, with the end pieces removed, one would 
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not expect equation (3.15), or equivalently (3.16), to remain valid for the 
remaining cylindrical cores. For example, consider the point Q at the end of 
the cylinder shown in Figure 3.41(d), where now there is only air above the 
surface instead of magnetic material as before. The B field at any point of 
the material is due to the magnetic field produced by all of the iron atoms 
in the material, especially those atoms that are close by. Even with the iron 
uniformly magnetized with the same constant strength M everywhere, at 
the ends of the cylinder such as the point Q, one would expect that B is 
reduced (on the order of a factor of 2) as there is only air on one side of 
the surface rather than magnetized iron as before. Consequently, 

B 

PO 
H = - - M < Q  

as the value of B at the point Q is reduced after removing the two end 
pieces even if M remains the same. 

FIGURE 3.42. B versus H curve. Inside the permanent magnet, the material is 
operating at a point in the second quadrant such as P. 

Reiterating, if the magnetization M in the core remains constant and 
equal to its value before the two end pieces were removed, the H field is 
now negative in the two cylindrical bar magnets because B is reduced in 
strength due to the two end pieces being removed. Consequently, as the 
two end pieces are removed, the operating point for the magnetic material 
of the two cylindrical magnets moves down the B-H curve from c to a new 
point (say) P. The closer one is to either end of the cylindrical magnets, the 
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farther down the curve the operating point goes into the second quadrant. 
On the other hand, at the center of the cylindrical magnets, the operating 
point is closer to point c and would be exactly at point c if the cylindrical 
piece was infinitely long. 

3.5.1 Hgsteresis Loss 

Consider a steady-state situation of going around the B- H curve of Figure 
3.35(a). That is, after an initial magnetization of the material so that the 
(B, H )  coordinates are at the point b with i = I,,,, the current is decreased 
to 0 bringing the system to point c where H = 0, then the current is brought 
down to the point where the B field is zero putting the system at d, and 
next the current is brought down to -I,,, so the system is at e. Going 
from b to  e represents 1/2 of the B-H cycle as indicated in Figure 3.43(a). 

FIGURE 3.43. (a) J H d B .  (b) J H d B .  
e - d - c - b  e - f -g -b  

The other half is similar. That is, the current is brought back to 0 to 
put the system at f ,  next it is increased so that the B field is again zero 
and the system is at g and finally the current is brought back up to I,,, 
so that the system is back at b (see Figure 3.43(b)). 

At any time t ,  the flux linkage in the primary windings wound around 
the toroid core is X ( t )  = Nq5(t) = NB(t )S  where N is the total number 
of primary windings, S is the cross-sectional area of the core and B is the 
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magnetic field in the core. Further, at any time t ,  H ( t )  = N i ( t ) / ( 2 7 r r )  
where r is a radius inside the toroid. Suppose that one goes through this 
complete cycle b-c-d-e-f-g-b in the time T .  Then the energy from the 
source which is providing the current to the coil is given by 

i i d t  = 

By a change of variables, this becomes 

H d B  f Eon ,  cycle = V 
b-c-d-e-f-g-b 

where V = 27rrS is the volume of the core. In the first half period T/2, the 
energy provided by the source is 

H d B  is the area indicated in Figure 3.43(a). Similarly, s e-d-c-b 
where 

&3econd half-cycle/unit volume = 1 H d B  
e-f-g-b 

which is the area indicated in Figure 3.43(b). The total energy absorbed 
per cycle is then 

H d B  Ecycleluni t -volume 1 H d B - 1  

which is just the area inside the B-H curve. This is the energy required 
for each cycle to magnetize (align the dipole moments of) the iron along 
the B-H curve (i.e., rotate the magnetic dipole moments 360"). 

As an example, consider the iron core inside the rotor of a DC motor 
which is constantly being magnetized and demagnetized as it rotates by the 
external magnetic field. For example, the point P in Figure 3.44 corresponds 
to the point b in Figure 3.35. After the iron core rotates clockwise 90 
degrees, the magnetic material at point P corresponds to the point d in 
Figure 3.43. After rotating another 90 degrees, the magnetic material at 
point P corresponds to point e in Figure 3.43, and so on. That is, the 
magnetic material at each point in the core is going through a complete 
cycle of the B-H curve each time the core rotates 360 degrees. In this 
application, it is important that the core be made of soft magnetic material 
with a very narrow B-H loop so that the hysteresis loss is small. 

f H d B  = 
e-d -c-b b-c-d-e-f-g-b e-f-g-b 
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S 
w N /y 

B=-Bf B=Bf  

FIGURE 3.44. The magnetic material of the rotor goes through the B-H curve 
as it rotates. 

3.5.2 Common Magnetic Materials 

Both soft and hard magnetic materials are used in electric machines. Soft 
magnetic materials are used as a core structure on which the turns (wind- 
ings) of the motor are wound (e.g., such as the field circuit of a separately 
excited DC motor). In such an application, the copper wire of the field 
winding is wrapped around soft magnetic material, which then results in a 
much larger radial magnetic field in the air gap than if nonmagnetic mater- 
ial was used. The most common material for the core in an electric machine 
is an iron-silicon alloy (silicon steel) which contains between 1% and 4% 
silicon [56]. The relative permeability p, of silicon steel ranges from 400 
to 800 [5617 which seems low compared to the gauge steel and iron casting 
steel of Figure 3.36. However, its low, good mechanical strength and a high 
Curie Point' of 740" C makes it an attractive material [56] and provides 
a challenge to the machine designer to have short paths for the magnetic 
field in the iron. It turns out that by special processing, some 4% silicon 
steels can have a relative permeability 5.5 times greater than the 800 quoted 
above, that is, up to 4400 [56]. 

alloys for the hard magnetic material which has a rather high cost [56]. As 
a consequence, it is usually bonded to the surface of rotor which is made 
of soft magnetic material. The rare-earth cobalt alloys have a remanent 
(permanent) magnetic field between 0.75 and 1.1 tesla, are very hard to 
demagnetize and have a high Curie temperature [56]. 

Small permanent magnet synchronous machines often use rare-earth cobalt 

'Reference [56] gives the permeability range as 5 to 10 kilogauss/oersted = 0.5 x lo4 
to 1.0 x lo4 gauss/( 103ampere/meter) = 0.5 x low3 to 1.0 x low3 telsa/(ampere/meter). 
The relative permeability is found by dividing through by po = 47~  x lo-' henry/meter 
giving 400 to 800. 

sThis is the temperature at which the material loses it magnetic properties. 
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Problems 

Problem 1 Azimuthal Magnetic Field of a Circular Current Loop 
Consider the circular current loop shown in Figure 3.45. Using symmetry 

arguments and Ampere’s law, show that the azimuthal component Bee of 
B must be zero everywhere. 

Y 
I 

FIGURE 3.45. Circular loop carrying the current i. 

Problem 2 Ampere’s Law [35] 
(a) Figure 3.46 shows a long straight conductor carrying a current I .  The 

current is uniformly distributed across the cross section so that the current 
i enclosed within a circle of radius r is 

Use Ampere’s law to find the magnetic field B inside the conductor 

(a) (b) 

FIGURE 3.46. Long straight wire. (a) Cross-sectional view. (b) Perspective view. 
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(b) A cylindrical conductor with an o f  axis cylindrical hole carries a total 
current I .  Find the magnetic field in the cylindrical hole. [Hint: Use part 
(a) and superposition.] 

FIGURE 3.47. Conductor with a hollowed cylindrical core. (a) Cross-sectional 
view. (b) Perspective view. 

Problem 3 Radial Magnetic Field of a Long Straight Wire 
Apply conservation of f lux to the cylindrical-shaped f lux surface shown 

in Figure 3.48 to show that BT(r) = 0 for an infinitely long straight wire. 
Denote by  R the radii of the disk-shaped surfaces S1,S2 and let C denote 
the length of the cylindrical-shaped surface S,. 

FIGURE 3.48. Closed flux surface used to show B, = 0 around a n  infinitely long 
straight wire carrying a current. 

Problem 4 Radial Magnetic Field of an Ideal Solenoid 
Use some symmetry arguments when applying Gauss’s law to the closed 

surface shown in Figure 3.49 whose sides are Sl,S2, and Ss to show that 
the radial component of B must be zero inside an infinitely long solenoidal 
coil. Denote by R the radii of the disk-shaped surfaces S1 and S2, and let C 
denote the length of the cylindrical-shaped surface S,. 

Using a similar argument, show that the radial component of B outside 
of an infinitely long solenoidal coil must also be zero. 
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FIGURE 3.49. Using Gauss’s law to show B, = 0 inside an ideal solenoid. 

Problem 5 Azimuthal Magnetic Field of an Ideal Solenoid 
Apply Amp&re’s law to the curves C3,C5 of Figure 3.27 to show that 

Bo(r) 5 0 inside the solenoid and Bo(r) = p 0 i / ( 2 ~ r )  outside the cylinder. 

Problem 6 Magnetic Field in an Ideal Toroidal Coil 
(a) I n  Figure 3.50, apply Ampere’s law to the circular curve C and 

Gauss’s law to the closed surface S whose sides are Sl,Sz, and S3 to show 
that B only has a nonzero azimuthal component inside the toroidal coil, 
that is, the lines of B are concentric circles inside the toroid coil. (Hint: 
Let B = B,F+ B,++ Bo6 using the “toroidal” coordinate system of Figure 
3.50 and show that B, = B, = 0.) 

(b)  Show that the azimuthal component of B must be zero outside the 
toroidal coil. 

FIGURE 3.50. (a) “Toroidal” coordinate system. 6 is into the page. (b) Curve and 
surface for Ampere’s and Gauss’s law, respectively, to show that B, = B, = 0. 

Problem 7 Equations of the Ideal Transformer from Ampere’s Law 
Consider an ideal transformer in  Figure 3.51 consisting of two sets of 

turns wound on a single iron core. Assuming ideal soft magnetic material 
(H = 0 in the iron), NI turns in phase 1, and Nz turns in  phase 2, apply 
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Arnpgre’s law to a closed path C in the core of the iron to show that 

N 2 .  
Nl 

21 = --22. 

Use this result and conservation of power vlil + 11222 = 0 (assuming there 
are no losses) to show that 

N ,  : N2 

FIGURE 3.51. Derivation of the ideal transformer equation using AmpGre’s law. 
Adapted from Figure 20.12 of Kassakian et al. [57]. 

Problem 8 Equations of the Ideal Transformer from Faraday’s Law 
Consider an ideal transformer as shown in Figure 3.52 consisting of two 

sets of turns wound on a single iron core. Assume ideal sofl magnetic ma- 
terial (H = 0 in the iron), N1 turns in phase 1 and Nz turns in phase 2. 
Let 4 be the flux in any cross section of the iron core. 

(a) Compute using the normal iil in the turns of phase 1, that is, 

with d S  = dSii1 and the corresponding flux linkage XI = N14. What is  the 
sign convention for the induced voltage -dX1 l d t  ? That is, i f  

will it attempt to force current in the positive direction of il or the negative 
direction? 
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(b) Use Gauss’s law with the iron core defining a flux tube to explain why 
4, as computed in part (a), can also be computed using the normal i i 2  to 
obtain the same value. 

(c)  Use the fact that by Faraday’s law, v1 = -dXl/dt,v2 = -dX2/dt to 
show that 

Nl 
N2 

211 = -212. 

(d) Use this result and vlil + v2i2 = 0 (assuming there are no losses) to 
show that 

N 2 .  
Nl 

21 = --Q. 

N,  : N2 
i, + 

v2 

+ i2 

FIGURE 3.52. Derivation of the ideal transformer equations using Faraday’s law. 
Adapted from Figure 20.12 of Kassakian et al. [57]. 

Problem 9 Magnetizing Inductance in the Transformer Model [25] [57] 
Consider the transformer in Figure 3.53 to be non ideal in the sense that 

H is not zero in the iron; that is, assume that pr is large, but finite. It is 
still assumed that the magnetic fields B and H are confined to the core, 
follow the path of the core, and are constant in magnitude in the core. 

(a) With a current in phase 1, but phase 2 open-circuited, apply Ampere’s 
law to the curve C and use this to show that the magnetic field in the core 
is given by 

B = prpLoH = w N l i m  (phase 2 open-circuited) (3.17) 
& 

where i, is  the current in phase 1 with phase 2 open circuited, C, is the 
length of the path C and pr  is the relative permeability of the iron in the 
core. Of course the length & is  different in value for different paths. For this 
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approximate analysis, one just takes l ,  to be some average length around 
the core. 

(b) Show that the flux 4 in the core is given by  

(3.18) 

i, + 

v2 

N ,  : N2 i L  

FIGURE 3.53. Magnetizing inductance L,  for a transformer. 

By the assumption that the magnetic fields B and H are confined to the 
core and follow the path of the core, this flux is the same everywhere in the 
core. The flux linkage in phase 1 is 

t%t% N2 i X i  = N14 = - 1 m = Lmi, & 

This current i, (with phase 2 open-circuited) is called the magnetizing cur- 
rent and is the current required to produce the magnetic field B (by align- 
ing/magnetizing the dipole moments of the iron atoms) given in equation 
(3.17) an,d the corresponding flux 4 in the core as given an equation (3.18). 
L,  k? prpONfS / l ,  is called the magnetizing inductance and the equivalent 
circuit for a transformer with a finite pr is shown in Figure 3.53(b). 

(c) By Faraday's law, the f lux in the iron core and the applied voltage 
are related by  

or 

ul(r)dr. 
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That is, the flux 4 in the core is completely determined by the applied 
voltage to the phase. Consider now that phase 2 has a load (e.g., a resistor) 
attached to it so i 2  is nonzero and apply the same voltage as before to phase 
1. Explain why the total flux is  now 

4:- pTpos (Nlil  + N & ) .  
& 

(d) Decompose the current il as il = i ,  + ii where i ,  is  the (magnetizing) 
current with phase 2 open and ii is  the additional current in phase 1 when 
phase 2 is not an open circuit. The flux can then be written as 

# I -  pTpos ( N l i ,  + N1ii + N2i2) 
4 

As the flux depends only on  the applied voltage v1, explain why 

N1ii + N2i2 E 0 

is  always true. 
(e)  Explain why it is  still true with finite pr that 

(f) Show that in an ideal transformer, the flux 4 = 0.  How does this 
affect the derivation in problem 82 

Remark The effect of finite p, in a transformer is accounted for  in the 
equivalent circuit model by the addition of an inductor with inductance L ,  
in parallel with the ideal transformer. Note that as pT --f 03, L,  + 03, 

that is, it becomes an infinite impedance and the circuit reduces to the ideal 
case with il = ii. Note that in the ideal transformer with phase 2 open, 
applying a voltage u1 to phase 1 would result in il also being zero; that is, 
phase 1 would behave as open circuit due to the magnetic coupling of the 
two phases. I n  this nonideal case with phase 2 open, after applying a voltage 
v1, there is a nonzero current i ,  in phase 1 which satisfies v1 = L,di,/dt. 

Problem 10 B- H Curve 
Explain how a transformer can be used to experimentally determine the 

B-H curve of its iron core, i.e., the core is never perfectly ideal soft mag- 
netic material and therefore has a hysteresis curve to be measured. 

Problem 11 Magnetic Force [35] 
Consider the electromagnetic crane drawn in Figure 3.54. Figure 3.54 (a) 

shows the movable piece a distance x below the electromagnet. The cur- 
rent in the wire magnetizes the iron core i t  is wrapped about to produce a 
magnetic field which crosses the air gaps to magnetize the movable piece 
attracting i t  to the electromagnet. Let the iron have permeability pT, the 
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cross section have area S = ell,, the number of turns of the coil be N ,  
the path length of the closed curve C in Figure 3.54(a) be k‘+ 22 and in 
Figure 3.54(b). I t  i s  assumed that B and H are both constant in the iron 
and (a different) constant in the air gap and that these fields are contained 
within the iron and air gaps. Compute the force of the electromagnet on  the 
moveable piece by doing the following: 

(a) Use Ampgre’s law to compute the magnetic field B in the core (which 
is  equal to the magnetic field strength in the air gap for  small x )  as a 
function of the current i in the winding. 

1 c 

X 

L 

FIGURE 3.54. Electromagnet exerting a force on a rectangular-shaped iron block. 

(b) Use the answer of part (a) to show that the f lux linkage of the winding 
is  

where 

(c)  With x held constant, compute the energy W required to bring the 
current from 0 to I ;  that is, compute 

t d X  
W ( x , I )  = iz = 1 idX. 

This energy from the source current is stored as magnetic energy in the 
iron core and the air gaps. 

(d) With the current held constant at I ,  i f  the moveable piece moves by 
the force of attraction from x to 0 (so the change in position is -x), the 
energy goes from W ( x ,  I )  to W ( 0 ,  I ) .  The change in energy equals the work 
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done, that is, with x small 

x (-x) = W ( x , I )  - W ( 0 , I ) .  ( Fl,=o) 
Use this to show that the force of attraction at x = 0 in Figure 3.54(b) is  

= - ”’zl I )  li constant 

(e)  With the bar at the location x and the current in the winding given 
by i ,  explain why the force is  given by 

d W ( x ,  2 )  
F ( x , i )  = - 

dX 

even if the current is changing in time. That is, holding the current constant 
was only required fo r  the derivation of the expression for the force. (Note 

that the notation “I constant” in --I is redundant as the 

partial derivative d/dx means to take the derivative with the other variable 
held constant.) 

Problem 12 Relative Permeability 
Consider a permanent magnet which is  placed in another (external) mag- 

netic field. Explain that, as f a r  as this external magnetic field’s effect on 
the permanent magnet, one can take pLT = 1 in the permanent magnet. 

I constant 
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With the preliminary material presented in the first three chapters, the 
remaining chapters cover the modeling and control of AC machines. How- 
ever, before embarking on this odyssey, an elementary notion of how AC 
machines operate is first presented. This will hopefully help the reader to 
understand the overall picture as he/she goes through the detailed analysis 
in the remaining chapters. 

Induction Motor 
The goal here is to  give an elementary idea of how an induction motor 
works. First, the construction of a simple two-phase machine is described. 
This is followed by explaining how a radially directed rotating magnetic 
field is set up in the air gap by the stator currents and how this rotating 
field induces currents in the rotor loops. Finally, it is described how this 
same rotating magnetic field produces torque of on the current it induces. 

Construction of the Induction Motor 

To begin, the construction of a simplistic model of a two-phase induction 
motor is described. 

Figure 11.1 (a) shows a half-cylindrical-shaped loop, which is wound around 
a cylindrical-shaped iron core, and denoted as loop a. A second identical 
loop, denoted as loop b, is then wound 90 degrees from loop a as shown 
in Figure II.l(b). The currents in loops a and b are denoted as i ~ ~ , i ~ b ,  

respectively. The two loops are electrically isolated. 
In Figure 11.1, the notation @ means that if i > 0, the current is coming 

out of the page while @ means that if i > 0, then the current is going into 
the page. 

(a) (b) 
Figure 11.1. Rotor of an induction motor. 

The stator is constructed similarly. Figure II.2(a) shows stator loop a 
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that has a half-cylindrical shape and is wound on the inside surface of the 
stator iron. However, as shown in Figure 11.2(a), it also has a voltage source 
connected. Similarly, Figure II.2(b) shows that stator loop b is identical in 
form to stator loop a,  but is wound 90 degrees from loop a. The applied 
voltages are denoted as usa, U S b  and the corresponding currents are denoted 
as isa, i S b ,  respectively. These two loops are electrically isolated. 

(4 (b) 
Figure 11.2. Induction motor stator. (a) Stator loop a. (b) Stator loop b. 

Combining Figures 11.1 and 11.2, a simple two-phase induction motor is 
illustrated in Figure 11.3. The position of the rotor is located by a line per- 
pendicular to rotor loop a as shown in Figure 11.3. 

Figure 11.3. 

Rotor loop a 

Rotor loop b 

Cross-sectional view of a simple two-phase induction motor. 



238 Part I1 AC Machine Theory 

Rotating Magnetic Field 

Figure II.4(a) shows that the magnetic field in the air gap produced by 
is, > 0 (with i S b  = 0) is radially out on the right-hand side and radially in 
on the left-hand side. Figure II.4(b) shows that the directions are simply 
reversed for is, < 0. 

a a 

/ a' \ 

Figure 11.4. Magnetic field distribution produced by isa. 

Similarly, Figure II.5(a) shows that the magnetic field in the air gap pro- 
duced by i S b  > 0 (with isa = 0) is radially out on the tophalf side of the 
air gap and radially in on the bottom-half side of the air gap. The direc- 
tions are simply reversed for i S b  < 0. 

b b'b b' 

(a) (b) 'sbc0 

Figure 11.5. Magnetic field distribution produced by z s b .  
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Combing the magnetic fields of stator loops a and b, a rotating magnetic 
field is created in the air gap by choosing 

This is illustrated in Figure 11.6, which shows the total magnetic field Bs 
due to both is, and isb. 

a a 

a 

b b 

/ a' \ 
(c) w t=lr/2 

isa=O,i Sb =Is 
S 

b b 

a' 

(b) mst=xl4 

'sa . =Is /a, isb =Is /a 
a 

b b - 
=-Is I&, isb =-Is I& 

(d) Ost = h / 4  

'sa . 

Figure 11.6. Rotating magnetic field. 
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Induced Rotor Currents 

The rotating magnetic field Bs produced by the stator currents produces 
a changing flux in each of the rotor phases. By Faraday’s law, voltages 
and hence currents, are produced in the rotor phases. This is illustrated 
in Figure 11.7 showing the rotation of the stator magnetic field past rotor 
loop a (rotor loop b is not shown for clarity). As it rotates past rotor loop 
a ,  the changing flux in the loop produces an emf, which in turn produces 
the current i ~ ~ .  

a a 

b b b  b 

(a) w S t=O (b) wst = d 4  

a a 

a‘ 

(c) wst = X I 2  
I 

(d) Ust=3X/4 

Figure 11.7. The changing flux in rotor phase a due to the rotating 
magnetic field of the stator. Rotor phase b is not shown. 
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Torque 

Recall that from the magnetic force law, the force on side a of rotor loop a 
is given by 

Fside a = iRaelBS 

where el is the length of the rotor. By the right-hand rule, this force has 
the direction shown in Figure 11.8. The torque on this rotor loop is then 

where e2/2  is the radius of the rotor. Similarly, the forces on sides a', b, 
and b' can be computed and are shown in Figure 11.8. With the currents 
in the rotor phases as shown in Figure 11.8, the magnetic force law shows 
that the sides of each rotor loop have a tangential force pushing the rotor 
in the counterclockwise direction.' That is, there is a torque on the rotor, 
causing it to turn. 

Figure 11.8. Torque in an induction motor. 

Slip 

w s  is the angular speed of the stator's rotating magnetic field and W R  is 
the rotor speed. The slip speed is defined as 

A wslip 1 w s  - WR. 

It turns out that positive torque production requires w s  > W R ,  while to 
obtain negative torque ws < W R  and no torque is produced if w s  = WR.  

'That the currents in the rotor loops are in the directions indicated in the figure can 
only be proven using the analysis developed in later chapters. 
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That is, wslip 4 ws - W R  # 0 when producing torque. The induction motor 
is said to operate asynchronously since the rotor angular speed W R  is not 
the same as the angular speed w s  (ws # W R )  of the stator's rotating mag- 
netic field when producing torque. The fact that the slip must be nonzero 
to get torque is easily explained. Consider the situation shown in Figure 
11.9 where wslip = 0 or ws = WR. As Figure 11.9 shows, the flux in the 
rotor loop does not change and consequently there is no induced voltage 
nor current in the rotor loop and, therefore, no torque is produced. 

a a 

b b 

/ a' \ 

(a) w t = O  S 
(b) Wst =XI4 

a a 

b b' b b 

(c)  lost = X I 2  (d) Wst = 3x14 

Figure 11.9. No changing flux in the rotor loop if ws = W R .  (Rotor loop b 
not shown for clarity.) 
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Summary 

Summarizing, the induction motor works as follows: 

A rotating radially directed magnetic field BS is set up in the air gap 
between the rotor and stator iron by the stator currents isa, zSb. 

0 This rotating magnetic field produces a changing flux in the rotor 
loops (phases). 

By Faraday’s law, voltages, and hence currents, are induced in the 

0 This same magnetic field BS that induced the currents in the rotor 

rotor loops. 

loops produces a torque on them. 

Permanent Magnet Synchronous Motor 
The principle of operation of a synchronous machine is illustrated in Figure 
11.10, which shows two permanent magnets rotating on different axles. The 
“stator” permanent magnet is rotated at angular speed ws by mechanically 
turning it on its axle. As it rotates, its north end attracts the south end 
of the rotor permanent magnet to turn it on its axle. Consequently, they 
rotate together at the same speed (i.e., W R  = w s )  so that their speeds are 
synchronized. 

Stator rnaanet 

Figure 11.10. Two permanent magnets rotating on different axles. 

It was shown above that the stator of an induction motor can produce a 
rotating magnetic field. To make a synchronous motor, one simply removes 
the rotor from the induction motor and replaces it with a permanent mag- 
net rotor as shown in Figure 11.11. As in the case of the induction motor, 
the stator currents isa, isb produce a rotating magnetic field. This rotating 
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magnetic field then pulls the rotor magnet along with it at the same angu- 
lar speed. That is, ws = W R  so that the rotor itself and the stator magnetic 
field rotate together synchronously. 

a a 

b b b  b 

(a) wst = 0 (b) wst = ~ l 4  

a a 

a' 

(c) wst = X I 2  

Figure 11.11. The permanent magnet rotor is pulled by the rotating 
magnetic field of the stator. (a) i s a  = I s ,  i s b  = 0. (b) i s a  = I s / f i ,  
iSb = Is/fi. (C) is, 1 0, iSb = 1s- (d) ZSa = - I s / a ,  i S b  = Is/&. 



Rotating Magnetic Fields 
The production of a rotating radially directed magnetic field in the air gap 
by the stator currents is fundamental to the operation of both induction 
motors and synchronous motors. - Using the assumption of ideal magnetic 
materials (i.e., materials where H = 0) ,  expressions for the radial magnetic 
field distribution in the air gap of AC machines due to  the currents in the 
stator phases are found. Specifically, a two-phase machine is considered. It 
is shown that if the stator phases are sinusoidally wound and 90" apart 
from each other and, with the stator currents given by isa = Iscos(wst) 
and isa = Iscos(wst), the result is a rotating radial magnetic field that 
is sinusoidally distributed in space. Finally, expressions for the azimuthal 
magnetic field as well as the axial electric field in the air gap are also found. 

4.1 Distributed Windings 

Before embarking on how a rotating magnetic field is produced, the geo- 
metric structure of the windings (loops/turns) on the rotor and stator iron 
are described. To do so, consider Figure 4.1(a), which shows a cylindrical 
iron rotor core with six slots in it. A single length of wire is wound around 
the core forming three rotor loops to make up a phase winding. The top 
three slots are at 0 = n/3, 0 = n/2, and 0 = 2 ~ 1 3 ,  and the bottom three 
slots are at 0 = 4 ~ 1 3 ,  0 = 371-12, and 0 = 5x13. 

In more detail, starting with a single wire, the first loop of the phase is 
wound starting in the bottom leftmost slot at the point a in Figure 4.l(a) 
and then follows a semicircular path in the counterclockwise direction to 
the rightmost top slot. From there, the wire goes down the length of the 
cylinder to the back side and then follows another semicircular path in the 
clockwise direction to the back side of the leftmost bottom slot. Next, the 
wire is brought up the length of the iron to the front side to the point b 
in the figure. The wire from point a to point b makes up the first loop (or 
turn or winding) of the phase. Continuing, the wire is extended to point c 
to start the second loop. As shown in Figure 4.l(b), the second loop goes 
from point c to point d, making a half-cylindrical-shaped loop in the top 
and bottom slots. Finally, the wire is extended from point d to  point e to 
start the third loop. The third loop goes from point e to point f ;ts shown 
in Figure 4.l(c). As stated above, the single piece of wire (consisting of 
three loops in this example) is referred to as a phase winding or simply 
phase. 
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FIGURE 4.1. Distributed phase winding consisting of three loops. (a) First loop 
of the phase winding from a to b. (b) Second loop of the phase winding from c 
to d. (c) Third loop of the phase winding from e to f .  (d) Cross-sectional view 
of the rotor phase winding. All three of these half-cylindrical surfaces have the 
same radii. They are drawn with different radii in the figure so that the reader 
can tell them apart. Drawn by Bret Wilfong. 

This is called a distributed phase winding because the loops making up 
the phase winding are not all in a single pair of slots, but rather, they are 
distributed over three pairs of slots. The semi-circular sides of each loop 
are referred to as end turns. 
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Figure 4.l(c) shows that the two ends of the phase (points a and f) are 
connected to a voltage source, which, if positive, will force current UP out 
of the top sides of the loop and down the bottom side of the loops. This 
sign convention for the current is also illustrated in Figure 4.l(d), which 
is a cross section of the rotor. The cross-sectional view of Figure 4.l(d) 
is the standard way to represent a phase winding. Figure 4.3(a) shows a 
cross-sectional view of a single phase similar to Figure 4.l(d) except that 
two loops are now wound in the middle slots rather than just one loop as 
in Figure 4.1(b). 

Figure 4.2 illustrates how electrical power can be brought into the rotor of 
4.1. The slip rings 1 and 2 are made of conducting material and are rigidly 
connected to the rotor. As the rotor turns, they make sliding contact with 
(slip against) the brushes bl and ba, which are fixed in space. Slip ring 1 is 
also electrically connected to a wire conductor that goes through slip ring 
2 (and is electrically isolated from slip ring 2) and is connected to point f 
in Figure 4.l(c). Slip ring 1 is electrically connected to a wire conductor 
which is connected to point a in Figure 4.l(c). In this way, voltage and 
current can be supplied to the rotor from an outside power source. 

Electrical contact 
with slip ring 2 > From a 

0 Slip ring 1 

FIGURE 4.2. A set of brushes and slip rings can be used to bring electrical power 
to the rotor winding. 

A distributed stator phase winding is wound in similar fashion as the 
distributed rotor winding of Figure 4.1. In the case of the stator winding, 
the loops of the phase are wound on the inside surface of the stator as shown 
in Figure 4.3(b). The simple single stator phase of Figure 4.3(b) consists 
of four turns (loops/windings). Specifically, this phase winding is made by 
winding a single wire around the inside of the stator iron once at 0 = 7r/3 
(with the other side of the loop at 47r/3), then twice at 0 = 7r/2 (with the 
other side of the loop at 3 ~ / 2 ) ,  and finally once more at 0 = 2 ~ / 3  (with 
the other side at 57r/3). The radial air gap distance is denoted as g and an 



248 4. Rotating Magnetic Fields 

arbitrary point is located using the polar coordinates (T ,  6 )  as shown. 

FIGURE 4.3. (a) Distributed rotor phase winding with two loops in the middle 
slot. (b) Distributed stator phase winding with two loops in the middle slots. 

There are other ways to distribute the windings of a phase such as shown 
in Figure 4.4. Figure 4.4(a) shows a distributed rotor phase winding with 
one side of a loop at 6 = 77-16 (the other side of the loop at 7 ~ / 6 ) ~  two loop 
sides at 6 = ~ / 3  (with the other sides at 4 ~ 1 3 ) ~  three loop sides at 8 = 77-12 
(with the other sides at 3 ~ / 2 ) ,  two loops at 6 = 2 1 ~ 1 3  (with the other sides 
at 577-13) and one loop side at 6 = 5 ~ 1 6  (with the other side at 1177-16). 
Figure 4.4(b) shows a similar winding on the stator. 

FIGURE 4.4. (a) Distributed rotor winding. (b) Distributed stator winding. 
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4.2 Approximate Sinusoidally Distributed B Field 

The goal here is to compute the radial magnetic field B established in 
the air gap by the current in a distributed winding. To do so, Ampere’s 

law j H  . de‘= ienclosed is the key tool that is used. However, to obtain 

a nice elegant expression for the magnetic field B using Ampere’s law, an 
additional assumption is required. This assumption is that the wires loops 
in a phase winding have an infinitesimal cross-sectional area; that is, the 
wire has length, but its cross-sectional area is infinitesimal. To emphasize 
this, Figure 4.3(a) is redrawn in Figure 4.5(a) to indicate that the wire 
has no width. The two @ are drawn at the top middle slot while only one 
@ is drawn at  either side to indicate that the middle slot has twice as 
many windings (loops) as either of the other two slots. Similarly, the stator 
winding of Figure 4.3(b) is redrawn in Figure 4.5(b). 

FIGURE 4.5. (a) This is Figure 4.3(a) redrawn to show that the wire has no 
width. (b) This is Figure 4.3(b) redrawn to show that the wire has no width. 

However, even Figure 4.5 does not quite capture what it means for the 
wire to have a cross-sectional area that is infinitesimal in size because the 
slots should not have any depth. So, Figure 4.5 is redrawn in Figure 4.6 to 
illustrate that the depth of the slots are also infinitesimal. 

To be consistent with the literature, Figures 4.l(d), 4.3, and 4.4 will 
be used for illustration, but it is to be understood that the standing as- 
sumption is that the wires loops in a phase winding have an infinitesimally 
small cross-sectional area so that the reader should think of Figure 4.6 in 
the derivations that follow. 
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FIGURE 4.6. This is Figures 4.5(a) and 4.5(b) redrawn to show the slots have 
no depth. 

The problem of computing the radial magnetic field established in the air 
gap by the current in a distributed winding is now considered. To fix ideas, 
the distributed winding shown in Figure 4.3(b) [or equivalently, Figure 
4.6(b)] is used. This winding is redrawn in Figure 4.7 where it is now 
denoted as phase a and the current in it is denoted as is,. 

(out of page) 

FIGURE 4.7. Use of Amp6re’s law to determine the radial magnetic field in the 
airgap due to the current isa in stator phase a. 

To compute the radial magnetic field BS, in the air gap produced by is,, 

= &,closed is applied to the closed path 1-2-3-4-1 
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shown in Figure 4.7. The assumption that the wire has an infinitesimal 
cross section means that the sides of the copper loops lie just at the inside 
surface of the stator iron. In particular, this assumption allows one to  take 
the points 1 ,2 ,3 ,4  on the path to all be just inside the magnetic material 
at the air gap/iron interface and still have the closed-path 1-2-3-4-1 
enclose any current in the loop sides between 0 and 0. Further, computing 

H . dcacross any (infinitesimally thin) wire is then equal to zero.’ With 
H = 0 in the iron and g the air gap length, it follows that 

In this derivation, it was assumed that Hs, is constant across the air gap, 
that is, Hsa does not depend on the radial distance r in the air gap. The 
enclosed current &closed between 0 and 0 inside the curve 1-2-3-4-1 of 
Figure 4.7 is given by 

Zenclosed = 

and is plotted in Figure 4.8. 

0 for 0 5 0 5 7r/3 
is, for ~ / 3  5 0 5 1~12 
3isa for ~ / 2  5 0 5 2 ~ / 3  
4isa for 2 ~ / 3  5 0 5 4 ~ / 3  
3isa for 4x13 5 0 5 3x12 
is, for 3 ~ / 2  5 0 5 5 ~ 1 3  

, 0 for 5 ~ 1 3  5 0 5 27r 

’This assumption does not appear to be realistic especially in the above figure. Copper 
is not a magnetic material so H # 0 inside. The_ assEmption of an “infinitesimal cross 
section” for the wire allows one to still take J H .  de = 0 across the wire as its cross- 
sectional area is infinitesmal. Although on the face of it this assumption may not seem 
reasonable, it does lead to a model that  is not only reasonable, but quite good. Again, 
the reader is encouraged to think of Figure 4.6(b) in this derivation and all that  follow. 
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'enclosed 

i + L Z L e  
4 i ~ a  
3 i ~ a  

'Sa 

0 n / 6  n I 3  xI2 & I 3  5n16 n 7x16 4x13 3 ~ 1 2 5 ~ ~ 1 3  1h16 22 

FIGURE 4.8. ienclosed versus 0. 

The magnetic intensity is then 

ienclosed (0) 
Hsu(8) = H s a ( 0 )  - 

where Hs,(O) on the right-hand side must still be determined. 
To compute Hs,(O), the conservation of flux law is used. Consider a 

closed cylindrical flux surface whose cylindrical surface is in the air gap and 
whose disk shaped ends ju5t containJhe rotor iron as shown in Figure 4.9. 
Since this surface is in air, Bsa = p0Hsa on the surface. On the disk-shaped 
surfaces at the each end of the cylinder, Bs, = 0, while on the cylindrical- 
shaped part of the surface, Bs, = Bsa? = po ( H s ~ ( 0 )  ~ ienc,osed(e) /g)  ?- 
Conservation of flux gives 

j B - d g =  l1 12a (Bsa(6)?) (rdfldzf;) = TJ?, A Bsu(0)dQ = 0 
2a 

or, substituting in the above expression for BSa(0), one finds 

FIGURE 4.9. A closed flux surface in the air gap which contains the rotor. 
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Rearranging 

BSa(6 )  versus 6 is plotted in Figure 4.10. 

Poisa / g  - 

- P i  / g - -  2 0 
I 
I 

I 

0 So 
- 2 p i  l g - -  

0 sa 3 3 -  - 3  
2 2 

FIGURE 4.10. Magnetic field Bs,(B) versus 6 due to the current in phase a of a 
two-phase machine. 

Expanding Bsa(6) in a Fourier series, one obtains (see problem 3) 

= p O b A  (1.866cos(6) - 0.333cos3(6) +O.O268cos(58) 
g "  

- 0.0191 cos (76) + . . . ) . (4.3) 

To a first approximation, the radial magnetic field distribution Bsa(6) may 
be approximated by its first harmonic as 

(4.4) 
Bsa(6)  = Bsa(6)? M 1 .866~~- -  isa 4 cos(6)P 

g "  
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which is a sinusoidal distribution in 8. 
A similar procedure can be applied to the stator winding in Figure 4.4(b), 

resulting in a radial magnetic field distribution in the air gap as given in 
Figure 4.11 (see problem 4). 

1 1 1 I I  I 1  
I 1  I I t e  

-x12 -n13-n/6 0 x I 6  nl3 2nI3 5x16 n 7x16 4x13 5x13 1 h 1 6  2n 

FIGURE 4.11. Radial magnetic field B.9,(6) in the air gap for the distributed 
winding of Figure 4.4(b). 

4.2.1 

Consider the closed flux surface in the air gap shown in Figure 4.12. This 
closed surface is composed of two concentric cylindrical-shaped surfaces Sl 
and S2 and four other planar sides 5’3, Sq, S5, and Ss as illustrated in Figure 
4.12. The surface normal on the closed surface is given by 

Conservation of Flux and l l r  Dependence 

+ 
d S  = 

- q d B d z t  for 5’1 

r zd6dz f  for Sz 
d r d z e  for S3 

rd8dr f  for 5’4 

-drdze  for S:, 
-rd8dri? for SS 

As B is taken to have only a radial component, B . d S  = 0 on the surfaces 
S3, S4, S5, S6 as B is perpendicular (normal) to d S  on these surfaces. Con- 
sequently, ss, B . d S  = ss, B . d S  = ss, B . d g  = ss, B . d S  = 0. In this 

- . -  
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case, conservation of flux gives 

p . dS = s,, B .  d S +  s,, B .  dS = 0 

FIGURE 4.12. Closed flux surface to show the 1/r dependence of the magnetic 
field in the air gap. 

As r1 # 7-2, conservation of flux does not hold. The problem here is that 
the magnetic field Bs, was assumed to be constant as a function of r across 
the air gap in deriving (4.2) [and therefore, in deriving (4.3) and (4.4)] when 
in fact it must vary as 1/r to  satisfy the conservation of flux law. That is, 

with T R  the radius of the rotor, replace Bsa(6) by Bsa(r,6) = -Bs,(6) 

in (4.5) and $ B . dS = 0 will then hold. The expression for the magnetic 
field is now 

A rR 

r 

Similarly, the expressions (4.3) and (4.4) are multiplied by the factor rR/r. 
The air gap g is assumed to  be small so that 

_ -  - 1 for T R  I r I rs = rR + g .  T R  

T 



256 4. Rotating Magnetic Fields 

Consequently, the factor r R / r  does not really change the value of the mag- 
netic field in the air gap.2 However, it is straightforward to see that this 
expression for Bsu(r, 8) satisfies conservation of flux for the closed surface 
given in Figure 4.12 (see problems 5 and 17). 

4.2.2 Magnetic Field Distribution Due to the Stator Currents 

Consider a second stator phase, denoted as phase b, which is rotated 90" 
from phase a as drawn in Figure 4.13. 

FIGURE 4.13. Phase b windings carrying the  current iSb. 

A similar argument to that given for phase a shows that the magnetic 
field B S b  due to the current i S b  in phase b is found by replacing isa by isb 
and 8 by 8 - 7r/2 to obtain 

2 (1 + cos(k7r/6) . 
i S b  T R  4 sin(k8) k Bsb(T, 0) = B S b ( T ,  8)f /-Lo--- ' ' 7T k=1,3,5, ... 

i S b  TR 4 
M 1.866p0--- sin(8)t. 

9 T 7 r  

In summary, the first harmonic approximation for BSa(r, 8) and Bsb(r,  8) 
are 

Bsa(T, 8) = BSa(r, 8)f M l.866pO--- iSu 4 r R  cos(8)f 
9 7 r '  

'It would have been just as valid to use TS/T  where TS is the inside radius of the 
stator, or a value T O ,  T R  < TO < TS satisfying J r s  ( T O / T R ) ~ T  = g (see problem 11). 

' R  
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4.3 Sinusoidally Wound Phases 

In the previous section, the higher-order terms in the expression for the 
radial magnetic field in the air gap were ignored. In this section, the con- 
cept of a sinusoidally wound phase is explained, and it is shown that the 
higher-order harmonic terms in the Fourier series expansion of Bsa, B s ~  
are identically zero. A sinusoidally wound rotor phase is first described as 
the corresponding figures are easier to draw in order to  get the point across. 
Next, sinusoidally wound stator phases are described and an expression for 
the corresponding sinusoidally distributed magnetic fields produced in the 
air gap by the phase currents are then derived. 

4.3.1 Sinusoidally Wound Rotor Phase 

To construct a sinusoidally wound rotor phase, a single strand of wire is 
wrapped around the axial length of a cylindrical core of iron, making coil- 
loops or turns according to  a sinusoidal turns density given by 

NR ivRa(e - eR) = siIl(8 - eR)  for eR < e < + eR 
where is the rotor position. That is, this specifies that the number of 
the loops (turns) wrapped around the rotor iron core between 0 and 8 + de 
is N R ~ ( O  - BR)dB [see Figure 4.14(a)]. 

Sinusoidallv wound 

FIGURE 4.14. Sinusoidally wound rotor phase. T h e  number of loopsjturns wound 
between 6 and 6 + d6 is N R ~ ( ~  - 8 ~ ) d 6  with the  other side of these loops between 
7r + 6 and 7r + 8 +do. The sine curve envelope drawn around the  windings is used 
t o  indicate a sinusoidally wound phase. Although not drawn t o  show this, the  
cross-sectional area of the  sinusoidally wound phase is taken to be infinitesimal. 
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Consequently, the total number of turns wrapped around the rotor core is 
then J::+B NRa(8 - 8R)dO = NR. Figure 4.14(a) shows how a sinusoidally 
wound rotor is indicated schematically. In comparison with Figure 4.4, the 
slots have been removed in Figure 4.14(a), showing only the loops which 
are now enclosed in a sine curve envelope. This is a standard representation 
to denote a sinusoidal winding and is also adopted here [3][24]. 

4.3.2 Sinusoidally Wound Stator Phases 

As in the case of the rotor phase, a sinusoidally wound stator phase is 
constructed by wrapping a single strand of wire around the inside surface 
of the stator iron to make coil loops or turns. For stator phase a,  the number 
of the coil loops at any angle 8 is specified by the sinusoidal turns density 

(4.7) 
1vs . 

Nsa(8) = - sln(8) for 0 < 8 < n 
2 

that is, Nsa(8)d8 is the number of turns between 6 and 8 + do. The total 
number of turns wrapped around the inside surface of the stator core is 
J: NS,(Q)dB = Ns. This is illustrated in Figure 4.15.3 The top side of this 
winding, where positive current is out of the page, is denoted as side a while 
the bottom side of the winding, where positive current is into the page, is 
denoted as side a'. 

FIGURE 4.15. Sinusoidally wound stator phase a. The number of loops wound 
between 8 and 6+d8 is Nsa(6)d6 with the other side of these loops between x + 6  
and .rr+O+dB. 

3The figure shows a single phase wound such that there is one loop at  r / 6 ,  two loops 
at x/3,  three loops at x/2,  two loops at  2x13, and one loop at 5r/6 (see problem 4, 
where such a winding is analyzed). However, again following Refs. [3] and [24], the sine 
curve envelope of these loops is used to indicate that it is sinusoidally wound. 



4. Rotating Magnetic Fields 259 

Similarly, stator phase b consists of a separate sinusoidally wound wire 
identical in structure to phase a except it is rotated 90” with respect to  
phase a [see Figure 4.17(b)]. The turns density for phase b is therefore 

(4.8) 
NS Nsb(6) = - sin(6 - 7r/2) for 7r/2 < 6 < 3 ~ / 2 .  
2 

The number of turns between 6 and 6 + d6 is NSb(6)dO = ( N s / 2 )  sin(6 - 
7r/2)d6 and the total number of turns making up stator phase b is 

Nsb(6)de = N s .  r2 
Remark Though Figures 4.14 and 4.15 are not drawn to show this, 

the cross-sectional area of a sinusoidally distributed winding is modeled as 
being infinitesimal. 

4.4 Sinusoidally Distributed Magnetic Fields 

Sinusoidally distributed windings (turns density) are used because the cur- 
rent in such a winding produces a sinusoidally distributed (in e) radial 
magnetic field in the air gap. This is now explained. 

The objective here is to determine the radial magnetic field Bsa es- 
tablished in the air gap  by the current is, in the sinusoidally distributed 

winding of phase a. To do so, Ampkre’s law H . d l  = ?&closed is applied 

to the closed-path 1-2-3-4-1 indicated in Figure 4.16 to obtain 
!- - 

Evaluating, this becomes 

NS + isa- 
2 

or 
NS ”9 

Hsa(isa, 0)g - Hsa(isa, 6 ) g  = -isa- C O S ( ~ )  + is,- (4.9) 2 2 

where it was assumed that Hs, is constant across the air gap. Rearranging, 
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In this equation, both Hsa(isa, 6) and Hsa(isa, 0) are unknown. The con- 
servation of flux law & B . dS = 0 can be used to determine Hsa(isa, 0). 
To do so, consider a closed surface S that contains the rotor core as shown 
in Figure 4.16. The cylindrical part of the surface S is in the air gap and 
has radius TR so that it just contains the rotor core. The two disk-shaped 
ends of the surface S are considered to have zero flux through them as 6 
is essentially zero there. 

Flux 

FIGURE 4.16. Use of Ampkre’s law and Gauss’s law to determine the air gap 
radial magnetic field due to isa. 

Then 

Now Bs,(is,, 6) = poHsa(is,, 6) as the flux surface is in the air gap. Thus, 

= o  

or 
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It then follows that 

(4.10) 

4 4 

In applying Ampere's law, it was assumed that B = poH was constant 
across the air gap in the radial direction, that is, B did not depend on the 
cylindricjal ccordinate r. However, in order to satisfy the conservation of 
flux fs B . dS = 0 in the air gap for a closed surface such as the one in 

Figure 4.12, it is necessary that B decrease as 1/r in the air gap. There- 
fore, the expressions for Hs,, Bs, are modified by the factor rR/r so that 
conservation of flux holds in the air gap.4 Finally then, the magnetic field 
Bsa in the air g a p  due to is, is given by 

Similarly, for stator phase b which is also sinusoidally wound, but rotated 
90" counterclockwise from phase a ,  the magnetic field B.Sb in the air gap  
due to i S b  is given by 

Figure 4.17(a) shows the magnetic field lines due to the current is, in phase 
a (drawn with is, > 0) while Figure 4.17(b) shows the magnetic field lines 
due to i S b  in phase b (drawn with i S b  > 0). The sinusoidal windings have 
resulted in sinusoidally distributed radial magnetic fields in the air gap 
produced by the stator currents. 

4See problem 11 for a discussion how Ampere's law changes when the factor T R / T  is 
added. 
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(a) Phase a 
- 

(b) Phase b 

FIGURE 4.17. (a) Magnetic field lines due to the current isa in the sinusoidally 
distributed winding of phase a. (b) Magnetic field lines due to the current is6 in 
the sinusoidally distributed winding of phase b. 

4.4.1 
The total magnetic field in the air gap due to the current in both stator 
phases is then 

Sinusoidally Distributed Rotating Magnetic Field 

Bs(isa, isb, ?-, 6) = B S a ( i S a ,  r, 6) + B d i S b ,  ?-, 6) 

- - -- (isacos(6) + isbsin(6))i. (4.11) 
2g ?- 

With isa(t) = I s  cos(wst) and iSb(t) = I s  sin(wst), the expression (4.11) 
simplifies to 

N I  1 
Bs(r ,6 , t )  = - (cos(uSt) cos(6) + sin(wst) sin(8))i 

2g ' 
N I  1 

29 7- 

- - - cos(6 - wst)f 

(4.12) 

where 6s( t )  4 wst. 
Equation (4.12) is the mathematical representation of a rotating magnetic 

field which rotates at the angular (electrical) frequency w s  and is illustrated 
in Figure 4.18. Note that the magnetic field has a fixed distribution with 
respect to 6s. The angle 6s is referred to as the magnetic axis of the rotating 
magnetic field. 
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Remark In Figure 4.18, the sinusoidally distributed stator windings are 
drawn with four loops in the sine curve envelope rather than with nine 
loops as in Figure 4.17. This is done for clarity of presentation. The reader 
should always assume that the sine curve envelope implies that the winding 
densities for phases a and b are given by (4.7) and (4.8), respectively. 

I I 

(a) uSt = O  (b) ust =n/4  

FIGURE 4.18. Sinusoidally distributed rotating radial magnetic field in the air 
gap. (For convenience, the magnetic field lines inside the stator iron are not 
drawn.) 
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4.5 Magnetomotive Force (mmf) 

The magnetomotive force (mmf) is defined to be S 

integral of H around a closed curve. Of course, by Ampkre’s law, 

H.&? that is, the f 

Instead of the path used in Figure 4.16, consider applying Ampere’s law to 
the path 1-2-3-4-1 in Figure 4.19 . 

FIGURE 4.19. Sinusoidally wound stator phase. 

+ 
Now H = 0 on the paths 2-3 and 4-1. By symmetry, H(6-7r) = -H(6) 

and, as de‘= dC(-P) on the path 1-2 while &‘= &f on the path 3-4, it 
follows that s,” H . de‘= J: H . dzand so 

In Figure 4.19 the path is traversed in the clockwise direction in contrast 
to the path in Figure 4.16 which is traversed in the counterclockwise direc- 
tion. Consequently, in the application of Ampere’s law, the current is now 
considered positive if it is into the page rather than out of the page. The 
enclosed current for the path 1-2-3-4-1 is therefore 

ienclosed = - isa(N,5/2) sin(B’)d6’ = isaNs cos(6). 
Jo-* 
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Ampere’s law H . dt? = ienclosed then gives f -  - 
3 A H . de‘= isaNs cos(6) f 

or 
s(6) = aH(6)g = i s a N s c o s ( 6 ) .  

The interpretation is that the mmf S(6) = i S a N S  cos(6) which is produced 
by the current is “dropped” across the air gap in the amount of Sl(6) = 

H ( 6 ) g  across each of the two diametrically opposite sides of the air gap. 
Then one works with the mmf S and refers to an “mmf wave” Sl(6) = 

H ( 6 ) g  set up in the air gap, and so on (see, e.g., Refs. [5][19][21][24][26][58]). 
In contrast, a different emphasis (but with the same results) has been 
taken here. Specifically, Ampere’s law is used to find H in the air gap by 
computing the mmf and usins H = 0 in the iron. Then B in the air gap 
is found simply from B = poH. In other words, the mmf is only used as a 
device to compute the magnetic induction field B in the air gap. After this 
is accomplished, the B field is used exclusively because it is the quantity 
that produces forces on currents and voltages in coil loops, that is, it is 
directly related to  the physical phenomena. This is perhaps better said in 
the following quotation from Melvin Schwartz, a 1988 Noble Laureate in 
 physic^:^ 

... we must interject a small bit of philosophy. I t  i s  customary to call B 
the magnetic induction and H the magnetic field strength. W e  reject this 
custom inasmuch as B is the truly fundamental field and H is a subsidiary 
artifact. W e  shall call B the magnetic field and leave the reader to deal 
with H as he pleases. 

+ 

Remark 
In this and the previous sections, only the radial component (i.e., in the I 

direction) of B in the air gap was found. However, Figures 3.2-3.5 indicate 
that one would expect that an azimuthal component (i.e., in the 6 direction) 
of B would also be present in the air gap. This is indeed the case and it 
is derived in (the optional) Section 4.6. Only the radial component of B 
contributes to the machine torque and produces emfs in the windings of the 
machine, which is the reason that one need only consider this component 
to derive the mathematical models of AC machines. 

5See M. Schwartz [35], page 156. 
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4.6 Flux Linkage 

The notion of flux q5 = ss B . dS is defined for a surface whose boundary is 
a simple closed curve. After computing the flux, Faraday's law < = -d4/dt  
is then used to compute the induced emf (voltage) in the loop. However, 
phase windings are usually comprised of many windings which are also 
distributed and one wants to compute the total emf induced in the phase 
winding. It has been found that the notion of flux linkage can be used to 
do this in a convenient fashion. 

To show how flux linkage is used in AC machines, consider Figure 4.20 
which shows three loops wound on the inside surface of a stator iron. That 
is, a single piece of wire is wound around the inside surface where one loop 
is placed in a slot at 8 = 7r/3 (the other side of the loop is in the slot at 
8 = ~ / 3  - 71-) then a second loop is wound at 8 = 7r/2 with its other side 
at 8 = 37r/2) and finally a third loop is wound at 8 = 271-13 (with its other 
side at 8 = 57r/3). The flux surface for each loop is taken to coincide with 
the loop itself as shown in Figure 4.20(b). As this figure shows, the first 
loop/surface is the path from a to b, the second loop/surface is the path 
from c to d and the third loop is the path from e to f = a'. One end of 
the wire is labeled a and the other a' and the objective here is to calculate 
the total emf induced in the wire by the rotating permanent magnet 
rotor. 

n l 2  

FIGURE 4.20. (a) Distributed winding for stator phase a with a permanent 
magnet rotor. (b) The flux surfaces for each stator loop. 
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As before, if the current in the stator winding is positive, the symbol 
0 means that it is coming out of the page and the symbol 63 means that 
it is going into the page. Here it is assumed that the permanent magnet 
produces a radial magnetic field in the air gap given by 

where ?-R is the radius of the rotor, (r,O) are the polar coordinates of an 
arbitrary location in the air gap and OR is the rotor angle defined by the 
center line (magnetic axis) of the rotor’s north pole [see Figure 4.2O(a)]. 
This rotor magnet produces a flux in each loop and, for any given rotor 
position OR,  this flux is different in the loop at 8 = 71-13, the loop at 71-12, 
and the loop at 2 ~ 1 3 .  Further, if the rotor is moving, then it is producing 
a changing flux in each of the three loops and therefore, by Faraday’s law, 
this changing flux will produce an emf in each of the three loops. Of course, 
at any point in time, the emfs will be different in each of the three loops. 

To compute these emfs, let 
4 

d S  = r s d e d z t  (4.13) 

where rs is the radius of the inside surface of the stator iron. Note that with 
this choice of d S ,  the positive direction of travel around the loop coincides 
with the positive direction chosen for the current in that loop [see Figure 
4.2O(b)]. On the inside surface of the rotor, r = rs so that the flux in the 
loop whose sides are in the slots at O = ~ / 3  and O = ~ / 3  - T is 

4 a / 3  = 

Loop from 
a/3-?r to ?r/3 

0 = ~ / 3  

= e m /  B,,, cos(e - e R ) d e  
t?=?r/3-~ 

0=lT/3 
= klrRBmax sin(e - 8 R ) d e  1 
= 2 t l T R B m a x  s i n ( ~ / 3  - O R ) .  

t?=r/3-a 

Then the emf induced in this loop by the magnetic field of the permanent 
magnet is 

where W R  4 deRz/dt. If > 0,  this emf will force current to  go in the 
positive direction of travel around the loop which coincides with the positive 
direction of current in that loop. 
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Again using the outward normal so that dS is still given by equation 
(4.13) as before, the flux in the loop between -7r/2 to 7r/2 is 

+ 
BR . dS = 2 t 1 r R ~ m a x  sin(7r/2 - 6,) 

4 4 2  = J 
Loop from 

- T / 2  t o  T / 2  

and the induced emf in the loop is 

If tTI2 > 0 ,  it will force current to go in the positive direction of travel 
around the loop which also coincides with the positive direction of current 
in that loop. 

Finally, with dg given by (4.13) once more, 

4 

BR . dS = 2e1r~Bmax  sin(27r/3 - OR) s 4 2 n / 3  = 

Loop from 
2 ~ / 3 - ~  to 2x13 

and 
d 4 2 T / 3  

5 2 T / 3  = -7 = 2C1TRBmaxWRCOS(OR - 2 ~ / 3 ) .  

Again, if t2x13 > 0, it will force current to go in the positive direction of 
travel around the loop coinciding with the positive direction of current in 
that loop. 

All three loops are connected in series to make up the phase winding 
and the sign convention for positive travel around each loop was chosen to 
coincide with the positive direction of current in the phase as illustrated 
in Figure 4.20(b). That is, the induced emfs in the loops are all in series 
in the phase winding and, as they all have the same sign convention, they 
can be added up to obtain the total emf in the phase winding. As a result, 
the total voltage induced in the phase is 

However, consider 
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where 

The point here is that one can first sum the fluxes in all the loops of a phase 
winding (i.e., compute the flux linkage), and then apply Faraday’s law to 
the resulting flux linkage to obtain the total emf in the phase winding. 
However, as done above, care must be taken to ensure that the flux in each 
loop is computed in a consistent fashion so that the resulting emfs all have 
the same sign convention and therefore add up to give the total emf in the 
phase winding. 

4.7 Azimuthal Magnetic Field in the Air Gap* 

It was shown above that the radial magnetic field Bsa at a point (T, 6) in 
the air gap due to the current isa in phase a is given by (TR = &/2) 

(4.14) 

where t is a unit vector in the radial direction and g is the radial length 
of the air gap. However, there has to be a component of the magnetic field 
in the 0 direction (azimuthal component) as is now shown by applying 
Ampkre’s law to the curve 1-2-3-4-1 shown in Figure 4.21. By Amp&re’s 
law, 

as sides 2-3,3-4, and 4-1 are inside the magnetic material6 where H = 0 
and side 1-2 is in the air gap just along the inside surface of the stator. Note 

6Remember that the cross-sectional area of the windings is modeleded as being in- 
finitesimal. 
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that for closed curve 1-2-3-4-1 with 0 5 81 5 6 2  5 n, the minus sign is 
used with the current (i.e., -is,). This is because the path 1-2-3-4-1 
is traversed in the clockwise direction so that AmpBre’s law assumes that 
positive current is into the page (@) while is, > 0 means the current is out 
of the page (0). 

FIGURE 4.21. Closed curves for determining the azimuthal component Bsa0 of 
the magnetic field produced by isa in the air gap using Ampere’s law. 

+ 

With r s  = rR + g ,  on the path 1-2 the differential line element is d t  = 
rsd6b so that the integral Jf Hs, . dzevaluates to 

for 0 5 61 5 6 5 62 5 T.  This must hold for any 61,62 which implies that 

N s  . 
2rS 

H s ~ o ( ~ s ~ ,  r ~ t  6) = --zsa sin(6) 

for 0 5 6 5 n. For n 5 61 5 6 5 62 5 2n, the turns density is ( N s / 2 )  jsin(6)l = 

-(Ns/2)sin(6). However, for this range of 6 ,  is, > 0 means that the cur- 
rent is into the page so that a similar argument shows that 

”9 .  ffsae(is,, r s ,  6) = --ZSa sin(6) 2rs 

for n 5 6 5 2n. Combining, 
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for 0 5 0 5 25r. This is the tangential magnetic field at the inside surface 
of the stator (i.e., at r = rs). To compute the azimuthal component of 
BSae at the surface of the rotor, that is, B ~ a ~ ( i ~ a , r ~ , B ) ,  Amp6re’s law is 
applied to  the closed path a-b-c-d-a in Figure 4.21. Specifically, 

a-b-c-d-a  

as the path does not enclose any current. (The sides b-c,c-d and d-a are 
inside the magnetic material of the rotor where = 0 and the path a- b 
is just on the surface of the rotor in the air gap.) As 193, 04 are arbitrary, it 
follows that 

H S a f f ( i S a . T R 1 0 )  0 

BSae(iSalrR10) 3 0. 

The azimuthal component of the magnetic field in the air gap at the surface 
of both the stator and rotor has now been found. To find Bs inside the air 
gap, let the tangential (azimuthal) component of Bs be of the form 

where 

a(rs )  = 1 

a(rR) = 0 

(4.15) 

(4.16) 

as a(r)  must satisfy (9.75) in order for (4.15) to hold at the rotor and stator 
surfaces. 

Before the expression for a(.) is derived, it is first shown that the radial 
component of Bsa given in (4.14) must be modified to  account for the 
azimuthal magnetic field. To see this, recall that Gauss’s equation requires 
that the divergence of B be identically zero. With B = B,f + Be6 + B,S, 
the divergence in cylindrical coordinates is given by 

4 

- I d  1 d B ~  d B ,  
T dr  r d0 dz 

V - B  = --(rBT) + -- + - 3 0. 

Consider Bsa of the form 

Taking the divergence of this expression results in 

I d  1 N d  
--(rBsaT) - -a(r)-isa- sin(0) E 0 
r dr r 2 r s  80 
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or 
d 

-(rBSaT) = a(r)@iSa cos(8). 
dr 2rS 

Integrating with respect to r ,  one obtains 

where f ( 8 )  is a “constant of integration”. Taking it to be 

gives 

which is the original expression for the radial component of Bsa given in 
(4.14). Thus, the radial component of Bs, is now given by 

At the rotor surface, this expression for Bsar is the same as that given by 
(4.14) with r = rR. Consequently, the torque on the rotor will not change 
due to this change in the radial component of B. It is shown below that 

S T L  a(r’)dr’ 5 g / 2  for small air gaps so that the change in the radial 
component is bounded by 

so that it is indeed a small effect. 
Summarizing, 

with 

(4.17) 

a(rs) = 1 

a(rR)  = 0. 

Figure 4.22 indicates the distribution of the azimuthal magnetic field with 
isa > 0. Note that the field strength decreases as one moves along the 
radial direction from the stator side of the air gap to  the rotor side. It also 
decreases as one moves in the 8 direction from f 7 r / 2  to 0 or 7r .  



4. Rotating Magnetic Fields 273 

k f X 

FIGURE 4.22. Distribution of azimuthal magnetic field Bsad in the air gap. 

Determination of a(r) 

To determine a(r)  for r R  < r < rs, Ampere’s law in differential form 
V x H = Jfree is used. In the air gap, ther: are no_currents so V x H = 0, nor 
is there any magnetic material so that B = poH. Consequently, Ampere’s 
law in the air gap is simply 

- +  

4 

U x B = O .  

In cylindrical coordinates, this becomes 

= 0. 

By the assumed cylindrical symmetry, Bsaz = 0 and Bsarr Bsao do not 
depend 2n the coordinate 2, so that one need only satisfy the z component 
of V x B = 0, that is, 

This becomes 
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Canceling terms and expanding, this reduces to 

a(r ' )dr '  
9 

- d a  
d r  

ra+r2-  - 

Differentiating this last expression with respect to T and rearranging, the 
differential equation 

da d a  ,d2a  
a+r-+2r-+r - = a  

d r  dr dr2 

is obtained, or 
d 2 a  3 d a  
dr2  r d r  

+ -- = 0. - 

Solving this differential equation for d a / d r  results in 

-- d a  - c l e  - f:R(3/r')dr' = C l e - 3 1 n ( r / r ~ )  

dr 
and therefore 

a(r)  = c1 e-31n(r ' /rR)drr  + c2. (4.18) 1: 
The condition ~ ( T R )  = 0 forces c2 = 0 and a(rS) = 1 requires that 

1 

9 
z2 -. 1 

c1 = 
ST Ts R e-3 ln(r ' /rR)drl  

This approximation follows from the assumption of a small air gap as 

In(r/rR) M In(1) = O for TR < r < rs (4.19) 

so that 6 e-31n("/'R)dr' M I&' = rs - rR = g. L: 
Substitution of c1 = 1 f g ,  c2 = 0 into (4.18) and invoking the approximation 
(4.19) gives 

N ii: ldr' 

r - T R  

9 
- -  - 

In other words, a(r) is approximately a linear function of r in the air gap. 
Such a linear dependence is pointed out by C. B. Gray [5]. 
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4.7.1 Electric Field Esa 

The axial electric field produced by the magnetic field Bsa is now com- 
puted. Recall that the magnetic field is given by 

The electric field induced by this changing magnetic field is found by solving 

(4.20) 

In cylindrical coordinates, the curl of E is given by 

By the usual symmetry assumptions 

(4.21) 

+ 
and, as the z component of Bsa is zero (i.e., Bsaz = O), it follows that 

(4.22) 

Then (4.20) reduces to  

The simplest solution is one of the form 
+ 

E S a  = ESazt, 

that is, where Esar = Esae = 0 so that the conditions (4.21) and (4.22) 
are automatically satisfied. 

Solving equation (4.23), one obtains 
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4.7.2 The Magnetic and Electric Fields 6 s a ,  Esa, 6 S b ;  E S b  

The magnetic and electric fields due to the current in phase b are found 
from their corresponding expressions for phase a by simply replacing Q by 

In summary, given two sinusoidally distributed stator windings a and 
b wound 90 degrees apart, the magnetic and electric fields in the air gap 
produced by the phase currents isa, i ~ b  in the phase a and b, respectively, 
are given by 

0 - 7r/2. 

(4.24) 

and 

(4.25) 

With isa(t) = 1s cos(wst), iSb(t) = 1s sin(wst) and Q = 0, the expressions 
(4.24) and (4.25) simplify to 

Remark 
Note that at r = T R ,  the expressions for the electric and magnetic fields 

given by (4.24) and (4.25) reduce to their approximate values (i.e., taking 
Q = 0). Consequently, the induced emfs in the rotor loops are not affected 
by neglecting the azimuthal magnetic fields. 
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Problems 

Problem 1 A Two-Phase Stator with Single-Loop Windings 
(a) Consider the simple single-loop stator phase shown in Figure 4.23. 

Show that an the air gap, the magnetic intensity H ( Q )  in the radial direction 
satisfies 

H ( Q ) =  { gi EL f ~ / 2  < Q  <37r/2 

where H I ,  H2 are constants and assuming H is constant as a function of r 
across the air gap. (Hint: Apply Ampere’s law to the path a- b- c-d- a to 
show that H ( Q )  = H I  for - ~ / 2  < Q < ~ / 2 ,  etc.). 

(b) Applying Ampere’s law to the path 1-2-3-4-1 in Figure 4.23(a) 
along with a symmetry argument to show that H2 = ~ H 1 .  

- ~ / 2  < Q < n/2 

FIGURE 4.23. Single-loop stator phase. (a) Paths for Ampere’s law. (b) Flux 
surface in the air gap. The closed flux surface completely contains the rotor. 

(c) Alternatively, rather than using Ampdre’s law as in part (b), use 
Gauss’s law applied to the surface shown in Figure 4.23(b) to obtain H2 = 

(d) Give an explicit expression. for B in  the air gap as a function of 9 
in terms of tke current i in the winding and the air gap length g .  Recall 
that B = pu,H in  the air gap. This is said to be a uniformly distributed 
magnetic field in 19. 

(e) Show that by  multiplying the answer for B in  part (d) by r R / r  results 
in the magnetic field satisfying Gauss’s law for closed surfaces in  the air 
gap as in  Figure 4.12. 

-HI.  

(f) Consider a simple two-phase machine as in Figure 4.24. 
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FIGURE 4.24. Simple two-phase machine. 

Let the phase currents isa, isb be periodic with period T as given in Figure 
4.25. Show that the magnetic axis of the stator’s magnetic field can assume 
only four angular positions. What are they? I n  particular, plot the radial 
air-gap magnetic field f o r  0 5 8 5 2n at t = 0,  T/4, T/2, and 3T/4. 

FIGURE 4.25. Periodic square-wave currents. 

(9) Repeat part ( f )  where the phase currents iSa,iSb are again periodic 
with period T with their waveforms as given in Figure 4.26. Show that the 
magnetic axis of the stator’s magnetic field can assume only four angular 
positions. What are they? I n  particular, plot the radial air-gap magnetic 
field for  0 5 0 5 2n at t = T / 8 , 3 T / 8 , 5 T / 8 ,  and 7T/8. 
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1 . Sb 

FIGURE 4.26. Periodic square-wave phase currents. 

Problem 2 Fourier Series Expansion 
Consider the function F’(8’) shown in Figure 4.27. 

FIGURE 4.27. F‘(t9’) versus 6” 

(a) Show that the Fourier series expansion of this function is 

(4.27) 
4 1 
7r k=1,3,5, ... k F’(8’) = -Fl x - cos(k8;) sin(k8’). 

(b)  With respect to the angle 8 a 8‘ - 7r/2, show that (4.27) becomes 

4 1 
F(8)  a F’(6 + 7r/2) = - x Em Fl- cos(k8:) sin(k(8 + ~ 1 2 ) ) .  

lr k=1,3,5, ... k 

(c) Use the result of part (b)  to show that the Fourier series expansion of 
the function in  Figure 4.28 is 

F ( 8 )  = - 4 ”  -(Flcos(k6;) 1 + FZcos(kI3~) + F3cos(k6;)) sin@(@+;)). 
7r k 

k=1,3,5;.. 
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-6‘ 6=6’-nl2 
I I 

FIGURE 4.28. F(B),F’(B’). 

(d) Show that 

sin (k (6  + ~ / 2 )  = 
cos(k6) 

- cos(k6) 

Problem 3 Two-Level Approximate Sinusoidal Winding 

Fourier expansion given in equation (4.3). 

Problem 4 Three-Level Approximate Sinusoidal Winding 
Consider the approximate sinusoidal winding of Figure 4.29(a) in which 

a single phase is wound such that there is  one loop at ~ / 6 ,  two loops at 
~ / 3 ,  three loops at ~ / 2 ,  two loops at 2 ~ 1 3 ,  and one loop at 5 ~ 1 6 .  

for  k = 6 m  - 1 where m = 1 ,2 ,  ... 
for  k = 6 m  + 1 where m = 1,2,  ... 

Apply the results of problem 2 (with F3 = 0 or 193 = 7r/2) to derive the 

n 1 2  n l 2  
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(a) Find the enclosed current ie l l c losed  between 0 and 6 f o r  0 5 8 5 27r. 
(b) Assuming fi is constant across the air gap and the windings/loops 

have a n  infinitesimal cross section, show that a straightforward application 
of Amp6re’s law gives Hsa(O) = Hsa(0)  - ienclosed(6)/g. Use conservation 
of flux to find Hs,(O). Show that B s a ( 6 )  = p0Hsa(6 )  is  given by the plot 
in Figure 4.11. 

