Modeling and High-Performance Control of Electric Machines

MODELING AND

This Page Intentionally Left Blank

MODELING AND

HIGH-PERFORMANCE
CONTROL OF
ELECTRIC MACHINES

Books in the IEEE Press Series on Power Engineering

Rating of Electric Power Cables in Unfavorable Thermal Environments George J. Anders

Power System Protection
P. M. Anderson

Understanding Power Quality Problems: Voltage Sags and Interruptions Math H. J. Bollen

Modeling and High-Performance Control of Electric Machines John Chiasson

Electric Power Applications of Fuzzy Systems
Edited by M. E. El-Hawary
Principles of Electric Machines with Power Electronic Applications, Second Edition
M. E. El-Hawary

Pulse Width Modulation for Power Converters: Principles and Practice D. Grahame Holmes and Thomas Lipo

Analysis of Electric Machinery and Drive Systems, Second Edition Paul C. Krause, Oleg Wasynczuk, and Scott D. Sudhoff

Risk Assessment for Power Systems: Models, Methods, and Applications Wenyan Li

Optimization Principles: Practical Applications to the Operations and Markets of the Electric Power Industry
Narayan S. Rau
Electric Economics: Regulation and Deregulation
Geoffrey Rothwell and Tomas Gomez
Electric Power Systems: Analysis and Control
Fabio Saccomanno
Electrical Insulation for Rotating Machines: Design, Evaluation, Aging, Testing, and Repair
Greg Stone, Edward A. Boulter, Ian Culbert, and Hussein Dhirani

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES

JOHN CHIASSON

IEEE Press Series on Power Engineering
Mohamed E. El-Hawary, Series Editor

The Institute of Electrical and Electronics Engineers, Inc., New York

A JOHN WILEY \& SONS, INC., PUBLICATION

Copyright © 2005 by John Wiley \& Sons, Inc. All rights reserved.
Published by John Wiley \& Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.
No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley \& Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-6008.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in preparing this book, they make no representation or warranties with respect to the accuracy or completeness of the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives or written sales materials. The advice and strategies contained herein may not be suitable for your situation. You should consult with a professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care
Department within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.
Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however, may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data:

Chiasson, John Neison.
Modeling and high performance control of electric machines / John Chiasson.
p. cm.- (IEEE Press series on power engineering)
Includes bibliographical references and index.
ISBN 0-471-68449-X (cloth)

1. Electric machinery-Automatic control-Mathematical models. I. Title. II. Series.
TK2181.C43 2005
621.31'042-dc22

Printed in the United States of America.

To My Parents

and to

Marc Bodson

Pour son soutien et son aide jour après jour durant une période très difficile de ma carrière

> Amro El-Jaroudi
> Mahmoud El Nokali

James B. Lieber

על שתמיד האמנת בי ועל עזרתך הרבה בשעתי הקשה בקריירה האקדמית שלי

This Page Intentionally Left Blank

Contents

I DC Machines, Controls, and Magnetics 1
1 The Physics of the DC Motor 3
1.1 Magnetic Force 3
1.2 Single-Loop Motor 5
1.2.1 Torque Production 6
1.2.2 Commutation of the Single-Loop Motor 9
1.3 Faraday's Law 11
1.3.1 The Surface Element Vector $d \overrightarrow{\mathbf{S}}$ 12
1.3.2 Interpreting the Sign of ξ 13
1.3.3 Back Emf in a Linear DC Machine 14
1.3.4 Back Emf in the Single-Loop Motor 15
1.3.5 Self-Induced Emf in the Single-Loop Motor 18
1.4 Dynamic Equations of the DC Motor 20
1.5 Microscopic Viewpoint 23
1.5.1 Microscopic Viewpoint of the Single-Loop DC Motor 26
1.5.2 Drift Speed 28
1.6 Tachometer for a DC Machine*1 29
1.6.1 Tachometer for the Linear DC Machine 29
1.6.2 Tachometer for the Single-Loop DC Motor 30
1.7 The Multiloop DC Motor* 31
1.7.1 Increased Torque Production 32
1.7.2 Commutation of the Armature Current 32
1.7.3 Armature Reaction 38
1.7.4 Field Flux Linkage and the Air Gap Magnetic Field 40
1.7.5 Armature Flux Due to the External Magnetic Field 41
1.7.6 Equations of the PM DC Motor 43
1.7.7 Equations of the Separately Excited DC Motor 44
Appendices 47
Rotational Dynamics 47
Gears 52
Problems 57
2 Feedback Control 71
2.1 Model of a DC Motor Servo System 71

[^0]2.2 Speed Estimation 77
2.2.1 Backward Difference Estimation of Speed 77
2.2.2 Estimation of Speed Using an Observer 79
2.3 Trajectory Generation 82
2.4 Design of a State Feedback Tracking Controller 86
2.5 Nested Loop Control Structure* 90
2.6 Identification of the DC Motor Parameters* 96
2.6.1 Least-Squares Approximation 99
2.6.2 Error Index 103
2.6.3 Parametric Error Indices 103
2.7 Filtering of Noisy Signals* 108
2.7.1 Filter Representations 111
2.7.2 Causality 112
2.7.3 Frequency Response 112
2.7.4 Low-Pass Filters with Linear Phase 113
2.7.5 Distortion 114
2.7.6 Low-Pass Filtering of High-Frequency Noise 114
2.7.7 Butterworth Filters 116
2.7.8 Implementation of the Filter 118
2.7.9 Discretization of Differential Equations 120
2.7.10 Digital Filtering 122
2.7.11 State-Space Representation 124
2.7.12 Noncausal Filtering 126
Appendix - Classical Feedback Control 129
Tracking and Disturbance Rejection 129
General Theory of Tracking and Disturbance Rejection 144
Internal Model Principle 149
Problems 151
3 Magnetic Fields and Materials 177
3.1 Introduction 177
3.2 The Magnetic Field $\overrightarrow{\mathbf{B}}$ and Gauss's Law 183
3.2.1 Conservation of Flux 186
3.3 Modeling Magnetic Materials 190
3.3.1 Magnetic Dipole Moments 192
3.3.2 The Magnetization $\overrightarrow{\mathbf{M}}$ and Ampère's Law 194
3.3.3 Relating $\overrightarrow{\mathbf{B}}$ to $\overrightarrow{\mathbf{M}}$ 201
3.4 The Magnetic Intensity Field Vector $\overrightarrow{\mathbf{H}}$ 205
3.4.1 The $B-H$ Curve 207
3.4.2 Computing $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{H}}$ in Magnetic Circuits 211
3.4.3 $\overrightarrow{\mathbf{B}}$ is Normal to the Surface of Soft Magnetic Material 217
3.5 Permanent Magnets* 219
3.5.1 Hysteresis Loss 223
3.5.2 Common Magnetic Materials 225
Problems 226
II AC Machine Theory 235
4 Rotating Magnetic Fields 245
4.1 Distributed Windings 245
4.2 Approximate Sinusoidally Distributed B Field 249
4.2.1 Conservation of Flux and $1 / r$ Dependence 254
4.2.2 Magnetic Field Distribution Due to the Stator Currents 256
4.3 Sinusoidally Wound Phases 257
4.3.1 Sinusoidally Wound Rotor Phase 257
4.3.2 Sinusoidally Wound Stator Phases 258
4.4 Sinusoidally Distributed Magnetic Fields 259
4.4.1 Sinusoidally Distributed Rotating Magnetic Field 262
4.5 Magnetomotive Force (mmf) 264
4.6 Flux Linkage 266
4.7 Azimuthal Magnetic Field in the Air Gap* 269
4.7.1 Electric Field $\overrightarrow{\mathbf{E}}_{S a}$ 275
4.7.2 The Magnetic and Electric Fields $\overrightarrow{\mathbf{B}}_{S a}, \overrightarrow{\mathbf{E}}_{S a}, \overrightarrow{\mathbf{B}}_{S b}, \overrightarrow{\mathbf{E}}_{S b}$ 276
Problems 277
5 The Physics of AC Machines 293
5.1 Rotating Magnetic Field 293
5.2 The Physics of the Induction Machine 296
5.2.1 Induced Emfs in the Rotor Loops 297
5.2.2 Magnetic Forces and Torques on the Rotor 299
5.2.3 Slip Speed 302
5.3 The Physics of the Synchronous Machine 302
5.3.1 Two-Phase Synchronous Motor with a Sinusoidally Wound Rotor 303
5.3.2 Emfs and Energy Conversion 309
5.3.3 Synchronous Motor with a Salient Rotor 313
5.3.4 Armature and Field Windings 315
5.4 Microscopic Viewpoint of AC Machines* 315
5.4.1 Rotating Axial Electric Field Due to the Stator Cur- rents 316
5.4.2 Induction Machine in the Stationary Coordinate Sys- tem 317
5.4.3 Faraday's Law and the Integral of the Force per Unit Charge 323
5.4.4 Induction Machine in the Synchronous Coordinate System 326
5.4.5 Synchronous Machine 334
5.5 Steady-State Analysis of a Squirrel Cage Induction Motor* 334
5.5.1 Rotor Fluxes, Emfs, and Currents 336
5.5.2 Rotor Torque 337
5.5.3 Rotor Magnetic Field 342
5.5.4 Comparison with a Sinusoidally Wound Rotor 344
Problems 346
6 Mathematical Models of AC Machines 363
6.1 The Magnetic Field $\overrightarrow{\mathbf{B}}_{R}\left(i_{R a}, i_{R b}, r, \theta-\theta_{R}\right)$ 364
6.2 Leakage 366
6.3 Flux Linkages in AC Machines 370
6.3.1 Flux Linkages in the Stator Phases 370
6.3.2 Flux Linkages in the Rotor Phases 375
6.4 Torque Production in AC Machines 380
6.5 Mathematical Model of a Sinusoidally Wound Induction Ma- chine 383
6.6 Total Leakage Factor 385
6.7 The Squirrel Cage Rotor 386
6.8 Induction Machine With Multiple Pole Pairs 387
6.9 Mathematical Model of a Wound Rotor Synchronous Ma- chine 388
6.10 Mathematical Model of a PM Synchronous Machine 390
6.11 The Stator and Rotor Magnetic Fields of an Induction Ma- chine Rotate Synchronously* 391
6.12 Torque, Energy, and Co-energy* 393
6.12.1 Magnetic Field Energy 393
6.12.2 Computing Torque From the Field Energy 396
6.12.3 Computing Torque From the Co-energy 397
Problems 401
7 Symmetric Balanced Three-Phase AC Machines 413
7.1 Mathematical Model of a Three-Phase Induction Motor 413
7.2 Steady-State Analysis of the Induction Motor 434
7.2.1 Steady-State Currents and Voltages 434
7.2.2 Steady-State Equivalent Circuit Model 436
7.2.3 Rated Conditions 440
7.2.4 Steady-State Torque 441
7.2.5 Steady-State Power Transfer in the Induction Motor 444
7.3 Mathematical Model of a Three-Phase PM Synchronous Mo- tor 449
7.4 Three-Phase, Sinusoidal, $60-\mathrm{Hz}$ Voltages* 458
7.4.1 Why Three-Phase? 458
7.4.2 Why AC? 471
7.4.3 Why Sinusoidal Voltages? 472
7.4.4 Why 60 Hz ? 474
Problems 475
8 Induction Motor Control 493
8.1 Dynamic Equations of the Induction Motor 493
8.1.1 The Control Problem 494
8.2 Field-Oriented and Input-Output Linearization Control of an Induction Motor 497
8.2.1 Current-Command Field-Oriented Control 501
8.2.2 Experimental Results Using a Field-Oriented Con- troller 506
8.2.3 Field Weakening 509
8.2.4 Input-Output Linearization 511
8.2.5 Experimental Results Using an Input-Output Con- troller 514
8.3 Observers 519
8.3.1 Flux Observer 519
8.3.2 Speed Observer 521
8.3.3 Verghese--Sanders Flux Observer* 524
8.4 Optimal Field Weakening* 528
8.4.1 Torque Optimization Under Current Constraints 529
8.4.2 Torque Optimization Under Voltage Constraints 530
8.4.3 Torque Optimization Under Voltage and Current Con- straints 537
8.5 Identification of the Induction Motor Parameters* 548
8.5.1 Linear Overparameterized Model 549
8.5.2 Nonlinear Least-Squares Identification 552
8.5.3 Calculating the Parametric Error Indices 556
8.5.4 Mechanical Parameters 557
8.5.5 Simulation Results 558
8.5.6 Experimental Results 560
Appendix 565
Elimination Theory and Resultants 565
Problems 568
9 PM Synchronous Motor Control 591
9.1 Field-Oriented Control 591
9.1.1 Design of the Reference Trajectory and Inputs 592
9.1.2 State Feedback Controller 595
9.1.3 Speed Observer 597
9.1.4 Experimental Results 598
9.1.5 Current Command Control 606
9.2 Optimal Field Weakening* 608
9.2.1 Formulation of the Torque Maximization Problem 608
9.2.2 Speed Ranges and Transition Speeds 609
9.2.3 Two Examples 615
9.3 Identification of the PM Synchronous Motor Parameters* 624
9.3.1 Experimental Results 627
9.4 PM Stepper Motors* 632
9.4.1 Open-Loop Operation of the Stepper Motor 635
9.4.2 Mathematical Model of a PM Stepper Motor 639
9.4.3 High-Performance Control of a PM Stepper Motor 641
Appendices 641
Two-Phase Equivalent Parameters 641
Current Plots 643
Problems 645
10 Trapezoidal Back-Emf PM Synchronous Motors (BLDC) 651
10.1 Construction 651
10.2 Stator Magnetic Field $\overrightarrow{\mathbf{B}}_{S}$ 654
10.3 Stator Flux Linkage Produced by $\overrightarrow{\mathbf{B}}_{S}$ 657
10.4 Stator Flux Linkage Produced by $\overrightarrow{\mathbf{B}}_{R}$ 661
10.5 Emf in the Stator Windings Produced by $\overrightarrow{\mathbf{B}}_{R}$ 666
10.6 Torque 668
10.7 Mathematical Model 671
10.8 Operation and Control 673
10.8.1 The Terminology "Brushless DC Motor" 677
10.9 Microscopic Viewpoint of BLDC Machines* 679
10.9.1 Axial Electric Field $\overrightarrow{\mathbf{E}}_{R}$ 679
10.9.2 Emf Induced in the Stator Phases 681
Problems 684
Trigonometric Table and Identities 687
Trigonometric Table 687
Trigonometric Identities 688
References 691
Index 701

Preface

This book is intended to be an exposition of the modeling and control of electric machines, specifically, the direct current (DC) machine and the alternating current (AC) machines consisting of the induction motor, the permanent magnet (PM) synchronous motor, and the brushless DC motor. The particular emphasis here is on techniques used for high-performance applications, that is, applications that require both rapid and precise control of position, speed, and/or torque. Traditionally, DC motors were reserved for high-performance applications (positioning systems, rolling mills, traction drives, etc.) because of their relative ease of control compared to AC machines. However, with the advances in control methods, computing capability, and power electronics, AC motors continue to replace DC motors in high-performance applications. The intent here is to carefully derive the mathematical models of the AC machines and show how these mathematical models are used to design control algorithms that achieve high performance.

Electric machines are a particularly fascinating application of basic electricity and magnetism. The presentation here relies heavily on these basic concepts from Physics to develop the models of the motors. Specifically, Faraday's law ($\xi=-d \phi / d t$, where $\phi=\int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}$), the magnetic force law ($\overrightarrow{\mathbf{F}}=i \overrightarrow{\boldsymbol{\ell}} \times \overrightarrow{\mathbf{B}}$ or, $\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}$), Gauss's law ($\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=0$), Ampère's law ($\oint \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=i_{\text {free }}$), the relationship between $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{H}}$, properties of magnetic materials, and so on are reviewed in detail and used extensively to derive the currently accepted nonlinear differential equation models of the various AC motors. The author made his best attempt to make the modeling assumptions as clear as possible and to consistently show that the magnetic and electric fields satisfy Maxwell's equations (as, of course, they must). The classical approach to teaching electric machinery is to present their equivalent circuit models and to analyze these circuit models ad nauseam. Further, the use of the basic Physics of electricity and magnetism to explain their operation is minimized if not omitted. However, the equivalent circuit is a result of assuming constant-speed operation of the machine and computing the sinusoidal steady-state solution of the nonlinear differential equation model of the machine. Here, the emphasis is on explaining how the machines work using fundamental concepts from electricity and magnetism, and on the derivation of their nonlinear differential equation models. The derivation of the corresponding equivalent circuit assuming steady-state conditions is then straightforward.

Electric machines also provide fascinating examples to illustrate con-
cepts from electromagnetic field theory (in contrast to electricity and magnetism). In particular, the way the electric and magnetic fields change as one goes between reference frames that are in relative motion are vividly illustrated using AC machines. For this reason, optional sections are included to show how the electric and magnetic fields change as one goes between a coordinate system attached to the stator to a coordinate system that rotates with the rotating magnetic field produced by the stator currents or a frame attached to the rotor. Also given in an optional section is the derivation of the axial electric and azimuthal magnetic fields in the air gap.

This is also a book on the control of electric machines based on their differential equation models. With the notable exception of the sinusoidal steady-state analysis of the induction motor in Chapter 7, very little attention is given to the classical equivalent circuits as these models are valid only in steady state. Rather, the differential equation models are used as the basis to develop the notions of field-oriented control, input-output linearization, flux observers, least-squares identification methods, state feedback trajectory tracking, and so on. This is a natural result of the emphasis here on high-performance control methods (e.g., field-oriented control) as opposed to classical methods (e.g., V / f, slip control, etc.).

There are of course many good books in the area of electric machines and their control. The author owes a debt of gratitude to Professor W. Leonhard for his book [1] (see the most recent edition [2]), from which he was educated in the modeling and control of electric drives. The present book is narrower in focus with an emphasis on the modeling and operation of electric machines based on elementary classical physics and an emphasis on high-performance control methods using a state-space formulation. The books by P. C. Krause [3] and P. C. Krause et al. [4] are complete in their derivation of the mathematical models of electric machines while C. B. Gray [5] presents electromagnetic theory in the context of electric machines. A comprehensive treatment using Simulink to simulate electric machinery is given in C-M. Ong's book [6]. The graduate level books by D. W. Novotny and T. A. Lipo [7], P. Vas [8], J. M. D. Murphy and F. G. Turnbull [9], I. Boldea and S. A. Nasar [10], B. Adkins and R. G. Harley [11], A. M. Trzynadlowski [12], M. P. Kazmierkowski and H. Tunia [13], B. K. Bose [14], and R. Krishnan [15] all cover the modeling and control of electric machines while the books by R. Ortega et al. [16], D. M. Dawson et al. [17], and F. Khorrami et al. [18] emphasize advanced control methods.

The introductory-level books by S. J. Chapman [19], H. Woodson and J. Melcher [20], L. W. Matsch and J. D. Morgan [21], G. McPherson and R. D. Laramore [22], D. V. Richardson [23], P. C. Krause and O. Wasynczuk [24], N. Mohan [25], G. R. Slemon and A. Straughn [26], J. Sokira and W. Jaffe [27], G. J. Thaler and M. L. Wilcox [28], V. Deltoro [29], M. El-Hawary [30], P. C. Sen [31], and G. R. Slemon [32] are among the many books on electric machines from which this author has benefited.

The beautifully written textbooks PSSC Physics by the Physical Science Curriculum Study [33], Physics by D. Halliday and R. Resnick [34], Principles of Electrodynamics by M. Schwartz [35], and Electromagnetic Fields by R. K. Wangness [36] are used as references for the theory of electricity and magnetism.

This book borrows from these above works and hopefully makes its own contribution to the literature on electric machines.

Part I of the book consists of the first three chapters. Chapters 1 and 2 present a detailed review of the basic concepts of electricity and magnetism in the context of DC machines and an introduction to control methods, respectively, which will be used extensively in the remaining chapters. The third chapter on magnetic fields and magnetic materials is intended to be a detailed introduction to the subject. For example, most textbooks assume that the reader understands Ampère's law in the form $\oint \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=i_{\text {free }}$ and that $\overrightarrow{\mathbf{B}}=\mu \overrightarrow{\mathbf{H}}$ in (soft) magnetic materials, yet it is the experience of the author that students do not have a fundamental understanding of these concepts.

These first three chapters are elementary in nature and were written to be accessible to undergraduates. The reason for this is that often control engineers do not have any background in electric machinery while power/electric-machine engineers often do not have any background in basic state-space concepts of control theory. Consequently, it is hoped that these chapters can bring the reader "up to speed" in these areas.

Chapter 1 reviews the basic ideas of electricity and magnetism that are needed to model electric machines. In particular, the notions of magnetic fields, magnetic force and Faraday's law are reviewed by using them to derive the standard model of a DC motor.

Chapter 2 provides an elementary introduction to the control techniques required for the high-performance control of electric machines. This includes an elementary presentation of state feedback control, observers, and identification theory as applied to DC machines to prepare the reader for the subsequent chapters.

Chapter 3 goes into the modeling of magnetic materials in terms of their use in electric machines. The fundamental result of this chapter is the modification of Ampère's law $\oint_{C} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}=\mu_{0} i$ so that it is valid in the presence of magnetic material. This introduces the magnetic intensity field $\overrightarrow{\mathbf{H}}$ and its relationship to magnetic induction field $\overrightarrow{\mathbf{B}}$ via the magnetization vector $\overrightarrow{\mathbf{M}}$ to obtain the more general version of Ampère's law $\oint \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=i_{\text {free }}$. All of this requires a significant discussion of the modeling of magnetic materials. The approximation $\overrightarrow{\mathbf{H}}=0$ in magnetic materials is discussed, and then it is shown how this approximation along with Ampère's law can be used to find the radial component of $\overrightarrow{\mathbf{B}}$ in the air gap of electric machines. Also presented is Gauss's law for $\overrightarrow{\mathbf{B}}$; this leads to the notion of conservation of flux, as well as the fact that $\overrightarrow{\mathbf{B}}$ is normal to the surface of
soft magnetic materials. This chapter should be read, but the reader should not get "bogged down" in the chapter. Rather, the main results should be remembered.

Part II consists of Chapters 4 through 10 and presents the modeling and control of AC machines.

Chapter 4 uses the results of Chapters 1 and 3 to explain how a radially directed rotating magnetic field can be established in the air gap of AC machines. In particular, the notions of distributed windings and of sinusoidally wound turns (phase windings) are explained. Ampère's law is then used to show that a sinusoidal (spatially) distributed radial magnetic field is established in the air gap by the currents in the phase windings. The concept of flux linkage in distributed windings is explained, and the chapter ends with an optional section on the azimuthal magnetic field in the air gap.

Chapter 5 explains the fundamental Physics behind the working of induction and synchronous machines. Specifically, this chapter uses a simplified model of the induction motor and shows how voltages and currents are induced in the rotor loops by the rotating magnetic field established by the stator currents. Then it is shown how torque is produced on these induced currents by the same stator rotating magnetic field that induced them introducing the idea of slip. Similarly, the synchronous machine is analyzed to show how the rotating radial magnetic field established by the stator currents produces torque on a rotor carrying constant current.

An optional section on the microscopic point of view of the Physics of the induction motor is also presented. This includes a discussion of how the electric and magnetic fields change as one goes between coordinate systems that are rotating with respect to each other and how one reinterprets the Physics of the machine's operation. The chapter ends with another optional section of the steady-state behavior of an induction machine with a squirrel cage rotor.

Chapter 6 derives the systems of differential equations that mathematically model the two-phase induction and synchronous machines. The concept of leakage is presented and accounted for in the derived models. These models are the accepted models used throughout the literature and form the basis for high-performance control of these machines. In an optional section it is shown that the stator and rotor magnetic fields of an induction motor rotate synchronously together as they do in a synchronous machine. The chapter ends with another optional section on the concepts of field energy and co-energy, and how the expression for the torque of an electric machine can be derived using these notions.

Chapter 7 presents the derivation of the models of three-phase AC machines and their two-phase equivalent models. These derivations readily follow from the results of Chapter 6. The classical steady-state analysis of the induction motor is also presented including its equivalent circuit. The chapter ends with a discussion of why the standard power system is an AC
sinusoidal three-phase $60-\mathrm{Hz}$ (or $50-\mathrm{Hz}$) system.
Chapter 8 covers the control of induction motors presenting both fieldoriented control and input-output linearization control. Flux observers, field weakening, and speed observers are also presented along with experimental results. The chapter ends with an optional section on how to identify the induction motor parameters using a nonlinear least-squares technique.

Chapter 9 covers the control of synchronous motors describing fieldoriented control, field weakening, speed observers and identification methods. The operation and modeling of permanent magnet stepping motors is also covered.

Chapter 10 covers the modeling and control of PM synchronous motors with trapezoidal back emf, which are also known as brushless DC (BLDC) motors.

The logical dependence of the chapters is shown in the block diagram below assuming that the optional sections are not covered.

Logical dependence of the chapters.

Finally, the author's intent for this book was for the reader to understand how electric machines are modeled and to understand the basic techniques in their control. The references at the end of the book are only those directly referenced in the book and are not representative of (nor give proper recognition to) the many important contributions made by researchers throughout the world. The reader is referred to Professor Leonhard's book [2] for a much more extensive reference list.

Comments on the Use of the Book

In using this book in a one-semester graduate-level course, the following material was usually covered:

```
Chapter 1, Sections 1.1-1.7
Chapter 2, Sections 2.1-2.4
Chapter 3, Sections 3.1-3.4
Chapter 4, Sections 4.1-4.5
Chapter 5, Sections 5.1-5.3
Chapter 6, Sections 6.1-6.10
Chapter 7, Sections 7.1-7.3
Chapter 8, Sections 8.1-8.3
Chapter 9, Section 9.1
```

Sections marked with an asterisk $\left({ }^{*}\right)$ may be omitted without loss of continuity. Some of these optional sections assume familiarity with Maxwell's equations in differential form.

Acknowledgments

There are many people that I would to acknowledge for their help in my work in the control of electric machines.

I did my Ph.D. thesis in Algebraic Systems Theory which is quite far from the area of Electric Machines. Nevertheless, I am most grateful to my advisor, Professor E. Bruce Lee, who has always shown me his kindness over the years.

Professor Edward W. Kamen (formerly at the University of Pittsburgh) along with Mr. Stephen Botos (President of Aerotech, Inc.) were instrumental through their enthusiasm and financial support at the University of Pittsburgh, through which many of the results presented here were funded. I am very grateful to Mike Aiello (chief design engineer at Aerotech) for both designing and building our hardware platform, resulting in a successful set of experiments.

I would like to thank The Oak Ridge National Laboratory in particular, Don Adams and Laura Marlino, for funding the recent results on the identification of the induction motor parameters presented in Chapter 8.

Shortly after I arrived at the University of Pittsburgh, I started to work with Marc Bodson (formerly at Carnegie Mellon University) and I want to express my deep gratitude to him for this collaboration, which led to many of the new theoretical and experimental results presented in Chapters 8 and 9 .

Also, shortly after I arrived at the University of Tennessee, I began to work with Leon M. Tolbert, and I am very grateful for this collaboration as well.
Mohamed Zribi was the first student I worked with in this area, leading to a paper on feedback linearization control of stepper motors. Ron Rekowski suffered through our first attempts to do some experiments for which I am grateful. My Ph.D. student Bob Novotnak continued this work and did the experiments on the control of the stepper and induction motors presented in Chapters 8 and 9 of this book. Through his skill we were able to obtain experimental results demonstrating very high performance. Jennifer Stephans (Marc Bodson's student) did the early work on identification for the induction motor while my student Kaiyu Wang did the identification experiments for the induction motor given in Chapter 8. Andy Blauch (Marc Bodson's student) did the identification experiments for the PM stepper motor presented in Chapter 9.

I first taught (and learned!) induction motor control using the book by Professor Werner Leonhard, and I am very grateful for his writing that book. I later had the opportunity to visit his institute in Braunschwieg Germany from which I left with even more enthusiasm for the field.

I would like to thank the many students who suffered under the early versions of this book, or suffered with me as their advisor, or both. These include Mohamed Zribi, Bob Novotnak, Eric Shook, Ron Rekowski, Walt Barie, Joe Matesa, Chellury Sastry, Gary Campbell, David Schuerer, Atul Chaudhari, Jason Mueller, Samir Mehta, Pete Hammond, Dick Osman, Jim Short, Vincent Allarouse, Marc Aiello, Sean West, Baskar Vairamohan, Yinghui Lu, Zhong Tang, Mengwei Li, Kaiyu Wang, Yan Xu, Madhu Chinthavali, Jianqing Chen, Nivedita Alluri, Zhong Du, Faisal Khan, Pankaj Pandit, Hui Zhang, Wenjuan Zhang, Ben Sooter, Keith McKenzie, Rebin Zhou, Ann Chee Tan, Jesse Richmond, SeongTaek Lee, and all my other students.

I am very grateful to Thomas Keller for teaching me about real time simulators.

I would like to thank my colleagues Leon Tolbert, Saul Gelfand, Joachim Böcker, Miguel Vélez-Reyes, Michel Fliess, Thomas Keller, George Verghese, Jeff Lang, David Taylor, Ray DeCarlo, Mark Spong, Steve Yurkovich, Jessy Grizzle, Henk Nijmeijer, Chaouki Abdallah, Doug Birdwell, Gerardo Espinosa-Pérez, Romeo Ortega, Yih-Choung Yu, Gerardo EscobarValderrama, Daniel Campos-Delgado, Ricardo Fermat-Flores, Jesús Alvarez, Jesús Leyva-Ramos, Jeffrey Mayer, Kai Mueller, Henrik Mosskull, Stanislaw Żak, Samer Saab, Burak Özpineci, and Alex Stanković for their
words of encouragement.
This book was written in $14 T \mathrm{TX}$ using Scientific Word from Mackichan Software (see http://www.mackichan.com). I would especially like to thank John McKendrick and Alan Green of Mackichan Software for their help with my many questions.

I would like thank my editor Valerie Moliere as well as my production editor Lisa Vanhorn of John Wiley \& Sons for stepping me through the process of getting this book published. Bob Golden, who copy edited the manuscript of this book, is gratefully acknowledged for fixing many errors and inconsistencies.

I am very grateful to Sharon Katz for her drawings of Figures 1.8(a)-(d), $1.25,1.41-1.47,9.31,9.34,9.35(\mathrm{a})-(\mathrm{e})$ and for her help, suggestions and encouragement of the artwork in this book and for actually setting me on the path to getting the figures drawn. I would also like to thank Bret Wilfong, who drew Figures 4.1, 5.4(b), 5.7(b), and 5.8(b).

John Wiley \& Sons maintains an ftp site at
ftp://ftp.wiley.com/public/sci_tech_med/high_performance_control for downloading an errata sheet for the book. Instructors, upon obtaining password privileges, will also be able to download the simulation files that go with this textbook. A solutions manual is available to instructors by contacting their local Wiley representative.

Any comments, criticisms, and corrections are most welcome and may be sent to the author at chiasson@ieee.org.

MODELING AND

HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES

This Page Intentionally Left Blank

Part I

DC Machines, Controls, and Magnetics

This Page Intentionally Left Blank

1

The Physics of the DC Motor

The principles of operation of a direct current (DC) motor are presented based on fundamental concepts from electricity and magnetism contained in any basic physics course. The DC motor is used as a concrete example for reviewing the concepts of magnetic fields, magnetic force, Faraday's law, and induced electromotive forces (emf) that will be used throughout the remainder of the book for the modeling of electric machines. All of the Physics concepts referred to in this chapter are contained in the book Physics by Halliday and Resnick [34].

1.1 Magnetic Force

Motors work on the basic principle that magnetic fields produce forces on wires carrying a current. In fact, this experimental phenomenon is what is used to define the magnetic field. If one places a current carrying wire between the poles of a magnet as in Figure 1.1, a force is exerted on the wire. Experimentally, the magnitude of this force is found to be proportional to both the amount of current in the wire and to the length of the wire that is between the poles of the magnet. That is, $F_{\text {magnetic }}$ is proportional to ℓi. The direction of the magnetic field $\overrightarrow{\mathbf{B}}$ at any point is defined to be the direction that a small compass needle would point at that location. This direction is indicated by arrows in between the north and south poles in Figure 1.1.

FIGURE 1.1. Magnetic force law. From PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991.

With the direction of $\overrightarrow{\mathbf{B}}$ perpendicular to the wire, the strength (magnitude) of the magnetic induction field $\overrightarrow{\mathbf{B}}$ is defined to be

$$
B=|\overrightarrow{\mathbf{B}}| \triangleq \frac{F_{\text {magnetic }}}{\ell i}
$$

where $F_{\text {magnetic }}$ is the magnetic force, i is the current, and ℓ is the length of wire perpendicular to the magnetic field carrying the current. That is, B is the proportionality constant so that $F_{\text {magnetic }}=i \ell B$. As illustrated in Figure 1.1, the direction of the force can be determined using the right-hand rule. Specifically, using your right hand, point your fingers in the direction of the magnetic field and point your thumb in the direction of the current. Then the direction of the force is out of your palm.

Further experiments show that if the wire is parallel to the $\overrightarrow{\mathbf{B}}$ field rather than perpendicular as in Figure 1.1, then no force is exerted on the wire. If the wire is at some angle θ with respect to $\overrightarrow{\mathbf{B}}$ as in Figure 1.2, then the force is proportional to the component of $\overrightarrow{\mathbf{B}}$ perpendicular to the wire; that is, it is proportional to $B_{\perp}=B \sin (\theta)$. This is summarized in the magnetic force law: Let $\vec{\ell}$ denote a vector whose magnitude is the length ℓ of the wire in the magnetic field and whose direction is defined as the positive direction of current in the bar; then the magnetic force on the bar of length ℓ carrying the current i is given by

$$
\overrightarrow{\mathbf{F}}_{\text {magnetic }}=i \vec{\ell} \times \overrightarrow{\mathbf{B}}
$$

or, in scalar terms, $F_{\text {magnetic }}=i \ell B \sin (\theta)=i \ell B_{\perp}$. Again, $B_{\perp} \triangleq B \sin (\theta)$ is the component of $\overrightarrow{\mathbf{B}}$ perpendicular to the wire. ${ }^{1}$

FIGURE 1.2. Only the component B_{\perp} of the magnetic field which is perpendicular to the wire produces a force on the current.

[^1]
Example A Linear DC Machine [19]

Consider the simple linear DC machine in Figure 1.3 where a sliding bar rests on a simple circuit consisting of two rails. An external magnetic field is going through the loop of the circuit up out of the page indicated by the \otimes in the plane of the loop. Closing the switch results in a current flowing around the circuit and the external magnetic field produces a force on the bar which is free to move. The force on the bar is now computed.

FIGURE 1.3. A linear DC motor.
The magnetic field is constant and points into the page (indicated by \otimes) so that written in vector notation, $\overrightarrow{\mathbf{B}}=-B \hat{\mathbf{z}}$ with $B>0$. By the right hand rule, the magnetic force on the sliding bar points to the right. Explicitly, with $\vec{\ell}=-\ell \hat{\mathbf{y}}$, the force is given by

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{\text {magnetic }} & =i \vec{\ell} \times \overrightarrow{\mathbf{B}}=i(-\ell \hat{\mathbf{y}}) \times(-B \hat{\mathbf{z}}) \\
& =i \ell B \hat{\mathbf{x}} .
\end{aligned}
$$

To find the equations of motion for the bar, let f be the coefficient of viscous (sliding) friction of the bar so that the friction force is given by $F_{f}=-f d x / d t$. Then, with m_{ℓ} denoting the mass of the bar, Newton's law gives

$$
i \ell B-f d x / d t=m_{\ell} d^{2} x / d t^{2}
$$

Just after closing the switch at $t=0$, but before the bar starts to move, the current is $i\left(0^{+}\right)=V_{S}\left(0^{+}\right) / R$. However, it turns out that as the bar moves the current does not stay at this value, but instead decreases due to electromagnetic induction. This will be explained later.

1.2 Single-Loop Motor

As a first step to modeling a DC motor, a simplistic single-loop motor is considered. It is first shown how torque is produced and then how the
current in the single loop can be reversed (commutated) every half turn to keep the torque constant.

1.2.1 Torque Production

Consider the magnetic system in Figure 1.4, where a cylindirical core is cut out of a block of a permanent magnet and replaced with a soft iron core. The term "soft" iron refers to the fact that material is easily magnetized (a permanent magnet is referred to as "hard" iron).

$\overrightarrow{\mathbf{B}}=-B \hat{\mathbf{r}} \overrightarrow{\mathbf{B}}=B \hat{\mathbf{r}}$

FIGURE 1.4. Soft iron cylindrical core placed inside a hollowed out permanent magnet to produce a radial magnetic field in the air gap.

An important property of soft magnetic materials is that the magnetic field at the surface of such materials tends to be normal (perpendicular) to the surface. Consequently, the cylindrical shape of the surfaces of the soft iron core and the stator permanent magnet has the effect of making the field in the air gap radially directed; furthermore, it is reasonably constant (uniform) in magnitude. A mathematical description of the magnetic field in the air gap due to the permanent magnet is simply

$$
\overrightarrow{\mathbf{B}}= \begin{cases}+B \hat{\mathbf{r}} & \text { for } 0<\theta<\pi \\ -B \hat{\mathbf{r}} & \text { for } \pi<\theta<2 \pi\end{cases}
$$

where $B>0$ is the magnitude or strength of the magnetic field and θ is an arbitrary location in the air gap. ${ }^{2}$

Figure 1.5 shows a rotor loop wound around the iron core of Figure 1.4. The length of the rotor is ℓ_{1} and its diameter is ℓ_{2}. The torque on this rotor loop is now calculated by considering the magnetic forces on sides a and a^{\prime} of the loop. On the other two sides of the loop, that is, the front and

[^2]back sides, the magnetic field has negligible strength so that no significant force is produced on these sides. A.s illustrated in Figure 1.5(b), the rotor angular position is taken to be the angle θ_{R} from the vertical to side a of the rotor loop.

FIGURE 1.5. A single-loop motor. From Electromagnetic and Electromechanical Machines, 3rd edition, L. W. Matsch and J. Derald Morgan, 1986. Reprinted by permisson of John Wiley \& Sons.

Figure 1.6 shows the cylindrical coordinate system used in Figure 1.5. Here $\hat{\mathbf{r}}, \hat{\boldsymbol{\theta}}, \hat{\mathbf{z}}$ denote unit cylindrical coordinate vectors. The unit vector $\hat{\mathbf{z}}$ points along the rotor axis into the paper in Figure 1.5(b), $\hat{\boldsymbol{\theta}}$ is in the direction of increasing θ, and $\hat{\mathbf{r}}$ is in the direction of increasing r.

FIGURE 1.6. Cylindrical coordinate system used in Figure 1.5.

Referring back to Figure 1.5, for $i>0$, the current in side a of the loop is going into the page (denoted by \otimes) and then comes out of the page (denoted by \odot) on side a^{\prime}. Thus, on side $a, \vec{\ell}=\ell_{1} \hat{\mathbf{z}}$ (as $\vec{\ell}$ points in the direction of positive current flow) and the magnetic force $\overrightarrow{\mathbf{F}}_{\text {side } a}$ on side a
is then

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{\text {side } a} & =i \overrightarrow{\boldsymbol{\ell}} \times \overrightarrow{\mathbf{B}} \\
& =i\left(\ell_{1} \hat{\mathbf{z}}\right) \times(B \hat{\mathbf{r}}) \\
& =i \ell_{1} B \hat{\boldsymbol{\theta}}
\end{aligned}
$$

which is tangential to the motion as shown in Figure 1.5(b). The resulting torque is

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\tau}}_{\text {side } a} & =\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{\text {side } a} \\
& =\left(\ell_{2} / 2\right) i \ell_{1} B \hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} \\
& =\left(\ell_{2} / 2\right) i \ell_{1} B \hat{\mathbf{z}}
\end{aligned}
$$

Similarly, the magnetic force on side a^{\prime} of the rotor loop is

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{\text {side } a^{\prime}} & =i \overrightarrow{\boldsymbol{\ell}} \times \overrightarrow{\mathbf{B}} \\
& =i\left(-\ell_{1} \hat{\mathbf{z}}\right) \times(-B \hat{\mathbf{r}}) \\
& =i \ell_{1} B \hat{\boldsymbol{\theta}}
\end{aligned}
$$

so that the corresponding torque is then

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\tau}}_{\text {side } a^{\prime}} & =\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{\text {side }} a^{\prime} \\
& =\left(\ell_{2} / 2\right) i \ell_{1} B \hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} \\
& =\left(\ell_{2} / 2\right) i \ell_{1} B \hat{\mathbf{z}} .
\end{aligned}
$$

The total torque on the rotor loop is then

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\tau}}_{m} & =\overrightarrow{\boldsymbol{\tau}}_{\text {side } a}+\overrightarrow{\boldsymbol{\tau}}_{\text {side } a^{\prime}} \\
& =2\left(\ell_{2} / 2\right) i \ell_{1} B \hat{\mathbf{z}} \\
& =\ell_{1} \ell_{2} B i \hat{\mathbf{z}} .
\end{aligned}
$$

The torque points along the z axis, which is the axis of rotation. In scalar form,

$$
\tau_{m}=K_{T} i
$$

where $K_{T} \triangleq \ell_{1} \ell_{2} B$. The force is proportional to the strength B of magnetic field $\overrightarrow{\mathrm{B}}$ in the air gap due to the permanent magnet.

In order to increase the strength of the magnetic field in the air gap, the permanent magnet can be replaced with a soft iron material with wire wound around the periphery of the magnetic material as shown in Figure $1.7(\mathrm{a})$. This winding is referred to as the field winding, and the current it carries is called the field current. In normal operation, the field current is held constant. The strength of the magnetic field in the air gap is then proportional to the field current i_{f} at lower current levels (i.e., $B=K_{f} i_{f}$) and then saturates as the current increases. This may be written as $B=$
$f\left(i_{f}\right)$ where $f(\cdot)$ is a saturation curve satisfying $f(0)=0, f^{\prime}(0)=K_{f}$ as shown in Figure 1.7(b).

FIGURE 1.7. (a) DC motor with a field winding. (b) Radial magnetic field strength in the air gap produced by the field current.

1.2.2 Commutation of the Single-Loop Motor

The above derivation for the torque $\tau_{m}=K_{T} i$ assumes that the current in the side of the rotor loop ${ }^{3}$ under the south pole face is into the page and the current in the side of the loop under the north pole face is out of the page as in Figure 1.8(a). In order to make this assumption valid, the direction of the current in the loop must be changed each time the rotor loop passes through the vertical.

FIGURE 1.8. (a) $0<\theta_{R}<\pi$. From Electromagnetic and Electromechanical Machines, 3rd edition, L. W. Matsch and J. Derald Morgan, 1986. Reprinted by permisson of John Wiley \& Sons.

[^3]The process of changing the direction of the current is referred to as commutation and is done at $\theta_{R}=0$ and $\theta_{R}=\pi$ through the use of the slip rings s_{1}, s_{2} and brushes b_{1}, b_{2} drawn in Figure 1.8. The slip rings are rigidly attached to the loop and thus rotate with it. The brushes are fixed in space with the slip rings making a sliding electrical contact with the brushes as the loop rotates.

Figure 1.8(b) Rotor loop just prior to commutation where $0<\theta_{R}<\pi$.

Figure 1.8 (c) The ends of the rotor loop are shorted when $\theta_{R}=\pi$.

Figure 1.8(d) Rotor loop just after commutation where $\pi<\theta_{R}<2 \pi$.

To see how the commutation of the current is accomplished using the brushes and slip rings, consider the sequence of Figures 1.8(a)-(d). As shown in Figure 1.8(a), the current goes through brush b_{1} into the slip ring s_{1}. From there, it travels down (into the page \otimes) side a of the loop, comes back up side a^{\prime} (out of the page \odot) into the slip ring s_{2}, and, finally, comes out the brush b_{2}. Note that side a of the loop is under the south pole face while side a^{\prime} is under the north pole face. Figure 1.8(b) shows the rotor loop just before commutation where the same comments as in Figure 1.8(a) apply.

Figure 1.8 (c) shows that when $\theta_{R}=\pi$, the slip rings at the ends of the loop are shorted together by the brushes forcing the current in the loop to drop to zero. Subsequently, as shown in Figure 1.8(d), with $\pi<\theta_{R}<2 \pi$, the current is now going through brush b_{1} into slip ring s_{2}. From there, the current travels down (into the page \otimes) side a^{\prime} of the loop and comes back up (out of the page \odot) side a. In other words, the current has reversed its direction in the loop from that in Figures 1.8(a) and 1.8(b). This is precisely what is desired, as side a is now under the north pole face and side a^{\prime} is under the south pole face. As a result of the brushes and slip rings, the current direction in the loop is reversed every half-turn.

1.3 Faraday's Law

Figure 1.9 shows a magnet moving upwards into a wire loop producing a changing magnetic flux in the loop.

FIGURE 1.9. A magnet moving upwards produces a changing flux in the loop which in turn results in an induced emf and current in the loop.

Recall that a changing fux within a loop produces an induced electro-
motive force (emf) ξ in the loop according to Faraday's law. ${ }^{4}$ That is,

$$
\xi=-d \phi / d t
$$

where

$$
\phi=\int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}
$$

is the flux in the loop and S is any surface with the loop as its boundary. Faraday's law is now reviewed in some detail.

1.3.1 The Surface Element Vector $d \overrightarrow{\mathbf{S}}$

The surface element $d \overrightarrow{\mathbf{S}}$ is a vector whose magnitude is a differential (small) element of area $d S$ and whose direction is normal (perpendicular) to the surface element. As there are two possibilities for the normal to the surface, one must choose the normal in a consistent manner. In particular, depending on the particular normal chosen, a convention is used to characterize the positive and negative directions of travel around the surface boundary. To describe this, consider Figure 1.10(a) which shows a small surface element with the normal direction taken to be up in the positive z direction. In this case, with $\hat{\mathbf{n}}=\hat{\mathbf{z}}, d S=d x d y$, the surface element vector is defined by

$$
d \overrightarrow{\mathbf{S}} \triangleq d x d y \hat{\mathbf{z}} .
$$

The corresponding direction of travel around the surface boundary is indicated by the curved arrow in the figure.

FIGURE 1.10. (a) Positive direction of travel around a surface element with the normal up. (b) Positive direction of travel around a surface element with the normal down.

[^4]In Figure 1.10(b) a surface element with the normal direction taken to be down in the negative z direction is shown. In this case $\hat{\mathbf{n}}=-\hat{\mathbf{z}}, d S=d x d y$ so that the surface element vector is defined as

$$
d \overrightarrow{\mathbf{S}}=-d x d y \hat{\mathbf{z}}
$$

The direction of positive travel around the surface element is indicated by the curved arrow in Figure 1.10(b) and is opposite to that of Figure 1.10(a).

As illustrated in Figure 1.10, the vector differential surface element $d \overrightarrow{\mathbf{S}}$ is defined to be a vector whose magnitude is the area of the differential surface element and whose direction is normal to the surface. One may choose either normal, and the corresponding direction of positive travel around the surface is then determined.

Two surface elements may be connected together as in Figure 1.11 and travel around the total surface is defined as shown. Note that along the common boundary of the two joined surface elements, the directions of travel "cancel" out each other, resulting in a net travel path around both surface elements. The normals for the surface elements must both be up or both be down; that is, the normal must be continuous as one goes from one surface element to the next.

FIGURE 1.11. Positive direction of travel around two joined surface elements.

1.3.2 Interpreting the Sign of ξ

The interpretation of positive and negative values of the induced electromotive force ξ is now explained. Faraday's law says that the induced emf (voltage) in a loop is given by

$$
\xi=-d \phi / d t
$$

where

$$
\phi=\int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}
$$

If $\xi>0$, the induced emf will force current in the positive direction of travel around the surface while if $\xi<0$, the induced emf will force current in the
opposite direction. As illustrated in problems 1 and 2, this sign convention for Faraday's law is just a precise mathematical way of describing Lenz's law: "In all cases of electromagnetic induction, an induced voltage will cause a current to flow in a closed circuit in such a direction that the magnetic field which is caused by that current will oppose the change that produced the current" (pages 873-877 of Ref. [34]).

Faraday's law is now illustrated by some examples. Specifically, it is used to compute the induced emf in the linear DC machine, the induced emf in the single-loop machine and the self-induced voltage in the single-loop machine.

1.3.3 Back Emf in a Linear DC Machine

Figure 1.12 shows the linear DC machine where the back emf it generates is now computed. The magnetic field is constant and points into the page, that is, $\overrightarrow{\mathbf{B}}=-B \hat{\mathbf{z}}$, where $B>0$. The magnetic force on the bar is $\overrightarrow{\mathbf{F}}_{\text {magnetic }}=$ $i \ell B \hat{\mathbf{x}}$. To compute the induced voltage in the loop of the circuit, let $\hat{\mathbf{n}}=\hat{\mathbf{z}}$ be the normal to the surface so that $d \overrightarrow{\mathbf{S}}=d x d y \hat{\mathbf{z}}$, where $d S=d x d y$.

FIGURE 1.12. With $d \overrightarrow{\mathbf{S}}=d x d y \hat{\mathbf{z}}$, the direction of positive travel around the flux surface is in the counterclockwise direction.

Then

$$
\phi=\int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\int_{0}^{\ell} \int_{0}^{x}(-B \hat{\mathbf{z}}) \cdot(d x d y \hat{\mathbf{z}})=\int_{0}^{\ell} \int_{0}^{x}-B d x d y=-B \ell x .
$$

The induced (back) emf is therefore given by

$$
\xi=-d \phi / d t=-d(-B \ell x) / d t=B \ell v .
$$

In the flux computation, the normal for the surface was taken to be in $+\hat{\mathbf{z}}$ direction. By putting together the differential flux surfaces $d \mathbf{S}$ in a fashion
similar to Figure 1.11, the positive direction of travel around the surface is counterclockwise around the loop as indicated in Figure 1.12. Here the sign conventions for source voltage V_{S} and the back emf ξ are opposite so that, as the back emf $\xi=B \ell v>0$, it is opposing the applied source voltage V_{S}.
Remark $\phi=-B \ell x$ is the flux in the circuit due to the external magnetic field $\overrightarrow{\mathbf{B}}=-B \hat{\mathbf{z}}$. There is also a flux $\psi=L i$ due to the current i in the circuit. For this example, the inductance is small and one just sets $L=0$.

Electromechanical Energy Conversion

As the back emf $\xi=B l v$ opposes the current i, electrical power is being absorbed by this back emf. Specifically, the electrical power absorbed by the back emf is $i \xi=i B \ell v$ while the mechanical power produced is $F_{\text {magnetic }} v=$ $i \ell B v$. That is, the electrical power absorbed by the back emf reappears as mechanical power, as it must by conservation of energy. Another way to view this is to note that $V_{S} i$ is the electrical power delivered by the source and, as $V_{S}-B \ell v=R i$, one may write

$$
V_{S} i=R i^{2}+i(B \ell v)=R i^{2}+F_{\text {magnetic }} v .
$$

In words, the power from the source $V_{S} i$ is dissipated as heat in the resistance R while the rest is converted into mechanical power.

Equations of Motion for the Linear DC Machine

The equations of motion for the bar in the linear DC machine are now derived. With the inductance L of the circuit loop taken to be zero, m_{ℓ} the mass of the bar, f the coefficient of viscous friction, it follows that

$$
\begin{aligned}
V_{S}-B \ell v & =R i \\
m_{\ell} \frac{d v}{d t} & =i \ell B-f v .
\end{aligned}
$$

Eliminating the current i, one obtains

$$
m_{\ell} \frac{d^{2} x}{d t^{2}}=\ell B\left(V_{S}-B \ell v\right) / R-f v=-\left(\frac{B^{2} \ell^{2}}{R}+f\right) \frac{d x}{d t}+\frac{\ell B}{R} V_{S}
$$

or

$$
m_{\ell} \frac{d^{2} x}{d t^{2}}+\left(\frac{B^{2} \ell^{2}}{R}+f\right) \frac{d x}{d t}=\frac{\ell B}{R} V_{S} .
$$

This is the equation of motion for the bar with V_{S} as the control input and the position x at the measured output.

1.3.4 Back Emf in the Single-Loop Motor

The back emf induced in the single loop motor by the external magnetic field of the permanent magnet is now computed. To do so, consider the
flux surface for the rotor loop shown in Figure 1.13. The surface is a halfcylinder of radius $\ell_{2} / 2$ and length ℓ_{1} with the rotor loop as its boundary. The cylindrical surface is in the air gap, where the magnetic field is known to be radially directed and constant in magnitude, that is,

$$
\overrightarrow{\mathbf{B}}= \begin{cases}+B \hat{\mathbf{r}} & \text { for } 0<\theta<\pi \tag{1.1}\\ -B \hat{\mathbf{r}} & \text { for } \pi<\theta<2 \pi\end{cases}
$$

FIGURE 1.13. Flux surface for the single loop motor.

FIGURE 1.14. Surface element vector for the flux surface of Figure 1.13. The positive direction of travel around this surface is indicated by the curved arrow.

On the cylindrical part of the surface, the surface element is chosen as

$$
d \overrightarrow{\mathbf{S}}=\left(\ell_{2} / 2\right) d \theta d z \hat{\mathbf{r}}
$$

which is directed outward from the axis of the cylinder as illustrated in Figure 1.14. The corresponding direction of positive travel is also indicated in Figure 1.14. On the two ends (half-disks) of the cylindrical surface, the $\overrightarrow{\mathbf{B}}$ field is quite weak making the flux through these two half-disks negligible.

Then, neglecting the flux through the two ends of the surface, the flux $\phi\left(\theta_{R}\right)$ for $0<\theta_{R}<\pi$ is given by

$$
\begin{align*}
\phi\left(\theta_{R}\right) & =\int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \\
& =\int_{0}^{\ell_{1}} \int_{\theta=\theta_{R}}^{\theta=\pi}(B \hat{\mathbf{r}}) \cdot\left(\frac{\ell_{2}}{2} d \theta d z \hat{\mathbf{r}}\right)+\int_{0}^{\ell_{1}} \int_{\theta=\pi}^{\theta=\pi+\theta_{R}}(-B \hat{\mathbf{r}}) \cdot\left(\frac{\ell_{2}}{2} d \theta d z \hat{\mathbf{r}}\right) \\
& =\int_{0}^{\ell_{1}} \int_{\theta=\theta_{R}}^{\theta=\pi} B \frac{\ell_{2}}{2} d \theta d z+\int_{0}^{\ell_{2}} \int_{\theta=\pi}^{\theta=\pi+\theta_{R}}-B \frac{\ell_{2}}{2} d \theta d z \\
& =\frac{\ell_{1} \ell_{2} B}{2}\left(\pi-\theta_{R}\right)-\frac{\ell_{1} \ell_{2} B}{2} \theta_{R} \\
& =-\ell_{1} \ell_{2} B\left(\theta_{R}-\frac{\pi}{2}\right) \tag{1.2}
\end{align*}
$$

This derivation is based on the fact that the $\overrightarrow{\mathbf{B}}$ field is directed radially outward over the length $\left(\ell_{2} / 2\right)\left(\pi--\theta_{R}\right)$ and radially inward over the length $\left(\ell_{2} / 2\right) \theta_{R}$ (see Figure 1.13). In problem 7 , the reader is asked to show that

$$
\begin{equation*}
\phi\left(\theta_{R}\right)=-\ell_{1} \ell_{2} B\left(\theta_{R}-\pi / 2-\pi\right) \text { for } \pi<\theta_{R}<2 \pi . \tag{1.3}
\end{equation*}
$$

A plot of the flux versus the rotor angle θ_{R} is given in Figure 1.15.

FIGURE 1.15. The rotor flux $\phi\left(\theta_{R}\right)$ due to the external magnetic field vs. θ_{R}.
Equations (1.2) and (1.3) may be combined into one expression as ${ }^{5}$

$$
\begin{equation*}
\phi\left(\theta_{R}\right)=-\ell_{1} \ell_{2} B\left(\theta_{R} \bmod \pi-\frac{\pi}{2}\right) \tag{1.4}
\end{equation*}
$$

[^5]which is a correct expression for any angle θ_{R}. By (1.2) and (1.3), the induced emf in the rotor loop is calculated as
$$
\xi=-\frac{d \phi}{d t}=\left(\ell_{1} \ell_{2} B\right) \frac{d \theta_{R}}{d t}=K_{b} \omega_{R}
$$
where $K_{b} \triangleq \ell_{1} \ell_{2} B$ is called the back emf constant.
The total emf in the rotor loop due to the voltage source V_{S} and external magnetic field is $V_{S}-K_{b} \omega_{R}$. How does one know to subtract ξ from the applied voltage V_{S} ? As shown in Figure 1.14, the positive direction of travel around the loop is in opposition to V_{S}, so that if $\xi>0$, it is opposing the applied voltage V_{S}. The standard terminology is to call $\xi \triangleq K_{b} \omega_{R}$ the back emf of the motor.

1.3.5 Self-Induced Emf in the Single-Loop Motor

The computation of the flux in the rotor loop produced by its own (armature) current is now done. To do so, consider the flux surface shown in Figure 1.16.

FIGURE 1.16. Computation of the inductance of the rotor loop. The surface element vector is $d \overrightarrow{\mathbf{S}}=-r_{R} d \theta d z \hat{\mathbf{r}}$ with a resulting positive direction of travel as indicated by the curved arrow. This direction coincides with the direction of positive current, that is, $i>0$.

With reference to Figure 1.16, note that the magnetic field on the flux surface due to the armature current has the form

$$
\overrightarrow{\mathbf{B}}\left(r_{R}, \theta-\theta_{R}, i\right)=i K\left(r_{R}, \theta-\theta_{R}\right)(-\hat{\mathbf{r}})
$$

where

$$
\begin{array}{ll}
K\left(r_{R}, \theta-\theta_{R}\right)>0 & \text { for } 0 \leq \theta-\theta_{R} \leq \pi \\
K\left(r_{R}, \theta-\theta_{R}\right)<0 & \text { for } \pi \leq \theta-\theta_{R} \leq 2 \pi .
\end{array}
$$

The exact expression for $K\left(r_{R}, \theta-\theta_{R}\right)$ is not easy to compute, but it is not needed for the analysis here. Rather, the point is that with $i>0$, the magnetic field $\overrightarrow{\mathbf{B}}\left(r_{R}, \theta-\theta_{R}, i\right)$ due to the current in the rotor loop is radially in on the flux surface shown in Figure 1.16, that is, for $\theta_{R} \leq \theta \leq \theta_{R}+\pi$. For convenience, the surface element is chosen to be $d \overrightarrow{\mathbf{S}}=r_{R} d \theta d z(-\hat{\mathbf{r}})$ so that positive direction of travel around the surface coincides with the positive direction of the current i in the loop. The flux ψ in the rotor loop is then computed as ${ }^{6}$

$$
\begin{aligned}
\psi(i) & =\int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\int_{\theta_{R}}^{\theta_{R}+\pi} \int_{0}^{\ell_{1}} i K\left(r_{R}, \theta-\theta_{R}\right)(-\hat{\mathbf{r}}) \cdot\left(-r_{R} d \theta d z \hat{\mathbf{r}}\right) \\
& =i \int_{\theta_{R}}^{\theta_{R}+\pi} \int_{0}^{\ell_{1}} K\left(r_{R}, \theta-\theta_{R}\right) r_{R} d \theta d z \\
& =L i
\end{aligned}
$$

where

$$
\begin{equation*}
L \triangleq \int_{\theta_{R}}^{\theta_{R}+\pi} \int_{0}^{\ell_{1}} K\left(r_{R}, \theta-\theta_{R}\right) r_{R} d \theta d z>0 \tag{1.5}
\end{equation*}
$$

This last equation just says the flux in the loop (due to the current in the loop) is proportional to the current i in the loop. The proportionality constant L is the called the inductance of the loop. ${ }^{7}$ If $-d \psi / d t=-L d i / d t>0$, then the induced emf will force current into the page \otimes on side a and out of the page \odot of side a^{\prime} in Figure 1.16. That is, this induced emf has the same sign convention as the armature current i and the source voltage V_{S}.

With the rotor locked at some angle θ_{R} so that the external magnetic field cannot induce an emf in the rotor loop, the equation describing the current i in the rotor loop is given by Kirchhoff's voltage law

$$
V_{S}-R i-L \frac{d i}{d t}=0
$$

or

$$
V_{S}=R i+L \frac{d i}{d t}
$$

Here R is the resistance of the loop and V_{S} is the source voltage applied to the loop. The loop and its equivalent circuit are shown in Figure 1.17.

[^6]

FIGURE 1.17. Left: Rotor loop. Right: Equivalent circuit.
The reader should convince himself/herself that Lenz's law holds as it must. For example, suppose a voltage $V_{S}>0$ is applied to the loop resulting in both $i>0$ and $d i / d t>0$, that is, the flux $\psi=L i$ is positive and increasing. The induced voltage is $-L d i / d t<0$ and opposes the current i producing the increasing flux $\psi=L i$. In this circumstance, the voltage source V_{S} is forcing the current i against this induced voltage $-L d i / d t$ and the power absorbed by the induced voltage is $-i L d i / d t=-d\left(\frac{1}{2} L i^{2}\right) / d t$. This power is stored in the energy $\frac{1}{2} L i^{2}$ of the magnetic field surrounding the loop.

Arcing Between the Commutator and Brushes

Suppose the single-loop motor is rotating at constant speed ω_{0} with a constant current i_{0} in the rotating loop. Let L be the inductance of the loop. Now, every half-turn, the current in the loop reverses direction as shown in Figures 1.8(b)-(d). During this commutation, the current in the loop goes from i_{0} to 0 to $-i_{0}$ (or vice versa) with a corresponding change in the loop's flux given by $\Delta \psi=L\left(-i_{0}\right)-L i_{0}=-2 L i_{0}$. By Faraday's law, the self-induced emf is then $-\Delta \psi / \Delta t=2 L i_{0} / \Delta t$ where Δt is the time for the current to change direction. Note that this time Δt decreases as the motor speed increases, so that, even if L is small, the induced emf in the loop (due to the reversal of current in the loop) can be quite large at high motor speeds. Large electric fields are produced by the induced voltage $L d i / d t$ when the loop is shorted which in turn ionizes the surrounding air. As the free electrons collide and recombine with the ionized air, light is given off and seen as arcing or sparking. These large voltages which cause the arcing between the slip rings and the brushes can damage the brushes as well as produce unwanted transient currents in the armature circuit.

1.4 Dynamic Equations of the DC Motor

Based on the simple single-loop DC motor analyzed above, the complete set of equations for a DC motor can be found. The total emf (voltage) in
the loop due to the voltage source V_{S}, the external permanent magnet and the changing current i in the rotor loop is

$$
V_{S}-K_{b} \omega_{R}-L \frac{d i}{d t}
$$

This voltage goes into building up the current in the loop against the loop's resistance, that is,

$$
V_{S}-K_{b} \omega_{R}-L \frac{d i}{d t}=R i
$$

or

$$
L \frac{d i}{d t}=-R i-K_{b} \omega_{R}+V_{S} .
$$

This relationship is often illustrated by the equivalent circuit given in Figure 1.18. Recall that the torque τ_{m} on the loop due to the external magnetic field acting on the current in the loop is

$$
\tau_{m}=K_{T} i
$$

where $K_{T} \triangleq \ell_{1} \ell_{2} B$ is called the torque constant. By connecting a shaft and gears to one end of the loop, this motor torque can be used to do work (lift weight, etc.). Let $-f \omega_{R}$ model the friction torque (due to the brushes, bearings, etc.) where f is the coefficient of viscous friction and let τ_{L} be the load torque (e.g., due to a weight being lifted).

FIGURE 1.18. Equivalent circuit of the armature electrical dynamics.
Then, by Newton's law,

$$
\tau_{m}-\tau_{L}-f \omega_{R}=J \frac{d \omega_{R}}{d t}
$$

where J is the moment of inertia of the rotor (See the appendix of this chapter). The system of equations characterizing the DC motor is then

$$
\begin{align*}
L \frac{d i}{d t} & =-R i-K_{b} \omega_{R}+V_{S} \\
J \frac{d \omega_{R}}{d t} & =K_{T} i-f \omega_{R}-\tau_{L} \tag{1.6}\\
\frac{d \theta_{R}}{d t} & =\omega_{R}
\end{align*}
$$

A picture of a DC motor servo system and its associated schematic is shown in Figure 1.19. In the schematic, R is the resistance of the rotor loop, L is the inductance of the rotor loop, $\xi=K_{b} \omega_{R}$ is the back emf, $\tau_{m}=K_{T} i$ is the motor torque, J is the rotor moment of inertia, and f is the coefficient of viscous friction. The positive directions for τ_{m}, θ_{R}, and τ_{L} are indicated by the curved arrows. The fact that the curved arrow for τ_{L} is opposite to that of τ_{m} just means that if the load torque is positive then it opposes a positive motor torque τ_{m}.

FIGURE 1.19. DC motor drawing and schematic.

Electromechanical Energy Conversion

The mechanical power produced by the DC motor is $\tau_{m} \omega_{R}=K_{T} i \omega_{R}=$ $i \ell_{1} \ell_{2} B \omega_{R}$ while the electrical power absorbed by the back emf is $i \xi=$ $i K_{b} \omega_{R}=i \ell_{1} \ell_{2} B \omega_{R}$. The fact that $K_{T}=K_{b}=\ell_{1} \ell_{2} B$ must be for conservation of energy to hold. That is, the electrical power absorbed by the back emf equals (is converted to) the mechanical power produced. Another way to view this energy conversion is to write the electrical equation as

$$
V_{S}=R i+L \frac{d i}{d t}+\xi
$$

The power out of the voltage source $V_{S}(t)$ is given by

$$
\begin{aligned}
V_{S}(t) i(t) & =R i^{2}(t)+L i \frac{d i}{d t}+i K_{b} \omega_{R} \\
& =R i^{2}+\frac{d}{d t}\left(\frac{1}{2} L i^{2}\right)+K_{T} i \omega_{R} \\
& =R i^{2}+\frac{d}{d t}\left(\frac{1}{2} L i^{2}\right)+\tau_{m} \omega_{R}
\end{aligned}
$$

Thus the power $V_{S}(t) i(t)$ delivered by the source goes into heat loss in the resistance R, into stored magnetic energy in the inductance L of the loop and the amount $i \xi$ goes into the mechanical energy $\tau_{m} \omega_{R}$.

Remark Voltage and Current Limits
The amount of voltage V_{S} that may be applied to the input terminals T_{1}, T_{2} of the motor is limited by capabilities of the amplifier supplying the voltage, that is, $\left|V_{S}\right| \leq V_{\max }$. Let $V_{c}(t)$ be the voltage commanded to the
amplifier, then the actual voltage V_{S} out of the amplifier to the motor is limited by $V_{\max }$ as illustrated in Figure 1.20.

FIGURE 1.20. Saturation model of an amplifier.

In addition, there is a limit to the amount of current the rotating loop can handle before overheating or causing problems with commutation as previously mentioned. Typically there are two current limits (ratings), the continuous current limit $I_{\text {max_cont }}$ and the peak current limit $I_{\text {max_peak }}$. The continuous current limit $I_{\max }$ cont is the amount of current the motor can handle if left in use indefinitely. That is, the amount of heat dissipated in the rotor windings due to ohmic losses is equal to the amount of heat taken away by thermal conduction through the brushes and thermal convection with the air so as to be in a thermal equilibrium. The peak current limit $I_{\text {max_peak }}$ is the amount of current the motor can handle for short periods of time (typically only a few seconds).

1.5 Microscopic Viewpoint

Additional insight into the back emf ξ is found by calculating it from a microscopic point of view using the ideas given in Ref. [34] (page 887). To illustrate this approach, the back emf in the linear DC machine is recomputed from the microscopic point of view. To proceed, recall that the magnetic force on a charged particle q is $\overrightarrow{\mathbf{F}}_{\text {magnetic }}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}$, where $\overrightarrow{\mathbf{v}}$ is the velocity of the charge (see Ref. [34], page 816).

Example A Linear DC Machine
In this example, the linear DC machine is reanalyzed from the microscopic point of view. As before, $\overrightarrow{\mathbf{B}}=-B \hat{\mathbf{z}}$ where $B>0$. Suppose the motor (bar) is moving to the right with a constant speed v_{m}. Each charge q in the sliding bar has total velocity $\overrightarrow{\mathbf{v}}=v_{m} \hat{\mathbf{x}}-v_{d} \hat{\mathbf{y}}$, where v_{d} is the drift speed of the charges down the wire. The magnetic force on the charge q is

$$
\overrightarrow{\mathbf{F}}_{\text {magnetic }}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}=q\left(v_{m} \hat{\mathbf{x}}-v_{d} \hat{\mathbf{y}}\right) \times(-B \hat{\mathbf{z}})=q v_{m} B \hat{\mathbf{y}}+q v_{d} B \hat{\mathbf{x}} .
$$

FIGURE 1.21. Linear DC machine.
Now, the component of force $q v_{d} B \hat{\mathbf{x}}$ perpendicular to the bar causes the bar to move to the right and the component $q v_{m} B \hat{\mathbf{y}}$ along the bar opposes the current flow. The source voltage V_{S} sets up an electric field $\overrightarrow{\mathbf{E}}_{S}$ in the bar to overcome the magnetic force $q v_{m} B \hat{\mathbf{y}}$ so as to make the current flow (setup the drift velocity v_{d} of the charge carriers against the resistance of the bar). In more detail, with T_{1} and T_{2} the upper and lower terminals of the source voltage, respectively, and S_{1} and S_{2} the upper and lower sliding contact points, respectively, the source voltage is given as

$$
V_{S}=\int_{\mathrm{T}_{1}-\mathrm{S}_{1}-\mathrm{S}_{2}-\mathrm{T}_{2}} \overrightarrow{\mathbf{E}}_{S} \cdot d \vec{\ell}
$$

The quantity $q \overrightarrow{\mathbf{E}}_{S}$ is the force on each charge carrier and $q V_{S}$ is the energy given to the charge carrier by the source voltage as the charge goes around the loop. There is also a component of the magnetic force on the charge carrier that opposes the electric field $\overrightarrow{\mathrm{E}}_{S}$. The energy per unit charge ξ that the magnetic force takes from the charge carrier as it goes down the bar from S_{1} to S_{2} is given by

$$
\begin{aligned}
\xi & =\frac{1}{q} \int_{S_{1}}^{S_{2}} \overrightarrow{\mathbf{F}}_{\text {magnetic }} \cdot d \vec{\ell}=\frac{1}{q} \int_{S_{1}}^{S_{2}} q(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) \cdot d \vec{\ell}=\int_{0}^{\ell}\left(v_{d} B \hat{\mathbf{x}}+v_{m} B \hat{\mathbf{y}}\right) \cdot(-d \ell \hat{\mathbf{y}}) \\
& =-v_{m} B \ell .
\end{aligned}
$$

The fact that ξ is negative just indicates that the magnetic force is taking energy out of the charge carrier as it goes down the bar from S_{1} to S_{2}. (Note: The sign convention for ξ shown in Figure 1.21 is reversed from that of Figure 1.12.) This energy per unit charge ξ taken from each charge carrier by the magnetic force as it goes around the loop is called the induced emf. The voltage V_{S} was computed by integrating $\overrightarrow{\mathbf{E}}_{S}$ in the clockwise direction $\mathrm{T}_{1}-\mathrm{S}_{1}-\mathrm{S}_{2}-\mathrm{T}_{2}$ around the loop, and ξ by integrating $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}$ also in the
clockwise direction down the bar from S_{1} to S_{2}; that is, they both have the same sign convention. This is in contrast to the macroscopic case where V_{S} and ξ had opposite sign conventions resulting in $\xi=v_{m} B \ell$ being positive. However, the same (physical) result occurs as in the macroscopic case.

In general, the emf in a loop is defined as the integral of the force per unit charge around the loop. The total emf is the sum of the source voltage and the induced emf. This total emf goes into producing the current, that is,

$$
V_{S}+\xi=V_{S}-v_{m} \ell B=R i
$$

where an identical equation was found in the macroscopic case using Faraday's law. The total magnetic force on all the charge carriers in the bar in the $\hat{\mathbf{x}}$ direction is given by

$$
q(N S \ell) v_{d} B \hat{\mathbf{x}}
$$

where N is the number of charge carriers/volume and S is the cross sectional area of the sliding bar. That is, $N S \ell$ is the total number of charge carriers in the sliding bar each experiencing the force $q v_{d} B \hat{\mathbf{x}}$. As illustrated in Figure 1.22, in a time Δt, the charges in the volume $N S\left(v_{d} \Delta t\right)$ have moved along the conductor past the point P in Figure 1.22.

FIGURE 1.22. In the time Δt, the amount of charge $\Delta Q=q N S\left(v_{d} \Delta t\right)$ has moved past the point P resulting in the current $i=\Delta Q / \Delta t=q N S v_{d}$ in the bar.

That is, the amount of charge $\Delta Q=q N S\left(v_{d} \Delta t\right)$ has moved past the point P in the time Δt resulting in the current $i=\Delta Q / \Delta t=q N S v_{d}$ in the conductor. Consequently, the total magnetic force on the bar may be rewritten as

$$
q(N S \ell) v_{d} B \hat{\mathbf{x}}=\left(q N S v_{d}\right) \ell B \hat{\mathbf{x}}=i \ell B \hat{\mathbf{x}}
$$

which is identical to the expression derived from the macroscopic point of view.

1.5.1 Microscopic Viewpoint of the Single-Loop DC Motor

FIGURE 1.23. Single loop DC motor. Adapted from Ref. [21].
The back emf in the single-loop DC motor of Figure 1.23 is now computed from the microscopic point of view. With the loop rotating at the angular speed ω_{R}, the velocity of the charge carriers that make up the current is given by

$$
\overrightarrow{\mathbf{v}}= \begin{cases}v_{t} \hat{\boldsymbol{\theta}}+v_{d} \hat{\mathbf{z}} & \text { for side } a \\ v_{t} \hat{\boldsymbol{\theta}}-v_{d} \hat{\mathbf{z}} & \text { for side } a^{\prime}\end{cases}
$$

where v_{d} is the drift speed of the charge carriers along the wire and $v_{t}=$ $\left(\ell_{2} / 2\right) \omega_{R}$ is the tangential velocity due to the rotating loop. Recall that the drift speed has the same sign as the current, that is, $v_{d}>0$ for $i>0$. Also recall that the angular velocity is written as $\overrightarrow{\boldsymbol{\omega}}_{R}=\omega_{R} \hat{\mathbf{z}}$ where $\hat{\mathbf{z}}$ is the axis the motor is turning about. The magnetic force per unit charge $\overrightarrow{\mathbf{F}}_{\text {magnetic }} / q$ on the charge carriers on the axial sides of the loop is

$$
\overrightarrow{\mathbf{F}}_{\text {magnetic }} / q=\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}
$$

where

$$
\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}= \begin{cases}\left(v_{t} \hat{\boldsymbol{\theta}}+v_{d} \hat{\mathbf{z}}\right) \times(+B) \hat{\mathbf{r}}=-v_{t} B \hat{\mathbf{z}}+v_{d} B \hat{\boldsymbol{\theta}} & \text { for side } a \\ \left(v_{t} \hat{\boldsymbol{\theta}}-v_{d} \hat{\mathbf{z}}\right) \times(-B) \hat{\mathbf{r}}=+v_{t} B \hat{\mathbf{z}}+v_{d} B \hat{\boldsymbol{\theta}} & \text { for side } a^{\prime}\end{cases}
$$

or

$$
\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}= \begin{cases}v_{d} B \hat{\boldsymbol{\theta}}-\omega_{R}\left(\ell_{2} / 2\right) B \hat{\mathbf{z}} & \text { for side } a \\ v_{d} B \hat{\boldsymbol{\theta}}+\omega_{R}\left(\ell_{2} / 2\right) B \hat{\mathbf{z}} & \text { for side } a^{\prime}\end{cases}
$$

The component $v_{d} B \hat{\boldsymbol{\theta}}$ is what produces the torque. In more detail, with N the number of charge carriers/unit volume, S the cross-sectional area of the wire loop, and ℓ_{1} the axial length of the loop, the quantity $N S \ell_{1}$ is the total number of charge carriers of each side of the loop and the current
due to the movement of these charges is $i=q N S v_{d}$ (see Figure 1.22). The total tangential forces on the axial sides of the rotor loop are given by

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{\text {side } a} & =\left(q N S \ell_{1}\right) v_{d} B \hat{\boldsymbol{\theta}}=i(t) \ell_{1} B \hat{\boldsymbol{\theta}} \\
\overrightarrow{\mathbf{F}}_{\text {side } a^{\prime}} & =\left(q N S \ell_{1}\right) v_{d} B \hat{\boldsymbol{\theta}}=i(t) \ell_{1} B \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

The torque is then

$$
\overrightarrow{\boldsymbol{\tau}}=\frac{\ell_{2}}{2} \hat{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{\text {side } a}+\frac{\ell_{2}}{2} \hat{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{\text {side } a^{\prime}}=2\left(\frac{\ell_{2}}{2} \hat{\mathbf{r}}\right) \times\left(i \ell_{1} B \hat{\boldsymbol{\theta}}\right)=i \ell_{1} \ell_{2} B \hat{\mathbf{z}}
$$

which is the same result as in the macroscopic case.
It is now shown that the $\hat{\mathbf{z}}$ component of the magnetic force produces the back emf. The $\hat{\mathbf{z}}$ component of $\overrightarrow{\mathbf{F}}_{\text {magnetic }}$, that is, along the axial sides of the loop, is given by

$$
\left(\overrightarrow{\mathbf{F}}_{\text {magnetic }} / q\right)_{z} \hat{\mathbf{z}}= \begin{cases}-\omega_{R}\left(\ell_{2} / 2\right) B \hat{\mathbf{z}} & \text { for side } a \\ +\omega_{R}\left(\ell_{2} / 2\right) B \hat{\mathbf{z}} & \text { for side } a^{\prime}\end{cases}
$$

As shown in Figure 1.23, this component of the magnetic force per unit charge $\left(\overrightarrow{\mathbf{F}}_{\text {magnetic }} / q\right)_{z}$ opposes the electric field $\overrightarrow{\mathbf{E}}_{S}$ set up in the loop by the applied armature voltage V_{S}. The relationship between V_{S} and $\overrightarrow{\mathbf{E}}_{S}$ is

$$
V_{S}=\int_{T_{1}}^{T_{2}} \overrightarrow{\mathbf{E}}_{S} \cdot d \overrightarrow{\boldsymbol{\ell}}
$$

where

$$
d \vec{\ell}= \begin{cases}+d \ell \hat{\mathbf{z}} & \text { for side } a \\ -d \ell \hat{\mathbf{z}} & \text { for side } a^{\prime} .\end{cases}
$$

Then, with ξ denoting the integral of the magnetic force per unit charge from T_{1} to T_{2}, one has

$$
\begin{aligned}
\xi & \triangleq \int_{T_{1}}^{T_{2}}\left(\overrightarrow{\mathbf{F}}_{\text {magnetic }} / q\right) \cdot d \vec{\ell} \\
& =\int_{\text {side } a}\left(-\omega_{R}\left(\ell_{2} / 2\right) B \hat{\mathbf{z}}\right) \cdot(d \ell \hat{\mathbf{z}})+\int_{\text {side } a^{\prime}}\left(\omega_{R}\left(\ell_{2} / 2\right) B \hat{\mathbf{z}}\right) \cdot(-d \ell \hat{\mathbf{z}}) \\
& =\int_{\ell=0}^{\ell=\ell_{1}}-\omega_{R}\left(\ell_{2} / 2\right) B d \ell+\int_{\ell=0}^{\ell=\ell_{1}}-\omega_{R}\left(\ell_{2} / 2\right) B d \ell \\
& =-\omega_{R}\left(\ell_{2} / 2\right) B \ell_{1}-\omega_{R}\left(\ell_{2} / 2\right) B \ell_{1} \\
& =-\ell_{1} \ell_{2} B \omega_{R} .
\end{aligned}
$$

In this example, the (back) emf ξ is due to the magnetic force while V_{S} is due to the electric field set up by the voltage source. As the induced emf ξ and the source voltage V_{S} have the same sign convention, the minus sign
in the expression for ξ shows that it opposes the applied armature voltage V_{S}. The total emf (voltage) in the loop is

$$
V_{S}+\xi=V_{S}-\ell_{1} \ell_{2} B \omega_{R}
$$

Finally, the equation governing the current in the rotor loop is

$$
L \frac{d i}{d t}+R i=V_{S}-\ell_{1} \ell_{2} B \omega_{R}
$$

This is the same physical result as shown in the macroscopic case using Faraday's law. However, here the induced emf $\xi=-\ell_{1} \ell_{2} B \omega_{R}$ is negative because it was chosen to have the same sign convention as V_{S} (i.e., both V_{S} and ξ are positive going from T_{1} to T_{2}). This is in contrast to the macroscopic case in which they had opposite sign conventions so that $\xi=$ $\ell_{1} \ell_{2} B \omega_{R}$ was positive, but still opposed V_{S}.

Remark Voltage and Emf

The electromotive force or emf between two points in a circuit is the integral of the total force per unit charge along the circuit between those two points. ${ }^{8}$ The force per unit charge can be due to an electric field, a magnetic field or both. The term voltage (drop) was originally reserved for the integral of the electric field between the two points. However, this distinction is usually not made and the two terms (voltage and emf) are used interchangeably.

1.5.2 Drift Speed

Above, it was shown that the drift speed of the charge carriers making up the current is given by $v_{d}(t)=i(t) /(q N S)$. As explained in Ref. [34] (page 781), this motion (drift speed) of the charges in the conductor is caused by the electric field setup in the conductor by the voltage source and/or induced emfs in the conducting circuit. This electric field is pushing the charges along the conductor against the internal resistance of the conductor. In metals, the outer valence electrons are free to move about the lattice of the metal and are called conduction electrons. For example, in copper there is one valence electron per atom and the other 28 electrons remain bound to the copper nucleus. Consequently, as there are 8.4×10^{22} atoms $/ \mathrm{cm}^{3}$ in copper, there are $N=8.4 \times 10^{22}$ electrons $/ \mathrm{cm}^{3}$ that can move freely within the copper lattice to make up the current in the wire. To consider a simple numerical example, let $i=10 \mathrm{~A}, S=0.1 \mathrm{~cm}^{2}$ so that with $q=1.6 \times 10^{-19}$ coulomb/electron, the corresponding drift speed is

$$
\begin{aligned}
v_{d} & =\frac{i(t)}{q N S}=\frac{10 \mathrm{~A}}{\left(1.6 \times 10^{-19} \frac{\text { coulomb }}{\text { electron }}\right)\left(8.4 \times 10^{22} \frac{\text { electrons }}{\mathrm{cm}^{3}}\right)\left(0.1 \mathrm{~cm}^{2}\right)} \\
& =0.74 \mathrm{~cm} / \mathrm{sec} .
\end{aligned}
$$

[^7]That is, it takes $1 /(0.74 \mathrm{~cm} / \mathrm{sec})=1.35 \mathrm{sec}$ for the charge carrier to travel one centimeter. However, it should be noted that when a voltage/emf is applied to a circuit, the corresponding electric field is setup around the circuit at a speed close to the speed of light. This is analogous to applying pressure to a long tube of water. The pressure wave is transmitted down the tube rapidly (at the speed of sound in water) while the water itself moves much slower [34].

1.6 Tachometer for a DC Machine*9

A tachometer is a device for measuring the speed of a DC motor by putting out a voltage proportional to the motor's speed. A tachometer for the simple linear DC machine is considered first.

1.6.1 Tachometer for the Linear DC Machine

Figure 1.24 shows a tachometer added to the linear DC machine. The magnetic field in the DC motor is $\overrightarrow{\mathbf{B}}_{1}=-B_{1} \hat{\mathbf{z}}$ with $B_{1}>0$ while in the tachometer it is $\overrightarrow{\mathbf{B}}_{2}=-B_{2} \hat{\mathbf{z}}$ with $B_{2}>0$.

FIGURE 1.24. DC tachometer (generator).

The two bars are rigidly connected together by the insulating material. The motor force (the magnetic force on the upper bar) is $F_{m}=i \ell_{1} B_{1}$, and

[^8]the induced (back) emf in the motor is $\xi=V_{b}=B_{1} \ell_{1} v$, where v is the speed of the motor (bar).

The induced (back) emf in the tachometer is given by $\xi=V_{\text {tach }}=B_{2} \ell_{2} v$ so that by measuring the voltage between the terminals T_{1} and T_{2}, the speed v of the motor can be computed. Note that the tachometer and motor have the same physical structure. In fact, the tachometer is nothing more than a generator putting out a voltage proportional to the speed.

1.6.2 Tachometer for the Single-Loop DC Motor

A tachometer for the single loop DC motor is constructed by attaching another loop to the shaft and rotating it an external magnetic field to act as a DC generator. That is, the changing flux in the tachometer loop produces (generates) an induced emf according to Faraday's law and this emf is proportional to the shaft's speed. To see this, consider Figure 1.25, where a motor loop is driven by a voltage V_{S} and, attached to the same shaft, is a second loop called a tachometer. Both loops rotate in an external radial magnetic field which is not shown in Figure 1.25, but is shown for the tachometer loop in Figure 1.26. It is important to point out that no voltage is applied to the terminals T_{1} and T_{2} of the tachometer as was the case for the motor. Instead, the voltage $V_{\text {tach }}$ between the terminals T_{1} and T_{2} of the tachometer is measured (this voltage is proportional to the motor speed ω_{R}).

FIGURE 1.25. Single loop motor and tachometer. Drawn by Sharon Katz.

Specifically, in the same way the back emf was computed for the DC motor, one can calculate the flux in the loop of the tachometer due to the
external magnetic field. This computation is (see Figure 1.26)

$$
\begin{aligned}
\phi & =\int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \\
& =\int_{0}^{\ell_{1}} \int_{\theta_{R}}^{\pi}(B \hat{\mathbf{r}}) \cdot\left(\frac{\ell_{2}}{2} d \theta d z \hat{\mathbf{r}}\right)+\int_{0}^{\ell_{1}} \int_{\pi}^{\pi+\theta_{R}}(-B \hat{\mathbf{r}}) \cdot\left(\frac{\ell_{2}}{2} d \theta d z \hat{\mathbf{r}}\right) \\
& =\int_{0}^{\ell_{1}} \int_{\theta_{R}}^{\pi} B \frac{\ell_{2}}{2} d \theta d z+\int_{0}^{\ell_{1}} \int_{\pi}^{\pi+\theta_{R}}-B \frac{\ell_{2}}{2} d \theta d z \\
& =\left(\ell_{1} \ell_{2} B / 2\right)\left(\pi-\theta_{R}\right)-\left(\ell_{1} \ell_{2} B / 2\right) \theta_{R} \\
& =-\ell_{1} \ell_{2} B \theta_{R}+\left(\ell_{1} \ell_{2} B / 2\right) \pi .
\end{aligned}
$$

The induced emf is then

$$
V_{\mathrm{tach}}=-d \phi / d t=\left(\ell_{1} \ell_{2} B\right) d \theta_{R} / d t=K_{b_{-} \operatorname{tach}} \omega_{R}
$$

where $K_{b_{-} \text {tach }}=\ell_{1} \ell_{2} B$ is a constant depending on the dimensions of the tachometer rotor and the strength of the external magnetic field of the tachometer. This shows that the voltage between the terminals T_{1} and T_{2} is proportional to the angular speed and therefore can be used to measure the speed.

FIGURE 1.26. Cutaway view of the DC tachometer. From Electromagnetic and Electromechanical Machines, 3rd edition, L. W. Matsch and J. Derald Morgan, 1986. Reprinted by permisson of John Wiley \& Sons.

1.7 The Multiloop DC Motor*

The above single loop motor of Figure 1.5 was used to illustrate the basic Physics of the DC motor. However, it is not a practical motor. The first thing that must be done is to add more loops to extract more torque from
the machine. Further, in the single-loop motor, the magnetic field produced by the current in the rotor is an external magnetic field acting on the field windings. As the loop rotates, this magnetic field results in a changing flux in the field windings, which in turn induces an emf in the field windings. This emf is referred to as the armature reaction and makes it difficult to maintain a constant field current. (The term armature refers to the rotating current loop, and reaction refers to the induced emf in the field windings produced by the rotor current.) The problem of armature reaction can be alleviated by adding more loops to the motor.

1.7.1 Increased Torque Production

Figure 1.27 below shows the addition of several loops to the motor with each loop similar in form to the loop in Figure 1.5. As shown in the figure, there are now eight slots in the rotor with two loops placed in each pair of slots that are 180° apart for a total of eight loops.

FIGURE 1.27. A multiloop armature for a DC motor.
The torque on the rotor is now $\tau_{m}=n \ell_{1} \ell_{2} B i$, where $n=8$ is the number of rotor loops and B is the strength of the radial magnetic field in the air gap produced by the external magnetic field. Of course, some method must be found to ensure the current in each loop is reversed every half-turn so that (for positive torque) all the loop sides under the south pole face will have their current going into the page \otimes and all the loop sides under the north pole face will have their current coming out of the page \odot. This process is referred to as commutation and is considered next.

1.7.2 Commutation of the Armature Current

As seen in Figure 1.27, as a rotor loop rotates clockwise past the vertical position, the current in the top side of the loop must change direction from
coming out of the page to going into the page. That is, each rotor loop must have the current in it reversed every half-turn. This is done using a commutator which is illustrated in Figure 1.28 for the rotor shown in Figure 1.27. The commutator for this rotor consists of 8 copper segments (labeled $a-h$ in $1.30(\mathrm{a})$) which are separated by insulating material. By connecting each of the ends of the rotor loops of Figure 1.27 to the appropriate copper segments of the commutator, the current will be reversed every half-turn as it rotates past the vertical. To explain all of this, consider Figure 1.30(a), which shows explicitly how the ends of the rotor loops are connected to the segments of the commutator. The eight rotor loops of Figure 1.27 are labeled as $1-1^{\prime}, \ldots, 8-8^{\prime}$ in Figure $1.30(\mathrm{a})$ with the ends of each such loop electrically connected (soldered) to a particular pair of commutator segments. For example, the ends of loop $1-1^{\prime}$ are connected to commutator segments a and b, respectively. The commutator and rotor loops all rotate together rigidly while the two brushes (labeled b_{1} and b_{2}) remain stationary. The brushes are typically made of a carbon material and are mechanically pressed against the commutator surface, making electrical contact. ${ }^{10}$ That is, as the commutator rotates, the particular segment that is rubbing against the brush makes electrical contact.

FIGURE 1.28. Commutator for the rotor in Figure 1.27.

Figure 1.29 is a photograph of the rotor of an actual DC motor with a tachometer.

[^9]

FIGURE 1.29. Photo of the rotor of a DC motor (left) and its tachometer (right). Note that the slots for the windings of the DC motor are skewed (see problem 9). Photo courtesy of Professor J. D. Birdwell of the University of Tennessee.

As previously explained, to obtain positive torque, it must be that whenever a side of a loop is under a south pole face, the current must be into the page (\otimes) and the other side of the loop, which is under the north pole face, must have its current out of the page (\odot). When the loop side rotates from being under one pole face to the other pole face, the current in that loop must be reversed (commutated). The mechanism of how this connection between the armature loops, the commutator and the brushes can reverse the current in each rotor loop every half turn is now explained.

With reference to Figure 1.30(a), the armature current i enters brush b_{1} and into commutator segment c. By symmetry, half of this armature current (i.e., $i / 2$) goes through loop $3-3^{\prime}$ into commutator segment d, then through loop 4-4' into commutator segment e, then through loop $5-5^{\prime}$ into commutator segment f, then through loop $6-6^{\prime}$ into commutator segment g, and, finally, out through brush b_{2}. This path (circuit) of the current is denoted in bold. Similarly, there is a parallel path for the other half of the current armature current. Specifically, the other half of the armature current $i / 2$ goes through loop $2^{\prime}-2$ into commutator segment b, then through loop $1^{\prime}-1$ into commutator segment a, then through loop $8^{\prime}-8$ into commutator segment h, then into loop $7^{\prime}-7$ into commutator segment g, and finally, out through brush b_{2}. This path (circuit) is denoted without bold. So, for the rotor in the position shown in Figure 1.30(a), there are two parallel circuits from b_{1} to b_{2} each made up of four loops connected in series and each circuit carries half of the armature current. The sides of the loops under the south pole face have their current into the page while the other side of these loops (which are under the north pole face) have their current out of the page so that positive torque is produced.

The sides of the loops in Figure 1.30(a) are 45° apart. Figure 1.30(b) shows the rotor turned $45^{\circ} / 2$ with respect to Figure 1.30(a). In this case, brush b_{1} shorts the two commutator segment b and c together while the brush b_{2} shorts together the two commutator segments f and g. The ends of loop $2-2^{\prime}$ are connected to commutator segments b and c (which are now shorted together) so that the current in this loop is now zero. Similarly,
the ends of loop 6-6 ${ }^{\prime}$ are connected to commutator segments f and g and the current in this loop is also zero. For the remaining loops, $i / 2$ goes through loop 3-3' into commutator segment d, then through loop $4-4^{\prime}$ into commutator segment e, then into loop $5-5^{\prime}$ into commutator segment f, and finally, out brush b_{2}. These loops are denoted in bold in the figure. Similarly, $i / 2$ goes through loop $1-1^{\prime}$ into commutator segment a, then through loop $8^{\prime}-8$ into commutator segment h, then into loop $7^{\prime}-7$ into commutator segment g, and finally out brush b_{2}.

FIGURE 1.30. (a). Rotor loops and commutator for 4 sets of rotor loops. Brushes remained fixed in space, that is, they do not rotate. From Electric Machinery Fundamentals, 2nd edition by S. J. Chapman, McGraw-Hill 1991. Reproduced with permission of McGraw-Hill Companies.

Figure 1.30(b). Rotor turned $45^{\circ} / 2$ with respect to Figure 1.30(a). Adapted from Chapman [19].

The motor continues to rotate and consider it now after it has moved additional $45^{\circ} / 2$ so that it has the position shown in Figure 1.30(c). In this case, the current enters brush b_{1} and into commutator segment b. By symmetry, half the current $i / 2$ goes through loop $2-2^{\prime}$ into commutator segment c, then through loop $3-3^{\prime}$ into commutator segment d, then through loop $4-4^{\prime}$ into commutator segment e, then through loop $5-5^{\prime}$ into commutator segment f, and finally out through brush b_{2}. This path (circuit) of the current is denoted in bold. Similarly, the other half of the current goes through loop $1^{\prime}-1$ into commutator segment a then through loop $8^{\prime}-8$ into commutator segment h then through loop $7^{\prime}-7$ into commutator segment g then into loop $6^{\prime}-6$ into commutator segment f and finally, out through brush b_{2}. This path (circuit) is denoted without using bold.

Figure 1.30 (c). Rotor turned 45° with respect to Figure 1.30(a). Adapted from Chapman [19].

As the sequence of figures 1.30 (a) - (c) show, the current in loops $2-2^{\prime}$ and $6-6^{\prime}$ were reversed as these two loops rotated past the vertical position. In summary, there are two parallel paths, each consisting of four loops, and when any loop goes to the vertical position, the current in that loop is reversed. In this way, all sides of the loop under the south pole have their current going into the page and all sides under the north pole have their current coming out of the page for positive torque production.

Remark The scheme for current commutation presented here is from [19]. However, there are many other schemes and the reader is referred to Refs. [19], [21], [24], and [26] for an introduction to other schemes. See Ref. [24] for a discussion of how commutation is often carried out in small PM DC motors.

Stator Iron Construction

A more realistic depiction of the stator for a (single pole pair) permanent magnet DC motor is shown in Figure 1.31. The radial magnetic field in the air gap is produced by the two semicircular-shaped permanent magnets.

FIGURE 1.31. (a) Stator of a PM DC motor. (b) Stator iron. (c) Stator permanent magnet.

In the case where the DC motor has a field winding, a more realistic depiction of the stator iron (single pole pair) is shown in Figure 1.32 (compare with Figure 1.7).

FIGURE 1.32. (a) Stator iron for a wound field DC motor. (b) Cross-sectional view of the stator iron with the field windings.

1.7.3 Armature Reaction

Figure 1.33 shows current in a field winding which is used to magnetize the iron in a fashion similar to that shown in Figure 1.7. Closed curves are drawn in Figure 1.33 to show the magnetic field distribution in the iron and air gap due to just the field current. Note that the magnetic field tends to be in the horizontal direction as it goes inside the field windings. Figure 1.34 shows the magnetic field distribution in the iron and air gap due to just the armature current. By having many equally spaced loops on the rotor, the magnetic field distribution due to the armature current will be as shown in Figure 1.34 for any rotor position. Note that this magnetic field tends to be vertical in the iron core inside the field windings (the field windings are not shown in Figure 1.34). In other words, in the stator iron core within the field windings, the magnetic field due to the armature current is perpendicular to the flux surfaces of the field windings. As a result, any changing magnetic field due to a changing armature current will not induce voltages inside the field windings. Armature reaction refers to the voltage induced in the field winding by the magnetic field of the armature current. (This is undesirable as such a voltage would cause the current in the field winding to change, and therefore not be constant as the analysis up to this point has assumed.) The symmetric placement of rotor loops around the periphery of the rotor essentially eliminates the armature reaction.

FIGURE 1.33. Magnetic field due to the field current. Adapted from Ref. [23].

FIGURE 1.34. Magnetic field distribution due to the armature current. Adapted from Ref. [23].

Finally, Figure 1.35 shows the sum of the two magnetic fields.

FIGURE 1.35. Magnetic field due to field and armature currents. Adapted from Ref. [23].

1.7.4 Field Flux Linkage and the Air Gap Magnetic Field

In the separately excited DC motor of Figure 1.36, it is convenient to have an expression relating the radial magnetic field B in the air gap to the total flux in the field windings.

FIGURE 1.36. Separately excited DC motor. Adapted from Ref. [21].
The magnetic field lines are shown in Figure 1.4. Figure 1.37 shows a closed flux surface which is now used to derive a relationship between the radial magnetic field B in the air gap and the field flux linkage λ_{f}.

FIGURE 1.37. The flux through surface 1 is $B_{f} S$ and the flux through surface 2 is $\ell_{1} \pi\left(\ell_{2} / 2\right) B$. To a good approximation, these two fluxes are equal.

The field flux linkage λ_{f} is defined by

$$
\lambda_{f}\left(i_{f}\right)=N_{f} \phi_{f}=N_{f} S B_{f}\left(i_{f}\right)
$$

where N_{f} is the total number of field windings, S is the cross-sectional area of the iron core of the field winding and $B_{f}\left(i_{f}\right)$ is the magnetic field
produced inside the magnetic material of the field circuit due to the field current i_{f}. With this definition of flux linkage, the total induced emf in the field windings produced by a changing B_{f} is given by

$$
\xi_{\text {fieldwinding }}=-\frac{d \lambda_{f}\left(i_{f}\right)}{d t}=-N_{f} \frac{d \phi_{f}}{d t} .
$$

With the two flux surfaces shown in Figure 1.37, it turns out that conservation of flux ${ }^{11}$ implies the flux through the surface 1 in the iron core equals the flux through the half cylindrical surface 2 in the air gap. That is,

$$
\phi_{f}=S B_{f}\left(i_{f}\right)=\ell_{1} \pi\left(\ell_{2} / 2\right) B\left(i_{f}\right)
$$

where $\ell_{2} / 2$ is the radius of the rotor, ℓ_{1} is the axial length of the rotor and $B\left(i_{f}\right)$ is the radial magnetic field in the air gap due to the field current i_{f}. Consequently,

$$
B\left(i_{f}\right)=\frac{S B_{f}\left(i_{f}\right)}{\pi \ell_{1} \ell_{2} / 2}=\frac{\lambda_{f}\left(i_{f}\right)}{N_{f} \pi \ell_{1} \ell_{2} / 2}
$$

is an expression for the radial magnetic field $B\left(i_{f}\right)$ in the air gap in terms of the flux linkage $\lambda_{f}\left(i_{f}\right)=N_{f} \ell_{1} \ell_{2} B_{f}\left(i_{f}\right)$ in the field windings.

1.7.5 Armature Flux Due to the External Magnetic Field

In what follows, the multiloop motor of Figure 1.30 is considered in which the armature circuit consists of two parallel circuits each having n loops. Let θ_{R} be referenced relative to loop $1-1^{\prime}$ so that $\theta_{R}=0$ corresponds to loop $1-1^{\prime}$ being vertical. (Recall in Figure 1.5 that $\theta_{R}=0$ corresponded to loop $a-a^{\prime}$ being vertical.) For the single loop motor, the flux $\phi_{s l}\left(i_{f}, \theta_{R}\right)$ in the loop $1-1^{\prime}$ of the rotor due to the external magnetic field $B\left(i_{f}\right)$ is

$$
\phi_{s l}\left(i_{f}, \theta_{R}\right)=-\ell_{1} \ell_{2} B\left(i_{f}\right)\left(\theta_{R} \bmod \pi-\pi / 2\right)
$$

In general, let $\theta_{k}=0$ correspond to loop $k-k^{\prime}$ being vertical so that the position of the k th rotor loop may be written as

$$
\theta_{k}=\theta_{R}+(k-1) \pi / n \quad \text { for } k=1, \ldots, n
$$

where n is the number of loops connected in series in each parallel circuit ($n=4$ in Figure 1.30). The flux in the k th rotor loop is [see equation (1.4)]

$$
\begin{aligned}
\phi_{k}\left(i_{f}, \theta_{R}\right) & =-\ell_{1} \ell_{2} B\left(i_{f}\right)\left(\theta_{k} \bmod \pi-\frac{\pi}{2}\right) \\
& =-\ell_{1} \ell_{2} B\left(i_{f}\right)\left(\left\{\theta_{R}+(k-1) \frac{\pi}{n}\right\} \bmod \pi-\frac{\pi}{2}\right) .
\end{aligned}
$$

[^10]The total flux linkage $\lambda\left(i_{f}, \theta_{R}\right)$ in the n rotor loops is then

$$
\begin{align*}
\lambda\left(i_{f}, \theta_{R}\right) & =\sum_{k=1}^{n} \phi_{k}\left(i_{f}, \theta_{R}\right) \\
& =-\sum_{k=1}^{n} \ell_{1} \ell_{2} B\left(i_{f}\right)\left(\left\{\theta_{R}+(k-1) \frac{\pi}{n}\right\} \bmod \pi-\frac{\pi}{2}\right) . \tag{1.7}
\end{align*}
$$

In Figures 1.30(a)-(c), each of the two parallel sets of n rotor loops has the flux linkage $\lambda\left(i_{f}, \theta_{R}\right)$ in it.

Recall that the sign convention for the fluxes $\phi_{k}\left(i_{f}, \theta_{R}\right)$ is such that if $-d \phi_{k}\left(i_{f}, \theta_{R}\right) / d t>0$, then it is acting in the direction opposite to positive current flow, that is, its sign convention is opposite to that of applied voltage V_{S}. As a consequence, the sum

$$
V_{S}-\left(-\frac{d \lambda\left(i_{f}, \theta_{R}\right)}{d t}\right)=V_{S}+\frac{d \lambda\left(i_{f}, \theta_{R}\right)}{d t}
$$

is the total emf in the loop due to the applied voltage and the external magnetic field.

For $n=4$, the flux linkage $\lambda\left(i_{f}, \theta_{R}\right)$ is plotted as a function of the rotor position θ_{R} in Figure 1.38. Note that $\partial \lambda\left(i_{f}, \theta_{R}\right) / \partial \theta_{R}=-n \ell_{1} \ell_{2} B\left(i_{f}\right)$ which is proportional to the number of rotor loops n and to the strength of the external magnetic field strength $B\left(i_{f}\right)$ in the air gap.

FIGURE 1.38. Flux linkage $\lambda\left(i_{f}, \theta_{R}\right)$ versus θ_{R} in radians with $n=4$ sets of rotor loops and $0 \leq \theta_{R} \leq \pi$. The slope is $\partial \lambda\left(i_{f}, \theta_{R}\right) / \partial \theta_{R}=-n \ell_{1} \ell_{2} B\left(i_{f}\right)$.

In the case of a permanent magnet stator, the armature flux linkage is simply given by

$$
\begin{align*}
\lambda\left(\theta_{R}\right) & =\sum_{k=1}^{n} \phi_{k}\left(\theta_{R}\right) \\
& =-\sum_{k=1}^{n} \ell_{1} \ell_{2} B\left(\left\{\theta_{R}+(k-1) \frac{\pi}{n}\right\} \bmod \pi-\frac{\pi}{2}\right) \tag{1.8}
\end{align*}
$$

where $B>0$ is the strength of the radial magnetic field in the air gap produced by the permanent magnet of the stator.

1.7.6 Equations of the PM DC Motor

In the multiloop motor considered here, the armature circuit consists of two parallel circuits each having n loops. That is, there are a total of $2 n$ loops on the rotor as each of the two parallel circuits has a loop at the same location on the rotor. Let L denote the total inductance of the n rotor loops making up either of the two parallel circuits. Then, if a current $i / 2$ is in each parallel circuit, each circuit will have a flux linkage of $L i / 2$ due to its current and an additional flux linkage of $L i / 2$ due to the current in the other circuit. This is simply because the two sets of parallel loops (windings) are wound around the rotor core together so that they can be considered to be perfectly (magnetically) coupled.

The total flux linkage in the n loops making up either of the parallel circuits is now computed. To proceed, let i be the current into the armature so that $i / 2$ is the current in the n loops of each parallel circuit. The quantity $L i / 2$ is the flux linkage due to the current $i / 2$ in the loops and an additional flux linkage of $L i / 2$ is produced in these same loops by the current $i / 2$ in the other parallel circuit for a total flux of $L i$. By equation (1.8), $\lambda\left(\theta_{R}\right)$ is the flux linkage in the n loops due to the external magnetic field produced by the permanent magnet of the stator. Recall that the sign convention for the induced emf $-d \lambda\left(\theta_{R}\right) / d t$ is opposite to that of $-d(L i) / d t$. Specifically (see Section 1.3.5), the normal to the flux surface was taken to be radially in to compute the flux $L i$ while in Section 1.3.4 the surface normal was taken to be radially out to compute the flux $\lambda\left(\theta_{R}\right)$. Simply writing $-\lambda\left(\theta_{R}\right)$ then gives the flux due to the external magnetic field with the surface normal radially in and the induced voltages by both of these changing fluxes will then have the same sign convention as the applied armature voltage. Using the same sign convention as the applied armature voltage V_{S}, the total flux linkage in each parallel circuit of the armature may be written as

$$
L i-\lambda\left(\theta_{R}\right)
$$

Let R_{1} denote the resistance of the n loops connected in series making up either of the two parallel circuits. The equation describing the electrical
dynamics of the current in each of the parallel circuits is found by applying Kirchhoff's voltage law to obtain

$$
-\frac{d}{d t}\left(L i-\lambda\left(\theta_{R}\right)\right)-R_{1} i / 2+V_{S}=0
$$

where V_{S} is the applied voltage to the armature. Finally, defining $R \triangleq R_{1} / 2$, the equation describing the electrical dynamics of the armature circuit is

$$
\begin{equation*}
L \frac{d i}{d t}=-R i+\frac{d \lambda\left(\theta_{R}\right)}{d t}+V_{S} \tag{1.9}
\end{equation*}
$$

The quantity $d \lambda\left(\theta_{R}\right) / d t$ can be expanded to obtain

$$
\begin{equation*}
\frac{d \lambda\left(\theta_{R}\right)}{d t}=\frac{\partial \lambda\left(\theta_{R}\right)}{\partial \theta_{R}} \omega_{R}=-n \ell_{1} \ell_{2} B \omega_{R}=-K_{b} \omega_{R} \tag{1.10}
\end{equation*}
$$

where $K_{b} \triangleq n \ell_{1} \ell_{2} B$.
Each loop carries the current $i / 2$ so that the torque produced by the two sides of each loop is $2\left(\ell_{2} / 2\right)(i / 2) \ell_{1} B$. As there are $2 n$ loops, the total torque is

$$
\begin{equation*}
\tau_{m}=2 n \ell_{1} \ell_{2} B(i / 2)=n \ell_{1} \ell_{2} B i=K_{T} i \tag{1.11}
\end{equation*}
$$

where $K_{T} \triangleq n \ell_{1} \ell_{2} B=K_{b}$. Finally, using (1.9) and (1.11), the complete set of equations for the PM DC motor is then

$$
\begin{align*}
L \frac{d i}{d t} & =-R i-K_{b} \omega_{R}+V_{S} \tag{1.12}\\
J \frac{d \omega_{R}}{d t} & =K_{T} i-f \omega_{R}-\tau_{L} \tag{1.13}\\
\frac{d \theta_{R}}{d t} & =\omega_{R} \tag{1.14}
\end{align*}
$$

where V_{S} is the applied armature voltage, τ_{L} is the load torque on the motor, f is the coefficient of viscous friction and J is the rotor's moment of inertia.

1.7.7 Equations of the Separately Excited DC Motor

The separately excited DC motor has an additional equation compared to the PM DC motor which describes the flux/current in the field winding. Similar to the case of the PM DC motor, the total flux linkage in either parallel circuit of the armature windings is given by

$$
L i-\lambda\left(i_{f}, \theta_{R}\right)
$$

where $\lambda\left(i_{f}, \theta_{R}\right)$ now depends on i_{f} as given by (1.7), and L is the inductance the n loops connected in series making up either parallel circuit. Again, R_{1} denotes the resistance of either circuit and Kirchhoff's voltage law gives

$$
-\frac{d}{d t}\left(L i-\lambda\left(i_{f}, \theta_{R}\right)\right)-R_{1} i / 2+V_{S}=0
$$

where V_{S} is the applied voltage to the armature. Finally, defining $R \triangleq R_{1} / 2$, the equation describing the electrical dynamics of the armature circuit is

$$
\begin{equation*}
L \frac{d i}{d t}=-R i+\frac{d \lambda\left(i_{f}, \theta_{R}\right)}{d t}+V_{S} . \tag{1.15}
\end{equation*}
$$

The quantity $d \lambda\left(i_{f}, \theta_{R}\right) / d t$ can be expanded to obtain

$$
\begin{equation*}
\frac{d \lambda\left(i_{f}, \theta_{R}\right)}{d t}=\frac{\partial \lambda}{\partial i_{f}} \frac{d i_{f}}{d t}+\frac{\partial \lambda}{\partial \theta_{R}} \omega_{R}=\frac{\partial \lambda}{\partial i_{f}} \frac{d i_{f}}{d t}-n \ell_{1} \ell_{2} B\left(i_{f}\right) \omega_{R} \tag{1.16}
\end{equation*}
$$

Here $B\left(i_{f}\right)$ is the strength of the radial magnetic field in the air gap produced by the current in the field windings. The flux linkage in the field windings is $\lambda_{f}\left(i_{f}\right)=N_{f} S B_{f}\left(i_{f}\right)$ where $B_{f}\left(i_{f}\right)$ is the magnetic field strength in the iron core of the field, N_{f} is the number of field windings, and S is the cross sectional area of this iron core. The flux $S B_{f}\left(i_{f}\right)$ in each of the field windings goes through the air gap and, by conservation of flux (see Section 1.7.4), $S B_{f}\left(i_{f}\right)=\ell_{1}\left(\pi \ell_{2} / 2\right) B\left(i_{f}\right)$ so that the radial magnetic field in the air gap produced by the field current is

$$
B\left(i_{f}\right)=\frac{N_{f}}{N_{f}} \frac{S B_{f}\left(i_{f}\right)}{\pi \ell_{1} \ell_{2} / 2}=\frac{\lambda_{f}\left(i_{f}\right)}{N_{f} \pi \ell_{1} \ell_{2} / 2} .
$$

Consequently,

$$
n \ell_{1} \ell_{2} B\left(i_{f}\right)=n \ell_{1} \ell_{2} \frac{\lambda_{f}\left(i_{f}\right)}{N_{f} \pi \ell_{1} \ell_{2} / 2}=K_{m} \lambda_{f}\left(i_{f}\right)
$$

where

$$
K_{m} \triangleq \frac{2}{\pi} \frac{n}{N_{f}} .
$$

As a result, equation (1.16) may be rewritten as

$$
\begin{equation*}
\frac{d \lambda\left(i_{f}, \theta_{R}\right)}{d t}=\frac{\partial \lambda}{\partial i_{f}} \frac{d i_{f}}{d t}-K_{m} \lambda_{f}\left(i_{f}\right) \omega_{R} . \tag{1.17}
\end{equation*}
$$

Each loop carries the current $i / 2$ so that the torque produced on each of the two sides of the loop is $2\left(\ell_{2} / 2\right)(i / 2) \ell_{1} B\left(i_{f}\right)$. As there are $2 n$ loops, the total torque is

$$
\begin{equation*}
\tau_{m}=2 n \ell_{1} \ell_{2} B\left(i_{f}\right)(i / 2)=n \ell_{1} \ell_{2} B\left(i_{f}\right) i=K_{m} \lambda_{f}\left(i_{f}\right) i \tag{1.18}
\end{equation*}
$$

using the above expressions for K_{m} and $\lambda_{f}\left(i_{f}\right)$. Finally, using (1.15), (1.16), and (1.18), the mathematical model of the separately excited $D C$ motor is given by

$$
\begin{align*}
L \frac{d i}{d t} & =-R i+\frac{\partial \lambda}{\partial i_{f}} \frac{d i_{f}}{d t}-K_{m} \lambda_{f}\left(i_{f}\right) \omega_{R}+V_{S} \tag{1.19}\\
J \frac{d \omega_{R}}{d t} & =K_{m} \lambda_{f}\left(i_{f}\right) i-\tau_{L} \tag{1.20}\\
\frac{d \lambda_{f}\left(i_{f}\right)}{d t} & =-R_{f} i_{f}+V_{f} \tag{1.21}
\end{align*}
$$

where V_{f} is the applied voltage to the field, R_{f} is the resistance of the field winding, τ_{L} is the load torque on the motor and J is the rotor's moment of inertia.

If the iron in the field is not in saturation, then one may write

$$
\lambda_{f}\left(i_{f}\right)=L_{f} i_{f}
$$

and the dynamic model simplifies to

$$
\begin{align*}
L \frac{d i}{d t} & =-R i+\frac{\partial \lambda}{\partial i_{f}} \frac{d i_{f}}{d t}-K_{m} L_{f} i_{f} \omega_{R}+V_{S} \tag{1.22}\\
J \frac{d \omega_{R}}{d t} & =K_{m} L_{f} i_{f} i-\tau_{L} \tag{1.23}\\
L_{f} \frac{d i_{f}}{d t} & =-R_{f} i_{f}+V_{f} . \tag{1.24}
\end{align*}
$$

Under normal operating conditions, the term $\frac{\partial \lambda}{\partial i_{f}} \frac{d i_{f}}{d t}$ is typically negligible and the model then reduces to ${ }^{12}$

$$
\begin{align*}
L \frac{d i}{d t} & =-R i-K_{m} L_{f} i_{f} \omega_{R}+V_{S} \tag{1.25}\\
J \frac{d \omega_{R}}{d t} & =K_{m} L_{f} i_{f} i-\tau_{L} \tag{1.26}\\
L_{f} \frac{d i_{f}}{d t} & =-R_{f} i_{f}+V_{f} . \tag{1.27}
\end{align*}
$$

A typical mode of operation is to use the field voltage V_{f} to hold the field current i_{f} constant at some value. Then the field flux is of course constant and $L_{f} d i_{f} / d t=0$. However, in the first equation (1.19) (or 1.25), it is seen that the back emf is $-K_{m} \lambda_{f} \omega_{R}$ (or $-K_{m} L_{f} i_{f} \omega_{R}$) which increases in proportion to the speed. The input voltage V_{S} must be at least large enough to overcome the back emf in order to maintain the armature current. To have the motor achieve higher speeds within the voltage limit $\left|V_{S}\right| \leq V_{\max }$, field weakening is employed. This is accomplished by using the input voltage V_{f} to decrease the field flux $\lambda_{f}=L_{f} i_{f}$ at higher speeds usually according to a flux reference of the form

$$
\lambda_{\text {ref }}= \begin{cases}\lambda_{f 0} & \left|\omega_{R}\right| \leq \omega_{\text {base }} \tag{1.28}\\ \lambda_{f 0} \frac{\omega_{\text {base }}}{\left|\omega_{R}\right|} & \left|\omega_{R}\right| \geq \omega_{\text {base }}\end{cases}
$$

This is illustrated in Figure 1.39. For $\omega>\omega_{\text {base }}$, field weakening results in the back emf $-K_{m} \lambda_{f} \omega_{R}=-K_{m} \lambda_{f 0} \frac{\omega_{\text {base }}}{\left|\omega_{R}\right|} \omega_{R}=-K_{m} \lambda_{f 0} \omega_{\text {base }} \operatorname{sign}\left(\omega_{R}\right)$ being constant. The trade-off is that the torque $K_{m} \lambda_{f} i=K_{m} \lambda_{f 0} \frac{\omega_{\text {base }}}{\left|\omega_{R}\right|} i$ is now

[^11]less for the same armature current i due to the decrease in the field flux linkage λ_{f}. If the armature resistance is negligible and i_{f} is constant, then the base speed $\omega_{\text {base }}$ is defined to be the speed satisfying $K_{m} \lambda_{f} \omega_{\text {base }}=V_{\text {max }}$. Otherwise, the base speed is chosen to be somewhat smaller to account for the $R i$ and $\frac{\partial \lambda}{\partial i_{f}} \frac{d i_{f}}{d t}$ voltage drops [see equation (1.19)].

FIGURE 1.39. Flux reference for field weakening.

Appendices

Rotational Dynamics

The equations of motion of a rigid body that is constrained to rotate about a fixed axis are reviewed here briefly. Consider a cylinder which is constrained to rotate about a fixed axis as shown below.

FIGURE 1.40. Cylinder constrained to rotate about a fixed axis.

The approach here is to obtain the equations of motion of the cylinder by first computing obtaining an expression for its kinetic energy. To do so, denote the angular speed of the cylinder by ω and the mass density of the material making up the cylinder by ρ. Then consider the cylinder to be made up of n small pieces of material Δm_{i} where the i th piece has mass

$$
\Delta m_{i}=\rho r \Delta \theta \Delta \ell \Delta r
$$

This is illustrated in Figure 1.41.

FIGURE 1.41. Cylinder is considered to be made up of small masses Δm_{i}. Drawn by Sharon Katz.

Each piece of mass Δm_{i} is rotating at the same angular speed ω so that the linear speed of Δm_{i} is $v_{i}=r_{i} \omega$ where r_{i} is the distance of Δm_{i} from the axis of rotation. The kinetic energy $K E_{i}$ of Δm_{i} is given by

$$
K E_{i}=\frac{1}{2} \Delta m_{i} v_{i}^{2}=\frac{1}{2} \Delta m_{i}\left(r_{i} \omega\right)^{2} .
$$

The total kinetic energy is then

$$
K E=\sum_{i=1}^{n}(K E)_{i}=\sum_{i=1}^{n} \frac{1}{2} \Delta m_{i} v_{i}^{2}=\sum_{i=1}^{n} \frac{1}{2} \Delta m_{i}\left(r_{i} \omega\right)^{2}=\frac{1}{2} \omega^{2} \sum_{i=1}^{n} \Delta m_{i} r_{i}^{2}
$$

Dividing the cylinder into finer and finer pieces so that $n \rightarrow \infty$ and $\Delta m_{i} \rightarrow$ 0 , the sum

$$
\sum_{i=1}^{n} \Delta m_{i} r_{i}^{2}
$$

becomes the integral

$$
J=\iiint_{c y l i n d e r} r^{2} d m
$$

The quantity J is called the moment of inertia and the kinetic energy of the cylinder may now be written as

$$
K E=\frac{1}{2} J \omega^{2} .
$$

Assuming the axle radius is zero, the moment of inertia of the cylinder is computed to be

$$
J=\int_{0}^{R} \int_{0}^{\ell} \int_{0}^{2 \pi} r^{2} \rho r d \theta d \ell d r=\frac{1}{2}\left(\pi R^{2} \ell \rho\right) R^{2}=\frac{1}{2} M R^{2}
$$

where M is the total mass of the cylinder.
The above expression for the kinetic energy is now used to derive a relationship between torque and angular acceleration. Recall from elementary
mechanics that the work done on a mass by an external force equals the change in its kinetic energy. In particular, consider an external force $\overrightarrow{\mathbf{F}}$ acting on the cylinder as shown in Figure 1.42.

FIGURE 1.42. Force $\overrightarrow{\mathbf{F}}$ applied to the cylinder is resolved into a normal and tangential component. Drawn by Sharon Katz.

The cylinder is on an axle and therefore constrained to rotate about the z axis. Figure 1.42 shows the force $\overrightarrow{\mathbf{F}}$ applied to the cylinder at the position (r, θ) (in polar coordinates) resolved into a tangential component F_{T} and a normal component F_{N} so that $\overrightarrow{\mathbf{F}}=F_{N} \hat{\mathbf{r}}+F_{T} \hat{\boldsymbol{\theta}}$. The torque is defined as

$$
\begin{equation*}
\overrightarrow{\boldsymbol{\tau}} \triangleq \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}=r \hat{\mathbf{r}} \times\left(F_{N} \hat{\mathbf{r}}+F_{T} \hat{\boldsymbol{\theta}}\right)=r F_{T} \hat{\mathbf{z}}=r F \sin (\psi) \hat{\mathbf{z}} \tag{1.29}
\end{equation*}
$$

where ψ is the angle between $\overrightarrow{\mathbf{r}}$ and $\overrightarrow{\mathbf{F}}$. (By definition, the magnitude of the cross product $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$ is defined as $r F \sin (\psi)$ and the direction of $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$ is perpendicular to both $\overrightarrow{\mathbf{r}}$ and $\overrightarrow{\mathbf{F}}$ along the axis of rotation determined by the right hand rule ${ }^{13}$). As $F_{T}=F \sin (\psi)$ is the tangential component, the torque may be rewritten as

$$
\vec{\tau}=\tau \hat{\mathbf{z}}=r F_{T} \hat{\mathbf{z}}
$$

or, in scalar form, as

$$
\tau=r F_{T}
$$

The motivation for the definition of torque as given by (1.29) is that it is the cause of rotational motion. Specifically, the rotational motion about an axis is caused by the applied tangential force F_{T} and the further away from the axis of rotation that the tangential force F_{T} is applied, the easier it is to get rotational motion. That is, the torque (cause of rotational motion)

[^12]increases if either r or F_{T} increases which corresponds to one's experience (e.g., opening doors).

To summarize, $\overrightarrow{\boldsymbol{\tau}}$ is a vector pointing along the axis of rotation and the magnitude is given by

$$
|\vec{\tau}|=|\tau|=\left|r F_{T}\right| .
$$

(Recall that the angular velocity vector $\overrightarrow{\boldsymbol{\omega}}=\omega \hat{\mathbf{z}}$ also points along the axis of rotation where ω is the angular speed.)

With $d \overrightarrow{\mathbf{s}} \triangleq d s \hat{\boldsymbol{\theta}}=r d \theta \hat{\boldsymbol{\theta}}$, the change in work done on the cylinder by the external force $\overrightarrow{\mathbf{F}}$ is

$$
d W=\overrightarrow{\mathbf{F}} \cdot d \overrightarrow{\mathbf{s}}=F_{T} r d \theta=\tau d \theta
$$

where $\tau \triangleq r F_{T}$. Dividing by $d t$, the power (rate of work) delivered to the cylinder is given by

$$
\frac{d W}{d t}=\tau \frac{d \theta}{d t}=\tau \omega .
$$

As the rate of work done equals the rate of change of kinetic energy, it follows that

$$
\frac{d W}{d t}=\frac{d}{d t}\left(\frac{1}{2} J \omega^{2}\right)=\tau \frac{d \theta}{d t}
$$

or

$$
J \omega \frac{d \omega}{d t}=\tau \omega .
$$

This gives the fundamental relationship between torque and angular acceleration:

$$
\tau=J \frac{d \omega}{d t}
$$

That is, the applied torque equal the moment of inertia times the angular acceleration. This is the basic equation for rigid body rotational dynamics.

Viscous Rotational Friction

Almost always there are frictional forces, and therefore, frictional torques acting between the axle and the bearings. ${ }^{14}$ This is illustrated in Figure 1.43 .

[^13]

FIGURE 1.43. Viscous friction torque.

Often the frictional force is proportional to the angular speed and this model of friction is called viscous friction which is expressed mathematically as

$$
\vec{\tau}=-f \vec{\omega}=-f \omega \hat{\mathbf{z}}
$$

or, in scalar form,

$$
\tau=-f \omega
$$

where $f>0$ is the coefficient of viscous friction.

Sign Convention for Torque

Suppose the axis of rotation is along the z axis. Recall that the definition of torque is

$$
\vec{\tau} \triangleq \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}=r F \sin (\psi) \hat{\mathbf{z}}=r F_{T} \hat{\mathbf{z}}
$$

where ψ is the angle between $\overrightarrow{\mathbf{r}}$ and $\overrightarrow{\mathbf{F}}$. The magnitude of the cross product $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$ is $r F \sin (\psi)$ and the direction of $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$ is perpendicular to both $\overrightarrow{\mathbf{r}}$ and $\overrightarrow{\mathbf{F}}$ along the z axis. In engineering applications, the systems are designed so that the applied force is tangential to the rotational motion, i.e., $\psi=\pi / 2$, $F=F_{T}$, and

$$
\overrightarrow{\boldsymbol{\tau}} \triangleq \tau \hat{\mathbf{z}}=r F \hat{\mathbf{z}} .
$$

If $\tau=r F>0$ then the torque will cause the cylinder to rotate around the z axis in the direction indicated by the curved arrow. On the other hand, if $\tau=r F<0$ then the torque will cause the cylinder to rotate around the z axis in the direction opposite to that indicated by the curved arrow. Typically in engineering texts, the sign convention for torque is indicated by a curved arrow as shown in Figure 1.44. (Physics texts prefer to write $\vec{\tau} \triangleq \tau \hat{\mathbf{z}}$.)

FIGURE 1.44. Sign convention for torque.

Gears

Using the elementary rigid body dynamics developed in the previous appendix, the model of a two gear system illustrated in Figure 1.45 below is now developed.

FIGURE 1.45. Two gear system. Drawn by Sharon Katz.
This presentation is from that given in Professor Ogata's book [37]. In Figure 1.45,
τ_{1} is the torque exerted on gear 1 by gear 2.
F_{1} is the force exerted on gear 1 by gear 2 .
τ_{2} is the torque exerted on gear 2 by gear 1 .
F_{2} is the force exerted on gear 2 by gear 1 .
θ_{1} is the angle rotated by gear 1 .
θ_{2} is the angle rotated by gear 2 .
n_{1} is the number of teeth on gear 1.
n_{2} is the number of teeth on gear 2.
r_{1} is the radius of gear 1.
r_{2} is the radius of gear 2 .
Let $\overrightarrow{\mathbf{F}}_{1} \triangleq F_{1}(-\hat{\mathbf{x}})$ so that if $F_{1}>0$, the force is in the $-\hat{\mathbf{x}}$ direction as shown in Figure 1.45. Also, let $\overrightarrow{\mathbf{r}}_{1} \triangleq r_{1}(-\hat{\mathbf{y}})$ so that $\vec{\tau}_{1}=\overrightarrow{\mathbf{r}}_{1} \times \overrightarrow{\mathbf{F}}_{1}=$
$r_{1} F_{1}(-\hat{\mathbf{y}}) \times(-\hat{\mathbf{x}})=r_{1} F_{1}(-\hat{\mathbf{z}})=r_{1} F_{1} \hat{\mathbf{n}}$. That is, $\vec{\tau}_{1}=\tau_{1} \hat{\mathbf{n}}$ where $\tau_{1}=r_{1} F_{1}$ and $\hat{\mathbf{n}} \triangleq-\hat{\mathbf{z}}$ is a unit vector. Similarly, let $\overrightarrow{\mathbf{F}}_{2} \triangleq F_{2} \hat{\mathbf{x}}$ so that if $F_{2}>0$, the force is in the $\hat{\mathbf{x}}$ direction. Writing $\overrightarrow{\mathbf{r}}_{2} \triangleq r_{2} \hat{\mathbf{y}}$ it follows that $\overrightarrow{\boldsymbol{r}}_{2}=\overrightarrow{\mathbf{r}}_{2} \times \overrightarrow{\mathbf{F}}_{2}=$ $r_{2} F_{2}(-\hat{\mathbf{z}})=-\tau_{2} \hat{\mathbf{z}}=\tau_{2} \hat{\mathbf{n}}$ with $\tau_{2}=r_{2} F_{2}$. The reason that $\overrightarrow{\mathbf{r}}_{1}, \vec{\tau}_{1}, \overrightarrow{\mathbf{F}}_{1}$ are referred to the basis vectors $-\hat{\mathbf{x}},-\hat{\mathbf{y}},-\hat{\mathbf{z}}$ while $\overrightarrow{\mathbf{r}}_{2}, \overrightarrow{\boldsymbol{\tau}}_{2}, \overrightarrow{\mathbf{F}}_{2}$ are referred to the basis vectors $\hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$ is so that there will no minus signs in the gear relationships to be derived below.

Algebraic Relationships Between Two Gears

There are three important algebraic relationships between the gears.

1. The gears have different radii, but the teeth on each gear are the same size so that they will mesh together properly. Consequently, the number of teeth on the surface of gears is proportional to the radius of the gears so that, for example, if $r_{2}=2 r_{1}$, then $n_{2}=2 n_{1}$. In general,

$$
\frac{r_{2}}{r_{1}}=\frac{n_{2}}{n_{1}} .
$$

2. By Newton's third law, the forces $\overrightarrow{\mathbf{F}}_{1}=F_{1}(-\hat{\mathbf{x}}), \overrightarrow{\mathbf{F}}_{2} \triangleq F_{2} \hat{\mathbf{x}}$ are equal in magnitude, but opposite in direction so that $F_{2}=-\left(-F_{1}\right)=F_{1}$. Thus, as $\tau_{1}=r_{1} F_{1}$ and $\tau_{2}=r_{2} F_{2}$ it follows that

$$
\frac{\tau_{2}}{\tau_{1}}=\frac{r_{2}}{r_{1}} .
$$

3. As the teeth on each gear are meshed together at the point of contact, the distance traveled along the surface of the gears is the same. In other words, $\theta_{1} r_{1}=\theta_{2} r_{2}$ or

$$
\frac{\theta_{2}}{\theta_{1}}=\frac{r_{1}}{r_{2}}
$$

The first two algebraic relationships can be summarized as

$$
\frac{\tau_{2}}{\tau_{1}}=\frac{r_{2}}{r_{1}}=\frac{n_{2}}{n_{1}}
$$

and these ratios are easily remembered by thinking of gear 2 as larger in radius than gear 1 . Then the number of teeth on gear 2 must also be larger (because its circumference is larger) and the torque on gear 2 is also larger (because its radius is larger).

The last algebraic relationship is summarized as

$$
\frac{r_{1}}{r_{2}}=\frac{\theta_{2}}{\theta_{1}}=\frac{\omega_{2}}{\omega_{1}}
$$

but it is more easily remembered by writing $\theta_{1} r_{1}=\theta_{2} r_{2}$ which just states the distance traveled along the surface of each gear is the same as they are meshed together.

Dynamic Relationship Between Two Gears

Consider the two gear system shown in Figure 1.46 below. The motor torque τ_{m} acts on gear 1 and the torque τ_{L} is a load torque acting on gear 2.

FIGURE 1.46. Dynamic equations for a two gear system. Drawn by Sharon Katz.