(c)  With BSa(r ,6 )  = pO(rR / r )HSa(6 )  as given in Figure 4.11, use the 
results of problem 2 to show that the Fourier series expansion of BSa(r, 6 )  
in 6 is 

00 

x (i cos(0) + 2cos(k7r/6) + sin(k(6 + 7r/2) (4.28) 
k=1,3,5, ... 

(d) Let bk be the coeficient of sin(k(6 + 7r/2) in the Fourier expansion of 

Bs,(r, 6 ) /  (po%?) in equation (4.28) and let ak be the coeficient of 
sin (k (6  + 7r/2) in the Fourier expansion of B s a ( 6 ) /  (po iSa /g )  in equation 
(4.3). With amax = max {ak},bmax = max {bk},  plot the relative 

harmonic content ak/amax and bk/bmax as a function of k f o r  k = 1,2,  ..., 15 
on  separate figures. Note that amax = a l ,  b,, = b1; that is, the maximum 
is achieved at the fundamental for  both expansions. Compute b l / a l .  

(e)  Finally, plot akla,,, - bk/bmax for  k = 1,2,3, .  . . ,15. What is the 
value of this difference for  k = 5,7,11,13? What is this difference fo r  k = 

3,9,15? 
Comments: Note the reduction in relative harmonic content is only fo r  

the triplen harmonics. Also, the fact that bl = 2al means that, for the 
same phase current, the number of turns in this (three-level) approximate 
sinusoidal winding results in doubling the strength of the magnetic field in 
the air gap compared to the approximate sinusoidal winding with only two 
levels. 
(f) Consider using the winding of Figure 4.29(a) in a two-phase machine 

as shown in Figure 4.29(b). Use the solution of part (c)  to write down the 
expression for  the radial magnetic field in the air gap due to the current 
i S b  in stator phase b. 

Problem 5 Gauss’s Law 

k=1, ..., 15 k=l, ..., 15 

Show that the expression [see equation (4.6)] 

f o r  the magnetic field due to the current in an approximate sinusoidal wind- 
ing satisfies $ B . dS  = 0 f o r  the f lux surface given in Figure 4.12. 
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Problem 6 Three-Phase Stator and Spatial Harmonics 
Fagure 4.30(a) shows a machine with both a three-phase stator and a 

three-phase rotor. Figure 4.30(b) gives more detail of stator phase 1'-1 
where it is shown that one side of a loop is  wound at x / 3  (the other side 
at 4x/3), two loop sides are wound at 7r/2 (the other two sides at 3xl2)? 
and, finally, one side of a loop is wound at 2x13 (the other side at 5x13). 

FIGURE 4.30. (a) Three-phase stator and rotor. (b) Three-phase stator with an 
iron core rotor. Windings shown for stator phase a only. 

With the assumptions that the conductors h2ve an infinitesimal cross 
section, the iron has infinite permeability (i.e., H = 0 in the iron), and the 
air gap is small, Ampere's law was used to show that the radial magnetic 
field in the air gap produced by the current is1 in phase 1'-1 is given by 
[see equation (4.3)] 

(1 + c o s ( F ) )  . 03 

BSl(iS1? 6)  = Po-- 2.91 4 x k sm(k(6 + i)) 
'X k=1,3,5, ... 

Let BSl ( iS1 ,  r, 6 )  
Bs3( is3, r, 6 )  so that 

( rR/r )  BSl ( iS1 ,  6 )  and similarly for Bsz(is2, r, 6 )  and 

00 (1 + c o s ( F ) )  . 
BSl( iS1?r?6)  =Po--- iSl 4 rR x c k sin(k(6 + 5)) 

'X k=1,3,5, ... 

2.52 4 rR (1 + c o s ( F ) )  , 

k BSz(iS2?r,6)  =Po--- x c 
k=1,3,5, ... 

i S 3  4 rR O0 (1 +cos(%)) . 
k BS3(iS3,7-,e) =Po--- x c 

k=1,3,5, ... 
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(a) With the currents balanced, i.e., is1 + is2 + is3 = 0 ,  show that in the 
Fourier expansion of the total radial magnetic field 

Bs = Bsl + Bs2 + Bss 

the triplen harmonics are zero. (The triplen harmonics are the harmonic 
terms of order k with k = 3m, m = 1,2,  ...) 

(b)  Explain why the phase winding of Figure 4.3(b) is really more suited 
for a three-phase machine rather than a two phase machine. What about 
the winding of Figure 4.29 (see problem 4)? 

+ - 

(c) Let 

is1 = IS  cos(wst) ,  is2 = I s  cos(wst - 2 ~ / 3 ) ,  is3 = IS  cos(wst - 4 ~ / 3 )  

in  the above expressions for the magnetic fields. Show that the 5th harmonic 
component of Bs given by  

Bs5(r,0,t) ' Bs15(is1,r,6) + Bs25(is2,r,6) f B s 3 5 ( i S 3 , r , e )  

is a rotating magnetic field in the clockwise (negative) direction at angular 
speed -ws/5.  (Here Bs15 is the k = 5 term in the above Fourier series 
expansion of Bs,, etc.) 

(d) Repeat part (c) f o r  the 7th harmonic BsT(r, 6 ,  t )  of B s .  What direc- 
tion does it rotate? At  what angular speed? 

Problem 7 Self-Inductance of a Distributed Winding 
Consider the stator phase winding shown in Figure 4.3(b) and redrawn 

in  Figure 4.31. The radial magnetic field due to the current in  the phase is 
shown in Figure 4-10. 

(a) Using f lux surfaces similar to those of Figure 4.20, compute the total 
f lux linkage in the stator phase winding due to the current in the phase. 

(b)  What is the self-inductance of the stator phase? 

4 

n l 2  
2213 I n13 

FIGURE 4.31. Computation of the self-inductance of a distributed winding. 
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Problem 8 Flux Linkage 
Figure 4.32 shows a motor with a permanent magnet rotor which has a 

single stator phase wound as in Figure 4.3(b). Let the magnetic field in the 
air gap due to the permanent magnet rotor be given by 

B R ( e  ~ 6,) = B,,,T r R  COS(8 - eR)P. 

(a) Compute the flux in each loop and the total flux linkage in the stator 

(b) Find a n  expression fo r  the emf induced in the stator phase by the PA4 
phase. 

rotor. 

n l 2  
2x13 I 

FIGURE 4.32. A motor with a PM rotor and a single rotor phase. 

Problem 9 A Two-Phase Machine [4] 
Consider a machine with two stator phases wound as shown in Figure 

4.33. That is, phase a has one turn at ~ / 4  (with its other side at 5 ~ / 4 ) ,  
two turns at 5 ~ 1 1 2  (with the other sides at 17~/12) ,  and so on. Let the 
current in phase a be denoted as isa and the current in phase b be denoted 
as isb. 

(a) Compute the radial magnetic field Bsa in the air gap due to the 
current isa in phase a.  Express it as a Fourier series. 

(b) Compute the f lux linkage in phase a due to Bs,. 
(c)  Compute the flux linkage in phase b due to Bsa. 
(d) Compute the Fourier series expansion of the expression for  the mag- 

netic field in part (a). 
(e) Compute the ratio of the fundamental of the magnetic field given in 

part (d) to the fundamental of the magnetic field whose Fourier series is 
given in equation (4.3) for  the winding of Figure 4.7. Also, compute the 
ratio of the 3rd harmonic to the 1st harmonic for  the magnetic field given 
in part (d) and then compare it to the corresponding ratio for  the magnetic 
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field of equation (4.3). Is the winding of Figure 4.33 or the winding of 
Figure 4.7 better suited for  a two phase machine? Explain. 

7x112 5x112 
Stator iron core 

FIGURE 4.33. Stator phases for a single pole pair two-phase machine. 

Problem 10 Uniformly Distributed Winding 
Consider a machine with a three-phase stator and a rotor of soft iron as 

shown in Figure 4.34. There are three sets of windings which are uniformly 
wound on  the inside surface of the stator. By uniformly wound, it is meant 
that the number of turns between 0 and O+dO is constant independent of the 
angle 0. Phase 1 with current is1 has its turns uniformly wound between 
7r/3 and 2 ~ / 3  on  one side of the stator's inside surface and between 4x13 
and 5 ~ / 3  on  the other side of the stator. Similarly, phase 2 with current 
is2 has its turns uniformly wound between 7r and 4x13, and between 0 and 
~ / 3 .  Phase 3 with current is3 has its turns unijormly wound between 27r/3 
and 7 r ,  and between 5 ~ / 3  and 27r. 

Let the turns density f o r  stator phase 1 be given by 

0 '  elsewhere. 

The total number of windings (turns or loops) making up phase 1 is then 

Compute the radial magnetic field Bsl in the air gap produced by  the 
current is1 in phase 1. 
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FIGURE 4.34. Uniformly distributed windings. 

Problem 11 Modifying Ampere’s Law to Account for a ro/r Dependence 
This problem considers how Ampere’s law changes when Hsa is assumed 

to have a factor of the form ro/r so that conservation of flux holds. Specif- 
ically, in Ampere’s law as given by  equation (4.9), replace Hsa( i sa ,  0) by 

Hsa(isa,  r, 0) (ro/r)Hsa(isa,  0) (4.29) 

to obtain 
r=rs 

Hsa( isa ,  r, 6)F. (-drF) S 
r=rs 

Hsa(isa,  r ,  O)F. (drF) + s r = r R  r = r R  

(4.30) 

(a) Show that for the expression 

4 N s  T o .  
HSa(iSa,r ,O) = ----zSacos(8)f 

2g 7- 

to still work out the same way as before, that is, for (4.30) to reduce to 

NS NS 
Hsa(isa,  T O ,  0)g - Hsa(isa,  TO, e)g = -isa- COS(@) + iSa-7 2 2 

then ro must be chosen such that srrrz ro/rdr = g .  

g holds. 

ro = TR (or ro = rs )  and g << rR. 

(b) Show that there is an ro with TR < ro < rs such that srzrz rolrdr = 

(c) Show that (4.30) holds approximately with Hsa  given b y  (4.29) i f  
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Problem 12 Three-Phase, Four-Pole, 36-Slot Stator 
Consider a three-phase, four-pole, 36-slot stator as shown in Figure 4.35. 

The figure illustrates the slots in which the wire making up phase 1 is wound 
with the (angular) location of the windings as indicated in the figure. Denote 
the current in this phase as isl. 

(a) Assuming that the cross-sectional area of the slots is infinitesimal, 
compute the radial magnetic field Bsl in the air gap produced by is1 and 
plot i t  as a function of 6 .  

(b)  Compute the Fourier series expansion of the radial air-gap magnetic 
field Bsl found in part (a). 

FIGURE 4.35. A three-phase, four-pole, 36-slot stator. Only the winding of stator 
phase 1 is shown. 
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Problem 13 Three-Phase Six-Pole Permanent Magnet Machine 
Figure 4.36 shows a three-phase, six-pole machine with a permanent mag- 

net rotor. Take Q R  = 0 f o r  the rotor in the position as drawn. Let the 
magnetic field in the air gap due to the permanent magnet rotor be given 
by 

) BR(T, 0) = B R ~ ~ ~ -  cos np(Q - 6,) 
rR r ( 

where np is the number of pole pairs that in this case is np = 3.  Phase 1 of 
the stator consists of connecting the three single-loop windings a1 - a: , a2 -4 ,  
and a s - 4  in series as shown. Each winding encloses a cylindrical-shaped 
surface spanning 7r/3 radians (or 60"). 

(a) Compute the flux linkage in the phase winding 1 due to the 
magnetic field of the rotor as a function of the rotor position QR. 

(b) Compute the induced voltage in the phase winding 1 due to the mag- 
netic field of the rotor as a function of the rotor position QR and the rotor 
speed W R .  

FIGURE 4.36. A three-phase, six-pole permanent magnet machine. 
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Problem 14 Flux Linkage in a Phase Winding with Short-Pitched Turns 
Figure 4.37 shows a motor with a PM rotor and a single stator phase 

whose turns are short-pitched. By "short-pitched" is  meant that each turn 
does not span 180" degrees, but rather less than 180" such as in this problem 
where they span only 150". The first loop has axial sides a1 and a:, the 
second loop has axial sides a2 and ah, and so on. Let the magnetic field in 
the air gap due to the permanent magnet rotor be given by 

I n  order to illustrate the windings of a short-pitched phase, Figure 4.38 
shows the slots of a cylindrical rotor iron core being wound with four  short- 
pitched turns. The short-pitched windings of the stator phase of Figure 4.37 
are wound similarly. 

(a) Compute the f lux in each loop using a surface normal f o r  whose 
direction is chosen so that the positive direction of travel around the surface 
coincides with the direction of positive current flow as given in Figure 4.37. 

(b) Compute the flux linkage in the stator phase produced the rotor's 
magnetic field. 

(c) Using Faraday's law, compute the induced emf in the stator phase 
due to the rotor's magnetic field. 

(d) How do the answers to parts (a), (b), and (c)  compare to the corre- 
sponding values for  the full-pitch wound stator of problem 82 

n f 2  
I n f 3  

FIGURE 4.37. A short-pitched stator winding. 
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FIGURE 4.38. Illustration of winding a distributed rotor phase with short-pitched 
windings. (a) First loop with axial sides a1 and a;. (b) Second loop with axial 
sides a2 and a;. (c) Third loop with axial sides a3 and a$. (d) Fourth loop with 
axial sides a4 and a:. 



4. Rotating Magnetic Fields 291 

Problem 15 Self-Inductance of a Short-Pitched Phase Winding 
Figure 4.39 shows a single stator phase with short-pitched windings (see 

problem 14 for  an explanation of short-pitched windings). 
(a) Explain why the radial magnetic field is  identical to that drawn in 

Figure 4.10. 
(b) Compute the f lux in each loop due to the current in that loop and then 

the total f lux linkage. To ensure that the induced emfs in each loop have 
the same sign conventions, choose a flux surface normal whose positive 
direction of travel around the surface coincides with the positive direction 
of current. 

(c) What is  the self-inductance of the stator phase? How does it compare 
with the self-inductance of the stator phase in problem 72 

1 I 

FIGURE 4.39. Self-inductance for a distributed phase winding with fractional 
pitch turns. 

Problem 16 "Long-Pitched" Phase Winding 
Consider Figure 4.39 where now each winding loop spans 7 ~ / 6  radians 

(210") rather than 5n/6 radians (150") as in Figure 4.38. 
(a) Explain why the radial magnetic field is identical to that drawn in 

Figure 4-10. 
(b) Compute the f lux in each loop due to the current in that loop and 

then the total f lux linkage. To ensure that the induced e m f .  in each loop 
have the same sign conventions, choose a f lux surface normal whose positive 
direction of travel around the surfme coincides with the positive direction of 
current. Without any computation, use Gauss's law for  to show the result 
must be the same as part (b) of problem 15. Consequently, the inductance 
of this winding must be the same as that given in part (c)  of problem 15. 
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Problem 17 Divergence of the Magnetic Field 

dinates is given by 
Recall that the divergence of a vector field W ( r ,  8 , z )  in cylindrical coor- 

- I d  lawe dW, 
D.  W = --(rWr) + -- + - 

r d r  r d8 dz 

where W = W$ + We6 + W,2. Also, recall that the divergence theorem 
s a w  that 

where S is the closed surface that encloses the volume V .  

in the air gap of an approximately sinusoidally wound stator phase, show 
that U. Bs, = 0. 

Problem 18 Azimuthal Magnetic Field 

that 

- 

Use the expression (4.24) for the radial magnetic field to explicitly show 

- js Bsa. dS = 0 

for the closed surface shown in Figure 4.40 with rR 5 r1 < r2 5 rs.  

FIGURE 4.40. Gauss’s law in the  air gap with a nonzero azimuthal magnetic 
field. 
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The Physics of AC Machines 
The goal here is to present the operation of both the induction and syn- 
chronous machines using basic concepts in physics. In particular, Faraday’s 
law of induction and the Lorentz forcelmagnetic force law will be used to 
analyze the physical basis of operation of these machines [34]. 

5.1 Rotating Magnetic Field 

Assuming ideal magnetic material, that is, H =* 0 in the iron, _and that the 
stator phases are sinusoidally wound, Ampere’s law ($ H . de = ienclosed) 

was used to  show that the magnetic field Bsa at any point (T,  6) in the air 
gap due to the current isa in phase a is given by 

+ 

B S a ( i S a ,  r,  6) = - @2Nsisa cos(6)t. 

Here f is a unit vector in the radial direction, TR = l 2 / 2  is the radius 
of the rotor and g is the radial length of the air gap. The magnetic field 
distribution of Bsa is illustrated in Figure 5.1. 

4gr 

FIGURE 5.1. Radial air-gap magnetic field due to phase current isa in a sinu- 
soidally wound stator. 

Similarly, the magnetic field B s b  at the point (T, 6) in the air gap due to 
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the current aSb in phase b is given by 

The magnetic field distribution of B S b  is illustrated in Figure 5.2. 

FIGURE 5.2. Radial air-gap magnetic field due to phase current zSb  in a sinu- 
soidally wound stator. 

The total magnetic field in the air gap due to the current in both stator 
phases is then 

With isa@) = I s  cos(wst), i S b ( t )  = 1s sin(wst), (5.1) simplifies to  

- - ' oe2Ns-Is  cos(8 - wst)i .  
4gr 

4gr 

N I  
~ - ' O e 2  cos(8 - Os(t))f 

where 8s(t) a w s t .  This is a rotating magnetic field rotating at  the elec- 
trical frequency ws and is illustrated in Figure 5.3. The center line of this 
rotating magnetic field is referred to as its magnetic axis and is located at 
8s(t)  A wst .  
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I I 

(a) wst = O  
1 

(b) wst = d 4  

FIGURE 5.3. Sinusoidally distributed rotating radial magnetic field in the air 
gap. (For convenience, the magnetic field lines are not drawn in the stator iron.) 
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5.2 The Physics of the Induction Machine 

In this section, a simple two-phase induction motor is analyzed in order to 
understand the elementary Physics which characterizes its operation. 

The stator consists of two sinusoidally wound phases 90" apart as de- 
scribed in the previous section. Figure 5.4 shows a loop wound around the 
surface of the rotor iron denoted as phase a (or simply loop a )  and its two 
axial sides as a and a', respectively. 

Rotor 

FIGURE 5.4. A single rotor loop and the chosen positive direction of current. 

Similarly, a second loop is wound around the rotor iron 90" from (and 
electrically isolated from) loop a and is denoted as phase b or simply, loop 
b. This results in the simple two phase machine illustrated in Figure 5.5. 

\ /- W 

Rotor loop a 

Rotor loop b 

FIGURE 5.5.  Basic motor with two single-loop rotor phases a and b. 
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As above, 0s(t)  = wSt  denotes the angular position of the magnetic 
axis of the rotating magnetic field produced by the stator currents, e R ( t )  

denotes the angular position of the rotor defined as the normal to rotor 
loop a [see Figure 5.4(a) or 5.5(a)] and (r,  0) denotes the polar coordinates 
of an arbitrary point in the air gap. In the remainder of this chapter, it 
will assumed that the rotor is turning at constant angular speed W R  with 
0,(t) = W,t. 

5.2.1 

The rotating magnetic field Bs produces a changing flux in the rotor loops 
so that an electromotive force ( emf )  is induced in each rotor loop according 
to Faraday's law. To compute the induced emf in rotor phase a, consider 
a flux surface for rotor loop a consisting of a half-cylinder lying in the air 
gap whose boundary is the rotor loop itself. This is illustrated in Figure 
5.6 where only rotor loop a is shown for clarity. 

Induced Emfs in the Rotor Loops 

FIGURE 5.6. (a) Flux surface for the  rotor winding. (b) Surface element dS and 
direction of positive travel around the  flux surface. (For clarity, only rotor loop 
a is shown.) 

With dS = (Q2/2)d0dzt, the direction of positive travel is indicated in 
Figure 5.6(b), and it is the same as the direction chosen for positive current 
flow in the loop. The flux in rotor loop a due to  the stator magnetic 
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field Bs is calculated as follows: 

By Faraday's law, the induced electromotive force or emf in rotor loop a 
is given by 

where WR = d8R/dt. The current i R a  in phase a is then found by solving 

where LR and RR are, respectively, the inductance and resistance of the 
rotor phases. Neglecting the inductance' (i.e., set LR = 0), the current in 
phase a produced by the emf is then 

(5.4) 

'See problem 2 for the analysis when LR > 0 
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Rotor 
loop a 

Rotor 
_ _  

Direction of 
positive travel 

lo 

FIGURE 5.7. Induced rotor current i~~ produced by E R a .  (Rotor loop b is not 
shown for clarity.) 

Similarly, the flux XRb, the induced emf eRb, and the current iRb in rotor 
loop b are computed. The flux XRb in rotor loop b due to 6s is given by 

The induced emf in rotor loop b is then 

where W R  = d$R/dt .  Again, neglecting the inductance of rotor phase b, this 
emf produces a current 'iRb in rotor loop b given by 

iRb( t )  = < R b ( t ) / R R .  (5.5) 

5.2.2 Magnetic Forces and Torques on the Rotor 

The rotating magnetic field Bs produced by the stator currents produces a 
magnetic force on the rotor currents it induced. The magnetic force on the 
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rotor and the resulting torque are now computed. Re_call that the magnetic 
force law is simply Fmagnetic  = i exB,  where .! = I k? I is the length of the 
conductor in the magnetic field, and <points in the direction of positive 
current flow. Thus, the magnitude of the force is Fmagnetzc = ieB1 where 
B1 is the magnetic field strength perpendicular to  the conductor. The 
magnetic force law is now applied to side a of rotor loop a,  which is located 
at 6 = OR + 7r/2 [see Figure 5.8(a)]. To do so, recall the symbol 0 means 
that if iRa > 0, the current is coming out of the page so e = C l t  on side a,  
and compute 

+ + +  

4 

FIGURE 5.8. The torque on rotor loop a due to iRa and Bs. 

The torque produced by this force is then 

- + 
r s i d e - a  = S X F s i d e - a  

Similarly, the magnetic force law is applied to side a' of rotor loop a, which 
is located at 6~ - 7r/2. Recalling the symbol €3 means that if i~~ > 0,  the 
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-+ 
current is going into the page so that f! = - C l f  for side a'; it follows that 

4 

Fs idepa '  = i ~ , t ? X  B s  

The torque produced by this force on side a' is then 

The total torque ? R ~  = T R a g  on rotor phase a is simply 

T R a  = r s i d e - a  + b i d e - a '  = poE1E2Ns'si~a sin((ws-wR)t) . (5.6) 
29 

Using this expression, the total torque on rotor phase a may be rewritten 
as 

4 -+ 
and, as in the case of loop a,  Fside-b,  = F s2de-b. It then follows that the 
total torque on rotor phase b is 
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Further, as 

the torque on rotor loop b may be rewritten as 

Combining equations (5.7) and (5.8), the total torque T R  is given by 

For a constant angular frequency ws and a constant angular rotor speed 
W R ,  the torque is constant. 

5.2.3 Slap Speed 

The stator currents are given by isa(t) = IS cos(wst), iSb(t) = IS sin(wst) 
and, neglecting the inductance of the rotor phases, equation (5.9) shows 
that the torque on the rotor is proportional to the difference between the 
angular speed w s  of the rotating stator magnetic field and the rotor speed 
WR, that is, 

This difference is called the slip speed wslip, that is, 

A 
wslip = ws ~ W R .  

In particular, if the slip speed is zero, there is no torque. The reason is 
simply that if the slip speed is zero, then the rotating stator magnetic field 
and the rotor are rotating at the same angular rate with the result that 
the fluxes in the rotor loops are constant. As the rate of change of these 
fluxes is zero, Faraday's law tells us that neither voltages nor currents are 
induced in the rotor and, without rotor currents, there can be no magnetic 
force/torque on the rotor. In order to produce torque in an induction ma- 
chine, the rotor shaft and the stator's magnetic field do not rotate together 
at the same rate, that is, they are not synchronized. It is for this reason 
that the induction motor is referred to as an asynchronous machine. 

5.3 The Physics of the Synchronous Machine 

In this section, the physics of the synchronous motor is described where 
both the salient and nonsalient machines are considered. A salient rotor is 
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one in which the rotor is not cylindrically shaped so that air gap does not 
have a uniform thickness. A nonsalient machine is one which is not salient 
meaning it does have a cylindrical rotor with a uniform or constant air-gap 
thickness. 

5.3.1 Two-Phase Synchronous Motor with a Sinusoidally 
Wound Rotor 

A synchronous machine with a sinusoidally wound rotor (also referred to 
as a nonsalient machine) is considered first. The rotor consists of a single 
sinusoidally wound phase of wire while the stator is constructed identically 
to that of the induction motor as illustrated in Figure 5.9. The rotor con- 
struction, torque production and energy conversion for this synchronous 
machine is now described. 

Sinusoidally Wound Rotor 

Consider a synchronous machine where the stator consists of two sinu- 
soidally wound phases which are 90" apart as shown in Figure 5.9(a). Let 
the rotor consist of a cylindrical core of iron on which a single phase with 
a sinusoidal turns density has been wound as illustrated in Figure 5.9(b). 
That is, the turns density of the single-phase rotor winding is given by 

N F  

2 
N R F ( 6  - OR) = - Isin(6 - O R ) l  

where NF is the total number of windings in the phase. 

Sinusoidaiiy 

Magnetic axis 
of rotor phase 

FIGURE 5.9. Single-phase sinusoidally wound rotor. 

The single-phase winding on the rotor is usually referred to as the field 
winding and hence the subscript "F".  The radial magnetic field in the air- 
gap due to the rotor current i F  in the sinusoidally wound rotor is (see 
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problem 7) - 
BR = BRe = cos(8 - OR)? (5.10) 

4gr 

For this machine to operate as a synchronous machine, the rotor must be 
carrying a constant current, that is, i~ = I F  with I F  constant. Again, the 
subscript “F” is used to denote the rotor current as the field current where 
the term “field refers to the current being constant. The rotor position is 
taken to be aligned with the magnetic axis of the rotor as shown in Figure 
5.9. Furthermore, as the rotor current is constant, the rotor can be viewed 
simply as a magnet that rotates at angular speed W R  = d 8 R / d t .  Figure 
5.10 illustrates the radial magnetic field in air gap produced by a constant 
current IF  in a sinusoidally wound rotor phase. 

- 
eR =o 

(a) wRr = 0 (b)wRr = ~ / 4  

FIGURE 5.10. Magnetic field lines produced by a sinusoidally distributed rotor 
winding carrying a constant current i~ = I F .  (The stator windings are  not drawn 
for clarity.) 
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To describe the Physics of this machine, consider the motor to be in 
steady-state operation. By this it is meant that the stator magnetic field 
Bs and the rotor are rotating at the same angular speed (i.e., W R  = w s ) ,  
which is the origin of the term synchronous. As shown below, with the 
magnetic axis of Bs given by 6 s ( t )  = w s t ,  the rotor position in steady 
state is written as 6 ~ ( t )  = w s t  - 6,  where 6 > 0 is a constant angle whose 
value will be shown to depend on how much load (i.e., external torque, 
friction, etc.) there is on the motor. 

+ 

Magnetic Forces/Torques 

The magnetic field in the air-gap due to the stator currents is given by 

(5.11) 

With the rotor field current i F ( t )  = IF constant, the magnetic field in the 
air gap due to this constant rotor current is 

(5.12) 

where 6R is the rotor position which is aligned with the magnetic axis of 
the rotor. 

The same procedure used to compute the torque produced by the induc- 
tion motor could also be used. That is, one uses the expression (5.11) for 
Bs to compute the torque this magnetic field produces on the current in 
the sinusoidally wound rotor phase. This is explored in problem 9. How- 
ever, a different approach is taken here that will also work in the case of 
both a permanent magnet rotor and a salient rotor (see problem 8) .  

By Newton’s third law, the magnetic forces on the rotor currents p r e  
duced by the rotating stator magnetic field is the negative of the forces on 
the stator currents produced by rotor’s magnetic field. The approach here 
is to compute the torque ?s exerted on the currents in the sinusoidally 
wound stator phases by the rotor’s magnetic field. Then the rotor torque 
?R is found by ?R = -?s. 

To proceed, consider Figure 5.11 where at any position 0 on the sta- 
tor, the number of axial sides of stator phase a between 6 and 6 + d6 is 
( N s / 2 )  Isin(6)l do. Thus, the total amount of current in the axial sides of 
stator phase a between 6 and 6+d6 is is,(Ns/2) Isin(6)l d6. Using the mag- 
netic force law, the incremental force dFsa on the currents in the windings 
of stator phase a between 6 and 6 + d6 is given by 
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FIGURE 5.11. Computation of force/torque on stator phase a due to the rotor's 
magnetic field. Stator phase b is not shown for clarity. 

As sin(6) is positive in the interval 0 I 6 5 7r and Isin(6)l = -sin(6) 
in the interval 7r 5 6 5 27r, the incremental force for 0 5 6 5 27r may be 
rewritten compactly as 

where rs = &/2+g is the inside radius of the stator. Then, the incremental 
torque on these windings of phase a is given by 
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The total torque on stator phase a is then 

+ sin(6) s i n ( 6 ~ ) )  d 6 t  

Similarly, with N~b(6)d6 = ( N s / 2 )  Isin(6 - 7r/2)I d6 the number of axial 
sides of the windings of stator phase b between 6 and 6id6, the incremental 
force d@Sb on the current in these windings for 0 5 6 5 27r is given by2 

Thus, the incremental torque on phase b of the stator is given by 

2Note that  ( N s / 2 )  Isin(6 - n/2)j = (Ns/2)sin(6 - n/2) for n / 2  5 6 5 3n/2 and 
(Ns/2) /sin(@ - n / 2 ) ]  = -(Ns/2) sin(@ - n/2) for -n /2  5 6 5 n/2. 
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The total torque on stator phase b is then 

The total torque exerted on the stator by the rotor is then 

Consequently, +R = -+s is the torque exerted on the rotor by the stator 
and is given by 

Define 

Vairgap A 24e2/2)e19 = d1e29 

where B R ~ ~ ~  is the maximum values of the rotor’s magnetic field at the 
surface of the rotor3 and Valrgap is the volume of the air gap (assuming g 
is small). The torque is now rewritten as 

NS 
49 

7 R  VairgapBRrnax- ( - i S a ( t )  sin(6R) + i S b ( t )  cos(6R)) 

and the dynamic equation describing the motion of the rotor is then 

NS 
d t  49 

To obtain an expression for this torque in steady state, set 

VairgapBRmax- ( - i S a ( t )  sin(eR) -k i S b ( t )  cos(@R)) - 7 L .  
dWR J- = 

isa(t) = I s  cos(wst) = 1s cos (6~) ,  i S b ( t )  = IS sin(wst) = IS sin(8s) 

3See equation (5.12) 
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where Os(t) = wst so that 

sin(Os - O R ) .  BR m a x B ~  max 

2/10 
= Vairgap 

Here 

is the maximum value of the rotating stator magnetic field at the surface 
of the rotor [see equation (5 .2)] .  With 

it follows that 

sin(Os - O R )  = sin(wst - (wRt - 6)) = sin((ws - WR)t + 6)). 

Thus, the only way to obtain constant torque is with the stator’s magnetic 
field and the rotor rotating at the same constant angular speed (i.e., ws = 

W R ) .  In other words, the stator’s rotating magnetic field Bs and the rotor 
must be rotating synchronously. In this case, the expression for the torque 
simplifies to 

sin(6). BR m a x B S  max 

2/10 
T R  = Vairgap (5.13) 

This last expression leads to a simple picture for the synchronous motor. 
That is, the stator currents set up a rotating “stator magnet” which pulls 
along the “rotor magnet” (see Figure 11.10). The torque on the “rotor 
magnet” is proportional to the maximum value of the magnetic field of the 
rotating “stator magnet”, the maximum value of the magnetic field of the 
“rotor magnet”, and the sine of the angle between them. 

5.3.2 Emfs and Energy Conversion 

The flux linkage in stator phase a due to the rotor’s magnetic field BR is 
now found in order to compute the induced emf in this phase. Recall that 
for 0 5 8 5 T ,  the number of turns (loops) in stator phase a between 8 and 
O+dO is ( N s / 2 )  sin(8)dO. As the cross-sectional area of the wire is assumed 
negligible, the flux through each of these loops/turns is the same. 
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FIGURE 5.12. Computation of the flux in a turn of stator phase a located between 
0 and 0 + d0. All the loops between 0 and 0 + d0 have the same flux as the 
cross-sectional area of the wire is assumed infinitesimal. The normal for the flux 
surface is taken to be d = f .  Stator phase b is not shown for clarity. 

Denoting the flux in each stator turn/loop between 6 and 6 + d6 by 
4sa(8), this flux is computed as 

A single 100p of s ta tor  
phase a a t  the angle 6 

- - / 6 ‘ = e  /’”’ (&I N e I  cos(6’ - 6,(t))f) . (rsd6’dzP) 

8’=6-x z=O 4grs 

poNFe1e21F COS(8’ - 6R(t))d6’ 

where B R ~ ~ ~  = ( P ~ N F I F )  /(2g). 
As there are (Ns/2)sin(8)d6 turns/loops of stator phase a between 0 

and 6 + d6 each containing the flux 4sa(8), the total flux linkage As, in all 
the windings making up stator phase a due to the rotor’s magnetic field is 
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given by 

A where Vairgap = d & g .  Similarly, denote by cPsb(6) the flux in wind- 
ings/turns of stator phase b between 6 and 6+d6 due to the rotor's magnetic 
field. It follows that 

4Sb(e)  = A 1 B R . d g  

A single loop of s ta tor  
phase b a t  the angle 6 

(5.16) 

The total flux linkage in stator phase b is then 

N s  . 3x12 

elezBRmax sin(6 - OR)- sm(6 - 7r/2)d6 
= s,,, 2 

The quantities Asa and denote the flux linkages in the stator phases 
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due to the rotor's magnetic field.4 By Faraday's law, the emf's induced in 
the stator phases due to the rotor's magnetic field (i.e., the back emfs in 
the stator phases) are then 

As the normal f~ = P was chosen for the flux surface to  compute (5.14) and 
therefore for all the loops in (5.15), the induced emf tsa in phase a has the 
same sign convention as that chosen for the phase current isa. Similarly, 
the induced emf [ S b  in phase b has the same sign convention as the phase 
current i S b .  

The electrical power absorbed by the emfs tSa, [Sb is 

where the motor is now assumed to be in steady state so that 8s = wSt, 
OR = WRt -6 with ws = W R .  By the torque equation (5.13)' the mechanical 
power produced is 

so that 
Pelec + Prnech = 0. 

That is, the electrical power absorbed in the stator phases reappears as the 
mechanical power of the motor. 

4Note that as VairgapB,qmax% = 7reie2gp0:r1F 2 = ( @ o T ~ I ~ ~ N s N R / ~ ~ )  IF, 
these flux linkages may also be written in the form X s a ( 6 ~ )  = M I F  C O S ( 6 R ) ,  XSb(6R) = 
M I F  sin(6R) where, M (po7r'ele2NsN,q/8g) is called the coefficient of mutual indue- 
tance. 
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5.3.3 Synchronous Motor with a Salient Rotor 
To actually produce a rotor winding for a machine that is sinusoidally 
wound is more expensive than other types of windings. In the case of the 
synchronous motor, one can eliminate the need for a sinusoidally wound 
rotor. Recall that in the above analysis of the synchronous machine, the 
important fact was that the magnetic field of the rotor was sinusoidally 
distributed in 8 - OR. It is now shown that by putting a uniformly wound 
coil on the rotor and shaping the pole faces of the rotor appropriately, a 
sinusoidally distributed magnetic field in the air gap can be produced. 

I 
FIGURE 5.13. Synchronous motor with a salient rotor. 

To do so, consider Figure 5.13 where the rotor iron is now wrapped with 
a standard coil with NF turns and the pole faces have been shaped so that 
the air gap is no longer uniform, but instead given by 

(5.19) 

where go is the minimum air-gap distance. (Obviously, this can only be 
done approximately as cos(8 - 8,) = 0 for 8 = 8, i 7r/2.) To determine the 
magnetic field BR in the air gap due to the rotor, Ampgre's law is applied 
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to the path 1-2-3-4-1 above to obtain5 

2 4 

(5.20) 

where the standard assumption that H = 0 in the magnetic material has 
been used. As 

+ d r t  for path 1-2 
- d r t  for path 3-4 

de‘= { 
equation (5.20) reduces to (H = H,f) 

&(8)g(8 - OR) ~ &(8 + +(8 - OR) N F i F .  (5.21) 

By symmetry, the radial component must satisfy HT(6) = -HT(8 f T) so 
that (5.21) becomes 

2HT(8)g(8 - 6 ~ )  = N F Z F .  

Finally, this is multiplied by both ,uo and T R / r  (to satisfy conservation of 
flux in the air gap) to  obtain 

By shaping the pole faces of the rotor according to equation (5.19), it 
was found this salient rotor produced the same magnetic field in the air 
gap as a sinusoidally wound rotor. However, as one moves away from the 
(salient) rotors’ magnetic axis, the air gap is no longer small so that the 
assumptions about the magnetic field due to the rotor current being con- 
stant and radially directed across the air gap are less valid. On the other 
hand, with either a salient or sinusoidally wound rotor, the magnetic field 
strength of the rotor is quite weak as one moves away from the magnetic 
axis so that these portions do not contribute significantly to the torque. 
(The same can be said of the strength of the stator’s magnetic field as one 
moves away from its magnetic axis.) As the angle between the stator’s and 
rotor’s magnetic axis is usually small, the region where the assumptions 

50nly those paths that do not go through the field coil are being considered. Aithose 
angles 6 corresponding to going through the field coil, it will turn out that  the B field 
due to the current in the coil is weak and can be neglected. 

As before, it is assumed that the stator windings have an infinitesimal cross section 
so that J H . &-= 0 across the winding because = 0. 
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are violated do not contribute significantly to  the torque lending credence 
to the above analysis. 

Remark With TR = &/2, the expression for BS in (5.11) can be written 
as 

and was derived assuming a uniform air gap. If a salient rotor as in Figure 
5.13 is used, then this assumption no longer holds. However, to  a reasonable 
approximation, one can use (5.11) with g = g1 > go, that is, some average 
value g1 of the air gap length. Further, as the rotor no longer has a circular 
cross section, one can take T R  = rs - g1 as an average radius of the rotor. 

5.3.4 Armature and Field Windings 

Recall that the rotor of a DC motor was referred to  as the armature wind- 
ing. This terminology is used to  indicate that the current in this winding 
is alternating current (AC) as every half-turn the commutator and brushes 
reverse the direction of the current in any given rotor loop. For a syn- 
chronous or induction motor, the stator windings carry AC current (in 
normal operation) so the stator windings are referred to  as the armature 
(see Woodson and Melcher [20], page 121). Further, recall that the stator 
winding of a separately excited DC motor is called the field winding and 
this terminology is used to  indicate that it normally carries a DC current to 
establish a constant magnetic field in the air gap that produces torque on 
the current in the rotor windings. Similarly, on a wound rotor synchronous 
machine, the rotor winding is called the field winding because it normally 
operates with a DC current to  establish a constant magnetic field in the air 
gap. (This magnetic field is constant for someone rotating with the rotor.) 

5.4 Microscopic Viewpoint of AC Machines* 

The microscopic viewpoint of the Physics of AC machines is described in 
this section. This is analogous to  the microscopic viewpoint of DC ma- 
chines given in Chapter 1. The analysis is first done from the point of view 
of a stationary coordinate system and then from the point of view of a 
coordinate system rotating with the stator’s magnetic field. 
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5.4.1 Rotating Axial Electric Field Due to the Stator 
Currents 

Recall from equation (5.2) that the rotating magnetic field in the air gap 
produced by the stator currents is 

B&, 6, t )  = BST(T,  6, t)? 

- - cos(6 - wst)?. (5.22) 
4gr 

FIGURE 5.14. Rotating magnetic field 6 s .  

In Chapter 4 [see equation (4.26)], it was shown that the axial electric 
field produced by B s  in equation (5.22) according to 

is 

&(6, t )  = EsZ(e,t)i = p 0 p 2 N s 1 s ~ s  cos(6 - w s t ) i .  (5.23) 
4g 

This axially directed rotating electric field Es(6, t )  is illustrated in Figure 
5.15. For 6s - 7r/2 5 6 5 6s + 7r/2, the electric field is into the page (@) 
while for 6s + 7r/2 5 6 5 6s + 3 ~ 1 2 ,  the electric field is out of the page 

(0). 
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.- 

Axial electric field 

FIGURE 5.15. Rotatirfg axial electric field ES = EsZ(f2,t)B induced by the ro- 
tating magnetic field Bs = Bsr(B, t)P. 

5.4.2 Induction Machine in the Stationary Coordinate System 

Consider the setup of Figure 5.16. 

FIGURE 5.16. Simple induction motor with two single-loop rotor phases. 

The axial electric field Es produces a force on charge carriers in the rotor 
loops. However, the total force on a charge carrier in a rotor loop is due to 
both the electric and magnetic fields as given by the Lorentz expression 
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where 

B&, e, t) = B ~ ~ ( T ,  e, t)i. = ( / L ~ ~ ~ N ~ I ~ / ~ ~ T )  cos(e - wst)i. 
(5.24) 

N I  Gs(e, t) = EsZ(e,  t p  = 110'~ sws cos(e - wst)i. 
49 

+ 
To compute v'xBs, let be the (drift) speed of the charge carriers 
(which make up the current) along rotor loop a. The speed vdra being 
positive means that the current is positive; that is, coming out of the page 
0 on side a and into the page @ on side a'. Then, with vt = (&/2)wR, 
the speed of the charge carriers in the 6 direction, the total velocity of the 
charge carriers along the axial sides of rotor loop a is 

fv&a% + vt6 
-?&a% + vt6 

for side a 
for side a' 

+ = {  
The magnetic force per unit charge on the charge carriers on the axial sides 
of rotor loop a is given by 

+ 

v ' x B s =  

+VdraB~r(l2/2, OR + 7r/2, t)6 - VtBsr(ez/2,  6~ + 7r/2, t)% for side a 

-Z)&aBS~(e2/2, - T/2, t )6  - vtBsr(l2/2, 6~ - T/2, t)% for side a'. 

Using equation (5.24), it follows that for side a 

Similarly, on side a' 

With vt = (e2/2)w~ and OR = W R t ,  the magnetic force per unit charge in 
rotor loop a may now be written as 

- 
+ x B s  = 

(5.25) 
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Next, the electric field I& in rotor loop a is given by 

Esz(f?R + 7r/2, t ) Z  for side a 
E.={ Esz(6R - 7r/2, t)Z for side a'. 

Using (5.24) and f ? ~ ( t )  = W R ~ ,  this becomes for side a 

6s = ' O e 2  Nsrs w s  cos(wRt + 7r/2 - wst)f 
49 
N I  

49 
- - 'oe2 s s w s  sin(wst - wRt)fi 

and for side a' 

Es = 'oe2NsIs w s  cos(wRt - '7r/2 - wst)fi 
49 

N I  
- - - 'oe2 s s w s  sin(wst - W R t ) & .  

49 
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(5.26) 

(5.27) 

The total force per unit charge @ / q  = 2s + G x B s  on side a is then 

'oe2NSIswssin(wst - WRt)% + Ztdra- 'ONSIS 

49 2g 
@side a / q  = 

N I  
x sin(wst - w R ~ ) ~ - w R  "" sin(wst - ~ ~ t ) 2  (5.28) 

4g 

and for side a' it is given by 

+ N I  'ONSIS 
'0" s s w s  sin(wst - WRt)2 + ?&ap F s i d e  a f / q  = - 

x sin(wst - W R ~ ) ~ + W R ' ~ ~ ~ ~ ~ I ~  sin(wst - ~ ~ t ) 2 .  (5.29) 

4g 29 

4g 

These last two expressions simplify to 

+ I .  
Fs ide  a / 4  = v d r a p  'oNs s sin ( ( w s  - WR)t)8 

+ POQ2NSIS 

29 

49 
( w s  - WR) sin ((us - ~ ~ ) t ) 2  (5.30) 

and 

The component in 6 direction (tangential to  the rotor motion) is what 
produces the torque. With N the number of charge carriers per unit volume 
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in the conductor of rotor phase a,  S the cross-sectional area of the loop, it 
follows that qNSll  is the total number of charge carriers on each axial side 
of the loop. Therefore, the total tangential magnetic force on these charge 
carriers is 

Fa = QNSel'Udra--- fioNsIs sin ((us - uR) t ) i j .  

Recalling that i~~ = qNSvd,, is the rotor current and computing the 
torque according to (l2/2)? x $8, the total torque on rotor loop a is 

+ 

29 

?Ra = r R a 2  

= ( (12/2)?  x Fa) + ((C2/2)? x $6) 
side-a szde-a' 

(5.32) 

To evaluate the torque, the current iRa  must be computed. The current 
in the rotor loop is produced by the total emf in the loop. Note that the 
electric field Es = EsZ2 induced by the stator's rotating magnetic field is 
pushing charge out of side a and into side a', and it is being opposed by 
the axial magnetic force (V-XBS)~~ as equation (5.28) shows. For example, 
on side a,  the electric field 

is opposed by the z component of the magnetic force per unit charge 

It follows by (5.30) and (5.31) that the total axial or z component of the 
force per unit charge is 

(us - W R )  sin( (ws ~ W R ) ~ )  2 

(ws ~ W R )  sin( (us - W R ) ~ )  2 

side a 

side a'. 
(5.33) 

Thus electromotive force or emf in the rotor loop is simply the integral of 
the force per unit charge around the loop, that is, 

f (@' /q) .de '  
A 

ERa = 

rotor loop a 

- - f (6s + G x B s ) .  de' 

rotor loop a 
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where 
+ d z t  for side a 
- d z t  for side a’. 
i 

As de‘ is aligned with k2, only the axial component (l?/q)z given in equa- 
tion (5.33) contributes to  the emf. 

Evaluating the line integral, the induced emf in rotor phase a is given by 

(5.34) 

which is the same as in the macroscopic case. Neglecting the rotor induc- 
tance so that iRa  = ERa/RR, the torque on rotor loop a is 

A similar analysis shows that 

Rotor Torque Computed from Microscopic Point of View 

Adding equations (5.35) and (5.36), the total torque on the rotor is 

which is the same expression as that computed in the macroscopic case. 

Electromechanical Energy Conversion 

Define the voltage in rotor loop a produced by the stator electric field E s  
as 

For example, if the rotor was locked so that W R  = 0 in (5.37), then this 
would be the total emf in the rotor loop as can be seen by setting W R  = 0 
in (5.34). However, due to the rotor’s motion (WR # 0), there is an axial 
( z  component) magnetic force per unit charge. Define the “back emf” CRa 
as the integral of the axial magnetic force per unit charge around the rotor 
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loop, that is, 

CRa = A f (v'xBs),.&? 

rotor loop a 

(5.38) 

In summary, the total emf ERa in rotor loop a may be written as 

where V R ~  is the voltage produced in the rotor loop by the induced electric 
field E s  and CRa is the back emf produced by the axial magnetic force 
per unit charge v'xBs. By direct substitution using equations (5.32) and 
(5.38), it is easy to see that 

Here T R ~ W R  is the mechanical power produced on rotor loop a while ~ R ~ < R ~  

is the electrical power absorbed by the back emf. That is, if T R ~ W R  > 0 so 
that mechanical power is being produced, then ~ R ~ C R ~  < 0 is the electrical 
power being absorbed by back emf in rotor loop a. Another interesting 
point is that 

iRa VRa 

is the total electrical power into rotor loop a from the stator, that is, 

In other words, the total power iRaVRa into rotor loop a is converted into 
the electrical power ~ R ~ J R ~  (ultimately dissipated as heat in the rotor resis- 
tance) and into the mechanical power T R ~ W R  (= - ~ R ~ C R ~ ) .  Similar remarks 
hold for rotor loop b. 
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5.4.3 Faraday's Law and the Integral of the Force per Unit 
Charge 

In this subsection, it is shown that Faraday's law gives the same emf as 
integrating the force per unit charge around the loop, that is, 

In equation (5.3), tRa was computed using tRa 
in equation (5.39), it was computed using sRa = &(Es + v' x 6s). de and 
both methods gave the same result. The objective here is to show that this 

-- 
d"t (p , + 

(5.40) 

is true in general. 

is the closed loop C in a region of space with an electric field 
magnetic field B. The line integral of the force per unit charge gives 

To show that (5.40) is true in general, let 5' be a surface whose boundary 
and a 

where Stokes theorem 

and Faraday's law in differential form 

- aB 
V X E = - -  

at 
were used [35][36]. Using the fact that 

and the vector identity 

this reduces to 
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Now v' is the velocity of the charge carriers in the loop C and note that if 
the loop itself is not moving, then v' is in the same direction as &*so that 
v' x &?= 0. In general, with y the angle between v' and d( 

I v' x &'I= u sin(y)d4 = v l d C  

where z l ~  = usin(y) is the velocity component perpendicular to d z  The 
quantity I v'x&?l represents a change in the flux surface as  is now explained. 

To fix ideas, consider a single loop on the rotor of a motor as shown in 
Figure 5.17. 

Flux surface 

FIGURE 5.17. (a) Flux surface on a moving loop with side a at 8. (b) Loop 
rotates with side a going from B t o  8 + do. 

Consider that in the time d t ,  side a of the loop rotates from 8 = 8~+17- /2  
to 8 + d8 = 8~ + 17-12 + d 8 ~  (with side a' going from 8 - 17- to 8 + d8 - 17-, 

d 8 / d t  = W R ) .  With B denoting the magnetic field produced by the stator 
currents, the quantity 

) d t  B . (v' x d z )  = d t  lide a BT(r~, 8, t)? . ( : W R ~  x dQ2 
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where dB = wRdt  was used in the last line. Then & ( T R ,  6 ,  t ) t1(&/’2)de is 
the additional flux due to the surface area change as side a moved from 9 
to 8 + dB while -&.(TR, 0 - T ,  t ) l ,  (C2/2)dO is the decrease in flux due to 
the surface area change as side a‘ moved from 0 - T to t9 + d o  - T .  That is, 
the quantity 

is the change in flux d 4  in the rotor loop due to  the rotation of the loop 
through the angle do. In more detail, 

so that 

where the Liebniz rule for differentiation was used. Consequently, by com- 
parison with (5.42), it follows that 

is the rate of change of flux due to the motion of the loop while 

is the rate of change of flux due to  the time-varying magnetic field B. By 
Faraday’s law, the induced voltage in the loop is given by 

where (5.41) was used. 
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5.4.4 Induction Machine in the Synchronous Coordinate 
System 

Up to this point, the electric and magnetic fields have been viewed from 
the reference frame of the stator. Often in electric machine theory, concepts 
are discussed from the point of view of a rotating reference frame such as 
that of the stator's rotating magnetic field which rotates at angular speed 
ws or that of the rotor which rotates at angular speed W R .  It turns out 
that the electric and magnetic fields change from one moving coordinate 
system to another. To understand the changes, the microscopic viewpoint 
is repeated in a coordinate system that rotates with the rotating magnetic 
field produced by the stator currents. (Problem 17 considers the microscopic 
point of view in the rotor coordinate system.) 

Figure 5.18 shows the rotating stator magnetic field Bs. The observer is 
face down and rotates with the stator magnetic field. 

c .  = 
side-a . "dm2 

FIGUSE 5.18. An observer in the synchronous coordinate system that rotates 
with Bs. The rotating magnetic field produced by the stator currents has angular 
speed ws while the rotor has angular speed W R .  

In any given reference/coordinate system, the Lorentz force on a charge 
carrier is given by 

l ? = q  E+v'xB 

where E and B are the electric and magnetic fields measured in the partic- 
ular reference/coordinate system and v' is the velocity of the charge carrier 
as measured in the same coordinate system. 

Recall that, in the coordinate system fixed to stator, the electric and 
magnetic fields in the air gap of the motor produced by the stator currents 

( -> 
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are 

and the velocity of the charge carriers in the axial sides of rotor loop a is 

where ut = (&/2)wR. 
Consider a jump into a coordinate system moving (rotating) with the 

magnetic field Bs, that is, a coordinate system that rotates at angular 
speed w s .  This referred to  as the synchronous coordinate coordinate sys- 
tem and is denoted here as the primed (') coordinate system. How do the 
above electric and magnetic fields transform (change) when one goes to the 
rotating (primed) coordinate system? Consider Figure 5.19 depicting two 
coordinate systems in which the primed (') coordinate system has velocity 
v" = u'? with respect to the unprimed coordinate system. According to 
the Special Theory of Relativity [35] [36], the fields transform according to 

where y and Bll are, 
respectively, the electric and magnetic fields parallel to the motion (i.e., in 
the y direction in Figure 5.19) and finally, EL and BI are, respectively, 
the electric and magnetic fields perpendicular to the motion (i.e., in an x-z 
plane of Figure 5.19). Similar comments apply to E , ,  Bi,, EL, and Bi .  

l/d-, cis  the speed of light, u' = I? ' / ,  

FIGURE 5.19. Two coordinate systems moving with respect to one another. 
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For the application to electric machines where (d/c)’ << 1, it follows 
that y = 1 can be used as an excellent approximation and the above trans- 
formation reduces to  

Returning to the induction motor and the rotating coordinate system of 
the stator magnetic field, the coordinate transformation from the stationary 
coordinate system (unprimed) to the rotating coordinate system (primed) 
of the rotating stator magnetic field is 

cos(wst) sin(wst) 0 
- sin(wst) cos(wst) 0 

0 1 

In cylindrical coordinates, the transformation is simply 

Remark Note that a stationary point (r’, 8’) in this rotating coordinate 
system has velocity v’ = r’w& in the (original unprimed) stator coordi- 
nate system. Note also that in this rotating coordinate system, the rotor’s 
angular speed w& is given by w& = - (ws - W R )  < 0. This is simply a 
consequence of the fact that the coordinate system rotating with the stator 
magnetic field is rotating faster than the rotor. 

The first step is to find the electric and magnetic fields in this rotating 
coordinate system. For the induction motor, the fields perpendicular and 
parallel to the motion are given by 

E l  = E s  

El, = 0 

B l  = B S  

Bll = 0 

where ES and B s  are given in (5.43). At the surface of the rotor, the new 
coordinate system has velocity v” = ([2/2)ws6 with respect to the original 
coordinate system so that the electric and magnetic fields in the rotating 
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coordinate system are given by 

Es = E s  + v“ x B s  = E s Z ( 6 , t ) 2 + ( C 2 / 2 ) ~ s 6  x BsrF 

= o  

The fact that the axial electric field in the rotating coordinate system is zero 
could have been anticipated. That is, to an observer in the rotating coordi- 
nate system, the magnetic field is given by B i  = (p0kzNsIs/4gr’) cos(6’)P 
which is static in time. Faraday’s law V x Es = -aBl,/at = 0 then gives 
Ei  = 0 as the solution. 

In the rotating coordinate system, the Lorentz force on the charge carriers 
in rotor loop a is 

+ 

- 1  
+ + + 
F’ = Q(EL + GLaxBL) = Q~”,,xB~ 

where, with wL = -(ws - W R ) ,  

(e2/2)wk6+vdTa2 side a { (&/2)w’,6-udTa2 side a’ 
$La = 

is the total velocity of the charge carriers in the axial sides of rotor loop a 
with respect to the rotating coordinate system. 

W ’ = - ( W  -6J ) (-) R S R  

FIGURE 5.20. In the synchronous coordinate system, the rotor has angular speed 
w k 6  = ~ (ws - W R ) ~ .  Rotor loop b is not drawn for clarity. 
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+ - 
Then, with B', = B s  = Bsrf, 8' = OR + 7r/2 - w s t  = wkt + 7r/2 on side 

a of the rotor and 8' = O R  - r / 2  - wSt = wkt - 7r/2 on side a' of the rotor, 

GkaxB', = 
+ 

+vdraBsr(e2/2,~kt + 7r/2)8 - (&/2)wkBsr(e2/2,wkt + 7r/2)2 side a c -vdraBST(e2/2,Wkt - 7r/2)8 - (e2/2)w&~Sr(e2/2, wkt - 7r/2)i side a' 

Substituting in the expressions 

results in 
- + 

FSide a / q  = GkaXB', 

1 poNsIs sin(wkt)k 'oNs s sin(wkt)8 + (e2/2)wR- 
I .  

29 
-vdra- 

- - 
29 

+ 

FLicie a//q = + k a x B L  
- ~ 0 ~ ~ ' s  sin(wkt)a - (e2/2)wR- / poNsI~  sin(wkt)g. 

2g 
-vdra- - 

29 
4 

With w k  = -(WS - WR),  it is seen that the force per unit charge F'/q = 

V'kaxBk in this coordinate system equals that obtained in the original 
coordinates system given in (5.30). This is as it must be since the forces 
in the two coordinate systems must be equal by the principle of relativity 
(both Newton's and Einstein's). 

The total torque on rotor loop a is then 

where i~~ = qNSvd,,. Note that, as w k  = -(WS - W R ) ,  we may rewrite 
this a s  

which is the same expression as in (5.6) and (5.32). 

given by 
Of course, there is a similar expression for the torque on rotor loop b 
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It has been shown that the axial magnetic force per unit charge is given by 

+wl for side a POt2NSIS 

4g 

49 
I pof2Ns1s sin(wkt)i -WR for side a' 

and, as the electric field Es = 0, this is also the total axial force per unit 
charge (I?:/q)=. As a result, with 

dz = { dz2 
for side a 

- d z i  for side a' 

the emf induced in rotor loop a is simply 

rotor loop a 

(5.45) 

Similarly, 

Then, with 

(5.47) 

(5.48) 

the total torque on the rotor in the primed coordinate system is given by 

- - L ( Poe1;gNsIs)2 (ws - wR).  
R R  

This is the same as the expression (5.9) derived in the stationary coordinate 
system. 

Electromechanical Energy Conversion 

It has been shown that, to the observer in Figure 5.20 in the rotating 
coordinate system, the torque is given by 
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However, to this same observer, the angular speed of the rotor is 

so that power delivered to the rotor is 

That is, in the rotating coordinate system of the stator magnetic field 
(Figure 5.20), the tangential velocity of the rotor loop is in the -6 direction 
while the above torque is pushing the rotor in the +6 direction. The torque 
is slowing the rotor down from the point of view of the observer in the 
rotating coordinate system of Figure 5.20 and thus taking out mechanical 
power! Where is this mechanical power going? From the point of view of 
someone in the rotating coordinate system, this mechanical energy is being 
converted into electrical power in the rotor. That is, the electric power 
produced is 

which is easily verified by substitution of the expressions (5.45), (5.46), 
(5.47), and (5.48) for the emfs and currents. In summary, to someone in 
the rotating coordinate system, the induction machine looks like a generator 
rather than a motor. 

Magnetic Force and Work 

Recall, in the rotating coordinate system of Figure 5.20, the electric field 
EL = 0 so that the magnetic force per unit charge on the axial sides of the 

F'/g = E', + +La x B', = +La x B', 
- + + rotor is then . - 

where 

Explicitly, 

poNs's s in (wk t )h  + wkpoe2Ns's sin(w&t)l 

poNS's s in(wLt)h  ~ wR ' poe2Ns1s sin(wkt)2 

side a 
4g 

4g 

-vdra- 
2g 

29 
side a'. --2)dra ~ 

+ 

The power per unit charge done by the (purely) magnetic force F' = 

q(v'ka x B k )  is then 
- + 

(F'/q) . +La = (+La x B',) . +La E 0 



5 .  The Physics of AC Machines 333 

as it must, since the magnetic force on a moving charge is always orthogonal 
to the velocity of the charge and thus cannot change the energy of the 
charge carriers. How is the energy transfer in the rotating coordinate system 
accomplished from mechanical to  electrical? Consider another observer in 
the rotating coordinate system as shown in Figure 5.21(a). 

Observer 

F / q = ? ~ , x B ,  

From observer's viewpoint 

(b) 

FIGURE 5.21. (a) View by an observer in the synchronous coordinate system. 
(b) The magnetic force on the rotor loop from the observer's point of view. 

The observer is still rotating with the stator magnetic field at angular 
speed WS. The magnetic force opposes the rotor angular velocity and pro- 
duces the current in the rotor as seen in Figure 5.21(b). From the point of 
view of the rotating coordinate system, the magnetic force is the mecha- 
nism which converts the mechanical (kinetic) energy into electrical energy 
while not adding any energy (i.e., doing any work). In more detail, the 
power delivered by the magnetic force on the two sides of rotor loop a is 
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Rearranging the right hand side of this last equations gives 

+ + 
However 

F’ . +La = q(GLa x Bk) . +La 3 0 

as the magnetic force on a charged particle is always perpendicular to  its 
velocity. The coefficient of 6 . 6  in (5.49) is rLaw& - the mechanical power, 
while the coefficient of 2 .t is J & a i ~ a  - the electrical power in rotor loop a. 
As these terms are equal in magnitude, but opposite in sign, it is seen that 
the magnetic force just converts the mechanical energy to electrical energy, 
but does not add any energy. 

5.4.5 Synchronous Machine 

The microscopic viewpoint of the synchronous machine is explored in prob- 
lems 18 and 19 at the end of the chapter. 

5.5 Steady-State Analysis of a Squirrel Cage 
Induction Motor* 

Consider the two-loop induction motor of Figure 5.22 where, as before, 
6s(t) = w s t  denotes the angular position of the magnetic axis of the rotat- 
ing magnetic field produced by the stator currents, 6 ~ ( t )  = W R ~  denotes 
the angular position of the rotor defined as the magnetic axis of rotor loop 
a (the magnetic axis of rotor loop b is at 6 ~ ( t )  + 7r/2), and 6 denotes an 
arbitrary angular position in the air gap. 

In order to  obtain more torque, additional pairs of loops (each pair 7r/2 
apart) are placed around the complete periphery of the rotor. For ex- 
ample, Figure 5.23 shows a cross section of a rotor with six rotor loops 
a l - a i ,  ~ 2 - a ; ~  a 3 - 4 ,  bl-b;, bz-b;, and bg-bk, which are considered 
as the three pairs of rotor loops {aI-u;,bl-b;},  {a2-a;,b2-b;}, and 
{a3-a$,b3-b;}. In general, the ith rotor loop pair is located by the cen- 
ter line (magnetic axis) of its rotor loop a which is B R ,  = O R  + E k L  for 
i = 1, ..., NR,  where NR is the number of pairs of rotor loops.6 Phase a of 

2 N R  

6Each loop has four sides. The term rotor bar refers to the sides of a loop which go 
along the length of the rotor. The other two sides of the loop are referred to as the end 
turns. Consequently, there are two rotor bars per loop and so each pair of loops has four 
rotor bars. With N R  the number of pairs of loops, there are then ~ N R  rotor bars around 
the periphery of the rotor. 
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the first rotor loop pair (i = 1) is arbitrarily chosen to be the one whose 
magnetic axis is used to reference the rotor position OR. The induced emfs, 
the currents, and the resulting torque in each pair of loops are now com- 
puted, and then the total torque is found by summing the torques on each 
rotor loop pair. 

Rotor loop a 

Rotor loop b 

(4 (b) 

FIGURE 5.22. Induction motor with two single-loop rotor phases a and b. 

FIGURE 5.23. Rotor with six rotor loops ai-a:, az-u:, ~ 3 - a ; ~  bi-b:, bn-b:, 
and b3-b'3 considered as three pairs of loops { u i - u i , b i - b ; } ,  {an-a;,bn-b;}, 
and { a 3 - a j , b ~ - b ; } .  In this figure, there are N R  = 3 pairs of rotor loops and OR 
is chosen to coincide with the magnetic axis of rotor loop ai-a; .  
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5.5.1 Rotor Fluxes, Emfs, and Currents 

The flux X R ~ ,  in phase a of the ith rotor loop pair due to the stator 
T i - 1  

magnetic field Bs is calculated as BR,  = O R  + -- 
2 NR 

(5.50) 

By Faraday's law, the induced electromotive force ( e m f )  in phase a of ith 
rotor loop pair is given by 

where W R  = d6R/dt .  
Similarly, the flux X R b ,  in phase b of the ith rotor loop pair is 

and the corresponding induced emf [Rb, is 

where W R  = d6R/d t .  Assuming each rotor loop has an inductance LR and 
resistance RR, the equations describing the current dynamics are 
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A system of the form 

di 
dt 

L- + Ri = Acos(wt + p) 

with R / L  > 0 is a stable linear time-invariant system so that its steady- 
state solution is given by 

1 
R + j w L  iss(t) = IG(jw)I Acos (wt + p + L G ( j w ) )  where G ( j w )  = 

So, for i = 1, ..., NR,  the steady-state solutions for the currents in the ith 
rotor loop pair are given by 

(US - W R )  Po e e2 N~ 
iRaSS,  = 

J(WS - W R ) ~ L ~  + Rg 29 

( (ws 
L R ) )  

n i - 1  
(ws - wR)t - -- +tan-' 

2 NR 
(5 .53)  

(ws - w R ) t  - -- T i - 1  +tan-' ( (wS ;?ILR)) 

2 NR 

5.5.2 Rotor Torque 

As previously explained, the rotating magnetic field produced by the stator 
currents produces a magnetic force on the-rotor currents it, induced. The 
magnetic force law is simply gmagnetzc = iCxB, where C =I C I is the length 
of the conductor in the magnetic field, and e'points in the direction of 
positive current flow. Recalling that 0 means that if i ~ ~ ,  > 0, the current 
is coming out of the page, it followsJhat l = CIZ on_side ai and C = -e l2  
on side u:. Along with the fact that Bs(r,O+n) = -Bs(r,O), i t  was shown 
that the force on each side of the loop is equal (i.e., gat = @a;) .  Applying 
the magnetic force law to loop a, of the ith rotor loop pair, the torque is 

+ 

+ 4 

computed as + - 
Tuz = ~ C X F , ~  = 2 ( e 2 / 2 ) t x F a >  

where 
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Similarly, 

where 

The torque ?bi becomes 

Letting 

(5.54) 

(5.55) 

in (5.53) and substituting (5.53) into equation (5.54), the total torque on 
loop a,-a: of the i th  rotor loop pair becomes 

Similarly, the total torque on loop bi-b: of the i th rotor loop pair is 

Using the trigonometric identity sin(z) sin(y) + cos(z) cos(y) = cos(z - y) 
to combine the above results, the total torque TR,  on the i th rotor loop pair 
is given by 
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This can be put in a more illuminating form by noting that 

1 

RR 

and substituting back the expression (5.55) for IR, the torque can be written 
as 

where 
RR S =  A w S - w R  and sp 4 -. 

W S  W S L R  

W S - W R .  
The quantity S 4 IS the normalized slip.7 It is straightforward 

to show that s,s,~s,,s has a maximum value of 1 for S = sp and a min- 
imum value of -1 for S = -sp so that the torque achieves its maximum 
(minimum) at S = sp(S = -sp) .  

This derivation shows that, in steady state, each pair of rotor loops has 
the same torque on it. Consequently, the total torque on the NR pairs of 

W S  

'Later the quantity S, L cwsTR will be defined as the p u l l  out slap so tha t  sp  

= as, where a is the so-called leakage parameter (also defined later). For the 
W S L R  
reader familiar with the torque-slip curve of an induction motor, the quantity sp  rather 
than the pull out slip Sp occurs because impressed currents are used here rather than 
impressed voltages (see problem 25 of Chapter 7) .  
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loops is 

where 

The analysis was done assuming that each rotor loop was electrically iso- 
lated from any other rotor loop. The most common rotor for an induction 
motor is the squirrel cage rotor shown in Figure 5.24. It is simply a set of 
conducting bars around the periphery of the rotor iron that are connected 
to conducting end rings at  each end. This is in contrast to the rotor of 
Figure 5.5 where loop a-a’ is electrically isolated from loop b-b’. 

I l l  

End ring 

Rotor bar 

Rotor iron 

FIGURE 5.24. Squirrel cage rotor. 

However, assuming the emf drop across each rotor bar remains the same 
as in the case when the rotor loops are electrically isolated, the above 
analysis still applies.8 That is, consider the squirrel cage to be made up of 
loops consisting of two rotor bars that are on diametrically opposite sides 

*This argument is perhaps more convincing from the microscopic point of view. It is 
shown in an optional section of this chapter that  the rotating magnetic field Bs(r,  8, t )  = 
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of the rotor. The flux in each loop depends on the rotor position SO that the 
induced emf in each rotor loop is different. In particular, as one goes from 
one rotor bar to the next, the emf drop across their lengths are different 
even though they are connected in parallel. This can be visualized as shown 
in Figure 5.25 which shows the induced emfs < b ; ,  1 6 ;  , <bj  , <al , <a,, <a3 1 <bl 1 

J b a  , Eb3 , in each rotor bar being in series with the resistance 
R R / ~  of each rotor bar. 

, cab, 

FIGURE 5.25. Equivalent circuit of a squirrel cage rotor. The rotor bars are 
annotated as in Figure 5.23. Each bar has resistance R R / ~  so that the total 
resistance in a loop consisting of diametrically opposite bars is RR. 

For example, in the two rotor bars a l l  a; (which are on diametrically 
opposite sides of the rotor), the voltage in the rotor loop made up from 

B,(r,6, t ) i  = pne:2's cos(6 - w g t ) i  in the air gap produced by the stator currents 

induces an axial electric field in the air gap (according to V x es = -aBs/at) given by 

p Q e 2 N S I S  ws cos(6 - w s t ) i  (see Figure 5.15). The voltage drop 

across the i th rotor bar produced by this electric field is then s," (Es(6, t ) lS=IR+yz)  .Cle' 

where 'pz = K 2 - l .  One then argues that,  as this depends only on the stator quantities, 
this voltage drop is the same whether or not the rotor bars are electrically connected 
(shorted) at their ends. The total emf in each bar is this voltage drop plus the back emf 

49 
GS(e , t )  = ~ ~ ( 6 , t ) i  = 

2 N R  

) . &in each rotor bar (\+I = ZI = T R W ) .  
.9=BR+'pz 
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these two sides isg ta1 - 5,; = 2ca1 and this loop has resistance RR. This 

emf ERa, = I,, - 5,; = 2Ea1 equak the emf given in equation (5.51) with 
i = 1. Note from Figure 5.23 that the rotor angle OR locates the rotor bar 
b', as is also indicated in Figure 5.25. 

A 

5.5.3 Rotor Magnetic Field 

As equation (5.53) shows, the current in the rotor bars of the squirrel cage 
rotor differs from bar to bar (loop to loop) while the current in each phase 
of a sinusoidully wound rotor loop is the same. Of course, in the squirrel 
cage rotor, it is arbitrary what is called a phase a loop and what is called 
a phase b loop. It is more convenient to speak of a current distribution on 
the surface of the rotor (i.e., in the rotor bars). With pi = ;%, the ith 

rotor bar is located at OR(t) +'pi = wRt + E. Combining the expressions 
(5.53) above for the rotor currents, the steady-state current distribution in 
the ~ N R  rotor bars distributed around the periphery of the rotor can be 
found. Specifically, with IR  given by (5.55), the two equations (5.53) are 
combined to show that the rotor current in the ith bar at 6 ~ ( t )  + cpi is'* 

Applying Ampere's law H ~ d l  = ienc]osed to the closed curve 1-2-3-4-1 

in Figure 5.26, the radial magnetic field BR(0) in the air gap due to  this 
rotor current distribution can be found. To do so, first note that for NR 
large, the discrete angles pi = 5% locating the individual rotor bars can 
be approximated by a continuous angle cp with a continuous current distri- 
bution i ~ s s  ( t ,  9). Specifically, the incremental angle from one rotor bar to 
the next is dy = :& so that the enclosed current may be written as 

f '  - 

gBy symmetry, diametrically opposite sides of the rotor have emfs which are opposite 
in sign, but equal in magnitude. 