In Figure 1.46,
J_{1} is the moment of inertia of the motor shaft.
J_{2} is the moment of inertia of the output shaft.
f_{1} is the viscous friction coefficient of the motor shaft.
f_{2} is the viscous friction coefficient of the output shaft.
θ_{1} is the angle rotated by gear 1 .
θ_{2} is the angle rotated by gear 2 .
ω_{1} is the angular speed of gear 1 .
ω_{2} is the angular speed of gear 2.
τ_{1} is the torque exerted on gear 1 by gear 2.
τ_{2} is the torque exerted on gear 2 by gear 1 .

The sign conventions for the torques $\tau_{m}, \tau_{1}, \tau_{2}, \tau_{L}$ are indicated in Figure 1.46. In particular, if $\tau_{m}>0, \tau_{1}>0$ then they oppose each other and similarly, if $\tau_{2}>0, \tau_{L}>0$ then these two torques oppose each other. A load torque is illustrated in Figure 1.47 in which the load torque on gear 2 is $\tau_{L}=r_{2} m g$ with r_{2} the radius of the pick up reel (gear 2).

FIGURE 1.47. Illustration of load torque. Drawn by Sharon Katz.
The above development is now put together to write down differential equations that characterize the dynamic behavior of the gears. Recall that the fundamental equation of rigid body dynamics is given by

$$
\tau=J \frac{d \omega}{d t}
$$

where τ is the total torque on the rigid body, J is the moment of inertia of the rigid body and $d \omega / d t$ is its angular acceleration about the fixed axis of rotation. Applying this relationship, the equations of motion for the two gears are then

$$
\begin{align*}
\tau_{m}-\tau_{1}-f_{1} \omega_{1} & =J_{1} \frac{d \omega_{1}}{d t} \\
\tau_{2}-\tau_{L}-f_{2} \omega_{2} & =J_{2} \frac{d \omega_{2}}{d t} \tag{1.30}
\end{align*}
$$

Typically, the input (motor) torque τ_{m} is known and, the output position θ_{2} and speed ω_{2} are measured. Consequently, the variables $\tau_{1}, \tau_{2}, \omega_{1}$ need to be eliminated which is done as follows:

$$
\begin{align*}
\tau_{2} & =\frac{n_{2}}{n_{1}} \tau_{1} \\
& =\frac{n_{2}}{n_{1}}\left(\tau_{m}-f_{1} \omega_{1}-J_{1} \frac{d \omega_{1}}{d t}\right) \\
& =\frac{n_{2}}{n_{1}}\left(\tau_{m}-f_{1}\left(\frac{n_{2}}{n_{1}} \omega_{2}\right)-J_{1} \frac{d}{d t}\left(\frac{n_{2}}{n_{1}} \omega_{2}\right)\right) \\
& =\frac{n_{2}}{n_{1}} \tau_{m}-\left(\frac{n_{2}}{n_{\mathrm{I}}}\right)^{2} f_{1} \omega_{2}-\left(\frac{n_{2}}{n_{1}}\right)^{2} J_{1} \frac{d \omega_{2}}{d t} . \tag{1.31}
\end{align*}
$$

Substituting this expression for τ_{2} into the second equation of (1.30) results in

$$
\frac{n_{2}}{n_{1}} \tau_{m}-\left(\frac{n_{2}}{n_{1}}\right)^{2} f_{1} \omega_{2}-\left(\frac{n_{2}}{n_{1}}\right)^{2} J_{1} \frac{d \omega_{2}}{d t}-\tau_{L}-f_{2} \omega_{2}=J_{2} \frac{d \omega_{2}}{d t}
$$

Rearranging, the desired result is

$$
\begin{equation*}
\frac{n_{2}}{n_{1}} \tau_{m}=\left(J_{2}+\left(n_{2} / n_{1}\right)^{2} J_{1}\right) \frac{d \omega_{2}}{d t}+\left(f_{2}+\left(n_{2} / n_{1}\right)^{2} f_{1}\right) \omega_{2}+\tau_{L} \tag{1.32}
\end{equation*}
$$

Let $n=n_{2} / n_{1}$ denote the gear ratio, $J \triangleq J_{2}+n^{2} J_{1}$ denote the total inertia reflected to output shaft and $f \triangleq f_{2}+n^{2} f_{1}$ denote the total viscous friction coefficient reflected to the output shaft, equation (1.32) can be written succinctly as

$$
\begin{equation*}
n \tau_{m}=J \frac{d \omega_{2}}{d t}+f \omega_{2}+\tau_{L} \tag{1.33}
\end{equation*}
$$

The net effect of the gears is to increase the motor torque from τ_{m} on the motor shaft to $n \tau_{m}$ on the output shaft, to add the quantity $n^{2} J_{1}$ to the inertia of the output shaft and to add $n^{2} f_{1}$ to the viscous friction coefficient of the output shaft.

Remark

Everything could have been referred to the motor shaft instead of the output (load) shaft. To do so, simply substitute $\omega_{2}=\left(n_{1} / n_{2}\right) \omega_{1}$ into (1.32) to obtain

$$
\frac{n_{2}}{n_{1}} \tau_{m}=\left(J_{2}+\left(\frac{n_{2}}{n_{1}}\right)^{2} J_{1}\right)^{d\left(\frac{n_{1}}{n_{2}} \omega_{1}\right)} d t_{d t}+\left(f_{2}+\left(\frac{n_{2}}{n_{1}}\right)^{2} f_{1}\right)\left(\frac{n_{1}}{n_{2}} \omega_{1}\right)+\tau_{L}
$$

Multiply both sides by n_{1} / n_{2} results in

$$
\tau_{m}=\left(J_{2}+\left(\frac{n_{2}}{n_{1}}\right)^{2} J_{1}\right)\left(\frac{n_{1}}{n_{2}}\right)^{2} \frac{d \omega_{1}}{d t}+\left(f_{2}+\left(\frac{n_{2}}{n_{1}}\right)^{2} f_{1}\right)\left(\frac{n_{2}}{n_{1}}\right)^{2} \omega_{1}+\frac{n_{1}}{n_{2}} \tau_{L}
$$

or, finally, the desired form is

$$
\begin{equation*}
\tau_{m}=\left(\left(\frac{n_{1}}{n_{2}}\right)^{2} J_{2}+J_{1}\right) \frac{d \omega_{1}}{d t}+\left(\left(\frac{n_{1}}{n_{2}}\right)^{2} f_{2}+f_{1}\right) \omega_{1}+\frac{n_{1}}{n_{2}} \tau_{L} \tag{1.34}
\end{equation*}
$$

In this formulation, the load torque on the input shaft is reduced by n_{1} / n_{2} from that on the output shaft, and $\left(n_{1} / n_{2}\right)^{2} J_{2}$ has been added to the inertia of the motor shaft and $\left(n_{1} / n_{2}\right)^{2} f_{2}$ has been added to the viscous friction coefficient of the motor shaft.

Problems

Faraday's Law and Induced Electromotive Force (emf)

Problem 1 Faraday's Law

Consider Figure 1.48 where a magnet is moving up into a square planar loop of copper wire.

FIGURE 1.48. Induced emf in a loop due to a moving magnet.
(a) Using the normal $\hat{\mathbf{n}}_{1}$, is the flux in the loop produced by the magnet increasing or decreasing?
(b) Using the normal $\hat{\mathbf{n}}_{1}$, what is the direction of positive travel around the surface whose boundary is the loop (clockwise or counterclockwise)?
(c) What is the direction of the induced current in Figure 1.48 (clockwise or counterclockwise)? Does the induced current produce a change in the flux in the loop that opposes the change in flux produced by the magnet?
(d) Using the normal $\hat{\mathbf{n}}_{2}$, is the flux increasing or decreasing?
(e) Using the normal $\hat{\mathbf{n}}_{2}$, what is the direction of positive travel around the surface whose boundary is the loop (clockwise or counterclockwise)?
(f) What is the direction of the induced current in Figure 1.48 (clockwise or counterclockwise)? Does the induced current produce a change in the flux in the loop that opposes the change in flux produced by the magnet?

Problem 2 Faraday's Law

Consider Figure 1.49 where a magnet is moving down away from a square planar loop of copper wire.

FIGURE 1.49. Induced emf in a loop due to a moving magnet.
(a) Using the normal $\hat{\mathbf{n}}_{1}$, is the flux in the loop produced by the magnet increasing or decreasing?
(b) Using the normal $\hat{\mathbf{n}}_{1}$, what is the direction of positive travel around the surface whose boundary is the loop (clockwise or counterclockwise)?
(c) What is the direction of the induced current in Figure 1.49 (clockwise or counterclockwise)? Does the induced current produce a change in the flux in the loop that opposes the change of flux produced by the magnet?
(d) Using the normal $\hat{\mathbf{n}}_{2}$, is the flux increasing or decreasing?
(e) Using the normal $\hat{\mathbf{n}}_{2}$, what is the direction of positive travel around the surface whose boundary is the loop (clockwise or counterclockwise)?
(f) What is the direction of the induced current in Figure 1.49 (clockwise or counterclockwise)? Does the induced current produce a change in the fux in the loop that opposes the change of fux produced by the magnet?

Problem 3 The Linear DC Motor
Consider the simple linear DC motor of Figure 1.3. Take the normal to the surface enclosed by the loop taken to be $\hat{\mathbf{n}}=-\hat{\mathbf{z}}$.
(a) What is the flux through the surface?
(b) What is the direction of positive travel around this flux surface?
(c) What is the induced emf ξ in the loop in terms of B, ℓ and the speed v of the bar?
(d) Do V_{S} and ξ have the same sign convention? Explain why ξ is now negative. With R the resistance of the circuit and the inductance $L=0$, write down the differential equations for the current i in the machine and the speed v of the bar.

Problem 4 The Linear DC Motor

Consider the simple linear motor in Figure 1.50 where the magnetic field $\overrightarrow{\mathbf{B}}=B \hat{\mathbf{z}}(B>0)$ is up out of the page.

FIGURE 1.50. Linear DC machine with $\overrightarrow{\mathbf{B}}=B \hat{\mathbf{z}}, B>0$.
Closing the switch causes a current to flow in the wire loop.
(a) What is the magnetic force $\overrightarrow{\mathbf{F}}_{\text {magnetic }}$ on the sliding bar in terms of B, i, and ℓ ? Give both the magnitude and direction of $\overrightarrow{\mathbf{F}}_{\text {magnetic }}$.
(b) Take the normal to the surface enclosed by the loop to be $\hat{\mathbf{n}}=\hat{\mathbf{z}}$. What is the flux through the surface?
(c) What is the induced emf ξ in the loop in terms of B, ℓ, and the speed v of the bar?
(d) What is the sign convention for the induced emf ξ drop around the loop? (That is, if $\xi>0$, would it act to push current in the clockwise or counterclockwise direction?)
(e) Do V_{S} and ξ have the same sign convention? Draw + and - signs above and below ξ to indicate the sign convention for ξ.

Problem 5 Back Emf in the Single-Loop Motor
Consider the single loop motor with the flux surface as indicated in Figure 1.51. A voltage source connected to the brushes is forcing current down side $a(\otimes)$ and up side $a^{\prime}(\odot)$.

FIGURE 1.51. Computing the flux with $\hat{\mathbf{n}}=-\hat{\mathbf{r}}$.
(a) With the motor at the angular position θ_{R} shown, that is, with $0<$ $\theta_{R}<\pi$, and using the inward normal ($\hat{\mathbf{n}}=-\hat{\mathbf{r}}$), compute the flux through the surface in terms of the magnitude B of the radial magnetic field in the air gap, the axial length ℓ_{1} of the motor, the diameter ℓ_{2} of the motor and the angle θ_{R} of the rotor.
(b) What is the positive direction of travel around the flux surface \mathcal{S} (CW or $C C W)$?
(c) What is the emf ξ induced in the rotor loop? What is the sign convention for the induced emf ξ drop around the loop? (That is, if $\xi>0$, would it act to push current in $C W$ direction or the CCW direction?) Do V_{S} and ξ have the same sign convention? Explain why ξ is now negative. Draw an equivalent circuit of the form in Figure 1.18 for the rotor loop current.

Problem 6 Gauss's Law and Conservation of Flux

The flux surface in Figure 1.13 was chosen as the half-cylindrical surface with two half disks at either end because the B field is known on the cylindrical surface being given by equation (1.1) and can be taken to be zero on the two half disks. If the flux surface had been taken to be a flat planar surface with the rectangular loop as its boundary, then it would not be clear
how to compute the fux on this surface as the B field there is unknown. Show, using Gauss's law

$$
\phi=\oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0
$$

that both surfaces give the same flux. In general, by Gauss's law, one can compute the flux using any surface as long as its boundary is the loop.

Problem 7 Flux in the Single-Loop DC Motor
Figure 1.52 shows the rotor loop with $\pi<\theta_{R}<2 \pi$.

FIGURE 1.52. Rotor loop where $\pi<\theta_{R}<2 \pi$.

FIGURE 1.53. Flux surface with the normal radially out.
(a) Using the flux surface shown in Figure 1.53 with $d \overrightarrow{\mathbf{S}}=\left(\ell_{2} / 2\right) d \theta d z \hat{\mathbf{r}}$, show that $\phi\left(\theta_{R}\right)=\left(\theta_{R}-\pi / 2-\pi\right) \ell_{1} \ell_{2} B$ for $\pi<\theta_{R}<2 \pi$. Plot $\phi\left(\theta_{R}\right)$ for $0<\theta_{R}<2 \pi$ (note that $\phi\left(\theta_{R}\right)$ for $0<\theta_{R}<\pi$ is computed in the text). Compute the back emf ξ and give its sign convention, that is, if $\xi=$ $-d \phi\left(\theta_{R}\right) / d t>0$, will it force current in the CW or the CCW direction?

Do ξ and V_{S} have the same sign convention? (Yes! Explain!) Draw an equivalent circuit diagram of the form of Figure 1.18 to illustrate the sign convention.
(b) Using the flux surface shown in Figure 1.54 with $d \overrightarrow{\mathbf{S}}=\left(\ell_{2} / 2\right) d \theta d z(-\hat{\mathbf{r}})$, show that $\phi\left(\theta_{R}\right)=-\left(\theta_{R}-\pi / 2-\pi\right) \ell_{1} \ell_{2} B$ for $\pi<\theta_{R}<2 \pi$.

FIGURE 1.54. Flux surface with the normal radially in.
Compute the back emf and give its sign convention, that is, if $-d \phi\left(\theta_{R}\right) / d t$ >0 will it force current in the $C W$ or the $C C W$ direction. Do ξ and V_{S} have the same sign convention? (No, they are opposite! Explain!) Draw an equivalent circuit diagram of the form of Figure 1.18 to illustrate the sign convention.
(c) Note that in part (b) the normal to the fux surface is taken to be radially in while with $0<\theta_{R}<\pi$ it was taken to be radially out (see Figure 1.14). Explain why reversing the normal of the flux surface each half turn in this way results in an equivalent circuit of the form shown in Figure 1.18 which is valid for all rotor angular positions

Hint: Note that the + side of V_{S} is now electrically connected to side a^{\prime} of the loop through brush b_{1}, while when $0<\theta_{R}<\pi$ in Figure 1.14, the + side of V_{S} was electrically connected to side a of the loop through brush b_{1}. That is, the sign convention for V_{S} in the loop changes every half-turn. Thus it is also necessary to change the sign convention for the flux and therefore for ξ every half-turn in order that the sign conventions for V_{S} and ξ have the same relationship to each other for all θ_{R}.
(d) Show by taking $d \overrightarrow{\mathbf{S}}=\left(\ell_{2} / 2\right) d \theta d z \hat{\mathbf{r}}$ for $0<\theta_{R}<\pi$ and $d \overrightarrow{\mathbf{S}}=$ $\left(\ell_{2} / 2\right) d \theta d z(-\hat{\mathbf{r}})$ for $\pi<\theta_{R}<2 \pi$, that $\phi\left(\theta_{R}\right)=-\left(\theta_{R} \bmod \pi-\pi / 2\right) \ell_{1} \ell_{2} B$ for all θ_{R} and that $\xi=-d \phi\left(\theta_{R}\right) / d t$ has the sign convention given in Figure 1.18 for all θ_{R}. Verify that the plot of $\phi\left(\theta_{R}\right)$ in Figure 1.15 is correct.

Problem 8 Simulation of the DC Motor
Let $V_{\max }=40 \mathrm{~V}, I_{\max }=5 \mathrm{~A}, K_{b}=K_{T}=0.07 \mathrm{~V} / \mathrm{rad} / \mathrm{sec}(=\mathrm{N}-\mathrm{m} / \mathrm{A})$, $J=6 \times 10^{-5} \mathrm{~kg}-\mathrm{m}^{2}, R=2 \mathrm{ohms}, L=2 \mathrm{mH}$, and $f=0.0004 \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec}$. Develop a simulation of the DC motor that includes the motor model given by (1.6) and a voltage saturation model of the amplifier as illustrated in Figure 1.20. Put a step input of $V_{S}(t)=10 \mathrm{~V}$ into the motor and plot out (a) $\theta(t)$, (b) $\omega(t)$, (c) $i(t)$, and (d) $V_{S}(t)$.

Multiloop Motor

Problem 9 Skewing of the Rotor Sides
Figure 1.29 shows the sides of the rotor loops for the motor (but not the tachometer!) are not straight in the axial direction, but instead are skewed. Can you think of a reason why this is done?

Problem 10 Neutral Plane and Brush Shifting

In the commutation scheme for the multiloop motor, it was shown that when a rotor loop was perpendicular to the brushes, the current in the loop was shorted out (brought to zero). Consequently, it is highly desirable that the total induced voltage in that loop be as close to zero as possible to prevent arcing. Figure 1.35 shows the total B field distribution in the DC machine. If the armature current were zero, then the field would be horizontal as in Figure 1.33. At very high armature currents (e.g., in large machines used in heavy industry), the field is skewed as shown in Figure 1.35. The neutral plane is the plane cutting through the axis of the rotor for which the total B field is perpendicular to the plane. Let $\psi_{k}\left(i, i_{f}, \theta_{R}\right)$ be the total fux in the k th rotor loop due to both the field current and the armature current.

FIGURE 1.55. Magnetic field due to both the field and armature currents.
(a) Explain why $\psi_{k}\left(i, i_{f}, \theta_{R}\right)$ is a maximum (or minimum) as a function of the rotor position θ_{R} when the k th loop coincides with the neutral plane, or equivalently, why $-\partial \psi_{k}\left(i, i_{f}, \theta_{R}\right) / \partial \theta_{R}=0$ when the k th loop coincides with the neutral plane. (This is seen more easily if one takes the flux surface to be the plane of the loop rather than the cylindrical surface.)
(b) As explained in Section 1.7.2, the current in a rotor loop is commutated when the plane of the loop is perpendicular to the line containing the two brushes. Consider the situation in which the brushes of Figure 1.30(a) are rotated counterclockwise (shifted) so that the plane of the loop undergoing commutation is coincident with the neutral plane as shown in Figure 1.56. (After the brushes are rotated, they are held fixed at that position.)

FIGURE 1.56. Rotating the brushes so that commutation in the loop occurs when the loop is aligned with the neutral plane.

Show then that the induced voltage in the k th loop when it undergoes commutation is

$$
-\frac{d \psi_{k}\left(i, i_{f}, \theta_{R}\right)}{d t}=-\frac{\partial \psi_{k}\left(i, i_{f}, \theta_{R}\right)}{\partial i} \frac{d i}{d t}-\frac{\partial \psi_{k}\left(i, i_{f}, \theta_{R}\right)}{\partial i_{f}} \frac{d i_{f}}{d t}
$$

(c) Explain why shifting the brushes alleviates arcing.
(d) Does the amount that the brushes are to be rotated depend on the amount of armature current?

Problem 11 Flux in the Multiloop Motor
With $\lambda\left(\theta_{R}\right)$ given by (1.8) and $n=4$, write a program to plot $\lambda\left(\theta_{R}\right) /\left(\ell_{1} \ell_{2} B\right)$ versus θ_{R} to obtain a figure similar to that of Figure 1.38.

Separately Excited, Series and Shunt DC Machines

Problem 12 Conservation of Energy in the Separately Excited DC Motor
Using the equations (1.19), (1.20) and (1.21) of the separately excited DC motor show that energy conservations holds. Give a physical interpretation to the various expressions.

Problem 13 Series DC Motor [1]
Consider a separately excited DC motor in which the terminal T_{1} of the armature is connected to the terminal T_{2}^{\prime} of the field circuit and a single voltage source is applied between the two remaining terminals T_{1}^{\prime} and T_{2}. This configuration is referred to as a series DC motor and is illustrated in Figure 1.57. This type of connection is often used when the motor is employed as a traction drive, that is, for subways, trolley cars, and so on. An equivalent circuit for the series DC motor is given in Figure 1.58 where $\lambda_{f}\left(i_{f}\right)=L_{f} i_{f}$ is used.

FIGURE 1.57. Series-connected DC motor. Adapted from Ref. [21].

FIGURE 1.58. Equivalent circuit for a series DC motor.
(a) Starting from the model (1.22), (1.23), (1.24) of the separately excited $D C$ motor, derive the set of differential equations that characterize the series connected DC motor.
(b) Show that the torque cannot change sign, i.e., it is always positive or always negative.
(c) What must be done to change the sign of the torque?

Problem 14 Shunt DC Motor [3]
Consider a separately excited DC motor in which the terminal T_{1} of the armature is connected to the terminal T_{1}^{\prime} of the field circuit and similarly, the other two terminals T_{2}, T_{2}^{\prime} are connected together as indicated in Figure 1.59. This configuration is referred to as a shunt DC motor for which an equivalent circuit is shown in Figure 1.60. The resistance $R_{\text {adj }}$ is an adjustable resistance added in series with the field winding and aids in the control of the motor.

FIGURE 1.59. Shunt connected DC motor. Adapted from Ref. [21].

FIGURE 1.60. Equivalent circuit for a shunt DC motor.

Let $\lambda\left(i_{f}\right)=L_{f} i_{f}$ and using the model (1.22), (1.23), (1.24) of the separately excited DC motor, derive the complete set of equations that characterize the shunt DC motor.

Simple AC Generators

Problem 15 A Three-Phase Generator [38]
Consider a simplified model of a three-phase generator shown in Figures 1.61 and 1.62.

FIGURE 1.61. Simplified three-phase permanent magnet generator.

FIGURE 1.62. Half-cylindrical-shaped winding of phase 1.

The rotor consists of a two-pole (one north and one south) permanent magnet with the pole faces shaped so that the radial magnetic field in the
air gap due to the rotor's permanent magnet is given by

$$
\overrightarrow{\mathbf{B}}(r, \theta)=B_{R \max } \frac{r_{S}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}}
$$

where $B_{R \max }>0, r_{S}=\ell_{2} / 2+g$ is the radius of the inside surface of the stator iron and θ, θ_{R} are defined as in Figure 1.61. One of the stator phases (consisting of a single loop) is shown in Figure 1.62 where the rotor and stator sizes are distorted for expository reasons.
(a) Using a half-cylinder flux surface whose boundary is the stator loop and whose surface normal is $\hat{\mathbf{n}}=\hat{\mathbf{r}}$, compute the flux ϕ_{1} in stator loop 1 and the voltage $\xi_{1}=-d \phi_{1} / d t$ induced in this loop.
(b) Also, compute the fluxes ϕ_{2}, ϕ_{3} and the induced voltages ξ_{2}, ξ_{3} in phases 2 and 3, respectively.
(c) With the ends $1^{\prime}, 2^{\prime}, 3^{\prime}$ tied together (called the neutral point), show that if the machine is rotating at constant angular speed ω_{R}, this results in a three-phase generator producing three sinusoidal voltages which are identical except being 120° out of phase with each other.
(d) It is shown in Chapters 4 and 5 that the magnetic field due to the rotating permanent magnet rotor produces an axial electrical field in the air gap given by

$$
\overrightarrow{\mathbf{E}}_{R}\left(\theta-\theta_{R}\right)=\omega_{R} B_{R \text { max }} r_{S} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{z}} .
$$

Show that

$$
\xi_{1}=\int_{1^{\prime}}^{1} \overrightarrow{\mathbf{E}}_{R}\left(\theta-\theta_{R}\right) \cdot d \vec{\ell}
$$

Problem 16 A Two-Phase Four-Pole Generator
To introduce a two-phase four-pole generator, consider first Figure 1.63(a), which shows a two-phase two-pole generator. Its rotor is a two-pole (one north and one south) permanent magnet whose pole faces are shaped so that the radial air gap magnetic field is given by

$$
\overrightarrow{\mathbf{B}}(r, \theta)=B_{R \max } \frac{r_{S}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}}
$$

where $B_{R \max }>0, r_{S}=\ell_{2} / 2+g$ is the radius of the inside surface of the stator iron, and θ, θ_{R} are defined as in Figure 1.63(a). The stator phases are wound in a similar fashion to those of problem 15, and the voltages induced in the stator phases are computed similarly.

(a)

(b)

FIGURE 1.63. (a) A two-phase two-pole machine. (b) Polar coordinate system.

Now consider a two-phase four-pole generator illustrated in Figure 1.64(a). The rotor is a four-pole (two north poles and two south poles) permanent magnet whose pole faces are shaped so that the radial air gap magnetic field is given by

$$
\overrightarrow{\mathbf{B}}(r, \theta)=B_{R \max } \frac{r_{S}}{r} \cos \left(n_{p}\left(\theta-\theta_{R}\right)\right) \hat{\mathbf{r}} .
$$

Here $B_{R \max }>0, r_{S}=\ell_{2} / 2+g$ is the radius of the inside surface of the stator iron, θ_{R} is defined as in Figure 1.64(a), and $n_{p}(=2$ in Figure 1.64) is the number of pole pairs. Figure 1.64(c) is a perspective view showing how phase a is wound while Figure 1.64(d) is a cross-sectional view of the same phase.
(a) Using an outward normal for the flux surface $(\hat{\mathbf{n}}=\hat{\mathbf{r}})$, compute the flux linkage λ_{a} in phase a due to the permanent magnet rotor. (The fux linkage is the sum of the fluxes in the two loops $\mathrm{a}_{1}-\mathrm{a}_{1}^{\prime}$ and $\mathrm{a}_{2}-\mathrm{a}_{2}^{\prime}$ making up phase a.)
(b) Does the positive direction of travel around each of the two flux surfaces of phase a coincide with the positive direction of current?
(c) Compute the voltage ξ_{a} induced in phase a by the permanent magnet rotor.
(d) Using the expression for ξ_{a} in phase a from part (c), and the fact that phase b is rotated $\pi /\left(2 n_{p}\right)$ radians from phase a, give the expression for ξ_{b}.
(e) It is shown in Chapters 4 and 5 that the magnetic field due to the rotating permanent magnet rotor produces an axial electrical field in the air gap given by

$$
\overrightarrow{\mathbf{E}}_{R}\left(\theta-\theta_{R}\right)=\omega_{R} B_{R \max } r_{S} \cos \left(n_{p}\left(\theta-\theta_{R}\right)\right) \hat{\mathbf{z}}
$$

Show that

$$
\xi_{a}=\int_{a^{\prime}}^{a} \overrightarrow{\mathbf{E}}_{R}\left(\theta-\theta_{R}\right) \cdot d \overrightarrow{\boldsymbol{\ell}}
$$

FIGURE 1.64. (a) A two-phase four-pole machine. (b) Polar coordinate system. (c) A perspective view of the phase a winding. (d) Cross-sectional view of the phase a winding.

Problem 17 Generator/Motor

Do problem 6 in Chapter 5. (The background in this chapter is sufficient to work this problem!)

This Page Intentionally Left Blank

2

Feedback Control

The DC motor model developed in the previous chapter is used to illustrate basic control techniques. The techniques developed here will be straightforwardly generalized for the AC motor case.

2.1 Model of a DC Motor Servo System

A DC motor servo (positioning) system typically consists of a DC motor, amplifier and sensors for position and current measurements. The interest here is to understand how to model this system for control purposes. Recall the dynamic equations of the DC motor given as

$$
\begin{align*}
L \frac{d i}{d t} & =-R i(t)-K_{b} \omega(t)+v(t) \\
J \frac{d \omega}{d t} & =-f \omega(t)+K_{T} i(t)-\tau_{L}(t) \tag{2.1}\\
\frac{d \theta}{d t} & =\omega(t)
\end{align*}
$$

where, in this chapter, θ and ω replace θ_{R} and ω_{R}, respectively. Also, $-f \omega$ models the viscous friction torque on the motor due to both the bearings and to the brushes rubbing against the commutator. The voltage v is commanded to the motor through a power amplifier. The amplifier is limited in how much voltage it can actually put out. This limit is denoted by $V_{\max }$ in Figure 2.1.

FIGURE 2.1. Open-loop DC motor.
A common position sensor used in industry is an optical encoder, which is illustrated in Figure 2.2(a) [39]. As shown, the optical encoder consists of a set of windows spaced equally around a circular disk with a light source shining through the window when it is aligned with the source. A detector puts out a high voltage when there is light and a low voltage otherwise.

For the setup of Figure 2.2(a), there are 12 windows (lines or slots) so that for every complete revolution of the circular disk (i.e., of the motor), there will be 12 pulses. Using digital electronic circuitry, one can detect a pulse going high or low so that in one revolution with 12 pulses, there will be a total of 24 times that a pulse went either high or low. Note that each time a pulse goes high or low, the motor has rotated $2 \pi / 24$ or $360^{\circ} / 24=15^{\circ}$. By simply counting the number N of rising and falling edges of the pulse, one can obtain the position of the rotor to within 15°.

FIGURE 2.2. Schematic diagram of an optical encoder. (a) Encoder disk with 12 windows. Reprinted with permission from Mechatronics: An Integrated Approach by Clarence W. deSilva, Copyright CRC Press, Boca Raton, Florida [40]. (b) A second light detector added 90° from the first one in order to detect the direction of rotation.

In order to detect the direction of rotation, two light detectors are used as shown in Figure 2.2(b). In detail, the length of the windows is the same as the length of the distance between windows. The two light detectors are placed a distance of $1 / 2$ of a window length apart. One period of the voltage waveform coming out of the light detector corresponds to the distance from the beginning of one window to the next and this cycle of the voltage waveform is considered to be 360° [see Figure 2.2(b)]. Consequently, the two light detectors are considered to be 90° apart and are said to be in quadrature.

Figure 2.3(a) shows the voltage waveforms out of the two light detectors when the rotor is turning clockwise. Note that the voltage of light detector 1 is 90° ($1 / 4$ cycle) behind that of light detector 2 ; that is, the voltage from light detector 2 goes high first and then a quarter of a cycle later, the voltage from light detector 1 goes high. However, if the rotor is turning counterclockwise, then the voltage of light detector 2 is 90° behind that
of light detector 1 as shown in Figure 2.3(b). Consequently, the encoder electronics detects the relative phase of the two light detector voltage signals and uses it to determine whether the rising or falling edges of a pulse should increase the count (clockwise motion) or decrease the count (counterclockwise motion). For example, one could monitor light detector 2. If light detector 1 goes high before light detector 2 goes low as in Figure 2.3(a), then the motion is clockwise. Otherwise, if light detector 1 goes low before light detector 2 goes low as in Figure 2.3(b), the motion is counterclockwise.

If an optical encoder has N_{w} windows (lines/slots), then there are $2 N_{w}$ rising and falling edges per revolution giving a resolution of $2 \pi /\left(2 N_{w}\right)$ radians. Problem 4 shows how using the output of both light detectors, a resolution of $2 \pi /\left(4 N_{w}\right)$ radians is achieved. So, for example, with $N_{w}=500$, the resolution of the encoder is $2 \pi / 2000$ radians or $360^{\circ} / 2000=0.18^{\circ}$.

FIGURE 2.3. (a) Detector outputs for clockwise rotation. (b) Detector outputs for counterclockwise rotation.

Figure 2.4 shows a plot of the position $\theta(t)$ and the corresponding encoder

FIGURE 2.4. Plot of $\theta(t)$ and the encoder output $(2 \pi / 2000) N(t)$.
output $(2 \pi / 2000) N(t)$. Due to the way the encoder works, if $\theta(t)$ is increasing, the position output of the encoder is always less than or equal to the actual position.

Current Command

The input to the motor is the voltage v. However, from the above equations, the torque equation is $J d \omega / d t=-f \omega+K_{T} i-\tau_{L}$, where the motor torque $K_{T} i$ is proportional to the current. Thus, it would be convenient if the current was the input since one could easily specify the motor's torque by specifying the current. Typically, to get around the fact that the voltage is the input, one designs an inner current control loop that allows direct current command. That is, the voltage is forced by a controller to go to whatever value necessary to obtain the desired current. To understand how this is done, consider the equations (2.1) in the Laplace domain given by

$$
\begin{aligned}
i(s) & =\frac{-K_{b} \omega(s)+V(s)}{s L+R} \\
\omega(s) & =\frac{K_{r} i(s)-\tau_{L}(s)}{s J+f} \\
\theta(s) & =\frac{1}{s} \omega(s) .
\end{aligned}
$$

These algebraic relationships are illustrated in the block diagram shown in Figure 2.5.

FIGURE 2.5. Block diagram of a DC motor.

Often the approximation that $L=0$ is made to simplify the analysis of the system. However, a standard approach in industry is to put the amplifier into a current command mode which results in making the effect of L negligible. To do so, the current is fed back (typically using analog electronics) through a proportional controller as shown in Figure 2.6.

FIGURE 2.6. DC motor with an inner current control loop.

Here, $i_{r}(s)$ is the Laplace transform of the reference current, $i(s)$ is the Laplace transform of the actual current in the motor, and $K_{P}>0$ is a proportional gain. The transfer function $G(s)=\omega(s) / i_{r}(s)$ is easily found using the block diagram reduction method. In order to do so, note that this block diagram is equivalent to that of Figure 2.7.

FIGURE 2.7. Equivalent block diagram.

The block diagram of Figure 2.7 is then easily seen to simplify to that of Figure 2.8.

FIGURE 2.8. Simplified block diagram.

As a result, with $\tau_{L}(s) \equiv 0$,

$$
\begin{aligned}
G(s) & \triangleq \omega(s) / i_{r}(s) \\
& =\frac{K_{P} K_{T}}{\left(s L+R+K_{P}\right)(s J+f)+K_{T} K_{b}} \\
& =\frac{K_{T}}{\left(\frac{s L+R}{K_{P}}+1\right)(s J+f)+K_{T} K_{b} / K_{P}} .
\end{aligned}
$$

Using high-gain feedback, that is, letting $K_{P} \rightarrow \infty, G(s)$ reduces to

$$
\begin{equation*}
G(s)=\omega(s) / i_{r}(s)=\frac{K_{T}}{(s J+f)} . \tag{2.2}
\end{equation*}
$$

In other words, if the gain K_{P} can be made large enough, the actual current $i(t)$ can be forced to track $i_{r}(t)$ quite fast. However, note that one cannot make the gain K_{P} arbitrarily large. This is easily seen by noting that the voltage commanded into the amplifier is

$$
v(t)=K_{P}\left(i_{r}(t)-i(t)\right)
$$

which, for large gains K_{P}, could be greater than $V_{\max }$, causing the amplifier to saturate.

In summary, with a good current controller, the voltage $v(t)$ is automatically adjusted to force $i(t) \rightarrow i_{r}(t)$ fast enough that the reference (commanded) current $i_{r}(t)$ can be considered to be equal to the actual motor current $i(t)$. That is, for all practical purposes, the dynamics from $i_{r}(t)$ to $i(t)$ can be neglected allowing one to consider the input $i_{r}(t)$ as equal to the motor current $i(t)$. The following reduced-order system can then be used to design the controller:

$$
\begin{aligned}
\frac{d \omega}{d t} & =\left(K_{T} / J\right) i_{r}(t)-(f / J) \omega(t)-\tau_{L} / J \\
\frac{d \theta}{d t} & =\omega .
\end{aligned}
$$

The corresponding block diagram of the reduced-order system is shown in Figure 2.9.

FIGURE 2.9. Reduced-order model of a DC motor.

Speed Controller

Using the reduced-order model, it is straightforward to design a simple proportional speed controller as illustrated in Figure 2.10.

FIGURE 2.10. Simple speed controller for a DC motor.
From the block diagram of Figure 2.10, it follows that

$$
\begin{aligned}
\omega(s) / \omega_{r e f}(s) & =\frac{K K_{T} /(s J+f)}{1+K K_{T} /(s J+f)}=\frac{K K_{T} / J}{s+\left(f+K_{T} K\right) / J} \\
& \approx \frac{K K_{T} / J}{s+K_{T} K / J} \\
& =\frac{1}{\tau_{m} s+1}
\end{aligned}
$$

where $\tau_{m} \triangleq \frac{1}{K_{T} K / J}$ and $f \ll K_{T} K$ were used. This is an example of the classical approach to control and is described in more detail in the Appendix of this chapter. However, in this chapter, the state-space approach to feedback control is pursued.

2.2 Speed Estimation

Typically, in a DC motor drive system, the current, voltage, and position are available by direct measurement. However, the speed is not usually measured directly. In this section, two approaches to estimating the speed are given.

2.2.1 Backward Difference Estimation of Speed

The optical encoder gives the position measurement, but not the speed of the motor. However, one can use this measurement to deduce the speed. The most straightforward way is to compute the backward difference of the position and divide by the sample period, that is,

$$
\hat{\omega}_{b d}(k T) \triangleq \frac{2 \pi}{2000}\left(\frac{N(k T)-N(k T-T)}{T}\right)
$$

where T is the time between samples and $N(k T)$ is the optical encoder count at time $k T$.

The error in estimating the speed by differentiation of the position measurements can be found as follows: At any discrete time $k T, N(k T)$ is in error by at most one encoder count. In particular, $N(k T)$ can be only too small by at most one encoder count $(N(k T)$ is never too large because of the way the encoder works). Thus, with $\theta(k T)$ the true position of the motor in radians,

$$
\theta(k T)=\frac{2 \pi}{2000} N(k T)+\frac{2 \pi}{2000} e(k T)
$$

where $e(k T)$ represents the positive fractional count that the encoder cannot sense; that is, $0 \leq e(k T)<1$ for all k. Then, the speed may be written as

$$
\begin{aligned}
\omega(k T) & =\left(\frac{\theta(k T)-\theta(k T-T)}{T}\right) \\
& =\frac{2 \pi}{2000}\left(\frac{N(k T)-N(k T-T)}{T}\right)+\frac{2 \pi}{2000}\left(\frac{e(k T)-e(k T-T)}{T}\right)
\end{aligned}
$$

where, as $0 \leq e(k T) \leq 1$ and $0 \leq e((k-1) T) \leq 1$, it follows that $|e(k T)-e(k T-T)| \leq 1$.

It is now straightforward to compute a bound on the error in estimating the speed. As the speed estimate is given by

$$
\hat{\omega}_{b d}(k T)=\frac{2 \pi}{2000}\left(\frac{N(k T)-N(k T-T)}{T}\right)
$$

and the difference $e(k T)-e(k T-T)$ is bounded by ± 1,

$$
\mid \text { Error in } \left.\hat{\omega}_{b d}(k T)\left|=\frac{2 \pi}{2000}\right| \frac{e(k T)-e(k T-T)}{T} \right\rvert\, \leq \frac{2 \pi}{2000} \frac{1}{T} .
$$

As the sampling rate increases (T gets smaller), the error gets larger. Of course, as the sampling rate decreases, the approximation

$$
\omega(k T) \approx\left(\frac{\theta(k T)-\theta(k T-T)}{T}\right)
$$

becomes less and less valid. The choice of T is a trade-off between the error and the accuracy of the finite difference in approximating the derivative. One way to decrease this error would be to use an encoder with higher resolution. Such encoders are typically more expensive and cannot operate at higher speeds (as the speed increases, a large number of pulses are coming in so fast that the pulse detection circuitry cannot keep up).

Figure 2.11 is a plot of the speed estimated by the backward difference method. In this example, the sample period is $T=0.5 \mathrm{msec}$ and the encoder
has a resolution of $2 \pi / 2000$ so that error bound is $(2 \pi / 2000) / T=6.28$ radians/sec.

FIGURE 2.11. Plot of the speed computed using the backward difference. The error bound in this example is $(2 \pi / 2000) /(0.0005)=6.28$ radians $/ \mathrm{sec}$.

2.2.2 Estimation of Speed Using an Observer

The differentiation of the position output from the optical encoder can result in a low-resolution, noisy estimate of the speed. Here a different approach is considered. With $\tau_{L}=0$ (the case $\tau_{L} \neq 0$ is explored in problem 13), the system equations for the DC motor are

$$
\begin{align*}
& \frac{d \theta}{d t}=\omega \tag{2.3}\\
& \frac{d \omega}{d t}=-(f / J) \omega+\left(K_{T} / J\right) i(t)
\end{align*}
$$

Now, consider an observer defined by

$$
\begin{align*}
& \frac{d \hat{\theta}}{d t}=\hat{\omega}+\ell_{1}(\theta-\hat{\theta}) \tag{2.4}\\
& \frac{d \hat{\omega}}{d t}=\left(K_{T} / J\right) i(t)-(f / J) \hat{\omega}+\ell_{2}(\theta-\hat{\theta})
\end{align*}
$$

where $\theta(t)=(2 \pi / 2000) N(t)$ is the (discretized) position measurement from the encoder and $\hat{\theta}, \hat{\omega}$ are the estimates of the position and speed, respectively. If ℓ_{1}, ℓ_{2} are chosen correctly, the solution $\hat{\omega}$ to (2.4) gives a good estimate of the speed. To motivate this approach, let $\ell_{1}=0$ and $\ell_{2}=0$ so that (2.4) becomes

$$
\begin{align*}
\frac{d \hat{\theta}}{d t} & =\hat{\omega} \tag{2.5}\\
\frac{d \hat{\omega}}{d t} & =\left(K_{T} / J\right) i(t)-(f / J) \hat{\omega}
\end{align*}
$$

and thus (2.5) is just a real-time simulation of the motor. That is, the actual current in the motor is sampled and brought into a computer processor, the equations (2.5) are integrated in realtime by the microprocessor (initialized with the same values of speed and position as the actual motor) and the solution $\hat{\omega}$ is then used as the estimate of the speed. However, there are problems with using (2.5) to estimate the speed. If there is any disturbance that causes the actual motor speed to change, then $\hat{\omega}$ will no longer be correct as such a disturbance is not modeled in (2.5) and thus $\hat{\omega}$ will not change to respond to it. After a disturbance has acted on the motor (e.g., suppose the motor shaft is bumped at some time $t=t_{d}$), its effect can be mathematically modeled as a change of initial conditions for equations (2.3). That is, the motor is described by the system of equations (2.3), but the initial condition $\omega\left(t_{d}+\right)$ is unknown $\left(\theta\left(t_{d}+\right)\right.$ is measured and thus known at t_{d}). This is where the error term $\theta-\hat{\theta}$ in (2.4) becomes so important. For example, suppose $\hat{\omega}<\omega$ for a period of time resulting in $\hat{\theta}<\theta$ (as $\hat{\theta}$ is computed by integrating $\hat{\omega}$). Then, with $\ell_{2}>0$, the error term $\ell_{2}(\theta-\hat{\theta})>0$ will cause $\hat{\omega}$ to increase in (2.4) reducing the error $\omega-\hat{\omega}$.

A mathematical argument is now presented to show that, by choosing the gains ℓ_{1}, ℓ_{2} appropriately, the estimate $\hat{\omega}(t)$ from (2.4) can be made to converge to $\omega(t)$ as fast as desired without knowledge of the initial condition for ω. To this end, let

$$
\begin{aligned}
& e_{1}(t)=\theta(t)-\hat{\theta}(t) \\
& e_{2}(t)=\omega(t)-\hat{\omega}(t)
\end{aligned}
$$

so that the dynamic equations for $e_{1}(t)$ and $e_{2}(t)$ are found by simply subtracting (2.4) from (2.3) to get

$$
\begin{align*}
& \frac{d e_{1}}{d t}=e_{2}-\ell_{1} e_{1} \tag{2.6}\\
& \frac{d e_{2}}{d t}=-(f / J) e_{2}-\ell_{2} e_{1}
\end{align*}
$$

Notice that the motor torque terms $\left(K_{T} / J\right) i(t)$ in (2.3) and (2.4) canceled each other out.

This system of differential equations can be solved by computing the Laplace transform of (2.6) to obtain

$$
\begin{aligned}
& s E_{1}(s)-e_{1}(0)=E_{2}(s)-\ell_{1} E_{1}(s) \\
& s E_{2}(s)-e_{2}(0)=-(f / J) E_{2}(s)-\ell_{2} E_{1}(s)
\end{aligned}
$$

In matrix notation, this is written as

$$
\left[\begin{array}{cc}
s+\ell_{1} & -1 \\
\ell_{2} & s+f / J
\end{array}\right]\left[\begin{array}{l}
E_{1}(s) \\
E_{2}(s)
\end{array}\right]=\left[\begin{array}{l}
e_{1}(0) \\
e_{2}(0)
\end{array}\right] .
$$

Multiplying both sides of this matrix equation on the left by the inverse of the 2×2 matrix gives

$$
\left[\begin{array}{c}
E_{1}(s) \\
E_{2}(s)
\end{array}\right]=\frac{1}{s^{2}+\left(\ell_{1}+f / J\right) s+\ell_{2}+\ell_{1}(f / J)}\left[\begin{array}{cc}
s+f / J & 1 \\
-\ell_{2} & s+\ell_{1}
\end{array}\right]\left[\begin{array}{c}
e_{1}(0) \\
e_{2}(0)
\end{array}\right]
$$

In particular,

$$
E_{2}(s)=\frac{-\ell_{2} e_{1}(0)+\left(s+\ell_{1}\right) e_{2}(0)}{s^{2}+\left(\ell_{1}+f / J\right) s+\ell_{2}+\ell_{1}(f / J)}
$$

It is required that $\omega(t)-\hat{\omega}(t)=e_{2}(t)=\mathcal{L}^{-1}\left(E_{2}(s)\right) \rightarrow 0$ as $t \rightarrow \infty$ for any values of $e_{1}(0)$ and $e_{2}(0)$. To do this, choose ℓ_{1} and ℓ_{2} so that

$$
\begin{aligned}
s^{2}+\left(\ell_{1}+f / J\right) s+\ell_{2}+\ell_{1}(f / J) & =\left(s+p_{1}\right)\left(s+p_{2}\right) \\
& =s^{2}+\left(p_{1}+p_{2}\right) s+p_{1} p_{2}
\end{aligned}
$$

with $p_{1}>0, p_{2}>0$. That is, choose

$$
\begin{aligned}
\ell_{1} & =p_{1}+p_{2}-f / J \\
\ell_{2} & =p_{1} p_{2}-\ell_{1}(f / J)
\end{aligned}
$$

Then

$$
\begin{aligned}
E_{2}(s) & =\frac{-\ell_{2} e_{1}(0)+\left(s+\ell_{1}\right) e_{2}(0)}{\left(s+p_{1}\right)\left(s+p_{2}\right)} \\
& =\frac{A}{\left(s+p_{1}\right)}+\frac{B}{\left(s+p_{2}\right)}
\end{aligned}
$$

so that

$$
e_{2}(t)=A e^{-\boldsymbol{p}_{1} t}+B e^{-p_{2} t} \rightarrow 0
$$

as $t \rightarrow \infty$ for any $e_{1}(0)=\theta(0)-\hat{\theta}(0)$ and $e_{2}(0)=\omega(0)-\hat{\omega}(0)$.

Remark The importance of the error term in the observer equations should be understood. Note that one would typically know that the initial
speed is zero and the initial position is also known (it is measured) so that $e_{1}(0)=\theta(0)-\hat{\theta}(0)=0$ and $e_{2}(0)=\omega(0)-\hat{\omega}(0)=0$. Consequently, even with $\ell_{1}=\ell_{2}=0$, the solution to (2.6) would be $e_{1}(t)=e_{2}(t) \equiv 0$. However, in practice if the observer was implemented with the gains equal to zero, it would not work. For example, there could be a torque disturbance acting on the motor for a short period of time. Specifically, let

$$
\tau_{L}(t)= \begin{cases}\tau_{L 0} & \text { for } t_{1} \leq t \leq t_{2} \\ 0 & \text { otherwise }\end{cases}
$$

Then, the second equation of (2.3) is

$$
\frac{d \omega}{d t}=-(f / J) \omega+\left(K_{T} / J\right) i(t)-\tau_{L}(t) / J
$$

During the time this disturbance torque acts on the motor, the observer's speed estimate given by (2.4) will diverge from the true value since the observer equations (2.4) do not have this disturbance modeled. However, after the disturbance has quit acting on the motor at time t_{2}, the observers equation are again valid and the error term $e_{1}(t)=\theta(t)-\hat{\theta}(t)$ will force the estimate $\hat{\omega}(t) \rightarrow \omega(t)$. That is, at time t_{2}, the motor and observer are correctly given by (2.3) and (2.4), respectively. Thus, the error system is correctly given by (2.5) with the "initial condition" $\hat{\omega}\left(t_{2}\right)$ at time t_{2} unknown. As shown above, in spite of $\hat{\omega}\left(t_{2}\right)$ being unknown, the error $e_{2}(t)=\omega(t)-\hat{\omega}(t) \rightarrow 0$ if the gains ℓ_{1}, ℓ_{2} are chosen properly.

Discretization of the Observer Equations

Using a simple Euler integration routine, the observer equations (2.4) may be implemented in discrete time as

$$
\begin{align*}
& \hat{\theta}((k+1) T)=\hat{\theta}(k T)+T \hat{\omega}(k T)+T \ell_{1} e_{1}(k T) \\
& \hat{\omega}((k+1) T)=\hat{\omega}(k T)-T(f / J) \hat{\omega}(k T)+T\left(K_{T} / J\right) i(k T)+T \ell_{2} e_{1}(k T) \tag{2.7}
\end{align*}
$$

However, the trapezoidal method described in Section 2.7.9 provides a more accurate method of numerical integration for a given sample period T.

2.3 Trajectory Generation

In this section, a simple way to generate a position and speed reference for a point-to-point move is developed. Assuming the load torque is zero, the
equations for the position and speed of the motor are

$$
\begin{align*}
\frac{d \theta}{d t} & =\omega \\
\frac{d \omega}{d t} & =-(f / J) \omega+\left(K_{T} / J\right) i_{r} \tag{2.8}
\end{align*}
$$

For a point-to-point move, it is required that the position reference trajectory $\theta_{r e f}(t)$ satisfy $\theta_{r e f}(0)=0$ and $\theta_{r e f}\left(t_{f}\right)=\theta_{f}$ where t_{f} is the final time and θ_{f} is the final desired position, that is, going from the "point" 0 to the "point" θ_{f}. There are many ways to do this, but consider the simple symmetric trajectory shown in Figure 2.12.

FIGURE 2.12. Reference speed and position profiles.
In order to have a smooth trajectory, that is, the acceleration reference is a continuous function of time, it is required that

$$
\begin{array}{rlrl}
\omega_{\text {ref }}(0) & =0 & & \dot{\omega}_{\text {ref }}(0)=0 \\
\omega_{\text {ref }}\left(t_{1}\right) & =\omega_{\max } & & \dot{\omega}_{\text {ref }}\left(t_{1}\right)=0 \\
\omega_{\text {ref }}(t) & =\omega_{\max } & & t_{1} \leq t \leq t_{2} \\
\omega_{\text {ref }}\left(t_{2}\right)=\omega_{\max } & & \dot{\omega}_{\text {ref }}\left(t_{2}\right)=0 \\
\omega_{\text {ref }}\left(t_{3}\right)=0 & & \dot{\omega}_{\text {ref }}\left(t_{3}\right)=0 .
\end{array}
$$

It is also required that $t_{3}-t_{2}=t_{1}$ (i.e., $t_{3}=t_{1}+t_{2}$) so that the time required to decelerate the motor is the same as the amount of time to accelerate it. The speed reference is made symmetric by setting

$$
\omega_{r e f}(t)=\omega_{r e f}\left(t_{3}-t\right)
$$

for $t_{2} \leq t \leq t_{3}$. As the final position is to be $\theta_{r e f}$, the following must also hold:

$$
\int_{0}^{t_{f}} \omega_{r e f}(\tau) d \tau=\theta_{f}
$$

There are still many ways to define a reference trajectory and still satisfy all these conditions. To be specific, consider a polynomial reference trajectory given by

$$
\omega_{r e f}(t)=c_{1} t^{2}+c_{2} t^{3} \quad \text { for } 0 \leq t \leq t_{1}
$$

which clearly satisfies $\omega_{r e f}(0)=0, \dot{\omega}_{r e f}(0)=0$. The conditions at t_{1} become

$$
\begin{aligned}
& \omega_{r e f}\left(t_{1}\right)=c_{1} t_{1}^{2}+c_{2} t_{1}^{3}=\omega_{\max } \\
& \dot{\omega}_{r e f}\left(t_{1}\right)=2 c_{1} t_{1}+3 c_{2} t_{1}^{2}=0
\end{aligned}
$$

or

$$
\left[\begin{array}{cc}
t_{1}^{2} & t_{1}^{3} \\
2 t_{1} & 3 t_{1}^{2}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
\omega_{\max } \\
0
\end{array}\right] .
$$

This has the unique solution

$$
\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{t_{1}^{4}}\left[\begin{array}{cc}
3 t_{1}^{2} & -t_{1}^{3} \\
-2 t_{1} & t_{1}^{2}
\end{array}\right]\left[\begin{array}{c}
\omega_{\max } \\
0
\end{array}\right]=\left[\begin{array}{c}
+3 \omega_{\max } / t_{1}^{2} \\
-2 \omega_{\max } / t_{1}^{3}
\end{array}\right] .
$$

The distance traveled at time t_{1} is then

$$
\begin{aligned}
\theta_{r e f}\left(t_{1}\right) & =\int_{0}^{t_{1}} \omega_{r e f}(\tau) d \tau=c_{1} t_{1}^{3} / 3+c_{2} t_{1}^{4} / 4=\frac{3 \omega_{\max }}{t_{1}^{2}} \frac{t_{1}^{3}}{3}-\frac{2 \omega_{\max }}{t_{1}^{3}} \frac{t_{1}^{4}}{4} \\
& =\frac{\omega_{\max } t_{1}}{2}
\end{aligned}
$$

The speed reference trajectory is

$$
\omega_{r e f}(t)= \begin{cases}c_{1} t^{2}+c_{2} t^{3} & 0 \leq t \leq t_{1} \\ \omega_{\max } & t_{1} \leq t \leq t_{2} \\ c_{1}\left(t_{3}-t\right)^{2}+c_{2}\left(t_{3}-t\right)^{3} & t_{2} \leq t \leq t_{3}\end{cases}
$$

As the total distance traveled at time t_{3} must be θ_{f}, it follows that

$$
\begin{aligned}
\theta_{f} & =\int_{0}^{t_{3}} \omega_{r e f}(\tau) d \tau=2 \theta_{r e f}\left(t_{1}\right)+\omega_{\max }\left(t_{2}-t_{1}\right) \\
& =2 \frac{\omega_{\max } t_{1}}{2}+\omega_{\max }\left(t_{2}-t_{1}\right) \\
& =\omega_{\max } t_{2}
\end{aligned}
$$

This then puts a constraint on the choices of $\omega_{\max }$ and t_{2}. For example, if θ_{f} is specified, then $\omega_{\max }=\theta_{f} / t_{2}$.

The position reference is just the integral of the speed reference. Consequently,

$$
\theta_{r e f}(t)= \begin{cases}c_{1} t^{3} / 3+c_{2} t^{4} / 4 & 0 \leq t \leq t_{1} \\ \omega_{\max } t_{1} / 2+\omega_{\max }\left(t-t_{1}\right) & t_{1} \leq t \leq t_{2} \\ \omega_{\max } t_{2}-c_{1}\left(t_{3}-t\right)^{3} / 3-c_{2}\left(t_{3}-t\right)^{4} / 4 & t_{2} \leq t \leq t_{3}\end{cases}
$$

Finally, the reference acceleration is just the derivative of the speed reference given by

$$
\alpha_{T e f}(t)= \begin{cases}2 c_{1} t+3 c_{2} t^{2} & 0 \leq t \leq t_{1} \\ 0 & t_{1} \leq t \leq t_{2} \\ -2 c_{1}\left(t_{3}-t\right)-3 c_{2}\left(t_{3}-t\right)^{2} & t_{2} \leq t \leq t_{3}\end{cases}
$$

The corresponding current reference $i_{r e f}$ is then found setting ω equal $\omega_{r e f}$ in (2.8) and solving for the current to obtain

$$
i_{r e f}(t) \triangleq \frac{J \alpha_{r e f}(t)+f \omega_{r e f}(t)}{K_{T}}
$$

By design, the acceleration, speed, and position references are continuous functions of time. Figure 2.13 is a plot of the acceleration reference $\alpha_{r e f}(t)$ and the jerk reference $j_{r e f} \triangleq d \alpha_{r e f} / d t$, where it is seen that $j_{\text {ref }}$ is not continuous at $t=0, t_{1}, t_{2}$, and t_{3}. In the figure

$$
\begin{aligned}
\alpha_{\max } & =(3 / 2) \omega_{\max } / t_{1} \\
j_{\max } & =-6 \omega_{\max } / t_{1}^{2} .
\end{aligned}
$$

Problem 17 considers a trajectory design for which the jerk is continuous.

FIGURE 2.13. Left: $\alpha_{r e f}$ versus time. Right: $j_{r e f}$ versus time.

Specifying a Reference Trajectory

A typical scenario is that θ_{f} is given and that one chooses t_{1} and t_{2} with $t_{1}<t_{2}$. Then t_{3} and $\omega_{\max }$ are specified by $t_{3}=t_{2}+t_{1}$ and $\omega_{\max }=\theta_{f} / t_{1}$, respectively. This results in a mechanical reference trajectory

$$
\left(\theta_{r e f}(t), \omega_{r e f}(t), \alpha_{r e f}(t), j_{r e f}(t)\right)
$$

The electrical reference trajectory is then determined by

$$
\begin{aligned}
i_{r e f}(t) & \triangleq \frac{J \alpha_{r e f}(t)+f \omega_{r e f}(t)}{K_{T}} \\
v_{r e f}(t) & \triangleq L \frac{d i_{r e f}(t)}{d t}+R i_{r e f}(t)+K_{b} \omega_{r e f}(t)
\end{aligned}
$$

How does one choose t_{1}, t_{2} ? One typically wants to rotate the motor as fast as possible and therefore chooses t_{1} and t_{2} to be small. However, the
smaller the values of t_{1} and t_{2}, the larger the peak values of $\omega_{r e f}(t), \alpha_{r e f}(t)$ and therefore the peak values of $i_{r e f}(t)$ and $v_{\text {ref }}(t)$. It is then a little trial and error to choose values for t_{1} and t_{2} and check that $\left|i_{r e f}\right| \leq I_{\max }$, $\left|v_{\text {ref }}\right| \leq V_{\text {max }}$.

2.4 Design of a State Feedback Tracking Controller

Assuming current command, a state-space model of the DC motor is

$$
\begin{align*}
& \frac{d \theta}{d t}=\omega \\
& \frac{d \omega}{d t}=\left(K_{T} / J\right) i_{r}-(f / J) \omega-\tau_{L} / J \tag{2.9}
\end{align*}
$$

where the state variables are θ, ω, the input is i_{r} and the disturbance is τ_{L}. The terminology "state-space" model refers to having a system of firstorder differential equations, that is, a first-order derivative on one side of the equation and a (possibly) nonlinear function of the state variables, inputs, and disturbances on the other side of the equation.

The reference trajectory and reference input are chosen to satisfy

$$
\begin{align*}
& \frac{d \theta_{r e f}}{d t}=\omega_{r e f} \tag{2.10}\\
& \frac{d \omega_{r e f}}{d t}=\left(K_{T} / J\right) i_{r e f}-(f / J) \omega_{r e f}
\end{align*}
$$

Define

$$
\begin{aligned}
& e_{1}(t)=\theta_{r e f}(t)-\theta(t) \\
& e_{2}(t)=\omega_{r e f}(t)-\omega(t)
\end{aligned}
$$

so that subtracting (2.9) from (2.10) results in the error system

$$
\begin{align*}
& \frac{d e_{1}}{d t}=e_{2} \\
& \frac{d e_{2}}{d t}=-(f / J) e_{2}+\tau_{L} / J+w \tag{2.11}
\end{align*}
$$

with

$$
\begin{equation*}
w \triangleq \frac{K_{T}}{J}\left(i_{r e f}-i_{r}\right) \tag{2.12}
\end{equation*}
$$

Here, i_{r} is the input the control engineer is free to specify. However, the approach here is to specify w such that $e_{1}(t) \rightarrow 0$ and $e_{2}(t) \rightarrow 0$ as $t \rightarrow \infty$. Then i_{r} is chosen so that (2.12) holds. Specifically, w is specified by

$$
\begin{equation*}
w=-\left(K_{0} \int_{0}^{t} e_{1}(\tau) d \tau+K_{1} e_{1}(t)+K_{2} e_{2}(t)\right) \tag{2.13}
\end{equation*}
$$

which results in accurate tracking of the trajectory (2.10) provided that the gains are chosen appropriately. By (2.12), this then requires choosing the input i_{r} as

$$
\begin{equation*}
i_{r}=i_{r e f}+\frac{J}{K_{T}}\left(K_{0} \int_{0}^{t} e_{1}(\tau) d \tau+K_{1} e_{1}(t)+K_{2} e_{2}(t)\right) \tag{2.14}
\end{equation*}
$$

To find the gains, define

$$
e_{0}(t) \triangleq \int_{0}^{t} e_{1}(\tau) d \tau
$$

so that with the state feedback (2.13) and the system (2.11), one may write

$$
\begin{align*}
\frac{d e_{0}}{d t} & =e_{1} \\
\frac{d e_{1}}{d t} & =e_{2} \tag{2.15}\\
\frac{d e_{2}}{d t} & =-(f / J) e_{2}-K_{0} e_{0}-K_{1} e_{1}-K_{2} e_{2}+\tau_{L} / J
\end{align*}
$$

To solve (2.15), its Laplace transform is computed as

$$
\begin{aligned}
& s E_{0}(s)-e_{0}(0)=E_{1}(s) \\
& s E_{1}(s)-e_{1}(0)=E_{2}(s) \\
& s E_{2}(s)-e_{2}(0)=-K_{0} E_{0}(s)-K_{1} E_{1}(s)-\left(K_{2}+f / J\right) E_{2}(s)+\tau_{L}(s) / J
\end{aligned}
$$

In matrix notation, one has

$$
\left[\begin{array}{ccc}
s & -1 & 0 \tag{2.16}\\
0 & s & -1 \\
K_{0} & K_{1} & s+f / J+K_{2}
\end{array}\right]\left[\begin{array}{l}
E_{0}(s) \\
E_{1}(s) \\
E_{2}(s)
\end{array}\right]=\left[\begin{array}{c}
e_{0}(0) \\
e_{1}(0) \\
e_{2}(0)
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
\tau_{L}(s) / J
\end{array}\right]
$$

where the inverse of the 3×3 matrix on the left-hand side of (2.16) is given by

$$
\begin{aligned}
& \frac{1}{s^{3}+\left(K_{2}+f / J\right) s^{2}+K_{1} s+K_{0}} \times \\
& {\left[\begin{array}{ccc}
s^{2}+\left(K_{2}+f / J\right) s+K_{1} & s+K_{2}+f / J & 1 \\
-K_{0} & s^{2}+\left(K_{2}+f / J\right) s & s \\
-K_{0} s & -\left(K_{1} s+K_{0}\right) & s^{2}
\end{array}\right]}
\end{aligned}
$$

Let $\tau_{L}=0$ (the case $\tau_{L} \neq 0$ is explored in problems 21 and 22). Multiplying both sides of (2.16) on the left by this inverse matrix, the Laplace transform of the state variables are found to be
$E_{0}(s)=\frac{\left(s^{2}+\left(K_{2}+f / J\right) s+K_{1}\right) e_{0}(0)+\left(s+K_{2}+f / J\right) e_{1}(0)+e_{2}(0)}{s^{3}+\left(K_{2}+f / J\right) s^{2}+K_{1} s+K_{0}}$
$E_{1}(s)=\frac{-K_{0} e_{0}(0)+\left(s^{2}+\left(K_{2}+f / J\right) s\right) e_{1}(0)+s e_{2}(0)}{s^{3}+\left(K_{2}+f / J\right) s^{2}+K_{1} s+K_{0}}$
$E_{2}(s)=\frac{-K_{0} s e_{0}(0)-\left(K_{1} s+K_{0}\right) e_{1}(0)+s^{2} e_{2}(0)}{s^{3}+\left(K_{2}+f / J\right) s^{2}+K_{1} s+K_{0}}$.
Note that all three Laplace transforms have the same denominator given by $s^{3}+\left(K_{2}+f / J\right) s^{2}+K_{1} s+K_{0}$. This is the characteristic equation of the system. Using the gains K_{0}, K_{1}, and K_{2}, the roots of the characteristic equation may be assigned to any desired values. For example, let

$$
\begin{aligned}
a(s) & =\left(s+r_{1}\right)\left(s+r_{2}\right)\left(s+r_{3}\right) \\
& =s^{3}+\left(r_{1}+r_{2}+r_{3}\right) s^{2}+\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right) s+r_{1} r_{2} r_{3}
\end{aligned}
$$

be the desired characteristic polynomial and then choose the gains as

$$
\begin{align*}
& K_{2}=r_{1}+r_{2}+r_{3}-f / J \\
& K_{1}=r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3} \tag{2.18}\\
& K_{0}=r_{1} r_{2} r_{3} .
\end{align*}
$$

With this choice of gains, the closed-loop poles are $p_{1}=-r_{1}, p_{2}=-r_{2}$, and $p_{3}=-r_{3}$. Assuming these poles are distinct, $E_{1}(s)$ in (2.17) becomes

$$
\begin{aligned}
E_{1}(s) & =\frac{-K_{0} e_{0}(0)+\left(s^{2}+\left(K_{2}+f / J\right) s\right) e_{1}(0)+s e_{2}(0)}{\left(s+r_{1}\right)\left(s+r_{2}\right)\left(s+r_{3}\right)} \\
& =\frac{A}{s+r_{1}}+\frac{B}{s+r_{2}}+\frac{C}{s+r_{3}}
\end{aligned}
$$

where A, B, and C are constants. The inverse Laplace transform of $E_{1}(s)$ is then

$$
e_{1}(t)=A e^{-r_{1} t}+B e^{-r_{2} t}+C e^{-r_{3} t} \rightarrow 0
$$

as $t \rightarrow \infty$. The further the closed-loop poles are in the left-half plane, the faster $e_{1}(t) \rightarrow 0$ and thus, the faster $\theta(t) \rightarrow \theta_{r e f}(t)$. However, note that the further in the left-half plane the closed-loop poles are chosen, the larger r_{1}, r_{2}, and r_{3} and, thus, the larger the gains K_{0}, K_{1} and K_{2}. The difficulty with choosing large values for the feedback gains is that the resulting feedback

$$
i_{r}=i_{r e f}+\frac{J}{K_{T}}\left(K_{0} \int_{0}^{t} e_{1}(\tau) d \tau+K_{1} e_{1}(t)+K_{2} e_{2}(t)\right)
$$

can be quite large and saturate the amplifier, ${ }^{1}$ even if the errors e_{0}, e_{1}, and e_{2} are small. The complete system is illustrated in the block diagram of 2.14.

FIGURE 2.14. Block diagram for the state-space controller.
Note that if the desired characteristic equation had been of the form

$$
a(s)=\left(s+r_{1}\right)\left(s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}\right)
$$

where $0<\zeta<1, \omega_{n}>0$, then it is again easy to find the corresponding gains. It is up to the control engineer to choose the closed-loop pole locations, or equivalently, the gains. Typically, if the poles are not far enough in the left-half plane, the response is too slow. On the other hand, if the poles are chosen too far in the left-half plane, the amplifier might saturate due to the large value of the gains. This procedure of varying the location of the closed-loop poles by varying the gains is referred to as "tuning the system".

The control designer also must choose the observer poles $-p_{1},-p_{2}$. One typically wants $\hat{\omega}(t) \rightarrow \omega(t)$ much faster than the rate at which $\omega_{\text {ref }}(t)$ $\hat{\omega}(t) \rightarrow 0$. This is simply because one wants the estimate $\hat{\omega}(t)$ to close to the value $\omega(t)$ so that feeding back $K_{1}\left(\omega_{r e f}(t)-\hat{\omega}(t)\right)$ will be essentially the same as feeding back $K_{1}\left(\omega_{r e f}(t)-\omega(t)\right)$. In practice, the observer poles $-p_{i}$ are taken to be $5-10$ times further in the left-half plane than the controller poles $-r_{i}$.

[^14]
2.5 Nested Loop Control Structure*

A nested loop control structure is shown in Figure 2.15. This controller has two nested ${ }^{2}$ PID (proportional, integral plus derivative) control loops and is common in industrial applications. Part of its popularity is due to the simplicity in tuning (adjusting) the gains of the controller. Specifically, with the position loop gains set to zero, the gains $K_{\omega P}$ and $K_{\omega I}$ of the speed loop can be tuned first online until a satisfactory speed response is obtained. ${ }^{3}$ With these values set, the gains $K_{\theta P}$ and $K_{\theta I}$ of the position loops are then tuned until a satisfactory position response is obtained. The signal denoted as $\bar{\omega}_{\text {ref }}$ (the output of the position loop) is referred to as the "speed reference" since this would be the speed reference if the position loop was removed. ${ }^{4}$

FIGURE 2.15. Nested loop control structure. The gains of the speed loop are tuned first and then the gains of the position loop are tuned.

Taking the transfer function of the system equations

$$
\begin{aligned}
\frac{d \omega}{d t} & =\frac{K_{T}}{J} i_{r}-\frac{f}{J} \omega-\frac{\tau_{L}}{J} \\
\frac{d \theta}{d t} & =\omega
\end{aligned}
$$

gives

$$
\begin{aligned}
\omega(s) & =G_{m}(s)\left(i_{r}(s)-\frac{\tau_{L}(s)}{K_{T}}\right) \\
\theta(s) & =\frac{1}{s} \omega(s)
\end{aligned}
$$

where

$$
\begin{equation*}
G_{m}(s) \triangleq \frac{K_{T} / J}{s+f / J} \tag{2.19}
\end{equation*}
$$

[^15]To simplify the discussion, let $K_{\omega I}=0$ (see problem 24) and substitute

$$
i_{r}(s)=K_{\omega P}\left(\bar{\omega}_{r e f}(s)-\omega(s)\right)
$$

into the previous expression for $\omega(s)$ to obtain

$$
\begin{equation*}
\omega(s)=G_{m}(s)\left(K_{\omega P}\left(\bar{\omega}_{r e f}(s)-\omega(s)\right)\right)-G_{m}(s) \frac{\tau_{L}(s)}{K_{T}} \tag{2.20}
\end{equation*}
$$

The output $\omega(s)$ in terms of the transfer functions from $\bar{\omega}_{r e f}(s)$ to $\theta(s)$ and $\tau_{L}(s)$ to $\theta(s)$ is then

$$
\begin{equation*}
\omega(s)=\frac{K_{\omega P} G_{m}(s)}{1+K_{\omega P} G_{m}(s)} \bar{\omega}_{r e f}(s)-\frac{G_{m}(s)}{1+K_{\omega P} G_{m}(s)} \frac{\tau_{L}(s)}{K_{T}} . \tag{2.21}
\end{equation*}
$$

The position output is then simply

$$
\theta(s)=\frac{1}{s} \frac{K_{\omega P} G_{m}(s)}{1+K_{\omega P} G_{m}(s)} \bar{\omega}_{r e f}(s)-\frac{1}{s} \frac{G_{m}(s)}{1+K_{\omega P} G_{m}(s)} \frac{\tau_{L}(s)}{K_{T}} .
$$

With $E(s) \triangleq \theta_{\text {ref }}(s)-\theta(s)$ and $\bar{\omega}_{r e f}(s)=\left(\frac{K_{\theta P s}+K_{\theta I}}{s}\right) E(s)$, it follows that

$$
\begin{aligned}
E(s) \triangleq & \theta_{r e f}(s)-\theta(s) \\
= & \theta_{r e f}(s)-\left(\frac{1}{s} \frac{K_{\omega P} G_{m}(s)}{1+K_{\omega P} G_{m}(s)} \frac{K_{\theta P} s+K_{\theta I}}{s} E(s)\right. \\
& \left.-\frac{1}{s} \frac{G_{m}(s)}{1+K_{\omega P} G_{m}(s)} \frac{\tau_{L}(s)}{K_{T}}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
E(s) \triangleq & \frac{1}{1+\frac{1}{s} \frac{K_{\omega P} G_{m}(s)}{1+K_{\omega P} G_{m}(s)}\left(\frac{K_{\theta P} s+K_{\theta I}}{s}\right)} \theta_{r e f}(s) \\
& +\frac{1}{1+\frac{1}{s} \frac{K_{\omega P} G_{m}(s)}{1+K_{\omega P} G_{m}(s)}\left(\frac{K_{\theta P} s+K_{\theta I}}{s}\right)} \frac{1}{s} \frac{G_{m}(s)}{1+K_{\omega P} G_{m}(s)} \frac{\tau_{L}(s)}{K_{T}} .
\end{aligned}
$$

Then as

$$
\frac{K_{\omega P} G_{m}(s)}{1+K_{\omega P} G_{m}(s)}=\frac{K_{\omega P} K_{T} / J}{s+f / J+K_{\omega P} K_{T} / J}
$$

one may write $E(s)=G_{1}(s) \theta_{r e f}(s)+G_{2}(s) \tau_{L}(s)$, where

$$
\begin{aligned}
G_{1}(s) & \triangleq \frac{1}{1+\frac{1}{s} \frac{K_{\omega P} K_{T} / J}{s+f / J+K_{\omega P} K_{T} / J}\left(\frac{K_{\theta P} s+K_{\theta I}}{s}\right)} \\
& =\frac{s^{2}\left(s+f / J+K_{\omega P} K_{T} / J\right)}{s^{2}\left(s+f / J+K_{\omega P} K_{T} / J\right)+K_{\omega P} K_{T} / J\left(K_{\theta P} s+K_{\theta I}\right)} \\
& =\frac{s^{2}\left(s+f / J+K_{\omega P} K_{T} / J\right)}{s^{3}+s^{2}\left(f / J+K_{\omega P} K_{T} / J\right)+\left(K_{\theta P} K_{\omega P} K_{T} / J\right) s+K_{\theta I} K_{\omega P} K_{T} / J}
\end{aligned}
$$

and

$$
\begin{aligned}
G_{2}(s) & \triangleq \frac{1}{1+\frac{1}{s} \frac{K_{\omega P} G_{m}(s)}{1+K_{\omega P} G_{m}(s)}\left(\frac{K_{\theta P} s+K_{\theta I}}{s}\right)} \frac{1}{s} \frac{G_{m}(s)}{1+K_{\omega P} G_{m}(s)} \frac{1}{K_{T}} \\
& =\frac{1}{1+\frac{1}{s} \frac{K_{\omega P} K_{T} / J}{\left(s+f / J+K_{\omega P} K_{T} / J\right)}\left(\frac{K_{\theta P} s+K_{\theta I}}{s}\right)} \frac{1}{s} \frac{K_{T} / J}{s+f / J+K_{\omega P} K_{T} / J} \frac{1}{K_{T}} \\
& =\frac{s^{2}}{s^{2}\left(s+f / J+K_{\omega P} K_{T} / J\right)+\left(K_{\omega P} K_{T} / J\right)\left(K_{\theta P} s+K_{\theta I}\right)} \frac{1}{s} \frac{1}{J} \\
& =\frac{s / J}{s^{3}+s^{2}\left(f / J+K_{\omega P} K_{T} / J\right)+\left(K_{\theta P} K_{\omega P} K_{T} / J\right) s+K_{\theta I} K_{\omega P} K_{T} / J} .
\end{aligned}
$$

Both $G_{1}(s)$ and $G_{2}(s)$ have the same denominator (characteristic polynomial) given by

$$
s^{3}+s^{2}\left(f / J+K_{\omega P} K_{T} / J\right)+\left(K_{\theta P} K_{\omega P} K_{T} / J\right) s+K_{\theta I} K_{\omega P} K_{T} / J .
$$

Suppose it is desired to have the closed-loop poles at $-r_{1},-r_{2}$, and $-r_{3}$ with $r_{1}>0, r_{2}>0, r_{3}>0$. The closed-loop characteristic polynomial is then of the form

$$
\left(s+r_{1}\right)\left(s+r_{2}\right)\left(s+r_{3}\right)=s^{3}+\left(r_{1}+r_{2}+r_{3}\right) s^{2}+\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right) s+r_{1} r_{2} r_{3}
$$

This requires setting

$$
\begin{align*}
f / J+K_{\omega P} K_{T} / J & =r_{1}+r_{2}+r_{3} \\
K_{\theta P} K_{\omega P} K_{T} / J & =r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3} \tag{2.22}\\
K_{\theta I} K_{\omega P} K_{T} / J & =r_{1} r_{2} r_{3} .
\end{align*}
$$

Solving (2.22) for the gains gives

$$
\begin{align*}
K_{\omega P} & =\frac{r_{1}+r_{2}+r_{3}-f / J}{K_{T} / J} \\
K_{\theta P} & =\frac{r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}}{K_{\omega P} K_{T} / J} \tag{2.23}\\
K_{\theta I} & =\frac{r_{1} r_{2} r_{3}}{K_{\omega P} K_{T} / J} .
\end{align*}
$$

With this choice of gains, ${ }^{5}$ the error becomes

$$
\begin{align*}
E(s) & =E_{1}(s)+E_{2}(s) \tag{2.24}\\
& =\frac{s^{2}\left(s+f / J+K_{\omega P} K_{T} / J\right)}{\left(s+r_{1}\right)\left(s+r_{2}\right)\left(s+r_{3}\right)} \theta_{r e f}(s)+\frac{s / J}{\left(s+r_{1}\right)\left(s+r_{2}\right)\left(s+r_{3}\right)} \tau_{L}(s) .
\end{align*}
$$

[^16]The objective here is to have $e(t)=\mathcal{L}^{-1}\{E(s)\} \rightarrow 0$ as $t \rightarrow \infty$. To study this, expressions for $\theta_{r e f}(s)$ and $\tau_{L}(s)$ are needed. To proceed, consider a trajectory where it is desired to have the motor rotate from $\theta(0)=0$ to $\theta\left(t_{f}\right)=\theta_{f}$. A reference trajectory to do this is given in Figure 2.16. The position reference $\theta_{r e f}(t)$ is given by

$$
\begin{align*}
& \theta_{r e f}(t)= \\
& \begin{cases}\frac{\omega_{\max }}{2 t_{1}} t^{2} & 0 \leq t \leq t_{1} \\
\omega_{\max } t_{1} / 2+\omega_{\max }\left(t-t_{1}\right) & t_{1} \leq t \leq t_{2} \\
\omega_{\max } t_{1} / 2+\omega_{\max }\left(t_{2}-t_{1}\right)+\frac{\omega_{\max } t_{1}^{2}}{2 t_{1}}-\frac{\omega_{\max }}{2 t_{1}}\left(t_{f}-t\right)^{2} & t_{2} \leq t \leq t_{f} \\
\omega_{\max } t_{2} & t \geq t_{f}\end{cases} \tag{2.25}
\end{align*}
$$

where $\omega_{\text {max }}=\theta_{f} / t_{2}$ and $t_{f} \triangleq t_{2}+t_{1}$. The corresponding speed reference $\omega_{r e f}(t)$ is given by

$$
\omega_{r e f}(t)=\left\{\begin{array}{lc}
\frac{\omega_{\max }}{t_{1}} t & 0 \leq t \leq t_{1} \tag{2.26}\\
\omega_{\max } & t_{1} \leq t \leq t_{2} \\
\frac{\omega_{\mathrm{max}}}{t_{1}}\left(t_{f}-t\right) & t_{2} \leq t \leq t_{f} \\
0 & t \geq t_{f}
\end{array}\right.
$$

and is shown in Figure 2.16(b).

FIGURE 2.16. (a) Position reference. (b) Speed reference.

The expression for $\theta_{r e f}(t)$ can also be obtained by simply integrating the speed reference $\omega_{\text {ref }}(t) \triangleq d \theta_{r e f}(t) / d t$. Note that although $\omega_{r e f}(t)$ is continuous, $\alpha_{r e f}(t)=d \omega_{r e f}(t) / d t$ is not and $j_{r e f}(t)=d \alpha_{r e f}(t) / d t$ has impulses at $t=0, t_{1}, t_{2}, t_{f}$. The various components of $\theta_{r e f}(t)$ have Laplace transforms given by $\left[u_{s}(t)\right.$ is the unit step function]

$$
\begin{aligned}
\mathcal{L}\left\{\omega_{\max } \frac{t^{2}}{2 t_{1}} u_{s}(t)\right\}= & \frac{\omega_{\max }}{t_{1}} \frac{1}{s^{3}} \\
\mathcal{L}\left\{\left(\omega_{\max } \frac{t_{1}}{2}+\omega_{\max }\left(t-t_{1}\right)\right) u_{s}(t)\right\}= & -\omega_{\max } \frac{t_{1}}{2} \frac{1}{s}+\omega_{\max } \frac{1}{s^{2}} \\
\mathcal{L}\left\{\left(\omega_{\max } t_{2}-\omega_{\max } \frac{\left(t_{f}-t\right)^{2}}{2 t_{1}}\right) u_{s}(t)\right\}= & \omega_{\max } t_{2} \frac{1}{s} \\
& -\omega_{\max }\left(\frac{t_{f}^{2}}{2 t_{1}} \frac{1}{s}-\frac{t_{f}}{t_{1}} \frac{1}{s^{2}}+\frac{1}{t_{1}} \frac{1}{s^{3}}\right. \\
\mathcal{L}\left\{\omega_{\max } t_{2} u_{s}(t)\right\}= & \omega_{\max } t_{2} \frac{1}{s} .
\end{aligned}
$$

Finally, the Laplace transform of a constant load torque $\tau_{L}(t)=\tau_{L 0} u_{s}(t)$ acting on the motor is

$$
\mathcal{L}\left\{\tau_{L}(t)\right\}=\frac{\tau_{L 0}}{s} .
$$

The interest here is to analyze the system for tracking and disturbance rejection, that is, to see if it can track $\theta_{\text {ref }}(t)$ while a constant load disturbance $\tau_{L 0}$ acts on the motor.

From the above Laplace transform expressions, $\theta_{r e f}(s)$ and $\tau_{L}(s)$ are of the form (more precisely, see problem 26)

$$
\begin{aligned}
\theta_{r e f}(s) & =\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s^{3}} \\
\tau_{L}(s) & =\tau_{L 0} \frac{1}{s} .
\end{aligned}
$$

for some constants A, B, and C. Substituting into the above expression for
$E(s)$ gives

$$
\begin{aligned}
E(s)= & E_{1}(s)+E_{2}(s) \\
= & \frac{s^{2}\left(s+f / J+K_{\omega P} K_{T} / J\right)}{\left(s+r_{1}\right)\left(s+r_{2}\right)\left(s+r_{3}\right)}\left(\frac{A}{s}+\frac{B}{s^{2}}+\frac{C}{s^{3}}\right) \\
& +\frac{s}{\left(s+r_{1}\right)\left(s+r_{2}\right)\left(s+r_{3}\right)} \frac{1}{J} \frac{\tau_{L 0}}{s} \\
= & \frac{s+f / J+K_{\omega} p K_{T} / J}{\left(s+r_{1}\right)\left(s+r_{2}\right)\left(s+r_{3}\right)}\left(A s+B+\frac{C}{s}\right) \\
& +\frac{1}{\left(s+r_{1}\right)\left(s+r_{2}\right)\left(s+r_{3}\right)} \frac{\tau_{L 0}}{J} \\
= & \frac{c_{1}}{s+r_{1}}+\frac{c_{2}}{s+r_{2}}+\frac{c_{3}}{s+r_{3}}+\frac{c_{4}}{s}+\frac{d_{1}}{s+r_{1}}+\frac{d_{2}}{s+r_{2}}+\frac{d_{3}}{s+r_{3}}
\end{aligned}
$$

where

$$
\begin{aligned}
c_{4} & =\lim _{s \rightarrow 0} s E_{1}(s)=\frac{f / J+K_{\omega P} K_{T} / J}{r_{1} r_{2} r_{3}} C \\
& =\frac{r_{1}+r_{2}+r_{3}}{r_{1} r_{2} r_{3}} C \neq 0 \text { if } C \neq 0
\end{aligned}
$$

Note that $C \neq 0$ if there is a parabolic term in the input (i.e., $t^{2} / 2$). However, if r_{1}, r_{2} and r_{3} are large so that the closed-loop poles are far in the left-half plane, then c_{4} will be small. In the time domain,

$$
\begin{aligned}
e(t) & =c_{1} e^{-r_{1} t}+c_{2} e^{-r_{2} t}+c_{3} e^{-r_{3} t}+c_{4} u_{s}(t)+d_{1} e^{-r_{1} t}+d_{2} e^{-r_{2} t}+d_{3} e^{-r_{3} t} \\
& \rightarrow c_{4} \text { as } t \rightarrow \infty .
\end{aligned}
$$

This control structure cannot track parabolic type inputs (i.e., $t^{2} / 2$) with zero steady-state error, but if the poles are far enough in the left-half plane, then it will track such an input for all practical purposes. Thus good tracking of the reference input with a constant load torque on the motor can be obtained if the poles can be put far enough in the left-half plane (i.e., if the gains can be chosen large enough without causing the amplifier to saturate).

Using the state space approach, it was shown that any reference trajectory of the form $\theta_{r e f}(t), \omega_{\text {ref }}(t)=d \theta_{\text {ref }}(t) / d t, \alpha_{\text {ref }}(t)=d \omega_{r e f}(t) / d t$ with reference input $i_{r e f}(t)=\left(J \alpha_{r e f}(t)+f \omega_{r e f}(t)\right) / K_{T}$ can be tracked with zero steady-state error even with a constant load torque acting on the motor. Recall that the reference trajectory used for the state feedback controller had a continuous acceleration and the corresponding position reference had the polynomial terms $t^{3} / 3$ and $t^{4} / 4$ with Laplace transforms $2 / s^{4}, 6 / s^{5}$, respectively. The PID nested loop controller above cannot track this reference profile with zero steady-state error.

Another important comparison with the state feedback controller is that of setting the gains. The relationship between the feedback gains and the
coefficients of the desired closed-loop characteristic polynomial is always linear in the case of the state feedback controller as illustrated in (2.18). However, in the case of the feedback structure of Figure 2.15, the relationship between the gains and the closed-loop poles is nonlinear [see equation (2.22) and problem 23]. Though (2.22) was readily solvable for the gains, higher-order systems will not be (see problems 24 and 27).

2.6 Identification of the DC Motor Parameters*

Recall the mathematical model of the DC motor given by

$$
\begin{align*}
L \frac{d i}{d t} & =-R i(t)-K_{b} \omega(t)+v(t) \\
J \frac{d \omega}{d t} & =-f \omega(t)+K_{T} i(t) \tag{2.27}\\
\frac{d \theta}{d t} & =\omega(t)
\end{align*}
$$

In order to design a controller based on these equations, the values of the motor parameters $L, R, K_{b}=K_{T}, J$, and f need to be found. This can be done by an experiment in which a voltage is commanded into the amplifier of the motor and the measured data $v(t), i(t)$, and $\omega(t)$ is then used to determine the parameters. To understand how this is accomplished, the first two equations above are rewritten as

$$
\left[\begin{array}{ccccc}
d i / d t & i(t) & \omega(t) & 0 & 0 \tag{2.28}\\
0 & 0 & -i(t) & d \omega / d t & \omega(t)
\end{array}\right]\left[\begin{array}{c}
L \\
R \\
K_{T} \\
J \\
f
\end{array}\right]=\left[\begin{array}{c}
v(t) \\
0
\end{array}\right]
$$

This is a system of two linear algebraic equations in the unknowns L, R, K_{T}, J and f. The coefficients of this system of linear equations are found from the measured/calculated data $\theta(t), \omega(t), d \omega / d t, i(t), d i / d t, v$.

If the model of the motor is precisely given by (2.27) and the quantities $\theta(t), i(t)$, and $v(t)$ can be measured exactly along with the derivatives $d \theta / d t, d \omega / d t$, and $d i / d t$ computed exactly, then equation (2.28) must hold for all time t. Let $\omega(n T)$ denote the speed at time $n T, i(n T)$ denote the current at time $n T, d i(n T) / d t$ the derivative of the current at time $n T$,
and so on. Define

$$
\begin{aligned}
W(n T) & \triangleq\left[\begin{array}{ccccc}
\frac{d i}{d t}(n T) & i(n T) & \omega(n T) & 0 & 0 \\
0 & 0 & -i(n T) & \frac{d \omega}{d t}(n T) & \omega(n T)
\end{array}\right] \in \mathbb{R}^{2 \times 5} \\
y(n T) & \triangleq\left[\begin{array}{c}
v(n T) \\
0
\end{array}\right] \in \mathbb{R}^{2} \\
K & \triangleq\left[\begin{array}{c}
L \\
R \\
K_{T} \\
J \\
f
\end{array}\right] \in \mathbb{R}^{5}
\end{aligned}
$$

so that equation (2.28) above may be written in the form

$$
\begin{equation*}
W(n T) K=y(n T) \tag{2.29}
\end{equation*}
$$

W is referred to as the regressor matrix. The desire here is to find the constant vector K that satisfies this for all n ! To do so, multiply both sides of (2.29) by $W^{T}(n T)$ to obtain

$$
\begin{equation*}
W^{T}(n T) W(n T) K=W^{T}(n T) y(n T) \tag{2.30}
\end{equation*}
$$

where

$$
\begin{align*}
& W^{T}(n T) W(n T) \\
& =\left[\begin{array}{cc}
\frac{d i(n T)}{d t} & 0 \\
i(n T) & 0 \\
\omega(n T) & -i(n T) \\
0 & \frac{d \omega(n T)}{d t} \\
0 & \omega(n T)
\end{array}\right]\left[\begin{array}{ccccc}
\frac{d i(n T)}{d t} & i(n T) & \omega(n T) & 0 & 0 \\
0 & 0 & -i(n T) & \frac{d \omega(n T)}{d t} & \omega(n T)
\end{array}\right] \\
& =\left[\begin{array}{ccccc}
(d i / d t)^{2} & i d i / d t & \omega d i / d t & 0 & 0 \\
i d i / d t & i^{2} & \omega i & 0 & 0 \\
\omega d i / d t & \omega i & \omega^{2}+i^{2} & -i d \omega / d t & -\omega i \\
0 & 0 & -i d \omega / d t & (d \omega / d t)^{2} & \omega d \omega / d t \\
0 & 0 & -\omega i & \omega d \omega / d t & \omega^{2}
\end{array}\right]_{\mid t=n T} \tag{2.31}
\end{align*}
$$

and

$$
\begin{aligned}
W^{T}(n T) y(n T) & =\left[\begin{array}{cc}
d i(n T) / d t & 0 \\
i(n T) & 0 \\
\omega(n T) & -i(n T) \\
0 & d \omega(n T) / d t \\
0 & \omega(n T)
\end{array}\right]\left[\begin{array}{c}
v(n T) \\
0
\end{array}\right] \\
& =\left[\begin{array}{c}
v(n T) d i(n T) / d t \\
v(n T) i(n T) \\
v(n T) \omega(n T) \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Note that $W^{T}(n T) W(n T) \in \mathbb{R}^{5 \times 5}$; that is, it is a square matrix. It would then be convenient if it were possible to multiply both sides of (2.30) by $\left(W^{T}(n T) W(n T)\right)^{-1}$ to solve for K. However, $W^{T}(n T) W(n T)$ is never invertible! To see this, note that if one multiplies the first row of $W^{T}(n T) W(n T)$ by $-i(n)$, the second row by $d i(n T) / d t$ and adds them, the result is zero. That is,

$$
\left[\begin{array}{ccccc}
-i(n T) & d i(n T) / d t & 0 & 0 & 0
\end{array}\right] W^{T}(n T) W(n T) \equiv\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0 \tag{2.32}
\end{array}\right]
$$

Now, if $W^{T}(n) W(n T)$ were invertible, one could multiply both sides of (2.32) by this inverse to obtain

$$
\begin{aligned}
& {\left[\begin{array}{lllll}
-i(n T) & d i(n T) / d t & 0 & 0 & 0
\end{array}\right] W^{T}(n) W(n T)\left(W^{T}(n T) W(n T)\right)^{-1}} \\
& \quad=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right]\left(W^{T}(n) W(n T)\right)^{-1}
\end{aligned}
$$

or

$$
\left[\begin{array}{cc}
-i(n T) & d i(n T) / d t
\end{array} 00 \quad 0 \quad 0\right]\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

which is a contradiction, as the current does not have to be zero.
Something else has to be done. As equation (2.30) must hold for all n with K a fixed parameter vector, sum up equation (2.30) for N time instants to obtain

$$
\begin{equation*}
\left(\sum_{n=1}^{N} W^{T}(n T) W(n T)\right) K=\sum_{n=1}^{N} W^{T}(n T) y(n T) \tag{2.33}
\end{equation*}
$$

Define

$$
\begin{align*}
R_{W} & \triangleq \sum_{n=1}^{N} W^{T}(n T) W(n T) \in \mathbb{R}^{5 \times 5} \tag{2.34}\\
R_{W y} & \triangleq \sum_{n=1}^{N} W^{T}(n T) y(n T) \in \mathbb{R}^{5 \times 1}
\end{align*}
$$

Then rewrite (2.33) as

$$
\begin{equation*}
R_{W} K=R_{W y} \tag{2.35}
\end{equation*}
$$

Suppose the matrix sum $R_{W} \triangleq \sum_{n=1}^{N} W^{T}(n T) W(n T)$ is invertible, then multiply both sides of (2.35) by $R_{W}^{-1} \triangleq\left(\sum_{n=1}^{N} W^{T}(n T) W(n T)\right)^{-1}$ to obtain K as

$$
\begin{equation*}
K=R_{W}^{-1} R_{W y} \tag{2.36}
\end{equation*}
$$

The key to this method is making sure R_{W} is invertible. This requires choosing a suitable input to the motor, that is, any arbitrary input will not work. For example, suppose $v(t) \equiv 0$ so that $i(t) \equiv 0$ and thus $\omega(t) \equiv 0$. In this case, $W(n T) \equiv 0$ for all n so that $R_{W} \triangleq \sum_{n=1}^{N} W^{T}(n T) W(n T) \equiv 0$ and is therefore not invertible. As a less trivial example, suppose $i(t)=i_{0}$ is constant. Then, equation (2.31) shows that the first row of $W^{T}(n T) W(n T)$ is identically zero for all n and therefore, the first row of R_{W} is identically zero for all n so that R_{W} is not invertible. Finally, if an experiment was performed where $\omega(t) \equiv \omega_{0}$ is constant, then the fourth row of R_{W} is identically zero and thus again, R_{W} is not invertible. It is up to the control engineer to design an input so that the invertibility condition holds. If such an input results in R_{W} being invertible, then one says the system has been sufficiently excited.

2.6.1 Least-Squares Approximation

The above analysis was based on the equation $W(n T) K=y(n T)$ being true for all n. However, in the "real-world" that engineers work, this is never true. The model (2.27) is not an exact description of the motor (i.e., it was derived assuming ideal magnetic materials, etc.), the voltage $v(t)$, current $i(t)$ and position $\theta(t)$ cannot be measured perfectly, and the derivatives $\omega(t)=d \theta / d t, d \omega / d t$, and $d i / d t$ cannot be computed exactly. Thus, there will not be a parameter vector K that satisfies $W(n T) K=y(n T)$ for all n. One can still run an experiment and collect the data $v(t), i(t)$, and $\theta(t)$ to compute R_{W} and $R_{W y}$, and thus determine

$$
\hat{K}=R_{W}^{-1} R_{W y}
$$

The key question is then "How well does $\hat{K}=R_{W}^{-1} R_{W y}$ satisfy $W(n T) K=$ $y(n T)$ for all n ?" To answer this question, let

$$
\begin{aligned}
W(n T) & \triangleq\left[\begin{array}{cccc}
d i(n T) / d t & i(n T) & \omega(n T) & 0 \\
0 & 0 & -i(n T) & d \omega(n T) / d t \\
\omega(n T)
\end{array}\right] \in \mathbb{R}^{2 \times 5} \\
y(n T) & \triangleq\left[\begin{array}{c}
v(n T) \\
0
\end{array}\right] \in \mathbb{R}^{2}
\end{aligned}
$$

and define the error

$$
e(n T) \triangleq y(n T)-W(n T) K \in \mathbb{R}^{2} .
$$

The problem is then one of finding the value of K that makes this difference as small as possible for all n. Specifically, the goal is to find the value of K that minimizes the squared error given by

$$
\begin{aligned}
E^{2}(K) & \triangleq \sum_{n=1}^{N}(y(n T)-W(n T) K)^{T}(y(n T)-W(n T) K) \\
& =\sum_{n=1}^{N}(y(n T)-\hat{y}(n T))^{T}(y(n T)-\hat{y}(n T)) \\
& =\sum_{n=1}^{N}\left(y_{1}(n T)-\hat{y}_{1}(n T)\right)^{2}+\left(y_{2}(n T)-\hat{y}_{2}(n T)\right)^{2} \\
& =\sum_{n=1}^{N}\left(e_{1}(n T)^{2}+e_{2}(n T)^{2}\right)
\end{aligned}
$$

where $e_{1}(n T) \triangleq y_{1}(n T)-\hat{y}_{1}(n T), e_{2}(n T) \triangleq y_{2}(n T)-\hat{y}_{2}(n T)$.
In the jargon of identification theory, $y(n T)$ is considered the output while $\hat{y}(n T)=W(n T) K$ is the predicted output based on K as the estimate of the parameters. Consequently,

$$
e(n T) \triangleq y(n T)-W(n T) K=y(n T)-\hat{y}(n T) \in \mathbb{R}^{2}
$$

is the error and

$$
\begin{equation*}
E^{2}(K) \triangleq \sum_{n=1}^{N}(y(n T)-W(n T) K)^{T}(y(n T)-W(n T) K) \tag{2.37}
\end{equation*}
$$

is the total squared error. If a K can be found that minimizes equation (2.37), it is referred to as the least-squares estimate.

It is now shown that there is a unique solution and it equals $R_{W}^{-1} R_{W y}$. To do so, expand equation (2.37) above to obtain [recall the matrix fact $\left.(A B)^{T}=B^{T} A^{T}\right]$

$$
\begin{aligned}
E^{2}(K)= & \sum_{n=1}^{N}\left(y^{T}(n T) y(n T)-y^{T}(n T) W(n T) K-K^{T} W^{T}(n T) y(n T)\right. \\
& \left.+K^{T} W^{T}(n T) W(n T) K\right) \\
= & \sum_{n=1}^{N} y^{T}(n T) y(n T)-\left(\sum_{n=1}^{N} y^{T}(n T) W(n T)\right) K \\
& -K^{T}\left(\sum_{n=1}^{N} W^{T}(n T) y(n T)\right)+K^{T}\left(\sum_{n=1}^{N} W^{T}(n T) W(n T)\right) K
\end{aligned}
$$

Adding to the definitions given in (2.34), define

$$
\begin{aligned}
R_{y W} & \triangleq \sum_{n=1}^{N} y^{T}(n T) W(n T) \in \mathbb{R}^{1 \times 5} \\
R_{y} & \triangleq \sum_{n=1}^{N} y^{T}(n T) y(n T) \in \mathbb{R}
\end{aligned}
$$

where it is clear that $R_{y W}=R_{W y}^{T}$. Then $E^{2}(K)$ is written compactly as

$$
\begin{align*}
E^{2}(K) & =R_{y}-R_{y W} K-K^{T} R_{W y}+K^{T} R_{W} K \\
& =R_{y}-R_{y W} R_{W}^{-1} R_{W y}+\left(K-R_{W}^{-1} R_{W y}\right)^{T} R_{W}\left(K-R_{W}^{-1} R_{W y}\right) \tag{2.38}
\end{align*}
$$

For a fixed N, the matrices $R_{y}, R_{y W}, R_{W y}$, and R_{W} are constant and do not depend K. Also, R_{W} is a symmetric positive semidefinite matrix.

Digression [41] A matrix Q is symmetric if $Q^{T}=Q$. A symmetric matrix $Q \in \mathbb{R}^{m \times m}$ is positive semidefinite if for all $x \in \mathbb{R}^{m}, x^{T} Q x \geq 0$. Further, Q is positive definite if $x^{T} Q x \geq 0$ for all $x \in \mathbb{R}^{m}$ and $x^{T} Q x=0$ if and only if x is the zero vector (i.e., $x=0$).

For example, let

$$
Q_{1}=\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]
$$

and note that $Q_{1}=Q_{1}^{T}$. Also,

$$
x^{T} Q_{1} x=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]^{T}\left[\begin{array}{ll}
1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=x_{1}^{2}+2 x_{2}^{2} \geq 0
$$

for all $x \in \mathbb{R}^{2}$ and the only way it can equal zero is if $x_{1}=0, x_{2}=0$. That is, Q_{1} is positive definite.

As another example, let

$$
Q_{1}=\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]
$$

and note that $Q_{2}=Q_{2}^{T}$. Also,

$$
x^{T} Q_{2} x=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]^{T}\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=2 x_{2}^{2} \geq 0
$$

for all $x \in \mathbb{R}^{2}$. Thus Q_{2} is positive semidefinite. However, in this case, the nonzero vector $x=\left[\begin{array}{cc}1 & 0\end{array}\right]^{T}$ makes $x^{T} Q_{2} x=0$; that is, Q_{2} is not positive definite.

As a final example, let

$$
Q_{3}=\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]
$$

and note that $Q_{3}=Q_{3}^{T}$. Also,

$$
x^{T} Q_{3} x=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]^{T}\left[\begin{array}{cc}
-1 & 0 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=-x_{1}^{2}+2 x_{2}^{2}
$$

In this case, $x^{T} Q_{3} x$ can be positive (e.g., $x=\left[\begin{array}{ll}0 & 1\end{array}\right]^{T}$) or negative (e.g., $x=\left[\begin{array}{ll}10\end{array}\right]^{T}$) depending on the chosen value of the vector x. Consequently, Q_{3} is neither positive definite nor positive semidefinite.

To show that R_{W} is positive semidefinite, for any $x \in \mathbb{R}^{5}$, it follows that

$$
\begin{aligned}
x^{T} W^{T}(n T) W(n T) x & =(W(n T) x)^{T}(W(n T) x)=z^{T}(n T) z(n T) \\
& =z_{1}^{2}(n T)+z_{2}^{2}(n T) \geq 0
\end{aligned}
$$

where $z(n T) \triangleq W(n T) x \in \mathbb{R}^{2}$. Thus,

$$
\begin{aligned}
x^{T} R_{W} x & =x^{T}\left(\sum_{n=1}^{N} W^{T}(n T) W(n T)\right) x \\
& =\sum_{n=1}^{N} x^{T} W^{T}(n T) W(n T) x \geq 0
\end{aligned}
$$

The control engineer will design the experiment, that is, the specification of $v(t)$ and $i(t)$, so that R_{W} is invertible. It turns out that if a symmetric, positive semidefinite matrix is also invertible, then it must be positive definite. Consequently, R_{W} is then positive definite so that second term in (2.38) satisfies

$$
\left(K-R_{W}^{-1} R_{W y}\right)^{T} R_{W}\left(K-R_{W}^{-1} R_{W y}\right) \geq 0
$$

for all $K \in \mathbb{R}^{5}$. This equals zero if and only if

$$
K-R_{W}^{-1} R_{W y}=\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 0
\end{array}\right]^{T} .
$$

That is, by inspection of equation (2.38), $E^{2}(K)$ is minimized for $K=\hat{K}=$ $R_{W}^{-1} R_{W y}$! Thus, choosing $K=\hat{K}=R_{W}^{-1} R_{W_{y}}$ results in the least-squared error. The " \wedge " in \hat{K} is used to denote an estimate of K. However, the least squares estimate is an optimal estimate as it minimizes the least-squares error. Then the convention is to use an asterisk $*$ to denote an optimal estimate and so $K^{*} \triangleq R_{W}^{-1} R_{W y}$ is now used.

2.6.2 Error Index

How good is the least-squares estimate? Well, the exact value of K is not known so the error between the "exact" value of the parameter vector and its estimate (i.e., $K-K^{*}$) is unknown. However, an indication of how good the estimate K^{*} is can be found by comparing it to a given (and thus known) value of K. Specifically, if $K=0$, then the squared error is $E(0)=R_{y}$ as seen by putting $K=0$ in equation (2.38) above. Using the least-squares estimate K^{*}, that is, setting $K=K^{*} \triangleq R_{W}^{-1} R_{W y}$ in equation (2.38), the error is given by

$$
E^{2}(K)_{\mid K=K^{*} \triangleq \sum_{W}^{-1} R_{W y}}=R_{y}-R_{y W} R_{W}^{-1} R_{W y}
$$

This is called the residual error; that is, it is the total squared error after using the value of K that minimizes the squared error. As R_{W} is positive definite, it turns out that its inverse R_{W}^{-1} must also be positive definite. Further, $R_{y W} \in \mathbb{R}^{1 \times 5}, R_{W y} \in \mathbb{R}^{5 \times 1}$ with $R_{y W}=R_{W y}^{T}$, it follows that $R_{y W} R_{W}^{-1} R_{W y} \geq 0$ so that $E^{2}\left(K^{*}\right)=R_{y}-R_{y W} R_{W}^{-1} R_{W y} \leq R_{y}=E^{2}(0)$. As a result, the quantity

$$
\frac{E^{2}\left(K^{*}\right)}{E^{2}(0)}=\frac{R_{y}-R_{y W} R_{W}^{-1} R_{W y}}{R_{y}} \leq 1
$$

The ratio $E^{2}\left(K^{*}\right) / E^{2}(0)$ is a measure of the minimum squared error relative to the squared error obtained from taking the parameter vector K to be the zero vector. By taking the square root, a measure of the relative error rather than squared error is obtained. This motivates the definition of the so-called error index as

$$
\text { Error Index } \triangleq \sqrt{\frac{E^{2}\left(K^{*}\right)}{E^{2}(0)}}=\sqrt{\frac{R_{y}-R_{y W} R_{W}^{-1} R_{W y}}{R_{y}}} \leq 1
$$

Note that if the error index is close to 1 , then the estimate is not much better than taking all the parameter values equal to zero! Thus, the error index must be much less than one for the estimate to be of any value. If the error index is close to one, then one would suspect that the original model of the system is incorrect.

2.6.3 Parametric Error Indices

In addition to the overall error index, it is important to know how sensitive the error is to each parameter. That is, does a change δK_{i} in the i th parameter K_{i} produce a large or small change in $E^{2}(K)$? A small change indicates that the parameter estimate could vary greatly without a large change in the residual error. Thus, the accuracy of the parameter estimate
of K_{i} would be in doubt. ${ }^{6}$ On the other hand, a large change indicates that the residual error is very sensitive to changes in the parameter K_{i} so that such a parameter estimate may be considered more accurate.

In addressing the issue of sensitivity of the full parametric vector K^{*} to errors, the method in Ref. [42] is considered. If follows from (2.38) that K^{*} satisfies

$$
\begin{equation*}
\left.\frac{\partial E^{2}(K)}{\partial K}\right|_{K=K^{*}}=\left.2 R_{W}\left(K-R_{W}^{-1} R_{W y}\right)\right|_{K=K^{*}}=0 \tag{2.39}
\end{equation*}
$$

so that, in particular,

$$
\begin{equation*}
\left.\frac{\partial E^{2}(K)}{\partial K_{i}}\right|_{K=K^{*}}=0 \tag{2.40}
\end{equation*}
$$

Therefore, it is not possible to use the derivative $\partial E^{2}(K) /\left.\partial K_{i}\right|_{K=K^{*}}$ of the residual error as a measure of how sensitive the error is with respect to K_{i} as it is always zero.

An alternative is to define δK as the variation in K such that the increase of error is equal to the residual error $E^{2}\left(K^{*}\right)$ itself. To explain, recall that

$$
\begin{align*}
E^{2}\left(K^{*}+\delta K\right) & =R_{y}-2 R_{W y}^{T}\left(K^{*}+\delta K\right)+\left(K^{*}+\delta K\right)^{T} R_{W}\left(K^{*}+\delta K\right) \\
& =E^{2}\left(K^{*}\right)+\delta K^{T} R_{W} \delta K \tag{2.41}
\end{align*}
$$

The δK 's that lead to a doubling of the residual error satisfy

$$
\begin{equation*}
\delta K^{T} R_{W} \delta K=E^{2}\left(K^{*}\right) \tag{2.42}
\end{equation*}
$$

This is illustrated in Figure 2.17.

FIGURE 2.17. Illustrating the choice of δK that doubles the minimum mean square error.

The points $\delta K \in \mathbb{R}^{5}$ that satisfy (8.116) define an ellipsoid as illustrated in Figure 2.18.

[^17]

FIGURE 2.18. $\delta K_{1}=\sqrt{E^{2}\left(K^{*}\right)\left(R_{W}\right)_{11}}$ is the largest value of δK_{1} that is on the ellipsoid $\delta K^{T} R_{W} \delta K=E^{2}\left(K^{*}\right)$. This is defined as the parametric error index for K_{1}.

Define the parametric error index associated to the parameter K_{i} as the maximum value of δK_{i} such that (8.116) is satisfied. That is, δK_{i} is the solution to a constrained maximization problem that requires maximizing the quantity

$$
\delta K_{i}
$$

subject to the constraint

$$
\delta K^{T} R_{W} \delta K=E^{2}\left(K^{*}\right)
$$

This is simply the largest possible value for δK_{i} that would result in $E^{2}\left(K^{*}+\delta K\right)=2 E^{2}\left(K^{*}\right)$. This constrained optimization problem can be solved as an unconstrained maximization problem with the help of Lagrange multipliers. To do so, let (see Ref. [42])

$$
\begin{equation*}
C(\delta K, \lambda) \triangleq \delta K_{i}+\lambda\left(E^{2}\left(K^{*}\right)-\delta K^{T} R_{W} \delta K\right) \tag{2.43}
\end{equation*}
$$

with respect to δK and λ. To fix ideas, let $i=1$, and successively differentiate (2.43) with respect to $\delta K_{1}, \ldots, \delta K_{5}, \lambda$ so that at the maximum point
of (2.43), it follows that

$$
\begin{aligned}
& \frac{\partial C(\delta K, \lambda)}{\partial \delta K_{1}}=1-2 \lambda\left[\begin{array}{ccccc}
1 & 0 & 0 & 0 & 0
\end{array}\right] R_{W} \delta K=0 \\
& \frac{\partial C(\delta K, \lambda)}{\partial \delta K_{2}}=-2 \lambda\left[\begin{array}{lllll}
0 & 1 & 0 & 0 & 0
\end{array}\right] R_{W} \delta K=0 \\
& \frac{\partial C(\delta K, \lambda)}{\partial \delta K_{3}}=-2 \lambda\left[\begin{array}{lllll}
0 & 0 & 1 & 0 & 0
\end{array}\right] R_{W} \delta K=0 \\
& \frac{\partial C(\delta K, \lambda)}{\partial \delta K_{4}}=-2 \lambda\left[\begin{array}{lllll}
0 & 0 & 0 & 1 & 0
\end{array}\right] R_{W} \delta K=0 \\
& \frac{\partial C(\delta K, \lambda)}{\partial \delta K_{5}}=-2 \lambda\left[\begin{array}{lllll}
0 & 0 & 0 & 0 & 1
\end{array}\right] R_{W w} \delta K=0 \\
& \frac{\partial C(\delta K, \lambda)}{\partial \lambda}=E^{2}\left(K^{*}\right)-\delta K^{T} R_{W} \delta K=0 .
\end{aligned}
$$

This can then be rewritten as

$$
\left[\begin{array}{l}
1 \tag{2.44}\\
0 \\
0 \\
0 \\
0
\end{array}\right]-2 \lambda R_{W} \delta K=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Solving for δK gives

$$
\delta K=\frac{1}{2 \lambda} R_{W}^{-1}\left[\begin{array}{l}
1 \tag{2.45}\\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

To compute λ, multiply both sides of (2.44) by δK^{T} to obtain

$$
\delta K_{1}=2 \lambda \delta K^{T} R_{W} \delta K=2 \lambda E^{2}\left(K^{*}\right)
$$

and rearranging results in

$$
2 \lambda=\delta K_{1} / E^{2}\left(K^{*}\right)
$$

Substitute this expression for 2λ back into (2.45) to obtain

$$
\delta K=\frac{E^{2}\left(K^{*}\right)}{\delta K_{1}} R_{W}^{-1}\left[\begin{array}{l}
1 \tag{2.46}\\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

With $\left(R_{W}^{-1}\right)_{11}$ denoting the $(1,1)$ element of the matrix R_{W}^{-1}, the first row of (2.46) gives

$$
\delta K_{1}=\frac{E^{2}\left(K^{*}\right)}{\delta K_{1}}\left(R_{W}^{-1}\right)_{11}
$$

or

$$
\delta K_{1}=\sqrt{E^{2}\left(K^{*}\right)\left(R_{W}^{-1}\right)_{11}}
$$

where the + sign was chosen to maximize δK_{1}. In general (see Ref. [42])

$$
\begin{equation*}
\delta K_{i}=\sqrt{E^{2}\left(K^{*}\right)\left(R_{W}^{-1}\right)_{i i}} . \tag{2.47}
\end{equation*}
$$

The parametric error index δK_{i} indicates the maximum amount by which K_{i}, the i th component of K, could vary without causing more than a doubling of the residual error. A large parametric error index indicates that the parameter estimate could vary greatly without a large change in the residual error and thus making the accuracy of the parameter estimates suspect. On the other hand, a small parametric error indicates that the residual error is very sensitive to the changes in the parameter estimates and that the parameter estimates may be considered to be more accurate. In any case, the error indices should not be considered as actual errors, but rather as orders of magnitude of the errors to be expected, to guide the identification process and to warn about unreliable results.

The choice of a parametric error index as corresponding to a doubling of the residual error is arbitrary. A different level of residual error would lead to a scaling of all the components of the parametric error index by a common factor.

2.7 Filtering of Noisy Signals*

This section gives a concise discussion of the various ideas in the area of signals and systems that are needed to analyze/process data for implementation of identification and control algorithms. This material is covered in any basic "signals and systems" book such as references [43][44][45].

Recall that the identification algorithm required computing derivatives of the measured data. However, these measured signals typically contain high-frequency low-amplitude noise and the differentiation of such a signal amplifies the noise! That is, a measured signal $m(t)$ is often of the form $m(t)=s(t)+n(t)$, where $s(t)$ is the signal of interest and $n(t)$ is highfrequency low-amplitude noise. For example, Figure 2.19 is a plot of the simulated position measurement of a motor as given by an optical encoder. This signal $m(t)=(2 \pi / 2000) N(t)$ is the measured signal and appears to be right on top of the true signal $s(t)=\theta(t)$.

FIGURE 2.19. $\theta(t)$ and the encoder output $(2 \pi / 2000) N(t)$ in radians versus time in seconds.

Figure 2.20 is a magnification of Figure 2.19 clearly illustrating the discrete nature of the encoder output. The smooth curve $s(t)=\theta(t)$ is the "actual" position of the motor from the simulation and again the measured signal is $m(t)=(2 \pi / 2000) N(t)$.

FIGURE 2.20. $\theta(t)$ and the encoder output $(2 \pi / 2000) N(t)$ in radians vs. time in seconds. Magnification of Figure 2.19.

As this "data set" is from a simulation, the true signal $s(t)$ is known and thus one can calculate the noise $n(t)$ as $n(t)=m(t)-s(t)=(2 \pi / 2000) N(t)-$ $\theta(t)$, so that $m(t)=s(t)+n(t)$. Figure 2.21 is a plot of the noise $n(t)=$ $(2 \pi / 2000) N(t)-\theta(t)$, where it is seen that $0 \leq n(t) \leq 3.14 \times 10^{-3}$ radians, that is, it is quite small.

FIGURE 2.21. Position error/noise computed as $n(t)=(2 \pi / 2000) N(t)-\theta(t)$. The encoder error is bounded by $2 \pi / 2000=3.14 \times 10^{-3}$ radians.

To obtain an estimate of $\dot{s}(t)$; the measured signal $m(t)=s(t)+n(t)$ can be numerically differentiated to obtain

$$
\frac{s(t)-s(t-T)+n(t)-n(t-T)}{T}=\dot{s}(t)+\dot{n}(t)
$$

However, as the difference $n(t)-n(t-T)$ may be of the same order (or higher) of magnitude as $s(t)-s(t-T)$, it follows that $n(t)$ can be of the same order of magnitude as $s(t)$. Going back to the encoder example of Section 2.2, the encoder resolution (error) is $2 \pi / 2000$ radians where 2000 is the number of counts per revolution so that the noise (error) in the position measurement is bounded by $2 \pi / 2000$. Computing the speed by numerically differentiating the encoder output results in a tight error bound given by

$$
\frac{2 \pi}{2000 T}
$$

where T is the sample period. The sample period T is usually small (on the order of a millisecond) so that $1 / T$ is large showing that differentiation amplifies the noise. This is illustrated in Figure 2.22 which was found by differentiating $m(t)=(2 \pi / 2000) N(t)$ from Figure 2.19 with $T=0.5 \mathrm{msec}$.

FIGURE 2.22. Estimated angular speed in rads/sec versus time in seconds. Here ω is estimated as $(\theta(n T)-\theta((n-1) T)) / T$ with $T=0.5 \mathrm{msec}$ resulting in a speed error bound of $\frac{2 \pi}{2000 T}=6.28$ radians $/ \mathrm{sec}$.

A common way to remove additive high frequency noise is to use a low-pass filter that works as long as the signal $s(t)$ has a much lower
frequency content than the noise $n(t)$. For example, let $s(t)=\sin (10 t)$ and $n(t)=0.01 \sin (1000 t)$ so that $m(t)=s(t)+n(t)$ is the measured signal. Then $\dot{m}(t)=\dot{s}(t)+\dot{n}(t)=10 \cos (10 t)+10 \cos (1000 t)$. Although $|n(t)| \ll|s(t)|$, the differentiated noise $\dot{n}(t)$ is of the same order of magnitude as the differentiated signal $\dot{s}(t)$. However, by setting the cutoff of the low-pass filter at (say) $100 \mathrm{rad} / \mathrm{sec}$, then $s(t)$ will make it through the filter essentially unchanged and $n(t)$ will be filtered out. Before going into detail of how to design such a filter, some basic facts about filtering are reviewed.

2.7.1 Filter Representations

Let $m(t)$ be the input to the filter and $y(t)$ the output. There are three useful ways to characterize (represent) a causal filter:
(1) Impulse response $g(t)$ so that $y(t)=\int_{-\infty}^{t} g(t-\tau) m(\tau) d \tau$.
(2) Transfer function $G(s)$ so that $Y(s)=G(s) M(s)$
where $Y(s)=\int_{0}^{\infty} e^{-s t} y(t) d t, G(s)=\int_{0}^{\infty} e^{-s t} g(t) d t, M(s)=\int_{0}^{\infty} e^{-s t} m(t) d t$.
(3) Differential equation $\dot{x}(t)=A x(t)+b m(t), y(t)=c x(t)+d m(t)$
where $x \in \mathbb{R}^{n}, y \in \mathbb{R}, m \in \mathbb{R}, A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}^{1 \times n}$.

Example

Consider an impulse response given by

$$
g(t)= \begin{cases}e^{-a t} & t \geq 0 \\ 0 & t<0\end{cases}
$$

In terms of $g(t)$, the filter is given by the convolution integral

$$
y(t)=\int_{-\infty}^{t} g(t-\tau) m(\tau) d \tau=\int_{-\infty}^{t} e^{-a(t-\tau)} m(\tau) d \tau
$$

The corresponding transfer function is

$$
\begin{aligned}
& G(s)=\int_{0}^{\infty} e^{-s t} e^{-a t} d t=\frac{1}{s+a} \\
& Y(s)=\frac{1}{s+a} M(s)
\end{aligned}
$$

The state space (differential equation) representation is

$$
\begin{aligned}
\dot{x}(t) & =-a x(t)+m(t) \\
y(t) & =x(t) .
\end{aligned}
$$

2.7.2 Causality

A more general representation of a linear filter is $y(t)=\int_{-\infty}^{\infty} g(t-\tau) m(\tau) d \tau$. However, recall that for a filter to be causal, the output $y(t)$ of the filter can only depend on the input $m(\tau)$ up to time t, that is, on $m(\tau)$ for $-\infty<$ $\tau<t$. As a consequence of this causality requirement, in the representation $y(t)=\int_{-\infty}^{\infty} g(t-\tau) m(\tau) d \tau$, it follows that $g(t) \equiv 0$ for $t<0$. If this were not the case, then for some $\tau>t$ (i.e., $t-\tau<0$), $g(t-\tau)$ would not be zero and $g(t-\tau) m(\tau) d \tau$ would be the contribution of the input at time $\tau>t$ to the output response $y(t)$ at time t ! Consequently, a causal filter may be written as $y(t)=\int_{-\infty}^{\infty} g(t-\tau) m(\tau) d \tau=\int_{-\infty}^{t} g(t-\tau) m(\tau) d \tau$ as $g(t-\tau)=0$ for $\tau>t$.

As just explained, the impulse response model provides a simple way of characterizing the causality of a filter. The differential equation representation provides the means of actually implementing a filter as will be shown below. On the other hand, the transfer function representation is particularly easy to work with as it allows one to just do algebraic manipulations as opposed to working with a differential equation or a convolution integral. It is also quite useful for filter design and specification as is shown in the next section.

2.7.3 Frequency Response

Consider a filter represented as $y(t)=\int_{-\infty}^{\infty} g(t-\tau) m(\tau) d \tau$ with an input given by $m(t)=e^{s t}$ for $-\infty<t<\infty$ and $s=\sigma+j \omega$ is constant. Then, the response is given by

$$
\begin{aligned}
y(t) & =\int_{-\infty}^{\infty} g(t-\tau) e^{s \tau} d \tau=\int_{-\infty}^{\infty} g(t-\tau) e^{-s(t-\tau)} e^{s t} d \tau \\
& =e^{s t} \int_{-\infty}^{\infty} g(t-\tau) e^{-s(t-\tau)} d \tau=e^{s t} \int_{-\infty}^{\infty} g(u) e^{-s u} d u \\
& =e^{s t} \int_{0}^{\infty} g(u) e^{-s u} d u \\
& =G(s) e^{s t} .
\end{aligned}
$$

In particular, if $s=j \omega$ so that $m(t)=e^{j \omega t}=\cos (\omega t)+j \sin (\omega t)$,

$$
\begin{aligned}
y(t) & =G(j \omega) e^{j \omega t}=|G(j \omega)| e^{j \angle G(j \omega)} e^{j \omega t} \\
& =|G(j \omega)|(\cos (\omega t+\angle G(j \omega))+j \sin (\omega t+\angle G(j \omega))) .
\end{aligned}
$$

Considering just the real part, the input $m(t)=\cos (\omega t)$ for $-\infty<t<\infty$ results in the output $y(t)=|G(j \omega)| \cos (\omega t+\angle G(j \omega))$ for $-\infty<t<\infty$.

2.7.4 Low-Pass Filters with Linear Phase

Suppose for a given bandwidth specification ω_{b}, one is able to design a filter $G(j \omega)$ such that its magnitude response satisfies

$$
\begin{aligned}
|G(j \omega)| & \leq 1 & & \text { for all } \omega \\
|G(j \omega)| & \approx 1 & & \text { for } 0 \leq \omega \leq \omega_{b}<\omega_{c} \\
& \approx 0 & & \text { for } \omega \geq 2 \omega_{c}
\end{aligned}
$$

where ω_{c} is referred to as the cutoff frequency (see Figure 2.23). Further, suppose the phase response of the filter has the property that

$$
\angle G(j \omega) \approx-\gamma \omega \text { for } 0 \leq \omega \leq \omega_{b} \quad \text { where } \gamma>0
$$

FIGURE 2.23. Magnitude and phase of a low-pass filter.
Then, if the input to this filter is $m(t)=\cos (\omega t)$ with $\omega \leq \omega_{b}$, the output is given by

$$
\begin{aligned}
y(t) & =|G(j \omega)| \cos (\omega t+\angle G(j \omega)) \\
& \approx \cos (\omega t-\gamma \omega) \\
& =\cos (\omega(t-\gamma))
\end{aligned}
$$

that is, the output is the same as the input except delayed by the time γ. Carrying this idea further, consider the input $m(t)=A_{1} \cos \left(\omega_{1} t\right)+$ $A_{2} \cos \left(\omega_{2} t\right)$ where $\omega_{1}<\omega_{2} \leq \omega_{b}<\omega_{c}$. Then, the corresponding output is

$$
\begin{aligned}
y(t) & =\left|G\left(j \omega_{1}\right)\right| A_{1} \cos \left(\omega_{1} t+\angle G\left(j \omega_{1}\right)\right)+\left|G\left(j \omega_{2}\right)\right| A_{2} \cos \left(\omega_{2} t+\angle G\left(j \omega_{2}\right)\right) \\
& \approx A_{1} \cos \left(\omega_{1}(t-\gamma)\right)+A_{2} \cos \left(\omega_{2}(t-\gamma)\right) \\
& =m(t-\gamma) .
\end{aligned}
$$

Again, the output of the filter is the same as the input except delayed by the time γ.

The usual application of a low-pass filter is to the following situation: There is a signal $s(t)$ with high-frequency additive noise $n(t)$ corrupting it.

That is, the signal measured is $m(t)=s(t)+n(t)$ and the desire is to extract the signal $s(t)$ from $m(t)$. For example, let $s(t)=A_{1} \cos \left(\omega_{1} t\right)+A_{2} \cos \left(\omega_{2} t\right)$, $n(t)=N_{0} \cos \left(\omega_{N} t\right)$ with $\omega_{1}<\omega_{2} \ll \omega_{N}$ and $m(t)=s(t)+n(t)$. Suppose a low-pass linear-phase filter can be found (as described above) with $\omega_{1}<$ $\omega_{2} \leq \omega_{b}<\omega_{c} \ll \omega_{N}$. Then the output of the filter is given by

$$
\begin{align*}
y(t)= & \left|G\left(j \omega_{1}\right)\right| A_{1} \cos \left(\omega_{1} t+\angle G\left(j \omega_{1}\right)\right)+\left|G\left(j \omega_{2}\right)\right| A_{2} \cos \left(\omega_{2} t+\angle G\left(j \omega_{2}\right)\right) \\
& +\left|G\left(j \omega_{N}\right)\right| N_{0} \cos \left(\omega_{N} t+\angle G\left(j \omega_{N}\right)\right) \\
\approx & A_{1} \cos \left(\omega_{1}(t-\gamma)\right)+A_{2} \cos \left(\omega_{2}(t-\gamma)\right) \\
= & s(t-\gamma) \tag{2.48}
\end{align*}
$$

as $\left|G\left(j \omega_{N}\right)\right| \approx 0$. The desired signal has been extracted from the noise, but it is delayed by γ seconds.

2.7.5 Distortion

The magnitude specification of the filter as $|G(j \omega)| \approx 1$ for $0 \leq \omega \leq$ $\omega_{b}<\omega_{c}$ and $|G(j \omega)| \approx 0$ for $\omega \geq 2 \omega_{c}$ is necessary to remove the highfrequency noise. The angle specification of $\angle G(j \omega) \approx-\gamma \omega$ for $0 \leq \omega \leq$ $\omega_{b}<\omega_{c}, \gamma>0$ (linear phase) is required to prevent distortion of the signal. That is, suppose $G(j \omega)$ did not have linear phase so that $\angle G\left(j \omega_{1}\right) \approx$ $-\gamma_{1} \omega_{1}, \angle G\left(j \omega_{2}\right) \approx-\gamma_{2} \omega_{2}$ with $\gamma_{1} \neq \gamma_{2}$, then with $m(t)=A_{1} \cos \left(\omega_{1} t\right)+$ $A_{2} \cos \left(\omega_{2} t\right)+N_{0} \cos \left(\omega_{N} t\right)$ applied to the filter, the output would be

$$
\begin{aligned}
y(t)= & \left|G\left(j \omega_{1}\right)\right| A_{1} \cos \left(\omega_{1} t+\angle G\left(j \omega_{1}\right)\right)+\left|G\left(j \omega_{2}\right)\right| A_{2} \cos \left(\omega_{2} t+\angle G\left(j \omega_{2}\right)\right) \\
& +\left|G\left(j \omega_{N}\right)\right| N_{0} \cos \left(\omega_{N} t+\angle G\left(j \omega_{N}\right)\right) \\
\approx & A_{1} \cos \left(\omega_{1}\left(t-\gamma_{1}\right)\right)+A_{2} \cos \left(\omega_{2}\left(t-\gamma_{2}\right)\right) \\
& \neq s(t-\gamma)
\end{aligned}
$$

for some $\gamma>0$. That is, distortion in the signal results since the output of the filter is not an exact (delayed) reproduction of the desired signal.

2.7.6 Low-Pass Filtering of High-Frequency Noise

Now consider an arbitrary signal $s(t)$ where the measured signal is given by $m(t)=s(t)+n(t)$ and the noise $n(t)$ is assumed to have a much higher frequency content than $s(t)$. To understand the filter's effect on these signals, Fourier transform theory is used. The Fourier transforms of these signals
are

$$
\begin{aligned}
M(j \omega) & =\int_{-\infty}^{+\infty} e^{-j \omega t} m(t) d t \\
S(j \omega) & =\int_{-\infty}^{+\infty} e^{-j \omega t} s(t) d t \\
N(j \omega) & =\int_{-\infty}^{+\infty} e^{-j \omega t} n(t) d t
\end{aligned}
$$

where $M(j \omega)=S(j \omega)+N(j \omega)$. Their inverse Fourier transforms are given by

$$
\begin{aligned}
m(t) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{j \omega t} M(j \omega) d \omega \\
s(t) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{j \omega t} S(j \omega) d \omega \\
n(t) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{j \omega t} N(j \omega) d \omega
\end{aligned}
$$

Recall that $\frac{1}{2 \pi} M(j \omega) d \omega$ is interpreted as the frequency content of $m(t)$ between ω and $\omega+d \omega$. As shown in (2.48), when $\frac{1}{2 \pi} e^{j \omega t} M(j \omega) d \omega$ is passed through the filter, the output is $\frac{1}{2 \pi} e^{j \omega t} G(j \omega) M(j \omega) d \omega$. Consequently, when $m(t)$ is input to the filter, the output $y(t)$ of the filter is given by

$$
\begin{aligned}
y(t) & =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{j \omega t} G(j \omega) M(j \omega) d \omega \\
& =\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{j \omega t} G(j \omega) S(j \omega) d \omega+\frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{j \omega t} G(j \omega) N(j \omega) d \omega .
\end{aligned}
$$

As explained above, to have a low-pass filter remove the noise, the frequency content of $n(t)$ must be much higher than that of $s(t)$. Thus, assuming that

$$
\begin{aligned}
& S(j \omega) \approx 0 \text { for }|\omega|>\omega_{b} \text { and }|N(j \omega)| \approx 0 \text { for }|\omega|<2 \omega_{c}, \\
& y(t)= \frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{j \omega t} G(j \omega) S(j \omega) d \omega+\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{j \omega t} G(j \omega) N(j \omega) d \omega \\
&= \frac{1}{2 \pi} \int_{-\omega_{b}}^{+\omega_{b}} e^{j \omega t} G(j \omega) S(j \omega) d \omega+\frac{1}{2 \pi} \int_{-\infty}^{-2 \omega_{c}} e^{j \omega t} G(j \omega) N(j \omega) d \omega \\
&+\frac{1}{2 \pi} \int_{2 \omega_{c}}^{\infty} e^{j \omega t} G(j \omega) N(j \omega) d \omega\left(\text { as }|N(j \omega)| \approx 0 \text { for }|\omega|<2 \omega_{c}\right) \\
&= \frac{1}{2 \pi} \int_{-\omega_{b}}^{+\omega_{b}} e^{j \omega t} G(j \omega) S(j \omega) d \omega \text { as }|G(j \omega)| \approx 0 \text { for }|\omega|>2 \omega_{c} \\
&= \frac{1}{2 \pi} \int_{-\omega_{b}}^{+\omega_{b}} e^{j \omega(t-\gamma)} S(j \omega) d \omega\binom{\text { as } G(j \omega)=|G(j \omega)| e^{j<G(j \omega)}}{\approx 1 e^{-j \gamma \omega} \text { for }|\omega| \leq \omega_{b}} \\
&= \frac{1}{2 \pi} \int_{-\infty}^{+\infty} e^{j \omega(t-\gamma)} S(j \omega) d \omega \text { as } S(j \omega) \approx 0 \text { for }|\omega|>\omega_{b} \\
&= s(t-\gamma) .
\end{aligned}
$$

The effect of passing $m(t)$ through the filter is to reproduce $s(t)$, that is, remove the noise from $m(t)$ delayed by γ seconds.

Remark

The "ideal" low-pass filter is specified by

$$
G(j \omega)= \begin{cases}1 & \text { for }|\omega|<\omega_{c} \\ 0 & \text { for }|\omega|>\omega_{c} .\end{cases}
$$

That is, the frequency content of a signal below ω_{c} passes through unaffected while the frequency content of the signal above ω_{c} is removed. However, the ideal filter is neither causal nor stable (see problem 34).

2.7.7 Butterworth Filters

The class of filters known as Butterworth Filters have, to a good approximation, the two necessary properties; that is, the magnitude response has the low-pass characteristic along with a linear-phase. Below are the magnitude (Figure 2.24) and phase plots (Figure 2.25) for Butterworth filters of orders $n=1,2,4,6,8,10$, where ω_{c} denotes the filter cutoff frequency.

FIGURE 2.24. Plots of the magnitude versus ω / ω_{c} for Butterworth filters of order $n=1,2,4,6,8,10$.

FIGURE 2.25. Plots of the phase in degrees versus ω / ω_{c} for Butterworth filters of order $n=1,2,4,6,8,10$.

Note that for Butterworth filters of order $n=4$ or greater,

$$
\begin{aligned}
\left|G_{n}(j \omega)\right| & \approx 1 \quad \text { for } 0 \leq \omega \leq \omega_{b}=0.6 \omega_{c} \\
& \approx 0 \quad \text { for } \omega \geq 2 \omega_{c}
\end{aligned}
$$

and

$$
\angle G_{n}(j \omega) \approx-\gamma_{n} \omega \text { for } 0 \leq \omega \leq \omega_{b}=0.6 \omega_{c}
$$

where the delays $\gamma_{n}=m_{n} / \omega_{c}\left(m_{n} \triangleq\right.$ the slope of the $\angle G_{n}(j \omega)$ vs. $\left.\omega / \omega_{c}\right)$ are monotonically increasing. In other words, $\gamma_{1}<\gamma_{2}<\gamma_{4}<\gamma_{6}<\gamma_{8}<$ γ_{10} so that the time delay increases as the order of the filter increases.

Let's consider the specific example of a third-order Butterworth filter given by

$$
\begin{aligned}
G_{3}(s) & =\frac{1}{\left(s / \omega_{c}+1\right)\left(\left(s / \omega_{c}\right)^{2}+s / \omega_{c}+1\right)} \\
& =\frac{\omega_{c}^{3}}{\left(s+\omega_{c}\right)\left(s^{2}+\omega_{c} s+\omega_{c}^{2}\right)} .
\end{aligned}
$$

Note that $\left|G_{3}(j \omega)\right|_{\omega=0}=1$ and $\left|G_{3}(j \omega)\right|_{\omega=\omega_{c}}=1 / \sqrt{2}$. By direct computation (tedious!), one can verify that $d^{k}\left|G_{3}(j \omega)\right| /\left.d \omega^{k}\right|_{\omega=0}=0$ for $k=$ $1,2,3,4,5$ and $d^{6}\left|G_{3}(j \omega)\right| /\left.d \omega^{6}\right|_{\omega=0}=-(1 / 2)(6!)$. The third-order Butterworth filter is the only third-order, causal, rational (i.e., ratio of two polynomials) filter that has its first five derivatives zero at $\omega=0$. For this reason, the Butterworth filter is known as being maximally flat. In general, if $G_{n}(j \omega)$ denotes an n th-order Butterworth filter, then $d^{k}\left|G_{n}(j \omega)\right| / d \omega_{\mid \omega=0}^{k}=$ 0 for $k=1,2,3,4,5, \ldots, 2 n-1$ and $d^{2 n}\left|G_{n}(j \omega)\right| /\left.d \omega^{2 n}\right|_{\omega=0}=-(1 / 2)(2 n!)$.

2.7.8 Implementation of the Filter

To actually implement the filter, a differential equation representation of the filter is used. For a transfer function of the form

$$
G(s)=\frac{b_{1} s^{2}+b_{2} s+b_{3}}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}},
$$

a state space representation (called the control canonical form) is given by

$$
\begin{aligned}
\dot{x}(t) & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{3} & -a_{2} & -a_{1}
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] m(t) \\
y(t) & =\left[\begin{array}{lll}
b_{3} & b_{2} & b_{1}
\end{array}\right] x(t)
\end{aligned}
$$

which may be written in a more compact form as

$$
\begin{aligned}
\dot{x}(t) & =A x(t)+b m(t) \\
y(t) & =c x(t)
\end{aligned}
$$

where

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{3} & -a_{2} & -a_{1}
\end{array}\right], b=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], c=\left[\begin{array}{lll}
b_{3} & b_{2} & b_{1}
\end{array}\right] .
$$

The characteristic polynomial of the system is given by

$$
\begin{aligned}
\operatorname{det}(s I-A) & =\operatorname{det}\left[\begin{array}{ccc}
s & -1 & 0 \\
0 & s & -1 \\
a_{3} & a_{2} & s+a_{1}
\end{array}\right] \\
& =s\left|\begin{array}{cc}
s & -1 \\
a_{2} & s+a_{1}
\end{array}\right|-(-1)\left|\begin{array}{cc}
0 & -1 \\
a_{3} & s+a_{1}
\end{array}\right|+0\left|\begin{array}{cc}
0 & s \\
a_{3} & a_{2}
\end{array}\right| \\
& =s^{3}+a_{1} s^{2}+a_{2} s+a_{3}
\end{aligned}
$$

and the transfer function is computed as

$$
\left.\begin{array}{rl}
Y(s) & =G(s)=c(s I-A)^{-1} b \\
& =\left[\begin{array}{lll}
b_{3} & b_{2} & b_{1}
\end{array}\right]\left[\begin{array}{ccc}
s & -1 & 0 \\
0 & s & -1 \\
a_{3} & a_{2} & s+a_{1}
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{lll}
\times & \times & 1 \\
\times & \times & s \\
\times & \times & s^{2}
\end{array}\right] \\
b_{3} & b_{2}
\end{array} b_{1}\right] \frac{\left[s^{3}+a_{1} s^{2}+a_{2} s+a_{3}\right.}{}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right], ~=\frac{b_{1} s^{2}+b_{2} s+b_{3}}{s^{3}+a_{1} s^{2}+a_{2} s+a_{3}} \text { (}
$$

where the " x " means the specific value of each of these elements is not needed. For the third-order Butterworth filter given by

$$
\begin{aligned}
G_{3}(s) & =\frac{\omega_{c}^{3}}{\left(s+\omega_{c}\right)\left(s^{2}+\omega_{c} s+\omega_{c}^{2}\right)} \\
& =\frac{\omega_{c}^{3}}{s^{3}+2 \omega_{c} s^{2}+2 \omega_{c}^{2} s+\omega_{c}^{3}}
\end{aligned}
$$

direct computation shows that a state-space representation is given by

$$
\begin{align*}
\dot{x}(t) & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-\omega_{c}^{3} & -2 \omega_{c}^{2} & -2 \omega_{c}
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] m(t) \\
y(t) & =\left[\begin{array}{lll}
\omega_{c}^{3} & 0 & 0
\end{array}\right] x(t) . \tag{2.49}
\end{align*}
$$

2.7.9 Discretization of Differential Equations

In order to implement a filter on a computer, the continuous time differential equation representing the filter must be discretized, that is, put into a discrete-time equivalent. There are many ways to do this, but only the trapezoidal method (also known as the bilinear transformation) is discussed here.

Consider $\dot{y}(t)=m(t)$ or $y(t)=\int_{0}^{t} m(\tau) d \tau$ and let the sample period be T. The trapezoidal method of integration uses the average value of the integrand over the sample period to compute the area under the curve. This is illustrated in Figure 2.26.

FIGURE 2.26. Trapezoidal method of integration.

Denote the area under the curve $m(t)$ at time $n T$ by $y(n T)$. The average value of $m(t)$ between the times $(n-1) T$ and $n T$ is $\frac{m(n T)+m((n-1) T)}{2}$ so that the approximate area under the curve in this same time period is $\frac{m(n T)+m((n-1) T)}{2} T$. Thus, one can (approximately) find the area under $m(t)$ at any time $n T$ as

$$
\begin{equation*}
y(n T)=y((n-1) T)+\frac{m(n T)+m((n-1) T)}{2} T . \tag{2.50}
\end{equation*}
$$

Let

$$
\begin{aligned}
Y(z) & =\sum_{n=0}^{\infty} y(n T) z^{-n} \\
M(z) & =\sum_{n=0}^{\infty} m(n T) z^{-n}
\end{aligned}
$$

be the z transform of $\{Y(n T)\}$ and $\{M(n T)\}$, respectively. Take the z
transform of (2.50) to obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} y(n T) z^{-n}= & z^{-1} \sum_{n=0}^{\infty} y((n-1) T) z^{-(n-1)}+ \\
& \frac{T}{2}\left(\sum_{n=0}^{\infty} m(n T) z^{-n}+z^{-1} \sum_{n=0}^{\infty} m((n-1) T) z^{-(n-1)}\right)
\end{aligned}
$$

Note that with $y(-1)=0$,

$$
\begin{aligned}
\sum_{n=0}^{\infty} y((n-1) T) z^{-(n-1)} & =\sum_{n=1}^{\infty} y((n-1) T) z^{-(n-1)} \\
& =\sum_{k=0}^{\infty} y(k T) z^{-k} \\
& =Y(z)
\end{aligned}
$$

Similarly, with $m(-1)=0, \sum_{n=0}^{\infty} m((n-1) T) z^{-(n-1)}=M(z)$ so that

$$
Y(z)=z^{-1} Y(z)+\frac{T}{2}\left(M(z)+z^{-1} M(z)\right)
$$

or

$$
\frac{Y(z)}{M(z)}=\frac{T}{2} \frac{1+z^{-1}}{1-z^{-1}}
$$

where the right-hand side is known as the bilinear transformation. The general case is now considered where the state-space representation

$$
\dot{x}(t)=A x(t)+b m(t)
$$

of the filter is used. To numerically integrate this differential equation, the trapezoidal integration algorithm is used as follows:

$$
\begin{aligned}
x(n T)= & x((n-1) T)+T \frac{\dot{x}(n T)+\dot{x}((n-1) T)}{2} \\
= & x((n-1) T) \\
& +\frac{T}{2}(A x(n T)+b m(n T)+A x((n-1) T)+b m((n-1) T))
\end{aligned}
$$

Take the z transform of both sides to obtain

$$
X(z)=z^{-1} X(z)+\frac{T}{2}\left(A X(z)+A z^{-1} X(z)\right)+\frac{T}{2}\left(b M(z)+b z^{-1} M(z)\right)
$$

or

$$
\begin{aligned}
\left(1-z^{-1}\right) X(z)-\frac{T}{2}\left(1+z^{-1}\right) A X(z) & =\frac{T}{2}\left(1+z^{-1}\right) b M(z) \\
\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}} X(z)-A X(z) & =b M(z) \\
\left(\left(\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}\right) I-A\right) X(z) & =b M(z)
\end{aligned}
$$

Then, as $Y(z)=c X(z)$,

$$
H(z) \triangleq \frac{Y(z)}{M(z)}=c\left(\left(\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}\right) I-A\right)^{-1} b
$$

The remarkable result is that the discrete-time transfer function is found by simply evaluating the continuous-time transfer function $G(s)=c(s I-$ A) ${ }^{-1} b$ at $s=\frac{2}{T} \frac{1-z^{-1}}{1+z^{-1}}$!

Going back to the third-order Butterworth filter

$$
G_{3}(s)=\frac{\omega_{c}^{3}}{s^{3}+2 \omega_{c} s^{2}+2 \omega_{c}^{2} s+\omega_{c}^{3}}
$$

the discrete-time transfer function for this filter (corresponding to integrating the differential equation (2.49) using the trapezoidal approximation) is given by

$$
\begin{aligned}
H(z) & =\left.G(s)\right|_{s=\frac{2}{T}} \frac{1-z^{-1}}{1+z-1} \\
& =\frac{\omega_{c}^{3}}{s^{3}+2 \omega_{c} s^{2}+2 \omega_{c}^{2} s+\omega_{c \left\lvert\, s=\frac{2}{T} \frac{1-z-1}{1+z}\right.}^{1+z}} \\
& =\frac{b_{1}+b_{2} z^{-1}+b_{3} z^{-2}+b_{4} z^{-3}}{a_{1}+a_{2} z^{-1}+a_{3} z^{-2}+a_{4} z^{-3}}
\end{aligned}
$$

where

$$
\begin{align*}
b_{1} & =\omega_{c}^{3} T^{3}, b_{2}=3 \omega_{c}^{3} T^{3}, b_{3}=3 \omega_{c}^{3} T^{3}, b_{4}=\omega_{c}^{3} T^{3} \\
a_{1} & =\omega_{c}^{3} T^{3}+4 \omega_{c}^{2} T^{2}+8 \omega_{c} T+8 \\
a_{2} & =3 \omega_{c}^{3} T^{3}+4 \omega_{c}^{2} T^{2}-8 \omega_{c} T-24 \tag{2.51}\\
a_{3} & =3 \omega_{c}^{3} T^{3}-4 \omega_{c}^{2} T^{2}-8 \omega_{c} T+24 \\
a_{4} & =\omega_{c}^{3} T^{3}-4 \omega_{c}^{2} T^{2}+8 \omega_{c} T-8 .
\end{align*}
$$

Usually, the filter coefficients are normalized so that leading coefficient in the denominator is 1 . The coefficients are then given by $a_{1}^{\prime}=1, a_{2}^{\prime}=a_{2} / a_{1}$, $a_{3}^{\prime}=a_{3} / a_{1}, a_{4}^{\prime}=a_{4} / a_{1}, b_{1}^{\prime}=b_{1} / a_{1}, b_{2}^{\prime}=b_{2} / a_{1}, b_{3}^{\prime}=b_{3} / a_{1}, b_{4}^{\prime}=b_{4} / a_{1}$.

In order to implement this discrete-time filter, it needs to be reformulated as a discrete-time difference equation. This can be done either as a inputoutput difference equation or as a state-space difference equation. Both of these representations are considered in the next section.

2.7.10 Digital Filtering

A general second-order digital filter may be represented in input-output form as ($a_{1}=1$)

$$
\begin{align*}
y(n T)= & b_{1} m(n T)+b_{2} m((n-1) T)+b_{3} m((n-2) T) \\
& -a_{2} y((n-1) T)-a_{3} y((n-2) T) \tag{2.52}
\end{align*}
$$

That is, to get the output of the filter at time $n T$, one needs to know the current input $m(n T)$, have stored the previous two inputs $m((n-1) T)$, $m((n-2) T)$ and outputs $y((n-1) T), y((n-2) T)$, and then carry out the calculation. Rewrite (2.52) as

$$
\begin{align*}
y(n T)+a_{2} y((n-1) T)+a_{3} y((n-2) T)= & \left.b_{1} m(n T)\right)+b_{2} m((n-1) T \\
& +b_{3} m((n-2) T) \tag{2.53}
\end{align*}
$$

To compute the discrete transfer function, multiply both sides by z and sum from $n=0$ to $n=\infty$ to obtain

$$
\begin{aligned}
\sum_{n=0}^{\infty} y(n T) z^{-n} & +a_{2} z^{-1} \sum_{n=0}^{\infty} y((n-1) T) z^{-(n-1)} \\
& +a_{3} z^{-2} \sum_{n=0}^{\infty} y((n-2) T) z^{-(n-2)} \\
= & b_{1} \sum_{n=0}^{\infty} m(n T) z^{-n}+b_{2} z^{-1} \sum_{n=0}^{\infty} m((n-1) T) z^{-(n-1)} \\
& +b_{3} z^{-2} \sum_{n=0}^{\infty} m((n-2) T) z^{-(n-2)}
\end{aligned}
$$

Let $Y(z)=\sum_{n=0}^{\infty} y(n T) z^{-n}$ so that with $y(-1)=0$ it follows that
$\sum_{n=0}^{\infty} y((n-1) T) z^{-(n-1)}=\sum_{n=1}^{\infty} y((n-1) T) z^{-(n-1)}=\sum_{k=0}^{\infty} y((k) T) z^{-k}=Y(z)$.
In addition, if $y(-2)=0$, it then follows that $Y(z)=\sum_{n=0}^{\infty} y((n-$ 2) T) $z^{-(n-2)}$. Similarly, with $m(-1)=m(-2)=0$, it follows that

$$
\begin{aligned}
M(z) & =\sum_{n=0}^{\infty} m(n T) z^{-n}=z^{-1} \sum_{n=0}^{\infty} m((n-1) T) z^{-(n-1)} \\
& =z^{-2} \sum_{n=0}^{\infty} m((n-2) T) z^{-(n-2)}
\end{aligned}
$$

Using these expressions, (2.53) becomes

$$
Y(z)=a_{2} z^{-1} Y(z)+a_{3} z^{-2} Y(z)=b_{1} M(z)+b_{2} z^{-1} M(z)+b_{3} z^{-2} M(z)
$$

or

$$
\begin{equation*}
H(z)=\frac{b_{1}+b_{2} z^{-1}+b_{3} z^{-2}}{1+a_{2} z^{-1}+a_{3} z^{-2}} \tag{2.54}
\end{equation*}
$$

Thus, the filter represented by this transfer function may be implemented on a computer using the difference equation (2.52).

Example Consider the computation of speed by differentiation of position:

$$
\omega_{b d}(n T)=\frac{\theta(n T)-\theta((n-1) T)}{T}
$$

Let $m(n T)=\theta(n T)$ and $y(n T)=\omega(n T)$ so that this becomes

$$
y(n T)=\frac{1}{T} m(n T)-\frac{1}{T} m((n-1) T)
$$

that is, $b_{1}=1 / T, b_{2}=-1 / T, a_{1}=1, a_{2}=0$. The transfer function is given by

$$
\frac{Y(z)}{M(z)}=\frac{b_{1}+b_{2} z^{-1}}{1}
$$

2.7.11 State-Space Representation

Consider a third-order discrete-time transfer function of the form

$$
\begin{align*}
H(z)= & \frac{Y(z)}{M(z)}=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+b_{3} z^{-3}}{1+a_{1} z^{-1}+a_{2} z^{-2}+a_{3} z^{-3}} \\
= & \frac{b_{0} z^{3}+b_{1} z^{2}+b_{2} z+b_{3}}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}}=\frac{b_{0}\left(z^{3}+a_{1} z^{2}+a_{2} z+a_{3}\right)}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}} \\
& +\frac{\left(b_{1}-b_{0} a_{1}\right) z^{2}+\left(b_{2}-b_{0} a_{2}\right) z+\left(b_{3}-b_{0} a_{3}\right)}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}} \\
= & b_{0}+\frac{\left(b_{1}-b_{0} a_{1}\right) z^{2}+\left(b_{2}-b_{0} a_{2}\right) z+\left(b_{3}-b_{0} a_{3}\right)}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}} . \tag{2.55}
\end{align*}
$$

With

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-a_{3} & -a_{2} & -a_{1}
\end{array}\right], \quad b=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
c & =\left[\begin{array}{lll}
b_{3}-b_{0} a_{3} & b_{2}-b_{0} a_{2} & b_{1}-b_{0} a_{1}
\end{array}\right] \\
d & =b_{0}
\end{aligned}
$$

a state-space realization of this transfer function is given by

$$
\begin{align*}
x((n+1) T)) & =A x(n T)+b m(n T), x(n T) \in \mathbb{R}^{3} \\
y(n T) & =c x(n T)+d m(n T), y(n T) \in \mathbb{R} . \tag{2.56}
\end{align*}
$$

To see this, the z transform of (2.56) is now computed to obtain the transfer function. Proceeding, let

$$
X(z)=\sum_{n=0}^{\infty} x(n T) z^{-n} \in \mathbb{R}^{3}
$$

and note that

$$
\begin{aligned}
\sum_{n=0}^{\infty} x((n+1) T) z^{-n} & =z \sum_{n=0}^{\infty} x((n+1) T) z^{-(n+1)} \\
& =z\left(\sum_{n=-1}^{\infty} x((n+1) T) z^{-(n+1)}-x(0)\right) \\
& =z\left(\sum_{k=0}^{\infty} x(k T) z^{-k}-x(0)\right) \\
& =z X(z)-z x(0) .
\end{aligned}
$$

Thus, taking the z transform of (2.56) results in

$$
z X(z)-z x(0)=A X(z)+b M(z) .
$$

Solve for $X(z)$ to obtain

$$
X(z)=(z I-A)^{-1} b M(z)+(z I-A)^{-1} z x(0)
$$

or

$$
Y(z)=c X(z)+d M(z)=\left(c(z I-A)^{-1} b+d\right) M(z)+z(z I-A)^{-1} x(0) .
$$

With $x(0)=0$, the transfer function is

$$
\frac{Y(z)}{M(z)}=c(z I-A)^{-1} b+d
$$

where

$$
\begin{aligned}
& c(z I-A)^{-1} b+d \\
& =\left[\begin{array}{lll}
b_{3}-b_{0} a_{3} & b_{2}-b_{0} a_{2} & b_{1}-b_{0} a_{1}
\end{array}\right]\left[\begin{array}{ccc}
z & -1 & 0 \\
0 & z & -1 \\
a_{3} & a_{2} & z+a_{1}
\end{array}\right]^{-1}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]+b_{0} \\
& =\left[\begin{array}{lll}
b_{3}-b_{0} a_{3} & b_{2}-b_{0} a_{2} & b_{1}-b_{0} a_{1}
\end{array}\right] \frac{\left[\begin{array}{ccc}
\times & \times & 1 \\
\times & \times & z \\
\times & \times & z^{2}
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}}+b_{0}
\end{aligned}
$$

where the " x " denotes values that do not affect the final result. Simplifying, this becomes

$$
\begin{aligned}
c(z I-A)^{-1} b+d= & \frac{\left(b_{1}-b_{0} a_{1}\right) z^{2}+\left(b_{2}-b_{0} a_{2}\right) z+\left(b_{3}-b_{0} a_{3}\right)}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}}+b_{0} \\
= & \frac{b_{0}\left(z^{3}+a_{1} z^{2}+a_{2} z+a_{3}\right)}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}} \\
& +\frac{\left(b_{1}-b_{0} a_{1}\right) z^{2}+\left(b_{2}-b_{0} a_{2}\right) z+\left(b_{3}-b_{0} a_{3}\right)}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}} \\
= & \frac{b_{0} z^{3}+b_{1} z^{2}+b_{2} z+b_{3}}{z^{3}+a_{1} z^{2}+a_{2} z+a_{3}} \\
= & \frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}+b_{3} z^{-3}}{1+a_{1} z^{-1}+a_{2} z^{-2}+a_{3} z^{-3}} .
\end{aligned}
$$

In summary, the state-space representation (2.56) can used to implement the digital filter (2.55) in real time on a computer.

2.7.12 Noncausal Filtering

It has been shown how to use a Butterworth filter to realize a filter with low-pass magnitude characteristics and a linear phase. One can get around the problem of requiring a linear phase by filtering the signal twice in an appropriate manner as is now described.

Let $m(t)=s(t)+n(t)$ be the input to a filter whose transfer function is $G(s)$ and let the output be $y(t)$ so that $y(t)=\int_{-\infty}^{t} g(t-\tau) m(\tau) d \tau$. Also, let T_{f} be a large final time such that $\left[0, T_{f}\right]$ contains the period of time over which the signal $s(t)$ is nonzero. The plots of $m(t), s(t)$ and $y(t)$ are given below in Figure 2.27. Note that the filtered signal $y(t)$ is shifted to the right from $s(t)$ corresponding to a time delay. Next, let $y_{b}(t) \triangleq y\left(T_{f}-t\right)$ (the subscript b stands for backwards) and then pass this signal through $G(s)$ once again and call the output $y_{f f b}(t)$ (the $f f$ stands for filter-filter, i.e., double filtering). Finally, let $y_{f f}(t) \triangleq y_{f f b}\left(T_{f}-t\right)$. Figure 2.28 illustrates these different signals.

It is now shown that $y_{f f}(t)$ is a good estimate of $s(t)$. To explain how this double filtering works, the transfer function from m to y is now computed. The filter may be represented as a convolution or in the s domain as

$$
\begin{aligned}
y(t) & =\int_{0}^{t} g(t-\tau) m(\tau) d \tau \\
Y(s) & =G(s) M(s)
\end{aligned}
$$

where $G(j \omega)=|G(j \omega)| e^{j \angle G(j \omega)}$.

FIGURE 2.27. $m(t)=(\theta(n T)-\theta((n-1) T)) / T$ with $T=0.5 \mathrm{msec}$ is the measured speed. $s(t)$ is the "true" speed from a simulation and $y(t)$ is the filtered version of $m(t)$. Note that $y(t)$ is delayed with respect to $s(t)$.

FIGURE 2.28. $y(t), y_{b}(t)-y\left(T_{f}-t\right), y_{f f b}(t), y_{f f}(t)$ versus t.

Then from the convolution representation

$$
y_{f f b}(t)=\int_{0}^{t} g(t-\tau) y_{b}(\tau) d \tau=\int_{0}^{t} g(t-\tau) y\left(T_{f}-\tau\right) d \tau
$$

it follows that

$$
Y_{f f b}(s)=G(s) Y_{b}(s)
$$

where ${ }^{7}$

$$
\begin{aligned}
Y_{b}(s) & =\int_{0}^{T_{f}} e^{-s t} y\left(T_{f}-t\right) d t=-\int_{X_{f}}^{0} e^{-s\left(T_{f}-u\right)} y(u) d u \\
& =e^{-s T_{f}} \int_{0}^{T_{f}} e^{-(-s) u} y(u) d u \\
& =e^{-s T_{f}} Y(-s) \\
& =e^{-s T_{f}} G(-s) M(-s) .
\end{aligned}
$$

Thus,

$$
Y_{f f b}(s)=G(s) Y_{b}(s)=e^{-s T_{f}} G(s) G(-s) M(-s)
$$

Then, with

$$
y_{f f}(t)=y_{f f b}\left(T_{f}-t\right)
$$

it follows that ${ }^{8}$

$$
\begin{aligned}
Y_{f f}(s) & =e^{-s T_{f}} Y_{f f b}(-s)=e^{-s T_{f}}\left(e^{s T_{f}} G(-s) G(s) M(s)\right) \\
& =G(-s) G(s) M(s)
\end{aligned}
$$

or

$$
Y_{f f}(j \omega)=G(-j \omega) G(j \omega) M(j \omega)
$$

As

$$
\begin{aligned}
G(j \omega) & =|G(j \omega)| e^{j \angle G(j \omega)} \\
G(-j \omega) & =|G(-j \omega)| e^{j \angle G(-j \omega)}=|G(j \omega)| e^{-j \angle G(j \omega)}
\end{aligned}
$$

it follows that

$$
\begin{aligned}
Y_{f f}(j \omega) & =G(-j \omega) G(j \omega) M(j \omega) \\
& =|G(j \omega)| e^{-j \angle G(j \omega)}|G(j \omega)| e^{j \angle G(j \omega)} M(j \omega) \\
& =|G(j \omega)|^{2} M(j \omega) .
\end{aligned}
$$

That is, there is no phase shift from $m(t)$ to $y_{f f}(t)$ and thus no distortion. Of course, this filter is noncausal as all of the data $m(t)$ must be collected before the computations can be done.

[^18]
Appendix - Classical Feedback Control

Tracking and Disturbance Rejection

In order to explain the ideas of tracking and disturbance rejection, consider the block diagram of Figure 2.9 which is redrawn in a standard form in Figure 2.29.

FIGURE 2.29. DC motor block diagram.

In Figure $2.29 U(s) \triangleq i_{r}(s), C(s) \triangleq \theta(s)$, and $D(s) \triangleq \tau_{L}(s) / K_{T}$. Note that, though this system is mathematically equivalent to the system of Figure 2.9, there is not a one-to-one physical equivalence. Specifically, the disturbance $D(s)=\tau_{L}(s) / K_{T}$ has the units of amperes, which is consistent with the above drawing, as it is being subtracted from the input current $U(s)=i_{r}(s)$. This is not to say that the load is a current, but rather, if a current given by $-\tau_{L} / K_{T}$ is input to the motor, then the effect on the output position $c(t)$ is the same as the actual load torque.

A block diagram for a simple proportional control system for the motor is given in Figure 2.30, where $R(s) \triangleq \theta_{r e f}(s)$ is the reference input and $G_{m}(s) \triangleq \frac{K_{T} / J}{s(s+f / J)}$

FIGURE 2.30. Simple proportional control system.

A sensor is used to feed back the motor position to obtain the error signal

$$
E(s) \triangleq R(s)-C(s)
$$

A simple proportional controller is specified by

$$
U(s)=K E(s)
$$

that is, the current commanded to the motor $\left[U(s)=i_{r}(s)\right]$ is proportional to the difference between the reference (desired) position and the actual position.

The simple proportional controller is often replaced by a more general controller (compensator) specified by a transfer function $G_{c}(s)=$ $b_{c}(s) / a_{c}(s)$ where the subscript " c " stands for controller (or compensator). In fact, the whole point of automatic control theory is to provide a methodology on how to specify $G_{c}(s)$. A general block diagram form for a control system is given in Figure 2.31.

FIGURE 2.31. Standard block diagram of a control system.
To obtain a convenient expression for the transfer function from $R(s)$ and $D(s)$ to the output $C(s)$, compute
$C(s)=\left(G_{c}(s) E(s)-D(s)\right) G_{m}(s)=\left(G_{c}(s)(R(s)-C(s))-D(s)\right) G_{m}(s)$.
This is rearranged to obtain

$$
C(s)\left(1+G_{c}(s) G_{m}(s)\right)=G_{c}(s) G_{m}(s) R(s)-D(s) G_{m}(s)
$$

or

$$
\begin{equation*}
C(s)=\frac{G_{c}(s) G_{m}(s)}{1+G_{c}(s) G_{m}(s)} R(s)-\frac{G_{m}(s)}{1+G_{c}(s) G_{m}(s)} D(s) . \tag{2.57}
\end{equation*}
$$

The error $E(s)$ is given by

$$
\begin{equation*}
E(s)=R(s)-C(s)=\frac{1}{1+G_{c}(s) G_{m}(s)} R(s)+\frac{G_{m}(s)}{1+G_{c}(s) G_{m}(s)} D(s) \tag{2.58}
\end{equation*}
$$

Typically, the compensator $G_{c}(s)$ is chosen to achieve two objectives:

1. Tracking If the reference position is set as $r(t)=30^{\circ}\left(R(s)=30^{\circ} / s\right)$, then it is required that $c(t) \rightarrow 30^{\circ}$ as $t \rightarrow \infty$, i.e., the output must track the input
2. Disturbance Rejection If the reference position is set as $r(t)=30^{\circ}$, then it is required that $c(t) \rightarrow 30^{\circ}$ as $t \rightarrow \infty$ despite any load on the motor. For example, if a robot arm is to move 30°, it must do so no matter how much weight it is carrying.

PID Control of a Simple DC Servo Motor

The ideas of tracking and disturbance rejection are now illustrated through a series of simple examples. This is done by considering a fixed physical system given by $G_{m}(s)=\frac{1}{s(s+1)}$, which could be the model of a DC servo motor system. Various controllers are considered for both tracking and disturbance rejection.

Tracking Control

A simple proportional controller given by $G_{c}(s)=K$ is considered first.
Example Tracking a step input
Consider the unity feedback system control system of Figure 2.32 where $G_{m}(s)=\frac{1}{s(s+1)}, D(s)=0$ and a constant gain controller.

FIGURE 2.32. Tracking a step input.
The output and error transfer functions are, respectively,

$$
\begin{aligned}
C(s) & =\frac{K G_{m}(s)}{1+K G_{m}(s)} R(s) \\
E(s) & =\frac{1}{1+K G_{m}(s)} R(s)
\end{aligned}
$$

Suppose the objective is to track a step input. Let $u_{s}(t)$ denote the unit step function and let $r(t)=R_{0} u_{s}(t)$ so that $R(s)=R_{0} / s$. The objective is to force the error $e(t) \rightarrow 0$ as $t \rightarrow \infty$ as this means that $c(t) \rightarrow R_{0}$. Evaluating $E(s)$, one obtains

$$
E(s)=\frac{1}{1+K \frac{1}{s(s+1)}} \frac{R_{0}}{s}=\frac{s(s+1)}{s(s+1)+K} \frac{R_{0}}{s}=\frac{s+1}{s^{2}+s+K} R_{0} .
$$

Note that the poles of the forward open-loop transfer function $K G_{m}(s)=$ $K \frac{1}{s(s+1)}$ reappear in the numerator of $E(s)$ after clearing the fractions in the denominator. In particular, the " s " in $K \frac{1}{s(s+1)}$ cancelled the " s " in the denominator of $R(s)$. For $K>0, s^{2}+s+K$ is a stable polynomial so that $s E(s)=\frac{s(s+1)}{s^{2}+s+K} R_{0}$ is stable. By the final value theorem,

$$
e(\infty)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} s \frac{s(s+1)}{s(s+1)+K} \frac{R_{0}}{s}=0
$$

Where does stability come in? Let $K=1$ so that

$$
\begin{aligned}
s^{2}+s+1 & =(s-(-1 / 2+j \sqrt{3} / 2))(s-(-1 / 2-j \sqrt{3} / 2)) \\
& =\left(s-p_{1}\right)\left(s-p_{2}\right)
\end{aligned}
$$

with $p_{1}=-1 / 2+j \sqrt{3} / 2$ and $p_{2}=p_{1}^{*}=-1 / 2-j \sqrt{3} / 2$. Then a partial fraction expansion of $E(s)$ gives

$$
E(s)=\frac{s(s+1)}{s(s+1)+K} \frac{R_{0}}{s}=\frac{s+1}{\left(s-p_{1}\right)\left(s-p_{2}\right)} R_{0}=\frac{\beta}{\left(s-p_{1}\right)}+\frac{\beta^{*}}{\left(s-p_{2}\right)}
$$

where $\beta=\beta_{1}+j \beta_{2}=|\beta| e^{j \angle \beta}$ and $|\beta|^{2}=\beta_{1}^{2}+\beta_{2}^{2}, \angle \beta=\tan ^{-1}\left(\beta_{2} / \beta_{1}\right)$.
In the time domain,

$$
\begin{aligned}
e(t) & =\beta e^{p_{1} t}+\beta^{*} e^{p_{2} t} \\
& =|\beta| e^{j \angle \beta} e^{-(1 / 2) t+j(\sqrt{3} / 2) t}+|\beta| e^{-j \angle \beta} e^{-(1 / 2) t-j(\sqrt{3} / 2) t} \\
& =2|\beta| e^{-(1 / 2) t} \cos ((\sqrt{3} / 2) t+\angle \beta) \rightarrow 0 \text { as } t \rightarrow \infty
\end{aligned}
$$

Recall that the poles of the closed-loop transfer function determine the form of the transient response. As the closed-loop poles p_{1} and p_{2} are in the open left-half plane (LHP), the transients die out. The real part of the closed-loop poles $\left(\operatorname{Re}\left\{p_{1}\right\}=\operatorname{Re}\left\{p_{2}\right\}=-1 / 2\right)$ determine how fast the transient $e(t)$ dies out and typically one chooses the amplifier gain K such that the poles of the closed-loop system are as far as possible in the LHP.

Example Tracking a ramp input
Consider the same system as in the previous example, but let the input be a ramp function. Specifically, the input is given by $r(t)=\omega_{0} t$ where ω_{0} is a constant $\left(R(s)=\omega_{0} / s^{2}\right)$ and $D(s)=0$. The error $E(s)$ is then

$$
E(s)=\frac{1}{1+K \frac{1}{s(s+1)}} \frac{\omega_{0}}{s^{2}}=\frac{s(s+1)}{s(s+1)+K} \frac{\omega_{0}}{s^{2}}=\frac{s+1}{s^{2}+s+K} \frac{\omega_{0}}{s}
$$

FIGURE 2.33. Tracking a ramp input.

Note again that the pole at $s=0$ of $K G_{m}(s)$ cancelled one of the poles at $s=0$ of $R(s)$. As $s^{2}+s+K$ is stable for $K>0, s E(s)=\frac{s+1}{s^{2}+s+K} \omega_{0}$ is stable. By the final value theorem,

$$
e(\infty)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} \frac{s+1}{s(s+1)+K} \omega_{0}=\frac{\omega_{0}}{K} .
$$

Consequently, asymptotic tracking is not achieved as $e(t)$ does not go to 0 as $t \rightarrow \infty$. However, the motor does follow the input with a finite error which can be made small if K can be made large.

Where does stability come in? Let $K=1$ so that $p_{i}=(-1 \pm j \sqrt{3}) / 2$ and

$$
\begin{aligned}
E(s) & =\frac{s(s+1)}{s(s+1)+K} \frac{\omega_{0}}{s^{2}}=\frac{s+1}{s\left(s-p_{1}\right)\left(s-p_{2}\right)} \omega_{0} \\
& =\frac{A}{s}+\frac{\beta}{\left(s-p_{1}\right)}+\frac{\beta^{*}}{\left(s-p_{2}\right)} \\
& =\frac{\omega_{0}}{s}+\frac{\beta}{\left(s-p_{1}\right)}+\frac{\beta^{*}}{\left(s-p_{2}\right)}
\end{aligned}
$$

for some complex constant β and $\omega_{0}=\lim _{s \rightarrow 0} s E(s)$. Then

$$
e(t)=\omega_{0} u_{s}(t)+\beta e^{p_{1} t}+\beta^{*} e^{p_{2} t} \rightarrow \omega_{0}
$$

as $t \rightarrow \infty$, as the poles are in the open left-half plane $\left(\operatorname{Re}\left(p_{1}\right)=\operatorname{Re}\left(p_{2}\right)<\right.$ 0). Again, as the closed-loop poles are in the left-half plane, the transients die out.

The simple proportional controller is not adequate to track a ramp input $r(t)=\omega_{0} t$ with zero steady-state error. The answer to achieving zero steady-state error for this system lies in considering a different controller!

Example Integral Controller
Consider the controller $G_{c}(s)=K / s$; that is, an integrator.

FIGURE 2.34. An integral controller.

Then

$$
E(s)=\frac{1}{1+\frac{K}{s} \frac{1}{s(s+1)}} \frac{\omega_{0}}{s^{2}}=\frac{s^{2}(s+1)}{s^{2}(s+1)+K} \frac{\omega_{0}}{s^{2}}=\frac{s+1}{s^{3}+s^{2}+K} \omega_{0}
$$

where note that the denominator (poles) of $\frac{K}{s} \frac{1}{s(s+1)}$ reappeared in the numerator of $E(s)$ after clearing fractions. As a consequence, the s^{2} in the denominator of the forward open-loop transfer function $\frac{K}{s} \frac{1}{s(s+1)}$ is in the numerator of $E(s)$ and cancels the s^{2} in the denominator of $R(s)$. If $s^{3}+s^{2}+K$ were stable, then by the final value theorem,

$$
e(\infty)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} s \frac{s+1}{s^{3}+s^{2}+K} \omega_{0}=0
$$

The difficulty here is that $s^{3}+s^{2}+K=s^{3}+s^{2}+0 s+K$ is never stable for any value of K as a necessary condition for stability is that all the coefficients of the closed-loop characteristic polynomial be positive. To emphasize the stability aspect, let $K=1$ for which $s^{3}+s^{2}+1$ has roots $-1.47,0.23 \pm j 0.79$. The error response is found by doing a partial fraction expansion of $E(s)$ as

$$
\begin{aligned}
E(s) & =\frac{s+1}{(s+1.47)(s-0.23-j 0.79)(s-0.23+j 0.79)} \omega_{0} \\
& =\frac{A}{s+1.47}+\frac{\beta}{s-0.23-j 0.79}+\frac{\beta^{*}}{s-0.23+j 0.79}
\end{aligned}
$$

for some complex constant β. The time response then has the form

$$
\begin{aligned}
e(t) & =A e^{-1.47 t}+\beta e^{0.23 t} e^{j 0.79 t}+\beta^{*} e^{0.23 t} e^{-j 0.79 t} \\
& =A e^{-1.47 t}+2|\beta| e^{0.23 t} \cos (0.79 t+\angle \beta) .
\end{aligned}
$$

The error $e(t)$ does not go to zero due to the unstable closed-loop poles at $-0.23 \pm j 0.79$. Remember, the fact that $\lim _{s \rightarrow 0} s E(s)=0$ says nothing about the steady-state error unless $s E(s)$ is stable!

As this example demonstrates, the difficult problem is not in getting $\lim _{s \rightarrow 0} s E(s)=0$, but instead, it is in making the closed-loop system stable. As shown above, a constant gain (proportional) controller will give closed-loop stability, but not $\lim _{s \rightarrow 0} s E(s)=0$. On the other hand, an integral controller gives $\lim _{s \rightarrow 0} s E(s)=0$, but not closed-loop stability. Let's combine the two and see if that will work. Specifically, let

$$
G_{c}(s)=K \frac{s+\alpha}{s}=K+\frac{\alpha K}{s} .
$$

This is called a proportional (K) plus integral ($\alpha K / s$) compensator or PI compensator.

Example PI controller
Again, consider the same system as in the previous examples, except use a PI compensator.

FIGURE 2.35. A proportional plus integral (PI) controller.
From the block diagram, the error $E(s)$ is seen to be given by

$$
\begin{aligned}
E(s) & =\frac{1}{1+K \frac{s+\alpha}{s} \frac{1}{s(s+1)}} R(s)=\frac{s^{2}(s+1)}{s^{2}(s+1)+K(s+\alpha)} \frac{\omega_{0}}{s^{2}} \\
& =\frac{s+1}{s^{3}+s^{2}+K s+\alpha K} \omega_{0} .
\end{aligned}
$$

Again note that denominator of the open-loop system $K \frac{s+\alpha}{s} \frac{1}{s(s+1)}$ reappears in the numerator of $E(s)$. Consequently, the factor of s^{2} in the denominator of $G_{c}(s) G_{m}(s)$ cancels the " s " in the denominator of $R(s)$. Then, if $s^{3}+s^{2}+K s+\alpha K$ is stable, the final value theorem gives

$$
e(\infty)=\lim _{s \rightarrow 0} s E(s)=\lim _{s \rightarrow 0} s \frac{s+1}{s^{3}+s^{2}+K s+\alpha K} \omega_{0}=0
$$

To check stability of $s^{3}+s^{2}+K s+\alpha K$, the Routh test is used [37][46][47]. The Routh table is

s^{3}	1	K
s^{2}	1	αK
s	$K-\alpha K$	0
s^{0}	αK	

The first column is positive if and only if $\alpha K>0$ and $K-\alpha K=K(1-\alpha)>$ 0 or

$$
K>0 \text { and } 0<\alpha<1 .
$$

For example, with $K=1$ and $\alpha=1 / 2$, the closed-loop characteristic equation is

$$
s^{3}+s^{2}+s+1 / 2=(s+0.65)(s+0.176-j 0.861)(s+0.176+j 0.861) .
$$

Then, letting $r=-0.65, p_{i}=-0.176 \pm j 0.861$, the partial fraction expansion of $E(s)$ gives

$$
E(s)=\frac{s+1}{(s-r)\left(s-p_{1}\right)\left(s-p_{2}\right)} \omega_{0}=\frac{A}{s-r}+\frac{\beta}{s-p_{1}}+\frac{\beta^{*}}{s-p_{2}} .
$$

The corresponding time response is then

$$
\begin{aligned}
e(t) & =A e^{-0.65 t}+\beta e^{-0.176 t} e^{j 0.861 t}+\beta^{*} e^{-0.176 t} e^{-j 0.861 t} \\
& =A e^{-0.65 t}+2|\beta| e^{-0.176 t} \cos (0.861 t+\angle \beta) \rightarrow 0 \text { as } t \rightarrow \infty .
\end{aligned}
$$

In general, adding integrators to the compensator tends to destabilize the closed-loop system while adding a proportional (constant gain) compensator tends to stabilize the closed-loop system. In the above example, an integrator is added to obtain zero steady-state error and the proportional compensator is added to make the closed-loop system stable.

Disturbance Rejection

Consider now the problem of having the motor to rotate R_{0} radians with an external load acting on it (Figure 2.37 illustrates such cases).

Example Constant Load Torque with a Proportional Controller
Consider the control system in the block diagram below. Let

$$
G_{m}(s)=\frac{1}{s(s+1)}
$$

and let the disturbance be the constant load torque

$$
\tau_{L}(t)=\tau_{0} u_{s}(t)
$$

so that $D(s)=\frac{\tau_{L}(s)}{K_{T}}=\frac{\tau_{0}}{K_{T}} \frac{1}{s}$.

FIGURE 2.36. A proportional controller with a load acting on the system.

FIGURE 2.37. Examples of torque loads on DC motors.

It was shown in (2.58) that $E(s)=E_{R}(s)+E_{D}(s)$ where

$$
E_{R}(s) \triangleq \frac{1}{1+K G_{m}(s)} R(s)
$$

and

$$
E_{D}(s) \triangleq \frac{G_{m}(s)}{1+K G_{m}(s)} D(s)
$$

It was also shown that $\mathcal{L}^{-1}\left\{E_{R}(s)\right\}=e_{R}(t) \rightarrow 0$ as long as $K>0$. The interest here is disturbance rejection, that is, whether or not $e_{D}(t)=$ $\mathcal{L}^{-1}\left\{E_{D}(s)\right\} \rightarrow 0$ as $t \rightarrow \infty$. The Laplace transform of $e_{D}(t)$ is

$$
E_{D}(s)=\frac{G_{m}(s)}{1+K G_{m}(s)} D(s)=\frac{\frac{1}{s(s+1)}}{1+K \frac{1}{s(s+1)}} \frac{\tau_{L}(s)}{K_{T}}=\frac{1}{s^{2}+s+K} \frac{\tau_{L}(s)}{K_{T}} .
$$

In words, $E_{D}(s)$ is the error in the position response due to the load torque. With a constant load torque $\tau_{L}(s)=\tau_{0} / s$ and, as $s^{2}+s+K$ is stable for $K>0$, the final position error due to the load torque is

$$
e_{D}(\infty)=\lim _{s \rightarrow 0} s \frac{1}{s^{2}+s+K} \frac{\tau_{0}}{K_{T}} \frac{1}{s}=\frac{\tau_{0}}{K K_{T}} .
$$

The error

$$
r(t)-c(t)=e(t)=e_{R}(t)+e_{D}(t) \rightarrow e_{R}(\infty)+e_{D}(\infty)=0+\frac{\tau_{0}}{K K_{T}}
$$

as $t \rightarrow \infty$. Rearranging, the steady-state output is

$$
c(\infty)=r(\infty)-e(\infty)=R_{0}-\frac{\tau_{0}}{K K_{T}} .
$$

The conclusion here is that the final output position depends on the value of the load torque τ_{0}. This is usually not acceptable as typically the load
torque is unknown and it is important to precisely position the motor regardless of the load. ${ }^{9}$ As is now shown, a PI controller can achieve zero steady-state error for this system even with unknown constant load torques acting on the system.
Example Constant Load Torque with a PI Controller
Let $G_{c}(s)=K_{p}+K_{I} / s=K \frac{s+\alpha}{s}$ where $K_{p}=K$ and $K_{I}=\alpha K$.

FIGURE 2.38. PI controller for disturbance rejection.
The error due to the disturbance is calculated as

$$
\begin{aligned}
E_{D}(s) & =\frac{G_{m}(s)}{1+G_{c}(s) G_{m}(s)} D(s)=\frac{\frac{1}{s(s+1)}}{1+K \frac{s+\alpha}{s} \frac{1}{s(s+1)}} \frac{\tau_{0}}{K_{T}} \frac{1}{s} \\
& =\frac{s}{s^{2}(s+1)+K(s+\alpha)} \frac{\tau_{0}}{K_{T}} \frac{1}{s}=\frac{1}{s^{3}+s^{2}+K s+\alpha K} \frac{\tau_{0}}{K_{T}} .
\end{aligned}
$$

Note that, in contrast to the tracking case, only the denominator of $G_{c}(s)$ (i.e., s) reappears in the numerator after clearing the fractions in $E_{D}(s)$. This " s " cancels the $1 / s$ in $\tau_{L}(s)$. Now, by the Routh test, $s^{3}+s^{2}+K s+\alpha K$ is stable for $K>0$ and $0<\alpha<1$, and so $s E_{D}(s)$ is also stable. Again, by the final value theorem,

$$
e_{D}(\infty)=\lim _{s \rightarrow 0} s E_{D}(s)=\lim _{s \rightarrow 0} s \frac{1}{s^{3}+s^{2}+K s+\alpha K} \frac{\tau_{0}}{K_{T}}=0 .
$$

Consequently, the load torque τ_{0} has no effect on the final position.
Interpretation of the PI Controller
For the system of Figure 2.38, it was shown that K and α can be chosen so that the closed-loop system is stable and $e(\infty)=\lim _{s \rightarrow 0} s E(s)=0$. $U(s)=i_{r}(s)$ is the input current to the motor and is given by

$$
U(s)=K \frac{s+\alpha}{s} E(s)=K E(s)+\frac{\alpha K}{s} E(s) .
$$

[^19]In the time domain,

$$
u(t)=K e(t)+\alpha K \int_{0}^{t} e(t) d t
$$

The limiting value of $u(t)$ is

$$
u(\infty)=\lim _{s \rightarrow 0} s U(s)=\alpha K E(0)
$$

which is due only to the output of the integrator. With $R(s)=R_{0} / s$ and $\tau_{L}(s)=\tau_{0} / s$, the error is given by

$$
E(s)=\frac{s^{2}(s+1)}{s^{3}+s^{2}+K s+\alpha K} \frac{R_{0}}{s}+\frac{s}{s^{2}(s+1)+K(s+\alpha)} \frac{\tau_{0}}{K_{T}} \frac{1}{s}
$$

and, therefore, $E(0)=\tau_{0} /\left(\alpha K K_{T}\right)$. Consequently, $u(\infty)=\tau_{0} / K_{T}$ which shows that the output of the integrator goes to exactly the value needed to cancel the load disturbance.

FIGURE 2.39. The error $e(t) \rightarrow 0$. The shaded area is $\int_{0}^{\infty} e(t) d t$ and $u(\infty)=\alpha K \int_{0}^{\infty} e(t) d t=\tau_{0} / K_{T}$.

Summary of the PI Controller for a DC Servo

It has been shown that the controller $G_{c}(s)=K(s+\alpha) / s$ with $K>0$ and $0<\alpha<1$, will force the motor with transfer function $G_{m}(s)=\frac{1}{s(s+1)}$ to track inputs of the form $r(t)=R_{0}+\omega_{0} t$ with zero steady-state error in spite of any constant load disturbances. The control system designer then wants to choose K and α so that the closed-loop poles are far in the left-half plane in order have the transients die out quickly. Remember, the closed-loop poles determine the transient response! Recall from (2.57) and (2.58) that

$$
\begin{aligned}
C(s) & =\frac{G_{c}(s) G_{m}(s)}{1+G_{c}(s) G_{m}(s)} R(s)-\frac{G_{m}(s)}{1+G_{c}(s) G_{m}(s)} \frac{\tau_{L}(s)}{K_{T}} \\
E(s) & =\frac{1}{1+G_{c}(s) G_{m}(s)} R(s)+\frac{G_{m}(s)}{1+G_{c}(s) G_{m}(s)} \frac{\tau_{L}(s)}{K_{T}}
\end{aligned}
$$

Evaluating the error $E(s)$ gives

$$
E(s)=\frac{s^{2}(s+1)}{s^{3}+s^{2}+K s+\alpha K}\left(\frac{R_{0}}{s}+\frac{\omega_{0}}{s^{2}}\right)+\frac{K_{L} s}{s^{3}+s^{2}+K s+\alpha K} \frac{\tau_{0}}{K_{T}} \frac{1}{s} .
$$

The gains K and α are chosen so that the poles of the closed-loop characteristic polynomial

$$
s^{3}+s^{2}+K s+\alpha K=(s-r)\left(s-p_{1}\right)\left(s-p_{2}\right)
$$

satisfy $r<0, \operatorname{Re}\left(p_{1}\right)=\operatorname{Re}\left(p_{2}\right)<0$. The error $E(s)$ is then

$$
E(s)=\frac{(s+1)\left(R_{0} s+\omega_{0}\right)}{(s-r)\left(s-p_{1}\right)\left(s-p_{2}\right)}+\frac{1}{(s-r)\left(s-p_{1}\right)\left(s-p_{2}\right) K_{T}}
$$

or, in the time domain,

$$
e(t)=A e^{r t}+B e^{p_{1} t}+B^{*} e^{p_{2} t}+\left(C e^{r t}+D e^{p_{1} t}+D^{*} e^{p_{2} t}\right) K_{L} \tau_{0}
$$

so that

$$
e(t) \rightarrow 0 \text { as } t \rightarrow \infty
$$

as $r<0, \operatorname{Re}\left(p_{1}\right)=\operatorname{Re}\left(p_{2}\right)<0$.

Proportional Plus Integral Plus Derivative (PID) Control

A proportional plus integral plus derivative (PID) controller is defined by

$$
G_{c}(s)=\left(K_{P}+K_{I} / s+K_{D} s\right)=\frac{K_{D} s^{2}+K_{P} s+K_{I}}{s}
$$

or, in the time domain,

$$
v_{a}(t)=K e(t)+\alpha K \int_{0}^{t} e(t) d t+K_{D} \frac{d e}{d t}
$$

FIGURE 2.40. A proportional plus integral plus derivative controller.
The advantages of Proportional plus Integral (PI) controllers of the form $K_{P}+K_{I} / s$ has been discussed. The derivative control term $K_{D} s$ is used to force the transients to die out faster. That is, as will be shown below, the term $K_{D} s$ allows the control designer to put the closed-loop poles further in the left-half plane. However, before this is done, some practical issues concerning the derivative controller $K_{D} s$ are considered.

Practical Problem with Derivative Controllers

Differentiation of a signal with noise amplifies the noise!! Most signals contain a high-frequency low-amplitude noise. For example, a DC power supply takes a $60-\mathrm{Hz}$ AC signal and rectifies it into a DC voltage. Due to this process (Full-Wave Rectification) there is a small amplitude 120 Hz signal (i.e., noise) added onto the DC output.

FIGURE 2.41. Left: Error signal. Right: Error signal containing high-frequency low-amplitude noise.

If one measures the error signal $e(t)$, the signal $e(t)+n(t)$ is actually obtained where $n(t)$ is a noise term. Numerically differentiating this signal gives the approximation

$$
\dot{e}(t)+\dot{n}(t) \cong \frac{e(t)-e(t-\Delta t)+n(t)-n(t-\Delta t)}{\Delta t} .
$$

As the difference $n(t)-n(t-\Delta t)$ may be of the same order (or higher) of magnitude as $e(t)-e(t-\Delta t)$, it follows that $\dot{n}(t)$ can be of the same order of magnitude as $\dot{e}(t)$. For example, let this noise ${ }^{10}$ be given by $n(t)=$ $0.01 \sin (2 \pi(120 t))=0.01 \sin (754 t)$. Thus, even though $n(t)$ is quite small, $\dot{n}(t)=7.54 \sin (754 t)$ is large and can swamp out the value of $e(t)$.

Practical Implementation of Derivative Feedback for DC Motors

Consider the control structure shown in Figure 2.42. Using a tachometer, a direct measurement of the speed $\omega(t)$ is obtained which is then used as a feedback signal. K_{t} is an adjustable gain set by the control system designer. Note that, in contrast to the general PID controller structure originally introduced above, the tachometer is feeding back only the derivative of the output $\dot{c}(t)$ not the derivative of the error $\dot{e}(t)$.

[^20]

FIGURE 2.42. Implementation of a derivative controller using a tachometer.
To compute the transfer functions from $R(s)$ and $D(s)$ to the error $E(s)$, the block diagram of Figure 2.42 is reduces to

FIGURE 2.43. Block diagram reduction of Figure 2.42.
Thus $E(s)=E_{R}(s)+E_{D}(s)$ where

$$
\begin{aligned}
E_{R}(s) & =\frac{1}{1+K \frac{s+\alpha}{s} \frac{1}{s+1+K_{t}} \frac{1}{s}} R(s) \\
& =\frac{s^{2}\left(s+1+K_{t}\right)}{s^{3}+\left(1+K_{t}\right) s^{2}+K s+\alpha K} R(s)
\end{aligned}
$$

and

$$
\begin{aligned}
E_{D}(s) & =\frac{\frac{1}{s+1+K_{t}} \frac{1}{s}}{1+K \frac{s+\alpha}{s} \frac{1}{s+1+K_{t}} \frac{1}{s}} D(s) \\
& =\frac{s}{s^{3}+\left(1+K_{t}\right) s^{2}+K s+\alpha K} D(s)
\end{aligned}
$$

As the parameters K_{t}, K, and α are chosen by the control engineer, the coefficients of the closed-loop characteristic polynomial $s^{3}+\left(1+K_{t}\right) s^{2}+$ $K s+\alpha K$ may be chosen arbitrarily. In other words, the location of the
closed-loop poles can be placed anywhere in the left-half plane by the control system designer.

In summary, a PID controller for a DC servomotor allows one to achieve tracking of step and ramp inputs, and rejection of constant load torque disturbances, with the closed-loop poles placed in any desired location. Typically, one desires the closed-loop poles to be as far in the left-half plane as possible so that the transients die out quickly. However, this typically means the control gains must be quite large. To see this, consider the above DC servomotor with tachometer feedback. As derived above, the error $E_{R}(s)$ is given by

$$
E_{R}(s)=\frac{s^{2}\left(s+1+K_{t}\right)}{s^{3}+\left(1+K_{t}\right) s^{2}+K s+\alpha K} R(s) .
$$

Suppose it is desired to put the closed-loop poles at $-10,-10+j 10$ and $-10-j 10$. Set

$$
\begin{aligned}
s^{3}+\left(1+K_{t}\right) s^{2}+K s+\alpha K & =(s+10)(s-(-10+j 10))(s-(-10-j 10)) \\
& =(s+10)\left(s^{2}+20 s+200\right) \\
& =s^{3}+30 s^{2}+400 s+2000
\end{aligned}
$$

That is, $1+K_{t}=30$ or $K_{t}=29, K=400$, and $\alpha K=2000$ or $\alpha=5$.

FIGURE 2.44. Example of a PID controller design.
At $t=0^{+}, c\left(0^{+}\right)=0, \omega\left(0^{+}\right)=0$.Then, $e\left(0^{+}\right)=r\left(0^{+}\right)-c\left(0^{+}\right)=R_{0}$, where $r(t)=R_{0} u_{s}(t)$. The input at $t=0^{+}$is then given by

$$
u\left(0^{+}\right)=400 e\left(0^{+}\right)+2000 \int_{0}^{0^{+}} e(t) d t-29 \omega\left(0^{+}\right)=400 R_{0}
$$

This shows that right after the reference input $r(t)=R_{0} u_{s}(t)$ is applied, the output of the controller (the current commanded to the motor amplifier) is $400 R_{0}$ amperes. In particular, if $R_{0}=1$ radian, then the amplifier is
required to put out 400 A which would most certainly be beyond the limit of the amplifier. The point here is that, in practice, one cannot place the closed-loop poles arbitrarily, but is limited by physical constraints such as the amplifier limits. These physical constraints were not included in the model on which the design was based.

General Theory of Tracking and Disturbance Rejection

With the above examples as background, a general approach to tracking and disturbance rejection in now presented. First, some definitions are required.

Definition Type Number of a System
Let

$$
G(s)=\frac{b(s)}{s^{j} \bar{a}(s)}
$$

where $\bar{a}(0) \neq 0$. Then $G(s)$ is said to be a type j systems which simply means it has j poles at the origin.

Examples

$$
\begin{array}{lll}
G(s)=\frac{1}{s^{2}} & \text { Type 2 } & \bar{a}(s)=1 \\
G(s)=\frac{1}{s(s+1)^{2}} & \text { Type 1 } & \bar{a}(s)=(s+1)^{2} \\
G(s)=\frac{1}{(s+2)} & \text { Type 0 } & \bar{a}(s)=(s+2) \\
G(s)=\frac{s+1}{s\left(s^{2}+2 s+2\right)} & \text { Type 1 } & \bar{a}(s)=s^{2}+2 s+2
\end{array}
$$

Definition Type Number of an Input
If the input to a system $R(s)$ has j poles at the origin (i.e., at $s=0$) and the rest of the poles of $R(s)$ are stable, then $R(s)$ is said to be a type j input.

Examples

$$
\begin{array}{ll}
R(s)=\frac{1}{s} & \\
\text { Type 1 } \\
R(s)=\frac{1}{s^{2}} & \\
\text { Type 2 } \\
R(s)=\frac{1}{s^{j}} & \\
R(s)=\frac{1}{s(s+2)} & \text { Type } j \\
R(s)=\frac{1}{s(s-2)} & \text { Type number not assigned (unstable pole at 2) }
\end{array}
$$

Remark Consider $R(s)=\frac{1}{s(s+2)}=\frac{1}{2} \frac{1}{s}-\frac{1}{2} \frac{1}{s+2}$, so that $r(t)=1 / 2-$ $(1 / 2) e^{-2 t}$. To asymptotically track this $r(t)$, the output signal $c(t)$ must just go to $1 / 2$ as $t \rightarrow \infty$ as $-(1 / 2) e^{-2 t}$ dies out. However, if $R(s)=$ $\frac{1}{s(s-2)}=-\frac{1}{2} \frac{1}{s}+\frac{1}{2} \frac{1}{s-2}$, then $r(t)=-1 / 2+(1 / 2) e^{2 t}$ so that $c(t)$ must asymptotically got to $-1 / 2+(1 / 2) e^{2 t}$ as $t \rightarrow \infty$ in order to track the input.

Consider now the general tracking and disturbance rejection problem as setup in the block diagram of Figure 2.45.

FIGURE 2.45. Block diagram for tracking a type j input.
Let $G_{c}(s)=K b_{c}(s) / a_{c}(s)$ and $G(s)=b(s) / a(s)$ be the transfer functions of the controller and plant (physical system), respectively. First, the disturbance is taken to be zero and the asymptotic tracking of type j inputs is considered. Then the asymptotic rejection of type j disturbances is addressed.

Theorem Tracking with Zero Steady-State Error
Let $R(s)=R_{0} / s^{j}$ be a type j input so $r(t)=\frac{R_{0} t^{j-1}}{(j-1)!}$ and with $D(s) \equiv 0$, the error $e(t)$ satisfies

$$
\lim _{t \rightarrow \infty} e(t)=\lim _{t \rightarrow \infty}(r(t)-c(t))=0
$$

if and only if the closed-loop system is stable; that is, the roots of

$$
a_{c}(s) a(s)+K b_{c}(s) b(s)=0
$$

are in the open left-half plane and the type number of the forward openloop transfer function $G_{c}(s) G(s)$ is j or greater.

Remark The input is $R(s)=R / s^{j}$, and the second condition says that the forward open-loop transfer function $G_{c}(s) G(s)$ must also contain at least a factor of $1 / s^{j}$

Proof

(if) Assume that the conditions hold. To show that $e(t) \rightarrow 0$ as $t \rightarrow \infty$, consider the error $E(s)$ given by

$$
\begin{aligned}
E(s) & =\frac{1}{1+G_{c}(s) G(s)} R(s)=\frac{1}{1+K \frac{b_{c}(s)}{a_{c}(s)} \frac{b(s)}{a(s)}} \frac{R_{0}}{s^{j}} \\
& =\frac{a_{c}(s) a(s)}{a_{c}(s) a(s)+K b_{c}(s) b(s)} \frac{R_{0}}{s^{j}} .
\end{aligned}
$$

By hypothesis, $G_{c}(s) G(s)$ is at least type j, so that $a_{c}(s) a(s)=s^{j} \bar{a}(s)$. Using this expression, the s^{j} terms cancel resulting in

$$
E(s)=\frac{\bar{a}(s)}{a_{c}(s) a(s)+K b_{c}(s) b(s)} R_{0} .
$$

Also, by hypothesis, the roots of the closed-loop characteristic polynomial

$$
a_{c}(s) a(s)+K b_{c}(s) b(s)=\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)
$$

satisfy $\operatorname{Re}\left(p_{i}\right)<0$ for $i=1, \ldots n$. A partial fraction expansion ${ }^{11}$ of $E(s)$ then gives

$$
E(s)=\frac{\bar{a}(s)}{\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)} R_{0}=\frac{A_{1}}{s-p_{1}}+\frac{A_{2}}{s-p_{2}}+\cdots+\frac{A_{n}}{s-p_{n}}
$$

or, in the time domain,

$$
e(t)=A_{1} e^{p_{1} t}+\cdots A_{n} e^{p_{n} t}
$$

As $\operatorname{Re}\left(p_{i}\right)<0$ for $i=1, \ldots, n, e(t) \rightarrow 0$ as $t \rightarrow \infty$.
(only if) Here it must be shown that if $e(t) \rightarrow 0$ as $t \rightarrow \infty$, then

$$
a_{c}(s) a(s)=s^{j} \bar{a}(s)
$$

[^21]where $\bar{a}(s)$ is a polynomial and the closed-loop characteristic polynomial is stable, that is,
$$
a_{c}(s) a(s)+K b_{c}(s) b(s)=\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)
$$
satisfies $\operatorname{Re}\left(p_{i}\right)<0$ for $i=1, \ldots, n$. Proceeding, the error $e(t)$ is the inverse Laplace transform of
\[

$$
\begin{equation*}
E(s)=\frac{a_{c}(s) a(s)}{a_{c}(s) a(s)+K b_{c}(s) b(s)} \frac{R_{0}}{s^{j}} . \tag{2.59}
\end{equation*}
$$

\]

Computing $e(t)$ using a partial fraction expansion of $E(s)$, it is clear that $e(t) \rightarrow 0$ as $t \rightarrow \infty$ only if $E(s)$ is asymptotically stable; that is, $E(s)$ must have all of its poles in the open left-half plane. Now, by equation (2.59), $E(s)$ will have j poles at the origin (unstable) due to the input $R(s)=R_{0} / s^{j}$ unless $a_{c}(s) a(s)=s^{j} \bar{a}(s)$. It is given that $e(t) \rightarrow 0$ as $t \rightarrow \infty$, so it follows that $a_{c}(s) a(s)$ must contain a factor s^{j}. Thus, $E(s)$ is of the form

$$
E(s)=\frac{\bar{a}(s)}{a_{c}(s) a(s)+K b_{c}(s) b(s)} R_{0} .
$$

Further, by doing a partial-fraction expansion of this last expression for $E(s)$, it is seen that $\operatorname{Re}\left(p_{i}\right)<0$ for $i=1, \ldots, n$ in order that $e(t) \rightarrow 0$ as $t \rightarrow \infty$.

Consider now the disturbance rejection problem. The block diagram below illustrates the setup.

FIGURE 2.46. Block diagram with a type j disturbance.

As before, $G(s)=b(s) / a(s)$ and $G_{c}(s)=K b_{c}(s) / a_{c}(s)$. The error $E(s)$ is then

$$
E(s)=\frac{1}{1+G_{c}(s) G(s)} R(s)+\frac{G(s)}{1+G_{c}(s) G(s)} D(s)
$$

The error $E_{D}(s)$ due to the disturbance is

$$
\begin{aligned}
E_{D}(s) & =\frac{G(s)}{1+G_{c}(s) G(s)} D(s)=\frac{K \frac{b(s)}{a(s)}}{1+K \frac{b_{c}(s)}{a_{c}(s)} \frac{b(s)}{a(s)}} D(s) \\
& =\frac{a_{c}(s) b(s)}{a_{c}(s) a(s)+K b_{c}(s) b(s)} D(s) .
\end{aligned}
$$

Consider a type j disturbance $D(s)=D_{0} / s^{j}$ and denote $e(t)=\mathcal{L}^{-1}\left\{E_{D}(s)\right\}$. The following theorem shows how such a disturbance signal can be rejected asymptotically.

Theorem Disturbance Rejection with Zero Steady-State Error
The error $e_{D}(t)$ satisfies

$$
\lim _{t \rightarrow \infty} e_{D}(t)=0
$$

if and only if the closed-loop system is stable; that is, the roots of

$$
a_{c}(s) a(s)+K b_{c}(s) b(s)=0
$$

are all in the open left-half plane and the type number of the compensator transfer function $G_{c}(s)$ is j or greater.

Remark In contrast to the tracking problem where $G_{c}(s) G(s)$ must be type j, the compensator $G_{c}(s)$ by itself must contain at least the factor $1 / s^{j}$.

Proof

By the above,

$$
E_{D}(s)=\frac{a_{c}(s) b(s)}{a_{c}(s) a(s)+K b_{c}(s) b(s)} \frac{D_{0}}{s^{j}} .
$$

It is assumed here that $b(0) \neq 0$ which is true of most physical systems. ${ }^{12}$ Thus $a_{c}(s)$ must have a factor of s^{j} to cancel the denominator of $D(s)$ in order to achieve zero steady-state error. With $a_{c}(s)=s^{j} \bar{a}(s)$, it follows that

$$
E_{D}(s)=\frac{\bar{a}(s) b(s)}{\left(s-p_{1}\right) \cdots\left(s-p_{n}\right)} D_{0}=\frac{A_{1}}{s-p_{1}}+\frac{A_{2}}{s-p_{2}}+\cdots+\frac{A_{n}}{s-p_{n}} .
$$

The time response

$$
e_{D}(t)=A_{1} e^{p_{1} t}+\cdots+A_{n} e^{p_{n} t} \rightarrow 0
$$

as $t \rightarrow \infty$ if and only if $\operatorname{Re}\left(p_{i}\right)<0$ for $i=1, \ldots, n$.

[^22]
Internal Model Principle

The proofs of the tracking and disturbance rejection theorems suggest how one can achieve the same results with more general types of reference and disturbance signals. This is illustrated in the following example and is known as the internal model principle.

Example Tracking a Sinusoid
Consider a sinusoidal input given by $r(t)=R_{0} \sin (t)$ or $R(s)=\frac{R_{0}}{s^{2}+1}$. Let $G(s)=\frac{1}{s(s+1)}$ and the problem is to design a compensator so that the output (asymptotically) tracks the input signal. The block diagram of the system is shown in Figure 2.47.

FIGURE 2.47. Ilustrating the internal model principle by tracking a sinusoidal input.

Consider the compensator

$$
G_{c}(s)=K \frac{s+\alpha}{s^{2}+1}
$$

which was chosen to have a denominator that was the same as that of the input. The reason for this is clear when the error $E(s)$ is computed as

$$
\begin{aligned}
E(s) & =\frac{1}{1+G_{c}(s) G(s)} R(s) \\
& =\frac{1}{1+K \frac{s+\alpha}{s^{2}+1} \frac{1}{s(s+1)}} \frac{R_{0}}{s^{2}+1} \\
& =\frac{s(s+1)\left(s^{2}+1\right)}{s^{4}+s^{3}+s^{2}+(K+1) s+\alpha K} \frac{R_{0}}{s^{2}+1} \\
& =\frac{s(s+1)}{s^{4}+s^{3}+s^{2}+(K+1) s+\alpha K} R_{0} .
\end{aligned}
$$

That is, the factor $s^{2}+1$ in the denominator of $G_{c}(s)$ reappears in the numerator of $E(s)$ to cancel the factor $s^{2}+1$ in the denominator of $R(s)$. Then $e(t) \rightarrow 0$ if the closed-loop characteristic polynomial is stable. The

Routh table for $s^{4}+s^{3}+s^{2}+(K+1) s+\alpha K$ is

s^{4}	1	1	αK
s^{3}	1	$K+1$	0
s^{2}	$\frac{1-(K+1)}{1}=-K$	αK	0
s	$\frac{-K(K+1)-\alpha K}{-K}=\frac{K(K+1+\alpha K)}{K}$	0	
1	αK		

Stability requires $-K>0, K+1+\alpha>0$ and $\alpha K>0$ or

$$
K<0,-(K+\alpha)<1, \alpha<0 .
$$

For example, choose $\alpha=-0.25$ and $K=-0.6$ so that the closed-loop characteristic polynomial is $s^{4}+s^{3}+s^{2}+0.4 s+0.15$ which has roots $-0.17 \pm j 0.63,-0.33 \pm j 0.49$. The error response is

$$
e(t)=4.7 e^{-0.17 t} \sin (0.63 t+0.37)-4.1 e^{-0.33 t} \sin (0.49 t+0.4) \rightarrow 0
$$

as $t \rightarrow \infty$. Note, however, the transients die out slowly.
Remark General procedures exist that allow one to design a compensator that asymptotically tracks any given input signal and, at the same time, arbitrarily place the closed-loop poles in the open left-half plane. The reader is referred to Refs. [47][48][49][50] for this theory.

This example and the previous results can be summarized as the Internal Model Principle. This just says that in order to (asymptotically) track a given reference signal, the forward open-loop transfer function $G_{c}(s) G(s)$ must contain the same unstable poles as the reference signal and the closedloop system must be stable. (The terminology "internal model" refers to the poles of the transfer function as they determine the form of the time response of a transfer function model.)

Similarly, in order to achieve (asymptotic) steady-state rejection of a given disturbance signal, the forward open-loop controller (compensator) $G_{c}(s)$ must (by itself) contain the same unstable poles as the disturbance signal along with the closed-loop system being stable.

Problems

PI Current Controller for a DC Motor

Problem 1 Simulation of the DC Motor
Let $V_{\text {max }}=40 \mathrm{~V}, I_{\text {max }}=5 \mathrm{~A}, K_{b}=K_{T}=0.07 \mathrm{~V} / \mathrm{rad} / \mathrm{sec}(=\mathrm{N}-\mathrm{m} / \mathrm{A})$, $J=6 \times 10^{-5} \mathrm{~kg}-\mathrm{m}^{2}, R=2$ ohms, $L=2 \mathrm{mH}$, and $f=0.0004 \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec}$. Develop a simulation of the DC motor that includes the motor and amplifier (with saturation) as well as an encoder with 2000 pulses/rev. Put a step input of $v(t)=10 \mathrm{~V}$ into the motor and plot out (a) $\theta(t)=\frac{2 \pi}{2000} N(t)(N(t)$ is the encoder output), (b) $\omega(t)$, (c) $i(t)$, and (d) $v(t)$. Also, zoom in on $\theta(t)$ to show the staircase waveform similar to that shown in Figure 2.4. (Hint: If it does not show a staircase waveform, then the step size in the simulator's integration algorithm may be too large.)

Problem 2 Load-Torque Transfer Function
(a) Compute the transfer function from $\tau_{L}(s)$ to $\theta(s)$ in Figure 2.5.
(b) Compute the transfer function from $\tau_{L}(s)$ to $\theta(s)$ in Figure 2.6. What does it reduce to as $K_{P} \rightarrow \infty$?

Problem 3 Transfer Function $i(s) / i_{r}(s)$
With $\tau_{L}(s)=0$ in Figure 2.6, find the transfer function $i(s) / i_{r}(s)$. What does it reduce to as $K_{p} \rightarrow \infty$?

Problem 4 Encoder Resolution
It was shown that if there are N_{w} windows (lines/slots) equally spaced around the encoder disk (wheel), then there are N_{w} pulses per revolution so that there are $2 N_{w}$ rising and falling edges of the output signal. With the length of the windows the same as the length between the window, the resolution of the encoder is then $2 \pi /\left(2 N_{w}\right)$ radians. A second light detector is added to determine the direction of rotation. Show that by using the outputs of both light detectors, a resolution of $2 \pi /\left(4 N_{w}\right)$ radians can be achieved. Hint: Add the two waveforms of Figure 2.3(a) [or Figure 2.3(b)] and show that there is a rising or falling edge every $2 \pi /\left(4 N_{w}\right)$ radians.

Problem 5 Load-Torque Transfer Function
(a) Find the transfer function from $\tau_{L}(s)$ to $\theta(s)$ in Figure 2.6.
(b) What does it reduce to as $K_{P} \rightarrow \infty$?

Problem 6 High-Gain Current Control
Consider a PI current controller given by $K_{P}+K_{I} / s=K_{P}(s+\alpha) / s$ where $K_{I}=\alpha K_{P}$. This is illustrated in the block diagram given in Figure 2.48.
(a) Using the block diagram reduction method, find $G(s)=\omega(s) / i_{r}(s)$. Let $K_{P} \rightarrow \infty$ and show that $G(s)=\omega(s) / i_{r}(s) \rightarrow K_{T} /(s J+f)$.
(b) With $\tau_{L}(s)=0$ in Figure 2.48, find the transfer function $i(s) / i_{r}(s)$. What does it reduce to as $K_{p} \rightarrow \infty$?

FIGURE 2.48. PI current controller.

Problem 7 Amplifier Saturation
With $i(t)=i_{0}$ constant and $\tau_{L}=0$, find the steady-state values of the speed $\omega(\infty)$ and voltage $v(\infty)$ in terms of i_{0} and the motor parameters. With $i_{0}=1 \mathrm{~A}, V_{\max }=40 \mathrm{~V}$ and the values of the motor parameters in problem 1, can this steady-state speed be achieved? Explain. Redo this exercise with $i_{0}=4$ A. Note: You can easily answer this question using the original state space equations:

$$
\begin{aligned}
L \frac{d i}{d t} & =-R i(t)-K_{b} \omega(t)+v(t) \\
J \frac{d \omega}{d t} & =-f \omega(t)+K_{T} i(t) \\
\frac{d \theta}{d t} & =\omega(t) .
\end{aligned}
$$

Problem 8 PI Current Controller

Add the PI current controller to the DC motor simulation of problem 1. Also, add a saturation block to the input of the PI current controller that limits the command current $i_{r}(t)$ between $\pm I_{\text {max }}$. Let $i_{r}(t)$ be a square wave current reference where one period is specified by

$$
i_{r}(t)=\left\{\begin{array}{rr}
+I_{1} & 0 \leq t \leq 0.25 \\
-I_{1} & 0.25 \leq t \leq 0.50 .
\end{array}\right.
$$

Try $I_{1}=0.1 \mathrm{~A}$ and $I_{1}=1.0 \mathrm{~A}$ in a simulation. Plot $(a) i(t)$ and $i_{r}(t)$ on the same plot and (b) $i_{r}(t)-i(t)$ on a separate plot. How well does $i(t)$ respond to step changes in $i_{r}(t)$?

Problem 9 Current Controller Tracking
With the parameter values as given in problem 1, this motor is capable of turning 180° in 0.065 sec (i.e., 65 msec). Consequently, the current controller must respond significantly faster than this if $i(t)$ is to be considered as the input, that is, if the dynamics $i_{r}(t) \rightarrow i(t)$ are to be neglected. To test the current controller under these conditions, consider $i(t)=i_{0} \sin (t / T)$ with $i_{0}=1 A, T=2 \pi /\left(65 \times 10^{-3}\right)$ sec in the simulation. How well does $i(t)$ track this reference? Use your "best" controller design (i.e., your choice of K_{P} and α) and plot $i_{r}(t)$ and $i(t)$ on the same graph. Also plot out $v(t)$ to
show it does not saturate. If you have problems with saturation, reduce your gains until you can achieve "good" tracking without exceeding the voltage limits.

Problem 10 Proportional Speed Control
Find the error transfer function $E(s) / \omega_{r e f}(s)$ for the system in Figure 2.10.
(a) With $e(t)=\mathcal{L}^{-1}\{E(s)\}$ and $\omega_{r e f}(s)=\omega_{0} / s$, show that the steadystate error $e(\infty) \approx\left(f / K K_{T}\right) \omega_{0}$ for K large.
(b) Using the parameter values given in problem 1 and K chosen such that $K K_{T} / J=100$, compute $e(t)=\mathcal{L}^{-1}\{E(s)\}$ with $\omega_{r e f}(t)=100 \sin \left(\frac{2 \pi}{0.2} t\right)$.

Estimating the Motor Speed

Problem 11 Backward Difference Speed Estimator
(a) Simulate the backward difference method of computing speed with $T=0.0002 \sec \left(f_{s}=5000\right)$. Let $i_{r}=1 A$ and plot $\omega(k T)$ and $\hat{\omega}_{b d}(k T)$. What are some of the problems with this way of measuring speed? Repeat with $i_{r}=0.5 \sin ((2 \pi / 0.2) t)$.
(b) With $i_{r}=1$ A, use the output of a simulation to plot the speed and speed error to show it is bounded by $(2 \pi / 2000) / T$ when using the backward difference approximation to compute the speed. Do this for $T=0.001 \mathrm{sec}$ and $T=0.0002 \mathrm{sec}$.

Problem 12 Recovery from a Load-Torque Disturbance
Add the load torque disturbance

$$
\tau_{L}(t)=\left\{\begin{array}{cl}
0 & 0.0 \leq t \leq 0.5 \\
\tau_{L 0} & 0.5 \leq t \leq 0.6 \\
0 & 0.6 \leq t
\end{array}\right.
$$

to the torque equation of simulation of the $D C$ motor. Run the simulation with $i_{r}=1 \mathrm{~A}$ and $\tau_{L 0}=0.035 \mathrm{~N}-\mathrm{m}$. Plot $\hat{\omega}(k T), \hat{\omega}_{b d}(k T)$ and $\omega(k T)$ on the same graph. Redo this with $\ell_{1}=0, \ell_{2}=0$. Do you see a difference?

Problem 13 Speed and Load-Torque Estimator
(a) Consider the modification of the speed observer to estimate any constant (or, slowly varying) load-torque. That is, consider the situation where there is an unknown constant load torque acting on the motor. This may be modeled as

$$
\begin{aligned}
\frac{d \theta}{d t} & =\omega \\
\frac{d \omega}{d t} & =\left(K_{T} / J\right) i-(f / J) \omega-\tau_{L} / J \\
\frac{d\left(\tau_{L} / J\right)}{d t} & =0
\end{aligned}
$$

Let a speed and load-torque estimator be given by

$$
\begin{aligned}
\frac{d \hat{\theta}}{d t} & =\hat{\omega}+\ell_{1}(\theta-\hat{\theta}) \\
\frac{d \hat{\omega}}{d t} & =\left(K_{T} / J\right) i-\hat{\tau}_{L} / J-(f / J) \hat{\omega}+\ell_{2}(\theta-\hat{\theta}) \\
\frac{d\left(\hat{\tau}_{L} / J\right)}{d t} & =0+\ell_{3}(\theta-\hat{\theta}) .
\end{aligned}
$$

Define the estimation errors to be $e_{1}=\theta-\hat{\theta}, e_{2}=\omega-\hat{\omega}$ and $e_{3}=\tau_{L} / J-$ $\hat{\tau}_{L} / J$. Subtract the above sets of equations to the find the system of equations describing the dynamics of observer error $e(t)=\left(e_{1}(t), e_{2}(t), e_{3}(t)\right)$. Find $E_{1}(s), E_{2}(s)$, and $E_{3}(s)$ and show that the observer gains ℓ_{1}, ℓ_{2}, and ℓ_{3} can be chosen so that $e_{2}(t) \rightarrow 0, e_{3}(t) \rightarrow 0$ as $t \rightarrow \infty$ but that $e_{1}(t) \leftrightarrow 0$.
(b) Add the load-torque disturbance

$$
\tau_{L}(t)=\left\{\begin{array}{cc}
0 & 0.0 \leq t \leq 0.5 \\
\tau_{L 0} & 0.5 \leq t \leq 1.0
\end{array}\right.
$$

to the torque equation of simulation of the DC motor. Run the simulation with $i_{r}=1 A$ and $\tau_{L 0}=0.035 \mathrm{~N}-\mathrm{m}$. Plot $\hat{\omega}(k T), \hat{\omega}_{b d}(k T)$, and $\omega(k T)$ on the same graph. Redo this with $\ell_{1}=0, \ell_{2}=0, \ell_{3}=0$. Do you see a difference?

Problem 14 Speed Observer Versus Backward Differentiation
Implement the observer (2.7) in the DC motor simulation and compare it with the calculation $\hat{\omega}_{b d}(k T) \triangleq \frac{2 \pi}{2000}\left(\frac{N(k T)-N(k T-T)}{T}\right)$. Specifically, let $i_{r}=0.1 A, \omega(0)=\hat{\omega}(0)=0$ and plot $\omega(k T)$ and its estimates $\hat{\omega}(k T), \hat{\omega}_{b d}(k T)$. You need to choose values for ℓ_{1} and ℓ_{2} ! Repeat with $i_{r}=0.5 \sin ((2 \pi / 0.2) t)$.

Problem 15 Position Cannot Be Estimated from Speed Measurements
Suppose a tachometer is available to measure speed, but there is no position measurement. Can the position be estimated from the speed measurements? Well, the answer is no. An easy way to understand this is to realize that $\theta(t)=\theta(0)+\int_{0}^{t} \omega(\tau) d \tau$, but that $\frac{d}{d t}\left(c+\int_{0}^{t} \omega(\tau) d \tau\right)=\omega(t)$ for any constant c. That is, there are an infinite number of position signals with the same speed signal. Consequently, the speed signal does not contain enough information to obtain an estimate for the position. From the point of view of observer theory, consider a position estimator given by

$$
\begin{aligned}
\frac{d \hat{\theta}}{d t} & =\hat{\omega}+\ell_{1}(\omega-\hat{\omega}) \\
\frac{d \hat{\omega}}{d t} & =\left(K_{T} / J\right) i-(f / J) \hat{\omega}+\ell_{2}(\omega-\hat{\omega})
\end{aligned}
$$

Show that ℓ_{1}, ℓ_{2} cannot be chosen so that $\hat{\theta} \rightarrow \theta$.

Problem 16 Discretization of the Observer Equations
Discretize the speed observer equations

$$
\begin{aligned}
\frac{d \hat{\theta}}{d t} & =\hat{\omega}+\ell_{1}(\theta-\hat{\theta}) \\
\frac{d \hat{\omega}}{d t} & =\left(K_{T} / J\right) i-(f / J) \hat{\omega}+\ell_{2}(\theta-\hat{\theta})
\end{aligned}
$$

using the trapezoidal method of integration.

Trajectory Generation

Problem 17 Trajectory Design

Design a trajectory that also has a continuous jerk rate, that is, a trajectory that satisfies

$$
\begin{array}{llr}
\omega_{\text {ref }}(0)=0 & \dot{\omega}_{\text {ref }}(0)=0 & \ddot{\omega}_{\text {ref }}(0)=0 \\
\omega_{r e f}\left(t_{1}\right)=\omega_{\text {max }} & \dot{\omega}_{\text {ref }}\left(t_{1}\right)=0 & \ddot{\omega}_{\text {ref }}\left(t_{1}\right)=0 \\
\omega_{\text {ref }}(t)=\omega_{\text {max }} & f o r & t_{1} \leq t \leq t_{2} \\
\omega_{r e f}\left(t_{2}\right)=\omega_{\text {max }} & \dot{\omega}_{r e f}\left(t_{2}\right)=0 & \ddot{\omega}_{\text {ref }}\left(t_{2}\right)=0 \\
\omega_{\text {ref }}\left(t_{3}\right)=0 & \dot{\omega}_{\text {ref }}\left(t_{3}\right)=0 & \ddot{\omega}_{\text {ref }}\left(t_{3}\right)=0
\end{array}
$$

Design of a State Feedback Tracking Controller

Problem 18 Simulation of a Fast Point-to-Point Move
Implement the complete state feedback controller of Figure 2.14 in continuous time using the parameter values of problem 1. Specifically, use the speed observer given in equation (2.4), the feedback controller given in equation (2.14) and the trajectory generator of Section 2.3. Be sure to have a saturation block for the current commanded into the PI current controller and for the voltage out of the amplifier. Design a trajectory such that the motor turns $\theta_{f}=\pi$ radians in under 70 msec (by choosing the time t_{1} to reach maximum speed and the time t_{2} to begin decelerating) and does not violate the voltage or current constraints. Find the control gains K_{0}, K_{1} and K_{2} (by choosing r_{1}, r_{2}, r_{3}) and the observer gains ℓ_{1}, ℓ_{2} (by choosing $\left.p_{1}, p_{2}\right)$ to track the trajectory. Plot (a) $\theta(t), \theta_{r e f}(t)$, (b) $\hat{\omega}(t), \omega(t), \omega_{r e f}(t)$, (c) $i_{r}(t), i_{r e f}(t)$, (d) $\theta_{r e f}(t)-\theta(t)$, (e) $\omega_{r e f}(t)-\hat{\omega}(t),(g) i_{r}(t)-i(t)$.

Problem 19 Simulation Study of Feedback
In order to understand the importance of the controller and reference inputs, carry out the following simulation runs using the simulation setup of problem 18 except in the trajectory generator, use $\theta_{f}=30$ radians, $\omega_{\max }=100 \mathrm{rads} / \mathrm{sec}$, and $t_{1}=0.2$ and run the simulation for 0.6 sec .
(a) With $K_{0}=0, K_{1}=0, K_{2}=0, \omega(0)=0, \theta(0)=0, \tau_{L}=0$ run the simulation with $i_{r}=i_{r e f}$ and plot $\theta(t), \theta_{r e f}(t), \hat{\omega}(t), \omega(t), \omega_{r e f}(t), i_{r}(t)$, $i_{r e f}(t)$ as well as $\theta_{r e f}(t)-\theta(t), \omega(t)-\hat{\omega}(t), \omega_{r e f}(t)-\omega(t), i_{r}(t)-i(t)$. This is referred to as running the system open-loop.
(b) Redo (a) with $\omega(0)=0, \theta(0)=0.1, \tau_{L}=0$.
(c) Redo (a) with $\omega(0)=5, \theta(0)=0, \tau_{L}=0$.
(d) Redo (a) with $\omega(0)=0, \theta(0)=0, \tau_{L}=0.035 \mathrm{~N}-\mathrm{m}$.
(e) With $r_{1}=100, r_{2}=100, r_{3}=100$ find the corresponding gains K_{0}, K_{1}, K_{2} using given by equation (2.18). Run the simulation with these gains for the following cases:
(i) Set $\omega(0)=0, \theta(0)=0$ and $\tau_{L}=0$.
(ii) Set $\omega(0)=0, \theta(0)=0.1$ and $\tau_{L}=0$.
(iii) Set $\omega(0)=0, \theta(0)=0$ and $\tau_{L}=0.035 \mathrm{~N}-\mathrm{m}$.

For each case, plot $\theta(t), \theta_{r e f}(t), \hat{\omega}(t), \omega(t), \omega_{r e f}(t), i_{r}(t), i_{r e f}(t)$ as well as $\theta_{\text {ref }}(t)-\theta(t), \omega(t)-\hat{\omega}(t), \omega_{r e f}(t)-\omega(t), i_{r}(t)-i(t)$.
(f) Remove the integrator term in the feedback expression (2.13) (or (2.14)) to study its effect. That is, substitute $w=K_{1} e_{1}(t)+K_{2} e_{2}(t)$ for w into (2.11) and choose the gains as $K_{2}=r_{1}+r_{2}-f / J, K_{1}=r_{1} r_{2}$ so that the closed-loop characteristic equation is then $\left(s+r_{1}\right)\left(s+r_{2}\right)$. With $r_{1}=100, r_{2}=100$, redo cases (i), (ii) and (iii) of part (e).

Problem 20 Final Value Theorem
Let $E(s)=n(s) / d(s)$ with $\operatorname{deg}\{n(s)\}<\operatorname{deg}\{d(s)\}$ ande $(t) \triangleq \mathcal{L}^{-1}\{E(s)\}$. The final value theorem says

If $s E(s)$ is stable, then

$$
e(\infty)=\lim _{s \rightarrow 0} s E(s)
$$

(a) Let

$$
E(s)=\frac{1}{s(s+1)(s+2)}
$$

and compute the final value two ways: (1) Do a partial fraction expansion to compute the inverse Laplace transform $e(t)$ and let $t \rightarrow \infty$ and (2) Use the final value theorem.
(b) Let

$$
E(s)=\frac{1}{s(s-1)(s+2)}
$$

and do a partial fraction expansion to compute the inverse Laplace transform $e(t)$ and let $t \rightarrow \infty$. How does this compare with computing $\lim _{s \rightarrow 0} s E(s)$? Explain.
(c) Let

$$
E(s)=\frac{n(s)}{d(s)}
$$

where $\operatorname{deg}\{n(s)\}<\operatorname{deg}\{d(s)\}$. Prove the final value theorem by doing a partial fraction expansion of $E(s)$. To simplify the presentation of the partial fraction expansion, assume that the poles of $E(s)$ are distinct, that is, $d(s)$ has no repeated roots. [Hint: Note then that $\lim _{s \rightarrow 0} s E(s)$ is the coefficient of the $1 / s$ term in the partial fraction expansion of $E(s)$.]

Problem 21 State Feedback with a Constant Load Torque
(a) For the case where $\tau_{L} \neq 0$, give the appropriately modified version of (2.17). Also, with $\tau_{L}(s)=\tau_{L 0} / s$, find the steady-state values $e_{0}(\infty), e_{1}(\infty)$, and $e_{2}(\infty)$ using the final-value theorem. With the constant load-torque disturbance acting on the motor, explain why the steady-state error in speed and position are both zero, that is, $e_{2}(\infty)=0$ and $e_{1}(\infty)=0$, but that $e_{0}(\infty) \neq 0$. With

$$
i_{f b}(t) \triangleq \frac{J}{K_{T}}\left(K_{0} \int_{0}^{t} e_{1}(\tau) d \tau+K_{1} e_{1}(t)+K_{2} e_{2}(t)\right)
$$

Show that $i_{f b}(\infty)=\tau_{L 0} / K_{T}$ and give an interpretation to this value.
(b) Consider state feedback control, but now without the integrator feedback. That is, consider the system [compare with (2.15)]

$$
\begin{aligned}
\frac{d e_{1}}{d t} & =e_{2} \\
\frac{d e_{2}}{d t} & =-(f / J) e_{2}-K_{1} e_{1}-K_{2} e_{2}+\tau_{L} / J
\end{aligned}
$$

With $\tau_{L}(s)=\tau_{L 0} / s$, find $E_{1}(s)$ and $E_{2}(s)$. Show that $e_{2}(t) \rightarrow 0$, but $e_{1}(t) \nrightarrow 0$ as $t \rightarrow \infty$. Comparing with your solution to part (a), what can you conclude about using integrator feedback?

Problem 22 State Feedback with a Ramp Load Torque
With $\tau_{L}(s)=\tau_{L 0} / s^{2}$, that is, $\tau_{L}(t)=\tau_{L 0} t$, find $e_{0}(\infty), e_{1}(\infty), e_{2}(\infty)$. Explain your answers.

Problem 23 State Feedback Design with Voltage as Input
Design a state feedback voltage controller for the DC motor based on the model

$$
\begin{aligned}
\frac{d i}{d t} & =-(R / L) i(t)-\left(K_{b} / L\right) \omega(t)+v(t) / L \\
\frac{d \omega}{d t} & =-(f / J) \omega(t)+\left(K_{T} / J\right) i(t)-\tau_{L}(t) / J \\
\frac{d \theta}{d t} & =\omega(t)
\end{aligned}
$$

The reference trajectory satisfies

$$
\begin{aligned}
\frac{d i_{r e f}}{d t} & =-(R / L) i_{r e f}(t)-\left(K_{b} / L\right) \omega_{r e f}(t)+v_{r e f}(t) / L \\
\frac{d \omega_{r e f}}{d t} & =-(f / J) \omega_{r e f}(t)+\left(K_{T} / J\right) i_{r e f}(t) \\
\frac{d \theta_{r e f}}{d t} & =\omega_{r e f}(t) .
\end{aligned}
$$

Let

$$
\begin{aligned}
e_{1}(t) & =\theta_{\text {ref }}(t)-\theta(t) \\
e_{2}(t) & =\omega_{r e f}(t)-\omega(t) \\
e_{3}(t) & =i_{r e f}(t)-i(t) \\
u(t) & =\left(v_{r e f}(t)-v(t)\right) / L
\end{aligned}
$$

and consider a controller of the form

$$
u=-\left(K_{0} \int_{0}^{t} e_{1}(\tau) d \tau+K_{1} e_{1}(t)+K_{2} e_{2}(t)+K_{3} e_{3}(t)\right)
$$

With $\tau_{L}(t)=\tau_{L 0} u_{s}(t)$, for $i=0,1,2,3$ compute $E_{i}(s)$ and $e_{i}(\infty)$. In particular, does the steady-state position error $e_{1}(t)$ go to zero as $t \rightarrow \infty$?

Nested Loop Controllers

Problem 24 Nested PI Controllers
Consider the PID nested loop controller given in Figure 2.49.

FIGURE 2.49. Control structure where the gains of the speed loop are tuned first and then the gains of the position loops are tuned. The speed reference $\bar{\omega}_{r e f}$ is the output of the position loop rather than the stored value of $\omega_{r e f}=d \theta_{r e f} / d t$.
(a) With $\theta_{\text {ref }}(t)=\left(t^{2} / 2\right) u_{s}(t)\left(\theta_{r e f}(s)=1 / s^{3}\right), \tau_{L} \equiv 0$ and $K_{\omega I}=0$, can the other gains be chosen so that steady-state error is zero for this type of input? Explain by computing $E(s) / \theta_{r e f}(s)$ with $\tau_{L} \equiv 0$ and $K_{\omega I}=0$.
(b) With $\theta_{\text {ref }}(t) \equiv 0, \tau_{L}(t)=\tau_{0} t\left(\tau_{L}(s)=\tau_{0} / s^{2}\right)$ and $K_{\omega I} \neq 0$, can the gains be chosen such that steady-state error is zero for this type of load torque disturbance? Explain by computing $E(s) / \theta_{\text {ref }}(s)$ with $\theta_{\text {ref }}(t) \equiv 0$. How does your answer change if $K_{\omega I}=0$?
(c) With $\tau_{L} \equiv 0$, can this controller track $\theta_{\text {ref }}(t)=\cos \left(\omega_{0} t\right)$ or, equivalently, $\theta_{\text {ref }}(s)=\omega_{0} /\left(s^{2}+\omega_{0}^{2}\right)$ with zero steady-state error? Explain.
(d) Repeat (a), (b), and (c) with $K_{\omega I} \neq 0$.

Problem 25 Simulation of the Nested Loop Controller
Do a simulation of the complete system (i.e., motor, controller, and trajectory) given in problem 24. Use the same motor parameters as in problem 1. Take $\theta_{f}=\pi$ radians and find the control gains $K_{\theta P}, K_{\theta I}, K_{\omega P}$
$\left(K_{\omega I}=0\right), \omega_{m a x}$, and t_{1} for the trajectory (2.25) such that the motor turns π radians as fast as possible without violating the voltage or current constraints. Plot (a) $\theta(t), \theta_{r e f}(t)$, (b) $\hat{\omega}(t), \omega(t), \omega_{r e f}(t)$, (c) $i_{r}(t), i_{r e f}(t)$, (d) $\theta_{r e f}(t)-\theta(t),(e) \omega(t)-\hat{\omega}(t),(f) \omega_{r e f}(t)-\omega(t),(g) i_{r}(t)-i(t)$. Compare with problem 18. In particular, can this move be carried out in under 70 msec ?

Problem 26 Laplace Transform of the Reference Trajectory
The reference trajectory given in (2.25) can be rewritten as (u_{s} is the unit step function)

$$
\begin{aligned}
\theta_{r e f}(t)= & \omega_{\max } \frac{t^{2}}{2 t_{1}}\left(u_{s}(t)-u_{s}\left(t-t_{1}\right)\right) \\
& +\left(\omega_{\max } \frac{t_{1}}{2}+\omega_{\max }\left(t-t_{1}\right)\right)\left(u_{s}\left(t-t_{1}\right)-u_{s}\left(t-t_{2}\right)\right) \\
& +\left(\omega_{\max } t_{2}-\omega_{\max } \frac{\left(t_{f}-t\right)^{2}}{2 t_{1}}\right)\left(u_{s}\left(t-t_{2}\right)-u_{s}\left(t-t_{f}\right)\right) \\
& +\omega_{\max } t_{2} u_{s}\left(t-t_{f}\right)
\end{aligned}
$$

where $\omega_{\text {max }}=\theta_{f} / t_{2}$ to ensure $\theta_{\text {ref }}\left(t_{f}\right)=\theta_{f}$.
Show that the Laplace transform of $\theta_{\text {ref }}(t)$ is given by

$$
\begin{aligned}
& \mathcal{L}\left\{\theta_{r e f}(t)\right\}=\frac{\omega_{\max }}{t_{1}} \frac{1}{s^{3}}-\left(\frac{\omega_{\max } t_{1}}{2} \frac{1}{s}+\omega_{\max } \frac{1}{s^{2}}+\frac{\omega_{\max }}{t_{1}} \frac{1}{s^{3}}\right) e^{-t_{1} s} \\
& +\left(\frac{\omega_{\max } t_{1}}{2} \frac{1}{s}+\frac{\omega_{\max }}{s^{2}}\right) e^{-t_{1} s}-\left(\left(-\frac{\omega_{\max } t_{1}}{2}+\omega_{\max } t_{2}\right) \frac{1}{s}+\frac{\omega_{\max }}{s^{2}}\right) e^{-t_{2} s} \\
& +\left(\left(\omega_{\max } t_{2}-\frac{\omega_{\max }\left(t_{2}-t_{f}\right)^{2}}{2 t_{1}}\right) \frac{1}{s}-\frac{\omega_{\max }\left(t_{2}-t_{f}\right)}{t_{1}} \frac{1}{s^{2}}-\frac{\omega_{\max }}{t_{1}} \frac{1}{s^{3}}\right) e^{-t_{2} s} \\
& -\left(\omega_{\max } t_{2} \frac{1}{s}-\frac{\omega_{\max }}{t_{1}} \frac{1}{s^{3}}\right) e^{-t_{f} s}+\omega_{\max } t_{2} \frac{1}{s} e^{-t_{f} s} .
\end{aligned}
$$

Explain why the presence of the terms $e^{-t_{1} s}, e^{-t_{2} s}$, and $e^{-t_{f} s}$ does not affect the analysis of the steady-state error given in the text.

Problem 27 Nested Loop Control Structure With Voltage Input
In this problem, the PI current loop of the amplifier is included in the analysis of a nested loop controller for a DC motor. The PI current controller in Figure 2.50 can be equivalently considered a torque controller as $\tau=K_{T} i$. First, both the speed and position loops are opened in order to tune (choose) the torque (current) controller gains. After tuning the gains for this controller, the gains of the speed controller are tuned with the input to the torque controller being the output of the speed controller. Finally, the gains of the position loop are tuned with the input to the speed controller being the output of the position controller. Use the full motor model (2.1) in the analysis below.

FIGURE 2.50. The gains of the torque (current) loop are tuned first. Next the gains of the speed loop are tuned and finally the gains of the position loop are tuned.
(a) Find the transfer functions $G_{1}(s), G_{2}(s)$ such that the error $E(s)=$ $G_{1}(s) \theta_{r e f}(s)+G_{2}(s) \tau_{L}(s)$.
(b) Can the gains be chosen to arbitrarily place the closed-loop poles?
(c) What kinds of inputs can be tracked? In particular, what is the largest power n such that

$$
\theta_{r e f}(t)=\frac{t^{n-1}}{(n-1)!} u_{s}(t)
$$

or, equivalently,

$$
\theta_{r e f}(s)=\mathcal{L}\left\{\frac{t^{n-1}}{(n-1)!} u_{s}(t)\right\}=1 / s^{n}
$$

can be tracked with zero steady-state error? What is the largest value of n if it is only required to have constant steady-state error?
(d) What kinds of disturbances can be rejected? That is, with

$$
\tau_{L}(t)=\tau_{L 0}\left(t^{m-1} /(m-1)!\right) u_{s}(t)
$$

or

$$
\mathcal{L}\left\{\frac{t^{m-1}}{(m-1)!} u_{s}(t)\right\}=1 / s^{m}
$$

what is the largest value of m such that there is no steady-state error due to this disturbance?

Identification of the Motor Parameters

Problem 28 Identification of the Motor Parameters

With a PI current controller implemented, run the DC motor simulation with the current reference given by

$$
i_{r}(t)= \begin{cases}2.5 \sin \left(\frac{2 \pi}{0.1} t\right) & \text { for } 0 \leq t \leq 0.5 \\ 2.5 \sin \left(\frac{2 \pi}{0.05} t\right) & \text { for } 0.5 \leq t \leq 1\end{cases}
$$

Store $\theta(n T)$ in counts (from the encoder model), $i(n T)$ and $v(n T)$ with a sample period of $T=0.001 \mathrm{sec}$.

FIGURE 2.51. Block diagram of an open-loop DC motor with a current-command controller.
(a) Save the "data" from the simulation into a file. Using this "data set", write a program to implement the least-squares identification algorithm given in the text. It will be necessary to compute $\omega=d \theta / d t, d \omega / d t$ and di/dt using the "data" from the simulation. Due to the encoder resolution, $d \theta / d t$ and $d \omega / d t$ are noisy and di/dt is also noisy. It will be necessary to filter these computed quantities. Show the double filtering method (e.g., the filtfilt command in Matlab) with a second order Butterworth filter will work with an appropriate choice of the cutoff frequency. Compare your parameter estimates to the actual values in the simulation. Be sure to compute the error index and the parametric error indices of your estimates.
(b) Do the identification of the parameters using "ideal" data by saving $d \theta / d t, d \omega / d t$ and di/dt from the simulation (rather than computing them offine) and show that this results in almost perfect agreement with the parameter values in the simulation. Compute the error index and the parametric error indices for this case. This is a way to check your identification program for errors.

Problem 29 Insufficient Excitation
Redo problem 28 with $i_{r}=i_{0}$ where $i_{0}=2.5$ A. Does the identification procedure work? Explain why or why not.

Problem 30 Completing the Square
Show that equation (2.38) is true.
Problem 31 Matrix Transpose Property
Show by direct computation that

$$
\left(y^{T}(n T) W(n T)\right)^{T}=W^{T}(n T) y(n T)
$$

Use this to show that $R_{y W}=R_{W y}^{T}$.
Problem 32 Parametric Error Indices [42]

Choose

$$
C(\delta K, \lambda) \triangleq\left(\delta K_{i}\right)^{2}+\lambda\left(E^{2}\left(K^{*}\right)-\delta K^{T} R_{w} \delta K\right)
$$

and show that one still obtains

$$
\delta K_{i}=\sqrt{E^{2}\left(K^{*}\right)\left(R_{w}^{-1}\right)_{i i}} .
$$

for the maximum.

Filtering of Noisy Signals

Problem 33 Transfer Functions

(a) Starting from the representation $y(t)=\int_{-\infty}^{t} g(t-\tau) m(\tau) d \tau$, take the Laplace transform of both sides to show that $Y(s)=G(s) M(s)$.
(b) Starting from the representation $\dot{x}(t)=A x(t)+b m(t), y(t)=c x(t)+$ $d m(t)$ show that $G(s)=c(s I-A)^{-1} b$, where $A \in \mathbb{R}^{n \times n}, b \in \mathbb{R}^{n}, c \in \mathbb{R}^{1 \times n}$.

Problem 34 Ideal Filters
Consider a unit impulse response given by

$$
h(t) \triangleq \frac{\sin \left(\omega_{c} t\right)}{\pi t}
$$

so with input $m(t)$, the output $y(t)$ is defined to be

$$
y(t)=\int_{-\infty}^{\infty} h(\tau) m(t-\tau) d \tau
$$

This integral is defined as the Cauchy principal value, that is,

$$
y(t)=\int_{-\infty}^{\infty} h(\tau) m(t-\tau) d \tau \triangleq \lim _{T \rightarrow \infty} \int_{-T}^{T} h(\tau) m(t-\tau) d \tau
$$

(a) With $m(t)=\cos (\omega t)$, compute $y(t)=h(t) * \cos (\omega t)$ directly by evaluating

$$
y(t)=\lim _{T \rightarrow \infty} \int_{-T}^{T} \frac{\sin \left(\omega_{c} \tau\right)}{\pi \tau} \cos (\omega(t-\tau)) d \tau
$$

to show
$y(t)=\lim _{T \rightarrow \infty} \int_{-T}^{T} \frac{\sin \left(\omega_{c} \tau\right)}{\pi \tau} \cos (\omega(t-\tau)) d t=\left\{\begin{array}{cl}\cos (\omega t) & \text { for }|\omega|<\omega_{c} \\ \frac{1}{2} \cos (\omega t) & \text { for } \omega=\omega_{c} \\ 0 & \text { for }|\omega|>\omega_{c} .\end{array}\right.$
This is the reason it is called an ideal filter as it passes any frequency below ω_{c} unchanged and any frequency above ω_{c} is zeroed out.

Why is it necessary to use the Cauchy principal value in the definition of the integral?
(b) Compute the Fourier transform of $h(t)$ in the Cauchy principal value sense, that is, show
$H(j \omega)=\mathfrak{F}\left\{\frac{\sin \left(\omega_{c} t\right)}{\pi t}\right\} \triangleq \lim _{T \rightarrow \infty} \int_{-T}^{T} e^{-j \omega t} \frac{\sin \left(\omega_{c} \tau\right)}{\pi \tau} d t= \begin{cases}1 & \text { for }|\omega|<\omega_{c} \\ \frac{1}{2} & \text { for } \omega=\omega_{c} \\ 0 & \text { for }|\omega|>\omega_{c} .\end{cases}$
(c) Is this filter causal? Show why or why not.
(d) Is this filter stable? Hint: Consider the input signal

$$
m(t)=m_{1}(t) m_{2}(t)
$$

where $m_{1}(t)$ is a periodic function with period $2 \pi / \omega_{c}$ specified on one period by

$$
m_{1}(t)=\left\{\begin{aligned}
-1 & \text { for } 0 \leq t \leq \pi / \omega_{c} \\
1 & \text { for } \pi / \omega_{c}<t \leq 2 \pi / \omega_{c}
\end{aligned}\right.
$$

and $m_{2}(t)$ is defined by

$$
m_{2}(t)=\left\{\begin{aligned}
-1 & \text { for } t \geq 0 \\
1 & \text { for } t<0 .
\end{aligned}\right.
$$

This input signal is bounded as $|m(t)|=1$. Compute the response to this input at time $t=0$; that is, evaluate

$$
y(t)=\lim _{T \rightarrow \infty} \int_{-T}^{T} \frac{\sin \left(\omega_{c} \tau\right)}{\pi \tau} m(t-\tau) d \tau
$$

for $t=0$ to obtain

$$
y(0)=\int_{-\infty}^{\infty}\left|\frac{\sin \left(\omega_{c} \tau\right)}{\pi \tau}\right| d \tau=\infty
$$

(e) Evaluate the inverse Fourier transform of $H(j \omega)$ from part (b) as

$$
h(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{j \omega t} H(j \omega) d \omega
$$

to get back $h(t)=\sin \left(\omega_{c} t\right) /(\pi t)$.

Problem 35 Butterworth Filters

For the third-order Butterworth filter, find the value of γ_{n} that best approximates $\angle G_{n}(j \omega) \approx-\gamma_{n} \omega$. For what range of values of ω is this approximation a good one?

Problem 36 Butterworth Filters from Matlab
(a) With $\omega_{c}=2 \pi f_{c}, f_{c}=100 \mathrm{~Hz}$ and $T=1 / 5000 \mathrm{sec}$, explicitly compute the coefficients of a third-order Butterworth filter using (2.51).
(b) In Matlab, use the butter command to design a third-order Butterworth filter with a cutoff frequency of 100 Hz and a sample rate of 5000 $H z$. That is, use the command $[b, a]=\operatorname{butter}\left(3, f_{c} /\left(f_{s} / 2\right)\right)$ and MaTLAB will return two vectors of the form $b=\left[\begin{array}{llll}b_{1} & b_{2} & b_{3} & b_{4}\end{array}\right]$ and $a=[1$ $\left.\begin{array}{llll}a_{2} & a_{3} & a_{4}\end{array}\right]$ which contain the coefficients of the filter.
(c) Compare the coefficients obtained from Matlab with those obtained from the above design. Are they the same? Do you need to normalize the coefficients obtained using (2.51)?

Recall that the cutoff frequency in Matlab is specified as $f_{\text {cmatlab }}=$ $f_{c} /\left(f_{s} / 2\right)$ where $f_{s}=5000 \mathrm{~Hz}$. The Matlab command is then $[a, b]=$ butter(3,100/2500).

Problem 37 The filter Command in Matlab

(a) Use the Matlab command butter to design a third-order Butterworth filter with $f_{s}=5000 \mathrm{~Hz}$ and $f_{c}=100 \mathrm{~Hz}\left(\omega_{c}=2 \pi \times 100 \mathrm{rads} / \mathrm{sec}\right)$. That is, use the command $[b, a]=\operatorname{butter}\left(3, f_{c} /\left(f_{s} / 2\right)\right)$ and Matlab will return two vectors of the form $b=\left[\begin{array}{llll}b_{1} & b_{2} & b_{3} & b_{4}\end{array}\right]$ and $a=\left[\begin{array}{lll}1 & a_{2} & a_{3}\end{array}\right.$ $\left.a_{4}\right]$ which contain the coefficients of the filter.
(b) Write a Matlab program to implement the state space equations (2.56) from $n=0$ to $n=N$ using the coefficients given in part (a). With $T=1 / f_{s}$, run your program on some particular input data file $\{m(n T)\}$ with $x(0)=0$ and plot out the response $y(n T)$ versus time $n T$.
(c) Using the filter designed in part (a) and the Matlab command filter to filter the same input file used in part (b), that is, $y 2=$ filter (b,a,m). Plot $y_{2}(n T)$ versus time $n T$. Compare y from part (b) to y_{2}.

Problem 38 Signal Flow Diagrams
Consider the second-order discrete-time transfer function

$$
H(z)=\frac{Y(z)}{M(z)}=\frac{b_{0}+b_{1} z^{-1}+b_{2} z^{-2}}{1+a_{1} z^{-1}+a_{2} z^{-2}}=\frac{b_{0} z^{2}+b_{1} z+b_{2}}{z^{2}+a_{1} z+a_{2}}
$$

(a) A signal flow diagram for this system is shown in Figure 2.52. Find the transfer function $Y(z) / M(z)$ from the signal flow (block) diagram. Give a discrete-time state space realization of the transfer function based on the signal flow diagram.

FIGURE 2.52. Signal flow diagram for a second-order filter.
(b) Show that the signal flow (block) diagram in Figure 2.53 is equivalent to the one in part (a) by finding a discrete-time state space realization based on the signal flow diagram and then computing the transfer function $Y(z) / M(z)$ from the state space realization.

FIGURE 2.53. Equivalent signal flow diagram for a second-order filter.

Problem 39 How the filtfilt Command is Implemented
(a) Use the Matlab command butter (i.e., $[b, a]=b u t t e r\left[3, w_{n}\right]$, where $w_{n}=f_{c} /\left(f_{s} / 2\right)$) to design a third-order Butterworth filter with $f_{s}=5000$ Hz and $f_{c}=100 \mathrm{~Hz}\left(\omega_{c}=2 \pi \times 100 \mathrm{rads} / \mathrm{sec}\right)$. Write a Matlab program to implement this filter using the state space equations (2.56) (from $n=0$ to $n=N$) and the coefficients given by the butter command. Run your program on some particular input data file $\{m(n T)\}$ with $x(0)=0$ and plot out the response $y(n T)$ versus time $n T$. Store the final value of x, that is, $x(N T)$.
(b) Take the output $\{y(n T), n=0, \ldots, N\}$ of the filter in part (a), and compute $\left\{y_{b}(n T), n=0, \ldots, N\right\} \triangleq\{y((N-n) T), n=0, \ldots, N\}$. Use this as input to the (state space) filter designed in part (a), except initialize the filter with the final conditions $x(N T)$ found in part (a). Let $\left\{y_{f f b}(n T), n=\right.$ $0, \ldots, N\}$ be the output of this second filtering process and finally compute $\left\{y_{f f}(n T), n=0, \ldots, N\right\} \triangleq\left\{y_{f f b}((N-n) T), n=0, \ldots, N\right\}$. Plot $y_{f f}(n T)$ for $n=0, \ldots, N$ versus time $n T$.
(c) Compare the output $y_{f f}(n T)$ from part (b) with the output using the MATLAB command filtfilt as $\mathrm{y}_{\mathrm{ff} 2} \triangleq$ filtfilt $[\mathrm{b}, \mathrm{a}, \mathrm{m}]$, where $[b, a]=$ butter $\left[3, w_{n}\right]$ with $w_{n}=f_{c} /\left(f_{s} / 2\right)=100 /(5000 / 2)$. (They should be the same!)

Control of Separately Excited, Series and Shunt DC motors

Problem 40 Armature Control of a Separately Excited DC Motor [2][51]
Recall from the previous chapter, the full mathematical model for the separately excited DC motor is

$$
\begin{aligned}
L \frac{d i}{d t} & =-R i+\frac{\partial \lambda}{\partial i_{f}} \frac{d i_{f}}{d t}-K_{m} \lambda_{f}\left(i_{f}\right) \omega_{r}+v \\
J \frac{d \omega}{d t} & =K_{m} \lambda_{f}\left(i_{f}\right) i-\tau_{L} \\
\frac{d \lambda_{f}\left(i_{f}\right)}{d t} & =-R_{f} i_{f}+v_{f}
\end{aligned}
$$

where $\lambda\left(i_{f}, \theta\right)$ is the fux linkage in the armature loops due to the field current i_{f} and $\lambda_{f}\left(i_{f}\right)$ is the flux linkage in the field windings due to the field current i_{f}.

FIGURE 2.54. DC motor with a field winding.

In normal operation of a separately excited DC motor, $d i_{f} / d t$ varies slowly and the $\frac{\partial \lambda}{\partial i_{f}} \frac{d i_{f}}{d t}$ term is often neglected. With $\lambda_{f}\left(i_{f}\right)=f\left(i_{f}\right)$ the saturation (magnetization) curve for the field flux linkage so that $i_{f}=$ $f^{-1}\left(\lambda_{f}\right)$, the model written in terms of the state variables $\left(i, \omega, \lambda_{f}\right)$ be-
comes ${ }^{13}$

$$
\begin{aligned}
L \frac{d i}{d t} & =-R i-K_{m} \lambda_{f} \omega+v \\
J \frac{d \omega}{d t} & =K_{m} \lambda_{f} i-\tau_{L} \\
\frac{d \lambda_{f}}{d t} & =-R_{f} f^{-1}\left(\lambda_{f}\right)+v_{f}
\end{aligned}
$$

Interestingly, it will be shown in a later chapter that a field-oriented control of an induction motor results in a model of this form! With $x_{1}=i, x_{2}=$ $\lambda_{f}, x_{3}=\omega, u_{1}=v / L$ and $u_{2}=v_{f}$, the model becomes

$$
\begin{aligned}
\frac{d x_{1}}{d t} & =-\frac{R}{L} x_{1}-\frac{K_{m}}{L} x_{2} x_{3}+u_{1} \\
\frac{d x_{2}}{d t} & =-R_{f} f^{-1}\left(x_{2}\right)+u_{2} \\
\frac{d x_{3}}{d t} & =\frac{K_{m}}{J} x_{2} x_{1}-\frac{\tau_{L}}{J}
\end{aligned}
$$

(a) Show that the nonlinear transformation

$$
\begin{aligned}
z_{1} & =x_{3} \\
z_{2} & =\left(K_{m} / J\right) x_{2} x_{1} \\
z_{3} & =x_{2}
\end{aligned}
$$

results in the system being equivalent to

$$
\begin{aligned}
\frac{d z_{1}}{d t} & =z_{2}-\tau_{L} / J \\
\frac{d z_{2}}{d t} & =g(x)+u_{1}\left(K_{m} / J\right) x_{2}+\left(K_{m} / J\right) x_{1} u_{2} \\
\frac{d z_{3}}{d t} & =-R_{f} f^{-1}\left(x_{2}\right)+u_{2}
\end{aligned}
$$

where $g(x) \triangleq-\frac{R K_{m}}{J L} x_{1} x_{2}-\frac{K_{m} R_{f}}{J} f^{-1}\left(x_{2}\right) x_{2}-\frac{K_{m}^{2}}{J L} x_{2}^{2} x_{3}$.
(b) Show that the nonlinear feedback
$\left[\begin{array}{l}u_{1} \\ u_{2}\end{array}\right]=\left[\begin{array}{cc}\left(K_{m} / J\right) x_{2} & \left(K_{m} / J\right) x_{1} \\ 0 & 1\end{array}\right]^{-1} \times\left(-\left[\begin{array}{c}g(x) \\ -R_{f} f^{-1}\left(x_{2}\right)\end{array}\right]+\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]\right)$

[^23]results in the linear system
\[

$$
\begin{aligned}
\frac{d z_{1}}{d t} & =z_{2}-\tau_{L} / J \\
\frac{d z_{2}}{d t} & =v_{1} \\
\frac{d z_{3}}{d t} & =v_{2}
\end{aligned}
$$
\]

This is referred to as exact linearization or feedback linearization.
(c) Show that if the load torque is constant, then choosing

$$
\begin{aligned}
& v_{1}=-K_{0} \int_{0}^{t}\left(z_{1}-\omega_{r e f}\right) d t-K_{1}\left(z_{1}-\omega_{r e f}\right)-K_{2}\left(z_{2}-\alpha_{r e f}\right)+\frac{d}{d t} \alpha_{r e f} \\
& v_{2}=-K_{f}\left(z_{3}-\lambda_{f_{-} r e f}\right)+d \lambda_{f_{-} r e f} / d t
\end{aligned}
$$

with the gains chosen appropriately results in $z_{1} \rightarrow \omega_{r e f}$ and $z_{3} \rightarrow \lambda_{f_{-} r e f}$.
(d) Draw a block diagram for the complete (i.e., nonlinear and linear feedback) control system.

Remarks: If position control is desired, one simply appends $d z_{0} / d t=z_{1}$ to the system where $z_{0}=\theta$. The feedback is singular only if $x_{2}=\lambda_{f}=0$. However, one chooses the input v_{2} to ensure $\lambda_{f}>0$. The importance of this approach is that the control of the speed through the input v_{1} is decoupled from the control of the fux ($z_{2}=x_{2}=\lambda_{f}$) through the input v_{2}. The linear control techniques of this chapter are directly applicable to this linear model.

Problem 41 Field Control of a Separately Excited DC Motor [51][52]
Another approach to controlling a separately excited DC motor is the socalled method of field control. In this approach the armature voltage is held constant while the field voltage is varied to control the speed. This is often used in large DC drives (e.g., rolling mills) since the armature circuit can require $2000-3000 \mathrm{~A}$ and 250 V while the field circuit may require only 20 A . Consequently, it is of great economic advantage to use an amplifier that only has to handle the $20 A$ of the field circuit together with a large generator at constant voltage to produce the armature current. A mathematical model for a field controlled motor model in terms of the state variables $\left(i, \omega, \lambda_{f}\right)$ is then

$$
\begin{aligned}
L \frac{d i}{d t} & =-R i-K_{m} \lambda_{f} \omega+V_{a 0} \\
J \frac{d \omega}{d t} & =K_{m} \lambda_{f} i-\tau_{L} \\
\frac{d \lambda_{f}}{d t} & =-R_{f} f^{-1}\left(\lambda_{f}\right)+v_{f}
\end{aligned}
$$

where $V_{a 0}$ is constant (typically the output of a generator).
(a) Consider the nonlinear transformation [52]

$$
\begin{aligned}
& z_{1}=\left(L i^{2}+J \omega^{2}\right) / 2 \\
& z_{2}=i\left(-R i-K_{m} \lambda_{f} \omega+V_{a 0}\right)+\omega K_{m} \lambda_{f} i=-R i^{2}+i V_{a 0} \\
& z_{3}=\left(-2 R i+V_{a 0}\right)\left(-R i-K_{m} \lambda_{f} \omega+V_{a 0}\right) / L
\end{aligned}
$$

and show that the system equations become

$$
\begin{aligned}
\frac{d z_{1}}{d t} & =z_{2} \\
\frac{d z_{2}}{d t} & =z_{3}-\tau_{L} / J \\
\frac{d z_{3}}{d t} & =f\left(i, \omega, \lambda_{f}\right)+g\left(i, \omega, \lambda_{f}\right) v_{f}
\end{aligned}
$$

Here $f\left(i, \omega, \lambda_{f}\right), g\left(i, \omega, \lambda_{f}\right)$ are nonlinear functions of the state $\left(i, \omega, \lambda_{f}\right)$. Show that application of the feedback

$$
v_{f}=\left(-f\left(i, \omega, \lambda_{f}\right)+u_{f}\right) / g\left(i, \omega, \lambda_{f}\right)
$$

results in a linear system. This is referred to as exact linearization or a feedback linearization controller.
(b) When is $g\left(i, \omega, \lambda_{f}\right)$ singular (i.e., when does $\left.g\left(i, \omega, \lambda_{f}\right)=0\right)$? Can this singularity be avoided in normal operation of the motor?
(c) Show how to pick the gains of the controller

$$
\begin{aligned}
u_{f}= & -K_{0} \int_{0}^{t}\left(z_{1}-z_{1 r e f}\right) d t-K_{1}\left(z_{1}-z_{1 r e f}\right)-K_{2}\left(z_{2}-z_{2 r e f}\right) \\
& -K_{3}\left(z_{3}-z_{3 r e f}\right)+d z_{3 r e f} / d t
\end{aligned}
$$

such that $z_{1}-z_{1 r e f} \rightarrow 0$ with a constant load torque.
(d) What are some practical problems with this approach to controlling the machine? (Hint: How does one choose $z_{1 r e f}, z_{2 r e f}, z_{3 r e f}$ so that $\omega \rightarrow$ $\omega_{\text {ref }}$?)

Problem 42 Series Connected DC Motor [2][51][53][54]
A DC motor in which the field circuit is connected in series with the armature circuit is referred to as a series DC motor. This connection is shown in the equivalent circuit of the series DC motor shown in Figure 2.55 and is typically used in applications that require high torque at low speed such as traction drives (e.g., subway trains) [2]. Comparing with the separately excited motor of Figure 2.54, it is seen that the terminal T_{2}^{\prime} is connected to the terminal T_{1} with the voltage v applied between terminals T_{1}^{\prime} and T_{2}. The resistor R_{p} put in parallel with the field circuit is switched in at higher speeds to achieve field weakening (see problem 43).

FIGURE 2.55. Equivalent circuit for a series DC motor.
With the switch for R_{P} open, the equations describing electrical circuit of the field and armature winding is

$$
-\frac{d\left(L i-\lambda(i, \theta)+\lambda_{f}(i)\right)}{d t}-\left(R_{f}+R\right) i+v=0
$$

Using the fact that $\partial \lambda\left(i_{f}, \theta\right) / \partial \theta=-K_{m} \lambda_{f}\left(i_{f}\right)$ and that the torque is given by $K_{m} \lambda_{f}\left(i_{f}\right) i$, the equations of the series connected DC motor are then

$$
\begin{aligned}
\frac{d\left(L i+\lambda_{f}(i)\right)}{d t} & =-\left(R_{f}+R\right) i+\frac{\partial \lambda}{\partial i_{f}} \frac{d i_{f}}{d t}-K_{m} \lambda_{f}(i) \omega+v \\
J \frac{d \omega}{d t} & =K_{m} \lambda_{f}(i) i-\tau_{L}
\end{aligned}
$$

In the case of the series winding, the armature flux Li can be neglected compared to the field fux $\lambda_{f}(i)$. Also $\frac{\partial \lambda}{\partial i_{f}} \frac{d i_{f}}{d t}$ is neglected to obtain

$$
\begin{aligned}
\frac{d \lambda_{f}(i)}{d t} & =-\left(R_{f}+R\right) i-K_{m} \lambda_{f}(i) \omega+v \\
J \frac{d \omega}{d t} & =K_{m} \lambda_{f}(i) i-\tau_{L}
\end{aligned}
$$

(In the case of no magnetic saturation in the field winding $\lambda_{f}(i)=L_{f} i$.)
(a) Show that the nonlinear transformation

$$
\begin{aligned}
z_{1} & =\omega \\
z_{2} & =\left(K_{m} / J\right) \lambda_{f}(i) i
\end{aligned}
$$

gives

$$
\begin{aligned}
\frac{d z_{1}}{d t} & =z_{2} \\
\frac{d z_{2}}{d t} & =f(i, \omega)+g(i, \omega) v-\tau_{L} / J
\end{aligned}
$$

What are the expressions for $f(i, \omega), g(i, \omega)$?
(b) When is $g(i, \omega)$ singular? Can this be avoided in normal operation? Show that the nonlinear feedback

$$
v_{f}=\frac{-f(i, \omega)+u}{g(i, \omega)}
$$

results in the linear system

$$
\begin{aligned}
\frac{d z_{1}}{d t} & =z_{2} \\
\frac{d z_{2}}{d t} & =u-\tau_{L} / J
\end{aligned}
$$

This is called a feedback linearizing controller or an exact linearization controller.
(c) Show how to choose the gains for the controller

$$
u=K_{0} \int_{0}^{t}\left(\omega_{r e f}(\tau)-\omega(\tau) d \tau+K_{1}\left(\omega_{r e f}-\omega\right)+K_{2}\left(\alpha_{r e f}-\alpha\right)+\frac{d}{d t} \alpha_{r e f}\right.
$$

so that $\omega_{\text {ref }}-\omega \rightarrow 0$ with a constant load torque.
(d) Draw a complete block diagram of the system including the nonlinear and linear feedback.

Problem 43 Field Weakening Control for a Series DC Motor [2][53]
Consider the series connected DC motor described in problem 42 running at high speed with the switch closed and $\lambda_{f}>0$. The current in the field winding is now less that the armature current $\left(i_{f}<i_{a}\right)$ so that the field fux linkage $\lambda_{f}\left(i_{f}\right)$ and therefore the back emf $K_{m} \lambda_{f}\left(i_{f}\right) \omega$ is now less than it would have been carrying full armature current. Consequently, this provides a way to achieve higher speeds than otherwise without having the back emf exceed the voltage limit. This is referred to as field weakening as the field flux linkage $\lambda_{f}\left(i_{f}\right)$ is now "weakened" compared to the value $\lambda_{f}(i)$ with full armature current.
(a) Using the state variables $\left(i, \lambda_{f}, \omega\right)$, derive a nonlinear state space model of the system.
(b) Let $L=0$ and use the equation for the current i (setting $L d i / d t=0$) to solve for $i=\left(v+R_{p} i_{f}-K_{m} \lambda_{f} \omega\right) /\left(R+R_{p}\right)$. Use this to write a second order state space model in terms of the state variables $\left(\lambda_{f}, \omega\right)$.
(c) Consider an input-output linearization controller of the form $v=$ $-R_{p} i_{f}+K_{m} \lambda_{f} \omega+u\left(R+R_{p}\right) /\left(K_{m} \lambda_{f} / J\right)$ where u is a new input. Explain how to control the speed and why the flux must satisfy $0<c_{1}<\lambda_{f}<c_{2}$, that is, it must be bounded from below and above.