7r 4N -1 - 2=- 9 1 ,  
N R  

'OAs z = 1, _.., ~ N R ,  the angles 'pi go from 'pl = 0 to  p 4 ~ ~  = 7 N", - 
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FIGURE 5.26. Path for Ampere's law to compute BR in the air gap. 

where the summation has been approximated by the integral. Ampere's 
law gives 

or 

The expression (5.56) is substituted for i R s s  ( t ,  'p) to evaluate ienclosed (6) 
as 

2 N R I R ~ ~ ~  8s(t)  ~ ( 
( 

-- - - 
7r 

4 
= -NRIRCOS 8s(t) - 8 

7r 

The radial magnetic field 

B ~ ( 8 , t )  = 

- - 

- 
~ 

due to the rotor currents is then 

- NRIR cos (8 - (8s ( t )  + P R )  ) ? 
7r 29 
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where 

In chapter 8 ,  it will be shown that the steady-state rotor currents in a 
sinusoidally wound rotor induction motor will produce a rotating magnetic 
field given by 

The only difference in the form of these expressions is the factor of 4/7r. 
However, the values of the rotor current I R ~ ~ ~ ~ ~  and the phase angle pRWvound 
are in general different as they depend on the L R ~ ~ ~ ~ ~  , R R ~ ~ ~ ~ ~  which have 
different values in a squirrel cage rotor. 

5.5.4 
It is quite interesting to note that in the squirrel cage rotor, the effective 
rotor time constant is still LR/RR,  that is, the time constant due to just 
a single loop. (By "effective" is meant that this is the ratio that appears 
in the expression for the quantity sp = R R / ( w s L R )  used in the above 
expression for the steady-state torque.) A small value for the time constant 
TR = LR/RR is usually desired since the value of sp is then large, making 
7 E k (WS - W R )  for a large range of slip speeds. Assuming ideal magnetic 
material and a small air gap, it is straightforward to show that LR = 

7rpoC1C2/(4g) for each loop of the rotor. Consequently, the time constant is 
TR = LR/RR = 7 r p 0 e l e 2 / ( 4 g R ~ )  where RE is the resistance of the single 

This is in contrast to a sinusoidally wound rotor induction motor (dis- 
cussed in a later chapter) where the rotor loops of each phase are con- 
nected in series resulting in L R ~ ~ ~ ~ ~  = 7rpo!112Ni/(8g) ( N R  is the to- 
tal number of loops in a sinusoidally wound rotor phase) and R R ~ ~ ~ ~ ~  is 
the sum of the resistances of each loop in the rotor ( R R ~ ~ ~ ~ ~  = N R R ~  
with R1 the resistance in each loop). The time constant is then T R ~ ~ ~ ~ ~  = 

L R w o u n d  / R R w o u n d  = 7 r p o t l & N ~ / ( 8 g R 1 ) ) .  The ratio of these two time con- 
stants is T R ~ ~ ~ ~ ~ / T R ~ ~ ~ ~ ~ ~ ~ ~  = N R / ~  showing that for a squirrel cage rotor 
with the same number of loops as the wound rotor, the effective time con- 
stant can be significantly smaller. 

To compare the torque of the two motors, consider the steady-state 
torque produced by a sinusoidally wound two-phase induction motor. It 
is shown in Chapter 7 (or see Chapter 10 of [l]) that the expression for this 

Comparison with a Sinusoidally Wound Rotor 

loop. 
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this becomes R R w ~ u n d  A RR, o u  n d  and sp = oSp = With Sp 
Ow s LRwo d ws LRwou " d  

I: 
T w o u n d  rotor = -M Im 2 

Rearranging, this becomes 

Finally, using 

it follows that 

2 
Twound rotor = 1 4LR (T%)2 ( p0e1e2Nsrs) 9 

~ ~ - -  NR ( 1)2 ~ NR (&( l [2NSG)z  

In form, this differs from the squirrel cage case by the factor - ( $ ) 2 .  

sp/s + s/sp 

2 ~ L R  9 S P I S  + S I S P '  

2 

has a different value than that of RRw ou n d  

s LRw o d 

However, also note that sp 

the squirrel cage rotor. 

"The magnitude of the currents are written in the (nonstandard) form ]Is] = Is/&, 
/& so tha t  Is, I R ~ ~ ~ ~ , ,  are peak values (rather than rms values) to  lIR\ = 

facilitate a comparison with the squirrel cage rotor torque. 
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Problems 

Problem 1 Solutions to Linear Time-Invariant Systems 
Consider the linear time-invariant system specified by  

The transfer function G(s) of this system is 

(a)  Show that i f  

u( t )  A UoejWt = Uo(cos(ut)  + j sin(wt))  

then 

is  a (particular) solution to the differential equation (5.57). 

w t + L G ( j w ) )  Y&) = uo IG( jw) l  ej( 

(b) Show that i f  

u( t )  R e  { Uoejwt} = UO cos(wt),  

then 

is  a particular solution to the differential equation (5.57). 

y p ( t )  = Uo jG(jw)I cos(wt + LG(ju)) 

(c)  Let 
3 u(s)  = s + a2s2 + als  + a0 = ( s  - p l ) ( s  - p2) ( s  - p3) 

so that pl , p2 , p3 are the poles of G(s) . To simplify the discussion, assume 
the pi are distinct. 

With u( t )  E 0 and arbitrary initial conditions y(O), y’(O), y”(O), show 
that the solution to (5.57) has the form y ( t )  = AlepIt + A2ePzt + A3eP3t. 

Next, show that the complete solution to the differential equation (5.57) 
with arbitrary initial conditions y(O), y’(O), y”(0) and input u( t )  = UO cos(wt) 
is  

y ( t )  = UO IG(jw)j cos(wt + LG(jw)) + AleP1t + A2eP2t + A3eP3t 

where the Ai are the unique solution to 

[ ;“, ] = [ $3 ] + [ ;; a 2  ;; ] [ 21 
Yf’(0) Y;(O) PI P; P3 

(d) Show that the steady-state solution of the differential equation (5.57) 
equals y p ( t )  i f  and only if Re{p,}  < 0 for  i = 1,2,3. 

(e)  Show that the steady-state solution to dyldt  + u y  = u(t)  with a > 
0 and u( t )  = UO cos(wot) is y s s ( t )  = Uo jG( jw) [  cos(wt + L G ( j w ) )  with 
G(s) = l/(s + a). 
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The Physics of the Induction Machine 

Problem 2 Torque Versus Slip for the Induction Motor 
The expressions for  the rotor currents in equations (5.4) and (5.5) were 

found neglecting the rotor loop inductance. Assuming the rotor speed is  con- 
stant and the currents are in sinusoidal steady-state, find an expression for 
these currents when the rotor loops have resistance RR and an inductance 
LR. Modify the corresponding expression for  the torque given in (5.9) to 
show that it now has the fo rm 

A W S - W R  . where S = 2s the normalized slip and sp 4 A. The pull-out 

slip is defined by  Sp k ~ = s p / o  where o is  the so-called leakage 

factor (see Chapter 6). 
( w s  - 

W S  WSLR 
R R  

oWSLR 

Finally, sketch the torque as a function of the normalized slip S 
w R 1 /w S . 

Problem 3 Induction Motor under Load 
I n  problem 2 it is shown that the torque produced by a two-phase induction 

motor with two rotor loops 7r/2 radians apart and nonzero rotor inductance 
LR is given by  

where 

A plot of r / rp  versus S / sp  is given in Figure 5.27. A typical rotor for  a n  
induction motor has more than two loops o n  it. The squirrel cage rotor f o r  
an induction motor is  shown in Figure 5.28 with a cross-sectional view of 
the rotor given in Figure 5.28(b). This shows a rotor consisting of 6 rotor 
loops (12 sides) that can be viewed as three sets of 2 rotor loops. Each set 
consists of two rotor loops ~ / 2  radians apart. 
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SISP 

FIGURE 5.27. Normalized torque versus normalized slip. 

FIGURE 5.28. (a) Squirrel cage rotor for a n  induction motor. (b) Cross-sectional 
view. 

(a) With the rotor of Figure 5.28(b), explain why the expression (5.58) 
for the steady-state torque needs to be multiplied by  three to obtain the 
torque of the motor in Figure 5.28(b). 

(b) Suppose the induction motor has a load on it and is producing the 
torque rr that is, it is operating at the point (Sr / sp ,  r r / rp)  shown in Figure 
5.27. Next, suppose an additional load is put on the motor so that the total 
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load torque r L  now satisfies 7,. < r L  < rp .  After the additional load is put 
on  the motor: 

Will the speed increase or decrease? 
Will the normalized slip increase or decrease? 
Will the motor torque increase to handle the increased load? 
(c) Repeat part (b),  but with the motor initially operating at (Sr2/sp, rr2/rp). 

(d) Suppose the induction motor is turned off (no currents applied to the 
stator phases) so that W R  = 0,  bu.t i t  has a load torque r L  = 7,. on  it (the 
same rr as in Figure 5.27). Suppose further that sp = 0.2 and that currents 
of frequency ws are now applied to the stator phases. Just after applying 
the stator currents, answer the following: 

What is the value of S/sp  ? 
Mark on  Figure 5.27 the operating point of the motor. 
Can the motor start with the load torque T L  = 7,. on  i t?  Explain. 

Problem 4 Torque 
I n  developing the expression (5.6) for  the torque on  a rotor loop of an 

induction motor, why wasn’t the magnetic force on  the two semicircular 
ends of the rotor loop considered (see Figure 5.8)? 

Problem 5 Simple Induction Machine with Three-Phases 
Figure 5.29 shows a three phase stator with a rotor iron core. 

FIGURE 5.29. Three-phase stator. Currents are only shown for phase 1. 

Phase 1 is  identical to phase a. in a two phase stator. The magnetic field 
in the air gap due to the current is1 in phase 1 is then 
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Phase 2 is wound the same way as phase 1 except that is  rotated 2n/3 
radians with respect to phase 1. The third phase is also wound the same 
way as phases 1 and 2, but rotated another 2 ~ / 3  radians with respect to 
phase 2. The magnetic field in the air gap due to the current is2 in phase 
2 is  then 

&&2, r, 6) = ~ p0e2Nsis2 cos(6 - 2n/3)F 

and the magnetic field in the air gap due to the current is3 in phase 3 is 
then 

4gr 

BS3( iS37 ,6 )  = ~ poezNsiS3 cos(e - 4 T / 3 ) ~ .  
4gr 

Let the currents be given by 

is1 = I s c o s ( w s t )  

is2 = I s  cos(wst - 2x13) 

is3 = I scos (ws t  - 4 ~ 1 3 ) .  

(a) Show that the total magnetic in the air gap may be written as 

(b) Is this a sinusoidally distributed magnetic field? 
(c)  With two rotor loops ~ / 2  radians apart, what changes (i f  any) are 
required to analyze this three-phase induction machine compared to the two- 
phase induction machine in this chapter? 

Problem 6 A PM-Generator/Induction-Motor Machine (motivated by [27]) 
I n  this problem, a rather strange type of machine is  analyzed. Figure 5.30 

shows a permanent magnet rotating inside a hollowed out core of soft iron. 
(This setup is the reverse of that for the DC motor in Chapter 1, where the 
rotating part is  made of soft iron and the external stationary part is  soft 
iron.) By properly designing the permanent magnet, i t  can be assumed that 
the magnetic field in the air gap is  given by 

where 6 is  an arbitrary angular location in the air gap and 6s locates the 
north end (magnetic axis) of the permanent magnet as shown in Figure 5.30 
(The subscript “S” is  used because this magnetic field will take the place 
of the stator magnetic field discussed in the text.). Figures 5.30(b)-(d) 
illustrate the radial magnetic field due to the permanent magnet as i t  rotates 
from 0 to ~ / 2  to T .  
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Soft iron Permanent magnet 

5 is out of the page 

(a ) 

FIGURE 5.30. A permanent magnet rotating inside a hollowed out core of soft 
iron. 

The next part of the construction is to put a conducting loop in the air 
gap. This is illustrated in Figure 5.31(a), which shows a half-cylindrical- 
shaped loop placed in the air gap. 

FIGURE 5.31. (a) Loop in the air gap which rotates about the axle independent 
of the rotating permanent magnet. (b) Illustrating how the loop is mechanically 
supported so that it can rotate independent of the permanent magnet. 

However, this loop is  not attached to the permanent magnet; rather, i t  
rotates independently of the permanent magnet on  the same axle. Figure 
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5.31(b) illustrates how the loop is mechanically supported so that it can 
rotate on  the axle independent of the permanent magnet. This loop is re- 
ferred to as rotor loop a-a' (or rotor phase u)  and its position is located by  
the angle @R which is fixed to the loop half way between sides a and a' as 
shown in Figure 5.31(b). To complete the description of the construction of 
this motor, a second rotor loop is  added to the system as shown in Figure 
5.32. This loop is  denoted rotor loop b-b' (or rotor phase b) and is rotated 
90" with respect to loop a-a'. As shown in Figure 5.32(b), a brace is put 
between the two loops so that they are rigidly held 90" apart. The brace 
and axle are non conducting so that the two loops are electrically isolated. 
The pair of loops rotate together on  the axle independent of the permanent 
magnet. This completes the construction of the machine. 

a 

FIGURE 5.32. Two cylindrical rotor loops mechanically held together 90" apart, 
which rotate together on the axle independently of the rotating permanent mag- 
net. 

(a) Let @s(t)  = w s t  so that the permanent magnet is rotating with con- 
stant angular speed w s  by  some external mechanical force. Consequently, 
a rotating radially directed magnetic field is setup in the air gap of the 
machine. Compute the fluxes in the two rotor loops due to the rotating 
magnetic field Bs, 

(b) With RR the resistance of a rotor loop and LR the inductance of the 
rotor loop, compute the sinusoidal steady-state currents ~ R ~ S S  and aRbss 

in the two rotor loops. Assume the rotor has constant angular velocity W R  

where 0 < wR < W S .  

(c)  Compute the torques T R ~  and 7 R b  on  the two rotor loops due to the 
magnetic field BS acting on the current in the rotor sides a ,  a', b, b' in terms 

(d) Substitute the expressions for the currents from part (b) into the 
expressions for the torques in part (c) and show that the resulting expression 
has the same form as that derived in problem 2. 

of iRa,iRb,el,.ez,BSrnaz,wS andwR.  
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Synchronous Machines 

Problem 7 Magnetic Field of a Sinusoidally Wound Rotor 
Using Ampere’s law, derive the expression given in equation (5.10) f o r  

the radial magnetic field in the air gap due to the current in the rotor 
windings. Assume ideal magnetic material and, that the rotor and stator 
windings have cross-sectional areas that are infinitesimal. 

Problem 8 Mathematical Model of a PM Synchronous Motor 
Consider a two phase permanent magnet synchronous motor. This is 

constructed like the wound rotor in Figure 5.33, but the rotor is replaced by 
a permanent magnet as shown. Let the magnetic field due to the permanent 
magnet rotor be given by 

and derive the mathematical model of the PM synchronous motor. 

FIGURE 5.33 .  Two-phase permanent magnet synchronous motor. 

Problem 9 Synchronous Motor with a Sinusoidally Wound Rotor 
Consider a synchronous motor with a sinusoidally wound rotor as in 

Figure 5.9. A n  analytical expression for  the torque produced by  this motor 
was derived in the text. However, this expression can also bz derived by 
considering the magnetic force due to the stator magnetic field Bs acting on  
the currents in the rotor windings. This problem outlines such an approach. 

(a) Using the magnetic force law, show that the incremental magnetic 
force d+R due to Bs acting on  the rotor current in the windings of the 
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rotor between 8 and 8 + d8 is given by 

N F  
IF-] sin(6 - 6R)/d@(+CI%) 

- { IF-/ ;F sin(8 - 6R)ld8(-C1i?) 
dFR = 

2 

or, more simply, f o r  8R 5 6 5 6~ + 27r 

(b) Integrate the incremental torque d?R 

over the rotor windings to obtain the total torque -?R on  the rotor. 

and ws = W R .  With 
(c)  Assume the motor is in steady-state with 8s = w s t , 6 ~  = W R t  - b 

show that the answer to part (b) reduces to the expression given in (5.13). 

Problem 10 Synchronous Motor with a Salient Rotor 
Consider a synchronous machine with two sinusoidally wound stator 

phases and a salient rotor as in Figure 5.13 of Section 5.3.3. Let isa = 
I s c o s ( w s t ) ,  i S b  = I s s i n ( w s t )  be the stator currents and i F ( t )  = IF = 
constant so that the magnetic fields in the air gap are 

where 8 s ( t )  = w s t  denotes angular position of the magnetic axis of the 
stator magnetic field and = W R t  - 6 denotes the angular position of 
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the rotor which is  taken to coincide with the rotor’s magnetic axis. Here 91 
is  the average air gap length (91 > go) and, as the rotor’s cross section is 
not circular, let r R  4 rs  - g1 (see the remark in Section 5.3.3). 

(a) Compute the torque rs on the stator phases due to the rotor’s mag- 
netic field BR acting o n  the stator currents i S a , i S b .  Use this to find T R .  

Is there anything that has to be done different here than in the sinusoidally 
wound rotor case? Explain why or why not. 

(b) Compute the induced emf’s JSa and [Sb in the stator phases due to 
the rotor’s magnetic field BR. Is there anything that has to be done different 
here than in the sinusoidally-wound rotor case? Explain why or why not. 

(c) Compute the power absorbed in the stator by these induced emf’s and 
show it equals the negative of the mechanical power produced by the motor. 
Is there anything that has to be done different here than in the sinusoidally 
wound rotor case? Explain why or why not. 

(d)  Is it possible ( in  a nice analytic fashion) to find the motor’s torque 
directly by computing the torque on  the rotor due to the magnetic field Bs 
acting on  the rotor current? Explain why or why not. 

Problem 11 Emf in t he  Rotor Winding of a Synchronous Machine 
Consider a synchronous motor with a sinusoidally wound rotor as in 

Figure 5.9. This problem outlines how to derive an expression for  the flux 
and induced emf in the rotor winding produced by the stator magnetic field. 

(a) Compute the flux linkage XR in the rotor loops due to the stator 
magnetic field Bs; that is, with 

compute 

X R =  1 B s . d S .  

A l l  loops of 
the Totor 

(6) Compute the emf induced in the windings, that is, 

(c)  Let isa(t) = IS  cos(wst) ,  z S b ( t )  = I s s i n ( w s t ) ,  8s = w s t ,  OR = wRt - 6 
with w s  = W R  and show that in this case 

Explain why. 
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Microscopic Viewpoint of Electric Machines 

Problem 12 Linear Motor in a Coordinate System Attached to  the Bar 

vS 

FIGURE 5.34. Linear DC machine. The primed coordinate system is attached to 
the sliding bar and moves at velocity v,l with respect to the unprimed coordinate 
system attached to the rails. 

I n  chapter 1, the linear DC machine was analyzed f rom the microscopic 
point of view in a stationary coordinate system of ;he rails. I n  the stationary 
coordinate system, B = -BL, E = 0 (B > 0 and E denotes the electric field 
in the air surrounding the linear motor; there is another electric field ES in 
the wire setup by the source voltage Vs). I n  this coordinate system, the bar 
moves in the f i  direction with a constant speed v, and each charge q in 
the sliding bar has total velocity Gq = v,% - v& where Vd is the drift speed. 
Consider the primed (I) coordinate system shown in Figure 5.34 which is  
attached to the sliding bar. Redo the analysis from the point of view of this 
coordinate system. Specificaljy, 

(a) Compute the electrzc E‘ and magnetic B‘ fields in the reference frame 
of the moving bar using the transformation (5.44). 

(b) Find the velocity G i  of the charge carriers in the sliding bar. 
(c)  Find the magnetic force per unit charge Gb x B‘ on  the charge carriers 

in sliding bar. 
(d) Compute the Lorentz force per unit charge @‘/q  a 3 + Gh x B’ o n  

charge carriers in the sliding bar due to the exter-a1 electric and magnetic 
fields. What part of this force is canceled out by Es ? What is the resulting 
total force on  the sliding bar? 

(e)  I n  this coordinate system, what is the “back electric field” and “back 
emf”? Show that conservation of energy holds; that is, the energy absorbed 
by  the back emf reappears as mechanical power out. 

(f) I n  the coordinate system of the sliding bar, what is  the f lux in the loop 
of the linear motor. Use Faraday’s law to compute the emf E b a r  induced in 
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loop of the linear motor. Neglecting the inductance, compute the current as 
ib = Jbar /R where R is  the resistance of the bar. What is the net force on 
the bar in this coordinate system? 

Problem 13 Linear Motor in a Coordinate System with Velocity vc < v, 
Repeat problem 12 for  the case where the coordinate system is  moving at 

speed v,, where v, < v, . 

Problem 14 Linear Motor in a Coordinate System with Velocity v, > v, 
Repeat problem 12 for the case where the coordinate system is moving at 

speed v,, where v, > v,. 

Problem 15 Stator Electric Field 
I n  the derivation of the stator electric field Es(6, t )  in the air gap due to 

the rotating stator magnetic field, the “constant of integration” was set to 
zero so that Es(8, t )  is given by  equation (5.23) 

Note that gs(8, t )  is a maximum at 8 = w s t ,  a minimum at 6 = w s t  + T 

and zero at 8 = w s t  f ~ / 2 .  Similady, the stator magnetic field 

is a maximum at 8 = w s t ,  a minimum at 8 = w s t  + T and zero at 8 = 

(a) Consider a locked rotor, that is, the rotor is  constrained so that it 
cannot move. Show that the induced emf in a rotor loop is zero at a time 
t when one side of the loop is  located at 6 = w s t  + ~ / 2  (so the other side 
of the loop is located at 6 = wSt - 7r/2), that is, when the f lux through the 
loop is maximum or minimum (see Figure 5.15). 

w s t  f T / 2 .  

(b) With the rotor locked (i.e., W R  = O), the induced emf is  equal to 

rotor loop a 

Use this to explain why the stator electric field E s ( 0 , t )  must be zero f o r  
6 = w s t  f ~ / 2 ,  or equivalently, why must the “constant of integration” be 
zero (see Figure 5.15). 

Problem 16 Induction Motor in the Synchronous Coordinate System 
Rederive the emf <ha = -dX‘,,/dt given in equation (5.45) by computing 

the flux Aha in rotor loop a due to the stator magnetic field B k .  That is, 
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show that 

Problem 17 Induction Motor in the Rotor Coordinate System 
Consider the simple induction motoT analyzed in the text. That is, a 

machine whose stator consists of two sinusoidally wound phases 90" apart 
and whose rotor consis,ts of two elechically isohted loops also 90" apart. 
This problem outlines the Physics o#the motor from a coordinate system 
attached to the rotor of the motor; that is, it d a t e s  at a n  angular speed W R  

with respect to the stator. Denote this rotor eoordinate system as the primed 
( I )  coordinate system and, in this eoordinate system, do the following: 

(a) Compute the electric Es and magnetic B k  fields in the miz- gap from 
the electric and magnetic fields gs and Bs in the stator coordiaate system. 

(b) Find the velocity <La of the charge carriers on  the axial sides of rotor 
phase/loop a (note that in this coordinate system w& = 9. 

(c) Find the magnetic force per unit charge +ha x B', on  the charge 
carriers in the axial sides of rotor phase a .  

(d) Compute the torque rha o n  the rotor loop. 
(e) Compute the emf <ka induced in rotor loop a by computing the rate 

of change of the flux in the loop. Neglecting the rotor inductance, compute 
the current as iRa = <ka/RR. 

GL-de' in  rotor loop a produced (f) Compute the voltage Vfi, = $ 
rotor loop  a 

(9) Compute the back emf <ka by integrating the axial magnetic force per 
by  the axial electric field sk. 
unit charge around rotor loop a. Show that (La = Vka + &,. 

and C k b  f o r  rotor phase b. 

ZS, 

(h) Find the corresponding qUantitieS V ' k b ,  G k b  x Bk, T k b ,  < k b ,  i R b ,  V L b ,  

(i) Show that conservation of energy holds in this coordinate system; that 

iRaVfia + i R b V f b  = ( i R a < k a  f iRb&b)  - ( i R a C k a  + i R b < k b )  

where - ( i ~ ~ < k ~  + i R b < k b )  = (rka + rkb)wk so that the power absorbed by 
the back emf is converted into mechanical power. 

Problem 18 Synchronous Machine in the Stationary Coordinate System 
Consider a synchronous motor with a sinusoidally wound rotor to be in 

steady state so iF = I F  = constant, is, = IS  cos(wst) ,  i S b  = I s  sin(wst), 
W R  = w s ,  8 s  = w s t  and = W R t  - 6.  The stator of this machine is 
identical to that of an induction motor so that the electric and magnetic 
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fields in the air gap due to the stator currents are given by  

N I  
E s z ( 8 , t ) i  = swscos (8  - 

49 
e N I  

B s T ( 6 , t ) ?  = ” cos(8 - 
4gr 

w s t p  

w s t ) i .  

The sinusoidally wound rotor phase has a winding density 
( N F / ~ )  Isin(6 - 6 ~ ) l  with the constant current I F  an it so that the rotor 
magnetic field in the air gap is  

Redo the Physics of the synchronous motor from the microscopic point of 
view by  doing the following: 

(a) Find the velocity <F of the charge carriers on  the axial sides of the 
rotor phase (field winding). 

(b) Find the magnetic force per unit charge GF x BS on  the charge car- 
riers in the axial sides of the rotor phase. 

(c)  Find the Lorentz force per unit charge $ / q  4 ES + <F x BS on  the 
charge carriers in the axial sides of the rotor phase. 

(d) Compute the emf VF = $ ($14) . de‘in the rotor wind- 

ings/loops produced by  the Lorentz force F / q .  Can you explain your an- 
swer? 

(e)  Compute the torque ‘rR o n  the rotor loop using the magnetic force 
per unit charge in the 8 direction. 

( f )  Use Faraday’s law in differential f o rm V x ER = -aBR/at to find 
ER in the air gap. 

(9) I n  the macroscopic approach, it was shown in (5.18) that 

A l l  T O t O T  loops  

4 

I S a  = -dXsa/dt 

[ S b  = -dXsb/dt. 

Show that the expressions fo r  the emf’s induced in the stator windings by  
the rotor’s magnetic field can also be found by computing 

5 
J 

A l l  loops of 
s ta tor  phase  a 

E R  .de’ 

[ S b  = 
A l l  loops of 

sto tor  p h a s e  b 

y h y  isn’t it necessary to include the magnetic force per unit charge Gsa x 
BR term in the computation o f t S a  and [Sb? (<sa is  the velocity of charge 
carriers in the windings of stator phase a.) 
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(h) Show that 

A l l  1o“ops of 
Stator phase a 

Al l  loops of 
s ta tor  phase b 

That is, compute the line integrals on the right-hand side and show that 
they are of the fo rm given on  the left-hand side with Ls 4i i L o ~ ~ 2 * N Z .  (It  
can be shown tGat LsiSa is the flux in stator phase a due to the stator 
magnetic field Bs). w h y  isn’t it necessary to include the magnetic force 
per unit charge +sa x Bs term in the computation of the line integrals? 

(a) Given that LsiSa is the flux in stator phase a due to the stator mag- 
netic field B s  and the answers to the previous parts of this problem, show 
that the total voltage/emf induced in the stator phases may be written as 

+ 

Al l  loops of 
s ta tor  phase a 

A l l  loops  of 
stator phase b 

( j )  Show that power is conserved; that is, 

i Sa ( t ) [ sa ( t )  + iSb(t)[Sb(t)  = -7RWR. 

Problem 19 Synchronous Machine in the Rotor Coordinate System 
Consider a synchronous motor with a sinusoidally wound rotor. With the 

motor in steady state (WR = W S ) ,  consider a coordinate system attached to 
the rotor so that i t  is rotating at synchronous speed; that is, i t  rotates at the 
angular speed W R  = w s  with respect to the stator. Further, let the coordinate 
system be aligned with the rotor so that in cylindrical coordinates, 

r’ = r 

z‘ = z 

6’ = 6 - W ~ t  

where (r,  6 ,  z )  are the cylindrical coordinates in the stationary coordinate 
system of the stator and (r’,O’,z’) are the cylindrical coordinates an the 
rotating coordinate system of the rotor. This rotor coordinate system is 
referred to as the primed (I) coordinate system; in this coordinate system, 
do the following: 
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(a)  Compute the electric E$ and magnetic B$ fields in the air gap from 

(b) Compute the electric Ek and magnetic Bk fields in the air gap f r o m  

(c) Find the velocity <& of the charge carriers on  the axial sides of the 

(d) Find the magnetic force per unit charge Gk x Bk on  the charge car- 

(e) Compute the torque T R  on the rotor loop. 
(f) Compute the back emf <ka induced in stator phase a by computing 

the rate of change of the flux due to Bk in that phase. Similarly, compute 
<&, in stator phase b. 

(9) Find the velocity <La of the charge carriers on  the axial sides of the 
stator phase a.  Note that the stator windings are rotating with angular speed 
-WR with respect to the rotor. Similarly, find G$b. 

(h) Show that the back emf in stator phase a can also be computed as 

the electric and magnetic fiGds Es, BS in the stator coordinate system. 

the electric and magnetic fields e ~ ,  BR in the stator coordinate system. 

(field) rotor windings (note that in this coordinate system w k  = 0). 

riers in the axial sides of the rotor. 

rotor- loops 

Similarly, find <kb .  

( i)  Compute the rotor emf VF = 

in the rotor loops produced by the stator fields Es, B$. 
(j) Using the 6 component of G$, x Bk, compute the torque rsa exerted 

on  the stator by the rotor. Similarly, compute TSb.  Is  T R  = -(rsa + r g b ) ?  

(k)  I n  this coordinate system, w& = 0 so that no mechanical power is 
being given to the rotor. Show th,at conservation of energy holds in this 
coordinate system, i.e., isa<katisb<kb = - ( T S a f T S b ) W $  where w$ = -ws. 
From the point of view of this coordinate system, is the machine acting as 
a motor or generator? 

Problem 20 Emfs in Full-Pitched and Short-Pitched Windings 
Figure 5.35 shows a motor with a permanent magnet rotor which has a 

single stator phase with full-pitched turns, that is, wound with each loop 
spanning T radians [see Figures 4.1 and 4.3(b) of Chapter 41. Let the mag- 
netic field in the air gap due to the permanent magnet rotor be given by 

f 
ro tor  loops  

(Es +<l, x Bk) . dt? 

T R  B R ( 6  - 6,) = B r n a X ~  cos(6 - 6 ~ ) e .  

(a) Let 6 R ( t )  = W R t  and compute the axial electric field ER = E R ~ ~  

(b) Using the expression derived for the axial electric field in part (a) to 
induced in the air gap by the time varying magnetic field. 

compute the emf induced in the stator phase by the PM rotor. 
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n l 2  
2213 I n l 3  

FIGURE 5.35. A machine with a PM rotor and a single stator phase. 

(c)  Suppose that the stator in part (b) now consists of short-pitched turns 
as indicated in Figure 5.36. That is, each turn spans only 150" rather than 
180" as in part (b). (See problem 14 of Chapter 4 f o r  a more detailed 
explanation of short-pitched turns.) 

n l 2  
2213 I n I 3  

FIGURE 5.36. A motor with a PM rotor and a single stator phase whose turns 
are short-pitched. 

Without any computation, explain why the induced emf in this short-pitched 
winding must be the same as in the full-pitched winding of part (6). 



6 

Mathematical Models of AC 
Machines 
In this chapter, the mathematical models of the induction and synchronous 
machines are derived. The derivations in this chapter will be based on a 
two-phase machine. In Chapter 7 three-phase machines are considered, and 
it is shown there that any balanced three-phase induction or synchronous 
machine has a two-phase equivalent model identical in form to its two-phase 
counterpart. The models derived in this chapter are standard throughout 
the literature and form the basis for deriving control algorithms. 

The symmetric, two-pole (single pole-pair), two-phase machine shown in 
Figure 6.1 is used for the derivations that follow. The stator of this machine 
is constructed with a hollow cylindrical shell of iron wrapped with two sets 
of sinusoidally wound phases, each with a total of NS turns and 90" apart. 
These stator windings are denoted as phases a and b, respectively, carrying 
the currents is, and isb, respectively. Stator phase a is connected to  a 
voltage source US,, while stator phase b is connected to a voltage source 
U S b .  The resistance of the windings of the two phases are assumed to be 
identical and equal to Rs. 

I I 

FIGURE 6.1. Representation of a two-phase sinusoidally wound machine. 

The rotor consists of a cylindrical core of iron with two sinusoidally 
wound phases each with a total of NR turns and 90" apart. These phases 
are denoted a and b as indicated in Figure 6.1. The currents in the rotor 
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phases are denoted as iRa and i R b l  respectively and the resistance of each 
of the rotor phase windings is denoted as RE. At this point, no assumption 
is made on whether or not the ends of the rotor phases are shorted or 
connected to voltage sources. The rotor is located with respect to the stator 
by the magnetic axis of rotor phase a as shown in Figure 6.1. 

The currents in the phases of the machine establish magnetic fields and 
these magnetic fields in turn produce fluxes in the windings of all four 
of the machine’s phases. In order to obtain a mathematical model of an 
AC machine, an expression for the total flux linkage in each of the stator 
and rotor phases due to the currents isal i S b ,  i ~ ~ ,  and aRb must be found. 
However, before these flux linkages can be computed, an expression for 
the magnetic field B R ( ~ R = ,  zRb,  r, 8) in the air gap produced by the rotor 
currents is required. An expression for the magnetic field Bs(isal is&, r, 8 )  in 
the air gap produced by the stator currents was derived in Chapter 4. Also, 
the concept of leakage is explained and the expressions for the magnetic 
fields Bs, BR are modified to account for it. The modified expressions for 
the magnetic fields B s  and BR are then used to compute the flux linkage 
in each phase of the machine. 

6.1 The Magnetic Field B R ( i R a ?  i R b ,  T ,  8 - 8,) 

The radial magnetic field B R ~  established in the air gap by the current iRa  

in the sinusoidally distributed winding of rotor phase a is now computed. 
The winding/turns density of rotor phase a is ( N R / ~ )  Isin(8 - OR)/ so that 
the number of turns between 8 and 8 + d6 is ( N R / ~ )  /sin(6 - 8R)I do. To 

proceed, Amp&re’s law H . dl? = ienclosed (with H = 0 in the magnetic 

material) is applied to the closed path 1-2-3-4-1 drawn in Figure 6.2 to 
obtain 

+ f -  - 

Evaluating gives 

or 
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It was assumed that H R ~  is constant across the air gap. Rearranging gives 

FIGURE 6.2. Use of Ampere's and Gauss's laws to determine B R ~  in the air gap 
due to Z R ~ .  (Rotor phase b is not shown for clarity.) 

In this equation, both H R ~ ( ~ R ~ ,  6) ,  HRa(iRa, 6 ~ )  are unknown. As in the 
case of the magnetic field produced by the stator currents, conservation of 
flux jS B .dS = 0 is applied to the closed surface 1 which encloses the rotor 
(see the dashed circle in Figure 6.2 around the rotor iron) to show that 
HRa (2 Ra 7 6 R ) = Ra ( NR / 29). The11 I 

+ + 
In applying Ampere's law, it was assumed that B R ~  = ~ O H R ~  was con- 
stant across the air gap in the radial direction, that is, Bfia does not de- 
pend on the cylindrical coordinate r. However, as shown in Chapter 4 
for the stator magnetic field, in order that B R ~  satisfy the conservation 
of flux for the closed flux surface 2 shown in Figure 6.2 whose sides are 
4 ,  S2,S3, S3, Sq, Ss, and SG, equation (6.2) is modified by setting 

BRa( iRa ,  T ,  6 - OR) = BRa(iRa, r, 6 ~ 6 R ) f  a &%iRa cos(6 - 6 R ) f  
2g r 

(6.3) 
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where T R  is the rotor radius.' 
Similarly, the magnetic field B R b  established in the air gap by the sinu- 

soidally wound rotor phase b (rotated 90" with respect to rotor phase u)  
carrying the current i R b  is given by 

In summary, the magnetic fields due to the stator and rotor currents are 

respectively. 

6.2 Leakage 

Consider Figure 6.3, which shows a single-phase distributed winding on the 
rotor. It has been assumed up to  now that the magnetic field produced by 
the rotor current is radially directed in the air gap so that only the surfaces 
S1 and Sz in Figure 6.3 have nonzero flux. With this assumption and along 
with the (outward) surface element vectors to the closed surface of Figure 
6.3 given by 

-rRdOdz? on s1 
r s d e d z f  on S, 

d r d z 6  on Ss 
d g = [  rdOdrL on S, 

- d r d z 6  on S, 
-rdOdrL on SG, 

' I t  is now easy to see that &. B R ~  . dg = 0 for any  closed surface in the air 
gap. Ampere's law will also continue to hold for g << T R  using the approximation 
se=o T R /  ( T R  + e )  a SZ 9. 

e=g 
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it was shown that conservation of flux j S B ~  . dS = 0 required a 1/r 
dependence by the magnetic field in the air gap (see Chapter 4). That is, 
up to  now, it has been assumed that. f i j ~ . d s ’  E 0 on the surfaces S3, S4,5’5, 

and S,j so that the radial magnetic field BR must decrease as 1/r going from 
S1 to  S, in order to satisfy conservation of flux. However, in a real machine, 
the slots have finite dimensions, the air gap is of finite size and there are 
end effects at either end of the rotor. As a consequence, the magnetic field 
does have components in the azimuthal 6 direction and axial 2 direction 
in addition to the radial direction f so that the surfaces S3, S,, 5’5, and Ss 
also have nonzero Rux. 

FIGURE 6.3. Closed flux surface to illustrate flux leakage. With the assumption 
of no leakage, only the surfaces S1,Sz have nonzero flux. With leakage, all six 
surfaces have nonzero flux through them. 

To see how this affects the radial magnetic field, Figure 6.4 shows an 
enlargement of the cross section of Figure 6.3 from the point of view of the 
observer in Figure 6.3 looking into the page. In Figure 6.4, the lines of the 
magnetic field BR produced by the rotor currents are shown. At the slot 
openings, there is no iron so that in this vicinity the magnetic field tends 
to circle around the rotor winding rather than go across the air gap. Even 
away from the slots, the magnetic field spreads out from the radial direction 
due to the finite length of the air gap and the finite (axial) length of the 
machine. What this all means is that the average radial BR field on the 
surface S, actually decreases a lit,tle more than 1/r. This now considered 
in more detail. 
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'2 \ Stator iron 

FIGURE 6.4. cross-sectional view of the flux surface in Figure 6.3. The rotor 
magnetic field BR is perpendicular at the surface of the rotor and then spreads 
out in both the azimuthal and axial directions so the flux it produces at the inside 
surface of the stator is less that at the surface of the rotor. 

To simplify the discussion, it is ",ow ass_umed th5t therz is no spreading 
in axial (2) direction so that sS, BR . d S  = &, BR . d S  = 0. Using an 

outward normal, $ BE . d S  = 0 is computed on the closed surface shown in 
Figures 6.3 and 6.4 to obtain 

+ f 6 ~ .  d S  = 1, B R .  d S  + 1 BR .dS 4- l, 6 ~ .  d S  + l5 6~ - d S  = 0. 
S2 

Rearranging, this becomes 

or 

+ 1, B R .  d S  + L5 BE . d S .  (6.7) 

The surface S1 is just at the surface of the rotor and the surface element 
vector -dS = r R d 8 d z f  points in the positive radial direction on the sur- 
face S1. If there was no spreading, then &, BR(rR, 8, t ) P  . ( r ~ d 8 d z i . )  = 

ss2 BR(TS,  8 ,  t ) P .  ( r s d 8 d z l ) ;  that is, if both surfaces use the normal t, then 
the flux through S1 equals the flux through S,. However, the magnetic field 
does spread out in azimuthal direction and the fluxes through the surfaces 
S2,S3, and Ss are then all positive. In this case, the radial BR field on the 
surface 5'2 must be less on average than it was when it was assumed-there 
was no flux through the surfaces S3 and 5'5. This is simply because the flux ss, B R ( ~ R ,  8, t)f . ( r R d 8 d z f )  on the left-hand side of (6.7) stays the same 

+ 



6. Mathematical Models of AC Machines 369 

whether or not there is spreading2 and is always equal to  the sum of the 
fluxes on the right-hand side of (6.7). 

To model this effect, a parameter K ,  with 0 < IE < 1, is introduced so 
that on the stator side of the air gap, the rotor magnetic field is given by 

That is, the rotor radial BR field decreases to  KrR/r s  (rather than just 
rR/rs )  in going from the surface of the rotor to the inside surface of the 
stator. The parameter K. is referred to as a global coupling factor [l]. 

Similarly, on the rotor side of the air gap, the stator magnetic field is 
given by 

so that the radial dependence of the stator Bs field increases from rR/rs 
to only KrR/rR (rather than TR/rR  = 1) in going from the inside surface 
of the stator to the surface of the rotor. The above example is not the only 
source of leakage,3 but all such effects can be modeled for the purposes here 
by a single parameter K .  

In summary, the coupling factor K is included in the expression for BR 
on the stator side of the air gap to account for BR decreasing at a rate 
slightly less than 1 / ~  (due to leakage) going across the air gap to the stator 
side. Similarly, K is included in the expression for Bs on the rotor side of 
the air gap to account for leakage effect going across the air gap. 

It may seem rather inconsistent with the development of the mathemat- 
ical model of the machine to  now add in this leakage effect. That is, up to 
this point, ideal magnetic materials have been assumed, the air gap length 
has been assumed to be small, and the cross sections of the windings/slots 
have been assumed to  be negligible. However, it will be seen shortly that 
this leakage factor will be essential to obtain a realistic model. 

+ 

'As iron is a good magnetic material, 6~ is perpendicular at both the surface of the 

3For example, a similar analysis can be done to account for the leakage through S4 
rotor iron and the stator iron. 

and &. 
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6.3 Flux Linkages in AC Machines 

Expressions for the flux linkages in both the rotor and stator windings are 
now computed. 

6.3.1 

The computation of the total flux linkage in the sinusoidally wound stator 
phase a is now considered. The flux in stator phase a is due to the magnetic 
fields produced by both the stator currents isa and i s b ,  and the rotor 
currents i~~ and iRb. That is, 

Flux Linkages in the Stator Phases 

XSa(iRa7 i R b ~ i S a ~ i S b ~  OR) = A / (6s + B R ) .  dS. 

Al l  loops of 
stator phase a 

This computation is carried out in two parts by separately considering the 
flux linkage due to the stator currents and then the flux linkage due to the 
rotor currents. That is, 

k a ( O 1 0 1  i S a ,  ZSbi OR) = A / B s . d S  

All  loops of 
stator phase a 

and 

so that 

Stator Flux Linkage Produced by the Stator Currents 

Consider a single turn (loop) of stator phase a at the angular position 0 
with 0 5 0 5 T ,  that is, one side of the loop is at 0 and the other side is at 
0 - 7r.  Choose the flux surface S for this single turn to lie just inside the 
air gap next to  the stator surface as shown in Figure 6.5. 
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FIGURE 6.5. Surface to compute the flux in a single turn of stator phase a 
produced by Bs. 

To compute the flux through the surface, the surface element vector 
d S  = r s d 8 ' d z l  is chosen. The flux #Sa(iSa,iSb,8) in each turn of stator 
phase a at the angular position 8 of the stator is then given by 

- 

6'=6 

Bf=8-n 
(isa sin(@') - i S b  cos(8')) I 
(isa (sin(8) - sin(8 - n)) - z s b  (cos(8) - cos(8 - TI)) 

(isa sin(8) - i s b  cos(8)) . (6.8) 

Remark Note that by taking the flux surface normal to be dS = r s d e ' d z l ,  
the positive direction of travel around the turns of stator phase a at the 
angular position 8 is out of the page on side a and into the page on side 
a'; that is, it is the same direction as positive current flow in stator phase 
a. If -d#,,/dt > 0,  then this emf will push current in the same direction 
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as that chosen for the direction of positive current. 

Between the angular positions 8 and 8 + d8 of stator phase a there are 
(Ns /2)  sin(8)dO turns each having the flux (6.8) in them. The flux linkage 
in the turns of phase a between 8 and 8 + d8 is then 

% sin(8)dO. 

To obtain the flux linkage in all the turns of stator phase a, simply integrate 
(6.9) as 8 varies from 0 to T ,  that is, 

J 
All  loops of 

s ta tor  phase a 

NS o = r  
- - 

- - POrR'lN' 1 
PorR'lNs (isa sin(8) - isb cos(8) ) - sin(8)dO 

2 
o=r  

(isasin2(0) - iSbcos(8) sin(8)) d8 
2g o=o 

= LsiSa (6.10) 

where 

Note that for this two-phase machine, the magnetic field produced by the 
current i S b  in phase b does not produce any net flux linkage in phase a. 
Similarly, 

= L S i S b .  (6.11) 
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Stator Flux Linkage Produced by the Rotor Currents 

The flux linkage in stator phase a due to magnetic field produced by the 
rotor currents is now computed from 

J 
All loops of 

stator phase a 

The flux surface of Figure 6.5 is also used for this computation. With 
dS = rsdQ’dz? as the surface elem.ent vector, the flux 4 s a ( z R a ,  i R b ,  6 - 6,) 
in each turn of stator phase a at the angular position 6 of the stator due 
to the magnetic field BR is 

- 

(6.12) 

Note that the factor K has been included as the rotor’s magnetic field is 
being evaluated on the stator side of the air gap. Between the angular 
positions 6 and 6 + d6, there are (Ns/2) sin(6)dO turns, each having the 
flux (6.12) in them due to BR. The flux linkage dXsa in the turns of stator 
phase a between 6 and 6+d6 produced by the rotor’s magnetic field is then 

To obtain the total flux linkage clue to the rotor’s magnetic field in all the 
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turns of stator phase a, integrate (6.13) as 6 varies from 0 to 7r to obtain 

XSa(iRa7 iRb, 070, OR) = B R . d s  

All  loops of 
stator phase a 

0=x 
- porRelNsNR (iRa Sin(6 - 6 ~ )  - iRb COS(6 - 6,)) sin(6)dB -Lo 29 

= K  PO~R~INSNR (iRa lzT (sin(6) c o s ( 6 ~ )  - cos(6) s i n ( 6 ~ )  ) sin(@&' 
29 
0 = x  

(cos(6) COS(6R) + sin(6) sin(6R)) sin(8)de 

e N N O=.rr 

29 0=0 
= K  / (iRa sin2(8) c o s ( 6 ~ )  - i R b  sin2(6) s i n 6 ~ ) )  d6 

Similarly, 

XSb(iRa, iRb, , 070, OR) = J B R . d S  

All loops of 
stator phase b 

Total Flux Linkage in the Stator Phases 

Combining (6.10), (6.11), (6.14), and (6.15), the total flux linkage in each 
of the stator phases is then 

k a  (iRat iRb,  iSa 7 i S b ,  6,) = 1 ( B s + B i , ) - d S  

Ail  loops of 
stator phase a 

= Lsisa f M i R a  cos(6R) - iRb SiIl(6R)) 

(6.16) 
( 

XSb( iRa ,  iRb,  i S a ,  i S b ,  OR) = 1 ( B s + B R ) . d S  

All  loops of 
stator phase b 

iRa sin(8R) + iRb cos(~R)). 
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6.3.2 Flux Linkages an the Rotor Phases 
The flux linkages in the two sinusoidally wound phases of the rotor are 
computed according to  

J 
All loops of 

rotor phase a 

/ 
All loops of 

rotor phase b 

ARb(iRa, iRb, iSa ,  iSb,  OR) = A (Bs + B E )  . d S .  

Starting with rotor phase a and, as in the case of the stator flux linkages, 
this computation is done in two parts as 

J 
All loops of 

rotor phase a 

and 

ARa(iRat iRb, O , o , e R )  / B ~ . d s .  

All loops of 
rotor phase a 

The total flux linkage is then 

Rotor Flux Linkage Produced by the Stator Currents 

The flux in the rotor phase due to the magnetic field established by the 
stator currents is given by 

J 
All loops of 

rotor phase a 

To do this computation, consider a single turn (loop) of the rotor phase at 
the angular position 8 with 0 5 8 - O R  5 T so that one side of the rotor 
loop is at 8 and the other side is at 8 - T .  The flux surface S is chosen to 
lie just inside the air gap as  shown in Figure 6.6. 
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FIGURE 5 6 .  Surface to compute the flux in a single turn of rotor phase a pro- 
duced by Bs. 

On the flux surface, the surface element vector is chosen as d S  = rRd6'dzF. 
The flux g5Ra(iSa, i S b ,  6 )  in each turn of rotor phase a at the angular posi- 
tion 6 of the rotor is given by 

4 R a ( i S a ,  i S b ,  6 )  

(6.17) 

Remarks Note that the factor K has been included a s  the rotor's magnetic 
field is being evaluated on the stator side of the air gap. Also, note that by 
taking the flux surface normal to be d S  = rRdd'dzF, the positive direction 
of travel around the turns of rotor phase a at the angular position 6 is out 
of the page on side a and into the page on side a'; that is, it coincides with 
the direction chosen for positive current flow in rotor phase a. 
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Between the angular positions 6 and 6 + d6, there are (NR/2)  sin(6 - 6 ~ ) d 6  
turns each having the flux (6.17) in them. The flux linkage dAR, in the 
turns of phase a between 0 and 8 + d6 produced by the stator's magnetic 
field is then 

(6.18) 

To obtain the flux linkage in all the turns of rotor phase a,  (6.18) is inte- 
grated between 6 = O R  and 8 = 

ARa(O,o, iSa ,  iSb ,oR)  = B s . d s  

+ r, that is, 

J 
All loops of 

rotor phase a 

=  is^ cos(6R) + i s b  sin(6R)) 

where, as before, 

(6.19) 

Similarly, 
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Rotor Flux Linkage Produced by the Rotor Currents 

The flux linkage in the rotor phases due to the magnetic field produced by 
the rotor currents is now computed. Consider a single turn (loop) of rotor 
phase a at  the angular position 6 with 0 5 6 - 6~ 5 T and the same flux 
surface drawn in Figure 6.6. 

To compute flux through the surface, dS = r~d6'dzP is chosen as the 
surface element vector. The flux 4 R a ( i ~ a ,  zRbr 6 - 6,) in each turn of rotor 
phase a at the angular position 6 of the rotor is given by 

8'=8 
- - 'orRC1 NR 1 (iRa cos(6' - 6,) + i R b  sin(6' - 6 ~ )  ) d6' 

2g 8'=8-x 

Remark Again, by taking the flux surface normal to be dS  = r~d6 'dz i ,  
the positive direction of travel around the turns of rotor phase a at the 
angular position 6 is out of the page on side a of the rotor phase and into 
the page on side a' of the rotor phase coinciding with the direction chosen 
for positive current flow in rotor phase a. 

Between the angular positions 6 and 6+d6, there are ( N R / ~ )  s in(6-6~)de  
turns, each having the flux (6.21) in them. The flux linkage in the turns of 
phase a between 6 and 6 + d6 is then 

To obtain the flux linkage in all the turns of stator phase a, (6.22) is inte- 
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grated from 8 = 8 R  to 8 = 8 R  + 7 r ,  that is, 

ARa(iRa, i R b ,  070, OR) = J f i R . d S  

All  loops of 
rotor phase a 

(6.23) 

where 
A PorRe17rNi &Je1e2T 2 

NR. 
- LR = - 

49 89 

Note that for this particular two-phase system, the magnetic field produced 
by the current i R b  in rotor phase b does not produce any net flux linkage 
in rotor phase a. Similarly, 

Total Flux Linkage in the Rotor Phases 

Combining the expressions (6.19), (6.20), (6.23), and (6.24), the total flux 
in the sinusoidally wound rotor phases due to  both the stator and rotor 
magnetic fields is then 

(6.25) 

All  loops of 
rotor phase b 
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6.4 Torque Production in AC Machines 

The stator currents establish a radial magnetic field in the air gap. The 
torque produced by this magnetic field on the currents in the sinusoidally 
wound rotor phases is now computed. In order to carry out this computa- 
tion, a more convenient way of representing the stator and rotor magnetic 
fields is now used following Refs. [l] and [2]. 

FIGURE 6.7._Computation of the torque on the current Z R ~  in rotor phase a 
produced by Bs. Rotor phase b not shown for clarity. 

The magnetic field at an arbitrary angle 0 in the air-gap due to the stator 
currents is 

Similarly, the magnetic field at the angle 0 in the air gap due to the rotor 
currents is 

B R ( i R a ,  iRb, 6-6R) = i R a ( t )  cos(6 - O R )  + iRb( t )  sin(0 - 6 ~ )  
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The torque +R produced by a two-phase machine is now computed. This 
is done by computing the force on the rotor current loops due to the mag- 
netic field established by the statfor currents. Referring to Figure 6.7, the 
differential magnetic force d@R, produced on the loops of rotor phase a 

porRNsis(t) cos(e - <)F is4 between 6 and 6 + d6 by Bs = Bsf = n- 
+ 

2grR 

6~ 5 6 5 O R  + T  
NR . i ~ , ( t ) -  sin(6 - 6 ~ ) d e ( + t l i )  x Bs?, 
2 

NR i~=(t)- l  sin(6 - 6~)ld6(-kl%) X Bsf, O R  + 7r 5 6 5 6~ f 27r { 2 

+ 
dFR, = 

where ( N R / ~ ) /  sin(6 ~ 6 ~ ) l d 6  is the number of axial sides of rotor phase a 
between 6 and 6 + d6, each carrying the current i ~ , ( t ) .  As sin(6 - OR) I 0 
for 6R + 7r 5 6 5 O R  + 27r, it follows that I sin(6 - O R ) [  = - sin(6 - O R )  for 
6~ + 7r 5 6' 5 6~ + 27r so that d@R, can be written more compactly as 

for 6 R  5 6 5 6~ + 27r. The differential torque d+Ra is then given by 

d ' ? ~ ,  = (f!2/2)f X d@Ra 

PotlNSNR. z~,( t ) is( t )  sin(6 - 6,) cos(6 - <)d6? x 6 
4g 

= (e2/2) 

= M i ~ , ( t ) Z s ( t ) -  1 .  (sin(26 - 6~ - <) +sin(< - 6,)) d6i 
7r 2 

4Note that the leakage factor K has been included as this is the stator magnetic field 
on the rotor side of the air gap. 
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where M = npo7re~e2NsN~/ (89) is the coefficient of mutual inductance as 
previously defined. The torque on rotor phase a is then 

271 

? R ~  = /d?Ra 

0 
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The torque on rotor phase b is then 

The total torque on the rotor is then 

Remark The assumption that the stator and rotor turns have negligible 
cross-sectional area was still in efl:ect in the above derivation of the torque 
on the rotor. However, in a real motor, the windings are only approximately 
sinusoidally wound and this is accomplished by putting the turns in slots 
as explained in Chapter 4. In thi:; case, it is pointed out by G. R. Slemon 
(see Section 3.4 of Ref. [32]) as well as by W. Leonhard (see p. 173 of Ref. 
[2]) that the magnetic forces are actually acting on the slides of rotor slots 
where the magnetic field enters the rotor iron. In the idealized model here, 
the slots do not exist and the forces/torques can be computed as described 
above. Further, the resulting mathematical model of the machine derived 
under these idealized assumptions will be shown to be a very good dynamic 
model of the machine (see Chapter 8). 

6.5 Mathematical Model of a Sinusoidally Wound 
Induction Machine 

The hard work of computing the expressions for the flux linkages in the 
phases of an AC machine as well as for the rotor torque has been completed. 
The analysis is now specialized to  an induction motor which is illustrated in 
Figure 6.8. This figure is the same as Figure 6.1 except now it is explicitly 
assumed that the two ends of each rotor phase are shorted together, that 
is, there are no voltage sources for the rotor phases. With the rotor phases 
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shorted, the expressions for the phase flux linkages and rotor torque are 
used to derive the nonlinear differential equation model of a two-phase 
sinusoidally wound induction motor. 

FIGURE 6.8. A symmetric sinusoidally wound two-phase induction machine. 

By (6.16) and (6.25), the flux linkages in the stator and rotor phases in 
terms of the currents and rotor position are 

ASa(iRa, iRbr iSa’ iSb, OR) = LSiSa + M +iRa coS(8R) - iRb Sk(6R)) 

XSb(iRa, iRbr  iSar iSb7 6,) = LSiSb + M (  f i R a  sin(8R) + i R b  cos(8R)) 

( 

(6.29) 

ARa(iRu, iRbr  iSar iSb, OR) = LRiRa + M ( +iSa cos(8R) + i S b  sin(8R)) 

XRb(iRa7 i R b t  iSat iSb, OR) = LRiRb + M(-iSa sin(6R) f i S b  cos(8R)). 

By Faraday’s and Ohm’s laws, the equations describing the electrical dy- 
namics of this system are 
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so that, with T L  the load torque, the mechanical equations are simply 

(6.32) 

- = W R  
dQR 
dt 

Equations (6.30), (6.31), and (6.32) are the set of nonlinear differential 
equations characterizing a two-phase sinusoidally wound induction motor. 

A space vector representation of the equations of the induction motor is 
given in problem 5 (see also problem 6). 

6.6 Total Leakage Factor 

The leakage factor is defined as 

Substituting the expressions 
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results in 
o = 1 - K 2 .  

Note that if K. = 1, corresponding to no spreading of the magnetic field 
as one goes across the air gap, then o = 0. However, in a practical motor 
o > 0. As pointed out in Ref. [2], o typically varies from 0.05 for low leakage 
machines up 0.20. 

6.7 The Squirrel Cage Rotor 

The above mathematical model of the induction motor was derived assum- 
ing sinusoidally wound rotor phases. However, the most commonly used 
induction motor has a squirrel cage rotor which is illustrated in Figure 6.9. 

FIGURE 6.9. (a) Squirrel cage rotor for an induction motor. (b) Cross-sectional 
view of the squirrel cage embedded in the rotor iron core. 

It is standard practice to use the same mathematical model given in 
(6.30) and (6.31) for the induction motor with a squirrel cage rotor. In 
this case, the rotor currents i~~ and i ~ b  as well as the parameters RR and 
LR must be given a different interpretation. There is actually a different 
current in each rotor bar of the squirrel cage and these together make up a 
current distribution around the periphery of the rotor (see the discussion 
of the squirrel cage rotor in Chapter 5 ) .  The parameters RR and LR in the 
model can be interpreted as those values that best fit the mathematical 
model (6.30), (6.31), and (6.32) to that of an actual squirrel cage motor. 
For example, in Stephan et al. [42] and Wang et al. [59] the parameters of 
the model (6.30), (6.31), and (6.32) were identified based on data from a 
squirrel cage motor using a least-squares algorithm. The simulated response 
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of the system (WR,iSa,iSb) based on the model (6.30), (6.31), and (6.32) 
using these parameters values was shown to be quite close to the actual 
measured response of the squirrel cage motor [42][59]. The parameter values 
determined in this manner are then interpreted as those values that best 
fit the model (6.30), (6.31), and (6.32) to  the squirrel cage motor data in 
the least-squares sense. See Chapter 8 where it is shown how to use the 
least-squares method to identify the induction motor parameters. 

6.8 Induction Machine With Multiple Pole Pairs 

where 

Here Ns, and NR are the number of stator and rotor windings, respectively, 
per  pole pair. The total number of windings in a stator phase is npNs 
and npNR is the total number of windings in a rotor phase. The dynamic 
equations are 
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Consider two induction machines which are identical in all aspects except 
that one has only a single pole pair (i.e., np = 1) while the other has np > 1. 
That is, each has the same geometrical construction (!I,&, and g are the 
same), the same number N s  of stator windings p e r  pole pair,  the same 
number of rotor windings NR p e r  pole pair,  and the same current ratings. 
Then the torque output of the machine with np pole pairs will have a torque 
output that is a factor np greater than the single pole pair machine. This is 
clear from considering the coefficient n p M  in the torque expression (6.34). 
However, the np pole pair machine has np more turns/windings in each 
phase than a single pole pair machine. 

6.9 Mathematical Model of a Wound Rotor 
Synchronous Machine 

The mathematical model of a wound rotor synchronous machine is straight- 
forwardly derived from the expressions for the phase flux linkages and rotor 
torque derived above. Figure 6.10 shows the synchronous motor to  be mod- 
eled which differs from Figure 6.1 in that there is only one rotor phase and 
this rotor phase is explicitly assumed to have a voltage source. 

FIGURE 6.10. A symmetric two-phase synchronous machine with a sinusoidally 
wound rotor phase. The two stator phases have voltage sources usa and U S b ,  

respectively, and the single rotor phase has voltage source up. 

The terminology for the synchronous machine changes to the rotor phase 
being referred to as the field w ind ing;  its current is called the field current  
i ~ ,  the flux linkage in its windings is called the field flux (l inkage) XF, and 
the voltage source U F  applied to the phase winding is called the field source. 
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A s b ( i j ,  isa, i s ,  6 ~ )  = 

X F ( i F ,  isa, i s b ,  6 ~ )  = 

Lsisb + MiF sin(8R) (6.35) 

L F i F  + M (isa C O S ( ~ R )  + i s b  sin(8R)) 

where U F  is the voltage source for the field (rotor) winding. 

this machine is 
Setting iRa  = i F  and i R b  = 0 in equation (6.28), the torque produced by 

‘R = MiF ( - i s a  Sin(8R) + i S b  COS(6R) ) . (6.37) 

Combining these equations together, a nonlinear differential equation model 
of a two-phase synchronous motor with a sinusoidally wound rotor is 

d 
dt 

d 
dt  

-- (Lsis, + M ~ F  C O S ( ~ R ) )  - Rsisa + usa = 0 

-- (Lsisb + MiF sin(0R)) - Rsisb + U S b  = o 
d 

( L F i F  + M ( i S a  cOs(8;) f i S b  sin(@,)) ) - R F i F  f U F  = 0 (6.38) 

I. . dwR 
M ~ F  ( -zSa sln(8R) + zSb cos(t)R)) - ‘ L  = J- I dt 

where r L  is the load torque. 

that is, 

This can be done by choosing the voltage U F  in the field winding according 
to 

In a synchronous machine, the rotor current is often chosen be constant, 

i F  = I F .  
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The mathematical model of a two-phase synchronous motor with a sinu- 
soidally wound rotor with constant field current then reduces to 

6.10 Mathematical Model of a PM Synchronous 
Machine 

Consider the case of a two-phase permanent magnet machine with the per- 
manent magnet of the rotor designed to produce a sinusoidally distributed 
radially directed magnetic field in the air gap (see Figure 6.11). That is, 

FIGURE 6.1 1. Two-phase permanent magnet synchronous machine. 

This is essentially the same situation as a wound rotor synchronous machine 
with a constant field current. It is straightforward to show that its model 
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6.11 The Stator and Rotor Magnetic Fields of an 
Induction Machine Rotate Synchronously* 

Recall the radial magnetic field in the air gap produced by the stator cur- 
rents is given by 

while the radial magnetic field in tlhe air gap produced by the rotor currents 
is given by 

N 1  

2g 7- 
s R ( i R a t  i R b t  T,  8 - OR) = - (ZRa COS(8 ~ OR) + i R b  Sin(8 - BR))?. 

(6.42) 
Applying the voltages 

USa = Uscos(wst) 

= Ussin(wst) 

to the stator phases, a steady-state solution for the currents and rotor 
position has the form 

(6.43) 

Problem 9 outlines the derivation of these expressions to  show that the 
phase angles 4s, @R are functions of the stator frequency w s  and the nor- 
malized slip (ws - W R ) / W ~ ;  thus they are constant in steady state. Substi- 
tuting the expressions (6.43) into (6.41), the steady-state stator magnetic 
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field may be written as 

N I  1 
BS(r ,e , t )  = - cos(6 - ( w s t  + 4s))i. 

29 

where at the angular position 6 ~ , ( t )  a w s t  + $s, Bs has its maximum 
magnitude. Denote 6B,(t) as the magnetic axis of Bs and note that the 
magnetic field distribution of Bs is fixed relative to  6 ~ , ( t ) ;  that is, Bs is 
a “magnet” that rotates at the angular rate w s .  Similarly, substituting the 
expressions (6.43) into (6.42), the steady-state rotor magnetic field may 
then be written as 

N I  1 
R -  (cos((ws - 

29 

where at the angular position 6 B R ( t )  a w s t  + 4R, BR has its maximum 
magnitude. Denote 6 ~ ~ ( t )  as the magnetic axis of BR and note that the 
magnetic field distribution of BR is fixed relative to 6B,(t); that is, BR is 
also a “magnet” that rotates at the angular rate w s .  

Both of these magnetic fields rotate at the angular rate w s ,  with the 
angle between the two “magnets” being 6B,(t) - 6 B R ( t )  = 4s - 4R which 
is constant; that is, the two magnetic fields rotate synchronously together! 
Another way to view this is to note that by (6.43) the currents is, and zSb 

have angular frequency w s  and produce a magnetic field rotating at the 
angular speed w s .  Also, equations (6.43) show that rotor currents i ~ ,  and 
i R b  have angular frequency w s  - W R  and thus produce a magnetic field that 
rotates at angular speed w s  - W R  with respect to the rotor. However, the 
rotor is moving at angular speed W R  so that the magnetic field produced 
by the rotor currents is rotating at  angular speed w s  - W R  + W R  = w s  with 
respect to the stator. Again, both fields rotate at the same angular speed 
W S .  

Substituting the expressions (6.43) for the steady-state currents and 
6 R ( t )  into equation (6.31) results in the steady-state torque being given 
by (see problem 9) 
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A 
where M = rcpo7re,&NsNR/ (8g), Bsmax rcpoNsI.y/ (2g) and BRmax  = 
poNRIR/(2g) are the maximum values of the stator and rotor magnetic 
fields, respectively, at the surface of the rotor, and Vairgap = g27@1/2)& is 
the approximate volume of the air gap for g small. This expression shows 
that the torque is proportional to the maximum strength of the stator and 
rotor magnetic fields and to the sine of the angle between them.5 

Finally, the steady-state condition requires JdwR/dt = 0 so that the 
load-torque rL must be such that it satisfies 

6.12 Torque, Energy, and Co-energy" 

In this section it is shown how the torque of an AC machine can be derived 
from conservation of energy. The analysis is carried out for the two-phase 
induction motor while the synchronous machine is considered in problem 
19. 

6.12.1 Magnetic Field Energy 

The equations describing the electrical dynamics of a two-phase induction 
motor are 

(6.44) 

where the flux linkages are given by (n, = 1) 

5There is an expression identical in form for the torque of a synchronous motor! 
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Of course, normally UR, = 0,uRb = 0. Substituting these expressions for 
the flux linkages into the system equations (6.44), it follows that 

d .  d 
dt dt 
d .  d 

dt 
d .  d 
dt dt 
d .  d 
dt  dt 

Ls-zs, + M -  (+iRa COS(~R)  - iRbsin(8R)) + Rsis, = us, 

LSzzSb + M- ( f i R a  Sin(8R) + iRb C O S ( ~ R ) )  + Rsisb 

LR-ZRa + M -  (+is, C O S ( ~ R )  + i S b  S in(6~))  + RRiR, 

= USb 

= 2 1 ~ ~  

LR-ZRb + M -  (-is, sin(8R) + i S b  cos(8R)) f RRiRb = URb. 

(6.46) 

In order to calculate the energy stored in the magnetic field of the in- 
duction machine (that is, the magnetic field in the stator/rotor iron as well 
as in the air gap), the rotor is locked and voltage is applied to the phases. 
Using the system (6.44), the power delivered to each of the phases is given 
bY 

dXsa iSauSa = Rsi;, + isa- 
dt 

d k b  
iSbUSb  = R s i & + i s b x  

dXR, 
dt 

dt  

iRaURa = RRiia+iRa- 

(6.47) 

Substituting the expressions (6.45) for the flux linkages into (6.47) and 
adding up the resulting four equations one obtains (see problem 17) 

dARb 
iRbURb = RRi&+iRb- 

iSaUSa+iSbUSb + iRaURa + iRbURb = RS(Z;, + Z i b )  + RR(& f Z i b )  

1 1 + d dt ( 1LS(i:, 2 + iib) + ZLR(i:u + i",) 
d 

d 
9~ constant 

+ (MiSu (+iRa cos(8R) - i R b  sin(8R) )) I 
(MiSb (+iRa sin(8R) + i R b  cos(8R) )) 1 . (6.48) 

9~ constant 
+ 

Defining the magnetic field energy Wfield as 

1 1 
2 2 

Wfield (ZSa, i S b t  i R a ,  iRb, 8,) ' -LS(iia + i",) + -LR(i;, + i",) 
+ Miss +iRa cos(8R) - i R b  sin(8R)) 

+ Misb ( +iRa sin(8R) + i R b  COS(8R)) 

( 

(6.49) 
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equation (6.48) may be rewritten as 

wfi e Id d e R  
deR d t  

+-- 

- ___- d w f i e l d  diSa +--+-- d w f i e l d  diSb d w f i e l d  diRa 
- 

dis,  d t  dish d t  diRa d t  

d w f i e l d  diRb 
O R  constant 

+------ 
d i n b  d t  . 

The quantity Wfield (isa, isb, iRa,  i R b ,  6,) is the energy stored in the mag- 
netic field established in the stator/rotor iron6 and in the air gap by the 
phase currents. (This was derived in the same way that one derives the 
expression L i 2 / 2  for the energy in a standard inductor.) Defining 

r t  

it then follows that 

This is simply an energy conservat,ion equation. It says that, with the rotor 
locked, the energy supplied by; the voltage sources usa, U S b ,  U R ~ ,  and U R b  

goes into magnetic field energy Mifield and into the heat energy Wohmic loss 

dissipated in the resistance of the windings. 
The expression (6.49) for the field energy is valid whether or not the 

rotor is moving. This is because if the rotor is at the angle OR and the 
currents in the phases are i S a , i S b , i R a r  and iRb, then the magnetic field 
at each point of the motor (i.e., in the stator/rotor iron and in the air 

6Actually, as the iron is assumed to  have infinite permeability (pr  = a), the 
stored energy is all in the air gap. This is simply because electromagnetic theory al- 
lows one to write the stored field energy as Wfield = (1/2) Jrotor a n d  (B2/ (PO&))  d V +  

Stator  i ron 

(1/2) .Ia,, gap (BZ/p0) dV = (1/2) .La,, g:,p (BZ/p0) d V  as pr = 00. 
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gap) is the same whether or not the rotor is moving. In other words, the 
stored magnetic energy depends Only on (isa, i s b ,  iRa ,  i R b ,  6,) and not on 
wR. The derivation was carried out with the rotor locked so that it could 
be concluded that the applied power went only into the field energy and 
ohmic losses (i.e., not into mechanical power) in deriving the expression 
(6.49) for the magnetic field energy. 

6.12.2 

In order to  derive an expression for the torque in terms of the stored energy, 
the rotor is unlocked and allowed to move under the torque produced by 
the magnetic forces. Multiplying the first equation of (6.46) by isar the 
second by i S b ,  the third by iRa ,  and the fourth by i R b  and adding them 
together give ( W R  = d @ R / d t  # 0) 

Computing Torque Prom the Field Energy 

+ Rs(i;, + i”,) + + &). 
(6.50) 

The reader is asked to verify this expression in problem 18. The term 
2(dWfieJd / d e R ) d e ~ / d t  is an additional term describing power being ab- 
sorbed from the sources when there is rotor movement. AS 

dwfield / d t  = dWfield/dtlO, + ( a W f i e l d / d e R ) ( d e R / d t ) i  

equation (6.50) may be rewritten as 

+ Rs(i2,, + iib) + + i L b ) -  
(6.51) 

Integrating both sides with respect to time t gives the conservation of en- 
ergy equation 

The electrical power supplied by the source goes into the magnetic field 
energy, heat losses in the phase windings and another term given by 

The only other energy conversion is mechanical energy. Consequently, this 
term represents the energy from the supply converted into mechanical work. 
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The mechanical power TRWR is therefore given by TRWR = ( a w f i e l d / d Q R )  W R  

so that the torque produced by the machine is7 

(6.52) 

which is the same expression as in equation (6.31) derived previously. 