Problem 44 Speed and Load-Torque Observer for the Series DC Motor [51][53][54]

An estimator for the speed and load torque of a series DC motor can be constructed using only a measurement of the current. To see this, consider the equations of the series $D C$ motor with $L=0$

$$
\begin{aligned}
\frac{d \lambda_{f}}{d t} & =-\left(R_{f}+R\right) i-K_{m} \lambda_{f} \omega+v \\
J \frac{d \omega}{d t} & =K_{m} \lambda_{f} i-\tau_{L}
\end{aligned}
$$

Model the load torque as an unknown constant so that the equation

$$
\frac{d\left(\tau_{L} / J\right)}{d t}=0
$$

is appended to the system.
(a) Show that the nonlinear change of coordinates

$$
\begin{aligned}
& z_{1}=\ln \left(\lambda_{f}\right) \\
& z_{2}=\omega \\
& z_{3}=\tau_{L} / J
\end{aligned}
$$

results in

$$
\begin{aligned}
\dot{z} & =A z+h\left(i_{a}, i_{f}, \lambda_{f}, V\right) \\
y & =c z
\end{aligned}
$$

where

$$
z=\left[\begin{array}{l}
z_{1} \\
z_{2} \\
z_{3}
\end{array}\right], A=\left[\begin{array}{ccc}
0 & -K_{m} & 0 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right], c=\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]
$$

and

$$
h\left(i, i_{f}, \lambda_{f}, v\right)=\left[\begin{array}{c}
\left(-R_{f} i_{f}-R i+v\right) / \lambda_{f} \\
\left(K_{m} / J\right) \lambda_{f} i \\
0
\end{array}\right] .
$$

(b) Show that the gain vector $\ell=\left[\begin{array}{lll}\ell_{1} & \ell_{2} & \ell_{3}\end{array}\right]^{T}$ can be chosen so that the observer defined by

$$
\begin{aligned}
d \hat{z} / d t & =A \hat{z}+h\left(i, i_{f}, \lambda_{f}, v\right)+\ell(y-\hat{y}) \\
\hat{y} & =c \hat{z}
\end{aligned}
$$

results in $\hat{z} \rightarrow z$ and, in particular, $\hat{\omega} \rightarrow \omega$ and $\hat{\tau}_{L} / J \rightarrow \tau_{L} / J$.
(c) Is there a practical problem with using such an observer? Explain. (Hint: When is $h\left(i, i_{f}, \lambda_{f}, v\right)$ singular?)

Problem 45 Speed and Load-Torque Observer for the Field-Weakened Series DC Motor [53]

Consider the state space model using the state variables $\left(i, \lambda_{f}, \omega\right)$ as developed in problem 43. Add the first two equations together with $L=0$ to show that

$$
\begin{aligned}
\frac{d \lambda_{f}}{d t} & =-R_{f} i_{f}-R i-K_{m} \lambda_{f} \omega+v \\
J \frac{d \omega}{d t} & =K_{m} \lambda_{f} i-\tau_{L}
\end{aligned}
$$

Similar to the construction in problem 44, show that a speed and load-torque observer can be designed.

Problem 46 Shunt-Connected DC Machine [51][55]
A shunt-connected DC motor is one in which the armature and field circuits are connected in parallel. Specifically, using the separately excited DC motor of Figure 2.54, one adds an adjustable resistance $R_{\text {adj }}$ to the field circuit and then ties together terminals T_{1} and T_{1}^{\prime} as well as the terminals T_{2} and T_{2}^{\prime} resulting in the equivalent circuit shown in Figure 2.56.

FIGURE 2.56. Equivalent circuit for a shunt DC motor.
The mathematical model is found to be

$$
\begin{aligned}
L \frac{d i}{d t} & =-R i-K_{m} \lambda_{f} \omega+v \\
\frac{d \lambda_{f}}{d t} & =-R_{F} f^{-1}\left(\lambda_{f}\right)+v \\
J \frac{d \omega}{d t} & =K_{m} \lambda_{f} i-\tau_{L}
\end{aligned}
$$

where $R_{F}=R_{f}+R_{\text {adj }}$. As in the case of the series $D C$ motor, the armature inductance is negligible so that setting $L=0$ and $i=\left(v-K_{m} \lambda_{f} \omega\right) / R$
results in the reduced-order system

$$
\begin{aligned}
\frac{d \lambda_{f}}{d t} & =-R_{F} f^{-1}\left(\lambda_{f}\right)+v \\
\frac{d \omega}{d t} & =-\frac{K_{m}^{2}}{J R} \lambda_{f}^{2} \omega+\frac{K_{m}}{J R} \lambda_{f} v-\frac{\tau_{L}}{J}
\end{aligned}
$$

(a) Show that the nonlinear transformation [where $g\left(\lambda_{f}\right) \triangleq f^{-1}\left(\lambda_{f}\right)=i_{f}$]

$$
\begin{aligned}
z_{1} & =\omega-\frac{K_{m}}{2 J R} \lambda_{f}^{2} \\
z_{2} & =-\frac{K_{m}^{2}}{J R} \lambda_{f}^{2} \omega+\frac{R_{F} K_{m}}{J R} \lambda_{f} g\left(\lambda_{f}\right)
\end{aligned}
$$

results in the system dynamics

$$
\begin{aligned}
\frac{d z_{1}}{d t} & =z_{2} \\
\frac{d z_{2}}{d t} & =\alpha\left(\omega, \lambda_{f}\right)+\beta\left(\omega, \lambda_{f}\right) v-\frac{\tau_{L}}{J}
\end{aligned}
$$

Show that application of the feedback

$$
v=\frac{-\alpha\left(\omega, \lambda_{f}\right)+u}{\beta\left(\omega, \lambda_{f}\right)}
$$

results in a linear system. This is called a feedback linearizing controller.
(b) Compute the expressions for $\alpha\left(\omega, \lambda_{f}\right), \beta\left(\omega, \lambda_{f}\right)$ for the special case of linear magnetics, that is, $\lambda_{f} \triangleq L_{f} i_{f}$. In particular, show that

$$
\beta\left(\omega, \lambda_{f}\right) \triangleq \frac{K_{m} \lambda_{f}}{J R}\left(\frac{2 R_{F}}{L_{f}}-2 K_{m} \omega-\frac{K_{m}^{2}}{J R} \lambda_{f}^{2}\right)
$$

It turns out that the condition $\beta\left(\omega, \lambda_{f}\right) \neq 0$ is satisfied for a region of the state space for which one would operate such a motor [55].
(c) Show how to pick the gains of the controller

$$
u_{f}=-K_{0} \int_{0}^{t}\left(z_{1}-z_{1 r e f}\right) d t-K_{1}\left(z_{1}-z_{1 r e f}\right)-K_{2}\left(z_{2}-z_{2 r e f}\right)+\frac{d z_{2 r e f}}{d t}
$$

such that $z_{1}-z_{1 r e f} \rightarrow 0$ with a constant load torque.
(d) What are some practical problems with this approach to controlling the machine? (Hint: How does one choose $z_{1 r e f}, z_{2 r e f}$ so that $\omega \rightarrow \omega_{r e f}$?)

Problem 47 Input-Output Linearization of a Shunt DC Motor [51][55]
An alternative to the feedback linearizing controller for the shunt $D C$ motor (see problem 46) is an input-output linearization controller.
(a) Show that applying the feedback

$$
v=\frac{\left(K_{m}^{2} / J R\right) \lambda_{f}^{2} \omega+u}{\left(K_{m} / J R\right) \lambda_{f}}
$$

to the mathematical model in problem 46 results in the system

$$
\begin{aligned}
\frac{d \lambda_{f}}{d t} & =-R_{F} f^{-1}\left(\lambda_{f}\right)+K_{m} \lambda_{f} \omega+\frac{J R}{K_{m} \lambda_{f}} u \\
\frac{d \omega}{d t} & =u-\tau_{L} / J
\end{aligned}
$$

which is still a nonlinear system. The controller is nonsingular for $\lambda_{f}>0$.
(b) The stability of the first equation, the so-called zero dynamics, can be ascertained by multiplying it through by λ_{f} to obtain

$$
\begin{aligned}
\frac{d \lambda_{f}^{2}}{d t} & =-R \lambda_{f} f^{-1}\left(\lambda_{f}\right)-K_{m} \lambda_{f}^{2} \omega+\frac{J R}{K_{m}} u \\
& =-\left(\frac{R}{L_{f}}-K_{m} \omega\right) \lambda_{f}^{2}+\frac{J R}{K_{m}} u
\end{aligned}
$$

where the second line assumes linear magnetics. Show that λ_{f} is bounded if u is bounded and $\omega<\omega_{\max } \triangleq R /\left(K_{m} L_{f}\right)$. (Note that the adjustable resistor allows the designer to accommodate any specified maximum speed.)
(c) Show how to pick the gains of the controller

$$
u=-K_{0} \int_{0}^{t}\left(\omega-\omega_{r e f}\right) d t-K_{1}\left(\omega-\omega_{r e f}\right)+\frac{d \omega_{r e f}}{d t}
$$

such that $\omega-\omega_{\text {ref }} \rightarrow 0$ with a constant load torque.

This Page Intentionally Left Blank

3

Magnetic Fields and Materials

The goal of this chapter is to present a concise, but relatively complete, introduction to the modeling of magnetic materials. The magnetic intensity field $\overrightarrow{\mathbf{H}}$ is introduced as way to modify Ampère's law $\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\boldsymbol{\ell}}=\mu_{0} i_{\text {enclosed }}$ so that it is valid in the presence of magnetic materials. The difference between the magnetic intensity field $\overrightarrow{\mathbf{H}}$ and the magnetic induction field $\overrightarrow{\mathbf{B}}$ is explained. It is shown that $\overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{H}}$ in air while in ideal magnetic materials $\overrightarrow{\mathbf{H}} \equiv \mathbf{0}$ with $\overrightarrow{\mathbf{B}} \neq \mathbf{0}$. The distinction between "soft" and "hard" magnetic materials is explained.

3.1 Introduction

In this introductory section, an attempt is made to review the basic concepts of magnetic fields. Magnetic materials include iron (Fe), cobalt (Co), and nickel (Ni). All magnetic fields are produced by the motion of charged particles. The concern here will be with those magnetic fields setup by the flow (motion) of currents in wires and those due to the spin (motion) of electrons in the atoms making up magnetic materials. A common way one is introduced to magnetic fields is in the form of magnetic materials such as iron. That is, pieces of iron can be magnetized so that they attract or repel one another depending on their orientation with respect to each other. In Figure 3.1, the familiar bar magnet is shown.

FIGURE 3.1. The direction of the compass needle specifies the direction of the magnetic field. From Figure 11-1 of PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendali/Hunt, 1991.

The curves shown in the figure are drawn to show the direction of the magnetic field. As shown in the figure, the direction of the magnetic field is simply defined to be the direction that a small compass needle (which is just another bar magnet) points. That is, the large bar magnet exerts a force/torque on the compass needle such that in equilibrium it is aligned in a particular direction which is taken by definition to be the direction of the magnetic field at that point.

Figures 3.2 through 3.7 show some simple experiments to demonstrate the direction of the magnetic fields produced by currents and magnetic materials. In these experiments, small iron filings (i.e., compass needles!) are uniformly spread over a piece of smooth paper so that when a magnetic field is applied, the iron filings will align themselves with the direction of the magnetic field. Of course, the field must be strong enough to make the filings turn against the friction force of the paper. In Figure 3.2, the magnetic field of a long straight wire carrying a current is seen to consist of concentric circles around the wire.

FIGURE 3.2. Magnetic field lines of a long straight wire carrying a current. Near the wire, concentric circles of iron filings are visible. At right is an illustration of the right-hand rule for the direction of the magnetic field lines around a wire carrying a current. From Figures 11-2(b) and 11-8, respectively, of PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991.

Close to the wire where the magnetic field is strong, the concentric circles following the magnetic field are visible. However, as the distance from the wire increases, the magnetic field weakens to the point that it cannot align the iron filings against the friction forces of the paper.

Figure 3.2 also illustrates the right-hand rule for the direction of the magnetic field due to current in a wire. Simply, one puts their right thumb
along the wire in the direction of the current and the fingers curl around the wire in the direction of the magnetic field.

Figure 3.3 shows another view of Figure 3.2 along with a simple drawing to illustrate the magnetic field lines.

FIGURE 3.3. Iron filing experimental view and drawing of the magnetic field lines produced by a long straight wire carrying a current. From Figures 11-5 and 11-6(a) of PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991.

In Figure 3.4, the magnetic field due to a loop carrying a current is shown along with a drawing illustrating the magnetic field lines.

FIGURE 3.4. Iron filing experimental view and drawing of the magnetic field lines produced by a loop of wire carrying a current. From Figure 11-2(c) of PSSC Physics, 7 th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991.

Figure 3.5 depicts the magnetic field produced by a coil of wire carrying a current. Such a coil is referred to as a solenoid. Notice that inside the solenoid, the field follows straight lines and then flares out at the ends. Figure 3.6 is another experimental example of a tightly wound short solenoid.

FIGURE 3.5. (a) Experimental view of the magnetic field lines of a solenoid using iron filings. Reprinted from Figure 43 of Textbook of Physics, R. Kronig, Editor, Pergamon Press, 1959 with permission from Elsevier. (b) Drawing of the magnetic field lines produced by a coil of wire carrying a current. From Figure 11-6(c) of PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991.

FIGURE 3.6. Experimental view of the magnetic field lines of a tightly wound solenoid using iron filings. From An Introduction to Electrical Machines and Transformers, 2nd edition, G. McPherson and R. D. Laramore, 1990. Reprinted by permisson of John Wiley \& Sons.

FIGURE 3.7. Experimental view of the magnetic field lines of a cylindrical bar magnet using iron filings. From Figure 11-2(b) of PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991. (b) Drawing of the magnetic field produced by a cylindrical-shaped bar magnet.

Figure 3.7 shows the magnetic field of a cylindrical-shaped bar magnet along with a drawing illustrating the magnetic field lines. Note that the magnetic field lines are similar in shape to the air-filled solenoid coil of Figure 3.5. Figures $3.8(\mathrm{a})$ and $3.8(\mathrm{~b})$ compare the magnetic field lines of an air filled coil with that of an iron core coil. The magnetic field lines of the coil with the iron core are drawn closer together to illustrate that its magnetic field is much stronger than that of the air filed coil due to the iron. In other words, for the same current in the coil, an iron core coil results in a much stronger magnetic field.

(a)

(b)

FIGURE 3.8. (a) Coil with air core. (b) Coil with iron core. From Electric Machines: Dynamics and Steady State by G. J. Thaler and M. L. Wilcox, 1966. Reprinted by permission of John Wiley \& Sons.

Figure 3.9 illustrates the important property of iron that it can be used to make the magnetic field lines follow a specific path. In this case, the current in the coil magnetizes the iron making a strong magnetic field inside the
iron that follows the path of the iron to the air gap. If the air gap is small, the strength of the magnetic field there is approximately the same as in the iron.

FIGURE 3.9. Iron core with air gap. From Electric Machines: Dynamics and Steady State by G. J. Thaler and M. L. Wilcox, 1966. Reprinted by permission of John Wiley \& Sons.

An experimental verification of the setup in Figure 3.9 is the photograph in Figure 3.10. Note that the magnetic field does not actually stay confined to the iron core and air gap. However, the large number of iron filings oriented by the magnetic field in and around the air gap compared to those oriented outside the iron core indicates that the magnetic field is much stronger in the core and air gap.

FIGURE 3.10. Experimental verification of the magnetic field produced by the setup of Figure 3.9. From An Introduction to Electrical Machines and Transformers, 2nd edition, G. McPherson and R. D. Laramore, 1990. Reprinted by permisson of John Wiley \& Sons.

An experimental verification of the magnetic field lines of a horseshoe magnet is given in Figure 3.11(a).

FIGURE 3.11. Magnetic field lines of a horseshoe magnet using iron filings. From PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991. (b) Drawing illustrating the magnetic field lines of a horseshoe magnet.

Remark Normally a solenoidal coil is tightly wound so that there is no space between successive turns as shown in Figure 3.10. It was loosely wound in Figure 3.5 so that the orientation of the iron filings inside the coil could be shown. In Figure 3.5, the field outside the coil is too weak to align the iron filings against the friction of the paper, but the direction in this region is indicated in the drawing.

3.2 The Magnetic Field $\overrightarrow{\mathbf{B}}$ and Gauss's Law

Before going into the details of modeling magnetic material, the definition of the magnetic field is reviewed along with the concept of conservation of flux.

Recall that the direction of the magnetic field is defined to be the direction that a small compass needle points. The magnitude of the magnetic field is defined in terms of the forces it produces. Magnetism was discovered because naturally occurring magnets (e.g., the earth) exerted forces on each other. In 1819, the Danish physicist Hans Øersted discovered that magnets can also exert forces on currents in wires and that currents in wires produces magnetic fields. This is illustrated in Figure 3.12, where a wire carrying a current is placed in a magnetic field. The conducting wire is oriented so that it is perpendicular to the magnetic field. The experimentally determined rule for determining the direction of the force is shown
in the figure as another right-hand rule. Specifically, extend the fingers of the right hand in the direction of the magnetic field and the thumb in the direction of the current. Then the force is in the direction up out of the palm. Another experimental fact is that if the wire was placed parallel to the magnetic field, one finds that there is no force. That is, only the component of the magnetic field perpendicular to the current produces a force.

FIGURE 3.12. Direction of the magnetic force on currents. From Figure 11-3 of PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991.

It is exactly this force phenomena that is used to define the magnetic field strength. In more detail, consider the experimental setup shown in Figure 3.13 which consists of an air-core solenoid coil carrying a current that produces a nearly constant magnetic field $\overrightarrow{\mathbf{B}}$ inside the coil in the direction shown. A wire is strung along a rectangular shaped pivot of width ℓ carrying a current i as shown in the figure. Only the part of the wire of length ℓ at the back end of the rectangular shaped pivot experiences a force since the other two sides are parallel to the field and thus experience no force. One then measures the force $\overrightarrow{\mathbf{F}}$. Experimentally, one finds that the force is proportional to the current i in the wire, i.e., if the current is doubled, then the force is doubled. Also, the force is proportional to the length of wire perpendicular to the field. That is, if the width was decreased to $\ell / 2$, then one would find that the force is decreased by $1 / 2$ also. Consequently, one needs to divide out the length of the wire and current in the wire to find the intrinsic quantity producing the force. This leads to the following definition of the magnetic field.

FIGURE 3.13. Apparatus to measure the magnetic field by the force it produces. From Figure 11-12 of PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991.

Definition of the Magnetic Induction Field \vec{B}

1. The direction of the magnetic field $\overrightarrow{\mathbf{B}}$ is defined by the direction a small compass needle points.
2. The magnitude $B \triangleq|\overrightarrow{\mathbf{B}}|$ of the magnetic field $\overrightarrow{\mathbf{B}}$ is defined by

$$
B \triangleq \frac{F}{\ell i}
$$

where F is the force on the conductor of length ℓ carrying the current i. Here, the length of wire ℓ carrying the current i is assumed to be perpendicular to the direction of $\overrightarrow{\mathbf{B}}$.
3. The units of the magnetic field are

$$
\text { tesla } \triangleq \frac{\mathrm{N}}{\mathrm{~m}-\mathrm{A}}=\frac{\text { weber }}{\mathrm{m}^{2}}=10^{4} \text { gauss. }
$$

Magnetic Force Law

As stated above, magnetic fields were discovered because of the forces they produce and this phenomena is used to define the magnetic field. The experiments with magnetic forces and the definition of the magnetic field can be turned around to obtain the magnetic force law. To repeat, the force on the current carrying wire is proportional to the component of $\overrightarrow{\mathbf{B}}$ perpendicular to the wire. One defines a vector $\vec{\ell}$ whose magnitude is the length ℓ of the wire in the magnetic field and its direction is that of the positive current flow in the wire. Then, the magnetic force on a wire of length ℓ carrying a current i in a magnetic field $\overrightarrow{\mathbf{B}}$ is given by

$$
\overrightarrow{\mathbf{F}}=i \overrightarrow{\boldsymbol{\ell}} \times \overrightarrow{\mathbf{B}}
$$

Let θ denote the angle between $\vec{\ell}$ and $\overrightarrow{\mathbf{B}}$ as shown in Figure 3.14. The magnitude of the force $F=|\overrightarrow{\mathbf{F}}|$ may be written as

$$
F=i \ell B \sin (\theta)=i \ell B_{\perp}
$$

where $B_{\perp}=B \sin (\theta)$ is just the component of $\overrightarrow{\mathbf{B}}$ perpendicular to the wire.

FIGURE 3.14. $F=i \ell B \sin (\theta)=i \ell B_{\perp}$.

3.2.1 Conservation of Flux

One of Maxwell's equations is that integral of the flux over a closed surface is zero, that is,

$$
\oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0 .
$$

This fundamental property of magnetic fields is referred to as Gauss's law for magnetic fields or as the conservation of flux. To explain the notion of conservation of flux, consider the closed surface S shown in Figure 3.15 consisting of two disk-shaped ends connected by the tube-shaped surface.

The two disk-shaped surfaces making up the closed surface S are denoted by S_{1} and S_{2}, respectively, while the tube-shaped surface is denoted by S_{3}. This particular surface S was purposely chosen so that on the surface S_{3} the magnetic field $\overrightarrow{\mathbf{B}}$ points along the surface S_{3} resulting in $\overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0$ there. At all points of the surface S, let $d \overrightarrow{\mathbf{S}}$ be the outward normal to the surface. Then, by Gauss's law, it follows that

$$
\oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\int_{S_{1}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{2}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{3}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0
$$

or

$$
\int_{S_{1}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{2}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0
$$

as $\overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0$ on S_{3}.

FIGURE 3.15. Conservation of flux in a flux tube.
Then

$$
\begin{equation*}
\phi_{S_{2}}=\int_{S_{2}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=-\int_{S_{1}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\int_{S_{1}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}^{\prime}=\phi_{S_{1}} \tag{3.1}
\end{equation*}
$$

where

$$
d \overrightarrow{\mathbf{S}}^{\prime} \triangleq-d \overrightarrow{\mathbf{S}}
$$

is the inward normal to the closed surface S on S_{1}. Equation (3.1) shows that the flux $\phi_{S_{1}}$ through surface S_{1} equals the flux $\phi_{S_{2}}$ through the surface S_{2} if their surface normals are chosen as above. The volume enclosed by S_{1}, S_{2}, S_{3} is called a flux tube and is characterized by $\overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0$ on the tube shaped part of the surface S_{3}. This results in the flux through S_{1} equaling that through S_{2} and is simply a consequence of conservation of flux applied to this closed surface.

In the above derivation, it was crucial that the flux through S_{3} was zero. Magnetic materials provide the capability of being able to approximately construct such a situation, that is, of being able to (approximately) direct the magnetic field. This is illustrated in Figure 3.16, where a coil has been wrapped around an iron core containing an air gap. The point here is that the axially directed magnetic field inside the coil produced by the current and magnetized iron follows along the path of the iron to the air gap. That is, to a reasonable approximation, the magnetic material keeps the magnetic field inside the magnetic material following the path of the material. As a result, the tube-shaped surface of the magnetic material in Figure 3.16 forms a surface for which for which $\overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=0^{1}$ so that the magnetic flux through any cross section of the iron tube is approximately

[^24]the same throughout the tube and in particular at the air gap. As the figure shows, the magnetic field spreads out across the air gap, but this spreading can be kept small by keeping the air gap small. In summary, magnetic materials give the capability to create a magnetic field/flux at one location and transport it to another location where it can be used, for example, to produce a force on a wire carrying a current. However, it is important to note that all of this is only approximately true in that the magnetic field does not stay completely within the material so that the field/flux is actually weaker at the air gap than the field/flux in the coil.

FIGURE 3.16. Creating and directing a magnetic field. From Electric Machines: Dynamics and Steady State by G. J. Thaler and M. L. Wilcox, 1966. Reprinted by permission of John Wiley \& Sons.

Continuity of the Normal Component of \vec{B}

As another application of Gauss's flux law $\oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0$, it is now shown that at the interface (boundary) between air and magnetic material, the normal (perpendicular) component of $\overrightarrow{\mathbf{B}}$ to the surface is continuous across the boundary. Figure 3.17 shows a piece of magnetic material and a closed cylindrical-shaped surface, of which half is inside the magnetic material and the other half in the air. Let $\overrightarrow{\mathbf{B}}_{1}=B_{1 x} \hat{\mathbf{x}}+B_{1 y} \hat{\mathbf{y}}+B_{1 z} \hat{\mathbf{z}}$ denote the magnetic field on the surface S_{1} in the air and $\overrightarrow{\mathbf{B}}_{2}=B_{2 x} \hat{\mathbf{x}}+B_{2 y} \hat{\mathbf{y}}+B_{2 z} \hat{\mathbf{z}}$ denote the magnetic field on the surface S_{2} just inside the magnetic material. Note that coordinate system has been chosen so that the normal component to the surface is the z component of the field. The conservation of flux $\oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0$ is then applied to the closed cylindrical surface S shown in Figure 3.17 consisting of the four pieces S_{1} (disk-shaped in air with area πr^{2}), S_{2} (disk-shaped in the magnetic material with area πr^{2}), S_{3} (cylindrical-shaped in air with area $2 \pi r(h / 2)$), and S_{4} (cylindrical-shaped in the magnetic material with area $2 \pi r(h / 2)$).

FIGURE 3.17. (a) Closed cylindrical surface at the interface of air and magnetic material (b) Cross-sectional view of the flux surface. As $h \rightarrow 0, \overrightarrow{\mathbf{B}}_{1}$ is just above the surface and $\overrightarrow{\mathbf{B}}_{2}$ is just below the surface.

It follows that

$$
\oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\int_{S_{1}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{2}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{3}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{4}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0
$$

With r finite, but small, let the length h of the cylinder go to zero with the consequence that the area of sides S_{3} and S_{4} go to zero, and the disk-shaped sides S_{1} and S_{2} are just above and just below the air-magnetic material interface, respectively. Letting $h \rightarrow 0$, it follows that

$$
\int_{S_{1}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{2}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0
$$

Evaluating these integrals results in

$$
\begin{aligned}
\int_{S_{1}} \overrightarrow{\mathbf{B}}_{1} \cdot d \overrightarrow{\mathbf{S}} & =\int_{S_{1}}\left(B_{1 z} \hat{\mathbf{z}}\right) \cdot(d S \hat{\mathbf{z}})=B_{1 z} \pi r^{2} \\
\int_{S_{2}} \overrightarrow{\mathbf{B}}_{2} \cdot d \overrightarrow{\mathbf{S}}^{\prime} & =\int_{S_{2}}\left(B_{2 z} \hat{\mathbf{z}}\right) \cdot(-d S \hat{\mathbf{z}})=-B_{2 z} \pi r^{2}
\end{aligned}
$$

so that

$$
B_{1 z}=B_{2 z}
$$

That is, the component of $\overrightarrow{\mathbf{B}}$ perpendicular to the surface is continuous across the surface.

As an example, consider Figure 3.18 [from Figure 3.19(a)] showing the magnetic fields due to a cylindrical-shaped permanent magnet. For reference, use a cylindrical coordinate system whose origin is at the center of the magnet with the z axis pointing up along the axis of the magnet. Note that on the cylindrical side of the magnet, the tangential component $(z$
component) of $\overrightarrow{\mathbf{B}}$ is not continuous. In particular, consider the point P in Figure 3.18 where just inside the surface of the magnet, the tangential component of $\overrightarrow{\mathbf{B}}$ is up ($+\hat{\mathbf{z}}$ direction) while just outside the surface, it is down ($-\hat{\mathbf{z}}$ direction). However, the normal component ($\hat{\mathbf{r}}$ direction) must be the same on both sides of the surface by Gauss's law.

FIGURE 3.18. (a) Cylindrical coordinate system for the magnet. (b) Magnetic field lines for a cylindrical-shaped magnet. At the point P, the normal component ($\hat{\mathbf{r}}$ direction) is continuous while the tangential component ($\hat{\mathbf{z}}$ direction) is not. Adapted from Figure $37-4$ of Ref. [34]. (c) $\overrightarrow{\mathbf{B}}_{\text {in }}$ and $\overrightarrow{\mathbf{B}}_{\text {out }}$ are, respectively, the magnetic field just inside and just outside the surface at the point P. Note that $B_{r_{-} \text {in }}=B_{r_{-} \text {out }}$, but $B_{z_{-}}$in $\neq B_{z_{-}}$out .

3.3 Modeling Magnetic Materials

Figures 3.19(a) and 3.19(b) compare the magnetic field lines of a cylindrical shaped bar magnet and a cylindrical-shaped air-filled solenoid coil, respectively. The interesting and important observation here is that the magnetic field outside the bar magnet has the same shape as that of the coil of wire carrying a current. This leads one to conjecture that the magnetic field
inside the bar magnet of Figure 3.19(a) follows straight lines as they do inside the coil of Figure 3.19(b). Perhaps one can picture the bar magnet as having some kind of "bound" current which goes around its periphery producing the bar magnet's field analogous to the current in the coil of the air filled solenoid.

Pursuing this conjecture, consider an iron atom in the bar magnet as a small current loop as in Figure 3.20. That is, the motion of the electrons in the individual iron atoms are considered to be equivalent to a current loop as drawn in Figure 3.20(a). As illustrated in Figures 3.20(a) and 3.20(b), inside the material, the current in the adjacent sides of neighboring loops go in opposite directions so that their effects cancel. However, the part of the loops on the surface of the material have no corresponding neighboring loop to cancel and the net effect is a current around the periphery of the magnetic material as illustrated in Figure 3.20(c). This is a so-called bound current, since an individual electron does not go around the surface of the magnet, but stays with the particular iron atom. It is only the net effect of all the current loops being aligned that results in a current around the surface of the bar magnet. This is in contrast to free currents associated with current flow in copper conductors where individual electrons actually move down the wire through the crystal lattice of the copper.

FIGURE 3.19. (a) Magnetic field lines for a bar magnet. (b) Magnetic field lines for a short air-filled solenoid coil. From Physics, 2nd edition, by D. Halliday and R. Resnick, 1962. Reprinted by permission of John Wiley \& Sons.

To reiterate, the point here is that in magnetic materials, the motion (spin) of the electrons in the atoms are able to align themselves as shown in Figure 3.20 so that the current loops are all in the same plane with the currents circulating clockwise. This is in contrast to nonmagnetic materials where the current loops are at random orientations with respect to each
other and are unable to align themselves so their net effect cancels.

FIGURE 3.20. Viewing the atoms of magnetic materials as current loops which are able to align themselves. From PSSC Physcis, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991.

Figure 3.21 again illustrates this idea of representing the magnetic material by current loops which results in an equivalent bound current i_{b} going around the periphery of the cylinder.

FIGURE 3.21. (a) View of magnetic material consisting of aligned dipole moments. (b) Magnetic material represented by an equivalent bound current i_{b} going around the periphery of the cylinder that produces the same magnetic field as the magnetic material. This interpretation is motivated by Figure 3.20.

3.3.1 Magnetic Dipole Moments

To develop a mathematical model to go along with the pictures in Figures 3.20 and 3.21 , the concept of a magnetic dipole moment is reviewed. Consider a small planar loop of area S with a current i going around the loop such as illustrated in Figure 3.22. The scalar magnetic moment is defined
to be

$$
m \triangleq i S .
$$

The direction of the magnetic moment is taken to be normal to the loop. A unique normal $\hat{\mathbf{n}}$ is specified by direction of the current using the righthand rule. That is, curl the fingers of the right-hand around the loop in the direction of positive current flow and the normal $\hat{\mathbf{n}}$ is defined to be the direction of the extended thumb. Putting this all together, the magnetic moment vector is defined as

$$
\overrightarrow{\mathbf{m}} \triangleq i S \hat{\mathbf{n}}
$$

where $\hat{\mathbf{n}}$ is a unit normal to the loop determined by the right-hand rule. Magnetic material (such as iron) is now pictured by modeling the atoms as magnetic moments which are able to align themselves in the same direction. As shown in Figure 3.21, the net effect is then a (bound) surface current that produces the external magnetic field analogous to a current-carrying coil with air inside.

FIGURE 3.22. Small current loop as a magnetic dipole momentt. S is the area of the loop, i is the current in the loop and $\hat{\mathbf{n}}$ is the normal to the loop given by the right-hand rule. The dipole moment is $\overrightarrow{\mathbf{m}} \triangleq i S \hat{\mathbf{n}}$.

The model of the iron atom as a magnetic dipole moment will be used to construct a macroscopic picture of the magnetic properties of iron. However, the magnetic property of iron (ferromagnetism) is only explained through Quantum Mechanics. Quoting from Melvin Schwartz [35] "Iron has two remarkable atomic properties that have far-reaching consequences with respect to its macroscopic magnetic behavior. First, 4 of the 26 electrons in an isolated atom of iron have their intrinsic angular momenta lined up. Second, within solid iron, there are very strong quantum-mechanical forces tending to make the intrinsic angular momenta of neighboring atoms line up. This results in domains of macroscopic size having net magnetizations corresponding to about two aligned electron moments per atom on the average. Applying a magnetic field causes those domains, which are aligned in the same direction as the field, to grow until the iron finally reaches a saturated state of magnetization. Typically, saturation occurs at fields in the neighborhood of 10,000 to 20,000 gauss. Needless to say, removal of the applied field does not lead to complete randomization of the domains. The
residual magnetization can be quite large, as in the case of special permanent magnetic alloys, or it can be quite small, as in the case of soft iron. These phenomena are characteristic of ferromagnetism."

3.3.2 The Magnetization $\overrightarrow{\mathbf{M}}$ and Ampère's Law

The picture adopted here for iron and other magnetic materials is one in which they consist of small current loops with a magnetic dipole moment associated with each one as illustrated in Figure 3.21. It is emphasized that one could model any material with such current loops, but that in the case of magnetic materials, the loops (dipole moments) align themselves when an external magnetic field is applied. This alignment of the current loops can be viewed as a net bound current which goes around the surface and produces a magnetic field. ${ }^{2}$ Nonmagnetic materials have their dipole moments in random orientations with respect to each other and are not able to align to produce any significant magnetic field even under the presence of an external magnetic field. Consequently, there is no net bound surface current or magnetic field. When an external magnetic field is applied to a magnetic dipole moment (loop of current), the moment tends to align itself with the external field. This is illustrated in Figure 3.23, which shows two current loops whose normals $\hat{\mathbf{n}}$ are not aligned with the external magnetic field $\overrightarrow{\mathbf{B}}$. In Figure $3.23(\mathrm{a})$, the forces $\overrightarrow{\mathbf{F}}_{1}, \overrightarrow{\mathbf{F}}_{2}$ provide a torque $\overrightarrow{\boldsymbol{\tau}}$ to align the dipole moment (i.e., the normal $\hat{\mathbf{n}}$ to the surface of the loop) with the direction of the external field $\overrightarrow{\mathbf{B}}$. Similarly, in $3.23(\mathrm{~b})$ the forces $\overrightarrow{\mathbf{F}}_{3}, \overrightarrow{\mathbf{F}}_{4}$ provide a torque $\overrightarrow{\boldsymbol{\tau}}$ to align the dipole moment with the direction of the external field $\overrightarrow{\mathbf{B}}$.

FIGURE 3.23. Magnetic dipole in an external magnetic field. (a) Dipole tilted vertically. (b) Dipole tilted laterally.

[^25]As a specific example of this viewpoint, consider the magnetic circuit of Figure 3.16. Here the current in the coil magnetizes the iron, that is, causes the dipole moments of the iron atoms to align themselves with the (external) magnetic field produced by the coil current. This results in a much larger magnetic field in the iron than that which would be produced by the current in the coil alone.

The Magnetization Vector \vec{M}

Define the magnetization vector $\overrightarrow{\mathbf{M}}$ as follows: At any arbitrary point ($x^{\prime}, y^{\prime}, z^{\prime}$) inside the magnetic material (see Figure 3.24) define

$$
\begin{aligned}
\overrightarrow{\mathbf{m}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \triangleq & \text { Average magnetic dipole moment of the atoms } \\
& \text { in a neighborhood of the point }\left(x^{\prime}, y^{\prime}, z^{\prime}\right) .
\end{aligned}
$$

$$
N_{m} \triangleq \quad \text { Number of atoms (e.g., iron) per unit volume. }
$$

Then, the magnetization $\overrightarrow{\mathbf{M}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ is defined as

$$
\overrightarrow{\mathbf{M}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right) \triangleq N_{m} \overrightarrow{\mathbf{m}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)
$$

The magnitude $M=|\overrightarrow{\mathbf{M}}|$ of the magnetization vector is simply the magnetic dipole moment per unit volume. The fundamental issue here is to determine the magnetic field $\overrightarrow{\mathbf{B}}(x, y, z)$ at the point (x, y, z) outside the material due to the magnetization $\overrightarrow{\mathbf{M}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ at the point $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ inside the material. To do so, it is necessary to relate the magnetization vector $\overrightarrow{\mathbf{M}}\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$ to the magnetic field it produces. First, Ampère's law is reviewed as it is the Maxwell equation that relates currents to magnetic fields.

FIGURE 3.24. Magnetic field produced by magnetic material. How does one compute $\overrightarrow{\mathbf{B}}$ at (x, y, z) due to $\overrightarrow{\mathbf{M}}$ at $\left(x^{\prime}, y^{\prime}, z^{\prime}\right)$?

Ampère's Law

When magnetic materials are not present, Ampère's law is

$$
\oint_{C} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}=\mu_{0} i_{\mathrm{enclosed}}
$$

where $i_{\text {enclosed }}$ is the current enclosed by the path C.
Some examples are now given to recall how Ampère's law is used to determine the magnetic field from currents.

Example Long Straight Wire
Consider a long straight wire carrying a current as in Figure 3.25(a).

FIGURE 3.25. Sign convention in Ampère's law for positive current through a closed curve C. From PSSC Physics, 7th edition, by Haber-Schaim, Dodge, Gardner, and Shore, published by Kendall/Hunt, 1991.

This figure shows a closed curve C with a direction of positive travel for going around the curve indicated as well as a direction for positive current in the wire. For Ampère's law to apply, these two sign conventions must be related to each other by another right-hand rule. Specifically, as shown in Figure 3.25(a), if one takes their right hand and curls the fingers in the positive direction of travel around the curve, then the thumb points in the positive direction of current through the surface enclosed by this curve.

Ampère's law is now used to compute the magnetic field due to a current in a long straight wire. A cylindrical coordinate system whose z axis is along the wire is appropriate for the geometry of this problem [see Figure $3.25(\mathrm{~b})]$. To proceed, first note that due to symmetry, the $\overrightarrow{\mathbf{B}}$ field cannot depend on the axial position z nor the azimuthal position θ so that

$$
\overrightarrow{\mathbf{B}}=B_{r}(r) \hat{\mathbf{r}}+B_{\theta}(r) \hat{\boldsymbol{\theta}}+B_{z}(r) \hat{\mathbf{z}} .
$$

To find the azimuthal component $B_{\theta}(r)$, apply Ampère's law to the closed
curve C in Figure $3.25(\mathrm{~b})$ to obtain

$$
\oint_{C} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\boldsymbol{\ell}}=\int_{0}^{2 \pi}\left(B_{\theta} \hat{\boldsymbol{\theta}}\right) \cdot(r d \theta \hat{\boldsymbol{\theta}})=\int_{0}^{2 \pi} B_{\theta} r d \theta=2 \pi r B_{\theta}=\mu_{0} i
$$

or,

$$
B_{\theta}(r)=\frac{\mu_{0} i}{2 \pi r}
$$

In problem 3, using Gauss's law for $\overrightarrow{\mathbf{B}}$, the reader is asked to show that $B_{r}(r) \equiv 0$.

It is now shown that $B_{z}(r) \equiv 0$. To do so, apply Ampère's law to the curve C shown in Figure 3.26, to obtain

$$
\begin{aligned}
\oint_{C} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell} & =\mu_{0} i_{\mathrm{enclosed}} \\
\int_{1}^{2} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}+\int_{2}^{3} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}+\int_{3}^{4} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}+\int_{4}^{1} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\boldsymbol{\ell}} & =0 \\
\int_{1}^{2}\left(B_{z}\left(r_{1}\right) \hat{\mathbf{z}}\right) \cdot(d h \hat{\mathbf{z}})+\int_{3}^{4}\left(B_{z}\left(r_{2}\right) \hat{\mathbf{z}}\right) \cdot(-d h \hat{\mathbf{z}}) & =0 \\
B_{z}\left(r_{1}\right) h-B_{z}\left(r_{2}\right) h & =0 \\
B_{z}\left(r_{1}\right) & =B_{z}\left(r_{2}\right)
\end{aligned}
$$

where the fact that $\int_{2}^{3} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\boldsymbol{\ell}}+\int_{4}^{1} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}=0$ was used.

FIGURE 3.26. (a) Cylindrical coordinate system. (b) Long straight wire carrying a current.

That is, the z component of $\overrightarrow{\mathbf{B}}$ is constant. However, as one goes to infinity in the radial direction $(r \rightarrow \infty)$, the magnetic field will be zero as one is infinitely far from the source i of the magnetic field. Consequently, B_{z} must be zero at infinity and, as it is constant, it must equal zero everywhere. Thus, the form of the magnetic field of an infinitely long straight wire reduces to

$$
\overrightarrow{\mathbf{B}}(r, \theta, z)=\frac{\mu_{0} i}{2 \pi r} \hat{\boldsymbol{\theta}}
$$

Example Ideal Infinitely Long Solenoid [34]

Recall that a solenoid coil is a long wire which is wrapped in a closepacked helix-shaped coil where the length of the coil is very long compared to its diameter. An ideal solenoid is one in which the helix is infinitely long with no spacing between coils as shown in Figure 3.27.

FIGURE 3.27. Infinitely long coil with an air core. (a) Curves C_{1}, C_{2}, C_{3}, and C_{4} for applying Ampère's law. (b) Cylindrical coordinate system. (c) Curve C_{5} for applying Ampère's law.

In this example, a current is put through the wire and the goal is to compute the magnetic field inside and outside the coil. In this case of an ideal solenoid coil, the magnetic field can be computed using symmetry arguments and Ampère's law. To do so, Figure 3.27 shows five closed curves $C_{1}, C_{2}, C_{3}, C_{4}$ and C_{5} that are used to apply Ampère's law to compute $\overrightarrow{\mathbf{B}}$. Figure $3.27(\mathrm{~b})$ shows a cylindrical coordinate system chosen for the solenoid.

Proceeding, first note that due to symmetry, the $\overrightarrow{\mathbf{B}}$ field cannot depend
on the axial position z nor on the azimuthal angle θ so that

$$
\overrightarrow{\mathbf{B}}=B_{r}(r) \hat{\mathbf{r}}+B_{\theta}(r) \hat{\boldsymbol{\theta}}+B_{z}(r) \hat{\mathbf{z}} .
$$

The reader is asked in problem 4 to show using Gauss's law for $\overrightarrow{\mathbf{B}}$ that $B_{r}(r) \equiv 0$. To compute B_{z} inside the solenoid, Ampère's law is applied to the curve C_{1} (side 1-2 is a radial distance r_{1} from the center of the coil and side $3-4$ is a radial distance r_{2} from the center of the coil) and one obtains

$$
\begin{aligned}
\oint_{C_{1}} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell} & =\mu_{0} i_{\text {enclosed }} \\
\int_{1}^{2} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}+\int_{2}^{3} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}+\int_{3}^{4} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}+\int_{4}^{1} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell} & =\mu_{0} i_{\text {enclosed }} \\
B_{z}\left(r_{1}\right) h-B_{z}\left(r_{2}\right) h & =0 \\
B_{z}\left(r_{1}\right) & =B_{z}\left(r_{2}\right)
\end{aligned}
$$

where the fact that $\int_{2}^{3} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}+\int_{4}^{1} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}=0$ was used. Thus, $B_{z}=B_{z \text { inside }}$ is constant inside the solenoid. Similarly, applying Ampère's law to the curve C_{2}, one finds that $B_{z}=B_{z \text { outside }}$ is also constant outside the solenoid. As one goes to infinity in the radial direction $(r \rightarrow \infty)$, the magnetic field will be zero as one is infinitely far from the source i of the magnetic field. Consequently, $B_{z o u t s i d e}$ must be equal to zero.

Applying Ampère's law to the curves C_{3} and C_{5}, the reader can show that $B_{\theta}(r) \equiv 0$ inside the solenoid and $B_{\theta}(r)=\mu_{0} i /(2 \pi r)$ outside the cylinder (see problem 5). Thus,

$$
\overrightarrow{\mathbf{B}}=\left\{\begin{array}{cl}
B_{z i n s i d d} \hat{\mathbf{z}} & \text { inside the solenoid } \\
\frac{\mu_{0} i}{2 \pi r} \hat{\boldsymbol{\theta}} & \text { outside the solenoid. }
\end{array}\right.
$$

Finally, to determine $B_{z i n s i d e}$ in terms of the solenoid current i, consider the curve C_{4}. Let n be the number of coil turns per unit length and i be the current in the coil, so that in the length h of the coil, the current nhi is going through the curve $a b c d a$ in Figure 3.27(a). Applying Ampère's law to the curve C_{4}, one obtains

$$
\begin{aligned}
\oint_{C_{4}} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell} & =\mu_{0} i_{\text {enclosed }} \\
\int_{a}^{b} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell} & =\mu_{0} i_{\text {enclosed }} \\
B_{z \text { inside }} h & =\mu_{0} n h i \\
B_{z i n s i d e} & =\mu_{0} n i .
\end{aligned}
$$

The final expression for the magnetic field is given by

$$
\overrightarrow{\mathbf{B}}(r, \theta, z)= \begin{cases}\mu_{0} n i \hat{\mathbf{z}} & \text { inside the solenoid } \\ \frac{\mu_{0} i}{2 \pi r} & \text { outside the solenoid. }\end{cases}
$$

This expression is consistent with the iron filings experiment of Figure 3.5 which shows the field inside the solenoid is along the axis and outside the solenoid the field is weaker (by a factor of $\frac{n}{2 \pi r}$) compared to the field inside.

The quantity $\lambda=n i$ is the surface current (on the surface defined by the coil) per unit length of the coil going around it in the azimuthal $(\hat{\theta})$ direction. It is referred to as the surface current density and, for an infinitely long solenoid, $B=\mu_{0} \lambda$ inside.

Example Toroidal Solenoid
A toroidal solenoidal coil with an air core is shown in Figure 3.28. It has an inside radius of r_{1}, an outside radius of r_{2} and a core diameter of d. Figure 3.28(b) shows an iron filing experiment of the lines of $\overrightarrow{\mathbf{B}}$ of an air filled toroidal solenoid. The toroid does not possess as much symmetry as the previous examples making the complete derivation of the magnetic field everywhere more difficult. However, it turns out that outside of the toroid, the magnetic field is quite weak. Inside the toroid, the reader is asked to show that the magnetic field is only nonzero in the azimuthal direction (see problem 6).

(a)
(b)

FIGURE 3.28. (a) Cross-sectional view of a toroidal coil with an air core. Adapted from [34]. (b) Experimental verification of the lines of $\overrightarrow{\mathbf{B}}$ for a loosely wound toroid with an air core. Reprinted from Figure 44 of Textbook of Physics, R. Kronig, Editor, Pergamon Press, 1959 with permission from Elsevier.

Let i denote the current in the toroid wire and n denote the number of loops (turns) per unit length along the radius r_{1} of the toroid so that $2 \pi r_{1} n$ the total number of loops wound around the toroid. Application of

Ampère's law to the circular curve C at radius r gives

$$
\begin{aligned}
\oint_{C} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell} & =\mu_{0} i_{\text {enclosed }} \\
B_{\theta} 2 \pi r & =\mu_{0} 2 \pi r_{1} n i \\
B_{\theta}(r) & =\frac{r_{1}}{r} \mu_{0} n i .
\end{aligned}
$$

This is valid for $r_{1}<r<r_{2}$ and, if $d=r_{2}-r_{1} \ll r_{1}$, then $r_{1} / r \approx 1$ and $B \approx \mu_{0} n i$ inside the toroid just as in the case of the long straight solenoid.

Remark

In the examples in this chapter using a toroid, it will always be assumed that $d=r_{2}-r_{1} \ll r_{1}$ so that the approximation $r_{1} / r \approx 1$ is valid.

3.3.3 Relating $\overrightarrow{\mathbf{B}}$ to $\overrightarrow{\mathbf{M}}$

Using Ampère's law, it was shown in the previous example that $B \approx \mu_{0} n i$ in an air core toroidal coil. It is now shown how this relationship can be experimentally verified. To do so, a secondary coil is wrapped around the toroid as shown in Figure 3.29 to carry out the experiment.

FIGURE 3.29. Experimental setup for determining $\overrightarrow{\mathbf{B}}$ versus i in an air-filled toroid. Adapted from [34].

The secondary coil is used to measure $\overrightarrow{\mathbf{B}}=B \hat{\boldsymbol{\theta}}$ inside the toroid as follows: ${ }^{3}$ With N_{s} the number of turns in the secondary coil, $S=\pi(d / 2)^{2}$ the cross sectional area of the toroidal coil, the flux linkage λ_{s} through the secondary coil is

$$
\lambda_{s}=N_{s} B(t) S
$$

[^26]where, as it is assumed that $d=r_{2}-r_{1} \ll r_{1}, B$ is taken to be constant across the cross section S of the toroid as well as in the azimuthal direction. Now, by Faraday's law, the voltage induced in the secondary coil is given by
$$
V_{s}=-\frac{d \lambda_{s}}{d t}=-\frac{d}{d t}\left(N_{s} B(t) S\right)=-N_{s} S \frac{d B(t)}{d t}
$$
so that
\[

$$
\begin{equation*}
B(t)=-\frac{1}{N_{s} S} \int_{0}^{t} V_{s}(\tau) d \tau \tag{3.2}
\end{equation*}
$$

\]

By measuring the current $i(t)$ in the primary windings and the voltage $V_{s}(t)$ between the terminals of the secondary coil, the magnetic field B inside the toroid can be found as a function of the current i. That is, one would ramp up the primary current $i(t)$ from 0 to some $I_{\max }$ as in Figure $3.30(\mathrm{a})$, while at the same time measure/store the secondary voltage $V_{s}(t)$ (see Figure $3.30(\mathrm{~b}) . B(t)$ is then computed using (3.2) as in Figure 3.30 (c) and one then plots B versus i as in Figure 3.30(d). In this case in which the toroid is air filled, these measurements simply verify that $B \approx \mu_{0} n i$.

FIGURE 3.30. (a) Current in primary winding. (b) Voltage measured in secondary winding. (c) Magnetic field inside the toroid versus time calculated according to equation (3.2). (d) Magnetic field plotted versus the primary current (slope $\approx \mu_{0} n$).

This same experimental setup can also be used to measure the magnetic field inside the toroidal coil when it has an iron core. The experiment is now repeated, but with the toroid filled with an iron core as shown in Figure 3.31. Of course, there is then a non zero magnetization $\overrightarrow{\mathrm{M}}$ in the iron core.

FIGURE 3.31. Iron-filled toroid with secondary coil. Adapted from [34].
The magnetic field strength B inside the toroid is computed as a function of the current i just as before. In this case, the primary current is as shown in Figure 3.32(a) and is the same as in Figure 3.30(a).

(a)

(b)

FIGURE 3.32. (a) Current in primary winding. (b) Voltage measured in secondary winding. (c) Magnetic field inside the toroid calculated according to (3.2).
(d) Magnetic field plotted versus the primary current (slope $\approx \mu_{r} \mu_{0} n i$).

Again, the voltage induced in the secondary winding is measured [see $3.32(\mathrm{~b})]$ and is now much greater in value than the measured voltage in the case of the air filled toroid. The magnetic field B is again found by integrating the voltage $V_{s}(t)$ in the secondary coil according to equation (3.2) and is shown in Figure 3.32(c). Finally, the magnetic field B is plotted versus the primary current i as shown in Figure 3.32(d). In this case, with
the toroid filled with magnetic material, the slope is greater by a factor μ_{r} than that of Figure $3.30(\mathrm{~d})$. The factor μ_{r} is called the relative permeability and is typically on the order of 1000 . Rewrite B in the iron core

$$
\begin{equation*}
B=B_{0}+B_{M} \tag{3.3}
\end{equation*}
$$

where $B_{0}=\mu_{0} n i$ denotes the magnetic field when no magnetic material is present and B_{M} represents the additional strength in the magnetic field due to the magnetic material. The strength B of the magnetic field in the toroid is then plotted versus $B_{0}=\mu_{0} n i$ (rather than i) resulting in a curve of the form shown in Figure 3.33. The slope of the straight line part of the curve is then the relative permeability μ_{r} so that $B=\mu_{r} B_{0}=\mu_{r} \mu_{0} n i$ for $i \leq i_{\text {sat }}$. If one continues to increase the current above some current level $i_{\text {sat }}, B$ no longer increases at the rate $\mu_{r} \mu_{0} n$, but only as $\mu_{0} n$.

FIGURE 3.33. B versus B_{0}.
Again, the important point here is that the field B_{M} is typically on the order of a 1000 times greater than B_{0} in good magnetic materials (i.e., $\mu_{r}>1000$). This is, of course, the reason magnetic materials are used! This phenomena can be pictured as the magnetic field inside the toroid produced by the current i aligns (magnetizes) the magnetic dipoles moments [see Figures 3.21 and 3.23)] of the iron so that they produce a magnetic field that adds to that produced by the current. As the current in the wire of the toroid is increased, more magnetic dipoles are aligned increasing the B field more. As a result, the magnetic field due to the current and magnetic material is much larger (on the order of a thousand times) than that produced by just the current. As the current increases to a level $i_{\text {sat }}$, all of the dipole moments of the iron atoms are aligned so that increasing the current beyond this level does not result in a large increase in the magnetic field as it did below this level of current.

Reiterating, for the same current in the toroidal coil, the one filled with magnetic material will have a $\overrightarrow{\mathbf{B}}$ field that is typically more than a 1000 times that of the coil with only air inside. As will be described shortly, the
quantity $H \triangleq B_{0} / \mu_{0}=n i$ is the magnetic field intensity and $M \triangleq B_{M} / \mu_{0}$ turns out to be the magnetization so that

$$
B=B_{0}+B_{M}=\mu_{0} H+\mu_{0} M
$$

where $H \ll M$ as $B_{0} \ll B_{M}$. Consequently, in soft ${ }^{4}$ magnetic materials, one can take $H=0$ as a reasonable approximation. In other words, in such magnetic materials, the B field is primarily due to the magnetization (alignment of the magnetic dipoles) of the magnetic material rather than the current that magnetizes the magnetic material.

3.4 The Magnetic Intensity Field Vector $\overrightarrow{\mathbf{H}}$

Here the definition of the magnetic intensity vector $\overrightarrow{\mathbf{H}}$ is given in terms of the magnetization vector $\overrightarrow{\mathrm{M}}$ (defined in Section 3.3.2) and the magnetic induction vector $\overrightarrow{\mathbf{B}}$. To proceed, consider the toroid in Figure 3.34 which shows a toroid with an iron core $3.34(\mathrm{a})$ and redrawn in $3.34(\mathrm{~b})$ with the iron core replaced by an equivalent coil carrying the bound current i_{b}.

Ampère's law must be modified to account for magnetic materials. Recall that when the iron core was not present inside the toroid, Ampère's law showed that $B \approx \mu_{0} n i$. However, when the iron core was present, experiments showed that the B field was on the order of a 1000 times greater. The discussion concerning Figure 3.21 showed that the magnetization (dipole moment per unit volume) can be pictured as an equivalent bound current going around the surface of the toroidal core. Following Ref. [34], consider the modification to Ampère's law as

$$
\begin{equation*}
\oint_{C} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\boldsymbol{\ell}}=\mu_{0}\left(i_{\text {enclosed }}+i_{M \mathrm{menclosed}}\right) \tag{3.4}
\end{equation*}
$$

where $i_{M \text { enclosed }}$ is the equivalent bound current enclosed by the curve C (see Figure 3.34).

As before, it is assumed the core diameter $d=r_{2}-r_{1} \ll r_{1}$ so that $r_{1} \approx r \approx r_{2}$ is valid. With n_{b} the number of loops/coils per unit length of the equivalent coil in Figure 3.34(b), $i_{M \text { enclosed }}=2 \pi r_{1} n_{b} i_{b}$. The next step is to relate this bound current to the magnetization M. To do so, define the surface current density

$$
\lambda_{M} \triangleq \frac{i_{M \text { enclosed }}}{2 \pi r_{1}}=n_{b} i_{b}
$$

and is simply the (average) amount of bound current per unit length around the toroid coil coming out of (or going into) the page.

[^27]

FIGURE 3.34. (a) Toroidal coil with an iron core. Adapted from [34]. (b) Iron core replaced with an equivalent coil carrying the bound current i_{b}. The bound current produces the same magnetic field as the magnetized iron in Figure 3.34(a).

This is analogous to $\lambda=n i$ being the free current in the wire per unit length around the circumference of the toroid. As shown in Section 3.3.1, the magnetic dipole moment is the product of the current around a loop times the area of the loop. The amount of bound current going around the periphery of the toroid between θ and $\theta+d \theta$ is $\lambda_{M}\left(r_{1} d \theta\right)$ and, with $S=$ $\pi(d / 2)^{2}$ the cross-sectional area of the toroid, it follows that the magnetic dipole moment $d m$ due to the bound surface current density λ_{M} in the volume between θ and $\theta+d \theta$ is

$$
d m=\lambda_{M}\left(r_{1} d \theta\right) S
$$

However, by definition, the magnetization M is the amount of magnetic dipole moment per unit volume, so that the magnetic dipole moment $d m$ in the volume between θ and $\theta+d \theta$ is also given by

$$
d m=M\left(r_{1} d \theta\right) S
$$

which results in

$$
\lambda_{M}=M
$$

That is, in this example, the surface current density λ_{M} is equal to the
magnetization M of the iron material. As a result,

$$
i_{M \mathrm{enclosed}}=\lambda_{M} 2 \pi r=M 2 \pi r=\oint_{C}(M \hat{\boldsymbol{\theta}}) \cdot(r d \theta \hat{\boldsymbol{\theta}})=\oint_{C} \overrightarrow{\mathbf{M}} \cdot d \overrightarrow{\boldsymbol{\ell}}
$$

Equation (3.4) therefore becomes

$$
\oint_{C} \overrightarrow{\mathbf{B}} \cdot d \vec{\ell}=\mu_{0}\left(i_{\text {enclosed }}+\oint_{C} \overrightarrow{\mathbf{M}} \cdot d \vec{\ell}\right) .
$$

Rearranging this equation gives

$$
\oint_{C}\left(\frac{\overrightarrow{\mathbf{B}}-\mu_{0} \overrightarrow{\mathbf{M}}}{\mu_{0}}\right) \cdot d \overrightarrow{\boldsymbol{\ell}}=i_{\mathrm{enclosed}}
$$

This leads to the definition of the magnetic intensity field $\overrightarrow{\mathbf{H}}$ given by

$$
\overrightarrow{\mathbf{H}} \triangleq \frac{\overrightarrow{\mathbf{B}}}{\mu_{0}}-\overrightarrow{\mathbf{M}}
$$

Ampère's law in its most general form is then

$$
\begin{equation*}
\oint_{C} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=i_{\text {free }} \tag{3.5}
\end{equation*}
$$

where $i_{\text {free }}=i_{\text {enclosed }}$ represents the enclosed free current in the wire in contrast to the bound current in the magnetic material. Both $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{M}}$ were defined in terms of physical phenomena. However, $\overrightarrow{\mathbf{H}}$ is defined as the difference between $\overrightarrow{\mathbf{B}} / \mu_{0}$ and $\overrightarrow{\mathbf{M}}$ which does not lend itself to a physical interpretation. It is simply defined as a quantity whose line integral around a closed curve depends only on the free current through the curve. The next section shows how $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{H}}$ can be related experimentally.

3.4.1 The B-H Curve

With the definition $\overrightarrow{\mathbf{H}} \triangleq \overrightarrow{\mathbf{B}} / \mu_{0}-\overrightarrow{\mathbf{M}}$, Ampère's law was modified to

$$
\oint_{C} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=i_{\text {free }}
$$

Ampère's law can be used to calculate $\overrightarrow{\mathbf{H}}$, but $\overrightarrow{\mathbf{B}}$ is the desired quantity as it produces forces on currents and magnetic materials. As $\overrightarrow{\mathbf{M}}$ is typically not known, one cannot compute $\overrightarrow{\mathbf{B}}$ from the definition of $\overrightarrow{\mathbf{H}}$. As a consequence, empirical/experimental methods are used to relate $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{H}}$. The empirical method to determine this relationship is typically done using the toroidal coil setup of the previous section. Specifically, consider the setup of Figure 3.31 in which the initial magnetization is zero (this can be done by heating
up the iron core so that the magnetic dipole moments become randomly oriented with respect to each other). Application of Ampère's law gives ${ }^{5}$

$$
\begin{aligned}
\oint_{C}^{\overrightarrow{\mathbf{H}} \cdot d \vec{\ell}} & =i_{\mathrm{free}} \\
H 2 \pi r & =2 \pi r_{1} n i \\
H & =\frac{r_{1}}{r} n i \approx n i
\end{aligned}
$$

so that $H=B_{0} / \mu_{0}$ as in equation (3.3). Equation (3.2) given by

$$
B(t)=-\frac{1}{N_{s} S} \int_{0}^{t} V_{s}(\tau) d \tau
$$

is again used to find the value of B as a function of $H=n i$ resulting in the so-called $B-H$ curve as shown in Figure 3.35(a). This is now considered in more detail. (Note that as $H=n i$, one can specify the value of H by simply specifying the current i.)

First, the current i is increased from 0 to $I_{\max }$ so that H goes from 0 to $H_{\max }=n I_{\text {max }}$ along the curve $a-b$ in Figure 3.35(a), where $H_{\text {max }}=$ $100 \frac{\text { ampere-turn }}{\text { meter }}$. As the current is increased, the voltage V_{s} in the secondary coil is measured and B is calculated according to (3.2). Plotting B versus H one obtains the curve $a-b$ shown in Figure 3.35(a). Along the curve $a-b, H>0, B>0$, and $M>0$.

Next, H (or equivalently i) is decreased from $H_{\text {max }}$ to 0 . Again, B is computed according to (3.2), resulting in the curve $b-c$ shown in Figure $3.35(\mathrm{a})$. At the point $c, B>0$ with $H=0$ and therefore $i=0$, that is, there is a magnetic field in the core without any current in the coil. In words, the toroidal is core is permanently magnetized. The corresponding value of the magnetic field is denoted B_{r} and is called the remanence or retentivity. Along the curve $b-c, H>0, B>0$, and $M>0$.
In the next step, H is made negative by putting negative current in the coil ($i<0$), and B decreases along the curve $c-d$ where at the point d, the magnetic field strength is zero in the core $(B=0)$. The magnetic field produced by the (negative) current in the coil is canceling the magnetic field produced by the aligned dipoles of the magnetic material. At this point, $H=-H_{c}$ where $H_{c}>0$ is called the coercive force or coercivity. ${ }^{6}$ Along the curve $c-d, H<0, B>0$, and $M>0$.

Continuing, H is decreased even more (i.e., $i<0$ is decreased more) resulting in the magnetic dipoles of the material realigning in the opposite

[^28]direction to add to the magnetic field produced by the current in the coil (see path $d-e$). At the point e where $H=-H_{\max }=-100 \frac{\text { ampere-turn }}{\text { meter }}$, the value of B is the negative of that given at the point b. Along the curve $d-e, H<0, B<0$, and $M<0$.

Finally, in a similar fashion, H is brought from $-H_{\max }$ to 0 to $H_{\max }$ and the plot of B versus H follows the curve $e-f-g-b$.

In summary, letting H vary from $H_{\max }$ to 0 to $-H_{\max }$ and then from $-H_{\max }$ to 0 back to $H_{\max }$, the plot of B versus H follows the curve $b-c-d-e-f-g-b$. This is called the hysteresis loop. If the hysteresis loop of the iron is quite thin, it is considered to be "soft" iron as in Figure $3.35(\mathrm{~b})$ while if the hysteresis loop is quite thick, then it is considered to be "hard" iron as in Figure 3.35(a).

In the case of soft iron magnetic material such as Figure 3.35(b), the hysteresis loop is thin enough that it can be approximated by a single curve lying only in the first and third quadrants.

FIGURE 3.35. B versus H curve. (a) Hysteresis curve for a "hard" magnetic material. (b) Hysteresis curve for a "soft" magnetic material.

Figure 3.36 shows experimentally determined $B-H$ curves for the two soft magnetic materials $\mathrm{M}-1929$-gauge steel and a soft steel iron casting where, as B is an odd function of H, only the first quadrant need be given. Note that at smaller values of H, the $B-H$ curves in Figure 3.36 are approximately linear.

Remark Figure 3.33 would correspond to a soft magnetic material in which the hysteresis can be ignored.

FIGURE 3.36. B (tesla) versus H (ampere-turns) curves for two different soft magnetic materials. From An Introduction to Electrical Machines and Transformers, 2nd edition, G. McPherson and R. D. Laramore, 1990. Reprinted by permisson of John Wiley \& Sons.

Example

Consider the experimental B versus H curves for two different soft iron materials as given in Figure 3.36. As $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{M}}$ (and therefore $\overrightarrow{\mathbf{H}}$) tend to point in the same direction in soft iron, the relationship

$$
\overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{H}}+\mu_{0} \overrightarrow{\mathbf{M}}
$$

may be written approximately as

$$
\overrightarrow{\mathbf{B}}=\mu_{r} \mu_{0} \overrightarrow{\mathbf{H}}
$$

or

$$
B=\mu_{r} \mu_{0} H
$$

where μ_{r} is that empirically determined number that makes this equation valid. For example, using the soft steel casting material with i chosen in the primary coil of the toroidal solenoid so that $H=1000$ ampere-turns, the data curve in Figure 3.36 gives $B=1.2$ tesla. Thus,

$$
\mu_{r}=\frac{B}{\mu_{0} H}=\frac{1.2}{\left(4 \pi \times 10^{-7}\right) \times 1000}=955
$$

The important observation from this numerical example is that μ_{r} is quite large. In a coil carrying a current i with an air core,

$$
B_{\text {inside }}=\mu_{0} H_{\text {inside }}=\mu_{0} n i
$$

while in an identical coil carrying the same current i with an iron core,

$$
B_{\text {inside }}=\mu_{r} \mu_{0} H_{\text {inside }}=\mu_{r} \mu_{0} n i
$$

The H field is the same in both coils as the current is the same in each coil. However, as μ_{r} is on the order of 1000 , the magnetic field B in the coil with the iron core is much larger. The terminology "ideal" soft magnetic material is one in which $\mu_{r}=\infty$ while a "good" magnetic material just means μ_{r} is very large.

3.4.2 Computing $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{H}}$ in Magnetic Circuits

Based on the previous sections, a simple procedure is now given that gives an accurate enough computation of $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{H}}$ for modeling the magnetic circuits of electric machines. To start with a simple example, consider the toroidal coil with an iron core shown in Figure 3.37 in which a small air gap of length g has been cut out.

FIGURE 3.37. Coil wrapped around a torus with an air gap. From Electric Machines: Dynamics and Steady State by G. J. Thaler and M. L. Wilcox, 1966. Reprinted by permission of John Wiley \& Sons.

Ampère's law

$$
\oint_{C} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=i_{\text {free }}
$$

is applied to a circular curve C of radius r in Figure 3.37. In the magnetic material, $\overrightarrow{\mathbf{B}}=B_{m} \hat{\boldsymbol{\theta}}$ while in the air gap $\overrightarrow{\mathbf{B}}=B_{a} \hat{\boldsymbol{\theta}}$. Though azimuthal symmetry does not hold because of the air gap, it turns out that if the air
gap is small, it is still approximately true that B_{m} has a constant value as a function of the azimuthal angle θ in the magnetic material and, similarly, B_{a} is constant as a function of θ in the air gap. Further, with the standing assumption that the diameter of the core is much smaller than the inner radius of the toroidal coil, B_{m} and B_{a} are essentially constant across the cross section of the core. In the same way, $\overrightarrow{\mathbf{M}}=M \hat{\boldsymbol{\theta}}$ is constant as a function of θ in the iron core while it is, of course, zero in the air gap. Thus H_{m} and H_{a} are also approximately constant as functions of θ and over the cross-sectional area of the core. With N the total number of coil turns, Ampère's law applied to the circular curve C of radius r in Figure 3.37 gives

$$
\begin{equation*}
H_{m}(2 \pi r-g)+H_{a} g=N i \tag{3.6}
\end{equation*}
$$

with

$$
\begin{aligned}
B_{m} & \left.=\mu_{0} H_{m}+\mu_{0} M=\mu_{r} \mu_{0} H_{m} \text { (from the measured } B-H \text { curve }\right) \\
B_{a} & =\mu_{0} H_{a} .
\end{aligned}
$$

It is assumed that the air gap is small enough that B_{a} is essentially constant across it. Recall that by Gauss's law for $\overrightarrow{\mathbf{B}}, B_{m}=B_{a}$ at the air-iron interface. As B_{m} is approximately constant in the iron and B_{a} is constant in the air gap, $B_{m}=B_{a}$. Thus,

$$
\mu_{0} H_{a}=B_{a}=B_{m}=\mu_{r} \mu_{0} H_{m}
$$

or

$$
H_{m}=\frac{H_{a}}{\mu_{r}}
$$

Again, in good magnetic materials, μ_{r} is greater than 1000 so that H_{m} is more than a thousand times smaller than H_{a}. Consequently, one often takes $H_{m}=0$ in good magnetic materials. In this case, taking $H_{m}=0$ in (3.6) leads to

$$
H_{a} g=N i
$$

so that

$$
\begin{equation*}
B_{a}=\mu_{0} H_{a}=\frac{\mu_{0} N i}{g} \quad\left(H_{m}=0\right) \tag{3.7}
\end{equation*}
$$

This last expression is important because it gives us the magnetic field in air gap in terms of known quantities. The value of B in the air gap is the important quantity since, for example, a current carrying wire can be run through the air gap and the value of B will determine how much force can be exerted on the wire.

It is important to note that to use the approximation $H_{m}=0$, one must check that $2 \pi r-g$ is not too large. For example, with $\mu_{r}=1000$, if $2 \pi r-g$ is a thousand times longer than g, then

$$
H_{m}(2 \pi r-g)+H_{a} g=\frac{H_{a}}{1000} 1000 g+H_{a} g=2 H_{a} g=N i
$$

or

$$
B_{a}=\mu_{0} H_{a}=\frac{\mu_{0} N i}{2 g}
$$

This large error (a factor of 2) in the calculation of the magnetic field in the air gap due to the fact that $H_{m}(2 \pi r-g)$ is not negligible. However, if the designer of this magnetic circuit made sure that $2 \pi r-g=100 g$, then

$$
\begin{aligned}
H_{m}(2 \pi r-g)+H_{a} g & =\frac{H_{a}}{1000} 100 g+H_{a} g \\
& =1.1 H_{a} g
\end{aligned}
$$

resulting in

$$
B_{a}=\mu_{0} H_{a}=\frac{\mu_{0} N i}{1.1 g}
$$

which is not much different from (3.7) where $H_{m}=0$ was assumed.
In summary, B in the air gap is the fundamental quantity of interest as it is the field that can produce forces on currents in wires placed in the air gap, or can induce voltages in wire loops, and so on. Here, Ampère's law

$$
\oint_{C} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=i_{\text {free }}
$$

was used to find a relation between H_{m} (H in the magnetic material) and H_{a} (H in the air gap). The free currents (currents in the wires) are known or easily measured. Assuming that the magnetic paths in the iron are not too long, one can use the approximation that $H_{m}=0$ in the magnetic material. Then, H_{a} can be found in the air gap from Ampère's law which in turn is used to obtain the magnetic field in the air gap from $B_{a}=\mu_{0} H_{a}$.

Example (Adapted from Chapman [19])
Following Chapman [19], Figure 3.38 shows a setup to produce the radial magnetic field in the air gap of a separately excited DC motor. The objective here is to determine the strength of the field B in the air gap in terms of the current i_{f} in the field coil. Ampère's law gives

$$
\begin{equation*}
H_{m} \ell+H_{a} g+H_{m} \ell_{2}+H_{a} g=N i_{f} \tag{3.8}
\end{equation*}
$$

where ℓ is the length of the path in the field iron, ℓ_{1} is the length of the rotor, ℓ_{2} is the diameter of the rotor iron, and g is the air gap length. Here $N=200, \ell=0.5 \mathrm{~m}, g=5 \times 10^{-4} \mathrm{~m}, \ell_{1}=2.4 \times 10^{-2} \mathrm{~m}, \ell_{2}=5 \times 10^{-2}$ m , and $S=\ell_{1} \ell_{2}=12 \times 10^{-4} \mathrm{~m}^{2}$. Equation (3.8) is an approximation as it is being assumed that H_{m} is constant in magnitude everywhere inside the magnetic material and that it follows the path of the iron.

FIGURE 3.38. Magnetic circuit for producing the magnetic field in the air gap of a DC motor. Figure 3.38(a) from Electric Machinery Fundamentals by S. J. Chapman, 2nd edition, 1991, McGraw-Hill. Reproduced by permission of Mc-Graw-Hill Companies.

Assuming ideal magnetic material so that H_{m} is taken to be zero inside the magnetic material,

$$
B_{a}=\mu_{0} H_{a}=\frac{\mu_{0} N i_{f}}{2 g}=K_{f} i_{f}
$$

Evaluating,

$$
B_{a}=\frac{\left(4 \pi \times 10^{-7}\right) \times 200}{2 \times 5 \times 10^{-4} \mathrm{~m}} i_{f}=0.25 i_{f} \text { tesla }
$$

where 1 weber $/ \mathrm{m}^{2}=1$ tesla.
Example (Chapman [19])
The previous example is redone without setting $H_{m}=0$ in the magnetic material. It is still assumed that H_{m} is constant in magnitude everywhere inside the magnetic material and that it follows the path of the iron. Suppose that for the iron used in the rotor and the core of the field winding, the relative permeability is $\mu_{r}=2000$ so that $B_{m}=\mu_{r} \mu_{0} H_{m}$. As before, $N=200, \ell=0.5 \mathrm{~m}, g=5 \times 10^{-4} \mathrm{~m}, \ell_{1}=2.4 \times 10^{-2} \mathrm{~m}, \ell_{2}=5 \times 10^{-2} \mathrm{~m}$, and $S=\ell_{1} \ell_{2}=12 \times 10^{-4} \mathrm{~m}^{2}$. The path $\ell+\ell_{2}=55 \mathrm{~cm}$ is 550 times longer than the path $2 g=0.1 \mathrm{~cm}$ in the air gap. From Ampère's law

$$
\begin{equation*}
H_{m} \ell+H_{a} g+H_{m} \ell_{2}+H_{a} g=N i_{f} \tag{3.9}
\end{equation*}
$$

The problem here is that this is only one equation with two unknowns H_{m}, H_{a}. However, another relation is found by making use of the assumption (approximation) that the flux ϕ in the cross-section of the magnetic
circuit is constant. That is, it is assumed that the magnetic material essentially keeps the magnetic field either in the core itself or within the air gap in the radial direction. This assumption is usually stated as saying the magnetic circuit has no (flux) leakage. In the iron core of the field,

$$
\phi=B_{m} S=\mu_{\tau} \mu_{0} H_{m} S
$$

where $S=\ell_{1} \ell_{2}$ is the core cross sectional area and B_{m} is constant in the cross-section. Then

$$
H_{m} \ell=\frac{H_{m} \ell}{\phi} \phi=\frac{H_{m} \ell}{\mu_{r} \mu_{0} H_{m} S} \phi=\frac{\ell}{\mu_{r} \mu_{0} S} \phi=R_{c} \phi
$$

Here R_{c} is called the reluctance of the core path and it has been used to relate H_{m} to the flux ϕ. Evaluating this expression for R_{c} gives

$$
R_{c}=\frac{\ell}{\mu_{r} \mu_{0} S}=\frac{50 \times 10^{-2} \mathrm{~m}}{(2000)\left(4 \pi \times 10^{-7}\right)\left(12 \times 10^{-4} \mathrm{~m}^{2}\right)}=166 \times 10^{3} \frac{\text { A-turns }}{\mathrm{Wb}}
$$

Because of the cylindrical shape of the rotor core and conservation of flux, B_{m} (and therefore $H_{m}=\mu_{r} \mu_{0} B_{m}$) is not constant as one goes through the rotor [see Figure 3.38(c)]. Specifically, $B_{m R} S_{R}=B_{m} S$ where $S_{R}=$ $\pi\left(\ell_{2} / 2\right) \ell_{1}$ is the surface area of the top (or bottom) side of the rotor core, $B_{m R}$ is the magnetic field at the surface of the rotor core and $B_{m} S$ is the flux computed in the middle of the core [which has the same cross section as the field core as indicated in Figure 3.38(b)]. By conservation of flux, H_{m} in the rotor core has a minimum value at the (inside) surface of the rotor iron and a maximum value in the middle of the rotor on the surface S in Figure 3.38(b). The maximum value of H_{m} in the middle of the core is used because it leads to a larger value for the reluctance of the core and therefore a more conservative (higher) estimate of the current needed to set up a specified magnetic field in the air gap. So, with H_{m} taken as its value in the middle of the core on the surface S in Figure 3.38(b), in the rotor iron

$$
H_{m} \ell_{2}=\frac{H_{m} \ell_{2}}{\phi} \phi=\frac{H_{m} \ell_{2}}{\mu_{r} \mu_{0} H_{m} S} \phi=\frac{\ell_{2}}{\mu_{r} \mu_{0} S} \phi=R_{r} \phi .
$$

Evaluating the expression for R_{r} gives

$$
R_{r}=\frac{\ell_{2}}{\mu_{r} \mu_{0} S_{r}}=\frac{5 \times 10^{-2} \mathrm{~m}}{(2000)\left(4 \pi \times 10^{-7}\right)\left(12 \times 10^{-4} \mathrm{~m}^{2}\right)}=16.6 \times 10^{3} \frac{\text { A-turns }}{\mathrm{Wb}}
$$

The flux in the air gap is $B_{a} S_{g}=\mu_{0} H_{a} S_{g}$ where $S_{g}=\pi\left(\ell_{2} / 2+g / 2\right) \ell_{1}=$ $19.0 \mathrm{~cm}^{2}$ is the surface area of the top (bottom) stator side of the air gap. Further this flux is equal to the flux $\phi=B_{m} S=\mu_{r} \mu_{0} H_{m} S$ in the iron core. It then follows that

$$
H_{a} g=\frac{H_{a} g}{\phi} \phi=\frac{H_{a} g}{\mu_{0} H_{a} S_{g}} \phi=\frac{g}{\mu_{0} S_{g}} \phi=R_{g} \phi .
$$

Then

$$
R_{g}=\frac{g}{\mu_{0} S_{g}}=\frac{0.05 \times 10^{-2} \mathrm{~m}}{\left(4 \pi \times 10^{-7}\right)\left(19.0 \times 10^{-4} \mathrm{~m}^{2}\right)}=209.4 \times 10^{3} \frac{\text { A-turns }}{\mathrm{Wb}}
$$

With this information, equation (3.9) may be rewritten as

$$
\left(R_{c}+R_{r}+2 R_{g}\right) \phi=N i_{f}
$$

which evaluates to

$$
(166+16.6+2(209.4)) \times 10^{3} \phi=601.4 \times 10^{3} \phi=N i_{f} .
$$

Solving for ϕ, one obtains

$$
\phi=3.3 \times 10^{-4} i_{f} \mathrm{~Wb} .
$$

The magnetic field in the air gap is then

$$
B_{a}=\frac{\phi}{S_{g}}=\frac{3.3 \times 10^{-4}}{19.0 \times 10^{-4}} i_{f}=0.17 i_{f} \frac{\mathrm{~Wb}}{\mathrm{~m}^{2}}
$$

which is significantly less than the $0.25 i_{f} \mathrm{~Wb} / \mathrm{m}^{2}$ found assuming $H_{m}=0$. However, suppose that the magnetic circuit is redesigned so that $\ell=10$ cm instead of 50 cm . Then

$$
\begin{aligned}
R_{c} & =\frac{\ell}{\mu_{r} \mu_{0} S}=\frac{5 \times 10^{-2} \mathrm{~m}}{(2000)\left(4 \pi \times 10^{-7}\right)\left(12 \times 10^{-4} \mathrm{~m}^{2}\right)} \\
& =33.2 \times 10^{3} \frac{\mathrm{~A} \text {-turns }}{\mathrm{Wb}}
\end{aligned}
$$

and equation (3.9) reduces to

$$
\left(R_{c}+R_{r}+2 R_{g}\right) \phi=N i_{f}
$$

and evaluates to

$$
(33.2+16.6+2(209.4)) \times 10^{3} \phi=468.6 \times 10^{3} \phi=N i_{f}
$$

The flux is then

$$
\phi=4.23 \times 10^{-4} i_{f} \mathrm{~Wb}
$$

resulting in the magnetic field in the air gap being

$$
B_{a}=\frac{\phi}{S_{g}}=\frac{4.23 \times 10^{-4}}{19.0 \times 10^{-4}} i_{f}=0.22 i_{f} \frac{\mathrm{~Wb}}{\mathrm{~m}^{2}}
$$

which is much closer to $0.25 i_{f} \mathrm{~Wb} / \mathrm{m}^{2}$.

The point of this example is that taking $H_{m}=0$ in magnetic materials and then using Ampère's law to find B_{a} in the air gap depends on the proper design of the magnetic circuit. Machine designers spend a great deal of effort trying to make the reluctance in the magnetic material as small as possible by making the path length small, the cross sectional area large and using highly permeable magnetic material (i.e., μ_{r} large). Figure 3.38 is not a practical design for the stator iron of a. DC motor. Figures 1.31 and 1.32 of Chapter 1 depict actual stator iron cores for a DC motor. It will be assumed in all that follows that good machine designs have resulted in making the approximation $H_{m}=0$ valid.

3.4.3 $\overrightarrow{\mathbf{B}}$ is Normal to the Surface of Soft Magnetic Material

It is now shown that $\overrightarrow{\mathbf{B}}$ is normal (perpendicular) to the surface at an air/magnetic-material interface under two assumptions: (1) The magnetic material is assumed to be ideal (soft) magnetic material so that $\mu_{r}=\infty$, or equivalently, $H=0$. (2) There are no current carrying wires on the surface.

For example, it is not true for toroids as wire is wrapped around surface of the magnetic material. Also, typically $H \neq 0$ inside a permanent magnet.

Consider the closed rectangular-shaped curve C in Figure 3.39 for which half is in the air and the other half is in the magnetic material.

FIGURE 3.39. Closed rectangular-shaped curve enclosing the air and magnetic material. As $w \rightarrow 0, \overrightarrow{\mathbf{H}}_{1}$ is just above the surface and $\overrightarrow{\mathbf{H}}_{2}$ is just below the surface.

Ampère's law is applied to the rectangular-shaped curve C, which in this instance is given by

$$
\begin{equation*}
\oint_{C} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=0 \tag{3.10}
\end{equation*}
$$

as there is no free current, that is, no wires on the surface carrying current. With $\overrightarrow{\mathbf{H}}(x, y, z)=H_{x} \hat{\mathbf{x}}+H_{y} \hat{\mathbf{y}}+H_{z} \hat{\mathbf{z}}$ and the coordinate system defined as
shown in Figure 3.39, it is seen that $H_{z} \hat{\mathbf{z}}$ is the part of $\overrightarrow{\mathbf{H}}$ normal to the surface while $H_{x} \hat{\mathbf{x}}+H_{y} \hat{\mathbf{y}}$ is the tangential component to the surface.

Expanding (3.10) results in

$$
\begin{equation*}
\oint_{C} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=\int_{1}^{2} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}+\int_{2}^{3} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}+\int_{3}^{4} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}+\int_{4}^{1} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=0 \tag{3.11}
\end{equation*}
$$

where side $1-2$ is in the magnetic material and side $3-4$ is in the air. Sides $2-3$ and $4-1$ are short segments of length w going between the air and magnetic material. The interest here is in the tangential component of $\overrightarrow{\mathbf{H}}$ just above and just below the surface. Making the rectangular curve C very thin $(w \rightarrow 0)$ so that the lengths of sides $2-3$ and $4-1$ go to zero, equation (3.11) reduces to

$$
\begin{equation*}
\int_{1}^{2} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}+\int_{3}^{4} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=0 \tag{3.12}
\end{equation*}
$$

as $w \rightarrow 0$. Also, as

$$
d \vec{\ell}=\left\{\begin{array}{rr}
d \ell \hat{\mathbf{y}} & \text { side } 1-2 \\
-d \ell \hat{\mathbf{y}} & \text { side } 3-4
\end{array}\right.
$$

it follows that

$$
\begin{aligned}
& \int_{1}^{2}\left(H_{1 x} \hat{\mathbf{x}}+H_{1 y} \hat{\mathbf{y}}+H_{1 z} \hat{\mathbf{z}}\right) \cdot(d \ell \hat{\mathbf{y}})+\int_{3}^{4}\left(H_{2 x} \hat{\mathbf{x}}+H_{2 y} \hat{\mathbf{y}}+H_{2 z} \hat{\mathbf{z}}\right) \cdot(-d \ell \hat{\mathbf{y}}) \\
& \quad=H_{1 y} \ell_{1}-H_{2 y} \ell_{1}=0
\end{aligned}
$$

or

$$
H_{2 y}=H_{1 y} .
$$

But $H_{2 y}=0$ in ideal soft magnetic materials so that $H_{1 y}=0$. Similarly, one can show that $H_{1 x}=0$ by taking a curve C that is in the $x-z$ plane. That is, at the surface of the magnetic material

$$
\overrightarrow{\mathbf{H}}_{1}(x, y, z)=H_{1 z} \hat{\mathbf{z}}
$$

and, as this is in the air,

$$
\overrightarrow{\mathbf{B}}_{1}=\mu_{0} \overrightarrow{\mathbf{H}}_{1}=\mu_{0} H_{1 z} \hat{\mathbf{z}}
$$

so that $\overrightarrow{\mathbf{B}}$ is normal to the surface.

Remark

The magnetic circuit of Figure 3.10 has a soft iron core. Note that the lines of $\overrightarrow{\mathbf{B}}$ are perpendicular at the surface of the iron core, but not at the coil surface. Figures 3.7 and 3.11 of the bar and horseshoe magnets, respectively, are permanent (hard) magnets for which the above assumptions do not necessarily hold (in particular, $\overrightarrow{\mathbf{H}}=0$ is not usually true in permanent magnets). For example, note that $\overrightarrow{\mathbf{B}}$ is not perpendicular to the surface of the cylindrical permanent magnet shown in Figure 3.18.

3.5 Permanent Magnets*

Consider the cylindrical-shaped permanent magnet in Figure 3.40 where there is no free current.

FIGURE 3.40. (a) Cylindrical coordinate system for the bar magnet. (b) Magnetic field lines $\overrightarrow{\mathbf{B}}$ around a cylindrical-shaped permanent magnet. Adapted from Figures 37-4(a) and 37-4(b) of Ref. [34].

Ampère's law applied to the path C in the figure gives

$$
\oint_{C} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=\int_{C_{\mathrm{air}}} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}+\int_{C_{\mathrm{magnet}}} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=0
$$

where $d \overrightarrow{\boldsymbol{\ell}}=d r \hat{\mathbf{r}}+r d \theta \hat{\boldsymbol{\theta}}+d z \hat{\mathbf{z}}$ and the curve has been decomposed into its part in the air and its part in the magnet. As $\overrightarrow{\mathbf{H}}=\overrightarrow{\mathbf{B}} / \mu_{0}$ in the air,

$$
\int_{C_{\mathrm{a} i \mathrm{r}}} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}>0
$$

Consequently,

$$
\int_{C_{\text {magnet }}} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}<0
$$

in order that $\oint_{C} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=0$. Note that the path C was chosen to follow the closed curve of one of the magnetic lines of $\overrightarrow{\mathbf{B}}$. As a result,

$$
\oint_{C} \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=\oint_{C}\left(H_{r} \hat{\mathbf{r}}+H_{\theta} \hat{\boldsymbol{\theta}}+H_{z} \hat{\mathbf{z}}\right) \cdot d \overrightarrow{\boldsymbol{\ell}}=\oint_{C}\left(H_{r} \hat{\mathbf{r}}+H_{z} \hat{\mathbf{z}}\right) \cdot d \overrightarrow{\boldsymbol{\ell}}
$$

as the $\hat{\boldsymbol{\theta}}$ component of $d \vec{\ell}$ is zero. Thus

$$
\begin{equation*}
\int_{C_{\text {air }}}\left(H_{T} \hat{\mathbf{r}}+H_{z} \hat{\mathbf{z}}\right) \cdot d \overrightarrow{\boldsymbol{\ell}}+\int_{C_{\text {magnet }}}\left(H_{r} \hat{\mathbf{r}}+H_{z} \hat{\mathbf{z}}\right) \cdot d \vec{\ell}=0 . \tag{3.13}
\end{equation*}
$$

Figure 3.40 shows that on $C_{\text {air }}$, $d \overrightarrow{\boldsymbol{\ell}}$ and $\overrightarrow{\mathbf{H}}=\overrightarrow{\mathbf{B}} / \mu_{0}$ point in the same direction so that the first integral in (3.13) must be positive. As a result, the second integral in (3.13) must be negative meaning that on $C_{\text {magnet }}$, the component of $\overrightarrow{\mathbf{H}}$ tangent to the curve $C_{\text {magnet }}$ points opposite to $d \overrightarrow{\boldsymbol{\ell}}$. In other words, in Figure 3.40, $\overrightarrow{\mathbf{H}}$ must be pointing downwards inside the magnet while $\overrightarrow{\mathbf{B}}$ is pointing upwards inside the magnet. Physically, the z components of $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{M}}$ are in the $+\hat{\mathbf{z}}$ direction inside the magnet which means that $M_{z}>B_{z} / \mu_{0}$ as $H_{z}=B_{z} / \mu_{0}-M_{z}<0$. This is in contrast to the air-filled solenoid coil shown in Figure 3.19(b) where $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{H}}$ point in the same direction inside the coil and $\oint_{C} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=i_{\text {free }} \neq 0$ as there is free current on the surface of the solenoid going through the closed curve C. Consequently, in the case of the permanent magnet, the magnetic material is operating in the second quadrant of the $B-H$ curve ($B>0, H<0$) at some point strictly between points c and d in Figure 3.35(a) while the airfilled solenoid is operating in the first quadrant ($B>0, H>0$), at some point strictly between points b and c in Figure 3.35(a). How can this be understood? Consider a process to make a cylindrical magnet as shown in Figure 3.41. To begin, take an iron alloy such as carbon steel (used for permanent magnets) and make it into an oblong shape closed solid as shown in Figure 3.41(a). Note that the straight segments are already "cut out" and will become the cylindrical magnets. Wire is wrapped around this iron core (like a toroid) and the current applied to the winding to magnetize the iron as shown in Figure 3.41(b). Assuming that the core diameter is small compared to the overall length of the core, it is a reasonable approximation to assume that $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{H}}$ are constant in magnitude over the cross section of the core and that they follow the closed path around the core. As a result,

$$
\begin{equation*}
H\left(2 \ell_{1}+2 \ell_{2}\right)=n i \tag{3.14}
\end{equation*}
$$

where H is the magnitude of $\overrightarrow{\mathbf{H}}$ in the core, ℓ_{1} is the length of each cylinder and ℓ_{2} is the length of each end piece. Using the setup shown in Figure $3.41(\mathrm{~b})$, the current is increased up to the saturation point of the core (point b in Figure 3.42) and then it is brought back down to zero (point c in Figure 3.42). At this point, the magnet is operating at the point c of the $B-H$ curve so that $H=0$ as $i=0$ from equation (3.14). The winding is now removed and this does not affect the $B-H$ relationship in the magnetic material of the core as $i=0$. At each point of the core,

$$
\begin{equation*}
\overrightarrow{\mathbf{H}}=\frac{\overrightarrow{\mathbf{B}}}{\mu_{0}}-\overrightarrow{\mathbf{M}}=0 \tag{3.15}
\end{equation*}
$$

that is,

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{M}} \quad \text { or } \quad B=\mu_{0} M \tag{3.16}
\end{equation*}
$$

Recall this same result was shown for the toroidal cylindrical core where $B=\mu_{0} \lambda_{m}=\mu_{0} M$ with $\lambda_{m}=M$ an equivalent (bound) surface current density going around core periphery due to the magnetization M (magnetic dipole moment per unit volume).

FIGURE 3.41. (a) Oblong shaped iron core with two cylinders cut out. (b) Winding wrapped around the core to magnetize the iron. (c) Current is brought to zero, windings removed and the end pieces removed in the direction shown. (d) Two cylindrical-shaped permanent magnets.

Next, as shown in Figure 3.41(c), the two end pieces of the iron core are pulled away in the direction shown. By pulling apart the end pieces in this manner, the magnetization M in each of the remaining cylindrical cores stays pretty much the same, i.e., the magnetic dipoles of the iron tend to stay aligned. However, with the end pieces removed, one would
not expect equation (3.15), or equivalently (3.16), to remain valid for the remaining cylindrical cores. For example, consider the point Q at the end of the cylinder shown in Figure 3.41(d), where now there is only air above the surface instead of magnetic material as before. The B field at any point of the material is due to the magnetic field produced by all of the iron atoms in the material, especially those atoms that are close by. Even with the iron uniformly magnetized with the same constant strength M everywhere, at the ends of the cylinder such as the point Q, one would expect that B is reduced (on the order of a factor of 2) as there is only air on one side of the surface rather than magnetized iron as before. Consequently,

$$
H=\frac{B}{\mu_{0}}-M<0
$$

as the value of B at the point Q is reduced after removing the two end pieces even if M remains the same.

FIGURE 3.42. B versus H curve. Inside the permanent magnet, the material is operating at a point in the second quadrant such as P.

Reiterating, if the magnetization M in the core remains constant and equal to its value before the two end pieces were removed, the H field is now negative in the two cylindrical bar magnets because B is reduced in strength due to the two end pieces being removed. Consequently, as the two end pieces are removed, the operating point for the magnetic material of the two cylindrical magnets moves down the $B-H$ curve from c to a new point (say) P. The closer one is to either end of the cylindrical magnets, the
farther down the curve the operating point goes into the second quadrant. On the other hand, at the center of the cylindrical magnets, the operating point is closer to point c and would be exactly at point c if the cylindrical piece was infinitely long.

3.5.1 Hysteresis Loss

Consider a steady-state situation of going around the $B-H$ curve of Figure $3.35(\mathrm{a})$. That is, after an initial magnetization of the material so that the (B, H) coordinates are at the point b with $i=I_{\text {max }}$, the current is decreased to 0 bringing the system to point c where $H=0$, then the current is brought down to the point where the B field is zero putting the system at d, and next the current is brought down to $-I_{\text {max }}$ so the system is at e. Going from b to e represents $1 / 2$ of the $B-H$ cycle as indicated in Figure 3.43(a).

FIGURE 3.43. (a) $\int_{\mathrm{e}-\mathrm{d}-\mathrm{c}-\mathrm{b}} H d B$. (b) $\int_{\mathrm{e}-\mathrm{f}-\mathrm{g}-\mathrm{b}} H d B$.
The other half is similar. That is, the current is brought back to 0 to put the system at f, next it is increased so that the B field is again zero and the system is at g and finally the current is brought back up to $I_{\text {max }}$ so that the system is back at b (see Figure 3.43(b)).

At any time t, the flux linkage in the primary windings wound around the toroid core is $\lambda(t)=N \phi(t)=N B(t) S$ where N is the total number of primary windings, S is the cross-sectional area of the core and B is the
magnetic field in the core. Further, at any time $t, H(t)=N i(t) /(2 \pi r)$ where r is a radius inside the toroid. Suppose that one goes through this complete cycle $b-c-d-e-f-g-b$ in the time T. Then the energy from the source which is providing the current to the coil is given by

$$
\begin{aligned}
E_{\text {one cycle }} & =\int_{t_{1}}^{t_{1}+T} i \dot{\lambda} d t=\int_{t_{1}}^{t_{1}+T} \frac{2 \pi r H(t)}{N} N S \frac{d B}{d t} d t \\
& =2 \pi r S \int_{t_{1}}^{t_{1}+T} H(t) \frac{d B}{d t} d t
\end{aligned}
$$

By a change of variables, this becomes

$$
E_{\text {one cycle }}=V \oint_{\mathrm{b}-\mathrm{c}-\mathrm{d}-\mathrm{e}-\mathrm{f}-\mathrm{g}-\mathrm{b}} H d B
$$

where $V=2 \pi r S$ is the volume of the core. In the first half period $T / 2$, the energy provided by the source is

$$
E_{\text {First half-cycle/unit volume }}=\int_{\mathrm{b}-\mathrm{c}-\mathrm{d}-\mathrm{e}} H d B=-\int_{\mathrm{e}-\mathrm{d}-\mathrm{c}-\mathrm{b}} H d B
$$

where $\int_{\mathrm{e}-\mathrm{d}-\mathrm{c}-\mathrm{b}} H d B$ is the area indicated in Figure 3.43(a). Similarly,

$$
E_{\text {Second half-cycle/unit volume }}=\int_{\mathrm{e}-\mathrm{f}-\mathrm{g}-\mathrm{b}} H d B
$$

which is the area indicated in Figure 3.43(b). The total energy absorbed per cycle is then
$E_{\text {cycle/unit-volume }}=\int_{\mathrm{e}-\mathrm{f}-\mathrm{g}-\mathrm{b}} H d B-\int_{\mathrm{e}-\mathrm{d}-\mathrm{c}-\mathrm{b}} H d B=\oint_{\mathrm{b}-\mathrm{c}-\mathrm{d}-\mathrm{e}-\mathrm{f}-\mathrm{g}-\mathrm{b}} H d B$
which is just the area inside the $B-H$ curve. This is the energy required for each cycle to magnetize (align the dipole moments of) the iron along the $B-H$ curve (i.e., rotate the magnetic dipole moments 360°).

As an example, consider the iron core inside the rotor of a DC motor which is constantly being magnetized and demagnetized as it rotates by the external magnetic field. For example, the point P in Figure 3.44 corresponds to the point b in Figure 3.35. After the iron core rotates clockwise 90 degrees, the magnetic material at point P corresponds to the point d in Figure 3.43. After rotating another 90 degrees, the magnetic material at point P corresponds to point e in Figure 3.43, and so on. That is, the magnetic material at each point in the core is going through a complete cycle of the $B-H$ curve each time the core rotates 360 degrees. In this application, it is important that the core be made of soft magnetic material with a very narrow $B-H$ loop so that the hysteresis loss is small.

FIGURE 3.44. The magnetic material of the rotor goes through the $B-H$ curve as it rotates.

3.5.2 Common Magnetic Materials

Both soft and hard magnetic materials are used in electric machines. Soft magnetic materials are used as a core structure on which the turns (windings) of the motor are wound (e.g., such as the field circuit of a separately excited DC motor). In such an application, the copper wire of the field winding is wrapped around soft magnetic material, which then results in a much larger radial magnetic field in the air gap than if nonmagnetic material was used. The most common material for the core in an electric machine is an iron-silicon alloy (silicon steel) which contains between 1% and 4% silicon [56]. The relative permeability μ_{r} of silicon steel ranges from 400 to $800[56]^{7}$ which seems low compared to the gauge steel and iron casting steel of Figure 3.36. However, its low, good mechanical strength and a high Curie Point ${ }^{8}$ of $740^{\circ} \mathrm{C}$ makes it an attractive material [56] and provides a challenge to the machine designer to have short paths for the magnetic field in the iron. It turns out that by special processing, some 4% silicon steels can have a relative permeability 5.5 times greater than the 800 quoted above, that is, up to 4400 [56].

Small permanent magnet synchronous machines often use rare-earth cobalt alloys for the hard magnetic material which has a rather high cost [56]. As a consequence, it is usually bonded to the surface of rotor which is made of soft magnetic material. The rare-earth cobalt alloys have a remanent (permanent) magnetic field between 0.75 and 1.1 tesla, are very hard to demagnetize and have a high Curie temperature [56].

[^29]
Problems

Problem 1 Azimuthal Magnetic Field of a Circular Current Loop
Consider the circular current loop shown in Figure 3.45. Using symmetry arguments and Ampère's law, show that the azimuthal component $B_{\theta} \hat{\boldsymbol{\theta}}$ of $\overrightarrow{\mathbf{B}}$ must be zero everywhere.

FIGURE 3.45. Circular loop carrying the current i.

Problem 2 Ampère's Law [35]

(a) Figure 3.46 shows a long straight conductor carrying a current I. The current is uniformly distributed across the cross section so that the current i enclosed within a circle of radius r is

$$
i= \begin{cases}I \frac{r^{2}}{R^{2}} & \text { for } 0 \leq r \leq R \\ I & \text { for } r>R\end{cases}
$$

Use Ampère's law to find the magnetic field B inside the conductor.

FIGURE 3.46. Long straight wire. (a) Cross-sectional view. (b) Perspective view.
(b) A cylindrical conductor with an off axis cylindrical hole carries a total current I. Find the magnetic field in the cylindrical hole. [Hint: Use part (a) and superposition.]

FIGURE 3.47. Conductor with a hollowed cylindrical core. (a) Cross-sectional view. (b) Perspective view.

Problem 3 Radial Magnetic Field of a Long Straight Wire
Apply conservation of flux to the cylindrical-shaped flux surface shown in Figure 3.48 to show that $B_{r}(r) \equiv 0$ for an infinitely long straight wire. Denote by R the radii of the disk-shaped surfaces S_{1}, S_{2} and let ℓ denote the length of the cylindrical-shaped surface S_{3}.

FIGURE 3.48. Closed flux surface used to show $B_{r} \equiv 0$ around an infinitely long straight wire carrying a current.

Problem 4 Radial Magnetic Field of an Ideal Solenoid
Use some symmetry arguments when applying Gauss's law to the closed surface shown in Figure 3.49 whose sides are S_{1}, S_{2}, and S_{3} to show that the radial component of $\overrightarrow{\mathbf{B}}$ must be zero inside an infinitely long solenoidal coil. Denote by R the radii of the disk-shaped surfaces S_{1} and S_{2}, and let ℓ denote the length of the cylindrical-shaped surface S_{3}.

Using a similar argument, show that the radial component of $\overrightarrow{\mathbf{B}}$ outside of an infinitely long solenoidal coil must also be zero.

FIGURE 3.49. Using Gauss's law to show $B_{r} \equiv 0$ inside an ideal solenoid.

Problem 5 Azimuthal Magnetic Field of an Ideal Solenoid
Apply Ampère's law to the curves C_{3}, C_{5} of Figure 3.27 to show that $B_{\theta}(r) \equiv 0$ inside the solenoid and $B_{\theta}(r)=\mu_{0} i /(2 \pi r)$ outside the cylinder.

Problem 6 Magnetic Field in an Ideal Toroidal Coil

(a) In Figure 3.50, apply Ampère's law to the circular curve C and Gauss's law to the closed surface S whose sides are S_{1}, S_{2}, and S_{3} to show that $\overrightarrow{\mathbf{B}}$ only has a nonzero azimuthal component inside the toroidal coil, that is, the lines of B are concentric circles inside the toroid coil. (Hint: Let $\overrightarrow{\mathbf{B}}=B_{\rho} \hat{\boldsymbol{\rho}}+B_{\varphi} \hat{\boldsymbol{\varphi}}+B_{\theta} \hat{\boldsymbol{\theta}}$ using the "toroidal" coordinate system of Figure 3.50 and show that $B_{\rho}=B_{\varphi}=0$.)
(b) Show that the azimuthal component of $\overrightarrow{\mathbf{B}}$ must be zero outside the toroidal coil.

(a)

(b)

FIGURE 3.50. (a) "Toroidal" coordinate system. $\hat{\boldsymbol{\theta}}$ is into the page. (b) Curve and surface for Ampère's and Gauss's law, respectively, to show that $B_{\rho}=B_{\varphi}=0$.

Problem 7 Equations of the Ideal Transformer from Ampère's Law
Consider an ideal transformer in Figure 3.51 consisting of two sets of turns wound on a single iron core. Assuming ideal soft magnetic material ($H=0$ in the iron), N_{1} turns in phase 1, and N_{2} turns in phase 2, apply

Ampère's law to a closed path C in the core of the iron to show that

$$
i_{1}=-\frac{N_{2}}{N_{1}} i_{2}
$$

Use this result and conservation of power $v_{1} i_{1}+v_{2} i_{2}=0$ (assuming there are no losses) to show that

$$
v_{1}=\frac{N_{1}}{N_{2}} v_{2}
$$

FIGURE 3.51. Derivation of the ideal transformer equation using Ampère's law. Adapted from Figure 20.12 of Kassakian et al. [57].

Problem 8 Equations of the Ideal Transformer from Faraday's Law
Consider an ideal transformer as shown in Figure 3.52 consisting of two sets of turns wound on a single iron core. Assume ideal soft magnetic material ($H=0$ in the iron), N_{1} turns in phase 1 and N_{2} turns in phase 2. Let ϕ be the flux in any cross section of the iron core.
(a) Compute ϕ using the normal $\hat{\mathbf{n}}_{1}$ in the turns of phase 1, that is,

$$
\phi=\int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}
$$

with $d \overrightarrow{\mathbf{S}}=d S \hat{\mathbf{n}}_{1}$ and the corresponding flux linkage $\lambda_{1}=N_{1} \phi$. What is the sign convention for the induced voltage $-d \lambda_{1} / d t$? That is, if

$$
-\frac{d \lambda_{1}}{d t}>0
$$

will it attempt to force current in the positive direction of i_{1} or the negative direction?
(b) Use Gauss's law with the iron core defining a flux tube to explain why ϕ, as computed in part (a), can also be computed using the normal $\hat{\mathbf{n}}_{2}$ to obtain the same value.
(c) Use the fact that by Faraday's law, $v_{1}=-d \lambda_{1} / d t, v_{2}=-d \lambda_{2} / d t$ to show that

$$
v_{1}=\frac{N_{1}}{N_{2}} v_{2}
$$

(d) Use this result and $v_{1} i_{1}+v_{2} i_{2}=0$ (assuming there are no losses) to show that

$$
i_{1}=-\frac{N_{2}}{N_{1}} i_{2} .
$$

(b)

FIGURE 3.52. Derivation of the ideal transformer equations using Faraday's law. Adapted from Figure 20.12 of Kassakian et al. [57].

Problem 9 Magnetizing Inductance in the Transformer Model [25][57]
Consider the transformer in Figure 3.53 to be non ideal in the sense that H is not zero in the iron; that is, assume that μ_{r} is large, but finite. It is still assumed that the magnetic fields B and H are confined to the core, follow the path of the core, and are constant in magnitude in the core.
(a) With a current in phase 1, but phase 2 open-circuited, apply Ampère's law to the curve C and use this to show that the magnetic field in the core is given by

$$
\begin{equation*}
B=\mu_{r} \mu_{0} H=\frac{\mu_{r} \mu_{0}}{\ell_{c}} N_{1} i_{m} \text { (phase } 2 \text { open-circuited) } \tag{3.17}
\end{equation*}
$$

where i_{m} is the current in phase 1 with phase 2 open circuited, ℓ_{c} is the length of the path C and μ_{r} is the relative permeability of the iron in the core. Of course the length ℓ_{c} is different in value for different paths. For this
approximate analysis, one just takes ℓ_{c} to be some average length around the core.
(b) Show that the flux ϕ in the core is given by

$$
\begin{equation*}
\phi=\frac{\mu_{r} \mu_{0} S}{\ell_{c}} N_{1} i_{m} . \tag{3.18}
\end{equation*}
$$

FIGURE 3.53. Magnetizing inductance L_{m} for a transformer.
By the assumption that the magnetic fields B and H are confined to the core and follow the path of the core, this flux is the same everywhere in the core. The flux linkage in phase 1 is

$$
\lambda_{1}=N_{1} \phi=\frac{\mu_{r} \mu_{0} S}{\ell_{c}} N_{1}^{2} i_{m}=L_{m} i_{m} .
$$

This current i_{m} (with phase 2 open-circuited) is called the magnetizing current and is the current required to produce the magnetic field B (by aligning/magnetizing the dipole moments of the iron atoms) given in equation (3.17) and the corresponding flux ϕ in the core as given in equation (3.18). $L_{m} \triangleq \mu_{r} \mu_{0} N_{1}^{2} S / \ell_{c}$ is called the magnetizing inductance and the equivalent circuit for a transformer with a finite μ_{r} is shown in Figure 3.53(b).
(c) By Faraday's law, the flux in the iron core and the applied voltage are related by

$$
-\frac{d}{d t} \lambda_{1}=-\frac{d}{d t} N_{1} \phi=v_{1}
$$

or

$$
\phi=\frac{1}{N_{1}} \int_{0}^{t} v_{1}(\tau) d \tau
$$

That is, the flux ϕ in the core is completely determined by the applied voltage to the phase. Consider now that phase 2 has a load (e.g., a resistor) attached to it so i_{2} is nonzero and apply the same voltage as before to phase 1. Explain why the total flux is now

$$
\phi=\frac{\mu_{r} \mu_{0} S}{\ell_{c}}\left(N_{1} i_{1}+N_{2} i_{2}\right) .
$$

(d) Decompose the current i_{1} as $i_{1}=i_{m}+i_{1}^{\prime}$ where i_{m} is the (magnetizing) current with phase 2 open and i_{1}^{\prime} is the additional current in phase 1 when phase 2 is not an open circuit. The flux can then be written as

$$
\phi=\frac{\mu_{r} \mu_{0} S}{\ell_{c}}\left(N_{1} i_{m}+N_{1} i_{1}^{\prime}+N_{2} i_{2}\right)
$$

As the flux depends only on the applied voltage v_{1}, explain why

$$
N_{1} i_{1}^{\prime}+N_{2} i_{2} \equiv 0
$$

is always true.
(e) Explain why it is still true with finite μ_{r} that

$$
v_{2}=\frac{N_{2}}{N_{1}} v_{1}
$$

(f) Show that in an ideal transformer, the fux $\phi \equiv 0$. How does this affect the derivation in problem 8?
Remark The effect of finite μ_{r} in a transformer is accounted for in the equivalent circuit model by the addition of an inductor with inductance L_{m} in parallel with the ideal transformer. Note that as $\mu_{r} \rightarrow \infty, L_{m} \rightarrow \infty$, that is, it becomes an infinite impedance and the circuit reduces to the ideal case with $i_{1}=i_{1}^{\prime}$. Note that in the ideal transformer with phase 2 open, applying a voltage v_{1} to phase 1 would result in i_{1} also being zero; that is, phase 1 would behave as open circuit due to the magnetic coupling of the two phases. In this nonideal case with phase 2 open, after applying a voltage v_{1}, there is a nonzero current i_{m} in phase 1 which satisfies $v_{1}=L_{m} d i_{m} / d t$.

Problem $10 B-H$ Curve
Explain how a transformer can be used to experimentally determine the $B-H$ curve of its iron core, i.e., the core is never perfectly ideal soft magnetic material and therefore has a hysteresis curve to be measured.

Problem 11 Magnetic Force [35]
Consider the electromagnetic crane drawn in Figure 3.54. Figure 3.54(a) shows the movable piece a distance x below the electromagnet. The current in the wire magnetizes the iron core it is wrapped about to produce a magnetic field which crosses the air gaps to magnetize the movable piece attracting it to the electromagnet. Let the iron have permeability μ_{r}, the
cross section have area $S=\ell_{1} \ell_{2}$, the number of turns of the coil be N, the path length of the closed curve C in Figure 3.54(a) be $\ell+2 x$ and ℓ in Figure 3.54 (b). It is assumed that B and H are both constant in the iron and (a different) constant in the air gap and that these fields are contained within the iron and air gaps. Compute the force of the electromagnet on the moveable piece by doing the following:
(a) Use Ampère's law to compute the magnetic field B in the core (which is equal to the magnetic field strength in the air gap for small x) as a function of the current i in the winding.

FIGURE 3.54. Electromagnet exerting a force on a rectangular-shaped iron block.
(b) Use the answer of part (a) to show that the flux linkage of the winding is

$$
\lambda=N \phi=N B S=\frac{N S \mu_{0}}{\left(\ell / \mu_{r}+2 x\right)} i=L(x) i
$$

where

$$
L(x) \triangleq \frac{N S \mu_{0}}{\left(\ell / \mu_{r}+2 x\right)}
$$

(c) With x held constant, compute the energy W required to bring the current from 0 to I; that is, compute

$$
W(x, I)=\int_{0}^{t} i \frac{d \lambda}{d t}=\int_{0}^{I} i d \lambda
$$

This energy from the source current is stored as magnetic energy in the iron core and the air gaps.
(d) With the current held constant at I, if the moveable piece moves by the force of attraction from x to 0 (so the change in position is $-x$), the energy goes from $W(x, I)$ to $W(0, I)$. The change in energy equals the work
done, that is, with x small

$$
\left(\left.F\right|_{x=0}\right) \times(-x)=W(x, I)-W(0, I)
$$

Use this to show that the force of attraction at $x=0$ in Figure 3.54(b) is

$$
\left.F\right|_{x=0}=-\left.\frac{\partial W(x, I)}{\partial x}\right|_{I \text { constant }}
$$

(e) With the bar at the location x and the current in the winding given by i, explain why the force is given by

$$
F(x, i)=-\frac{\partial W(x, i)}{\partial x}
$$

even if the current is changing in time. That is, holding the current constant was only required for the derivation of the expression for the force. (Note that the notation " I constant" in $-\left.\frac{\partial W(x, I)}{\partial x}\right|_{I \text { constant }}$ is redundant as the partial derivative $\partial / \partial x$ means to take the derivative with the other variable held constant.)

Problem 12 Relative Permeability
Consider a permanent magnet which is placed in another (external) magnetic field. Explain that, as far as this external magnetic field's effect on the permanent magnet, one can take $\mu_{r}=1$ in the permanent magnet.

Part II

AC Machine Theory

With the preliminary material presented in the first three chapters, the remaining chapters cover the modeling and control of AC machines. However, before embarking on this odyssey, an elementary notion of how AC machines operate is first presented. This will hopefully help the reader to understand the overall picture as he/she goes through the detailed analysis in the remaining chapters.

Induction Motor

The goal here is to give an elementary idea of how an induction motor works. First, the construction of a simple two-phase machine is described. This is followed by explaining how a radially directed rotating magnetic field is set up in the air gap by the stator currents and how this rotating field induces currents in the rotor loops. Finally, it is described how this same rotating magnetic field produces torque of on the current it induces.

Construction of the Induction Motor

To begin, the construction of a simplistic model of a two-phase induction motor is described.
Figure II.1(a) shows a half-cylindrical-shaped loop, which is wound around a cylindrical-shaped iron core, and denoted as loop a. A second identical loop, denoted as loop b, is then wound 90 degrees from loop a as shown in Figure II.1(b). The currents in loops a and b are denoted as $i_{R a}, i_{R b}$, respectively. The two loops are electrically isolated.

In Figure II.1, the notation \odot means that if $i>0$, the current is coming out of the page while \otimes means that if $i>0$, then the current is going into the page.

Figure II.1. Rotor of an induction motor.

The stator is constructed similarly. Figure II.2(a) shows stator loop a
that has a half-cylindrical shape and is wound on the inside surface of the stator iron. However, as shown in Figure II.2(a), it also has a voltage source connected. Similarly, Figure II.2(b) shows that stator loop b is identical in form to stator loop a, but is wound 90 degrees from loop a. The applied voltages are denoted as $u_{S a}, u_{S b}$ and the corresponding currents are denoted as $i_{S a}, i_{S b}$, respectively. These two loops are electrically isolated.

Figure II.2. Induction motor stator. (a) Stator loop a. (b) Stator loop b.

Combining Figures II. 1 and II.2, a simple two-phase induction motor is illustrated in Figure II.3. The position of the rotor is located by a line perpendicular to rotor loop a as shown in Figure II.3.

Figure II.3. Cross-sectional view of a simple two-phase induction motor.

Rotating Magnetic Field

Figure II.4(a) shows that the magnetic field in the air gap produced by $i_{S a}>0$ (with $i_{S b}=0$) is radially out on the right-hand side and radially in on the left-hand side. Figure II.4(b) shows that the directions are simply reversed for $i_{S a}<0$.

Figure II.4. Magnetic field distribution produced by $i_{S a}$.
Similarly, Figure II.5(a) shows that the magnetic field in the air gap produced by $i_{S b}>0$ (with $i_{S a}=0$) is radially out on the top-half side of the air gap and radially in on the bottom-half side of the air gap. The directions are simply reversed for $i_{S b}<0$.

Figure II.5. Magnetic field distribution produced by $i_{S b}$.

Combing the magnetic fields of stator loops a and b, a rotating magnetic field is created in the air gap by choosing

$$
i_{S a}=I_{S} \cos \left(\omega_{S} t\right), i_{S b}=I_{S} \sin \left(\omega_{S} t\right)
$$

This is illustrated in Figure II.6, which shows the total magnetic field $\overrightarrow{\mathbf{B}}_{S}$ due to both $i_{S a}$ and $i_{S b}$.

Figure II.6. Rotating magnetic field.

Induced Rotor Currents

The rotating magnetic field $\overrightarrow{\mathbf{B}}_{S}$ produced by the stator currents produces a changing flux in each of the rotor phases. By Faraday's law, voltages and hence currents, are produced in the rotor phases. This is illustrated in Figure II. 7 showing the rotation of the stator magnetic field past rotor loop a (rotor loop b is not shown for clarity). As it rotates past rotor loop a, the changing flux in the loop produces an emf, which in turn produces the current $i_{R a}$.

Figure II.7. The changing flux in rotor phase a due to the rotating magnetic field of the stator. Rotor phase b is not shown.

Torque

Recall that from the magnetic force law, the force on side a of rotor loop a is given by

$$
F_{\text {side a }}=i_{R a} \ell_{1} B_{S}
$$

where ℓ_{1} is the length of the rotor. By the right-hand rule, this force has the direction shown in Figure II.8. The torque on this rotor loop is then

$$
\tau_{\text {side } \mathrm{a}}=\left(\ell_{2} / 2\right) i_{R a} \ell_{1} B_{S}
$$

where $\ell_{2} / 2$ is the radius of the rotor. Similarly, the forces on sides a^{\prime}, b, and b^{\prime} can be computed and are shown in Figure II.8. With the currents in the rotor phases as shown in Figure II.8, the magnetic force law shows that the sides of each rotor loop have a tangential force pushing the rotor in the counterclockwise direction. ${ }^{1}$ That is, there is a torque on the rotor, causing it to turn.

Figure II.8. Torque in an induction motor.

Slip

ω_{S} is the angular speed of the stator's rotating magnetic field and ω_{R} is the rotor speed. The slip speed is defined as

$$
\omega_{s l i p} \triangleq \omega_{S}-\omega_{R}
$$

It turns out that positive torque production requires $\omega_{S}>\omega_{R}$, while to obtain negative torque $\omega_{S}<\omega_{R}$ and no torque is produced if $\omega_{S}=\omega_{R}$.

[^30]That is, $\omega_{\text {slip }} \triangleq \omega_{S}-\omega_{R} \neq 0$ when producing torque. The induction motor is said to operate asynchronously since the rotor angular speed ω_{R} is not the same as the angular speed $\omega_{S}\left(\omega_{S} \neq \omega_{R}\right)$ of the stator's rotating magnetic field when producing torque. The fact that the slip must be nonzero to get torque is easily explained. Consider the situation shown in Figure II. 9 where $\omega_{s l i p}=0$ or $\omega_{S}=\omega_{R}$. As Figure II. 9 shows, the flux in the rotor loop does not change and consequently there is no induced voltage nor current in the rotor loop and, therefore, no torque is produced.

Figure II.9. No changing flux in the rotor loop if $\omega_{S}=\omega_{R}$. (Rotor loop b not shown for clarity.)

Summary

Summarizing, the induction motor works as follows:

- A rotating radially directed magnetic field $\overrightarrow{\mathbf{B}}_{S}$ is set up in the air gap between the rotor and stator iron by the stator currents $i_{S a}, i_{S b}$.
- This rotating magnetic field produces a changing flux in the rotor loops (phases).
- By Faraday's law, voltages, and hence currents, are induced in the rotor loops.
- This same magnetic field $\overrightarrow{\mathbf{B}}_{S}$ that induced the currents in the rotor loops produces a torque on them.

Permanent Magnet Synchronous Motor

The principle of operation of a synchronous machine is illustrated in Figure II.10, which shows two permanent magnets rotating on different axles. The "stator" permanent magnet is rotated at angular speed ω_{S} by mechanically turning it on its axle. As it rotates, its north end attracts the south end of the rotor permanent magnet to turn it on its axle. Consequently, they rotate together at the same speed (i.e., $\omega_{R}=\omega_{S}$) so that their speeds are synchronized.

Figure II.10. Two permanent magnets rotating on different axles.
It was shown above that the stator of an induction motor can produce a rotating magnetic field. To make a synchronous motor, one simply removes the rotor from the induction motor and replaces it with a permanent magnet rotor as shown in Figure II.11. As in the case of the induction motor, the stator currents $i_{S a}, i_{S b}$ produce a rotating magnetic field. This rotating
magnetic field then pulls the rotor magnet along with it at the same angular speed. That is, $\omega_{S}=\omega_{R}$ so that the rotor itself and the stator magnetic field rotate together synchronously.

Figure II.11. The permanent magnet rotor is pulled by the rotating magnetic field of the stator. (a) $i_{S a}=I_{S}, i_{S b}=0$. (b) $i_{S a}=I_{S} / \sqrt{2}$, $i_{S b}=I_{S} / \sqrt{2}$. (c) $i_{S a}=0, i_{S b}=I_{S}$. (d) $i_{S a}=-I_{S} / \sqrt{2}, i_{S b}=I_{S} / \sqrt{2}$.

4

Rotating Magnetic Fields

The production of a rotating radially directed magnetic field in the air gap by the stator currents is fundamental to the operation of both induction motors and synchronous motors. Using the assumption of ideal magnetic materials (i.e., materials where $\overrightarrow{\mathbf{H}}=\mathbf{0}$), expressions for the radial magnetic field distribution in the air gap of AC machines due to the currents in the stator phases are found. Specifically, a two-phase machine is considered. It is shown that if the stator phases are sinusoidally wound and 90° apart from each other and, with the stator currents given by $i_{S a}=I_{S} \cos \left(\omega_{S} t\right)$ and $i_{S a}=I_{S} \cos \left(\omega_{S} t\right)$, the result is a rotating radial magnetic field that is sinusoidally distributed in space. Finally, expressions for the azimuthal magnetic field as well as the axial electric field in the air gap are also found.

4.1 Distributed Windings

Before embarking on how a rotating magnetic field is produced, the geometric structure of the windings (loops/turns) on the rotor and stator iron are described. To do so, consider Figure 4.1(a), which shows a cylindrical iron rotor core with six slots in it. A single length of wire is wound around the core forming three rotor loops to make up a phase winding. The top three slots are at $\theta=\pi / 3, \theta=\pi / 2$, and $\theta=2 \pi / 3$, and the bottom three slots are at $\theta=4 \pi / 3, \theta=3 \pi / 2$, and $\theta=5 \pi / 3$.

In more detail, starting with a single wire, the first loop of the phase is wound starting in the bottom leftmost slot at the point a in Figure 4.1(a) and then follows a semicircular path in the counterclockwise direction to the rightmost top slot. From there, the wire goes down the length of the cylinder to the back side and then follows another semicircular path in the clockwise direction to the back side of the leftmost bottom slot. Next, the wire is brought up the length of the iron to the front side to the point b in the figure. The wire from point a to point b makes up the first loop (or turn or winding) of the phase. Continuing, the wire is extended to point c to start the second loop. As shown in Figure 4.1(b), the second loop goes from point c to point d, making a half-cylindrical-shaped loop in the top and bottom slots. Finally, the wire is extended from point d to point e to start the third loop. The third loop goes from point e to point f as shown in Figure 4.1(c). As stated above, the single piece of wire (consisting of three loops in this example) is referred to as a phase winding or simply phase.

FIGURE 4.1. Distributed phase winding consisting of three loops. (a) First loop of the phase winding from a to b. (b) Second loop of the phase winding from c to d. (c) Third loop of the phase winding from e to f. (d) Cross-sectional view of the rotor phase winding. All three of these half-cylindrical surfaces have the same radii. They are drawn with different radii in the figure so that the reader can tell them apart. Drawn by Bret Wilfong.

This is called a distributed phase winding because the loops making up the phase winding are not all in a single pair of slots, but rather, they are distributed over three pairs of slots. The semi-circular sides of each loop are referred to as end turns.

Figure 4.1(c) shows that the two ends of the phase (points a and f) are connected to a voltage source, which, if positive, will force current up out of the top sides of the loop and down the bottom side of the loops. This sign convention for the current is also illustrated in Figure 4.1(d), which is a cross section of the rotor. The cross-sectional view of Figure 4.1(d) is the standard way to represent a phase winding. Figure 4.3 (a) shows a cross-sectional view of a single phase similar to Figure 4.1(d) except that two loops are now wound in the middle slots rather than just one loop as in Figure 4.1(b).

Figure 4.2 illustrates how electrical power can be brought into the rotor of 4.1. The slip rings 1 and 2 are made of conducting material and are rigidly connected to the rotor. As the rotor turns, they make sliding contact with (slip against) the brushes b_{1} and b_{2}, which are fixed in space. Slip ring 1 is also electrically connected to a wire conductor that goes through slip ring 2 (and is electrically isolated from slip ring 2) and is connected to point f in Figure 4.1 (c). Slip ring 1 is electrically connected to a wire conductor which is connected to point a in Figure 4.1(c). In this way, voltage and current can be supplied to the rotor from an outside power source.

FIGURE 4.2. A set of brushes and slip rings can be used to bring electrical power to the rotor winding.

A distributed stator phase winding is wound in similar fashion as the distributed rotor winding of Figure 4.1. In the case of the stator winding, the loops of the phase are wound on the inside surface of the stator as shown in Figure 4.3(b). The simple single stator phase of Figure 4.3(b) consists of four turns (loops/windings). Specifically, this phase winding is made by winding a single wire around the inside of the stator iron once at $\theta=\pi / 3$ (with the other side of the loop at $4 \pi / 3$), then twice at $\theta=\pi / 2$ (with the other side of the loop at $3 \pi / 2$), and finally once more at $\theta=2 \pi / 3$ (with the other side at $5 \pi / 3$). The radial air gap distance is denoted as g and an
arbitrary point is located using the polar coordinates (r, θ) as shown.

FIGURE 4.3. (a) Distributed rotor phase winding with two loops in the middle slot. (b) Distributed stator phase winding with two loops in the middle slots.

There are other ways to distribute the windings of a phase such as shown in Figure 4.4. Figure 4.4(a) shows a distributed rotor phase winding with one side of a loop at $\theta=\pi / 6$ (the other side of the loop at $7 \pi / 6$), two loop sides at $\theta=\pi / 3$ (with the other sides at $4 \pi / 3$), three loop sides at $\theta=\pi / 2$ (with the other sides at $3 \pi / 2$), two loops at $\theta=2 \pi / 3$ (with the other sides at $5 \pi / 3$) and one loop side at $\theta=5 \pi / 6$ (with the other side at $11 \pi / 6$). Figure 4.4(b) shows a similar winding on the stator.

FIGURE 4.4. (a) Distributed rotor winding. (b) Distributed stator winding.

4.2 Approximate Sinusoidally Distributed $\overrightarrow{\mathbf{B}}$ Field

The goal here is to compute the radial magnetic field $\overrightarrow{\mathbf{B}}$ established in the air gap by the current in a distributed winding. To do so, Ampère's law $\oint \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=i_{\text {enclosed }}$ is the key tool that is used. However, to obtain a nice elegant expression for the magnetic field $\overrightarrow{\mathbf{B}}$ using Ampère's law, an additional assumption is required. This assumption is that the wires loops in a phase winding have an infinitesimal cross-sectional area; that is, the wire has length, but its cross-sectional area is infinitesimal. To emphasize this, Figure $4.3(\mathrm{a})$ is redrawn in Figure $4.5(\mathrm{a})$ to indicate that the wire has no width. The two \odot are drawn at the top middle slot while only one \odot is drawn at either side to indicate that the middle slot has twice as many windings (loops) as either of the other two slots. Similarly, the stator winding of Figure 4.3(b) is redrawn in Figure 4.5(b).

FIGURE 4.5. (a) This is Figure 4.3(a) redrawn to show that the wire has no width. (b) This is Figure 4.3 (b) redrawn to show that the wire has no width.

However, even Figure 4.5 does not quite capture what it means for the wire to have a cross-sectional area that is infinitesimal in size because the slots should not have any depth. So, Figure 4.5 is redrawn in Figure 4.6 to illustrate that the depth of the slots are also infinitesimal.

To be consistent with the literature, Figures 4.1 (d), 4.3 , and 4.4 will be used for illustration, but it is to be understood that the standing assumption is that the wires loops in a phase winding have an infinitesimally small cross-sectional area so that the reader should think of Figure 4.6 in the derivations that follow.

FIGURE 4.6. This is Figures $4.5(\mathrm{a})$ and $4.5(\mathrm{~b})$ redrawn to show the slots have no depth.

The problem of computing the radial magnetic field established in the air gap by the current in a distributed winding is now considered. To fix ideas, the distributed winding shown in Figure 4.3(b) [or equivalently, Figure $4.6(\mathrm{~b})]$ is used. This winding is redrawn in Figure 4.7 where it is now denoted as phase a and the current in it is denoted as $i_{S a}$.

FIGURE 4.7. Use of Ampère's law to determine the radial magnetic field in the airgap due to the current $i_{S a}$ in stator phase a.

To compute the radial magnetic field $\overrightarrow{\mathbf{B}}_{S a}$ in the air gap produced by $i_{S a}$, Ampère's law $\oint \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=i_{\text {enclosed }}$ is applied to the closed path $1-2-3-4-1$
shown in Figure 4.7. The assumption that the wire has an infinitesimal cross section means that the sides of the copper loops lie just at the inside surface of the stator iron. In particular, this assumption allows one to take the points $1,2,3,4$ on the path to all be just inside the magnetic material at the air gap/iron interface and still have the closed-path $1-2-3-4-1$ enclose any current in the loop sides between 0 and θ. Further, computing $\int \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}$ across any (infinitesimally thin) wire is then equal to zero. ${ }^{1}$ With $\overrightarrow{\mathbf{H}} \equiv 0$ in the iron and g the air gap length, it follows that

$$
\begin{align*}
\int_{1}^{2} \overrightarrow{\mathbf{H}}_{S a} \cdot d \vec{\ell}+\int_{2}^{3} \overrightarrow{\mathbf{H}}_{S a} \cdot d \overrightarrow{\boldsymbol{\ell}}+\int_{3}^{4} \overrightarrow{\mathbf{H}}_{S a} \cdot d \vec{\ell}+\int_{4}^{1} \overrightarrow{\mathbf{H}}_{S a} \cdot d \vec{\ell} & =i_{\text {enclosed }} \\
\int_{1}^{2} \overrightarrow{\mathbf{H}}_{S a} \cdot d \overrightarrow{\boldsymbol{\ell}}+\int_{3}^{4} \overrightarrow{\mathbf{H}}_{S a} \cdot d \vec{\ell} & =i_{\text {enclosed }} \\
\int_{1}^{2} H_{S a}(0) \hat{\mathbf{r}} \cdot d \ell \hat{\mathbf{r}}+\int_{3}^{4} H_{S a}(\theta) \hat{\mathbf{r}} \cdot(-d \ell \hat{\mathbf{r}}) & =i_{\text {enclosed }} \\
g H_{S a}(0)-g H_{S a}(\theta) & =i_{\text {enclosed }} \tag{4.1}
\end{align*}
$$

In this derivation, it was assumed that $H_{S a}$ is constant across the air gap, that is, $H_{S a}$ does not depend on the radial distance r in the air gap. The enclosed current $i_{\text {enclosed }}$ between 0 and θ inside the curve $1-2-3-4-1$ of Figure 4.7 is given by

$$
i_{\text {enclosed }}=\left\{\begin{array}{ccrl}
0 & \text { for } & 0 & \leq \theta \leq \pi / 3 \\
i_{S a} & \text { for } & \pi / 3 & \leq \theta \leq \pi / 2 \\
3 i_{S a} & \text { for } & \pi / 2 & \leq \theta \leq 2 \pi / 3 \\
4 i_{S a} & \text { for } & 2 \pi / 3 & \leq \theta \leq 4 \pi / 3 \\
3 i_{S a} & \text { for } & 4 \pi / 3 & \leq \theta \leq 3 \pi / 2 \\
i_{S a} & \text { for } & 3 \pi / 2 & \leq \theta \leq 5 \pi / 3 \\
0 & \text { for } & 5 \pi / 3 & \leq \theta \leq 2 \pi
\end{array}\right.
$$

and is plotted in Figure 4.8.

[^31]

FIGURE 4.8. $i_{\text {enclosed }}$ versus θ.
The magnetic intensity is then

$$
H_{S a}(\theta)=H_{S a}(0)-\frac{i_{\text {enclosed }}(\theta)}{g}
$$

where $H_{S a}(0)$ on the right-hand side must still be determined.
To compute $H_{S a}(0)$, the conservation of flux law is used. Consider a closed cylindrical flux surface whose cylindrical surface is in the air gap and whose disk shaped ends just contain the rotor iron as shown in Figure 4.9. Since this surface is in air, $\overrightarrow{\mathbf{B}}_{S a}=\mu_{0} \overrightarrow{\mathbf{H}}_{S a}$ on the surface. On the disk-shaped surfaces at the each end of the cylinder, $\overrightarrow{\mathbf{B}}_{S a}=0$, while on the cylindricalshaped part of the surface, $\overrightarrow{\mathbf{B}}_{S a}=B_{S a} \hat{\mathbf{r}}=\mu_{0}\left(H_{S a}(0)-i_{\text {enclosed }}(\theta) / g\right) \hat{\mathbf{r}}$. Conservation of flux gives

$$
\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\int_{0}^{\ell_{1}} \int_{0}^{2 \pi}\left(B_{S a}(\theta) \hat{\mathbf{r}}\right) \cdot(r d \theta d z \hat{\mathbf{r}})=r \ell_{1} \int_{0}^{2 \pi} B_{S a}(\theta) d \theta=0
$$

or, substituting in the above expression for $B_{S a}(\theta)$, one finds

$$
\int_{0}^{2 \pi}\left(\mu_{0} H_{S a}(0)-\mu_{0} \frac{i_{\text {enclosed }}(\theta)}{g}\right) d \theta=0
$$

FIGURE 4.9. A closed flux surface in the air gap which contains the rotor.

Rearranging

$$
\begin{aligned}
H_{S a}(0) & =\int_{0}^{2 \pi} \frac{i_{\text {enclosed }}(\theta)}{2 \pi g} d \theta \\
& =\frac{1}{2 \pi g}\left(i_{S a} \frac{\pi}{6}+3 i_{S a} \frac{\pi}{6}+4 i_{S a} \frac{2 \pi}{3}+3 i_{S a} \frac{\pi}{6}+i_{S a} \frac{\pi}{6}\right) \\
& =\frac{2 i_{S a}}{g}
\end{aligned}
$$

So

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{S a}=B_{S a}(\theta) \hat{\mathbf{r}}=\mu_{0}\left(\frac{2 i_{S a}}{g}-\frac{i_{\text {enclosed }}(\theta)}{g}\right) \hat{\mathbf{r}} . \tag{4.2}
\end{equation*}
$$

$B_{S a}(\theta)$ versus θ is plotted in Figure 4.10.

FIGURE 4.10. Magnetic field $B_{S a}(\theta)$ versus θ due to the current in phase a of a two-phase machine.

Expanding $B_{S a}(\theta)$ in a Fourier series, one obtains (see problem 3)

$$
\begin{align*}
B_{S a}(\theta)= & \mu_{0} \frac{i_{S a}}{g} \frac{4}{\pi} \times \sum_{k=1,3,5, \ldots}^{\infty} \frac{\left(1+\cos \left(\frac{k \pi}{6}\right)\right)}{k} \sin \left(k\left(\theta+\frac{\pi}{2}\right)\right) \\
= & \mu_{0} \frac{i_{S a}}{g} \frac{4}{\pi}\left(\frac{2+\sqrt{3}}{2} \sin \left(\theta+\frac{\pi}{2}\right)+\frac{1}{3} \sin \left(3\left(\theta+\frac{\pi}{2}\right)\right)\right. \\
& \left.+\frac{1-\sqrt{3} / 2}{5} \sin \left(5\left(\theta+\frac{\pi}{2}\right)\right)+\frac{1-\sqrt{3} / 2}{7} \sin \left(7\left(\theta+\frac{\pi}{2}\right)\right)+\cdots\right) \\
= & \mu_{0} \frac{i_{S a}}{g} \frac{4}{\pi}(1.866 \cos (\theta)-0.333 \cos 3(\theta)+0.0268 \cos (5 \theta) \\
& -0.0191 \cos (7 \theta)+\cdots) . \tag{4.3}
\end{align*}
$$

To a first approximation, the radial magnetic field distribution $B_{S a}(\theta)$ may be approximated by its first harmonic as

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{S a}(\theta)=B_{S a}(\theta) \hat{\mathbf{r}} \approx 1.866 \mu_{0} \frac{i_{S a}}{g} \frac{4}{\pi} \cos (\theta) \hat{\mathbf{r}} \tag{4.4}
\end{equation*}
$$

which is a sinusoidal distribution in θ.
A similar procedure can be applied to the stator winding in Figure 4.4(b), resulting in a radial magnetic field distribution in the air gap as given in Figure 4.11 (see problem 4).

FIGURE 4.11. Radial magnetic field $B_{S a}(\theta)$ in the air gap for the distributed winding of Figure 4.4(b).

4.2.1 Conservation of Flux and $1 / r$ Dependence

Consider the closed flux surface in the air gap shown in Figure 4.12. This closed surface is composed of two concentric cylindrical-shaped surfaces S_{1} and S_{2} and four other planar sides S_{3}, S_{4}, S_{5}, and S_{6} as illustrated in Figure 4.12. The surface normal on the closed surface is given by

$$
d \overrightarrow{\mathbf{S}}=\left\{\begin{array}{rcc}
-r_{1} d \theta d z \hat{\mathbf{r}} & \text { for } & S_{1} \\
r_{2} d \theta d z \hat{\mathbf{r}} & \text { for } & S_{2} \\
d r d z \hat{\boldsymbol{\theta}} & \text { for } & S_{3} \\
r d \theta d r \hat{\mathbf{z}} & \text { for } & S_{4} \\
-d r d z \hat{\boldsymbol{\theta}} & \text { for } & S_{5} \\
-r d \theta d r \hat{\mathbf{z}} & \text { for } & S_{6}
\end{array}\right.
$$

As $\overrightarrow{\mathbf{B}}$ is taken to have only a radial component, $\overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=0$ on the surfaces $S_{3}, S_{4}, S_{5}, S_{6}$ as $\overrightarrow{\mathbf{B}}$ is perpendicular (normal) to $d \overrightarrow{\mathbf{S}}$ on these surfaces. Consequently, $\int_{S_{3}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\int_{S_{4}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\int_{S_{5}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\int_{S_{6}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=0$. In this
case, conservation of flux gives

$$
\begin{array}{r}
\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\int_{S_{1}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{2}} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=0 \\
\int_{0}^{\ell_{1}} \int_{\theta_{1}}^{\theta_{2}}\left(B_{S a}(\theta) \hat{\mathbf{r}}\right) \cdot\left(r_{1} d \theta d z(-\hat{\mathbf{r}})\right)+\int_{0}^{\ell_{1}} \int_{\theta_{1}}^{\theta_{2}}\left(B_{S a}(\theta) \hat{\mathbf{r}}\right) \cdot\left(r_{2} d \theta d z \hat{\mathbf{r}}\right)=0 \\
-\ell_{1} r_{1} \int_{\theta_{1}}^{\theta_{2}} B_{S a}(\theta) d \theta+\ell_{1} r_{2} \int_{\theta_{1}}^{\theta_{2}} B_{S a}(\theta) d \theta=0 \\
\ell_{1}\left(r_{2}-r_{1}\right) \int_{\theta_{1}}^{\theta_{2}} B_{S a}(\theta) d \theta=0
\end{array}
$$

FIGURE 4.12. Closed flux surface to show the $1 / r$ dependence of the magnetic field in the air gap.

As $r_{1} \neq r_{2}$, conservation of flux does not hold. The problem here is that the magnetic field $B_{S a}$ was assumed to be constant as a function of r across the air gap in deriving (4.2) [and therefore, in deriving (4.3) and (4.4)] when in fact it must vary as $1 / r$ to satisfy the conservation of flux law. That is, with r_{R} the radius of the rotor, replace $B_{S a}(\theta)$ by $B_{S a}(r, \theta) \triangleq \frac{r_{R}}{r} B_{S a}(\theta)$ in (4.5) and $\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}} \equiv 0$ will then hold. The expression for the magnetic field is now

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{S a}(r, \theta)=B_{S a}(r, \theta) \hat{\mathbf{r}}=\mu_{0} \frac{r_{R}}{r}\left(\frac{2 i_{S a}}{g}-\frac{i_{\text {enclosed }}(\theta)}{g}\right) \hat{\mathbf{r}} . \tag{4.6}
\end{equation*}
$$

Similarly, the expressions (4.3) and (4.4) are multiplied by the factor r_{R} / r.
The air gap g is assumed to be small so that

$$
\frac{r_{R}}{r} \approx 1 \text { for } r_{R} \leq r \leq r_{S}=r_{R}+g
$$

Consequently, the factor r_{R} / r does not really change the value of the magnetic field in the air gap. ${ }^{2}$ However, it is straightforward to see that this expression for $\overrightarrow{\mathbf{B}}_{S a}(r, \theta)$ satisfies conservation of flux for the closed surface given in Figure 4.12 (see problems 5 and 17).

4.2.2 Magnetic Field Distribution Due to the Stator Currents

Consider a second stator phase, denoted as phase b, which is rotated 90° from phase a as drawn in Figure 4.13.

FIGURE 4.13. Phase b windings carrying the current $i_{S b}$.
A similar argument to that given for phase a shows that the magnetic field $\overrightarrow{\mathbf{B}}_{S b}$ due to the current $i_{S b}$ in phase b is found by replacing $i_{S a}$ by $i_{S b}$ and θ by $\theta-\pi / 2$ to obtain

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{S b}(r, \theta) & =B_{S b}(r, \theta) \hat{\mathbf{r}}=\mu_{0} \frac{i_{S b}}{g} \frac{r_{R}}{r} \frac{4}{\pi} \sum_{k=1,3,5, \ldots}^{\infty} \frac{(1+\cos (k \pi / 6)}{k} \sin (k \theta) \\
& \approx 1.866 \mu_{0} \frac{i_{S b}}{g} \frac{r_{R}}{r} \frac{4}{\pi} \sin (\theta) \hat{\mathbf{r}} .
\end{aligned}
$$

In summary, the first harmonic approximation for $\overrightarrow{\mathbf{B}}_{S a}(r, \theta)$ and $\overrightarrow{\mathbf{B}}_{S b}(r, \theta)$ are

$$
\begin{aligned}
& \overrightarrow{\mathbf{B}}_{S a}(r, \theta)=B_{S a}(r, \theta) \hat{\mathbf{r}} \approx 1.866 \mu_{0} \frac{i_{S a}}{g} \frac{4}{\pi} \frac{r_{R}}{r} \cos (\theta) \hat{\mathbf{r}} \\
& \overrightarrow{\mathbf{B}}_{S b}(r, \theta)=B_{S b}(r, \theta) \hat{\mathbf{r}} \approx 1.866 \mu_{0} \frac{i_{S b}}{g} \frac{4}{\pi} \frac{r_{R}}{r} \sin (\theta) \hat{\mathbf{r}}
\end{aligned}
$$

[^32]
4.3 Sinusoidally Wound Phases

In the previous section, the higher-order terms in the expression for the radial magnetic field in the air gap were ignored. In this section, the concept of a sinusoidally wound phase is explained, and it is shown that the higher-order harmonic terms in the Fourier series expansion of $\overrightarrow{\mathbf{B}}_{S a}, \overrightarrow{\mathbf{B}}_{S b}$ are identically zero. A sinusoidally wound rotor phase is first described as the corresponding figures are easier to draw in order to get the point across. Next, sinusoidally wound stator phases are described and an expression for the corresponding sinusoidally distributed magnetic fields produced in the air gap by the phase currents are then derived.

4.3.1 Sinusoidally Wound Rotor Phase

To construct a sinusoidally wound rotor phase, a single strand of wire is wrapped around the axial length of a cylindrical core of iron, making coilloops or turns according to a sinusoidal turns density given by

$$
N_{R a}\left(\theta-\theta_{R}\right)=\frac{N_{R}}{2} \sin \left(\theta-\theta_{R}\right) \text { for } \theta_{R}<\theta<\pi+\theta_{R}
$$

where θ_{R} is the rotor position. That is, this specifies that the number of the loops (turns) wrapped around the rotor iron core between θ and $\theta+d \theta$ is $N_{R a}\left(\theta-\theta_{R}\right) d \theta$ [see Figure 4.14(a)].

FIGURE 4.14. Sinusoidally wound rotor phase. The number of loops/turns wound between θ and $\theta+d \theta$ is $N_{R a}\left(\theta-\theta_{R}\right) d \theta$ with the other side of these loops between $\pi+\theta$ and $\pi+\theta+d \theta$. The sine curve envelope drawn around the windings is used to indicate a sinusoidally wound phase. Although not drawn to show this, the cross-sectional area of the sinusoidally wound phase is taken to be infinitesimal.

Consequently, the total number of turns wrapped around the rotor core is then $\int_{\theta_{R}}^{\theta_{R}+\pi} N_{R a}\left(\theta-\theta_{R}\right) d \theta=N_{R}$. Figure 4.14(a) shows how a sinusoidally wound rotor is indicated schematically. In comparison with Figure 4.4, the slots have been removed in Figure 4.14(a), showing only the loops which are now enclosed in a sine curve envelope. This is a standard representation to denote a sinusoidal winding and is also adopted here [3][24].

4.3.2 Sinusoidally Wound Stator Phases

As in the case of the rotor phase, a sinusoidally wound stator phase is constructed by wrapping a single strand of wire around the inside surface of the stator iron to make coil loops or turns. For stator phase a, the number of the coil loops at any angle θ is specified by the sinusoidal turns density

$$
\begin{equation*}
N_{S a}(\theta)=\frac{N_{S}}{2} \sin (\theta) \text { for } 0<\theta<\pi \tag{4.7}
\end{equation*}
$$

that is, $N_{S a}(\theta) d \theta$ is the number of turns between θ and $\theta+d \theta$. The total number of turns wrapped around the inside surface of the stator core is $\int_{0}^{\pi} N_{S a}(\theta) d \theta=N_{S}$. This is illustrated in Figure 4.15. ${ }^{3}$ The top side of this winding, where positive current is out of the page, is denoted as side a while the bottom side of the winding, where positive current is into the page, is denoted as side a^{\prime}.

FIGURE 4.15. Sinusoidally wound stator phase a. The number of loops wound between θ and $\theta+d \theta$ is $N_{S a}(\theta) d \theta$ with the other side of these loops between $\pi+\theta$ and $\pi+\theta+d \theta$.

[^33]Similarly, stator phase b consists of a separate sinusoidally wound wire identical in structure to phase a except it is rotated 90° with respect to phase a [see Figure $4.17(\mathrm{~b})$]. The turns density for phase b is therefore

$$
\begin{equation*}
N_{S b}(\theta)=\frac{N_{S}}{2} \sin (\theta-\pi / 2) \quad \text { for } \pi / 2<\theta<3 \pi / 2 \tag{4.8}
\end{equation*}
$$

The number of turns between θ and $\theta+d \theta$ is $N_{S b}(\theta) d \theta=\left(N_{S} / 2\right) \sin (\theta-$ $\pi / 2) d \theta$ and the total number of turns making up stator phase b is

$$
\int_{\pi / 2}^{3 \pi / 2} N_{S b}(\theta) d \theta=N_{S}
$$

Remark Though Figures 4.14 and 4.15 are not drawn to show this, the cross-sectional area of a sinusoidally distributed winding is modeled as being infinitesimal.

4.4 Sinusoidally Distributed Magnetic Fields

Sinusoidally distributed windings (turns density) are used because the current in such a winding produces a sinusoidally distributed (in θ) radial magnetic field in the air gap. This is now explained.

The objective here is to determine the radial magnetic field $\overrightarrow{\mathbf{B}}_{S a}$ established in the air gap by the current $i_{S a}$ in the sinusoidally distributed winding of phase a. To do so, Ampère's law $\oint \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=i_{\text {enclosed }}$ is applied to the closed-path $1-2-3-4-1$ indicated in Figure 4.16 to obtain

$$
\begin{aligned}
\oint \overrightarrow{\mathbf{H}}_{S a} \cdot d \vec{\ell} & =\int_{0}^{\theta} i_{S a}\left(N_{S} / 2\right) \sin \left(\theta^{\prime}\right) d \theta^{\prime} \\
\int_{1}^{2} \overrightarrow{\mathbf{H}}_{S a} \cdot d \vec{\ell}+\int_{3}^{4} \overrightarrow{\mathbf{H}}_{S a} \cdot d \vec{\ell} & =\int_{0}^{\theta} i_{S a}\left(N_{S} / 2\right) \sin \left(\theta^{\prime}\right) d \theta^{\prime}
\end{aligned}
$$

Evaluating, this becomes

$$
\begin{aligned}
\int_{\ell=0}^{\ell=g} H_{S a}\left(i_{S a}, 0\right) \hat{\mathbf{r}} \cdot(d \ell \hat{\mathbf{r}})+\int_{\ell=0}^{\ell=g} H_{S a}\left(i_{S a}, \theta\right) \hat{\mathbf{r}} \cdot(-d \ell \hat{\mathbf{r}})= & -i_{S a} \frac{N_{S}}{2} \cos (\theta) \\
& +i_{S a} \frac{N_{S}}{2}
\end{aligned}
$$

or

$$
\begin{equation*}
H_{S a}\left(i_{S a}, 0\right) g-H_{S a}\left(i_{S a}, \theta\right) g=-i_{S a} \frac{N_{S}}{2} \cos (\theta)+i_{S a} \frac{N_{S}}{2} \tag{4.9}
\end{equation*}
$$

where it was assumed that $\overrightarrow{\mathbf{H}}_{S a}$ is constant across the air gap. Rearranging,

$$
H_{S a}\left(i_{S a}, \theta\right)=i_{S a} \frac{N_{S}}{2 g} \cos (\theta)+H_{S a}\left(i_{S a}, 0\right)-i_{S a} \frac{N_{S}}{2 g}
$$

In this equation, both $H_{S a}\left(i_{S a}, \theta\right)$ and $H_{S a}\left(i_{S a}, 0\right)$ are unknown. The conservation of flux law $\oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=0$ can be used to determine $H_{S a}\left(i_{S a}, 0\right)$. To do so, consider a closed surface S that contains the rotor core as shown in Figure 4.16. The cylindrical part of the surface S is in the air gap and has radius r_{R} so that it just contains the rotor core. The two disk-shaped ends of the surface S are considered to have zero flux through them as $\overrightarrow{\mathbf{B}}$ is essentially zero there.

FIGURE 4.16. Use of Ampère's law and Gauss's law to determine the air gap radial magnetic field due to $i_{S a}$.

Then

$$
\begin{aligned}
\oint_{S} \overrightarrow{\mathbf{B}}_{S a} \cdot d \overrightarrow{\mathbf{S}} & =\int_{0}^{\ell_{1}} \int_{0}^{2 \pi} B_{S a}\left(i_{S a}, \theta\right) \hat{\mathbf{r}} \cdot\left(r_{R} d \theta d z \hat{\mathbf{r}}\right) \\
& =\ell_{1} r_{R} \int_{0}^{2 \pi} B_{S a}\left(i_{S a}, \theta\right) d \theta \\
& =0 .
\end{aligned}
$$

Now $B_{S a}\left(i_{S a}, \theta\right)=\mu_{0} H_{S a}\left(i_{S a}, \theta\right)$ as the flux surface is in the air gap. Thus,

$$
\begin{aligned}
\int_{0}^{2 \pi} B_{S a}\left(i_{S a}, \theta\right) d \theta & =\int_{0}^{2 \pi} \mu_{0}\left(i_{S a} \frac{N_{S}}{2 g} \cos (\theta)+H_{S a}\left(i_{S a}, 0\right)-i_{S a} \frac{N_{S}}{2 g}\right) d \theta \\
& =2 \pi \mu_{0}\left(H_{S a}\left(i_{S a}, 0\right)-i_{S a} \frac{N_{S}}{2 g}\right) \\
& =0
\end{aligned}
$$

or

$$
H_{S a}\left(i_{S a}, 0\right)=i_{S a} \frac{N_{S}}{2 g} .
$$

It then follows that

$$
\begin{align*}
H_{S a}\left(i_{S a}, \theta\right) & =\frac{N_{S}}{2 g} i_{S a} \cos (\theta) \\
B_{S a}\left(i_{S a}, \theta\right) & =\frac{\mu_{0} N_{S}}{2 g} i_{S a} \cos (\theta) \tag{4.10}
\end{align*}
$$

In applying Ampère's law, it was assumed that $\overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{H}}$ was constant across the air gap in the radial direction, that is, $\overrightarrow{\mathbf{B}}$ did not depend on the cylindrical coordinate r. However, in order to satisfy the conservation of flux $\oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=0$ in the air gap for a closed surface such as the one in Figure 4.12 , it is necessary that $\overrightarrow{\mathbf{B}}$ decrease as $1 / r$ in the air gap. Therefore, the expressions for $H_{S a}, B_{S a}$ are modified by the factor r_{R} / r so that conservation of flux holds in the air gap. ${ }^{4}$ Finally then, the magnetic field $\overrightarrow{\mathbf{B}}_{S a}$ in the air gap due to $i_{S a}$ is given by

$$
\overrightarrow{\mathbf{B}}_{S a}\left(i_{S a}, r, \theta\right)=\frac{\mu_{0} N_{S} r_{R}}{2 g} \frac{i_{S a} \cos (\theta)}{r} \hat{\mathbf{r}}
$$

Similarly, for stator phase b which is also sinusoidally wound, but rotated 90° counterclockwise from phase a, the magnetic field $\overrightarrow{\mathbf{B}}_{S b}$ in the air gap due to $i_{S b}$ is given by

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{S b}\left(i_{S b}, r, \theta\right) & =\frac{\mu_{0} N_{S} r_{R}}{2 g} \frac{i_{S b} \cos (\theta-\pi / 2)}{r} \hat{\mathbf{r}} \\
& =\frac{\mu_{0} N_{S} r_{R}}{2 g} \frac{i_{S b} \sin (\theta)}{r} \hat{\mathbf{r}} .
\end{aligned}
$$

Figure 4.17 (a) shows the magnetic field lines due to the current $i_{S a}$ in phase a (drawn with $i_{S a}>0$) while Figure 4.17 (b) shows the magnetic field lines due to $i_{S b}$ in phase b (drawn with $i_{S b}>0$). The sinusoidal windings have resulted in sinusoidally distributed radial magnetic fields in the air gap produced by the stator currents.

[^34]

FIGURE 4.17. (a) Magnetic field lines due to the current $i_{S a}$ in the sinusoidally distributed winding of phase a. (b) Magnetic field lines due to the current $i_{S b}$ in the sinusoidally distributed winding of phase b.

4.4.1 Sinusoidally Distributed Rotating Magnetic Field

The total magnetic field in the air gap due to the current in both stator phases is then

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S}\left(i_{S a}, i_{S b}, r, \theta\right) & =\overrightarrow{\mathbf{B}}_{S a}\left(i_{S a}, r, \theta\right)+\overrightarrow{\mathbf{B}}_{S b}\left(i_{S b}, r, \theta\right) \\
& =\frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{1}{r}\left(i_{S a} \cos (\theta)+i_{S b} \sin (\theta)\right) \hat{\mathbf{r}} \tag{4.11}
\end{align*}
$$

With $i_{S a}(t)=I_{S} \cos \left(\omega_{S} t\right)$ and $i_{S b}(t)=I_{S} \sin \left(\omega_{S} t\right)$, the expression (4.11) simplifies to

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S}(r, \theta, t) & =\frac{\mu_{0} r_{R} N_{S} I_{S}}{2 g} \frac{1}{r}\left(\cos \left(\omega_{S} t\right) \cos (\theta)+\sin \left(\omega_{S} t\right) \sin (\theta)\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} r_{R} N_{S} I_{S}}{2 g} \frac{1}{r} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} r_{R} N_{S} I_{S}}{2 g} \frac{1}{r} \cos \left(\theta-\theta_{S}(t)\right) \hat{\mathbf{r}} \tag{4.12}
\end{align*}
$$

where $\theta_{S}(t) \triangleq \omega_{S} t$.
Equation (4.12) is the mathematical representation of a rotating magnetic field which rotates at the angular (electrical) frequency ω_{S} and is illustrated in Figure 4.18. Note that the magnetic field has a fixed distribution with respect to θ_{S}. The angle θ_{S} is referred to as the magnetic axis of the rotating magnetic field.

Remark In Figure 4.18, the sinusoidally distributed stator windings are drawn with four loops in the sine curve envelope rather than with nine loops as in Figure 4.17. This is done for clarity of presentation. The reader should always assume that the sine curve envelope implies that the winding densities for phases a and b are given by (4.7) and (4.8), respectively.

FIGURE 4.18. Sinusoidally distributed rotating radial magnetic field in the air gap. (For convenience, the magnetic field lines inside the stator iron are not drawn.)

4.5 Magnetomotive Force (mmf)

The magnetomotive force (mmf) is defined to be $\Im \triangleq \oint \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}$, that is, the integral of $\overrightarrow{\mathbf{H}}$ around a closed curve. Of course, by Ampère's law,

$$
\Im=\oint \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=i_{\text {enclosed }}
$$

Instead of the path used in Figure 4.16, consider applying Ampère's law to the path $1-2-3-4-1$ in Figure 4.19 .

FIGURE 4.19. Sinusoidally wound stator phase.
Now $\overrightarrow{\mathbf{H}}=0$ on the paths $2-3$ and $4-1$. By symmetry, $\overrightarrow{\mathbf{H}}(\theta-\pi)=-\overrightarrow{\mathbf{H}}(\theta)$ and, as $d \vec{\ell}=d \ell(-\hat{\mathbf{r}})$ on the path $1-2$ while $d \vec{\ell}=d \ell \hat{\mathbf{r}}$ on the path $3-4$, it follows that $\int_{3}^{4} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=\int_{1}^{2} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}$ and so

$$
\Im \triangleq \oint \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=2 \int_{3}^{4} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=2 \int_{3}^{4}(H(\theta) \hat{\mathbf{r}}) \cdot(d \ell \hat{\mathbf{r}})=2 H(\theta) g .
$$

In Figure 4.19 the path is traversed in the clockwise direction in contrast to the path in Figure 4.16 which is traversed in the counterclockwise direction. Consequently, in the application of Ampère's law, the current is now considered positive if it is into the page rather than out of the page. The enclosed current for the path $1-2-3-4-1$ is therefore

$$
i_{\text {enclosed }}=-\int_{\theta-\pi}^{\theta} i_{S a}\left(N_{S} / 2\right) \sin \left(\theta^{\prime}\right) d \theta^{\prime}=i_{S a} N_{S} \cos (\theta)
$$

Ampère's law $\oint \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=i_{\text {enclosed }}$ then gives

$$
\Im \triangleq \oint \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=i_{S a} N_{S} \cos (\theta)
$$

or

$$
\Im(\theta)=2 H(\theta) g=i_{S a} N_{S} \cos (\theta) .
$$

The interpretation is that the $\mathrm{mmf} \Im(\theta)=i_{S a} N_{S} \cos (\theta)$ which is produced by the current is "dropped" across the air gap in the amount of $\Im_{1}(\theta)=$ $H(\theta) g$ across each of the two diametrically opposite sides of the air gap. Then one works with the $\mathrm{mmf} \Im$ and refers to an "mmf wave" $\Im_{1}(\theta)=$ $H(\theta) g$ set up in the air gap, and so on (see, e.g., Refs. [5][19][21][24][26][58]). In contrast, a different emphasis (but with the same results) has been taken here. Specifically, Ampère's law is used to find $\overrightarrow{\mathbf{H}}$ in the air gap by computing the mmf and using $\overrightarrow{\mathbf{H}} \equiv 0$ in the iron. Then $\overrightarrow{\mathbf{B}}$ in the air gap is found simply from $\overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{H}}$. In other words, the mmf is only used as a device to compute the magnetic induction field $\overrightarrow{\mathbf{B}}$ in the air gap. After this is accomplished, the $\overrightarrow{\mathbf{B}}$ field is used exclusively because it is the quantity that produces forces on currents and voltages in coil loops, that is, it is directly related to the physical phenomena. This is perhaps better said in the following quotation from Melvin Schwartz, a 1988 Noble Laureate in Physics: ${ }^{5}$
... we must interject a small bit of philosophy. It is customary to call $\overrightarrow{\mathbf{B}}$ the magnetic induction and $\overrightarrow{\mathbf{H}}$ the magnetic field strength. We reject this custom inasmuch as $\overrightarrow{\mathbf{B}}$ is the truly fundamental field and $\overrightarrow{\mathbf{H}}$ is a subsidiary artifact. We shall call $\overrightarrow{\mathbf{B}}$ the magnetic field and leave the reader to deal with $\overrightarrow{\mathbf{H}}$ as he pleases.

Remark

In this and the previous sections, only the radial component (i.e., in the $\hat{\mathbf{r}}$ direction) of $\overrightarrow{\mathbf{B}}$ in the air gap was found. However, Figures $3.2-3.5$ indicate that one would expect that an azimuthal component (i.e., in the $\hat{\boldsymbol{\theta}}$ direction) of $\overrightarrow{\mathbf{B}}$ would also be present in the air gap. This is indeed the case and it is derived in (the optional) Section 4.6. Only the radial component of $\overrightarrow{\mathbf{B}}$ contributes to the machine torque and produces emfs in the windings of the machine, which is the reason that one need only consider this component to derive the mathematical models of AC machines.

[^35]
4.6 Flux Linkage

The notion of flux $\phi=\int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}$ is defined for a surface whose boundary is a simple closed curve. After computing the flux, Faraday's law $\xi=-d \phi / d t$ is then used to compute the induced emf (voltage) in the loop. However, phase windings are usually comprised of many windings which are also distributed and one wants to compute the total emf induced in the phase winding. It has been found that the notion of flux linkage can be used to do this in a convenient fashion.

To show how flux linkage is used in AC machines, consider Figure 4.20 which shows three loops wound on the inside surface of a stator iron. That is, a single piece of wire is wound around the inside surface where one loop is placed in a slot at $\theta=\pi / 3$ (the other side of the loop is in the slot at $\theta=\pi / 3-\pi)$ then a second loop is wound at $\theta=\pi / 2$ with its other side at $\theta=3 \pi / 2$) and finally a third loop is wound at $\theta=2 \pi / 3$ (with its other side at $\theta=5 \pi / 3$). The flux surface for each loop is taken to coincide with the loop itself as shown in Figure $4.20(\mathrm{~b})$. As this figure shows, the first loop/surface is the path from a to b, the second loop/surface is the path from c to d and the third loop is the path from e to $f=a^{\prime}$. One end of the wire is labeled a and the other a^{\prime} and the objective here is to calculate the total emf $\xi_{a-a^{\prime}}$ induced in the wire by the rotating permanent magnet rotor.

FIGURE 4.20. (a) Distributed winding for stator phase a with a permanent magnet rotor. (b) The fux surfaces for each stator loop.

As before, if the current in the stator winding is positive, the symbol \odot means that it is coming out of the page and the symbol \otimes means that it is going into the page. Here it is assumed that the permanent magnet produces a radial magnetic field in the air gap given by

$$
\overrightarrow{\mathbf{B}}_{R}\left(\theta-\theta_{R}\right)=B_{\max } \frac{r_{R}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}}
$$

where r_{R} is the radius of the rotor, (r, θ) are the polar coordinates of an arbitrary location in the air gap and θ_{R} is the rotor angle defined by the center line (magnetic axis) of the rotor's north pole [see Figure 4.20(a)]. This rotor magnet produces a flux in each loop and, for any given rotor position θ_{R}, this flux is different in the loop at $\theta=\pi / 3$, the loop at $\pi / 2$, and the loop at $2 \pi / 3$. Further, if the rotor is moving, then it is producing a changing flux in each of the three loops and therefore, by Faraday's law, this changing flux will produce an emf in each of the three loops. Of course, at any point in time, the emfs will be different in each of the three loops.

To compute these emfs, let

$$
\begin{equation*}
d \overrightarrow{\mathbf{S}}=r_{S} d \theta d z \hat{\mathbf{r}} \tag{4.13}
\end{equation*}
$$

where r_{S} is the radius of the inside surface of the stator iron. Note that with this choice of $d \overrightarrow{\mathbf{S}}$, the positive direction of travel around the loop coincides with the positive direction chosen for the current in that loop [see Figure $4.20(\mathrm{~b})]$. On the inside surface of the rotor, $r=r_{S}$ so that the flux in the loop whose sides are in the slots at $\theta=\pi / 3$ and $\theta=\pi / 3-\pi$ is

$$
\begin{aligned}
\phi_{\pi / 3} & =\int_{\substack{\text { Loop from } \\
\pi / 3-\pi \text { to } \pi / 3}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}} \\
& =\int_{0}^{\ell_{1}} \int_{\theta=\pi / 3-\pi}^{\theta=\pi / 3} B_{\max } \frac{r_{R}}{r_{S}} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} \cdot\left(r_{S} d \theta d z \hat{\mathbf{r}}\right) \\
& =\ell_{1} r_{R} \int_{\theta=\pi / 3-\pi}^{\theta=\pi / 3} B_{\max } \cos \left(\theta-\theta_{R}\right) d \theta \\
& =\left.\ell_{1} r_{R} B_{\max } \sin \left(\theta-\theta_{R}\right) d \theta\right|_{\theta=\pi / 3-\pi} ^{\theta=\pi / 3} \\
& =2 \ell_{1} r_{R} B_{\max } \sin \left(\pi / 3-\theta_{R}\right)
\end{aligned}
$$

Then the emf induced in this loop by the magnetic field of the permanent magnet is

$$
\xi_{\pi / 3}=-\frac{d \phi_{\pi / 3}}{d t}=2 \ell_{1} r_{R} B_{\max } \omega_{R} \cos \left(\theta_{R}-\pi / 3\right)
$$

where $\omega_{R} \triangleq d \theta_{R} / d t$. If $\xi_{\pi / 3}>0$, this emf will force current to go in the positive direction of travel around the loop which coincides with the positive direction of current in that loop.

Again using the outward normal so that $d \overrightarrow{\mathbf{S}}$ is still given by equation (4.13) as before, the flux in the loop between $-\pi / 2$ to $\pi / 2$ is

$$
\phi_{\pi / 2}=\int_{\substack{\text { Loop from } \\-\pi / 2 \text { to } \pi / 2}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}=2 \ell_{1} r_{R} B_{\max } \sin \left(\pi / 2-\theta_{R}\right)
$$

and the induced emf in the loop is

$$
\xi_{\pi / 2}=-\frac{d \phi_{\pi / 2}}{d t}=2 \ell_{1} r_{R} B_{\max } \omega_{R} \cos \left(\theta_{R}-\pi / 2\right)
$$

If $\xi_{\pi / 2}>0$, it will force current to go in the positive direction of travel around the loop which also coincides with the positive direction of current in that loop.

Finally, with $d \overrightarrow{\mathbf{S}}$ given by (4.13) once more,

$$
\phi_{2 \pi / 3}=\int_{\substack{\text { Loop from } \\ 2 \pi / 3-\pi \text { to } 2 \pi / 3}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}=2 \ell_{1} r_{R} B_{\max } \sin \left(2 \pi / 3-\theta_{R}\right)
$$

and

$$
\xi_{2 \pi / 3}=-\frac{d \phi_{2 \pi / 3}}{d t}=2 \ell_{1} r_{R} B_{\max } \omega_{R} \cos \left(\theta_{R}-2 \pi / 3\right) .
$$

Again, if $\xi_{2 \pi / 3}>0$, it will force current to go in the positive direction of travel around the loop coinciding with the positive direction of current in that loop.

All three loops are connected in series to make up the phase winding and the sign convention for positive travel around each loop was chosen to coincide with the positive direction of current in the phase as illustrated in Figure 4.20 (b). That is, the induced emfs in the loops are all in series in the phase winding and, as they all have the same sign convention, they can be added up to obtain the total emf in the phase winding. As a result, the total voltage induced in the phase is

$$
\begin{aligned}
\xi_{a-a^{\prime}}= & \xi_{\pi / 3}+\xi_{\pi / 2}+\xi_{2 \pi / 3}=2 \ell_{1} r_{R} B_{\max } \omega_{R} \cos \left(\theta_{R}-\pi / 3\right) \\
& +2 \ell_{1} r_{R} B_{\max } \omega_{R} \cos \left(\theta_{R}-\pi / 2\right)+2 \ell_{1} r_{R} B_{\max } \omega_{R} \cos \left(\theta_{R}-2 \pi / 3\right) \\
= & (1+\sqrt{3}) 2 \ell_{1} r_{R} B_{\max } \omega_{R} \sin \left(\theta_{R}\right) .
\end{aligned}
$$

However, consider

$$
\begin{aligned}
\xi_{a-a^{\prime}} & =\xi_{\pi / 3}+\xi_{\pi / 2}+\xi_{2 \pi / 3} \\
& =-\left(\frac{d \phi_{\pi / 3}}{d t}+\frac{d \phi_{\pi / 2}}{d t}+\frac{d \phi_{2 \pi / 3}}{d t}\right) \\
& =-\frac{d}{d t}\left(\phi_{\pi / 3}+\phi_{\pi / 2}+\phi_{2 \pi / 3}\right) \\
& =-\frac{d}{d t} \lambda_{a-a^{\prime}}
\end{aligned}
$$

where

$$
\begin{aligned}
\lambda_{a-a^{\prime}} \triangleq & \phi_{\pi / 3}+\phi_{\pi / 2}+\phi_{2 \pi / 3} \\
= & 2 \ell_{1} r_{R} B_{\max } \sin \left(\pi / 3-\theta_{R}\right)+2 \ell_{1} r_{R} B_{\max } \sin \left(\pi / 2-\theta_{R}\right) \\
& +2 \ell_{1} r_{R} B_{\max } \sin \left(2 \pi / 3-\theta_{R}\right) \\
= & (1+\sqrt{3}) 2 \ell_{1} r_{R} B_{\max } \cos \left(\theta_{R}\right)
\end{aligned}
$$

is defined as the total flux linkage in phase $a-a^{\prime}$. Then the total induced emf $\xi_{a-a^{\prime}}$ in the phase $a-a^{\prime}$ is

$$
\xi_{a-a^{\prime}}=-\frac{d \lambda_{a-a^{\prime}}}{d t}=(1+\sqrt{3}) 2 \ell_{1} r_{R} B_{\max } \omega_{R} \sin \left(\theta_{R}\right)
$$

The point here is that one can first sum the fluxes in all the loops of a phase winding (i.e., compute the flux linkage), and then apply Faraday's law to the resulting flux linkage to obtain the total emf in the phase winding. However, as done above, care must be taken to ensure that the flux in each loop is computed in a consistent fashion so that the resulting emfs all have the same sign convention and therefore add up to give the total emf in the phase winding.

4.7 Azimuthal Magnetic Field in the Air Gap*

It was shown above that the radial magnetic field $\overrightarrow{\mathbf{B}}_{S a}$ at a point (r, θ) in the air gap due to the current $i_{S a}$ in phase a is given by ($r_{R}=\ell_{2} / 2$)

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{S a}\left(i_{S a}, r, \theta\right)=\frac{\mu_{0} r_{R} N_{S}}{2 g r} i_{S a} \cos (\theta) \hat{\mathbf{r}} \tag{4.14}
\end{equation*}
$$

where \hat{r} is a unit vector in the radial direction and g is the radial length of the air gap. However, there has to be a component of the magnetic field in the $\hat{\boldsymbol{\theta}}$ direction (azimuthal component) as is now shown by applying Ampère's law to the curve $1-2-3-4-1$ shown in Figure 4.21. By Ampère's law,

$$
\oint_{1-2-3-4-1} \overrightarrow{\mathbf{H}}_{S a} \cdot d \vec{\ell}=\int_{1}^{2} \overrightarrow{\mathbf{H}}_{S a} \cdot d \vec{\ell}=\int_{\theta_{1}}^{\theta_{2}}\left(-i_{S a}\right) \frac{N_{S}}{2} \sin (\theta) d \theta
$$

as sides $2-3,3-4$, and $4-1$ are inside the magnetic material ${ }^{6}$ where $\overrightarrow{\mathbf{H}} \equiv \mathbf{0}$ and side $1-2$ is in the air gap just along the inside surface of the stator. Note

[^36]that for closed curve $1-2-3-4-1$ with $0 \leq \theta_{1} \leq \theta_{2} \leq \pi$, the minus sign is used with the current (i.e., $-i_{S a}$). This is because the path $1-2-3-4-1$ is traversed in the clockwise direction so that Ampère's law assumes that positive current is into the page (\otimes) while $i_{S a}>0$ means the current is out of the page (\odot).

FIGURE 4.21. Closed curves for determining the azimuthal component $B_{S a \theta}$ of the magnetic field produced by $i_{S a}$ in the air gap using Ampère's law.

With $r_{S}=r_{R}+g$, on the path $1-2$ the differential line element is $d \vec{\ell}=$ $r_{S} d \theta \hat{\boldsymbol{\theta}}$ so that the integral $\int_{1}^{2} \overrightarrow{\mathbf{H}}_{S a} \cdot d \overrightarrow{\boldsymbol{\ell}}$ evaluates to

$$
\int_{\theta_{1}}^{\theta_{2}}\left(H_{S a \theta} \hat{\boldsymbol{\theta}}\right) \cdot\left(r_{S} d \theta \hat{\boldsymbol{\theta}}\right)=-\int_{\theta_{1}}^{\theta_{2}} i_{S a} \frac{N_{S}}{2} \sin (\theta) d \theta
$$

for $0 \leq \theta_{1} \leq \theta \leq \theta_{2} \leq \pi$. This must hold for any θ_{1}, θ_{2} which implies that

$$
H_{S a \theta}\left(i_{S a}, r_{S}, \theta\right)=-\frac{N_{S}}{2 r_{S}} i_{S a} \sin (\theta)
$$

for $0 \leq \theta \leq \pi$. For $\pi \leq \theta_{1} \leq \theta \leq \theta_{2} \leq 2 \pi$, the turns density is $\left(N_{S} / 2\right)|\sin (\theta)|=$ $-\left(N_{S} / 2\right) \sin (\theta)$. However, for this range of $\theta, i_{S a}>0$ means that the current is into the page so that a similar argument shows that

$$
H_{S a \theta}\left(i_{S a}, r_{S}, \theta\right)=-\frac{N_{S}}{2 r_{S}} i_{S a} \sin (\theta)
$$

for $\pi \leq \theta \leq 2 \pi$. Combining,

$$
B_{S a \theta}\left(i_{S a}, r_{S}, \theta\right)=-\frac{\mu_{0} N_{S}}{2 r_{S}} i_{S a} \sin (\theta)
$$

for $0 \leq \theta \leq 2 \pi$. This is the tangential magnetic field at the inside surface of the stator (i.e., at $r=r_{S}$). To compute the azimuthal component of $B_{S a \theta}$ at the surface of the rotor, that is, $B_{S a \theta}\left(i_{S a}, r_{R}, \theta\right)$, Ampère's law is applied to the closed path $a-b-c-d-a$ in Figure 4.21. Specifically,

$$
\oint_{a-b-c-d-a} \overrightarrow{\mathbf{H}}_{S a} \cdot d \overrightarrow{\boldsymbol{\ell}}=\int_{a}^{b} \overrightarrow{\mathbf{H}}_{S a} \cdot d \vec{\ell}=\int_{\theta_{3}}^{\theta_{4}} H_{S a \theta}\left(i_{S a}, r_{R}, \theta\right) r_{R} d \theta \equiv 0
$$

as the path does not enclose any current. (The sides $b-c, c-d$ and $d-a$ are inside the magnetic material of the rotor where $\overrightarrow{\mathbf{H}} \equiv 0$ and the path $a-b$ is just on the surface of the rotor in the air gap.) As θ_{3}, θ_{4} are arbitrary, it follows that

$$
\begin{aligned}
H_{S a \theta}\left(i_{S a}, r_{R}, \theta\right) & \equiv 0 \\
B_{S a \theta}\left(i_{S a}, r_{R}, \theta\right) & \equiv 0 .
\end{aligned}
$$

The azimuthal component of the magnetic field in the air gap at the surface of both the stator and rotor has now been found. To find $\overrightarrow{\mathbf{B}}_{S}$ inside the air gap, let the tangential (azimuthal) component of $\overrightarrow{\mathbf{B}}_{S}$ be of the form

$$
\begin{equation*}
B_{S a \theta}\left(i_{S a}, r_{S}, \theta\right) \hat{\boldsymbol{\theta}}=-\alpha(r) \frac{\mu_{0} N_{S}}{2 r_{S}} i_{S a} \sin (\theta) \hat{\boldsymbol{\theta}} \tag{4.15}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha\left(r_{S}\right)=1 \\
& \alpha\left(r_{R}\right)=0 \tag{4.16}
\end{align*}
$$

as $\alpha(r)$ must satisfy (9.75) in order for (4.15) to hold at the rotor and stator surfaces.

Before the expression for $\alpha(r)$ is derived, it is first shown that the radial component of $\overrightarrow{\mathbf{B}}_{S a}$ given in (4.14) must be modified to account for the azimuthal magnetic field. To see this, recall that Gauss's equation requires that the divergence of $\overrightarrow{\mathbf{B}}$ be identically zero. With $\overrightarrow{\mathbf{B}}=B_{r} \hat{\mathbf{r}}+B_{\theta} \hat{\boldsymbol{\theta}}+B_{z} \hat{\mathbf{z}}$, the divergence in cylindrical coordinates is given by

$$
\nabla \cdot \overrightarrow{\mathbf{B}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{r}\right)+\frac{1}{r} \frac{\partial B_{\theta}}{\partial \theta}+\frac{\partial B_{z}}{\partial z} \equiv 0 .
$$

Consider $\overrightarrow{\mathbf{B}}_{S a}$ of the form

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{S a} & =B_{S a r} \hat{\mathbf{r}}+B_{S a \theta} \hat{\boldsymbol{\theta}} \\
& =B_{S a r} \hat{\mathbf{r}}-\alpha(r) \frac{\mu_{0} N_{S}}{2 r_{S}} i_{S a} \sin (\theta) \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

Taking the divergence of this expression results in

$$
\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{S a r}\right)-\frac{1}{r} \alpha(r) \frac{\mu_{0} N_{S}}{2 r_{S}} i_{S a} \frac{\partial}{\partial \theta} \sin (\theta) \equiv 0
$$

or

$$
\frac{\partial}{\partial r}\left(r B_{S a r}\right)=\alpha(r) \frac{\mu_{0} N_{S}}{2 r_{S}} i_{S a} \cos (\theta)
$$

Integrating with respect to r, one obtains

$$
r B_{S a r}=\frac{\mu_{0} N_{S}}{2 r_{S}} i_{S a} \cos (\theta) \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}+f(\theta)
$$

where $f(\theta)$ is a "constant of integration". Taking it to be

$$
f(\theta)=\frac{\mu_{0} r_{R} N_{S}}{2 g} i_{S a} \cos (\theta)
$$

gives

$$
\frac{f(\theta)}{r}=\frac{\mu_{0} r_{R} N_{S}}{2 g r} i_{S a} \cos (\theta)
$$

which is the original expression for the radial component of $\overrightarrow{\mathbf{B}}_{S a}$ given in (4.14). Thus, the radial component of $\overrightarrow{\mathbf{B}}_{S a}$ is now given by

$$
B_{S a r}=\frac{\mu_{0} r_{R} N_{S}}{2 g} i_{S a} \frac{\cos (\theta)}{r}\left(1+\frac{g}{r_{S} r_{R}} \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}\right) .
$$

At the rotor surface, this expression for $B_{S a r}$ is the same as that given by (4.14) with $r=r_{R}$. Consequently, the torque on the rotor will not change due to this change in the radial component of $\overrightarrow{\mathbf{B}}$. It is shown below that $0 \leq \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime} \leq g / 2$ for small air gaps so that the change in the radial component is bounded by

$$
\frac{g^{2}}{2 r_{S} r_{R}} \ll 1
$$

so that it is indeed a small effect.
Summarizing,

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S a}= & \frac{\mu_{0} r_{R} N_{S}}{2 g} i_{S a} \frac{\cos (\theta)}{r}\left(1+\frac{g}{r_{S} r_{R}} \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}\right) \hat{\mathbf{r}} \\
& -\frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{g}{r_{S} r_{R}} \alpha(r) i_{S a} \sin (\theta) \hat{\boldsymbol{\theta}} \tag{4.17}
\end{align*}
$$

with

$$
\begin{aligned}
& \alpha\left(r_{S}\right)=1 \\
& \alpha\left(r_{R}\right)=0 .
\end{aligned}
$$

Figure 4.22 indicates the distribution of the azimuthal magnetic field with $i_{S a}>0$. Note that the field strength decreases as one moves along the radial direction from the stator side of the air gap to the rotor side. It also decreases as one moves in the θ direction from $\pm \pi / 2$ to 0 or π.

FIGURE 4.22. Distribution of azimuthal magnetic field $B_{S a \theta} \hat{\boldsymbol{\theta}}$ in the air gap.

Determination of $\alpha(r)$

To determine $\alpha(r)$ for $r_{R}<r<r_{S}$, Ampère's law in differential form $\nabla \times \overrightarrow{\mathbf{H}}=\overrightarrow{\mathbf{J}}_{\text {free }}$ is used. In the air gap, there are no currents so $\nabla \times \overrightarrow{\mathbf{H}}=\mathbf{0}$, nor is there any magnetic material so that $\overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{H}}$. Consequently, Ampère's law in the air gap is simply

$$
\nabla \times \overrightarrow{\mathbf{B}}=\mathbf{0}
$$

In cylindrical coordinates, this becomes

$$
\begin{aligned}
\nabla \times \overrightarrow{\mathbf{B}} & =\left(\frac{1}{r} \frac{\partial B_{z}}{\partial \theta}-\frac{\partial B_{\theta}}{\partial z}\right) \hat{\mathbf{r}}+\left(\frac{\partial B_{r}}{\partial z}-\frac{\partial B_{z}}{\partial r}\right) \hat{\boldsymbol{\theta}}+\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r B_{\theta}\right)-\frac{\partial B_{r}}{\partial \theta}\right) \hat{\mathbf{z}} \\
& =\mathbf{0} .
\end{aligned}
$$

By the assumed cylindrical symmetry, $B_{S a z} \equiv 0$ and $B_{S a r}, B_{S a \theta}$ do not depend on the coordinate z, so that one need only satisfy the z component of $\nabla \times \overrightarrow{\mathbf{B}}=\mathbf{0}$, that is,

$$
\frac{\partial}{\partial r}\left(r B_{S a \theta}\right)=\frac{\partial B_{S a r}}{\partial \theta}
$$

This becomes

$$
-\frac{g}{r_{S} r_{R}} \frac{\partial}{\partial r}(r \alpha(r)) i_{S a} \sin (\theta)=-i_{S a} \frac{\sin (\theta)}{r}\left(1+\frac{g}{r_{S} r_{R}} \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}\right)
$$

Canceling terms and expanding, this reduces to

$$
\begin{aligned}
\frac{g}{r_{S} r_{R}} \frac{d}{d r}(r \alpha(r)) & =\frac{1}{r}\left(1+\frac{g}{r_{S} r_{R}} \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}\right) \\
\frac{d}{d r}(r \alpha) & =\frac{1}{r} \frac{r_{S} r_{R}}{g}+\frac{\int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}}{r} \\
r \alpha+r^{2} \frac{d \alpha}{d r} & =\frac{r_{S} r_{R}}{g}+\int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}
\end{aligned}
$$

Differentiating this last expression with respect to r and rearranging, the differential equation

$$
\alpha+r \frac{d \alpha}{d r}+2 r \frac{d \alpha}{d r}+r^{2} \frac{d^{2} \alpha}{d r^{2}}=\alpha
$$

is obtained, or

$$
\frac{d^{2} \alpha}{d r^{2}}+\frac{3}{r} \frac{d \alpha}{d r}=0
$$

Solving this differential equation for $d \alpha / d r$ results in

$$
\frac{d \alpha}{d r}=c_{1} e^{-\int_{r_{R}}^{r}\left(3 / r^{\prime}\right) d r^{\prime}}=c_{1} e^{-3 \ln \left(r / r_{R}\right)}
$$

and therefore

$$
\begin{equation*}
\alpha(r)=c_{1} \int_{r_{R}}^{r} e^{-3 \ln \left(r^{\prime} / r_{R}\right)} d r^{\prime}+c_{2} \tag{4.18}
\end{equation*}
$$

The condition $\alpha\left(r_{R}\right)=0$ forces $c_{2}=0$ and $\dot{\alpha}\left(r_{S}\right)=1$ requires that

$$
c_{1}=\frac{1}{\int_{r_{R}}^{r_{S}} e^{-3 \ln \left(r^{\prime} / r_{R}\right)} d r^{\prime}} \approx \frac{1}{g}
$$

This approximation follows from the assumption of a small air gap as

$$
\begin{equation*}
\ln \left(r / r_{R}\right) \approx \ln (1)=0 \quad \text { for } r_{R}<r<r_{S} \tag{4.19}
\end{equation*}
$$

so that

$$
\int_{r_{R}}^{r_{S}} e^{-3 \ln \left(r^{\prime} / r_{R}\right)} d r^{\prime} \approx \int_{r_{R}}^{r_{S}} 1 d r^{\prime}=r_{S}-r_{R}=g
$$

Substitution of $c_{1}=1 / g, c_{2}=0$ into (4.18) and invoking the approximation (4.19) gives

$$
\begin{aligned}
\alpha(r) & =\frac{1}{g} \int_{r_{R}}^{r} e^{-3 \ln \left(r^{\prime} / r_{R}\right)} d r^{\prime} \\
& \approx \frac{1}{g} \int_{r_{R}}^{r} 1 d r^{\prime} \\
& =\frac{r-r_{R}}{g}
\end{aligned}
$$

In other words, $\alpha(r)$ is approximately a linear function of r in the air gap. Such a linear dependence is pointed out by C. B. Gray [5].

4.7.1 Electric Field $\overrightarrow{\mathbf{E}}_{S a}$

The axial electric field produced by the magnetic field $\overrightarrow{\mathbf{B}}_{S a}$ is now computed. Recall that the magnetic field is given by

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{S a}= & \frac{\mu_{0} \ell_{2} N_{S}}{4 g} i_{S a} \frac{\cos (\theta)}{r}\left(1+\frac{g}{r_{S} r_{R}} \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}\right) \hat{\mathbf{r}} \\
& -\frac{\mu_{0} \ell_{2} N_{S}}{4 g} \frac{g}{r_{S} r_{R}} \alpha(r) i_{S a} \sin (\theta) \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

The electric field induced by this changing magnetic field is found by solving

$$
\begin{equation*}
\nabla \times \overrightarrow{\mathbf{E}}_{S a}=-\frac{\partial \overrightarrow{\mathbf{B}}_{S a}}{\partial t} \tag{4.20}
\end{equation*}
$$

In cylindrical coordinates, the curl of $\overrightarrow{\mathbf{E}}$ is given by

$$
\nabla \times \overrightarrow{\mathbf{E}}=\left(\frac{1}{r} \frac{\partial E_{z}}{\partial \theta}-\frac{\partial E_{\theta}}{\partial z}\right) \hat{\mathbf{r}}+\left(\frac{\partial E_{r}}{\partial z}-\frac{\partial E_{z}}{\partial r}\right) \hat{\boldsymbol{\theta}}+\frac{1}{r}\left(\frac{\partial}{\partial r}\left(r E_{\theta}\right)-\frac{\partial E_{r}}{\partial \theta}\right) \hat{\mathbf{z}} .
$$

By the usual symmetry assumptions

$$
\begin{equation*}
\frac{\partial E_{S a \theta}}{\partial z}=0, \quad \frac{\partial E_{S a r}}{\partial z}=0 \tag{4.21}
\end{equation*}
$$

and, as the z component of $\overrightarrow{\mathbf{B}}_{S a}$ is zero (i.e., $B_{S a z} \equiv 0$), it follows that

$$
\begin{equation*}
\frac{\partial}{\partial r}\left(r E_{S a \theta}\right)-\frac{\partial E_{S a r}}{\partial \theta} \equiv 0 \tag{4.22}
\end{equation*}
$$

Then (4.20) reduces to

$$
\begin{equation*}
\nabla \times \overrightarrow{\mathbf{E}}_{S a}=\frac{1}{r} \frac{\partial E_{S a z}}{\partial \theta} \hat{\mathbf{r}}-\frac{\partial E_{S a z}}{\partial r} \hat{\boldsymbol{\theta}}=-\frac{\partial B_{S a r}}{\partial t} \hat{\mathbf{r}}-\frac{\partial B_{S a \theta}}{\partial t} \hat{\boldsymbol{\theta}} \tag{4.23}
\end{equation*}
$$

The simplest solution is one of the form

$$
\overrightarrow{\mathbf{E}}_{S a}=E_{S a z} \hat{\mathbf{z}},
$$

that is, where $E_{S a r}=E_{S a \theta} \equiv 0$ so that the conditions (4.21) and (4.22) are automatically satisfied.

Solving equation (4.23), one obtains

$$
\begin{aligned}
\overrightarrow{\mathbf{E}}_{S a} & =E_{S a z} \hat{\mathbf{z}}=-\frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{d i_{S a}}{d t} \sin (\theta)\left(1+\frac{g}{r_{S} r_{R}} \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}\right) \hat{\mathbf{z}} \\
& \approx-\frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{d i_{S a}}{d t} \sin (\theta)\left(1+\frac{\left(r-r_{R}\right)^{2}}{2 r_{S} r_{R}}\right) \hat{\mathbf{z}} \\
& \approx-\frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{d i_{S a}}{d t} \sin (\theta) \hat{\mathbf{z}} .
\end{aligned}
$$

4.7.2 The Magnetic and Electric Fields $\overrightarrow{\mathbf{B}}_{S a}, \overrightarrow{\mathbf{E}}_{S a}, \overrightarrow{\mathbf{B}}_{S b}, \overrightarrow{\mathbf{E}}_{S b}$

The magnetic and electric fields due to the current in phase b are found from their corresponding expressions for phase a by simply replacing θ by $\theta-\pi / 2$.

In summary, given two sinusoidally distributed stator windings a and b wound 90 degrees apart, the magnetic and electric fields in the air gap produced by the phase currents $i_{S a}, i_{S b}$ in the phase a and b, respectively, are given by

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S a}= & \frac{\mu_{0} \ell_{2} N_{S}}{4 g} i_{S a} \frac{\cos (\theta)}{r}\left(1+\frac{g}{r_{S} r_{R}} \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}\right) \hat{\mathbf{r}} \\
& -\frac{\mu_{0} \ell_{2} N_{S}}{4 g} \frac{g}{r_{S} r_{R}} \alpha(r) i_{S a} \sin (\theta) \hat{\boldsymbol{\theta}} \\
\overrightarrow{\mathbf{E}}_{S a}= & E_{S a z} \hat{\mathbf{z}}=-\frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{d i_{S a}}{d t} \sin (\theta)\left(1+\frac{g}{r_{S} r_{R}} \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}\right) \hat{\mathbf{z}} \tag{4.24}
\end{align*}
$$

and

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S b}= & \frac{\mu_{0} r_{R} N_{S}}{2 g} i_{S b} \frac{\sin (\theta)}{r}\left(1+\frac{g}{r_{S} r_{R}} \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}\right) \hat{\mathbf{r}} \\
& +\frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{g}{r_{S} r_{R}} \alpha(r) i_{S b} \cos (\theta) \hat{\boldsymbol{\theta}} \tag{4.25}\\
\overrightarrow{\mathbf{E}}_{S b}= & E_{S b z} \hat{\mathbf{z}}=\frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{d i_{S b}}{d t} \cos (\theta)\left(1+\frac{g}{r_{S} r_{R}} \int_{r_{R}}^{r} \alpha\left(r^{\prime}\right) d r^{\prime}\right) \hat{\mathbf{z}} .
\end{align*}
$$

With $i_{S a}(t)=I_{S} \cos \left(\omega_{S} t\right), i_{S b}(t)=I_{S} \sin \left(\omega_{S} t\right)$ and $\alpha \equiv 0$, the expressions (4.24) and (4.25) simplify to

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S}(r, \theta, t) & =\frac{\mu_{0} r_{R} N_{S} I_{S}}{2 g} \frac{1}{r} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{r}} \tag{4.26}\\
\overrightarrow{\mathbf{E}}_{S}(\theta, t) & =\omega_{S} \frac{\mu_{0} r_{R} N_{S} I_{S}}{2 g} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{z}}
\end{align*}
$$

Remark

Note that at $r=r_{R}$, the expressions for the electric and magnetic fields given by (4.24) and (4.25) reduce to their approximate values (i.e., taking $\alpha \equiv 0$). Consequently, the induced emfs in the rotor loops are not affected by neglecting the azimuthal magnetic fields.

Problems

Problem 1 A Two-Phase Stator with Single-Loop Windings
(a) Consider the simple single-loop stator phase shown in Figure 4.23. Show that in the air gap, the magnetic intensity $H(\theta)$ in the radial direction satisfies

$$
H(\theta)=\left\{\begin{array}{lll}
H_{1} & \text { for } & -\pi / 2<\theta<\pi / 2 \\
H_{2} & \text { for } & +\pi / 2<\theta<3 \pi / 2
\end{array}\right.
$$

where H_{1}, H_{2} are constants and assuming H is constant as a function of r across the air gap. (Hint: Apply Ampère's law to the path $a-b-c-d-a$ to show that $H(\theta)=H_{1}$ for $-\pi / 2<\theta<\pi / 2$, etc.).
(b) Applying Ampère's law to the path 1-2-3-4-1 in Figure 4.23(a) along with a symmetry argument to show that $H_{2}=-H_{1}$.

FIGURE 4.23. Single-loop stator phase. (a) Paths for Ampère's law. (b) Flux surface in the air gap. The closed flux surface completely contains the rotor.
(c) Alternatively, rather than using Ampère's law as in part (b), use Gauss's law applied to the surface shown in Figure 4.23(b) to obtain $\mathrm{H}_{2}=$ $-H_{1}$.
(d) Give an explicit expression for $\overrightarrow{\mathbf{B}}$ in the air gap as a function of θ in terms of the current i in the winding and the air gap length g. Recall that $\overrightarrow{\mathbf{B}}=\mu_{0} \overrightarrow{\mathbf{H}}$ in the air gap. This is said to be a uniformly distributed magnetic field in θ.
(e) Show that by multiplying the answer for $\overrightarrow{\mathbf{B}}$ in part (d) by r_{R} / r results in the magnetic field satisfying Gauss's law for closed surfaces in the air gap as in Figure 4.12.
(f) Consider a simple two-phase machine as in Figure 4.24.

FIGURE 4.24. Simple two-phase machine.

Let the phase currents $i_{S a}, i_{S b}$ be periodic with period T as given in Figure 4.25. Show that the magnetic axis of the stator's magnetic field can assume only four angular positions. What are they? In particular, plot the radial air-gap magnetic field for $0 \leq \theta \leq 2 \pi$ at $t=0, T / 4, T / 2$, and $3 T / 4$.

FIGURE 4.25. Periodic square-wave currents.
(g) Repeat part (f) where the phase currents $i_{S a}, i_{S b}$ are again periodic with period T with their waveforms as given in Figure 4.26. Show that the magnetic axis of the stator's magnetic field can assume only four angular positions. What are they? In particular, plot the radial air-gap magnetic field for $0 \leq \theta \leq 2 \pi$ at $t=T / 8,3 T / 8,5 T / 8$, and $7 T / 8$.

FIGURE 4.26. Periodic square-wave phase currents.

Problem 2 Fourier Series Expansion
Consider the function $F^{\prime}\left(\theta^{\prime}\right)$ shown in Figure 4.27.

FIGURE 4.27. $F^{\prime}\left(\theta^{\prime}\right)$ versus θ^{\prime}.
(a) Show that the Fourier series expansion of this function is

$$
\begin{equation*}
F^{\prime}\left(\theta^{\prime}\right)=\frac{4}{\pi} F_{1} \times \sum_{k=1,3,5, \ldots}^{\infty} \frac{1}{k} \cos \left(k \theta_{1}^{\prime}\right) \sin \left(k \theta^{\prime}\right) \tag{4.27}
\end{equation*}
$$

(b) With respect to the angle $\theta \triangleq \theta^{\prime}-\pi / 2$, show that (4.27) becomes

$$
F(\theta) \triangleq F^{\prime}(\theta+\pi / 2)=\frac{4}{\pi} \times \sum_{k=1,3,5, \ldots}^{\infty} \quad F_{1} \frac{1}{k} \cos \left(k \theta_{1}^{\prime}\right) \sin (k(\theta+\pi / 2))
$$

(c) Use the result of part (b) to show that the Fourier series expansion of the function in Figure 4.28 is

$$
F(\theta)=\frac{4}{\pi} \sum_{k=1,3,5, \cdots}^{\infty} \frac{1}{k}\left(F_{1} \cos \left(k \theta_{1}^{\prime}\right)+F_{2} \cos \left(k \theta_{2}^{\prime}\right)+F_{3} \cos \left(k \theta_{3}^{\prime}\right)\right) \sin \left(k\left(\theta+\frac{\pi}{2}\right)\right) .
$$

FIGURE 4.28. $F(\theta), F^{\prime}\left(\theta^{\prime}\right)$.
(d) Show that
$\sin \left(k(\theta+\pi / 2)=\left\{\begin{array}{rll}\cos (k \theta) & \text { for } & k=6 m-1 \text { where } m=1,2, \ldots \\ -\cos (k \theta) & \text { for } & k=6 m+1 \text { where } m=1,2, \ldots\end{array}\right.\right.$

Problem 3 Two-Level Approximate Sinusoidal Winding

Apply the results of problem 2 (with $F_{3}=0$ or $\theta_{3}=\pi / 2$) to derive the Fourier expansion given in equation (4.3).
Problem 4 Three-Level Approximate Sinusoidal Winding
Consider the approximate sinusoidal winding of Figure 4.29(a) in which a single phase is wound such that there is one loop at $\pi / 6$, two loops at $\pi / 3$, three loops at $\pi / 2$, two loops at $2 \pi / 3$, and one loop at $5 \pi / 6$.

FIGURE 4.29. Approximately sinusoidally wound two-phase stator.
(a) Find the enclosed current $i_{\text {enclosed }}$ between 0 and θ for $0 \leq \theta \leq 2 \pi$.
(b) Assuming $\overrightarrow{\mathbf{H}}$ is constant across the air gap and the windings/loops have an infinitesimal cross section, show that a straightforward application of Ampère's law gives $H_{S a}(\theta)=H_{S a}(0)-i_{\text {enclosed }}(\theta) / g$. Use conservation of flux to find $H_{S a}(0)$. Show that $B_{S a}(\theta)=\mu_{0} H_{S a}(\theta)$ is given by the plot in Figure 4.11.
(c) With $B_{S a}(r, \theta)=\mu_{0}\left(r_{R} / r\right) H_{S a}(\theta)$ as given in Figure 4.11, use the results of problem 2 to show that the Fourier series expansion of $B_{S a}(r, \theta)$ in θ is

$$
\begin{align*}
& B_{S a}(r, \theta)=\mu_{0} \frac{i_{S a}}{g} \frac{4}{\pi} \frac{r_{R}}{r} \\
& \times \sum_{k=1,3,5, \ldots}^{\infty} \frac{1}{k}\left(\frac{3}{2} \cos (0)+2 \cos (k \pi / 6)+\cos (k \pi / 3)\right) \sin (k(\theta+\pi / 2) \tag{4.28}
\end{align*}
$$

(d) Let b_{k} be the coefficient of $\sin (k(\theta+\pi / 2)$ in the Fourier expansion of $B_{S a}(r, \theta) /\left(\mu_{0} \frac{i_{S a}}{g} \frac{r_{B}}{r}\right)$ in equation (4.28) and let a_{k} be the coefficient of $\sin \left(k(\theta+\pi / 2)\right.$ in the Fourier expansion of $B_{S a}(\theta) /\left(\mu_{0} i_{S a} / g\right)$ in equation (4.3). With $a_{\max }=\max _{k=1, \ldots, 15}\left\{a_{k}\right\}, b_{\max }=\max _{k=1, \ldots, 15}\left\{b_{k}\right\}$, plot the relative harmonic content $a_{k} / a_{\max }$ and $b_{k} / b_{\max }$ as a function of k for $k=1,2, \ldots, 15$ on separate figures. Note that $a_{\max }=a_{1}, b_{\max }=b_{1}$; that is, the maximum is achieved at the fundamental for both expansions. Compute b_{1} / a_{1}.
(e) Finally, plot $a_{k} / a_{\max }-b_{k} / b_{\max }$ for $k=1,2,3, \ldots, 15$. What is the value of this difference for $k=5,7,11,13$? What is this difference for $k=$ $3,9,15$?

Comments: Note the reduction in relative harmonic content is only for the triplen harmonics. Also, the fact that $b_{1}=2 a_{1}$ means that, for the same phase current, the number of turns in this (three-level) approximate sinusoidal winding results in doubling the strength of the magnetic field in the air gap compared to the approximate sinusoidal winding with only two levels.
(f) Consider using the winding of Figure 4.29(a) in a two-phase machine as shown in Figure 4.29(b). Use the solution of part (c) to write down the expression for the radial magnetic field in the air gap due to the current $i_{S b}$ in stator phase b.

Problem 5 Gauss's Law

Show that the expression [see equation (4.6)]

$$
\overrightarrow{\mathbf{B}}_{S a}(r, \theta)=B_{S a}(r, \theta) \hat{\mathbf{r}}=\mu_{0} \frac{r_{R}}{r}\left(\frac{2 i_{S a}}{g}-\frac{i_{\text {enclosed }}(\theta)}{g}\right) \hat{\mathbf{r}}
$$

for the magnetic field due to the current in an approximate sinusoidal winding satisfies $\oint \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=0$ for the fux surface given in Figure 4.12.

Problem 6 Three-Phase Stator and Spatial Harmonics

Figure $4.30(a)$ shows a machine with both a three-phase stator and a three-phase rotor. Figure $4.30(b)$ gives more detail of stator phase $1^{\prime}-1$ where it is shown that one side of a loop is wound at $\pi / 3$ (the other side at $4 \pi / 3$), two loop sides are wound at $\pi / 2$ (the other two sides at $3 \pi / 2$), and, finally, one side of a loop is wound at $2 \pi / 3$ (the other side at $5 \pi / 3$).

FIGURE 4.30. (a) Three-phase stator and rotor. (b) Three-phase stator with an iron core rotor. Windings shown for stator phase a only.

With the assumptions that the conductors have an infinitesimal cross section, the iron has infinite permeability (i.e., $\overrightarrow{\mathbf{H}}=0$ in the iron), and the air gap is small, Ampère's law was used to show that the radial magnetic field in the air gap produced by the current $i_{S 1}$ in phase $1^{\prime}-1$ is given by [see equation (4.3)]

$$
B_{S_{1}}\left(i_{S 1}, \theta\right)=\mu_{0} \frac{i_{S 1}}{g} \frac{4}{\pi} \times \sum_{k=1,3,5, \ldots}^{\infty} \frac{\left(1+\cos \left(\frac{k \pi}{6}\right)\right)}{k} \sin \left(k\left(\theta+\frac{\pi}{2}\right)\right)
$$

Let $B_{S_{1}}\left(i_{S 1}, r, \theta\right) \triangleq\left(r_{R} / r\right) B_{S_{1}}\left(i_{S 1}, \theta\right)$ and similarly for $B_{S_{2}}\left(i_{S 2}, r, \theta\right)$ and $B_{S_{3}}\left(i_{S 3}, r, \theta\right)$ so that

$$
\begin{aligned}
& B_{S_{1}}\left(i_{S 1}, r, \theta\right)=\mu_{0} \frac{i_{S 1}}{g} \frac{4}{\pi} \frac{r_{R}}{r} \times \sum_{k=1,3,5, \ldots}^{\infty} \frac{\left(1+\cos \left(\frac{k \pi}{6}\right)\right)}{k} \sin \left(k\left(\theta+\frac{\pi}{2}\right)\right) \\
& B_{S_{2}}\left(i_{S 2}, r, \theta\right)=\mu_{0} \frac{i_{S 2}}{g} \frac{4}{\pi} \frac{r_{R}}{r} \times \sum_{k=1,3,5, \ldots}^{\infty} \frac{\left(1+\cos \left(\frac{k \pi}{6}\right)\right)}{k} \sin \left(k\left(\theta-\frac{2 \pi}{3}+\frac{\pi}{2}\right)\right) \\
& B_{S_{3}}\left(i_{S 3}, r, \theta\right)=\mu_{0} \frac{i_{S 3}}{g} \frac{4}{\pi} \frac{r_{R}}{r} \times \sum_{k=1,3,5, \ldots}^{\infty} \frac{\left(1+\cos \left(\frac{k \pi}{6}\right)\right)}{k} \sin \left(k\left(\theta-\frac{4 \pi}{3}+\frac{\pi}{2}\right)\right) .
\end{aligned}
$$

(a) With the currents balanced, i.e., $i_{S 1}+i_{S 2}+i_{S 3} \equiv 0$, show that in the Fourier expansion of the total radial magnetic field

$$
\overrightarrow{\mathbf{B}}_{S}=\overrightarrow{\mathbf{B}}_{S_{1}}+\overrightarrow{\mathbf{B}}_{S_{2}}+\overrightarrow{\mathbf{B}}_{S_{3}}
$$

the triplen harmonics are zero. (The triplen harmonics are the harmonic terms of order k with $k=3 m, m=1,2, \ldots$)
(b) Explain why the phase winding of Figure 4.3(b) is really more suited for a three-phase machine rather than a two phase machine. What about the winding of Figure 4.29 (see problem 4)?
(c) Let

$$
i_{S 1}=I_{S} \cos \left(\omega_{S} t\right), i_{S 2}=I_{S} \cos \left(\omega_{S} t-2 \pi / 3\right), i_{S 3}=I_{S} \cos \left(\omega_{S} t-4 \pi / 3\right)
$$

in the above expressions for the magnetic fields. Show that the 5 th harmonic component of $\overrightarrow{\mathbf{B}}_{S}$ given by

$$
\overrightarrow{\mathbf{B}}_{S 5}(r, \theta, t) \triangleq \overrightarrow{\mathbf{B}}_{S_{1} 5}\left(i_{S 1}, r, \theta\right)+\overrightarrow{\mathbf{B}}_{S_{2} 5}\left(i_{S 2}, r, \theta\right)+\overrightarrow{\mathbf{B}}_{S_{3} 5}\left(i_{S 3}, r, \theta\right)
$$

is a rotating magnetic field in the clockwise (negative) direction at angular speed $-\omega_{S} / 5$. (Here $\overrightarrow{\mathbf{B}}_{S_{1} 5}$ is the $k=5$ term in the above Fourier series expansion of $\overrightarrow{\mathbf{B}}_{S_{1}}$, etc.)
(d) Repeat part (c) for the 7 th harmonic $\overrightarrow{\mathbf{B}}_{S 7}(r, \theta, t)$ of $\overrightarrow{\mathbf{B}}_{S}$. What direction does it rotate? At what angular speed?
Problem 7 Self-Inductance of a Distributed Winding
Consider the stator phase winding shown in Figure 4.3(b) and redrawn in Figure 4.31. The radial magnetic field due to the current in the phase is shown in Figure 4.10.
(a) Using flux surfaces similar to those of Figure 4.20, compute the total flux linkage in the stator phase winding due to the current in the phase.
(b) What is the self-inductance of the stator phase?

FIGURE 4.31. Computation of the self-inductance of a distributed winding.

Problem 8 Flux Linkage
Figure 4.32 shows a motor with a permanent magnet rotor which has a single stator phase wound as in Figure 4.3(b). Let the magnetic field in the air gap due to the permanent magnet rotor be given by

$$
\overrightarrow{\mathbf{B}}_{R}\left(\theta-\theta_{R}\right)=B_{\max } \frac{r_{R}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} .
$$

(a) Compute the fux in each loop and the total fux linkage in the stator phase.
(b) Find an expression for the emf induced in the stator phase by the PM rotor.

FIGURE 4.32. A motor with a PM rotor and a single rotor phase.
Problem 9 A Two-Phase Machine [4]
Consider a machine with two stator phases wound as shown in Figure 4.33. That is, phase a has one turn at $\pi / 4$ (with its other side at $5 \pi / 4$), two turns at $5 \pi / 12$ (with the other sides at $17 \pi / 12$), and so on. Let the current in phase a be denoted as $i_{S a}$ and the current in phase b be denoted as $i_{S b}$.
(a) Compute the radial magnetic field $\overrightarrow{\mathbf{B}}_{S a}$ in the air gap due to the current $i_{S a}$ in phase a. Express it as a Fourier series.
(b) Compute the flux linkage in phase a due to $\overrightarrow{\mathbf{B}}_{S a}$.
(c) Compute the flux linkage in phase b due to $\overrightarrow{\mathbf{B}}_{S a}$.
(d) Compute the Fourier series expansion of the expression for the magnetic field in part (a).
(e) Compute the ratio of the fundamental of the magnetic field given in part (d) to the fundamental of the magnetic field whose Fourier series is given in equation (4.3) for the winding of Figure 4.7. Also, compute the ratio of the 3rd harmonic to the 1st harmonic for the magnetic field given in part (d) and then compare it to the corresponding ratio for the magnetic
field of equation (4.3). Is the winding of Figure 4.33 or the winding of Figure 4.7 better suited for a two phase machine? Explain.

FIGURE 4.33. Stator phases for a single pole pair two-phase machine.

Problem 10 Uniformly Distributed Winding

Consider a machine with a three-phase stator and a rotor of soft iron as shown in Figure 4.34. There are three sets of windings which are uniformly wound on the inside surface of the stator. By uniformly wound, it is meant that the number of turns between θ and $\theta+d \theta$ is constant independent of the angle θ. Phase 1 with current $i_{S 1}$ has its turns uniformly wound between $\pi / 3$ and $2 \pi / 3$ on one side of the stator's inside surface and between $4 \pi / 3$ and $5 \pi / 3$ on the other side of the stator. Similarly, phase 2 with current $i_{S 2}$ has its turns uniformly wound between π and $4 \pi / 3$, and between 0 and $\pi / 3$. Phase 3 with current $i_{S 3}$ has its turns uniformly wound between $2 \pi / 3$ and π, and between $5 \pi / 3$ and 2π.

Let the turns density for stator phase 1 be given by

$$
N_{S 1}(\theta)=\left\{\begin{array}{lll}
\frac{N_{S}}{\pi / 3} & \text { for } & \frac{\pi}{3} \leq \theta \leq \frac{2 \pi}{3} \\
\frac{N_{S}}{\pi / 3} & \text { for } & \frac{4 \pi}{3} \leq \theta \leq \frac{5 \pi}{3} \\
0 & \text { elsewhere. } &
\end{array}\right.
$$

The total number of windings (turns or loops) making up phase 1 is then

$$
\int_{\pi / 3}^{2 \pi / 3} \frac{N_{S}}{\pi / 3} d \theta=N_{S}
$$

Compute the radial magnetic field $\overrightarrow{\mathbf{B}}_{S 1}$ in the air gap produced by the current $i_{S 1}$ in phase 1.

FIGURE 4.34. Uniformly distributed windings.

Problem 11 Modifying Ampère's Law to Account for a r_{0} / r Dependence
This problem considers how Ampère's law changes when $H_{S a}$ is assumed to have a factor of the form r_{0} / r so that conservation of fux holds. Specifically, in Ampère's law as given by equation (4.9), replace $H_{S a}\left(i_{S a}, \theta\right)$ by

$$
\begin{equation*}
H_{S a}\left(i_{S a}, r, \theta\right) \triangleq\left(r_{0} / r\right) H_{S a}\left(i_{S a}, \theta\right) \tag{4.29}
\end{equation*}
$$

to obtain

$$
\begin{align*}
& \int_{r=r_{R}}^{r=r_{S}} H_{S a}\left(i_{S a}, r, 0\right) \hat{\mathbf{r}} \cdot(d r \hat{\mathbf{r}})+\int_{r=r_{R}}^{r=r_{S}} H_{S a}\left(i_{S a}, r, \theta\right) \hat{\mathbf{r}} \cdot(-d r \hat{\mathbf{r}}) \\
& \quad=-\frac{N_{S} i_{S a}}{2} \cos (\theta)+\frac{N_{S} i_{S a}}{2} . \tag{4.30}
\end{align*}
$$

(a) Show that for the expression

$$
\overrightarrow{\mathbf{H}}_{S a}\left(i_{S a}, r, \theta\right)=\frac{N_{S}}{2 g} \frac{r_{0}}{r} i_{S a} \cos (\theta) \hat{\mathbf{r}}
$$

to still work out the same way as before, that is, for (4.30) to reduce to

$$
H_{S a}\left(i_{S a}, r_{0}, 0\right) g-H_{S a}\left(i_{S a}, r_{0}, \theta\right) g=-i_{S a} \frac{N_{S}}{2} \cos (\theta)+i_{S a} \frac{N_{S}}{2}
$$

then r_{0} must be chosen such that $\int_{r=r_{R}}^{r=r_{S}} r_{0} / r d r=g$.
(b) Show that there is an r_{0} with $r_{R}<r_{0}<r_{S}$ such that $\int_{r=r_{R}}^{\tau=r_{S}} r_{0} / r d r=$ g holds.
(c) Show that (4.30) holds approximately with $H_{S a}$ given by (4.29) if $r_{0}=r_{R}$ (or $r_{0}=r_{S}$) and $g \ll r_{R}$.

Problem 12 Three-Phase, Four-Pole, 36-Slot Stator
Consider a three-phase, four-pole, 36-slot stator as shown in Figure 4.35. The figure illustrates the slots in which the wire making up phase 1 is wound with the (angular) location of the windings as indicated in the figure. Denote the current in this phase as $i_{S 1}$.
(a) Assuming that the cross-sectional area of the slots is infinitesimal, compute the radial magnetic field $B_{S 1}$ in the air gap produced by $i_{S 1}$ and plot it as a function of θ.
(b) Compute the Fourier series expansion of the radial air-gap magnetic field $B_{S 1}$ found in part (a).

FIGURE 4.35. A three-phase, four-pole, 36-slot stator. Only the winding of stator phase 1 is shown.

Problem 13 Three-Phase Six-Pole Permanent Magnet Machine
Figure 4.36 shows a three-phase, six-pole machine with a permanent magnet rotor. Take $\theta_{R}=0$ for the rotor in the position as drawn. Let the magnetic field in the air gap due to the permanent magnet rotor be given by

$$
\overrightarrow{\mathbf{B}}_{R}(r, \theta)=B_{R \max } \frac{r_{R}}{r} \cos \left(n_{p}\left(\theta-\theta_{R}\right)\right)
$$

where n_{p} is the number of pole pairs that in this case is $n_{p}=3$. Phase 1 of the stator consists of connecting the three single-loop windings $a_{1}-a_{1}^{\prime}, a_{2}-a_{2}^{\prime}$, and $a_{3}-a_{3}^{\prime}$ in series as shown. Each winding encloses a cylindrical-shaped surface spanning $\pi / 3$ radians (or 60°).
(a) Compute the flux linkage $\lambda_{S 1}$ in the phase winding 1 due to the magnetic field of the rotor as a function of the rotor position θ_{R}.
(b) Compute the induced voltage in the phase winding 1 due to the magnetic field of the rotor as a function of the rotor position θ_{R} and the rotor speed ω_{R}.

FIGURE 4.36. A three-phase, six-pole permanent magnet machine.

Problem 14 Flux Linkage in a Phase Winding with Short-Pitched Turns
Figure 4.37 shows a motor with a PM rotor and a single stator phase whose turns are short-pitched. By "short-pitched" is meant that each turn does not span 180° degrees, but rather less than 180° such as in this problem where they span only 150°. The first loop has axial sides a_{1} and a_{1}^{\prime}, the second loop has axial sides a_{2} and a_{2}^{\prime}, and so on. Let the magnetic field in the air gap due to the permanent magnet rotor be given by

$$
\overrightarrow{\mathbf{B}}_{R}\left(\theta-\theta_{R}\right)=B_{\max } \frac{r_{R}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} .
$$

In order to illustrate the windings of a short-pitched phase, Figure 4.38 shows the slots of a cylindrical rotor iron core being wound with four shortpitched turns. The short-pitched windings of the stator phase of Figure 4.37 are wound similarly.
(a) Compute the fux in each loop using a surface normal for whose direction is chosen so that the positive direction of travel around the surface coincides with the direction of positive current flow as given in Figure 4.37.
(b) Compute the flux linkage in the stator phase produced the rotor's magnetic field.
(c) Using Faraday's law, compute the induced emf in the stator phase due to the rotor's magnetic field.
(d) How do the answers to parts (a), (b), and (c) compare to the corresponding values for the full-pitch wound stator of problem 8?

FIGURE 4.37. A short-pitched stator winding.

FIGURE 4.38. Illustration of winding a distributed rotor phase with short-pitched windings. (a) First loop with axial sides a_{1} and a_{1}^{\prime}. (b) Second loop with axial sides a_{2} and a_{2}^{\prime}. (c) Third loop with axial sides a_{3} and a_{3}^{\prime}. (d) Fourth loop with axial sides a_{4} and a_{4}^{\prime}.

Problem 15 Self-Inductance of a Short-Pitched Phase Winding
Figure 4.39 shows a single stator phase with short-pitched windings (see problem 14 for an explanation of short-pitched windings).
(a) Explain why the radial magnetic field is identical to that drawn in Figure 4.10.
(b) Compute the flux in each loop due to the current in that loop and then the total fux linkage. To ensure that the induced emfs in each loop have the same sign conventions, choose a flux surface normal whose positive direction of travel around the surface coincides with the positive direction of current.
(c) What is the self-inductance of the stator phase? How does it compare with the self-inductance of the stator phase in problem 7?

FIGURE 4.39. Self-inductance for a distributed phase winding with fractional pitch turns.

Problem 16 "Long-Pitched" Phase Winding
Consider Figure 4.39 where now each winding loop spans $7 \pi / 6$ radians (210°) rather than $5 \pi / 6$ radians $\left(150^{\circ}\right)$ as in Figure 4.38.
(a) Explain why the radial magnetic field is identical to that drawn in Figure 4.10.
(b) Compute the flux in each loop due to the current in that loop and then the total fux linkage. To ensure that the induced emfs in each loop have the same sign conventions, choose a flux surface normal whose positive direction of travel around the surface coincides with the positive direction of current. Without any computation, use Gauss's law for $\overrightarrow{\mathbf{B}}$ to show the result must be the same as part (b) of problem 15. Consequently, the inductance of this winding must be the same as that given in part (c) of problem 15.

Problem 17 Divergence of the Magnetic Field

Recall that the divergence of a vector field $\overrightarrow{\mathbf{W}}(r, \theta, z)$ in cylindrical coordinates is given by

$$
\nabla \cdot \overrightarrow{\mathbf{W}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r W_{r}\right)+\frac{1}{r} \frac{\partial W_{\theta}}{\partial \theta}+\frac{\partial W_{z}}{\partial z}
$$

where $\overrightarrow{\mathbf{W}}=W_{r} \hat{\mathbf{r}}+W_{\theta} \hat{\boldsymbol{\theta}}+W_{z} \hat{\mathbf{z}}$. Also, recall that the divergence theorem says that

$$
\oint_{S} \overrightarrow{\mathbf{W}} \cdot d \overrightarrow{\mathbf{S}}=\iiint_{V} \nabla \cdot \overrightarrow{\mathbf{W}} d V
$$

where S is the closed surface that encloses the volume V.
With

$$
\overrightarrow{\mathbf{B}}_{S a}=B_{S a}(r, \theta) \hat{\mathbf{r}}=\mu_{0} \frac{r_{R}}{r}\left(\frac{2 i_{S a}}{g}-\frac{i_{\text {enclosed }}(\theta)}{g}\right) \hat{\mathbf{r}}
$$

in the air gap of an approximately sinusoidally wound stator phase, show that $\nabla \cdot \overrightarrow{\mathbf{B}}_{S a} \equiv 0$.

Problem 18 Azimuthal Magnetic Field

Use the expression (4.24) for the radial magnetic field to explicitly show that

$$
\oint_{S} \overrightarrow{\mathbf{B}}_{S a} \cdot d \overrightarrow{\mathbf{S}}=0
$$

for the closed surface shown in Figure 4.40 with $r_{R} \leq r_{1}<r_{2} \leq r_{S}$.

FIGURE 4.40. Gauss's law in the air gap with a nonzero azimuthal magnetic field.

5

The Physics of AC Machines

The goal here is to present the operation of both the induction and synchronous machines using basic concepts in physics. In particular, Faraday's law of induction and the Lorentz force/magnetic force law will be used to analyze the physical basis of operation of these machines [34].

5.1 Rotating Magnetic Field

Assuming ideal magnetic material, that is, $\overrightarrow{\mathbf{H}} \equiv 0$ in the iron, and that the stator phases are sinusoidally wound, Ampère's law ($\oint \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=i_{\text {enclosed }}$) was used to show that the magnetic field $\overrightarrow{\mathbf{B}}_{S a}$ at any point (r, θ) in the air gap due to the current $i_{S a}$ in phase a is given by

$$
\overrightarrow{\mathbf{B}}_{S a}\left(i_{S a}, r, \theta\right)=\frac{\mu_{0} \ell_{2} N_{S}}{4 g r} i_{S a} \cos (\theta) \hat{\mathbf{r}} .
$$

Here $\hat{\mathbf{r}}$ is a unit vector in the radial direction, $r_{R}=\ell_{2} / 2$ is the radius of the rotor and g is the radial length of the air gap. The magnetic field distribution of $\overrightarrow{\mathbf{B}}_{S a}$ is illustrated in Figure 5.1.

FIGURE 5.1. Radial air-gap magnetic field due to phase current $i_{S a}$ in a sinusoidally wound stator.

Similarly, the magnetic field $\overrightarrow{\mathbf{B}}_{S b}$ at the point (r, θ) in the air gap due to
the current $i_{S b}$ in phase b is given by

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{S b}\left(i_{S b}, r, \theta\right) & =\frac{\mu_{0} \ell_{2} N_{S}}{4 g r} i_{S b} \cos (\theta-\pi / 2) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{2} N_{S}}{4 g r} i_{S b} \sin (\theta) \hat{\mathbf{r}}
\end{aligned}
$$

The magnetic field distribution of $\overrightarrow{\mathbf{B}}_{S b}$ is illustrated in Figure 5.2.

FIGURE 5.2. Radial air-gap magnetic field due to phase current $i_{S b}$ in a sinusoidally wound stator.

The total magnetic field in the air gap due to the current in both stator phases is then

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S}\left(i_{S a}, i_{S b}, r, \theta\right) & =\overrightarrow{\mathbf{B}}_{S a}\left(i_{S a}, r, \theta\right)+\overrightarrow{\mathbf{B}}_{S b}\left(i_{S b}, r, \theta\right) \\
& =\frac{\mu_{0} \ell_{2} N_{S}}{4 g r}\left(i_{S a} \cos (\theta)+i_{S b} \sin (\theta)\right) \hat{\mathbf{r}} . \tag{5.1}
\end{align*}
$$

With $i_{S a}(t)=I_{S} \cos \left(\omega_{S} t\right), i_{S b}(t)=I_{S} \sin \left(\omega_{S} t\right)$, (5.1) simplifies to

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S} & =\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\left(\cos \left(\omega_{S} t\right) \cos (\theta)+\sin \left(\omega_{S} t\right) \sin (\theta)\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r} \cos \left(\theta-\theta_{S}(t)\right) \hat{\mathbf{r}} \tag{5.2}
\end{align*}
$$

where $\theta_{S}(t) \triangleq \omega_{S} t$. This is a rotating magnetic field rotating at the electrical frequency ω_{S} and is illustrated in Figure 5.3. The center line of this rotating magnetic field is referred to as its magnetic axis and is located at $\theta_{S}(t) \triangleq \omega_{S} t$.

FIGURE 5.3. Sinusoidally distributed rotating radial magnetic field in the air gap. (For convenience, the magnetic field lines are not drawn in the stator iron.)

5.2 The Physics of the Induction Machine

In this section, a simple two-phase induction motor is analyzed in order to understand the elementary Physics which characterizes its operation.

The stator consists of two sinusoidally wound phases 90° apart as described in the previous section. Figure 5.4 shows a loop wound around the surface of the rotor iron denoted as phase a (or simply loop a) and its two axial sides as a and a^{\prime}, respectively.

FIGURE 5.4. A single rotor loop and the chosen positive direction of current.

Similarly, a second loop is wound around the rotor iron 90° from (and electrically isolated from) loop a and is denoted as phase b or simply, loop b. This results in the simple two phase machine illustrated in Figure 5.5.

FIGURE 5.5. Basic motor with two single-loop rotor phases a and b.

As above, $\theta_{S}(t)=\omega_{S} t$ denotes the angular position of the magnetic axis of the rotating magnetic field produced by the stator currents, $\theta_{R}(t)$ denotes the angular position of the rotor defined as the normal to rotor loop a [see Figure 5.4(a) or 5.5(a)] and (r, θ) denotes the polar coordinates of an arbitrary point in the air gap. In the remainder of this chapter, it will assumed that the rotor is turning at constant angular speed ω_{R} with $\theta_{R}(t)=\omega_{R} t$.

5.2.1 Induced Emfs in the Rotor Loops

The rotating magnetic field $\overrightarrow{\mathbf{B}}_{S}$ produces a changing flux in the rotor loops so that an electromotive force (emf) is induced in each rotor loop according to Faraday's law. To compute the induced emf in rotor phase a, consider a flux surface for rotor loop a consisting of a half-cylinder lying in the air gap whose boundary is the rotor loop itself. This is illustrated in Figure 5.6 where only rotor loop a is shown for clarity.

FIGURE 5.6. (a) Flux surface for the rotor winding. (b) Surface element $d \overrightarrow{\mathbf{S}}$ and direction of positive travel around the flux surface. (For clarity, only rotor loop a is shown.)

With $d \overrightarrow{\mathbf{S}}=\left(\ell_{2} / 2\right) d \theta d z \hat{\mathbf{r}}$, the direction of positive travel is indicated in Figure 5.6(b), and it is the same as the direction chosen for positive current flow in the loop. The $f u x \lambda_{R a}$ in rotor loop a due to the stator magnetic
field $\overrightarrow{\mathbf{B}}_{S}$ is calculated as follows:

$$
\begin{aligned}
\lambda_{R a} & =\int_{S} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}} \\
& =\left.\int_{z=0}^{z=\ell_{1}} \int_{\theta_{R}(t)-\pi / 2}^{\theta_{R}(t)+\pi / 2} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\right|_{r=\ell_{2} / 2} \cos \left(\theta-\theta_{S}(t)\right) \hat{\mathbf{r}} \cdot\left(\left(\ell_{2} / 2\right) d \theta d z \hat{\mathbf{r}}\right) \\
& =\left.\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\theta-\theta_{S}(t)\right)\right|_{\theta_{R}(t)-\pi / 2} ^{\theta_{R}(t)+\pi / 2} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \cos \left(\theta_{S}(t)-\theta_{R}(t)\right)
\end{aligned}
$$

By Faraday's law, the induced electromotive force or emf in rotor loop a is given by

$$
\begin{align*}
\xi_{R a} & =-\frac{d \lambda_{R a}}{d t} \\
& =-\frac{d}{d t} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \cos \left(\theta_{S}(t)-\theta_{R}(t)\right) \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\left(\omega_{S}-\omega_{R}\right) \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \tag{5.3}
\end{align*}
$$

where $\omega_{R}=d \theta_{R} / d t$. The current $i_{R a}$ in phase a is then found by solving

$$
L_{R} \frac{d i_{R a}}{d t}=-R_{R} i_{R a}+\xi_{R a}
$$

where L_{R} and R_{R} are, respectively, the inductance and resistance of the rotor phases. Neglecting the inductance ${ }^{1}$ (i.e., set $L_{R}=0$), the current in phase a produced by the emf is then

$$
\begin{equation*}
i_{R a}(t)=\xi_{R a} / R_{R} \tag{5.4}
\end{equation*}
$$

[^37]

FIGURE 5.7. Induced rotor current $i_{R a}$ produced by $\xi_{R a}$. (Rotor loop b is not shown for clarity.)

Similarly, the flux $\lambda_{R b}$, the induced emf $\xi_{R b}$, and the current $i_{R b}$ in rotor loop b are computed. The flux $\lambda_{R b}$ in rotor loop b due to $\overrightarrow{\mathbf{B}}_{S}$ is given by

$$
\begin{aligned}
\lambda_{R b} & =\int_{S} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}} \\
& =\left.\int_{z=0}^{z=\ell_{1}} \int_{\theta_{R}(t)}^{\theta_{R}(t)+\pi} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\right|_{r=\ell_{2} / 2} \cos \left(\theta-\theta_{S}(t)\right) \hat{\mathbf{r}} \cdot\left(\left(\ell_{2} / 2\right) d z d \theta \hat{\mathbf{r}}\right) \\
& =\left.\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\theta-\theta_{S}(t)\right)\right|_{\theta_{R}(t)} ^{\theta_{R}(t)+\pi} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \sin \left(\theta_{S}(t)-\theta_{R}(t)\right) .
\end{aligned}
$$

The induced emf in rotor loop b is then

$$
\begin{aligned}
\xi_{R b}(t) & =-\frac{d \lambda_{R b}}{d t} \\
& =-\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\left(\omega_{S}-\omega_{R}\right) \cos \left(\left(\omega_{S}-\omega_{R}\right) t\right)
\end{aligned}
$$

where $\omega_{R}=d \theta_{R} / d t$. Again, neglecting the inductance of rotor phase b, this emf produces a current $i_{R b}$ in rotor loop b given by

$$
\begin{equation*}
i_{R b}(t)=\xi_{R b}(t) / R_{R} \tag{5.5}
\end{equation*}
$$

5.2.2 Magnetic Forces and Torques on the Rotor

The rotating magnetic field $\overrightarrow{\mathbf{B}}_{S}$ produced by the stator currents produces a magnetic force on the rotor currents it induced. The magnetic force on the
rotor and the resulting torque are now computed. Recall that the magnetic force law is simply $\overrightarrow{\mathbf{F}}_{\text {magnetic }}=i \vec{\ell} \times \overrightarrow{\mathbf{B}}$, where $\ell=|\vec{\ell}|$ is the length of the conductor in the magnetic field, and $\vec{\ell}$ points in the direction of positive current flow. Thus, the magnitude of the force is $F_{\text {magnetic }}=i \ell B_{\perp}$ where B_{\perp} is the magnetic field strength perpendicular to the conductor. The magnetic force law is now applied to side a of rotor loop a, which is located at $\theta=\theta_{R}+\pi / 2$ [see Figure $5.8(\mathrm{a})$]. To do so, recall the symbol \odot means that if $i_{R a}>0$, the current is coming out of the page so $\vec{\ell}=\ell_{1} \hat{\mathbf{z}}$ on side a, and compute

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{\text {side-a }} & =i_{R a} \overrightarrow{\boldsymbol{\ell}} \times \overrightarrow{\mathbf{B}}_{S} \\
& =i_{R a} \ell_{1} \hat{\mathbf{z}} \times\left.\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\right|_{r=\ell_{2} / 2} \cos \left(\theta-\theta_{S}\right)_{\mid \theta=\theta_{R}+\pi / 2} \hat{\mathbf{r}} \\
& =i_{R a} \frac{\mu_{0} \ell_{1} N_{S} I_{S}}{2 g} \sin \left(\theta_{S}-\theta_{R}\right) \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

FIGURE 5.8. The torque $\tau_{R a}$ on rotor loop a due to $i_{R a}$ and $\overrightarrow{\mathbf{B}}_{S}$.
The torque produced by this force is then

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\tau}}_{\text {side }-a} & =\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{\text {side }-a} \\
& =\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times i_{R a} \frac{\mu_{0} \ell_{1} N_{S} I_{S}}{2 g} \sin \left(\theta_{S}-\theta_{R}\right) \hat{\boldsymbol{\theta}} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{4 g} i_{R a} \sin \left(\theta_{S}-\theta_{R}\right) \hat{\mathbf{z}} .
\end{aligned}
$$

Similarly, the magnetic force law is applied to side a^{\prime} of rotor loop a, which is located at $\theta_{R}-\pi / 2$. Recalling the symbol \otimes means that if $i_{R a}>0$, the
current is going into the page so that $\vec{\ell}=-\ell_{1} \hat{\mathbf{z}}$ for side a^{\prime}; it follows that

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{\text {side-a }} & =i_{R a} \vec{\ell} \times \overrightarrow{\mathbf{B}}_{S} \\
& =i_{R a}\left(-\ell_{1} \hat{\mathbf{z}}\right) \times\left.\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\right|_{r=\ell_{2} / 2} \cos \left(\theta-\theta_{S}\right)_{\mid \theta=\theta_{R}-\pi / 2} \hat{\mathbf{r}} \\
& =i_{R a} \frac{\mu_{0} \ell_{1} N_{S} I_{S}}{2 g} \sin \left(\theta_{S}-\theta_{R}\right) \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

The torque produced by this force on side a^{\prime} is then

$$
\begin{aligned}
\vec{\tau}_{\text {side }-a^{\prime}} & =\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{\text {side }-a^{\prime}} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{4 g} i_{R a} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\mathbf{z}} \\
& =\vec{\tau}_{\text {side }-a} .
\end{aligned}
$$

The total torque $\overrightarrow{\boldsymbol{\tau}}_{R a}=\tau_{R a} \hat{\mathbf{z}}$ on rotor phase a is simply

$$
\begin{equation*}
\tau_{R a}=\tau_{\text {side }-a}+\tau_{\text {side-a }}=\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} i_{\text {Ra }} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \tag{5.6}
\end{equation*}
$$

Recall that

$$
i_{R a}(t)=\xi_{R a}(t) / R_{R}=\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \frac{1}{R_{R}}\left(\omega_{S}-\omega_{R}\right) \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) .
$$

Using this expression, the total torque on rotor phase a may be rewritten as

$$
\begin{equation*}
\tau_{R a}=\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{R_{R}}\left(\omega_{S}-\omega_{R}\right) \sin ^{2}\left(\left(\omega_{S}-\omega_{R}\right) t\right) \tag{5.7}
\end{equation*}
$$

Similarly, for rotor phase b

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{\text {side }-b} & =i_{R b} \vec{\ell} \times \overrightarrow{\mathbf{B}}_{S} \\
& =i_{R b} \ell_{1} \hat{\mathbf{z}} \times\left.\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\right|_{r=\ell_{2} / 2} \cos \left(\theta-\theta_{S}\right)_{i \theta=\theta_{R}+\pi} \hat{\mathbf{r}} \\
& =-i_{R b} \frac{\mu_{0} \ell_{1} N_{S} I_{S}}{2 g} \cos \left(\theta_{S}-\theta_{R}\right) \hat{\boldsymbol{\theta}}
\end{aligned}
$$

and, as in the case of loop $a, \overrightarrow{\mathbf{F}}_{\text {side-b}}=\overrightarrow{\mathbf{F}}_{\text {side-b }}$. It then follows that the total torque on rotor phase b is

$$
\begin{aligned}
\tau_{R b} & =\tau_{\text {side }-b}+\tau_{\text {side }-b^{\prime}} \\
& =2 \tau_{\text {side }-b} \\
& =-\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} i_{R b} \cos \left(\left(\omega_{S}-\omega_{R}\right) t\right) .
\end{aligned}
$$

Further, as

$$
i_{R b}(t)=\xi_{R b}(t) / R_{R}=-\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\left(\omega_{S}-\omega_{R}\right) \cos \left(\left(\omega_{S}-\omega_{R}\right) t\right) / R_{R}
$$

the torque on rotor loop b may be rewritten as

$$
\begin{equation*}
\tau_{R b}=\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{R_{R}}\left(\omega_{S}-\omega_{R}\right) \cos ^{2}\left(\left(\omega_{S}-\omega_{R}\right) t\right) \tag{5.8}
\end{equation*}
$$

Combining equations (5.7) and (5.8), the total torque τ_{R} is given by

$$
\begin{equation*}
\tau_{R}=\tau_{R a}+\tau_{R b}=\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{R_{R}}\left(\omega_{S}-\omega_{R}\right) \tag{5.9}
\end{equation*}
$$

For a constant angular frequency ω_{S} and a constant angular rotor speed ω_{R}, the torque is constant.

5.2.3 Slip Speed

The stator currents are given by $i_{S a}(t)=I_{S} \cos \left(\omega_{S} t\right), i_{S b}(t)=I_{S} \sin \left(\omega_{S} t\right)$ and, neglecting the inductance of the rotor phases, equation (5.9) shows that the torque on the rotor is proportional to the difference between the angular speed ω_{S} of the rotating stator magnetic field and the rotor speed ω_{R}, that is,

$$
\tau_{R}=\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{R_{R}}\left(\omega_{S}-\omega_{R}\right)
$$

This difference is called the slip speed $\omega_{\text {slip }}$, that is,

$$
\omega_{s l i p} \triangleq \omega_{S}-\omega_{R}
$$

In particular, if the slip speed is zero, there is no torque. The reason is simply that if the slip speed is zero, then the rotating stator magnetic field and the rotor are rotating at the same angular rate with the result that the fluxes in the rotor loops are constant. As the rate of change of these fluxes is zero, Faraday's law tells us that neither voltages nor currents are induced in the rotor and, without rotor currents, there can be no magnetic force/torque on the rotor. In order to produce torque in an induction machine, the rotor shaft and the stator's magnetic field do not rotate together at the same rate, that is, they are not synchronized. It is for this reason that the induction motor is referred to as an asynchronous machine.

5.3 The Physics of the Synchronous Machine

In this section, the physics of the synchronous motor is described where both the salient and nonsalient machines are considered. A salient rotor is
one in which the rotor is not cylindrically shaped so that air gap does not have a uniform thickness. A nonsalient machine is one which is not salient meaning it does have a cylindrical rotor with a uniform or constant air-gap thickness.

5.3.1 Two-Phase Synchronous Motor with a Sinusoidally Wound Rotor

A synchronous machine with a sinusoidally wound rotor (also referred to as a nonsalient machine) is considered first. The rotor consists of a single sinusoidally wound phase of wire while the stator is constructed identically to that of the induction motor as illustrated in Figure 5.9. The rotor construction, torque production and energy conversion for this synchronous machine is now described.

Sinusoidally Wound Rotor

Consider a synchronous machine where the stator consists of two sinusoidally wound phases which are 90° apart as shown in Figure 5.9(a). Let the rotor consist of a cylindrical core of iron on which a single phase with a sinusoidal turns density has been wound as illustrated in Figure 5.9(b). That is, the turns density of the single-phase rotor winding is given by

$$
N_{R F}\left(\theta-\theta_{R}\right)=\frac{N_{F}}{2}\left|\sin \left(\theta-\theta_{R}\right)\right|
$$

where N_{F} is the total number of windings in the phase.

FIGURE 5.9. Single-phase sinusoidally wound rotor.
The single-phase winding on the rotor is usually referred to as the field winding and hence the subscript " F ". The radial magnetic field in the airgap due to the rotor current i_{F} in the sinusoidally wound rotor is (see
problem 7)

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{R}=B_{R} \hat{\mathbf{r}}=\frac{\mu_{0} \ell_{2} N_{F} i_{F}}{4 g r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} \tag{5.10}
\end{equation*}
$$

For this machine to operate as a synchronous machine, the rotor must be carrying a constant current, that is, $i_{F}=I_{F}$ with I_{F} constant. Again, the subscript " F " is used to denote the rotor current as the field current where the term "field" refers to the current being constant. The rotor position is taken to be aligned with the magnetic axis of the rotor as shown in Figure 5.9. Furthermore, as the rotor current is constant, the rotor can be viewed simply as a magnet that rotates at angular speed $\omega_{R}=d \theta_{R} / d t$. Figure 5.10 illustrates the radial magnetic field in air gap produced by a constant current I_{F} in a sinusoidally wound rotor phase.

FIGURE 5.10. Magnetic field lines produced by a sinusoidally distributed rotor winding carrying a constant current $i_{F}=I_{F}$. (The stator windings are not drawn for clarity.)

To describe the Physics of this machine, consider the motor to be in steady-state operation. By this it is meant that the stator magnetic field $\overrightarrow{\mathbf{B}}_{S}$ and the rotor are rotating at the same angular speed (i.e., $\omega_{R}=\omega_{S}$), which is the origin of the term synchronous. As shown below, with the magnetic axis of $\overrightarrow{\mathbf{B}}_{S}$ given by $\theta_{S}(t)=\omega_{S} t$, the rotor position in steady state is written as $\theta_{R}(t)=\omega_{S} t-\delta$, where $\delta>0$ is a constant angle whose value will be shown to depend on how much load (i.e., external torque, friction, etc.) there is on the motor.

Magnetic Forces/Torques

The magnetic field in the air-gap due to the stator currents is given by

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{S}\left(i_{S a}, i_{S b}, r, \theta\right)=\frac{\mu_{0} \ell_{2} N_{S}}{4 g r}\left(i_{S a} \cos (\theta)+i_{S b} \sin (\theta)\right) \hat{\mathbf{r}} . \tag{5.11}
\end{equation*}
$$

With the rotor field current $i_{F}(t)=I_{F}$ constant, the magnetic field in the air gap due to this constant rotor current is

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{R}=\frac{\mu_{0} \ell_{2} N_{F} I_{F}}{4 g r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} \tag{5.12}
\end{equation*}
$$

where θ_{R} is the rotor position which is aligned with the magnetic axis of the rotor.

The same procedure used to compute the torque produced by the induction motor could also be used. That is, one uses the expression (5.11) for $\overrightarrow{\mathbf{B}}_{S}$ to compute the torque this magnetic field produces on the current in the sinusoidally wound rotor phase. This is explored in problem 9 . However, a different approach is taken here that will also work in the case of both a permanent magnet rotor and a salient rotor (see problem 8).

By Newton's third law, the magnetic forces on the rotor currents produced by the rotating stator magnetic field is the negative of the forces on the stator currents produced by rotor's magnetic field. The approach here is to compute the torque $\overrightarrow{\boldsymbol{\tau}}_{S}$ exerted on the currents in the sinusoidally wound stator phases by the rotor's magnetic field. Then the rotor torque $\vec{\tau}_{R}$ is found by $\overrightarrow{\boldsymbol{\tau}}_{R}=-\overrightarrow{\boldsymbol{\tau}}_{S}$.

To proceed, consider Figure 5.11 where at any position θ on the stator, the number of axial sides of stator phase a between θ and $\theta+d \theta$ is $\left(N_{S} / 2\right)|\sin (\theta)| d \theta$. Thus, the total amount of current in the axial sides of stator phase a between θ and $\theta+d \theta$ is $i_{S a}\left(N_{S} / 2\right)|\sin (\theta)| d \theta$. Using the magnetic force law, the incremental force $d \overrightarrow{\mathbf{F}}_{S a}$ on the currents in the windings of stator phase a between θ and $\theta+d \theta$ is given by

$$
d \overrightarrow{\mathbf{F}}_{S a}=\left\{\begin{array}{cl}
i_{S a}(t) \frac{N_{S}}{2}|\sin (\theta)| d \theta\left(+\ell_{1} \hat{\mathbf{z}}\right) \times \overrightarrow{\mathbf{B}}_{R} & 0 \leq \theta \leq \pi \\
i_{S a}(t) \frac{N_{S}}{2}|\sin (\theta)| d \theta\left(-\ell_{1} \hat{\mathbf{z}}\right) \times \overrightarrow{\mathbf{B}}_{R} & \pi \leq \theta \leq 2 \pi
\end{array}\right.
$$

FIGURE 5.11. Computation of force/torque on stator phase a due to the rotor's magnetic field. Stator phase b is not shown for clarity.

As $\sin (\theta)$ is positive in the interval $0 \leq \theta \leq \pi$ and $|\sin (\theta)|=-\sin (\theta)$ in the interval $\pi \leq \theta \leq 2 \pi$, the incremental force for $0 \leq \theta \leq 2 \pi$ may be rewritten compactly as

$$
\begin{aligned}
d \overrightarrow{\mathbf{F}}_{S a} & =\left(i_{S a}(t) \frac{N_{S}}{2} \sin (\theta) d \theta\right)\left(\ell_{1} \hat{\mathbf{z}}\right) \times \overrightarrow{\mathbf{B}}_{R} \\
& =\left(i_{S a}(t) \frac{N_{S}}{2} \sin (\theta) d \theta\right)\left(\ell_{1} \hat{\mathbf{z}}\right) \times\left.\frac{\mu_{0} \ell_{2} N_{F} I_{F}}{4 g r}\right|_{r=r_{S}} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g r_{S}} i_{S a}(t) \sin (\theta) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\mathbf{z}} \times \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g r_{S}} i_{S a}(t) \sin (\theta) \cos \left(\theta-\theta_{R}\right) d \hat{\boldsymbol{\theta}}
\end{aligned}
$$

where $r_{S}=\ell_{2} / 2+g$ is the inside radius of the stator. Then, the incremental torque on these windings of phase a is given by

$$
\begin{aligned}
d \vec{\tau}_{S a} & =\left(r_{S} \hat{\mathbf{r}}\right) \times d \overrightarrow{\mathbf{F}}_{S a} \\
& =r_{S} \hat{\mathbf{r}} \times\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g r_{S}} i_{S a}(t) \sin (\theta) \cos \left(\theta-\theta_{R}\right) d \theta\right) \hat{\boldsymbol{\theta}} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g} i_{S a}(t) \sin (\theta) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\ell} .
\end{aligned}
$$

The total torque on stator phase a is then

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\tau}}_{S a}\left(i_{S a}, \theta_{R}\right)= & \int_{0}^{2 \pi} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g} i_{S a}(t) \sin (\theta) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\mathbf{z}} \\
= & \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g} i_{S a}(t) \int_{0}^{2 \pi} \sin (\theta)\left(\cos (\theta) \cos \left(\theta_{R}\right)\right. \\
& \left.+\sin (\theta) \sin \left(\theta_{R}\right)\right) d \theta \hat{\mathbf{z}} \\
= & \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g} i_{S a}(t) \sin \left(\theta_{R}\right) \int_{0}^{2 \pi} \sin ^{2}(\theta) d \theta \hat{\mathbf{z}} \\
= & \frac{\mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g} i_{S a}(t) \sin \left(\theta_{R}\right) \hat{\mathbf{z}} .
\end{aligned}
$$

Similarly, with $N_{S b}(\theta) d \theta=\left(N_{S} / 2\right)|\sin (\theta-\pi / 2)| d \theta$ the number of axial sides of the windings of stator phase b between θ and $\theta+d \theta$, the incremental force $d \overrightarrow{\mathbf{F}}_{S b}$ on the current in these windings for $0 \leq \theta \leq 2 \pi$ is given by ${ }^{2}$

$$
\begin{aligned}
d \overrightarrow{\mathbf{F}}_{S b} & =\left(i_{S b}(t) \frac{N_{S}}{2} \sin (\theta-\pi / 2) d \theta\right)\left(\ell_{1} \hat{\mathbf{z}}\right) \times \overrightarrow{\mathbf{B}}_{R} \\
& =\left(i_{S b}(t) \frac{N_{S}}{2} \sin (\theta-\pi / 2) d \theta\right)\left(\ell_{1} \hat{\mathbf{z}}\right) \times\left.\frac{\mu_{0} \ell_{2} N_{F} I_{F}}{4 g r}\right|_{r=r_{S}} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g r_{S}} i_{S b}(t) \sin (\theta-\pi / 2) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\mathbf{z}} \times \hat{\mathbf{r}} \\
& =-\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g r_{S}} i_{S b}(t) \cos (\theta) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

Thus, the incremental torque on phase b of the stator is given by

$$
\begin{aligned}
d \overrightarrow{\boldsymbol{r}}_{S b} & =\left(r_{S} \hat{\mathbf{r}}\right) \times d \overrightarrow{\mathbf{F}}_{S b} \\
& =\left(r_{S} \hat{\mathbf{r}}\right) \times\left(-\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g r_{S}} i_{S b}(t) \cos (\theta) \cos \left(\theta-\theta_{R}\right) d \theta\right) \hat{\boldsymbol{\theta}} \\
& =-\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g} i_{S b}(t) \cos (\theta) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\mathbf{z}}
\end{aligned}
$$

[^38]The total torque on stator phase b is then

$$
\begin{aligned}
\vec{\tau}_{S b}\left(i_{S b}, \theta_{R}\right)= & \int_{0}^{2 \pi}-\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g} i_{S b}(t) \cos (\theta) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\mathbf{z}} \\
= & -\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g} i_{S b}(t) \int_{0}^{2 \pi} \cos (\theta)\left(\cos (\theta) \cos \left(\theta_{R}\right)\right. \\
& \left.+\sin (\theta) \sin \left(\theta_{R}\right)\right) d \theta \hat{\mathbf{z}} \\
= & -\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g} i_{S b}(t) \cos \left(\theta_{R}\right) \int_{0}^{2 \pi} \cos ^{2}(\theta) d \theta \hat{\mathbf{z}} \\
= & -\frac{\mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g} i_{S b}(t) \cos \left(\theta_{R}\right) \hat{\mathbf{z}}
\end{aligned}
$$

The total torque exerted on the stator by the rotor is then

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\tau}}_{S} & =\overrightarrow{\boldsymbol{\tau}}_{S a}+\overrightarrow{\boldsymbol{\tau}}_{S b} \\
& =\frac{\mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g}\left(i_{S a}(t) \sin \left(\theta_{R}\right)-i_{S b}(t) \cos \left(\theta_{R}\right)\right) \hat{\mathbf{z}}
\end{aligned}
$$

Consequently, $\overrightarrow{\boldsymbol{\tau}}_{R}=-\overrightarrow{\boldsymbol{\tau}}_{S}$ is the torque exerted on the rotor by the stator and is given by

$$
\vec{\tau}_{R}=\frac{\mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{F} I_{F}}{8 g}\left(-i_{S a}(t) \sin \left(\theta_{R}\right)+i_{S b}(t) \cos \left(\theta_{R}\right)\right) \hat{\mathbf{z}}
$$

Define

$$
\begin{aligned}
& B_{R \max }\left.\triangleq \frac{\mu_{0} \ell_{2} N_{F} I_{F}}{4 g r}\right|_{r=\ell_{2} / 2}=\frac{\mu_{0} N_{F} I_{F}}{2 g} \\
& V_{\text {airgap }} \triangleq 2 \pi\left(\ell_{2} / 2\right) \ell_{1} g=\pi \ell_{1} \ell_{2} g
\end{aligned}
$$

where $B_{R \text { max }}$ is the maximum values of the rotor's magnetic field at the surface of the rotor ${ }^{3}$ and $V_{\text {airgap }}$ is the volume of the air gap (assuming g is small). The torque is now rewritten as

$$
\tau_{R}=V_{\text {airgap }} B_{R \max } \frac{N_{S}}{4 g}\left(-i_{S a}(t) \sin \left(\theta_{R}\right)+i_{S b}(t) \cos \left(\theta_{R}\right)\right)
$$

and the dynamic equation describing the motion of the rotor is then

$$
J \frac{d \omega_{R}}{d t}=V_{\text {airgap }} B_{R \max } \frac{N_{S}}{4 g}\left(-i_{S a}(t) \sin \left(\theta_{R}\right)+i_{S b}(t) \cos \left(\theta_{R}\right)\right)-\tau_{L}
$$

To obtain an expression for this torque in steady state, set

$$
i_{S a}(t)=I_{S} \cos \left(\omega_{S} t\right)=I_{S} \cos \left(\theta_{S}\right), i_{S b}(t)=I_{S} \sin \left(\omega_{S} t\right)=I_{S} \sin \left(\theta_{S}\right)
$$

[^39]where $\theta_{S}(t)=\omega_{S} t$ so that
\[

$$
\begin{aligned}
\tau_{R} & =V_{\text {airgap }} B_{R \max } \frac{N_{S} I_{S}}{4 g}\left(\cos \left(\theta_{S}\right) \sin \left(\theta_{R}\right)-\sin \left(\theta_{S}\right) \cos \left(\theta_{R}\right)\right) \\
& =V_{\text {airgap }} B_{R \max } \frac{N_{S} I_{S}}{4 g} \sin \left(\theta_{S}-\theta_{R}\right) \\
& =V_{\text {airgap }} \frac{B_{R \max } B_{S \max }}{2 \mu_{0}} \sin \left(\theta_{S}-\theta_{R}\right)
\end{aligned}
$$
\]

Here

$$
\left.B_{S \max } \triangleq \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\right|_{r=\ell_{2} / 2}=\frac{\mu_{0} N_{S} I_{S}}{2 g}
$$

is the maximum value of the rotating stator magnetic field at the surface of the rotor [see equation (5.2)]. With

$$
\begin{aligned}
\theta_{S}(t) & =\omega_{S} t \\
\theta_{R}(t) & =\omega_{R} t-\delta
\end{aligned}
$$

it follows that

$$
\left.\sin \left(\theta_{S}-\theta_{R}\right)=\sin \left(\omega_{S} t-\left(\omega_{R} t-\delta\right)\right)=\sin \left(\left(\omega_{S}-\omega_{R}\right) t+\delta\right)\right)
$$

Thus, the only way to obtain constant torque is with the stator's magnetic field and the rotor rotating at the same constant angular speed (i.e., $\omega_{S}=$ $\left.\omega_{R}\right)$. In other words, the stator's rotating magnetic field $\overrightarrow{\mathbf{B}}_{S}$ and the rotor must be rotating synchronously. In this case, the expression for the torque simplifies to

$$
\begin{equation*}
\tau_{R}=V_{\text {airgap }} \frac{B_{R \max } B_{S \max }}{2 \mu_{0}} \sin (\delta) . \tag{5.13}
\end{equation*}
$$

This last expression leads to a simple picture for the synchronous motor. That is, the stator currents set up a rotating "stator magnet" which pulls along the "rotor magnet" (see Figure II.10). The torque on the "rotor magnet" is proportional to the maximum value of the magnetic field of the rotating "stator magnet", the maximum value of the magnetic field of the "rotor magnet", and the sine of the angle between them.

5.3.2 Emfs and Energy Conversion

The flux linkage in stator phase a due to the rotor's magnetic field $\overrightarrow{\mathrm{B}}_{R}$ is now found in order to compute the induced emf in this phase. Recall that for $0 \leq \theta \leq \pi$, the number of turns (loops) in stator phase a between θ and $\theta+d \theta$ is $\left(N_{S} / 2\right) \sin (\theta) d \theta$. As the cross-sectional area of the wire is assumed negligible, the flux through each of these loops/turns is the same.

FIGURE 5.12. Computation of the flux in a turn of stator phase a located between θ and $\theta+d \theta$. All the loops between θ and $\theta+d \theta$ have the same flux as the cross-sectional area of the wire is assumed infinitesimal. The normal for the flux surface is taken to be $\hat{\mathbf{n}}=\hat{\mathbf{r}}$. Stator phase b is not shown for clarity.

Denoting the flux in each stator turn/loop between θ and $\theta+d \theta$ by $\phi_{S a}(\theta)$, this flux is computed as

$$
\begin{align*}
\phi_{S a}(\theta) & \triangleq \int_{\substack{\text { A single loop of stator } \\
\text { phase a at the angle } \theta}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}} \\
& =\int_{\theta^{\prime}=\theta-\pi}^{\theta^{\prime}=\theta} \int_{z=0}^{z=\ell_{1}}\left(\frac{\mu_{0} N_{F} \ell_{2} I_{F}}{4 g r_{S}} \cos \left(\theta^{\prime}-\theta_{R}(t)\right) \hat{\mathbf{r}}\right) \cdot\left(r_{S} d \theta^{\prime} d z \hat{\mathbf{r}}\right) \\
& =\int_{\theta^{\prime}=\theta-\pi}^{\theta^{\prime}=\theta} \frac{\mu_{0} N_{F} \ell_{1} \ell_{2} I_{F}}{4 g} \cos \left(\theta^{\prime}-\theta_{R}(t)\right) d \theta^{\prime} \\
& =\frac{\ell_{1} \ell_{2}}{2} \frac{\mu_{0} N_{F} I_{F}}{2 g}\left(\sin \left(\theta-\theta_{R}\right)-\sin \left(\theta-\pi-\theta_{R}\right)\right) \\
& =\ell_{1} \ell_{2} B_{R \max } \sin \left(\theta-\theta_{R}\right) \tag{5.14}
\end{align*}
$$

where $B_{R \text { max }}=\left(\mu_{0} N_{F} I_{F}\right) /(2 g)$.
As there are $\left(N_{S} / 2\right) \sin (\theta) d \theta$ turns/loops of stator phase a between θ and $\theta+d \theta$ each containing the flux $\phi_{S a}(\theta)$, the total flux linkage $\lambda_{S a}$ in all the windings making up stator phase a due to the rotor's magnetic field is
given by

$$
\begin{align*}
\lambda_{S a}\left(\theta_{R}\right) & \triangleq \int_{\theta=0}^{\theta=\pi} \phi_{S a}(\theta) \frac{N_{S}}{2} \sin (\theta) d \theta \\
& =\int_{0}^{\pi} \ell_{1} \ell_{2} B_{R \max } \sin \left(\theta-\theta_{R}\right) \frac{N_{S}}{2} \sin (\theta) d \theta \\
& =\ell_{1} \ell_{2} B_{R \max } \frac{N_{S}}{2} \int_{0}^{\pi} \sin (\theta) \sin \left(\theta-\theta_{R}\right) d \theta \\
& =\ell_{1} \ell_{2} B_{R \max } \frac{N_{S}}{2} \frac{\pi}{2} \cos \left(\theta_{R}\right) \\
& =\pi \ell_{1} \ell_{2} g B_{R \max } \frac{N_{S}}{4 g} \cos \left(\theta_{R}\right) \\
& =V_{\text {airgap }} B_{R \max } \frac{N_{S}}{4 g} \cos \left(\theta_{R}\right) \tag{5.15}
\end{align*}
$$

where $V_{\text {airgap }} \triangleq \pi \ell_{1} \ell_{2} g$. Similarly, denote by $\phi_{S b}(\theta)$ the flux in windings/turns of stator phase b between θ and $\theta+d \theta$ due to the rotor's magnetic field. It follows that

$$
\begin{align*}
\phi_{S b}(\theta) & \triangleq \int_{\substack{\text { A single loop of stator } \\
\text { phase } \text { at the angle } \theta}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}} \\
& =\int_{\theta^{\prime}=\theta-\pi}^{\theta^{\prime}=\theta} \int_{z=0}^{z=\ell_{1}}\left(\frac{\mu_{0} N_{F} \ell_{2} I_{F}}{4 g r_{S}} \cos \left(\theta^{\prime}-\theta_{R}(t)\right) \hat{\mathbf{r}}\right) \cdot\left(r_{S} d \theta^{\prime} d z \hat{\mathbf{r}}\right) \\
& =\ell_{1} \ell_{2} \frac{\mu_{0} N_{F} I_{F}}{2 g} \sin \left(\theta-\theta_{R}\right) \\
& =\ell_{1} \ell_{2} B_{R \max } \sin \left(\theta-\theta_{R}\right) .
\end{align*}
$$

The total flux linkage in stator phase b is then

$$
\begin{align*}
\lambda_{S b}\left(\theta_{R}\right) & =\int_{\theta=\pi / 2}^{\theta=3 \pi / 2} \phi_{S b}(\theta) \frac{N_{S}}{2} \sin (\theta-\pi / 2) d \theta \\
& =\int_{\pi / 2}^{3 \pi / 2} \ell_{1} \ell_{2} B_{R \max } \sin \left(\theta-\theta_{R}\right) \frac{N_{S}}{2} \sin (\theta-\pi / 2) d \theta \\
& =-\ell_{1} \ell_{2} B_{R \max } \frac{N_{S}}{2} \int_{\pi / 2}^{3 \pi / 2} \cos (\theta) \sin \left(\theta-\theta_{R}\right) d \theta \\
& =-\ell_{1} \ell_{2} B_{R \max } \frac{N_{S}}{2}\left(-\frac{\pi}{2} \sin \left(\theta_{R}\right)\right) \\
& =V_{\text {airgap }} B_{R \max } \frac{N_{S}}{4 g} \sin \left(\theta_{R}\right) . \tag{5.17}
\end{align*}
$$

The quantities $\lambda_{S a}$ and $\lambda_{S b}$ denote the flux linkages in the stator phases
due to the rotor's magnetic field. ${ }^{4}$ By Faraday's law, the emf's induced in the stator phases due to the rotor's magnetic field (i.e., the back emfs in the stator phases) are then

$$
\begin{align*}
\xi_{S a} & =-d \lambda_{S a} / d t=+V_{\mathrm{airgap}} B_{R \max } \frac{N_{S}}{4 g} \sin \left(\theta_{R}\right) \frac{d \theta_{R}}{d t} \\
\xi_{S b} & =-d \lambda_{S b} / d t=-V_{\mathrm{airgap}} B_{R \max } \frac{N_{S}}{4 g} \cos \left(\theta_{R}\right) \frac{d \theta_{R}}{d t} . \tag{5.18}
\end{align*}
$$

As the normal $\hat{\mathbf{n}}=\hat{\mathbf{r}}$ was chosen for the flux surface to compute (5.14) and therefore for all the loops in (5.15), the induced emf $\xi_{S a}$ in phase a has the same sign convention as that chosen for the phase current $i_{S a}$. Similarly, the induced emf $\xi_{S b}$ in phase b has the same sign convention as the phase current $i_{S b}$.