6.12.3 

The above analysis was done assuming linear magnetics for the two-phase 
induction motor. A more general approach is now given that does not 
assume linear magnetics. 

Recall the electrical dynamics of the two-phase induction motor can be 
written as 

Computing Torque From the Co-energy 

(6.53) 

These equations are very general in the sense that they hold even in the 
case of magnetic saturation in the rotor or stator iron.8 Define a new set of 
voltages eSa usa - Rsisa, eSb = USb - RSiSb ,  eRa = uRa - R R ~ R ~ ,  and 
eRb URb - RRiRb and consider these voltages as the inputs to the phase 
windings. In this way, the power loss to ohmic heating of the phase windings 
can be considered as part of the power supply and not the machine. The 
power delivered to the phases is then iSaeSa +isbeSb+iRaeRa +iRbeRb and, 
using (6.53), the basic equation for conservation of power may be written 

A a 

'This derivation assumed that (6.45) held, that  is, that  magnetic saturation was not 
present. This result does not hold if magnetic saturation is present. A more general 
result that  holds in the presence of magnetic saturation is given in the next subsection. 

'However, the expressions (6.45) are valid only for the linear magnetics case, that  is, 
no magnetic saturation. 
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as 

(6.54) 

This equation just says that the power provided to the phases by the voltage 
sources equals the rate of change of the field energy and the mechanical 
power produced. This expression is perfectly general in that it holds in the 
case of magnetic saturation. However, it does assume that an expression for 
the field energy Wfield (ZSal zSb ,  i ~ ~ ,  zRb,  6,) in terms of the phase currents 
and rotor position has been found.g 

Now, 

(6.55) 

where X stands for Asa, Ash, X R ~ ,  and A R ~  (see the footnote’’). Equation 
(6.54) holds for all isa, is&, i ~ ~ ,  i R b ,  and 6 R  and their derivatives dig,/dt, 
d i sb ld t ,  dzR,/dt, d iRb/dt ,  and d 6 ~ / d t .  The next step is to substitute the 
derivative of the flux linkages into left-hand side of (6.54) and the derivative 

gThe expression (6.49) is valid only for the linear magnetics case. To determine 
the field energy in the general case, one would lock the rotor so that i S a e S a  + i s b e s b  + 
ZRaeRa+ZRbeRb = &Wfield (isa, ZSbrZRar  ZRb, 0,) holds. Then one would try to integrate 
this expression to obtain Wfield. Though the left-hand side is known, such a calculation 
would typically require numerical techniques in the presence of magnetic saturation. The 
“Achilles heel” in this approach is trying to find the field energy Wfieid. 

‘OIn the case of linear magnetics, the expressions (6.45) would be used. However, 
in the case of magnetic saturation, one proceeds as follows: For each phase, integrate 
X ( t )  = $(u - Ri)dt to compute the phase flux as the currents isa, ZSb, Z R ~ ,  and zflb are 
varied between -Imax and I,,,, and the rotor position is varied for 0 5 OR 5 &. This 

then gives the phase flux as a function of isar isb, Z R ~ ,  ZRb, and OR. 
RP 
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of the field energy (6.55) into the right-hand side of (6.54). This results in 

(6.56) 

Given any set of values for isa, % s b ,  i R a ,  iRb, and OR, by proper choice 
of USa,’uSb, U R ~ ,  URb, and TL, the derivatives d i g a / d t ,  d i s b l d t ,  d iR, /dt ,  

d iRb/d t ,  and d e R / d t  can be arbitrarily chosen (see problem 20). Therefore, 
the only way that (6.56) can be satisfied for any such values of dig,/dt, 
d i s b l d t ,  d i R a / d t ,  d iRb/d t ,  and d e R / d t  is that the coefficients of these deriv- 
atives in (6.56) must be equal for all time, that is, 

In particular, the last expression rjhows that 

dARa . 8ARb aWfieid + iRa- + tRb- - -. 
. d A s a  dASb 

T R  = % S a p  + iSb- 
dOR d e R  d 6 R  deR d e R  

Finally, making the definition of co-energy as 
A .  

Wco-energy = ZSaASa + iSbASb + iRaARa f iRbARb - W f i e l d ,  (6.58) 

it follows that the torque may be written as  

(6.59) 
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This derivation assumed that all of the phases had voltage inputs. How- 
ever, the expression for torque (6.59) still holds even if the rotor phases are 
shorted. That is, the expression (6.59) is true for any set of inputs, so it 
must be true for ufia = ufib = 0. 

The co-energy (6.58) does not have any physical significance and only 
represents a convenient mathematical quantity for computing the torque. 

The reader is asked in problem 15 to show that, in the case of linear 
magnetics, the expression for Wfield given in (6.49) equals the expression 
for Wco-energy given in (6.58). 
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Problems 

Torque Production in AC Machines 

Problem 1 Torque on the Stator Winding 
Use the expression (6.27) for radial magnetic field in the air gap due 

to the rotor currents and compute the total torque +S it produces on the 
currents in the stator windings. I n  particular, show that +s = -+R. 

Problem 2 BR Cannot Produce Torque on the Rotor 
(a) Using the expression (6.6) [or (6.27)] for  the radial magnetic field in 

the air gap produced by  the rotor currents, show by direct computation that 
the total torque this magnetic field produces on  the rotor currents is zero. 

(b) Similarly, using the expression (6.5) [or (6.26)] for the radial mag- 
netic field in the air gap produced by the stator currents, show by  direct 
computation that the torque this magnetic field produces on  the stator cur- 
rents i s  zero. 

(c) Explain why these two results must be true from basic principles of 
Physics. 

Problem 3 The Induction Motor as a Transformer 
Using the f lux linkage equations (6.45), show that [a = 1 - M 2 /  (LSLR)] 

OLsLRisa = LRXS~ ~ M(+XRa cos(8R) - XRb sin(6R)) 

OLsLRisb LRXSb - M(+XRa Sin(8R) + XRb cos(6R)) 

OLsLRiRa = LsXRa ~ M(+XSa COS(OR) + X s b  sin(OR)) 
OLSLRiRb = LsXRb - M(-XSa Sin(8R) + XsbCOS(6R)). 

If a = 0, find an expression for  the rotor flux linkages in terms of the sta- 
tor flux linkages. Use this expression to show that, with the rotor locked 
at some angle OR,  the induction motor (with a sinusoidally wound ro- 
tor) i s  a (two-input two-output) transformer with a turns ratio of either 
(MILS) COS(OR) = (NR/NS) C O S ( ~ R )  or (MILS) s in (8~)  = (NR/NS) sin(8R) 
from a stator winding to a rotor winding. I n  particular, find XRaIXSa and 

What if one had a squirrel cage induction motor rather than a sinu- 
X R b I X S b  fo r  OR = 0. 

soidally wound rotor induction motor? 

Mathematical Models of an Induction Machine 

Problem 4 State-Space Model of the Induction Motor 
Starting from the mathematical model (6.30) and (6.31), derive a state 

space model for the two-phase induction motor where the state variables 
are iSa, i S b ,  i ~ ~ ,  i R b ,  w ,  and 8. (See problem 6 for a simpler, but equivalent, 
model.) 
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Problem 5 Space Vector Model of the Induction Motor (Leonhard [l]) 

equations of the induction motor (6.34) may be written succinctly as 

A Let is a is, + j i ~ b ,  & a iRa  f j i ~ b ,  U s  = U S ,  +jUsb and show that the 

d .  d .  
d t -  

~~i~ + ~ ~ - - ' l ~  + M -  dt (Z -R ejnp@R ) US 

where Im{ - }  denotes the imaginary part and * denotes complex conjugate. 
This is  known as the space vector representation. 

Problem 6 A Standard Model of the Induction Motor 
The model (6.34) of the induction motor (or its equivalent space vector 

representation given in problem 5) is quite complicated. By doing a change 
of variables, a simpler, but equivalent model can be found. I n  particular, a 
model can found where the explicit dependency on 0 R  [i.e., the sin(npOR) 
and cos (np8~)  terms] can be eliminated. To do so, define new (fictitious) 
flux linkages as 

A + 4 +Ra + j+Rb = x ~ ~ ~ ~ P @ R  = ~ ~ i ~ e j ~ p ~ ~  + M i  -S 
-R 

(a) Make this substitution into the representation given in problem 5 to 
show thut the system of equations for  the induction motor may be rewritten 
in the space vector fo rm as 

where p a n p M / ( J L R ) ,  e a 1 ~ M 2 / L s L ~  is the leakage factor, and 
TR a LR/RR is the rotor tame constant. This model is often seen in the 
literature. 

(b) Equate real and imaginary parts in part (a) to write the model as five 
digereatid equations. 

(c) Use the answer in part (b)  to find a state space model of the motor 
with state variables is,, i S b ,  GRa, $Rb,  and W R .  

Remark This problem illustrates the power of the space vector represen- 
tation as the manipulations of the equations are all done with (complex) 
scalar quantities rather than dealing with vectors and matrices. The repre- 
sentations in parts (a) and (b) are standard forms seen in the literature. 
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Often the real and imaginary parts of $Ra + jGR,  are referred to as the 
“rotor j%xes”, but the actual rotor f lux linkages are the real and imaginary 
parts of ,A, = + j $ R b )  e-jnp8R. 

Problem 7 Simulation of an Induction Motor 
(a) Using the state-space model derived in problem 6(c), simulate a two- 

phase induction motor. Set the parameters as RE = 3.9 R, Rs = 1.7 

m2, f = 0 N-m/rad/sec, np = 3, ws = (271-)60 rad/sec, V = V,,, = 60 
V (peak), I,,, = 12 A ,  T L  = 0. Let U S ,  = Vcos(wst), = Vsin(wst) 
and plot (a) is, and i s b ,  (b)iRa and i R b ,  and (c)w. Run the simulation long 
enough (about 0.5 sec) so that the speed WR goes to a constant steady-state 
value. Notice that at steady-state (constant) speed, the rotor currents are 
zero. Give a physical explanation as to why this happens. 

(b) Rerun the simulation with a load torque O ~ T L  = 0.2 N - m  acting on 
the system after i t  has reached steady-state (synchronous) speed. B e  sure 
to run the simulation until the motor speed has reached zts new (lower) 
steady-state speed. Note that the steady-state rotor currents are no longer 
zero. Why? 

(c)  What happens if TL = 0.5 N - m  is used? Note that the frequency of 
the rotor currents increases as the load-torque increases. Give a physical 
explanation to why this happens. 

R, LR = 0.014 H, Ls = 0.014 H, M = 0.0117 H, J = 0.00011 kg- 

Problem 8 Induction Motor Model in Terms of the Flux Linkages 

tively, define 
With As, and the total flux linkage in stator phases a and b, respec- 

Similarly, let X R ,  and ARb be the total flux linkage in rotor phases a and 
b, respectively, and define 

(a) Show that the electrical equations of the induction motor may be written 
as 

(b)  Using the fact that 



404 6. Mathematical Models of AC Machines 

show that 

is a representation of the induction motor in terms of the variables As a 

(c)  B y  equating real and imaginary parts of the answer to part (b), find 
a state space representation of the induction motor in terms of the state 

A 
ASa jASb,aR = ARa + j A R b ,  W R ,  and OR. 

variables ASa, ASb,  A R b , W R ,  and OR. 

Problem 9 Steady-State Solution of t he  Induction Motor Equations [I] 
Use the space vector formulation given in problem 5 to find a sinusoidal 

steady-state solution to the induction motor equations. I n  particular, try a 
solution of the fo rm 

US  = USa + jusb = Us cos(wst + 4us) + j U s  sin(wst + +us) 
= ~ ~ ~ i 4 ~ , ~ j ~ s t  u e j w s t  

-S 

8R( t )  = wRt 

where the stator electrical frequency ws,  rotor speed W R  and us = Usej4us 
are assumed to be known and constant. The stator an,d rotor current phasors 
given by I s  Isej4S and LR = IReJ4R are to be determined; that is, the 
unknowns are Is ,  #JS, IR,  and qbR. 

(a) Substitute these expressions into the space vector representation of 
the induction motor equations to obtain 

A 

(Rs +jwsLs)& f j w s M L R  = US 

(RR + j ( w s  - WR)LR) IR  + ~ ( W S  - W R ) M I S  = 0 

MIrn(LS(LR)*} - T L  = 0. 
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With the normalized slip speed defined by  S 
that 

(ws - W R ) / W S ,  it follows 

Rs -jwsM + j w s L s  1 [ I 1 R R / S + j w s L R  [ fi ] = det [ -jw:;M 

where 
RR 
S det (Rs + j w s L s )  (- + ~ w s L R )  - ( ~ w s M ) ~ .  

(b) Use these expressions to compute Is, $s, IR,  $R, and r = M Im{&(LR)*} = 

M I s I ~ s i n ( 4 ~  - d R )  as functions of the stator frequency w s  and the nor- 
malized slip S .  

(c)  Using the parameter values given in problem 7, write a program to 
plot r = M I s I ~ s i n ( 4 ~  - $R) for a fixed ws  = 27i * 60 as S varies from 0 
to 20. 

Problem 10 Model of an Induction Motor with Multiple Pole Pairs 

6.12(a) shows stator phase a and Figure 6.12(b) shows stator phase b. 
Consider a two-phase motor with np pole pairs. With np = 2, Figure 

FIGURE 6.12. (a) Sinusoidally wound stator phase a with np = 2 and turns 
density Nsa(0)  = (n,Ns/2) lsin(n,Q)l. (b) Sinusoidally wound stator phase b 
with np = 2 and turns density N,g,($) = (npNs/2)  Isin(n,($ - 7r/2))1. 

The sinusoidal turns density for  the windings of each phase are given by 

n p  ATS 
2 

72 Ns 
2 

2 

Nsa(6) = -- Isin(np6)I 

Nsb(6) = P- jsin(np(6 - 7i/2))1 

-- np’JR Isin(n,(o - O R ) ) ~  NRa (0) = 

NRb(6) = 2- n p N ~  Isin(n,(O - O R  - .-/a))/. 
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For example, the first pole pair of stator phase a is  made up of the turns for 
-r/np < 8 < r/np,  the second pole pair of stator phase a is made up of the 
turns for  r /np < 8 < 3n/np, and so on. The total number of turns making 

up the first pole pair is J;lnp NS,(B)dB = Ns. A s  there are np pole pairs, 
the total number of turns in phase a is n p N s ;  that is, NS is the number of 
turns in phase a per pole pair. 

H . d l  = ienclosed applied to the closed (a) Explain why Ampere’s law j -  - 
path 1-2-3-4-1 indicated in Figure 6.13 is 

0 

(6.60) 
+ 

Hs, . d f :  1 is,* sin(np8’)d8’ 

1-2-3-4-1 

for any angle 0. 

FIGURE 6.13. Use of Ampere’s law to determine the air gap radial magnetic 
field produced by isa in a np pole-pair machine. 

Show that equation (6.60) leads to 

(6.61) N .  
BS,(iS,, 6) = - ZS, cos(np8). 

29 

(b) Show that conservation of flux will hold in the air gap i f  this expression 
is  modified by including the factor rR/r to obtain 
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XRa(iRa,  i R b ,  i S a ,  i S b ,  OR) = / (Bs+B, ) .dS  
A l l  loops of 

ro tor  phase  a 

= L R ~ R ~  + M (is. cos(n,O~) + ZSb sin(n,OR)) 



408 6. Mathematical Models of AC Machines 

Mathematical Model of a Two-Phase Synchronous Machine 

Problem 11 Mathematical Model of a PM Synchronous Machine 
Consider a two-phase synchronous machine in which the rotor consists 

of a permanent magnet which produces a sinusoidally distributed radial 
magnetic field in the air gap given by 

7.R 

r 
f i R ( r ,  e - O R )  = B,- COS(B - OR)?.  

At r = rs  this is written as 

where the coupling factor K is included to account for leakage. 
The stator is identical to the wound rotor synchronous motor, that is, it 

has two sinusoidally wound phases 90" apart with voltage sources usa and 
v&. The radial magnetic field in the air gap due to the stator currents is 
then given by (6.5). 

(a) Show that the flux linkages in the stator phases have the fo rm 

A S a ( t )  L S i S a ( t )  f Krn coS(0R) 
A S b ( t )  = Lsisb(t) + K,  sin(6R) 

and compute explicit expressions fo r  Ls and K ,  in terms of po, K ,  I?,, C,, N s ,  
B,, and g.  

(b) Find the torque ?S on  the currents in the stator windings produced 
b y  B R ( r S ,  8 - O R ) .  Then compute the torque on the rotor as -?R = -?s. 

(c)  Give the complete set of equations characterizing a two-phase perma- 
nent magnet synchronous machine and show that it has the fo rm (6.40). 

Problem 12 Wound Rotor Synchronous Machine with Multiple Pole Pairs 

Using the multiple-pole-pair model of a two-phase sinusoidally wound 
induction motor (see problem l o ) ,  show that it can be used directly to derive 
the multiple-pole-pair model of a two-phase sinusoidally wound synchronous 
motor. Specifically, show 

NSNF. 
Poel"""Ng, LF - poe1e2TN$, and M = 6- p0~ele2 

where Ls  = ~ 

N s  is the number of winding per pole pair in each of the stator phases and 
89 89 89 

NF is the number of turns in the field winding. Use these expressions to 
deduce the dynamic equations of this machine. 
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Problem 13 State-Space Model of a Wound Rotor Synchronous Machine 
For the synchronous machine model of problem 12 [see also (6.38)], note 

that the relationship between the currents and the flux linkages may be writ- 
ten as 

LS 0 
LS M sin(n,OR) 

Mcos(n,6R) Msin(nP6R) LF 

With A(n,6R) denoting the 3 x 3 matrix on  the right-hand side, it follows 
that 

where, with Q 45 1 - M 2 / L s L ~ ,  

M 2  sin(n,QR) cos(n,O~) L ~ L F  - M 2  cos2(n,8R) -LsM sin(n,OR) . 
L ~ L F  - M 2  sin2(n,6R) M 2  sin(n,6R) cos(n,6R) -LsMcos(n ,Q~)  I - Ls M cos ( n,OR) - LsM sin(n,OR) L2s 

(a) Use these relationships to find a state-space representation of the syn- 
chronous motor in terms of the flux linkages Asa, X s b ,  and X F .  Be sure to 
include the torque equation. 

(b) Use these relationships to find a state-space representation of the 
synchronous motor in terms of the currents isa,isb, and i ~ .  Be sure to 
include the torque equation. 

Problem 14 DQ State-Space Model of a Synchronous Machine 
For the synchronous machine model of Problem 12 [see also (6.38)], con- 

sider a change of coordinates to the so-called direct-quadrature (dq) refer- 
ence frame defined by  
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(a)  Show that 

O M  

M 0 LF 

(b )  Show that 

:: 1. 
i F  

0 -M 

u L s L F  -M 0 L~ 
[ 1: ] = 1 [ "OF ULF 

ZF 

(c) Use the expressions from parts (a)  and (b) to show that 

and so 

dWR 

dt 
J- = M i ~ i ,  - 71; 

where 
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Magnetic Field Energy, Co-einergy and Torque 

Problem 15 Co-energy 
The co-energy i s  defined by  

A .  
W c o - e n e r g y  = ZSaASa f iSbASb + iRaARa + i R b A R b  - W f i e l d .  

The expression for the field energy given in equation (6.49) i s  valid if mag- 
netic saturation i s  not present. I n  this case, show that Wco-energy  = W j i e l d  

and consequently, either (6.52) or (6.59) is  valid for computing the torque. 
(The co-energy is not equal to the magnetic field energy when magnetic 
saturation i s  present in the iron.) 

Problem 16 Co-energy 

Inverting the flux linkage equations (6.45) gives o = 1 - - ( LSLR 

iRa 

Use this to find a n  expression for the field energy and torque in terms of 
ASa ,  ASb,  ARa ,  ARb, and OR. 

Problem 17 Co-energy 
Verify equation (6.48). 

Problem 18 Co-energy 
Verify equation (6.50). 

Problem 19 Energy, Co-energy, and Torque in Synchronous Machines 
Use the equations (6.35) and (6.36) to compute the field energy and 

the co-energy an a two-phase wound rotor synchronous machine. Use r = 
a W f & / d 8 R  to obtain a n  expression for the torque put out by  this machine 
and compare it with the expression (6.37). 

Problem 20 Specifying the  Derivatives of t h e  Induction Motor Model 
Prove that given any state i ~ ~ , Z s b , i ~ ~ , i R b ,  and %R of the motor, the 

derivatives d i sa /d t ,  disbldt,  diRa/dt,  diRb/dt, and d O ~ / d t  can be arbitrar- 
aly chosen by  appropriately choosing usa, U S b ,  U R a ,  U R ~ ,  and rL .  
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Symmetric Balanced 
Three-Phase AC Machines 
The mathematical models of two-phase induction and synchronous ma- 
chines have been derived. In this chapter, the mathematical models of 
three-phase induction and permanent magnet synchronous machines are 
developed. From the three-phase models, two-phase equivalent models are 
derived. A classical steady-state analysis of the induction motor is also 
presented including the development of an equivalent circuit from the non- 
linear differential equation model. Finally, the chapter concludes with a 
discussion on why power systems are three-phase systems with sinusoidal 
voltages operating at  60 Hz is presented. 

7.1 Mathematical Model of a Three-Phase 
Induction Motor 

A three-phase induction motor model is now developed and its two-phase 
equivalent model is then derived. Figure 7.1 illustrates how the stator and 
rotor windings are laid out in a three-phase machine. 

FIGURE 7.1. Cross-sectional view of a three-phase induction motor. The stator 
phases are 2x13 radians from each other as are the rotor phases. 
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2 ’ q S o  1 g - 

Poisa ’ g 

To explain the winding layout in more detail, Figure 7.2 shows stator 
phase 1 where it is seen that one side of a loop is wound at 7r/3 (the other 
side at 47r/3), two loop sides are wound at 7r/2 (the other two sides at 
37r/2), and, finally, one loop side is wound at 2 ~ / 3  (the other side at 5 ~ 1 3 ) .  

-J t q s )  5 
I I 1 
I I I I : s  

FIGURE 7.2. Cross-sectional view of stator phase 1. 

FIGURE 7.3. Developed view of the windings of stator phase 1. 

The machine of Figure 7.1 (or Figure 7.2) is referred to as a symmetric 

‘Of course, in the use of AmpBre’s law, it is still assumed that the cross section of 
the winding is negligible in order to obtain a relatively simple analytical expression for 
the radial magnetic field in the air gap. 
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machine because the stator phases are identical in structure only rotated 
2n/3 radians from each other and similarly for the rotor phases. 

In order to obtain a sinusoidally (spatially) distributed magnetic field in 
the air gap, it will be necessary to assume that the phases are sinusoidally 
wound. This is now described. 

Sinusoidal Windings 

Let OR denote the rotor position taken to coincide with the magnetic axis 
of rotor phase 1 as shown in Figure 7.1, 0 is an arbitrary angular position 
in the air gap so that ,B a 0 - OR represents the same angle with respect 
to the rotor position. 

Now consider the three stator phases to be sinusoidally wound with their 
stator turns densities given by 

NS Nsl(0)  = - Isin(0)l 
2 

NS Nsz(6) = - Isin(0 - 2n/3)1 
2 

Ns . 
Ns3(6) = - Jsin(0 - 47r/3)J. 

2 

Stator phases 1 and 2 are illustrated in Figures 7.4(a) and 7.4(b), respec- 
tively. 

FIGURE 7.4. Sinusoidally wound sta.tor phases. (a) Stator phase 1 windings. (b) 
Stator phase 2 windings. 
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Similarly, the rotor turns densities are given by 

NR 
2 

NR 
- Isin(6 - 6~ - 2 ~ / 3 ) j  

2 
NR 

2 

N ~ l ( 6  - 6,) = - /sin(O - O R ) /  

NR2(0-6R) 

N ~ 3 ( 6  - O R )  = - [sin(O - 6R - 4 ~ / 3 ) 1 .  

This is referred to as a symmetric machine as the windings are all iden- 
tical in construction being shifted by 2 ~ / 3  with respect to each other and, 
similarly, the rotor windings are identical in construction also being shifted 
by 2x/3 with respect to  each other. As illustrated in Figure 7.5, the stator 
end windings l', 2', and 3' are tied together to form the motor neutral N ,  
and the stator end windings 1 ,2 ,  and 3 are connected to  the source voltages 
U S ~ , U S ~ ,  and us3, respectively. The other end of the source voltages are 
tied together to form the source neutral N .  This is called a wye-connected 
motor. Similarly, the rotor end windings 1 ,2 ,  and 3 are shorted (connected) 
together and the other rotor end windings l', 2', and 3' are also shorted to- 
gether as shown in Figure 7.6. Due to the wye connection of the stator and 
rotor windings, the neutrals N and N in Figures 7.5 and 7.6, respectively, 
are isolated so that is1 + is2 + i s 2  = 0 and i ~ 1  + i ~ 2  + i ~ 2  = 0. 

FIGURE 7.5. Wye-connected stator windings. 

FIGURE 7.6. Wye-connected rotor windings. 
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The stator magnetic field is the vector sum of the fields due to each 
phase. These fields are 

so that 

+ is3 cos(8 - 47;/3)) 1. (7.1) 

If the balanced2 three-phase set of currents 

are applied to the stator phases, the corresponding stator magnetic field 
can be written as 

+ 27r 27r Bs(ls, r,  8, t) = ~- I-loNsIs rR (cos(‘~st) COS(8) + cos(wst - -) cos(8 ~ -) 
29 r- 3 3 

) 
47 

3 
+ cos(wst - -) cos(8 - 47r/3) f 

N I  r 3 
29 r 2 

- - ____-_ cos(8-wst)?. 

That is, with balanced three-phase currents, a radial rotating magnetic 
field is established in the air gap. 

Similarly, the magnetic fields due to the rotor currents are given by 
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so that, with ,O = 0 - OR, 

As explained in the previous chapter, the coupling factor K is included in 
the expression for BE on the stator side of the air gap and is included in 
the expression for B s  on the rotor side of the air gap to account for the 
spreading (leakage) of the magnetic field from the radial direction as one 
goes across the air gap. That is, with B s  and BE given by (7.1) and (7.2) 
respectively, the total radial magnetic field B on the stator side of the air 
gap is taken as 

On the rotor side of the air gap, the total radial magnetic field B is taken 
as 

or, in terms of p = 8 - 0 R  and an abuse of notation, 
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Stator Flux Linkages 

Using (7.3) for B on the stator side of the air gap, the stator flux linkages 
are given by (see problem 1) 

where 
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The reason for the factor 2/3 in equations (7.5), (7.6), and (7.7), and the 
factor 3/2 in the expressions for L s , M ,  and LR in (7.8) are so that the 
expressions (7.8) represent the two-phase equivalent coefficients of induc- 
tances in the two-phase equivalent model as will be shown below. In matrix 
form, the flux linkages may be written as 

Note that O R  - 4n/3 = O R  - 27r + 2x13 SO that COS(GR - 4 ~ 1 3 )  = COS(GR + 
2 ~ / 3 ) .  With the obvious definitions for the matrices c1 and c 2 ( 0 R ) ,  the 
flux linkages are written more compactly as 

Rotor Flux Linkages 

Using (7.4) for B on the rotor side of the air gap, the rotor flux linkages 
are given by (see problem 2) 

2 
3 

= -LR(ZR~ +  is^^ C O S ( ~ T / ~ )  + i ~ 1  C O S ( ~ T / ~ ) )  

is1 COS(GR)  + is2 COS(GR ~ 2-/r/3) + is3 COS(GR - 41;/3)) 

(7.11) 
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In matrix form, the rotor flux linkages may be written as 

Balanced Conditions 

As described above, the source voltages usl(t), usz(t), and u ~ 3 ( t )  are wye 
connected as are the stator and rotor phases (see Figures 7.5 and 7.6). 
Consequently, it is always true that 

i S l ( t )  + is2(t) + iS3(t) = 0 



422 7. Symmetric Balanced Three-Phase AC Machines 

i R l ( t )  + iRZ(t)  + iR3(t) = 0. 

The currents are then said to be balanced as they sum up to zero. 

rotor fluxes are always balanced, that is, 
Using (7.10) and (7.15) it is straightforward to show that the stator and 

+s,(t) + +s2(t) + +s3(t) = 0 

$R1 ( t )  + +R2 (4 + 7bR3 ( t )  = 0. 

(Note that these two equations hold whether or not the currents are bal- 
anced. See problem 4.) 

A 

FIGURE 7.7. Wye-connected stator windings. 

Referring to Figure 7.7, let uA# = UA - ufi ,  wBfi(t) = UB - uf i ,  and 
vcfi(t) = wc - ufi  denote the phase to motor neutral voltages. Faraday's 
and Ohm's laws give 

Adding these three equations results in 

"A f i  + U B f i  + U C N  = RS (is1 + is2 + 2 ~ 3 )  + 
5 0. 

d 
($s,(t) + +sz(t) + +,93(t)) 

That is, the phase to motor neutral voltages are always balanced. However, 
the voltages that are applied to the motor are the phase to source neutral 
voltages us l ( t ) ,u~2( t ) ,  and us3(t). The next lemma relates the motor volt- 
ages uAfi,vB,, and wCfi to the source voltages usl(t),usz(t), and us3(t) 
in terms of the voltage drop w f i N  from the motor neutral to the source 
neutral. 
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or 

From this result, the following corollary is easily seen to  be true. 
Corollary 
If the source voltages are balanced, that is, 

( t )  4 us2(t) + US3(t) 3 0 

then 

so that 

V,QN = 0 

By the above lemma, it follows that for a wye-connected motor, 

where urnN = 0 if the source voltages are balanced. 

(7.16) 

3See, for example, Appendix 4.1 of Murphy and Turnbull [ Q ] .  



424 7. Symmetric Balanced Three-Phase AC Machines 

Three-Phase to Two-Phase Transformation 

Define a three-phase to  two-phase transformation of the voltages by 

U S a  ( t )  1 C O S ( ~ T / ~ )  C O S ( ~ T / ~ )  usl(t) [ u S b ( t )  ] ' g[ 0 sin(2.ir/3) sin(4T/3) ] [ ~~~[~~ ] 
%so ( t )  I/& I/& I/& 

If the source voltages are balanced, 

The inverse transformation is given by 

Denote the 3-2 transformation matrix as Q, that is, 
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As the phases are wye connected, it follows that 

1 

1 

iso(t) = - (iSl(t) + isz(t) + iS3(t)) = 0 v5 

v5 iRO(t) = - (iRl(t) + i R z ( t )  f iR3(t)) 0. 

Remark If in addition the source voltages are balanced, it also follows 
that 

1 
uso(t) = - (us1(t) + us2(t) + US3(t)) = 0. fi 

That is, when the source voltages are balanced, all of the so-called zero 
sequence quantities iso(t), iRO(t), Xso(t), XRO(t), and uso(t) are identically 
zero under the transformation Q and the original three-phase model con- 
sisting of the three phases 1 ,2 ,  and 3 is now reduced to an equivalent two- 
phase model consisting of the phases a and b. This is not surprising as the 
balanced conditions imply that there are only two independent variables 
(e.g., if usl(t) and us2(t) are given, then u ~ 3 ( t )  = - (usl(t) + usz(t)) is 
determined). 

In the case when the source voltages are not balanced, the phase to 
neutral voltages of the machine vAfi, vBfi ,  and vcfi transform as 

USa ( t )  1 -1/2 -1/2 us1(t) -v" 
u S b ( t )  ] = 6 [ 0 uSO(t) - A v f i N  I/& l/& u S 3 ( t ) - v f i N  

] [ us2(t) - v f i N  ] . 
and the dynamic equations for the stator flux linkages (7.16) then transform 
to 

(7.19) 

To find the expressions for the two-phase equivalent flux linkages in terms 
of the two-phase equivalent currents, recall that 

so that 
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or 

0 

so that multiplying this system of equations through by Q results in 

dARa( t )  0 = RRiRa f ~ 

d t  

d t  

d t  

0 = RRiRb + ___ dARb(t)  

dAR0 ( t )  0 = RR~RO+- 

(7.22) 
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or 

Collecting together equations (7.19), (7.21) and (7.24), the two-phase 
equivalent equations for the stator and rotor currents of a wye connected 
three-phase motor become 

where is0 = 0, ~ R O  = 0. In what follows, it is now assumed that the voltages 
are balanced so that us0 = &vfiN E 0. In this case, there is a one-to-one 
correspondence between the two-phase variables isa, i s b ,  iRa,  inb, US,, and 
USb and the three-phase variables is1, is2, is3, iR1, iR2, iR3, us l ,  us2, and 
us3. 

Torque 

It was shown above that the stator currents established a radial magnetic 
field in the air gap. The torque produced by this magnetic field on the 
currents in the sinusoidally wound rotor phases is now computed. Recall 
that the stator magnetic field in terms of p = 8 - #R at T = r R  is given by 
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The torque is then (see problem 8) 

where M a (3/2)~7l”~.el .e2NsN~/(8g).  The torque on phase 2 of the rotor 
is then 

Finally, the torque on phase 3 is computed as 
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The total torque is then 

With iso(t) = 0, i ~ o ( t )  = 0, substitute 

into (7.29) to obtain (see problem 10) 

Substituting the two-phase equivalent stator flux linkages (7.21) into 
(7.19) and the two-phase equivalent rotor flux linkages (7.24) into (7.22) 
along with torque equation (7.30) gives the following two-phase equivalent 
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mathematical model of a three-phase wye-connected induction motor: 

(7.31) 

The system (7.31) may be rewritten using a space vector representation as 

(7.32) 
d .  d .  
dt- dt -R 

Rs i s+Ls -zs+M-  (z ejeR) = us 

. (7.33) 

(7.34) 

d .  
dt- d t  -' RRUR+LR-ZR+M-(Z e ) = O 

dWR MIm{is(iRejeR)*) - T L  = J- dt 

(7.35) 

a A .  where as = usa + j%Sb, is = asa + j i s b ,  and iR 3 iRa + j i R b  are the space 
vector form of the two-phase equivalent voltages and currents. 

Remarks 
The model (7.31) [or, equivalently, (7.32), (7.33), and (7.34)] is identical 

in form to the model derived for a two-phase motor in Chapter 6. 
The parameters Ls,  LR, and M are the two-phase equivalent inductance 

values for the three-phase machine. As seen from equations (7.5), (7.6), 
(7.7), (7.11), (7.12), and (7.13), the actual stator, rotor, and mutual coef- 
ficients of inductance in the three-phase machine are 2Ls/3, 2LR/3, and 
221113, respectively. However, the phase resistances Rs and RR in the two- 
phase model are the same as in the three-phase model. 

Simulation of the Three-Phase Machine 

Figure 7.8 illustrates how the two-phase model is used to simulate a bal- 
anced three-phase machine. 
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Two-Phase 

FIGURE 7.8. Block diagram for simulating a three-phase machine using the 
two-phase equivalent model. 

One simply uses the transformation 

to  obtain the voltages usa(t) and u S b ( t )  which are then applied to the two- 
phase equivalent simulation model. The currents isa, i s b ,  i ~ ~ ,  and i R b  from 
the simulation are then put through the two-phase to three-phase (2-3) 
transformation 

2/3 0 
-1/3 I/& ] 
-1/3 -l/& 

2/3 0 
-1/3 I / & ]  
-1/3 -l/& 

to obtain the (balanced) three-phase stator and rotor currents. 

Zero Component 

The three-phase to two-phase (3 to 2) transformation is given by 

U S a  ( t )  1 Cos(2~/3) C O S ( ~ T / ~ )  

s in (2~ /3 )  s in (4~ /3 )  [ uso(t) ] 8 [ 1/Jz 1/Jz 
Figure 7.9 shows the three magnetic axes s1, SZ, and s 3  for the stator phases 
and two orthogonal axes which are denoted a and b, respectively. Note that 
the s1, s2, and s 3  axes are not orthogonal. 
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b axis 

a axis 
+ slaxzs 

FIGURE 7.9. Magnetic axes for the three-phase and two-phase models. 

An interpretation of the 3 to 2 transformation (7.36) is that the elements 
of the 3-tuple 

%s1 ( t )  [ :::::; 1 
are the components of the vector 

GS A usl(t)esl + uss(t)&z + U S 3 ( t ) & 3  

with respect to the basis of orthogonal unit vectors 

while the 3-tuple 

are the components of this same vector 

GS u S a ( t ) ~ S a  + u S b ( t ) e S b  + USOeSO 

with respect to the basis of orthogonal unit vectors 

e S a =  [ a ] :  e S b =  [ 1: eSO= [ 1 
The third component us0 is referred to as the zero component because in 
a balanced three-phase system it is zero. 
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Note that the projections of 6 ~ 1 , 6 ~ 2 ,  and 6’53 onto the ab plane of Figure 
7.9 are in the directions of the SI ,  s2, and s3 axes, respectively, which are 
not orthogonal. 

Remarks The 3 to 2 transformation (7.36) is also referred to as Clarke’s 
transformation [6]. The three-phase windings whose magnetic axes are 
shown in Figure 7.9 are magnetically coupled. For example, a current is1 in 
phase 1 will produce a net (nonzero) flux linkage in the other two phases. As 
pointed out by Holtz [60], the 3 to 2 transformation has (mathematically) 
replaced the magnetically coupled three-phase windings with an equivalent 
two-phase set of windings whose magnetic axes are orthogonal (in quadra- 
ture) and are not magnetically coupled. That is, a current is, in phase a 
will not produce a net flux linkage in phase b. Often phase a is referred to as 
the direct or d axis and phase b is referred to as the quadrature or q axis. For 
example, in problem 13, a standard model of the induction is given in space 
vector form. In that formulation, the notation (U&, ugq, i$j’d, i2q, i&, isq) 
is often used for the equivalent two-phase variables (the superscript “5’” 
refers to  the “stationary frame”). However, in this book, the dq notation 
is reserved for the field-oriented coordinate system (see Chapters 8 and 9) 
and so the reader must be wary when reading different authors. Further, 
one also sees the notation (uscu, usp, iscy, isp, i ~ ~ ,  i R p )  and the notation 
(USd,  usq, i s d ,  isq, z R d ,  i ~ ~ )  for these same variables. 
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7.2 Steady-State Analysis of the Induction Motor 

The objective here is to find steady-state solutions to the mathematical 
model (7.31) of the induction motor. The space vector representation of 
the induction motor given by (7.32)’ (7.33), and (7.34) will be used because 
it is especially convenient for this analysis. This presentation is from the 
development in Chapter 10 of Professor Leonhard’s book [1][2]. 

With us a I& ejLUs = UsejLus a root mean square (rms) phasor4 for 
the voltage, a balanced set of three-phase steady-state voltages is specified 
bY 

The objective here is to apply these voltages to  the motor and find the 
resulting steady-state currents and torque. 

7.2.1 Steady-State Currents and Voltages 

The three-phase to  two-phase transformation (7.17) can be represented in 
the space vector form as (see problem 11) 

Expanded out, this becomes 

(7.38) 

41n this section, U s  L? IT,Tsl is an rms voltage rather than a peak voltage. This is to 
keep the notation in this section consistent with standard practice. 
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Substituting the expressions (7.37) into (7.38) and using the fact that 
1 + ej4T/3 + ej8?r/3 = o results in 

1 
us = 

(usejust  + u* e-jwst -s 1 
ei(wst-2r/3) + u* - ~ ( w s t - 2 ~ / 3 ) )  e.i2r/3 

+ u* e--i(wst-4r/3)) e j 4 ~ / 3  

-Se 

-S 

= &usejwst. 

This is the voltage to  be applied to the induction motor model (7.32), 
(7.33), and (7.34). 

The approach taken here is to look for a solution consisting of a balanced 
set of three-phase stator currents. With Ls a ejLIs = IsejLls an rms 
current phasor, the stator currents take the form 

is1 = &I, cos(wst + Lls)  

- Jz I e j w s t  + I * e - j w s t  
- 2 (-s --s 1 

is2 = &IS cos(wst + Lls - 27r/3) 

where the three-phase to  two-phase transformation results in 

For the rotor currents, a solution consisting of a balanced set of three- 
phase rotor currents with angular frequency ws - W R  is sought. With I R  = 
llRl ejLLR = IRejLLR, the rotor currents take the form 

The three-phase to  two-phase transformation of the rotor currents results 
in 

j R  = 8 (aR1 + i ~ 2 e j ~ ~ / ~  + iR3ej4r/3 = &LRe3(wS-WR)t. 
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7.2.2 Steady-State Equivalent Circuit Model 

The above expressions for the steady-state currents are convenient for 
developing an equivalent circuit model of the induction motor in steady 
state. TO do SO, the expressions = &usejust ,  is = &Lsejwst, iR = 
&IRej(WS-wR)t and -R i e jeR( t )  = d L R e j w s t  are substituted into (7.32) 
and (7.33). After canceling out the terms &ejwst and &ej(ws-wR)t, one 
obtains 

(Rs + jWsLs)& ~ W S M L R  = us (7.39) 

(7.40) (RR + j (WS - W R )  L R )  LR + j (WS - W R )  M I S  = 0. 
A With w,lip = w s  - W R ,  define the normalized slip 

wslap W S  - W R  s=--  - 
W S  W S  

Replace w,lip = ws - W R  by SWS into (7.40) and rearrange to  obtain 

(Rs + j W S L S ) &  + jwsM& = us (7.41) 

(RR/S  + ~ W S L R )  1 R  + j w s M l s  = 0. (7.42) 

With L s  = (1 + a s ) M ,  LR = (1 + O R ) M ,  equations (7.41) and (7.42) can 
be rearranged to obtain5 

(Rs + jwsasM)& + jwsM(& + IR) = US (7.43) 
(RR/S  + j w s a ~ M ) I R  + jwsM(& + IR) = 0. (7.44) 

In this analysis, it was assumed that w s ,  W R ,  and therefore w,lip = w s  - 
W R  are all constant. The two algebraic relationships (7.43) and (7.44) may 
be viewed as the result of applying Kirchhoff's voltage law to the two loops 
indicated in the equivalent circuit of Figure 7.10. 

FIGURE 7.10. An equivalent circuit of the induction motor. 

5Setting L s  = ( l + a s ) M , L ~  = ( 1 t a ~ ) M  is just saying tha t  Ls  and LR are slightly 
greater than M .  Due to  leakage, this is always true as a = 1 - M z / ( L s L ~ )  > 0. 
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The system (7.41) and (7.42) may be rewritten as 

Solving for I s  and LR gives 

The input impedance is then 

Using the fact that M = L s / ( l  + as)  = LR/(1 + D R )  and 
1 
I , this becomes 

a = l -  
( 1  + aS)( l  + O R )  

Finally, defining S, as - 

the input impedance may be written as 

(7.46) 
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With Rs = 06, the stator current phasor Ls = &/Zs becomes 

(7.47) 

(7.48) - 1 + fJ 1 - a,-jztan-'(s/s,) 
- L s o ( l ,  - - 2 0  

A Here Lso = u s / ( j w s L s )  is the no-load current phasor, that is, the current 
phasor when the slip is zero. For convenience, choose us = jUs  so that 
Iso = Is0 = Us/ (wsLs )  is real. Figure 7.11 shows a plot of phasor Ls 
versus S/Sp.  

Im 

tan - 1 (S  / Sp ) 

FIGURE 7.11. Circle diagram of the stator current phasor as a function of S/S, 
with Rs = 0. 

As S/S, varies in the interval -00 5 S/Sp  < 00, the tip of the pha- 
sor Is traces out a circle so that Figure 7.11 is referred to as the circle 
diagram. As illustrated in the figure, the tip of the phasor I s  lies on a 

6This is primarily done so that  the expressions that are now derived for the stator 
input impedance, power factor, and torque have a nice form. 



7. Symmetric Balanced Three-Phase AC Machines 439 

circle whose center is at I s o 5  on the real axis and whose radial arm is 
- I  a e - j 2 t a n - ’ ( S / S p )  

-so 2u  
The average power Pstator into the stator from the source is 

2 m / w s  

Pstator = - / (uslisl + us2is2 + us3is3) dt .  
2.rrIws 0 

Then 

1 2 a I w s  1 
- 

- [&I: + u:Is + & J S e J 2 w s t  + lY:I ie- j2wst]  d t  mzl 2 
- 

1 
= 5 [&I; + U>&] = Re{U&} = UsIs  cos(LUs - LLs) 

as 

Re{&&} = Re{ [Us/ e3LUs lLsl e--3LLs} = [Usj iLsl cos(LUs - 11,). 

The angle cp a LUs - L& is the angle between the phasors U s  and Is, and 
is called the power fac tor  angle. Elach phase contributes the same average 
power so that the total electrical power into the stator is 

Pstator = U US IS COS(V) 

where cos(cp) is the power factor .  Using equation (7.47)’ the power factor 
angle cp is written as a function of S/S,  by 

The rated slip S, is defined as the value of S that minimizes cp or equiva- 
lently, maximizes cos(cp). Solving d p / d S  = 0 gives 

s, = G S , .  (7.49) 

Again using equation (7.47), the ratio IslISo may be written as 

(2)2 = 

I +  ( & ) 2  

1 +  (g )2  ’ 
(7.50) 
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so that a t  rated slip, the rated current is 

Is, - 1 

Is0 fi. 
- -  - 

Also note that it follows 

A plot of Is/Iso versus 
power factor angle is 

from equation (7.50) that 

Is 1 lim -= - .  
S+m Is0 a 

(7.51) 

S/S,  is shown in Figure 7.12. At rated slip, the 

A 
(pT = = 7r/2 - (tan-' (I/&) - tan-'(&)) 

so that power factor is [see (7.57) below] 

1 -a  
C0S('pT) = - 

l+a' 
(7.52) 

FIGURE 7.12. I s l ISo  versus S/S,, with u = 0.3 and Rs = 0. 

7.2.3 Rated Conditions 
An interpretation to the definition of rated slip and the other correspond- 
ing rated variables is as follows: The balanced three-phase sinusoidal input 
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voltages are constant in both magnitude and frequency. If the motor is op- 
erating at rated slip (done by choosing the appropriate load on the motor), 
then the power into the motor is 

Is* 1 - o 
3USIS, C 0 S ( ' p T )  = 3us-- 

& l + o  
(7.53) 

where IS,, = Iso/fi, cos('pT) = (I - a) /  (1 + o) as previously shown. At 
rated slip, the power factor cos(cp,) is a t  its maximum value so that the 
amount of stator current IS required to  achieve the particular input power 
level (7.53) is at a minimum. This power goes into mechanical work and 
losses given by7 

 USI IS, COS(cp,) = T,WR + ~ R R I L .  

The torque r,  and speed W R  under these operating conditions are called 
the rated torque and rated speed, respectively. A real motor has the stator 
current losses 3RsIg so that if motor is operating at  rated slip, the amount 
of stator current required to  produce the rated torque is minimized, making 
this an efficient operating point. 

7.2.4 Steady-State Torque 

Substituting is = &LSejwSt and i R ( t ) d e R ( t )  = &IRejWSt - into (7.34) 
gives 

(7.54) T = M Im{~S(~Re7eR)*} = 3111 Im{&J&}. 

From (7.45), the rotor current phasor is related to  the stator current phasor 

bY 

(7.55) 

Substituting this into the steady-state torque expression (7.54) gives 

7Recall that  this analysis assumes Rs = 0. The mechanical losses (friction, windage, 
etc.) have also been assumed to be  zero in this analysis. 
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, this becomes Recalling that S, = ~ 

RR 
SLR 

Using (7.50), this simplifies to 

r = 3M 

Ug W ~ M ~ S / R ~  U; S,/S W ~ M ~ S  
=3- - 

- 3- 
w ~ L ;  S,/S + S/S,  RR ’ 

Rewriting M 2  = LS LR = L s L R ( ~  - a ) ,  one obtains 
(1 + as) (1 + C R )  

Finally, 

2 
= r  (7.56) 

3(1-a)  U; 2 
2 a WiLS s,/s + s/s, ps,/s + s/sp 7 = 

where 

This is the well-known torque-slip curve for an induction motor and is 
plotted in Figure 7.13. 
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SJS, 

FIGURE 7.13. ./rp versus S /Sp ,  with Rs = 0. 

For a fixed Us and w s ,  the torque is a maximum for S = S,. S, is called 
the pull-out slip and the corresponding maximum torque r, is called the 
pull-out torque. This terminology comes from the fact that for S > S, the 
torque decreases as the slip increases. Consequently, if the motor is oper- 
ating at S = S, (putting out maximum torque) and then more load (load 
torque) is added, the rotor speed W R  decreases and the (normalized) slip 
s = ( w s  - wR) /wS  increases. But. in this situation, even less torque is pro- 
duced so the motor's speed continues to  decrease and the motor ultimately 
comes to  a stop. That is, for S 2 S, the motor is not at a stable operating 
point. On the other hand, if the motor is operating at a slip S < S,, then 
putting more load on the motor will decrease the speed, thus increasing the 
slip, but in this case the torque increases. Consequently, the motor keeps 
running at a little lower speed, but with the additional load on it. At the 
rated slip S, = &Sp, the corresponding rated torque r, is defined as 

2 f i  = 7,- 
A 2 2 

s/s, + s,/s r p  f i + l / f i  l+o' 
r, = rp  

The ratio of the pull-out (or peak) torque rp  to the rated torque r, is then 

This is a measure of the overload capacity in that, with the motor normally 
operating at rated torque, the factor (1 + a)  / (2fi)  is how much the torque 
can be increased before pull-out [2]. It is normally desired to operate the 
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motor at rated slip S,. That is, one picks (“sizes”) the motor so that its 
rated torque is close to the torque load expected on the motor. Then t L  

motor will put out the required torque while minimizing the stator current 
and, therefore, the RsIg losses. 

7.2.5 

Recall that the power into the stator is given by 

Steady-State Power Transfer an the Induction Motor 

where 

2 

I +  (&) 
I +  (;)2 

cp = /Us  - / L s = ~ - ( t a n - ’ ( & ) - t a n - l ( t ) ) .  2 

The power factor may then be written as 

cos(cp) = cos( - tan-’ (z) + tan-’ (g)) 
Q S P  

=sin tan-‘ - 

=sin ( tan-’ ( - o:p)) cos(tan-l($>> 

( (2J - tan-’ (:)) 

- sin (tan-’ ($ ) ) cos (tan-’ (&) ) 
S - S - 

1 1 
- - 

or s s  
a s p  S P  (7.57) cos(cp) = 

l/qg/aT 
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The power into the stator can now be written as 

ps t at or 

3 u s  1:- I + ( % )  us 

If (;) wsLs 

s s  
ui as, s, = 3- 

wsLs 1 + (2J 

- 3 ug 1 - 0  2 
- 

2wsLs  a s,/s+s/s, 

The mechanical power produced is 

and the difference between the power into the stator and the mechanical 
output power is 

Where does this power go? It is now shown that this power is dissipated 
as heat in the rotor windings, that is, wssr = ~ I ~ R R .  To do so, equation 
(7.45) is used to obtain 
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Using (7.50) to eliminate I;, this further simplifies to  

where 
1 1 

was used. Then 

In summary, it has just been shown that 

The mechanical power may be rewritten as 

so that 

In words, one can view all of the energy put into the rotor as being dissi- 
pated in an “equivalent” resistance of RR/S  = RR + (1 - S )  RR/S  where 
the energy dissipated in RR are ohmic losses due to the rotor resistance 
while the energy “dissipated” in (1 - S) R R / S  is the mechanical energy 
produced by the machine (see Figure 7.14). 
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FIGURE 7.14. Mechanical energy represented as a loss in the resistor ( ~ ) R R .  

Using the expressions (7.50), (7.51), (7.56), and (7.57), the normalized 
stator current Is/Is,, the normalized torque r/rp,  and the power factor 
cos(cp) are plotted versus S/Sp  in Figure 7.15. 

FIGURE 7.15. Plots of cos(cp), r / rr ,  and Is/Is,. versus S/S ,  with (7 = 0.3, 
Sr /Sp  = 6 = 0.549, and cos(cp,) = (1 - a ) / ( l  + c) = 0.537. 



448 7. Symmetric Balanced Three-Phase AC Machines 

Quantity 

Sr J S p  

ISO’ISY 

cos(q+) 

zr ’ z p  

Efficiency 

The efficiencys is defined as 

Predicted Value Actual Value 
CT = 0.05 

JE = 0.22 0.20 

Jz = 0.22 0.30 

0.90 

__- ‘+a -2.35 2.30 
2 J z  

~- ;iz -0.90 

1-s 
W R  

~ I ~ R R  
- - 1 - s =  - < 1. A Prnech S Efficiency = - = 

Pstator 2 RR W S  
31R 7 

The power input to the rotor that is not converted to mechanical power is 
lost as heat in the rotor windings so it is obviously important to have high 
efficiency. Consequently, the slip must not be too large and this must be 
traded of f  with the amount of torque required since the torque output goes 
down as the slip is decreased. 

Theory Versus Experiment [l] [2] 

A comparison of the predicted values for the rated slip (7.49), the ratio of 
the no-load current to the rated current (7.51), the maximum power factor 
(7.52) and the steady-state torque (7.56) versus their measured values for 
two motors are reproduced in the tables below from Professor Leonhard’s 
book [1][2]. In the tables, two different 50-H~ motors are used. The first one 
has two poles (np = 1) and a corresponding synchronous rotor speedg of 50 

x 60 =& = 3000 rev/min. The second motor has eight poles (np = 4) 

with a synchronous rotor speed of 50 
The comparison for the two-pole machine (3000 rev/min) with 0 = 0.05 is 
shown in the table given in Figure 7.16. 

sec 

x 60 %$ = 750 rev/min. 

FIGURE 7.16. A table comparing the predicted values of S,, I,, p,, and 7, with 
their measured values for a two-pole machine with o = 0.05. From Table 10.2 of 
Control of Electrical Drives, 3rd edition by W. Leonhard, Springer-Verlag, 2001. 
Reprinted with permission. 

~~ 

*Remember that Rs = 0 is still assumed. 
gThe synchronous motor speed is the rotor speed with no load and rated frequency 

applied. 
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The comparison for the eight pole machine (750 rev/min) with (r = 0.10 is 
shown in the table given in Figure 7.17. 

fi  = 0.32 

-1.82 

FIGURE 7.17. A table comparing the predicted values of S,, I,, c p r ,  and T~ with 
their measured values for an eight pole machine with cr = 0.10. From Table 10.2 of 
Control of Electrical Drives, 3rd edition by W. Leonhard, Springer-Verlag, 2001. 
Reprinted with permission. 

The predicted values and the measured values are in very good agree- 
ment. It is interesting to  note that these open-loop characteristics depend 
only on the leakage parameter CJ. This is particularly remarkable as one 
recalls that in the derivation of the model (7.32)-(7.35), the leakage pa- 
rameter CJ is introduced through the parameter IE (CT = 1 - IE’) in a pretty 
much ad hoc manner to account for fact that as the air gap is crossed the 
magnetic field spreads out in the axial and azimuthal directions. The non- 
linear differential equation model (7.31) will be seen to  be invaluable for 
designing feedback controllers for the induction motor, but a more detailed 
model is needed by machine designers to  be able to  specify the leakage and 
therefore the open loop operating characteristics of the machine. 

7.3 Mathematical Model of a Three-Phase PM 
Synchronous Motor 

Figure 7.18 shows a sinusoidally wound three-phase synchronous machine 
with a permanent magnet rotor. The derivation of its mathematical model 
is now presented. The stator magnetic field is the same as in the case of 
the induction motor so that it is given by (7.1) which is repeated below. 
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The magnetic field due to the permanent magnet is of the form 

At r = rs this is written as 

(7.59) 

where the coupling factor K. is included to account for leakage. The quan- 
tities that are to be computed are the stator flux linkages and the rotor 
torque. As the rotor has no windings, the torque is computed by finding 
the torque exerted on the stator windings and then letting +R = -7s. 
Consequently, the computations can all be done with the value of the total 
magnetic field at the inside surface of the stator. 

Stator iron core 

Permanent 
magnet 

FIGURE 7.18. Three-phase synchronous machine with a permanent magnet ro- 
tor. 

With B s  and BR given by (7.58) and (7.59), respectively, the total radial 
magnetic field B on the stator side of the air gap is 
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Stator Flux Linkages 

Using (7.60) for B on the stator side of the air gap, the stator flux linkage 
in stator phase 1 is computed as 

The first integral is the same as in the wound rotor case and the induction 
motor so that by (7.5) this evaluates to 

where 

is2 cos(2~/3)  + is3 cos(4~/3)  ) 

(7.61) 

The second integral evaluates as 
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Similarly, 

+s2 ( t )  

2 
3 = -Ls(isi cos(2~/3)  + is2 + is3 cos(27r/3)) + - 2 ~ / 3 )  

(7.64) 

and 

The factor 2/3 in front of Ls and the factor in front of K, in 
equations (7.63), (7.64), and (7.65) are so that the expressions for Ls and 
K ,  are the two-phase equivalent coefficient of inductance and back-emf 
constant, respectively, in the two-phase equivalent model. 

In matrix form, the flux linkages may be written as 

1 cos( 27r/3) 
1 

1 

(7.66) 

With the obvious definition for matrix C1, the flux linkages are written 
more compactly as 

I COS(@ R 
C O S ( O R  - 2 ~ / 3 )  . (7.67) 
COS(0R - 47r/3) 

With the stator voltages usl(t),uSz(t), and u ~ 3 ( t )  assumed to be balanced 
and Rs the resistance in each stator phase, Faraday's law gives 

(7.68) 
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Three-Phase to Two-Phase Transformation 

The stator voltages are (assumed) balanced and the machine is assumed 
to  be wye-connected so that the stator currents are also balanced. The 
three-phase to two-phase transformation defined by (7.17) is again used to 
simplify the flux equations by defining 

isa ( t )  XSa ( t )  +Sl ( t )  

iso(t) is3 ( t )  Xso(t) +S3 ( t )  
[ i S b ( t )  ] Q [  ] [ X S b ( t )  ] ' Q [  '$s2(t) 1 .  

where (see problem 4) 

The dynamic equations for the stator flux linkages (7.68) then transform 
to 

To find the expressions for the two-phase equivalent flux linkages in terms 
of the two-phase equivalent curreiits, recall that 

or 
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Collecting together equations (7.69) and (7.72)’ the two-phase equivalent 
equations for the stator and rotor currents of a wye connected three-phase 
motor become 

where is0 = 0. 

Torque 

The strategy is to compute the rotor torque ?R by first determining the 
torque ?S that the magnetic field of the rotor’s permanent magnet produces 
on the stator windings and then use +R = -+s. The rotor’s magnetic field 
at the inside surface of the stator is 

The torque on stator phase 1 is then computed by 

(7.74) 
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The torque on stator phase 2 of the rotor is then 

= /:Kmis2(t) sin(6R - 27r/3)1. (7.75) 

Finally, the torque on stator phase 3 is computed as 

The total torque is then rs = T S ~  + 7-92 + 7 - ~ 3  or 

T S  = f i K r n ( i S 1  sin(6R) + is2 s i n ( 0 ~  - 27r/3) + is3 s i n ( 6 ~  - 4n/3)) 
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The torque on the rotor is then 

T R  = -K, isa Sin (8~)  - i S b  coS(8~)) .  ( (7.79) 

Substituting the two-phase equivalent stator flux linkages (7.72) into (7.69) 
along with torque equation (7.79) gives the following two-phase equivalent 
mathematical model of a three-phase wye-connected permanent magnet 
synchronous motor 

which simplifies to 

(7.80) 

(7.81) 

Figure 7.19 is a block diagram for using the two-phase equivalent model to 
simulate the three-phase model. 

Remark 
With L = ( 2 / 3 ) L s ,  and K = mK, the three-phase flux linkages can 

be written in a standard three-phase form as 

cos (8~)  [ $:: J = [ -:/2 -:I2 ] [ 'i ] + K [  cos(8R - 2 ~ / 3 )  ] 
$573 -L /2  - L / 2  L C O S ( 8 a  - 4 ~ 1 3 )  

(7.82) 
so that 

[ 
L -L/2  - L / 2  d i s l l d t  sin(8R) 

d i s z / d t  = KWR sin(6R - 2 ~ / 3 )  
-:/2 -:I2 ] [ d i s s / d t  ] [ s i n ( 8 ~  -47r/3) ] 

U s 3  

(7.83) 
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' 2 t o 3  
'Sb 

5 3  
Two-Phase 

OR 

FIGURE 7.19. Three-phase PM motor simulated using a two-phase equivalent 
model. 

The torque is then written as 

TR = -K is1 sin(8R) + is2 sin(8R - 271-13) + is3 sin(QR - 47;/3)). 

(7.84) 

As the currents are balanced (is1 + is2 + is3 s 0 ) ,  equation (7.82) may be 
rewritten as 

( 

3L/2 0 0 COS(8R) 
0 3L/2 0 1 [ + K [  C O S ( ~ R  -2r13) ] 
0 0 3L/2 c o s ( 8 ~  - 471-13) 

(7.85) 
and equation (7.83) becomes 

d i s l l d t  sin(8R) [ d i s z l d t  d i s s l d t  ] = -:% [ zs3 + : ~ u R [  sin(OR-2r/3)] sin(8R - 471-13) 

+ -- 3 L  2 1  [ E]. (7.86) 
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7.4 Three-Phase, Sinusoidal, 60-HZ Voltages* 

Electric machines and power systems have been around for over 100 years. 
Basic choices in construction and operation of these systems were made 
along the way. In North America, this has resulted in a power system pro- 
viding three-phase sinusoidal voltages operating at 60 Hz passing through 
three-phase transformers to power three-phase induction motors, light build- 
ings, and so on. Why these specific choices? The answer to these questions 
are given in the book [61] by Laithewaite and Freris and are summarized 
below. 

7.4.1 Why Three- Phase ? 

Modeling has been done of both two-phase and three-phase AC machines. 
One could consider a four-phase machine as well. Why are most electric 
machines three-phase? To answer this question, consider a simple generator 
shown in Figure 7.20 where a single-phase winding consists of three loops 
with one of the loops having a side in the slot at 8 = x / 3  (the other side 
of this loop in the slot at 19 = 4x/3), another one at 6 = x/2,  and the third 
one at 8 = 2x13. 

n J 2  
I nJ3 

FIGURE 7.20. Computation of the emf in a distributed winding. 

Consider the rotor to be a permanent magnet with the magnetic field in 
the air gap given by 

With dS = rsdQdei. and the rotor moving at a constant angular speed so 
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that OR = W R t ,  the flux in the loop at Oi is 

Loop from 
Qp-T t o  0% 

= 211r~Bmax sin(0i - OR). 

With OR = WRt, the corresponding emf is 

Ee, = 

A where Vmax = 2 e l r ~ B ~ ~ , w ~ .  Denoting the three loops shown in Figure 
7.20 as phase 1, the total emf generated in this phase is 

= vmax  (1 f h) cos(wRt - ../a) 
as e - j ~ / 3  + e-jr/2 + e - j 2 ~ / 3  = (1 + &)e-3"/2. 

On the other hand, if all three loops were located in the single pair of 
slots at O = ~ / 2  and - ~ / 2 ,  then the generated voltage would be 

> c1 = 3Vm,, Re{ e3wRte-3T/2 

= 3vm,, cos(wRt ~ ../a). 

The ratio of these two voltages is then 

1 + &  
- - - ___ = 0.91. 

c1 3 

That is, by spreading the loops along the inside periphery of the stator, 
the voltage generated is about 91% of the voltage that would result if 
all the loops were put in the same slot. Why spread out the windings? A 
fundamental problem that limits the output power of an electric machine is 
the amount of heat it generates. So as to  not damage the winding insulation 
by overheating, the amount of heat generated must be limited, and this is 
directly related to the amount of current in the windings. The addition 
of a fan on the rotor of the machine greatly enhances the heat transfer 
(removal) so that much larger currents could be used in the phase windings. 
(The payoff of being able to have larger currents in the windings greatly 
outweighs the loss of power due to the drag of the fan.) However, even with 
a fan, the amount of current in a winding at any location of the stator is 
still limited. With a current is in a phase winding, putting all three loops 
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at one location will generate three times the heat of putting just one loop 
at the one location. So, if more windings (loops) are desired to obtain a 
greater generated voltage, they must be distributed around the periphery 
for cooling (heat transfer) to avoid overheating the insulation. 

The above analysis is now generalized to distributing the loops around 
the complete inner surface of the stator. Reiterating, to obtain more gen- 
erated voltage out of the machine without overheating it, the loops must 
be distributed along the inner periphery of the stator. 

Single Phase 

First consider the case of a single-phase machine where N s  stator loops are 
equally spread around the complete 27r radians of the inner stator surface 
as shown in Figure 7.21(a). 

FIGURE 7.21. A single phase machine with a total of NS turns/loops. (a) The 
first loop has sides 1, the second loop has sides 2, and so on. with the final loop 
having sides Ns-NA. These loops are all electrically connected in series to make 
up the single-phase winding. (b) The phasors for each loop. 

The top sides of the Ns loops are placed in slots on the inside surface of 
the stator core at 

6i = (i - l)A6 for i = 1, ..., N s  (7.87) 

where A6 = r / N s  and the other side of each loop is at the diametrically 
opposite side of the stator. Then the total voltage Jlph generated in this 
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single phase is 

where 
--z V .  

is the voltage phasor for loop i - i’ and 

v max e-j@~ = v max e- j ( ( i - l )AQ)  

i=l 

is the phasor for the total emf generated in the phase. 
With N s  large (so A0 = x/Ns is small), the phasorsyi in Figure 7.21 put 

end to  end trace out (to a good approximation) a semicircle as illustrated 
in Figure 7.22 with their sum 6 = Cz’vi being the diameter of the 
semicircle. 

On the other hand, if all N s  loops are in the single pair of slots at 7r/2 and 
3x/2, the generated voltage is (v, = Vmax for the single-phase machine) 

-1ph 

< l p h ( t )  = Re{ (N&ePjn/’) ejwRt } = Re{glpheJwRt 1 
with the magnitude of this voltage phasor given by 

With T the radius of the semicircle, is just the circumferential length 
7rr of the semicircle. It then follows that 

or 

That is, for a single-phase machine, only 63.6% of the voltage is obtained 
distributing the N s  loops over the inner stator surface compared to being 
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able to put all NS windings at a single location. However, the distributed 
winding can carry a much larger current without overheating and damaging 
the conductor insulation compared to having all the windings concentrated 
in one pair of slots. 

FIGURE 7.22. A geometric representation of the phasor sum -1ph ,$ = C,”=:Vz. 
The diameter of the semicircle is 

is Xz21 IV,I = m. 

= 27- while its circumferential length 
N 

Two Phases 

For a two-phase machine with phases 1 and 2, the NS loops of each phase 
are distributed over only n radians; that is, with A0 = x/ ( ~ N s ) ,  the top 
side of the loops of phase 1 are in the slots at 

02 = I! + ( ’  z - 1)AO for i = 1, ..., NS 
4 

as shown in Figure 7.23(a). 
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where r is the radius of the circle. 
If all Ns loops are in a single-slot pair at 7r/2 and 37r/2, the generated 

voltage is (Y1 = Vmsxe-jA/4 for the two-phase machine so that y1e-jA/4 = 
h,,, e-jAl2 ) 

where the magnitude of this voltage phasor given by 

as it is just the circumferential length of the quarter circle. The ratio of the 
magnitude of these two generated emfs is 

Three Phases 

For a three-phase motor with phases 1 , 2  and 3, the Ns loops of each phase 
are distributed over 2 ~ / 3  radians. With A0 = 7r/ ( ~ N s ) ,  the top side of the 
loops of phase 1 are in the slots at 

7l 
0% = - + (i - l)A0 for i = 1, ..., Ns 

3 

as illustrated in Figure 7.24. The total voltage 53ph generated in phase 1 is 

is the voltage phasor for loop i-a' and 

i=l 

is the phasor of the total emf generated in the phase. 
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Phase 1 

FIGURE 7.24. (a) Distributed three--phase windings. (b) Phasor diagram of the 
voltages in each loop of phase 1. 

With N s  large, the phasors yt put end to end trace out a sixth of a circle 
and the sum LPh = Czllfi is a chord of this circle as shown in Figure 

7.24(b). The magnitude of the phasor hPh is given by 

where r is the radius of the circle. 
If all Ns loops are in a single-slot pair at 7r/2 and 37r/2, the generated 

voltage <3ph(t) is given by (v, = Vmaxe-jx/3 for the three-phase machine 
so that y lep jx /6  = Vmaxe-jx/2) 

where the magnitude of this voltage phasor given by 
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as it is just the circumferential length of the sixth of a circle. The ratio of 
these generated emfs is 

Four or More Phases 

Consider a four-phase machine where the Ns loops of each phase are dis- 
tributed over 7r/2 radians, that is, with A% = 7 r /  ( ~ N s ) ,  the top side of the 
loops of phase 1 are in the slots at 

Qi = ?! + ( .  I, - l)A% for i = 1, ..., Ns. 
2 

The ratio of the voltage LPh generated in the distributed windings to the 

voltage Lph generated if all the windings are in a single slot is 

l L p h  I 21-sin(7r/8) sin(-ir/8) 

i I  
l l  

-- N - - 0.975. 
7rI-/(4) T / 8  1 

In general, for a machine with nph phases, the ratio is given by 

2np 

Finally, for a machine with n p h  phases and NS large, the sum ~ ~ l ~ i  

from each phase spans a circumferential length of (1/2) (27r1-/n~h),  which 
is approximately NsVmax, that is, 

Comparison 

The table below summarizes the results of computing the ratio of the mag- 
nitude of the voltage in a distributed winding to that of a concentrated 
winding when the number of phases is 1,2,3, and 4. 

1 1 1  0.636 I 

4 1  0.975 
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The quantity NS denotes the total number of loops per phase so that 
total number of loops in a machine with n,h phases is Ntotal = nphNs. 
To make a comparison of the voltage output of machines with different 
number of phases, it is assumed that the total number of windings Ntotal is 
the same in each machine. For example, in a three-phase machine, the NS 
loops of each phase are distributed over 2 ~ / 3  radians making full use of 
the inside stator surface with Ntotcll = 3Ns. In a three-phase generator, all 
the available surface area of the inside stator surface is used and the three 
independent phase voltages coming out of the machine produce 95.5% of 
the voltage compared to  putting all the windings of each phase in a single 
pair of slots. 

A comparison of the machines is done on the basis of the power that 
can be produced. That is, all things being equal other than the number of 
phases, how do the number of phases impact the amount of electric power 
that can be extracted from the machine? The three-phase, two-phase and 
single-phase machines are now considered in this context. 

Let 

be the generated voltages with &ph = xzl I f i  the sum of the phasors in 
phase 1. 