The electrical power absorbed by the emfs $\xi_{S a}, \xi_{S b}$ is

$$
\begin{aligned}
P_{\text {elec }} & =i_{S a}(t) \xi_{S a}(t)+i_{S b}(t) \xi_{S b}(t) \\
& =V_{\text {airgap }} B_{R \max } \frac{N_{S}}{4 g}\left(i_{S a}(t) \sin \left(\theta_{R}\right)-i_{S b}(t) \cos \left(\theta_{R}\right)\right) \omega_{R} \\
& =V_{\text {airgap }} B_{R \max } \frac{N_{S} I_{S}}{4 g}\left(\cos \left(\omega_{S} t\right) \sin \left(\theta_{R}\right)-\sin \left(\omega_{S} t\right) \cos \left(\theta_{R}\right)\right) \omega_{R} \\
& =V_{\text {airgap }} B_{R \max } B_{S \max } \frac{1}{2 \mu_{0}} \omega_{R} \sin \left(\theta_{R}-\omega_{S} t\right) \\
& =\frac{V_{\text {airgap }}}{2 \mu_{0}} B_{S \max } B_{R \max } \omega_{R} \sin \left(\left(\omega_{R}-\omega_{S}\right) t-\delta\right) \\
& =-\frac{B_{S \max } B_{R \max }}{2 \mu_{0}} V_{\text {airgap }} \omega_{R} \sin (\delta)
\end{aligned}
$$

where the motor is now assumed to be in steady state so that $\theta_{S}=\omega_{S} t$, $\theta_{R}=\omega_{R} t-\delta$ with $\omega_{S}=\omega_{R}$. By the torque equation (5.13), the mechanical power produced is

$$
P_{\mathrm{mech}}=\tau_{R} \omega_{R}=\frac{B_{S \max } B_{R \max }}{2 \mu_{0}} V_{\mathrm{airgap}} \sin (\delta) \omega_{R}
$$

so that

$$
P_{\text {elec }}+P_{\text {mech }}=0
$$

That is, the electrical power absorbed in the stator phases reappears as the mechanical power of the motor.

[^40]
5.3.3 Synchronous Motor with a Salient Rotor

To actually produce a rotor winding for a machine that is sinusoidally wound is more expensive than other types of windings. In the case of the synchronous motor, one can eliminate the need for a sinusoidally wound rotor. Recall that in the above analysis of the synchronous machine, the important fact was that the magnetic field of the rotor was sinusoidally distributed in $\theta-\theta_{R}$. It is now shown that by putting a uniformly wound coil on the rotor and shaping the pole faces of the rotor appropriately, a sinusoidally distributed magnetic field in the air gap can be produced.

FIGURE 5.13. Synchronous motor with a salient rotor.

To do so, consider Figure 5.13 where the rotor iron is now wrapped with a standard coil with N_{F} turns and the pole faces have been shaped so that the air gap is no longer uniform, but instead given by

$$
\begin{equation*}
g\left(\theta-\theta_{R}\right) \triangleq \frac{g_{0}}{\cos \left(\theta-\theta_{R}\right)}=g_{0} \sec \left(\theta-\theta_{R}\right) \tag{5.19}
\end{equation*}
$$

where g_{0} is the minimum air-gap distance. (Obviously, this can only be done approximately as $\cos \left(\theta-\theta_{R}\right)=0$ for $\theta=\theta_{R} \pm \pi / 2$.) To determine the magnetic field $\overrightarrow{\mathbf{B}}_{R}$ in the air gap due to the rotor, Ampère's law is applied
to the path $1-2-3-4-1$ above to obtain ${ }^{5}$

$$
\begin{equation*}
\int_{1}^{2} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}+\int_{3}^{4} \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=N_{F} i_{F} \tag{5.20}
\end{equation*}
$$

where the standard assumption that $\overrightarrow{\mathbf{H}} \equiv 0$ in the magnetic material has been used. As

$$
d \vec{\ell}=\left\{\begin{array}{lll}
+d r \hat{r} & \text { for path } & 1-2 \\
-d r \hat{\mathbf{r}} & \text { for path } & 3-4
\end{array}\right.
$$

equation (5.20) reduces to ($\left.\overrightarrow{\mathbf{H}}=H_{r} \hat{\mathbf{r}}\right)$

$$
\begin{equation*}
H_{r}(\theta) g\left(\theta-\theta_{R}\right)-H_{r}(\theta+\pi) g\left(\theta-\theta_{R}\right)=N_{F} i_{F} \tag{5.21}
\end{equation*}
$$

By symmetry, the radial component must satisfy $H_{r}(\theta)=-H_{r}(\theta \pm \pi)$ so that (5.21) becomes

$$
2 H_{r}(\theta) g\left(\theta-\theta_{R}\right)=N_{F} i_{F}
$$

Finally,

$$
H_{r}(\theta)=\frac{N_{F} i_{F}}{2 g\left(\theta-\theta_{R}\right)}=\frac{N_{F} i_{F}}{2 g_{0}} \cos \left(\theta-\theta_{R}\right) .
$$

Finally, this is multiplied by both μ_{0} and r_{R} / r (to satisfy conservation of flux in the air gap) to obtain

$$
\overrightarrow{\mathbf{B}}_{R}\left(\theta-\theta_{R}\right)=\frac{\mu_{0} N_{F} I_{F}}{2 g_{0}} \frac{r_{R}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} .
$$

By shaping the pole faces of the rotor according to equation (5.19), it was found this salient rotor produced the same magnetic field in the air gap as a sinusoidally wound rotor. However, as one moves away from the (salient) rotors' magnetic axis, the air gap is no longer small so that the assumptions about the magnetic field due to the rotor current being constant and radially directed across the air gap are less valid. On the other hand, with either a salient or sinusoidally wound rotor, the magnetic field strength of the rotor is quite weak as one moves away from the magnetic axis so that these portions do not contribute significantly to the torque. (The same can be said of the strength of the stator's magnetic field as one moves away from its magnetic axis.) As the angle between the stator's and rotor's magnetic axis is usually small, the region where the assumptions

[^41]are violated do not contribute significantly to the torque lending credence to the above analysis.

Remark With $r_{R}=\ell_{2} / 2$, the expression for $\overrightarrow{\mathbf{B}}_{S}$ in (5.11) can be written as

$$
\overrightarrow{\mathbf{B}}_{S}\left(i_{S a}, i_{S b}, r, \theta\right)=\frac{\mu_{0} r_{R} N_{S}}{2 g r}\left(i_{S a} \cos (\theta)+i_{S b} \sin (\theta)\right) \hat{\mathbf{r}}
$$

and was derived assuming a uniform air gap. If a salient rotor as in Figure 5.13 is used, then this assumption no longer holds. However, to a reasonable approximation, one can use (5.11) with $g=g_{1}>g_{0}$, that is, some average value g_{1} of the air gap length. Further, as the rotor no longer has a circular cross section, one can take $r_{R}=r_{S}-g_{1}$ as an average radius of the rotor.

5.3.4 Armature and Field Windings

Recall that the rotor of a DC motor was referred to as the armature winding. This terminology is used to indicate that the current in this winding is alternating current (AC) as every half-turn the commutator and brushes reverse the direction of the current in any given rotor loop. For a synchronous or induction motor, the stator windings carry AC current (in normal operation) so the stator windings are referred to as the armature (see Woodson and Melcher [20], page 121). Further, recall that the stator winding of a separately excited DC motor is called the field winding and this terminology is used to indicate that it normally carries a DC current to establish a constant magnetic field in the air gap that produces torque on the current in the rotor windings. Similarly, on a wound rotor synchronous machine, the rotor winding is called the field winding because it normally operates with a DC current to establish a constant magnetic field in the air gap. (This magnetic field is constant for someone rotating with the rotor.)

5.4 Microscopic Viewpoint of AC Machines*

The microscopic viewpoint of the Physics of AC machines is described in this section. This is analogous to the microscopic viewpoint of DC machines given in Chapter 1. The analysis is first done from the point of view of a stationary coordinate system and then from the point of view of a coordinate system rotating with the stator's magnetic field.

5.4.1 Rotating Axial Electric Field Due to the Stator Currents

Recall from equation (5.2) that the rotating magnetic field in the air gap produced by the stator currents is

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S}(r, \theta, t) & =B_{S r}(r, \theta, t) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{r}} . \tag{5.22}
\end{align*}
$$

FIGURE 5.14. Rotating magnetic field $\overrightarrow{\mathbf{B}}_{S}$.

In Chapter 4 [see equation (4.26)], it was shown that the axial electric field produced by $\overrightarrow{\mathbf{B}}_{S}$ in equation (5.22) according to

$$
\nabla \times \overrightarrow{\mathbf{E}}_{S}=-\frac{\partial \overrightarrow{\mathbf{B}}_{S}}{\partial t}
$$

is

$$
\begin{equation*}
\overrightarrow{\mathbf{E}}_{S}(\theta, t)=E_{S z}(\theta, t) \hat{\mathbf{z}}=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{z}} . \tag{5.23}
\end{equation*}
$$

This axially directed rotating electric field $\overrightarrow{\mathbf{E}}_{S}(\theta, t)$ is illustrated in Figure 5.15. For $\theta_{S}-\pi / 2 \leq \theta \leq \theta_{S}+\pi / 2$, the electric field is into the page (\otimes) while for $\theta_{S}+\pi / 2 \leq \theta \leq \theta_{S}+3 \pi / 2$, the electric field is out of the page (\odot).

FIGURE 5.15. Rotating axial electric field $\overrightarrow{\mathbf{E}}_{S}=E_{S z}(\theta, t) \hat{\mathbf{z}}$ induced by the rotating magnetic field $\overrightarrow{\mathbf{B}}_{S}=B_{S r}(\theta, t) \hat{\mathbf{r}}$.

5.4.2 Induction Machine in the Stationary Coordinate System

Consider the setup of Figure 5.16.

FIGURE 5.16. Simple induction motor with two single-loop rotor phases.

The axial electric field $\overrightarrow{\mathbf{F}}_{S}$ produces a force on charge carriers in the rotor loops. However, the total force on a charge carrier in a rotor loop is due to both the electric and magnetic fields as given by the Lorentz expression

$$
\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{E}}_{S}+q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}
$$

where

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S}(r, \theta, t) & =B_{S r}(r, \theta, t) \hat{\mathbf{r}}=\left(\mu_{0} \ell_{2} N_{S} I_{S} / 4 g r\right) \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{r}} \\
\overrightarrow{\mathbf{E}}_{S}(\theta, t) & =E_{S z}(\theta, t) \hat{\mathbf{z}}=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{z}} \tag{5.24}
\end{align*}
$$

To compute $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}$, let $v_{d r a}$ be the (drift) speed of the charge carriers (which make up the current) along rotor loop a. The speed $v_{d r a}$ being positive means that the current is positive; that is, coming out of the page \odot on side a and into the page \otimes on side a^{\prime}. Then, with $v_{t}=\left(\ell_{2} / 2\right) \omega_{R}$, the speed of the charge carriers in the $\hat{\boldsymbol{\theta}}$ direction, the total velocity of the charge carriers along the axial sides of rotor loop a is

$$
\overrightarrow{\mathbf{v}}= \begin{cases}+v_{d r a} \hat{\mathbf{Z}}+v_{t} \hat{\boldsymbol{\theta}} & \text { for side } a \\ -v_{d r a} \hat{\mathbf{Z}}+v_{t} \hat{\boldsymbol{\theta}} & \text { for side } a^{\prime} .\end{cases}
$$

The magnetic force per unit charge on the charge carriers on the axial sides of rotor loop a is given by
$\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}=$
$\left\{\begin{array}{lll}+v_{d r a} B_{S r}\left(\ell_{2} / 2, \theta_{R}+\pi / 2, t\right) \hat{\boldsymbol{\theta}}-v_{t} B_{S r}\left(\ell_{2} / 2, \theta_{R}+\pi / 2, t\right) \hat{\mathbf{z}} & \text { for side } a \\ -v_{d r a} B_{S r}\left(\ell_{2} / 2, \theta_{R}-\pi / 2, t\right) \hat{\boldsymbol{\theta}}-v_{t} B_{S r}\left(\ell_{2} / 2, \theta_{R}-\pi / 2, t\right) \hat{\mathbf{z}} & \text { for side } a^{\prime} .\end{array}\right.$
Using equation (5.24), it follows that for side a

$$
\begin{aligned}
B_{S r}\left(\ell_{2} / 2, \theta_{R}+\pi / 2, t\right) \hat{\mathbf{r}} & =\frac{\mu_{0} N_{S} I_{S}}{2 g} \cos \left(\theta_{R}+\pi / 2-\omega_{S} t\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{S} t-\theta_{R}\right) \hat{\mathbf{r}}
\end{aligned}
$$

Similarly, on side a^{\prime}

$$
\begin{aligned}
B_{S r}\left(\ell_{2} / 2, \theta_{R}-\pi / 2, t\right) \hat{\mathbf{r}} & =\frac{\mu_{0} N_{S} I_{S}}{2 g} \cos \left(\theta_{R}-\pi / 2-\omega_{S} t\right) \hat{\mathbf{r}} \\
& =-\frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{S} t-\theta_{R}\right) \hat{\mathbf{r}}
\end{aligned}
$$

With $v_{t}=\left(\ell_{2} / 2\right) \omega_{R}$ and $\theta_{R}=\omega_{R} t$, the magnetic force per unit charge in rotor loop a may now be written as

$$
\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}=
$$

$$
\begin{cases}v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\boldsymbol{\theta}}-\omega_{R} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\mathbf{z}} & \text { for side } a \tag{5.25}\\ v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\boldsymbol{\theta}}+\omega_{R} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\mathbf{z}} & \text { for side } a^{\prime}\end{cases}
$$

Next, the electric field $\overrightarrow{\mathbf{E}}_{S}$ in rotor loop a is given by

$$
\overrightarrow{\mathbf{E}}_{S}= \begin{cases}E_{S z}\left(\theta_{R}+\pi / 2, t\right) \hat{\mathbf{z}} & \text { for side } a \\ E_{S z}\left(\theta_{R}-\pi / 2, t\right) \hat{\mathbf{z}} & \text { for side } a^{\prime}\end{cases}
$$

Using (5.24) and $\theta_{R}(t)=\omega_{R} t$, this becomes for side a

$$
\begin{align*}
\overrightarrow{\mathbf{E}}_{S} & =\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \cos \left(\omega_{R} t+\pi / 2-\omega_{S} t\right) \hat{\mathbf{z}} \\
& =\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\mathbf{z}} \tag{5.26}
\end{align*}
$$

and for side a^{\prime}

$$
\begin{align*}
\overrightarrow{\mathbf{E}}_{S} & =\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \cos \left(\omega_{R} t-\pi / 2-\omega_{S} t\right) \hat{\mathbf{z}} \\
& =-\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\mathbf{z}} \tag{5.27}
\end{align*}
$$

The total force per unit charge $\overrightarrow{\mathbf{F}} / q=\overrightarrow{\mathbf{E}}_{S}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}$ on side a is then

$$
\begin{align*}
\overrightarrow{\mathbf{F}}_{\text {side } a} / q= & \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\mathbf{z}}+v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \\
& \times \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\boldsymbol{\theta}}-\omega_{R} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\mathbf{z}} \tag{5.28}
\end{align*}
$$

and for side a^{\prime} it is given by

$$
\begin{align*}
\overrightarrow{\mathbf{F}}_{\text {side } a^{t}} / q=- & \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\mathbf{z}}+v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \\
& \times \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\boldsymbol{\theta}}+\omega_{R} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\mathbf{z}} \tag{5.29}
\end{align*}
$$

These last two expressions simplify to

$$
\begin{align*}
\overrightarrow{\mathbf{F}}_{\text {side } a} / q= & v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\boldsymbol{\theta}} \\
& +\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g}\left(\omega_{S}-\omega_{R}\right) \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\mathbf{z}} \tag{5.30}
\end{align*}
$$

and

$$
\begin{align*}
\overrightarrow{\mathbf{F}}_{\text {side } a^{\prime}} / q= & v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\boldsymbol{\theta}} \\
& -\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g}\left(\omega_{S}-\omega_{R}\right) \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\mathbf{z}} \tag{5.31}
\end{align*}
$$

The component in $\hat{\boldsymbol{\theta}}$ direction (tangential to the rotor motion) is what produces the torque. With N the number of charge carriers per unit volume
in the conductor of rotor phase a, S the cross-sectional area of the loop, it follows that $q N S \ell_{1}$ is the total number of charge carriers on each axial side of the loop. Therefore, the total tangential magnetic force on these charge carriers is

$$
\overrightarrow{\mathbf{F}}_{\hat{\boldsymbol{\theta}}}=q N S \ell_{1} v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\boldsymbol{\theta}}
$$

Recalling that $i_{R a}=q N S v_{d r a}$ is the rotor current and computing the torque according to $\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{\hat{\boldsymbol{\theta}}}$, the total torque on rotor loop a is

$$
\begin{align*}
\overrightarrow{\boldsymbol{\tau}}_{R a} & =\tau_{R a} \hat{\mathbf{z}} \\
& =\left(\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{\hat{\boldsymbol{\theta}}}\right)_{\text {side-a }}+\left(\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{\hat{\boldsymbol{\theta}}}\right)_{\text {side-a'}} \\
& =2 i_{R a} \ell_{1} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right)\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} \\
& =i_{R a} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\mathbf{z}} . \tag{5.32}
\end{align*}
$$

To evaluate the torque, the current $i_{R a}$ must be computed. The current in the rotor loop is produced by the total emf in the loop. Note that the electric field $\overrightarrow{\mathbf{E}}_{S}=E_{S z} \hat{\mathbf{z}}$ induced by the stator's rotating magnetic field is pushing charge out of side a and into side a^{\prime}, and it is being opposed by the axial magnetic force $\left(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}\right)_{z} \hat{\mathbf{z}}$ as equation (5.28) shows. For example, on side a, the electric field

$$
E_{S z} \hat{\mathbf{z}}=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\mathbf{z}}
$$

is opposed by the z component of the magnetic force per unit charge

$$
\left(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}\right)_{z} \hat{\mathbf{z}}=-\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{R} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\mathbf{z}}
$$

It follows by (5.30) and (5.31) that the total axial or z component of the force per unit charge is

$$
(\overrightarrow{\mathbf{F}} / q)_{z}=\left\{\begin{array}{cc}
\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g}\left(\omega_{S}-\omega_{R}\right) \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\mathbf{z}} & \text { side } a \tag{5.33}\\
-\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g}\left(\omega_{S}-\omega_{R}\right) \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\mathbf{z}} & \text { side } a^{\prime}
\end{array}\right.
$$

Thus electromotive force or emf in the rotor loop is simply the integral of the force per unit charge around the loop, that is,

$$
\begin{aligned}
\xi_{R a} & \triangleq \oint_{\text {rotor loop } a}(\overrightarrow{\mathbf{F}} / q) \cdot d \overrightarrow{\boldsymbol{\ell}} \\
& =\oint_{\text {rotor loop } a}\left(\overrightarrow{\mathbf{E}}_{S}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}\right) \cdot d \overrightarrow{\boldsymbol{\ell}}
\end{aligned}
$$

where

$$
d \overrightarrow{\boldsymbol{\ell}}= \begin{cases}+d z \hat{\mathbf{Z}} & \text { for side } a \\ -d z \hat{\mathbf{Z}} & \text { for side } a^{\prime} .\end{cases}
$$

As $d \vec{\ell}$ is aligned with $\pm \hat{\mathbf{z}}$, only the axial component $(\overrightarrow{\mathbf{F}} / q)_{z}$ given in equation (5.33) contributes to the emf.

Evaluating the line integral, the induced emf in rotor phase a is given by

$$
\begin{equation*}
\xi_{R a}=\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\left(\omega_{S}-\omega_{R}\right) \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \tag{5.34}
\end{equation*}
$$

which is the same as in the macroscopic case. Neglecting the rotor inductance so that $i_{R a}=\xi_{R a} / R_{R}$, the torque on rotor loop a is

$$
\begin{equation*}
\tau_{R a}=\frac{1}{R_{R}}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2}\left(\omega_{S}-\omega_{R}\right) \sin ^{2}\left(\left(\omega_{S}-\omega_{R}\right) t\right) \tag{5.35}
\end{equation*}
$$

A similar analysis shows that

$$
\begin{equation*}
\tau_{R b}=\frac{1}{R_{R}}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2}\left(\omega_{S}-\omega_{R}\right) \cos ^{2}\left(\left(\omega_{S}-\omega_{R}\right) t\right) . \tag{5.36}
\end{equation*}
$$

Rotor Torque Computed from Microscopic Point of View

Adding equations (5.35) and (5.36), the total torque on the rotor is

$$
\tau=\tau_{R a}+\tau_{R b}=\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{R_{R}}\left(\omega_{S}-\omega_{R}\right)
$$

which is the same expression as that computed in the macroscopic case.

Electromechanical Energy Conversion

Define the voltage in rotor loop a produced by the stator electric field $\overrightarrow{\mathbf{E}}_{S}$ as

$$
\begin{equation*}
V_{R a} \triangleq \oint_{\text {rotor loop } a} \overrightarrow{\mathbf{E}}_{S} \cdot d \vec{\ell}=\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \omega_{S} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) . \tag{5.37}
\end{equation*}
$$

For example, if the rotor was locked so that $\omega_{R}=0$ in (5.37), then this would be the total emf in the rotor loop as can be seen by setting $\omega_{R}=0$ in (5.34). However, due to the rotor's motion ($\omega_{R} \neq 0$), there is an axial (z component) magnetic force per unit charge. Define the "back emf" $\zeta_{R a}$ as the integral of the axial magnetic force per unit charge around the rotor
loop, that is,

$$
\begin{align*}
& \zeta_{R a} \triangleq \oint_{\text {rotor loop } a}\left(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}\right)_{z} \cdot d \vec{\ell} \\
&= \int_{0}^{\ell_{1}}\left(-\omega_{R} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\mathbf{z}}\right) \cdot(d \ell \hat{\mathbf{z}}) \\
&+\int_{0}^{\ell_{1}}\left(\omega_{R} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{S} t-\omega_{R} t\right) \hat{\mathbf{z}}\right) \cdot(-d \ell \hat{\mathbf{z}}) \\
&=-\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \omega_{R} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) . \tag{5.38}
\end{align*}
$$

In summary, the total emf $\xi_{R a}$ in rotor loop a may be written as

$$
\begin{align*}
\xi_{R a} & =\oint_{\substack{\text { rotor loop } a}}\left(\overrightarrow{\mathbf{E}}_{S}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}\right) \cdot d \overrightarrow{\boldsymbol{\ell}}=V_{R a}+\zeta_{R a} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\left(\omega_{S}-\omega_{R}\right) \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \tag{5.39}
\end{align*}
$$

where $V_{R a}$ is the voltage produced in the rotor loop by the induced electric field $\overrightarrow{\mathbf{E}}_{S}$ and $\zeta_{R a}$ is the back emf produced by the axial magnetic force per unit charge $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}$. By direct substitution using equations (5.32) and (5.38), it is easy to see that

$$
\tau_{R a} \omega_{R}+i_{R a} \zeta_{R a}=0
$$

Here $\tau_{R a} \omega_{R}$ is the mechanical power produced on rotor loop a while $i_{R a} \zeta_{R a}$ is the electrical power absorbed by the back emf. That is, if $\tau_{R a} \omega_{R}>0$ so that mechanical power is being produced, then $i_{R a} \zeta_{R a}<0$ is the electrical power being absorbed by back emf in rotor loop a. Another interesting point is that

$$
i_{R a} V_{R a}
$$

is the total electrical power into rotor loop a from the stator, that is,

$$
i_{R a} V_{R a}=i_{R a} \xi_{R a}-i_{R a} \zeta_{R a}=i_{R a} \xi_{R a}+\tau_{R a} \omega_{R}
$$

In other words, the total power $i_{R a} V_{R a}$ into rotor loop a is converted into the electrical power $i_{R a} \xi_{R a}$ (ultimately dissipated as heat in the rotor resistance) and into the mechanical power $\tau_{R a} \omega_{R}\left(=-i_{R a} \zeta_{R a}\right)$. Similar remarks hold for rotor loop b.

5.4.3 Faraday's Law and the Integral of the Force per Unit Charge

In this subsection, it is shown that Faraday's law gives the same emf as integrating the force per unit charge around the loop, that is,

$$
\begin{equation*}
\xi=-\frac{d}{d t}\left(\int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}\right)=\oint_{C}(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) \cdot d \vec{\ell} . \tag{5.40}
\end{equation*}
$$

In equation (5.3), $\xi_{R a}$ was computed using $\xi_{R a}=-\frac{d}{d t}\left(\int_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}\right)$ while in equation (5.39), it was computed using $\xi_{R a}=\oint_{C}\left(\overrightarrow{\mathbf{E}}_{S}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}_{S}\right) \cdot d \overrightarrow{\boldsymbol{\ell}}$ and both methods gave the same result. The objective here is to show that this is true in general.

To show that (5.40) is true in general, let S be a surface whose boundary is the closed loop C in a region of space with an electric field $\overrightarrow{\mathbf{E}}$ and a magnetic field $\overrightarrow{\mathbf{B}}$. The line integral of the force per unit charge gives

$$
\begin{aligned}
\oint_{C}(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) \cdot d \overrightarrow{\boldsymbol{\ell}} & =\oint_{S}(\nabla \times \overrightarrow{\mathbf{E}}) \cdot d \overrightarrow{\mathbf{S}}+\oint_{C}(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) \cdot d \overrightarrow{\boldsymbol{\ell}} \\
& =\oint_{S}\left(-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}\right) \cdot d \overrightarrow{\mathbf{S}}+\oint_{C}(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) \cdot d \overrightarrow{\boldsymbol{\ell}}
\end{aligned}
$$

where Stokes theorem

$$
\oint_{C} \overrightarrow{\mathbf{E}} \cdot d \vec{\ell}=\oint_{S}(\nabla \times \overrightarrow{\mathbf{E}}) \cdot d \overrightarrow{\mathbf{S}}
$$

and Faraday's law in differential form

$$
\nabla \times \overrightarrow{\mathbf{E}}=-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}
$$

were used [35][36]. Using the fact that

$$
\oint_{S}\left(-\frac{\partial \overrightarrow{\mathbf{B}}}{\partial t}\right) \cdot d \overrightarrow{\mathbf{S}}=-\frac{\partial}{\partial t} \oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}
$$

and the vector identity

$$
(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) \cdot d \vec{\ell}=-\overrightarrow{\mathbf{B}} \cdot(\overrightarrow{\mathbf{v}} \times d \vec{\ell})
$$

this reduces to

$$
\begin{align*}
\oint_{C}(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) \cdot d \overrightarrow{\boldsymbol{\ell}} & =-\frac{\partial}{\partial t} \oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}+\oint_{C}(\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) \cdot d \overrightarrow{\boldsymbol{\ell}} \\
& =-\frac{\partial}{\partial t} \oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}-\oint_{C} \overrightarrow{\mathbf{B}} \cdot(\overrightarrow{\mathbf{v}} \times d \overrightarrow{\boldsymbol{\ell}}) . \tag{5.41}
\end{align*}
$$

Now $\overrightarrow{\mathbf{v}}$ is the velocity of the charge carriers in the loop C and note that if the loop itself is not moving, then $\overrightarrow{\mathbf{v}}$ is in the same direction as $d \vec{\ell}$ so that $\overrightarrow{\mathbf{v}} \times d \overrightarrow{\boldsymbol{\ell}}=0$. In general, with γ the angle between $\overrightarrow{\mathbf{v}}$ and $d \overrightarrow{\boldsymbol{\ell}}$,

$$
|\overrightarrow{\mathbf{v}} \times d \vec{\ell}|=v \sin (\gamma) d \ell=v_{\perp} d \ell
$$

where $v_{\perp}=v \sin (\gamma)$ is the velocity component perpendicular to $d \overrightarrow{\boldsymbol{l}}$. The quantity $|\overrightarrow{\mathbf{v}} \times d \overrightarrow{\boldsymbol{\ell}}|$ represents a change in the flux surface as is now explained.

To fix ideas, consider a single loop on the rotor of a motor as shown in Figure 5.17.

FIGURE 5.17. (a) Flux surface on a moving loop with side a at θ. (b) Loop rotates with side a going from θ to $\theta+d \theta$.

Consider that in the time $d t$, side a of the loop rotates from $\theta=\theta_{R}+\pi / 2$ to $\theta+d \theta=\theta_{R}+\pi / 2+d \theta_{R}$ (with side a^{\prime} going from $\theta-\pi$ to $\theta+d \theta-\pi$, $d \theta / d t=\omega_{R}$). With $\overrightarrow{\mathbf{B}}$ denoting the magnetic field produced by the stator currents, the quantity

$$
\begin{aligned}
d t & \oint_{C} \overrightarrow{\mathbf{B}} \cdot(\overrightarrow{\mathbf{v}} \times d \vec{\ell})=d t \int_{\text {side } a} B_{r}\left(r_{R}, \theta, t\right) \hat{\mathbf{r}} \cdot\left(\frac{\ell_{2}}{2} \omega_{R} \hat{\boldsymbol{\theta}} \times d \ell \hat{\mathbf{z}}\right) \\
& +d t \int_{\text {side } a \prime} B_{r}\left(r_{R}, \theta-\pi, t\right) \hat{\mathbf{r}} \cdot\left(\frac{\ell_{2}}{2} \omega_{R} \hat{\boldsymbol{\theta}} \times(-d \ell) \hat{\mathbf{z}}\right) \\
= & \int_{\text {side } a} B_{r}\left(r_{R}, \theta, t\right) \hat{\mathbf{r}} \cdot\left(\omega_{R} d t \frac{\ell_{2}}{2} d \ell \hat{\mathbf{r}}\right) \\
& +\int_{\text {side } a^{\prime}} B_{r}\left(r_{R}, \theta-\pi, t\right) \hat{\mathbf{r}} \cdot\left(-\omega_{R} d t \frac{\ell_{2}}{2} d \ell \hat{\mathbf{r}}\right) \\
= & \int_{\text {side } a}\left(B_{r}\left(r_{R}, \theta, t\right) \frac{\ell_{2}}{2} \omega_{R} d t\right) d \ell+\int_{\text {side } a^{\prime}}\left(-B_{r}\left(r_{R}, \theta-\pi, t\right) \frac{\ell_{2}}{2} \omega_{R} d t\right) d \ell \\
= & B_{r}\left(r_{R}, \theta, t\right) \ell_{1} \frac{\ell_{2}}{2} d \theta-B_{r}\left(r_{R}, \theta-\pi, t\right) \ell_{1} \frac{\ell_{2}}{2} d \theta
\end{aligned}
$$

where $d \theta=\omega_{R} d t$ was used in the last line. Then $B_{r}\left(r_{R}, \theta, t\right) \ell_{1}\left(\ell_{2} / 2\right) d \theta$ is the additional flux due to the surface area change as side a moved from θ to $\theta+d \theta$ while $-B_{r}\left(r_{R}, \theta-\pi, t\right) \ell_{1}\left(\ell_{2} / 2\right) d \theta$ is the decrease in flux due to the surface area change as side a^{\prime} moved from $\theta-\pi$ to $\theta+d \theta-\pi$. That is, the quantity

$$
\begin{equation*}
d t \oint_{C}(\overrightarrow{\mathbf{v}} \times d \vec{\ell}) \cdot \overrightarrow{\mathbf{B}}=B_{r}\left(r_{R}, \theta, t\right) \ell_{1} \frac{\ell_{2}}{2} d \theta-B_{r}\left(r_{R}, \theta-\pi, t\right) \ell_{1} \frac{\ell_{2}}{2} d \theta \tag{5.42}
\end{equation*}
$$

is the change in fux $d \phi$ in the rotor loop due to the rotation of the loop through the angle $d \theta$. In more detail,

$$
\phi(\theta, t) \triangleq \oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\int_{\theta-\pi}^{\theta} \int_{0}^{\ell_{1}} B_{r}\left(r_{R}, \theta^{\prime}, t\right)\left(\ell_{2} / 2\right) d \theta^{\prime}
$$

so that

$$
\begin{aligned}
\frac{d \phi}{d t} & =\frac{\partial \phi(\theta, t)}{\partial t}+\frac{\partial \phi(\theta, t)}{\partial \theta} \frac{d \theta}{d t} \\
& =\frac{\partial \phi(\theta, t)}{\partial t}+\frac{\partial}{\partial \theta}\left(\int_{\theta-\pi}^{\theta} \int_{0}^{\ell_{1}} B_{r}\left(r_{R}, \theta^{\prime}, t\right)\left(\ell_{2} / 2\right) d \theta^{\prime}\right) \frac{d \theta}{d t} \\
& =\frac{\partial}{\partial t} \oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}+\left(B_{r}\left(r_{R}, \theta, t\right) \ell_{1} \frac{\ell_{2}}{2}-B_{r}\left(r_{R}, \theta-\pi, t\right) \ell_{1} \frac{\ell_{2}}{2}\right) \frac{d \theta}{d t}
\end{aligned}
$$

where the Liebniz rule for differentiation was used. Consequently, by comparison with (5.42), it follows that

$$
\oint_{C}(\overrightarrow{\mathbf{v}} \times d \vec{\ell}) \cdot \overrightarrow{\mathbf{B}}=\frac{\partial \phi(\theta, t)}{\partial \theta} \frac{d \theta}{d t}
$$

is the rate of change of flux due to the motion of the loop while

$$
\frac{\partial}{\partial t} \oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=\frac{\partial \phi(\theta, t)}{\partial t}
$$

is the rate of change of flux due to the time-varying magnetic field $\overrightarrow{\mathbf{B}}$. By Faraday's law, the induced voltage in the loop is given by

$$
\begin{aligned}
\xi & =-\frac{d \phi}{d t}=-\frac{\partial \phi(\theta, t)}{\partial t}-\frac{\partial \phi(\theta, t)}{\partial \theta} \frac{d \theta}{d t}=-\frac{\partial}{\partial t} \oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}-\oint_{C}(\overrightarrow{\mathbf{v}} \times d \overrightarrow{\boldsymbol{\ell}}) \cdot \overrightarrow{\mathbf{B}} \\
& =\oint_{C}(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}}) \cdot d \overrightarrow{\boldsymbol{\ell}}
\end{aligned}
$$

where (5.41) was used.

5.4.4 Induction Machine in the Synchronous Coordinate System

Up to this point, the electric and magnetic fields have been viewed from the reference frame of the stator. Often in electric machine theory, concepts are discussed from the point of view of a rotating reference frame such as that of the stator's rotating magnetic field which rotates at angular speed ω_{S} or that of the rotor which rotates at angular speed ω_{R}. It turns out that the electric and magnetic fields change from one moving coordinate system to another. To understand the changes, the microscopic viewpoint is repeated in a coordinate system that rotates with the rotating magnetic field produced by the stator currents. (Problem 17 considers the microscopic point of view in the rotor coordinate system.)

Figure 5.18 shows the rotating stator magnetic field $\overrightarrow{\mathbf{B}}_{S}$. The observer is face down and rotates with the stator magnetic field.

FIGURE 5.18. An observer in the synchronous coordinate system that rotates with $\overrightarrow{\mathbf{B}}_{S}$. The rotating magnetic field produced by the stator currents has angular speed ω_{S} while the rotor has angular speed ω_{R}.

In any given reference/coordinate system, the Lorentz force on a charge carrier is given by

$$
\overrightarrow{\mathbf{F}}=q(\overrightarrow{\mathbf{E}}+\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}})
$$

where $\overrightarrow{\mathbf{E}}$ and $\overrightarrow{\mathbf{B}}$ are the electric and magnetic fields measured in the particular reference/coordinate system and $\overrightarrow{\mathbf{v}}$ is the velocity of the charge carrier as measured in the same coordinate system.

Recall that, in the coordinate system fixed to stator, the electric and magnetic fields in the air gap of the motor produced by the stator currents
are

$$
\begin{align*}
\overrightarrow{\mathbf{E}}_{S}(\theta, t) & =E_{S z}(\theta, t) \hat{\mathbf{z}}=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{z}} \tag{5.43}\\
\overrightarrow{\mathbf{B}}_{S}(r, \theta, t) & =B_{S r}(r, \theta, t) \hat{\mathbf{r}}=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{r}}
\end{align*}
$$

and the velocity of the charge carriers in the axial sides of rotor loop a is

$$
\overrightarrow{\mathbf{v}}_{R a}=\left\{\begin{aligned}
v_{d r a} \hat{\mathbf{z}}+v_{t} \hat{\boldsymbol{\theta}} & \text { side } a \\
-v_{d r a} \hat{\mathbf{z}}+v_{t} \hat{\boldsymbol{\theta}} & \text { side } a^{\prime}
\end{aligned}\right.
$$

where $v_{t}=\left(\ell_{2} / 2\right) \omega_{R}$.
Consider a jump into a coordinate system moving (rotating) with the magnetic field $\overrightarrow{\mathbf{B}}_{S}$, that is, a coordinate system that rotates at angular speed ω_{S}. This referred to as the synchronous coordinate coordinate system and is denoted here as the primed (') coordinate system. How do the above electric and magnetic fields transform (change) when one goes to the rotating (primed) coordinate system? Consider Figure 5.19 depicting two coordinate systems in which the primed (${ }^{\prime}$) coordinate system has velocity $\overrightarrow{\mathbf{v}}^{\prime}=v^{\prime} \hat{\mathbf{y}}$ with respect to the unprimed coordinate system. According to the Special Theory of Relativity [35][36], the fields transform according to

$$
\begin{array}{ll}
\overrightarrow{\mathbf{E}}_{\|}^{\prime}=\overrightarrow{\mathbf{E}}_{\|} & \overrightarrow{\mathbf{B}}_{\|}^{\prime}=\overrightarrow{\mathbf{B}}_{\|} \\
\overrightarrow{\mathbf{E}}_{\perp}^{\prime}=\gamma\left(\overrightarrow{\mathbf{E}}_{\perp}+\overrightarrow{\mathbf{v}}^{\prime} \times \overrightarrow{\mathbf{B}}_{\perp}\right) & \overrightarrow{\mathbf{B}}_{\perp}^{\prime}=\gamma\left(\overrightarrow{\mathbf{B}}_{\perp}+\left(v^{\prime} / c^{2}\right) \times \overrightarrow{\mathbf{E}}_{\perp}\right)
\end{array}
$$

where $\gamma \triangleq 1 / \sqrt{1-\left(v^{\prime} / c\right)^{2}}, c$ is the speed of light, $v^{\prime}=\left|\overrightarrow{\mathbf{v}}^{\prime}\right|, \overrightarrow{\mathbf{E}}_{\| \mid}$and $\overrightarrow{\mathbf{B}}_{| |}$are, respectively, the electric and magnetic fields parallel to the motion (i.e., in the y direction in Figure 5.19) and finally, $\overrightarrow{\mathbf{E}}_{\perp}$ and $\overrightarrow{\mathbf{B}}_{\perp}$ are, respectively, the electric and magnetic fields perpendicular to the motion (i.e., in an $x-z$ plane of Figure 5.19). Similar comments apply to $\overrightarrow{\mathbf{E}}_{\| \mid}^{\prime}, \overrightarrow{\mathbf{B}}_{\| \mid}^{\prime}, \overrightarrow{\mathbf{E}}_{\perp}^{\prime}$, and $\overrightarrow{\mathbf{B}}_{\perp}^{\prime}$.

FIGURE 5.19. Two coordinate systems moving with respect to one another.

For the application to electric machines where $\left(v^{\prime} / c\right)^{2} \ll 1$, it follows that $\gamma=1$ can be used as an excellent approximation and the above transformation reduces to

$$
\begin{array}{ll}
\overrightarrow{\mathbf{E}}_{\| \mid}^{\prime}=\overrightarrow{\mathbf{E}}_{\| \mid} & \overrightarrow{\mathbf{B}}_{\| \mid}^{\prime}=\overrightarrow{\mathbf{B}}_{\|} \\
\overrightarrow{\mathbf{E}}_{\perp}^{\prime}=\overrightarrow{\mathbf{E}}_{\perp}+\overrightarrow{\mathbf{v}}^{\prime} \times \overrightarrow{\mathbf{B}}_{\perp} & \overrightarrow{\mathbf{B}}_{\perp}^{\prime}=\overrightarrow{\mathbf{B}}_{\perp} \tag{5.44}
\end{array}
$$

Returning to the induction motor and the rotating coordinate system of the stator magnetic field, the coordinate transformation from the stationary coordinate system (unprimed) to the rotating coordinate system (primed) of the rotating stator magnetic field is

$$
\left[\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \left(\omega_{S} t\right) & \sin \left(\omega_{S} t\right) & 0 \\
-\sin \left(\omega_{S} t\right) & \cos \left(\omega_{S} t\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
$$

In cylindrical coordinates, the transformation is simply

$$
\begin{aligned}
r^{\prime} & =r \\
\theta^{\prime} & =\theta-\omega_{S} t \\
z^{\prime} & =z .
\end{aligned}
$$

Remark Note that a stationary point ($r^{\prime}, \theta^{\prime}$) in this rotating coordinate system has velocity $\overrightarrow{\mathbf{v}}=r^{\prime} \omega_{S} \hat{\boldsymbol{\theta}}$ in the (original unprimed) stator coordinate system. Note also that in this rotating coordinate system, the rotor's angular speed ω_{R}^{\prime} is given by $\omega_{R}^{\prime}=-\left(\omega_{S}-\omega_{R}\right)<0$. This is simply a consequence of the fact that the coordinate system rotating with the stator magnetic field is rotating faster than the rotor.

The first step is to find the electric and magnetic fields in this rotating coordinate system. For the induction motor, the fields perpendicular and parallel to the motion are given by

$$
\begin{aligned}
\overrightarrow{\mathbf{E}}_{\perp} & =\overrightarrow{\mathbf{E}}_{S} \\
\overrightarrow{\mathbf{E}}_{\| \|} & =\mathbf{0} \\
\overrightarrow{\mathbf{B}}_{\perp} & =\overrightarrow{\mathbf{B}}_{S} \\
\overrightarrow{\mathbf{B}}_{\|} & =\mathbf{0}
\end{aligned}
$$

where $\overrightarrow{\mathbf{E}}_{S}$ and $\overrightarrow{\mathbf{B}}_{S}$ are given in (5.43). At the surface of the rotor, the new coordinate system has velocity $\overrightarrow{\mathbf{v}}^{\prime}=\left(\ell_{2} / 2\right) \omega_{S} \hat{\boldsymbol{\theta}}$ with respect to the original coordinate system so that the electric and magnetic fields in the rotating
coordinate system are given by

$$
\begin{aligned}
\overrightarrow{\mathbf{E}}_{S}^{\prime} & =\overrightarrow{\mathbf{E}}_{S}+\overrightarrow{\mathbf{v}}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}=E_{S z}(\theta, t) \hat{\mathbf{z}}+\left(\ell_{2} / 2\right) \omega_{S} \hat{\boldsymbol{\theta}} \times B_{S_{r}} \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{z}}-\left(\ell_{2} / 2\right) \omega_{S} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g\left(\ell_{2} / 2\right)} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{z}} \\
& =0
\end{aligned}
$$

$$
\overrightarrow{\mathbf{B}}_{S}^{\prime}=B_{S r}^{\prime}\left(r^{\prime}, \theta^{\prime}\right) \hat{\mathbf{r}}=\overrightarrow{\mathbf{B}}_{\left.S\right|_{r=r^{\prime}, \theta=\theta^{\prime}+\omega_{S^{t}}}=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r^{\prime}} \cos \left(\theta^{\prime}\right) \hat{\mathbf{r}}}
$$

The fact that the axial electric field in the rotating coordinate system is zero could have been anticipated. That is, to an observer in the rotating coordinate system, the magnetic field is given by $\overrightarrow{\mathbf{B}}_{S}^{\prime}=\left(\mu_{0} \ell_{2} N_{S} I_{S} / 4 g r^{\prime}\right) \cos \left(\theta^{\prime}\right) \hat{\mathbf{r}}$ which is static in time. Faraday's law $\nabla \times \overrightarrow{\mathbf{E}}_{S}^{\prime}=-\partial \overrightarrow{\mathbf{B}}_{S}^{\prime} / \partial t=0$ then gives $\overrightarrow{\mathbf{E}}_{S}^{\prime}=\mathbf{0}$ as the solution.

In the rotating coordinate system, the Lorentz force on the charge carriers in rotor loop a is

$$
\overrightarrow{\mathbf{F}}^{\prime}=q\left(\overrightarrow{\mathbf{E}}_{S}^{\prime}+\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}\right)=q \overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}
$$

where, with $\omega_{R}^{\prime}=-\left(\omega_{S}-\omega_{R}\right)$,

$$
\overrightarrow{\mathbf{v}}_{R a}^{\prime}= \begin{cases}\left(\ell_{2} / 2\right) \omega_{R}^{\prime} \hat{\boldsymbol{\theta}}+v_{d r a} \hat{\mathbf{z}} & \text { side } a \\ \left(\ell_{2} / 2\right) \omega_{R}^{\prime} \hat{\boldsymbol{\theta}}-v_{d r a} \hat{\mathbf{z}} & \text { side } a^{\prime}\end{cases}
$$

is the total velocity of the charge carriers in the axial sides of rotor loop a with respect to the rotating coordinate system.

FIGURE 5.20. In the synchronous coordinate system, the rotor has angular speed $\omega_{R}^{\prime} \hat{\boldsymbol{\theta}}=-\left(\omega_{S}-\omega_{R}\right) \hat{\boldsymbol{\theta}}$. Rotor loop b is not drawn for clarity.

Then, with $\overrightarrow{\mathbf{B}}_{S}^{\prime}=\overrightarrow{\mathbf{B}}_{S}=B_{S r} \hat{\mathbf{r}}, \theta^{\prime}=\theta_{R}+\pi / 2-\omega_{S} t=\omega_{R}^{\prime} t+\pi / 2$ on side a of the rotor and $\theta^{\prime}=\theta_{R}-\pi / 2-\omega_{S} t=\omega_{R}^{\prime} t-\pi / 2$ on side a^{\prime} of the rotor, $\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}=$ $\left\{\begin{array}{lll}+v_{d r a} B_{S r}\left(\ell_{2} / 2, \omega_{R}^{\prime} t+\pi / 2\right) \hat{\boldsymbol{\theta}}-\left(\ell_{2} / 2\right) \omega_{R}^{\prime} B_{S r}\left(\ell_{2} / 2, \omega_{R}^{\prime} t+\pi / 2\right) \hat{\mathbf{z}} & \text { side } a \\ -v_{d r a} B_{S r}\left(\ell_{2} / 2, \omega_{R}^{\prime} t-\pi / 2\right) \hat{\boldsymbol{\theta}}-\left(\ell_{2} / 2\right) \omega_{R}^{\prime} B_{S r}\left(\ell_{2} / 2, \omega_{R}^{\prime} t-\pi / 2\right) \hat{\mathbf{z}} & \text { side } a^{\prime} .\end{array}\right.$

Substituting in the expressions
$B_{S r}\left(\ell_{2} / 2, \omega_{R}^{\prime} t+\pi / 2\right)=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g\left(\ell_{2} / 2\right)} \cos \left(\omega_{R}^{\prime} t+\pi / 2\right)=-\frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right)$
$B_{S r}\left(\ell_{2} / 2, \omega_{R}^{\prime} t-\pi / 2\right)=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g\left(\ell_{2} / 2\right)} \cos \left(\omega_{R}^{\prime} t-\pi / 2\right)=+\frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right)$
results in

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{\text {side } a}^{\prime} / q & =\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime} \\
& =-v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\boldsymbol{\theta}}+\left(\ell_{2} / 2\right) \omega_{R}^{\prime} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\mathbf{z}} \\
\overrightarrow{\mathbf{F}}_{\text {side } a \prime}^{\prime} / q & =\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime} \\
& =-v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\boldsymbol{\theta}}-\left(\ell_{2} / 2\right) \omega_{R}^{\prime} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\mathbf{z}} .
\end{aligned}
$$

With $\omega_{R}^{\prime}=-\left(\omega_{S}-\omega_{R}\right)$, it is seen that the force per unit charge $\overrightarrow{\mathbf{F}}^{\prime} / q=$ $\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}$ in this coordinate system equals that obtained in the original coordinates system given in (5.30). This is as it must be since the forces in the two coordinate systems must be equal by the principle of relativity (both Newton's and Einstein's).

The total torque on rotor loop a is then

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\tau}}_{R a}^{\prime} & =2\left(q N S \ell_{1}\right)\left(-v_{d r a}\right) \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right)\left(\ell_{2} / 2\right)(\hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}}) \\
& =-i_{R a} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\mathbf{z}}
\end{aligned}
$$

where $i_{R a}=q N S v_{d r a}$. Note that, as $\omega_{R}^{\prime}=-\left(\omega_{S}-\omega_{R}\right)$, we may rewrite this as

$$
\tau_{R a}^{\prime}=i_{R a} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right)
$$

which is the same expression as in (5.6) and (5.32).
Of course, there is a similar expression for the torque on rotor loop b given by

$$
\overrightarrow{\boldsymbol{\tau}}_{R b}^{\prime}=i_{R b} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \cos \left(\omega_{R}^{\prime} t\right) \hat{\mathbf{z}}=i_{R b} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \cos \left(\left(\omega_{S}-\omega_{R}\right) t\right) \hat{\mathbf{z}}
$$

It has been shown that the axial magnetic force per unit charge is given by

$$
\left(\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}\right)_{z}= \begin{cases}+\omega_{R}^{\prime} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\mathbf{z}} & \text { for side } a \\ -\omega_{R}^{\prime} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\mathbf{z}} & \text { for side } a^{\prime}\end{cases}
$$

and, as the electric field $\overrightarrow{\mathbf{E}}_{S}^{\prime}=\mathbf{0}$, this is also the total axial force per unit charge $(\overrightarrow{\mathbf{F}} / q)_{z}$. As a result, with

$$
d \vec{\ell}=\left\{\begin{aligned}
d z \hat{\mathbf{Z}} & \text { for side } a \\
-d z \hat{\mathbf{Z}} & \text { for side } a^{\prime}
\end{aligned}\right.
$$

the emf induced in rotor loop a is simply

$$
\begin{align*}
\xi_{R a}^{\prime} & =\oint_{\text {rotor loop } a}(\overrightarrow{\mathbf{F}} / q)_{z} \cdot d \vec{\ell}=\ell_{1} \omega_{R}^{\prime} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right) \\
& =\left(\omega_{S}-\omega_{R}\right) \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \sin \left(\left(\omega_{S}-\omega_{R}\right) t\right) \tag{5.45}
\end{align*}
$$

Similarly,

$$
\begin{align*}
\xi_{R b}^{\prime} & =\omega_{R}^{\prime} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \cos \left(\omega_{R}^{\prime} t\right) \\
& =-\left(\omega_{S}-\omega_{R}\right) \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \cos \left(\left(\omega_{S}-\omega_{R}\right) t\right) \tag{5.46}
\end{align*}
$$

Then, with

$$
\begin{align*}
i_{R a} & =\xi_{R a}^{\prime} / R_{R} \tag{5.47}\\
i_{R b} & =\xi_{R b}^{\prime} / R_{R} \tag{5.48}
\end{align*}
$$

the total torque on the rotor in the primed coordinate system is given by

$$
\begin{aligned}
\tau^{\prime} & =\tau_{R a}^{\prime}+\tau_{R b}^{\prime}=-\omega_{R}^{\prime}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{R_{R}} \\
& =\frac{1}{R_{R}}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2}\left(\omega_{S}-\omega_{R}\right)
\end{aligned}
$$

This is the same as the expression (5.9) derived in the stationary coordinate system.

Electromechanical Energy Conversion

It has been shown that, to the observer in Figure 5.20 in the rotating coordinate system, the torque is given by

$$
\tau^{\prime}=-\omega_{R}^{\prime}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{R_{R}}>0
$$

However, to this same observer, the angular speed of the rotor is

$$
\omega_{R}^{\prime}=-\left(\omega_{S}-\omega_{R}\right)<0
$$

so that power delivered to the rotor is

$$
\tau^{\prime} \omega_{R}^{\prime}=-\left(\omega_{S}-\omega_{R}\right)^{2}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{R_{R}}<0
$$

That is, in the rotating coordinate system of the stator magnetic field (Figure 5.20), the tangential velocity of the rotor loop is in the $-\hat{\boldsymbol{\theta}}$ direction while the above torque is pushing the rotor in the $+\hat{\boldsymbol{\theta}}$ direction. The torque is slowing the rotor down from the point of view of the observer in the rotating coordinate system of Figure 5.20 and thus taking out mechanical power! Where is this mechanical power going? From the point of view of someone in the rotating coordinate system, this mechanical energy is being converted into electrical power in the rotor. That is, the electric power produced is

$$
i_{R a} \xi_{R a}^{\prime}+i_{R b} \xi_{R b}^{\prime}=\left(\omega_{S}-\omega_{R}\right)^{2}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{R_{R}}
$$

which is easily verified by substitution of the expressions (5.45), (5.46), (5.47), and (5.48) for the emfs and currents. In summary, to someone in the rotating coordinate system, the induction machine looks like a generator rather than a motor.

Magnetic Force and Work

Recall, in the rotating coordinate system of Figure 5.20, the electric field $\overrightarrow{\mathbf{E}}_{S}^{\prime}=\mathbf{0}$ so that the magnetic force per unit charge on the axial sides of the rotor is then.

$$
\overrightarrow{\mathbf{F}}^{\prime} / q=\overrightarrow{\mathbf{E}}_{S}^{\prime}+\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}=\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}
$$

where

$$
\overrightarrow{\mathbf{v}}_{R a}^{\prime}= \begin{cases}\left(\ell_{2} / 2\right) \omega_{R}^{\prime} \hat{\boldsymbol{\theta}}+v_{d r a} \hat{\mathbf{z}} & \text { side } a \\ \left(\ell_{2} / 2\right) \omega_{R}^{\prime} \hat{\boldsymbol{\theta}}-v_{d r a} \hat{\mathbf{z}} & \text { side } a^{\prime} .\end{cases}
$$

Explicitly,
$\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}= \begin{cases}-v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\boldsymbol{\theta}}+\omega_{R}^{\prime} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\mathbf{z}} & \text { side } a \\ -v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\boldsymbol{\theta}}-\omega_{R}^{\prime} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\mathbf{z}} & \text { side } a^{\prime} .\end{cases}$
The power per unit charge done by the (purely) magnetic force $\overrightarrow{\mathbf{F}}^{\prime}=$ $q\left(\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}\right)$ is then

$$
\left(\overrightarrow{\mathbf{F}}^{\prime} / q\right) \cdot \overrightarrow{\mathbf{v}}_{R a}^{\prime}=\left(\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}\right) \cdot \overrightarrow{\mathbf{v}}_{R a}^{\prime} \equiv \mathbf{0}
$$

as it must, since the magnetic force on a moving charge is always orthogonal to the velocity of the charge and thus cannot change the energy of the charge carriers. How is the energy transfer in the rotating coordinate system accomplished from mechanical to electrical? Consider another observer in the rotating coordinate system as shown in Figure 5.21(a).

FIGURE 5.21. (a) View by an observer in the synchronous coordinate system. (b) The magnetic force on the rotor loop from the observer's point of view.

The observer is still rotating with the stator magnetic field at angular speed ω_{S}. The magnetic force opposes the rotor angular velocity and produces the current in the rotor as seen in Figure 5.21(b). From the point of view of the rotating coordinate system, the magnetic force is the mechanism which converts the mechanical (kinetic) energy into electrical energy while not adding any energy (i.e., doing any work). In more detail, the power delivered by the magnetic force on the two sides of rotor loop a is

$$
\begin{aligned}
& 2\left(q N S \ell_{1}\right) \overrightarrow{\mathbf{F}}^{\prime} \cdot \overrightarrow{\mathbf{v}}_{R a}^{\prime}=2\left(q N S \ell_{1}\right)\left(\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}\right) \cdot \overrightarrow{\mathbf{v}}_{R a}^{\prime} \\
& =2\left(q N S \ell_{1}\right)\left(-v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\boldsymbol{\theta}}+\omega_{R}^{\prime} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\mathbf{z}}\right) \\
& \quad \cdot\left(\left(\ell_{2} / 2\right) \omega_{R}^{\prime} \hat{\boldsymbol{\theta}}+v_{d r a} \hat{\mathbf{z}}\right) \\
& =2\left(-q N S \ell_{1} v_{d r a} \frac{\mu_{0} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\boldsymbol{\theta}}\right) \cdot\left(\left(\ell_{2} / 2\right) \omega_{R}^{\prime} \hat{\boldsymbol{\theta}}\right) \\
& \quad+2\left(\omega_{R}^{\prime} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\omega_{R}^{\prime} t\right) \hat{\mathbf{z}}\right) \cdot\left(q N S \ell_{1} v_{d r a} \hat{\mathbf{z}}\right)
\end{aligned}
$$

Rearranging the right hand side of this last equations gives

$$
\begin{align*}
2\left(q N S \ell_{1}\right) \overrightarrow{\mathbf{F}}^{\prime} \cdot \overrightarrow{\mathbf{v}}_{R a}^{\prime}= & -\left(i_{R a} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right)\right) \omega_{R}^{\prime} \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}} \\
& +\left(\omega_{R}^{\prime} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \sin \left(\omega_{R}^{\prime} t\right)\right) i_{R a} \hat{\mathbf{z}} \cdot \hat{\mathbf{z}} \tag{5.49}
\end{align*}
$$

However

$$
\overrightarrow{\mathbf{F}}^{\prime} \cdot \overrightarrow{\mathbf{v}}_{R a}^{\prime}=q\left(\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}\right) \cdot \overrightarrow{\mathbf{v}}_{R a}^{\prime} \equiv 0
$$

as the magnetic force on a charged particle is always perpendicular to its velocity. The coefficient of $\hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\theta}}$ in (5.49) is $\tau_{R a}^{\prime} \omega_{R}^{\prime}$ - the mechanical power, while the coefficient of $\hat{\mathbf{z}} \cdot \hat{\mathbf{z}}$ is $\xi_{R a}^{\prime} i_{R a}$ - the electrical power in rotor loop a. As these terms are equal in magnitude, but opposite in sign, it is seen that the magnetic force just converts the mechanical energy to electrical energy, but does not add any energy.

5.4.5 Synchronous Machine

The microscopic viewpoint of the synchronous machine is explored in problems 18 and 19 at the end of the chapter.

5.5 Steady-State Analysis of a Squirrel Cage Induction Motor*

Consider the two-loop induction motor of Figure 5.22 where, as before, $\theta_{S}(t)=\omega_{S} t$ denotes the angular position of the magnetic axis of the rotating magnetic field produced by the stator currents, $\theta_{R}(t)=\omega_{R} t$ denotes the angular position of the rotor defined as the magnetic axis of rotor loop a (the magnetic axis of rotor loop b is at $\theta_{R}(t)+\pi / 2$), and θ denotes an arbitrary angular position in the air gap.

In order to obtain more torque, additional pairs of loops (each pair $\pi / 2$ apart) are placed around the complete periphery of the rotor. For example, Figure 5.23 shows a cross section of a rotor with six rotor loops $a_{1}-a_{1}^{\prime}, a_{2}-a_{2}^{\prime}, a_{3}-a_{3}^{\prime}, b_{1}-b_{1}^{\prime}, b_{2}-b_{2}^{\prime}$, and $b_{3}-b_{3}^{\prime}$, which are considered as the three pairs of rotor loops $\left\{a_{1}-a_{1}^{\prime}, b_{1}-b_{1}^{\prime}\right\},\left\{a_{2}-a_{2}^{\prime}, b_{2}-b_{2}^{\prime}\right\}$, and $\left\{a_{3}-a_{3}^{\prime}, b_{3}-b_{3}^{\prime}\right\}$. In general, the i th rotor loop pair is located by the center line (magnetic axis) of its rotor loop a which is $\theta_{R_{i}}=\theta_{R}+\frac{\pi}{2} \frac{i-1}{N_{R}}$ for $i=1, \ldots, N_{R}$, where N_{R} is the number of pairs of rotor loops. ${ }^{6}$ Phase a of

[^42]the first rotor loop pair $(i=1)$ is arbitrarily chosen to be the one whose magnetic axis is used to reference the rotor position θ_{R}. The induced emfs, the currents, and the resulting torque in each pair of loops are now computed, and then the total torque is found by summing the torques on each rotor loop pair.

FIGURE 5.22. Induction motor with two single-loop rotor phases a and b.

FIGURE 5.23. Rotor with six rotor loops $a_{1}-a_{1}^{\prime}, a_{2}-a_{2}^{\prime}, a_{3}-a_{3}^{\prime}, b_{1}-b_{1}^{\prime}, b_{2}-b_{2}^{\prime}$, and $b_{3}-b_{3}^{\prime}$ considered as three pairs of loops $\left\{a_{1}-a_{1}^{\prime}, b_{1}-b_{1}^{\prime}\right\},\left\{a_{2}-a_{2}^{\prime}, b_{2}-b_{2}^{\prime}\right\}$, and $\left\{a_{3}-a_{3}^{\prime}, b_{3}-b_{3}^{\prime}\right\}$. In this figure, there are $N_{R}=3$ pairs of rotor loops and θ_{R} is chosen to coincide with the magnetic axis of rotor loop $a_{1}-a_{1}^{\prime}$.

5.5.1 Rotor Fluxes, Emfs, and Currents

The flux $\lambda_{R a_{i}}$ in phase a of the i th rotor loop pair due to the stator magnetic field $\overrightarrow{\mathbf{B}}_{S}$ is calculated as $\left(\theta_{R_{i}}=\theta_{R}+\frac{\pi}{2} \frac{i-1}{N_{R}}\right)$

$$
\begin{align*}
\lambda_{R a_{i}} & =\int_{S_{a_{i}}} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}} \\
& =\left.\int_{\theta_{R_{i}}-\pi / 2}^{\theta_{R_{i}}+\pi / 2} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\right|_{\tau=\ell_{2} / 2} \cos \left(\theta-\theta_{S}\right) \hat{\mathbf{r}} \cdot\left(\ell_{1}\left(\ell_{2} / 2\right) d \theta \hat{\mathbf{r}}\right) \\
& \left.=\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{4 g} \sin \left(\theta-\theta_{S}\right) \right\rvert\, \begin{array}{l}
\theta_{R_{i}}+\pi / 2 \\
\theta_{R_{i}}-\pi / 2
\end{array} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \cos \left(\theta_{S}-\left(\theta_{R}+\frac{\pi}{2} \frac{i-1}{n}\right)\right) . \tag{5.50}
\end{align*}
$$

By Faraday's law, the induced electromotive force (emf) in phase a of i th rotor loop pair is given by

$$
\begin{align*}
\xi_{R a_{i}} & =-\frac{d \lambda_{R a_{i}}}{d t}=-\frac{d}{d t} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \cos \left(\theta_{S}-\theta_{R_{i}}\right) \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\left(\omega_{S}-\omega_{R}\right) \sin \left(\theta_{S}-\left(\theta_{R}+\frac{\pi}{2} \frac{i-1}{n}\right)\right) \tag{5.51}
\end{align*}
$$

where $\omega_{R}=d \theta_{R} / d t$.
Similarly, the flux $\lambda_{R b_{i}}$ in phase b of the i th rotor loop pair is

$$
\lambda_{R b_{i}}=\int_{S_{b_{i}}} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}}=\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \sin \left(\theta_{S}-\left(\theta_{R}+\frac{\pi}{2} \frac{i-1}{N_{R}}\right)\right)
$$

and the corresponding induced emf $\xi_{R b_{i}}$ is

$$
\begin{equation*}
\xi_{R b_{i}}=-\frac{d \lambda_{R b_{i}}}{d t}=-\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\left(\omega_{S}-\omega_{R}\right) \cos \left(\theta_{S}-\left(\theta_{R}+\frac{\pi}{2} \frac{i-1}{N_{R}}\right)\right) \tag{5.52}
\end{equation*}
$$

where $\omega_{R}=d \theta_{R} / d t$. Assuming each rotor loop has an inductance L_{R} and resistance R_{R}, the equations describing the current dynamics are

$$
\begin{aligned}
L_{R} \frac{d i_{R a_{i}}}{d t}+R_{R} i_{R a_{i}} & =\xi_{R a_{i}} \\
\xi_{R a_{i}} & =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\left(\omega_{S}-\omega_{R}\right) \sin \left(\left(\omega_{S}-\omega_{R}\right) t-\frac{\pi}{2} \frac{i-1}{N_{R}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
L_{R} \frac{d i_{R b_{i}}}{d t}+R_{R} i_{R b_{i}} & =\xi_{R b_{i}} \\
\xi_{R b_{i}} & =-\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\left(\omega_{S}-\omega_{R}\right) \cos \left(\left(\omega_{S}-\omega_{R}\right) t-\frac{\pi}{2} \frac{i-1}{N_{R}}\right) .
\end{aligned}
$$

A system of the form

$$
L \frac{d i}{d t}+R i=A \cos (\omega t+\varphi)
$$

with $R / L>0$ is a stable linear time-invariant system so that its steadystate solution is given by

$$
i_{s s}(t)=|G(j \omega)| A \cos (\omega t+\varphi+\angle G(j \omega)) \quad \text { where } G(j \omega)=\frac{1}{R+j \omega L} .
$$

So, for $i=1, \ldots, N_{R}$, the steady-state solutions for the currents in the $i^{t h}$ rotor loop pair are given by

$$
\begin{align*}
i_{R a S S_{i}}= & \frac{\left(\omega_{S}-\omega_{R}\right)}{\sqrt{\left(\omega_{S}-\omega_{R}\right)^{2} L_{R}^{2}+R_{R}^{2}}} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \\
& \times \sin \left(\left(\omega_{S}-\omega_{R}\right) t-\frac{\pi}{2} \frac{i-1}{N_{R}}+\tan ^{-1}\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)\right) \tag{5.53}\\
i_{R b S S_{i}}= & -\frac{\left(\omega_{S}-\omega_{R}\right)}{\sqrt{\left(\omega_{S}-\omega_{R}\right)^{2} L_{R}^{2}+R_{R}^{2}}} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \\
& \times \cos \left(\left(\omega_{S}-\omega_{R}\right) t-\frac{\pi}{2} \frac{i-1}{N_{R}}+\tan ^{-1}\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)\right) .
\end{align*}
$$

5.5.2 Rotor Torque

As previously explained, the rotating magnetic field produced by the stator currents produces a magnetic force on the rotor currents it induced. The magnetic force law is simply $\overrightarrow{\mathbf{F}}_{\text {magnetic }}=i \vec{\ell} \times \overrightarrow{\mathbf{B}}$, where $\ell=|\vec{\ell}|$ is the length of the conductor in the magnetic field, and $\vec{\ell}$ points in the direction of positive current flow. Recalling that \odot means that if $i_{R a_{i}}>0$, the current is coming out of the page, it follows that $\vec{\ell}=\ell_{1} \hat{\mathbf{z}}$ on side a_{i} and $\vec{\ell}=-\ell_{1} \hat{\mathbf{z}}$ on side a_{i}^{\prime}. Along with the fact that $\overrightarrow{\mathbf{B}}_{S}(r, \theta+\pi)=-\overrightarrow{\mathbf{B}}_{S}(r, \theta)$, it was shown that the force on each side of the loop is equal (i.e., $\overrightarrow{\mathbf{F}}_{a_{i}}=\overrightarrow{\mathbf{F}}_{a_{i}^{\prime}}$). Applying the magnetic force law to loop a_{i} of the i th rotor loop pair, the torque is computed as

$$
\overrightarrow{\boldsymbol{\tau}}_{a_{i}}=2 \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{a_{i}}=2\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{a_{i}}
$$

where

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{a_{i}} & =i_{R a_{i}} \vec{\ell} \times \overrightarrow{\mathbf{B}}_{S} \\
& =i_{R a_{i}} \ell_{1} \hat{\mathbf{z}} \times\left.\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\right|_{r=\ell_{2} / 2} \cos \left(\theta-\theta_{S}\right)_{\mid \theta=\theta_{R_{i}}+\pi / 2} \hat{\mathbf{r}} \\
& =i_{R a_{i}} \frac{\mu_{0} \ell_{1} N_{S} I_{S}}{2 g} \sin \left(\theta_{S}-\theta_{R_{i}}\right) \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

The torque is then

$$
\begin{equation*}
\overrightarrow{\boldsymbol{\tau}}_{a_{i}}=\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} i_{R a_{i}} \sin \left(\theta_{S}-\theta_{R_{i}}\right) \hat{\mathbf{z}} \tag{5.54}
\end{equation*}
$$

Similarly,

$$
\vec{\tau}_{b_{i}}=2 \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{b_{i}}=2\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{b_{i}}
$$

where

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{b_{i}} & =i_{R b_{i}} \vec{\ell} \times \overrightarrow{\mathbf{B}}_{S} \\
& =i_{R b_{i}} \ell_{1} \hat{\mathbf{z}} \times\left.\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\right|_{r=\ell_{2} / 2} \cos \left(\theta-\theta_{S}\right)_{\mid \theta=\theta_{R_{i}}+\pi} \hat{\mathbf{r}} \\
& =-i_{R b_{i}} \frac{\mu_{0} \ell_{1} N_{S} I_{S}}{2 g} \cos \left(\theta_{S}-\theta_{R_{i}}\right) \hat{\boldsymbol{\theta}}
\end{aligned}
$$

The torque $\overrightarrow{\boldsymbol{\tau}}_{b_{i}}$ becomes

$$
\overrightarrow{\boldsymbol{\tau}}_{b_{i}}=-\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} i_{R b_{i}} \cos \left(\theta_{S}-\theta_{R_{i}}\right) \hat{\mathbf{z}}
$$

Letting

$$
\begin{equation*}
I_{R} \triangleq \frac{\left(\omega_{S}-\omega_{R}\right)}{\sqrt{\left(\omega_{S}-\omega_{R}\right)^{2} L_{R}^{2}+R_{R}^{2}}} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \tag{5.55}
\end{equation*}
$$

in (5.53) and substituting (5.53) into equation (5.54), the total torque on loop $a_{i}-a_{i}^{\prime}$ of the i th rotor loop pair becomes

$$
\begin{aligned}
\tau_{R a_{i}}= & \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} i_{R a S S_{i}} \sin \left(\left(\omega_{S}-\omega_{R}\right) t-\frac{\pi}{2} \frac{i-1}{N_{R}}\right) \\
= & \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} I_{R} \sin \left(\left(\omega_{S}-\omega_{R}\right) t-\frac{\pi}{2} \frac{i-1}{N_{R}}+\tan ^{-1}\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)\right) \\
& \times \sin \left(\left(\omega_{S}-\omega_{R}\right) t-\frac{\pi}{2} \frac{i-1}{N_{R}}\right)
\end{aligned}
$$

Similarly, the total torque on loop $b_{i}-b_{i}^{\prime}$ of the i th rotor loop pair is

$$
\begin{aligned}
\tau_{R b_{i}}= & -\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} i_{R b S S_{i}} \cos \left(\left(\omega_{S}-\omega_{R}\right) t-\frac{\pi}{2} \frac{i-1}{N_{R}}\right) \\
= & \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} I_{R} \cos \left(\left(\omega_{S}-\omega_{R}\right) t-\frac{\pi}{2} \frac{i-1}{N_{R}}+\tan ^{-1}\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)\right) \\
& \times \cos \left(\left(\omega_{S}-\omega_{R}\right) t-\frac{\pi}{2} \frac{i-1}{N_{R}}\right)
\end{aligned}
$$

Using the trigonometric identity $\sin (x) \sin (y)+\cos (x) \cos (y)=\cos (x-y)$ to combine the above results, the total torque $\tau_{R_{i}}$ on the i th rotor loop pair is given by

$$
\tau_{R_{i}}=\tau_{R a_{i}}+\tau_{R b_{i}}=\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} I_{R} \cos \left(\tan ^{-1}\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)\right)
$$

This can be put in a more illuminating form by noting that

$$
\cos \left(\tan ^{-1}\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)\right)=\frac{1}{\sqrt{\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)^{2}+1}}
$$

and substituting back the expression (5.55) for I_{R}, the torque can be written as

$$
\begin{aligned}
\tau_{R_{i}} & =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} I_{R} \cos \left(\tan ^{-1}\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)\right) \\
& =\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{\left(\omega_{S}-\omega_{R}\right)}{\sqrt{\left(\omega_{S}-\omega_{R}\right)^{2} L_{R}^{2}+R_{R}^{2}}} \frac{1}{\sqrt{\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)^{2}+1}} \\
& =\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{L_{R}} \frac{\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}}{\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)^{2}+1} \\
& =\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{L_{R}} \frac{1}{2} \frac{2}{S / s_{p}+s_{p} / S}
\end{aligned}
$$

where

$$
S \triangleq \frac{\omega_{S}-\omega_{R}}{\omega_{S}} \text { and } s_{p} \triangleq \frac{R_{R}}{\omega_{S} L_{R}}
$$

The quantity $S \triangleq \frac{\omega_{S}-\omega_{R}}{\omega_{S}}$ is the normalized slip. ${ }^{7}$ It is straightforward to show that $\frac{2}{S / s_{p}+s_{p} / S}$ has a maximum value of 1 for $S=s_{p}$ and a minimum value of -1 for $S=-s_{p}$ so that the torque achieves its maximum (minimum) at $S=s_{p}\left(S=-s_{p}\right)$.

This derivation shows that, in steady state, each pair of rotor loops has the same torque on it. Consequently, the total torque on the N_{R} pairs of

[^43]loops is
\[

$$
\begin{aligned}
\tau_{R} & =\sum_{i=1}^{N_{R}} \tau_{R i}=\frac{N_{R}}{2 L_{R}}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{2}{S / s_{p}+s_{p} / S} \\
& =\tau_{p} \frac{2}{S / s_{p}+s_{p} / S}
\end{aligned}
$$
\]

where

$$
\tau_{p} \triangleq \frac{N_{R}}{2 L_{R}}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2}
$$

For $|S| \ll s_{p}$, this reduces to

$$
\begin{aligned}
\tau_{R} & \approx k\left(\omega_{S}-\omega_{R}\right) \\
k & \triangleq \frac{N_{R}}{R_{R}}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2}
\end{aligned}
$$

The analysis was done assuming that each rotor loop was electrically isolated from any other rotor loop. The most common rotor for an induction motor is the squirrel cage rotor shown in Figure 5.24. It is simply a set of conducting bars around the periphery of the rotor iron that are connected to conducting end rings at each end. This is in contrast to the rotor of Figure 5.5 where loop $a-a^{\prime}$ is electrically isolated from loop $b-b^{\prime}$.

FIGURE 5.24. Squirrel cage rotor.
However, assuming the emf drop across each rotor bar remains the same as in the case when the rotor loops are electrically isolated, the above analysis still applies. ${ }^{8}$ That is, consider the squirrel cage to be made up of loops consisting of two rotor bars that are on diametrically opposite sides

[^44]of the rotor. The flux in each loop depends on the rotor position so that the induced emf in each rotor loop is different. In particular, as one goes from one rotor bar to the next, the emf drop across their lengths are different even though they are connected in parallel. This can be visualized as shown in Figure 5.25 which shows the induced emfs $\xi_{b_{1}^{\prime}}, \xi_{b_{2}^{\prime}}, \xi_{b_{3}^{\prime}}, \xi_{a_{1}}, \xi_{a_{2}}, \xi_{a_{3}}, \xi_{b_{1}}$, $\xi_{b_{2}}, \xi_{b_{3}}, \xi_{a_{1}^{\prime}}, \xi_{a_{2}^{\prime}}, \xi_{a_{3}^{\prime}}$ in each rotor bar being in series with the resistance $R_{R} / 2$ of each rotor bar.

FIGURE 5.25. Equivalent circuit of a squirrel cage rotor. The rotor bars are annotated as in Figure 5.23. Each bar has resistance $R_{R} / 2$ so that the total resistance in a loop consisting of diametrically opposite bars is R_{R}.

For example, in the two rotor bars a_{1}, a_{1}^{\prime} (which are on diametrically opposite sides of the rotor), the voltage in the rotor loop made up from
$B_{r}(r, \theta, t) \hat{\mathbf{r}}=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{r}}$ in the air gap produced by the stator currents induces an axial electric field in the air gap (according to $\nabla \times \overrightarrow{\mathbf{E}}_{S}=-\partial \overrightarrow{\mathbf{B}}_{S} / \partial t$) given by $\overrightarrow{\mathbf{E}}_{S}(\theta, t)=E_{z}(\theta, t) \hat{\mathbf{z}}=\frac{\mu_{0} \ell_{2} N_{S} l_{S}}{4 g} \omega_{S} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{z}}$ (see Figure 5.15). The voltage drop across the i th rotor bar produced by this electric field is then $\int_{0}^{\ell_{1}}\left(\left.\overrightarrow{\mathbf{E}}_{S}(\theta, t)\right|_{\theta=\theta_{R}+\varphi_{i}}\right) \cdot d \vec{\ell}$ where $\varphi_{i}=\frac{\pi}{2} \frac{i-1}{N_{R}}$. One then argues that, as this depends only on the stator quantities, this voltage drop is the same whether or not the rotor bars are electrically connected (shorted) at their ends. The total emf in each bar is this voltage drop plus the back emf $\int_{0}^{\ell_{1}}\left(\overrightarrow{\mathbf{v}} \times\left.\overrightarrow{\mathbf{B}}_{S}(\theta, t)\right|_{\theta=\theta_{R}+\varphi_{i}}\right) \cdot d \overrightarrow{\boldsymbol{\ell}}$ in each rotor bar $\left(|\overrightarrow{\mathbf{v}}|=v=r_{R} \omega\right)$.
these two sides is ${ }^{9} \xi_{a_{1}}-\xi_{a_{1}^{\prime}}=2 \xi_{a_{1}}$ and this loop has resistance R_{R}. This emf $\xi_{R a_{1}} \triangleq \xi_{a_{1}}-\xi_{a_{1}^{\prime}}=2 \xi_{a_{1}}$ equals the emf given in equation (5.51) with $i=1$. Note from Figure 5.23 that the rotor angle θ_{R} locates the rotor bar b_{1}^{\prime} as is also indicated in Figure 5.25.

5.5.3 Rotor Magnetic Field

As equation (5.53) shows, the current in the rotor bars of the squirrel cage rotor differs from bar to bar (loop to loop) while the current in each phase of a sinusoidally wound rotor loop is the same. Of course, in the squirrel cage rotor, it is arbitrary what is called a phase a loop and what is called a phase b loop. It is more convenient to speak of a current distribution on the surface of the rotor (i.e., in the rotor bars). With $\varphi_{i}=\frac{\pi}{2} \frac{i-1}{N_{R}}$, the i th rotor bar is located at $\theta_{R}(t)+\varphi_{i}=\omega_{R} t+\frac{\pi}{2} \frac{i-1}{N_{R}}$. Combining the expressions (5.53) above for the rotor currents, the steady-state current distribution in the $4 N_{R}$ rotor bars distributed around the periphery of the rotor can be found. Specifically, with I_{R} given by (5.55), the two equations (5.53) are combined to show that the rotor current in the $i^{\text {th }}$ bar at $\theta_{R}(t)+\varphi_{i}$ is ${ }^{10}$

$$
\begin{align*}
i_{R S S}\left(t, \varphi_{i}\right) & =I_{R} \sin \left(\theta_{S}(t)-\left(\theta_{R}(t)+\varphi_{i}\right)+\tan ^{-1}\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)\right) \\
\theta_{R}(t)+\varphi_{i} & =\omega_{R} t+\frac{\pi}{2} \frac{i-1}{N_{R}} \text { for } i=1, \ldots, 4 N_{R} \tag{5.56}\\
\theta_{S}(t) & =\omega_{S} t .
\end{align*}
$$

Applying Ampère's law $\oint \overrightarrow{\mathbf{H}}_{R} \cdot d \vec{\ell}=i_{\text {enclosed }}$ to the closed curve $1-2-3-4-1$ in Figure 5.26 , the radial magnetic field $B_{R}(\theta)$ in the air gap due to this rotor current distribution can be found. To do so, first note that for N_{R} large, the discrete angles $\varphi_{i}=\frac{\pi}{2} \frac{i-1}{N_{R}}$ locating the individual rotor bars can be approximated by a continuous angle φ with a continuous current distribution $i_{R S S}(t, \varphi)$. Specifically, the incremental angle from one rotor bar to the next is $d \varphi=\frac{\pi}{2} \frac{1}{N_{R}}$ so that the enclosed current may be written as

$$
\begin{aligned}
i_{\text {enclosed }}(\theta) & =\sum_{\varphi_{i}=\theta-\theta_{R}}^{\varphi_{i}=\theta-\theta_{R}+\pi} i_{R S S}\left(t, \varphi_{i}\right)=\frac{2 N_{R}}{\pi}\left(\sum_{\varphi_{i}=\theta-\theta_{R}}^{\varphi_{i}=\theta-\theta_{R}+\pi} i_{R S S}\left(t, \varphi_{i}\right) d \varphi\right) \\
& \approx \frac{2 N_{R}}{\pi} \int_{\varphi=\theta-\theta_{R}}^{\varphi=\theta-\theta_{R}+\pi} i_{R S S}(t, \varphi) d \varphi
\end{aligned}
$$

[^45]

FIGURE 5.26. Path for Ampère's law to compute $\overrightarrow{\mathbf{B}}_{R}$ in the air gap.
where the summation has been approximated by the integral. Ampère's law gives

$$
2 H_{R}(\theta) g=i_{\text {enclosed }}(\theta)
$$

or

$$
H_{R}(\theta)=\frac{i_{\text {enclosed }}(\theta)}{2 g}
$$

The expression (5.56) is substituted for $i_{R S S}(t, \varphi)$ to evaluate $i_{\text {enclosed }}(\theta)$ as
$i_{\text {enclosed }}(\theta)=\frac{2 N_{R}}{\pi} \int_{\varphi=\theta-\theta_{R}}^{\varphi=\theta-\theta_{R}+\pi} i_{R S S}(\varphi) d \varphi$
$=-\left.\frac{2 N_{R}}{\pi} I_{R} \cos \left(\theta_{S}(t)-\left(\theta_{R}(t)+\varphi\right)+\tan ^{-1}\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)\right)\right|_{\varphi=\theta-\theta_{R}} ^{\varphi=\theta-\theta_{R}+\pi}$
$=\frac{4}{\pi} N_{R} I_{R} \cos \left(\theta_{S}(t)-\theta+\tan ^{-1}\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right)\right)$.
The radial magnetic field due to the rotor currents is then

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{R}(\theta, t) & =B_{R}(\theta, t) \hat{\mathbf{r}} \\
& =\mu_{0} H_{R}(\theta) \hat{\mathbf{r}} \\
& =\frac{4}{\pi} \frac{\mu_{0} N_{R} I_{R}}{2 g} \cos \left(\theta-\left(\theta_{S}(t)+\varphi_{R}\right)\right) \hat{\mathbf{r}}
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{R} \triangleq \frac{\left(\omega_{S}-\omega_{R}\right)}{\sqrt{\left(\omega_{S}-\omega_{R}\right)^{2} L_{R}^{2}+R_{R}^{2}}} \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g} \\
& \varphi_{R} \triangleq \tan ^{-1}\left(\frac{\left(\omega_{S}-\omega_{R}\right) L_{R}}{R_{R}}\right) .
\end{aligned}
$$

In chapter 8 , it will be shown that the steady-state rotor currents in a sinusoidally wound rotor induction motor will produce a rotating magnetic field given by

$$
\overrightarrow{\mathbf{B}}_{R}(\theta, t)=\frac{\mu_{0} N_{R} I_{R_{\text {wound }}}}{2 g} \cos \left(\theta-\left(\omega_{S} t+\varphi_{R_{\text {wound }}}\right)\right) \hat{\mathbf{r}}
$$

The only difference in the form of these expressions is the factor of $4 / \pi$. However, the values of the rotor current $I_{R_{\text {wound }}}$ and the phase angle $\varphi_{R_{\text {wound }}}$ are in general different as they depend on the $L_{R_{\text {wound }}}, R_{R_{\text {wound }}}$ which have different values in a squirrel cage rotor.

5.5.4 Comparison with a Sinusoidally Wound Rotor

It is quite interesting to note that in the squirrel cage rotor, the effective rotor time constant is still L_{R} / R_{R}, that is, the time constant due to just a single loop. (By "effective" is meant that this is the ratio that appears in the expression for the quantity $s_{p}=R_{R} /\left(\omega_{S} L_{R}\right)$ used in the above expression for the steady-state torque.) A small value for the time constant $T_{R}=L_{R} / R_{R}$ is usually desired since the value of s_{p} is then large, making $\tau \approx k\left(\omega_{S}-\omega_{R}\right)$ for a large range of slip speeds. Assuming ideal magnetic material and a small air gap, it is straightforward to show that $L_{R}=$ $\pi \mu_{0} \ell_{1} \ell_{2} /(4 g)$ for each loop of the rotor. Consequently, the time constant is $T_{R}=L_{R} / R_{R}=\pi \mu_{0} \ell_{1} \ell_{2} /\left(4 g R_{R}\right)$ where R_{R} is the resistance of the single loop.

This is in contrast to a sinusoidally wound rotor induction motor (discussed in a later chapter) where the rotor loops of each phase are connected in series resulting in $L_{R_{\text {wound }}}=\pi \mu_{0} \ell_{1} \ell_{2} N_{R}^{2} /(8 g)$ (N_{R} is the total number of loops in a sinusoidally wound rotor phase) and $R_{R_{\text {wound }}}$ is the sum of the resistances of each loop in the rotor ($R_{R_{\text {wound }}}=N_{R} R_{1}$ with R_{1} the resistance in each loop). The time constant is then $T_{R_{\text {wound }}}=$ $\left.L_{R_{\text {wound }}} / R_{R_{\text {wound }}}=\pi \mu_{0} \ell_{1} \ell_{2} N_{R} /\left(8 g R_{1}\right)\right)$. The ratio of these two time constants is $T_{R_{\text {wound }}} / T_{R_{\text {squirrel }}}=N_{R} / 2$ showing that for a squirrel cage rotor with the same number of loops as the wound rotor, the effective time constant can be significantly smaller.

To compare the torque of the two motors, consider the steady-state torque produced by a sinusoidally wound two-phase induction motor. It is shown in Chapter 7 (or see Chapter 10 of [1]) that the expression for this
torque is given by $\left(\left|\underline{I}_{S}\right|=I_{S} / \sqrt{2},\left|\underline{I}_{R}\right|=I_{R_{\text {wound }}} / \sqrt{2}\right)^{11}$

$$
\begin{aligned}
\tau_{\text {wound rotor }} & =M \operatorname{Im}\left\{\underline{I}_{S} \underline{I}_{R}^{*}\right\} \\
& =M \operatorname{Im}\left\{\underline{I}_{S}\left(-\frac{j \omega_{S} M}{R_{R} / S+j \omega_{S} L_{R}} I_{S}\right)^{*}\right\}
\end{aligned}
$$

With $S_{p} \triangleq \frac{R_{R_{\text {wound }}}}{\sigma \omega_{S} L_{R_{\text {wound }}}}$ and $s_{p} \triangleq \sigma S_{p}=\frac{R_{R_{\text {wound }}}}{\omega_{S} L_{R_{\text {wound }}}}$ this becomes

$$
\tau_{\text {wound rotor }}=\frac{I_{S}^{2}}{2} M \operatorname{Im}\left\{\frac{\frac{j \omega_{S} M S}{R_{R}}}{1-\frac{j S}{\sigma S_{p}}} \frac{1+\frac{j S}{\sigma S_{p}}}{1+\frac{j S}{\sigma S_{p}}}\right\}
$$

Rearranging, this becomes

$$
\begin{aligned}
\tau_{\text {wound rotor }} & =\frac{I_{S}^{2}}{2} M \operatorname{Im}\left\{\frac{\frac{j \omega_{S} M R_{R}}{S}\left(1+\frac{j S}{s_{p}}\right)}{1+\left(S / s_{p}\right)^{2}}\right\} \\
& =\frac{I_{S}^{2}}{2} M \frac{\omega_{S} M S / R_{R_{\text {wound }}}}{1+\left(S / s_{p}\right)^{2}} \\
& =\frac{1}{4 L_{R}} M^{2} I_{S}^{2} \frac{2}{s_{p} / S+S / s_{p}}
\end{aligned}
$$

Finally, using

$$
M=\frac{\mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{R}}{8 g}=\left(\frac{\pi N_{R}}{4}\right)\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S}}{g}\right)
$$

it follows that

$$
\begin{aligned}
\tau_{\text {wound rotor }} & =\frac{1}{4 L_{R}}\left(\frac{\pi N_{R}}{4}\right)^{2}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{g}\right)^{2} \frac{2}{s_{p} / S+S / s_{p}} \\
& =\frac{N_{R}}{2}\left(\frac{\pi}{4}\right)^{2} \frac{N_{R}}{2 L_{R}}\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{g}\right)^{2} \frac{2}{s_{p} / S+S / s_{p}}
\end{aligned}
$$

In form, this differs from the squirrel cage case by the factor $\frac{N_{R}}{2}\left(\frac{\pi}{4}\right)^{2}$. However, also note that $s_{p} \triangleq \frac{R_{R_{\text {wound }}}}{\omega_{S} L_{R_{\text {wound }}}}$ has a different value than that of the squirrel cage rotor.

[^46]
Problems

Problem 1 Solutions to Linear Time-Invariant Systems
Consider the linear time-invariant system specified by

$$
\begin{equation*}
\frac{d^{3} y}{d t^{3}}+a_{2} \frac{d^{2} y}{d t^{2}}+a_{1} \frac{d y}{d t}+a_{0} y=b_{2} \frac{d^{2} u}{d t^{2}}+b_{1} \frac{d u}{d t}+b_{0} u \tag{5.57}
\end{equation*}
$$

The transfer function $G(s)$ of this system is

$$
G(s)=\frac{b(s)}{a(s)}=\frac{b_{2} s^{2}+b_{1} s+b_{0}}{s^{3}+a_{2} s^{2}+a_{1} s+a_{0}}
$$

(a) Show that if

$$
u(t) \triangleq U_{0} e^{j \omega t}=U_{0}(\cos (\omega t)+j \sin (\omega t))
$$

then

$$
y_{p}(t)=U_{0}|G(j \omega)| e^{j(\omega t+\angle G(j \omega))}
$$

is a (particular) solution to the differential equation (5.57).
(b) Show that if

$$
u(t) \triangleq \operatorname{Re}\left\{U_{0} e^{j \omega t}\right\}=U_{0} \cos (\omega t)
$$

then

$$
y_{p}(t)=U_{0}|G(j \omega)| \cos (\omega t+\angle G(j \omega))
$$

is a particular solution to the differential equation (5.57).
(c) Let

$$
a(s)=s^{3}+a_{2} s^{2}+a_{1} s+a_{0}=\left(s-p_{1}\right)\left(s-p_{2}\right)\left(s-p_{3}\right)
$$

so that p_{1}, p_{2}, p_{3} are the poles of $G(s)$. To simplify the discussion, assume the p_{i} are distinct.

With $u(t) \equiv 0$ and arbitrary initial conditions $y(0), y^{\prime}(0), y^{\prime \prime}(0)$, show that the solution to (5.57) has the form $y(t)=A_{1} e^{p_{1} t}+A_{2} e^{p_{2} t}+A_{3} e^{p_{3} t}$.

Next, show that the complete solution to the differential equation (5.57) with arbitrary initial conditions $y(0), y^{\prime}(0), y^{\prime \prime}(0)$ and input $u(t)=U_{0} \cos (\omega t)$ is

$$
y(t)=U_{0}|G(j \omega)| \cos (\omega t+\angle G(j \omega))+A_{1} e^{p_{1} t}+A_{2} e^{p_{2} t}+A_{3} e^{p_{3} t}
$$

where the A_{i} are the unique solution to

$$
\left[\begin{array}{c}
y(0) \\
y^{\prime}(0) \\
y^{\prime \prime}(0)
\end{array}\right]=\left[\begin{array}{l}
y_{p}(0) \\
y_{p}^{\prime}(0) \\
y_{p}^{\prime \prime}(0)
\end{array}\right]+\left[\begin{array}{ccc}
1 & 1 & 1 \\
p_{1} & p_{2} & p_{3} \\
p_{1}^{2} & p_{2}^{2} & p_{3}^{2}
\end{array}\right]\left[\begin{array}{c}
A_{1} \\
A_{2} \\
A_{3}
\end{array}\right]
$$

(d) Show that the steady-state solution of the differential equation (5.57) equals $y_{p}(t)$ if and only if $\operatorname{Re}\left\{p_{i}\right\}<0$ for $i=1,2,3$.
(e) Show that the steady-state solution to $d y / d t+a y=u(t)$ with $a>$ 0 and $u(t)=U_{0} \cos \left(\omega_{0} t\right)$ is $y_{S S}(t)=U_{0}|G(j \omega)| \cos (\omega t+\angle G(j \omega))$ with $G(s)=1 /(s+a)$.

The Physics of the Induction Machine

Problem 2 Torque Versus Slip for the Induction Motor
The expressions for the rotor currents in equations (5.4) and (5.5) were found neglecting the rotor loop inductance. Assuming the rotor speed is constant and the currents are in sinusoidal steady-state, find an expression for these currents when the rotor loops have resistance R_{R} and an inductance L_{R}. Modify the corresponding expression for the torque given in (5.9) to show that it now has the form

$$
\tau=\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{2 L_{R}} \frac{2}{S / s_{p}+s_{p} / S}
$$

where $S \triangleq \frac{\omega_{S}-\omega_{R}}{\omega_{S}}$ is the normalized slip and $s_{p} \triangleq \frac{R_{R}}{\omega_{S} L_{R}}$. The pull-out slip is defined by $S_{p} \triangleq \frac{R_{R}}{\sigma \omega_{S} L_{R}}=s_{p} / \sigma$ where σ is the so-called leakage factor (see Chapter 6).

Finally, sketch the torque as a function of the normalized slip $S \triangleq\left(\omega_{S}-\right.$ $\left.\omega_{R}\right) / \omega_{S}$.

Problem 3 Induction Motor under Load
In problem 2 it is shown that the torque produced by a two-phase induction motor with two rotor loops $\pi / 2$ radians apart and nonzero rotor inductance L_{R} is given by

$$
\begin{equation*}
\tau=\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{2 L_{R}} \frac{2}{s_{p} / S+S / s_{p}}=\tau_{p} \frac{2}{s_{p} / S+S / s_{p}} \tag{5.58}
\end{equation*}
$$

where

$$
\begin{aligned}
S & \triangleq \frac{\omega_{S}-\omega_{R}}{\omega_{S}} \\
\tau_{p} & \triangleq\left(\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{2 g}\right)^{2} \frac{1}{2 L_{R}} \\
s_{p} & \triangleq \frac{R_{R}}{\omega_{S} L_{R}}
\end{aligned}
$$

A plot of τ / τ_{p} versus S / s_{p} is given in Figure 5.27. A typical rotor for an induction motor has more than two loops on it. The squirrel cage rotor for an induction motor is shown in Figure 5.28 with a cross-sectional view of the rotor given in Figure 5.28(b). This shows a rotor consisting of 6 rotor loops (12 sides) that can be viewed as three sets of 2 rotor loops. Each set consists of two rotor loops $\pi / 2$ radians apart.

FIGURE 5.27. Normalized torque versus normalized slip.

FIGURE 5.28. (a) Squirrel cage rotor for an induction motor. (b) Cross-sectional view.
(a) With the rotor of Figure 5.28(b), explain why the expression (5.58) for the steady-state torque needs to be multiplied by three to obtain the torque of the motor in Figure 5.28(b).
(b) Suppose the induction motor has a load on it and is producing the torque τ_{r} that is, it is operating at the point $\left(S_{r} / s_{p}, \tau_{r} / \tau_{p}\right)$ shown in Figure 5.27. Next, suppose an additional load is put on the motor so that the total
load torque τ_{L} now satisfies $\tau_{r}<\tau_{L}<\tau_{p}$. After the additional load is put on the motor:

Will the speed increase or decrease?
Will the normalized slip increase or decrease?
Will the motor torque increase to handle the increased load?
(c) Repeat part (b), but with the motor initially operating at ($S_{r 2} / s_{p}, \tau_{r 2} / \tau_{p}$).
(d) Suppose the induction motor is turned off (no currents applied to the stator phases) so that $\omega_{R}=0$, but it has a load torque $\tau_{L}=\tau_{r}$ on it (the same τ_{r} as in Figure 5.27). Suppose further that $s_{p}=0.2$ and that currents of frequency ω_{S} are now applied to the stator phases. Just after applying the stator currents, answer the following:

What is the value of S / s_{p} ?
Mark on Figure 5.27 the operating point of the motor.
Can the motor start with the load torque $\tau_{L}=\tau_{r}$ on it? Explain.
Problem 4 Torque
In developing the expression (5.6) for the torque on a rotor loop of an induction motor, why wasn't the magnetic force on the two semicircular ends of the rotor loop considered (see Figure 5.8)?

Problem 5 Simple Induction Machine with Three-Phases
Figure 5.29 shows a three phase stator with a rotor iron core.

FIGURE 5.29. Three-phase stator. Currents are only shown for phase 1.
Phase 1 is identical to phase a in a two phase stator. The magnetic field in the air gap due to the current $i_{S 1}$ in phase 1 is then

$$
\overrightarrow{\mathbf{B}}_{S 1}\left(i_{S 1}, r, \theta\right)=\frac{\mu_{0} \ell_{2} N_{S}}{4 g r} i_{S 1} \cos (\theta) \hat{\mathbf{r}} .
$$

Phase 2 is wound the same way as phase 1 except that is rotated $2 \pi / 3$ radians with respect to phase 1 . The third phase is also wound the same way as phases 1 and 2 , but rotated another $2 \pi / 3$ radians with respect to phase 2. The magnetic field in the air gap due to the current $i_{S 2}$ in phase 2 is then

$$
\overrightarrow{\mathbf{B}}_{S 2}\left(i_{S 2}, r, \theta\right)=\frac{\mu_{0} \ell_{2} N_{S}}{4 g r} i_{S 2} \cos (\theta-2 \pi / 3) \hat{\mathbf{r}}
$$

and the magnetic field in the air gap due to the current $i_{S 3}$ in phase 3 is then

$$
\overrightarrow{\mathbf{B}}_{S 3}\left(i_{S 3}, r, \theta\right)=\frac{\mu_{0} \ell_{2} N_{S}}{4 g r} i_{S 3} \cos (\theta-4 \pi / 3) \hat{\mathbf{r}} .
$$

Let the currents be given by

$$
\begin{aligned}
i_{S 1} & =I_{S} \cos \left(\omega_{S} t\right) \\
i_{S 2} & =I_{S} \cos \left(\omega_{S} t-2 \pi / 3\right) \\
i_{S 3} & =I_{S} \cos \left(\omega_{S} t-4 \pi / 3\right)
\end{aligned}
$$

(a) Show that the total magnetic in the air gap may be written as

$$
\overrightarrow{\mathbf{B}}_{S}=\overrightarrow{\mathbf{B}}_{S 1}+\overrightarrow{\mathbf{B}}_{S 2}+\overrightarrow{\mathbf{B}}_{S 3}=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r} \frac{3}{2} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{r}}
$$

(b) Is this a sinusoidally distributed magnetic field?
(c) With two rotor loops $\pi / 2$ radians apart, what changes (if any) are required to analyze this three-phase induction machine compared to the twophase induction machine in this chapter?

Problem 6 A PM-Generator/Induction-Motor Machine (motivated by [27])
In this problem, a rather strange type of machine is analyzed. Figure 5.30 shows a permanent magnet rotating inside a hollowed out core of soft iron. (This setup is the reverse of that for the DC motor in Chapter 1, where the rotating part is made of soft iron and the external stationary part is soft iron.) By properly designing the permanent magnet, it can be assumed that the magnetic field in the air gap is given by

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{S}=B_{S} \hat{\mathbf{r}}=B_{S m a x} \frac{r_{R}}{r} \cos \left(\theta-\theta_{S}\right) \hat{\mathbf{r}} \tag{5.59}
\end{equation*}
$$

where θ is an arbitrary angular location in the air gap and θ_{S} locates the north end (magnetic axis) of the permanent magnet as shown in Figure 5.30 (The subscript " S " is used because this magnetic field will take the place of the stator magnetic field discussed in the text.). Figures $5.30(b)-(d)$ illustrate the radial magnetic field due to the permanent magnet as it rotates from 0 to $\pi / 2$ to π.

FIGURE 5.30. A permanent magnet rotating inside a hollowed out core of soft iron.

The next part of the construction is to put a conducting loop in the air gap. This is illustrated in Figure 5.31(a), which shows a half-cylindricalshaped loop placed in the air gap.

FIGURE 5.31. (a) Loop in the air gap which rotates about the axle independent of the rotating permanent magnet. (b) Illustrating how the loop is mechanically supported so that it can rotate independent of the permanent magnet.

However, this loop is not attached to the permanent magnet; rather, it rotates independently of the permanent magnet on the same axle. Figure
5.31(b) illustrates how the loop is mechanically supported so that it can rotate on the axle independent of the permanent magnet. This loop is referred to as rotor loop $a-a^{\prime}$ (or rotor phase a) and its position is located by the angle θ_{R} which is fixed to the loop half way between sides a and a^{\prime} as shown in Figure 5.31(b). To complete the description of the construction of this motor, a second rotor loop is added to the system as shown in Figure 5.32. This loop is denoted rotor loop $b-b^{\prime}$ (or rotor phase b) and is rotated 90° with respect to loop $a-a^{\prime}$. As shown in Figure 5.32(b), a brace is put between the two loops so that they are rigidly held 90° apart. The brace and axle are non conducting so that the two loops are electrically isolated. The pair of loops rotate together on the axle independent of the permanent magnet. This completes the construction of the machine.

FIGURE 5.32. Two cylindrical rotor loops mechanically held together 90° apart, which rotate together on the axle independently of the rotating permanent magnet.
(a) Let $\theta_{S}(t)=\omega_{S} t$ so that the permanent magnet is rotating with constant angular speed ω_{S} by some external mechanical force. Consequently, a rotating radially directed magnetic field is setup in the air gap of the machine. Compute the fluxes in the two rotor loops due to the rotating magnetic field $\overrightarrow{\mathbf{B}}_{S}$.
(b) With R_{R} the resistance of a rotor loop and L_{R} the inductance of the rotor loop, compute the sinusoidal steady-state currents $i_{R a S S}$ and $i_{R b S S}$ in the two rotor loops. Assume the rotor has constant angular velocity ω_{R} where $0<\omega_{R}<\omega_{S}$.
(c) Compute the torques $\tau_{R a}$ and $\tau_{R b}$ on the two rotor loops due to the magnetic field $\overrightarrow{\mathbf{B}}_{S}$ acting on the current in the rotor sides $a, a^{\prime}, b, b^{\prime}$ in terms of $i_{R a}, i_{R b}, \ell_{1}, \ell_{2}, B_{S m a x}, \omega_{S}$ and ω_{R}.
(d) Substitute the expressions for the currents from part (b) into the expressions for the torques in part (c) and show that the resulting expression has the same form as that derived in problem 2.

Synchronous Machines

Problem 7 Magnetic Field of a Sinusoidally Wound Rotor

Using Ampère's law, derive the expression given in equation (5.10) for the radial magnetic field in the air gap due to the current in the rotor windings. Assume ideal magnetic material and, that the rotor and stator windings have cross-sectional areas that are infinitesimal.

Problem 8 Mathematical Model of a PM Synchronous Motor
Consider a two phase permanent magnet synchronous motor. This is constructed like the wound rotor in Figure 5.33, but the rotor is replaced by a permanent magnet as shown. Let the magnetic field due to the permanent magnet rotor be given by

$$
\overrightarrow{\mathbf{B}}_{R}=B_{R}(r, \theta) \hat{\mathbf{r}}=B_{R \max } \frac{r_{R}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}}
$$

and derive the mathematical model of the PM synchronous motor.

FIGURE 5.33. Two-phase permanent magnet synchronous motor.

Problem 9 Synchronous Motor with a Sinusoidally Wound Rotor

Consider a synchronous motor with a sinusoidally wound rotor as in Figure 5.9. An analytical expression for the torque produced by this motor was derived in the text. However, this expression can also be derived by considering the magnetic force due to the stator magnetic field $\overrightarrow{\mathbf{B}}_{S}$ acting on the currents in the rotor windings. This problem outlines such an approach.
(a) Using the magnetic force law, show that the incremental magnetic force $d \overrightarrow{\mathbf{F}}_{R}$ due to $\overrightarrow{\mathbf{B}}_{S}$ acting on the rotor current in the windings of the
rotor between θ and $\theta+d \theta$ is given by

$$
d \overrightarrow{\mathbf{F}}_{R}=\left\{\begin{array}{lr}
I_{F} \frac{N_{F}}{2}\left|\sin \left(\theta-\theta_{R}\right)\right| d \theta\left(+\ell_{1} \hat{\mathbf{z}}\right) \times \overrightarrow{\mathbf{B}}_{S} & \theta_{R} \leq \theta \leq \theta_{R}+\pi \\
I_{F} \frac{N_{F}}{2}\left|\sin \left(\theta-\theta_{R}\right)\right| d \theta\left(-\ell_{1} \hat{\mathbf{z}}\right) \times \overrightarrow{\mathbf{B}}_{S} & \theta_{R}+\pi \leq \theta \leq \theta_{R}+2 \pi
\end{array}\right.
$$

or, more simply, for $\theta_{R} \leq \theta \leq \theta_{R}+2 \pi$

$$
\begin{aligned}
d \overrightarrow{\mathbf{F}}_{R} & =I_{F} \frac{N_{F}}{2} \sin \left(\theta-\theta_{R}\right) d \theta\left(+\ell_{1} \hat{\mathbf{z}}\right) \times \overrightarrow{\mathbf{B}}_{S} \\
& =I_{F} \frac{N_{F}}{2} \sin \left(\theta-\theta_{R}\right) d \theta\left(+\ell_{1} \hat{\mathbf{z}}\right) \times \frac{\mu_{0} N_{S} I_{S}}{2 g} \cos \left(\theta-\theta_{S}\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{1} N_{S} N_{F} I_{S} I_{F}}{4 g} \sin \left(\theta-\theta_{R}\right) \cos \left(\theta-\theta_{S}\right) d \theta \hat{\theta}
\end{aligned}
$$

(b) Integrate the incremental torque $d \overrightarrow{\boldsymbol{\tau}}_{R}$

$$
\begin{aligned}
d \vec{\tau}_{R} & =\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times d \overrightarrow{\mathbf{F}}_{R} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{F} I_{S} I_{F}}{8 g} \sin \left(\theta-\theta_{R}\right) \cos \left(\theta-\theta_{S}\right) d \theta \hat{\mathbf{z}}
\end{aligned}
$$

over the rotor windings to obtain the total torque $\overrightarrow{\boldsymbol{\tau}}_{R}$ on the rotor.
(c) Assume the motor is in steady-state with $\theta_{S}=\omega_{S} t, \theta_{R}=\omega_{R} t-\delta$ and $\omega_{S}=\omega_{R}$. With

$$
\begin{aligned}
\left.B_{R \max } \triangleq \frac{\mu_{0} \ell_{2} N_{F} I_{F}}{4 g r}\right|_{r=\ell_{2} / 2}=\frac{\mu_{0} N_{F} I_{F}}{2 g} \\
V_{\text {airgap }} \triangleq 2 \pi\left(\ell_{2} / 2\right) \ell_{1} g=\pi \ell_{1} \ell_{2} g \\
\left.B_{S \text { max }} \triangleq \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\right|_{r=\ell_{2} / 2}=\frac{\mu_{0} N_{S} I_{S}}{2 g}
\end{aligned}
$$

show that the answer to part (b) reduces to the expression given in (5.13).
Problem 10 Synchronous Motor with a Salient Rotor
Consider a synchronous machine with two sinusoidally wound stator phases and a salient rotor as in Figure 5.13 of Section 5.3.3. Let $i_{S a}=$ $I_{S} \cos \left(\omega_{S} t\right), i_{S b}=I_{S} \sin \left(\omega_{S} t\right)$ be the stator currents and $i_{F}(t)=I_{F}=$ constant so that the magnetic fields in the air gap are

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{S} & =\frac{\mu_{0} N_{S} I_{S}}{2 g_{1}} \frac{r_{R}}{r} \cos \left(\theta-\theta_{S}\right) \hat{\mathbf{r}} \\
\overrightarrow{\mathbf{B}}_{R} & =\frac{\mu_{0} N_{F} I_{F}}{2 g_{0}} \frac{r_{R}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}}
\end{aligned}
$$

where $\theta_{S}(t)=\omega_{S} t$ denotes angular position of the magnetic axis of the stator magnetic field and $\theta_{R}(t)=\omega_{R} t-\delta$ denotes the angular position of
the rotor which is taken to coincide with the rotor's magnetic axis. Here g_{1} is the average air gap length ($g_{1}>g_{0}$) and, as the rotor's cross section is not circular, let $r_{R} \triangleq r_{S}-g_{1}$ (see the remark in Section 5.3.3).
(a) Compute the torque τ_{S} on the stator phases due to the rotor's magnetic field $\overrightarrow{\mathbf{B}}_{R}$ acting on the stator currents $i_{S a}, i_{S b}$. Use this to find τ_{R}. Is there anything that has to be done different here than in the sinusoidally wound rotor case? Explain why or why not.
(b) Compute the induced emf's $\xi_{S a}$ and $\xi_{S b}$ in the stator phases due to the rotor's magnetic field $\overrightarrow{\mathbf{B}}_{R}$. Is there anything that has to be done different here than in the sinusoidally-wound rotor case? Explain why or why not.
(c) Compute the power absorbed in the stator by these induced emf's and show it equals the negative of the mechanical power produced by the motor. Is there anything that has to be done different here than in the sinusoidally wound rotor case? Explain why or why not.
(d) Is it possible (in a nice analytic fashion) to find the motor's torque directly by computing the torque on the rotor due to the magnetic field $\overrightarrow{\mathbf{B}}_{S}$ acting on the rotor current? Explain why or why not.

Problem 11 Emf in the Rotor Winding of a Synchronous Machine
Consider a synchronous motor with a sinusoidally wound rotor as in Figure 5.9. This problem outlines how to derive an expression for the flux and induced emf in the rotor winding produced by the stator magnetic field.
(a) Compute the fux linkage λ_{R} in the rotor loops due to the stator magnetic field $\overrightarrow{\mathbf{B}}_{S}$; that is, with

$$
\overrightarrow{\mathbf{B}}_{S}\left(i_{S a}, i_{S b}, r, \theta\right)=\frac{\mu_{0} \ell_{2} N_{S}}{4 g r}\left(i_{S a} \cos (\theta)+i_{S b} \sin (\theta)\right) \hat{\mathbf{r}}
$$

compute

$$
\lambda_{R}=\int_{\substack{\text { All loops of } \\ \text { the rotor }}} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}} .
$$

(b) Compute the emf induced in the windings, that is,

$$
\xi_{R}=-\frac{d \lambda_{R}}{d t} .
$$

(c) Let $i_{S a}(t)=I_{S} \cos \left(\omega_{S} t\right), i_{S b}(t)=I_{S} \sin \left(\omega_{S} t\right), \theta_{S}=\omega_{S} t, \theta_{R}=\omega_{R} t-\delta$ with $\omega_{S}=\omega_{R}$ and show that in this case

$$
\xi_{R}=-\frac{d \lambda_{R}}{d t} \equiv 0
$$

Explain why.

Microscopic Viewpoint of Electric Machines

Problem 12 Linear Motor in a Coordinate System Attached to the Bar

FIGURE 5.34. Linear DC machine. The primed coordinate system is attached to the sliding bar and moves at velocity $v_{m} \hat{\mathbf{x}}$ with respect to the unprimed coordinate system attached to the rails.

In chapter 1, the linear DC machine was analyzed from the microscopic point of view in a stationary coordinate system of the rails. In the stationary coordinate system, $\overrightarrow{\mathbf{B}}=-B \hat{\mathbf{z}}, \overrightarrow{\mathbf{E}}=0(B>0$ and $\overrightarrow{\mathbf{E}}$ denotes the electric field in the air surrounding the linear motor; there is another electric field $\overrightarrow{\mathbf{E}}_{S}$ in the wire setup by the source voltage V_{S}). In this coordinate system, the bar moves in the $+\hat{\mathbf{x}}$ direction with a constant speed v_{m} and each charge q in the sliding bar has total velocity $\overrightarrow{\mathbf{v}}_{q}=v_{m} \hat{\mathbf{x}}-v_{d} \hat{\mathbf{y}}$ where v_{d} is the drift speed. Consider the primed (') coordinate system shown in Figure 5.34 which is attached to the sliding bar. Redo the analysis from the point of view of this coordinate system. Specifically,
(a) Compute the electric $\overrightarrow{\mathbf{E}^{\prime}}$ and magnetic $\overrightarrow{\mathbf{B}^{\prime}}$ fields in the reference frame of the moving bar using the transformation (5.44).
(b) Find the velocity $\overrightarrow{\mathbf{v}}_{q}^{\prime}$ of the charge carriers in the sliding bar.
(c) Find the magnetic force per unit charge $\overrightarrow{\mathbf{v}}_{q}^{\prime} \times \overrightarrow{\mathbf{B}}^{\prime}$ on the charge carriers in sliding bar.
(d) Compute the Lorentz force per unit charge $\overrightarrow{\mathbf{F}}^{\prime} / q \triangleq \overrightarrow{\mathbf{E}}^{\prime}+\overrightarrow{\mathbf{v}}_{q}^{\prime} \times \overrightarrow{\mathbf{B}}^{\prime}$ on charge carriers in the sliding bar due to the external electric and magnetic fields. What part of this force is canceled out by $\overrightarrow{\mathbf{E}}_{S}$? What is the resulting total force on the sliding bar?
(e) In this coordinate system, what is the "back electric field" and "back emf"? Show that conservation of energy holds; that is, the energy absorbed by the back emf reappears as mechanical power out.
(f) In the coordinate system of the sliding bar, what is the flux in the loop of the linear motor. Use Faraday's law to compute the emf $\xi_{b a r}$ induced in
loop of the linear motor. Neglecting the inductance, compute the current as $i_{b}=\xi_{\text {bar }} / R$ where R is the resistance of the bar. What is the net force on the bar in this coordinate system?

Problem 13 Linear Motor in a Coordinate System with Velocity $v_{c}<v_{m}$
Repeat problem 12 for the case where the coordinate system is moving at speed v_{c}, where $v_{c}<v_{m}$.

Problem 14 Linear Motor in a Coordinate System with Velocity $v_{c}>v_{m}$
Repeat problem 12 for the case where the coordinate system is moving at speed v_{c}, where $v_{c}>v_{m}$.

Problem 15 Stator Electric Field
In the derivation of the stator electric field $\overrightarrow{\mathbf{E}}_{S}(\theta, t)$ in the air gap due to the rotating stator magnetic field, the "constant of integration" was set to zero so that $\overrightarrow{\mathbf{E}}_{S}(\theta, t)$ is given by equation (5.23)

$$
\overrightarrow{\mathbf{E}}_{S}(\theta, t)=E_{S z}(\theta, t) \hat{\mathbf{z}}=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{z}}
$$

Note that $\overrightarrow{\mathbf{E}}_{S}(\theta, t)$ is a maximum at $\theta=\omega_{S} t$, a minimum at $\theta=\omega_{S} t+\pi$ and zero at $\theta=\omega_{S} t \pm \pi / 2$. Similarly, the stator magnetic field

$$
\overrightarrow{\mathbf{B}}_{S}(r, \theta, t)=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{r}}
$$

is a maximum at $\theta=\omega_{S} t$, a minimum at $\theta=\omega_{S} t+\pi$ and zero at $\theta=$ $\omega_{S} t \pm \pi / 2$.
(a) Consider a locked rotor, that is, the rotor is constrained so that it cannot move. Show that the induced emf in a rotor loop is zero at a time t when one side of the loop is located at $\theta=\omega_{S} t+\pi / 2$ (so the other side of the loop is located at $\theta=\omega_{S} t-\pi / 2$), that is, when the flux through the loop is maximum or minimum (see Figure 5.15).
(b) With the rotor locked (i.e., $\omega_{R}=0$), the induced emf is equal to

$$
\xi_{R a}=V_{R a} \triangleq \oint_{\text {rotor loop a }} \overrightarrow{\mathbf{E}}_{S} \cdot d \vec{\ell} .
$$

Use this to explain why the stator electric field $\overrightarrow{\mathbf{E}}_{S}(\theta, t)$ must be zero for $\theta=\omega_{S} t \pm \pi / 2$, or equivalently, why must the "constant of integration" be zero (see Figure 5.15).

Problem 16 Induction Motor in the Synchronous Coordinate System
Rederive the emf $\xi_{R a}^{\prime}=-d \lambda_{R a}^{\prime} / d t$ given in equation (5.45) by computing the flux $\lambda_{R a}^{\prime}$ in rotor loop a due to the stator magnetic field $\overrightarrow{\mathbf{B}}_{S}^{\prime}$. That is,
show that

$$
\begin{aligned}
\lambda_{R a}^{\prime} & =\int_{S} \overrightarrow{\mathbf{B}}_{S}^{\prime} \cdot d \overrightarrow{\mathbf{S}}=\left.\int_{\theta^{\prime}=-\omega_{R} t-\pi / 2}^{\theta^{\prime}=-\omega_{R} t+\pi / 2} \frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r}\right|_{r=\ell_{2} / 2} \cos \left(\theta^{\prime}\right) \hat{\mathbf{r}} \cdot \ell_{1}\left(\ell_{2} / 2\right) d \theta^{\prime} \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{1} \ell_{2} N_{S} I_{S}}{4 g} \cos \left(-\omega_{R}^{\prime} t\right)
\end{aligned}
$$

Problem 17 Induction Motor in the Rotor Coordinate System
Consider the simple induction motor analyzed in the text. That is, a machine whose stator consists of two sinusoidally wound phases 90° apart and whose rotor consists of two electrically isolated loops also 90° apart. This problem outlines the Physics off the motor from a coordinate system attached to the rotor of the motor; that is, it rotates at an angular speed ω_{R} with respect to the stator. Denote this rotor coordinate system as the primed $\left.{ }^{(}\right)$coordinate system and, in this coordinate system, do the following:
(a) Compute the electric $\overrightarrow{\mathbf{E}}_{S}^{\prime}$ and magnetic $\overrightarrow{\mathbf{B}}_{S}^{\prime}$ fields in the air gap from the electric and magnetic fields $\overrightarrow{\mathbf{E}}_{S}$ and $\overrightarrow{\mathbf{B}}_{S}$ in the stator coordinmate system.
(b) Find the velocity $\overrightarrow{\mathbf{v}}_{R a}^{\prime}$ of the charge carriers on the axial sides of rotor phase/loop a (note that in this coordinate system $\omega_{R}^{\prime}=0$).
(c) Find the magnetic force per unit charge $\overrightarrow{\mathbf{v}}_{R a}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}$ on the charge carriers in the axial sides of rotor phase a.
(d) Compute the torque $\tau_{R a}^{\prime}$ on the rotor loop.
(e) Compute the emf $\xi_{\text {Ra }}^{\prime}$ induced in rotor loop a by computing the rate of change of the flux in the loop. Neglecting the rotor inductance, compute the current as $i_{R a}=\xi_{R a}^{\prime} / R_{R}$.
(f) Compute the voltage $V_{R a}^{\prime}=\underset{\text { rotor loop a }}{\oint} \overrightarrow{\mathbf{E}}_{S}^{\prime} \cdot d \vec{\ell}$ in rotor loop a produced by the axial electric field $\overrightarrow{\mathbf{E}}_{S}^{\prime}$.
(g) Compute the back emf $\zeta_{R a}^{\prime}$ by integrating the axial magnetic force per unit charge around rotor loop a. Show that $\xi_{R a}^{\prime}=V_{R a}^{\prime}+\zeta_{R a}^{\prime}$.
(h) Find the corresponding quantities $\overrightarrow{\mathbf{v}}_{R b}^{\prime}, \overrightarrow{\mathbf{v}}_{R b}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}, \tau_{R b}^{\prime}, \xi_{R b}^{\prime}, i_{R b}, V_{R b}^{\prime}$, and $\zeta_{R b}^{\prime}$ for rotor phase b.
(i) Show that conservation of energy holds in this coordinate system; that $i s$,

$$
i_{R a} V_{R a}^{\prime}+i_{R b} V_{R b}^{\prime}=\left(i_{R a} \xi_{R a}^{\prime}+i_{R b} \xi_{R b}^{\prime}\right)-\left(i_{R a} \zeta_{R a}^{\prime}+i_{R b} \zeta_{R b}^{\prime}\right)
$$

where $-\left(i_{R a} \zeta_{R a}^{\prime}+i_{R b} \zeta_{R b}^{\prime}\right)=\left(\tau_{R a}^{\prime}+\tau_{R b}^{\prime}\right) \omega_{R}^{\prime}$ so that the power absorbed by the back emf is converted into mechanical power.

Problem 18 Synchronous Machine in the Stationary Coordinate System
Consider a synchronous motor with a sinusoidally wound rotor to be in steady state so $i_{F}=I_{F}=$ constant, $i_{S a}=I_{S} \cos \left(\omega_{S} t\right), i_{S b}=I_{S} \sin \left(\omega_{S} t\right)$, $\omega_{R}=\omega_{S}, \theta_{S}=\omega_{S} t$ and $\theta_{R}=\omega_{R} t-\delta$. The stator of this machine is identical to that of an induction motor so that the electric and magnetic
fields in the air gap due to the stator currents are given by

$$
\begin{aligned}
\overrightarrow{\mathbf{E}}_{S}(\theta, t) & =E_{S z}(\theta, t) \hat{\mathbf{z}}=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g} \omega_{S} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{z}} \\
\overrightarrow{\mathbf{B}}_{S}(r, \theta, t) & =B_{S r}(\theta, t) \hat{\mathbf{r}}=\frac{\mu_{0} \ell_{2} N_{S} I_{S}}{4 g r} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{r}} .
\end{aligned}
$$

The sinusoidally wound rotor phase has a winding density $\left(N_{F} / 2\right)\left|\sin \left(\theta-\theta_{R}\right)\right|$ with the constant current I_{F} in it so that the rotor magnetic field in the air gap is

$$
\overrightarrow{\mathbf{B}}_{R}=\frac{\mu_{0} \ell_{2} N_{F} I_{F}}{4 g r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}}
$$

Redo the Physics of the synchronous motor from the microscopic point of view by doing the following:
(a) Find the velocity $\overrightarrow{\mathbf{v}}_{F}$ of the charge carriers on the axial sides of the rotor phase (field winding).
(b) Find the magnetic force per unit charge $\overrightarrow{\mathbf{v}}_{F} \times \overrightarrow{\mathbf{B}}_{S}$ on the charge carriers in the axial sides of the rotor phase.
(c) Find the Lorentz force per unit charge $\overrightarrow{\mathbf{F}} / q \triangleq \overrightarrow{\mathbf{E}}_{S}+\overrightarrow{\mathbf{v}}_{F} \times \overrightarrow{\mathbf{B}}_{S}$ on the charge carriers in the axial sides of the rotor phase.
(d) Compute the emf $V_{F}=\underset{\text { All rotor loops }}{\oint}(\overrightarrow{\mathbf{F}} / q) \cdot d \vec{\ell}$ in the rotor windings/loops produced by the Lorentz force $\overrightarrow{\mathbf{F}} / q$. Can you explain your answer?
(e) Compute the torque τ_{R} on the rotor loop using the magnetic force per unit charge in the $\hat{\boldsymbol{\theta}}$ direction.
(f) Use Faraday's law in differential form $\nabla \times \overrightarrow{\mathbf{E}}_{R}=-\partial \overrightarrow{\mathbf{B}}_{R} / \partial t$ to find $\overrightarrow{\mathbf{E}}_{R}$ in the air gap.
(g) In the macroscopic approach, it was shown in (5.18) that

$$
\begin{aligned}
\xi_{S a} & =-d \lambda_{S a} / d t \\
\xi_{S b} & =-d \lambda_{S b} / d t
\end{aligned}
$$

Show that the expressions for the emf's induced in the stator windings by the rotor's magnetic field can also be found by computing

$$
\begin{aligned}
\xi_{S a} & =\oint_{\substack{\text { All loops of } \\
\text { stator phase a }}} \overrightarrow{\mathbf{E}}_{R} \cdot d \overrightarrow{\boldsymbol{\ell}} \\
\xi_{S b} & =\overrightarrow{\mathbf{E}}_{R} \cdot d \overrightarrow{\boldsymbol{\ell}} .
\end{aligned}
$$

Why isn't it necessary to include the magnetic force per unit charge $\overrightarrow{\mathbf{v}}_{S a} \times$ $\overrightarrow{\mathbf{B}}_{R}$ term in the computation of $\xi_{S a}$ and $\xi_{S b}$? $\left(\overrightarrow{\mathbf{v}}_{S a}\right.$ is the velocity of charge carriers in the windings of stator phase a.)
(h) Show that

$$
\begin{aligned}
& -\frac{d\left(L_{S} i_{S a}\right)}{d t}=\oint_{\begin{array}{c}
\text { All loops of } \\
\text { stator phase a }
\end{array}} \overrightarrow{\mathbf{E}}_{S} \cdot d \vec{\ell} \\
& -\frac{d\left(L_{S} i_{S b}\right)}{d t}=\varliminf_{\begin{array}{c}
\text { All loops of } \\
\text { stator phase b }
\end{array}} \overrightarrow{\mathbf{E}}_{S} \cdot d \vec{\ell} .
\end{aligned}
$$

That is, compute the line integrals on the right-hand side and show that they are of the form given on the left-hand side with $L_{S} \triangleq \frac{\mu_{0} \ell_{1} \ell_{2} \pi}{8 g} N_{S}^{2}$. (It can be shown that $L_{S} i_{S a}$ is the flux in stator phase a due to the stator magnetic field $\overrightarrow{\mathbf{B}}_{S}$). Why isn't it necessary to include the magnetic force per unit charge $\overrightarrow{\mathbf{v}}_{S a} \times \overrightarrow{\mathbf{B}}_{S}$ term in the computation of the line integrals?
(i) Given that $L_{S} i_{S a}$ is the flux in stator phase a due to the stator magnetic field $\overrightarrow{\mathbf{B}}_{S}$ and the answers to the previous parts of this problem, show that the total voltage/emf induced in the stator phases may be written as

$$
\begin{aligned}
-\frac{d\left(\lambda_{S a}+L_{S} i_{S a}\right)}{d t} & =\oint_{\begin{array}{c}
\text { All loops of } \\
\text { stator phase a }
\end{array}}\left(\overrightarrow{\mathbf{E}}_{R}+\overrightarrow{\mathbf{E}}_{S}\right) \cdot d \vec{\ell} \\
-\frac{d\left(\lambda_{S b}+L_{S} i_{S b}\right)}{d t} & =\oint_{\begin{array}{c}
\text { All loops of } \\
\text { stator phase b }
\end{array}}\left(\overrightarrow{\mathbf{E}}_{R}+\overrightarrow{\mathbf{E}}_{S}\right) \cdot d \vec{\ell} .
\end{aligned}
$$

(j) Show that power is conserved; that is,

$$
i_{S a}(t) \xi_{S a}(t)+i_{S b}(t) \xi_{S b}(t)=-\tau_{R} \omega_{R} .
$$

Problem 19 Synchronous Machine in the Rotor Coordinate System
Consider a synchronous motor with a sinusoidally wound rotor. With the motor in steady state $\left(\omega_{R}=\omega_{S}\right)$, consider a coordinate system attached to the rotor so that it is rotating at synchronous speed; that is, it rotates at the angular speed $\omega_{R}=\omega_{S}$ with respect to the stator. Further, let the coordinate system be aligned with the rotor so that in cylindrical coordinates,

$$
\begin{aligned}
r^{\prime} & =r \\
\theta^{\prime} & =\theta-\omega_{R} t \\
z^{\prime} & =z
\end{aligned}
$$

where (r, θ, z) are the cylindrical coordinates in the stationary coordinate system of the stator and ($r^{\prime}, \theta^{\prime}, z^{\prime}$) are the cylindrical coordinates in the rotating coordinate system of the rotor. This rotor coordinate system is referred to as the primed (') coordinate system; in this coordinate system, do the following:
(a) Compute the electric $\overrightarrow{\mathbf{E}}_{S}^{\prime}$ and magnetic $\overrightarrow{\mathbf{B}}_{S}^{\prime}$ fields in the air gap from the electric and magnetic fields $\overrightarrow{\mathbf{E}}_{S}, \overrightarrow{\mathbf{B}}_{S}$ in the stator coordinate system.
(b) Compute the electric $\overrightarrow{\mathbf{E}}_{R}^{\prime}$ and magnetic $\overrightarrow{\mathbf{B}}_{R}^{\prime}$ fields in the air gap from the electric and magnetic fields $\overrightarrow{\mathbf{E}}_{R}, \overrightarrow{\mathbf{B}}_{R}$ in the stator coordinate system.
(c) Find the velocity $\overrightarrow{\mathbf{v}}_{F}^{\prime}$ of the charge carriers on the axial sides of the (field) rotor windings (note that in this coordinate system $\omega_{R}^{\prime}=0$).
(d) Find the magnetic force per unit charge $\overrightarrow{\mathbf{v}}_{F}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}$ on the charge carriers in the axial sides of the rotor.
(e) Compute the torque τ_{R} on the rotor loop.
(f) Compute the back emf $\xi_{S a}^{\prime}$ induced in stator phase a by computing the rate of change of the flux due to $\overrightarrow{\mathbf{B}}_{R}^{\prime}$ in that phase. Similarly, compute $\xi_{S b}^{\prime}$ in stator phase b.
(g) Find the velocity $\overrightarrow{\mathbf{v}}_{S a}^{\prime}$ of the charge carriers on the axial sides of the stator phase a. Note that the stator windings are rotating with angular speed $-\omega_{R}$ with respect to the rotor. Similarly, find $\overrightarrow{\mathbf{v}}_{S b}^{\prime}$.
(h) Show that the back emf in stator phase a can also be computed as

$$
\xi_{S a}^{\prime}=\oint_{\text {rotor loops }}\left(\overrightarrow{\mathbf{E}}_{R}^{\prime}+\overrightarrow{\mathbf{v}}_{S a}^{\prime} \times \overrightarrow{\mathbf{B}}_{R}^{\prime}\right) \cdot d \vec{\ell}
$$

Similarly, find $\xi_{S b}^{\prime}$.
(i) Compute the rotor emf $V_{F}=\oint_{\text {rotor loops }}\left(\overrightarrow{\mathbf{E}}_{S}^{\prime}+\overrightarrow{\mathbf{v}}_{F}^{\prime} \times \overrightarrow{\mathbf{B}}_{S}^{\prime}\right) \cdot d \overrightarrow{\boldsymbol{\ell}}$
in the rotor loops produced by the stator fields $\overrightarrow{\mathbf{E}}_{S}^{\prime}, \overrightarrow{\mathbf{B}}_{S}^{\prime}$.
(j) Using the $\hat{\boldsymbol{\theta}}$ component of $\overrightarrow{\mathbf{v}}_{S a}^{\prime} \times \overrightarrow{\mathbf{B}}_{R}^{\prime}$, compute the torque $\tau_{S a}$ exerted on the stator by the rotor. Similarly, compute $\tau_{S b}$. Is $\tau_{R}=-\left(\tau_{S a}+\tau_{S b}\right)$?
(k) In this coordinate system, $\omega_{R}^{\prime}=0$ so that no mechanical power is being given to the rotor. Show that conservation of energy holds in this coordinate system, i.e., $i_{S a} \xi_{S a}^{\prime}+i_{S b} \xi_{S b}^{\prime}=-\left(\tau_{S a}+\tau_{S b}\right) \omega_{S}^{\prime}$ where $\omega_{S}^{\prime}=-\omega_{S}$. From the point of view of this coordinate system, is the machine acting as a motor or generator?