In a three-phase machine, the generated output power is 

and, in steady state with OR = wRt and a balanced load, the currents 
constitute a three-phase balanced set of the form 
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Under these conditions, the output power is constant and equal to 

where Ntotal = 3Ns in a three-phase machine. 
In a similar fashion, let 

be the generated voltages in the two-phase machine where -2ph 5 = ENs Z=1--Z V. 
is the sum of the voltage phasors of phase 1. It is straightforward to show 
that the power in a two-phase machine is constant and given by (Ntotal = 

2Ns in a two-phase machine) 

In a single-phase generator, there would be Ntotal windings distributed 
around the inner stator surface. The power is not constant in this case as 
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and 

The average power is 

1 27r 

2T 0 
(Psingle-phase) - Psingle-phase (wRt)d (WRt) 

For the same-size machine (that is, air gap length, rotor radius, stator ra- 
dius, axial length, etc.) with the same total number of windings, the same 
current in the windings and operating at the same power factor (so that 
41ph = (#2ph = (b+h), the single-phase machine can (on average) only gener- 
ate 0.64/0.955 or 67% of the power of the three-phase system. Similarly, the 
two-phase machine can only generate 0.910.955 (94.2%) of a three-phase 
system. A three-phase machine can generate 95.5% (0.955) of the power 
that an ideal machine with an infinite number of phases could produce. Go- 
ing to  a four-phase machine results in a gain of only 2% compared to a three- 
phase machine (that is, P4phase = ( 0 . 9 7 5 / 0 . 9 5 5 ) ~ 3 ~ h ~ ~ ~  = (1.02)P3phase)- 
This analysis shows that a three-phase generator is a good trade-off be- 
tween complexity (that is, number of phases) and the achievable output 
power of the machine. 

Sinusoidally Wound Stator 

The windings in a practical machine can be approximately sinusoidally 
wound in two layers as illustrated in Figure 7.25 (see also Figures 7.1 and 
7.2). As shown previously, the windings are distributed this way so that 
the radial magnetic field in the air gap produced by the stator currents is 
(approximately) sinusoidally dist,ributed in space (as is the magnetic field 
due to the rotor currents). Note that the periphery of the inside surface of 
the stator has the loops evenly distributed (in two layers) over the complete 
circumference. 
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FIGURE 7.25. Three-phase sinusoidally wound PM synchronous motor. 

In this case, the voltage produced by phase 1 is (see Figure 7.2) 

> = Vmax Re{ ej(wRt-T/3) + 2ej(wRt-a/2) + ej(wRtp2T/3) 

- Vmax Re e j W R t  e - j X / 3  + 2e-j"/2 + e-j2X/3 ) I  { (  - 

= vm,, (2 + &) cos(wRt - n/2) 

where e-jXl3 + 2e-jT/' + e-jZXf3 = (2 + a )e - jT l2 ,wR a d$R/dt, and 

This can be compared to the voltage produced by putting all four wind- 
ings in a single slot where the ratio of the magnitude of these two voltages 
is (2 + &)/4 = 0.933. 

On the other hand, if only one layer was used, the four loops would 
be evenly spread over 2n/3 radians. The resulting voltage would then be 
(A0 = 

A 
v m a x  = 2 e l T R B m a x W R .  

= &,0i = + (i - l)& for i = 1,2,3,4.) 

and the ratio would be 3.83/4 = 0.958. Though this gives a higher voltage 
output, this configuration requires 24 slots (one side of a loop in each slot) 
compared to the one of Figure 7.25 which requires only 12 slots (two loops 



7. Symmetric Balanced Three-Phase AC Machines 471 

in each slot). The mechanical integrity of the machine usually favors going 
with 12 slots as there is more stator iron between the slots in this case. 

7.4.2 Why AC? 
Why is the power system AC and not DC? A three-phase generator sup- 
plies constant power by producing three balanced sinusoidal voltages to 
a balanced three-phase load. Historically, the use of AC power was im- 
portant for efficient distribution of electric power over long distances. To 
explain, consider a three-phase generator connected to a balanced three- 
phase power line which is then connected to  a balanced three-phase load. 
Let the output voltages of the generator be of the form 

and the corresponding currents are of the form 

is1 = I cos(wt - 7r/2 - 4 )  
i s 2  = I cos(wt - x / 2  - 2x13 - 4 )  
is3 = I cos(wt - ~ / 2  - 4 ~ / 3  - 4) .  

The frequency w = 27rf is constant at 60 Hz (50 Hz in Europe). Here the 
quantities I and q5 depend on the values of the inductances and resistances 
of the generator, the transmission line, and the load as well as the operating 
frequency. The power delivered by the generator is then 

Let the power line have length e and let R denote the resistance per unit 
length in each phase of the power line so that the average electric power 
lost in the line is then 

3 
2 

p1ost = -eR12. 

The power delivered to  the load is then 

For a given total resistance CR in the line, one keeps the loss down by 
delivering the power using as little current as possible. For a given power 
factor cos(q5) (fixed by the impedances of the load and power line), the 
power delivered ZVI cos(4) depends on the product VI. The generator 
is designed to  put out a large voltage V (accomplished by putting many 
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turns in each stator slot and having a strong rotor magnetic fieldlo) so 
that the current is (relatively) small and yet the generator still delivers 
the requisite power needed by the load." However, though the power is 
efficiently delivered to the load, the voltage is too large to be used by the 
consumer (industrial or home). As this power is AC, it can be stepped 
down by a transformer to a level that can be used by the consumer for 
lighting, running motors, and so on.12 The induction motor was (and still 
is) so important because it could be started and run open-loop off of a 
three-phase AC power s u ~ p l y . ' ~  (The synchronous motor would not work 
because it cannot be started by direct connection to a three-phase 60-Hz 
AC source and can stall out of control quite easily under changing loads 
when run in open loop.) For these reasons, AC power won out over DC 
power many years ago. An interesting article on this history is Ref. [62]. 

7.4.3 Why Sinusoidal Voltages? 
The question still remains as to why sinusoids for the voltages. The voltage 
out of the generator will be periodic as long as the generator is run at 
constant speed. Why is the rotor iron designed to produce a sinusoidally 
distributed magnetic field in the air gap resulting in sinusoidal voltages 
induced in the sinusoidally distributed stator windings? Again, the answer 
to this question is provided in Laithwaite and Freris [61]. It comes down 
to the fact that sinusoids are the only signals that can be passed through 
a stable linear time-invariant system and still be sinusoids. For example, 
consider the transmission of the power through a transformer. Let the three- 
phase output voltages of the generator be of the form 

us1 = Vcos(wt) 

2153 = Vcos(wt ~ 47r/3). 

V S ~  Vcos(wt - 2 ~ 1 3 )  

o( NtotalVmax = Ntotai2flTRBmaxwR 
"As pointed out in Ref. [Sl] ,  it is still a tradeoff in the sense that the higher the 

voltage adopted, the higher costs in the insulation for the power lines, the higher the 
transmission towers, the wider the right-of-way for the transmission lines, and so on. 
This cost must be traded off with the cost due to energy losses in the power line 

I 2 0 f  course, transformers don't work with DC voltages and it was only in the latter 
part of the 20th century that power elecronics has provided the means to step down DC 
volt ages. 

I3The argument for the DC generation was that the DC motor could be employed 
by the end user. However, as the voltage could not be large in order to run the DC 
motor, the transmitted voltages from the DC generator must be (relatively) small. The 
losses in the power lines delivering this DC power (low voltage and high current) over 
large distances are so great that  a DC power grid would have required building a power 
station every 2 kilometers or so! 
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Let these voltages be input to a transformer in the power system so that 
with N2lN1 the transformer ratio, the output voltages are then 

N2 
Nl 
N2 
Nl 
N2 
Nl 

Uk1 = -us1 

u& = - us2 

U k 2  = -215.2 

for an ideal transformer. The corresponding transfer function of the ideal 
transformer is then [see Figure 7.26(a)] 

However, real transformers are not ideal. Figure 7.26(b) shows an equiv- 
alent circuit model for a nonideal transformer connected to a resistive load. 

FIGURE 7.26. (a) Ideal transformer. (b) Nonideal transformer whose primary is 
connected to one phase of a three-phase source and whose secondary is connected 
to a load. 

With 

the transfer function of the nonideal transformer is 

VLl b l  s 
V S l ( S )  a2s2+a1s+ao' 

G ( s )  a - = 
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The output voltages are then 

v ~ l  (w t )  = IG( jw)  1 V cos (wt + LG(jw) ) 
vLz(wt) = IG( jw) l  V cos wt - 2 ~ / 3  + LG( jw)  ) 
v~Z(wt) = /G( jw) j  VCOS wt - 4 ~ / 3  + L G ( j w )  ) 

( 
( 

which is still a balanced three-phase set of sinusoidal voltages! That is, they 
are sinusoidal voltages of the same form as the input only shifted in phase 
by LG(jw) and scaled in amplitude by the factor lG( jw) l .  In particular, 
a three-phase induction motor is designed to run efficiently off any three- 
phase set of sinusoidal voltages. 

Suppose the generator produced a periodic waveform ws1 ( w t )  that is not 
sinusoidal. The waveform wsl(wt) can be expanded in a Fourier series as 

n=l 

where Al # 0 and A, # 0 for some n 2 2 (in the sinusoidal case, A, = 0 
for all n 2 2). When passed through the (nonideal) transformer, the output 
voltage will then be 

The output waveform is distorted when compared to the input waveform 
as the different harmonic components (n = 1,2 ,  ...) of the waveform are 
shifted in phase by different amounts LG(jnw) and are scaled in amplitude 
by different amounts IG(jnw)I. As a result, the output waveform does not 
have the same shape as the input voltage. 

Of course, in addition to transformers, the generated power goes through 
transmission lines that are effectively modeled by RLC circuits and are 
also stable linear time-invariant systems. As long as the output voltage of 
the generator is a pure sinusoid, it may pass through any number of such 
systems and remain a pure sinusoid. 

By designing the generator to produce a balanced set of three-phase 
sinusoidal voltages and designing the motors to run off of a balanced set of 
three-phase sinusoidal voltages, the transmission line and the transformer 
between the two will still output a (stepped-down) balanced three-phase 
set of sinusoidal voltages to provide the right match between the two. 

7.4.4 w h y  60 Hx? 
The use of 60 Hz for the frequency of a power system is trade-off just as 
all the other choices in a power system [61]. A 10-Hz source would provide 
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too much flicker in electric lights a s  perceived by the human eye to be of 
use. However, 50 Hz or 60 Hz is of high enough frequency so that no flicker 
is perceived. As far as an upper limit in frequency, note that the angle 
4 between the voltage and current increases as the operating frequency 
increases so that the power factor cos(4) goes down at higher frequency. 
Further, the upper limit in frequency is also limited by losses and resonance 
problems. For example, in the iron of electric machines and transformers 
connected to  a power system, the hysteresis losses go up in proportion 
to the frequency ( ~ h ~ ~ ~ ~ ~ ~ ~ i ~ _ l ~ ~ ~ / v o l u m e  = $cycle H d B )  while the eddy 
current losses go up in proportion to the square of the frequency. Further, 
the distributed inductances and capacitances in the power line result in a 
transfer function for the power network that can have resonances at high 
frequencies, and thus the operating frequency of the power system must 
be well below any such resonant frequencies. Airplanes typically have a 
400-Hz power system, but as the power system is spatially contained, such 
resonances can be avoided by design. In the case of aircraft, using a power 
system with higher frequency reduces the amount of iron, and therefore 
weight, required in transformers, which is obviously important. 

Problems 

Calculations 

Problem 1 Stator Flux Linkages 

linkages given in equations (7.5), (7.6), and (7.7). 
Carry out the integrations to compute the expressions for the stator flux 

Problem 2 Rotor Flux Linkages 

linkages given in equations (7.1 l)> (7.12), and (7.13). 
Carry out the integrations to compute the expressions for the stator flux 

Problem 3 Balanced Conditions 
Show that 

Problem 4 Balanced Conditions 
Using the identities from problem 3, and equations (7.10) and (7.15), 



476 7. Symmetric Balanced Three-Phase AC Machines 

show that 

?bSl( t )  + ?bs2(t) + ?bS3( t )  = 0 

+Rl@) + ?bR2(t) + ?LR3(t) O. 

Problem 5 Three-Phase to Two-Phase Transformation 
Verify equation (7.20). 

Problem 6 Three-Phase to Two-Phase Transformation 
Verify equation (7.23). 

Problem 7 Induction Motor with Unbalanced Voltages 
The system of equations (7.25) are valid even af the voltages are not bal- 

anced. Explain why the two-phase model (7.31) is no longer an equivalent 
model, that is, knowledge of the two-phase variables isa, i s b ,  iRa ,  i R b ,  U S a ,  U s b ,  

w ,  and 8 is  not enough to determine the three-phase variables isl, is2, is3, i ~ 1 ,  

i R 2 1 i R 3 , U S 1 , U S 2 , U S 3 1 W l  and 8. What if U s 0  = &VfiN = ( U s 1  + U s 2  + 
us3)/& is known? 

Do the three-phase variables uniquely determine the two-phase variables 
if the voltages are unbalanced? 

Problem 8 Induction Motor Torque 

given in equations (7.26), (7.27), and (7.28). 

Problem 9 Three-Phase to  Two-Phase Transformation 

(7.1 7), it follows that 

Verify the calculations used to derive the expressions for  the phase torques 

Show that with the three-phase to two-phase transformation given by  

u S a ( t ) i S a ( t )  + U S b ( t ) i S b ( t )  u S l ( t ) i S l ( t )  + u S 2 ( t ) i S 2 ( t )  + U S d ( t ) i S l ( t ) .  

Problem 10 Three-Phase to  Two-Phase Transformation 

two-phase equivalent torque. 

Space Vector Induction Motor Models 

Problem 11 Space Vector Form of the Three-Phase to Two-Phase Trans- 
formation 

usa + juSb7 show that the three-phase to two-phase trans- 
formation 

Do the calculations to verify that (7.30) is the correct expression for  the 

Defining gs 

may be written as 
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and similarly for is,", and so on. 

Problem 12 Alternative Definition of the Three-Phase to  Two-Phase Trans- 
formation [ 11 

b y  
(a) Show that i f  the three-phase to  two-phase transformation is defined 

us = us1 + ~ ~ ~ e j ~ ~ / ~  + uS3ej4."I3 

is = is1 + is2ej2T/3 + i s3e j4s /3  

. - .  

that is, without the factor m, then the equations of the induction motor 
are given by 

(b)  With the three-phase to two-phase transformation defined as in part (a)? 
show that 

3 
u S a ( t ) i S a ( t )  + u S b ( t ) i S b ( t )  = 5 (uSl(t)iSl(t) + uS2( t ) iS2 ( t )  + uS3(t)iS3(1)). 

Problem 13 Space Vector Representation of the Induction Motor 

. .  A i ejnp@R. 
(a)  Define 

i T  = i7-a + 3zTb = -R 

Show that the system of equations 

d .  d .  
d t -  d t  -R 

R,y& + Ls-z, + M- (z ejnpeR) = as 

d . - j n p e R  ) = o  d .  
dt -  dt -' RRVR + LR-zR + M -  (z e 

dWR n,M Im {is (jRejnPoR)* } - r L  = J- 
dt 

may be rewritten as 

d .  d .  Rsis + Ls-as + M-a = as 
dt - dt -T 

(7.91) 
d .  d .  
dt -' RRV, f ffRM-t + M z  (1s + i,) - j nPWRgR = 0 

dwR n,MIm {is &)*} - r L  = J- 
dt 
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in terms of is and i,, where 

-R $J 
a L& + M i s .  

[Note that the model (7.91) has no explicit dependence on  OR.] 

(b) With L s  = (1 + a s ) M ,  LR = (1 + OR)M,  and 

XR = LR& + MiSe-inp6R 

RG + MiS - e i n p 6 R  = L 
- -R 

show that the electrical equations of part (a) may be illustrated by  the 
“equivalent circuit” of Figure 7.27. 

(c)  Put the result from part (a) in state space form. 

FIGURE 7.27. Circuit representation of the electrical equations of an induction 
motor. 

A Remark 1 The quantity Xa4 = M ( i s  + &) is called the air gap (or 
magnetizing) flux linkage (see Lzpo and Novotny [7], page 75). The air-gap 
voltage is then defined as 

d d 
dt-a9 dt zag = --A = --Ad(., +i,). 

A Remark 2 The notation z& = U S d  + jus, = U S a  + j ’ u S b t i g  = i S d  + 
.. A -  S JZs, = ZSa + j i ~ b ,  and V R  = i R d  + j i ~ ,  a i,, - t j i r b  = i,. i s  often used for  
the equivalent two-phase model developed in this problem. The superscript 
“5’” refers to the “stationary frame” while the d and q subscripts refer t o  
the direct and quadrature axis, respectively. However, in this book, the dq 
notation i s  reserved f o r  the field oriented coordinate system (see Chapters 
8 and 9) so the reader must be wary when reading different authors. 

Problem 14 Arbitrary Rotating Reference Frame 
(a) Let 

A i e-iv 

a e-iv 

zsv = -S 

GSp = -S 

&p = A iRva f j iRvb A - -R i e- i (v -np6~)  
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where p ( t )  is an  arbitrary function of time. With w,+, a d'pldt,  show that 
a space vector representation of the induction motor model 

Common choices fo r  'p are 'p = 0 (the stationary coordinate system; see 
problem 13),'p = npwR (the rotor coordinate system),'p = Las (the syn- 
chronous coordinate system), and 'p = L (is + (LR/h f )&e jnPBR)  = L $ ~  
(the field-oriented coordinate system; see problem 6 of Chapter 6 and prob- 
lem 4 of Chapter 8). 

(b) Put the result f rom part (a )  in state-space form. 

Problem 15 Space Vector Model with Leakage on the Rotor Side 

change of variables 
(a) Starting f rom the model (7.91) derived an problem 13, make the 

and show that the model may  be rewritten as 



480 7. Symmetric Balanced Three-Phase AC Machines 

where 

A 
0 = I - M ~ / L ~ L ~  

RX ( L s / M ) ~ R R  
A L, = aLs / ( l  - a ) .  

(b) Show that an equivalent circuit representation of this model is  

0LS l(1-0) RR(Ls1M)’ 
0 I 

-- ~ 

FIGURE 7.28. 

where it is noted that there is leakage inductance only 

jnpmR (Ls M&R 

on  the rotor side. 

Problem 16 Space Vector Model with Leakage on the Stator Side 

stitutions 
(a) Starting from the model (7.91) derived in problem 13 make the sub- 

and show that the model (7.91) may be rewritten as 

(b) Show that an equivalent circuit representation of this model 
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I I 

FIGURE 7.29. 

where it is noted that there is leaka.ge inductance only on  the stator side. 

Steady-State Induction Motor Models 

Problem 17 Steady-State Solutions of the Induction Motor Equations 
(a) Write a program to plot the circle diagram of Figure 7.11. 
(b) Write a program to reproduce the plots of Figures 7.12, 7.13, and 

7.15. 
For the motor parameter values: use RR = 3.9 R, Rs = 1.7 R, LR = 

0.014 H, Ls = 0.014 H, M = 0.0117 H, J = 0.00011 kg-m2, f = 0 N- 
m/(rad/s), np = 3, ws = (27r)60 rad/sec, and US = 80 V. However, the 
analysis assumes the stator resistance is zero so set Rs = 0.  

Problem 18 Open-Loop Simulation of a Three-Phase Induction Machine 

Let the parameter values of an induction motor be RR = 2.1 0, Rs = 

m2, f = 0 N-m/(rad/s), np = 3, US = (27r)60 rad/sec. With V,,, = 200 
(peak), I,,, = 10 (peak) simulate the open-loop machine based on the two- 
phase equivalent model as indicated in Figure 7.19 with a 208-V (rms) 
line-to-line voltage applied. (That is, the phase to neutral peak voltage is  

1.85 0, LR = 0.244 H ,  Ls = 0.244 H, M = 0.225 H, J = 0.0185 kg- 

V3ph = fi(208) 1 8  = 169.8 V.) 

Problem 19 No-Load and Blocketl-Rotor Tests 
A standard method of determining the (two-phase equivalent) machine 

parameters is to use a couple of special tests called the no-load test and the 
blocked-rotor test. Both of these tests involve applying a balanced three- 
phase set of sinusoidal voltages to the motor and measurzng the resulting 
steady-state stator currents and stator power. I n  the no-load test, nothing is 
attached to the machine and so, after the voltages are applied, the machine 
quickly goes to steady state in which npwR = ws (assuming no frictional 
losses). I n  this case, S = 0 and the equivalent circuit of Figure 7.10 reduces 
to that of Figure 7.30. 
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FIGURE 7.30. Equivalent circuit with no load so that npwR = ws * S = 0. 

The blocked-rotor test refers to having the rotor held immobile so that 
W R  = 0.  I n  this case, S = 1 and the equivalent circuit of Figure 7.10 re- 
duces to that of Figure 7.31(a). Usually, the impedances in the two branches 

j w s M  >> jwsaRM + RR 
satisfy 

so that the equivalent circuit reduces to that shown in Figure 7.31(b). 

FIGURE 7.31. (a) Equivalent circuit with a locked rotor so that W R  = 0 + S = 1. 
(b) Equivalent circuit if j w s M  >> ~ W S ~ R M  + RR. 

(a) Run the simulation of problem 18 with no load. Assume that Rs is  
known (perhaps measured using a n  ohmmeter). Use the steady-state stator 
voltages and currents to compute Ls = (1 + a s ) M .  (The amplitudes of 
the voltages and the currents along with the angle between them is needed.) 
How does this value of Ls compare with the actual value in the simulation? 
That is, what is the percent error? 

(b) Run the simulation of problem 18 with a blocked rotor (if the currents 
exceed Im,,, then reduce the input voltage) and assume that as = O R ,  Using 
the known value of Rs, the value of LS from part (a), and the measured 
stator voltages and currents, compute a s M  and RR based o n  the equivalent 
circuit of Figure 7.31(b). 

(c)  Use the information from parts (a) and (b) to compute M ,  LR ,  and 
CT = 1 - M 2 / ( L S L R ) .  How do they compare with the actual values in the 
simulation? That is, what is  the percent error? 

(d) Repeat parts (a), (b),  and (c)  with the viscous friction coeficient set 
to f = 0.00005 rather than f = 0.  
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Problem 20 Induction Generator (M. Bodson [63])  

Figure 7.32. 
Consider the equivalent circuit of a three-phase induction machine in 

FIGURE 7.32. Equivalent, circuit of an induction motor. 

(a) Suppose the motor shaft (rotor) is  connected to a prime mover (e.g., 
a windmill) that turns at a constant angular speed W R  > ws,  where ws 
is  the angular frequency of the balanced three-phase voltage set applied to 
the stator terminals (e.g., connect the stator terminals to a three-phase 
transmission line). Show that the power to the motor is negative; that is, 
electrical power is  being delivered to the source voltage converted from the 
mechanical power supplied to shaft. (Hint: note that S < 0.) 

(b) Replace the three-phase power source by a three-phase impedance 
Zs = R + j w L  as indicated schematically in Figure 7.33. The correspond- 
ing equivalent circuit is shown in Figure 7.34. Suppose the motor shaft is 
still connected to a prime mover (e.g., a windmill) that turns at a constant 
angular speed W R .  Can there be a steady-state electrical power out of the 
m,otor into the impedance Zs ? Explain. 

FIGURE 7.33. Stator windings of an induction motor connected to a symmetric 
three-phase load. 
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FIGURE 7.34. An equivalent circuit of the induction motor where the source 
voltage is replaced by a passive load. 

Problem 21 Equivalent Circuit With Leakage on the Stator Side [a] 

pletely on  the stator side is equivalent to the circuit given in Figure 7.10. 
Show that the circuit in Figure 7.35 where the leakage inductance is  com- 

FIGURE 7.35. Equivalent circuit of induction motor with the leakage inductance 
completely on the stator side. 

Problem 22 Equivalent Circuit With Leakage on the Rotor Side [a] 

pletely on the rotor side is equivalent to the circuit given in Figure 7.10. 
Show that the circuit in Figure 7.36 where the leakage inductance is com- 

FIGURE 7.36. Equivalent circuit of induction motor with the leakage inductance 
completely on the rotor side. 
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Problem 23 Constant Speed Induction Machine as a Linear System 

(a) Let {ug)li$),ig)} and {g$)li,?)lig)} each be a solution set to 

d .  
d t -  d t  -R 

R S ~ ~  + ~ s - 2 ~  + M &  (i  ejeR(t)) = us 

where 8R(t) is the same function of time for  both inputs [e.g., 6R(t) = wRt 
with W R  the same constant value t o r  both inputs/. Under these conditions, 
show that the input 

(1) ( 2 )  

results in the stator and rotor currents being 

us =us +us 

(6) Assuming W R  is constant and that the inputs are sinusoids so that 

-S u( l )  = J Z @ p s 1 t  = Jz jvis" l e ~ i l i g ) e j w s l t  

then the phasor equations (7.39) und (7.40) can be solved for Lg' and LR (1) 

resulting in currents of the form 

Similarly, the input 
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to find an expression fo r  the torque produced by  the input (7.92) an terms of 

the phasors l&!)leJLLs , ILR IeJ --R /Is [eJ --s , and lLg)/eJ'Lg). What (1) (1) / I ( ' )  ( 2 )  L I ( 2 )  

a\ is  the average torque where raWg = limT,,( 1/T) 6 r ( t ) d t  ? Of course,. 
f o r  ws2 = w s l l  the torque will be constant and equal to its average. Under 
what other conditions is the torque essentially (approximately) constant? 

( d )  Assuming Rs = 0,  show that the average torque computed in part (c)  
may  be written as 

(1 - a )  G I  2 (1 - a )  G 2  2 +-- ~- 
a W i l L S  S,/& + Sl/Sp rs 4 4 s  S p I S 2  + s 2 / s p  

Tavg = 

where 
US1 - W R  A w.92 - w R  s1 a , s 2  = 

WS1 w s 2  

(e)  Consider the special case with ws2 = -ws1 and 

Show that the inputs to the two-phase motor are of the fo rm 

1 A ws - w R  Show that the average torque is given by ( S  = 
W S  

2 
- 

2 
= 

r (  sp/s + s/sp sp/ (2 - S) + (2 - S) ISp 
Taug 

Plot raU9/rp as a function of S/Sp .  What is the average torque i f  W R  = 02 

Problem 24 Single-Phase Induction Motor with a Shorted Phase 
Background: Motors are needed in homes for  the compressors used in 

refrigerators and air conditioners as well as for  washing machines, dryers, 
and so on. A typical home has only a single-phase source available, for  
example, a 120-V (rms) 60-Hz wall outlet and the (two-phase) induction 
motor requires two voltage sources 90 degrees out of phase in time. Though 
the DC machine can run 08 of a single-phase source, the induction motor 
is  the motor of choice because it is much cheaper. Based on  problem 23, this 
problem outlines how an induction motor can be run using only a single- 
phase source usa = &Uscos(wst + L&) with the other stator phase 
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shorted so that U S b  = 0. (However, the standard way of running a single- 
phase induction motor is to open the second stator phase rather than short 
it.) Consider a two-phase induction motor with inputs usa, U S b .  Figure 
7.37 illustrates a single-phase induction motor where the same voltage usa 
is applied to both phases and phase b has a resistor R b  and capacitor C 
added in series in the winding. B y  part (e)  of problem 23, if usa(t) = 
f i IUs Icos (ws t  + L&) and U S b ( t )  = 0 with W R  = 0 ,  then the average 
torque is zero. To start the motor, the switch in Figure 7.37 is opened. 
Denote by Z a ( j w )  = Rs + j w L s  and Zb(jw) = Rs + R b  f j w L s  + l / ( j w c )  
the impedances of the stator windings a and b, respectively, where the effect 
of the rotor has been neglected. Rewrite the stator phase b impedance as 

1 
(2x60) Ls 

Choose C = 

With WLS  >> Rs, the impedances Z a ( j w s )  and z b ( j w S )  are 

SO that Zb(jw) = Rs + R b  for w = w s  = 60 Hz. 

The corresponding currents in the windings of phases a and b are then 

Finally, design the phase b resistance R b  such that Rs+ R b  = WSLS so that 
the phase currents are equal amplitude sinusoidal currents and x / 2  radians 
out of phase in tame. These currents establish a rotating sinusoidally dis- 
tributed magnetic field in the air gap just as in the case of the symmetric 
motor. I n  reality, the inductance, resistance, and capacitance in the phase 
windings are not set precisely to these ideal values, but the motor will still 
start.14 This is called a capacitor-start single-phase induction motor. 

I4Even if the parameter values are set exactly as described, this is still approximate 
because the effect of the rotor on the stator impedance has been ignored (compare with 
the equivalent circuit model of the symmetric induction motor). 
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FIGURE 7.37. Capacitor-start single-phase induction motor. 

(a) Is open circuiting phase b the same as applying zero voltage to i t?  
(b) Consider a capacitor-start single-phase induction motor as described 

above. Suppose that after the motor gets up to speed W R  M W S ,  the switch 
in Figure 7.37 is closed so 

usa(t) = Jzus cos(wst + LU,) 
U S b ( t )  = 0. 

Assuming the rotor speed is  essentially constant, it was shown in problem 
23(d) that the average torque produced is given by 

2 
- 

2 
T a w 9  = I-, (s,/s + s/s, s,/ (2 - S )  + (2 - S )  /s, 

A 1 ( 1 - a )  u; 
7 ,  = 

4 a W i L S  

A w s - w R  s =  
W S  

Plot ravg/rp  for S, = 0.1,0.2 and 1. Based on  these plots, explain why 
0 < S, << 1 for the single-phase induction motor to work. 

(c )  Using the two-phase induction motor model, simulate a single-phase 
induction motor by applying a ~ O - H Z ,  120-V (rms) source voltage to one 
phase and 0 V to the other. Set the initial speed to be W R ( O )  = w s / n p  
where ws = 2 ~ 6 0 .  Use the parameter values of LS = 0.157 H, LR = 0.157 
H, M = 0.148 H, RR = 0.6 0, Rs = 2.9 R, n p  = 2, J = 0.01 kg-m2, f = 0 
N-m/rad/sec, and I-L = 0.8 N-m. Set Rs = 0 for the calculations, but not 
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in the simulation. What is the value of S, and rp  for  this motor? What is 
the value of S that the machine is operating at? 

Problem 25 Torque-Slip Curve with Impressed Stator Currents 
Suppose that the motor phases are fed by a three-phase current source 

rather than a three-phase voltage source. Use (7.47) to obtain U i  in terms 
of I; and substitute this expression into (7.56) to show that the expression 
for the torque-slip curve in terms of the rms stator current IS is  

A where sp = crS, = RR/(wLR).  

Problem 26 Maximum Mechanical Power 
The steady-state mechanical power is 

2 
Pmech = 7 W R  = 7 (1 - S ) W S  s,/s + s/s, 

(a) Compute the normalized slip Smaxpower corresponding to maximum 

(b) For both motoring and generating, compute the power and torque 

(c) Let cr = 0.05 and compute the rated slip S, and maximum power 

(d) Compute the corresponding power factors when the machine is oper- 

(e)  Compute the corresponding eficiencies when the machine is operating 

(f) Compare operating the motor at S, and Smaxpower in terms of advan- 

power transfer for both motoring and generating. 

achieved when the normalized slip is at the values found in part (a). 

transfer slip Smaxpower. Which is larger? By approximately how much? 

ating at S, and Smaxpozoe,. Which. is  larger and by how much? 

at S, and Smazpower. Which is larger and by how much? 

tages and disadvantages. 

Wound Rotor Synchronous Machines 

These problems explore the mathematical modeling of wound rotor syn- 
chronous machines. For more detailed models of large (wound rotor) syn- 
chronous machines, see Krause et al. [4] and Ong [6]. 

Problem 27 Model of a Wound Rotor Synchronous Machine [l] 
A mathematical model of a balanced three-phase wound rotor synchronous 

motor can be found directly from the induction motor expressions for  the 
flux linkages and torque. The difference in this case is that the rotor currents 
are held constant in a synchronous machine by a voltage source U F  applied 
to the rotor windings. I n  order to keep the rotor currents balanced let 

iR1 = +if 
iR2 = - i f 12  

iR3 = - i f 12  
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in equation (7.2) where i f  is nominally constant. 
(a) Show that the rotor torque 7R is given by 

3 
271 

3 
-is1 &(OR) - is2 sin(6R - -) - is3 s i n ( 6 ~  - 

(b) Show that the flux linkages in the stator phases are given by 

1 

1 

(c)  Show that an equivalent two-phase model of the wound rotor synchro- 
nous machine is given by  

d ip  d .  
dt dt U F  = LR- + M -  (tsa c o s ( 6 ~ )  + isb s i n ( 6 ~ )  ) + R R ~ F  

dWR J- 
dt 

= MiF( -is, s i n ( 6 ~ )  + isb c o s ( 6 ~ )  ) - rL (7.93) 

where UF a ~ U R I ,  i F ( t )  4 &@if(t). A block diagram for simulating a 
three-phase machine using a two-phase equivalent model i s  shown in Figure 
7.38. 

Two-Phase 
Equivalent Model 

I - 

Is1 

Is2 

5 3  

'R1 

'R3 'R2  

FIGURE 7.38. Using a two-phase equivalent model to simulate a three-phase 
machine. 
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Problem 28 State-Space Model of a Wound Rotor Synchronous Machine 
Develop a state space representation of the wound rotor synchronous mo- 

tor model (7.93) given an problem (27) using i sa , i sh , i~ ,  W R ,  and QR as the 
state variables and usa,ush, and UF as the inputs. 

Problem 29 DQ model of a Wound Rotor Synchronous Machine 
Define 

COS(OR) sin(8R) 

(a) Rewrite the wound rotor synchronous motor model (7.93) given in 

(b) Develop a state space dq model in terms of the state variables i d ,  i,, i F ,  

problem (27) in terms of i d ,  i,, iF, ~ J R ,  O R ,  U d ,  u,, and UF. 

W R ,  and OR and the inputs ud,uq, and U F .  

Problem 30 Model of a Wound Rotor Synchronous Machine 
Modify the approach in problem 27 to rederive the mathematical model of 

the wound rotor synchronous motor assuming that i ~ 1  = i f , i R a  = 0, and 
iR3 = 0. That is, assume there is only one winding on  the rotor. 
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Induct ion Mot or Control 
In this chapter, the methods of field-oriented control and a modification of 
it known as input-output linearization control are described. These tech- 
niques allow one to  achieve fast, precise tracking of demanding trajectories 
using an induction motor. These controllers are based on the nonlinear 
differential equation model of the induction motor and require (full) state 
feedback. As measurements of the rotor flux linkages (or, equivalently, the 
rotor currents) are not usually available, they must be estimated and tech- 
niques to do this are also described. Experimental results are presented to 
demonstrate the effectiveness of these control schemes. The chapter ends 
with two optional sections. The first describes a systematic procedure to 
obtain the maximum torque from the machine without violating the voltage 
or current constraints. The final section presents a nonlinear least-squares 
approach to identification of the induction motor parameters. 

8.1 Dynamic Equations of the Induction Motor 

The starting point for the control of the induction motor is the system of 
nonlinear differential equations which characterize its behavior. As derived 
previously, the dynamics of a np pole-pair two-phase induction motor' are 
given by the system of differential equations 

d .  d .  
d t  d t  
d .  
d t  d t  
d .  d 

0 = R R i R a  + L R ~ Z R ~  f M -  (+isa cos(npQ) + z ~ b  sin(n,Q)) 
dt  

d .  d 
d t  

U S a  = Rsisa + L s - 2 ~ ~  f M- ( 2 ~ ~  cos(npQ) - iRb sin(n,Q)) 

d ( .  
USb = &isb + LS-zSb + M -  Z R ~  sin(npQ) + iRb cos(npQ)) 

0 = RRiRb + L R ~ Z R ~  f M -  ( -isa Sin(np8) f cos(n,Q)) 

( (  (8.1) 
dw 
dt  

J -  = npM iSb iRa  cos(n,Q) - iRb sin(np8)) 

iRa  sin(np8) + iRb cos(npQ) )) - f w  - TL 

W - - dQ 
dt  
- 

(Or, the two-phase equivalent model of a three phase motor.) 
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with the flux linkages of the motor phases given by 

As, = LsiSa + M iRa cos(n,6) - i R b  sin(np6)) 

X S b  = Lsisb + M i R a  sin(n,6) + iRb cos(n,o)) 

XR, = L R ~ R ,  + A4 +isa cos(n,6) + i s b  sin(np6)) 

(8.2) 

( 
( 
( 

where 

Here N s  and NR are the number of windings per pole-pair of the stator and 
rotor phases, respectively. The retarding torque produced by the friction 
in the ball bearings of the machine is modeled here by - fw,  where f is 
called the coeficient of viscous friction. Of course, one could just consider 
this part of the load torque r L .  However, as one can typically estimate f 
at the same time as estimating the motor parameters, - f w  then represents 
the LLknown’l load torque and r L  is then the LLunknown” load torque. Also, 
to simplify the notation, the subscript “R” on O R  and W R  has now been 
dropped as there should be no confusion. As stated above, the mathematical 
model derived above is that of a sinusoidally wound, two-phase, np pole- 
pair induction motor. Nevertheless, it is standard practice to also use this 
model for induction motors with squirrel cage rotors (see Refs. [42][59] for 
experimental validation). 

8.1.1 The Control Problem 

The control problem is to choose usa and U S b  in such a way as to force w 
and/or 6 to track a given reference trajectory. Measurements of isa, iSb, 
and 6 are usually available for feedback control. However, measurements 
of i ~ ,  and i R b  are typically not available. In fact, the most common type 
of induction motor is the squirrel cage motor, where rotor currents are 
distributed on the surface of the rotor making it very impractical to measure 
the current in each rotor bar. The resulting flux can be measured through 
the use of Hall sensors placed in the air gap, but such sensors are not 
economical and diminish the overall reliability of the control system. 

The particular set of nonlinear differential equations (8.1) describing the 
induction motor is complicated and a control strategy is by no means self- 
evident. The solution lies in finding an equivalent set of equations which 
are simpler in form for which the control design becomes apparent. As a 
first step toward simplifying the above equations, the dynamic equations 
are rewritten in terms of some equivalent rotor flux linkages. This results 



8. Induction Motor Control 495 

in an equivalent model in which the cos(np6) and sin(np6) expressions are 
eliminated. To proceed, define an equivalent set of rotor flux linkages as 

cos(np8) - sin(np6) XRa [ $2 ] = [ Sin(np6) cos(np0) ] [ X R b  ] 
where upon substituting the expressions for the rotor fluxes in (8.2), one 
obtains 

+R, = LR ( i ~ ,  cos(7zp6) - i R b  sin(n,B)) + Mis ,  

(8.3) 
+fib = LR ( iRa  sin(np6) + iRb cos(np6)) + MiSb. 

The model of the induction motor in terms of the state variables $Ra, +Rb,  

isa, i S b ,  and w is now derived.2 Using (8.3) to  eliminate the rotor currents, 
the first two equations of (8.1) may be rewritten as 

d .  d 
d t  d t  
d .  d 
d t  

U S a  = Rsisa + LS-eSa + M-(+R, - MiSa)/LR 

U s b  = Rsisb + LS-ZSb + M--('$ dt R b  MiSb)/LR 

or 

The third and fourth equations of (8.1) can be rewritten as 

! c0s(np6) sin(np6) 

LR (COS(?~,~)ZR, - Sin(7Lp6)Z~b) + Miss 
L R  (sin(n,O)iR, + cos(np6)iRb) + Mzsb 

or, simply 

c0s(np6) sin(npO) 

Expanding, 

cos(np6) sin(np6) d qRa ' [ -sin(n,6) cos(np8) 1 dt [ ?hRb ] 
'See problem 2 where this set of equations is rederived in a simpler fashion using the 

space vector representation. 



496 8. Induction Motor Control 

gives I cos(np6) - sin(npO) 
cos (n,O) Multiplying both sides on the left by 

1 ] + [ cos(npO) -sin(np6) 
sin(npO) cos(np6) 

- sin(np6) cos(npO) 

which simplifies to 

[:I=[ ( R R / L R ) ( $ R b  MiSb) 

( R R / L R )  ($Ra - MiSa) ]-npw[ -:I [ $z]+dt[ $Ra $ R b ] '  

Finally, the torque equation becomes 

Collecting these equations together, the dynamic model of the induction 
motor in terms of the state variables 6, w, $Ra,  $Rb, isa, and isb is then 

where 
A M2 0 = 1 - -  

is the leakage parameter. Substituting the expressions for d$Ra/dt  and 
d$,,/dt from the third and fourth equations of (8.4) into the fifth and 
sixth equations of (8.4) and rearranging, one obtains the state-space form 

L R L S  
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Induction 
Motor 

' Sb  

of the system given by (see Refs. [64][65]) 

vRa - LR(cos( np6)iR, - sin(n 6)i ) + Misa 
2 LR(sin( np6)iRa + cos( n 6)i ) + Misb --+ +l7b 

- Ra 
P Rb 

P Rb 
4 4 'Sa = f 'sa 

e -  - e 

. 
'Sb - 'Sb - - 

- - 
w -  w - * 

FIGURE 8.1. Block diagram of an equivalent induction motor model. 

8.2 Field-Oriented and Input-Output Linearization 
Control of an Induction Motor 

Recall that the fictitious rotor flux linkages $Ra and $ R b  were used in the 
state-space formulation rather than the actual rotor flux linkages X R ~  and 
X R b  in order to eliminate c o s ( 6 ~ )  and sin(6R) from the mathematical model. 
However, even with this simplification, it is still not clear how to design a 
controller. That is, how does one choose usa and '1Lsb in order to  control the 
torque, speed and/or position of the motor? The key idea of field-oriented 
control is to go to another coordinate system or state variable representation 
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in which it becomes clear how to design a controller. There is an interesting 
analogy from mankind's understanding of the motion of the planets around 
the sun. Before the Polish astronomer Mikolaj Kopernik3 came along in 
the 1500s, the view of the solar system was earth-centered; that is, the 
trajectories of the planets and the sun were described in terms of their 
motion with respect to the earth. The trajectories were quite complicated 
from this reference frame since the planets moved back and forth across 
the night sky while the sun appeared to go completely around the earth. 
Copernicus pointed out that if one viewed these motions from the sun's 
point of view, the planetary motions are quite simple. That is, one would 
jump into a new coordinate system where the sun is the stationary origin 
of the new coordinates. Then the erratic motions of the planets, as viewed 
from the earth, are now simple elliptical trajectories around the sun with 
the sun at one focus of the ellipse. The idea of field-oriented control is the 
same: Find a new coordinate system where the equations are simple enough 
that the way to control the system is self-evident. 

For field-oriented control, the new coordinate system is a rotating system 
whose angular position is defined by 

That is, instead of working with ( q ! ~ ~ ~ ,  $ R b ) ,  one uses the polar coordinate 
representation (p,  $ d )  given by (see Ref. [64]) 

p = t a n P ' ( 2 )  

$d = Z / $ i a f $ i b .  

The phase currents and voltages are then transformed into the new coor- 
dinate system as 

(8.7) 

(8.8) 

The quantity $d is referred to as the magnitude of the rotor field flux while 
p is the angle of the rotor field flux. This coordinate system is one that is 
moving (oriented) with this field flux and thus is called the rotor-flux field- 
oriented coordinate system. The currents ad and a, are called the direct 
and quadrature currents, respectively. Similarly, the voltages u d  and U ,  are 

3Better known as Copernicus. 
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called the direct and quadrature voltages, respectively. The rotation matrix 
used in (8.7) and (8.8) is called the direct quadrature or dq transformation. 

A mathematical model of the induction motor in which w, i d ,  i,, $d, and 
p are the state variables and the inputs are Ud and uq is now developed. 
The torque equation is (cos(p) = l//Ra/$d, sin(p) = $Rb/$d) 

The equation describing the dynamics of the magnitude of the rotor flux is 

The rotor flux angle dynamics are then 

1 

$d 

= 

= n p w + q M A .  

npw + qM- (cos(p)iSb - sin(p)isa) 

i 

'@d 
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The dynamic equation describing the direct current is 

The dynamic equation describing the quadrature current is 

Collecting the above equations together, a state-space model in the field- 
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oriented coordinate system is given by 

W - 
d6 
d t  
- -  

This model is now used to  develop a very effective method of control. 
It is first assumed that all of the state-variables 6 ,w ,  $ d ,  i d ,  i,,and p are 
available for feedback. This would mean that one physically measures 6, 
w ,  is,, i S b ,  iRa ,  and i R b  and then uses these measurements to compute 
$ d l  i d ,  i,, and p in real time. In practice, one is rarely able to measure the 
rotor currents iRa  and i R b .  This problem can be resolved using an observer 
to  estimate p and $d as will be shown later. Then i d  and i, can be computed 
using the estimated value for p and the measured stator currents isa and 

Polar 1 1 3 
Coordinate 

Rb Transformation 

induction 

w W 

FIGURE 8.2. Transformation to the field-oriented (dq )  coordinate system. 

8.2.1 Current- Command Field- Oriented Control 

Note that the electromagnetic torque r = J p $ d z q  is now just proportional 
to the product of two state variables. However, the differential equations 
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for i d  and i, still contain quite complicated nonlinearities. One possibility 
to simplify these current dynamics is to use feedback cancellation; that is, 
let 

so that (8.9) simplifies to 

(8.11) 

For current-command control, one may choose 

t 

ud  K d I  ( i d ,  - i d ) d t  + K d P ( i d r  - i d )  

t 

uq = KqI 1 (iqr - i q ) d t  + KqP( iqr  - 2,) 

and by appropriate choice of the PI gains, i d  + i d r  and i, --j iqT. How- 
ever, in practice, this is not done. To explain, note that in applying the 
feedback (8.10), there is some uncertainty in the knowledge of the motor 
parameters and the state variables. The motor parameters RR and Rs can 
vary significantly due to ohmic heating while LR and L s  can also vary due 
to magnetic saturation. Furthermore, the state variables p and $d must be 
estimated leaving uncertainty not only in their values, but in the currents 
i d  and i, as the value of p is also needed to estimate them. 

Experience has shown that the effect of the nonlinear terms in (8.9) 
can be eliminated by forcing the system into current-command mode using 
high-gain feedback [66]. That is, one applies the PI current loops 

(8.12) 

directly to (8.9) to force i d  and i, to track their corresponding references i d r  

and iqr, respectively. Values of the gains in (8.12) can be found that result 
in fast responses i d  + i d T  and i, + i,, for the currents. Consequently, i d T  
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and i,, can then be considered a s  the new inputs for the control design 
where the system equations simplify to (i.e., are approximated as) 

W - - 
d0 
d t  
- (8.13) 

- _  d p  - npw + vMiq/+d. 
dt 

(8.16) 

Remark Note the the subscript “? is not used on i, in (8.16). The reason 
for this is that one is only interested in controlling 6,w,  and +d, but not 
p. However, one must estimate p (as well as + d ) ,  and this equation will be 
used for that purpose using the est.imated value i, rather than the reference 
value i,,. 

FIGURE 8.3. Block diagram of a current-command field-oriented system model. 

A block diagram for the current-command field-oriented system model is 
given in Figure 8.3. The “Flux Observer” block will be described in Section 
8.3.1. For now, the reader should just understand this block to represent 
an algorithm to compute p and +d from measurements of isa, iSb, and w. 
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Field-oriented control consists of using i d ,  to force @d to track the con- 
stant flux reference @& = M i d o .  As a consequence, equations (8.13) and 
(8.14) become 

W - - de 
dt 
- (8.17) 

(8.18) 

so that there is now a linear relationship between the input i,, and the 
speed. To complete the control design, let 

be the mechanical reference trajectory the motor is required to track. The 
control of speed/position is then done through the input i,,. Specifically, 
choose 

With the proper choice of the gains KO, K1, and K2 (see problem S), 
8 + 9,,f and w + w,,f even with a constant load torque T L  acting on the 
motor. 

The flux ~d is regulated to a constant value by 

r t  

(8.20) 

That is, with proper choice of the feedback gains (see problem 7), @d + 

A block diagram of this trajectory tracking controller is given in Figure 

Remarks 
The roles of @d and 2, ( i d ,  and iqT)  could, in principle, be reversed, but 

this is not done because the input i d ’ s  ( i d T ’ S )  ability to rapidly change $d 

is limited by the rotor time constant TR = 1/77 = LR/RR,  which is not the 
case for i, ( ipT).  

@ d o  = M i d o -  

8.4. 
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FIGURE 8.4. Block diagram of a tra,jectory tracking controller using a field-ori- 
ented controller. 
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Also, in practice, one typically leaves out the term 6, in (8.21) and the 
term i d0  in (8.20) and finds that there is no significant deterioration in 
tracking if the gains can be chosen large enough. 

8.2.2 Experimental Results Using a Field- Oriented Controller 

Some experimental results showing the type of servo performance that can 
be achieved are now presented [67]. The motor is a 6-pole (np = 3) 1/12- 
horsepower two-phase induction motor with a squirrel cage rotor that is 
rated for 2.4 A (continuous) and 60 V. The rest of the hardware (see Fig- 
ure 8.5) consists of a Motorola DSP56001 digital signal processing system 
for implementation of the control algorithm, two PWM amplifiers ( f 8 0  V 
and f 6  A), two analog-to-digital (A/D) converters to sample the stator 
currents, two digital-to-analog (D/A) converters to command voltage to 
the amplifiers, an electronic interface boards for the A/Ds and D/As, and 
a 2000 pulse/rev encoder (resolution of 360"/2000 = 0.18") to sense the an- 
gular position of the rotor. The PC indicated in Figure 8.5 is used to write, 
edit, and download the assembly language programs to the DSP which ex- 
ecute the controller algorithms. The parameters were identified using the 
technique given in Stephan et al. [42] and are M = 0.0117 H, RR = 3.9 
0, Rs = 1.7 0, LR = 0.014 H, Ls = 0.014 H ,  f = 0.00014 N-m/rad/sec 
and J = 0.00011 kg-m2. The constant flux reference $do was chosen to 
be $do = Mido = 0.0117(5.5/fi) = 0.0455 Wb. (See problem 13 for an 
explanation of the choice i d0  = 5.5/fi.) 

Motorola 
DSP56001 Induction 

board acquisition board PWM motor & 
AMP encoder 

Aerotech data 
PC 

20 kHz 
00 

FIGURE 8.5. Hardware setup. 

Figure 8.6 is a plot of the measure motor position and its reference tra- 
jectory used to  carry out the turn. This figure shows the controller was able 
to  turn the motor 180" in 73 msec. The tracking of the motor position to 
its reference is close enough that they are indistinguishable in Figure 8.6. 
Their difference in encoder counts is plotted in Figure 8.7 where it is seen 
that the measured error is less than two counts [= 2(27r/2000) = 0.00314 
radians] for the entire move. 
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FIGURE 8.6. 6 and 
[67], @ 2004 IEEE. 

in radians versus time in seconds. From Bodson et al. 

FIGURE 8.7. 6,,r - 6 in encoder counts versus time in seconds. From Bodson et 
al. [67], @ 2004 IEEE. 

The corresponding estimated speed and the speed reference are shown 
in Figure 8.8. 
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FIGURE 8.8. w and wref  in radians/sec versus time in seconds. From Bodson et 
al. [67], @ 2004 IEEE. 

Finally, the quadrature current i, and z,,,f = cq.,f/+d0 are given in 
Figure 8.9 while the flux $d and its reference +dTef = +do are given in 
Figure 8.10. 

6r- 

FIGURE 8.9. i, and i,,,f in amperes versus time in seconds. From Bodson et al. 
[67], @ 2004 IEEE. 



8. Induction Motor Control 509 

ao5 1 

FIGURE 8.10. $d and $ d r e f  in webers versus time in seconds. From Bodson et 
al. [67], @ 2004 IEEE. 

The PI current gains for the tracking error in (8.12) where chosen as 
KdI = 740, Kdp = 6.4, K,I = 740, and Kqp = 6.4. The gains for the 
trajectory tracking controller in (8.19) were set as 

KO = 1.07 x lo6 

K~ = 7.04 x 105 

K2 = 1.07 x lo3 

(8.22) 

and the gains for the flux regulator (8.20) were set to 

K+p = 1600 

(8.23) 

K+r = 23000. 

8.2.3 Field Weakening 

The torque is controlled through the quadrature current i,. Inspection of 
the fifth equation in (8.9) reveals that in order to maintain or increase i,, 
the voltage uq must be chosen such that di,/dt 2 0, that is, 
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where (8.6) was used. Consider the machine in steady state so that $d = 
M i d  and use the approximation L s  M LR M M so that this inequality 
reduces to 

uq 2 (RR + Rs) i, + npwGd + anpw$d + U R R i , .  

At higher speeds, the dominant term on the right-hand side of this inequal- 
ity is npw$d. When the motor speed reaches a high enough speed, called 
the base speed Wbase ,  the required voltage to maintain the current i, equals 
the maximum voltage V,,, the amplifier can produce. To get around this 
problem, the flux $d is decreased at higher speeds. The standard way to 
choose the flux reference is given by 

which is plotted versus w in Figure 8.11. 

(8.24) 

FIGURE 8.11. Flux reference for field weakening. 

The direct current i dT  is chosen to force $d to track $dTef  specified by 
(8.24) so that above the base speed Wbase the term n p w $ d  = npWbase$dO is 
constant. This reduction of $d above Wbase is referred to as  field weakening. 
One way to choose the base speed Wbase is to set npwbase$do  = V,,, or 
Wbase = V m a x / ( n p $ d O ) ,  where v,,, is the (equivalent two-phase) stator 
voltage maximum. The trade-off here is that one can have the motor achieve 
speeds above the base speed, but less torque is produced as r = J p $ d i q  so 
that for the same i,, decreasing $d means that less torque is produced. 

Another way to  formulate the problem of selecting the flux reference is 
as a static optimization problem. That is, at each constant rotor speed w ,  
maximize 

= J p $ d i q  (8.25) 

subject to the constraints 

(8.26) 

Such an approach is given in Section 8.4 based on Refs. [68] and [69]. 
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8.2.4 Input- Output Linearization 

In the above field-oriented control scheme, the speed w and flux $d are only 
asymptotically decoupled [64]. In other words, the speed equation (8.14) is 
linear only after $d is constant. For high speeds, field weakening (Le., 
decreasing $ d ) ,  is necessary so as not to exceed the stator voltage limit. 
Since in the field-weakening region, the flux reference varies as a function of 
the speed, the dynamics of $d then interfere with the dynamics of w. This 
coupling of the flux and speed dynamics can be eliminated by considering an 
input -output linearizing controller [64] [65] [70] [71]. Recall the system (8.13)- 
(8.16) repeated below: 

W - - 
do 
dt 
- 

In this model, i d T  and i,, are the inputs. Let them now be specified by 

i d ,  = u1 

(8.27) 
'zL2 

/1$d 
i,, = - 

so that the system becomes 

dold t  = w 

dwldt  = ~2 - (f / J ) w  - T L / J  

d$r,/dt = -q$d+'VMUl (8.28) 

dpld t  = npw +- VMiq/$d. 

The flux dynamics are now decoupled from the speed dynamics. That is, 
the first three equations of (8.28) may be written as two decoupled linear 
subsystems 

d$,j/dt = -q$d + ~ M U I  (8.29) 

and 

d$/d t  = w 

(8.30) 

dwldt  = u:! - ( f / J ) w  - T L / J .  

The input u1 is chosen to force the linear system (8.29) to track a 
given flux reference trajectory $&., and the input u2 is used to  force 
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the linear system (8.30) to track a given mechanical reference trajectory 
(Ore  j ( t ) ,  w,, j ( t ) ,  are j ( t ) ) .  After the input uz is specified in order to accom- 
plkh the control task, the current reference i,, is then simply chosen to  be 

As system (8.28) is linear from the inputs u l 1 u 2  to the outputs w,$ ,  
this controller is referred to as an input -output linearization controller. 
However, the overall system (8.28) is still nonlinear as the dynamics of p 
are nonlinear. The boundedness (stability) of p is guaranteed since it is an 
angle and reset to 0 every 27i radians. 

iqT = u 2 / ( p $ d ) .  

The new inputs u 1  and u 2  may be chosen as follows: 
Let +dTe j ( t )  be a desired flux reference and choose 

t 

u1 = = K @ P ( $ d r e f  - $ d )  + K$bI 1 ($dTef - $ d ) d t  + i d r e f  (8-31) 

where i d r e f  satisfies 

d$dre f ldt = -v$dTe f + vMidTe f 

With proper choice of the feedback gains K@p and K+I (see problem lo), 

Let ( O T e j ( t ) ,  w T e j ( t ) ,  aTej(t) ) be the mechanical reference trajectory the 
$d $dTe j .  

motor is required to track. Choosing 

u 2  = K O l ( o T e f  ~ o ) d t + K 1 ( o r e j - o )  + K Z ( W , e j - w )  

+ a ,e j  + ( f / J ) w  (8.32) 

and along with a proper choice of the gains KO, K 1 ,  and K 2  (see problem 
11) results in 0 + O,,f and w 4 wTef even with a constant load torque T L  

acting on the motor. Figure 8.12 is a block diagram of the input-output 
linearization controller. The “speed observer” block will be described in 
Section 8.3.2. For now, the reader should understand it to be an algorithm 
to obtain an estimate LJ of the speed w from knowledge of $ d ,  i,, and 8. 

Voltage Command Input-Output Control 

An input-output linearization controller may also be designed for the full- 
order (voltage command) system model (8.11). Specifically, the transfor- 
mation 

A w =  W 

A 
a = p$diq 

$d $d 

$2 a - T l $ d f v M i d  
A 

P = P  
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is applied to (8.11), resulting in 

h / d t  = 

d a / d t  = 

d$,/dt = 

d$&/dt  = 

d p / d t  = 

Induction 
Motor 

'ref uref aref qdref 'dref 

FIGURE 8.12. Block diagram of an input-output linearization controller. 
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With W d  and wq being two new inputs, application of the feedback 

vd = $&/M + wd/(qM) 
(8.33) 

uq = - / 1 $ & Z q / ( d d )  + wq/(p'$d) 

results in the input-output linearized system 

& / d t  = a - ( f / J ) w  - r L / J  

d a l d t  = wq 

d$d/d t  = $2 
d$&/dt  = W d  

d p l d t  = npw + qMpa/$;. 

8.2.5 Experimental Results Using an Input- Output Controller 

Some experimental results are now presented to show the increased per- 
formance that can be extracted from the motor using an input-output 
linearization controller [65] [69]. The motor and experimental setup is the 
same as that used for the field-oriented controller. 

An experiment requiring a point-to-point position move was carried out 
in which the motor was brought up to  a speed of 8000 rev/min in 0.38 
seconds and brought down from 8000 rev/min to 0 rev/min in 0.265 sec (see 
Figure 8.15). The PI current gains in (8.12) were set at K d I  = 9000, K d p  = 

15, K q ~  = 9000, and Kqp = 15. The PI gains for the flux tracking controller 
(8.31) were chosen as K+p = 10,000, K+I = 420,000. The PID gains for 
the tracking error in (8.32) were chosen as KO = 3.0 x lo5, K1 = 5.5 x lo4, 
and Kz = 125. The sample rate was 4 kHz. 

Figure 8.13 is a plot of the position and its reference where the tracking 
is close enough that they are indistinguishable in this figure. The difference 
OTef - O in encoder counts is given in Figure 8.14. The maximum error is 
34 encoder counts. 
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Time in second 

FIGURE 8.13. 6 and B,,f in radians versus time in seconds. Fkom Bodson et al. 
[65], @ 2004 IEEE. 

5 ,  

.8 

Time in seconds 

FIGURE 8.14. 6,,f - 6 in encoder counts versus time in seconds. From Bodson 
et al. [65], @ 2004 IEEE. 
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As Figure 8.14 shows, the final position error is zero at the end of the run 
which is a requirement of a point-to-point move. Comparing with Figure 
8.18, it is seen that the maximum position errors occur when either the 
acceleration or deceleration is at a maximum. This is especially true at 
about 0.1 sec where, in addition] the jerk (4 dcxldt) is discontinuous. 

Figure 8.15 is a plot of the estimated speed and the reference speed. Note 
the excellent speed tracking despite the time-varying flux (see Figure 8.17). 

0.1 0.2 0.3 0.4 0.5 0.6 0.7 

Time in seconds 

8 

FIGURE 8.15. w and wref in radians/sec versus time in seconds. From Bodson 
et al. [65], @ 2004 IEEE. 

Figure 8.16 is a plot of i, along with its reference i,,,f A & e f / ( & d r e f ) .  

Figure 8.17 shows a plot of +dref  and +d, where +&,f is the result of 
solving the static optimization problem of equations (8.25) and (8.26) (see 
Section 8.4 and Refs. [68][69]). Figures 8.16 and 8.17 indicate that +d and 
i, vary significantly, yet the input-output controller forces the resultant 
torque r = J/-L+diq to provide smooth tracking of the position and speed 
as  shown in Figures 8.13 and 8.15, respectively. 

The dashed line in Figure 8.18 is a plot of the reference torque r,,f 
(cx,,f = - r r e f / J )  corresponding to  the position and speed references given 
in Figures 8.13 and 8.15. The solid line is a plot of the motors' optimum 
achievable torque by the motor given the voltage and current constraints 
[i.e., the solution rOptimum for T in equations (8.25) and (8.26)]. Note the 
closeness of the reference to  the optimum. 
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FIGURE 8.16. i, and i,,,f in amperes versus time in seconds. From Bodson et 
al. [65], @ 2004 IEEE. 
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8 

FIGURE 8.17. Qd and Qdref in webers versus time in seconds. From Bodson et 
al. [65], @ 2004 IEEE. 
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4.6' 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

FIGURE 8.18. Toptimum and ~~~f in N-m versus time in seconds. From Bodson 
et al. [65],  @ 2004 IEEE. 

This high-speed experiment (i.e., the trajectories of Figures 8.13, 8.15, 
and 8.17) was attempted using a field-oriented controller and was not suc- 
cessful as the phase voltages exceed their limits. That is, the input-output 
linearization controller was essential for obtaining such high performance. 

Remarks This control algorithm depends on the inner PI  current control 
loops working satisfactorily. That is, they must be given sufficient time, as 
well as sufficient source voltage, to track the current references. As pointed 
out above, the dominant term in the equation for dz,/dt [fifth equation of 
(8.9)] is the back emf term given by Mnpw?JJd/LR M npw?JJd (see problem 
9). When np is large, a small change in w results in a correspondingly large 
change in the back emf, making it difficult (i.e., takes time) for the PI 
current controller to overcome this disturbance in order to track the refer- 
ence &.. Typically, induction motors do not have a large number of pole 
pairs; and even if they do (say np = 12), they are not usually run at  high 
speeds. Consequently, the PI current loops usually perform satisfactorily. 
On the other hand, permanent magnet stepping (synchronous) motors typ- 
ically have 50 pole pairs. In that case, the current dynamics must be taken 
into account (rather than swamped out by high-gain feedback) in order 
to  achieve high performance. That is, for the same trajectory, less source 
voltage may be needed compared to the current-command input-output 
controller. (See Ref. [72] where voltage command was essential in achieving 
high-performance motion control of a 50-pole-pair PM stepper motor.) 
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8.3 Observers 

The field-oriented and input-output controllers require the rotor flux link- 
ages in order to implement them. The simplest type of algorithm to estimate 
them based on observer theory is now presented. Also, when a position sen- 
sor is used, a speed sensor is typically not available. Instead, one usually 
numerically differentiates the position measurement to get the speed. How- 
ever, it is shown how a smoother estimate can be found using a speed 
observer. 

8.3.1 Flux Observer 
Recall from (8.4) the dynamic equations of the flux linkages are given by 
(7 = l /TR)  

d 
z $ R a  = -r/$Ra - npW$Rb + qMiSa  

(8.34) 
d 

z $ R b  = -r/$Rb + npw$Ra + ‘ V M i S b -  

A straightforward way to  estimate the fluxes $Ra and $ R b  is to simply 
implement a real-time simulation of the equations (8.34) on the controller 
processor. That is, the currents isa and i s 6  are sampled from the motor 
through analog to  digital (A/D) converters, the speed w is known through 
a sensor and these quantities are then used to  run the following real-time 
simulation of the flux linkage equations 

d -  
z $ R a  = - 7 G R a  - n p W G ~ b  + VMiSa  

(8.35) 
d -  

-$Rb = - r /q)Rb + n p w G R a  f ‘ V M i S b  dt  

on the controller processor. The solutions to  these equations are then used 
as the estimates of the fluxes for use in the feedback control algorithm. 

Note that for this to work, it is implicitly assumed that (i) the model 
(8.34) is the correct dynamic model of the flux linkages, (ii) the parameters 

and A4 are known, (iii) the currents and speed are measured precisely, 
and (iv) the numerical integration of (8.35) is done accurately. Under these 
conditions, it is now shown that the flux linkage estimates given by the 
solution to (8.35) will converge to the correct values even if the initial 
conditions $Ra(0) and $ R b ( O )  for (8.35) are unknown. This is important 
because it also implies the observer will work even in the presence of distur- 
bances. For example, suppose at time tl there is noise on the measurement 
of w(t1) .  Further, at time tl + S, say, the noise is no longer present on 
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the speed measurement. Then, for tl < t < tl + 6, the speed is measured 
as w ( t )  + n(t) rather than the correct value of w ( t ) .  This incorrect mea- 
surement is then being used in (8.35) to calculate the estimates GRa(t)  
and $Rb(t). Consequently, these estimates are now incorrect. However, for 
t > tl + 6, the measured speed is again w ( t ) ,  that is, the correct value. 
Thus, one can model the situation at time t = tl + 6 as (8.35) being the 
correct equations with the initial conditions 4 R a ( t l  + 6) and 4Rb( t l  + 6) 
being unknown. If the estimates from (8.35) converge to the true values 
irrespective of the initial conditions, the estimator (8.35) is able to  recover 
from disturbances in the measurements. 

To show the convergence, subtract (8.35) from (8.34) to  obtain error 
system 

i'Ra = -7ERa - npWERb 

(8.36) 

2Rb = -7ERb + npWERa 

where ERa = +Ra - qRa, &Rb A +Rb - 4Rb are the errors in the estimates. A 

Consider a (Lyapunov) function defined by 

d V / d t  = ~ E R ~ ~ R ~  + 2 E ~ b i ' ~ b  

- - 2ERa (-7ERa - npWERb) + 2ERb (-7ERb + npwERa) 

-27 ( E i u  + & )  
= -277v. 

That is, d V / d t  = -27V with solution V ( t )  = V(0)e-2q7t .  Now, V(0)  = 
2 

($Ru(o) ~ ' $ R U ( ~ ) ) ~  + ($Rb(O) - GRb(0)) is unknown, but V ( t )  -+ 0 re- 

gardless Of the Value Of v(0) and thus G R ~ ( ~ )  --f ' $ ~ ~ ( t ) ,  '$Rb(t) + $Rb(t) 

as t -+ co independent of the initial conditions used for (8.35). 
The nice thing about the development of this observer based on the 

model (8.34) is that one is able to  show that the estimate converges to the 
actual flux. An equivalent representation of the system (8.34) is its polar 
coordinate form. That is, defining 

A 
P = tan-l(+Rb/+Ra) 



8. Induction Motor Control 

one then defines a Aux estimator by 

_ -  " - n P w + r ] M i , / 4 d  
dt  

52 1 

(8.37) 

As the estimator (8.37) is just the polar coordinate form of (8.35), it follows 
that its solution will converge to the true values for p and $ d .  The useful- 
ness of the representation (8.37) is that the variables lCld,id,  and i, vary 
much slower than variables $ R a ( t )  and $ R b ( t ) .  For example, if the motor 
is running at a constant speed, the variables $ d , i d ,  and i, are constant 
no matter how high the speed. In contrast, $Ra(t) and $ R b ( t )  vary at the 
stator frequency, which at high speeds is quite large. This high frequency 
makes the numerical integration of (8.35) difficult in that a small time step 
is required. 

Remarks 
To implement either observer (8.35) or (8.37), r ]  and M must be known. 

The parameter r] = ~ / T R  = RR/LR and the resistance RR can vary by 
100% due to ohmic heating of the rotor windings [a]. 

8.3.2 Speed Observer 

In a position (servo) control system, typically one has a position mea- 
surement (e.g., from an optical encoder), but a speed measurement is not 
available. It is standard practice in industry to  compute the speed by a 
discrete differentiation of the position output (backward difference) from 
the optical encoder as 

6 ( k T )  - 6 ( ( k  - 1)T) 
T 

G b d ( k T )  = (8.38) 

where T is the sample period. The difference 6 ( k T )  - 6 ( ( k  - 1)T) can be in 
error by no more than one count so that, using a 2000 pulse/rev encoder, 
the error in this estimate of the speed is tightly bounded by (2n/2000)/T. 
This noise is particularly significant at high sample rates and moderate to 
low speeds as less encoder counts are detected per sample period than at 
higher speeds. For example, in the experiment presented in Section 8.2.2 
where the motor is turned 180" in 73 msec, the top speed of the motor 
was less than 75 rad/sec and a sample rate of 8 kHz was required. In this 
circumstance, the error bound on the speed computed by differentiation 
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is (27r/2000)8000 = 25.13 rad/sec. This is shown in Figure 8.19. However, 
this noise (the difference w - G b d )  has a high frequency, and for the most 
part the machine responds to the average value of L&d over several time 
steps, which is close to the actual value. 

'*O------- - 

FIGURE 8.19. &b,j and ~ , , f  in radians/sec versus time in seconds. From Bodson 
et al. [67], @ 2004 IEEE. 

The speed estimate used to obtain Figure 8.8 (repeated in Figure 8.20) 
of Section 8.2.2 is much smoother and was computed using an observer. 

FIGURE 8.20. D and W,,f in radians/sec versus time in seconds. From Bodson 
et al. [67], @ 2004 IEEE. 
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This approach is now described. In the field-oriented coordinates, the 
equation governing the speed in an induction motor is given by 

W - - 
d9 
dt 
- 

(8.39) 

The quantities qd and iq are not known, but can be estimated as shown 
above. Thus, consider an observer defined by 

= W++1(0 -8) d8 
dt 
- 

Assuming that q d i q  4 $ d i q  fast enough so that there are essentially equal, 
one subtracts (8.40) from (8.39) to obtain the error system 

(8.41) 

where el = 9 - 0 and e 2  = w - LI. The characteristic polynomial for the 
error system is then 

I) = s2 + (el + f / J ) s  + .ez + . e l ( f / J ) .  
1 0  

det(s[ 0 1 ] - [ 1:; - f / J  

Choosing 

puts the roots of the characteristic polynomial at - T I  and -7-2. It turns out 
in practice that this estimate of w is much better than plain differentiation 
of the position [67]. This estimate is then used for the speed feedback and 
in the flux observer (8.37). 

With the gains set as l 1  = 1.8 x lo3 and L2 = 8 x lo5, the result of 
using the speed observer (8.40) is given in Figure 8.20. This same observer 
(with the same gain settings) was also used to obtain the speed estimate 
for the input output linearization controller in Figure 8.15. This approach 
to estimating w can be modified to account for a load torque on the motor 
(see problem 25). A disadvantage of a speed observer is that the machine 
parameters must be known accurately [p, f / J  for (8.40) and = ~ / T R ,  A4 
for the flux observer] while the backward difference estimator (8.38) is 
independent of the machine parameters. 
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Remark The flux estimator (8.37) and speed estimator (8.40) are cou- 
pled; that is, to estimate the flux and speed, it is required to integrate the 
fourth-order system given by 

- d’ = npLj + vM(- i sa  sin(’) + i S b  cos(fi)) / G d  
d t  

= L J + l , ( 0 - 8 )  
d 8  
d t  
- 

= p j d  (-isa sin(fi) + i s b  cos(fi)) - ( ~ / J ) G  + [2(0 - 8) 
dLJ 
d t  
- 

where isa, i S b  and 0 are the measured “inputs” to this observer. 

8.3.3 

Using the observer (8.35), it was shown that the magnitude of the error 
V ( t )  = ($Ra( t )  - ?)R,(t))2 + ( $ R b ( t )  - ? ) R b ( t ) ) 2  went to  zero exponentially 
as V ( t )  = V(0)e-2qt. For example, with LR = 0.085 Henries and RR = 0.8 
ohms, q = 9.4 so that V ( t )  = V ( O ) ~ C ~ ( ’ . ~ ) ~  = V ( O ) ~ C ~ / . ’ ~  and the error dies 
out after four time constants or 4 x 0.05 = 0.2 sec. It is usually preferable 
to  force the error to go to zero arbitrarily fast rather than just as e-’Vt. 

An ingenious approach has been given by Verghese and Sanders [73] that 
allows one to specify an arbitrary rate of convergence for the flux estimator. 
This was done by first observing that the four electrical equations in (8.4) 
may be broken up into two subsystems consisting of the flux sys tem model 

Verghese- Sanders Flux Observer * 

M R R  . 
ZSa Ra nPw$Rb+- 

--$ RR - - 
d 
d t  LR LR 
- 4 R a  - 

(8.42) 

and the voltage measurement  model 

(8.43) 

The insight given by this decomposition is that a measurement of the 
voltages (assuming the currents and their derivatives are known) provides 
an estimate of the derivative of the flux linkages by equation (8.43), which 
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in turn can then be used to  force the flux error to zero arbitrarily fast. 
Specifically, consider the estimator based on (8.42) defined by 

(8.44) 

with the predicted measurements CS, and csb given by 

(8.45) 

These expressions for Gsa and i&b (8.45) are then substituted into (8.44) 
and, after some rearrangement, result in the flux estimator given by 

The idea here is that the system (8.46) is implemented in real time using 
the measured voltages usa and US(, and currents isa and i S b ,  the measured 
speed w ,  and the motor parameter values. The solutions $Ra and $Rb are 
then used as the estimate of the state variables qGa and $Rb. 

To show that the estimator (8.46) works (i.e., $ R ~  --f $ ~ ~ , q R b  + $ ~ b  

if the gain k is chosen correctly), subtract (8.42) from (8.44) to obtain the 
error system 

-qeRa ~ npWeRb + k(csa - U S a )  
deRa - - -  

dt 
(8.47) 

-?j'eRb f npWeRa + k(.iLsb - U S b ) .  
deRb - - -  

dt 
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A ^  A ^  where eRa = $R, T $Ra,  eRb = +Rb - $Rb- 

Using (8.43) and (8.45), this is rewritten as 

k M  deRa - -  deRa - -7eRa - npweRb + -- 
dt L R  d t  

(8.48) 

or 

(8.49) 

Use of the (Lyapunov) function 

(8.50) 

with the error system (8.49) results in 

Clearly then , 

which can be made to go to zero arbitrarily fast by choosing the gain k close 
to (but less than) L R / M .  Note that by choosing k > L R / M ,  the estimation 
error actually diverges. However, as LR = (1 + C R ) M  where OR > 0 is a 
small leakage constant [1], it is always true that L R / M  > 1. Consequently, 
by choosing k 5 1, one is assured of avoiding this problem. 

The estimator (8.46) requires the derivative of the current to  implement 
it. This can be avoided using the method as described in Ref. [73]. Specifi- 
cally, (8.45) is substituted into (8.44) and rearranged by bringing all of the 
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terms with derivatives to the left-hand side, resulting in 

Defining the auxiliary variables 

with inverse 

GRa = (il + koLs i s , )  / (1 - k E )  
LR 

(8.52) 

the system (8.51) has the form 

where fl and f 2  are simply the right-hand sides of (8.51) after substituting 
the expressions for GRa and i j R b  in terms of 21 and 22 from (8.52). The 
real-time solutions to (8.53) are then substituted into (8.52) to  obtain the 
flux estimates. 

Remarks As before, there are numerical issues to consider. In this case, 
the system (8.53) is driven by the stator currents which vary at the electrical 
frequency w s  = w,lip + n p w  which can be quite large. This necessitates a 
small step size to  accurately carry out the numerical integration of (8.53). 
An appropriate way to handle this issue is given in Ref. [73] (see problem 
22). 
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As in any model-based scheme, these estimates are sensitive to parameter 
error. In this case, the significant parameter is the rotor time constant 
TR = 1/77 as its value can vary as the rotor windings heat up or cool down. 
An analysis of this sensitivity is also given in [73]. A generalization of this 
observer is the Martin-Rouchon observer Refs. [74] [75] outlined in problem 
27. 

8.4 Optimal Field Weakening* 

In Section 8.2.3, field weakening was introduced as means to  achieve higher 
speeds without violating the stator voltage constraints with the trade off 
being that the available torque is less. In that approach, the reference for 
the (magnitude of the) flux linkage was specified by (8.24). In this section, 
the general problem of extracting the maximum torque from an induction 
motor without violating the voltage or current constraints is addressed 
systematically. There has been considerable work in this area including 
the approaches in Refs. [71] [76] [77] [78] [79][80]. Here the approach in Refs. 
[68][69] is presented. The field-oriented model of the motor as given in (8.9) 
is used as a starting point and, in order to  obtain a tractable solution, 
the problem is formulated with the machine in steady state. Specifically, 
consider the following formulation: 

Maximize the steady-state torque ( J p  = n,M/LR) 

subject to the constraints 

Remark The actual physical constraints are 

However, at constant rotor speed in steady state, the voltages and currents 
have the form 
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where ws is the stator electrical frequency. As a consequence, 

v2 = ui,  + ‘u$b = u$ + uz 5 v,”ax 

r2 =’ iia + iib = i$ + i% 5 riaX 
so that in steady state the conditions are equivalent. 

system of equations (8.9) are written in steady state as 
To proceed with the solution of the torque optimization problem, the 

(8.54) 
(8.55) 

(8.56) 

(8.57) 

(8.58) 
dP - = npw + Mi,/ (TR$d) = constant. 
dt 

Using Ts 4 L s / R s ,  $d = Mid, and making the substitution o = 1 - 
M 2 / ( L s L R )  into (8.57) results in (8.56) and (8.57) simplifying to 

3 
R S  

(8.59) 

(8.60) 

8.4.1 Torque Optimization Under Current Constraints 

In the case of only the current constraint being active, the problem reduces 
to maximizinn 

subject to the constraint 

2; + 2; = I 2  5 I;ax. 

Defining 
b = iq/id 

the expression for the torque may be rewritten as 

(8.61) 

(8.62) 
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Optimizing (max or min) the torque requires I = I,,,. Also, solving 
d r l d b  = 0 gives 6 = i l  and checking d2r/db2 at 6 = * 1  results in the 
maximum torque for I = I,,, and 6 = 1 ( i d  = Imax/a) and the minimum 
torque for I = I,,, and 6 = -1 ( i d  = -Imax/fi). 

8.4.2 Torque Optimization Under Voltage Constraints 

In the case of only the voltage constraint being active, the problem reduces 
to maximizing 

(8.63) 
n M  n , M 2 .  . 

r=L+. d’q ~ ~ t d t q  
LR 

subject to the constraint 

u; + u; = v2 5 v,”,,. 
Again letting 6 = i q / i d  and using (8.59) and (8.60), the square of the 
voltage V 2  may be written as 

v2 - u: + Uf -~ - 
R i  R i  

2 2 

= i; ( ( 1  - oTsb(n,w + 6/TR) ) + ( 6  + Ts (npw + ~ / T R )  ) ) 
(8.64) 

and the torque is then rewritten as 

n,M2 
r = -  hi; 

LR 

V 2  
- n,M2 

LRR: 

6 

(1 - oTs6 (npw + ~ / T R ) ) ~  + (6  + Ts (npw + ~ / T R ) ) ~  ’ 

- 

(8.65) 

Remark 
This expression for the torque is comparable to the standard torque-slip 

equation for the torque. Specifically, with ws = npw + 6/TR the electrical 
frequency, S, = I/(CJWSTR) the normalized pull-out slip, and S = ( w s  - 
npw)/wg = ( ~ / T R ) / w s  the normalized slip, this last expression for the 
torque reduces to (letting Rs 4 0) 

3 1 - 0  u; 2 
7 = np--- 2 ff w ~ L s s / s , + s , / s  (8.66) 

where US 45 m ( V / a )  (see problem 31). ( V / f i  is the two-phase equiv- 
alent rms voltage so that m (V/&‘) is the line-to-neutral rms voltage 
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in the three-phase machine.) The expression (8.65) gives the torque as a 
function of the slip ( ~ / T R  = w s  -npw)  with the rotor speed w held constant 
while the expression (8.66) gives the torque as function of the (normalized) 
slip with the electrical frequency w s  held constant. 

The denominator of (8.65) is always positive so that r > 0 for 6 > 0 
and r < 0 for 6 < 0. As the torque (8.65) is proportional to V 2 ,  the 
optimum torque is achieved choosing 6 to optimize (8.65) with V = V,,,. 
To compute the maxima and minima of r with respect to  6, one sets 

2 
d r  - n p M 2  V 2  P ( 6 )  

a’ LRRz ((1 - aTs6 (npw + ~ / T R ) ) ~  + (6 + Ts (npw + ~ / T R ) ) ~ )  

= o  (8.67) 

where 

+ 0 . 6  + 1 + (TsnPwI2.  (8.68) 

The solutions to  p ( 6 )  give the values of 6 corresponding to  local maxima 
and minima. Let 60 be a solution to p ( 6 )  = 0. The second derivative at  
such a 60 is given by 
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where 

(8.70) 

The sign of p’(b0) determines whether or not bo corresponds to a local 
minima or a local maxima. 

Example 1 To study equation (8.68), consider an induction machine 
with parameter values np = 3, Rs = 1.7 ohms, Ls = 0.014 H, RR = 3.9 
ohms, LR = 0.014 H, M = 0.0117 H, V,,, = 80 V, I,,, = 6 A, J = 
1.1 x lop4 kg-m2 and f = 1.4 x lop4 N-m/rad/sec. Figure 8.21 is a plot 
of the four roots of p(b )  = 0 as the speed w varies from 0 to 8000 rpm. In 
this example motor, only two of the roots are real in this speed range. 

1 , /  
-3 
-10 -8 -6 -4 -2 0 2 4 

Real Pan 

FIGURE 8.21. The four roots of p ( b )  = 0 for 0 5 w 5 8000 rpm. From Bodson 
et al. [69], @ 2004 IEEE. 
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Solutions of p ( 6 )  = 0 

The polynomial p(b )  is fourth order in 6 and our interest here is to de- 
termine which of the roots optimizes the torque. For w 2 0 and constant, 
there are two cases to consider: r > 0 and r < 0. 
r > 0: The first case is T > 0 so that the machine is motoring. In 

this case 6 > 0 as both id and i, are positive. The Routh-Hurwitz test 
[37][81][46] (see problem 32) implies that p ( 6 )  = 0 has exactly one posi- 
tive root for all w 2 0. Furthermore, for any 6 > 0, it follows by equa- 
tion (8.70) that d2,r/db2 < 0 so this unique positive root corresponds to 
a global maximum. In Figure 8.21, this unique positive root starts out 
at approximately 0.323 for w = 0 and ends at approximately 2.2 for 
w = 800 rpm. The asymptotic value of this root is found by dividing 
(8.68) by o~(Ts/TR)~ ( T s n , ~ ) ~  and letting w --f co where it is seen that 

p ( b ) /  (02(T . /T~) '  ( T s n , ~ ) ~ )  --f ( T B / T s ) ~  ( -b2 + 1/02) and the positive 

root goes to l/a (= 3.33 in Figure 8.21). Further, as w -+ co, 

T(b)  r(l/a) = (nphf"/LRRi) v2/ (2a(TsnpuR)2) . 

r < 0: The second case is r < 0 so that the induction machine is gener- 
ating. In this case, the minimum of r is sought (i.e., maximizing J T ~  with 
r < 0) so that 6 is negative wit.h i, > 0 and id < 0. As p ( 6 )  is fourth 
order, it has four roots of which exactly one root is in the right-half plane. 
The remaining three roots all have negative real parts of which there are 
two possibilities. Either there are three real negative roots (two local min- 
ima and a local maximum) or there is one real negative root (single global 
minimum) and a complex conjugate pair with negative real parts. 

First consider the solutions of (8.68) for w small. In general, equation 
(8.68) has a unique negative root for sufficiently small speeds. To see this, 
let w = 0 in (8.68) to obtain 

p(6)&($)264+ (%(%) - ( l + ( $ ) ) 2 ) 6 ' t l . 0 ,  

Then with 

the quadratic formula gives 

- b * d E  
2a 

6 -  (8.71) 

where -4ac > 0 so that d w  > b. Consequently, one must choose the 
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+ sign in (8.71) for 6’ to be positive. Doing so, let 

6pos = A Jb+? (8.72) 

(8.73) 

be the (unique) positive and negative roots, respectively, of (8.68) for w = 0. 
Note that bpOs = 0.323 in Figure 8.21. 

At high enough speeds, there are always two local minima. To see this, 
rewrite (8.68) as 

(8.74) 

It is now shown that one of the roots 6 4 -TRn,w as w + co. To do so, 

let x a 6/ (TRn,w) in (8.74) and divide through by -30’ (g) (TRnpw)  

to obtain 

4 
2 

(8.75) 
Equation (8.75) shows that x = -1 is a solution as w 4 co; that is, 
-TRnpW is an asymptotic solution to p ( 6 )  = 0 for large w. Substitution of 
6 = -TRn,w into (8.69) shows that a2r/a6216=-TRnpr; > 0 and thus corre- 

sponds to a minimum. Also, r( -TRn,w) + (n,hf2/LRR:) v2/ (TRn,wR) 
as w + co. The other negative root corresponding to a local minimum 
is found by dividing (8.68) through by a’ (Ts/TR)’ (TRn,w)’ and letting 
w + 00 to find 6 + -1/a. Again using (8.69), it is seen that this root does 
indeed correspond to a local minimum where 

as w + co. Comparing the expressions for the torque at the two minima, 
it is seen that for w sufficiently large, T(-TRn,W) < r ( - l /~ ) .  As a conse- 
quence, -1/a corresponds to  an asymptotic local minimum while -TRnpW 
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corresponds to the asymptotic global minimum for the torque. In general, 
at sufficiently high speeds, the complex conjugate pair of roots must come 
together so that there are three negative real roots corresponding to the 
two minima and one local maximum. (From specific examples, it appears 
that the 6 corresponding to the global minimum is the negative root that 
starts bneg for w = 0 and remains real and negative throughout the speed 
range . ) 

For the specific motor example used in Figure 8.21, there is a unique 
negative root for the speed range 0 5 w 5 8000 rpm, that is, throughout 
the speed rating of the motor. However, it was shown above that if the 
speed is large enough, the complex conjugate pair of roots eventually come 
together. 

Example 2 Consider a motor with the parameter values np = 3, Rs = 

1.85 ohms, L s  = 0.244 H, RR = 2.1 ohms, LR = 0.244 H, M = 0.224 H, 
V,,, = 225 V, and I,,, = 15 A. Using these parameter values, Figure 8.22 
is a plot of ~(6) versus 6 for the fixed motor speed w = 200 radians/sec. 
The torque is a maximum (motoring) at 6,,, = 5.7, but for generating, 
there is a global minimum at 6, = -69, a local minimum at  6 b  = -8.8, 
and a local maximum at 6, = -20.8. 

Remark For future reference, the values of 631" and 6;' in Figure 8.22 
are where V = V,,,,I = I,,,. In particular, for 6;" < 6 < S i c ,  it turns 
out that I > I,,,; for 6 outside of this interval, it happens that I 5 I,,,. 
This will be shown below. 

E 
5; 

FIGURE 8.22. ~ ( 6 )  in N-m versus 6 for w = 200 rad/sec. At by" and Sg", both 
constraints are encountered (i.e., V = V,,, and I = I,,,). The torque T (6) has 
a global minimum at 6,, a relative minimum at bb, and a relative maximum at 
6,. From Bodson et al. [SS], @ 2004 IEEE. 
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Numerical Solution of p (6) = 0 

The complete set of solutions to (8.68) can be found with a Newton-Raphsor 
technique provided it is initialized properly. A closed-form approximate so- 
lution for 6 can be found if the slip w,lip = i q / ( T R i d )  = ~ / T R  is small (in 
magnitude) compared to the stator frequency ws = npw + i,/(T&); that 
is, w s  = npw so that (8.59) and (8.60) become 

- ud = id -oTs iqnpw 
RS 
% = i, +Tsidn,w 
R S  

(8.76) 

(8.77) 

V 2  2 .  (8.78) 
n,M2 

L R R ~  
r (6)  = 

(1 - aTs6npw)2 + (6  + T s n p w )  

Setting d r l d b  = 0 gives 

2 1 + (Ts6npw)2 

1 + (oTs6npw)2 
6 -  

or 

(8.79) 
6 = */- 1 + (Ts6npw) 

1 + (oTs6npw)2 ‘ 

At higher speeds for which oTs6npw >> 1, this reduces further to b2 = 
l/02. As shown above, S = l/o corresponds to the global maximum for 
the torque r > 0 while the solution b = -l/o corresponds to a local 
minimum for the torque r < 0. Also, as shown above, 6 = -TRnpW is the 
asymptotic solution for the global minimum. [Note that the slip in this case 
is w,lip = ~ / T R  = -npw which is not small in magnitude and, therefore, 
the equations (8.76)-(8.78) do not hold.] 

To proceed with the numerical solution of (8.68), the global maximum 
is found by initializing the Newton-Raphson algorithm with the positive 
square root of (8.79). In the numerical examples given here, five iterations 
were sufficient to obtain a solution in the speed range 0 5 w 5 8000 rpm. To 
obtain the global minimum, the Newton-Raphson algorithm is initialized 
with bneg [see equation (8.73)] for speeds below 1 rad/sec and by -TRnpw 
for all higher speeds. In the numerical examples here, this initialization 
resulted in a solution after five iterations in the speed range 0 5 w 5 8000 
rpm. 

Remark It is straightforward to  show that the problem just considered 
of choosing b = i , / i d  to maximize the torque r = (npM2/LR) id i ,  subject 
to the voltage constraint u: + ui = V 2  5 V,”,, is equivalent to minimizing 
the voltage ui + ui = V 2  subject to the constant torque constraint r = 
( n p M z / L R ) i d i q  = constant. 
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Generating Mode 

The following algorithm is then used to obtain 6,t and r (dopi) for gener- 
ator mode. 

1. Let 61 = -1 and compute ~ 1 , V l  according to  

If V1 > Vmax, then r1 is not the minimum torque and proceed to 
step 2. Otherwise, store the pair (61,rl) as a possible optimum pair 
(hopt, T ~ ~ ~ )  and then proceed to step 2. 

2. Solve aQ(6,w) ldb  = 0 for its roots as explained in Section 8.4.2. 
There are then two possible subcases (a) and (b): 

(a) One real negative root 6, (the other two complex conjugate 
roots). In this case, compute 

A r 2  1 +6: 
I,” = 

( n p M 2 / L ~ )  6, . 

If I ,  > I,,,, then go to step 3 as this solution violates the cur- 
rent constraint. Otherwise, store the pair (ha,  7 2 )  as a possible 
candidate for (bopt, T O p t )  and proceed to step 3. 

(b) Three real negative roots denoted as b,, bb, and 6,. In this case, 
let 6, correspond to the global minimum, 6 b  correspond to the 
local minimum, and 6, correspond to the local maximum (see 
Figure 8.22). Next compute 

If I, < I,,,, then store (6,,7,) as a possible candidate for 
(bOpt, T , ~ ~ )  and proceed to  step 3. Otherwise, check if I b  < I,,, 
is satisfied. If so, then store ( 6 b , r b )  as a possible candidate for 
(6,t, 7,pt)  and proceed to step 3. If not, just proceed to step 3. 
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and let 6 3  denote the value corresponding to the minimum torque 
and denote the minimum torque as 7 3 .  Store ( 6 3 , 7 3 )  as a possible 
candidate for (bopt, TOpt ) .  

4. Choose Topt as the minimum value of the torque from steps 1,2, and 
3 and hopt as the corresponding value of 6. 

Motoring Mode 

The algorithm is similar, but simpler, in the motoring mode. 

1. Let 61 = 1 and compute 71, V1 according to 

If '1 > V,,,, then 71 is not the maximum torque and proceed to 
step 2. Otherwise, store the pair ( 6 1 , ~ 1 )  as a possible optimum pair 
(bopt, T o p i )  and also proceed to  step 2. 

2. Solve aQ(6, w)/db = 0 for its roots as explained in Section 8.4.2. Let 
the unique positive root be denoted as 6, and compute 

A 7 2  1 
I: = 

(npM2/LR)  6, . 

If I, > I,,,, then go to step 3 as this solution violates the con- 
straint. Otherwise, store the pair (ha,  7 2 )  as a possible candidate for 
(bopt, T o p t )  and then proceed to step 3. 

and let 63 denote the value corresponding to  the maximum torque 
and denote the maximum torque as 7 3 .  Store (63,73)  as a possible 
candidate for (bOpt, T o p t ) .  

4. Choose TOpt as the maximum value of the torque from steps 1 ,2 ,  and 
3 and bopt as the correspon.ding value of 6. 
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Remark If the induction machine is operating in the generating mode, 
step 2 above can lead to interesting solutions when the machine is at  both 
the current and voltage limits. For example, in step 2 of the generating 
mode, for either subcase (a) or (b), the global minimum at 6, will typically 
result in I 2  > However, in subcase (b), the local minimum at bb 
(found under the voltage constraint only) can turn out to be the global 
minimum when the current constraint is also taken into account. This is in 
fact the situation depicted in Figure 8.22. Specifically, at w = 200 rads/sec, 
step 1 violates the voltage constraint while for step 2 the global minimum 
at 6, = -69 violates the current constraint (it can be shown that for 
b y  < 6 < b?, I > I,,, ). The local minimum at bb = -8.8 producing the 
torque 7 ( 6 b )  = -4.4 N-m does not violate the current constraint, that is, 

IZ(6b) ( T ( d b ) /  (npM21LR))  (1 f 6;) /bb < 

Going on to step 3 of the algorithm, one solves I i a x b /  (1 + b2)  = VZ,,Q(S,w) 
for its real roots to obtain by" = -22.9, T (by") = -4.06 N-m and SF = 

-116.4,7(6;") = -0.8 N-m which are indicated in Figure 8.22 (the other 
two roots are complex conjugates). Consequently, 6,t = 66 = -8.8 pro- 
duces the global minimum torque of ropt = -4.4 N-m. 

Numerical Solution of I i a x b /  (1 + 6') = V:,,Q(b,w) 

Step 3 of the algorithm requires solving I i a x b /  (1 + b2) = VZ,,Q(b, w )  for 
b with w fixed. This is rewritten as a polynomial in b by 

This equation does not lend itself to as complete an analysis as (8.68) 
because the coefficient of b in (8.83) is not zero as was the case for (8.68). 
The four roots of (8.83) are plotted in Figure 8.23. Upon computing the 
values of the torque corresponding to these values of S, it turns out the 
positive real root between 1 and 1.5 in Figure 8.23 is the root corresponding 
to  the (global) maximum torque for speeds between 2940 rpm and 3330 
rpm. Similarly, the negative real root which is approximately between -1 
and -2 in Figure 8.23 corresponds to the (global) minimum torque (i.e., 
max I T ] ,  T < 0) for speeds greater than 5410 rpm. These two sets of roots 
are easily found using the Newton-Raphson method and initializing it with 
S = 1 and b = -1 for the maximum and the minimum torques, respectively. 
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E 

Real Pan 

FIGURE 8.23. The four roots of I;ax6/ (1 + 6’) = V;,,Q(6, w )  for 0 5 w 5 8000 
rpm. From Bodson et al. [69], @ 2004 IEEE. 

Base Speed 

For low enough speeds, the machine is operating at the current limit to 
achieve optimum torque. The base speed Wbase can be defined as the speed 
where the flux linkage magnitude $d is first decreased to avoid the voltage 
limit. Using the above analysis, a natural procedure to determine this base 
speed is possible as follows. Below the base speed, where 6 = 6 1  with 6 1  = 1 
for motoring and 6 1  = -1 for generating, the torque is given by 

The voltage required to achieve this torque is then 
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To satisfy the voltage constraint, the condition V 2  5 V,”,, must hold. To 
compute the maximum speed for which this holds, set V 2  = V,”,, in (8.84) 
and rearrange to  obtain 

Ts 2 2- V,”,X = 6: + 2 (1 - a )  -6, + %d2 (1 + 0 ~ 6 : )  + w2Ting(l + ~ ’ 6 : )  
RiGax TR Ti  

TS ( TR 
+ w2Ts61nP 1 - a + - (1 + 0 ~ 6 : )  

Using the fact that 6: = 1, this simplifies to 

TS 0 = w2Ting (1 + a2)  + w2Ts61np 1 - a + - (1 + a2) ( TR 

(8.85) 
Ts Ti V 2  + 1 + 2(1 - a )  - + - ( l + a 2 )  + 1 - 2+. 
T R  Ti RSGax 

In a practical motor, Vzax >> RiI iax  so that 

2 2 2 
vmax < 0. l f 2  (1 - a )  - Ts +2 Ti (1 + 2) +1-2- Vmax N If 1 + - -2- 

TR T‘ R$ 4% ax ( g )  RiIZax 
(8.86) 

That is, the constant term of (8.85) is negative. The coefficient of w is 
positive for 61 = 1 and negative for 61 = -1. Using these facts, it follows 
using the Routh-Hurwitz stability test (see problem 33) that (8.86) has 
exactly one positive root each for 61 = 1 and for 61 = -1. For the motor 
parameter values used in Figure 8.21, the positive solution of (8.86) for 
61 = 1 is Wbase  = 2990 rpm (motoring) and the positive solution of (8.86) 
for 61 = -1 is Wbase  = 5410 rpm (generating). These speeds can be seen in 
Figure 8.24. 

Numerical Results 

Here the motor used in example 1 (page 532 above) is analyzed in terms of 
the optimum torque it can produce. Its parameter values are np = 3, Rs = 

1.7 ohms, L s  = 0.014 HI RR = 3.9 ohms, LR = 0.014 H, M = 0.0117 
H, V,,, = 80 V, I,,, = 6 A, J = 1.1 x lop4 kg-m2 and f = 1.4 x 
lop4 N-m/rad/sec. Using the above algorithm, the maximum and minimum 
torques were computed and are shown in Figure 8.24 versus w with the 
corresponding b versus w shown in Figure 8.25. 
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FIGURE 8.24. Maximum and minimum torque achievable versus w (in rpm) 
for both optimal and standard field weakening. For the optimal field weakening, 
Wbase = 2990 rpm for motoring and Wbase = 5410 rpm for generating. From 
Bodson et al. [69], @ 2004 IEEE. 

FIGURE 8.25. b versus w in rpm corresponding to the maximum and minimum 
torque. From Bodson et al. [69], @ 2004 IEEE. 



544 Induction Motor Control 

-5 

FIGURE 8.26. Minimum torque versus w in rpm under just the voltage contraint. 
From Bodson et al. [69], @ 2004 IEEE. 

The maximum torque is limited by the current constraint up to  a speed 
of 2990 rpm and by the voltage constraint for speeds above 3330 rpm. 
There is a small speed range from 2990 rpm to 3330 rpm where both the 
voltage and current constraints are encountered. This last observation is 
more clearly illustrated in Figure 8.25. For the minimum torque, Figure 
8.24 shows it is determined by the current constraint up to 5410 rpm and 
then by both the voltage and current constraints for all higher speeds. In 
other words, the minimum torque under just the voltage constraint alone is 
never achieved because it requires too much current. This is demonstrated 
vividly by Figure 8.26, which is a plot of the minimum torque achievable 
with only the voltage constraint and no current constraint. Comparing with 
Figure 8.24, it is clear that the current limits prevent these large negative 
torques from ever being achieved. 

Comparison with Standard Field Weakening 

Recall that the standard approach to field weakening is to choose the flux 
as 

where $do = Mido. For the machine of example 1 (page 532 above), the 
direct current reference is chosen as i d 0  = 6 / f i  A to make the torque using 
the flux reference (8.87) equal to that of the optimal torque (i.e., choosing 
b = 1 so that i d  = i, = I m a x / f i )  below the base speed. The base speed 
is chosen as Wbase = 2990 rpm (M 300 rads/sec) so as to coincide with the 
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speed at which the maximum possible torque achievable starts to decrease 
(see Figure 8.24). 

To provide a fair comparison of the two approaches to  field weakening, it 
is necessary to  determine the maximum torque that can be delivered under 
the standard field weakening approach without violating the constraints. 
The motor torque is Jp$di ,  and, a.s the flux is determined by (8.87) at 
any constant speed, the optimum torque in this situation is determined by 
optimizing i, subject to  the voltage and current constraints. To proceed, in 
(8.64) set V = V,,,, i d  (w) = $dre f  (w )  / M  with $dre f  (w )  given by (8.87) 
and compute its roots. With b,,, the maximum real root of (8.64), the 
maximum i, subject to the voltage constraint is simply drnax id .  Similarly, 
with bmin the minimum real root of (8.64), the minimum i, subject to 
the voltage constraint is 6,inid. To account for the current constraint, one 
just takes the values of i, as just explained and tests if ji,l 5 I,,,, 
dIiax - i d ( w ) .  If li,/ I I,,, then i, is left unchanged and it is a t  its 
optimum value. Otherwise, i, is set to  ztI,,,, where the + is taken if 
i ,  > 0 and the - sign is taken if i, < 0. Figure 8.24 shows the maximum 
and minimum torques computed using the standard flux reference. It is 
interesting to note that this maxirnum torque is essentially the same as 
that produced by the optimum torque provided that i d 0  and Wbase are 
chosen as in the optimum torque case. 

The Optimal Flux Reference 

The algorithm above for computiiig 6 = i , / i d  to achieve the optimum 
torque under both voltage and current constraints was derived assuming 
constant speed. However, achieving the optimum torque is of particular 
interest in high-performance applications where the speed varies greatly. 
Here it is shown that the algorithm is indeed applicable to such applications 
due to the fact that the electrical dynamics of a machine are typically 
much faster than the mechanical dynamics. Figure 8.24 shows that the 
torque optimization will have a significant advantage during deceleration. 
In fact, the flux and current references used for the input output controller 
of Section 8.2.4 were developed using the algorithm of this section. The 
speed trajectory of Figure 8.15 shows the motor goes from 0 rpm to 8000 
rpm in 0.38 seconds and from 8000 rpm to 0 rpm in only 0.265 seconds. 
The corresponding position reference trajectory is given in Figure 8.13. For 
the speed reference trajectory of Figure 8.15 the corresponding optimum 
achievable torque rapt is shown as the solid curve in Figure 8.18 while the 
dashed curve is the torque reference r,,f. Note that the torque reference 
is close to the optimum reference throughout most of the speed range. The 
quadrature current reference is chosen as 
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0.5 

0 -  

-0.5 

-1 

-1.5 

-2 

-2.5 

where, as stated above, rTef is the dashed curve in Figure 8.18. The direct 
current reference is then specified as 

- 

- 
- 
- 
- 

where b ( w T e f )  is the optimal i p / i d  to  optimize the torque and is shown in 
Figure 8.27. 

This derivation has been done under the assumption of constant speed 
so that choosing ?IdTef  = Miref  would be consistent with this assumption. 
However, while the currents can be changed relatively fast, the flux may 
take time to build up. As a consequence, the flux reference is chosen as the 
solution to 

Figure 8.28 is a plot of the commanded voltage to  the amplifier where it is 
noted that the it stays quite close to the 80-V limit as the motor goes from 
0 rpm to 8000 rpm. 

FIGURE 8.27. Optimal 6 ( w r e r ( t ) )  = i q / i d  versus time for the speed trajectory 
of Figure 8.15. From Bodson et al. 1691, @ 2004 IEEE. 
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:URE 8.28. usa versus time. From Bodson et al. [69], @ 

Figure 8.29 shows the phase current is, versus time. 
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FIGURE 8.29. isa versus time. From Bodson et al. [69], @ 2004 IEEE. 

The flux reference $dre f  and the (estimated) flux $d are shown in Figure 
8.17. The position reference and measured position are shown in Figure 8.13 
with the position error given in Figure 8.14 in encoder counts. This shows 
that the position error for the la.st 100 samples is less than one encoder 
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count verifying that the motor comes into the final position to a complete 
stop. 

The generalization of this approach to the situation in which the main 
magnetic path of the machine undergoes significant saturation has been 
considered in [82] [83] [84]. 

8.5 Identification of the Induction Motor 
Par ame t ers* 

The induction motor parameters are the mutual inductance M ,  the sta- 
tor inductance L s ,  the rotor inductance LR,  the stator resistance Rs, the 
rotor resistance RR, the inertia of the rotor J and the load torque rL. 
Standard methods for the estimation of induction motor parameters in- 
clude the locked rotor test, the neload test, and the standstill frequency 
response test (see problem 19 of Chapter 7). In Ref. [85], an automatic 
procedure is described in which a sequence of such tests is performed, each 
designed to  isolate and measure a specific parameter. The method is ap- 
plied for the automatic tuning (self-commissioning) of an induction motor 
drive. In Ref. [SS], another procedure is described, based primarily on the 
identification of the motor transfer function at standstill. The model is then 
refined to account for magnetic saturation and adaptation is included to 
compensate for the effects of heating. However, these approaches cannot 
be used online, that is, during normal operation of the machine. This is a 
disadvantage as  some of the parameters do vary during operation. For ex- 
ample, field-oriented control requires knowledge of the rotor time constant 
TR = LR/RR in order to estimate the rotor flux linkages and RR varies 
significantly due to ohmic heating. Based on the work in Refs. [42][59][87], 
a method for identifying the parameters of the induction motor that can 
be implemented online is now described. To proceed, recall the state-space 
model (8.5) of the induction motor given by 

(8.88) 
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where again 

TR = LR/RRi 
P = M /  (oLsLR) , 

CT = i - M 2 /  (LsLR) 
y = Rs/ (aLs )  + M2&/ ( ~ L s L ~ )  

have been used to simplify the expressions. This model is then transformed 
into a coordinate system attached to  the rotor where, for example, the 
current variables are transformed according to 

(8.89) cos(n,8) sin(n,8) [ izz ] = [ -sin(n,B) cos(n,o) ] [ 2 ] . 
An advantage of this transformation is that the signals in the moving frame 
(i.e., the (2, y) frame) typically vary slower than those in the (a ,  b)  frame 
(they vary at the slip frequency rather than at the stator frequency). At the 
same time, the transformation does not depend on any unknown parameter 
in contrast to  the field-oriented dq transformation. The stator voltages and 
the rotor flux linkages are transformed as the currents resulting in the 
following model [87] : 

d i s x  - 1 P 
d t  C L S  T R  

- -usx - yisz: + -$Rx + npPw$Ry + n,wisy (8.90) 

(8.92) 

(8.93) 

(8.94) 

8.5.1 Linear Overparameterixed Model 
Measurements of the stator currents is, and i S b  and voltages U S ,  and 'ZLSb as 
well a s  the position 8 of the rotor are assumed to be available (velocity may 
then be reconstructed from position measurements). However, the rotor 
flux linkages $Rx and $Ry are not assumed to be measured. Standard 
methods for parameter estimation are based on equalities where known 
signals depend linearly on unknown parameters. However, the induction 
motor model described above does not fit in this category unless the rotor 
flux linkages are measured. The first step is to  eliminate the fluxes $ R x  

and qRY and their derivatives dihRx/dt  and d$Ry/d t .  The four equations 
(8.90), (8.91), (8.92), (8.93) can be used to solve for $ R x , $ ~ y ,  d+,,,/dt, 
and d7CIRy/dt, but one is left without another independent equation(s) to 
set up a regressor system for the identification algorithm (see Chapter 2). 
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A new set of independent equations are found by differentiating equations 
(8.90) and (8.91) to obtain 

d i sy  dw 
-npw- - npisyz 

dt  
(8.95) 

d i sx  dw 
+npw- + npisx - 

dt  ' dt  
(8.96) 

Next, equations (8.90), (8.91), (8.92), and (8.93) are solved for $ R x , $ R y ,  

dqbR,/dt, and d$,,/dt and substituted into equations (8.95) and (8.96) to 
obtain 

dw. dw 1 + n -zsY - np- + isynpw(- + -) + ~ 

1 DM usx 
TR TR OLSTR ' d t  d t  aLs(1+ n:w2Ti) 

- yisxnpwaLsTi + isyn;w2aLsTi + npwTiuSx + T R U S ~  ) (8.97) 

and 

d 2 i s y  d i s x  1 dUsy 1 d i s y  PM Y 
npw + -- - (y + -)- - i s y ( - y  + -1 o=---- 

dt2 d t  aLs d t  TR dt  TR TR 

1 DM usy dw. dw 1 
- isxnpw(- + -) + ___ - n -zsX + n - 

TR TR ~ L s T R  ' d t  d t  aLs(l+ ngw2Ti) 

+ yisynpwaLsTi + isxngw2aLsTi - npwTiusy + T R U S ~  . (8.98) 

The set of equations (8.97) and (8.98) may be rewritten in regressor form 
as 

y ( t )  = W ( t ) K  (8.99) 

where y E R2, W E R2' 15, and K E R15 are given by 

) 
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2 dis, dw 2d2is3; d i s y  2 dw 2 d i s x  3 3 .  
- w --I +n;w3- dt n p w  zsy np(w-- 

dt dt np(wisx-  - w -) dt2 dt dt 

3 3 .  2 diSy dw 2d2isv 3 3 d i s x  2 dw 2 d i s  
-npw zsx np(w-- dt dt - W  r) - n p w  np(wisy-  dt - w 2) dt 

The system (8.99) is linear in the parameters. However, this system is over- 
parameterized, meaning that the components Ki of the parameter vector K 
are not independent of each other. The relationship between the parameters 
is 

K1 

K7 

= 

= 

K6Kg,K2 = K.*K;, K3 = K8K14, Ks = l /K8,  

K4K8, Kg = KsK& Klo = K4K& K11 = K i ,  
Ki2 = K G K ~ ,  K13 = K14K2, K15 = K14K8 2 (8.100) 

so that only the four parameters K4, K6, Ks, and K14 are independent. 
If the parameter vector is computed according to K RGIRwy E RZ5 
as in Chapter 2, one would find out that the problem is numerically ill- 
conditioned. This means that small changes in the data matrices Rw and 
Rwy will lead to large changes in the computed value for K E R15 and 
therefore the value of K could not be considered valid. Furthermore, there is 
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no guarantee that the components of K computed in this way would satisfy 
the constraints (8.100). Note also that not all five electrical parameters Rs ,  
Ls, RR, L R ,  and M can be retrieved from the Ki’s. The four parameters 
K4, K6, K8, and K14 determine only the four independent parameters Rs ,  
Ls ,  o, and TR by 

AS TR = LR/RR and (T = 1 - M 2 / ( L S L R ) ,  only LR/RR and M 2 / L R  
can be obtained and not M ,  L R  and RR independently. This situation is 
inherent to the identification problem when some of the state variables (in 
this case the rotor flux linkages) are unknown and is not specific to the 
method. If the rotor flux linkages are not measured] machines with dif- 
ferent RR, L R ,  and MI but identical LR/RR and M2/LR, will have the 
same input/output (i.e., voltage to stator currents and speed) character- 
istics. However, machines with different Ki parameters] yet satisfying the 
nonlinear relationships (8.100), will be distinguishable. (For a related dis- 
cussion of this issue see Bellini et al. [88], where parameter identification is 
performed using torque-speed and stator current-speed characteristics.) 

8.5.2 Nonlinear Least-Squares Identification 

In this section, it is shown how the linear least-squares method described 
in Chapter 2 is modified to account for the constraint (8.100). Recall from 
Chapter 2 that the least-squares problem is to minimize 

2 N 

B 2 ( K )  = l y ( n T )  - W(nT)K I = R, - 2R$,K + KTRwK (8.102) 
n=l 

subject to the constraints 

On physical grounds, the parameters K4, K6, K8, and K14 are constrained 
to 

0 < Ki < cc for i = 4,6,8,14. (8.104) 
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Also, based on physical grounds, the squared error E 2 ( K )  will be minimized 
in the interior of this region. Let 

where 

K p A  [ K4 & K8 Ki4 1'. 
As just explained, the minimum of (8.105) must occur in the interior of the 
region and therefore at an extremum point. This then entails solving the 
four equations 

The partial derivatives in (8.106)-(8.109) are rational functions in the 
parameters K4 , K6 , K8 , and K14. Defining 

results in the pi(Kp) being polynomials in the parameters K4, K6, K8, and 
K14 and having the same positive zero set (Le., the same roots satisfying 
K, > 0) as the system (8.106)-(8.109). The degrees of the polynomials pi 
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are given in the following table. 

degK4 degKg degK8 degK14 

P2(KP) 
P3 (KP 1 2 2 8 2 
P4(KP) 7 1 

All possible solutions to this set may be found using elimination theory as 
is now summarized. 

Solving Systems of Polynomial Equations [89] [go] 

The question at hand is “Given two polynomial equations a(K1, K2) = 0 
and b(K1, K2) = 0,  how does one solve them simultaneously to eliminate 
(say) K2?I1. A systematic procedure to do this is known as elimination 
theory and uses the notion of resultants (see the appendix at  the end of this 
chapter). Briefly, one considers a(K1, K2) and b(K1, K2) as polynomials in 
K2 whose coefficients are polynomials in K1. Then, for example, letting 
a(K1, K2) and b(K1, Kz)  have degrees 3 and 2, respectively, in K2, they 
may be written in the form 

a(Kl,K2) = a3(Kl)K; + a2(Kl)K,2 + al(Kl)K2 + aO(K1) 

b(K1, K2) = b2(Kl)Ki + bl(Kl)K2 + bo(K1). 

The n x n Sylvester matrix, with 

n Lk degK,{a(K1, K z ) }  + degK2{b(K1, K z ) }  = 3 + 2 = 5 

is defined by 

Sa,b(KI) A 

The resultant polynomial is then defined by 

- det Sa,b(Kl) (8.114) 

and is the result of eliminating the variable K2 from a(K1, K2) = 0 and 
b(K1, K2) = 0. In fact, the following is true (see Refs. [89] and [go]). 

Theorem Any solution (Ky,  K i )  of a(K1 , K2) = 0 and b(K1, K2) = 0 
must satisfy r (@) = 0. 

Though the converse of this theorem is not necessarily true, the finite 
number of solutions of r(K1) = 0 are the only possible candidates for the 
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degK6 degKs degK14 
TplpZ 1 14 1 
rplp3 2 22 2 .  
rp lp4  1 14 1 

first coordinate (partial solutions) of  the common zeros of a(K1,Kz) and 
b(K1, K2). Whether or not such a partial solution results in a full solution 
is easily determined by back solving and checking the solution (see the 
Appendix). 

Using the polynomials (8.110)-(8.113) and a computer algebra software 
program (e.g., MATHEMATICA [91]), the variable K4 is eliminated first to 
obtain three polynomials in three unknowns as 

TplpZ(K61K87K14) ' R e s ( ~ 1 ( K 4 . K 6 , K 8 , K 1 4 ) , ~ 2 ( K 4 , K 6 , K 8 i K 1 4 ) , K 4 )  

Tplp3(K61 K8, K14) A Res(Pl(K47 K6, K8rK14),P3(K4, K67 K81 K14)1 K4 ) 
rplp4(K6, K8,K14) ' Res(Pl(K4, K63 K81 K14)rP4(K4r K6r K8r K14)r K4 ) 

where 

Next K6 is elimi unknowns as 

where 

Finally K14 is eliminated to obtain a single polynomial in K8 as 

r(K8) a Res(rplp2p3(K81 K14), Tplp2p4(K8r K14), K14 ) 
where 

degK,{r(K8)} = 104. 

The parameter K8 was chosen as the variable not eliminated because its 
degree was the highest at each step, meaning it would have a larger (in 
dimension) Sylvester matrix than using any other variable. The positive 
roots of T(K8) = 0 are found, which are then substituted into ~ ~ 1 ~ 2 ~ 3  = 0 
(or ~ ~ 1 ~ 2 ~ 4  = 0) and which in turn are solved to obtain the partial solutions 
(K8, K14). The partial solutions (K8, K14) are then substituted into rp lp2  = 
0 (or rPlp3 = 0 or rPlp4 = 0), which are solved to obtain the partial solutions 
(K6, K8, K14) so that they in turn may be substituted into pl = 0 (or 
p2 = 0, or p3 = 0, or p4 = 0) which is then solved to obtain the candidate 
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solutions (K4, K6, K8, K14). These candidate solutions are then checked 
to see which ones satisfy the complete system of polynomials equations 
(8.110)-(8.113) and those that do constitute the candidate solutions for 
the minimization. Based on physical considerations, the set of candidate 
solutions is nonempty. From the set of candidate solutions, the one that 
gives the smallest squared error is chosen. 

Computa t iona l  Issues 

Due to the high degrees of the resultant polynomials, care must be taken 
to compute their roots. The data set is collected and brought into MATHE- 
MATICA [91]. The matrices R,, Rw, and RwY are then computed and their 
entries converted to rational form. Finally the roots of the resultant poly- 
nomials are computed in MATHEMATICA using rational arithmetic with 16 
digits of precision. 

Numerical  Conditioning of the Nonlinear Least-Squares Solution 

After finding the solution that gives the minimal value for E2(Kp) ,  one 
needs to know if the solution makes sense. For example, in the linear least- 
squares problem, there is a unique well-defined solution provided that the 
regressor matrix Rw is non singular (or in practical terms, its condition 
number is not too large). In the nonlinear case here, a Taylor series ex- 
pansion about the computed minimum point Kp’ = [K;, K6f, K:, K;4]T to  
obtain ( i ,  j = 4,6,8,14) 

1 T d2E2(K,) 

2 dKidKj 
E2(Kp)  = E 2 ( K i )  + - [Kp - K i ]  [Kp - K i ]  + ... (8.115) 

a2E2(K;) . 
One then checks that the Hessian matrix IS positive definite to 

dKidK+ 
ensure that the data set is sufficiently rich to ideitify the parameters. Its 
condition number is also computed to  obtain a measure of the numerically 
reliability of the computations [92]. 

8.5.3 Calculating the Parametric Error Indices 

The expression for the error index in Chapter 2 is still applicable for the 
nonlinear case. However, the method for computing the parametric error 
indices must be modified for the nonlinear least-squares estimation prob- 
lem. Here, the parametric error index is defined as the maxzmum value of 
bK, for i = 4,6,8,14 such that 

E2(K,* + bK,) = 1.25E2(Kp’) (8.116) 

where bKp a [ 6K4 6K6 6Ks 6K14 I T .  Recall that in Chapter 2, 
E2(Kp’ + bK,) = 2E2(K,) was used rather than (8.116). The choice is 
somewhat arbitrary as explained in Chapter 2. 
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In words, for all 6Kp that result in a 25% increase in the residual error, 
the parametric index is the maximum possible value of 6Ki. Mathemati- 
cally, for i = 4 ,6 ,8 ,  and 14, one maximizes 

6Ka 

subject to (8.116). This is straightforwardly setup as an unconstrained 
optimization using Lagrange multip1.iers by maximizing 

bKa + X(E2(K,’ + bKp) - 1.25E2(K,’)) (8.11 7 )  

over all possible bKp a [ bK4 bKt; 6K8 bK14 1’ and A. For example, 
with i = 4, the extrema are solutions to 

8 (E2(Kp’ + bK,) - 1.25E2(K,)) 1 + X  dbK4 = o  (8.118) 

d (E2(K;  + bK,) - 1.25E2(K;)) 

dbK6 
d (E2(K,  + bK,) - 1.25E2(K;)) 

ddK8 

= o  (8.119) 

= o  (8.120) 

x 

x 

a (E2(Kl  + bK,) - 1.25E2(K;)) x 1 0  (8.121) 

E2(K,’ + bK,) - 1.25E2(K;) = 0. (8.122) 

The equations (8.118) through (8.1 22)  are transformed to  five polynomial 
equations in the five unknowns bK4,6K6,6K8,6K14, and A, and elimination 
theory is then used to  solve this set. 

abK14 

8.5.4 Mechanical Parameters 

Once the electrical parameters have been found, the two mechanical pa- 
rameters J ,  f (TL = - f w )  can be found using a linear least-squares algo- 
rithm. To do so, equations (8.95) and (8.96) are solved for M$JR,/LR and 
Mq!JRy/LR, resulting in 

Noting that 

(8.124) 
Rs 1 1 M 2  Rs 1 1 

aLs o L ~ T R  LR aLs c L ~ T R  
+-- ( 1  - a ) L s ,  - 7=-+----- 
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it is seen that the quantities on the right-hand side of (8.123) are all 
known once the electrical parameters have been computed. With K16 

n p / J ,  K17 f / J ,  equation (8.94) may be rewritten as 

so that the standard linear squares approach of Chapter 2 is directly ap- 
plicable. Then 

J np/K16, f npK17/K16. (8.125) 

8.5.5 Simulation Results 

The algorithm is first applied to simulated “data” to see how it performs 
under ideal conditions. In particular, the simulations are helpful in eval- 
uating the usefulness of the parametric error indices. Here, a two pole- 
pair (np = 2), three-phase induction motor model was simulated using 
SIMULINK with parameter values chosen to be 

Rs = 9.7 fl, RR = 8.6 fl, Ls = LR = 0.67 H 
M = 0.64 H, 0 = 0.088, J = 0.011 kg-m2, TL = 3.7 N-m. 

A 2048-line position encoder and 12-bit A/D converters were included in 
the simulation model in order to make the simulation data closer to actual 
experimental measurements. These values correspond to a 1/2-kW machine 
with a synchronous frequency of 50 Hz. These machine parameter values 
correspond to  the following K values: 

K1 

K6 

K11 

= 

= 

= 

299.15, K2 = 10.42, K3 = 17.05, K4 = 1717.18, Ks = 12.84 

3839.8, K7 = 133.78, K8 = 0.0779, Kg = 23.31, Klo = 0.8120 

0.0061, Kl2 = 1.82, K13 = 0.1035, K14 = 218.83, K15 = 1.328 

for the electrical parameters and to 

K16 = 181.82, K17 = 336.36 

for the mechanical parameters. 
Figure 8.30 shows the simulated speed response (from standstill) of the 

induction motor after a balanced (open-loop) set of three-phase voltages of 
amplitude 466.7 V and frequency 50 Hz was applied to the machine. 

The “data” { u s a ,  U S b ,  isa, i S b ,  6} were collected between 0 sec and 0.2 sec. 
The quantities US,, US,, dus , /d t ,  d u g y / d t ,  is,, is, dis , /dt ,  d i s y / d t ,  d 2 i s x / d t 2 ,  
d 2 i s y / d t 2 ,  w = dO/dt ,  and b / d t  were calculated and the regressor matri- 
ces Rw, R,, and Rw, were computed. The procedure explained in Section 
8.5.2 was then carried out to compute K4, K6, K8, and KI4. In this case, 
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Parameter True Value 
K16 181.8 
K17 336.4 

there was only one extremum point that had positive values for all the Ki. 
The table 

1717.2 1743.4 13.23 
3839.8 3917.5 24.59 
0.0779 0.0780 0.00031 

K14 218.8 222.2 8.27 

compares the electrical parameter values determined from the nonlinear 
least-squares procedure to  their actual values (which are known only be- 
cause this is simulation data). Also given in the table are the correspond- 
ing parametric error indices. The residual error index for the parameters 
K4, K6, Kg, and K14 was computed to  be 3.15%. 

Estimated Value Parametric Error Index 
195.3 4.29 
359.3 9.78 

160 

140 - 

120 - 

0.2 
-20 

0 0.05 0. I 0.15 

Time in seconds 

FIGURE 8.30. Rotor speed versus time. 

compares the mechanical parameter values determined from the least-squares 
procedure to their actual values along with the corresponding parametric 
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Parameter True Value 
TR 0.0779 sec 
a 0.088 

L S  0.67 H 
R S  9.7 ohms 
J 0.011 kg-m2 

T L  3.7 N-m 

error indices. The residual error index for the mechanical parameters K16 

and K17 was computed to be 4.26%. 
The Hessian matrix for the identification of the parameters K4, K6, K8, 

and K14 was calculated at the minimum point according to (8.115), result- 
ing in 

Estimated Value 
0.0780 sec 
0.086 
0.6698 H 
9.8 ohms 
0.010 kg-m2 
3.68 N-m 

7.534 0.2175 40.33 -89.39 
0.2175 18.04 10.17 -44.35 
40.33 10.17 5.308 x lo4 1.112 x lo3 

-89.39 -44.35 1.112 x lo3 1.876 x lo3 

8.5.6 Experimental Results 

A three-phase, 0.5-Hp1 1735-rpm (np = 2 pole-pair) induction machine was 
used for the experiments. A 4096-pulse/rev optical encoder was attached to 
the motor for position measurements. The motor was connected to a three- 
phase, 6O-Hz, 230-V source through a switch with no load on the machine. 
When the switch was closed, the stator currents and voltages along with the 
rotor position were sampled at 4 kHz. Filtered differentiation (using digital 
filters) was used for calculating the acceleration and the derivatives of the 
voltages and currents. Specifically, the signals were filtered with a low-pass 
digital Butterworth filter followed by reconstruction of the derivatives using 
d z ( t ) / d t  = (z( t )  - z(t  - T ) )  /T,  where T is the sampling interval. The 
voltages and currents were put through a 3-2 transformation to obtain 
the two-phase equivalent voltages usa and U S b  which are plotted in Figure 
8.31. 

The sampled two-phase equivalent current isa and it simulated response 
is, $irn are shown in Figure 8.32 (the simulated current isa sirn is discussed 
below). The phase b current i ~ b  is similar, but shifted by 7r/(2np). The 
calculated speed w (from the position measurements) and the simulated 
speed wSim are shown in Figure 8.33 (the simulated speed w,im will also be 
discussed below). 
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I I 
5.5 5.55 5.6 5.65 5.7 5.75 5.8 

Time in seconds 

FIGURE 8.31. Sampled two-phase equivalent voltages usa and U S b .  

-20 
5.56 5.58 5.6 5.62 5.64 5.66 5.68 5.7 5.72 5.74 

Time in seconds 

FIGURE 8.32. Phase a current isa and its simulated response isa s im . 
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I 1 

1 
5 4  5 5  56 5 7  5 8  5.9 6 6.1 62 63 6.4 

Time in seconds 

FIGURE 8.33. Calculated speed w and simulated speed wslm. 

Using the data (US,, uS6, isa, i S b ,  8 )  collected between 5.57sec to 5.8 sec, 
the quantities uss, usy, dusJdt, d u S y / d t ,  i sx ,  is, disz /dt ,  d i s y / d t ,  d 2 i s x / d t 2 ,  
d 2 i s y / d t 2 ,  and w = d$/dt,  dw/& were calculated and the regresmr matri- 
ces Rw, R,, and Rw, were computed. The procedure explained ia7 Section 
8.5.2 was then carried out to cumpnte K4, Ks, Ks, and K14. In this case, 
there was only one extremum point $hat had posztzve values for all khe K,. 
The table below presentsathe parameter values determined using the nodin- 
ear least-squares methodology along with their corresponding parametric 
error indices. 

519.7 185.8 
1848.3 796.4 
0.1311 0.0103 

K14 259.5 59.4 

The residual error index was calculated to be 13.43%. The motor’s electrical 
parameters are computed using (8.101) to obtain 

Rs = 5.12 ohms 

TR = 0.1311 sec 

Ls = 0.2919 H 
c = 0.1007 

(8.126) 

(8.127) 
(8.128) 

(8.129) 
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Parameter 

K16 

K17 

By way of comparison, the stator resistance was measured using an ohmme- 
ter giving the value of 4.9 ohms and a neload test was also run to  compute 
the value of LS resulting in 0.33 H. 

The Hessian matrix for the identification of the parameters K4, K6, K8, 
and K14 was calculated at the minimum point according to (8.115), result- 
ing in 

Estimated Value Parametric Error Index 
952.38 126.92 
0.5714 0.1528 

0.0574 0.1943 -0.0034 -0.7655 
0.1943 2.584 10.17 -44.35 

-0.0034 10.17 631.4 193.8 
-0.7655 -44.35 193.8 3012 

which is positive definite and has a condition number of 8.24 x lo4. 
Using the electrical parameters, the rotor flux linkages ( M / L R )  7,hRz and 

(M/LR)$,, were reconstructed and used to identify the mechanical pa- 
rameters. The table below gives the estimated values and the parametric 
error indices. 

The residual error index was calculated to  be 18.6%. The corresponding 
values for the motor parameters J and f are then computed using (8.125) 
to obtain 

J = n,/K16 = 0.0021 kg-m2 (8.130) 

f = nPK17/K16 = 0.0012 N-m/rad/sec. (8.131) 

Simulation of the Experimental Motor 

Another useful way to evaluate the identified parameters (8.126)-(8.129) 
and (8.130)-(8.131) is to  simulate the motor using these values with the 
measured voltages as input. One then compares the simulation's output 
(stator currents) with the measured outputs. To proceed in this manner, 
recall that only Rs,TR, Ls,  and o can be identified, but this is all that is 
needed for the simulation. Specifically, defining 
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the model (8.88) may be rewritten as 

where 

Rs 1 1 M 2  
- = (1 ~ a)  L s , y  = - + --- M2 

LR r~Ls  OLSTR LR 

The model (8.132) uses only parameters that can be estimated. The exper- 
imental voltages shown in Figure 8.31 were then used as input to a simula- 
tion of the model (8.132) using the parameter values from (8.126)-(8.129) 
and (8.130)-(8.131). The resulting phase a current isa s i m  from the sim- 
ulation is shown in Figure 8.32, and corresponds well with the actual mea- 
sured current is,. Similarly, the resulting speed wsim from the simulation is 
shown in Figure 8.33, where it is seen that the simulated speed is somewhat 
more oscillatory than the measured speed w.  

Remarks As explained above, A 4  is not identifiable by the above method. 
However, it can be (and often is) estimated by assuming that LR = LS 
(rotor and stator leakages are equal) so that M = JLsLR (1 - a )  = 

L s G .  For the above experimental motor, this gives A4 = 0.2768 H. 
Under this same assumption, an estimate for the rotor resistance is given 
by RR = LR/TR = Ls/TR = 2.23 ohms. 

The combined parameter identification and velocity estimation problem 
is considered in Refs. [93][94][95][96] while in Ref. [97] the sensitivity of 
measurable outputs to the machine parameters are discussed. 

During operation of the machine, the values of the rotor time constant 
TR = LR/RR and the stator resistance Rs change due to ohmic heating. If 
one is only concerned with the online identification (tracking) of these two 
parameter values, then the problem simplifies considerably. This particular 
case has been developed in [98] (see also [99]). 
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Appendix 

Elimination Theory and Resultants 

Given two polynomials a(z1,z2) a.nd b ( q , z 2 ) ,  how does one find their 
common zeros? That is, the values ( z 1 0 , ~ o )  such that 

a(z10,z20) = b(z10,520) = 0. 

Consider a(z1, z 2 )  and b(z1, z2) as polynomials in z2 whose coefficients are 
polynomials in 21. For example, let, a(z1, 5 2 )  and b(z1, z2) have degrees 3 
and 2, respectively, in 5 2  so that they may be written in the form 

Then there exist polynomials a(z1,z2) and P(zl,z2) of the form 

a(z1,zz) = a1(21)52 + Qo(Z1) 

P(z1,zz) = P,(zCl)z; + P l ( Z l b 2  + P,(Zl) 

that is, satisfying 

and a polynomial r(z1) in one variable such that 

The polynomial r(z1) is called the resultant polynomial. So if a(z10,zzo) = 

b(z10,z20) = 0, then ~ ( 5 1 0 )  = 0. That is, if (z10,z20) is a common zero 
of the pair {a(z1,z2),b(x1,z2)}, t.hen the first coordinate 210 is a zero of 
r(z1) = 0. The roots of ~ ( z 1 )  are easy to  find (numerically) as it is a poly- 
nomial in one variable. To find the common zeros of {a(z1,z2), b ( z l , z z ) ) ,  
one computes all roots zli, i = 1, ..., n1, of r(z1). Next, for each such zli, 

one (numerically) computes the roots of 

and the roots of 
b(zli,z2) = 0. (8.134) 

Any root zZJ that is in the solution set of both (8.133) and (8.134) for a 
given zlz results in the pair (zl2, zzJ)  being a common zero of a(zl,z2) and 
b(z1,zz). Thus, this gives a method of solving polynomials in one variable 
to compute the common zeros of {a(z1,22), b(z1, zz)} .  
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- - ao(z1) 0 bo(z1) 0 0 
al(z1) ao(.1) bl(Zl)  bo(z1) 0 
a2(21) al(z1) bz(z1) bl(Zl) bo(z1) 
a3(21) a2(z1) 0 b2(z1) bl(z1) 

- 0 a3(21) 0 0 bz(z1) - 

To see how one obtains r(z1), let 

a(zl,z2) = a3(zl)z; + a2(zl)z; f a1(51)22 + aO(z1) 

(8.135) 

b(z1,zz)  = b 2 ( z 1 ) 4  + b1(z1)572 + bo(z1). 

Next, one sees if polynomials of the form 

Q O ( Z 1 )  - - r(x1) - 
Ql(X1) 0 
Po(z1) 
Pl(Z1) 

P2(.1) - - - 

= o .  
0 1 0 

(8.136) 

can be found such that 

where adj(Su,b(zl)) is the adjoint matrix and is a 5 x 5 polynomial matrix 
in 21. Solving for ~ i (z1) , /3~(~1)  gives 

If r(z1) is chosen as r(z1) = det sa ,b(z1) ,  then 
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This then guarantees that 

Q O ( Z 1 L  a1 ( Z l L  PO(ZI) ,  P1 (a), P Z  (21 1 
are polynomials in X I .  That is, the resultant polynomial is defined by 

r ( q )  
In summary, the polynomials {a(x1,52), b(z1 ,  22)) have a common zero 

at (210,220) only if r(zlo) det Su,b(xlO) = 0. For an arbitrary pair of poly- 
nomials { a ( z ) ,  b(z)} of degrees nu and n b  in z, respectively, the Sylvester 
matrix Sa,b is of dimension (n, + n b )  x (nu + n b )  (see Refs. [89][90][100]). 

Remark It was just shown 'that if U ( Z I O , X Z O )  = b ( z 1 0 , z ~ o )  = 0,  then 
~ ( 2 1 0 )  A det Su,b(xlo) = 0 as a simple consequence of (8.137). Does 

det SU,b(z1) and is the polynomial required for (8.137) to hold. 

~(210) A det SU,b(x10) = 0 

imply that there exists 220 such that 

a(z10,220) = b(z1o1z2o) = O? 

Not necessarily. However, the answer is yes if either of the leading coeffi- 
cients in 22 of u ( z ~ , x ~ ) , ~ ( L c ~ , x ~ )  are not zero at 510, that is, u3(z10) # 0 
or bz(z10)  # 0 (see [89][90][100] for detailed explanations). 

Example Let 

u(z1,zg) = z; + 2 2  + Z l  

b(z1,zz) = -212; + 2 2  + 1. 

The resultant matrix is 

ao(z1) 0 bo(z1) 0 2 1 0  1 0  
U l ( Z 1 )  ao(z1) bl(2l) bo(z1)  
u2(21) UI(21) b2(21) b l ( X 1 )  

0 a2(21) 0 bz(z1)  -21 

~ ( 2 1 )  = det SU,b(x1) = (3 + x; )z f  

and the resultant polynomial is 

with roots 
{ 0, 0, j h ,  - j h }  . 

The root at 21 = 0 gives 

a(O,z2) == 2; + 2 2  = 0 

b(0,22) = 2 2  + 1 = 0 

((01 -111 
making 
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a common zero. 
The root at 21 = j f i  gives 

a ( j h ,  2 2 )  = 2; + 2 2  + j h  = 0 

with roots 

{;-j2G-;+j2G} 

and 
b ( j h , 2 2 )  = -id&; + 2 2  + 1 = 0 

The only common zero is then 

( j h , - - j -  t :) . 

Similarly, the root at 51 - j& results in the common zero 

The set of common zeros of a(z1,z2) and b ( q ,  2 2 )  is 

Problems 

Mathematical Models of the Induction Motor 

Problem 1 State Space Form 
Derive the state-space representation (8.5) from the representation (8.4). 

Problem 2 Induction Motor Model in the Space Vector Formulation 

sentation 
The derivation of the model (8.4) is easier using the space vector repre- 

d .  d .  
dt-  dt -R 

R& + L R - z ~  + M -  (z e-jnpe) = 0 

RsYs + Ls--zs + M -  (z ejnp8) = gs 

d .  d .  
dt - dt -' 

dw 
dt 

n,M Im{&(&ejnp8)*} - TL = J-. 
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To see this, define new (fictitious) flux linkages as 

-R $ ’ $Ra j$Rb &ejnPe = L&ejnpe + M i ,  

and show that system of equations for the induction motor can rewritten in 
the space vector fo rm as 

where p a n,M/(JLR),  o 1 - M 2 / L s L ~  is  the leakage factor, and 
TR L R / R R  is the rotor time constant. This problem illustrates the power 
of the space vector representation as the manipulations of the equations are 
carried out using (complex) scalar variables rather than dealing with matrix 
multiplications, matrix inverses, and so on. 

Problem 3 Induction Motor Model in Terms of the Flux Linkages 
With ASa, X S b  the f lux linkage in stator phases a and b respectively, define 

As A AS, + j X s b  !? Lsis f &fiRefjnpe. 

Similarly, let A R ~  and ARb be the flux linkage in rotor phases a and b, 
respectively, and define 

A 
AR a X R ~  + j A ~ b  := L& + MUSeCinpe 

(a) Show that the electrical equatiom of the induction motor may  be written 
as 

(b) Using the fact that 

show that 
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is a representation of the induction motor in terms of As A XSa+jXSb, A, A 
XRa + jXRb, and W .  

Problem 4 Field-Oriented Induction Motor Model 
The space vector model of the induction motor 

A A is derived in problem 2. Let gR = +Ra + j$Rb = +dejp where $d = 

d m ,  p 4 tan-l($Rb/$Ra) and further let G, a i d  +ji, = ise-jp,  

and %, = u d  + ju, = gse-Jp. 
(a) Find the field-oriented space vector representation of the induction 

motor, that is, in terms of $d,p,&, = zd + j i q ,  and %, = u d  +ju, 
(b) Use the answer from part (a)  to find a state space representation 

of the field-oriented induction motor model, that is, in terms of the state 
variables i d ,  i,, $ d ,  p, w, and 8 and the inputs U d  and u,. 

Problem 5 Stator Flux Induction Motor Model 

A 

A .  A 

(a) The stator flux linkage is  given by 

As = Lsis f M ( i R e j n p Q )  = Xseips. 

Rewrite the system model 

d .  d .  
dt - dt -R 

Rsis + Ls-zs + M -  (z ejnpQ) = as 

R R & + L R - Z ~ + M - ( Z  d .  d . e -jn,o ) = 0 
dt-  dt -' 

dw 
n p M I m { ~ s ( ~ R e ~ " p Q ) *  } - T L  = J-  dt 

in terms of Xs,ys, and w. 
(b) Put the result from part (a)  in state space form. 

Problem 6 $d and $, 
Show that cos(p) = $ R a / $ d ,  sin(p) = $Rb/+d, and 

cOs(P) sin(p) $Ra [ :z ] [ -sin(p) cos(P) ] [ $ R b  ] 
where $, = 0. 
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Feedback Control and Reference Trajectories 

Problem 7 Tracking a Constant Flux Reference 
Let eo = s,'($dO - q d ) d t  and el = $do - $d and assuming that $do = 

Mido, show how to choose the gains K+p and K+I in (8.20) so that eo( t )  4 

O,el( t )  + 0 as t + 00. 

Problem 8 Trajectory Tracking via Field-Oriented Control 
Let eo = so ( O T e f  - 6)d t ,  el = OTef  - 8, e2 = wTef - w, and, assuming that 

$d = $do ,  show how to choose the gains KO, K1, and K2 in (8.19) so that 
the closed-loop poles are in the open left-half plane located at -r1, -r2, -r3 

(r1 > O l r 2  > 0,rg > 0). If r L  is constant, show that e l ( t )  4 O,ez(t)  + 0 
as t --j 03. (Hint: Review Chapter 2.) 

Problem 9 Back Emf 
With reference to the field-oriented model (8.9) of the induction motor, 

explain why Mn,w$,/LR is the back emf. (The term "back emf" refers 
to the voltage v b a c k e m j  that results in energy conversion from electrical to 
mechanical, that is, ig-vbackemf  = rw.) 

Problem 10 Tracking a Time Varying Flux Reference 

8.2.4. Let $ d T e f ( t )  be a desired flux reference with i d r e f  chosen to satisfy 

t 

Consider the znput-output linearization controller presented in Section 

d$dTe f ldt = -v$dTe f + v M i d T e  f 

Choose 

t and with eo = so ( $ d T e f  - ?,hd)dt,el = $dTef  - $d, show how to choose the 
gains K+p and K+I such that eo( t )  ---f 0,  e l ( t )  ---f 0 as t co. ( I n  practice, 
i d r e f  is usually set to zero with no significant deterioration in tracking.) 

Problem 11 Trajectory Tracking Via Input-Output Linearization 
With eo = S,"(OTef - 6)dt ,  el = O T e f  - 6, e2 = wT,f - w show how to 

choose the gains KO, K1, and K2 in (8.32) so that the closed-loop poles are 
in the open left-half plane located at -r1, -1-2, - r g  (r1 > O , r 2  > 0,rg > 0) .  
Show that if if^ is  constant, then e l ( t )  + O,ez(t)  + 0 as t + co. 

Problem 12 Field Weakening 
Explain why field weakening is only needed when the induction machine is 

motoring (accelerating). That is, even i f  the motor is running at high speed, 
but one wants to decelerate it down to zero (so i t  i s  generating rather than 
motoring), then the voltage limit V,,, is not a constraint in bringing the 
f lux $d back up to $do.  (However, most amplifiers are switching amplifiers 
and the blocking voltage rating of Ihe switches must be respected.) 
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Problem 13 Maximum Torque 
In  steady state the currents in a two-phase motor are of the form is, = 

Show that the steady-state torque r = J,u.lctdoi,o = J,uMidOiqO subject to 
izo + iio 5 I;,, is maximized by  choosing i d 0  = i , ~  = Ima, / f i .  This is 
used only at lower speeds where the voltage constraint u i ,  f u i b  5 V,,, will 
not be violated. (Note that if, for example, I,,, = 6.0 A ,  then one might 
choose i d 0  = 5 . 5 / f i  so as to not operate at the current limit.) 

ICOS(Wst+#s),iSb = ICOS(Ustf#s-T/2) SO t h a t i ~ o + i ~ o  = igaf2ib = 12. 

Problem 14 Closed-Loop Poles of the Field-Oriented and Input-Output 
Controller 

(a) Using the motor parameters given in Section 8.2.2 and the gains of 
the field-oriented controller given by  (8.22) and (8.23), compute the closed 
loop poles of the mechanical trajectory tracking error system as well as the 
closed-loop poles of the flux tracking error system. 

(b) Repeat part (a) using the gain values of the input-output controller 
of Section 8.2.5. 

Problem 15 Simulation of an Input-Output Linearization Controller 
Let the parameters of the system be np = 3, M = 0.0117 H, RR = 3.9 

R, R s  = 1.7 R, LR = 0.014 H, Ls = 0.014 H, f = 0 N-m/rad/sec,and J = 

0.00011 kg-m2, i d 0  = 5 . 5 / f i ,  $do Mido, Wbase = 250 rad/sec,I,,, = 6 
A ,  v,,, = 60 v 1421. 

Simulate the complete input- output linearization controller for the in- 
duction motor. To simplify the matter, do the complete simulation in con- 
tinuous time and assume that both speed and position measurements are 
available. Specifically, 

Add the flux observer using equations (8.37). Check that this is work- 
ing by  comparing p and +d from the estimator with tan-l(+Rb/+R,) and 

d m  from the simulation of the motor. Note from (8.37) that the 
direct and quadrature currents id and i, are computed in the flux estimator. 