Problem 20 Emfs in Full-Pitched and Short-Pitched Windings
Figure 5.35 shows a motor with a permanent magnet rotor which has a single stator phase with full-pitched turns, that is, wound with each loop spanning π radians [see Figures 4.1 and 4.3(b) of Chapter 4]. Let the magnetic field in the air gap due to the permanent magnet rotor be given by

$$
\overrightarrow{\mathbf{B}}_{R}\left(\theta-\theta_{R}\right)=B_{\max } \frac{r_{R}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} .
$$

(a) Let $\theta_{R}(t)=\omega_{R} t$ and compute the axial electric field $\overrightarrow{\mathbf{E}}_{R}=E_{R z} \hat{\mathbf{z}}$ induced in the air gap by the time varying magnetic field.
(b) Using the expression derived for the axial electric field in part (a) to compute the emf induced in the stator phase by the PM rotor.

FIGURE 5.35. A machine with a PM rotor and a single stator phase.
(c) Suppose that the stator in part (b) now consists of short-pitched turns as indicated in Figure 5.36. That is, each turn spans only 150° rather than 180° as in part (b). (See problem 14 of Chapter 4 for a more detailed explanation of short-pitched turns.)

FIGURE 5.36. A motor with a PM rotor and a single stator phase whose turns are short-pitched.

Without any computation, explain why the induced emf in this short-pitched winding must be the same as in the full-pitched winding of part (b).

6

Mathematical Models of AC Machines

In this chapter, the mathematical models of the induction and synchronous machines are derived. The derivations in this chapter will be based on a two-phase machine. In Chapter 7 three-phase machines are considered, and it is shown there that any balanced three-phase induction or synchronous machine has a two-phase equivalent model identical in form to its two-phase counterpart. The models derived in this chapter are standard throughout the literature and form the basis for deriving control algorithms.

The symmetric, two-pole (single pole-pair), two-phase machine shown in Figure 6.1 is used for the derivations that follow. The stator of this machine is constructed with a hollow cylindrical shell of iron wrapped with two sets of sinusoidally wound phases, each with a total of N_{S} turns and 90° apart. These stator windings are denoted as phases a and b, respectively, carrying the currents $i_{S a}$ and $i_{S b}$, respectively. Stator phase a is connected to a voltage source $u_{S a}$, while stator phase b is connected to a voltage source $u_{S b}$. The resistance of the windings of the two phases are assumed to be identical and equal to R_{S}.

FIGURE 6.1. Representation of a two-phase sinusoidally wound machine.
The rotor consists of a cylindrical core of iron with two sinusoidally wound phases each with a total of N_{R} turns and 90° apart. These phases are denoted a and b as indicated in Figure 6.1. The currents in the rotor
phases are denoted as $i_{R a}$ and $i_{R b}$, respectively and the resistance of each of the rotor phase windings is denoted as R_{R}. At this point, no assumption is made on whether or not the ends of the rotor phases are shorted or connected to voltage sources. The rotor is located with respect to the stator by the magnetic axis of rotor phase a as shown in Figure 6.1.

The currents in the phases of the machine establish magnetic fields and these magnetic fields in turn produce fluxes in the windings of all four of the machine's phases. In order to obtain a mathematical model of an AC machine, an expression for the total flux linkage in each of the stator and rotor phases due to the currents $i_{S a}, i_{S b}, i_{R a}$, and $i_{R b}$ must be found. However, before these flux linkages can be computed, an expression for the magnetic field $\overrightarrow{\mathbf{B}}_{R}\left(i_{R a}, i_{R b}, r, \theta\right)$ in the air gap produced by the rotor currents is required. An expression for the magnetic field $\overrightarrow{\mathbf{B}}_{S}\left(i_{S a}, i_{S b}, r, \theta\right)$ in the air gap produced by the stator currents was derived in Chapter 4. Also, the concept of leakage is explained and the expressions for the magnetic fields $\overrightarrow{\mathbf{B}}_{S}, \overrightarrow{\mathbf{B}}_{R}$ are modified to account for it. The modified expressions for the magnetic fields $\overrightarrow{\mathbf{B}}_{S}$ and $\overrightarrow{\mathbf{B}}_{R}$ are then used to compute the flux linkage in each phase of the machine.

6.1 The Magnetic Field $\overrightarrow{\mathbf{B}}_{R}\left(i_{R a}, i_{R b}, r, \theta-\theta_{R}\right)$

The radial magnetic field $\overrightarrow{\mathbf{B}}_{R a}$ established in the air gap by the current $i_{R a}$ in the sinusoidally distributed winding of rotor phase a is now computed. The winding/turns density of rotor phase a is $\left(N_{R} / 2\right)\left|\sin \left(\theta-\theta_{R}\right)\right|$ so that the number of turns between θ and $\theta+d \theta$ is $\left(N_{R} / 2\right)\left|\sin \left(\theta-\theta_{R}\right)\right| d \theta$. To proceed, Ampère's law $\oint \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=i_{\text {enclosed }}$ (with $\overrightarrow{\mathbf{H}} \equiv 0$ in the magnetic material) is applied to the closed path $1-2-3-4-1$ drawn in Figure 6.2 to obtain

$$
\int_{4}^{1} \overrightarrow{\mathbf{H}}_{R a} \cdot d \overrightarrow{\boldsymbol{\ell}}+\int_{2}^{3} \overrightarrow{\mathbf{H}}_{R a} \cdot d \overrightarrow{\boldsymbol{\ell}}=\int_{\theta^{\prime}=\theta_{R}}^{\theta^{\prime}=\theta} i_{R a} \frac{N_{R}}{2} \sin \left(\theta^{\prime}-\theta_{R}\right) d \theta^{\prime} .
$$

Evaluating gives

$$
\begin{aligned}
\int_{\ell=0}^{\ell=g} H_{R a}\left(i_{R a}, \theta_{R}\right) \hat{\mathbf{r}} \cdot(d \ell \hat{\mathbf{r}})+\int_{\ell=0}^{\ell=g} & H_{R a}\left(i_{R a}, \theta\right) \hat{\mathbf{r}} \cdot(-d \ell \hat{\mathbf{r}}) \\
& =-i_{R a} \frac{N_{R}}{2} \cos \left(\theta-\theta_{R}\right)+i_{R a} \frac{N_{R}}{2}
\end{aligned}
$$

or

$$
H_{R a}\left(i_{R a}, \theta_{R}\right) g-H_{R a}\left(i_{R a}, \theta\right) g=-i_{R a} \frac{N_{R}}{2} \cos \left(\theta-\theta_{R}\right)+i_{R a} \frac{N_{R}}{2} .
$$

It was assumed that $\overrightarrow{\mathbf{H}}_{R a}$ is constant across the air gap. Rearranging gives

$$
\begin{equation*}
H_{R a}\left(i_{R a}, \theta\right)=i_{R a} \frac{N_{R}}{2 g} \cos \left(\theta-\theta_{R}\right)+H_{R a}\left(i_{R a}, \theta_{R}\right)-i_{R a} \frac{N_{R}}{2 g} \tag{6.1}
\end{equation*}
$$

FIGURE 6.2. Use of Ampère's and Gauss's laws to determine $B_{R a}$ in the air gap due to $i_{R a}$. (Rotor phase b is not shown for clarity.)

In this equation, both $H_{R a}\left(i_{R a}, \theta\right), H_{R a}\left(i_{R a}, \theta_{R}\right)$ are unknown. As in the case of the magnetic field produced by the stator currents, conservation of flux $\oint_{S} \overrightarrow{\mathbf{B}} \cdot d \overrightarrow{\mathbf{S}}=0$ is applied to the closed surface 1 which encloses the rotor (see the dashed circle in Figure 6.2 around the rotor iron) to show that $H_{R a}\left(i_{R a}, \theta_{R}\right)=i_{R a}\left(N_{R} / 2 g\right)$. Then,

$$
\begin{align*}
& H_{R a}\left(i_{R a}, \theta\right)=\frac{N_{R}}{2 g} i_{R a} \cos \left(\theta-\theta_{R}\right) \\
& B_{R a}\left(i_{R a}, \theta\right) \tag{6.2}
\end{align*}=\frac{\mu_{0} N_{R}}{2 g} i_{R a} \cos \left(\theta-\theta_{R}\right) . . ~ \$
$$

In applying Ampère's law, it was assumed that $\overrightarrow{\mathbf{B}}_{R a}=\mu_{0} \overrightarrow{\mathbf{H}}_{R a}$ was constant across the air gap in the radial direction, that is, $\overrightarrow{\mathbf{B}}_{R a}$ does not depend on the cylindrical coordinate r. However, as shown in Chapter 4 for the stator magnetic field, in order that $\overrightarrow{\mathbf{B}}_{R a}$ satisfy the conservation of flux for the closed flux surface 2 shown in Figure 6.2 whose sides are $S_{1}, S_{2}, S_{3}, S_{3}, S_{4}, S_{5}$, and S_{6}, equation (6.2) is modified by setting

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{R a}\left(i_{R a}, r, \theta-\theta_{R}\right)=B_{R a}\left(i_{R a}, r, \theta-\theta_{R}\right) \hat{\mathbf{r}} \triangleq \frac{\mu_{0} N_{R}}{2 g} \frac{r_{R}}{r} i_{R a} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} \tag{6.3}
\end{equation*}
$$

where r_{R} is the rotor radius. ${ }^{1}$
Similarly, the magnetic field $\overrightarrow{\mathbf{B}}_{R b}$ established in the air gap by the sinusoidally wound rotor phase b (rotated 90° with respect to rotor phase a) carrying the current $i_{R b}$ is given by

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{R b}\left(i_{R b}, r, \theta-\theta_{R}\right) & =B_{R b}\left(i_{R b}, r, \theta-\theta_{R}\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} N_{R}}{2 g} \frac{r_{R}}{r} i_{R b} \cos \left(\theta-\pi / 2-\theta_{R}\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} N_{R}}{2 g} \frac{r_{R}}{r} i_{R b} \sin \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} \tag{6.4}
\end{align*}
$$

In summary, the magnetic fields due to the stator and rotor currents are

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S}\left(i_{S a}, i_{S b}, r, \theta\right) & =\overrightarrow{\mathbf{B}}_{S a}\left(i_{S a}, r, \theta\right)+\overrightarrow{\mathbf{B}}_{S b}\left(i_{S b}, r, \theta\right) \\
& =\frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{1}{r}\left(i_{S a} \cos (\theta)+i_{S b} \sin (\theta)\right) \hat{\mathbf{r}} \tag{6.5}
\end{align*}
$$

and

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{R}\left(i_{R a}, i_{R b}, r, \theta-\theta_{R}\right) & =\overrightarrow{\mathbf{B}}_{R a}\left(i_{R a}, r, \theta-\theta_{R}\right)+\overrightarrow{\mathbf{B}}_{R b}\left(i_{R b}, r, \theta-\theta_{R}\right) \\
& =\frac{\mu_{0} N_{R} r_{R}}{2 g} \frac{1}{r}\left(i_{R a} \cos \left(\theta-\theta_{R}\right)+i_{R b} \sin \left(\theta-\theta_{R}\right)\right) \hat{\mathbf{r}} \tag{6.6}
\end{align*}
$$

respectively.

6.2 Leakage

Consider Figure 6.3 , which shows a single-phase distributed winding on the rotor. It has been assumed up to now that the magnetic field produced by the rotor current is radially directed in the air gap so that only the surfaces S_{1} and S_{2} in Figure 6.3 have nonzero flux. With this assumption and along with the (outward) surface element vectors to the closed surface of Figure 6.3 given by

$$
d \overrightarrow{\mathbf{S}}=\left\{\begin{aligned}
-r_{R} d \theta d z \hat{\mathbf{r}} & \text { on } S_{1} \\
r_{S} d \theta d z \hat{\mathbf{r}} & \text { on } S_{2} \\
d r d z \hat{\boldsymbol{\theta}} & \text { on } S_{3} \\
r d \theta d r \hat{\mathbf{z}} & \text { on } S_{4} \\
-d r d z \hat{\boldsymbol{\theta}} & \text { on } S_{5} \\
-r d \theta d r \hat{\mathbf{z}} & \text { on } S_{6},
\end{aligned}\right.
$$

[^47]it was shown that conservation of flux $\oint_{S} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}=0$ required a $1 / r$ dependence by the magnetic field in the air gap (see Chapter 4). That is, up to now, it has been assumed that $\overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}} \equiv 0$ on the surfaces S_{3}, S_{4}, S_{5}, and S_{6} so that the radial magnetic field $\overrightarrow{\mathbf{B}}_{R}$ must decrease as $1 / r$ going from S_{1} to S_{2} in order to satisfy conservation of flux. However, in a real machine, the slots have finite dimensions, the air gap is of finite size and there are end effects at either end of the rotor. As a consequence, the magnetic field does have components in the azimuthal $\hat{\boldsymbol{\theta}}$ direction and axial $\hat{\mathbf{z}}$ direction in addition to the radial direction $\hat{\mathbf{r}}$ so that the surfaces S_{3}, S_{4}, S_{5}, and S_{6} also have nonzero flux.

FIGURE 6.3. Closed flux surface to illustrate flux leakage. With the assumption of no leakage, only the surfaces S_{1}, S_{2} have nonzero flux. With leakage, all six surfaces have nonzero flux through them.

To see how this affects the radial magnetic field, Figure 6.4 shows an enlargement of the cross section of Figure 6.3 from the point of view of the observer in Figure 6.3 looking into the page. In Figure 6.4, the lines of the magnetic field $\overrightarrow{\mathbf{B}}_{R}$ produced by the rotor currents are shown. At the slot openings, there is no iron so that in this vicinity the magnetic field tends to circle around the rotor winding rather than go across the air gap. Even away from the slots, the magnetic field spreads out from the radial direction due to the finite length of the air gap and the finite (axial) length of the machine. What this all means is that the average radial $\overrightarrow{\mathbf{B}}_{R}$ field on the surface S_{2} actually decreases a little more than $1 / r$. This now considered in more detail.

FIGURE 6.4. Cross-sectional view of the flux surface in Figure 6.3. The rotor magnetic field $\overrightarrow{\mathbf{B}}_{R}$ is perpendicular at the surface of the rotor and then spreads out in both the azimuthal and axial directions so the flux it produces at the inside surface of the stator is less that at the surface of the rotor.

To simplify the discussion, it is now assumed that there is no spreading in axial (z) direction so that $\int_{S_{4}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}=\int_{S_{6}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}=0$. Using an outward normal, $\oint \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}=0$ is computed on the closed surface shown in Figures 6.3 and 6.4 to obtain

$$
\oint \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}=\int_{S_{1}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{2}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{3}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{5}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}=0
$$

Rearranging, this becomes

$$
\int_{S_{1}} \overrightarrow{\mathbf{B}}_{R} \cdot(-d \overrightarrow{\mathbf{S}})=\int_{S_{2}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{3}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{5}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}
$$

or

$$
\begin{align*}
\int_{S_{1}} B_{R}\left(r_{R}, \theta, t\right) \hat{\mathbf{r}} \cdot\left(r_{R} d \theta d z \hat{\mathbf{r}}\right) & =\int_{S_{2}} B_{R}\left(r_{S}, \theta, t\right) \hat{\mathbf{r}} \cdot\left(r_{S} d \theta d z \hat{\mathbf{r}}\right) \\
& +\int_{S_{3}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}+\int_{S_{5}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}} \tag{6.7}
\end{align*}
$$

The surface S_{1} is just at the surface of the rotor and the surface element vector $-d \overrightarrow{\mathbf{S}}=r_{R} d \theta d z \hat{\mathbf{r}}$ points in the positive radial direction on the surface S_{1}. If there was no spreading, then $\int_{S_{1}} B_{R}\left(r_{R}, \theta, t\right) \hat{\mathbf{r}} \cdot\left(r_{R} d \theta d z \hat{\mathbf{r}}\right)=$ $\int_{S_{2}} B_{R}\left(r_{S}, \theta, t\right) \hat{\mathbf{r}} \cdot\left(r_{S} d \theta d z \hat{\mathbf{r}}\right)$; that is, if both surfaces use the normal $\hat{\mathbf{r}}$, then the flux through S_{1} equals the flux through S_{2}. However, the magnetic field does spread out in azimuthal direction and the fluxes through the surfaces S_{2}, S_{3}, and S_{5} are then all positive. In this case, the radial $\overrightarrow{\mathbf{B}}_{R}$ field on the surface S_{2} must be less on average than it was when it was assumed-there was no flux through the surfaces S_{3} and S_{5}. This is simply because the flux $\int_{S_{1}} B_{R}\left(r_{R}, \theta, t\right) \hat{\mathbf{r}} \cdot\left(r_{R} d \theta d z \hat{\mathbf{r}}\right)$ on the left-hand side of (6.7) stays the same
whether or not there is spreading ${ }^{2}$ and is always equal to the sum of the fluxes on the right-hand side of (6.7).

To model this effect, a parameter κ, with $0<\kappa<1$, is introduced so that on the stator side of the air gap, the rotor magnetic field is given by

$$
\left.\overrightarrow{\mathbf{B}}_{R}\left(i_{R a}, i_{R b}, r, \theta-\theta_{R}\right)\right|_{r=r_{s}}=\kappa \frac{\mu_{0} N_{R}}{2 g} \frac{r_{R}}{r_{S}}\left(i_{R a} \cos \left(\theta-\theta_{R}\right)+i_{R b} \sin \left(\theta-\theta_{R}\right)\right) \hat{\mathbf{r}} .
$$

That is, the rotor radial $\overrightarrow{\mathbf{B}}_{R}$ field decreases to $\kappa r_{R} / r_{S}$ (rather than just r_{R} / r_{S}) in going from the surface of the rotor to the inside surface of the stator. The parameter κ is referred to as a global coupling factor [1].

Similarly, on the rotor side of the air gap, the stator magnetic field is given by

$$
\left.\overrightarrow{\mathbf{B}}_{S}\left(i_{S a}, i_{S b}, r, \theta\right)\right|_{r=r_{R}}=\kappa \frac{\mu_{0} N_{S}}{2 g} \frac{r_{R}}{r_{R}}\left(i_{S a} \cos (\theta)+i_{S b} \sin (\theta)\right) \hat{\mathbf{r}}
$$

so that the radial dependence of the stator $\overrightarrow{\mathbf{B}}_{S}$ field increases from r_{R} / r_{S} to only $\kappa r_{R} / r_{R}$ (rather than $r_{R} / r_{R}=1$) in going from the inside surface of the stator to the surface of the rotor. The above example is not the only source of leakage, ${ }^{3}$ but all such effects can be modeled for the purposes here by a single parameter κ.

In summary, the coupling factor κ is included in the expression for $\overrightarrow{\mathbf{B}}_{R}$ on the stator side of the air gap to account for $\overrightarrow{\mathbf{B}}_{R}$ decreasing at a rate slightly less than $1 / r$ (due to leakage) going across the air gap to the stator side. Similarly, κ is included in the expression for $\overrightarrow{\mathbf{B}}_{S}$ on the rotor side of the air gap to account for leakage effect going across the air gap.

It may seem rather inconsistent with the development of the mathematical model of the machine to now add in this leakage effect. That is, up to this point, ideal magnetic materials have been assumed, the air gap length has been assumed to be small, and the cross sections of the windings/slots have been assumed to be negligible. However, it will be seen shortly that this leakage factor will be essential to obtain a realistic model.

[^48]
6.3 Flux Linkages in AC Machines

Expressions for the flux linkages in both the rotor and stator windings are now computed.

6.3.1 Flux Linkages in the Stator Phases

The computation of the total flux linkage in the sinusoidally wound stator phase a is now considered. The flux in stator phase a is due to the magnetic fields produced by both the stator currents $i_{S a}$ and $i_{S b}$, and the rotor currents $i_{R a}$ and $i_{R b}$. That is,

$$
\lambda_{S a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) \triangleq \int_{\begin{array}{c}
\text { All loops of } \\
\text { stator phase } a
\end{array}}\left(\overrightarrow{\mathbf{B}}_{S}+\overrightarrow{\mathbf{B}}_{R}\right) \cdot d \overrightarrow{\mathbf{S}} .
$$

This computation is carried out in two parts by separately considering the flux linkage due to the stator currents and then the flux linkage due to the rotor currents. That is,

$$
\lambda_{S a}\left(0,0, i_{S a}, i_{S b}, \theta_{R}\right) \triangleq \int_{\substack{\text { All loops of } \\ \text { stator phase } a}} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}}
$$

and

$$
\lambda_{S a}\left(i_{R a}, i_{R b}, 0,0, \theta_{R}\right) \triangleq \int_{\substack{\text { All loops of } \\ \text { stator phase } a}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}
$$

so that

$$
\lambda_{S a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right)=\lambda_{S a}\left(0,0, i_{S a}, i_{S b}, \theta_{R}\right)+\lambda_{S a}\left(i_{R a}, i_{R b}, 0,0, \theta_{R}\right) .
$$

Stator Flux Linkage Produced by the Stator Currents

Consider a single turn (loop) of stator phase a at the angular position θ with $0 \leq \theta \leq \pi$, that is, one side of the loop is at θ and the other side is at $\theta-\pi$. Choose the flux surface S for this single turn to lie just inside the air gap next to the stator surface as shown in Figure 6.5.

FIGURE 6.5. Surface to compute the flux in a single turn of stator phase a produced by $\overrightarrow{\mathbf{B}}_{S}$.

To compute the flux through the surface, the surface element vector $d \overrightarrow{\mathbf{S}}=r_{S} d \theta^{\prime} d z \hat{\mathbf{r}}$ is chosen. The flux $\phi_{S a}\left(i_{S a}, i_{S b}, \theta\right)$ in each turn of stator phase a at the angular position θ of the stator is then given by

$$
\begin{align*}
& \phi_{S a}\left(i_{S a}, i_{S b}, \theta\right) \\
& \quad \triangleq \int_{\theta^{\prime}=\theta-\pi}^{\theta^{\prime}=\theta} \int_{z=0}^{z=\ell_{1}} \frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{1}{r_{S}}\left(i_{S a} \cos \left(\theta^{\prime}\right)+i_{S b} \sin \left(\theta^{\prime}\right)\right) \hat{\mathbf{r}} \cdot\left(r_{S} d \theta^{\prime} d z \hat{\mathbf{r}}\right) \\
& \quad=\frac{\mu_{0} r_{R} \ell_{1} N_{S}}{2 g} \int_{\theta^{\prime}=\theta-\pi}^{\theta^{\prime}=\theta}\left(i_{S a} \cos \left(\theta^{\prime}\right)+i_{S b} \sin \left(\theta^{\prime}\right)\right) d \theta^{\prime} \\
& \quad=\left.\frac{\mu_{0} r_{R} \ell_{1} N_{S}}{2 g}\left(i_{S a} \sin \left(\theta^{\prime}\right)-i_{S b} \cos \left(\theta^{\prime}\right)\right)\right|_{\theta^{\prime}=\theta-\pi} ^{\theta^{\prime}=\theta} \\
& \quad=\frac{\mu_{0} r r_{R} \ell_{1} N_{S}}{2 g}\left(i_{S a}(\sin (\theta)-\sin (\theta-\pi))-i_{S b}(\cos (\theta)-\cos (\theta-\pi))\right) \\
& \quad=\frac{\mu_{0} r_{R} \ell_{1} N_{S}}{g}\left(i_{S a} \sin (\theta)-i_{S b} \cos (\theta)\right) . \tag{6.8}
\end{align*}
$$

Remark Note that by taking the flux surface normal to be $d \overrightarrow{\mathbf{S}}=r_{S} d \theta^{\prime} d z \hat{\mathbf{r}}$, the positive direction of travel around the turns of stator phase a at the angular position θ is out of the page on side a and into the page on side a^{\prime}; that is, it is the same direction as positive current flow in stator phase a. If $-d \phi_{S a} / d t>0$, then this emf will push current in the same direction
as that chosen for the direction of positive current.
Between the angular positions θ and $\theta+d \theta$ of stator phase a there are $\left(N_{S} / 2\right) \sin (\theta) d \theta$ turns each having the flux (6.8) in them. The flux linkage in the turns of phase a between θ and $\theta+d \theta$ is then

$$
\begin{align*}
d \lambda_{S a} & \triangleq \phi_{S a}\left(i_{S a}, i_{S b}, \theta\right)\left(N_{S} / 2\right) \sin (\theta) d \theta \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S}}{g}\left(i_{S a} \sin (\theta)-i_{S b} \cos (\theta)\right) \frac{N_{S}}{2} \sin (\theta) d \theta \tag{6.9}
\end{align*}
$$

To obtain the flux linkage in all the turns of stator phase a, simply integrate (6.9) as θ varies from 0 to π, that is,

$$
\begin{align*}
& \lambda_{S a}\left(0,0, i_{S a}, i_{S b}, \theta_{R}\right)=\int_{\begin{array}{c}
\text { All loops of } \\
\text { stator phase } a
\end{array}} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}} \\
& =\int_{\theta=0}^{\theta=\pi} \frac{\mu_{0} r_{R} \ell_{1} N_{S}}{g}\left(i_{S a} \sin (\theta)-i_{S b} \cos (\theta)\right) \frac{N_{S}}{2} \sin (\theta) d \theta \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S}^{2}}{2 g} \int_{\theta=0}^{\theta=\pi}\left(i_{S a} \sin ^{2}(\theta)-i_{S b} \cos (\theta) \sin (\theta)\right) d \theta \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S}^{2}}{2 g} i_{S a} \frac{\pi}{2} \\
& =L_{S} i_{S a} \tag{6.10}
\end{align*}
$$

where

$$
L_{S} \triangleq \frac{\mu_{0} r_{R} \ell_{1} \pi N_{S}^{2}}{4 g}=\frac{\mu_{0} \ell_{1} \ell_{2} \pi}{8 g} N_{S}^{2} .
$$

Note that for this two-phase machine, the magnetic field produced by the current $i_{S b}$ in phase b does not produce any net flux linkage in phase a. Similarly,

$$
\begin{align*}
\lambda_{S b}\left(0,0, i_{S a}, i_{S b}, \theta_{R}\right) & =\int_{\begin{array}{c}
\text { All lopss of } \\
\text { stator phase } b
\end{array}} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}} \\
& =\frac{\mu_{0} r_{R} \ell_{1} \pi N_{S}^{2}}{4 g} i_{S b} \\
& =L_{S} i_{S b} . \tag{6.11}
\end{align*}
$$

Stator Flux Linkage Produced by the Rotor Currents

The flux linkage in stator phase a due to magnetic field produced by the rotor currents is now computed from

$$
\lambda_{S a}\left(i_{R a}, i_{R b}^{\prime}, 0,0, \theta_{R}\right) \triangleq \int_{\substack{\text { All loops of } \\ \text { stator phase } a}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}
$$

The flux surface of Figure 6.5 is also used for this computation. With $d \overrightarrow{\mathbf{S}}=r_{S} d \theta^{\prime} d z \hat{\mathbf{r}}$ as the surface element vector, the flux $\phi_{S a}\left(i_{R a}, i_{R b}, \theta-\theta_{R}\right)$ in each turn of stator phase a at the angular position θ of the stator due to the magnetic field $\overrightarrow{\mathbf{B}}_{R}$ is

$$
\begin{align*}
& \phi_{S a}\left(i_{R a}, i_{R b}, \theta-\theta_{R}\right) \triangleq \int_{\theta^{\prime}=\theta-\pi}^{\theta^{\prime}=\theta} \int_{z=0}^{z=\ell_{1}} \kappa \frac{\mu_{0} N_{R} r_{R}}{2 g} \frac{1}{r_{S}}\left(i_{R a} \cos \left(\theta^{\prime}-\theta_{R}\right)\right. \\
&\left.\quad+i_{R b} \sin \left(\theta^{\prime}-\theta_{R}\right) \hat{\mathbf{r}} \cdot\left(r_{S} d \theta^{\prime} d z \hat{\mathbf{r}}\right)\right) \\
&=\kappa \frac{\mu_{0} r_{R} \ell_{1} N_{R}}{2 g} \int_{\theta^{\prime}=\theta-\pi}^{\theta^{\prime}=\theta}\left(i_{R a} \cos \left(\theta^{\prime}-\theta_{R}\right)+i_{R b} \sin \left(\theta^{\prime}-\theta_{R}\right)\right) d \theta^{\prime} \\
&=\kappa \frac{\mu_{0} r_{R} \ell_{1} N_{R}}{g}\left(i_{R a} \sin \left(\theta-\theta_{R}\right)-i_{R b} \cos \left(\theta-\theta_{R}\right)\right) . \tag{6.12}
\end{align*}
$$

Note that the factor κ has been included as the rotor's magnetic field is being evaluated on the stator side of the air gap. Between the angular positions θ and $\theta+d \theta$, there are $\left(N_{S} / 2\right) \sin (\theta) d \theta$ turns, each having the flux (6.12) in them due to $\overrightarrow{\mathbf{B}}_{R}$. The flux linkage $d \lambda_{S a}$ in the turns of stator phase a between θ and $\theta+d \theta$ produced by the rotor's magnetic field is then

$$
\begin{align*}
d \lambda_{S a} & =\phi_{S a}\left(i_{R a}, i_{R b}, \theta-\theta_{R}\right) \frac{N_{S}}{2} \sin (\theta) d \theta \\
& =\kappa \frac{\mu_{0} r_{R} \ell_{1} N_{R} N_{S}}{2 g}\left(i_{R a} \sin \left(\theta-\theta_{R}\right)-i_{R b} \cos \left(\theta-\theta_{R}\right)\right) \sin (\theta) d \theta \tag{6.13}
\end{align*}
$$

To obtain the total flux linkage due to the rotor's magnetic field in all the
turns of stator phase a, integrate (6.13) as θ varies from 0 to π to obtain

$$
\begin{align*}
& \lambda_{S a}\left(i_{R a}, i_{R b}, 0,0, \theta_{R}\right)=\int_{\begin{array}{c}
\text { All loops of } \\
\text { stator phase } a
\end{array}} \overrightarrow{\mathbf{B}}_{R} \cdot d \mathbf{\mathbf { S }} \\
& =\int_{\theta=0}^{\theta=\pi} \kappa \frac{\mu_{0} r_{R} \ell_{1} N_{S} N_{R}}{2 g}\left(i_{R a} \sin \left(\theta-\theta_{R}\right)-i_{R b} \cos \left(\theta-\theta_{R}\right)\right) \sin (\theta) d \theta \\
& =\kappa \frac{\mu_{0} r_{R} \ell_{1} N_{S} N_{R}}{2 g}\left(i_{R a} \int_{\theta=0}^{\theta=\pi}\left(\sin (\theta) \cos \left(\theta_{R}\right)-\cos (\theta) \sin \left(\theta_{R}\right)\right) \sin (\theta) d \theta\right. \\
& \left.-i_{R b} \int_{\theta=0}^{\theta=\pi}\left(\cos (\theta) \cos \left(\theta_{R}\right)+\sin (\theta) \sin \left(\theta_{R}\right)\right) \sin (\theta) d \theta\right) \\
& = \\
& \left.=\frac{\mu_{0} r_{R} \ell_{1} N_{S} N_{R}}{2 g} \int_{\theta=0}^{\theta=\pi}\left(i_{R a} \sin ^{2}(\theta) \cos \left(\theta_{R}\right)-i_{R b} \sin ^{2}(\theta) \sin \theta_{R}\right)\right) d \theta \tag{6.14}\\
& =M\left(i_{R a} \cos \left(\theta_{R}\right)-i_{R b} \sin \left(\theta_{R}\right)\right)
\end{align*}
$$

where

$$
M \triangleq \kappa \frac{\mu_{0} \pi r_{R} \ell_{1} N_{S} N_{R}}{4 g}=\kappa \frac{\mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{R}}{8 g} .
$$

Similarly,

$$
\begin{align*}
\lambda_{S b}\left(i_{R a}, i_{R b}, 0,0, \theta_{R}\right) & =\int_{\begin{array}{c}
\text { All loops of } \\
\text { stator phase } b
\end{array}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}} \\
& =M\left(i_{R a} \sin \left(\theta_{R}\right)+i_{R b} \cos \left(\theta_{R}\right)\right) . \tag{6.15}
\end{align*}
$$

Total Flux Linkage in the Stator Phases

Combining (6.10), (6.11), (6.14), and (6.15), the total flux linkage in each of the stator phases is then

$$
\begin{align*}
\lambda_{S a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) & =\int_{\begin{array}{c}
\text { Ail loops of } \\
\text { stator phase } a
\end{array}}\left(\overrightarrow{\mathbf{B}}_{S}+\overrightarrow{\mathbf{B}}_{R}\right) \cdot d \overrightarrow{\mathbf{S}} \\
& =L_{S} i_{S a}+M\left(i_{R a} \cos \left(\theta_{R}\right)-i_{R b} \sin \left(\theta_{R}\right)\right) \\
\lambda_{S b}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) & =\int_{\substack{\text { All loops of } \\
\text { stator phase } b}}\left(\overrightarrow{\mathbf{B}}_{S}+\overrightarrow{\mathbf{B}}_{R}\right) \cdot d \overrightarrow{\mathbf{S}} \tag{6.16}\\
& =L_{S} i_{S b}+M\left(i_{R a} \sin \left(\theta_{R}\right)+i_{R b} \cos \left(\theta_{R}\right)\right) .
\end{align*}
$$

6.3.2 Flux Linkages in the Rotor Phases

The flux linkages in the two sinusoidally wound phases of the rotor are computed according to

$$
\begin{aligned}
\lambda_{R a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) & \triangleq \int_{\substack{\text { All loops of } \\
\text { rotor phase } a}}\left(\overrightarrow{\mathbf{B}}_{S}+\overrightarrow{\mathbf{B}}_{R}\right) \cdot d \overrightarrow{\mathbf{S}} \\
\lambda_{R b}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) & \triangleq \int_{\substack{\text { All loops of } \\
\text { rotor phase } b}}\left(\overrightarrow{\mathbf{B}}_{S}+\overrightarrow{\mathbf{B}}_{R}\right) \cdot d \overrightarrow{\mathbf{S}} .
\end{aligned}
$$

Starting with rotor phase a and, as in the case of the stator flux linkages, this computation is done in two parts as

$$
\lambda_{R a}\left(0,0, i_{S a}, i_{S b}, \theta_{R}\right) \triangleq \int_{\substack{\text { All loops of } \\ \text { rotor phase } a}} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}}
$$

and

$$
\lambda_{R a}\left(i_{R a}, i_{R b}, 0,0, \theta_{R}\right) \triangleq \int_{\substack{\text { All loops of } \\ \text { rotor phase } a}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}} .
$$

The total flux linkage is then
$\lambda_{R a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right)=\lambda_{R a}\left(0,0, i_{S a}, i_{S b}, \theta_{R}\right)+\lambda_{R a}\left(i_{R a}, i_{R b}, 0,0, \theta_{R}\right)$.

Rotor Flux Linkage Produced by the Stator Currents

The flux in the rotor phase due to the magnetic field established by the stator currents is given by

$$
\lambda_{R a}\left(0,0, i_{S a}, i_{S b}, \theta_{R}\right) \triangleq \int_{\substack{\text { All loops of } \\ \text { rotor phase } a}} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}} .
$$

To do this computation, consider a single turn (loop) of the rotor phase at the angular position θ with $0 \leq \theta-\theta_{R} \leq \pi$ so that one side of the rotor loop is at θ and the other side is at $\theta-\pi$. The flux surface S is chosen to lie just inside the air gap as shown in Figure 6.6.

FIGURE 6.6. Surface to compute the flux in a single turn of rotor phase a produced by $\overrightarrow{\mathbf{B}}_{S}$.

On the flux surface, the surface element vector is chosen as $d \overrightarrow{\mathbf{S}}=r_{R} d \theta^{\prime} d z \hat{\mathbf{r}}$. The flux $\phi_{R a}\left(i_{S a}, i_{S b}, \theta\right)$ in each turn of rotor phase a at the angular position θ of the rotor is given by

$$
\begin{align*}
& \phi_{R a}\left(i_{S a}, i_{S b}, \theta\right) \\
& \quad=\int_{\theta^{\prime}=\theta-\pi}^{\theta^{\prime}=\theta} \int_{z=0}^{z=\ell_{1}} \kappa \frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{1}{r_{R}}\left(i_{S a} \cos \left(\theta^{\prime}\right)+i_{S b} \sin \left(\theta^{\prime}\right)\right) \hat{\mathbf{r}} \cdot\left(r_{R} d \theta^{\prime} d z \hat{\mathbf{r}}\right) \\
& =\kappa \frac{\mu_{0} r_{R} \ell_{1} N_{S}}{2 g} \int_{\theta^{\prime}=\theta-\pi}^{\theta^{\prime}=\theta}\left(i_{S a} \cos \left(\theta^{\prime}\right)+i_{S b} \sin \left(\theta^{\prime}\right)\right) d \theta^{\prime} \\
& =\left.\kappa \frac{\mu_{0} r_{R} \ell_{1} N_{S}}{2 g}\left(i_{S a} \sin \left(\theta^{\prime}\right)-i_{S b} \cos \left(\theta^{\prime}\right)\right)\right|_{\theta^{\prime}=\theta-\pi} ^{\theta^{\prime}=\theta} \\
& \quad=\kappa \frac{\mu_{0} r_{R} \ell_{1} N_{S}}{2 g}\left(i_{S a}(\sin (\theta)-\sin (\theta-\pi))-i_{S b}(\cos (\theta)-\cos (\theta-\pi))\right. \\
& \quad=\kappa \frac{\mu_{0} r_{R} \ell_{1} N_{S}}{g}\left(i_{S a} \sin (\theta)-i_{S b} \cos (\theta)\right) \tag{6.17}
\end{align*}
$$

Remarks Note that the factor κ has been included as the rotor's magnetic field is being evaluated on the stator side of the air gap. Also, note that by taking the flux surface normal to be $d \overrightarrow{\mathbf{S}}=r_{R} d \theta^{\prime} d z \hat{\mathbf{r}}$, the positive direction of travel around the turns of rotor phase a at the angular position θ is out of the page on side a and into the page on side a^{\prime}; that is, it coincides with the direction chosen for positive current flow in rotor phase a.

Between the angular positions θ and $\theta+d \theta$, there are $\left(N_{R} / 2\right) \sin \left(\theta-\theta_{R}\right) d \theta$ turns each having the flux (6.17) in them. The flux linkage $d \lambda_{R a}$ in the turns of phase a between θ and $\theta+d \theta$ produced by the stator's magnetic field is then

$$
\begin{align*}
d \lambda_{R a} & \triangleq \phi_{R a}\left(i_{S a}, i_{S b}, \theta\right) \frac{N_{R}}{2} \sin \left(\theta-\theta_{R}\right) d \theta \\
& =\kappa \frac{\mu_{0} r_{R} \ell_{1} N_{S} N_{R}}{2 g}\left(i_{S a} \sin (\theta)-i_{S b} \cos (\theta)\right) \sin \left(\theta-\theta_{R}\right) d \theta \tag{6.18}
\end{align*}
$$

To obtain the flux linkage in all the turns of rotor phase $a,(6.18)$ is integrated between $\theta=\theta_{R}$ and $\theta=\theta_{R}+\pi$, that is,

$$
\begin{align*}
& \lambda_{R a}\left(0,0, i_{S a}, i_{S b}, \theta_{R}\right)=\int_{\substack{\text { All loops of } \\
\text { rotor phase } a}} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}} \\
&= \int_{\theta=\theta_{R}}^{\theta=\theta_{R}+\pi} \kappa \frac{\mu_{0} r_{R} \ell_{1} N_{S} N_{R}}{2 g}\left(i_{S a} \sin (\theta)-i_{S b} \cos (\theta)\right) \sin \left(\theta-\theta_{R}\right) d \theta \\
&= \kappa \frac{\mu_{0} r_{R} \ell_{1} N_{S} N_{R}}{2 g} \int_{\theta=\theta_{R}}^{\theta=\theta_{R}+\pi}\left(i_{S a} \sin \left(\theta-\theta_{R}+\theta_{R}\right) \sin \left(\theta-\theta_{R}\right)\right. \\
&\left.\quad-i_{S b} \cos \left(\theta-\theta_{R}+\theta_{R}\right) \sin \left(\theta-\theta_{R}\right)\right) d \theta \\
&= \kappa \frac{\mu_{0} r_{R} \ell_{1} N_{S} N_{R}}{2 g} \\
& \quad \times \int_{\theta=\theta_{R}}^{\theta=\theta_{R}+\pi}\left(i_{S a} \sin ^{2}\left(\theta-\theta_{R}\right) \cos \left(\theta_{R}\right)+i_{S a} \cos \left(\theta-\theta_{R}\right) \sin \left(\theta_{R}\right) \sin \left(\theta-\theta_{R}\right)\right. \\
&\left.-i_{S b} \cos \left(\theta-\theta_{R}\right) \cos \left(\theta_{R}\right) \sin \left(\theta-\theta_{R}\right)+i_{S b} \sin ^{2}\left(\theta-\theta_{R}\right) \sin \left(\theta_{R}\right)\right) d \theta \\
&= \kappa \frac{\mu_{0} r_{R} \ell_{1} N_{S} N_{R}}{2 g}\left(i_{S a} \frac{\pi}{2} \cos \left(\theta_{R}\right)+\frac{\pi}{2} i_{S b} \sin \left(\theta_{R}\right)\right) \\
&= M\left(i_{S a} \cos \left(\theta_{R}\right)+i_{S b} \sin \left(\theta_{R}\right)\right) \tag{6.19}
\end{align*}
$$

where, as before,

$$
M \triangleq \kappa \frac{\mu_{0} \pi r_{R} \ell_{1} N_{S} N_{R}}{4 g}=\kappa \frac{\mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{R}}{8 g} .
$$

Similarly,

$$
\begin{align*}
\lambda_{R b}\left(0,0, i_{S a}, i_{S b}, \theta_{R}\right) & \triangleq \int_{\substack{\text { All loops of } \\
\text { rotor phase } b}} \overrightarrow{\mathbf{B}}_{S} \cdot d \overrightarrow{\mathbf{S}} \\
& =M\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right) \tag{6.20}
\end{align*}
$$

Rotor Flux Linkage Produced by the Rotor Currents

The flux linkage in the rotor phases due to the magnetic field produced by the rotor currents is now computed. Consider a single turn (loop) of rotor phase a at the angular position θ with $0 \leq \theta-\theta_{R} \leq \pi$ and the same flux surface drawn in Figure 6.6.

To compute flux through the surface, $d \overrightarrow{\mathbf{S}}=r_{R} d \theta^{\prime} d z \hat{\mathbf{r}}$ is chosen as the surface element vector. The flux $\phi_{R a}\left(i_{R a}, i_{R b}, \theta-\theta_{R}\right)$ in each turn of rotor phase a at the angular position θ of the rotor is given by

$$
\begin{align*}
\phi_{R a} & \left(i_{R a}, i_{R b}, \theta-\theta_{R}\right) \\
\triangleq & \int_{\theta^{\prime}=\theta-\pi}^{\theta^{\prime}=\theta} \int_{z=0}^{z=\ell_{1}} \frac{\mu_{0} r_{R} N_{R}}{2 g} \frac{1}{r_{R}}\left(i_{R a} \cos \left(\theta^{\prime}-\theta_{R}\right)+i_{R b} \sin \left(\theta^{\prime}-\theta_{R}\right)\right) \hat{\mathbf{r}} \\
& \cdot\left(r_{R} d \theta^{\prime} d z \hat{\mathbf{r}}\right) \\
= & \frac{\mu_{0} r_{R} \ell_{1} N_{R}}{2 g} \int_{\theta^{\prime}=\theta-\pi}^{\theta^{\prime}=\theta}\left(i_{R a} \cos \left(\theta^{\prime}-\theta_{R}\right)+i_{R b} \sin \left(\theta^{\prime}-\theta_{R}\right)\right) d \theta^{\prime} \\
= & \frac{\mu_{0} r_{R} \ell_{1} N_{R}}{2 g}\left(i_{R a} \sin \left(\theta^{\prime}-\theta_{R}\right)-\left.i_{R b} \cos \left(\theta^{\prime}-\theta_{R}\right)\right|_{\theta^{\prime}=\theta-\pi} ^{\theta^{\prime}=\theta}\right. \\
= & \frac{\mu_{0} r_{R} \ell_{1} N_{R}}{2 g}\left(i_{R a}\left(\sin \left(\theta-\theta_{R}\right)-\sin \left(\theta-\theta_{R}-\pi\right)\right)\right. \\
& -i_{R b}\left(\cos \left(\theta-\theta_{R}\right)-\cos \left(\theta-\theta_{R}-\pi\right)\right) \\
= & \frac{\mu_{0} r_{R} \ell_{1} N_{R}}{g}\left(i_{R a} \sin \left(\theta-\theta_{R}\right)-i_{R b} \cos \left(\theta-\theta_{R}\right)\right) . \tag{6.21}
\end{align*}
$$

Remark Again, by taking the flux surface normal to be $d \overrightarrow{\mathbf{S}}=r_{R} d \theta^{\prime} d z \hat{\mathbf{r}}$, the positive direction of travel around the turns of rotor phase a at the angular position θ is out of the page on side a of the rotor phase and into the page on side a^{\prime} of the rotor phase coinciding with the direction chosen for positive current flow in rotor phase a.

Between the angular positions θ and $\theta+d \theta$, there are $\left(N_{R} / 2\right) \sin \left(\theta-\theta_{R}\right) d \theta$ turns, each having the flux (6.21) in them. The flux linkage in the turns of phase a between θ and $\theta+d \theta$ is then

$$
\begin{align*}
d \lambda_{R a} & \triangleq \phi_{R a}\left(i_{R a}, i_{R b}, \theta-\theta_{R}\right) \frac{N_{R}}{2} \sin \left(\theta-\theta_{R}\right) d \theta \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{R}^{2}}{2 g}\left(i_{R a} \sin \left(\theta-\theta_{R}\right)-i_{R b} \cos \left(\theta-\theta_{R}\right)\right) \sin \left(\theta-\theta_{R}\right) d \theta \tag{6.22}
\end{align*}
$$

To obtain the flux linkage in all the turns of stator phase $a,(6.22)$ is inte-
grated from $\theta=\theta_{R}$ to $\theta=\theta_{R}+\pi$, that is,

$$
\begin{align*}
& \lambda_{R a}\left(i_{R a}, i_{R b}, 0,0, \theta_{R}\right)=\int_{\begin{array}{c}
\text { All loops of } \\
\text { rotor phase } a
\end{array}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}} \\
& =\int_{\theta=\theta_{R}}^{\theta=\theta_{R}+\pi} \frac{\mu_{0} r_{R} \ell_{1} N_{R}^{2}}{2 g}\left(i_{R a} \sin \left(\theta-\theta_{R}\right)-i_{R b} \cos \left(\theta-\theta_{R}\right)\right) \sin \left(\theta-\theta_{R}\right) d \theta \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{R}^{2}}{2 g} \int_{\theta=\theta_{R}}^{\theta=\theta_{R}+\pi}\left(i_{R a} \sin ^{2}\left(\theta-\theta_{R}\right)-i_{R b} \cos \left(\theta-\theta_{R}\right) \sin \left(\theta-\theta_{R}\right)\right) d \theta \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{R}^{2}}{2 g} i_{R a} \frac{\pi}{2} \\
& =L_{R} i_{R a} \tag{6.23}
\end{align*}
$$

where

$$
L_{R} \triangleq \frac{\mu_{0} r_{R} \ell_{1} \pi N_{R}^{2}}{4 g}=\frac{\mu_{0} \ell_{1} \ell_{2} \pi}{8 g} N_{R}^{2}
$$

Note that for this particular two-phase system, the magnetic field produced by the current $i_{R b}$ in rotor phase b does not produce any net flux linkage in rotor phase a. Similarly,

$$
\begin{equation*}
\lambda_{R b}\left(i_{R a}, i_{R b}, 0,0, \theta_{R}\right)=\int_{\substack{\text { All loops of } \\ \text { rotor phase } b}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}=L_{R} i_{R b} \tag{6.24}
\end{equation*}
$$

Total Flux Linkage in the Rotor Phases

Combining the expressions (6.19), (6.20), (6.23), and (6.24), the total flux in the sinusoidally wound rotor phases due to both the stator and rotor magnetic fields is then

$$
\begin{align*}
\lambda_{R a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) & =\int_{\substack{\text { All loops of } \\
\text { rotor phase } a}}\left(\overrightarrow{\mathbf{B}}_{S}+\overrightarrow{\mathbf{B}}_{R}\right) \cdot d \overrightarrow{\mathbf{S}} \\
& =L_{R} i_{R a}+M\left(i_{S a} \cos \left(\theta_{R}\right)+i_{S b} \sin \left(\theta_{R}\right)\right) \tag{6.25}\\
\lambda_{R b}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) & =\int_{\substack{\text { All loops of } \\
\text { rotor phase } b}}\left(\overrightarrow{\mathbf{B}}_{S}+\overrightarrow{\mathbf{B}}_{R}\right) \cdot d \overrightarrow{\mathbf{S}} \\
& =L_{R} i_{R b}+M\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right) .
\end{align*}
$$

6.4 Torque Production in AC Machines

The stator currents establish a radial magnetic field in the air gap. The torque produced by this magnetic field on the currents in the sinusoidally wound rotor phases is now computed. In order to carry out this computation, a more convenient way of representing the stator and rotor magnetic fields is now used following Refs. [1] and [2].

FIGURE 6.7. Computation of the torque on the current $i_{R a}$ in rotor phase a produced by $\overrightarrow{\mathbf{B}}_{S}$. Rotor phase b not shown for clarity.

The magnetic field at an arbitrary angle θ in the air-gap due to the stator currents is

$$
\overrightarrow{\mathbf{B}}_{S}\left(i_{S a}, i_{S b}, \theta\right)=\frac{\mu_{0} r_{R} N_{S}}{2 g r_{R}}\left(i_{S a}(t) \cos (\theta)+i_{S b}(t) \sin (\theta)\right) \hat{\mathbf{r}}
$$

Let $i_{S}(t) \triangleq \sqrt{i_{S a}^{2}(t)+i_{S b}^{2}(t)}, \xi(t) \triangleq \tan ^{-1}\left(i_{S b}(t) / i_{S a}(t)\right)$ so that $\overrightarrow{\mathbf{B}}_{S}$ may be rewritten as

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S} & =\frac{\mu_{0} \ell_{2} N_{S}}{4 g r} i_{S}(t)(\cos (\xi) \cos (\theta)+\sin (\xi) \sin (\theta)) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{2} N_{S}}{4 g r} i_{S}(t) \cos (\theta-\xi) \hat{\mathbf{r}} \tag{6.26}
\end{align*}
$$

Similarly, the magnetic field at the angle θ in the air gap due to the rotor currents is
$\overrightarrow{\mathbf{B}}_{R}\left(i_{R a}, i_{R b}, \theta-\theta_{R}\right)=\frac{\mu_{0} \ell_{2} N_{R}}{4 g r}\left(i_{R a}(t) \cos \left(\theta-\theta_{R}\right)+i_{R b}(t) \sin \left(\theta-\theta_{R}\right)\right) \hat{\mathbf{r}}$.

Let $i_{R}(t) \triangleq \sqrt{i_{R a}^{2}(t)+i_{R b}^{2}(t)}, \zeta(t) \triangleq \tan ^{-1}\left(i_{R b}(t) / i_{R a}(t)\right)$ so that $\overrightarrow{\mathbf{B}}_{R}$ may be rewritten as

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{R} & =\frac{\mu_{0} \ell_{2} N_{R}}{4 g r} i_{R}(t)\left(\cos (\zeta) \cos \left(\theta-\theta_{R}\right)+\sin (\zeta) \sin \left(\theta-\theta_{R}\right)\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} \ell_{2} N_{R}}{4 g r} i_{R}(t) \cos \left(\theta-\theta_{R}-\zeta\right) \hat{\mathbf{r}} . \tag{6.27}
\end{align*}
$$

The torque $\overrightarrow{\boldsymbol{\tau}}_{R}$ produced by a two-phase machine is now computed. This is done by computing the force on the rotor current loops due to the magnetic field established by the stator currents. Referring to Figure 6.7, the differential magnetic force $d \overrightarrow{\mathbf{F}}_{R a}$ produced on the loops of rotor phase a between θ and $\theta+d \theta$ by $\overrightarrow{\mathbf{B}}_{S}=B_{S} \hat{\mathbf{r}}=\kappa \frac{\mu_{0} r_{R} N_{S}}{2 g r_{R}} i_{S}(t) \cos (\theta-\xi) \hat{\mathbf{r}}$ is ${ }^{4}$
$d \overrightarrow{\mathbf{F}}_{R a}=\left\{\begin{array}{lr}i_{R a}(t) \frac{N_{R}}{2} \sin \left(\theta-\theta_{R}\right) d \theta\left(+\ell_{1} \hat{\mathbf{z}}\right) \times B_{S} \hat{\mathbf{r}}, & \theta_{R} \leq \theta \leq \theta_{R}+\pi \\ i_{R a}(t) \frac{N_{R}}{2}\left|\sin \left(\theta-\theta_{R}\right)\right| d \theta\left(-\ell_{1} \hat{\mathbf{z}}\right) \times B_{S} \hat{\mathbf{r}}, & \theta_{R}+\pi \leq \theta \leq \theta_{R}+2 \pi\end{array}\right.$
where $\left(N_{R} / 2\right)\left|\sin \left(\theta-\theta_{R}\right)\right| d \theta$ is the number of axial sides of rotor phase a between θ and $\theta+d \theta$, each carrying the current $i_{R a}(t)$. As $\sin \left(\theta-\theta_{R}\right) \leq 0$ for $\theta_{R}+\pi \leq \theta \leq \theta_{R}+2 \pi$, it follows that $\left|\sin \left(\theta-\theta_{R}\right)\right|=-\sin \left(\theta-\theta_{R}\right)$ for $\theta_{R}+\pi \leq \theta \leq \theta_{R}+2 \pi$ so that $d \overrightarrow{\mathbf{F}}_{R a}$ can be written more compactly as

$$
\begin{aligned}
d \overrightarrow{\mathbf{F}}_{R a} & =i_{R a}(t) \frac{N_{R}}{2} \sin \left(\theta-\theta_{R}\right) d \theta \ell_{1} \hat{\mathbf{z}} \times B_{S} \hat{\mathbf{r}} \\
& =i_{R a}(t) \frac{N_{R}}{2} \sin \left(\theta-\theta_{R}\right) \ell_{1} B_{S} d \theta \hat{\boldsymbol{\theta}} \\
& =i_{R a}(t) \frac{N_{R}}{2} \sin \left(\theta-\theta_{R}\right) \ell_{1} \kappa \frac{\mu_{0} r_{R} N_{S}}{2 g r_{R}} i_{S}(t) \cos (\theta-\xi) d \theta \hat{\boldsymbol{\theta}} \\
& =\kappa \frac{\mu_{0} \ell_{1} N_{S} N_{R}}{4 g} i_{R a}(t) i_{S}(t) \sin \left(\theta-\theta_{R}\right) \cos (\theta-\xi) d \theta \hat{\boldsymbol{\theta}}
\end{aligned}
$$

for $\theta_{R} \leq \theta \leq \theta_{R}+2 \pi$. The differential torque $d \vec{\tau}_{R a}$ is then given by

$$
\begin{aligned}
d \overrightarrow{\boldsymbol{\tau}}_{R a} & =\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times d \overrightarrow{\mathbf{F}}_{R a} \\
& =\left(\ell_{2} / 2\right) \frac{\mu_{0} \ell_{1} N_{S} N_{R}}{4 g} i_{R a}(t) i_{S}(t) \sin \left(\theta-\theta_{R}\right) \cos (\theta-\xi) d \theta \hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} \\
& =\kappa \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{R}}{8 g} i_{R a}(t) i_{S}(t) \sin \left(\theta-\theta_{R}\right) \cos (\theta-\xi) d \theta \hat{\mathbf{z}} \\
& =\frac{M}{\pi} i_{R a}(t) i_{S}(t) \sin \left(\theta-\theta_{R}\right) \cos (\theta-\xi) d \theta \hat{\mathbf{z}} \\
& =\frac{M}{\pi} i_{R a}(t) i_{S}(t) \frac{1}{2}\left(\sin \left(2 \theta-\theta_{R}-\xi\right)+\sin \left(\xi-\theta_{R}\right)\right) d \theta \hat{\mathbf{z}}
\end{aligned}
$$

[^49]where $M=\kappa \mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{R} /(8 g)$ is the coefficient of mutual inductance as previously defined. The torque on rotor phase a is then
\[

$$
\begin{aligned}
\vec{\tau}_{R a} & =\int_{0}^{2 \pi} d \vec{\tau}_{R a} \\
& =\int_{0}^{2 \pi} \frac{M}{2 \pi} i_{R a}(t) i_{S}(t)\left(\sin \left(2 \theta-\theta_{R}-\xi\right)+\sin \left(\xi-\theta_{R}\right)\right) d \theta \hat{\mathbf{z}} \\
& =M i_{R a}(t) i_{S}(t) \sin \left(\xi-\theta_{R}\right) \hat{\mathbf{z}} \\
& =M i_{R a}(t) i_{S}(t)\left(\sin (\xi) \cos \left(\theta_{R}\right)-\sin \left(\theta_{R}\right) \cos (\xi)\right) \hat{\mathbf{z}} \\
& =M i_{R a}(t)\left(i_{S b}(t) \cos \left(\theta_{R}\right)-i_{S a}(t) \sin \left(\theta_{R}\right)\right) \hat{\mathbf{z}}
\end{aligned}
$$
\]

Similarly,

$$
\begin{aligned}
& d \overrightarrow{\mathbf{F}}_{R b}= \\
& \begin{cases}i_{R b}(t) \frac{N_{R}}{2} \sin \left(\theta-\pi / 2-\theta_{R}\right) d \theta\left(\ell_{1} \hat{\mathbf{z}}\right) \times B_{S} \hat{\mathbf{r}}, & \theta_{R}+\frac{\pi}{2} \leq \theta \leq \theta_{R}+\frac{3 \pi}{2} \\
i_{R b}(t) \frac{N_{R}}{2}\left|\sin \left(\theta-\pi / 2-\theta_{R}\right)\right| d \theta\left(-\ell_{1} \hat{\mathbf{z}}\right) \times B_{S} \hat{\mathbf{r}}, & \theta_{R}-\frac{\pi}{2} \leq \theta \leq \theta_{R}+\frac{\pi}{2}\end{cases}
\end{aligned}
$$

Again, as $\sin \left(\theta-\pi / 2-\theta_{R}\right)<0$ for $\theta_{R}-\pi / 2 \leq \theta \leq \theta_{R}+\pi / 2,\left|\sin \left(\theta-\frac{\pi}{2}-\theta_{R}\right)\right|$ $=-\sin \left(\theta-\pi / 2-\theta_{R}\right)$ for $\theta_{R}-\pi / 2 \leq \theta \leq \theta_{R}+\pi / 2<0$, the expression for the force $d \overrightarrow{\mathbf{F}}_{R b}$ may be written more compactly for $\theta_{R} \leq \theta \leq \theta_{R}+2 \pi$ as

$$
\begin{aligned}
d \overrightarrow{\mathbf{F}}_{R b} & =i_{R b}(t) \frac{N_{R}}{2} \sin \left(\theta-\pi / 2-\theta_{R}\right) d \theta\left(\ell_{1} \hat{\mathbf{z}}\right) \times\left(B_{S} \hat{\mathbf{r}}\right) \\
& =i_{R b}(t) \frac{N_{R}}{2} \sin \left(\theta-\pi / 2-\theta_{R}\right) \ell_{1} B_{S} d \theta \hat{\boldsymbol{\theta}} \\
& =-i_{R b}(t) \frac{N_{R}}{2} \cos \left(\theta-\theta_{R}\right) \ell_{1} \kappa \frac{\mu_{0} r_{R} N_{S}}{2 g r_{R}} i_{S}(t) \cos (\theta-\xi) d \theta \hat{\boldsymbol{\theta}} \\
& =-\kappa \frac{\mu_{0} \ell_{1} N_{S} N_{R}}{4 g} i_{R b}(t) i_{S}(t) \cos \left(\theta-\theta_{R}\right) \cos (\theta-\xi) d \theta \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

The differential torque $d \vec{\tau}_{R b}$ is then given by

$$
\begin{aligned}
d \overrightarrow{\boldsymbol{\tau}}_{R b} & =\left(\ell_{2} / 2\right) \hat{\mathbf{r}} \times d \overrightarrow{\mathbf{F}}_{R b} \\
& =-\left(\ell_{2} / 2\right) \kappa \frac{\mu_{0} \ell_{1} N_{S} N_{R}}{4 g} i_{R b}(t) i_{S}(t) \cos \left(\theta-\theta_{R}\right) \cos (\theta-\xi) d \theta \hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} \\
& =-\kappa \frac{\mu_{0} \ell_{1} \ell_{2} N_{S} N_{R}}{8 g} i_{R b}(t) i_{S}(t) \cos \left(\theta-\theta_{R}\right) \cos (\theta-\xi) d \theta \hat{\mathbf{z}} \\
& =-\frac{M}{\pi} i_{R b}(t) i_{S}(t) \cos \left(\theta-\theta_{R}\right) \cos (\theta-\xi) d \theta \hat{\mathbf{z}} \\
& =-\frac{M}{\pi} i_{R b}(t) i_{S}(t) \frac{1}{2}\left(\cos \left(2 \theta--\theta_{R}-\xi\right)+\cos \left(\xi-\theta_{R}\right)\right) d \theta \hat{\mathbf{z}} .
\end{aligned}
$$

The torque on rotor phase b is then

$$
\begin{aligned}
\overrightarrow{\boldsymbol{\tau}}_{R b} & =\int_{0}^{2 \pi} d \overrightarrow{\boldsymbol{\tau}}_{R b} \\
& =-\int_{0}^{2 \pi} \frac{M}{2 \pi} i_{R b}(t) i_{S}(t)\left(\cos \left(2 \theta-\theta_{R}-\xi\right)+\cos \left(\xi-\theta_{R}\right)\right) d \theta \hat{\mathbf{z}} \\
& =-M i_{R b}(t) i_{S}(t) \cos \left(\xi-\theta_{R}\right) \hat{\mathbf{z}} \\
& =-M i_{R b}(t) i_{S}(t)\left(\cos (\xi) \cos \left(\theta_{R}\right)+\sin (\xi) \sin \left(\theta_{R}\right)\right) \hat{\mathbf{z}} \\
& =-M i_{R b}(t)\left(i_{S a}(t) \cos \left(\theta_{R}\right)+i_{S b}(t) \sin \left(\theta_{R}\right)\right) \hat{\mathbf{z}}
\end{aligned}
$$

The total torque on the rotor is then

$$
\begin{align*}
\tau_{R}= & \tau_{R a}+\tau_{R b} \\
= & M\left(-i_{R a}(t) i_{S a}(t) \sin \left(\theta_{R}\right)+i_{R a}(t) i_{S b}(t) \cos \left(\theta_{R}\right)\right. \\
& \left.-i_{R b}(t) i_{S a}(t) \cos \left(\theta_{R}\right)-i_{R b}(t) i_{S b}(t) \sin \left(\theta_{R}\right)\right) \tag{6.28}
\end{align*}
$$

Remark The assumption that the stator and rotor turns have negligible cross-sectional area was still in effect in the above derivation of the torque on the rotor. However, in a real motor, the windings are only approximately sinusoidally wound and this is accomplished by putting the turns in slots as explained in Chapter 4. In this case, it is pointed out by G. R. Slemon (see Section 3.4 of Ref. [32]) as well as by W. Leonhard (see p. 173 of Ref. [2]) that the magnetic forces are actually acting on the slides of rotor slots where the magnetic field enters the rotor iron. In the idealized model here, the slots do not exist and the forces/torques can be computed as described above. Further, the resulting mathematical model of the machine derived under these idealized assumptions will be shown to be a very good dynamic model of the machine (see Chapter 8).

6.5 Mathematical Model of a Sinusoidally Wound Induction Machine

The hard work of computing the expressions for the flux linkages in the phases of an AC machine as well as for the rotor torque has been completed. The analysis is now specialized to an induction motor which is illustrated in Figure 6.8. This figure is the same as Figure 6.1 except now it is explicitly assumed that the two ends of each rotor phase are shorted together, that is, there are no voltage sources for the rotor phases. With the rotor phases
shorted, the expressions for the phase flux linkages and rotor torque are used to derive the nonlinear differential equation model of a two-phase sinusoidally wound induction motor.

FIGURE 6.8. A symmetric sinusoidally wound two-phase induction machine.
By (6.16) and (6.25), the flux linkages in the stator and rotor phases in terms of the currents and rotor position are

$$
\begin{align*}
& \lambda_{S a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right)=L_{S} i_{S a}+M\left(+i_{R a} \cos \left(\theta_{R}\right)-i_{R b} \sin \left(\theta_{R}\right)\right) \\
& \lambda_{S b}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right)=L_{S} i_{S b}+M\left(+i_{R a} \sin \left(\theta_{R}\right)+i_{R b} \cos \left(\theta_{R}\right)\right) \\
& \tag{6.29}\\
& \lambda_{R a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right)=L_{R} i_{R a}+M\left(+i_{S a} \cos \left(\theta_{R}\right)+i_{S b} \sin \left(\theta_{R}\right)\right) \\
& \lambda_{R b}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right)=L_{R} i_{R b}+M\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right) .
\end{align*}
$$

By Faraday's and Ohm's laws, the equations describing the electrical dynamics of this system are

$$
\begin{aligned}
-\frac{d \lambda_{S a}}{d t}-R_{S} i_{S a}+u_{S a} & =0 \\
-\frac{d \lambda_{S b}}{d t}-R_{S} i_{S b}+u_{S b} & =0 \\
-\frac{d \lambda_{R a}}{d t}-R_{R} i_{R a} & =0 \\
-\frac{d \lambda_{R b}}{d t}-R_{R} i_{R b} & =0
\end{aligned}
$$

Explicitly, this is

$$
\begin{align*}
L_{S} \frac{d}{d t} i_{S a}+M \frac{d}{d t}\left(+i_{R a} \cos \left(\theta_{R}\right)-i_{R b} \sin \left(\theta_{R}\right)\right)+R_{S} i_{S a} & =u_{S a} \\
L_{S} \frac{d}{d t} i_{S b}+M \frac{d}{d t}\left(+i_{R a} \sin \left(\theta_{R}\right)+i_{R b} \cos \left(\theta_{R}\right)\right)+R_{S} i_{S b} & =u_{S b} \tag{6.30}\\
L_{R} \frac{d}{d t} i_{R a}+M \frac{d}{d t}\left(+i_{S a} \cos \left(\theta_{R}\right)+i_{S b} \sin \left(\theta_{R}\right)\right)+R_{R} i_{R a} & =0 \\
L_{R} \frac{d}{d t} i_{R b}+M \frac{d}{d t}\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right)+R_{R} i_{R b} & =0
\end{align*}
$$

By equation (6.28), the torque produced by this machine is given by

$$
\begin{align*}
\tau_{R}= & M\left(-i_{R a}(t) i_{S a}(t) \sin \left(\theta_{R}\right)+i_{R a}(t) i_{S b}(t) \cos \left(\theta_{R}\right)\right. \\
& \left.-i_{R b}(t) i_{S a}(t) \cos \left(\theta_{R}\right)-i_{R b}(t) i_{S b}(t) \sin \left(\theta_{R}\right)\right) \tag{6.31}
\end{align*}
$$

so that, with τ_{L} the load torque, the mechanical equations are simply

$$
\begin{align*}
J \frac{d \omega_{R}}{d t} & =\tau_{R}-\tau_{L} \tag{6.32}\\
\frac{d \theta_{R}}{d t} & =\omega_{R}
\end{align*}
$$

Equations (6.30), (6.31), and (6.32) are the set of nonlinear differential equations characterizing a two-phase sinusoidally wound induction motor.

A space vector representation of the equations of the induction motor is given in problem 5 (see also problem 6).

6.6 Total Leakage Factor

The leakage factor is defined as

$$
\sigma=1-\frac{M^{2}}{L_{S} L_{R}}
$$

Substituting the expressions

$$
\begin{aligned}
L_{R} & =\frac{\mu_{0} \ell_{1} \ell_{2} \pi}{8 g} N_{R}^{2} \\
L_{S} & =\frac{\mu_{0} \ell_{1} \ell_{2} \pi}{8 g} N_{S}^{2} \\
M & =\frac{\kappa \mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{R}}{8 g}
\end{aligned}
$$

results in

$$
\sigma=1-\kappa^{2} .
$$

Note that if $\kappa=1$, corresponding to no spreading of the magnetic field as one goes across the air gap, then $\sigma=0$. However, in a practical motor $\sigma>0$. As pointed out in Ref. [2], σ typically varies from 0.05 for low leakage machines up 0.20 .

6.7 The Squirrel Cage Rotor

The above mathematical model of the induction motor was derived assuming sinusoidally wound rotor phases. However, the most commonly used induction motor has a squirrel cage rotor which is illustrated in Figure 6.9.

FIGURE 6.9. (a) Squirrel cage rotor for an induction motor. (b) Cross-sectional view of the squirrel cage embedded in the rotor iron core.

It is standard practice to use the same mathematical model given in (6.30) and (6.31) for the induction motor with a squirrel cage rotor. In this case, the rotor currents $i_{R a}$ and $i_{R b}$ as well as the parameters R_{R} and L_{R} must be given a different interpretation. There is actually a different current in each rotor bar of the squirrel cage and these together make up a current distribution around the periphery of the rotor (see the discussion of the squirrel cage rotor in Chapter 5). The parameters R_{R} and L_{R} in the model can be interpreted as those values that best fit the mathematical model (6.30), (6.31), and (6.32) to that of an actual squirrel cage motor. For example, in Stephan et al. [42] and Wang et al. [59] the parameters of the model (6.30), (6.31), and (6.32) were identified based on data from a squirrel cage motor using a least-squares algorithm. The simulated response
of the system $\left(\omega_{R}, i_{S a}, i_{S b}\right)$ based on the model (6.30), (6.31), and (6.32) using these parameters values was shown to be quite close to the actual measured response of the squirrel cage motor [42][59]. The parameter values determined in this manner are then interpreted as those values that best fit the model (6.30), (6.31), and (6.32) to the squirrel cage motor data in the least-squares sense. See Chapter 8 where it is shown how to use the least-squares method to identify the induction motor parameters.

6.8 Induction Machine With Multiple Pole Pairs

It is left to problem 10 at the end of this chapter to show that if the machine has n_{p} pole pairs, then the expressions for the flux linkages are modified to

$$
\begin{align*}
& \lambda_{S a}=L_{S} i_{S a}+M\left(i_{R a} \cos \left(n_{p} \theta_{R}\right)-i_{R b} \sin \left(n_{p} \theta_{R}\right)\right) \\
& \lambda_{S b}=L_{S} i_{S b}+M\left(i_{R a} \sin \left(n_{p} \theta_{R}\right)+i_{R b} \cos \left(n_{p} \theta_{R}\right)\right) \\
& \lambda_{R a}=L_{R} i_{R a}+M\left(+i_{S a} \cos \left(n_{p} \theta_{R}\right)+i_{S b} \sin \left(n_{p} \theta_{R}\right)\right) \tag{6.33}\\
& \lambda_{R b}=L_{R} i_{R b}+M\left(-i_{S a} \sin \left(n_{p} \theta_{R}\right)+i_{S b} \cos \left(n_{p} \theta_{R}\right)\right)
\end{align*}
$$

where

$$
L_{S} \triangleq \frac{\mu_{0} \pi \ell_{1} \ell_{2} N_{S}^{2}}{8 g}, L_{R} \triangleq \frac{\mu_{0} \pi \ell_{1} \ell_{2} N_{R}^{2}}{8 g}, M \triangleq \frac{\kappa \mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{R}}{8 g} .
$$

Here N_{S}, and N_{R} are the number of stator and rotor windings, respectively, per pole pair. The total number of windings in a stator phase is $n_{p} N_{S}$ and $n_{p} N_{R}$ is the total number of windings in a rotor phase. The dynamic equations are

$$
\begin{align*}
u_{S a}= & R_{S} i_{S a}+\frac{d}{d t}\left(L_{S} i_{S a}+M\left(i_{R a} \cos \left(n_{p} \theta_{R}\right)-i_{R b} \sin \left(n_{p} \theta_{R}\right)\right)\right) \\
u_{S b}= & R_{S} i_{S b}+\frac{d}{d t}\left(L_{S} i_{S b}+M\left(i_{R a} \sin \left(n_{p} \theta_{R}\right)+i_{R b} \cos \left(n_{p} \theta_{R}\right)\right)\right) \\
0= & R_{R} i_{R a}+\frac{d}{d t}\left(L_{R} i_{R a}+M\left(+i_{S a} \cos \left(n_{p} \theta_{R}\right)+i_{S b} \sin \left(n_{p} \theta_{R}\right)\right)\right) \\
0= & R_{R} i_{R b}+\frac{d}{d t}\left(L_{R} i_{R b}+M\left(-i_{S a} \sin \left(n_{p} \theta_{R}\right)+i_{S b} \cos \left(n_{p} \theta_{R}\right)\right)\right) \\
J \frac{d \omega_{R}}{d t}= & n_{p} M\left(i _ { S b } \left(i_{R a} \cos \left(n_{p} \theta_{R}\right)-i_{R b} \sin \left(n_{p} \theta_{R}\right)\right.\right. \tag{6.34}\\
& \left.-i_{S a}\left(i_{R a} \sin \left(n_{p} \theta_{R}\right)+i_{R b} \cos \left(n_{p} \theta_{R}\right)\right)\right)-\tau_{L} \\
\frac{d \theta_{R}}{d t}= & \omega_{R} .
\end{align*}
$$

Consider two induction machines which are identical in all aspects except that one has only a single pole pair (i.e., $n_{p}=1$) while the other has $n_{p}>1$. That is, each has the same geometrical construction (ℓ_{1}, ℓ_{2}, and g are the same), the same number N_{S} of stator windings per pole pair, the same number of rotor windings N_{R} per pole pair, and the same current ratings. Then the torque output of the machine with n_{p} pole pairs will have a torque output that is a factor n_{p} greater than the single pole pair machine. This is clear from considering the coefficient $n_{p} M$ in the torque expression (6.34). However, the n_{p} pole pair machine has n_{p} more turns/windings in each phase than a single pole pair machine.

6.9 Mathematical Model of a Wound Rotor Synchronous Machine

The mathematical model of a wound rotor synchronous machine is straightforwardly derived from the expressions for the phase flux linkages and rotor torque derived above. Figure 6.10 shows the synchronous motor to be modeled which differs from Figure 6.1 in that there is only one rotor phase and this rotor phase is explicitly assumed to have a voltage source.

FIGURE 6.10. A symmetric two-phase synchronous machine with a sinusoidally wound rotor phase. The two stator phases have voltage sources $u_{S a}$ and $u_{S b}$, respectively, and the single rotor phase has voltage source u_{F}.

The terminology for the synchronous machine changes to the rotor phase being referred to as the field winding; its current is called the field current i_{F}, the flux linkage in its windings is called the field fux (linkage) λ_{F}, and the voltage source u_{F} applied to the phase winding is called the field source.

Recall that the term "field" refers to the fact that during normal operation, i_{F} and λ_{F} are constant, which is the case for a synchronous machine. The flux linkages in this machine are found by simply setting $i_{R a}=i_{F}$ and $i_{R b} \equiv 0$ in (6.16) and (6.25) to obtain

$$
\begin{align*}
\lambda_{S a}\left(i_{F}, i_{S a}, i_{S b}, \theta_{R}\right) & =L_{S} i_{S a}+M i_{F} \cos \left(\theta_{R}\right) \\
\lambda_{S b}\left(i_{f}, i_{S a}, i_{S b}, \theta_{R}\right) & =\left\{\begin{array}{l}
L_{S} i_{S b}+M i_{F} \sin \left(\theta_{R}\right) \\
\lambda_{F}\left(i_{F}, i_{S a}, i_{S b}, \theta_{R}\right)
\end{array}=\left\{\begin{array}{l}
L_{F} i_{F}+M\left(i_{S a} \cos \left(\theta_{R}\right)+i_{S b} \sin \left(\theta_{R}\right)\right)
\end{array}\right.\right. \tag{6.35}
\end{align*}
$$

where $L_{F} \triangleq L_{R}$. With R_{S} the resistance of each stator phase and R_{F} the resistance of the field winding (rotor phase), Faraday's and Ohm's laws give

$$
\begin{align*}
-\frac{d \lambda_{S a}}{d t}-R_{S} i_{S a}+u_{S a} & =0 \\
-\frac{d \lambda_{S b}}{d t}-R_{S} i_{S b}+u_{S b} & =0 \tag{6.36}\\
-\frac{d \lambda_{F}}{d t}-R_{F} i_{F}+u_{F} & =0
\end{align*}
$$

where u_{F} is the voltage source for the field (rotor) winding.
Setting $i_{R a}=i_{F}$ and $i_{R b} \equiv 0$ in equation (6.28), the torque produced by this machine is

$$
\begin{equation*}
\tau_{R}=M i_{F}\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right) \tag{6.37}
\end{equation*}
$$

Combining these equations together, a nonlinear differential equation model of a two-phase synchronous motor with a sinusoidally wound rotor is

$$
\begin{align*}
-\frac{d}{d t}\left(L_{S} i_{S a}+M i_{F} \cos \left(\theta_{R}\right)\right)-R_{S} i_{S a}+u_{S a} & =0 \\
-\frac{d}{d t}\left(L_{S} i_{S b}+M i_{F} \sin \left(\theta_{R}\right)\right)-R_{S} i_{S b}+u_{S b} & =0 \\
-\frac{d}{d t}\left(L_{F} i_{F}+M\left(i_{S a} \cos \left(\theta_{R}^{\prime}\right)+i_{S b} \sin \left(\theta_{R}\right)\right)\right)-R_{F} i_{F}+u_{F} & =0 \tag{6.38}\\
M i_{F}\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right)-\tau_{L} & =J \frac{d \omega_{R}}{d t} \\
\frac{d \theta_{R}}{d t} & =\omega_{R}
\end{align*}
$$

where τ_{L} is the load torque.
In a synchronous machine, the rotor current is often chosen be constant, that is,

$$
i_{F}=I_{F}
$$

This can be done by choosing the voltage u_{F} in the field winding according to

$$
u_{F}=K_{P}\left(I_{F}-i_{F}\right)+K_{I} \int_{0}^{t}\left(I_{F}-i_{F}\right) d t .
$$

The mathematical model of a two-phase synchronous motor with a sinusoidally wound rotor with constant field current then reduces to

$$
\begin{align*}
L_{S} \frac{d i_{S a}}{d t} & =-R_{S} i_{S a}+M I_{F} \sin \left(\theta_{R}\right) \omega_{R}+u_{S a} \\
L_{S} \frac{d i_{S b}}{d t} & =-R_{S} i_{S b}-M I_{F} \cos \left(\theta_{R}\right) \omega_{R}+u_{S b} \\
J \frac{d \omega_{R}}{d t} & =M I_{F}\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right)-\tau_{L} \tag{6.39}\\
\frac{d \theta_{R}}{d t} & =\omega_{R}
\end{align*}
$$

6.10 Mathematical Model of a PM Synchronous Machine

Consider the case of a two-phase permanent magnet machine with the permanent magnet of the rotor designed to produce a sinusoidally distributed radially directed magnetic field in the air gap (see Figure 6.11). That is,

$$
\overrightarrow{\mathbf{B}}_{R}\left(r, \theta-\theta_{R}\right)=B_{m} \frac{r_{R}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}}
$$

FIGURE 6.11. Two-phase permanent magnet synchronous machine.

This is essentially the same situation as a wound rotor synchronous machine with a constant field current. It is straightforward to show that its model
has the same form as (6.39) given by (see problem 11)

$$
\begin{align*}
L_{S} \frac{d i_{S a}}{d t} & =-R_{S} i_{S a}+K_{m} \sin \left(\theta_{R}\right) \omega_{R}+u_{S a} \\
L_{S} \frac{d i_{S b}}{d t} & =-R_{S} i_{S b}-K_{m} \cos \left(\theta_{R}\right) \omega_{R}+u_{S b} \tag{6.40}\\
J \frac{d \omega_{R}}{d t} & =K_{m}\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right)-\tau_{L} \\
\frac{d \theta_{R}}{d t} & =\omega_{R}
\end{align*}
$$

6.11 The Stator and Rotor Magnetic Fields of an Induction Machine Rotate Synchronously*

Recall the radial magnetic field in the air gap produced by the stator currents is given by

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{S}\left(i_{S a}, i_{S b}, r, \theta\right)=\frac{\mu_{0} r_{R} N_{S}}{2 g} \frac{1}{r}\left(i_{S a} \cos (\theta)+i_{S b} \sin (\theta)\right) \hat{\mathbf{r}} \tag{6.41}
\end{equation*}
$$

while the radial magnetic field in the air gap produced by the rotor currents is given by

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{R}\left(i_{R a}, i_{R b}, r, \theta-\theta_{R}\right)=\frac{\mu_{0} r_{R} N_{R}}{2 g} \frac{1}{r}\left(i_{R a} \cos \left(\theta-\theta_{R}\right)+i_{R b} \sin \left(\theta-\theta_{R}\right)\right) \hat{\mathbf{r}} \tag{6.42}
\end{equation*}
$$

Applying the voltages

$$
\begin{aligned}
u_{S a} & =U_{S} \cos \left(\omega_{S} t\right) \\
u_{S b} & =U_{S} \sin \left(\omega_{S} t\right)
\end{aligned}
$$

to the stator phases, a steady-state solution for the currents and rotor position has the form

$$
\begin{align*}
i_{S a} & =I_{S} \cos \left(\omega_{S} t+\phi_{S}\right) \\
i_{S b} & =I_{S} \sin \left(\omega_{S} t+\phi_{S}\right) \\
i_{R a} & =I_{R} \cos \left(\left(\omega_{S}-\omega_{R}\right) t+\phi_{R}\right) \tag{6.43}\\
i_{R b} & =I_{R} \sin \left(\left(\omega_{S}-\omega_{R}\right) t+\phi_{R}\right) \\
\theta_{R} & =\omega_{R} t .
\end{align*}
$$

Problem 9 outlines the derivation of these expressions to show that the phase angles ϕ_{S}, ϕ_{R} are functions of the stator frequency ω_{S} and the normalized slip $\left(\omega_{S}-\omega_{R}\right) / \omega_{S}$; thus they are constant in steady state. Substituting the expressions (6.43) into (6.41), the steady-state stator magnetic
field may be written as

$$
\overrightarrow{\mathbf{B}}_{S}(r, \theta, t)=\frac{\mu_{0} r_{R} N_{S} I_{S}}{2 g} \frac{1}{r} \cos \left(\theta-\left(\omega_{S} t+\phi_{S}\right)\right) \hat{\mathbf{r}}
$$

where at the angular position $\theta_{B_{S}}(t) \triangleq \omega_{S} t+\phi_{S}, \overrightarrow{\mathbf{B}}_{S}$ has its maximum magnitude. Denote $\theta_{B_{S}}(t)$ as the magnetic axis of $\overrightarrow{\mathbf{B}}_{S}$ and note that the magnetic field distribution of $\overrightarrow{\mathbf{B}}_{S}$ is fixed relative to $\theta_{B_{S}}(t)$; that is, $\overrightarrow{\mathbf{B}}_{S}$ is a "magnet" that rotates at the angular rate ω_{S}. Similarly, substituting the expressions (6.43) into (6.42), the steady-state rotor magnetic field may then be written as

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{R}(r, \theta, t)= & \frac{\mu_{0} r_{R} N_{R} I_{R}}{2 g} \frac{1}{r}\left(\cos \left(\left(\omega_{S}-\omega_{R}\right) t+\phi_{R}\right) \cos \left(\theta-\omega_{R} t\right)\right. \\
& \left.+\sin \left(\left(\omega_{S}-\omega_{R}\right) t+\phi_{R}\right) \sin \left(\theta-\omega_{R} t\right)\right) \hat{\mathbf{r}} \\
= & \frac{\mu_{0} r_{R} N_{R} I_{R}}{2 g} \frac{1}{r} \cos \left(\theta-\omega_{R} t-\left(\left(\omega_{S}-\omega_{R}\right) t+\phi_{R}\right)\right) \hat{\mathbf{r}} \\
= & \frac{\mu_{0} r_{R} N_{R} I_{R}}{2 g} \frac{1}{r} \cos \left(\theta-\left(\omega_{S} t+\phi_{R}\right)\right) \hat{\mathbf{r}}
\end{aligned}
$$

where at the angular position $\theta_{B_{R}}(t) \triangleq \omega_{S} t+\phi_{R}, \overrightarrow{\mathbf{B}}_{R}$ has its maximum magnitude. Denote $\theta_{B_{R}}(t)$ as the magnetic axis of $\overrightarrow{\mathbf{B}}_{R}$ and note that the magnetic field distribution of $\overrightarrow{\mathbf{B}}_{R}$ is fixed relative to $\theta_{B_{R}}(t)$; that is, $\overrightarrow{\mathbf{B}}_{R}$ is also a "magnet" that rotates at the angular rate ω_{S}.

Both of these magnetic fields rotate at the angular rate ω_{S}, with the angle between the two "magnets" being $\theta_{B_{S}}(t)-\theta_{B_{R}}(t)=\phi_{S}-\phi_{R}$ which is constant; that is, the two magnetic fields rotate synchronously together! Another way to view this is to note that by (6.43) the currents $i_{S a}$ and $i_{S b}$ have angular frequency ω_{S} and produce a magnetic field rotating at the angular speed ω_{S}. Also, equations (6.43) show that rotor currents $i_{R a}$ and $i_{R b}$ have angular frequency $\omega_{S}-\omega_{R}$ and thus produce a magnetic field that rotates at angular speed $\omega_{S}-\omega_{R}$ with respect to the rotor. However, the rotor is moving at angular speed ω_{R} so that the magnetic field produced by the rotor currents is rotating at angular speed $\omega_{S}-\omega_{R}+\omega_{R}=\omega_{S}$ with respect to the stator. Again, both fields rotate at the same angular speed ω_{S}.

Substituting the expressions (6.43) for the steady-state currents and $\theta_{R}(t)$ into equation (6.31) results in the steady-state torque being given by (see problem 9)

$$
\begin{aligned}
\tau_{R} & =M I_{S} I_{R} \sin \left(\phi_{S}-\phi_{R}\right) \\
& =g 2 \pi\left(\ell_{1} / 2\right) \ell_{2} \frac{1}{2 \mu_{0}}\left(\kappa \frac{\mu_{0} N_{S} I_{S}}{2 g}\right)\left(\frac{\mu_{0} N_{R} I_{R}}{2 g}\right) \sin \left(\phi_{S}-\phi_{R}\right) \\
& =V_{\text {airgap }} \frac{1}{2 \mu_{0}} B_{S \max } B_{R \max } \sin \left(\phi_{S}-\phi_{R}\right)
\end{aligned}
$$

where $M=\kappa \mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{R} /(8 g), B_{S \text { max }} \triangleq \kappa \mu_{0} N_{S} I_{S} /(2 g)$ and $B_{R \text { max }} \triangleq$ $\mu_{0} N_{R} I_{R} /(2 g)$ are the maximum values of the stator and rotor magnetic fields, respectively, at the surface of the rotor, and $V_{\text {airgap }}=g 2 \pi\left(\ell_{1} / 2\right) \ell_{2}$ is the approximate volume of the air gap for g small. This expression shows that the torque is proportional to the maximum strength of the stator and rotor magnetic fields and to the sine of the angle between them. ${ }^{5}$

Finally, the steady-state condition requires $J d \omega_{R} / d t \equiv 0$ so that the load-torque τ_{L} must be such that it satisfies

$$
M I_{S} I_{R} \sin \left(\phi_{S}-\phi_{R}\right)-\tau_{L}=0
$$

6.12 Torque, Energy, and Co-energy*

In this section it is shown how the torque of an AC machine can be derived from conservation of energy. The analysis is carried out for the two-phase induction motor while the synchronous machine is considered in problem 19.

6.12.1 Magnetic Field Energy

The equations describing the electrical dynamics of a two-phase induction motor are

$$
\begin{array}{r}
-\frac{d \lambda_{S a}}{d t}-R_{S} i_{S a}+u_{S a}=0 \\
-\frac{d \lambda_{S b}}{d t}-R_{S} i_{S b}+u_{S b}=0 \tag{6.44}\\
-\frac{d \lambda_{R a}}{d t}-R_{R} i_{R a}+u_{R a}=0 \\
-\frac{d \lambda_{R b}}{d t}-R_{R} i_{R b}+u_{R b}=0
\end{array}
$$

where the flux linkages are given by ($n_{p}=1$)

$$
\begin{align*}
\lambda_{S a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) & =L_{S} i_{S a}+M\left(+i_{R a} \cos \left(\theta_{R}\right)-i_{R b} \sin \left(\theta_{R}\right)\right) \\
\lambda_{S b}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) & =L_{S} i_{S b}+M\left(+i_{R a} \sin \left(\theta_{R}\right)+i_{R b} \cos \left(\theta_{R}\right)\right) \\
\lambda_{R a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) & =L_{R} i_{R a}+M\left(+i_{S a} \cos \left(\theta_{R}\right)+i_{S b} \sin \left(\theta_{R}\right)\right) \\
\lambda_{R b}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) & =L_{R} i_{R b}+M\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right) . \tag{6.45}
\end{align*}
$$

[^50]Of course, normally $u_{R a} \equiv 0, u_{R b} \equiv 0$. Substituting these expressions for the flux linkages into the system equations (6.44), it follows that

$$
\begin{align*}
L_{S} \frac{d}{d t} i_{S a}+M \frac{d}{d t}\left(+i_{R a} \cos \left(\theta_{R}\right)-i_{R b} \sin \left(\theta_{R}\right)\right)+R_{S} i_{S a} & =u_{S a} \\
L_{S} \frac{d}{d t} i_{S b}+M \frac{d}{d t}\left(+i_{R a} \sin \left(\theta_{R}\right)+i_{R b} \cos \left(\theta_{R}\right)\right)+R_{S} i_{S b} & =u_{S b} \\
L_{R} \frac{d}{d t} i_{R a}+M \frac{d}{d t}\left(+i_{S a} \cos \left(\theta_{R}\right)+i_{S b} \sin \left(\theta_{R}\right)\right)+R_{R} i_{R a} & =u_{R a} \\
L_{R} \frac{d}{d t} i_{R b}+M \frac{d}{d t}\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right)+R_{R} i_{R b} & =u_{R b} . \tag{6.46}
\end{align*}
$$

In order to calculate the energy stored in the magnetic field of the induction machine (that is, the magnetic field in the stator/rotor iron as well as in the air gap), the rotor is locked and voltage is applied to the phases. Using the system (6.44), the power delivered to each of the phases is given by

$$
\begin{align*}
i_{S a} u_{S a} & =R_{S} i_{S a}^{2}+i_{S a} \frac{d \lambda_{S a}}{d t} \\
i_{S b} u_{S b} & =R_{S} i_{S b}^{2}+i_{S b} \frac{d \lambda_{S b}}{d t} \\
i_{R a} u_{R a} & =R_{R} i_{R a}^{2}+i_{R a} \frac{d \lambda_{R a}}{d t} \\
i_{R b} u_{R b} & =R_{R} i_{R b}^{2}+i_{R b} \frac{d \lambda_{R b}}{d t} \tag{6.47}
\end{align*}
$$

Substituting the expressions (6.45) for the flux linkages into (6.47) and adding up the resulting four equations one obtains (see problem 17)

$$
\begin{align*}
& i_{S a} u_{S a}+i_{S b} u_{S b}+i_{R a} u_{R a}+i_{R b} u_{R b}=R_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)+R_{R}\left(i_{R a}^{2}+i_{R b}^{2}\right) \\
&+\frac{d}{d t}\left(\frac{1}{2} L_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)+\frac{1}{2} L_{R}\left(i_{R a}^{2}+i_{R b}^{2}\right)\right) \\
&+\left.\frac{d}{d t}\left(M i_{S a}\left(+i_{R a} \cos \left(\theta_{R}\right)-i_{R b} \sin \left(\theta_{R}\right)\right)\right)\right|_{\theta_{R} \text { constant }} \\
&+\left.\frac{d}{d t}\left(M i_{S b}\left(+i_{R a} \sin \left(\theta_{R}\right)+i_{R b} \cos \left(\theta_{R}\right)\right)\right)\right|_{\theta_{R} \text { constant }} . \tag{6.48}
\end{align*}
$$

Defining the magnetic field energy $W_{\text {field }}$ as

$$
\begin{align*}
W_{\text {field }}\left(i_{S a}, i_{S b}, i_{R a}, i_{R b}, \theta_{R}\right) \triangleq & \frac{1}{2} L_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)+\frac{1}{2} L_{R}\left(i_{R a}^{2}+i_{R b}^{2}\right) \\
& +M i_{S a}\left(+i_{R a} \cos \left(\theta_{R}\right)-i_{R b} \sin \left(\theta_{R}\right)\right) \\
& +M i_{S b}\left(+i_{R a} \sin \left(\theta_{R}\right)+i_{R b} \cos \left(\theta_{R}\right)\right) \tag{6.49}
\end{align*}
$$

equation (6.48) may be rewritten as

$$
\begin{aligned}
i_{S a} u_{S a}+i_{S b} u_{S b}+i_{R a} u_{R a}+i_{R b} u_{R b}= & R_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)+R_{R}\left(i_{R a}^{2}+i_{R b}^{2}\right) \\
& +\left.\frac{d}{d t} W_{\text {field }}\right|_{\theta_{R} \text { constant }}
\end{aligned}
$$

Here

$$
\begin{aligned}
\frac{d}{d t} W_{\text {field }}= & \frac{\partial W_{\text {field }}}{\partial i_{S a}} \frac{d i_{S a}}{d t}+\frac{\partial W_{\text {field }}}{\partial i_{S b}} \frac{d i_{S b}}{d t}+\frac{\partial W_{\text {feld }}}{\partial i_{R a}} \frac{d i_{R a}}{d t}+\frac{\partial W_{\text {field }}}{\partial i_{R b}} \frac{d i_{R b}}{d t} \\
& +\frac{\partial W_{\text {field }}}{\partial \theta_{R}} \frac{d \theta_{R}}{d t} \\
\left.\frac{d}{d t} W_{\text {field }}\right|_{\theta_{R} \text { constant }}= & \frac{\partial W_{\text {field }}}{\partial i_{S a}} \frac{d i_{S a}}{d t}+\frac{\partial W_{\text {field }}}{\partial i_{S b}} \frac{d i_{S b}}{d t}+\frac{\partial W_{\text {field }}}{\partial i_{R a}} \frac{d i_{R a}}{d t} \\
& +\frac{\partial W_{\text {field }}}{\partial i_{R b}} \frac{d i_{R b}}{d t} .
\end{aligned}
$$

The quantity $W_{\text {field }}\left(i_{S a}, i_{S b}, i_{R a}, i_{R b}, \theta_{R}\right)$ is the energy stored in the magnetic field established in the stator/rotor iron ${ }^{6}$ and in the air gap by the phase currents. (This was derived in the same way that one derives the expression $L i^{2} / 2$ for the energy in a standard inductor.) Defining

$$
\begin{aligned}
W_{\text {ohmic loss }} & =\int_{0}^{t}\left(R_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)+R_{R}\left(i_{R a}^{2}+i_{R b}^{2}\right)\right) d t \\
W_{\text {electrical }} & =\int_{0}^{t}\left(i_{S a} u_{S a}+i_{S b} u_{S b}+i_{R a} u_{R a}+i_{R b} u_{R b}\right) d t
\end{aligned}
$$

it then follows that

$$
W_{\text {electrical }}=W_{\text {field }}+W_{\text {ohmic loss }}
$$

This is simply an energy conservation equation. It says that, with the rotor locked, the energy supplied by' the voltage sources $u_{S a}, u_{S b}, u_{R a}$, and $u_{R b}$ goes into magnetic field energy $W_{\text {field }}$ and into the heat energy $W_{\text {ohmic loss }}$ dissipated in the resistance of the windings.

The expression (6.49) for the field energy is valid whether or not the rotor is moving. This is because if the rotor is at the angle θ_{R} and the currents in the phases are $i_{S a}, i_{S b}, i_{R a}$, and $i_{R b}$, then the magnetic field at each point of the motor (i.e., in the stator/rotor iron and in the air

[^51]gap) is the same whether or not the rotor is moving. In other words, the stored magnetic energy depends only on $\left(i_{S a}, i_{S b}, i_{R a}, i_{R b}, \theta_{R}\right)$ and not on ω_{R}. The derivation was carried out with the rotor locked so that it could be concluded that the applied power went only into the field energy and ohmic losses (i.e., not into mechanical power) in deriving the expression (6.49) for the magnetic field energy.

6.12.2 Computing Torque From the Field Energy

In order to derive an expression for the torque in terms of the stored energy, the rotor is unlocked and allowed to move under the torque produced by the magnetic forces. Multiplying the first equation of (6.46) by $i_{S a}$, the second by $i_{S b}$, the third by $i_{R a}$, and the fourth by $i_{R b}$ and adding them together give ($\omega_{R}=d \theta_{R} / d t \neq 0$)

$$
\begin{align*}
i_{S a} u_{S a}+i_{S b} u_{S b}+i_{R a} u_{R a}+i_{R b} u_{R b}= & \left.\frac{d}{d t} W_{\text {field }}\right|_{\theta_{R} \text { constant }}+2 \frac{\partial W_{\text {field }}}{\partial \theta_{R}} \frac{d \theta_{R}}{d t} \\
& +R_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)+R_{R}\left(i_{R a}^{2}+i_{R b}^{2}\right) \tag{6.50}
\end{align*}
$$

The reader is asked to verify this expression in problem 18. The term $2\left(\partial W_{\text {field }} / \partial \theta_{R}\right) d \theta_{R} / d t$ is an additional term describing power being absorbed from the sources when there is rotor movement. As

$$
d W_{\text {field }} / d t=d W_{\text {field }} /\left.d t\right|_{\theta_{\mathrm{R}} \text { constant }}+\left(\partial W_{\text {field }} / \partial \theta_{R}\right)\left(d \theta_{R} / d t\right)
$$

equation (6.50) may be rewritten as

$$
\begin{align*}
i_{S a} u_{S a}+i_{S b} u_{S b}+i_{R a} u_{R a}+i_{R b} u_{R b}= & \frac{d}{d t} W_{\text {field }}+\frac{\partial W_{\mathrm{feld}}}{\partial \theta_{R}} \frac{d \theta_{R}}{d t} \\
& +R_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)+R_{R}\left(i_{R a}^{2}+i_{R b}^{2}\right) . \tag{6.51}
\end{align*}
$$

Integrating both sides with respect to time t gives the conservation of energy equation

$$
W_{\text {electrical }}=W_{\text {feld }}+\int_{0}^{t} \frac{\partial W_{\text {field }}}{\partial \theta_{R}} \omega_{R} d t+W_{\text {ohmic loss }}
$$

The electrical power supplied by the source goes into the magnetic field energy, heat losses in the phase windings and another term given by

$$
\int_{0}^{t} \frac{\partial W_{\text {field }}}{\partial \theta_{R}} \omega_{R} d t
$$

The only other energy conversion is mechanical energy. Consequently, this term represents the energy from the supply converted into mechanical work.

The mechanical power $\tau_{R} \omega_{R}$ is therefore given by $\tau_{R} \omega_{R}=\left(\partial W_{\text {feld }} / \partial \theta_{R}\right) \omega_{R}$ so that the torque produced by the machine is ${ }^{7}$

$$
\begin{equation*}
\tau_{R}=\frac{\partial W_{\text {field }}}{\partial \theta_{R}} \tag{6.52}
\end{equation*}
$$

Using the expression (6.49) for $W_{\text {field }}$ results in

$$
\begin{aligned}
\tau_{R}= & M\left(-i_{R a}(t) i_{S a}(t) \sin \left(\theta_{R}\right)+i_{R a}(t) i_{S b}(t) \cos \left(\theta_{R}\right)\right. \\
& \left.-i_{R b}(t) i_{S a}(t) \cos \left(\theta_{R}\right)-i_{R b}(t) i_{S b}(t) \sin \left(\theta_{R}\right)\right)
\end{aligned}
$$

which is the same expression as in equation (6.31) derived previously.

6.12.3 Computing Torque From the Co-energy

The above analysis was done assuming linear magnetics for the two-phase induction motor. A more general approach is now given that does not assume linear magnetics.

Recall the electrical dynamics of the two-phase induction motor can be written as

$$
\begin{align*}
u_{S a}-R_{S} i_{S a} & =\frac{d \lambda_{S a}}{d t} \\
u_{S b}-R_{S} i_{S b} & =\frac{d \lambda_{S b}}{d t} \\
u_{R a}-R_{R} i_{R a} & =\frac{d \lambda_{R a}}{d t} \tag{6.53}\\
u_{R b}-R_{R} i_{R b} & =\frac{d \lambda_{R b}}{d t}
\end{align*}
$$

These equations are very general in the sense that they hold even in the case of magnetic saturation in the rotor or stator iron. ${ }^{8}$ Define a new set of voltages $e_{S a} \triangleq u_{S a}-R_{S} i_{S a}, e_{S b} \triangleq u_{S b}-R_{S} i_{S b}, e_{R a} \triangleq u_{R a}-R_{R} i_{R a}$, and $e_{R b} \triangleq u_{R b}-R_{R} i_{R b}$ and consider these voltages as the inputs to the phase windings. In this way, the power loss to ohmic heating of the phase windings can be considered as part of the power supply and not the machine. The power delivered to the phases is then $i_{S a} e_{S a}+i_{S b} e_{S b}+i_{R a} e_{R a}+i_{R b} e_{R b}$ and, using (6.53), the basic equation for conservation of power may be written

[^52]as
\[

$$
\begin{align*}
i_{S a} e_{S a}+i_{S b} e_{S b}+i_{R a} e_{R a}+i_{R b} e_{R b}= & i_{S a} \frac{d \lambda_{S a}}{d t}+i_{S b} \frac{d \lambda_{S b}}{d t}+i_{R a} \frac{d \lambda_{R a}}{d t} \\
& +i_{R b} \frac{d \lambda_{R b}}{d t} \\
= & \frac{d}{d t} W_{\text {field }}\left(i_{S a}, i_{S b}, i_{R a}, i_{R b}, \theta_{R}\right) \\
& +\tau_{R} \frac{d \theta_{R}}{d t} . \tag{6.54}
\end{align*}
$$
\]

This equation just says that the power provided to the phases by the voltage sources equals the rate of change of the field energy and the mechanical power produced. This expression is perfectly general in that it holds in the case of magnetic saturation. However, it does assume that an expression for the field energy $W_{\text {field }}\left(i_{S a}, i_{S b}, i_{R a}, i_{R b}, \theta_{R}\right)$ in terms of the phase currents and rotor position has been found. ${ }^{9}$

Now,

$$
\begin{align*}
\frac{d}{d t} W_{\text {field }}= & \frac{\partial W_{\text {field }}}{\partial i_{S a}} \frac{d i_{S a}}{d t}+\frac{\partial W_{\text {field }}}{\partial i_{S b}} \frac{d i_{S b}}{d t}+\frac{\partial W_{\text {field }}}{\partial i_{R a}} \frac{d i_{R a}}{d t}+\frac{\partial W_{\text {field }}}{\partial i_{R b}} \frac{d i_{R b}}{d t} \\
& +\frac{\partial W_{\text {field }}}{\partial \theta_{R}} \frac{d \theta_{R}}{d t} \tag{6.55}
\end{align*}
$$

and, with $\lambda=\lambda\left(i_{S a}, i_{S b}, i_{R a}, i_{R b}, \theta_{R}\right)$,

$$
\frac{d \lambda}{d t}=\frac{\partial \lambda}{\partial i_{S a}} \frac{d i_{S a}}{d t}+\frac{\partial \lambda}{\partial i_{S b}} \frac{d i_{S b}}{d t}+\frac{\partial \lambda}{\partial i_{R a}} \frac{d i_{R a}}{d t}+\frac{\partial \lambda}{\partial i_{R b}} \frac{d i_{R b}}{d t}+\frac{\partial \lambda}{\partial \theta_{R}} \frac{d \theta_{R}}{d t}
$$

where λ stands for $\lambda_{S a}, \lambda_{S b}, \lambda_{R a}$, and $\lambda_{R b}$ (see the footnote ${ }^{10}$). Equation (6.54) holds for all $i_{S a}, i_{S b}, i_{R a}, i_{R b}$, and θ_{R} and their derivatives $d i_{S a} / d t$, $d i_{S b} / d t, d i_{R a} / d t, d i_{R b} / d t$, and $d \theta_{R} / d t$. The next step is to substitute the derivative of the flux linkages into left-hand side of (6.54) and the derivative

[^53]of the field energy (6.55) into the right-hand side of (6.54). This results in
\[

$$
\begin{align*}
& \left(i_{S a} \frac{\partial \lambda_{S a}}{\partial i_{S a}}+i_{S b} \frac{\partial \lambda_{S b}}{\partial i_{S a}}+i_{R a} \frac{\partial \lambda_{R a}}{\partial i_{S a}}+i_{R b} \frac{\partial \lambda_{R b}}{\partial i_{S a}}\right) \frac{d i_{S a}}{d t} \\
& \quad+\left(i_{S a} \frac{\partial \lambda_{S b}}{\partial i_{S b}}+i_{S b} \frac{\partial \lambda_{S b}}{\partial i_{S b}}+i_{R a} \frac{\partial \lambda_{R a}}{\partial i_{S b}}+i_{R b} \frac{\partial \lambda_{R b}}{\partial i_{S b}}\right) \frac{d i_{S b}}{d t} \\
& \quad+\left(i_{S a} \frac{\partial \lambda_{R a}}{\partial i_{R a}}+i_{S b} \frac{\partial \lambda_{S b}}{\partial i_{R a}}+i_{R a} \frac{\partial \lambda_{R a}}{\partial i_{R a}}+i_{R b} \frac{\partial \lambda_{R b}}{\partial i_{R a}}\right) \frac{d i_{R a}}{d t} \\
& \quad+\left(i_{S a} \frac{\partial \lambda_{R b}}{\partial i_{R b}}+i_{S b} \frac{\partial \lambda_{S b}}{\partial i_{R b}}+i_{R a} \frac{\partial \lambda_{R a}}{\partial i_{R b}}+i_{R b} \frac{\partial \lambda_{R b}}{\partial i_{R b}}\right) \frac{d i_{R b}}{d t} \\
& \quad+\left(i_{S a} \frac{\partial \lambda_{S a}}{\partial \theta_{R}}+i_{S b} \frac{\partial \lambda_{S b}}{\partial \theta_{R}}+i_{R a} \frac{\partial \lambda_{R a}}{\partial \theta_{R}}+i_{R b} \frac{\partial \lambda_{R b}}{\partial \theta_{R}}\right) \frac{d \theta_{R}}{d t} \\
& =\frac{\partial W_{\text {field }}}{\partial i_{S a}} \frac{d i_{S a}}{d t}+\frac{\partial W_{\text {field }}}{\partial i_{S b}} \frac{d i_{S b}}{d t}+\frac{\partial W_{\text {field }}}{\partial i_{R a}} \frac{d i_{R a}}{d t}+\frac{\partial W_{\text {field }}}{\partial i_{R b}} \frac{d i_{R b}}{d t} \\
& \quad+\frac{\partial W_{\text {field }}}{\partial \theta_{R}} \frac{d \theta_{R}}{d t}+\tau_{R} \frac{d \theta_{R}}{d t} . \tag{6.56}
\end{align*}
$$
\]

Given any set of values for $i_{S a}, i_{S b}, i_{R a}, i_{R b}$, and θ_{R}, by proper choice of $u_{S a}, u_{S b}, u_{R a}, u_{R b}$, and τ_{L}, the derivatives $d i_{S a} / d t, d i_{S b} / d t, d i_{R a} / d t$, $d i_{R b} / d t$, and $d \theta_{R} / d t$ can be arbitrarily chosen (see problem 20). Therefore, the only way that (6.56) can be satisfied for any such values of $d i_{S a} / d t$, $d i_{S b} / d t, d i_{R a} / d t, d i_{R b} / d t$, and $d \theta_{R} / d t$ is that the coefficients of these derivatives in (6.56) must be equal for all time, that is,

$$
\begin{align*}
& i_{S a} \frac{\partial \lambda_{S a}}{\partial i_{S a}}+i_{S b} \frac{\partial \lambda_{S b}}{\partial i_{S a}}+i_{R a} \frac{\partial \lambda_{R a}}{\partial i_{S a}}+i_{R b} \frac{\partial \lambda_{R b}}{\partial i_{S a}}=\frac{\partial W_{\text {field }}}{\partial i_{S a}} \\
& i_{S a} \frac{\partial \lambda_{S b}}{\partial i_{S b}}+i_{S b} \frac{\partial \lambda_{S b}}{\partial i_{S b}}+i_{R a} \frac{\partial \lambda_{R a}}{\partial i_{S b}}+i_{R b} \frac{\partial \lambda_{R b}}{\partial i_{S b}}=\frac{\partial W_{\text {field }}}{\partial i_{S b}} \\
& i_{S a} \frac{\partial \lambda_{R a}}{\partial i_{R a}}+i_{S b} \frac{\partial \lambda_{S b}}{\partial i_{R a}}+i_{R a} \frac{\partial \lambda_{R a}}{\partial i_{R a}}+i_{R b} \frac{\partial \lambda_{R b}}{\partial i_{R a}}=\frac{\partial W_{\text {field }}}{\partial i_{R a}} \tag{6.57}\\
& i_{S a} \frac{\partial \lambda_{R b}}{\partial i_{R b}}+i_{S b} \frac{\partial \lambda_{S b}}{\partial i_{R b}}+i_{R a} \frac{\partial \lambda_{R a}}{\partial i_{R b}}+i_{R b} \frac{\partial \lambda_{R b}}{\partial i_{R b}}=\frac{\partial W_{\text {field }}}{\partial i_{R b}} \\
& i_{S a} \frac{\partial \lambda_{S a}}{\partial \theta_{R}}+i_{S b} \frac{\partial \lambda_{S b}}{\partial \theta_{R}}+i_{R a} \frac{\partial \lambda_{R a}}{\partial \theta_{R}}+i_{R b} \frac{\partial \lambda_{R b}}{\partial \theta_{R}}=\frac{\partial W_{\text {field }}}{\partial \theta_{R}}+\tau_{R}
\end{align*}
$$

In particular, the last expression shows that

$$
\tau_{R}=i_{S a} \frac{\partial \lambda_{S a}}{\partial \theta_{R}}+i_{S b} \frac{\partial \lambda_{S b}}{\partial \theta_{R}}+i_{R a} \frac{\partial \lambda_{R a}}{\partial \theta_{R}}+i_{R b} \frac{\partial \lambda_{R b}}{\partial \theta_{R}}-\frac{\partial W_{\text {field }}}{\partial \theta_{R}} .
$$

Finally, making the definition of co-energy as

$$
\begin{equation*}
W_{\text {co-energy }} \triangleq i_{S a} \lambda_{S a}+i_{S b} \lambda_{S b}+i_{R a} \lambda_{R a}+i_{R b} \lambda_{R b}-W_{\text {field }} \tag{6.58}
\end{equation*}
$$

it follows that the torque may be written as

$$
\begin{equation*}
\tau_{R}=\frac{\partial W_{\text {co-energy }}}{\partial \theta_{R}} \tag{6.59}
\end{equation*}
$$

This derivation assumed that all of the phases had voltage inputs. However, the expression for torque (6.59) still holds even if the rotor phases are shorted. That is, the expression (6.59) is true for any set of inputs, so it must be true for $u_{R a}=u_{R b} \equiv 0$.

The co-energy (6.58) does not have any physical significance and only represents a convenient mathematical quantity for computing the torque.

The reader is asked in problem 15 to show that, in the case of linear magnetics, the expression for $W_{\text {field }}$ given in (6.49) equals the expression for $W_{\text {co-energy }}$ given in (6.58).

Problems

Torque Production in AC Machines

Problem 1 Torque on the Stator Winding
Use the expression (6.27) for radial magnetic field in the air gap due to the rotor currents and compute the total torque $\overrightarrow{\boldsymbol{\tau}}_{S}$ it produces on the currents in the stator windings. In particular, show that $\overrightarrow{\boldsymbol{\tau}}_{S}=-\overrightarrow{\boldsymbol{\tau}}_{R}$.
Problem $2 \overrightarrow{\mathbf{B}}_{R}$ Cannot Produce Torque on the Rotor
(a) Using the expression (6.6) [or (6.27)] for the radial magnetic field in the air gap produced by the rotor currents, show by direct computation that the total torque this magnetic field produces on the rotor currents is zero.
(b) Similarly, using the expression (6.5) [or (6.26)] for the radial magnetic field in the air gap produced by the stator currents, show by direct computation that the torque this magnetic field produces on the stator currents is zero.
(c) Explain why these two results must be true from basic principles of Physics.

Problem 3 The Induction Motor as a Transformer Using the fux linkage equations (6.45), show that $\left[\sigma=1-M^{2} /\left(L_{S} L_{R}\right)\right]$

$$
\begin{aligned}
\sigma L_{S} L_{R} i_{S a} & =L_{R} \lambda_{S a}-M\left(+\lambda_{R a} \cos \left(\theta_{R}\right)-\lambda_{R b} \sin \left(\theta_{R}\right)\right) \\
\sigma L_{S} L_{R} i_{S b} & =L_{R} \lambda_{S b}-M\left(+\lambda_{R a} \sin \left(\theta_{R}\right)+\lambda_{R b} \cos \left(\theta_{R}\right)\right) \\
\sigma L_{S} L_{R} i_{R a} & =L_{S} \lambda_{R a}-M\left(+\lambda_{S a} \cos \left(\theta_{R}\right)+\lambda_{S b} \sin \left(\theta_{R}\right)\right) \\
\sigma L_{S} L_{R} i_{R b} & =L_{S} \lambda_{R b}-M\left(-\lambda_{S a} \sin \left(\theta_{R}\right)+\lambda_{S b} \cos \left(\theta_{R}\right)\right) .
\end{aligned}
$$

If $\sigma=0$, find an expression for the rotor flux linkages in terms of the stator flux linkages. Use this expression to show that, with the rotor locked at some angle θ_{R}, the induction motor (with a sinusoidally wound rotor) is a (two-input two-output) transformer with a turns ratio of either $\left(M / L_{S}\right) \cos \left(\theta_{R}\right)=\left(N_{R} / N_{S}\right) \cos \left(\theta_{R}\right)$ or $\left(M / L_{S}\right) \sin \left(\theta_{R}\right)=\left(N_{R} / N_{S}\right) \sin \left(\theta_{R}\right)$ from a stator winding to a rotor winding. In particular, find $\lambda_{R a} / \lambda_{S a}$ and $\lambda_{R b} / \lambda_{S b}$ for $\theta_{R}=0$.

What if one had a squirrel cage induction motor rather than a sinusoidally wound rotor induction motor?

Mathematical Models of an Induction Machine

Problem 4 State-Space Model of the Induction Motor
Starting from the mathematical model (6.30) and (6.31), derive a state space model for the two-phase induction motor where the state variables are $i_{S a}, i_{S b}, i_{R a}, i_{R b}, \omega$, and θ. (See problem 6 for a simpler, but equivalent, model.)

Problem 5 Space Vector Model of the Induction Motor (Leonhard [1])
Let $\underline{i}_{S} \triangleq i_{S a}+j i_{S b}, \underline{i}_{R} \triangleq i_{R a}+j i_{R b}, \underline{u}_{S} \triangleq u_{S a}+j u_{S b}$ and show that the equations of the induction motor (6.34) may be written succinctly as

$$
\begin{aligned}
R_{S} \underline{i}_{S}+L_{S} \frac{d}{d t} \underline{i}_{S}+M \frac{d}{d t}\left(\underline{i}_{R} e^{j n_{p} \theta_{R}}\right) & =\underline{u}_{S} \\
R_{R} \underline{i}_{R}+L_{R} \frac{d}{d t} \underline{i}_{R}+M \frac{d}{d t}\left(\underline{i}_{S} e^{-j n_{p} \theta_{R}}\right) & =0 \\
n_{p} M \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{i}_{R} e^{j n_{p} \theta_{R}}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega_{R}}{d t}
\end{aligned}
$$

where $\operatorname{Im}\{\cdot\}$ denotes the imaginary part and $*$ denotes complex conjugate. This is known as the space vector representation.

Problem 6 A Standard Model of the Induction Motor
The model (6.34) of the induction motor (or its equivalent space vector representation given in problem 5) is quite complicated. By doing a change of variables, a simpler, but equivalent model can be found. In particular, a model can found where the explicit dependency on θ_{R} [i.e., the $\sin \left(n_{p} \theta_{R}\right)$ and $\cos \left(n_{p} \theta_{R}\right)$ terms] can be eliminated. To do so, define new (fictitious) flux linkages as

$$
\underline{\psi}_{R} \triangleq \psi_{R a}+j \psi_{R b} \triangleq \underline{\lambda}_{R} e^{j n_{p} \theta_{R}}=L_{R} \underline{i}_{R} e^{j n_{p} \theta_{R}}+M \underline{i}_{S}
$$

(a) Make this substitution into the representation given in problem 5 to show that the system of equations for the induction motor may be rewritten in the space vector form as

$$
\begin{aligned}
\frac{d}{d t} \underline{\psi}_{R} & =\left(-\frac{1}{T_{R}}+j n_{p} \omega_{R}\right) \underline{\psi}_{R}+\frac{M}{T_{R}} \underline{i}_{S} \\
\underline{u}_{S} & =\frac{M}{L_{R}} \frac{d}{d t} \underline{\psi}_{R}+\sigma L_{S} \frac{d}{d t} \underline{i}_{S}+R_{S} \underline{i}_{S} \\
\frac{d \omega_{R}}{d t} & =\mu \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{\psi}_{R}\right)^{*}\right\}-\frac{\tau_{L}}{J}
\end{aligned}
$$

where $\mu \triangleq n_{p} M /\left(J L_{R}\right), \sigma \triangleq 1-M^{2} / L_{S} L_{R}$ is the leakage factor, and $T_{R} \triangleq L_{R} / R_{R}$ is the rotor time constant. This model is often seen in the literature.
(b) Equate real and imaginary parts in part (a) to write the model as five differential equations.
(c) Use the answer in part (b) to find a state space model of the motor with state variables $i_{S a}, i_{S b}, \psi_{R a}, \psi_{R b}$, and ω_{R}.

Remark This problem illustrates the power of the space vector representation as the manipulations of the equations are all done with (complex) scalar quantities rather than dealing with vectors and matrices. The representations in parts (a) and (b) are standard forms seen in the literature.

Often the real and imaginary parts of $\psi_{R a}+j \psi_{R b}$ are referred to as the "rotor fluxes", but the actual rotor flux linkages are the real and imaginary parts of $\underline{\lambda}_{R}=\left(\psi_{R a}+j \psi_{R b}\right) e^{-j n_{p} \theta_{R}}$.

Problem 7 Simulation of an Induction Motor
(a) Using the state-space model derived in problem 6(c), simulate a twophase induction motor. Set the parameters as $R_{R}=3.9 \Omega, R_{S}=1.7$ $\Omega, L_{R}=0.014 H, L_{S}=0.014 H, M=0.0117 \mathrm{H}, J=0.00011 \mathrm{~kg}-$ $m^{2}, f=0 \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec}, n_{p}=3, \omega_{S}=(2 \pi) 60 \mathrm{rad} / \mathrm{sec}, V=V_{\max }=60$ $V($ peak $), I_{m a x}=12 A, \tau_{L}=0$. Let $u_{S a}=V \cos \left(\omega_{S} t\right), u_{S b}=V \sin \left(\omega_{S} t\right)$ and plot (a) $i_{S a}$ and $i_{S b}$, (b) $i_{R a}$ and $i_{R b}$, and (c) ω. Run the simulation long enough (about 0.5 sec) so that the speed ω_{R} goes to a constant steady-state value. Notice that at steady-state (constant) speed, the rotor currents are zero. Give a physical explanation as to why this happens.
(b) Rerun the simulation with a load torque of $\tau_{L}=0.2 \mathrm{~N}-\mathrm{m}$ acting on the system after it has reached steady-state (synchronous) speed. Be sure to run the simulation until the motor speed has reached its new (lower) steady-state speed. Note that the steady-state rotor currents are no longer zero. Why?
(c) What happens if $\tau_{L}=0.5 \mathrm{~N}-\mathrm{m}$ is used? Note that the frequency of the rotor currents increases as the load-torque increases. Give a physical explanation to why this happens.

Problem 8 Induction Motor Model in Terms of the Flux Linkages
With $\lambda_{S a}$ and $\lambda_{S b}$ the total flux linkage in stator phases a and b, respectively, define

$$
\underline{\lambda}_{S} \triangleq \lambda_{S a}+j \lambda_{S b} \triangleq L_{S} \underline{i}_{S}+M \underline{i}_{R} e^{+j n_{p} \theta_{R}} .
$$

Similarly, let $\lambda_{R a}$ and $\lambda_{R b}$ be the total flux linkage in rotor phases a and b, respectively, and define

$$
\underline{\lambda}_{R} \triangleq \lambda_{R a}+j \lambda_{R b} \triangleq L_{R} \underline{i}_{R}+M \underline{i}_{S} e^{-j n_{p} \theta_{R}} .
$$

(a) Show that the electrical equations of the induction motor may be written as

$$
\begin{aligned}
R_{S} \underline{i}_{S}+\frac{d}{d t} \underline{\lambda}_{S} & =\underline{u}_{S} \\
R_{R} \underline{i}_{R}+\frac{d}{d t} \underline{\lambda}_{R} & =0
\end{aligned}
$$

(b) Using the fact that

$$
\left[\begin{array}{l}
\underline{i}_{S} \\
\underline{i}_{R} e^{+j n_{p} \theta_{R}}
\end{array}\right]=\frac{1}{L_{S} L_{R}-M^{2}}\left[\begin{array}{ll}
+L_{R} & -M \\
-M & +L_{S}
\end{array}\right]\left[\begin{array}{l}
\underline{\lambda}_{S} \\
\underline{\lambda}_{R} e^{+j n_{p} \theta_{R}}
\end{array}\right]
$$

show that

$$
\begin{aligned}
\frac{R_{S}}{L_{S} L_{R}-M^{2}}\left(L_{R} \underline{\lambda}_{S}-M \underline{\lambda}_{R} e^{+j n_{p} \theta_{R}}\right)+\frac{d}{d t} \underline{\lambda}_{S} & =\underline{u}_{S} \\
\frac{R_{R}}{L_{S} L_{R}-M^{2}}\left(-M \underline{\lambda}_{S} e^{-j n_{p} \theta_{R}}+L_{S} \underline{\lambda}_{R}\right)+\frac{d}{d t} \underline{\lambda}_{R} & =0 \\
\frac{M}{L_{S} L_{R}-M^{2}} \operatorname{lm}\left\{\underline{\lambda}_{S}\left(\underline{\lambda}_{R} e^{+j n_{p} \theta_{R}}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega_{R}}{d t} \\
\frac{d \theta_{R}}{d t} & =\omega_{R}
\end{aligned}
$$

is a representation of the induction motor in terms of the variables $\underline{\lambda}_{S} \triangleq$ $\lambda_{S a}+j \lambda_{S b}, \underline{\lambda}_{R} \triangleq \lambda_{R a}+j \lambda_{R b}, \omega_{R}$, and θ_{R}.
(c) By equating real and imaginary parts of the answer to part (b), find a state space representation of the induction motor in terms of the state variables $\lambda_{S a}, \lambda_{S b}, \lambda_{R a}, \lambda_{R b}, \omega_{R}$, and θ_{R}.

Problem 9 Steady-State Solution of the Induction Motor Equations [1] Use the space vector formulation given in problem 5 to find a sinusoidal steady-state solution to the induction motor equations. In particular, try a solution of the form

$$
\begin{aligned}
\underline{u}_{S} & =u_{S a}+j u_{S b}=U_{S} \cos \left(\omega_{S} t+\phi_{U S}\right)+j U_{S} \sin \left(\omega_{S} t+\phi_{U s}\right) \\
& =U_{S} e^{j \phi_{U s}} e^{j \omega_{S} t}=\underline{U}_{S} e^{j \omega_{S} t} \\
\underline{i}_{S} & =i_{S a}+j i_{S b}=I_{S} \cos \left(\omega_{S} t+\phi_{S}\right)+j I_{S} \sin \left(\omega_{S} t+\phi_{S}\right) \\
& =I_{S} e^{j \phi_{S}} e^{j \omega_{S} t}=\underline{I}_{S} e^{j \omega_{S} t} \\
\underline{i}_{R} & =i_{R a}+j i_{R b}=I_{R} \cos \left(\left(\omega_{S}-\omega_{R}\right) t+\phi_{R}\right)+j I_{R} \sin \left(\left(\omega_{S}-\omega_{R}\right) t+\phi_{R}\right) \\
& =I_{R} e^{j \phi_{R}} e^{j\left(\omega_{S}-\omega_{R}\right) t}=\underline{I}_{R} e^{j\left(\omega_{S}-\omega_{R}\right) t} \\
\theta_{R}(t) & =\omega_{R} t
\end{aligned}
$$

where the stator electrical frequency ω_{S}, rotor speed ω_{R} and $\underline{U}_{S}=U_{S} e^{j \phi_{U s}}$ are assumed to be known and constant. The stator and rotor current phasors given by $\underline{I}_{S} \triangleq I_{S} e^{j \phi_{S}}$ and $\underline{I}_{R} \triangleq I_{R} e^{j \phi_{R}}$ are to be determined; that is, the unknowns are I_{S}, ϕ_{S}, I_{R}, and ϕ_{R}.
(a) Substitute these expressions into the space vector representation of the induction motor equations to obtain

$$
\begin{aligned}
\left(R_{S}+j \omega_{S} L_{S}\right) \underline{I}_{S}+j \omega_{S} M \underline{I}_{R} & =\underline{U}_{S} \\
\left(R_{R}+j\left(\omega_{S}-\omega_{R}\right) L_{R}\right) \underline{I}_{R}+j\left(\omega_{S}-\omega_{R}\right) M \underline{I}_{S} & =0 \\
M \operatorname{Im}\left\{\underline{I}_{S}\left(\underline{I}_{R}\right)^{*}\right\}-\tau_{L} & =0
\end{aligned}
$$

With the normalized slip speed defined by $S \triangleq\left(\omega_{S}-\omega_{R}\right) / \omega_{S}$, it follows that

$$
\left[\begin{array}{c}
\underline{I}_{S} \\
\underline{I}_{R}
\end{array}\right]=\frac{1}{\operatorname{det}}\left[\begin{array}{cc}
R_{R} / S+j \omega_{S} L_{R} & -j \omega_{S} M \\
-j \omega_{S} M & R_{S}+j \omega_{S} L_{S}
\end{array}\right]\left[\begin{array}{c}
\underline{U}_{S} \\
0
\end{array}\right]
$$

where

$$
\operatorname{det} \triangleq\left(R_{S}+j \omega_{S} L_{S}\right)\left(\frac{R_{R}}{S}+j \omega_{S} L_{R}\right)-\left(j \omega_{S} M\right)^{2}
$$

(b) Use these expressions to compute $I_{S}, \phi_{S}, I_{R}, \phi_{R}$, and $\tau=M \operatorname{Im}\left\{\underline{I}_{S}\left(\underline{I}_{R}\right)^{*}\right\}=$ $M I_{S} I_{R} \sin \left(\phi_{S}-\phi_{R}\right)$ as functions of the stator frequency ω_{S} and the normalized slip S.
(c) Using the parameter values given in problem 7, write a program to plot $\tau=M I_{S} I_{R} \sin \left(\phi_{S}-\phi_{R}\right)$ for a fixed $\omega_{S}=2 \pi * 60$ as S varies from 0 to 20 .

Problem 10 Model of an Induction Motor with Multiple Pole Pairs
Consider a two-phase motor with n_{p} pole pairs. With $n_{p}=2$, Figure 6.12(a) shows stator phase a and Figure $6.12(b)$ shows stator phase b.

FIGURE 6.12. (a) Sinusoidally wound stator phase a with $n_{p}=2$ and turns density $N_{S a}(\theta)=\left(n_{p} N_{S} / 2\right)\left|\sin \left(n_{p} \theta\right)\right|$. (b) Sinusoidally wound stator phase b with $n_{p}=2$ and turns density $N_{S b}(\theta)=\left(n_{p} N_{S} / 2\right)\left|\sin \left(n_{p}(\theta-\pi / 2)\right)\right|$.

The sinusoidal turns density for the windings of each phase are given by

$$
\begin{aligned}
N_{S a}(\theta) & =\frac{n_{p} N_{S}}{2}\left|\sin \left(n_{p} \theta\right)\right| \\
N_{S b}(\theta) & =\frac{n_{p} N_{S}}{2}\left|\sin \left(n_{p}(\theta-\pi / 2)\right)\right| \\
N_{R a}(\theta) & =\frac{n_{p} N_{R}}{2}\left|\sin \left(n_{p}\left(\theta-\theta_{R}\right)\right)\right| \\
N_{R b}(\theta) & =\frac{n_{p} N_{R}}{2}\left|\sin \left(n_{p}\left(\theta-\theta_{R}-\pi / 2\right)\right)\right|
\end{aligned}
$$

For example, the first pole pair of stator phase a is made up of the turns for $-\pi / n_{p}<\theta<\pi / n_{p}$, the second pole pair of stator phase a is made up of the turns for $\pi / n_{p}<\theta<3 \pi / n_{p}$, and so on. The total number of turns making up the first pole pair is $\int_{0}^{\pi / n_{p}} N_{S a}(\theta) d \theta=N_{S}$. As there are n_{p} pole pairs, the total number of turns in phase a is $n_{p} N_{S}$; that is, N_{S} is the number of turns in phase a per pole pair.
(a) Explain why Ampère's law $\oint \overrightarrow{\mathbf{H}} \cdot d \vec{\ell}=i_{\text {enclosed }}$ applied to the closed path 1-2-3-4-1 indicated in Figure 6.13 is

$$
\begin{equation*}
\oint_{1-2-3-4-1} \overrightarrow{\mathbf{H}}_{S a} \cdot d \overrightarrow{\boldsymbol{\ell}}=\int_{0}^{\theta} i_{S a} \frac{n_{p} N_{S}}{2} \sin \left(n_{p} \theta^{\prime}\right) d \theta^{\prime} \tag{6.60}
\end{equation*}
$$

for any angle θ.

FIGURE 6.13. Use of Ampère's law to determine the air gap radial magnetic field produced by $i_{S a}$ in a n_{p} pole-pair machine.