Add the PI current controllers described by (8.12) to the simulation so 
that the setup of Figure 8.3 results. Check that current controllers are work- 
ing by  commanding constant currents i d ,  = i d 0  and i,, = i,o to see if 
i d  --f i d o ,  i, + i , ~ ,  respectively. 

Choose i d ,  and i,, as given an (8.27) where u1 is  chosen as given in 
(8.31) and u2 is chosen as given in  (8.32). Let the flux reference be given 
by  (8.24) where Wbase = 250 rads/sec and +do = Mido with i d 0  = 5.5/&?. 
Also, just take idref = 0. 

Add the trajectory generator to the simulation. 
(a) Try a trajectory specified by w,, = 75 rads/sec, tl = 0.025 sec and 

0f = T .  Set the gains of the system to obtain tracking of the mechanical 
trajectory (ere,, w,,f) and the flux reference +do,  and run the simulation. 
Do you need to let the flux +d build up before starting the 180" turn? 

(b) Try a high-speed trajectory specified by  w,,, = (2~/60)8000 = 838 
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rads/sec, tl = 1.5 seconds, t 2  = tl+O.1 sec (Of  = w,,,t2). Set the gains of 
the system to obtain tracking of the mechanical trajectory (8,,f, w r e f )  and 
the flux reference +dre f ,  and run th,e simulation. 

Problem 16 i d r e f  

Given a mechanical trajectory mechanical trajectory (6,ef W r e f  , Ctre f )  , 
show how to obtain the reference current i d r e f  corresponding to the f lux 
reference $dre f specified by  (8.24). 

Problem 17 Nested Loop Control Structure [2] 
Consider the (nested loop) control structure of Figure 8.34 following Fig- 

ures 12.14 and 12.27 of Ref. [2].  The block labeled “induction motor” is con- 
sidered to be the model (8.9) with the decoupling feedback (8.10) applied, 
that is, the system (8.11). Using the model (8.11), and the controller given 
in Figure 8.34 with $dref  given by  (8.24), do an analysis of this controller. 
I n  particular, with +dref  constant, can you show how to specify the con- 
troller gains so that the closed-loop system is stable? What if +dref is not 
constant? 

vq 
- 

zref 
Ksp + K @ / s  KWP + %I KtP + G I  J s  - 

induction 
6 w z = Jpvdiq Motor 

FIGURE 8.34. Nested loop control structure for the induction motor 

Field Energy and Torque 

Problem 18 Torque from Conservation of Energy 

(8.9) by  aL& and add to obtain 
(a) Multaply the fourth equation of (8.9) by U L S i d ,  the fifth equation of 

1 d -2 
i d u d  + iquq = -flLs- (zd + 2;) + aLsy  (2: f 2;) - ( v M / L R ) + d i d  2 dt 

+ ( n , M I L R ) 4 J d i q .  

(b) I n  Chapter 6 it was shown that the field energy (the energy stored in 
the magnetic field of the air gap) is given by 
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Show that in the (isa, i S b ,  $Ra, +Rb, 8, w )  coordinate system, the field energy 
is given by 

and therefore in the dq coordinate system it  is  given by 

(c)  Conservation of energy (power) requires that 

where r w  is  the mechanical power produced. Rewrite this in the field-oriented 
coordinate system and compare with the answer to part (a) to conclude that 
7 = (npM/LR)$diq.  

Observers 

Problem 19 Discretization of t he  Flux Observer 
Using Euler's approximation for  the derivatives, that is, 

6Ra( lCT)  

6 R b ( l C T )  (+Rb((lC + - +Rb(lCT))  /T 
(+Ra((lC + 'IT) - 4 R a ( k T ) )  IT 

a discretized version of (8.34) is  given by 

+Ra((k + 1)T) = (1 ~ vT)+R,(kT) - npTw(kT)+Rb(kT)  + v M T i s a ( k T :  

$Rb((k + 1)T) = npTw(kT)+Ra(kT)  + (l - vT)$Rb(kT) + vMTisb (kT> 

A n  observer fo r  this discretized system is  then a discretized version of (8.35) 
given by 

~ R , ( ( I c  + 1 ) ~ )  = (1 - V T ) ~ ~ , ( ~ T )  - npTW(kT)4Rb(kT> + v M T i s a ( k T :  

GRb((k + 1)T) = npTw(kT)$Ra(kT)  + (1 - vT)GRb(kT)  f vMTisb (kT1  

Simulate this discrete version of the observer (8.35) with the inputs to the 
motor given by  usa = V c o s ( w s t ) ,  U S b  = V s i n ( w s t ) ,  w s  = (27r)60 rad/sec, 
v = 80 v, and T L  = 0.  Plot out the discrete estimates GRa and $Rb  and 
compare with the actual values $Ra and $Rb,  respectively. Try sample rates 
of 2 kHz, 10 kHz, and 20 kHz. 

Problem 20 Stability of a Discrete Flux Observer 

define 
Consider the stability of the discrete-time flux estimator of problem 19, 

eRa((k + 1)T) $Ra((k + - GRa((k + l)T) 

eRb((k + 1)T) $Rb(( lC + l)T) - G R b ( ( k  + 
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and show that these error variables satisfy 

Next, dejine the discrete-time function V ( k T )  as 

and show that 

V ( ( k  + 1 ) T )  = ( ( 1  - ~ 7 ' ) ~  + (n ,w(kT)T)2)  V ( k T ) .  

Use this to j ind the conditions on the sample period T and speed w such that 
V(lcT) --f 0 as t + co. In  particular, jind the value of T that minimizes 
(1 - v T ) ~  + (npwmaxT)2,  where w,,, is the maximum speed the motor is to 
be run. With wmax = 2 ~ ( 6 0 )  rads/sec and sample rates of330 Hz, 1 ICHz, 
and 10 kHz, is the system (8.35) stable? Are your results consistent with 
your simulation? 

Problem 21 Discretization of the Flux Observer in the Field-Oriented 
Coordinate System 

Simulate a discrete-time version of the equations (8.37). Plot out the 
discrete estimates jj and G d ,  compute GRa = Gd cos(jj) and GRb = G d  sin(jj) 
and compare with $Ra and $Rb,  respectively. Try sample rates of 330 Hz, 
1 kHz, and 10 kHz. 

Problem 22 Discretization of the Flux Observer Equations [73] 

them in  the form 
Consider another discretization of the f lux equations (8.34) by  writing 

(a) Assuming that w ( t ) , i s a ( t ) ,  and i S b ( t )  are constant over the sample 
period T ,  show that 

w h e r e r e  [ y],.Je [ 0 -1 ] 1 0  
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(b) Using the expressions 

eat 
eatcos(bt)dt = ~ (acos(bt)  + bsin(bt))  J a2 + b2 

ea('2-t) 
ea(T--t) cos(b(T - t ) ) d t  = -~ (acos(b(T - t ) )  + bsin(b(T - t ) ) )  s a2 + b2 

eat 
a2 + b2 

eat sin(bt)dt = ~ (asin(bt)  - bcos(bt)) 

ea(T--t) 
(asin(b(T - t ) )  - bcos(b(T - t ) ) )  ea(T-t) sin(b(T - t ) ) d t  = -~ J a2 + b2 

show that 

J 

1 e(-qI+n,w(kT)J)T cos(nPw( IcT)) - sin(n,w( IcT) 
cos( npw ( IcT) ) sin ( nPw ( IcT) ) 

and 

1 e-qTdl ( k T )  + 7 
e-qTd2(kT) + n,w(lcT) 

-e-qTd2(IcT) - n,w(kT) 
e-qTdl(IcT) + 7 

where 

A dl(lcT) = -qcos (n ,~ ( IcT)T)  + n,w(kT) sin(n,w(lcT)T) 

d2(IcT) f -7sin(npw(IcT)T) - n,w(IcT) cos(n,w(kT)T) .  

(c)  Use this discretization of the flux linkage equations to define an ob- 
server. 

(d) With the flux estimate error defined by  

e m ( ( k  + 1 ) ~ )  +Ra((Ic + 1 ) ~ )  - 4Ba((k + 1)~) 
eRb((k + 1)T) $Rb((lC + 1)T) - 4Rb((k  f l ) T )  

use the (Lyapunov) function 

V ( W )  A eLa(lCT) + e2Rb(IcT) 

to show that 
v ( ( I ~  + 1 ) ~ )  = e-2qTV(IcT). 

(e)  Simulate this discrete-time flux observer with the inputs to the motor 
given by  usa = V c o s ( w s t ) ,  U S b  = V s i n ( w s t )  where ws = (27r)60 rad/sec 
and V = 80 V ,TL = 0. Plot out the discrete estimates 4Ra and GRb,  and 
compare with their actual values $Ra and $Rb.  Try sample rates of 330 Hz, 
1 IcHz, and 10 ICHz. 



8. Induction Motor Control 577 

Problem 23 Flux Observer Based on  Position Measurements [67] 

to ( s , $ ~ )  where s ( t )  a p ( t )  - n,O(t) and show that 
Consider the flux observer (8,37). Make a change of variables from (p, $ d )  

&d 

dt 

where 
fi(t) 2 n,O(t) + s( t )  

is an estimator fo r  p,$d. Note that this f lux estimator requires the stator 
currents and rotor position, but not the rotor speed. 

Problem 24 Speed Observer 
(a) Implement a discretized version of the speed observer 

= i j+e,(ec - 6 )  d6 
dt 
- 

using the Euler approximation f o r  the derivatives where O c ( t )  a & N ( t )  in 
which N ( t )  is the position of the motor in encoder counts. Set the znputs to 
the motor as usa = V c o s ( w s t ) ,  U S b  = V s i n ( w s t )  (WS = (2.ir)60 rad/sec, 
and V = 80 V ) .  To simulate the encoder count N ,  simply set N = 

f l o o r ( y O ) ,  where f loor (x)  is the largest integer less than or equal to x. 
(b) Compare the speed estimate ii from the observer with that obtained 

from numerically dzfferentiating the output of the encoder as 
C q ( k T )  = (O,(kT) - O,((k - 1)T)) / T .  Also, compare with the actual speed 
w.  i?y sample rates of 1 kHz, 2 kHz, and 10 kHz. 

(c)  Show that a (Euler) discretized version of the error equations for the 
above speed observer are given by 

1 - t1T T ] [ 4;; ] [ e2(k+  1) ] = [ - e 2  1 
e l ( k  + 1) 

where T is  the sample period, el and e 2  are the observer gains, e l ( k )  = 

O,(kT) - 6(lcT) and ea (k )  = w(lcT) - k ( k T ) .  Compute the eigenvalues of 
the error system in terms of T ,  e l ,  and t 2 .  Is the discretized speed observer 
stable, that is, are the magnitudes of the eigenvalues less than 1 for the 
gains and sample rates chosen in your simulation? 
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Problem 25 Speed and Load-Torque Observer 
Consider a modification of the speed observer to estimate any constant 

(or, slowly varying) load torque. Specifically, with the load torque T L  as- 
sumed constant, consider a speed and load-torque estimator given by 

= o i + e , ( o - e )  
d8 
dt 
- 

(a) With el = 0 - 8,eZ = w - LI, and e3 = r L / J  - i L / J ,  find the 
equations describing the error system assuming i j d i q  = G d i q -  For an ap- 
propriate choice of the observer gains ! I , & ,  and l3, show that e(t)  = 
( e l ( t ) , e z ( t ) , e a ( t ) )  + 0 as t -+ m. 

(b) Assume that G d i q  # Gdiq, but that their difference is constant. That 
is, let E ~ /  = pGdiq - ,u$diq be constant. Show that i t  still true that el ( t )  = 

O ( t )  - 8( t )  -+ 0 and e2(t)  = w ( t )  - &(t )  + 0 as t + 00. 

A -  

Problem 26 Flux and Speed Observer 
Consider the following approach to estimating the flux linkages and speed 

simultaneously. The stator currents isa and i S b  and flux linkages GRa and 
GRb are rotated by the angle n,O to obtain 

cos(n,O) sin(n,O) [ ] 4 [ -s in(npo)  cos(n,o) ] [ tg ] 

The currents is, and isy are known as the angle 0 is measured. Note also 
that GRx = X R ~  and GRy = X R b ,  that is, they are the actual f lux linkages in 
the rotor windings as given in (8.2). I n  order to estimate the load torque, 
it is modeled as a constant so that its dynamic equation is taken to be 
d ( r L / J ) / d t  = 0.  

(a) I n  terms of the new state variables isx,isy,?,bRx = XRa, and $ R ~  = 
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&b, show1SThat 

The key poznt here zs that zn thzs state-space representatzon, the (unmea- 
sured) speed w has been eliminated fron ithe flux equatzons. 

(b) Define an estzmator for (the j h x  Iznkages, speed, and load torque by 

n A A 
With e R x  = $Rx - $RX,eRy = $Ry - $ B y ,  e0 

err. = rL/J - +L,  show that the error system is given by  

RR 

8 - 8 ,  e,  = w - ij, and 
A 

- -  _ _  - 
deRx 

dt LR eRx 

f 
= p(iSyeRx - i SLeRy)  - -e, - erL - &(8 - 8) de, 

dt  J 
- 

(c) As  long as the currents isx and isy are bounded (consistent with the 
assumed current-command operation), show that the error system is stable. 
Note that the rate of convergence o f  the error dynamics of this observer is 
still limited by  the rotor time constant TR = LR/RR = 1 f q  [73]. 
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Flux Observers with an Arbitrary Rate of Convergence 

Martin and Rouchon [74] [75] have developed an observer that generalizes 
the results of Verghese and Sanders [73] presented in Section 8.3.3. Specif- 
ically, their method results in an error system with complex eigenvalues 
whose rate of convergence can be arbitrarily specified. This is outlined in 
the next problem. 

Problem 27 Martin-Rouchon Observer [74] [75] 
The equations in space vector form may be written as 

d 
d t -  Rsis + -As = US 

(8.138) 

where is = isa + jisb, and so on, and the flux linkages and currents are 
related by  

A As = XSa + j X s b  A LSis + 
(8.139) 

A AR = XRa j X R b  A LR& + Mise-36R. 

(a) Rearrange the first equation of (8.139) to obtain 

1 
= - (As - L s i s )  

and show that substituting this into the second equation of (8.139) results 
in 

LR ARejeR = -A +  OM^^ 
A4 -s 

where u = 1 - M’/(LsLR).  
(b) Multiply the second equation of (8.138) by e-ieR and substitute the 

expressions for &ejeR and XRejeR from part (a) into (8.138) to show that 
the electrical equations have the equivalent form 
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where c1 and c2 are complex gains to be chosen. 

(d) Set gA = As -As and gi = is --is and show the error system is given 
by 

More compactly, one may write 

(8.140) 
d 
dt- 
-& = ( RR - jWLR)& 

with the obvious definitions f o r g  a,nd A. 

and c2 appropriately. 
(e) Show the eigenvalues of A cun be arbitrarily assigned by  choosing c1 

( j )  Show that the solution to (8.140) is  given by 

(9) Show that c1 and c2 can be chosen so that s1 = sla +jslbsign(O(t)) and 
s2 = sza +jszbsign(6(t) )  are the eigenvalues of A with s la  < 0,  S l b  5 0,  
sza < 0,  526 

S2  + -- s+-. 

0. That is, they are the roots of the polynomial 

c2 C1  

D L R L ~  D L R L ~  

( A s  c1 and c2 are complex gains, this is  possible to do with s1 and s2 not 
being complex conjugates.) 

(h) Assuming s1 # s2 ,  show that the error E ( t )  is a linear combination 
of th,e complex exponentials 

S l a R R t  + slbsign(6(t))LRO(t) + j (slbsign(O(t))  R R ~  - S l a L R o ( t )  ) 
S z a R ~ t  + S ~ b S i g n ( @ ( t ) ) L d ( t )  f j (SZbS '@(O(t ) )  RRt - S Z b L R e ( t )  ) 

e 

e 

which decay to zero. 
Remark One may choose S l b  = 526 = 0 to simplify the expressions in part 

(h). However, as explained in [74][75], there is  an advantage in choosing c1 
and c2 such that s1 and s2 are not real. After the rotor position increases, 
LRo(t) typically is  much larger than RRt so that a faster convergence rate 
results by having S l b  and 326 both negative. 
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Dynamic Feedback Linearization 

The concept behind feedback linearization is to find a coordinate system 
transformation such that the nonlinear dynamics represented in the new 
coordinate system can be canceled out by state feedback. This is a quite 
appealing approach when such a transformation exists. This theory has 
been worked out in that (checkable) necessary and sufficient conditions exist 
to determine the existence of such a transformation (see the excellent books 
by A. Isidori [52], H. Nijmeijer and A. J. van der Schaft [loll, and R. Marino 
and P. Tomei [lo21 that described this theory is detail). However, it turns 
out that the system model (8.5) [or equivalently, the system model (8.9)] 
of the induction motor is not feedback linearizable [64]. Furthermore, the 
reduced-order model (8.13)-(8.16) with inputs id,, i,, and state variables 
w ,  $dl p is also not feedback linearizable. However, a quite interesting result 
is that for some dynamic systems which are not feedback linearizable, the 
addition of integrators in some of the inputs can result in the (higher-order) 
system being feedback linearizable [lo31 [lo41 [105]. This is a phenomenon of 
multi-input systems, in that a single-input system is dynamically feedback 
linearizable if and only if it is (statically) feedback linearizable [105]. This 
approach is explored in the next two problems. 

Problem 28 Addition of an Integrator to the d-axis Input [106][107] 
Consider the current command induction motor model as given in the 

system model (8.13)- (8.16) whose inputs are taken to be i d ,  and iqr. A so- 
called dynamic feedback linearization controller can be found by the addition 
of an integrator to the d axis of field-oriented model. Specifically, define 
x1 = w ,  x2 = $ d l  x3 = p and 5 4  = a&, dx4/dt = v l 1  v2 = agr so that the 
equations are now 

A A A A .  A A .  

More compactly, this may be written as 

with 
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(a) Consider the nonlinear state-space transformation given by  

z1 = x2 

23 = 5 1  - p x ; x 3 / ~ M  

22 = -7722+77M24 

z4 = %x2x3(x2 - Mx4)  - -22x1 PnP 2 - T L I J .  
M 77M 

Show that in these new coordinates, the system equations become 

- = z4 dZ3 
dt 

where 

(b) Show that application of the feedback 

results in  two decoupled second-order linear systems 

(c) The controller is singular when 

det[ bll b12 ] = -277Mp(-7722 + 77Mx4) - p2npxz = 0. 
b21 b22 
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Rewrite this singularity condition in the dq coordinates and show that it 
becomes 

-(2qMp)d$d/dt ~ p2np$2 = 0. 

Remark 1 This singularity can be avoided by  choosing, for  example, the 
input u1 to regulate $d to a positive constant so that dlltd/dt = 0. O n  the 
other hand, during field weakening when $d is reduced, this condition just 
restricts how fast $d can be decreased, that is, 

A t  start-up of the motor, when the flux is brought up from zero to its nom- 
inal value, the singularity is  not encountered as d$,/dt > 0. 

Remark 2 Note that none of the state variables zi are linearly related 
to the speed w. Consequently, dO/dt = w is not a linear function of the zi 
so that the position cannot be appended to the coordinate system defining 
the xi’s without losing linearity of the system. That is, if dO/dt = w = x1 

is appended to the zi coordinate transformation, then it is straightforward 
to show that the resulting system is not feedback linearizable (a similar 
situation arises in the case of a shunt-connected DC motor [55]). This 
situation also complicates the speed control design, as the speed is indirectly 
controlled through the input u2 vis-a-vis z3 = x1 - p x ~ x 3 / ( q M )  = w - 
p$zp/ ( q M ) .  For example, i f  a constant speed wo is desired, z3 = wo ~ 

p$zp/ ( q M )  must be tracked using the input u2. This is  sensitive to errors 
in the parameter values, as well as errors in the estimation of the state 
variables $d and p.  

Problem 29 Addition of an Integrator to the q-axis Input [106][107] 
It  is  quite natural to consider adding an integrator in the q axis of the 

system model (8.13)- (8.16) rather than the d axis for  comparison. To pro- 
ceed, let X I  = w, x2 = $ d ,  23 = p and 2 4  = iqr, dxeldt = v2,v1 = i d r  so 
that the system (8.13)- (8.16) becomes 

d x l l d t  1 pX2xq - T L / J  
dxz ld t  = -77x2 + ~ M V I  

d ~ 4 / d t  = 212. 

dx3/dt = npxl + qMx4/x2  

More compactly, this may be written as 

d x  
dt = f ( X I  + S l V l  + 91v2 - 

with 

€ R4. 
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A feedback linearizing transformation is then 

z1 = 2 1  

z2 = ~ ~ 2 x 4  - r L / J  

z3 = 2 3  

z4 = npxl + ~ M x ~ / x z .  

(a) Show that in these new coordinates, the system equations become 

- = 22 
dzl 
d t  

dt 
- -  dz2 al(:c) + vlbll + v2bn - 

where 

and bll = qMpx4,  bl2 = px2, b21 = -r12M2x4/x$, b22 = qM/x2 .  
(b) Show that application of the feedback 

I [ :; ] = [ 2 ;;; I- '  [ u2 - a2(x)  
u1 - a1(x) 

results in  two decoupled second-order linear systems 

dzl /d t  = z 2  

dzgldt = 24 

dzq/dt = 212. 

dza/dt = ~1 

results in two decoupled second-order systems as in the d-axis case. 
Remark This controller is singular when 

This singularity condition is com.parable to the condition that the torque 
r = Jp@da, = Jpx2xq # 0 given in  Ref. [108]. However, in contrast to Ref. 
[108], the approach here requires only a single transformation, and the re- 
sulting controller requires relatively little feedback computation. A drawback 
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here is the requirement that the quadrature current be nonzero (I)I~ > 0 is 
straightforward to maintain and is common to other controllers [1][64][70]). 
Consequently, to use this controller would require switching to another con- 
trol strategy when it is desired to change the sign of the torque. Note that, 
in contrast to the case where the integrator was in the d axas, one of the 
transformed state variables is the speed, which is easily controlled using 
the input u l .  B y  appending the state variable zo = 0 to the z-coordinate 
transformation gives a feedback linearizing controller f o r  position control. 
However, to avoid the singularity of the controller, it is still required that 
i, # 0. 

Problem 30 The Induction Motor is a Flat System [74][109] 
Another way of viewing dynamic feedback linearization is  through the no- 

tion of flatness of a system. The concept of a system being flat is  due to 
Michel Fliess [log] and has been applied to the induction motor by Martin 
and Rouchon [74]. The book [ l l O ]  by  H. Sira-Ramirez and S. K. Agrawal 
presents a nice introduction to the theory of flat systems in terms of ap- 
plications and the book [ l l l ]  by  G. Conte, C. H. Moog and A .  M. Perdon 
presents a nice introduction to the underlying mathematics. To motivate 
the concept of flatness, consider the Chua circuit example discussed by  Sira- 
Ramirez and Agrawal ([110],  p. 196), which is modeled by the third-order 
nonlinear system 

dXl 
- dt 

= P ( - 2 1  + x2 - x1 (1 - x i ) )  (8.141) 

(8.142) 

(8.143) 

where p and q are known constant parameters. Let the (’at) output be 
y = X I .  The state can be written as function of y and its derivatives as 
follows: 

x1 = Y 
x2 = $ / P + Y + Y ( l - Y 2 )  (rearranging (8.14 1)) 

d .  

t j /p + (2 + l / p )  y - 3y2y + y ( 1  - y 2 )  

x3 = - dt ( Y / P  + Y + Y(1  - Y”) + (G/P  + Y + Y ( 1  - Y”) - Y 

= (rearranging (8.142)) 

or, more compactly, 

x = cp(Y7YlY) R3 

Also, the input u can be written as function of y and its derivatives by 



8. Induction Motor Control 587 

rearranging (8.143) to obtain 

‘u. = - j i /P  + ( 2  + l / P )  Y - 3Y2Y + Y(1 - Y”) + 4 ( Y l P  + Y + Y O  - Y”) ... dt d (  
= Y / p  + ( 2  + l / p ) y  - 6yY - 3y2$ + j l  - 3y2Y + (q /p )$  + qy + qy(1 - y 2 )  

(8.144) 

= 4 ( y ,  y, y, ‘ji) E R. 

The notion of flatness refers to defining an output variable y such that both 
the state and the input can be written as a function of this output and its 
derivatives. Thus, the Chua circuit model is  a f lat  system. To see why the 
notion of flatness is useful, in the Chua circuit example define the new state 
variables z1 = y ,  z2 = y, and 23 = y so that 

- = z3 dz2 
dt 

... 
- = y .  dZ3 
dt 

However, by  equation (8.1441, 

... 
y = pu-P ((2 + l / P ) Y  - 6YY - 3Y2% + Y - 3Y2Y + ( d P ) Y  + QY + qY(1 - Y”) 

so that setting 

2~ = ( 2  + l / p ) y  - 6yQ - 3y2y + Ij - 3y2Y + (q/p)$ + qy + q y ( 1 ~  y 2 )  + V / P  

the system becomes 

- z2 
dzl 
dt 
- -  

- = z3 dz2 
dt 

which is a linear system. Furthermore, the flatness property allows a straight- 
forward design of the reference trajectory and reference input. Specifically, 
let y r e f ( t )  be the desired reference output so that 

are the reference signals. 
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Remark For single-input systems, flatness is equivalent to feedback lin- 
earizability of which the Chua circuit is an example. For multi-input sys- 
tems, flatness implies the system is dynamically feedback linearizable [110]. 

(a) Consider the space vector formulation of the induction motor model, 
that is, 

d .  d .  
dt- dt -R 

RsiS + Ls-as + M -  ( a  ejnPoR) = us 

R&+LR-zR+M-(z  d .  ' e -'j7Zp8.q ) = 0 
dt - dt -' 

npMIm{is( iRejnpeR)*} - r L  = J- h R  

d t  

the electrical equations of the induction motor may be written as 

I n  problem 8 of Chapter 6, it was shown that using 

a model for the induction motor in terms of the flux linkages is 

Show that 
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(b) Show that 

dw 
J-  dt = - I m ( j R X R } - ~ L  

where X R  ARejpR. 
f c )  Show that 

is a flat output. That is, show that 

X R  = - p l ( Y , $ , Y )  

X R  = - 'P,(Y, 6, $ 7  5) 
us = - 4 ( Y ,  Y, Y, Y, Y).  

and 4. Explicitly compute the functions 'pl, 'p2, - 
(d) When is  the transformation singular? 

Optimal Field Weakening 

Problem 31 Torque Expressions 
Show that with w s  = npw+6/TR the electrical frequency, S, = l / ( ~ w s T ~ )  

the normalized pull out slap, S = ( w s  - n p w ) / w s  = ( b / T R ) / w s  the normal- 
ized slip, and letting Rs -+ 0 ,  the 2orque expression 

reduces to 
3 1 - 0  Ug 2 

7 = n _-__ 
p 2  O W i L S  S/SP +SP/S  

where US 8%. (V/& is the two-phase equivalent rms voltage so 

that ,/@ (V/&) is  the line-to-neutral rms voltage in the three-phase ma- 
chine.) 

Problem 32 Positive root of p(6j = 0 

0 has exactly one root in the right-half plane for  all w 2 0. 

Problem 33 Base Speed 

root satisfying w > 0 for 61 = i l .  

Use the Routh-Hurwitz test and the expression (8.68) to show that p (6 )  = 

Use the Routh-Hurwitz test to show that equation (8.85) has only one 
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PM Synchronous Motor 
Control 
Starting with a mathematical model of the PM synchronous machine, a 
field-oriented controller is developed for high-performance control. Experi- 
mental results are presented to  illustrate the methodology. Following this, 
a systematic approach to  field weakening is developed based on maximizing 
the torque obtainable from the machine without violating the voltage or the 
current constraints. Next, it is shown how the least-squares identification 
procedure developed in Chapter 2 can be used to determine the parameters 
of a PM synchronous machine. Finally, the structure and operation of PM 
stepper motors are described. 

9.1 Field-Oriented Control 

The approach presented here for high-performance control of a PM syn- 
chronous machine is based on the development in [72][112]. To proceed, the 
twc-phase model of a PM synchronous machine with sinusoidally wound 
stator phases and np pole pairs is given by (see equation (6.40) of Chapter 
6 where np = 1) 

disa  
L s x  = -RsiS, + K ,  sin(np6)w + us, 

dish = - R S i S b  - K,  COS(np8)W + U S b  Lsdt 
dw 
dt  
d6 
d t  

J -  = Km(-isa sin(np8) + is6 cos(n,8)) - T L  

W. - - -  

This is also the two-phase equivalent model of a three-phase PM synchro- 
nous machines [see equation (7.81) in Chapter 71. Equation (9.1) is the 
starting point for the design of a field-oriented controller for the PM syn- 
chronous machine. For synchronous machines, the dq transformations of 
the phase voltages and currents are given by 

( 9 4  

(9.3) 
cos(n,.B) sin(np8) [ i: ] ' [ -sin(n,B) cos(n,8) ] [ "zl ] . 
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The direct current i d  corresponds to the component of the stator magnetic 
field along the axis of the rotor magnetic field, while the quadrature current 
i, corresponds to the orthogonal component. The application of the dq 
transformation to  the original system (9.1) yields the system of equations 

L s ~  = -Rsi, - n,wLsid - Kmw + u, (9.5) 

dw 
dt 

J -  = Kmi,-rL 

- W - - 
d0 
dt (9.7) 

where u d  is the direct voltage, u, is the quadrature voltage, i d  is the direct 
current, i, is the quadrature current, w is the angular velocity, and 6 is the 
angular position. In this coordinate system, the transformed currents i d  and 
i, vary approximately at the mechanical frequency of the motor. These 
variables typically have bandwidths in the range of 0-100 Hz compared 
with 0-5 kHz bandwidth for US,, U S b ,  is, and isb. 

The resulting dq system model (9.4)-(9.7) is still nonlinear, however 
the nonlinear terms can now be canceled by state feedback. Specifically, 
choosing u d  and u, to be of the form 

u d  = &id - n,WLsi, + L s V d  (9.8) 

u, = Rsi, + n,wLsid + K,w + LSV, (9.9) 

results in the feedback linearized system 

did 
- = 'ud 
d t  

dw 
- = ( K m / J ) i q -  
dt 

W .  - - 
d0 
dt 
- 

(9.10) 

(9.11) 

T L I J  (9.12) 

(9.13) 

Note that the original fourth-order system has been transformed into a 
first-order linear system (9.10) and a third-order linear system (equations 
(9.11)-(9.13)) which are decoupled from each other. As a consequence, 
linear control techniques can be used for the system (9.10)-(9.13) in these 
new variables. 

9.1.1 

The linearized system (9.10)-(9.13) is decoupled. However, constraints on 
the magnitude of the voltages introduce couplings. To achieve a desired 

Design of the Reference Trajectory and Inputs 
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(reference) speed wref and acceleration are f ,  the required quadrature cur- 
rent is found from equation (9.6) to be 

J f 
Km Km 

Zqref  = -(%ef + - W r e f  

where TL = - f w  is now assumed. The quadrature component i, of the 
current produces torque while the direct component i d  does not produce 
any torque. However, in order to aktain higher speeds, it is necessary to 
apply a negative direct current to cancel the effect of the back emf of the 
motor. Specifically, note from equation (9.5), the back-emf term in the 
dq coordinates is Kmw and a decoupling control law as in (9.9) requires 
that uq cancel this back-emf term. For example, in the experiments to be 
presented below, Km = 0.19 V/rad/sec so that the back-emf voltage at a 
speed of 2000 rpm (209 radians/sec) is about 41 V. However, the source 
voltage for this motor is only 40 V, so that cancellation of the back emf 
would lead to  saturation at the input. However, if i d  were forced to be 
negative (field-weakening) by the correct choice of U d ,  the term - n p w L s i d  

would help to cancel the back-emf term -Kmw [see equation (9.5) or, 
equivalently, equation (9.9)]. The design of an appropriate reference for i d  

is thus essential to avoid saturation of the phase voltages at high rotor 
speeds. 

The desired (reference) direct current i d r e f  is found by maximizing the 
torque, that is, Kmiq at constant speed subject to the constraint ui + ui = 

u i ,  + uib 5 V,”,, where VmaX is fixed. In order to  obtain a tractable 
solution, the optimization is carried out at constant speed under steady- 
state conditions. Under steady-state conditions, the relations (9.4)-(9.7) 
become 

‘ud = R s i d - n p w L S i q  

uq = Rsi, + n p w L s i d  + Kmw 
Kmiq = TL. 

The actual physical constraints for usa, U S b  are of the form lusal 5 V,,,, 
lUSbl 5 V,,, rather than u i ,  + uib 5 V,”,,. However, in steady-state 
operation, these conditions are equivalent (see problem 1). Using standard 
optimization techniques, the maximum is found to correspond to 

The inverse tangent of (9.15) is often referred to as the optimal lead angle 
[113][114][115]. It is the angle advance that the phase voltages usa and 
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U S b  need to be commanded relative to np6  (corresponding to the posi- 
tion of the rotor) to achieve the maximum torque at any given speed w 
without violating the voltage constraints. The relationship (9.16) gives the 
corresponding direct current as a function of speed required to obtain the 
maximum torque. Although (9.14) through (9.16) were derived assuming 
constant speed, it will be seen below that they are very useful even under 
dynamic conditions. 

Choosing the direct current to be negative as in (9.16) is referred to as 
field weakening. This comes from considering the terms 

-npwLsid - Kmw = - (npLsid + Km) w 

in (9.5) where, as the value of Km is proportional to the strength of rotor's 
magnetic field, making i d  < 0 is viewed as weakening this field. A more 
general approach to obtaining the current references that also take into 
account the current constraints is given in Section 9.2. 

After specifying a desired mechanical reference trajectory B r e f ,  w r e f ,  aref ,  
the corresponding state trajectory i d r e f ,  iqref ,  w T e f ,  6,,f and reference in- 
put voltages U d r e f ,  uqref are computed. They are chosen to satisfy the 
system equations (9.4)-(9.7), that is, 

dwref = Kmiqref - Jiit (9.19) 

(9.20) 

The desired quadrature current is found by solving (9.19) for iqref and its 
derivative d iqre f /d t  is then found by differentiating this expression. The 
desired direct current i d r e f  is given by (9.16) with w replaced by w r e f ,  and 
its derivative is found by simply differentiating this expression. Doing these 
calculations gives 

(9.21) 

(9.22) 

(9.23) 

(9.24) 
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Solving (9.17) and (9.18) for udre f  and uqTef results in 

Udre f  = (9.25) 

where the expressions in (9.21) through (9.24) are substituted into their re- 
spective places on the right-hand sides of (9.25) and (9.26). An important 
point here is that these references are chosen so as to not violate the cur- 
rent and voltage constraints, which typically requires some trial and error. 
For example, if iqTef is too large, then the mechanical trajectory must be 
modified so that aTef is decreased [see equation (9.22)l. 

Remark Note that U d r e f , U q r e f  are not given by (9.14) and (9.15) be- 
cause these are constant speed values for the voltages. Rather, one sets 
(9.21) as the desired direct current and (9.21) as the desired quadrature 
current, and then chooses the reference input voltages according to  (9.25) 
and (9.26). 

9.1.2 State Feedback Controller 

Subtracting the system model (9.4)8-(9.7) from the reference model (9.17) 
(9.20) gives 

(9.30) 

The first step in specifying the state feedback control law is to use a f eedback  
l inear iz ing  controller given by 

where V d  and uq are new inputs yet to be defined. Substituting equations 
(9.31) and (9.32) for Ud and uq into (9.27)-(9.30) results in the l i near  
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system of equations 

Define the tracking error as  

(9.33) 

(9.34) 

(9.35) 

(9.36) 

(9.37) 

where the integrator is added to the controller to eliminate any steady-state 
error due to constant disturbances (see Chapter 2). Using (9.33)-(9.36), 
the error (9.37) satisfies 

de 
dt 
- 

-Rs/Ls 0 0 0 0  1lLs 0 
0 -Rs /Ls  -Km/Ls  0 0 
0 KmIJ - f l J  
0 0 1 0 0  
0 0 0 1 0  

(9.38) 
where =I u a [ vd uq ] T . More compactly, 

de 
- = A e + B v  
dt 

with the obvious definitions for A and B. Through the use of a nonlinear 
state transformation, input transformation, and nonlinear feedback, a lin- 
ear time-invariant error system has been obtained. The input u is chosen 
as the linear state feedback 

v = -Ke (9.39) 

where K is taken to be of the form 

O 1- 0 0 0  

= [ 1622 1623 1624 1625 

The closed-loop error system is then 

de 
dt 

= ( A  - B K )  e. - 

(9.40) 

Using the techniques of Chapter 2, one can choose K such that the closed- 
loop poles of A - B K  are placed at any desired location (see problem 2). 



9. PM Synchronous Motor Control 597 

PM 
Synchronous 

Motor 

Inverse 
2 DQ 'Sb= 

9.1.3 Speed Observer 

DQ iq iSb = 

LL - - 

The above controller design assumed full state measurements. However, a 
typical hardware setup provides only the current measurements and the 
position measurements. In order to estimate the speed from the position 
measurement (optical encoder) and current measurements, a reduced-order 
observer can be implemented according to  

8 

, e  

(9.41) 

11  

::: Speed 
Observer 

11 

(9.42) 
dLj 
- = (K,/J)Z,? - ( f / J ) L j  + &(6 - 8 )  
d t  

where el and Q2 are the observer gains and i, is a known input to the 
observer as isa, zSb ,  and 6 are measured. Subtracting (9.41) from (9.7) and 
(9.42) from (9.6) results in 

=us, 

,"d 

(9.43) 

(9.44) 

& 
State Feedback *iq 

*. . 'd 
Controller 

A A where ~1 = 8 - 8, ~2 = w - L j .  One can then choose the observer gains 
C l , l 2  such that ~ l ( t )  + O , ~ 2 ( t )  + 0 at any prescribed rate (see problem 3 
and Chapter 2). 

A block diagram illustrating the state feedback controller for a PM syn- 
chronous motor is given in Figure 9.1 

'ref Oref $ref idref 'di-ef 'qref 

FIGURE 9.1. Controller block diagram. The state feedback controller is the com- 
position of (9.31) and (9.32) with (9.39). 
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9.1.4 Experamental Results 

The PM motor used in the experiments has np = 50 pole pairs, two stator 
phases, and the following parameter values I,,, = 6.0 A, V,,, = 40 V, 
Rs = 0.55 0, LS = 1.5 mH, K ,  = 0.19 N-m/A, J = 4.5 x lop5 kg-m2, 
and f = 0.0008 N-m/rads/sec. The hardware setup used to implement the 
feedback controller consisted Motorola’s Advanced Development System 
(ADS) including a Motorola DSP56001 digital signal processor, a DSP 
extension board, two Aerotech 20-kHz PWM amplifier, and the above PM 
motor with a 2000-counts/rev optical encoder. 

FIGURE 9.2. Experimental setup. The motor is connected to a linear positioning 
table through a ball screw. 

The data acquisition board was built by Aerotech, Inc. and has four 8- 
bit A/D converters for sampling the voltages and currents, two 12-bit D/A 
converters to output the control voltages and a timer chip that is used to 
set the sample rate and to  count the optical encoder pulses. 

The control algorithm described above was tested on two different tra- 
jectories. The first one was a fast point-to-point move in which the motor 
turned 0 . 9 ~  radians in 30 msec. The second move forces the motor up to 
a speed of 3000 rpm and brings it back down into position. This move was 
chosen to study high-speed control of the PM motor where the use of the 
reference trajectory (9.21) is required. 

Sample Period and Observer Gains 

A sample rate of 10 kHz (T = 100 psec) is required due to  the high number 
of pole pairs. Specifically, the motor reaches speeds up to 3000 rpm, which 
corresponds to an electrical frequency of ( 2 ~ / 6 0 )  x 3000 x np = 1.57 kHz 
for np = 50. 

The observer gains for both moves were chosen as C1 = 5272 and 
Cz = 7.0 x lo6, resulting in both closed-loop poles at -2646. The ob- 
server computation, that is, the integration of the system (9.41), (9.42) as 
well as the control algorithm is carried out every T = 0.1 msec (10 kHz). 

As shown below (see Figure 9.5), the observer performed well and was 
essential to get the controller to track the particular demanding trajecto- 
ries used (see Figures 9.3 and 9.5). It is reported in Ref. [72] that a speed 
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estimator based on the backward difference estimate w(lcT) = [O(lcT) - 
6 ( ( k  - l)T)]/T did not result in closed-loop tracking for these same trajec- 
tories. As explained in Ref. [72], this is due to  the fact when the velocity 
is computed by differentiating the position, the resolution of the veloc- 
ity depends on the sample rate as well as the resolution of the encoder. 
Note that a 2000-counts/rev encoder gives a minimum velocity resolution 
of (2~/2000)/T (see Chapter a), which for T = 1/104 sec, gives a resolution 
of 31.4 rads/sec or 300 rpm! As the reference trajectory for speed (Figure 
9.5) requires the motor to go from zero to 141 rads/sec (1350 rpm) in 10 
msec, a sample rate of 10 kHz results in 100 iterations through the control 
loop in this time. On the other hand, a sample rate of 1 kHz would give 
a speed resolution of 3.14 rads/sec, but only 10 control loop iterations! 
The simple difference algorithm will work if a 50,000-counts/rev encoder is 
used (see Ref. [112]). However, this is not a practical choice for an industrial 
setup due to  the cost and the fact that such an encoder is typically limited 
to lower motor speeds to work properly. (See Chapter 2 for more details on 
how an optical encoder works.) 

Control of a 1.8-mm Move 

A typical high-performance application for a PM synchronous motor is in a 
positioning system. Specifically, consider the requirement to have the motor 
move (point-to-point) a small linear positioning table 1.8 mm under 30 msec 
using a smooth mechanical trajectory so as to not excite vibrations in the 
table. The specified position O,,f, speed w,,f = dO,,f/dt and acceleration 
a,,f = dw,,f/dt are chosen to make the table move 1.8 mm. This turns 
out to  be a 0 . 9 ~  radian turn of the motor as the motor is attached to the 
linear stage through a ball screw. Figures 9.3 and 9.5 show the desired 
position and speed references O,,f and wTef, respectively. That this move 
represents a very stringent performance requirement can be seen in Figure 
9.6, which shows that the corresponding the reference input VdT goes below 
-25 V leaving less than 15 V for the feedback controller. Furthermore, the 
current i,,,f is shown in Figure 9.8 and is over 4 A (limit of 6 A) in order 
to achieve the required torque Kmiq. 

In the implementation, the gains for the 1.8-mm move were set as 

K =  [ 
O I  

1.06 x 104 0 0 0 
0 1.78 x lo4 3.40 x lo2 3.80 x lo6 1.07 x lo7 

to  place the closed-loop poles at - 18178 for the first-order subsystem and 
at -11047, -28.3, -54.89 5 j1190.7 for the fourth-order subsystem. Figure 
9.3 gives the actual and desired position response for the 1.8-mm move 
of the positioning table (corresponding to a 0 . 9 ~  radian rotation of the 
motor) using the state feedback controller of Figure 9.1. The last part of 
the position response is shown in more detail in Figure 9.4, showing that 
the motor achieves the required final position within one encoder count. 
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th vs. thd, 1.8 mm Move, 1350 RPM, SFC 
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FIGURE 9.3. 6 and 6,,f for the 1.8 mm move. From Bodson et al. [72], @ 2004 
IEEE. 

th vs. thd, 1.8 mm Move, 1350 RPM, SFC, Zoomed 
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FIGURE 9.4. 6 in counts after 30msecs. Desired position is 900 counts 
(= 27r x 900/2000 = 0 . 9 ~ ) .  From Bodson et al. [72], @ 2004 IEEE. 
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The desired and estimated (observer) speeds are shown in Figure 9.5. 
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w vs. wd, 1.8 mm Move, 1350 RPM, SFC 
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FIGURE 9.5. LJ and wref for the 1.8-mm move. From Bodson et  al. [72], @ 2004 
IEEE. 

FIGURE 9.6. v,jref for the 1.8-mm move. From Bodson et al. [72], @ 2004 IEEE. 
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Figures 9.7 and 9.8 show the tracking of the currents id and 2,. 

id vs. idd, 1.8 mm Move, 1350 RPM. SFC 
I ,  1 

1 
0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 

Time (s) 

FIGURE 9.7. id and idref for the 1.8-mm move. From Bodson et al. [72], @ 2004 
IEEE. 

iq V s .  iqd. 1.8 mm Move. 1350 RPM, SFC 
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FIGURE 9.8. i, and i,,,f for the 1.8-mm move. From Bodson et al. [72], @ 2004 
IEEE. 
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The position and speed tracking are very good despite large fluctuations 
in the measured/calculated currents i d  and i,. 

Current Fluctuations in i d  and i, 

Simulations show that the fluctuations in the currents shown in Figures 
9.7 and 9.8 are due to  the limited resolution of the position measurement 
(2000-counts/rev encoder) and not to the PWM noise [72]. Specifically, the 
oscillatory behavior is present in the simulation when a 2000 counts/rev 
encoder was modeled, but not when a 50,000-counts/rev encoder was mod- 
eled. As pointed out above, Figure 9.4 (note the units are in counts not 
radians) shows that the motor stays within one encoder count of the fi- 
nal position after 30 msec, which is the highest accuracy the controller can 
achieve with any given encoder. The oscillatory behavior of & at the end of 
the run in Figure 9.5 is a direct result of integrating the oscillating quadra- 
ture current i,, that is, the noise due to  quantization of the position 8. 
Consequently, the estimate of speed ij is responding to the noisy oscilla- 
tions in i, and does not indicate that the controller is not maintaining the 
correct final position. 

Remark It is straightforward to  show that a permanent magnet DC 
brush motor with a torque constant of KT = 0.2 N-m/A (K, = 0.19 N- 
m/A for the stepper motor used here), a moment of inertia J = 3.6 x lop4 
kg-m2 (the inertia is much larger than the stepper motor due to  windings 
on the rotor), voltage ceiling limits of f 8 0  V, and a peak current limit of 
22 A is unable to make such a move under 30 msec. This is due to  the fact 
that field weakening is not possible. However, the above PM synchronous 
motor with voltage limits of +40 V and current limits of 6 A can indeed 
make such a move. 

Control of a 3000-rpm Run 

Figure 9.9 shows the actual and desired (reference) position using the con- 
troller to bring the motor up to 3000 rpm. The actual and estimated speeds 
are shown in Figure 9.10. Again, the tracking of the mechanical trajectory 
is quite good despite oscillatory behavior in zd and i, (see Figures 9.12 and 
9.13). These oscillations are again attributed to  the lack of resolution in the 
2000-counts/rev encoder. Note also that the reference input Udre f (Figure 
9.11) reaches -30 V, leaving less than 10 V for the feedback controller. 

In the implementation, the gains for the 3000-rpm run were set as 

K =  

[ 2.587: lo4 2.446 x lo4 6.031 x 10’ 2.935 x lo6 1.004 x lo7 

to place the closed-loop poles at -26314 for the first-order subsystem and 
at -24727, -3.4, -101 f $393 for the fourth-order subsystem. 

O I  
0 0 0 



604 9. PM Synchronous Motor Control 

Time (s) 

FIGURE 9.9. 0 and 0,,f for the 3000-rpm move. From Bodson et al. [72], @ 2004 
IEEE. 

w vs. wd, 3000 RPM, SFC 
350 
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FIGURE 9.10. LJ and ~ , , f  for the 3000-rpm move. From Bodson et al. [72], @ 
2004 IEEE. 
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FIGURE 9.11. vdref for the 3000-rpm move. From Bodson et al. [72], @ 2004 
IEEE. 

id vs. idd, 3000 RPM, SFC 
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FIGURE 9.12. i d  and idref for the 3000-rpm move. From Bodson et al. [72], @ 
2004 IEEE. 
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iq vs. iqd, 3000 RPM, SFC 
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FIGURE 9.13. i, and i,,,f for the 3000-mm move. From Bodson et al. [72], @ 
2004 IEEE. 

9.1.5 Current Command Control 

In the previous section the motor was voltage-controlled. The experiments 
presented there used a PM synchronous motor with np = 50 pole pairs, 
making voltage control essential to obtain high performance. To explain, 
the equations of the PM machine are (9.4)-(9.7) which are repeated below. 

(9.45) 

L s ~  = -Rsi, - n,wLsid - K,w + uq (9.46) 

dw 
dt 

J-  = Kmiq-rL  

W - - 
d9 
dt 
- 

(9.47) 

(9.48) 

Equations (9.45) and (9.46) show that n p w L s  is an impedance to changing 
i d , i q  through the input voltages 'zLd,uq. With np large, the time it takes 
to change a current through an input voltage can be of the same order 
of time it takes to change the speed through i,. This made it essential in 
the previous section (where np = 50) to design a voltage controller that 
accounts for the impedances n p w L s  in the current equations. However, it 
is also common to find PM synchronous motors with np = 2 rather than 
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DQ Inverse 
DQ 'Sb= 

np = 50. In this case, the impedance is 25 times less and one does not 
usually need to use voltage control, but, rather, current control methods 
can be employed. That is, using a PI current controller of the form 

t 

u, = K p ( i q T e f  - iq )  + KI  ( i q T e f  - i,)dt (9.49) 

is - - 

u d  = K p ( i d T e f  - i d )  + KI  ( i d T e f  - i q ) d t  I' 

- ,"9 

='d 

(9.50) 

id 
PI Current 
Conltroller ,'s 

and adjusting the gains appropriately, iqTef 4 i q , i d T e f  -+ i d  fast enough 
that one can consider i, % i q T e f , i d  M i d r e f .  Then a (mechanical) trajec- 
tory tracking controller can be designed based on the reduced-order system 
model 

(9.51) 
dw 
- = ( K m / J )  &ref - T L / J  d t  

W - 
d6 
d t  
- -  (9.52) 

where iqTef is now considered as the input. Figure 9.14 is a block diagram 
illustrating a current command confguration. Experience shows that this 
works quite well if the number of pole pairs np is small. Equations (9.51) 
and (9.52) are identical in form to iz DC motor so that, as in Chapter 2, 
one can choose a trajectory tracking controller in the form 

and choose the gains KO,  K 1 ,  and K;I such that 6 -+ 

any constant load torque r L  acting on the motor. 
w 4 wTef despite 

FIGURE 9.14. Current command control of a P M  synchronous motor. 
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One often chooses i d r e f  E 0 in (9.49) if the speeds are not too high. 
However, field weakening may be required if one desires to run the machine 
at high speeds. In this case, the general approach to  field weakening given 
in the next section would be a useful way to specify i d r e f .  

9.2 Optimal Field Weakening* 

Maximization of the torque produced by electric motors is an important 
practical consideration, as optimization may yield the use of a smaller mo- 
tor for a given application, or higher performance for a given motor. In 
this section, the problem of extracting all the available torque from a PM 
synchronous motor is considered. More specifically, given any fixed speed w 
as well as the current and voltage constraints I,,, and V,,,, respectively, 
it is shown how the voltages and currents in the machine must be cho- 
sen to  obtain the optimum torque without violating the constraints. The 
approach here is from the development in Refs. [ 1161 [ 1171. 

As shown in the previous section, one of the reasons the available torque 
of electric motors decreases at high speed is due to the voltage limits. 
This is because the source voltage must overcome the increasing back-emf 
voltage to the detriment of building up the stator currents. Maximization 
of the torque at high speeds requires the use of field-weakening which, for 
synchronous motors, may be achieved optimally using a relatively simple 
strategy. At low speeds, the current limits restrict how much torque can 
be produced and the voltage limits play no role. At intermediate speeds as 
well as higher speeds, both the voltage and the current limits are active 
or just the voltage limits. This section provides algorithms to compute 
the speeds at which transitions occur between these modes, and describes 
control strategies required in each case. 

9.2.1 Formulation of the Torque Maximization Problem 

The state-space model in the dq coordinates is 

(9.53) 

(9.54) 

(9.55) 

did 
Ls- = -&id n,WLsi, u d  

d t  
d i ,  

dw 
d t  

L s z  = -Rsi, - npwLmid - Kmw t uq 

J -  = K,~,-TL 

W .  - 
d6 
d t  
- -  (9.56) 
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For a constant speed w ,  equations (9.53)-(9.55) yield 

U d  = Rsid -npWLsiq (9.57) 

Kmiq = r L .  (9.59) 

u, = Rsi, + npwLsid f Kmw (9.58) 

The objective here is the maximization of the electrical torque Kmiq within 
the voltage and current constraints. The voltage and current constraints are 
incorporated into the problem statement by using the fact that, at constant 
speed, the phase voltages and the phase currents are sinusoidal, with peak 

magnitudes given by Jm and J-, respectively. Therefore, the 

phase voltages bounded by V,,, and the phase currents bounded by Imax 
yield constraints in the dq variables given by 

(9.60) 

9.2.2 Speed Ranges and Transition Speeds 

Because the torque may, in theory, be made arbitrarily large by increasing 
the voltage and current levels, optimal operation under constraints is al- 
ways achieved with the limits on either the currents, the voltages or both 
being reached. A typical motor is characterized by three ranges of speed: a 
low-speed range where operation is constrained by the current limit only, 
an intermediate speed range where operation is constrained by both the 
voltage and the current limit, and a high-speed range where operation is 
constrained by the voltage limit only. 

At a specific speed, torque maximization will be achieved for a specific 
choice of i d  and i, for a current controlled drive, or a specific choice of 
U d  and uq for a voltage controlled drive. The optimal values are denoted 
by 2 2 ,  2 8 ,  u2, and u;. At each such speed, the torque optimization will 
result in the machine being at one of the three constraint conditions: (i) 
V = V,,,, (ii) I = I,,,, or (iii) V = V,,,,I 2 I,,,. Knowing what 
the solution is for each of these three possible constraint conditions, it 
remains to determine the speeds at which the system transitions from one 
constraint to another. The speed at which the system transitions between 
V = V,,, and V = V,,,, I = Imax is referred to as the first transition speed 
and is denoted by w1. Similarly, the speed at which the system transitions 
between I = I,,, and V = V,,,,, I = I,,,, is referred to as the second 
transztzon speed and is denoted by w2. These speeds can be calculated 
after having obtained the form of the optimal solution in each speed range. 
In the analysis that follows, only the case w 2 0 is considered because 
straightforward symmetry arguments easily yield the case w 5 0. 
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Case 1: Optimization under just Current Constraints 

First consider the case where only the current constraint is active. In this 
case, the optimum i: must be zero and i; = H,,, to optimize the torque. 
The overall solution is simply 

i:(w) = 0 (9.62) 

i : (w)  = *Im,, (9.63) 

u: ( w )  = *(-npwLsIm,z) (9.64) 

U; ( w )  = *RsIm,, + K,w. (9.65) 

where the positive sign is chosen for positive torque and the negative sign 
is chosen for negative torque. 

Case 2: Maximization under just Voltage Constraints 

Torque maximization under the voltage constraint alone yields a solution 
which is referred to as optimal field-weakening and is well known (cf. Ref. 
[l], p. 266, and Ref. [114]). To obtain the solution, one solves (9.57) and 
(9.58) for i d  and z,, so that 

where Z z ( w )  a R$ + (n,wLs)2. Choosing 4 so that u d  = V C O S ( ~ ) , U ,  = 

V sin (q4)7 the current i, is given by 

(9.67) 

Equation (9.67) shows that the maximum current i,, and therefore the 
maximum electrical torque, is obtained for 

. 
2, = 

-n,wLsVcos (4) + RsVsin (4) - R s K m w  

-Ww) 

v = Ikv,,, 
d 
- (-n,wLs cos (4) + Rs sin (4)) = 0 
d 4  

where the positive sign is chosen for positive torque and the negative sign 
is chosen for negative torque. Solving the second of these equations gives 
tan (4*) = -Rs/(n,wLs) .  The optimal u: and ut; therefore satisfy 

(9.68) 

This equation gives the value of the optimal lead angle for voltage-controlled 
drives. Equation (9.68) yields 

sin (4*> R ~ / z ~ ( W )  

cos (4*) = -n,wLs/Zs(w) 
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and therefore 

-n,wLs 
U 2 ( W )  = * Vmux 

ZS(W)  

R S  
U i ( W )  = *- 

Z S ( W )  vmux. 

(9.69) 

(9.70) 

where the + sign is for positive torque and the ~ sign is for negative torque. 
Using these values for the voltages, one finds the resulting direct current 
2: is given by [see (9.66) and (9.68)] 

(n,wLs) ( K m w )  - -npLsKmw2 (9.71) i: ( w )  = - 
z g ( w )  - - R i  + (n,wLs)2 ’ 

which can be viewed as the optimal-,field weakening current (compare with 
(9.21)). Similarly, the quadrature cument is given by 

(9.72) 

Note that if Rs = 0, then the motoring and braking quadrature currents 
are the negative of each other. 

Case 3: Maximization under Voltage and Current Constraints 

In the case where both the voltage and the current constraints are active, 
the optimization reduces to the solution of a system of algebraic equations, 
because there are as many constraints as degrees of freedom. The steady- 
state equations (9.57) and (9.58) are substituted into ui + ui = V&, and 
after some rearranging, results in 

(9.73) 

Eliminating i d  using i: + ii = Ik,, leads to a quadratic equation for i: of 
the form 

ZZ(w)( i i  + i:) + K L w 2  + 2RsKn,wi, + 2n,LsKmw2id = V:,,. 

a ( w )  ii2 + P ( ( d )  ii + y ( w )  = 0, (9.74) 

where 

a ( w )  4 R i w 2 K &  + 4ngw4LiK& (9.75) 

y ( w )  A (V:ux - Kmw 2 2  - Z ~ ( W ) I ~ , , ) ~  - 4 1 & , , n ~ w 4 L i K ~ .  

P ( w )  A -4RsK,w(V~,,  - K$w2 - Zg(w)I&,,) (9.76) 

(9.77) 

In this case, where both the voltage and the current constraints are active, 
P2 ( w )  - 4 a  ( w )  y ( w )  2 0 (see problem 4 )  and equation (9.74) has two real 
roots 

(9.78) 
-P ( w )  * JP2 ( w )  - 4 a  ( w )  7 ( w )  ii ( w )  = 

2 a  ( w )  
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with the positive sign for motoring and the negative sign for braking. It 
then follows that 

i; ( w )  = - iZ.2 ( w )  (9.79) 

u; = Rsi; - npwLsi: (9.80) 

u: = Rsi; + n,wLsii + Kmw. (9.81) 

Again note that if Rs = 0 (+ p ( w )  = 0 ) ,  the motoring and braking 
quadrature currents are just the negative of each other. 

First Transition Speed w1 

As previously explained, the speed at which the system transitions between 
V = V,,, and V = V,,, , I = I,,, is referred to  as the first transition speed 
and is denoted by w1. To calculate w l ,  consider the machine to be operating 
under the current constraint only so that i, = *I,,, and find the value 
of the speed for which the voltage limit is first encountered. Specifically, 
substitute (9.64) and (9.65) into u: ( w )  + ui ( w )  = V;,, and rearrange to 
obtain the following equation for the first transition speed: 

(K$ + (npLsImax)2)w: + 2KmKmImaxwl= Vmax.  2 (9.82) 

The equation has two real roots wlpos > 0 and wlneg < 0 (see problem 5).  
The positive root wlpos corresponds to the case of positive torque. The neg- 
ative root corresponds to the braking mode, that is, lwlnegl is the transition 
speed when i, = -I,,, (see problem 5).  If Rs = 0, W l n e g  = -wlpos. 

Second Transition Speed w2 

Similarly, the speed at which the system transitions between I = I,,, 
and V = V,,,, I = I,,, is referred to as  the second transition speed and 
is denoted by w2. To calculate w2, consider the machine to  be operating 
under the voltage constraint only so that u2,u; are given by (9.69) and 
(9.70) resulting in the currents (9.71) and (9.72), then find the value of the 
speed for which the current limit is first encountered. Specifically, substitute 
the currents (9.71) and (9.72) into 22 (w )  + ii ( w )  = I&,, and rearrange to 
obtain 

2; ( ~ 2 )  (V2az + ( K m ~ 2 ) ~  - 2; ( ~ 2 )  I&z) = * 2 K m w 2 R s V m a x Z ~ ( ~ ) .  
(9.83) 

Upon canceling 2s (w2) and squaring both sides, one obtains 

2 2 1 2  2 
2; ( ~ 2 )  ( ( V 2 a x  - R i I i a x )  - (npLs ma2 ~ K:)w;) = (2KmRsVmax)2w;. 

(9.84) 
This is a cubic equation in wg of the form 

(x - u)"x + b) = cx, (9.85) 
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where 

x =  A w: (9.86) 

(9.87) 

(9.88) 

(9.89) 

To study the roots of equation (9.8.5), rearrange it as 

(9.90) 
X 

1 - c  = 0. 
(X - C L ) ~ ( X  + b )  

Its root locations can then be found using the properties of the comple- 
mentary root locus [37][46][81], tha.t is, the root locus corresponding to a 
zero at x = 0, a pole at x = -b ,  EL double pole at x = a, and a negative 
gain Ic = -c. This analysis is now broken down into two cases. 

Case 1: a > 0 

The most common situation is the one in which a > 0. The quantity VAaX - 
RiIkaZ > 0 for any practical motor, so that the case a > 0 actually means 
that nBL:I$ax - K$ > 0. In this case, the complementary root locus is 
shown in Fig. 9.15. For c > 0, there is one negative root x < -b, a positive 
root x < a, and a positive root x > a. As x = w;, the root x < -b  is 
extraneous and therefore ignored. To understand which of the other two 
roots may apply, rearrange equation (9.83) to  obtain 

This expression shows that the root satisfying x < a corresponds to positive 
torque (+Vmax) while the root satisfying x > a corresponds to the negative 
torque (-Vmax). 

FIGURE 9.15. Locus of roots for 3: = u; of (9.90) with a > 0. 
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Case 2: a < 0 

The solutions of (9.90), or equivalently $9.851, when a < 0 are now con- 
sidered. This case requires K ,  > npLSImas. In this case, there is never a 
second transition speed in brake mode, while in the motor mode, there is 
either no second transition speed, or two second transition speeds (that is, 
two speeds wzland w22 where the system transitions between the V = V,,, 
constraint region and the V = V,,,, I = I,,, constraint region. 

In the case a < 0, there are two possibilities for the complementary root 
locus as shown in Figure 9.16. These two possibilities are determined by 
the break-away points which are the roots of 

(9.92) 
dc 
dx dx X 2 2  

d (x - a)’(b + x) (x - a)(2x2 + bx + ab) 
= 0. - - - --- 

The solutions of this equation that belong tomthe complementary root locus 
are 

(9.93) 

4-d- . 
if - a > b. 

4 xb3 = 

The second root 262  is the only break-away point on the positive real axis 
and therefore the only one that has physical significance. For roots of (9.90) 
to  be real and positive, the given value of c must be greater than or equal to 
the value corresponding to the break-away point 262.  In other words, there 
are two positive roots ~ 2 1 , 2 2 2  of (9.90) satisfying 2 2 1  < 262 and 2 2 2  > 2 b 2  

if and only if 

> 0. (9.94) xb2 
(262 - + 262)  

1 - c  

Note that, as a < 0 (that is, naLiI$,, - K$ < 0), both 221 and 222 satisfy 
(9.91) [equivalently (9.83)], with + sign chosen (+Vmax) rather than the ~ 

sign (-Vmax). In other words, both transition speeds w21 =&,w22 = 

fi are associated with the motoring mode in contrast to the case a > 0 
where they were split between the two modes. As a result, there is no second 
transition speed in the brake mode. In motor mode, there are actually four 
speed ranges in this case. They are, in order of increasing speed, constrained 
by (1) current limits (2) current and voltage limits (3) voltage limits and 
(4) current and voltage limits. 
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FIGURE 9.16. Locus of roots for z = w; of (9.90) with a < 0. (a) -a < b. (b) 
-a > b. 

Although hypothetical motor parameters can be selected to obtain the 
case with a < 0 and two second transition speeds, they do not correspond to 
realistic motors. The typical case is the one in which (9.94) is not satisfied, 
and there is no second transition speed in either motor or brake mode. 
Then, there are only two speed ranges for torque optimization: a low-speed 
range constrained by current limits, and a high-speed range constrained by 
voltage and current limits. Examples of both the typical case (Figure 9.15) 
and the atypical case (Figure 9.16) are given next. 

9.2.3 Two Examples 

The motor chosen for consideration is a three-phase P M  synchronous motor 
(BM 500 from Aerotech Inc., Pittsburgh, PA) whose parameter values are 
given by L = 9.3 x lop4 H, Rs = 0.25 ohms, J = 13.9 x lop5 kg-m2,K = 

0.198 N-m/A and np = 4. The limits are given by I,,, (continuous) = 18 A, 
I,,, (peak) = 55 A, and Vb,, (bus voltage) = 160 V. The motor bearings 
are rated for 10,000 rpm or about 1000 rads/sec, which is taken to be 
the maximum speed of the motor. The corresponding equivalent two-phase 
parameters are (see the first appendix at the end of this chapter) L s  = 

L+ L/2 = 14 x lop4 H, K ,  = ( m ) K  = 0.243 N-m/A, Imax(continuous) 
= (m)i,,, (continuous) = 22 A, I,,, (peak) = mimax (peak) = 67.4 
A, V,,, = m ( 2 / 7 r ) & , ,  = 124.8 'V. 

Continuous Current Limit 

With I,,, = 22 A and V,,, = 124.8 V, Figure 9.17 is a plot of the 
maximum torque for V = V,,,, Figure 9.18 is a plot of the maximum 
torque for I = I,,,, and Figure 9.19 is a plot of the maximum torque for 
V = V,,, and I = I,,,, all as a function of the speed w (see the second 
appendix at the end of this chapter). Both positive and negative torques 
are given. The curves give the torques obtained by the three strategies, 
accounting for the voltage and current limits. 
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FIGURE 9.17. Maximum torque in N-m versus speed in rad/sec with V = V,,,. 

0 100 200 300 403 500 €02 700 800 900 
41 

M 

FIGURE 9.18. Maximum torque in N-m versus speed in rad/sec with I = I,,,. 
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FIGURE 9.19. Maximum torque in N-m versus speed in rad/sec with I = I,,, 
and V = V,,,. 

FIGURE 9.20. All three torque components in N-m versus speed in rad/sec. 

Figure 9.20 is a plot of all three torque components where i t  is seen that 
the actual maximum (minimum) torque attainable is the largest (smallest) 
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of the three curves at each speed (the outer envelope of the curves). 
In this case, the first transition speed for the motor mode is wlpos = 592 

rads/sec (see Figures 9.18 and 9.20), while the first transition speed for the 
brake mode is ulneg = 635 rads/sec (see Figures 9.18 and 9.20). Note that 
there are no second transition speeds. As one can see from Figure 9.17, 
the reason for this situation is that the torque curve obtained with optimal 
field-weakening (that is, operating at the voltage limit V = V,,,) falls 
rapidly due to  the current limit. The torque is zero at the speed where the 
optimal field-weakening current is equal to the maximum current, leaving 
no torque-producing current. For this reason, a solution accounting for both 
current and voltage limits must be used at high speed. 

-- 

Peak Current Limit 

Now consider the peak current limit SO that I,,, = 67.4 A and Vma, = 

124.8 V. Figure 9.21 is a plot of the maximum torque for V = V,,, , Figure 
9.22 is a plot of the maximum torque for I = Imax, and Figure 9.23 is a 
plot of the maximum torque for V = V,,, and I = I,,,, all as a function 
of the speed w.  Both positive and negative torques are given. The curves 
give the torques obtained by the three strategies, accounting for the voltage 
and current limits. 
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- v = -vmax 

~ 

FIGURE 9.21. Maximum torque in N-m versus speed in rad/sec with V = V,,,. 
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FIGURE 9.22. Maximum torque in N-m versus speed in rad/sec with I = I,,,. 
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FIGURE 9.23. Maximum torque in N-m versus speed in rad/sec with I = ImaX 
and V = V,,,. 
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FIGURE 9.24. All three torque components in N-m versus speed in rad/sec. 

Figure 9.24 is a plot of all three torque components. Again, the actual 
maximum (minimum) torque is simply the maximum (minimum) of the 
three curves at each speed. 111 this case, the first transition speed for the 
motor mode is wlpos = 288 rads/sec (see Figures 9.22 and 9.24) while 
the second transition speed for the motor mode is qpOs = 320.6 radsfsec 
(see Figures 9.21 and 9.24). The first transition speed for the brake mode 
is wlneg = 340.8 rads/sec (see Figures 9.22 and 9.24) while the second 
transition speed for the brake mode is ~2~~~ = 383 rads/sec (see Figures 
9.21 and 9.24). 

Simulation 

The above analysis assumed constant speed, steady-state conditions. To 
see how this approach works under non-constant speed conditions, a time- 
domain simulation can be performed (see problem 8). In this simulation, the 
continuous current limit of ImaX = 22 A and voltage limit of V,,, = 124.8 V 
are used with the motor driven by the maximum possible torque until the 
speed reaches approximately the maximum speed 1000 rads/sec (10,000 
rpm or the rated speed of the motor bearings). As shown above, this motor 
with the continuous current limit of 22 A has only the two modes 

(9.95) 

(9.97) 

(9.96) 
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and 

v = V m a x ,  I=Imax (9.98) 

G ( W )  = -JI&,.. - 2;2 (9.100) 

with 

a ( w )  = A 4 R i w 2 K i  + 4n;w4LiK$ 

P ( w )  = A -4RsK,w(V$,, .- K L w 2  - Z ~ ( W ) I ~ ~ , )  

~ ( w )  = A (V$,, - K$w2 - Z ~ ( W ) I & ~ ~ ) ~  - 4 1 $ a , ~ p ~  2 4 2  L s K &  

where the positive sign is for motoring and the negative sign is for braking. 
Consequently, for maximum positive torque, the current commands are 
(9.96) and (9.97) with the + sign up to qpOs = 592 rads/sec and then 
(9.99) and (9.100) are used as the current commands with the + sign for 
higher speeds. For negative torque: the current commands are (9.96) and 
(9.97) (with the - sign) up to wlneg = 635 rads/sec and then (9.99) and 
(9.100) are used a the current commands (with the - sign) for higher 
speeds. A basic block diagram for running the motor with maximum torque 
is given in Figure 9.25. 

I 

Inverse 

Motor 

PI Current 
Controller 

+- 
Optimum 

+I for motor torque 

FIGURE 9.25. Block diagram for commanding maximum torque. 
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The normalized optimal values i:/lmax and i~/ lmax are graphed in Figure 
9.26 corresponding to the normalized speed Wnormalized f w/ (27r10000/60)) 
given in Figure 9.27. 

-1.5’ I 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 

FIGURE 9.26. Optimal direct and quadrature currents versus time in seconds. 

Figure 9.27 shows that the motor reaches the speed of 10,000 rpm in 
about 40 msec. 

FIGURE 9.27. Normalized speed versus time in seconds. 
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1.4, I 

FIGURE 9.28. Normalized current and voltage versus time in seconds. 

The normalized magnitude of the voltage V/V,,, where V = Jm 
and the normalized current I/Imax where I = 25 + 2: are shown in Figure 

9.28. Note that the voltage has peaks which are greater than the normalized 
limit of 1 at those times when the commanded current il; undergoes step 
changes from the maximum positive value to the minimum negative value 
(or vice versa). The PI current controller given by uq = K P ( ‘ *  2, - 2,) ’ + 
KI Ji(il; - i,)dt [see equation (9.49)] is commanding a large voltage due to 
the large step change in the error iz - i, at these points in time. However, 
the voltage actually applied to the motor in the simulation was limited to  
V,,,, indicating that these commanded overvoltage peaks have no effect 
on the performance. 

Remarks Of course, the general situation is that one is not always re- 
questing maximum torque from the machine. One possibility is to set the 
direct current zd = i ; (w)  so that the maximum torque is always readily 
available. 

Note that the most complicated calculations are square roots and cubic 
roots so that the whole set of computations could be performed in real-time 
if the motor parameters were determined online, using an identification 
procedure such as described in the next section. 

In general, there is an intermediate speed range where both the volt- 
age and the current limits are reached. Consideration of this speed range 
not only provides the complete solution to the problem, but also provides 
a smooth connection between the solutions for the low and high speed 
regimes. Further, there are cases where the optimal operation at high speed 
is determined solely by the joint voltage/current limit solution. In such 

d- 
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cases, the conventional optimal field weakening formula never provides the 
optimum torque. 

9.3 Identification of the PM Synchronous Motor 
Parameters* 

This section requires an understanding of the material in Chapter 2 on 
least-squares identification. The identification of the parameters of a PM 
synchronous machine are conveniently carried out with the model in the 
dq coordinate system given by 

did 
L s d t  = -Rsid npWLsiq ud (9.101) 

L s ~  = -Rsi, - n,wLsid - Kmw + ug (9.102) 

(9.103) 
did 
dt 

K-  = Kmi,-rL. 

For the identification of the motor parameters, the load torque is now taken 
to be a linear combination of viscous friction and coulomb friction given by 

7~ = - f w  - f ,sgn(w) 

where 
1, w > o  

sgn(w) = 0 ,  w = O  
-1, w < 0. 

(9.104) y(nT) = W(nT)K 

where the output vector y, regressor matrix W ,  and parameter vector K 

{ 
The model (9.101), (9.102), (9.103) is rewritten in regressor form as 

d i d  (nT) 
&(nT) ~ - n,w(nT)i,(nT) 0 

+ n,w(nT)id(nT) w(nT) 
di,fhT) 

iq(nT) ~ 

dt 
0 0 -iq(nT) 

W(nT) 

0 0 

0 0 0 O 1 ER3x6 
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and 
K " [  Rs Ls K ,  J f f C I T € R 6 .  

As the model (9.101), (9.102), (9.103), or equivalently (9.104), is linear 
in the parameters, the linear least-squares technique of Chapter 2 applies 
directly. The error equation (9.105) is formed by subtracting the actual 
(measured) output y(nT)  from the estimated output W(nT)K to  obtain 

e ( n T )  A W(nT)K - y(nT) E R2. (9.105) 

If the model (9.104) of the motor were exact, and the voltages, currents, 
position, and speed could be measured exactly, then there is a parameter 
vector K such that e(nT) = 0 for all time. However, (9.104) is not exactly 
satisfied due to  modeling errors, nor can the voltages, currents, and so on. 
be measured exactly. In other words, the error e ( n T )  is never zero for all 
time. By definition, for any value of the parameter vector K ,  the residual 
error E 2 ( K )  is equal to  the sum of the norm squared error e T ( n T ) e ( n T )  
over an interval [noT,nlT], that is., 

(9.106) 

The least-squares estimate K" is the one that minimizes the residual error. 
Expanding (9.107), the residual error becomes 

n=no 

+ KT WT (nT) W(nT) K )  

n=l / 

Making the definitions 



626 9. P M  Synchronous Motor Control 

it is written compactly as 

E 2 ( K )  = R, ~ R,wK ~ KTRwy + KTRwK 
T 

= R, ~ R , ~ R ; ~ R ~ ,  + ( K  - R $ R ~ ~ )  R ~ ( K  - R ~ ~ R ~ , )  
(9.108) 

where it is assumed Rw is invertible (The machine is sufficiently excited). 
The residual error is then minimized by choosing 

K = K* R$Rwy. (9.109) 

This approach is the standard least-squares approach presented in Chapter 
2. 

Error Index 

The residual error indicates how well the measured output y(nT) fits the 
linear model W ( n T ) k .  A residual error of zero would indicate a perfect 
match for every point n. However, as noted above, due to noise, quantiza- 
tion errors, and unmodeled 'dynamics, the actual residual error is greater 
than zero. To quantify this fact, recall that the notion of an error index 
was developed in Chapter 2. Specifically, if all the parameters were set to 
zero, the residual error would be equal to E2(0) = R,. As E2(K*)  is the 
minimum residual error, it must be less than or equal to R,. Using these 
two facts, an indication of how well the least-squares solution fits the data 
is found by clefining a residual error index as 

Multiplying this by 100, the error index can be viewed as a percentage of 
how well the data fits the linear relationship (9.104). 

Parametric Error Index 

The residual error index indicates how well the data set fits the model, 
but gives no indication as to how well the parameters are determined from 
the data. In Chapter 2, the idea of a parametric error index was developed 
to address this issue. Recall that to define the parametric error index, 
variations in the parameters that cause the residual error to double were 
considered. The residual error due to a variation of 6K = K - K* = 

K-RG'Rw, in the parameters is given by E 2 ( K )  = E2(K*)+6KTRwbK, 
which follows directly from (9.108). Setting E 2 ( K )  equal to 2E2(K*) yields 

E ~ ( K * )  = G K ~ R ~ ~ K .  (9.1 11) 
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If there were just a single parameter (so that Rw is a scalar), this 
give an estimate of the parametric sensitivity as 

627 

would 

RW 

The general solution to (9.111) for K E Rn was derived in Chapter 2 and 
is given by 

b ~ ,  = J E ~ ( K * ) ( R ~ ~ ) ~ ~  

and is taken to be the parametric eiv-or index. The percent parametric error 
index is then defined by 

6Ki 
K; 

PEi 45 - x 100. (9.112) 

This index is equal to the percentage change in the parameter K, corre- 
sponding to  a doubling of the residual error and provides an indication of 
how sensitive the residual error is to  each parameter estimate. For exam- 
ple, if PEi = lo%, then the residual error E 2 ( K )  is doubled for only a 
10% change in the ith parameter relative to the optimal estimate K; and 
therefore E 2 ( K )  is relatively sensitive to the estimated value of Ki. PEi 
can be interpreted as a measure of the order of magnitude of the errors on 
the parameters. 

The parametric error indices were chosen to correspond to a doubling of 
the residual error. As pointed out in Chapter 2, this is an arbitrary as well 
as a conservative choice; it means that one looks for a parametric varia- 
tion that would lead to an increase of error equal to 100% of the minimum 
residual error. If another level ha,d been chosen, all the parametric error 
indices would have been scaled by the same constant factor. The paramet- 
ric error indices are especially useful to compare relative sensitivities of 
different parameters and to  give some idea of the values of the errors to  be 
anticipated. 

9.3.1 Experimental Results 

Experimental results from Refs. [118][119] are now presented to illustrate 
the identification procedure. A 50-pole-pair (np = 50) PM synchronous 
machine is used with a 2000-pulses/rev encoder. Input voltages were com- 
manded to the motor so that it would accelerate reasonably fast while not 
going over their limits. The sampling frequency is T = 50 kHz (see the 
subsection below on signal processing). Figure 9.29 shows both the current 
i, resulting from the input voltages and the simulated current iqsim result- 
ing from a simulation using the identified parameters and the same input 
as the experiment. Similarly, Figure 9.30 shows the corresponding speed 
response w and the simulated speed w,im. 
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Parameter 
Rs ohms 

Ls H 
K,  N-m/A 
J kg-m2/ sec' 
f N-m/rad/sec 

f c  N-m 

.'o 0.01 0.02 0.03 0.w 0.05 o . ~  0.m ao8 

'Tim (rec) 

Estimate Parametric Error 
0.269 399% 
0.0027 47.6% 
0.515 19.8% 
0.000187 312% 
0.0032 5040% 
0.0693 4500% 

FIGURE 9.29. i, and iqsim for the identification experiment. From Blauch et al. 
[ 1191, @ 2004 IEEE. 
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10 rad/sec or higher after 0.01 sec so that n,wLs 2 50 x 10 x 0.0024 = 1.2 
while Rs = 0.27 ohm. That is, the value of Rs does not impact the value 
of the residual error compared to  the value of Ls,  and this is reflected in 
the relative values of their parametric errors. 

FIGURE 9.30. w and wsjm for the identification experiment. From Blauch et al. 
11191, @ 2004 IEEE. 

Note that the corresponding siinulations in Figures 9.29 and 9.30 show 
a good correspondence with the actual measured data. 

Two-Stage Identification 

Note from the table above that values of the parametric indices of the 
friction parameters f and fc indicate that they are much more uncertain 
than the stator resistance value, and that the moment of inertia J appears 
to be almost as uncertain as Rs. However, recall that the parametric indices 
are not absolute indicators of error. In fact, by doing the identification in 
two stages (i.e., first identifying the electrical parameters Rs, Ls,  and K ,  
and then using these values to identify the mechanical parameters J ,  f, and 
fc), the values of the parametric indices are significantly reduced though 
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Rs ohms 
L s  H 

the computed values of J ,  f ,  and f c  remain the same. In more detail, let 

0.268 399% 
0.0027 47.6% 

n=no 

the optimal estimate in the least-squares sense is then given by 

Using the same data as above, the parameters and parametric errors were 
computed and are given in the table below. The values of the parameters 
are essentially the same as before. 

1 Parameter I Estimate 1 Parametric Error I 

- I 

Km N-m/A I 0.515 I 19.8% 

Next, using the value of Km just found, the mechanical parameters are 
identified. To proceed, let 



so that 

Also, let 

J kg-m2/ sec2 
f N-m/rad/sec 
f c  N-m 
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h e c h  (nT) = Wmech (nT)Kmech. 

0.000187 13.2% 
0.0032 214% 
0.0693 191% 

so that optimal estimate in the lea,st-squares sense is given by 

Krnech = Et$mechRWmechY. 

The parameter estimates and their parametric errors are 

1 Parameter I Estimate I Parametric Error I 

The error index was 10%. Note that parameter estimates are the same 
as before, but the parametric errors are significantly reduced and the error 
index is reduced slightly. However, the parametric errors still show the same 
relative uncertainty in that the estimate of J is much more certain than 
the values o f f  and fc. 

Signal Processing 

A few words about processing the signals id, i,, and 6 when np is large are 
in order. Recall that the 
computed according to 

currents is, and i S b  are sampled and id and i, 

(9.113) 
cos( np6) sin( np6) [ sin(np6) cos(n,6) ] [ izl 1 -  

As the number of pole pairs is np = 50, a mechanical speed of 3000 rpm 
corresponds to an electrical frequency of 1.57 kHz. So, even if one samples 
at 50 kHz, a delay of one sampling period corresponds to a rotor movement 
of npT x (3000 rpm/60=) x 360" = 18" for np = 50, T = 1/ (50 x lo3), 
and, therefore, a phase lag in i d  and i, of this same amount. A phase shift in 
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the measurement of the phase currents leads to a rotation by the same angle 
in the dq coordinates. Consequently, as the electrical torque is proportional 
to i, only, such a shift could significantly affect the torque. For this reason, 
the delays present in the system must be accounted for precisely [119]. Due 
to the zero-order holds, the D/A converters create a delay between the 
commanded and actual voltages equal to half the sampling period. A delay 
is also caused by the time required to measure the state variables, calculate 
the dq transformation, and send the new commanded voltages. The PWM 
circuit also contains a low-pass filter to reduce circulation in the voltage 
regulator of the high-frequency noise. The filter has a DC gain of 1 and a 
cutoff frequency of 10 kHz. The delays due to the filter, PWM inverter, and 
zero-order hold were combined into a single delay of approximately 1.6T. 
If the commanded voltages are used (rather than the measured voltages), 
they must be delayed by this amount to reflect the voltages effectively 
applied to the motor. However, if np is small, these delays are typically of 
no significance. 

Another issue of significance in the experiments is the filtering of the noise 
before processing by the least squares algorithm. The collected currents 
and voltages were transformed into the dq coordinate system according to 
(9.113) and were filtered in order to remove as much of the measurement 
(PWM) noise as possible. A third-order Butterworth filter was used with a 
cutoff frequency of 500 Hz for the dq currents and 100 Hz for the dq voltages. 
This filtering was performed twice, forward and backward, to avoid the 
introduction of delays using the MATLAB function jiltjilt (see Chapter 2). 
To obtain all the necessary signals for the identification procedure, the 
derivatives were reconstructed using the backward difference calculation 
d z ( k T ) / d t  ( z ( kT)  - z ( ( k  - 1)T)) /T. As such a reconstruction enhances 
high-frequency noise, the derivatives are filtered again using a third-order 
Butterworth with a cutoff frequency of 500 Hz. 

9.4 PM Stepper Motors* 

Motion (servo) control systems often use a particular type of permanent 
magnet machine called the stepper motor. Permanent magnet stepper mo- 
tors are synchronous electric machines, but have a quite different construc- 
tion than the PM synchronous machine described in Chapters 6 and 7. A 
typical PM stepper motor consists of a stator made of soft iron equipped 
with windings/coils and a permanent magnet rotor. As shown in Figure 
9.31, the rotor has two sets of teeth (left and right in Figure 9.31) which 
are out of alignment with each other by a tooth width. Typically, there are 
50 teeth in each set; one set is magnetized as south poles and the other set 
is magnetized as north poles, resulting in np = 50 pole pairs. 
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FIGURE 9.31. Cutaway view of a PM stepper motor. Drawn by Sharon Katz. 
From Section 9.7 of Ref. [120] and reproduced with permision of Marcel Dekker. 

A photograph of a P M  stepper rnotor is shown in Figure 9.32 where the 
rotor has been pulled out for viewing purposes. 

FIGURE 9.32. Photograph of a PM stepper motor with the rotor pulled out from 
the stator. Courtesy of Prof. J. Douglas Birdwell of The University of Tennessee. 

The stator by itself is shown in Figure 9.33 and has eight windings. Four 
of these windings make up phase a and the other four windings make up 
phase b. The four windings of phase a are each separated by a winding of 
phase b and vice versa. 
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FIGURE 9.33. Stator windings of a PM stepper motor. Four of the windings 
make up phase a and the other four windings make up phase b. Courtesy of Prof. 
J .  Douglas Birdwell of The University of Tennessee. 

Figure 9.34 shows a cross-sectional view of both the left and right sides 
of a simplified P M  stepper motor with only 5 rotor teeth on each side and a 
stator with four windings. Here the left side of the PM rotor is magnetized 
as a south pole and the right side of the PM rotor is magnetized as a north 
pole. The rotor is made of a cylindrical permanent magnet core with the 
sets of teeth made of soft iron pressed onto either end. 

Permanent 
magnet 

FIGURE 9.34. Cross-sectional views of the left and right sides of a PM stepper 
motor. Adapted from Deltoro [29] and drawn by Sharon Katz. From Section 9.7 
of Ref. I1201 and reproduced with permision of Marcel Dekker. 

The permanent magnet magnetizes the soft iron of the rotor teeth, mak- 
ing one set a south pole and the other a north pole. The motor is operated 
as a two-phase machine by connecting windings (coils) a1 and a2 in series 
to  make phase a and windings bl and bz in series to make phase b. This 
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connection as a two-phase machine is now assumed is all that follows. 

9.4.1 

Stepper motors were originally designed to be used in open-loop [113][114] [29]. 
Their inherent stepping ability allows for accurate positioning to a set of 
discrete positions without feedback. To explain this, consider Figure 9.35(a) 
with the motor at 0 = 0. The direction for positive current for phase a is as 
shown in the figure. As indicated there, when positive current is in phase 
a,  winding a1 of the stator is magnetized as a north pole and winding a2 is 
magnetized as a south pole. Conversely, when negative current is in phase 
a,  winding a1 of the stator is magnetized as a south pole and winding a2 

is magnetized as a north pole. Similar remarks hold for phase b. Following 
the development in Ref. [29], the stepping motion is illustrated in Figures 
9.35(a)-(e), which are adapted from Figure 9-23 of Deltoro [29]. Figure 
9.35(a) illustrates the starting point with phase a having positive current 
for a north-south (NS) orientation for windings a1 -a2 and phase b hav- 
ing no current. In steady-state with usa = U O ,  it follows that is, = io 
(ug = Rsio, where Rs is the resistance of phase a )  and the motor is held 
by magnetic attraction at this location. For the first step, is, is set to zero 
and iSb = io so that rotor tooth N2 of (the right side) Figure 9.35(a) is 
attracted to stator winding b2 [see the right side of Figure 9.35(b)]. Simi- 
larly, the rotor tooth S 2  on the left side of Figure 9.35(a) is attracted to 
stator winding bl [see the left side of Figure 9.35(b)]. 

Open-Loop Operation of the Stepper Motor 

FIGURE 9.35. (a) Starting point with 6 = 0 where usa = U O ,  USb  = 0, isa = 20, 
and zSb  = 0. Adapted from Deltoro [29] and drawn by Sharon Katz. From Section 
9.7 of Ref. [l20] and reproduced with permision of Marcel Dekker. 

There are 360"/5 = 72" between each rotor tooth and, by the geometry of 
the right side of Figure 9.35(a), M2 is 18" from being aligned with winding 
b2. The rotor then rotates counterclockwise 18" and, after a short transient 
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period, ends up in the position shown in Figure 9.35(b). 

Figure 9.35(b) First step where 8 = 18" with 
U S ,  = 0, U S b  = U O ,  is, = 0,  i S b  = io 

For the second step, one sets usa = -UO, '11Sb = 0, is, = - io ,  and ist, = 0 
so that winding al is now a south pole and winding a2 is a north pole 
[Figure 9.35(c)]. Rotor tooth N3 is then attracted to stator winding a1 and 
rotor tooth S3 is attracted to  stator winding a2. The rotor then rotates 
another 18"; after a transient period, 8 is 36", ending up in the position 
shown in 9.35(c). 

Figure 9.35(c) Second step where 8 = 36" with 
= -uO, U S b  = 0, is, = -io, i S b  = 0. 

For the third step, one sets U S ,  = 0, '1LSb = -UO, isa = 0,  and i S b  = -20 so 
that winding bl is now a south pole and winding b2 is a north pole [Figure 
9.35(d)]. Rotor tooth N4 is then attracted to stator winding bl and rotor 
tooth S4 is attracted to stator winding b2. The rotor then rotates another 
18"; after a transient period, 8 is 54" as shown in 9.35(d). 
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I 

! ---+' 18' 

Figure 9.35(d) Third step where 0 = 54" with 
U S ,  = 0 ,  U S b  = --UO, is, = 0 ,  i s b  = -io. 

For the fourth step, one sets U S ,  = U O ,  U S b  = 0, is, = 20,  and i S b  = 0 so 
that winding a1 is now a north pole and winding a2 is a south pole [Figure 
9.35(e)]. Rotor tooth S5 is then attracted to  stator winding a1 and rotor 
tooth N5 is attracted to stator winding a2. The rotor then rotates another 
18"; and after a transient period, 6 is 72" as shown in 9.35(e). 

Figure 9.35(e) Fourth step where 8 = 72" with 
U S ,  = U O ,  U S b  = 0 ,  is, = i o ,  i S b  = 0. 

Note that Figure 9.35(e) is identical to Figure 9.35(a) except for the labeling 
of the rotor teeth. That is, after four steps, the rotor has moved by an 
angular distance equal to  the angle between two successive rotor teeth. In 
general, the step size is given by 360"/(4np). In this particular example, 
np = 5 so that the step size is 360"/20 = 18" and, with np = 50, it follows 
that the step size is 1.8". 

A typical step response of a P M  stepper motor with np = 50 is shown 
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in Figure 9.36, in which the motor rotates 1.8". For example, starting with 
the motor as shown in Figure 9.35(a), set usa = 0 and US6 = U O ,  and the 
response shown in Figure 9.36 results. This oscillatory behavior is due to 
the fact that the rotor motion (for small steps) is approximately the same 
as that of a pendulum with the only damping due to the viscous friction 
of the bearings (see below). To run the motor open loop at constant speed 
requires the stepping motion illustrated in Figures 9.35(a) through 9.35(e). 
If a step is initiated before the transient from the previous step have settled 
out sufficiently, the motor can.lose synchronism, resulting in the position 
being off by a step or more, from which it cannot recover [114]. In fact, 
the motor can even reverse its direction [121]. As a result, the open-loop 
operation is traded off with a relatively long settling time and low-speed 
performance. Fast and precise positioning requires closed-loop control. 

FIGURE 9.36. Step response showing rotor position going from the position in 
Figure 9.35(a) to the position in Figure 9.35(b). (0 in degrees versus time in 
seconds.) 
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9.4.2 

Following the developments in Refs.[113][114][115], the mathematical model 
is now derived using conservation of energy. With LS the self inductance 
of each phase winding, the total flux linkage in the windings of the stator 
phases is given by 

Mathematical Model of a PM Stepper Motor 

Xsa = L s i S a  + 4 a ( e )  
A S b  = L S i S b  + 4 b ( e )  

where 4a(6)  and 4 b ( 6 )  are the flux linkages in stator phases a and b, re- 
spectively, produced by the rotor’s permanent magnet. The surfaces of the 
rotor and stator teeth are shaped so that the flux linkages 4,(6) and &(e) 
are given by (see Refs. [113][115][114]) 

4 a ( e )  = AM cos(npQ) 
qbb(6) = AMsin(npe) 

where AM is a constant and 0 = ‘0 corresponds to  the rotor as shown in 
Figure 9.35. By Faraday’s law, Ohm’s law, and Kirchhoff’s voltage law, 

or 

where K,  a n,AM and w = de /d t  is the rotor’s angular speed. The power 
supplied by the source voltages U S a  and U S b  is isausa + i s b u s b  and thus 

where the back-emf voltages esa and e S b  are defined by 

--da(6) = K,w sin(np6) 

- -@b(e)  = -K,wcos(n,O). 

A d  

d t  

dt  

e S a  = 

A d  
e S b  = 
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The term 

phases ult 

represents 

Rs (iia + i&,) represents ohmic losses in the resistance of the 

imately appearing as heat while the term --Ls (i:a + i&,) 

the power stored in the inductance of the phases. The only 
other power in the system is the mechanical power r w  and thus the term 
- ( i S a e S a  + i s b e s b )  must be the mechanical power delivered to the rotor. 
That is, 

r w  = - ( iSaeSa  + i s b e s b )  

so that the torque is given by 

d l  
d t  2 

7 = - ( i S a e S a  + i S b e S b )  / w  
= -isaKm sin(np6) + isbKm cOs(npO). (9.1 14) 

With J the rotor’s moment of inertia and T L  the load torque, the equations 
of a PM stepper motor are given by 

L s ~  = - R S i S b  - Kmw cos(np6) + US6 

dw 
d t  
d e  
d t  

J -  = -isaKm sin(np6) + cos(np6) - r L  

= w. - 

Oscillatory Behavior of the Open-Loop PM Stepper Motor 

Figure 9.36 shows the oscillatory behavior of a PM stepper motor about 
it final equilibrium position. To understand the nature of this oscillation, 
consider the torque expression (9.114) around 6 = 0. Specifically, let the 
stepper motor be in the position shown in Figure 9.35(a), where 6 = 0 and 
with U S ,  = UO, U S b  = 0, is, = io, i S b  = 0. Then 

r = -ZsaKm sin(np6) M -ionpKm6 (9.115) 

for 6 close to zero. The slope of the torque vs. 6 curve a t  6 = 0 is -ionpKm 
which is large for np large (e.g., np = 50). That is, a slight disturbance of 
the rotor position 6 from 0 results in a corresponding large increase in the 
restoring torque. Also, with r L  = - f w  a viscous friction load torque, the 
equation describing the rotor position for 161 small is given by 

or, with w i  ionpKm/ J ,  2<wn f / J ,  this may be rewritten as 

This is simply the equation of a pendulum (simple harmonic motion) with 
viscous damping and, as such, the response is oscillatory. 
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9.4.3 High-Performance Control of a PM Stepper Motor 
As the mathematical model of the PM stepper motor is identical to  that of 
a standard P M  synchronous machine, the control is identical. In fact, the 
experimental motor used in Section 9.1.4 is a P M  Stepper motor. 

Appendices 

Two-Phase Equivalent Parameters 

In this Appendix, the calculation of the motor parameters from the man- 
ufacturer’s data sheet is given. The manufacturer’s parameters (Aerotech, 
Inc., Pgh PA) for their BM500 PM synchronous motor are given as follows: 
line-to-line inductance Le-e = 0.028 H, line-to-line resistance Re-e = 0.5 
ohms, line-to-line back-emf constant KiPe = 23.6 V(peak)/krpm, torque 
constant KT = 0.28 N-m/A(rms). 

From Chapter 7, equation (7.83), the electrical equations of a three-phase 
PM synchronous machine are given by (np = 1 )  

(9.116) 

L d i s l  dis2 L d i ~ 3  
2 dt dt 2 dt 

+L- - -- = Kwsin(6 - 27r/3) - Rsis2 + us2 (9.117) 

L d i s l  L d i ~ : !  dis3 
2 dt 2 d t  dt 

- -- + L- = Kwsin(6 - 47r/3) - Rsis3 + us3 (9.118) 

The line-to-line inductance and resistance measurements are done with the 
rotor held fixed and applying voltage between phase 1 and 2 with phase 
3 open-circuited. Subtracting equation (9.117) from equation (9.116), with 
is2 = -isl, is3 = 0,  w = 0 gives 

us2 - 2 R s i s l .  

Consequently, 3 L  = 0.028 H and as L = ( 2 / 3 ) L s  one obtains 

3 0.028 
Ls = -- H = 0.014 H 

2 3  

while 2 R s  = 0.5 ohm gives 

Rs = 0.25 ohm. 

The line-to-line back-emf voltage is measured by externally driving the 
motor shaft at constant speed with the phases open circuited and measuring 
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the voltage between two-phases. In this setup, the voltages are given by 

us1 = -Kwsin(B) 

us2 = -Kwsin (8 - 27r/3) = -Kw(-0.5sin(O) - &/2cos(B)) 

us3 = - K w  sin(8 - 47r/3) = -Kw( -0.5 sin(0) + &/2 cos(B)) 

where B = wt. Then 

and 

us2 - us3 = &Kwcos(B) 

V 
= &K (us2 - US3)peak 

W rads/sec 

27r/60 rads/sec 1000 rpm 
r Pm krpm ' 

KlPe = &K (9.1 19) 

From Chapter 7 (see the remark on page 456), K = m K m  so that 

Km = E K = - K "  1 V(peak) krpm rPm 
Jz krpm 1000 rpm 27r/60 rads/sec 

1 1 60 V(Peak) -23.6-- = 0.159 - - Jz 100027r r ads/sec 
(9.120) 

To compute the torque constant (which must equal the back-emf constant), 
consider the steady-state situation in which the currents are given by 

isl = 13phcos(~t)  

isz = 13ph cos(wt - 27r/3) 

is3 = 13ph cos(wt - 41~13) 

where 13ph is the peak current. The 3 - 2 phase transformation results in 

1 [ :E ] = [ m 1 3 p h s i n ( w t )  
m 1 3 p h  cos(wt) 

so that the torque is given by 

7 = -gKiso  sin(npO) + F K i S b  2 cos(np8) 

= gKgI~,h sin(wt - np6) 

= ~ ~ K I ~ ~ ~ - ~ ~ ~  sin(wt - np6) 

= K T I ~ ~ ~ ~ ~ ~ ~  sin(wt - npB) 

3 
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where 133p,, Tms is the rms current. The manufacturer’s value for the torque 
constant KT is the torque per unit of rms phase current which this expres- 
sion shows is equal to KT = &%K N-m/A(rms) or 

1 2  
K == --KT. 

J 2 3  

KT is given in units of N-m/A(rms) while K ,  is in N-m/A(peak). Finally, 
putting in the numerical values gives 

(9.121) 
KT 0.28 N-m N-m 

= 0.162 
Km = /iK = = A(peak) A(peak). 

Consequently, computing K ,  using the back-emf constant (9.120) gives the 
same value (within numerical accuracy) as computing K ,  using the torque 
constant (9.121) as it must be. 

Current Plots 

In this appendix, the procedure used to  compute the dq currents given in 
Figures 9.17-9.24 is described in detail. 

Case 1 

Here a; = 0,iG = *I,,, and the magnitude of the voltage required to 
achieve the maximum current I,,, must satisfy 

For higher speeds, this constraint cannot be satisfied and the current i: 
must be reduced below I,,,. Setting 2; = I ,  the maximum current available 
for i;E is found by solving 

Z;(w)I’ + 2RsKrnwI + K ~ w ’  = V:,,. 

Solving, 
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where the + sign is for motoring and the - sign is for braking. In summary, 
iC;: = 0 is the direct current reference and 

with + for motoring and - braking. 

Case 2 

Operating under only the voltage constraint, the optimal field weakening 
current is given by 

2: = - (npwLs)  ( K m w )  

- w w )  

and the corresponding quadrature current is 

This is the overall optimum as long as 

2 2  i:’ + i; 5 I,,,. 

If this constraint is violated for -I,,, < i: < 0, then the quadrature 
current is limited to 

i; = f I&, - i:2 4 
otherwise ii = 0. In summary, with i: = - (n,wL) ( K m w )  / Z i ( w )  the direct 
current reference, the corresponding quadrature current is 

ii2 + ic2 2 I;,, and ~ I,,, < ii < 0 

otherwise 

with + for motoring and - braking. 
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Case 3 

This case gives a direct current reference as i: = -,/I:,, ~ i;2 and the 

corresponding quadrature current is 

l o  otherwise 

with + for motoring and - braking. 

Problems 

Problem 1 Maximum Torque Under the Voltage Constraint 

so that 
(a) With the PM synchronous machine at constant speed in steady state 

U d  = Rsid - n,wLsi, 

u, = Rsi, -+ n,wLsid -+ Kmw 
Kmiq = T L  

hold, show that the torque is maximized under the constraint uz+u: 5 V&x 
by choosing the voltages and currents as in (9.14)- (9.16). 

(b) Explain why in steady state the physical constraints lusal 5 Vmax, 

lusbl 5 V,,, are equivalent to u;, + uib 5 Vzax. 

Problem 2 State Feedback 
Show how to choose the state feedback gain (9.40) such that the state 

feedback specified by (9.39) places the poles of the system (9.38) at any 
arbitrary location. 

Problem 3 Observer 

state e ( t )  = [ e l ( t )  

Problem 4 Maximum Torque R,eference with V = V m a x ,  I = I,,, 

(9.75), (9.76), and (9.77). 

Problem 5 First Transition Speed 

Show how to choose the gains e 1, & in (9.43) and (9.44) so that the error 
T 

e z ( t )  ] --f 0 at any given prescribed rate. 

Show that p2 ( w )  - 4a ( w )  y ( w )  2 0 with a ( w ) ,  /3 ( w ) ,  and y ( w )  given by 

(a) Show that equation (9.82) has one positive root and one negative root. 
(b) Show that (wlnegI, where wlneg is the real negative root of (9.82), is 

the transition speed for i, = -Imax. 
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Problem 6 Open-Loop Simulation of a PM Synchronous Machine 
Let a two-phase PM machine have parameter values. mp = 50 rotor teeth, 

K ,  = 0.19 N-m/A, J = 4.5 x lo-' kg-m2, and f = 0.0008 N-m/rad/sec. 
Simulate the machzne based on equations (9.1). Can you get it to run open 

Imax = 6.0 A ,  Imax = 6-0 A ,  V m a x  = 40 V, Rs = 0.55 a, LS = 1.5 mH, 

loop? 

Problem 7 Closed-Loop Control of a PM Synchronous Machine 

loop controller of Fagure 9.1. Do thzs for two trajectorzes. 

trajectorzes of Fzgures 9!3-9.8. 

Fzgures 9.9' 9.13. 

Usang the parameter values of problem 6, samulate the complete closed- 

(a) Do a fast turn of the motor from 8 = 0 to 8 = 0 . 9 ~  radzans uszng the 

( b )  Do a hzgh speed move from 0 to 2 5 ~  radzans uszng the trajectorzes of 

Problem 8 Simulation of a PM Synchronous Machine Producing Maxi- 
mum Torque 

Let a three-phase PM synchronous motor have parameters values gzven 
by  L = 9.3 x lop4 H, R = 0.25 ohms, J = 13.9 x low5 kg-m2, K = 0.198 N- 
m/A, np = 4. The lzmzts are gzven by z,,, (contanuous) = 18 A ,  a,,, (peak) 
= 55 A ,  and vbus (bus voltage) = 160 V. The motor bearzngs are rated for 
10,000 rpm or about 1000 rads/sec whzch as taken to be the maxzmum speed 
of the motor. The correspondzng equzvalent two-phase parameters are Ls  = 
L+L/2 = 14x lop4 H, K,  = ( m ) K  = 0.243 N-m/A, I,,,(contznuous) 
= (&@)a,,, (contznuous) = 22 A ,  Imax (peak) = ma,,, (peak) = 67.4 
A ,  VmaX = m ( 2 / ~ ) & , ,  = 124.8 V. 

Do a szmulatzon that zmplements the block daagram of Fzgure 9.25. Run 
the szmulatzon for both the contznuous current lzmzt and the peak current 
lamat. 

Problem 9 Controlling Two PM Motors with One Amplifier [122] 
Consider a situation in which two identical PM synchronous machines 

are connected in  parallel to the same amplifier. This means that the same 
voltages usa, usb are simultaneously applied to both motors. The dq voltages 
of each motor are given by  

cos(np81) sin(n,81) usa [ ztt ] = [ -sin(nP81) cos(n,81) ] [ U s 6  ] 

and note that these dq voltages are not the same as the angle of the two 
motors may not be equal. The model of the two motors in the dq-coordinate 
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system are then 

- = w1 
dB1 
dt 

and 

h 2  

dt 
do2 
dt 

J- = Keqiq2 - 7 ~ 2  

= w2. - 

Show that using the feedback 

and current command control 

that the position and speed of each motor can be forced to track a trajec- 
tory. Is there any singularity in the controller? How should i q l r e f ,  i q z re f  be 
specified? 

Problem 10 Half-Stepping of a F'M Stepper Motor 
Assume that the stepper motor starts out in the position shown in Figure 
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9.35. Fill in the table below to show the stepping of the motor. 

I 0 1 -un I I 

Problem 11 P M  Synchronous Motor with a Salient 
Some PM synchronous motors are constructed in 

Rotor [51] 
such a way that the 

rotor exhibits significant saliency due to a n o n u n i f o m  air gap. I n  this case, 
the flux linkages in the stator phases due to the stator currents depends on 
the rotor position. Specifically, the stator flux linkages are given by  

As, = Lsis, + K ,  cos(np8) + L, (is, cos(2np8) + i S b  sin(2nP8)) 

AS6 = Lsisb + K ,  sin(np8) + L, (isa sin(2np8) - isb cos(2np6)) 

where the third term in each expression is due to the nonuniform air gap 
(saliency) of the rotor. Notice that these terms have a period of r /np while 
the flux linkage due to the permanent magnet rotor has a period of 27r/np. 

/ -  \ 
FIGURE 9.37. PM sychronous motor with a salient rotor (np = 1). 

(a) Use a conservation of energy (power) argument to show that the 
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motor torque is given by 

(i:a - i”,) sin(2nPe) + 2iSaiSb cos(2nPe)) 

+ npKm (-isa sin(np8) + i s b  cos(npO)) . 

(b) Show that using the dq transformation given by 

that the equations of the salient P M  synchronous motor are given by  

d i d  
L d $ t  = -Rid - npWLqiq + u d  

d i  
dt 
dw 
dt 
dB 
d t  

L = -Rig - npWLdid - npwKm f U q  

J -  = np (Kmiq + (Ld - Lq)iqid) 

W - - - 

where 

Ld A L s f L g  
A L, == Ls-L , .  

(c) Consider the change of coordinates 

and show that the motor model is then of the form 



650 9. PM Synchronous Motor Control 

Give the explicit expressions f o r  f l  and f2 

(d) Show that the nonlinear feedback 

L J 

results in a linear system. 

Is it a practical problem? Explain. 
(e)  Under what conditions is the nonlinear feedback of part (d) singular? 
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Trapezoidal Back-Emf PM 
Synchronous Motors (BLDC) 
In this chapter a mathematical model of a trapezoidal back-emf synchro- 
nous motor is derived and a control scheme for it is developed. This machine 
is also known as the brushless DC (BLDC) motor, and this terminology will 
be explained in Section 10.8.1. Despite the name “brushless DC motor”, 
this is a PM synchronous machine where the magnetic fields are uniformly 
distributed in the air gap (rather than sinusoidally distributed). With the 
motor running at constant speed, this results in a back emf that has a 
trapezoidal shape in time, and hence the name trapezoidal back emf mo- 
tor. 

10.1 Construction 

Figure 10.1 shows the basic construction of a three-phase BLDC motor 
[25]. Figure 10.2 is a redrawing of Figure 10.1 without the rotor so as to 
show the layout of the three stator phases more clearly. 

of stator phase 1 

FIGURE 10.1. Construction of a PM trapezoidal back-emf machine. Adapted 
from Mohan [25]. 
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Figure 10.2 shows that there are three sets of windings which are uni- 
formly wound' on the inside surface of the stator. Phase 1 with current isl 
has its turns uniformly wound between n/3 and 2 ~ / 3  on one side of the 
stator's inside surface and between 4n/3 and 5 ~ / 3  on the other side of the 
stator. Similarly, phase 2 with current is2 has its turns uniformly wound 
between n and 4 ~ / 3  and between 0 and n/3 while phase 3 with current is3 
has its turns uniformly wound between 2 ~ 1 3  and n and between 5n/3 and 
2n. 

FIGURE 10.2. Three uniformly wound stator phases in a BLDC machine. 

Figure 10.3 shows the PM rotor of Figure 10.1 by itself [25]. 

A 
A 

FIGURE 10.3. Rotor of a single pole-pair PM magnet rotor for a BLDC motor. 
Adapted from Mohan [25]. 

'By unzjormly wound, it is meant that the number of turns between 6' and 6 + d6 is 
constant independent of the angle 6'. 
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The magnetic axis of the rotor as well as  the angle A between the north 
and south poles are indicated. The permanent magnet rotor is constructed 
by bonding permanent magnets on the surface of a cylindrical core of lam- 
inated soft iron. As usual, the rotor position is taken to be along the mag- 
netic axis of the rotor (see Figure 10.3). The permanent magnets on the 
rotor set up a uniformly (in 6) distributed magnetic field in the air gap 
given by 

for 

for 

for 

for 

T a  3~ A - + - < e - o R  5 - - - 
2 2 -  2 2  

(10.1) 

where the parameter A represents the angular distance between the north 
and south pole magnets on the rotor. Also, the factor rR/r ensures that 
conservation of flux holds in the air gap. The radial magnetic field distrib- 
ution in the air gap due to the rotor’s permanent magnet is illustrated in 
Figure 10.4. 

Rotor 

FIGURE 10.4. The radial magnetic field distribution B.R(T, 0 - O R ) .  
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In Sections 10.2 through 10.7, A will be taken to be zero to simplify the 
analysis with no significant impact on the resulting mathematical model. 
In this case, (10.1) simplifies to 

10.2 Stator Magnetic Field B s  

The magnetic field Bs produced stator currents is now derived. As illus- 
trated in Figure 10.1, the stator winding density of a BLDC is uniform 
over inner periphery of the stator. Specifically, stator phase 1 has a wind- 
ing density given by 

The total number of windings (turns or loops) making up phase 1 is then 

Similarly, Nsz(8)  = Nsi(8  - 2 ~ 1 3 )  and Ns3(8) = Nsl(8  - 47r/3). To de- 
termine the radial magnetic field in th_e air gap produced by the current 
in stator phase 1, Amp6re's law with H = 0 in the iron is applied to the 
path 1-2-3-1 of Figure 10.5 to  obtain [by symmetry, H s l ( i s 1 , ~  + 8) = 

-Hs1 (iSl, 41 
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FIGURE 10.5. Path 1-2-3-1 for applying AmpGre’s law. Note that for the path 
drawn, ~ / 3  5 0 5 2 ~ 1 3 .  

or 

whcre it was assumed that Hs1 is constant across the air gap. Then Bsi = 

,uoHsl in the air gap. A factor of rR/r is now included to ensure that Bsl 
s_atisfies conservation of flux in the air gap. Consequently, the magnetic field 
Bsl = Bsl(is1, r, 8)f at any point (r,  6) in the air gap due to  the current 
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is1 in phase 1 is given by 

Similarly, 

A plot of the normalized radial magnetic field Bsl(is1, r, 0 ) l  ( p o ~ ~ i s l  

due to  the current in stator phase 1 for -7r/3 5 0 5 27r is in Figure 10.6. 
r )  

Bsl (normalized) 
I 

p o ~ z s l  F) FIGURE 10.6. Normalized magnetic field Bsl(is1, T ,  Q)/ ( 

This is also illustrated in Figure 10.7 which shows the direction of radial 
magnetic field distribution Bsl(isl,r,O) in the air gap at each angular 
position 0. In particular, the magnetic field due to is1 is radially out to the 
right of the dashed vertical line and radially in to the left of the vertical 
line. 
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I 1 

FIGURE 10.7. The radial magnetic field distribution BSl(is1, T ,  6 )  in the air gap 
due to the current is1 in stator phase 1. 

10.3 Stator Flux Linkage Produced by B s  

The flux 411(i,9,6) in a winding of stator phase 1 at the angle 6 where 
x / 3  5 6 5 2x13, due to the current in stator phase 1, is now computed 
using the flux surface shown in Figure 10.8. 

FIGURE 10.8. Flux surface for a winding of stator phase 1 to calculate the flux 
produced by the magnetic field of ic.1. 
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Using the expression (10.3) for Bs1, the flux produced by Bsl in a 
winding of stator phase 1 with one side at I3 and the other at I3 - 7r is given 
by 

+3 7r ( ( f ) 2  - (0 - 5)’)) 

As the outward normal was used to  compute the flux, -ddl1/dt > 0 means 
that this induced emf in stator phase 1 will push current in the same 
direction as that chosen for positive current flow in stator phase 1. 

The total 9ux linkage Xsl(isl,O, 0) in stator phase 1 due to  the current 
in phase 1, is then found by adding up the fluxes in each winding of phase 
1. That is, 

The flux 421(isl,0) in a winding of stator phase 2 at an angle I3 (T 5 I3 5 
47r/3), produced by the magnetic field of stator phase 1, is computed using 
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the flux surface shown in Figure 10.9. With T 5 8 5 4 ~ 1 3 ,  this flux is 
computed as 

(10.4) 

FIGURE 10.9. Flux surface for a winding of stator phase 2 to calculate the flux 
produced by the magnetic field of 2 : ; ~ .  The windings of phase 2 are shown shaded. 

The total flux linkage Xs2(isl, 0,O) in stator phase 2 produced by the 
current in stator phase 1 is then 
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where (7-R = C 2 / 2 )  

The flux 431 (isl, 0 )  in a winding of stator phase 3 at an angle B where 
5 ~ / 3  5 0 5 27i produced by the magnetic field of stator phase 1 is computed 
using the flux surface shown in Figure 10.10. 

FIGURE 10.10. Flux surface for a winding of stator phase 3 to calculate the flux 
produced by the magnetic field of isl. The windings of phase 3 are shown shaded. 

Proceeding, with 5x13 5 0 5 27r, 

The total flux linkage in stator phase 3 produced by the current in stator 
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phase 1 is then 

with 

The other phases are computed similarly. In summary, the flux linkages in 
the stator phases due to  the stato>r currents are given by 

(10.6) 

In matrix form, the flux linkages are given by 

L s  -M -M 

Xs3 -M -M LS 

The inverse of the inductance matrix on the right is 

M L s - M  M 
M L s - M  " 1  L s - M  M 1 

(Ls - 2 M )  ( M  + Ls) 

where by (10.6), L s  = (7 /3)M results in ( L s  - 2 M )  (A4 + Ls)  > 0. 

10.4 Stator Flux Linkage Produced by BR 
The flux linkage As1 R(6R) in the windings of phase 1 due to the magnetic 
field of the PM rotoris now computed. The first step is to  compute the flux 
$sl R ( Z ~ l , O )  in each of the windings of stator phase 1 produced by the 
rotor's magnetic field. Recall that the top sides of the windings of phase 1 
are located in the interval "13 <I 6 5 2x13. 

Case 1. As Figure 10.11 illustrates, in this case the computation of the 
flux in a loop of stator phase 1 produced by the rotor's magnetic field is 
done with rotor angle in the interval ~ / 6  5 O R  5 5 ~ 1 6 .  
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FIGURE 10.11. Computation of the flux in a loop of stator phase 1 produced by 
the rotor’s magnetic field when 71-16 5 6~ 5 571-16. 

Case 2. Figure 10.12 illustrates the computation of the flux in a loop of 
stator phase 1 produced by the rotor’s magnetic field when -n/6 5 OR 5 
~ / 6  and OR + 71-12 5 O 5 2 ~ 1 3 .  

n 

FIGURE 10.12. Computation of the flux in a loop of stator phase 1 produced by 
the rotor’s magnetic field when -71-16 5 6~ 5 71-16 and OR + 71-12 5 6 5 271-13. 

Case 3. Figure 10.13 illustrates the computation of the flux in a loop of 
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stator phase 1 produced by the rotor's magnetic field when - ~ / 6  5 OR 5 
~ / 6  and ~ / 3  I 6 L O R  + ~ / 2 .  

FIGURE 10.13. Computation of the flux in a loop of stator phase 1 produced by 
the rotor's magnetic field when - ~ / 6  5 6~ 5 716 and ~ / 3  5 6 5 OR + ~ 1 2 .  

With reference to Figures 10.11, 10.12 and 10.13, and using the expres- 
sion (10.2) for the magnetic field produced by the rotor, it follows that 
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Simplifying, this becomes 

2rRelBRO (6 6,) for ~ / 6  5 6 R  5 5 ~ / 6  

-2r&lBRO (6 - OR - ?r) for 6 R  + n / 2  5 6 5 2n/3 
and -"r/6 5 OR 5 n / 6  

2 r R t l B R O  (6 - 0,) for ~ / 3  5 6 5 6 R  + "r/2 I and - ~ / 6  5 OR 5 ~ / 6 .  

4S1- R(iS1 9 = 

The total flux linkage As1 R ( O R )  in stator phase 1 produced by the rotor's 
magnetic field is then 

Evaluating, this becomes 

Simplifying, this becomes 
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By symmetry, As1 R ( ~ R  f 7 r )  = - A s l  R ( ~ R )  so that the total flux linkage 
in stator phase 1 due to the rotor’s magnetic field may be written as 

Define X R ( ~ R )  as 
A R ( ~ R )  a As-R(QR)/MsR 

where MsR a ~TRJ!~NSBRO is the coeficzent of mutual inductance between 
the stator and the rotor. A plot of x R ( 6 R )  versus 6 ,  is given in Figure 10.14. 

FIGURE 10.14. A , ( ~ R )  versus OR. 

A simple computation shows that 
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The total flux linkage in each stator phase may now be written in terms 
of XR(OR) as 

10.5 Emf in the Stator Windings Produced by BR 

By Faraday’s law, the back emf induced in the windings of phase 1 by 
rotor’s magnetic field is given by 

the back emf in each stator phase may now be written succinctly as 

(10.8) 

As -1 5 e(OR) 5 1, epwR is the peak value of the back emf. A plot of the 
back emfs esl(OR), esz(OR),  and es3(OR) at constant angular speed W R  are 
given in Figures 10.15, 10.16, and 10.17, respectively. Note that each one 
has a trapezoidal shape and is the reason this machine is referred to as a 
trapezoidal back-emf synchronous motor. 
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eSl (OR 

FIGURE 10.15. es l (OR)  versus O R .  

eS2 (OR ) 

FIGURE 10.16. esz(OR) versus OR. 

es3 (OR 1 

FIGURE 10.17. es3(OR) versus OR. 
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10.6 Torque 

The magnetic force exerted by the rotor's magnetic field BR(TS, 6 - 6,) 
on the top axial side (i.e., ~ / 3  5 6 5 2 ~ 1 3 )  of a winding of phase 1 is (see 
Figure 10.18) 

On the bottom side (i.e., 4 ~ 1 3  5 6 5 5 ~ 1 3 )  the force is 

The total torque on the axial sides of the windings of phase 1 produced by 
the rotor's magnetic field is then 

where the fact that B R ( T S , ~  - 6,) = - B R ( T s , ~  - 6~ k T )  was used to 
obtain the last expression. 
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FIGURE 10.18. The force $;S I (T ,  6 -- 6 ~ )  = -islC1BR(rs, 6 - 6 ~ ) 6  exerted on 
a winding on the top side of stator phase 1 by the magnetic field of the rotor’s 
permanent magnet. 
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~ R I ( ~ R , ~ S I )  = 

/ 

for - ~ / 6  5 O R  5 ~ / 6  
6 6 ~ .  

- r p - - p 1  

-‘pis1 for ~ / 6  5 O R  5 5 ~ / 6  

6 ( O R  - T )  . 
zs1 for 5 ~ / 6  I OR I 7 ~ / 6  

T 
+‘P 

, +.rpisl for 7 ~ / 6  I OR I 1 1 ~ / 6 .  

10.7 Mat hemat ical Model 

The stator flux linkages are given by 

Xl(isl,is2,is3) = +Lsisl - Mis2 - Mis3 + epXR(6R)  

X2(is1, isz, is3) = -Mia + LsisZ - Mis3 + epXR(8R - 2 ~ / 3 )  

h(is1,  is2, is3) = -Misl -- Misz + Lsis3 + epXR(6R - 47r/3) 

and the phase torques are 

T R I ( ~ R ,  isl) = - ‘ r p e ( 6 ~ )  is1 

7R2(6R, iS2) = - T P ~ ( ~ R  - 2T/3)isz 

7R3(6R, iS3) = - T p e ( 6 ~  - 4T/3)is3. 

With Rs the resistance in each stator phase and U S ~ , U S ~ ,  and us3 the 
voltages applied to  each stator phase, the mathematical model is then 

d 
--Xl(isl,is~,is3) = -Rsisl +- us1 
dt  
d 
---Xz(isl,isz,is3) = -RsisZ + us2 
d t  
d 

- X S ( ~ S I ,  is2, is31 = -&is3 +- us3 
dt  

did 
J-  

d t  
dOR 
d t  

= T R1 (OR, iSl) + 7 R 2  (OR, 2 % )  + ‘R3 ( O R ,  2 ~ 3 )  - 71; 

- = W R  
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or 

with 

A 
7 = - rpe  ( O R )  is1 - r p e  (OR - 27r/3) is2 - r p e  ( O R  - 47r/3) is3. 

This system is often written in the form ( e  (OR) = - ~ X R ( ~ R ) / ~ O R  ) 

With balanced stator currents, this may be rewritten as (see problem 1) 
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Remark 
In this formulation of the mathematical model, e (0,) = -dXR(eR)/deR 

was used [see equation (10.8)] so that the back emfs in each phase eS1 = 
epe ( O R )  , es2 = epe (OR - 2 ~ / 3 )  , and es3 = epe ( O R  - 4 n / 3 )  have the same 
sign convention as the corresponding applied stator voltages us1, us2, and 
us3, respectively. This is consistent with Faraday’s law and with the sign 
conventions chosen for the back emf in the induction and synchronous ma- 
chines. However, in the literature, it is common to use &(OR) g ~ x R ( O R ) / ~ O R  

for the back emf [15]; that is, the sign convention is opposite to that used 
here. This formulation is explored in problem 4. (In Chapter 1, both sign 
conventions were considered for the back emf of the DC motor.) 

10.8 Operation and Control 

At constant angular speed, Figure 10.19 is a graphical representation of the 
relationships between the back emf voltages (note their trapezoidal shape) 

e s i  = ~ P ~ ( @ R ) w R  

es3 = epe(OR ~ 4T/3)WR, 

the phase currents isl,is2, and is3, the power absorbed in each phase by 
the back emfs ps l  = esl is1,ps2 es2is2,ps3 a essis3,  and the total 
power absorbed by the back emfs p a e s l i s l +  es2is2 + essiss .  In order to 
obtain the current profile is1 shown in Figure 10.19, the current reference 
islr for the current in phase 1 is chosen as 

es2 = epe(OR - 2 7 r / 3 ) w ~  (10.9) 

A 

- I p  if es l  = +Ep = +epwR 
es l  = -Ep = -epwR 

0 otherwise 
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or, from the expressions (10.7) and (10.8) for e s l ,  it is seen that isir may 
be written as 

iS l r (OR)  = IpiS(OR) 

where 

Choosing the gains in the PI current controller 

rt 

appropriately results in is1 + isl,.. Similarly, one chooses i ~ 2 ~  = Ipis(OR- 
27r/3) and iS3,. = IpiS(OR - 47r/3) and then employs PI  current controllers 
of the form (10.11) to  force is2 + i ~ 2 ~ , i s 3  + is3,-. 

Figure 10.19 shows that the current is commutated (i.e., is switched 
from one phase to another) every 7r/3 radians or 60". For example, at 
OR = 7r/6 the current - Ip  in phase 3 goes (is commutated) to  phase 1. 
After another 7r/3 radians so that OR = 7r/2, the current I p  in phase 2 is 
commutated to  phase 3. Note that one need only know the rotor position at 
the discrete locations 30", 60", go", 150", 210", 270", and 330" to carry out 
the commutation of the phases, i.e., to implement islr, iszr, i ~ 3 ~ .  Usually 
these motors are equipped with Hall effect sensors that detect these discrete 
rotor positions for current commutation. 

To determine torque produced using these current references, consider 
the electrical power absorbed by the back emfs which is given by 

Choosing the current references as just described, it is seen from the plots 
in Figure (10.19) that this last expression reduces to 

es l i s l  + eszisz + essis3 = epe (OR)wRislr + epe (8 ,  - 2 ~ / 3 ) w ~ i s 2 ~  

+ epe (OR - 4 7 r / 3 ) w ~ i s 3 ~  
= -2epwRIp 

which is negative for W R  > 0, I p  > 0. Where does this power go? It is 
converted into mechanical power as is now shown (see also problem 2). 
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I 3 4  2 13316 
X I 2  5x16 7x16  1 -Ip+ l h I 6  OR 1 

5 3  

PSI 
n 1 6  8 1 2  5x16 7x16  3x12 1 h 1 6  13x16 

I 1 
ps21 

1416 n 1 2  5x16 7 x 1 6  3x12 1 h 1 6  13x16 

I 1 OR 

ps3 
n l 2  5x16 I n 1 6  3 n l 2  l h I 6  13x16 n( 6 

1 - W P i  I 1 - v p +  1 OR 

P 
n / 6  n / 2  Sn! 6 l q 1 6  3 n / 2  l h I 6  13n16 

OR - 2EpIp 

FIGURE 10.19. Back emf, currents, and power waveforms ( E p  4 i  epwB).  
Note that the commutation of the phase currents occurs every 7r/3 radians at 
~ / 6 ,  7 r / 2 , 5 ~ / 6 , 7 ~ / 6 , 9 ~ / 6 ,  and 1 1 ~ 1 6 .  Adapted from Krishnan [15]. 
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Specifically, with the currents chosen as above, the mechanical power is 

r p e  O R  - ( 
epe OR - ( 

w ~ i s 2  - r p e  O R -  
3 ( 
~ ) w R i s 2 T  3 - epe OR - ( 

") 3 WRiS3  

= 2epwRIp 

= 2 r p I p w ~ .  

That is, the torque is simply given by 

r = 2rpIp. 

This suggests a control scheme in which the current references are chosen 
as 

and 

us2 = K P ( ~ s ~ ~  - is2) + KI ( k T ( r )  - i ~ 2 ( r ) ) d r  (10.13) 
10  

If the PI current controller performs well enough to assume is1 = islT, 
is2 = islT and is3 = is3T, then 

- = - - % = > I - - .  d w r  27 T L  

dt J J J p  J 
One then simply chooses 

( 10.15) 

With eo(t)  
w T e f ( t )  - w ( t ) ,  the closed-loop system for the mechanical variables is 

J,"(OTef(r) - Q(r) ) d r , e l ( t )  s,,,(t) - O ( t ) ,  and ez( t )  

0 1 0 

-KI -Kp 0 -KD ] [ %I ] + [ l!JlrL. 
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With r1 > 0, r2 > O,r3 > 0,  set the gains as 

so that the closed-loop characteristic polynomial is 

I) 1 
a(s )  = det sI - 0 ( [ -C, - k p  -KD 

= s3 + K I S ~  + K ~ s  - KI 

= s3 + (r1+ rz + r 3 ) s 2  + (737-2 + rlr3 + ~ 2 ~ 3 ) s  + ~ 1 ~ 2 ~ 3  

= ( s  + q ) ( s  + r2)(s -F 7-3). 

With this choice of gains, the closed-loop poles are p l  = --TI, p2 = 9 2 ,  

and p3 = -7-3. As shown in Chapter 2, if the load torque is constant, then 
e l ( t )  + O,ez(t) + 0 as t 4 00. Of course, this controller assumes that 
is1 + i s lT ,  is2 4 isaT, and i s 3  --j 2 . 9 ~ ~  fast enough that it can be assumed 
that currents are equal to their reference values. 

Remark 
Note that the set of currents i : j lT = IpiS(OR), iSZT = I p i s ( O R  - 27r/3), 

and 2 ~ 3 ~  = I p i S ( O R  - 47r/3)isl, are balanced, that is, 

I p i S ( 6 R )  f I p i S ( e R  - 27r/3) + I p i S ( e R  - 47r/3) 0. 

However, the back emf voltages e,Tl(OR), es2(OR) and e s 3 ( O ~ )  are not bal- 
anced as 

e S l ( O R )  + eS2(OR) + eS3(OR) = -epWR(e(OR) + e (OR - 2r/3) 

+ e (OR - 47r/3) ) 
is not identically zero (see Figure 10.19). This is in contrast to  a three- 
phase PM synchronous machine with sinusoidally distributed windings in 
which the back emf voltages are balanced. 

10.8.1 

The terminology brushless DC motor or BLDC is used for this machine 
because usually the motor is combined with an optical encoder, current 
measurements, Hall sensors for current commutation, an amplifier and feed- 
back controller so that it behaves like a DC motor. That is, as indicated in 
Figure 10.20, the currents and motor position are fed back to the controller; 

The Terminology “Brushless DC Motor” 
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Controller us1 

Amplifier 
and us2 

us3 

the controller then uses PI current loops of the form (10.11) to force the 
currents to track the references 

is1 - Optical 

1 
3 ~T Encoder 
* '32 

* Is3 
u +  BLDC 

v +  
- 

where i ~ ( 6 R )  is given by (10.10). The input to the controller is simply I, so 
that with the inner current control loops working properly, the equations 
of the motor become 

I '  ; Hall Sensors  
- for Current 

Commutation - - 

dw 
d t  

J -  = 2 7 , 1 , - 7 ~  

7 
0.Q 

W - - 
df3 
dt 
- 

which is the same form as current command DC motor with torque constant 
KT = 27,. 

IP 1 
FIGURE 10.20. Block diagram for a brushless DC motor. 

The system of Figure 10.20 is what one refers to as a "brushless DC 
motor" which the user obtains as a complete system from the manufacturer. 
Then, in the same way as for a DC motor, one simply chooses the "DC 
current" I, as in equations (10.14) and (10.15) to use the BLDC as a servo 
(positioning) system. 

Remark Typically, the position sensor for the current commutation, that 
is, for tracking the current references (10.16), is done with Hall effect sensors 
rather than an encoder. This is because to  track the current references 
(10.16), the phase current plots in Figure 10.19 show that one only needs 
to determine the position of the rotor at multiples of 7r/3 or 60" as the 
current in any particular phase changes only a t  some multiple of 60". Hall 
effect sensors provide a simple inexpensive way to detect the rotor position 
at multiples of 60". 
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10.9 Microscopic Viewpoint of BLDC Machines* 

The microscopic viewpoint of the Physics of BLDC machine is described 
in this section. In this analysis, the system will be assumed to be in 
steady-state so that O R  = WRt - b, is l  = Iscos(wst),Zsz = Iscos(wst - 
2 r / 3 ) ,  is3 = IS cos(wst - 4 r / 3 ) ,  arid ws = WR. 

10.9.1 Axial Electric Field g~ 
It is now shown that the rotating radial magnetic field of the PM rotor 
produces an axial electric field in the air gap. Recall that the magnetic 
field produced by the rotor magnet is 

B R ( T 7 0 -  OR) 

7 1 a  
for - - + - < 6 - 9 ~ 5 - - -  

2 2 -  2 2  

( 10.17) 

where the parameter A > 0 is now taken to be small, but nonzero. Maxweil’s 
equations require that the divergence of the magnetic induction field BR 
be identically zero. In cylindrical coordinates with B = BTi. + Be6 + B,i, 
the divergence is written as 

- I d  1dBe dB, 
V . B  = ---(rBT) + -- + -. 

T dr r d9 d z  

A straightforward calculation (note that B R ~  = 0, BR, = 0) shows that 

The rotor’s magnetic field in the air gap induces an axial electric field 
in the air gap. This electric field can be computed using Faraday’s law in 
differential form, that is, 

+ 
V . B R = O .  

In cylindrical coordinates, the curl of ER is given by V x ER = 

1 d(TER6) - --)i. 1 ~ E R T  
d z  ar r a9 



680 10. Trapezoidal Back-Emf PM Synchronous Motors (BLDC) 

Then 

Now, 

= o  dER0 ~ E R ,  
- = O  and - 

d z  d z  

as it is assumed there is no dependence in z .  Thus, 

and Faraday's law in differential form reduces to 

1 aERz - aBR(r, 6 - OR) -- - - 
r 89 at 

The solution is 

where 6~ + 7r/2 was chosen as the reference position for the integration as 
E R ~ ( ~  - 6 ~ , t ) ] ~ = ~ ~ + ~ / ~  = 0 (see Figure 10.21 and problem 7). Evaluating 
the integral gives 

n A  7 r A  
2 2  

for -2 + 5 0 - O R  5 - - -. 
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Letting A + 0, this becomes 

which is illustrated in Figure 10.21 

-+ 

field 

FIGURE 10.21. Axial electric field ER produced by BR. 

10.9.2 Emf Induced in the ,%tor Phases 

Consider a winding of phase 1 where the axial side 1 is at the location 0 
with 2 ~ 1 3  5 0 5 ~ / 3  and the other axial side 1’ of the winding is at 8 + T .  

To compute the emf <,,(8) in this winding, let 

d l2  for side 1 
-t% for side 1’. 

I&?= { 
For ~ / 3  5 8 5 2 ~ / 3  and using (10.18), it follows that 
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l Z ~ ( 6 )  . de‘ cs1(6) = l t a t o r  winding  whose  
sides a r e  at 6 and $+n 

The total emf tsl induced in stator phase 1 due to the rotor’s magnetic 
field is then 

Evaluating the integral gives 



10. Trapezoidal Back-Emf PM Synchronous Motors (BLDC) 683 

or, finally 

"l = L l l  windings of ER . de' 
stator  phase 1 

for ~ / 6  5 @R 5 5 ~ / 6  I +2TReNSBRoWR 

which is the same expression as  (10.7) derived in the macroscopic case. 
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Problems 

Problem 1 BLDC Motor Model 
The electrical equations for  the BLDC were derived as 

LS -M -M 

Assuming the stator currents are balanced, show that 

L s + M  0 [:::I = &[!::] 233 +:[ 0 0 L s + M  0 
us3 

4 6 R )  

e(6R - 47r/3) 
- e p [  e(OR - 2.ir/3) ] W R .  

Problem 2 Conservation of Energy 
The model of the BLDC may be written as 

Do an energy balance based on  these equations to account f o r  the energy 
stored in the magnetic fields in the air gap/iron due to the stator currents, 
the ohmic losses in the stator windings, the energy stored in the rotational 
motion of the rotor and the energy converted to mechanical power. I n  par- 
ticular, show that e p  = rp  must hold for  energy conservation to hold. 

Problem 3 Power Density in PM Synchronous Machines (151 
Consider two PM motors, one is  a three-phase BLDC motor and the 

second one is  a three-phase PM synchronous (sinusoidally wound stator) 
motor. Let both motors have the same stator resistance Rs and the same 
torque/back-emf constants (rp = KT or, equivalently, ep = Km), and rotate 
at the same constant speed. Let Ibldc and Isynch be the peak current limit 
in the BLDC and the PM synchronous motor, respectively. 

(a) Show that the rms current in each phase of the BLDC is  @Ib& 

while in the PA4 synchronous motor it is I s ynch l f i .  



10. Trapezoidal Back-Emf P M  Synchronous Motors (BLDC) 685 

(b) Let the peak currents in the motors be chosen so they both have the 
same ohmic losses, that is, 

or 

Choose the current references in th#e B L D C  according to (10.12) in order to 
obtain the maximum torque out of the machine fo r  a given current. I n  this 
case, the steady-state power produced by the B L D C  is  constant and equal 
to 

2ep I p  . 

Assume in the PM synchronous motor that it is  possible to have the sta- 
tor currents in phase with their corresponding stator voltages (unity power 
factor) so that the steady-state power produced by the PM motor is 

h;, I s y n c h  3-- 
\& Jz 

where K ,  = KT is the back emf constant. Show that, under these con- 
ditions, the ratio of the output power of the BLDC machine to the PM 
synchronous machine is  1.155. 

Problem 4 Mathematical Model of the BLDC 
I n  the literature, the normalized back emf is usually taken to be E (OR) 4 

dXR(OR)/deR rather than e (OR) a - d X ~ ( e ~ ) / d 6 ~  as in equation (10.8). 
That is, the back e m f .  are then taken to be 

~ s i  = C ~ & ( O R ) W R  
~ 5 3 2  = e p & ( f 3 ~  - 2 . i r / 3 ) ~ ~  

&S3 = € p & ( O R  - 4T/3)wR 

(compare with 10.9). This is  just  a different sign convention for the back 
emfs; that is, these back e m f .  have a sign convention that is opposite to 
that of the applied phase voltages us1,us2, and us3. 

(a) Rewrite the mathematical model of the motor in terms of E (0,). 
(b) How do the waveforms in Figure 10.19 change as a result of using 

& (OR)? 

Problem 5 Simulation of a BLDC 
Simulate an open-loop three-phase trapezoidal back-emf synchronous mo- 

tor. Set the parameters as Rs = 0.7 Q, Ls = 2.72 mH, M = 0.15 mH, rp  = 

e p  = 0.5128 N-m/A ,  J = 0.0002 kg-m2, f = 0.002 N-m/rad/sec, np = 
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1, ws = (27r)lO rad/sec,V = V,,, = 200 V (peak), Ima, = 10 A ,  and 
r L  = 0 [15]. Apply a three-phase set of trapezoidal voltages to the motor 
with a peak of V,,, and plot (a) isa and i S b ,  (b) w ,  and (c) 8. Does the 
speed w need to be initialized to a value close to the synchronous speed value 
w s  in order to run open loop? 

Problem 6 Closed-Loop Control of a BLDC 
Add the closed-loop controller (10.13), ( l O . l d ) ,  and (10.15) to the sim- 

ulation of the BLDC in  problem 5. Use only proportional control in the 
current controller. Have the motor do a point-to-point move in  which it 
goes from 0 to 240 radians and achieves a maximum speed of 400 rads/sec 
in  0.5 sec. 

Problem 7 Rotor Electric Field 

rotor magnet is zero, that is, 
Show that at 8 = 8R + 7r12 the axial electric field due to motion of the 

Hint: Consider a half-cylindrical-shaped loop containing the rotor with one 
axial side fixed at the angular position 80 in the air gap and, consequently, 
the other side fixed at 80 + r (the loop does not rotate). Use Faraday’s law 
to show that the emf generated in  this loop by the rotor’s magnetic field is 
zero when the position of the rotor is such that 80 = OR + r / 2  f nr. 

Problem 8 Permeability of a Permanent Magnet 
Explain why, as far as the stator magnetic field BS is concerned, the 

permeability of the permanent magnets on the rotor is p = pop,. = po. 
Show that this implies that the “effective“ air gap (i.e., the value for g )  is 
the sum of the actual air-gap length and the thickness of the PM magnets 
on the rotor surface. 
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Trigonometric Identities 

ej* = cos(6) + j sin(6) 

acos(e) + bsin(6) = Jaz+bzcos ( B  + tan-' (b /a)  ) 
sin(26) = 2sin(6) cos(6) 

cos(26) = cos2(6) - sin2(6) = 2c0s2(6) - 1 

= 1 - 2sin2(6) 

1 + cos(26) 

1 - cos(26) 
2 

2 

cos2(6) = 

sin'(8) = 

cos(O1 i 62) = cos(61) cos(62) =F sin(61) sin(&) 

sin(& f 02)  = sin(&) cos(62) f cos(O1) sin(&) 

1 1 
2 2 
1 1 
2 2 
1 .  1 
2 2 
1 1 .  
2 2 

cos(el) COS(&) = - cos(el + 62) + - cos(ol - 62) 

sin(&) sin(&) = - cos(61 - 62) - - cos(61 + 6,) 
sin(&) cos(OZ) = - sin(& + 6 2 )  + - sin(& - 6,) 

cos(61) sin(&) = - sin(& + 6 2 )  - - s1n(O1 ~ &) 

3 
2 
3 
- = sin2(8) + sin'(6 - 2 ~ / 3 )  + sin2(6 - 47r/3) 
2 
0 = sin(8) cos(8) + sin(8 - 27r/3) cos(8 - 2 ~ / 3 )  

- = C O S ~ ( ~ )  + cos2(e - %/3) + C O S ~ ( O  - 4T/3) 

+ sin(6 - 47r/3) cos(6 - 47r/3) 

0 = cos(e) + cos(e - 2T/3) + cos(e - 47r/3) 

0 = sin(6) + sin(6 - 2 ~ / 3 )  + sin(6 - 47r/3) 
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3 
- cos(581 + 02) = sin(5(81 + 7r/2)) cos(82) 
2 

+ sin (5(& + 7r/2 - 27r/3)) cos(62 - 27r/3) 

+ sin (5(81 + 7r/2 - 47r/3)) cos(62 - 47r/3) 

3 
2 

-- cos(701 - 8 2 )  = sin(7(61 + 7r/2)) cos(02) 

+ sin (7(& + ~ / 2  - 27r/3)) cos(& - 27r/3) 

+ sin ( 7 ( 4  + 7r/2 - 47r/3)) cos(02 - 47r/3) 

3 - sin(& - 62) = sin(&) cos(19~) + sin(& - 27r/3) cos(O2 - 27r/3) 
2 

+ sin(O1 - 47r/3) cos(82 - 47r/3) 

3 
- cos(81 - 62) = sin(81) sin((%) + sin(61 - 27r/3) sin(Q2 - 27r/3) 
2 

+ sin(81 - 47r/3) sin(& - 47r/3) 

3 
2 

-- sin(81 - 6 2 )  = cos(81) sin(&) + cos(61 - 27r/3) sin(& - 27r/3) 

+ C O S ( ~ ~  - 47r/3) sin(& - 47r/3) 

3 .  - sin(81 + 0,) = sin(&) cos(02) + sin(81 - 47r/3) cos(62 - 2-ir/3) 
2 

3 
2 

-- cos(61 + 6 2 )  = sin(&) sin(&) + sin(& - 47r/3) sin(& - 27r/3) 

+ sin(& - 27r/3) sin(& - 47r/3) 

3 
- sin(61 + 0,) = cos(O1) sin(02) + cos(O1 - 4 ~ / 3 )  sin(& - 27r/3) 
2 

+ cos(81 - 27r/3) sin(& - 47r/3) 
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