Show that equation (6.60) leads to

$$
\begin{equation*}
B_{S a}\left(i_{S a}, \theta\right)=\frac{\mu_{0} N_{S}}{2 g} i_{S a} \cos \left(n_{p} \theta\right) \tag{6.61}
\end{equation*}
$$

(b) Show that conservation of flux will hold in the air gap if this expression is modified by including the factor r_{R} / r to obtain

$$
\overrightarrow{\mathbf{B}}_{S a}\left(i_{S a}, r, \theta\right)=\frac{\mu_{0} N_{S}}{2 g} \frac{r_{R}}{r} i_{S a} \cos \left(n_{p} \theta\right) \hat{\mathbf{r}} .
$$

(c) Show that

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{S}\left(i_{S a}, i_{S b}, r, \theta\right)= & \overrightarrow{\mathbf{B}}_{S a}\left(i_{S a}, r, \theta\right)+\overrightarrow{\mathbf{B}}_{S b}\left(i_{S b}, r, \theta\right) \\
= & \frac{\mu_{0} N_{S}}{2 g} \frac{r_{R}}{r}\left(i_{S a} \cos \left(n_{p} \theta\right)+i_{S b} \sin \left(n_{p} \theta\right)\right) \hat{\mathbf{r}} \\
\overrightarrow{\mathbf{B}}_{R}\left(i_{R a}, i_{R b}, r, \theta-\theta_{R}\right)= & \overrightarrow{\mathbf{B}}_{R a}\left(i_{R a}, r, \theta-\theta_{R}\right)+\overrightarrow{\mathbf{B}}_{R b}\left(i_{R b}, r, \theta-\theta_{R}\right) \\
= & \frac{\mu_{0} N_{R}}{2 g} \frac{r_{R}}{r} \\
& \times\left(i_{R a} \cos \left(n_{p}\left(\theta-\theta_{R}\right)\right)+i_{R b} \sin \left(n_{p}\left(\theta-\theta_{R}\right)\right)\right) \hat{\mathbf{r}} .
\end{aligned}
$$

(d) Show that

$$
\begin{aligned}
\lambda_{S a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) \triangleq & \int_{\begin{array}{c}
\text { All loops of } \\
\text { stator phase } a
\end{array}}\left(\overrightarrow{\mathbf{B}}_{S}+\overrightarrow{\mathbf{B}}_{R}\right) \cdot d \overrightarrow{\mathbf{S}} \\
& =L_{S} i_{S a}+M\left(i_{R a} \cos \left(n_{p} \theta_{R}\right)-i_{R b} \sin \left(n_{p} \theta_{R}\right)\right) \\
\lambda_{S b}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right)= & \int_{\begin{array}{c}
\text { All loops of } \\
\text { stator phase } b
\end{array}}\left(\overrightarrow{\mathbf{B}}_{S}+\overrightarrow{\mathbf{B}}_{R}\right) \cdot d \overrightarrow{\mathbf{S}} \\
= & L_{S} i_{S b}+M\left(i_{R a} \sin \left(n_{p} \theta_{R}\right)+i_{R b} \cos \left(n_{p} \theta_{R}\right)\right) \\
\lambda_{R a}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right)= & \int_{\begin{array}{c}
\text { All loops of } \\
\text { rotor phase } a
\end{array}}\left(\overrightarrow{\mathbf{B}}_{S}+\overrightarrow{\mathbf{B}}_{R}\right) \cdot d \overrightarrow{\mathbf{S}} \\
= & L_{R} i_{R a}+M\left(i_{S a} \cos \left(n_{p} \theta_{R}\right)+i_{S b} \sin \left(n_{p} \theta_{R}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{R b}\left(i_{R a}, i_{R b}, i_{S a}, i_{S b}, \theta_{R}\right) & =\int_{\begin{array}{c}
\text { All loops of } \\
\text { rotor phase } b
\end{array}}\left(\overrightarrow{\mathbf{B}}_{S}+\overrightarrow{\mathbf{B}}_{R}\right) \cdot d \overrightarrow{\mathbf{S}} \\
& =L_{R} i_{R b}+M\left(-i_{S a} \sin \left(n_{p} \theta_{R}\right)+i_{S b} \cos \left(n_{p} \theta_{R}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
\tau_{R}= & n_{p} M\left(-i_{R a}(t) i_{S a}(t) \sin \left(n_{p} \theta_{R}\right)+i_{R a}(t) i_{S b}(t) \cos \left(n_{p} \theta_{R}\right)\right. \\
& \left.-i_{R b}(t) i_{S a}(t) \cos \left(n_{p} \theta_{R}\right)-i_{R b}(t) i_{S b}(t) \sin \left(n_{p} \theta_{R}\right)\right)
\end{aligned}
$$

where $L_{S}=\frac{\mu_{0} \ell_{1} \ell_{2} \pi}{8 g} N_{S}^{2}, L_{R}=\frac{\mu_{0} \ell_{1} \ell_{2} \pi}{8 g} N_{R}^{2}, M=\kappa \frac{\mu_{0} \pi \ell_{1} \ell_{2}}{8 g} N_{S} N_{R}$.

Mathematical Model of a Two-Phase Synchronous Machine

Problem 11 Mathematical Model of a PM Synchronous Machine
Consider a two-phase synchronous machine in which the rotor consists of a permanent magnet which produces a sinusoidally distributed radial magnetic field in the air gap given by

$$
\overrightarrow{\mathbf{B}}_{R}\left(r, \theta-\theta_{R}\right)=B_{m} \frac{r_{R}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} .
$$

At $r=r_{S}$ this is written as

$$
\overrightarrow{\mathbf{B}}_{R}\left(r_{S}, \theta-\theta_{R}\right)=\kappa B_{m} \frac{r_{R}}{r_{S}} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}}
$$

where the coupling factor κ is included to account for leakage.
The stator is identical to the wound rotor synchronous motor, that is, it has two sinusoidally wound phases 90° apart with voltage sources $u_{S a}$ and $u_{S b}$. The radial magnetic field in the air gap due to the stator currents is then given by (6.5).
(a) Show that the flux linkages in the stator phases have the form

$$
\begin{aligned}
& \lambda_{S a}(t)=L_{S} i_{S a}(t)+K_{m} \cos \left(\theta_{R}\right) \\
& \lambda_{S b}(t)=L_{S} i_{S b}(t)+K_{m} \sin \left(\theta_{R}\right)
\end{aligned}
$$

and compute explicit expressions for L_{S} and K_{m} in terms of $\mu_{0}, \kappa, \ell_{1}, \ell_{2}, N_{S}$, B_{m}, and g.
(b) Find the torque $\overrightarrow{\boldsymbol{\tau}}_{S}$ on the currents in the stator windings produced by $\overrightarrow{\mathbf{B}}_{R}\left(r_{S}, \theta-\theta_{R}\right)$. Then compute the torque on the rotor as $\overrightarrow{\boldsymbol{\tau}}_{R}=-\overrightarrow{\boldsymbol{\tau}}_{S}$.
(c) Give the complete set of equations characterizing a two-phase permanent magnet synchronous machine and show that it has the form (6.40).

Problem 12 Wound Rotor Synchronous Machine with Multiple Pole Pairs
Using the multiple-pole-pair model of a two-phase sinusoidally wound induction motor (see problem 10), show that it can be used directly to derive the multiple-pole-pair model of a two-phase sinusoidally wound synchronous motor. Specifically, show

$$
\begin{aligned}
\lambda_{S a}\left(i_{F}, i_{S a}, i_{S b}, \theta_{R}\right) & =L_{S} i_{S a}+M i_{F} \cos \left(n_{p} \theta_{R}\right) \\
\lambda_{S b}\left(i_{F}, i_{S a}, i_{S b}, \theta_{R}\right) & =L_{S} i_{S b}+M i_{F} \sin \left(n_{p} \theta_{R}\right) \\
\lambda_{F}\left(i_{F}, i_{S a}, i_{S b}, \theta_{R}\right) & =L_{F} i_{F a}+M\left(i_{S a} \cos \left(n_{p} \theta_{R}\right)+i_{S b} \sin \left(n_{p} \theta_{R}\right)\right) \\
\tau_{R} & =n_{p} M i_{F}\left(-i_{S a} \sin \left(n_{p} \theta_{R}\right)+i_{S b} \cos \left(n_{p} \theta_{R}\right)\right)
\end{aligned}
$$

where $L_{S}=\frac{\mu_{0} \ell_{1} \ell_{2} \pi}{8 g} N_{S}^{2}, L_{F}=\frac{\mu_{0} \ell_{1} \ell_{2} \pi}{8 g} N_{F}^{2}$, and $M=\kappa \frac{\mu_{0} \pi \ell_{1} \ell_{2}}{8 g} N_{S} N_{F}$. N_{S} is the number of winding per pole pair in each of the stator phases and N_{F} is the number of turns in the field winding. Use these expressions to deduce the dynamic equations of this machine.

Problem 13 State-Space Model of a Wound Rotor Synchronous Machine
For the synchronous machine model of problem 12 [see also (6.38)], note that the relationship between the currents and the flux linkages may be written as

$$
\left[\begin{array}{c}
\lambda_{S a} \\
\lambda_{S b} \\
\lambda_{F}
\end{array}\right] \triangleq\left[\begin{array}{ccc}
L_{S} & 0 & M \cos \left(n_{p} \theta_{R}\right) \\
0 & L_{S} & M \sin \left(n_{p} \theta_{R}\right) \\
M \cos \left(n_{p} \theta_{R}\right) & M \sin \left(n_{p} \theta_{R}\right) & L_{F}
\end{array}\right]\left[\begin{array}{c}
i_{S a} \\
i_{S b} \\
i_{F}
\end{array}\right]
$$

With $\Lambda\left(n_{p} \theta_{R}\right)$ denoting the 3×3 matrix on the right-hand side, it follows that

$$
\left[\begin{array}{c}
i_{S a} \\
i_{S b} \\
i_{F}
\end{array}\right]=\Lambda^{-1}\left(n_{p} \theta_{R}\right)\left[\begin{array}{c}
\lambda_{S a} \\
\lambda_{S b} \\
\lambda_{F}
\end{array}\right]
$$

where, with $\sigma \triangleq 1-M^{2} / L_{S} L_{F}$,

$$
\begin{aligned}
& \Lambda^{-1}\left(n_{p} \theta_{R}\right)=\frac{1}{\sigma L_{S}^{2} L_{F}} \times \\
& {\left[\begin{array}{ccc}
L_{S} L_{F}-M^{2} \sin ^{2}\left(n_{p} \theta_{R}\right) & M^{2} \sin \left(n_{p} \theta_{R}\right) \cos \left(n_{p} \theta_{R}\right) & -L_{S} M \cos \left(n_{p} \theta_{R}\right) \\
M^{2} \sin \left(n_{p} \theta_{R}\right) \cos \left(n_{p} \theta_{R}\right) & L_{S} L_{F}-M^{2} \cos ^{2}\left(n_{p} \theta_{R}\right) & -L_{S} M \sin \left(n_{p} \theta_{R}\right) \\
-L_{S} M \cos \left(n_{p} \theta_{R}\right) & -L_{S} M \sin \left(n_{p} \theta_{R}\right) & L_{S}^{2}
\end{array}\right] .}
\end{aligned}
$$

(a) Use these relationships to find a state-space representation of the synchronous motor in terms of the flux linkages $\lambda_{S a}, \lambda_{S b}$, and λ_{F}. Be sure to include the torque equation.
(b) Use these relationships to find a state-space representation of the synchronous motor in terms of the currents $i_{S a}, i_{S b}$, and i_{F}. Be sure to include the torque equation.

Problem 14 DQ State-Space Model of a Synchronous Machine
For the synchronous machine model of Problem 12 [see also (6.38)], consider a change of coordinates to the so-called direct-quadrature ($d q$) reference frame defined by

$$
\begin{aligned}
& {\left[\begin{array}{c}
u_{d} \\
u_{q} \\
u_{F}
\end{array}\right] \triangleq\left[\begin{array}{ccc}
\cos \left(n_{p} \theta_{R}\right) & \sin \left(n_{p} \theta_{R}\right) & 0 \\
-\sin \left(n_{p} \theta_{R}\right) & \cos \left(n_{p} \theta_{R}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
u_{S a} \\
u_{S b} \\
u_{F}
\end{array}\right]} \\
& {\left[\begin{array}{c}
i_{d} \\
i_{q} \\
i_{F}
\end{array}\right] \triangleq\left[\begin{array}{ccc}
\cos \left(n_{p} \theta_{R}\right) & \sin \left(n_{p} \theta_{R}\right) & 0 \\
-\sin \left(n_{p} \theta_{R}\right) & \cos \left(n_{p} \theta_{R}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
i_{S a} \\
i_{S b} \\
i_{F}
\end{array}\right]} \\
& {\left[\begin{array}{c}
\lambda_{d} \\
\lambda_{q} \\
\lambda_{F}
\end{array}\right] \triangleq\left[\begin{array}{ccc}
\cos \left(n_{p} \theta_{R}\right) & \sin \left(n_{p} \theta_{R}\right) & 0 \\
-\sin \left(n_{p} \theta_{R}\right) & \cos \left(n_{p} \theta_{R}\right) & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
\lambda_{S a} \\
\lambda_{S b} \\
\lambda_{F}
\end{array}\right] .}
\end{aligned}
$$

(a) Show that

$$
\left[\begin{array}{c}
\lambda_{d} \\
\lambda_{q} \\
\lambda_{F}
\end{array}\right]=\left[\begin{array}{ccc}
L_{S} & 0 & M \\
0 & L_{S} & 0 \\
M & 0 & L_{F}
\end{array}\right]\left[\begin{array}{c}
i_{d} \\
i_{q} \\
i_{F}
\end{array}\right] .
$$

(b) Show that

$$
\left[\begin{array}{c}
i_{d} \\
i_{q} \\
i_{F}
\end{array}\right]=\frac{1}{\sigma L_{S} L_{F}}\left[\begin{array}{ccc}
L_{F} & 0 & -M \\
0 & \sigma L_{F} & 0 \\
-M & 0 & L_{S}
\end{array}\right]\left[\begin{array}{c}
\lambda_{d} \\
\lambda_{q} \\
\lambda_{F}
\end{array}\right]
$$

(c) Use the expressions from parts (a) and (b) to show that

$$
\begin{aligned}
\frac{d \lambda_{d}}{d t} & =n_{p} \omega \lambda_{q}-R_{S} i_{d}+u_{d} \\
\frac{d \lambda_{q}}{d t} & =-n_{p} \omega \lambda_{d}-R_{S} i_{q}+u_{q} \\
\frac{d \lambda_{F}}{d t} & =-R_{F} i_{F}+u_{F} \\
J \frac{d \omega_{R}}{d t} & =M i_{F} i_{q}-\tau_{L}
\end{aligned}
$$

and so

$$
\begin{aligned}
\frac{d}{d t}\left[\begin{array}{ccc}
L_{S} & 0 & M \\
0 & L_{S} & 0 \\
M & 0 & L_{F}
\end{array}\right]\left[\begin{array}{c}
i_{d} \\
i_{q} \\
i_{F}
\end{array}\right]= & {\left[\begin{array}{ccc}
-R_{S} & n_{p} \omega L_{S} & 0 \\
-n_{p} \omega L_{S} & -R_{S} & -n_{p} \omega M \\
0 & 0 & R_{F}
\end{array}\right]\left[\begin{array}{c}
i_{d} \\
i_{q} \\
i_{F}
\end{array}\right] } \\
& +\left[\begin{array}{c}
u_{d} \\
u_{q} \\
u_{F}
\end{array}\right] .
\end{aligned}
$$

(d) Show that

$$
\begin{aligned}
& \frac{d}{d t}\left[\begin{array}{c}
i_{d} \\
i_{q} \\
i_{F}
\end{array}\right]= \frac{1}{\sigma}\left[\begin{array}{ccc}
-R_{S} / L_{S} & n_{p} \omega & -M / L_{S} \\
-\sigma n_{p} \omega & -\sigma R_{S} / L_{S} & -n_{p} \omega \sigma M / L_{S} \\
-M R_{S} / L_{S} L_{F} & -n_{p} \omega M / L_{F} & R_{F} / L_{F}
\end{array}\right]\left[\begin{array}{c}
i_{d} \\
i_{q} \\
i_{F}
\end{array}\right] \\
&+\frac{1}{\sigma L_{S} L_{F}}\left[\begin{array}{ccc}
L_{F} & 0 & -M \\
0 & \sigma L_{F} & 0 \\
-M & 0 & L_{S}
\end{array}\right]\left[\begin{array}{c}
u_{d} \\
u_{q} \\
u_{F}
\end{array}\right] \\
& J \frac{d \omega_{R}}{d t}=M i_{F} i_{q}-\tau_{L}
\end{aligned}
$$

where

$$
\sigma \triangleq 1-\frac{M^{2}}{L_{S} L_{F}} .
$$

Magnetic Field Energy, Co-energy and Torque

Problem 15 Co-energy

The co-energy is defined by

$$
W_{c o-\text { energy }} \triangleq i_{S a} \lambda_{S a}+i_{S b} \lambda_{S b}+i_{R a} \lambda_{R a}+i_{R b} \lambda_{R b}-W_{\text {field }}
$$

The expression for the field energy given in equation (6.49) is valid if magnetic saturation is not present. In this case, show that $W_{\text {co-energy }}=W_{\text {field }}$ and consequently, either (6.52) or (6.59) is valid for computing the torque. (The co-energy is not equal to the magnetic field energy when magnetic saturation is present in the iron.)

Problem 16 Co-energy
Inverting the flux linkage equations (6.45) gives $\left(\sigma=1-\frac{M^{2}}{L_{S} L_{R}}\right)$

$$
\begin{aligned}
i_{S a} & =\frac{1}{\sigma L_{S} L_{R}}\left(L_{R} \lambda_{S a}-M\left(+\lambda_{R a} \cos \left(\theta_{R}\right)-\lambda_{R b} \sin \left(\theta_{R}\right)\right)\right) \\
i_{S b} & =\frac{1}{\sigma L_{S} L_{R}}\left(L_{R} \lambda_{S b}-M\left(+\lambda_{R a} \sin \left(\theta_{R}\right)+\lambda_{R b} \cos \left(\theta_{R}\right)\right)\right) \\
i_{R a} & =\frac{1}{\sigma L_{S} L_{R}}\left(L_{S} \lambda_{R a}-M\left(+\lambda_{S a} \cos \left(\theta_{R}\right)+\lambda_{S b} \sin \left(\theta_{R}\right)\right)\right) \\
i_{R b} & =\frac{1}{\sigma L_{S} L_{R}}\left(L_{S} \lambda_{R b}-M\left(-\lambda_{S a} \sin \left(\theta_{R}\right)+\lambda_{S b} \cos \left(\theta_{R}\right)\right)\right) .
\end{aligned}
$$

Use this to find an expression for the field energy and torque in terms of $\lambda_{S a}, \lambda_{S b}, \lambda_{R a}, \lambda_{R b}$, and θ_{R}.

Problem 17 Co-energy
Verify equation (6.48).
Problem 18 Co-energy
Verify equation (6.50).
Problem 19 Energy, Co-energy, and Torque in Synchronous Machines Use the equations (6.35) and (6.36) to compute the field energy and the co-energy in a two-phase wound rotor synchronous machine. Use $\tau=$ $\partial W_{\text {field }} / \partial \theta_{R}$ to obtain an expression for the torque put out by this machine and compare it with the expression (6.37).

Problem 20 Specifying the Derivatives of the Induction Motor Model Prove that given any state $i_{S a}, i_{S b}, i_{R a}, i_{R b}$, and θ_{R} of the motor, the derivatives $d i_{S a} / d t, d i_{S b} / d t, d i_{R a} / d t, d i_{R b} / d t$, and $d \theta_{R} / d t$ can be arbitrarily chosen by appropriately choosing $u_{S a}, u_{S b}, u_{R a}, u_{R b}$, and τ_{L}.

This Page Intentionally Left Blank

7

Symmetric Balanced Three-Phase AC Machines

The mathematical models of two-phase induction and synchronous machines have been derived. In this chapter, the mathematical models of three-phase induction and permanent magnet synchronous machines are developed. From the three-phase models, two-phase equivalent models are derived. A classical steady-state analysis of the induction motor is also presented including the development of an equivalent circuit from the nonlinear differential equation model. Finally, the chapter concludes with a discussion on why power systems are three-phase systems with sinusoidal voltages operating at 60 Hz is presented.

7.1 Mathematical Model of a Three-Phase Induction Motor

A three-phase induction motor model is now developed and its two-phase equivalent model is then derived. Figure 7.1 illustrates how the stator and rotor windings are laid out in a three-phase machine.

FIGURE 7.1. Cross-sectional view of a three-phase induction motor. The stator phases are $2 \pi / 3$ radians from each other as are the rotor phases.

To explain the winding layout in more detail, Figure 7.2 shows stator phase 1 where it is seen that one side of a loop is wound at $\pi / 3$ (the other side at $4 \pi / 3$), two loop sides are wound at $\pi / 2$ (the other two sides at $3 \pi / 2$), and, finally, one loop side is wound at $2 \pi / 3$ (the other side at $5 \pi / 3$).

FIGURE 7.2. Cross-sectional view of stator phase 1.
Figures 7.1 and 7.2 show that the loops of the phases are wound in two layers which is a common layout in AC machines. Using Ampère's law, ${ }^{1}$ one can straightforwardly compute the radial magnetic field in the air gap. The developed view in Figure 7.3 shows that the resulting radial magnetic field $B_{S 1}$ in the air gap due to the current $i_{S 1}$ in stator phase 1 is a staircase function that is approximately sinusoidal.

FIGURE 7.3. Developed view of the windings of stator phase 1.
The machine of Figure 7.1 (or Figure 7.2) is referred to as a symmetric

[^54]machine because the stator phases are identical in structure only rotated $2 \pi / 3$ radians from each other and similarly for the rotor phases.

In order to obtain a sinusoidally (spatially) distributed magnetic field in the air gap, it will be necessary to assume that the phases are sinusoidally wound. This is now described.

Sinusoidal Windings

Let θ_{R} denote the rotor position taken to coincide with the magnetic axis of rotor phase 1 as shown in Figure 7.1, θ is an arbitrary angular position in the air gap so that $\beta \triangleq \theta-\theta_{R}$ represents the same angle with respect to the rotor position.

Now consider the three stator phases to be sinusoidally wound with their stator turns densities given by

$$
\begin{aligned}
& N_{S 1}(\theta)=\frac{N_{S}}{2}|\sin (\theta)| \\
& N_{S 2}(\theta)=\frac{N_{S}}{2}|\sin (\theta-2 \pi / 3)| \\
& N_{S 3}(\theta)=\frac{N_{S}}{2}|\sin (\theta-4 \pi / 3)|
\end{aligned}
$$

Stator phases 1 and 2 are illustrated in Figures 7.4(a) and 7.4(b), respectively.

FIGURE 7.4. Sinusoidally wound stator phases. (a) Stator phase 1 windings. (b) Stator phase 2 windings.

Similarly, the rotor turns densities are given by

$$
\begin{aligned}
& N_{R 1}\left(\theta-\theta_{R}\right)=\frac{N_{R}}{2}\left|\sin \left(\theta-\theta_{R}\right)\right| \\
& N_{R 2}\left(\theta-\theta_{R}\right)=\frac{N_{R}}{2}\left|\sin \left(\theta-\theta_{R}-2 \pi / 3\right)\right| \\
& N_{R 3}\left(\theta-\theta_{R}\right)=\frac{N_{R}}{2}\left|\sin \left(\theta-\theta_{R}-4 \pi / 3\right)\right|
\end{aligned}
$$

This is referred to as a symmetric machine as the windings are all identical in construction being shifted by $2 \pi / 3$ with respect to each other and, similarly, the rotor windings are identical in construction also being shifted by $2 \pi / 3$ with respect to each other. As illustrated in Figure 7.5, the stator end windings $1^{\prime}, 2^{\prime}$, and 3^{\prime} are tied together to form the motor neutral \hat{N}, and the stator end windings 1,2 , and 3 are connected to the source voltages $u_{S 1}, u_{S 2}$, and $u_{S 3}$, respectively. The other end of the source voltages are tied together to form the source neutral N. This is called a wye-connected motor. Similarly, the rotor end windings 1,2 , and 3 are shorted (connected) together and the other rotor end windings $1^{\prime}, 2^{\prime}$, and 3^{\prime} are also shorted together as shown in Figure 7.6. Due to the wye connection of the stator and rotor windings, the neutrals N and \hat{N} in Figures 7.5 and 7.6, respectively, are isolated so that $i_{S 1}+i_{S 2}+i_{S 2} \equiv 0$ and $i_{R 1}+i_{R 2}+i_{R 2} \equiv 0$.

FIGURE 7.5. Wye-connected stator windings.

FIGURE 7.6. Wye-connected rotor windings.

The stator magnetic field is the vector sum of the fields due to each phase. These fields are

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{S 1}\left(i_{S 1}, r, \theta\right) & =\frac{\mu_{0} N_{S}}{2 g} \frac{r_{R}}{r} i_{S 1} \cos (\theta) \hat{\mathbf{r}} \\
\overrightarrow{\mathbf{B}}_{S 2}\left(i_{S 2}, r, \theta\right) & =\frac{\mu_{0} N_{S}}{2 g} \frac{r_{R}}{r} i_{S 2} \cos (\theta-2 \pi / 3) \hat{\mathbf{r}} \\
\overrightarrow{\mathbf{B}}_{S 3}\left(i_{S 3}, r, \theta\right) & =\frac{\mu_{0} N_{S}}{2 g} \frac{r_{R}}{r} i_{S 3} \cos (\theta-4 \pi / 3) \hat{\mathbf{r}}
\end{aligned}
$$

so that

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S}\left(i_{S 1}, i_{S 2}, i_{S 3}, r, \theta\right)= & \frac{\mu_{0} N_{S}}{2 g} \frac{r_{R}}{r}\left(i_{S 1} \cos (\theta)+i_{S 2} \cos (\theta-2 \pi / 3)\right. \\
& \left.+i_{S 3} \cos (\theta-4 \pi / 3)\right) \hat{\mathbf{r}} \tag{7.1}
\end{align*}
$$

If the balanced ${ }^{2}$ three-phase set of currents

$$
\begin{aligned}
i_{S 1} & =I_{S} \cos \left(\omega_{S} t\right) \\
i_{S 2} & =I_{S} \cos \left(\omega_{S} t-2 \pi / 3\right) \\
i_{S 3} & =I_{S} \cos \left(\omega_{S} t-4 \pi / 3\right)
\end{aligned}
$$

are applied to the stator phases, the corresponding stator magnetic field can be written as

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}_{S}\left(I_{S}, r, \theta, t\right)= & \frac{\mu_{0} N_{S} I_{S}}{2 g} \frac{r_{R}}{r}\left(\cos \left(\omega_{S} t\right) \cos (\theta)+\cos \left(\omega_{S} t-\frac{2 \pi}{3}\right) \cos \left(\theta-\frac{2 \pi}{3}\right)\right. \\
& \left.+\cos \left(\omega_{S} t-\frac{4 \pi}{3}\right) \cos (\theta-4 \pi / 3)\right) \hat{\mathbf{r}} \\
= & \frac{\mu_{0} N_{S} I_{S}}{2 g} \frac{r_{R}}{r} \frac{3}{2} \cos \left(\theta-\omega_{S} t\right) \hat{\mathbf{r}} .
\end{aligned}
$$

That is, with balanced three-phase currents, a radial rotating magnetic field is established in the air gap.

Similarly, the magnetic fields due to the rotor currents are given by

$$
\begin{aligned}
& \overrightarrow{\mathbf{B}}_{R 1}\left(i_{R 1}, r, \theta\right)=\frac{\mu_{0} N_{R}}{2 g} \frac{r_{R}}{r} i_{R 1} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} \\
& \overrightarrow{\mathbf{B}}_{R 2}\left(i_{R 2}, r, \theta\right)=\frac{\mu_{0} N_{R}}{2 g} \frac{r_{R}}{r} i_{R 2} \cos \left(\theta-\theta_{R}-2 \pi / 3\right) \hat{\mathbf{r}} \\
& \overrightarrow{\mathbf{B}}_{R 3}\left(i_{R 3}, r, \theta\right)=\frac{\mu_{0} N_{R}}{2 g} \frac{r_{R}}{r} i_{R 3} \cos \left(\theta-\theta_{R}-4 \pi / 3\right) \hat{\mathbf{r}}
\end{aligned}
$$

[^55]so that, with $\beta=\theta-\theta_{R}$,
\[

$$
\begin{align*}
& \overrightarrow{\mathbf{B}}_{R}\left(i_{R 1}, i_{R 2}, i_{R 3}, r, \beta\right) \\
& =\frac{\mu_{0} N_{R}}{2 g} \frac{r_{R}}{r}\left(i_{R 1} \cos \left(\theta-\theta_{R}\right)+i_{R 2} \cos \left(\theta-\theta_{R}-2 \pi / 3\right)\right. \\
& \left.\quad+i_{R 3} \cos \left(\theta-\theta_{R}-4 \pi / 3\right)\right) \hat{\mathbf{r}} \\
& =\frac{\mu_{0} N_{R}}{2 g} \frac{r_{R}}{r}\left(i_{R 1} \cos (\beta)+i_{R 2} \cos (\beta-2 \pi / 3)+i_{R 3} \cos (\beta-4 \pi / 3)\right) \hat{\mathbf{r}} \tag{7.2}
\end{align*}
$$
\]

As explained in the previous chapter, the coupling factor κ is included in the expression for $\overrightarrow{\mathbf{B}}_{R}$ on the stator side of the air gap and is included in the expression for $\overrightarrow{\mathbf{B}}_{S}$ on the rotor side of the air gap to account for the spreading (leakage) of the magnetic field from the radial direction as one goes across the air gap. That is, with $\overrightarrow{\mathbf{B}}_{S}$ and $\overrightarrow{\mathbf{B}}_{R}$ given by (7.1) and (7.2) respectively, the total radial magnetic field $\overrightarrow{\mathbf{B}}$ on the stator side of the air gap is taken as

$$
\begin{align*}
\overrightarrow{\mathbf{B}}\left(i_{S 1}, i_{S 2}, i_{S 3}, i_{R 1}, i_{R 2}, i_{R 3}, r_{S}, \theta, \theta_{R}\right) \triangleq & \overrightarrow{\mathbf{B}}_{S}\left(i_{S 1}, i_{S 2}, i_{S 3}, r_{S}, \theta\right) \\
& +\kappa \overrightarrow{\mathbf{B}}_{R}\left(i_{R 1}, i_{R 2}, i_{R 3}, r_{S}, \theta-\theta_{R}\right) \tag{7.3}
\end{align*}
$$

On the rotor side of the air gap, the total radial magnetic field $\overrightarrow{\mathbf{B}}$ is taken as

$$
\begin{aligned}
\overrightarrow{\mathbf{B}}\left(i_{S 1}, i_{S 2}, i_{S 3}, i_{R 1}, i_{R 2}, i_{R 3}, r_{R}, \theta, \theta_{R}\right) \triangleq & \kappa \overrightarrow{\mathbf{B}}_{S}\left(i_{S 1}, i_{S 2}, i_{S 3}, r_{R}, \theta\right) \\
& +\overrightarrow{\mathbf{B}}_{R}\left(i_{R 1}, i_{R 2}, i_{R 3}, r_{R}, \theta-\theta_{R}\right)
\end{aligned}
$$

or, in terms of $\beta=\theta-\theta_{R}$ and an abuse of notation,

$$
\begin{align*}
\overrightarrow{\mathbf{B}}\left(i_{S 1}, i_{S 2}, i_{S 3}, i_{R 1}, i_{R 2}, i_{R 3}, r_{R}, \beta, \theta_{R}\right) \triangleq & \kappa \overrightarrow{\mathbf{B}}_{S}\left(i_{S 1}, i_{S 2}, i_{S 3}, r_{R}, \beta+\theta_{R}\right) \\
& +\overrightarrow{\mathbf{B}}_{R}\left(i_{R 1}, i_{R 2}, i_{R 3}, r_{R}, \beta\right) \tag{7.4}
\end{align*}
$$

Stator Flux Linkages

Using (7.3) for $\overrightarrow{\mathbf{B}}$ on the stator side of the air gap, the stator flux linkages are given by (see problem 1)

$$
\begin{align*}
\psi_{S 1}(t)= & \int_{0}^{\pi} \frac{N_{S}}{2} \sin (\theta) \\
& \times\left(\int_{\theta-\pi}^{\theta} \ell_{1} r_{S} B\left(i_{S 1}, i_{S 2}, i_{S 3}, i_{R 1}, i_{R 2}, i_{R 3}, r_{S}, \theta^{\prime}, \theta_{R}\right) d \theta^{\prime}\right) d \theta \\
= & \frac{2}{3} L_{S}\left(i_{S 1}+i_{S 2} \cos (2 \pi / 3)+i_{S 3} \cos (4 \pi / 3)\right) \\
+ & \frac{2}{3} M\left(i_{R 1} \cos \left(\theta_{R}\right)+i_{R 2} \cos \left(\theta_{R}+2 \pi / 3\right)+i_{R 3} \cos \left(\theta_{R}+4 \pi / 3\right)\right) \tag{7.5}
\end{align*}
$$

$$
\begin{align*}
\psi_{S 2}(t)= & \int_{2 \pi / 3}^{2 \pi / 3+\pi} \frac{N_{S}}{2} \sin (\theta-2 \pi / 3) \\
& \times\left(\int_{\theta-\pi}^{\theta} \ell_{1} r_{S} B\left(i_{S 1}, i_{S 2}, i_{S 3}, i_{R 1}, i_{R 2}, i_{R 3}, r_{S}, \theta^{\prime}, \theta_{R}\right) d \theta^{\prime}\right) d \theta \\
= & \frac{2}{3} L_{S}\left(i_{S 1} \cos (2 \pi / 3)+i_{S 2}+i_{S 3} \cos (2 \pi / 3)\right) \\
+ & \frac{2}{3} M\left(i_{R 1} \cos \left(\theta_{R}-2 \pi / 3\right)+i_{R 2} \cos \left(\theta_{R}\right)+i_{R 3} \cos \left(\theta_{R}+2 \pi / 3\right)\right) \tag{7.6}
\end{align*}
$$

$$
\begin{align*}
\psi_{S 3}(t)= & \int_{4 \pi / 3}^{4 \pi / 3+\pi} \frac{N_{S}}{2} \sin (\theta-4 \pi / 3) \\
& \times\left(\int_{\theta-\pi}^{\theta} \ell_{1} r_{S} B\left(i_{S 1}, i_{S 2}, i_{S 3}, i_{R 1}, i_{R 2}, i_{R 3}, r_{S}, \theta^{\prime}, \theta_{R}\right) d \theta^{\prime}\right) d \theta \\
= & \frac{2}{3} L_{S}\left(i_{S 1} \cos (4 \pi / 3)+i_{S 2} \cos (2 \pi / 3)+i_{S 3}\right) \\
& +\frac{2}{3} M\left(i_{R 1} \cos \left(\theta_{R}-4 \pi / 3\right)+i_{R 2} \cos \left(\theta_{R}-2 \pi / 3\right)+i_{R 3} \cos \left(\theta_{R}\right)\right) \tag{7.7}
\end{align*}
$$

where

$$
\begin{align*}
L_{S} & \triangleq \frac{3}{2} \frac{\pi \mu_{0} \ell_{1} \ell_{2} N_{S}^{2}}{8 g} \\
M & \triangleq \frac{3}{2} \kappa \frac{\pi \mu_{0} \ell_{1} \ell_{2} N_{S} N_{R}}{8 g} \tag{7.8}\\
L_{R} & \triangleq \frac{3}{2} \frac{\pi \mu_{0} \ell_{1} \ell_{2} N_{R}^{2}}{8 g}
\end{align*}
$$

The reason for the factor $2 / 3$ in equations (7.5), (7.6), and (7.7), and the factor $3 / 2$ in the expressions for L_{S}, M, and L_{R} in (7.8) are so that the expressions (7.8) represent the two-phase equivalent coefficients of inductances in the two-phase equivalent model as will be shown below. In matrix form, the flux linkages may be written as

$$
\begin{align*}
& {\left[\begin{array}{l}
\psi_{S 1}(t) \\
\psi_{S 2}(t) \\
\psi_{S 3}(t)
\end{array}\right]=\frac{2}{3} L_{S}\left[\begin{array}{ccc}
1 & \cos (2 \pi / 3) & \cos (4 \pi / 3) \\
\cos (2 \pi / 3) & 1 & \cos (2 \pi / 3) \\
\cos (4 \pi / 3) & \cos (-2 \pi / 3) & 1
\end{array}\right]\left[\begin{array}{l}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right]} \\
& +\frac{2}{3} M\left[\begin{array}{ccc}
\cos \left(\theta_{R}\right) & \cos \left(\theta_{R}+2 \pi / 3\right) & \cos \left(\theta_{R}+4 \pi / 3\right) \\
\cos \left(\theta_{R}-2 \pi / 3\right) & \cos \left(\theta_{R}\right) & \cos \left(\theta_{R}+2 \pi / 3\right) \\
\cos \left(\theta_{R}-4 \pi / 3\right) & \cos \left(\theta_{R}-2 \pi / 3\right) & \cos \left(\theta_{R}\right)
\end{array}\right]\left[\begin{array}{l}
i_{R 1}(t) \\
i_{R 2}(t) \\
i_{R 3}(t)
\end{array}\right] . \tag{7.9}
\end{align*}
$$

Note that $\theta_{R}-4 \pi / 3=\theta_{R}-2 \pi+2 \pi / 3$ so that $\cos \left(\theta_{R}-4 \pi / 3\right)=\cos \left(\theta_{R}+\right.$ $2 \pi / 3)$. With the obvious definitions for the matrices C_{1} and $C_{2}\left(\theta_{R}\right)$, the flux linkages are written more compactly as

$$
\left[\begin{array}{l}
\psi_{S 1}(t) \tag{7.10}\\
\psi_{S 2}(t) \\
\psi_{S 3}(t)
\end{array}\right]=C_{1}\left[\begin{array}{c}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right]+C_{2}\left(\theta_{R}\right)\left[\begin{array}{c}
i_{R 1}(t) \\
i_{R 2}(t) \\
i_{R 3}(t)
\end{array}\right]
$$

Rotor Flux Linkages

Using (7.4) for $\overrightarrow{\mathbf{B}}$ on the rotor side of the air gap, the rotor flux linkages are given by (see problem 2)

$$
\begin{align*}
\psi_{R 1}(t)= & \int_{0}^{\pi} \frac{N_{R}}{2} \sin (\beta) \\
& \quad \times\left(\int_{\beta-\pi}^{\beta} \ell_{1} r_{R} B\left(i_{S 1}, i_{S 2}, i_{S 3}, i_{R 1}, i_{R 2}, i_{R 3}, r_{R}, \beta^{\prime}, \theta_{R}\right) d \beta^{\prime}\right) d \beta \\
= & \frac{2}{3} L_{R}\left(i_{R 1}+i_{S R 2} \cos (2 \pi / 3)+i_{R 1} \cos (4 \pi / 3)\right) \\
& +\frac{2}{3} M\left(i_{S 1} \cos \left(\theta_{R}\right)+i_{S 2} \cos \left(\theta_{R}-2 \pi / 3\right)+i_{S 3} \cos \left(\theta_{R}-4 \pi / 3\right)\right) \tag{7.11}
\end{align*}
$$

$$
\begin{align*}
\psi_{R 2}(t)= & \int_{2 \pi / 3}^{2 \pi / 3+\pi} \frac{N_{R}}{2} \sin (\beta-2 \pi / 3) \\
& \times\left(\int_{\beta-\pi}^{\beta} \ell_{1} r_{R} B\left(i_{S 1}, i_{S 2}, i_{S 3}, i_{R 1}, i_{R 2}, i_{R 3}, r_{R}, \beta^{\prime}, \theta_{R}\right) d \beta^{\prime}\right) d \beta \\
= & \frac{2}{3} L_{R}\left(i_{R 1} \cos (2 \pi / 3)+i_{R 2}+i_{R 3} \cos (2 \pi / 3)\right) \\
& +\frac{2}{3} M\left(i_{S 1} \cos \left(\theta_{R}+2 \pi / 3\right)+i_{S 2} \cos \left(\theta_{R}\right)+i_{S 3} \cos \left(\theta_{R}-2 \pi / 3\right)\right) \tag{7.12}
\end{align*}
$$

$$
\begin{align*}
\psi_{R 3}(t)= & \int_{4 \pi / 3}^{4 \pi / 3+\pi} \frac{N_{R}}{2} \sin (\beta-4 \pi / 3) \\
& \times\left(\int_{\beta-\pi}^{\beta} \ell_{1} r_{R} B\left(i_{S 1}, i_{S 2}, i_{S 3}, i_{R 1}, i_{R 2}, i_{R 3}, r_{R}, \beta^{\prime}, \theta_{R}\right) d \beta^{\prime}\right) d \beta \\
= & \frac{2}{3} L_{R}\left(i_{R 1} \cos (4 \pi / 3)+i_{R 2} \cos (2 \pi / 3)+i_{R 3}\right) \\
& +\frac{2}{3} M\left(i_{S 1} \cos \left(\theta_{R}+4 \pi / 3\right)+i_{S 2} \cos \left(\theta_{R}+2 \pi / 3\right)+i_{S 3} \cos \left(\theta_{R}\right)\right) \tag{7.13}
\end{align*}
$$

In matrix form, the rotor flux linkages may be written as

$$
\begin{align*}
& {\left[\begin{array}{c}
\psi_{R 1}(t) \\
\psi_{R 2}(t) \\
\psi_{R 3}(t)
\end{array}\right]=\frac{2}{3} L_{R}\left[\begin{array}{ccc}
1 & \cos (2 \pi / 3) & \cos (4 \pi / 3) \\
\cos (2 \pi / 3) & 1 & \cos (2 \pi / 3) \\
\cos (4 \pi / 3) & \cos (2 \pi / 3) & 1
\end{array}\right]\left[\begin{array}{c}
i_{R 1}(t) \\
i_{R 2}(t) \\
i_{R 3}(t)
\end{array}\right]} \\
& +\frac{2}{3} M\left[\begin{array}{ccc}
\cos \left(\theta_{R}\right) & \cos \left(\theta_{R}-2 \pi / 3\right) & \cos \left(\theta_{R}-4 \pi / 3\right) \\
\cos \left(\theta_{R}+2 \pi / 3\right) & \cos \left(\theta_{R}\right) & \cos \left(\theta_{R}-2 \pi / 3\right) \\
\cos \left(\theta_{R}+4 \pi / 3\right) & \cos \left(\theta_{R}+2 \pi / 3\right) & \cos \left(\theta_{R}\right)
\end{array}\right]\left[\begin{array}{c}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right] \tag{7.14}
\end{align*}
$$

or, more compactly,

$$
\left[\begin{array}{c}
\psi_{R 1}(t) \tag{7.15}\\
\psi_{R 2}(t) \\
\psi_{R 3}(t)
\end{array}\right]=C_{1}\left[\begin{array}{c}
i_{R 1}(t) \\
i_{R 2}(t) \\
i_{R 3}(t)
\end{array}\right]+C_{2}\left(-\theta_{R}\right)\left[\begin{array}{c}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right]
$$

where C_{1} and C_{2} are defined as in (7.10).

Balanced Conditions

As described above, the source voltages $u_{S 1}(t), u_{S 2}(t)$, and $u_{S 3}(t)$ are wye connected as are the stator and rotor phases (see Figures 7.5 and 7.6). Consequently, it is always true that

$$
i_{S 1}(t)+i_{S 2}(t)+i_{S 3}(t) \equiv 0
$$

$$
i_{R 1}(t)+i_{R 2}(t)+i_{R 3}(t) \equiv 0
$$

The currents are then said to be balanced as they sum up to zero.
Using (7.10) and (7.15) it is straightforward to show that the stator and rotor fluxes are always balanced, that is,

$$
\begin{aligned}
\psi_{S 1}(t)+\psi_{S 2}(t)+\psi_{S 3}(t) & \equiv 0 \\
\psi_{R 1}(t)+\psi_{R 2}(t)+\psi_{R 3}(t) & \equiv 0 .
\end{aligned}
$$

(Note that these two equations hold whether or not the currents are balanced. See problem 4.)

FIGURE 7.7. Wye-connected stator windings.
Referring to Figure 7.7, let $v_{A \hat{N}}=v_{A}-v_{\hat{N}}, v_{B \hat{N}}(t)=v_{B}-v_{\hat{N}}$, and $v_{C \hat{N}}(t)=v_{C}-v_{\hat{N}}$ denote the phase to motor neutral voltages. Faraday's and Ohm's laws give

$$
\begin{aligned}
& v_{A \hat{N}}=R_{S} i_{S 1}+\frac{d \psi_{S 1}(t)}{d t} \\
& v_{B \hat{N}}=R_{S} i_{S 2}+\frac{d \psi_{S 2}(t)}{d t} \\
& v_{C \hat{N}}=R_{S} i_{S 3}+\frac{d \psi_{S 3}(t)}{d t}
\end{aligned}
$$

Adding these three equations results in

$$
\begin{aligned}
v_{A \hat{N}}+v_{B \hat{N}}+v_{C \hat{N}} & =R_{S}\left(i_{S 1}+i_{S 2}+i_{S 3}\right)+\frac{d}{d t}\left(\psi_{S 1}(t)+\psi_{S 2}(t)+\psi_{S 3}(t)\right) \\
& \equiv 0
\end{aligned}
$$

That is, the phase to motor neutral voltages are always balanced. However, the voltages that are applied to the motor are the phase to source neutral voltages $u_{S 1}(t), u_{S 2}(t)$, and $u_{S 3}(t)$. The next lemma relates the motor voltages $v_{A \hat{N}}, v_{B \hat{N}}$, and $v_{C \hat{N}}$ to the source voltages $u_{S 1}(t), u_{S 2}(t)$, and $u_{S 3}(t)$ in terms of the voltage drop $v_{\hat{N} N}$ from the motor neutral to the source neutral.

Lemma

Let $v_{\hat{N} N} \triangleq v_{\hat{N}}-v_{N}$, then

$$
v_{\hat{N} N}=\frac{u_{S 1}(t)+u_{S 2}(t)+u_{S 3}(t)}{3} .
$$

Proof ${ }^{3}$

Referring to Figure 7.7, write

$$
\begin{aligned}
u_{S 1}(t) & =v_{A}-v_{N}=v_{A \hat{N}}+v_{\hat{N} N} \\
u_{S 2}(t) & =v_{B}-v_{N}=v_{B \hat{N}}+v_{\hat{N} N} \\
u_{S 3}(t) & =v_{C}-v_{N}=v_{C \hat{N}}+v_{\hat{N} N}
\end{aligned}
$$

and adding up these three equations, one obtains

$$
\begin{aligned}
u_{S 1}(t)+u_{S 2}(t)+u_{S 3}(t) & =v_{A \hat{N}}+v_{B \hat{N}}(t)+v_{C \hat{N}}(t)+3 v_{\hat{N} N} \\
& =3 v_{\hat{N} N}
\end{aligned}
$$

or

$$
v_{\hat{N} N}=\frac{u_{S 1}(t)+u_{S 2}(t)+u_{S 3}(t)}{3} .
$$

From this result, the following corollary is easily seen to be true.
Corollary
If the source voltages are balanced, that is,

$$
u_{S 1}(t)+u_{S 2}(t)+u_{S 3}(t) \equiv 0
$$

then

$$
v_{\hat{N} N} \equiv 0
$$

so that

$$
\begin{aligned}
u_{S 1}(t) & =v_{A \hat{N}} \\
u_{S 2}(t) & =v_{B \hat{N}} \\
u_{S 3}(t) & =v_{C \hat{N}} .
\end{aligned}
$$

By the above lemma, it follows that for a wye-connected motor,

$$
\begin{align*}
& v_{A \hat{N}}=u_{S 1}(t)-v_{\hat{N} N}=R_{S} i_{S 1}+\frac{d \psi_{S 1}(t)}{d t} \\
& v_{B \hat{N}}=u_{S 2}(t)-v_{\hat{N} N}=R_{S} i_{S 2}+\frac{d \psi_{S 2}(t)}{d t} \tag{7.16}\\
& v_{C \hat{N}}=u_{S 3}(t)-v_{\hat{N} N}=R_{S} i_{S 3}+\frac{d \psi_{S 3}(t)}{d t}
\end{align*}
$$

where $v_{\hat{N} N}=0$ if the source voltages are balanced.

[^56]
Three-Phase to Two-Phase Transformation

Define a three-phase to two-phase transformation of the voltages by

$$
\begin{aligned}
{\left[\begin{array}{c}
u_{S a}(t) \\
u_{S b}(t) \\
u_{S 0}(t)
\end{array}\right] } & \triangleq \sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & \cos (2 \pi / 3) & \cos (4 \pi / 3) \\
0 & \sin (2 \pi / 3) & \sin (4 \pi / 3) \\
1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
u_{S 1}(t) \\
u_{S 2}(t) \\
u_{S 3}(t)
\end{array}\right] \\
& =\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & \sqrt{3} / 2 & -\sqrt{3} / 2 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
u_{S 1}(t) \\
u_{S 2}(t) \\
u_{S 3}(t)
\end{array}\right] .
\end{aligned}
$$

If the source voltages are balanced,

$$
u_{S 0}(t) \triangleq \frac{1}{\sqrt{3}}\left(u_{S 1}(t)+u_{S 2}(t)+u_{S 3}(t)\right) \equiv 0
$$

The inverse transformation is given by

$$
\left[\begin{array}{l}
u_{S 1}(t) \\
u_{S 2}(t) \\
u_{S 3}(t)
\end{array}\right]=\sqrt{\frac{3}{2}}\left[\begin{array}{rcc}
2 / 3 & 0 & \sqrt{2} / 3 \\
-1 / 3 & 1 / \sqrt{3} & \sqrt{2} / 3 \\
-1 / 3 & -1 / \sqrt{3} & \sqrt{2} / 3
\end{array}\right]\left[\begin{array}{l}
u_{S a}(t) \\
u_{S b}(t) \\
u_{S 0}(t)
\end{array}\right] .
$$

Denote the 3-2 transformation matrix as Q, that is,

$$
Q \triangleq \sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \tag{7.17}\\
0 & \sqrt{3} / 2 & -\sqrt{3} / 2 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]
$$

with inverse

$$
Q^{-1}=\sqrt{\frac{3}{2}}\left[\begin{array}{rcc}
2 / 3 & 0 & \sqrt{2} / 3 \tag{7.18}\\
-1 / 3 & +1 / \sqrt{3} & \sqrt{2} / 3 \\
-1 / 3 & -1 / \sqrt{3} & \sqrt{2} / 3
\end{array}\right] .
$$

Q is an orthogonal matrix, that is, $Q^{-1}=Q^{T}$. Define

$$
\begin{aligned}
& {\left[\begin{array}{c}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right] \triangleq Q\left[\begin{array}{l}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right],\left[\begin{array}{l}
i_{R a}(t) \\
i_{R b}(t) \\
i_{R 0}(t)
\end{array}\right] \triangleq Q\left[\begin{array}{l}
i_{R 1}(t) \\
i_{R 2}(t) \\
i_{R 3}(t)
\end{array}\right]} \\
& {\left[\begin{array}{c}
\lambda_{S a}(t) \\
\lambda_{S b}(t) \\
\lambda_{S 0}(t)
\end{array}\right] \triangleq Q\left[\begin{array}{l}
\psi_{S 1}(t) \\
\psi_{S 2}(t) \\
\psi_{S 3}(t)
\end{array}\right],\left[\begin{array}{l}
\lambda_{R a}(t) \\
\lambda_{R b}(t) \\
\lambda_{R 0}(t)
\end{array}\right] \triangleq Q\left[\begin{array}{l}
\psi_{R 1}(t) \\
\psi_{R 2}(t) \\
\psi_{R 3}(t)
\end{array}\right] .}
\end{aligned}
$$

As shown in problem 4,

$$
\begin{aligned}
& \lambda_{S 0}(t)=\frac{1}{\sqrt{3}}\left(\psi_{S 1}(t)+\psi_{S 2}(t)+\psi_{S 3}(t)\right) \equiv 0 \\
& \lambda_{R 0}(t)=\frac{1}{\sqrt{3}}\left(\psi_{R 1}(t)+\psi_{R 2}(t)+\psi_{R 3}(t)\right) \equiv 0
\end{aligned}
$$

As the phases are wye connected, it follows that

$$
\begin{aligned}
& i_{S 0}(t)=\frac{1}{\sqrt{3}}\left(i_{S 1}(t)+i_{S 2}(t)+i_{S 3}(t)\right) \equiv 0 \\
& i_{R 0}(t)=\frac{1}{\sqrt{3}}\left(i_{R 1}(t)+i_{R 2}(t)+i_{R 3}(t)\right) \equiv 0
\end{aligned}
$$

Remark If in addition the source voltages are balanced, it also follows that

$$
u_{S 0}(t)=\frac{1}{\sqrt{3}}\left(u_{S 1}(t)+u_{S 2}(t)+u_{S 3}(t)\right) \equiv 0
$$

That is, when the source voltages are balanced, all of the so-called zero sequence quantities $i_{S 0}(t), i_{R 0}(t), \lambda_{S 0}(t), \lambda_{R 0}(t)$, and $u_{S 0}(t)$ are identically zero under the transformation Q and the original three-phase model consisting of the three phases 1,2 , and 3 is now reduced to an equivalent twophase model consisting of the phases a and b. This is not surprising as the balanced conditions imply that there are only two independent variables (e.g., if $u_{S 1}(t)$ and $u_{S 2}(t)$ are given, then $u_{S 3}(t)=-\left(u_{S 1}(t)+u_{S 2}(t)\right)$ is determined).

In the case when the source voltages are not balanced, the phase to neutral voltages of the machine $v_{A \hat{N}}, v_{B \hat{N}}$, and $v_{C \hat{N}}$ transform as

$$
\left[\begin{array}{c}
u_{S a}(t) \\
u_{S b}(t) \\
u_{S 0}(t)-\sqrt{3} v_{\hat{N} N}
\end{array}\right]=\sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & \sqrt{3} / 2 & -\sqrt{3} / 2 \\
1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
u_{S 1}(t)-v_{\hat{N} N} \\
u_{S 2}(t)-v_{\hat{N} N} \\
u_{S 3}(t)-v_{\hat{N} N}
\end{array}\right] .
$$

and the dynamic equations for the stator flux linkages (7.16) then transform to

$$
\begin{align*}
u_{S a}(t) & =R_{S} i_{S a}+\frac{d \lambda_{S a}(t)}{d t} \\
u_{S b}(t) & =R_{S} i_{S b}+\frac{d \lambda_{S b}(t)}{d t} \tag{7.19}\\
u_{S 0}(t)-\sqrt{3} v_{\hat{N} N} & =R_{S} i_{S 0}+\frac{d \lambda_{S 0}(t)}{d t} .
\end{align*}
$$

To find the expressions for the two-phase equivalent flux linkages in terms of the two-phase equivalent currents, recall that

$$
\left[\begin{array}{c}
\psi_{S 1}(t) \\
\psi_{S 2}(t) \\
\psi_{S 3}(t)
\end{array}\right]=C_{1}\left[\begin{array}{c}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right]+C_{2}\left(\theta_{R}\right)\left[\begin{array}{c}
i_{R 1}(t) \\
i_{R 2}(t) \\
i_{R 3}(t)
\end{array}\right]
$$

so that

$$
\left[\begin{array}{l}
\lambda_{S a}(t) \\
\lambda_{S b}(t) \\
\lambda_{S 0}(t)
\end{array}\right]=Q C_{1} Q^{1}\left[\begin{array}{c}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right]+Q C_{2}\left(\theta_{R}\right) Q^{-1}\left[\begin{array}{l}
i_{R a}(t) \\
i_{R b}(t) \\
i_{R 0}(t)
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
L_{S} & 0 & 0 \tag{7.20}\\
0 & L_{S} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right]+\left[\begin{array}{ccc}
M \cos \left(\theta_{R}\right) & -M \sin \left(\theta_{R}\right) & 0 \\
M \sin \left(\theta_{R}\right) & M \cos \left(\theta_{R}\right) & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
i_{R a}(t) \\
i_{R b}(t) \\
i_{R 0}(t)
\end{array}\right]
$$

or

$$
\begin{align*}
\lambda_{S a}(t) & =L_{S} i_{S a}(t)+M\left(i_{R a}(t) \cos \left(\theta_{R}\right)-i_{R b}(t) \sin \left(\theta_{R}\right)\right) \\
\lambda_{S b}(t) & =L_{S} i_{S b}(t)+M\left(i_{R a}(t) \sin \left(\theta_{R}\right)+i_{R b}(t) \cos \left(\theta_{R}\right)\right) \tag{7.21}\\
\lambda_{S 0} & \equiv 0 .
\end{align*}
$$

Similarly, the rotor flux linkages satisfy the system of equations

$$
\begin{aligned}
& 0=R_{R} i_{R 1}+\frac{d \psi_{R 1}(t)}{d t} \\
& 0=R_{R} i_{R 2}+\frac{d \psi_{R 2}(t)}{d t} \\
& 0=R_{R} i_{R 3}+\frac{d \psi_{R 3}(t)}{d t}
\end{aligned}
$$

so that multiplying this system of equations through by Q results in

$$
\begin{align*}
& 0=R_{R} i_{R a}+\frac{d \lambda_{R a}(t)}{d t} \\
& 0=R_{R} i_{R b}+\frac{d \lambda_{R b}(t)}{d t} \tag{7.22}\\
& 0=R_{R} i_{R 0}+\frac{d \lambda_{R 0}(t)}{d t}
\end{align*}
$$

where $i_{R 0} \equiv 0, \lambda_{R 0}(t) \equiv 0$. Also, as

$$
\left[\begin{array}{c}
\psi_{R 1}(t) \\
\psi_{R 2}(t) \\
\psi_{R 3}(t)
\end{array}\right]=C_{1}\left[\begin{array}{c}
i_{R 1}(t) \\
i_{R 2}(t) \\
i_{R 3}(t)
\end{array}\right]+C_{2}\left(-\theta_{R}\right)\left[\begin{array}{c}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right]
$$

it follows that

$$
\begin{align*}
{\left[\begin{array}{l}
\lambda_{R a}(t) \\
\lambda_{R b}(t) \\
\lambda_{R 0}(t)
\end{array}\right]=} & Q C_{1} Q^{-1}\left[\begin{array}{l}
i_{R a}(t) \\
i_{R b}(t) \\
i_{R 0}(t)
\end{array}\right]+Q C_{2}\left(-\theta_{R}\right) Q^{-1}\left[\begin{array}{l}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right] \\
= & {\left[\begin{array}{ccc}
L_{R} & 0 & 0 \\
0 & L_{R} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
i_{R a}(t) \\
i_{R b}(t) \\
i_{R 0}(t)
\end{array}\right] } \\
& +\left[\begin{array}{ccc}
M \cos \left(\theta_{R}\right) & M \sin \left(\theta_{R}\right) & 0 \\
-M \sin \left(\theta_{R}\right) & M \cos \left(\theta_{R}\right) & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right] \tag{7.23}
\end{align*}
$$

or

$$
\begin{align*}
\lambda_{R a}(t) & =L_{R} i_{R a}(t)+M\left(+i_{S a}(t) \cos \left(\theta_{R}\right)+i_{S b}(t) \sin \left(\theta_{R}\right)\right) \\
\lambda_{R b}(t) & =L_{R} i_{R b}(t)+M\left(-i_{S a}(t) \sin \left(\theta_{R}\right)+i_{S b}(t) \cos \left(\theta_{R}\right)\right) \tag{7.24}\\
\lambda_{R 0} & \equiv 0 .
\end{align*}
$$

Collecting together equations (7.19), (7.21) and (7.24), the two-phase equivalent equations for the stator and rotor currents of a wye connected three-phase motor become

$$
\begin{align*}
u_{S a} & =L_{S} \frac{d}{d t} i_{S a}+M \frac{d}{d t}\left(+i_{R a} \cos \left(\theta_{R}\right)-i_{R b} \sin \left(\theta_{R}\right)\right)+R_{S} i_{S a} \\
u_{S b} & =L_{S} \frac{d}{d t} i_{S b}+M \frac{d}{d t}\left(+i_{R a} \sin \left(\theta_{R}\right)+i_{R b} \cos \left(\theta_{R}\right)\right)+R_{S} i_{S b} \\
u_{S 0} & =\sqrt{3} v_{\hat{N} N} \tag{7.25}\\
0 & =L_{R} \frac{d}{d t} i_{R a}+M \frac{d}{d t}\left(+i_{S a} \cos \left(\theta_{R}\right)+i_{S b} \sin \left(\theta_{R}\right)\right)+R_{R} i_{R a} \\
0 & =L_{R} \frac{d}{d t} i_{R b}+M \frac{d}{d t}\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right)+R_{R} i_{R b}
\end{align*}
$$

where $i_{S 0} \equiv 0, i_{R 0} \equiv 0$. In what follows, it is now assumed that the voltages are balanced so that $u_{S 0}=\sqrt{3} v_{\hat{N} N} \equiv 0$. In this case, there is a one-to-one correspondence between the two-phase variables $i_{S a}, i_{S b}, i_{R a}, i_{R b}, u_{S a}$, and $u_{S b}$ and the three-phase variables $i_{S 1}, i_{S 2}, i_{S 3}, i_{R 1}, i_{R 2}, i_{R 3}, u_{S 1}, u_{S 2}$, and $u_{S 3}$.

Torque

It was shown above that the stator currents established a radial magnetic field in the air gap. The torque produced by this magnetic field on the currents in the sinusoidally wound rotor phases is now computed. Recall that the stator magnetic field in terms of $\beta=\theta-\theta_{R}$ at $r=r_{R}$ is given by

$$
\begin{aligned}
& \left.\overrightarrow{\mathbf{B}}_{S}\left(i_{S 1}, i_{S 2}, i_{S 3}, r, \beta, \theta_{R}\right)\right|_{r=r_{R}}=\kappa \frac{\mu_{0} N_{S}}{2 g} \frac{r_{R}}{r_{R}} \times \\
& \quad\left(i_{S 1} \cos \left(\beta+\theta_{R}\right)+i_{S 2} \cos \left(\beta+\theta_{R}-2 \pi / 3\right)+i_{S 3} \cos \left(\beta+\theta_{R}-4 \pi / 3\right)\right) \hat{\mathbf{r}}
\end{aligned}
$$

The torque is then (see problem 8)

$$
\begin{align*}
\vec{\tau}_{R 1}= & \int_{\beta=0}^{2 \pi}\left(r_{R} \hat{\mathbf{r}}\right) \times\left(i_{R 1}(t) \frac{N_{R}}{2} \sin (\beta) d \beta\left(+\ell_{1} \hat{\mathbf{z}}\right) \times\left(B_{S \mid r=r_{R}} \hat{\mathbf{r}}\right)\right) \\
= & \int_{\beta=0}^{2 \pi} r_{R} i_{R 1}(t) \frac{\ell_{1} N_{R}}{2} \sin (\beta)\left(\kappa \frac{\mu_{0} N_{S}}{2 g}\right)\left(i_{S 1} \cos \left(\beta+\theta_{R}\right)\right. \\
& \left.+\left(i_{S 2} \cos \left(\beta+\theta_{R}-2 \pi / 3\right)+i_{S 3} \cos \left(\beta+\theta_{R}-4 \pi / 3\right)\right) d \beta\right) \hat{\mathbf{z}} \\
= & \kappa \frac{r_{R} \ell_{1} \mu_{0} N_{R} N_{S}}{4 g} i_{R 1}(t)\left(i_{S 1}\left(-\pi \sin \left(\theta_{R}\right)\right)+i_{S 2} \pi \cos \left(\theta_{R}-\frac{\pi}{6}\right)\right. \\
& \left.+i_{S 3}\left(-\pi \cos \left(\theta_{R}+\frac{\pi}{6}\right)\right)\right) \hat{\mathbf{z}} \\
= & \frac{2}{3} M i_{R 1}(t)\left(-i_{S 1} \sin \left(\theta_{R}\right)+i_{S 2} \cos \left(\theta_{R}-\frac{\pi}{6}\right)-i_{S 3} \cos \left(\theta_{R}+\frac{\pi}{6}\right)\right) \hat{\mathbf{z}} \tag{7.26}
\end{align*}
$$

where $M \triangleq(3 / 2) \kappa \pi \mu_{0} \ell_{1} \ell_{2} N_{S} N_{R} /(8 g)$. The torque on phase 2 of the rotor is then

$$
\begin{align*}
\overrightarrow{\boldsymbol{\tau}}_{R 2}= & \int_{\beta=0}^{2 \pi}\left(r_{R} \hat{\mathbf{r}}\right) \times\left(i_{R 2}(t) \frac{N_{R}}{2} \sin (\beta-2 \pi / 3) d \beta\left(+\ell_{1} \hat{\mathbf{z}}\right) \times\left(B_{\left.S\right|_{r=r_{R}}} \hat{\mathbf{r}}\right)\right) \\
= & \int_{\beta=0}^{2 \pi} r_{R} i_{R 2}(t) \frac{\ell_{1} N_{R}}{2} \sin (\beta-2 \pi / 3)\left(\kappa \frac{\mu_{0} N_{S}}{2 g}\right) \times\left(i_{S 1} \cos \left(\beta+\theta_{R}\right)\right. \\
& \left.+i_{S 2} \cos \left(\beta+\theta_{R}-2 \pi / 3\right)+i_{S 3} \cos \left(\beta+\theta_{R}-4 \pi / 3\right)\right) d \beta \hat{\mathbf{z}} \\
= & \kappa \frac{r_{R} \ell_{1} \mu_{0} N_{R} N_{S}}{4 g} i_{R 2}(t)\left(i_{S 1}\left(-\pi \cos \left(\theta_{R}+\frac{\pi}{6}\right)\right)+i_{S 2}\left(-\pi \sin \left(\theta_{R}\right)\right)\right. \\
& \left.+i_{S 3} \pi \sin \left(\theta_{R}+\frac{\pi}{3}\right)\right) \hat{\mathbf{z}} \\
= & \frac{2}{3} M i_{R 2}(t)\left(-i_{S 1} \cos \left(\theta_{R}+\frac{\pi}{6}\right)-i_{S 2} \sin \left(\theta_{R}\right)+i_{S 3} \sin \left(\theta_{R}+\frac{\pi}{3}\right)\right) \hat{\mathbf{z}} \tag{7.27}
\end{align*}
$$

Finally, the torque on phase 3 is computed as

$$
\begin{aligned}
\vec{\tau}_{R 3}= & \int_{\beta=0}^{2 \pi}\left(r_{R} \hat{\mathbf{r}}\right) \times\left(i_{R 3}(t) \frac{N_{R}}{2} \sin (\beta-4 \pi / 3) d \beta\left(+\ell_{1} \hat{\mathbf{z}}\right) \times\left(B_{\left.S\right|_{r=r_{R}}} \hat{\mathbf{r}}\right)\right) \\
= & \int_{\beta=0}^{2 \pi} r_{R} i_{R 3}(t) \frac{\ell_{1} N_{R}}{2} \sin (\beta-4 \pi / 3)\left(\kappa \frac{\mu_{0} N_{S}}{2 g}\right) \times\left(i_{S 1} \cos \left(\beta+\theta_{R}\right)\right. \\
& \left.+i_{S 2} \cos \left(\beta+\theta_{R}-2 \pi / 3\right)+i_{S 3} \cos \left(\beta+\theta_{R}-4 \pi / 3\right)\right) d \beta \hat{\mathbf{z}}
\end{aligned}
$$

$$
\begin{align*}
= & \kappa \frac{r_{R} \ell_{1} \mu_{0} N_{R} N_{S}}{4 g} i_{R 3}(t)\left(i_{S 1} \pi \cos \left(\theta_{R}-\frac{\pi}{6}\right)+i_{S 2} \pi \sin \left(\theta_{R}-\frac{\pi}{3}\right)\right. \\
& \left.+i_{S 3}\left(-\pi \sin \left(\theta_{R}\right)\right)\right) \hat{\mathbf{z}} \\
= & \frac{2}{3} M i_{R 3}(t)\left(i_{S 1} \cos \left(\theta_{R}-\frac{\pi}{6}\right)+i_{S 2} \sin \left(\theta_{R}-\frac{\pi}{3}\right)-i_{S 3} \sin \left(\theta_{R}\right)\right) \hat{\mathbf{z}} \tag{7.28}
\end{align*}
$$

The total torque is then

$$
\begin{align*}
\tau_{R}= & \tau_{R 1}+\tau_{R 2}+\tau_{R 3} \\
= & \frac{2}{3} M\left(i_{R 1}(t)\left(-i_{S 1} \sin \left(\theta_{R}\right)+i_{S 2} \cos \left(\theta_{R}-\frac{\pi}{6}\right)-i_{S 3} \cos \left(\theta_{R}+\frac{\pi}{6}\right)\right)\right. \\
& +i_{R 2}(t)\left(-i_{S 1} \cos \left(\theta_{R}+\frac{\pi}{6}\right)-i_{S 2} \sin \left(\theta_{R}\right)+i_{S 3} \sin \left(\theta_{R}+\frac{\pi}{3}\right)\right) \\
& \left.+i_{R 3}(t)\left(i_{S 1} \cos \left(\theta_{R}-\frac{\pi}{6}\right)+i_{S 2} \sin \left(\theta_{R}-\frac{\pi}{3}\right)-i_{S 3} \sin \left(\theta_{R}\right)\right)\right) . \tag{7.29}
\end{align*}
$$

With $i_{S 0}(t) \equiv 0, i_{R 0}(t) \equiv 0$, substitute

$$
\begin{aligned}
& {\left[\begin{array}{l}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right] \triangleq Q^{-1}\left[\begin{array}{l}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right]=\sqrt{\frac{3}{2}}\left[\begin{array}{rcc}
2 / 3 & 0 & \sqrt{2} / 3 \\
-1 / 3 & 1 / \sqrt{3} & \sqrt{2} / 3 \\
-1 / 3 & -1 / \sqrt{3} & \sqrt{2} / 3
\end{array}\right]\left[\begin{array}{l}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right]} \\
& {\left[\begin{array}{l}
i_{R 1}(t) \\
i_{R 2}(t) \\
i_{R 3}(t)
\end{array}\right] \triangleq Q^{-1}\left[\begin{array}{l}
i_{R a}(t) \\
i_{R b}(t) \\
i_{R 0}(t)
\end{array}\right]=\sqrt{\frac{3}{2}}\left[\begin{array}{rcc}
2 / 3 & 0 & \sqrt{2} / 3 \\
-1 / 3 & 1 / \sqrt{3} & \sqrt{2} / 3 \\
-1 / 3 & -1 / \sqrt{3} & \sqrt{2} / 3
\end{array}\right]\left[\begin{array}{l}
i_{R a}(t) \\
i_{R b}(t) \\
i_{R 0}(t)
\end{array}\right]}
\end{aligned}
$$

into (7.29) to obtain (see problem 10)

$$
\begin{align*}
\tau_{R}= & M\left(-i_{R a}(t) i_{S a}(t) \sin \left(\theta_{R}\right)+i_{R a}(t) i_{S b}(t) \cos \left(\theta_{R}\right)\right. \\
& \left.-i_{R b}(t) i_{S a}(t) \cos \left(\theta_{R}\right)-i_{R b}(t) i_{S b}(t) \sin \left(\theta_{R}\right)\right) \tag{7.30}
\end{align*}
$$

Substituting the two-phase equivalent stator flux linkages (7.21) into (7.19) and the two-phase equivalent rotor flux linkages (7.24) into (7.22) along with torque equation (7.30) gives the following two-phase equivalent
mathematical model of a three-phase wye-connected induction motor:

$$
\begin{align*}
u_{S a}= & L_{S} \frac{d}{d t} i_{S a}+M \frac{d}{d t}\left(+i_{R a} \cos \left(\theta_{R}\right)-i_{R b} \sin \left(\theta_{R}\right)\right)+R_{S} i_{S a} \\
u_{S b}= & L_{S} \frac{d}{d t} i_{S b}+M \frac{d}{d t}\left(+i_{R a} \sin \left(\theta_{R}\right)+i_{R b} \cos \left(\theta_{R}\right)\right)+R_{S} i_{S b} \\
0= & L_{R} \frac{d}{d t} i_{R a}+M \frac{d}{d t}\left(+i_{S a} \cos \left(\theta_{R}\right)+i_{S b} \sin \left(\theta_{R}\right)\right)+R_{R} i_{R a} \\
0= & L_{R} \frac{d}{d t} i_{R b}+M \frac{d}{d t}\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right)+R_{R} i_{R b} \\
J \frac{d \omega_{R}}{d t}= & M\left(-i_{R a}(t) i_{S a}(t) \sin \left(\theta_{R}\right)+i_{R a}(t) i_{S b}(t) \cos \left(\theta_{R}\right)\right. \\
& \left.-i_{R b}(t) i_{S a}(t) \cos \left(\theta_{R}\right)-i_{R b}(t) i_{S b}(t) \sin \left(\theta_{R}\right)\right)-\tau_{L} \\
\frac{d \theta_{R}}{d t}= & \omega_{R} . \tag{7.31}
\end{align*}
$$

The system (7.31) may be rewritten using a space vector representation as

$$
\begin{align*}
R_{S} \underline{i}_{S}+L_{S} \frac{d}{d t} \underline{i}_{S}+M \frac{d}{d t}\left(\underline{i}_{R} e^{j \theta_{R}}\right) & =\underline{u}_{S} \tag{7.32}\\
R_{R} \underline{i}_{R}+L_{R} \frac{d}{d t} \underline{i}_{R}+M \frac{d}{d t}\left(\underline{i}_{S} e^{-j \theta_{R}}\right) & =0 \tag{7.33}\\
M \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{i}_{R} e^{j \theta_{R}}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega_{R}}{d t} \tag{7.34}\\
\frac{d \theta_{R}}{d t} & =\omega_{R} \tag{7.35}
\end{align*}
$$

where $\underline{u}_{S} \triangleq u_{S a}+j u_{S b}, \underline{i}_{S} \triangleq i_{S a}+j i_{S b}$, and $\underline{i}_{R} \triangleq i_{R a}+j i_{R b}$ are the space vector form of the two-phase equivalent voltages and currents.

Remarks

The model (7.31) [or, equivalently, (7.32), (7.33), and (7.34)] is identical in form to the model derived for a two-phase motor in Chapter 6.

The parameters L_{S}, L_{R}, and M are the two-phase equivalent inductance values for the three-phase machine. As seen from equations (7.5), (7.6), (7.7), (7.11), (7.12), and (7.13), the actual stator, rotor, and mutual coefficients of inductance in the three-phase machine are $2 L_{S} / 3,2 L_{R} / 3$, and $2 M / 3$, respectively. However, the phase resistances R_{S} and R_{R} in the twophase model are the same as in the three-phase model.

Simulation of the Three-Phase Machine

Figure 7.8 illustrates how the two-phase model is used to simulate a balanced three-phase machine.

FIGURE 7.8. Block diagram for simulating a three-phase machine using the two-phase equivalent model.

One simply uses the transformation

$$
\left[\begin{array}{c}
u_{S a}(t) \\
u_{S b}(t)
\end{array}\right] \triangleq \sqrt{\frac{2}{3}}\left[\begin{array}{rrr}
1 & -1 / 2 & -1 / 2 \\
0 & \sqrt{3} / 2 & -\sqrt{3} / 2
\end{array}\right]\left[\begin{array}{l}
u_{S 1}(t) \\
u_{S 2}(t) \\
u_{S 3}(t)
\end{array}\right]
$$

to obtain the voltages $u_{S a}(t)$ and $u_{S b}(t)$ which are then applied to the twophase equivalent simulation model. The currents $i_{S a}, i_{S b}, i_{R a}$, and $i_{R b}$ from the simulation are then put through the two-phase to three-phase ($2-3$) transformation

$$
\begin{aligned}
& {\left[\begin{array}{c}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right] \triangleq \sqrt{\frac{3}{2}}\left[\begin{array}{rc}
2 / 3 & 0 \\
-1 / 3 & 1 / \sqrt{3} \\
-1 / 3 & -1 / \sqrt{3}
\end{array}\right]\left[\begin{array}{c}
i_{S a}(t) \\
i_{S b}(t)
\end{array}\right]} \\
& {\left[\begin{array}{c}
i_{R 1}(t) \\
i_{R 2}(t) \\
i_{R 3}(t)
\end{array}\right] \triangleq \sqrt{\frac{3}{2}}\left[\begin{array}{rc}
2 / 3 & 0 \\
-1 / 3 & 1 / \sqrt{3} \\
-1 / 3 & -1 / \sqrt{3}
\end{array}\right]\left[\begin{array}{c}
i_{R a}(t) \\
i_{R b}(t)
\end{array}\right]}
\end{aligned}
$$

to obtain the (balanced) three-phase stator and rotor currents.

Zero Component

The three-phase to two-phase (3 to 2) transformation is given by

$$
\left[\begin{array}{c}
u_{S a}(t) \tag{7.36}\\
u_{S b}(t) \\
u_{S 0}(t)
\end{array}\right] \triangleq \sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & \cos (2 \pi / 3) & \cos (4 \pi / 3) \\
0 & \sin (2 \pi / 3) & \sin (4 \pi / 3) \\
1 / \sqrt{2} & 1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{l}
u_{S 1}(t) \\
u_{S 2}(t) \\
u_{S 3}(t)
\end{array}\right]
$$

Figure 7.9 shows the three magnetic axes s_{1}, s_{2}, and s_{3} for the stator phases and two orthogonal axes which are denoted a and b, respectively. Note that the s_{1}, s_{2}, and s_{3} axes are not orthogonal.

FIGURE 7.9. Magnetic axes for the three-phase and two-phase models.
An interpretation of the 3 to 2 transformation (7.36) is that the elements of the 3-tuple

$$
\left[\begin{array}{c}
u_{S 1}(t) \\
u_{S 2}(t) \\
u_{S 3}(t)
\end{array}\right]
$$

are the components of the vector

$$
\overrightarrow{\mathbf{u}}_{S} \triangleq u_{S 1}(t) \hat{\mathbf{e}}_{S 1}+u_{S 2}(t) \hat{\mathbf{e}}_{S 2}+u_{S 3}(t) \hat{\mathbf{e}}_{S 3}
$$

with respect to the basis of orthogonal unit vectors

$$
\hat{\mathbf{e}}_{S 1}=\sqrt{\frac{2}{3}}\left[\begin{array}{c}
1 \\
0 \\
1 / \sqrt{2}
\end{array}\right], \hat{\mathbf{e}}_{S 2}=\sqrt{\frac{2}{3}}\left[\begin{array}{c}
\cos (2 \pi / 3) \\
\sin (2 \pi / 3) \\
1 / \sqrt{2}
\end{array}\right], \hat{\mathbf{e}}_{S 3}=\sqrt{\frac{2}{3}}\left[\begin{array}{c}
\cos (4 \pi / 3) \\
\sin (4 \pi / 3) \\
1 / \sqrt{2}
\end{array}\right]
$$

while the 3 -tuple

$$
\left[\begin{array}{c}
u_{S a}(t) \\
u_{S b}(t) \\
u_{S 0}(t)
\end{array}\right]
$$

are the components of this same vector

$$
\overrightarrow{\mathbf{u}}_{S}=u_{S a}(t) \hat{\mathbf{e}}_{S a}+u_{S b}(t) \hat{\mathbf{e}}_{S b}+u_{S 0} \hat{\mathbf{e}}_{S 0}
$$

with respect to the basis of orthogonal unit vectors

$$
\hat{\mathbf{e}}_{S a}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right], \hat{\mathbf{e}}_{S b}=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right], \hat{\mathbf{e}}_{S 0}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

The third component $u_{S 0}$ is referred to as the zero component because in a balanced three-phase system it is zero.

Note that the projections of $\hat{\mathbf{e}}_{S 1}, \hat{\mathbf{e}}_{S 2}$, and $\hat{\mathbf{e}}_{S 3}$ onto the $a b$ plane of Figure 7.9 are in the directions of the s_{1}, s_{2}, and s_{3} axes, respectively, which are not orthogonal.

Remarks The 3 to 2 transformation (7.36) is also referred to as Clarke's transformation [6]. The three-phase windings whose magnetic axes are shown in Figure 7.9 are magnetically coupled. For example, a current $i_{S 1}$ in phase 1 will produce a net (nonzero) flux linkage in the other two phases. As pointed out by Holtz [60], the 3 to 2 transformation has (mathematically) replaced the magnetically coupled three-phase windings with an equivalent two-phase set of windings whose magnetic axes are orthogonal (in quadrature) and are not magnetically coupled. That is, a current $i_{S a}$ in phase a will not produce a net flux linkage in phase b. Often phase a is referred to as the direct or d axis and phase b is referred to as the quadrature or q axis. For example, in problem 13, a standard model of the induction is given in space vector form. In that formulation, the notation ($u_{S d}^{S}, u_{S q}^{S}, i_{S d}^{S}, i_{S q}^{S}, i_{R d}^{S}, i_{R q}^{S}$) is often used for the equivalent two-phase variables (the superscript " S " refers to the "stationary frame"). However, in this book, the $d q$ notation is reserved for the field-oriented coordinate system (see Chapters 8 and 9) and so the reader must be wary when reading different authors. Further, one also sees the notation ($u_{S \alpha}, u_{S \beta}, i_{S \alpha}, i_{S \beta}, i_{R \alpha}, i_{R \beta}$) and the notation ($u_{S d}, u_{S q}, i_{S d}, i_{S q}, i_{R d}, i_{R q}$) for these same variables.

7.2 Steady-State Analysis of the Induction Motor

The objective here is to find steady-state solutions to the mathematical model (7.31) of the induction motor. The space vector representation of the induction motor given by (7.32), (7.33), and (7.34) will be used because it is especially convenient for this analysis. This presentation is from the development in Chapter 10 of Professor Leonhard's book [1][2].

With $\underline{U}_{S} \triangleq\left|\underline{U}_{S}\right| e^{j \angle \underline{U}_{S}}=U_{S} e^{j \angle \underline{U}_{S}}$ a root mean square (rms) phasor ${ }^{4}$ for the voltage, a balanced set of three-phase steady-state voltages is specified by

$$
\begin{align*}
u_{S 1} & =\sqrt{2} U_{S} \cos \left(\omega_{S} t+\angle \underline{U}_{S}\right) \\
& =\frac{\sqrt{2}}{2}\left(\underline{U}_{S} e^{j \omega_{S} t}+\underline{U}_{S}^{*} e^{-j \omega_{S} t}\right) \\
u_{S 2} & =\sqrt{2} U_{S} \cos \left(\omega_{S} t+\angle \underline{U}_{S}-2 \pi / 3\right) \\
& =\frac{\sqrt{2}}{2}\left(\underline{U}_{S} e^{j\left(\omega_{S} t-2 \pi / 3\right)}+\underline{U}_{S}^{*} e^{-j\left(\omega_{S} t-2 \pi / 3\right)}\right) \tag{7.37}\\
u_{S 3} & =\sqrt{2} U_{S} \cos \left(\omega_{S} t+\angle \underline{U}_{S}-4 \pi / 3\right) \\
& =\frac{\sqrt{2}}{2}\left(\underline{U}_{S} e^{j\left(\omega_{S} t-4 \pi / 3\right)}+\underline{U}_{S}^{*} e^{-j\left(\omega_{S} t-4 \pi / 3\right)}\right)
\end{align*}
$$

The objective here is to apply these voltages to the motor and find the resulting steady-state currents and torque.

7.2.1 Steady-State Currents and Voltages

The three-phase to two-phase transformation (7.17) can be represented in the space vector form as (see problem 11)

$$
\begin{equation*}
\underline{u}_{S} \triangleq \sqrt{\frac{2}{3}}\left(u_{S 1}+u_{S 2} e^{j 2 \pi / 3}+u_{S 3} e^{j 4 \pi / 3}\right) \tag{7.38}
\end{equation*}
$$

Expanded out, this becomes

$$
\begin{aligned}
\underline{u}_{S}= & \sqrt{\frac{2}{3}}\left(u_{S 1}+u_{S 2} \cos (2 \pi / 3)+u_{S 3} \cos (4 \pi / 3)\right) \\
& +j \sqrt{\frac{2}{3}}\left(u_{S 2} \sin (2 \pi / 3)+u_{S 3} \sin (4 \pi / 3)\right) \\
= & u_{S a}+j u_{S b} .
\end{aligned}
$$

[^57]Substituting the expressions (7.37) into (7.38) and using the fact that $1+e^{j 4 \pi / 3}+e^{j 8 \pi / 3}=0$ results in

$$
\begin{aligned}
\underline{u}_{S}= & \frac{1}{\sqrt{3}}\left(\underline{U}_{S} e^{j \omega_{S} t}+\underline{U}_{S}^{*} e^{-j \omega_{S} t}\right) \\
& +\frac{1}{\sqrt{3}}\left(\underline{U}_{S} e^{j\left(\omega_{S} t-2 \pi / 3\right)}+\underline{U}_{S}^{*} e^{-j\left(\omega_{S} t-2 \pi / 3\right)}\right) e^{j 2 \pi / 3} \\
& +\frac{1}{\sqrt{3}}\left(\underline{U}_{S} e^{j\left(\omega_{S} t-4 \pi / 3\right)}+\underline{U}_{S}^{*} e^{-j\left(\omega_{S} t-4 \pi / 3\right)}\right) e^{j 4 \pi / 3} \\
= & \sqrt{3} \underline{U}_{S} e^{j \omega_{S} t} .
\end{aligned}
$$

This is the voltage to be applied to the induction motor model (7.32), (7.33), and (7.34).

The approach taken here is to look for a solution consisting of a balanced set of three-phase stator currents. With $\underline{I}_{S} \triangleq\left|\underline{I}_{S}\right| e^{j \angle \underline{I}_{S}}=I_{S} e^{j \angle \underline{I}_{S}}$ an rms current phasor, the stator currents take the form

$$
\begin{aligned}
i_{S 1} & =\sqrt{2} I_{S} \cos \left(\omega_{S} t+\angle \underline{I}_{S}\right) \\
& =\frac{\sqrt{2}}{2}\left(\underline{I}_{S} e^{j \omega_{S} t}+\underline{I}_{S}^{*} e^{-j \omega_{S} t}\right) \\
i_{S 2} & =\sqrt{2} I_{S} \cos \left(\omega_{S} t+\angle \underline{I}_{S}-2 \pi / 3\right) \\
& =\frac{\sqrt{2}}{2}\left(\underline{I}_{S} e^{j\left(\omega_{S} t-2 \pi / 3\right)}+\underline{I}_{S}^{*} e^{-j\left(\omega_{S} t-2 \pi / 3\right)}\right) \\
i_{S 3} & =\sqrt{2} I_{S} \cos \left(\omega_{S} t+\angle \underline{I}_{S}-4 \pi / 3\right) \\
& =\frac{\sqrt{2}}{2}\left(\underline{I}_{S} e^{j\left(\omega_{S} t-4 \pi / 3\right)}+\underline{I}_{S}^{*} e^{-j\left(\omega_{S} t-4 \pi / 3\right)}\right)
\end{aligned}
$$

where the three-phase to two-phase transformation results in

$$
\underline{i}_{S}=\sqrt{\frac{2}{3}}\left(i_{S 1}+i_{S 2} e^{j 2 \pi / 3}+i_{S 3} e^{j 4 \pi / 3}\right)=\sqrt{3} \underline{I}_{S} e^{j \omega_{S} t}
$$

For the rotor currents, a solution consisting of a balanced set of threephase rotor currents with angular frequency $\omega_{S}-\omega_{R}$ is sought. With $\underline{I}_{R}=$ $\left|\underline{I}_{R}\right| e^{j \angle \underline{I}_{R}}=I_{R} e^{j \angle \underline{I}_{R}}$, the rotor currents take the form

$$
\begin{aligned}
& i_{R 1}=\frac{\sqrt{2}}{2}\left(\underline{I}_{R} e^{j\left(\omega_{S}-\omega_{R}\right) t}+\underline{I}_{R}^{*} e^{-j\left(\omega_{\mathcal{S}}-\omega_{R}\right) t}\right) \\
& i_{R 2}=\frac{\sqrt{2}}{2}\left(\underline{I}_{R} e^{j\left(\left(\omega_{S}-\omega_{R}\right) t-2 \pi / 3\right)}+\underline{I}_{R}^{*} e^{-j\left(\left(\omega_{S}-\omega_{R}\right) t-2 \pi / 3\right)}\right) \\
& i_{R 3}=\frac{\sqrt{2}}{2}\left(\underline{I}_{R} e^{j\left(\left(\omega_{S}-\omega_{R}\right) t-4 \pi / 3\right)}+\underline{I}_{R}^{*} e^{-j\left(\left(\omega_{\mathcal{S}}-\omega_{R}\right) t-4 \pi / 3\right)}\right) .
\end{aligned}
$$

The three-phase to two-phase transformation of the rotor currents results in

$$
\underline{i}_{R}=\sqrt{\frac{2}{3}}\left(i_{R 1}+i_{R 2} e^{j 2 \pi / 3}+i_{R 3} e^{j 4 \pi / 3}\right)=\sqrt{3} \underline{I}_{R} e^{j\left(\omega_{\mathcal{S}}-\omega_{R}\right) t}
$$

Finally, with $\theta_{R}(t)=\omega_{R} t$,

$$
\underline{i}_{R}(t) e^{j \theta_{R}(t)}=\sqrt{3} \underline{I}_{R} e^{j \omega_{S} t}
$$

7.2.2 Steady-State Equivalent Circuit Model

The above expressions for the steady-state currents are convenient for developing an equivalent circuit model of the induction motor in steady state. To do so, the expressions $\underline{u}_{S}=\sqrt{3} \underline{U}_{S} e^{j \omega_{S} t}, \underline{i}_{S}=\sqrt{3} \underline{I}_{S} e^{j \omega_{S} t}, \underline{i}_{R}=$ $\sqrt{3} \underline{I}_{R} e^{j\left(\omega_{S}-\omega_{R}\right) t}$ and $\underline{i}_{R} e^{j \theta_{R}(t)}=\sqrt{3} \underline{I}_{R} e^{j \omega_{S} t}$ are substituted into (7.32) and (7.33). After canceling out the terms $\sqrt{3} e^{j \omega_{S} t}$ and $\sqrt{3} e^{j\left(\omega_{S}-\omega_{R}\right) t}$, one obtains

$$
\begin{align*}
\left(R_{S}+j \omega_{S} L_{S}\right) \underline{I}_{S}+j \omega_{S} M \underline{I}_{R} & =\underline{U}_{S} \tag{7.39}\\
\left(R_{R}+j\left(\omega_{S}-\omega_{R}\right) L_{R}\right) \underline{I}_{R}+j\left(\omega_{S}-\omega_{R}\right) M \underline{I}_{S} & =0 \tag{7.40}
\end{align*}
$$

With $\omega_{\text {slip }} \triangleq \omega_{S}-\omega_{R}$, define the normalized slip

$$
S=\frac{\omega_{s l i p}}{\omega_{S}}=\frac{\omega_{S}-\omega_{R}}{\omega_{S}}
$$

Replace $\omega_{s l i p}=\omega_{S}-\omega_{R}$ by $S \omega_{S}$ into (7.40) and rearrange to obtain

$$
\begin{align*}
\left(R_{S}+j \omega_{S} L_{S}\right) \underline{I}_{S}+j \omega_{S} M \underline{I}_{R} & =\underline{U}_{S} \tag{7.41}\\
\left(R_{R} / S+j \omega_{S} L_{R}\right) \underline{I}_{R}+j \omega_{S} M \underline{I}_{S} & =0 . \tag{7.42}
\end{align*}
$$

With $L_{S}=\left(1+\sigma_{S}\right) M, L_{R}=\left(1+\sigma_{R}\right) M$, equations (7.41) and (7.42) can be rearranged to obtain ${ }^{5}$

$$
\begin{align*}
\left(R_{S}+j \omega_{S} \sigma_{S} M\right) \underline{I}_{S}+j \omega_{S} M\left(\underline{I}_{S}+\underline{I}_{R}\right) & =\underline{U}_{S} \tag{7.43}\\
\left(R_{R} / S+j \omega_{S} \sigma_{R} M\right) \underline{I}_{R}+j \omega_{S} M\left(\underline{I}_{S}+\underline{I}_{R}\right) & =0 . \tag{7.44}
\end{align*}
$$

In this analysis, it was assumed that ω_{S}, ω_{R}, and therefore $\omega_{s l i p}=\omega_{S}$ ω_{R} are all constant. The two algebraic relationships (7.43) and (7.44) may be viewed as the result of applying Kirchhoff's voltage law to the two loops indicated in the equivalent circuit of Figure 7.10.

FIGURE 7.10. An equivalent circuit of the induction motor.

[^58]The system (7.41) and (7.42) may be rewritten as

$$
\left[\begin{array}{cc}
R_{S}+j \omega_{S} L_{S} & j \omega_{S} M \tag{7.45}\\
j \omega_{S} M & R_{R} / S+j \omega_{S} L_{R}
\end{array}\right]\left[\begin{array}{c}
\underline{I}_{S} \\
\underline{I}_{R}
\end{array}\right]=\left[\begin{array}{c}
\underline{U}_{S} \\
0
\end{array}\right]
$$

Solving for \underline{I}_{S} and \underline{I}_{R} gives

$$
\begin{aligned}
{\left[\begin{array}{c}
\underline{I}_{S} \\
\underline{I}_{R}
\end{array}\right]=} & \frac{1}{\left(R_{S}+j \omega_{S} L_{S}\right)\left(R_{R} / S+j \omega_{S} L_{R}\right)-\left(j \omega_{S} M\right)^{2}} \\
& \times\left[\begin{array}{cc}
R_{R} / S+j \omega_{S} L_{R} & -j \omega_{S} M \\
-j \omega_{S} M & R_{S}+j \omega_{S} L_{S}
\end{array}\right]\left[\frac{U_{S}}{0}\right]
\end{aligned}
$$

The input impedance is then

$$
\begin{aligned}
Z_{S} & =\frac{\underline{U}_{S}}{\underline{I}_{S}}=\frac{\left(R_{S}+j \omega_{S} L_{S}\right)\left(R_{R} / S+j \omega_{S} L_{R}\right)-\left(j \omega_{S} M\right)^{2}}{R_{R} / S+j \omega_{S} L_{R}} \\
& =R_{S}+j \omega_{S} L_{S}-\frac{\left(j \omega_{S} M\right)^{2}}{R_{R} / S+j \omega_{S} L_{R}}
\end{aligned}
$$

Using the fact that $M=L_{S} /\left(1+\sigma_{S}\right)=L_{R} /\left(1+\sigma_{R}\right)$ and $\sigma=1-\frac{1}{\left(1+\sigma_{S}\right)\left(1+\sigma_{R}\right)}$, this becomes

$$
\begin{aligned}
Z_{S} & =R_{S}+j \omega_{S} L_{S}\left(1-\frac{\frac{S}{R_{R}} j \omega_{S} L_{R} \frac{1}{\left(1+\sigma_{S}\right)\left(1+\sigma_{R}\right)}}{1+\frac{j \omega_{S} L_{R} S}{R_{R}}}\right) \\
& =R_{S}+j \omega_{S} L_{S}\left(\frac{1+\frac{j \omega_{S} L_{R} S}{R_{R}}\left(1-\frac{1}{\left(1+\sigma_{S}\right)\left(1+\sigma_{R}\right)}\right.}{1+\frac{j \omega_{S} L_{R} S}{R_{R}}}\right) \\
& =R_{S}+j \omega_{S} L_{S}\left(\frac{1+\frac{j \sigma \omega_{S} L_{R} S}{R_{R}}}{1+\frac{j \omega_{S} L_{R} S}{R_{R}}}\right)
\end{aligned}
$$

Finally, defining S_{p} as

$$
\begin{equation*}
S_{p} \triangleq \frac{R_{R}}{\sigma \omega_{S} L_{R}}, \tag{7.46}
\end{equation*}
$$

the input impedance may be written as

$$
Z_{S}=R_{S}+j \omega_{S} L_{S}\left(\frac{1+\frac{j S}{S_{p}}}{1+\frac{j S}{\sigma S_{p}}}\right)
$$

With $R_{S}=0^{6}$, the stator current phasor $\underline{I}_{S}=\underline{U}_{S} / Z_{S}$ becomes

$$
\begin{align*}
\underline{I}_{S} & =\frac{\underline{U}_{S}}{j \omega_{S} L_{S}}\left(\frac{1+\frac{j S}{\sigma S_{p}}}{1+\frac{j S}{S_{p}}}\right) \tag{7.47}\\
& =\underline{I}_{S 0}\left(\frac{1+\sigma}{2 \sigma}-\frac{1-\sigma}{2 \sigma} \frac{1-\frac{j S}{S_{p}}}{1+\frac{j S}{S_{p}}}\right) \\
& =\underline{I}_{S 0}\left(\frac{1+\sigma}{2 \sigma}-\frac{1-\sigma}{2 \sigma} e^{-j 2 \tan ^{-1}\left(S / S_{p}\right)}\right) \tag{7.48}
\end{align*}
$$

Here $\underline{I}_{S 0} \triangleq \underline{U}_{S} /\left(j \omega_{S} L_{S}\right)$ is the no-load current phasor, that is, the current phasor when the slip is zero. For convenience, choose $\underline{U}_{S}=j U_{S}$ so that $\underline{I}_{S 0}=I_{S 0}=U_{S} /\left(\omega_{S} L_{S}\right)$ is real. Figure 7.11 shows a plot of phasor \underline{I}_{S} versus S / S_{p}.

FIGURE 7.11. Circle diagram of the stator current phasor as a function of S / S_{p} with $R_{S}=0$.

As S / S_{p} varies in the interval $-\infty \leq S / S_{p} \leqslant \infty$, the tip of the phasor \underline{I}_{S} traces out a circle so that Figure 7.11 is referred to as the circle diagram. As illustrated in the figure, the tip of the phasor \underline{I}_{S} lies on a

[^59]circle whose center is at $\underline{I}_{S 0} \frac{1+\sigma}{2 \sigma}$ on the real axis and whose radial arm is $-\underline{I}_{S 0} \frac{1+\sigma}{2 \sigma} e^{-j 2 \tan ^{-1}\left(S / S_{p}\right)}$.
The average power $P_{\text {stator }}$ into the stator from the source is
$$
P_{\text {stator }}=\frac{1}{2 \pi / \omega_{S}} \int_{0}^{2 \pi / \omega_{S}}\left(u_{S 1} i_{S 1}+u_{S 2} i_{S 2}+u_{S 3} i_{S 3}\right) d t
$$

Then

$$
\begin{aligned}
& \frac{1}{2 \pi / \omega_{S}} \int_{0}^{2 \pi / \omega_{S}} u_{S 1} i_{S 1} d t= \frac{1}{2 \pi / \omega_{S}} \int_{0}^{2 \pi / \omega_{S}}\left(\frac{\sqrt{2}}{2}\left(\underline{U}_{S} e^{j \omega_{S} t}+\underline{U}_{S}^{*} e^{-j \omega_{S} t}\right)\right) \\
& \times\left(\frac{\sqrt{2}}{2}\left(\underline{I}_{S} e^{j \omega_{S} t}+\underline{I}_{S}^{*} e^{-j \omega_{S} t}\right)\right) d t \\
&=\frac{1}{2 \pi / \omega_{S}} \int_{0}^{2 \pi / \omega_{S}} \frac{1}{2}\left[\underline{U}_{S} \underline{I}_{S}^{*}+\underline{U}_{S}^{*} \underline{I}_{S}+\underline{U}_{S} \underline{I}_{S} e^{j 2 \omega_{S} t}+\underline{U}_{S}^{*} \underline{I}_{S}^{*} e^{-j 2 \omega_{S} t}\right] d t \\
&=\frac{1}{2}\left[\underline{U}_{S} \underline{I}_{S}^{*}+\underline{U}_{S}^{*} \underline{I}_{S}\right]=\operatorname{Re}\left\{\underline{U}_{S} \underline{I}_{S}^{*}\right\}=U_{S} I_{S} \cos \left(\angle \underline{U}_{S}-\angle \underline{I}_{S}\right)
\end{aligned}
$$

as

$$
\operatorname{Re}\left\{\underline{U}_{S} \underline{I}_{S}^{*}\right\}=\operatorname{Re}\left\{\left|\underline{U}_{S}\right| e^{j \angle \underline{U}_{S}}\left|\underline{I}_{S}\right| e^{-j \angle \underline{I}_{S}}\right\}=\left|\underline{U}_{S}\right|\left|\underline{I}_{S}\right| \cos \left(\angle \underline{U}_{S}-\angle \underline{I}_{S}\right)
$$

The angle $\varphi \triangleq \angle \underline{U}_{S}-\angle \underline{I}_{S}$ is the angle between the phasors \underline{U}_{S} and \underline{I}_{S}, and is called the power factor angle. Each phase contributes the same average power so that the total electrical power into the stator is

$$
P_{\text {stator }}=3 U_{S} I_{S} \cos (\varphi)
$$

where $\cos (\varphi)$ is the power factor. Using equation (7.47), the power factor angle φ is written as a function of S / S_{p} by

$$
\varphi=\angle \underline{U}_{S}-\angle \underline{I}_{S}=\frac{\pi}{2}-\left(\tan ^{-1}\left(\frac{S}{\sigma S_{p}}\right)-\tan ^{-1}\left(\frac{S}{S_{p}}\right)\right)
$$

The rated $\operatorname{slip} S_{r}$ is defined as the value of S that minimizes φ or equivalently, maximizes $\cos (\varphi)$. Solving $d \varphi / d S=0$ gives

$$
\begin{equation*}
S_{r}=\sqrt{\sigma} S_{p} \tag{7.49}
\end{equation*}
$$

Again using equation (7.47), the ratio $I_{S} / I_{S 0}$ may be written as

$$
\begin{equation*}
\left(\frac{I_{S}}{I_{S 0}}\right)^{2}=\frac{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}}{1+\left(\frac{S}{S_{p}}\right)^{2}}, \quad I_{S 0}=\frac{U_{S}}{\omega_{S} L_{S}} \tag{7.50}
\end{equation*}
$$

so that at rated slip, the rated current is

$$
\begin{equation*}
\frac{I_{S_{r}}}{I_{S 0}}=\frac{1}{\sqrt{\sigma}} \tag{7.51}
\end{equation*}
$$

Also note that it follows from equation (7.50) that

$$
\lim _{S \rightarrow \infty} \frac{I_{S}}{I_{S 0}}=\frac{1}{\sigma}
$$

A plot of $I_{S} / I_{S 0}$ versus S / S_{p} is shown in Figure 7.12. At rated slip, the power factor angle is

$$
\varphi_{r} \triangleq \varphi_{l_{s=s_{r}}}=\pi / 2-\left(\tan ^{-1}(1 / \sqrt{\sigma})-\tan ^{-1}(\sqrt{\sigma})\right)
$$

so that power factor is [see (7.57) below]

$$
\begin{equation*}
\cos \left(\varphi_{r}\right)=\frac{1-\sigma}{1+\sigma} \tag{7.52}
\end{equation*}
$$

FIGURE 7.12. $I_{S} / I_{S 0}$ versus S / S_{p}, with $\sigma=0.3$ and $R_{S}=0$.

7.2.3 Rated Conditions

An interpretation to the definition of rated slip and the other corresponding rated variables is as follows: The balanced three-phase sinusoidal input
voltages are constant in both magnitude and frequency. If the motor is operating at rated slip (done by choosing the appropriate load on the motor), then the power into the motor is

$$
\begin{equation*}
3 U_{S} I_{S_{r}} \cos \left(\varphi_{r}\right)=3 U_{S} \frac{I_{S 0}}{\sqrt{\sigma}} \frac{1-\sigma}{1+\sigma} \tag{7.53}
\end{equation*}
$$

where $I_{S_{r}}=I_{S 0} / \sqrt{\sigma}, \cos \left(\varphi_{r}\right)=(1-\sigma) /(1+\sigma)$ as previously shown. At rated slip, the power factor $\cos \left(\varphi_{r}\right)$ is at its maximum value so that the amount of stator current I_{S} required to achieve the particular input power level (7.53) is at a minimum. This power goes into mechanical work and losses given by ${ }^{7}$

$$
3 U_{S} I_{S_{r}} \cos \left(\varphi_{r}\right)=\tau_{r} \omega_{R}+3 R_{R} I_{R}^{2}
$$

The torque τ_{r} and speed ω_{R} under these operating conditions are called the rated torque and rated speed, respectively. A real motor has the stator current losses $3 R_{S} I_{S}^{2}$ so that if motor is operating at rated slip, the amount of stator current required to produce the rated torque is minimized, making this an efficient operating point.

7.2.4 Steady-State Torque

Substituting $\underline{i}_{S}=\sqrt{3} \underline{I}_{S} e^{j \omega_{S} t}$ and $\underline{i}_{R}(t) e^{j \theta_{R}(t)}=\sqrt{3} \underline{I}_{R} e^{j \omega_{S} t}$ into (7.34) gives

$$
\begin{equation*}
\tau=M \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{i}_{R} e^{j \theta_{R}}\right)^{*}\right\}=3 M \operatorname{Im}\left\{\underline{I}_{S} \underline{I}_{R}^{*}\right\} \tag{7.54}
\end{equation*}
$$

From (7.45), the rotor current phasor is related to the stator current phasor by

$$
\begin{equation*}
\underline{I}_{R}=-\frac{j \omega_{S} M}{R_{R} / S+j \omega_{S} L_{R}} \underline{I}_{S} \tag{7.55}
\end{equation*}
$$

Substituting this into the steady-state torque expression (7.54) gives

$$
\begin{aligned}
\tau & =3 M \operatorname{Im}\left\{\underline{I}_{S} \underline{I}_{R}^{*}\right\}=3 M \operatorname{Im}\left\{\underline{I}_{S}\left(-\frac{j \omega_{S} M}{R_{R} / S+j \omega S L_{R}} \underline{I}_{S}\right)^{*}\right\} \\
& =3 M \operatorname{Im}\left\{\underline{I}_{S} \frac{j \omega_{S} M}{R_{R} / S-j \omega_{S} L_{R}} \underline{I}_{S}^{*}\right\}=3 M I_{S}^{2} \operatorname{Im}\left\{\frac{\frac{j \omega_{S} M S}{R_{R}}}{1-\frac{j \omega_{S} L_{R} S}{R_{R}}}\right\}
\end{aligned}
$$

[^60]Recalling that $S_{p}=\frac{R_{R}}{\sigma \omega_{S} L_{R}}$, this becomes

$$
\left.\begin{array}{rl}
\tau & =3 M I_{S}^{2} \operatorname{Im}\left\{\frac{\frac{j \omega_{S} M S}{R_{R}}}{1-\frac{j S}{\sigma S_{p}}} 1+\frac{j S}{\sigma S_{p}}\right. \\
1+\frac{j S}{\sigma S_{p}}
\end{array}\right\}=3 M I_{S}^{2} \operatorname{Im}\left\{\frac{\frac{j \omega_{S} M S}{R_{R}}\left(1+\frac{j S}{\sigma S_{p}}\right)}{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}}\right\}
$$

Using (7.50), this simplifies to

$$
\begin{aligned}
\tau & =3 M \frac{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}}{1+\left(\frac{S}{S_{p}}\right)^{2}}\left(\frac{U_{S}}{\omega_{S} L_{S}}\right)^{2} \frac{\omega_{S} M S / R_{R}}{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}} \\
& =3 \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}^{2}} \frac{\omega_{S} M^{2} S / R_{R}}{1+\left(\frac{S}{S_{p}}\right)^{2}}=3 \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}^{2}} \frac{S_{p} / S}{S_{p} / S+S / S_{p}} \frac{\omega_{S} M^{2} S}{R_{R}}
\end{aligned}
$$

Rewriting $M^{2}=\frac{L_{S}}{\left(1+\sigma_{S}\right)} \frac{L_{R}}{\left(1+\sigma_{R}\right)}=L_{S} L_{R}(1-\sigma)$, one obtains

$$
\begin{aligned}
\tau & =3 \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}^{2}} \frac{S_{p} / S}{S_{p} / S+S / S_{p}} L_{S}(1-\sigma) \frac{\omega_{S} L_{R}}{R_{R}} S \\
& =3 \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}} \frac{S_{p} / S}{S_{p} / S+S / S_{p}} \frac{(1-\sigma)}{\sigma} \frac{S}{S_{p}} \\
& =3 \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}} \frac{1}{S_{p} / S+S / S_{p}} \frac{(1-\sigma)}{\sigma} .
\end{aligned}
$$

Finally,

$$
\begin{equation*}
\tau=\frac{3}{2} \frac{(1-\sigma)}{\sigma} \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}} \frac{2}{S_{p} / S+S / S_{p}}=\tau_{p} \frac{2}{S_{p} / S+S / S_{p}} \tag{7.56}
\end{equation*}
$$

where

$$
\tau_{p} \triangleq \frac{3}{2} \frac{(1-\sigma)}{\sigma} \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}} .
$$

This is the well-known torque-slip curve for an induction motor and is plotted in Figure 7.13.

FIGURE 7.13. τ / τ_{p} versus S / S_{p}, with $R_{S}=0$.
For a fixed U_{S} and ω_{S}, the torque is a maximum for $S=S_{p} . S_{p}$ is called the pull-out slip and the corresponding maximum torque τ_{p} is called the pull-out torque. This terminology comes from the fact that for $S>S_{p}$ the torque decreases as the slip increases. Consequently, if the motor is operating at $S=S_{p}$ (putting out maximum torque) and then more load (load torque) is added, the rotor speed ω_{R} decreases and the (normalized) slip $S=\left(\omega_{S}-\omega_{R}\right) / \omega_{S}$ increases. But in this situation, even less torque is produced so the motor's speed continues to decrease and the motor ultimately comes to a stop. That is, for $S \geq S_{p}$ the motor is not at a stable operating point. On the other hand, if the motor is operating at a slip $S<S_{p}$, then putting more load on the motor will decrease the speed, thus increasing the slip, but in this case the torque increases. Consequently, the motor keeps running at a little lower speed, but with the additional load on it. At the rated slip $S_{r}=\sqrt{\sigma} S_{p}$, the corresponding rated torque τ_{r} is defined as

$$
\left.\tau_{r} \triangleq \tau_{p} \frac{2}{S / S_{p}+S_{p} / S}\right|_{S=S_{r}}=\tau_{p} \frac{2}{\sqrt{\sigma}+1 / \sqrt{\sigma}}=\tau_{p} \frac{2 \sqrt{\sigma}}{1+\sigma} .
$$

The ratio of the pull-out (or peak) torque τ_{p} to the rated torque τ_{r} is then

$$
\frac{\tau_{r}}{\tau_{p}}=\frac{2 \sqrt{\sigma}}{1+\sigma} .
$$

This is a measure of the overload capacity in that, with the motor normally operating at rated torque, the factor $(1+\sigma) /(2 \sqrt{\sigma})$ is how much the torque can be increased before pull-out [2]. It is normally desired to operate the
motor at rated slip S_{r}. That is, one picks ("sizes") the motor so that its rated torque is close to the torque load expected on the motor. Then the motor will put out the required torque while minimizing the stator current and, therefore, the $R_{S} I_{S}^{2}$ losses.

7.2.5 Steady-State Power Transfer in the Induction Motor

Recall that the power into the stator is given by

$$
P_{\text {stator }}=3 U_{S} I_{S} \cos (\varphi)
$$

where

$$
\begin{aligned}
\frac{I_{S}}{I_{S 0}} & =\sqrt{\frac{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}}{1+\left(\frac{S}{S_{p}}\right)^{2}}} \\
I_{S 0} & =\frac{U_{S}}{\omega_{S} L_{S}} \\
\varphi & =\angle \underline{U}_{S}-\angle I_{S}=\frac{\pi}{2}-\left(\tan ^{-1}\left(\frac{S}{\sigma S_{p}}\right)-\tan ^{-1}\left(\frac{S}{S_{p}}\right)\right) .
\end{aligned}
$$

The power factor may then be written as

$$
\begin{aligned}
\cos (\varphi)= & \cos \left(\frac{\pi}{2}-\tan ^{-1}\left(\frac{S}{\sigma S_{p}}\right)+\tan ^{-1}\left(\frac{S}{S_{p}}\right)\right) \\
= & \sin \left(\tan ^{-1}\left(\frac{S}{\sigma S_{p}}\right)-\tan ^{-1}\left(\frac{S}{S_{p}}\right)\right) \\
= & \sin \left(\tan ^{-1}\left(\frac{S}{\sigma S_{p}}\right)\right) \cos \left(\tan ^{-1}\left(\frac{S}{S_{p}}\right)\right) \\
& -\sin \left(\tan ^{-1}\left(\frac{S}{S_{p}}\right)\right) \cos \left(\tan ^{-1}\left(\frac{S}{\sigma S_{p}}\right)\right) \\
= & \frac{\frac{S}{\sigma S_{p}}}{\sqrt{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}}} \frac{1}{\sqrt{1+\left(\frac{S}{S_{p}}\right)^{2}}}-\frac{\frac{S}{S_{p}}}{\sqrt{1+\left(\frac{S}{S_{p}}\right)^{2}}} \frac{1}{\sqrt{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}}}
\end{aligned}
$$

or

$$
\begin{equation*}
\cos (\varphi)=\frac{\frac{S}{\sigma S_{p}}-\frac{S}{S_{p}}}{\sqrt{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}} \sqrt{1+\left(\frac{S}{S_{p}}\right)^{2}}} \tag{7.57}
\end{equation*}
$$

The power into the stator can now be written as

$$
\begin{aligned}
P_{\text {stator }} & =3 U_{S} I_{S} \cos (\varphi) \\
& =3 U_{S} \sqrt{\frac{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}}{1+\left(\frac{S}{S_{p}}\right)^{2}} \frac{U_{S}}{\omega_{S} L_{S}} \frac{\frac{S}{\sigma S_{p}}-\frac{S}{S_{p}}}{\sqrt{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}} \sqrt{1+\left(\frac{S}{S_{p}}\right)^{2}}}} \\
& =3 \frac{U_{S}^{2}}{\omega_{S} L_{S}} \frac{\frac{S}{\sigma S_{p}}-\frac{S}{S_{p}}}{1+\left(\frac{S}{S_{p}}\right)^{2}} \\
& =3 \frac{U_{S}^{2}}{\omega_{S} L_{S}} \frac{1 / \sigma-1}{\frac{1}{S_{p}}+\frac{S}{S}} \\
& =\frac{3}{2} \frac{U_{S}^{2}}{\omega_{S} L_{S}} \frac{1-\sigma}{\sigma} \frac{2}{S_{p} / S+S / S_{p}} \\
& =\omega_{S} \tau .
\end{aligned}
$$

The mechanical power produced is

$$
P_{\mathrm{mech}}=\omega_{R} \tau
$$

and the difference between the power into the stator and the mechanical output power is

$$
P_{\text {stator }}-P_{\text {mech }}=\left(\omega_{S}-\omega_{R}\right) \tau=\omega_{S} S \tau
$$

Where does this power go? It is now shown that this power is dissipated as heat in the rotor windings, that is, $\omega_{S} S \tau=3 I_{R}^{2} R_{R}$. To do so, equation (7.45) is used to obtain

$$
\begin{aligned}
I_{R}^{2} & =\frac{\omega_{S}^{2} M^{2}}{\left(R_{R} / S\right)^{2}+\omega_{S}^{2} L_{R}^{2}} I_{S}^{2}=\frac{\left(\frac{\omega_{S} M S}{R_{R}}\right)^{2}}{1+\left(\frac{\omega_{S} L_{R} S}{R_{R}}\right)^{2}} I_{S}^{2} \\
& =\frac{\frac{1}{\left(1+\sigma_{R}\right)\left(1+\sigma_{S}\right)}\left(\frac{\omega_{S} L_{R} S}{R_{R}}\right)\left(\frac{\omega_{S} L_{S} S}{R_{R}}\right)}{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}} I_{S}^{2} \\
& =\frac{(1-\sigma)\left(\frac{S}{\sigma S_{p}}\right)^{2} \frac{L_{S}}{L_{R}}}{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}} I_{S}^{2}
\end{aligned}
$$

Using (7.50) to eliminate I_{S}^{2}, this further simplifies to

$$
\begin{aligned}
I_{R}^{2} & =\frac{(1-\sigma)\left(\frac{S}{\sigma S_{p}}\right)^{2} \frac{L_{S}}{L_{R}} 1+\left(\frac{S}{\sigma S_{p}}\right)^{2}}{1+\left(\frac{S}{\sigma S_{p}}\right)^{2}} \frac{U_{S}}{1+\left(\frac{S}{S_{p}}\right)^{2}}\left(\frac{U_{S}}{\omega_{S} L_{S}}\right)^{2} \\
& =\frac{(1-\sigma)\left(\frac{S}{\sigma S_{p}}\right)^{2} \frac{L_{S}}{L_{R}}}{1+\left(\frac{S}{S_{p}}\right)^{2}}\left(\frac{U_{S}}{\omega_{S} L_{S}}\right)^{2} \\
& =\frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}} \frac{(1-\sigma)}{\sigma} \frac{\frac{S}{\sigma S_{p}}}{\frac{S_{p}}{S}+\frac{S}{S_{p}}} \frac{1}{L_{R}} \\
& =\frac{1}{2} \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}} \frac{(1-\sigma)}{\sigma} \frac{2}{S_{p} / S+S / S_{p}} S \frac{\omega_{S}}{R_{R}}
\end{aligned}
$$

where

$$
\frac{1}{\sigma S_{p} L_{R}}=\frac{1}{\sigma \frac{R_{R}}{\sigma \omega_{S} L_{R}} L_{R}}=\frac{\omega_{S}}{R_{R}}
$$

was used. Then

$$
3 I_{R}^{2} R_{R}=\left(\frac{3}{2} \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}} \frac{(1-\sigma)}{\sigma} \frac{2}{S_{p} / S+S / S_{p}}\right) S \omega_{S}=\omega_{S} S \tau .
$$

In summary, it has just been shown that

$$
P_{\text {stator }}-P_{\text {mech }}=\left(\omega_{S}-\omega_{R}\right) \tau=\omega_{S} S \tau=3 I_{R}^{2} R_{R}
$$

The mechanical power may be rewritten as

$$
P_{\mathrm{mech}}=\omega_{R} \tau=\frac{\omega_{R}}{\omega_{S} S} \omega_{S} S \tau=\frac{(1-S) \omega_{S}}{\omega_{S} S} 3 I_{R}^{2} R_{R}=\frac{1-S}{S} 3 I_{R}^{2} R_{R}
$$

so that

$$
P_{\text {stator }}=P_{\text {stator }}-P_{\mathrm{mech}}+P_{\mathrm{mech}}=3 I_{R}^{2} R_{R}+\frac{1-S}{S} 3 I_{R}^{2} R_{R}=3 I_{R}^{2} \frac{R_{R}}{S} .
$$

In words, one can view all of the energy put into the rotor as being dissipated in an "equivalent" resistance of $R_{R} / S=R_{R}+(1-S) R_{R} / S$ where the energy dissipated in R_{R} are ohmic losses due to the rotor resistance while the energy "dissipated" in $(1-S) R_{R} / S$ is the mechanical energy produced by the machine (see Figure 7.14).

FIGURE 7.14. Mechanical energy represented as a loss in the resistor $\left(\frac{1-S}{S}\right) R_{R}$.

Using the expressions (7.50), (7.51), (7.56), and (7.57), the normalized stator current $I_{S} / I_{S_{r}}$, the normalized torque τ / τ_{p}, and the power factor $\cos (\varphi)$ are plotted versus S / S_{p} in Figure 7.15.

FIGURE 7.15. Plots of $\cos (\varphi), \tau / \tau_{r}$, and $I_{S} / I_{S_{r}}$ versus S / S_{p} with $\sigma=0.3$, $S_{r} / S_{p}=\sqrt{\sigma}=0.549$, and $\cos \left(\varphi_{r}\right)=(1-\sigma) /(1+\sigma)=0.537$.

Efficiency

The efficiency ${ }^{8}$ is defined as

$$
\text { Efficiency } \triangleq \frac{P_{\text {mech }}}{P_{\text {stator }}}=\frac{\frac{1-S}{S} 3 I_{R}^{2} R_{R}}{3 I_{R}^{2} \frac{R_{R}}{S}}=1-S=\frac{\omega_{R}}{\omega_{S}}<1
$$

The power input to the rotor that is not converted to mechanical power is lost as heat in the rotor windings so it is obviously important to have high efficiency. Consequently, the slip must not be too large and this must be traded off with the amount of torque required since the torque output goes down as the slip is decreased.

Theory Versus Experiment [1][2]

A comparison of the predicted values for the rated slip (7.49), the ratio of the no-load current to the rated current (7.51), the maximum power factor (7.52) and the steady-state torque (7.56) versus their measured values for two motors are reproduced in the tables below from Professor Leonhard's book [1][2]. In the tables, two different $50-\mathrm{Hz}$ motors are used. The first one has two poles $\left(n_{p}=1\right)$ and a corresponding synchronous rotor speed ${ }^{9}$ of 50 $\frac{\mathrm{rev}}{\mathrm{sec}} \times 60 \frac{\mathrm{sec}}{\min } \frac{1}{n_{p}}=3000 \mathrm{rev} / \mathrm{min}$. The second motor has eight poles $\left(n_{p}=4\right)$ with a synchronous rotor speed of $50 \frac{\mathrm{rev}}{\sec } \times 60 \frac{\mathrm{sec}}{\min } \frac{1}{n_{p}}=750 \mathrm{rev} / \mathrm{min}$. The comparison for the two-pole machine ($3000 \mathrm{rev} / \mathrm{min}$) with $\sigma=0.05$ is shown in the table given in Figure 7.16.

Quantity	Predicted Value $\sigma=0.05$	Actual Value
S_{r} / S_{p}	$\sqrt{\sigma}=0.22$	0.20
$I_{S 0} / I_{S r}$	$\sqrt{\sigma}=0.22$	0.30
$\cos \left(\varphi_{r}\right)$	$\frac{1-\sigma}{1+\sigma}=0.90$	0.90
τ_{r} / τ_{p}	$\frac{1+\sigma}{2 \sqrt{\sigma}}=2.35$	2.30

FIGURE 7.16. A table comparing the predicted values of $S_{r}, I_{r}, \varphi_{r}$, and τ_{r} with their measured values for a two-pole machine with $\sigma=0.05$. From Table 10.2 of Control of Electrical Drives, 3rd edition by W. Leonhard, Springer-Verlag, 2001. Reprinted with permission.

[^61]The comparison for the eight pole machine ($750 \mathrm{rev} / \mathrm{min}$) with $\sigma=0.10$ is shown in the table given in Figure 7.17.

Quantity	Predicted Value $\sigma=0.1$	Actual Value
S_{r} / S_{p}	$\sqrt{\sigma}=0.32$	0.30
$I_{S 0} / I_{S r}$	$\sqrt{\sigma}=0.32$	0.40
$\cos \left(\varphi_{r}\right)$	$\frac{1-\sigma}{1+\sigma}=0.82$	0.84
τ_{r} / τ_{p}	$\frac{1+\sigma}{2 \sqrt{\sigma}}=1.82$	2.0

FIGURE 7.17. A table comparing the predicted values of $S_{r}, I_{r}, \varphi_{r}$, and τ_{r} with their measured values for an eight pole machine with $\sigma=0.10$. From Table 10.2 of Control of Electrical Drives, 3rd edition by W. Leonhard, Springer-Verlag, 2001. Reprinted with permission.

The predicted values and the measured values are in very good agreement. It is interesting to note that these open-loop characteristics depend only on the leakage parameter σ. This is particularly remarkable as one recalls that in the derivation of the model (7.32)-(7.35), the leakage parameter σ is introduced through the parameter $\kappa\left(\sigma=1-\kappa^{2}\right)$ in a pretty much ad hoc manner to account for fact that as the air gap is crossed the magnetic field spreads out in the axial and azimuthal directions. The nonlinear differential equation model (7.31) will be seen to be invaluable for designing feedback controllers for the induction motor, but a more detailed model is needed by machine designers to be able to specify the leakage and therefore the open loop operating characteristics of the machine.

7.3 Mathematical Model of a Three-Phase PM Synchronous Motor

Figure 7.18 shows a sinusoidally wound three-phase synchronous machine with a permanent magnet rotor. The derivation of its mathematical model is now presented. The stator magnetic field is the same as in the case of the induction motor so that it is given by (7.1) which is repeated below.

$$
\begin{align*}
\overrightarrow{\mathbf{B}}_{S}\left(i_{S 1}, i_{S 2}, i_{S 3}, r, \theta\right)= & \frac{\mu_{0} N_{S}}{2 g} \frac{r_{R}}{r}\left(i_{S 1} \cos (\theta)+i_{S 2} \cos (\theta-2 \pi / 3)\right. \\
& \left.+i_{S 3} \cos (\theta-4 \pi / 3)\right) \hat{\mathbf{r}} . \tag{7.58}
\end{align*}
$$

The magnetic field due to the permanent magnet is of the form

$$
\overrightarrow{\mathbf{B}}_{R}\left(r, \theta-\theta_{R}\right)=B_{m} \frac{r_{R}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} .
$$

At $r=r_{S}$ this is written as

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}_{R}\left(r_{S}, \theta-\theta_{R}\right)=\kappa B_{m} \frac{r_{R}}{r_{S}} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} \tag{7.59}
\end{equation*}
$$

where the coupling factor κ is included to account for leakage. The quantities that are to be computed are the stator flux linkages and the rotor torque. As the rotor has no windings, the torque is computed by finding the torque exerted on the stator windings and then letting $\overrightarrow{\boldsymbol{\tau}}_{R}=-\vec{\tau}_{S}$. Consequently, the computations can all be done with the value of the total magnetic field at the inside surface of the stator.

FIGURE 7.18. Three-phase synchronous machine with a permanent magnet rotor.

With $\overrightarrow{\mathbf{B}}_{S}$ and $\overrightarrow{\mathbf{B}}_{R}$ given by (7.58) and (7.59), respectively, the total radial magnetic field $\overrightarrow{\mathbf{B}}$ on the stator side of the air gap is

$$
\begin{equation*}
\overrightarrow{\mathbf{B}}\left(i_{S 1}, i_{S 2}, i_{S 3}, r_{S}, \theta, \theta_{R}\right) \triangleq \overrightarrow{\mathbf{B}}_{S}\left(i_{S 1}, i_{S 2}, i_{S 3}, r_{S}, \theta\right)+\overrightarrow{\mathbf{B}}_{R}\left(r_{S}, \theta-\theta_{R}\right) . \tag{7.60}
\end{equation*}
$$

Stator Flux Linkages

Using (7.60) for $\overrightarrow{\mathbf{B}}$ on the stator side of the air gap, the stator flux linkage in stator phase 1 is computed as

$$
\begin{aligned}
\psi_{S 1}(t)= & \int_{0}^{\pi} \frac{N_{S}}{2} \sin (\theta) \times\left(\int_{\theta-\pi}^{\theta} \ell_{1} r_{S} B\left(i_{S 1}, i_{S 2}, i_{S 3}, r_{S}, \theta^{\prime}, \theta_{R}\right) d \theta^{\prime}\right) d \theta \\
= & \int_{0}^{\pi} \frac{N_{S}}{2} \sin (\theta) \times\left(\int_{\theta-\pi}^{\theta} \ell_{1} r_{S} B_{S}\left(i_{S 1}, i_{S 2}, i_{S 3}, r_{S}, \theta^{\prime}\right) d \theta^{\prime}\right) d \theta \\
& +\int_{0}^{\pi} \frac{N_{S}}{2} \sin (\theta) \times\left(\int_{\theta-\pi}^{\theta} \ell_{1} r_{S} B_{R}\left(r_{S}, \theta^{\prime}-\theta_{R}\right) d \theta^{\prime}\right) d \theta
\end{aligned}
$$

The first integral is the same as in the wound rotor case and the induction motor so that by (7.5) this evaluates to

$$
\begin{aligned}
& \int_{0}^{\pi} \frac{N_{S}}{2} \sin (\theta) \times\left(\int_{\theta-\pi}^{\theta} \ell_{1} r_{S} B_{S}\left(i_{S 1}, i_{S 2}, i_{S 3}, r_{S}, \theta^{\prime}\right) d \theta^{\prime}\right) d \theta \\
& \quad=\frac{2}{3} L_{S}\left(i_{S 1}+i_{S 2} \cos (2 \pi / 3)+i_{S 3} \cos (4 \pi / 3)\right)
\end{aligned}
$$

where

$$
\begin{equation*}
L_{S}=\frac{3}{2} \frac{\pi \mu_{0} \ell_{1} \ell_{2} N_{S}^{2}}{8 g} \tag{7.61}
\end{equation*}
$$

The second integral evaluates as

$$
\begin{aligned}
& \int_{0}^{\pi} \frac{N_{S}}{2} \sin (\theta)\left(\int_{\theta-\pi}^{\theta} \kappa B_{m} \frac{r_{R}}{r_{S}} \cos \left(\theta^{\prime}-\theta_{R}\right) \ell_{1} r_{S} d \theta^{\prime}\right) d \theta \\
& \quad=\int_{0}^{\pi} \frac{N_{S}}{2} \sin (\theta) 2 \kappa B_{m} \frac{r_{R}}{r_{S}} \sin \left(\theta-\theta_{R}\right) \ell_{1} r_{S} d \theta \\
& \quad=\kappa \ell_{1} r_{R} B_{m} N_{S} \cos \left(\theta_{R}\right) \int_{0}^{\pi} \sin ^{2}(\theta) d \theta=\kappa \ell_{1} r_{R} B_{m} N_{S} \cos \left(\theta_{R}\right) \frac{\pi}{2} \\
& \quad=\kappa \ell_{1} r_{R} B_{m} N_{S} \frac{\pi}{2} \cos \left(\theta_{R}\right) \\
& \quad=\sqrt{\frac{2}{3}} K_{m} \cos \left(\theta_{R}\right)
\end{aligned}
$$

where

$$
\begin{equation*}
K_{m} \triangleq \sqrt{\frac{3}{2}} \frac{\kappa \pi \ell_{1} \ell_{1} B_{m} N_{S}}{4} \tag{7.62}
\end{equation*}
$$

That is,

$$
\begin{equation*}
\psi_{S 1}(t)=\frac{2}{3} L_{S}\left(i_{S 1}+i_{S 2} \cos (2 \pi / 3)+i_{S 3} \cos (4 \pi / 3)\right)+\sqrt{\frac{2}{3}} K_{m} \cos \left(\theta_{R}\right) \tag{7.63}
\end{equation*}
$$

Similarly,

$$
\begin{align*}
& \psi_{S 2}(t) \\
& =\int_{2 \pi / 3}^{2 \pi / 3+\pi} \frac{N_{S}}{2} \sin (\theta-2 \pi / 3)\left(\int_{\theta-\pi}^{\theta} \ell_{1} r_{S} B\left(i_{S 1}, i_{S 2}, i_{S 3}, r_{S}, \theta^{\prime}, \theta_{R}\right) d \theta^{\prime}\right) d \theta \\
& =\frac{2}{3} L_{S}\left(i_{S 1} \cos (2 \pi / 3)+i_{S 2}+i_{S 3} \cos (2 \pi / 3)\right)+\sqrt{\frac{2}{3}} K_{m} \cos \left(\theta_{R}-2 \pi / 3\right) \tag{7.64}
\end{align*}
$$

and

$$
\begin{align*}
& \psi_{S 3}(t) \\
& =\int_{4 \pi / 3}^{4 \pi / 3+\pi} \frac{N_{S}}{2} \sin (\theta-4 \pi / 3)\left(\int_{\theta-\pi}^{\theta} \ell_{1} r_{S} B\left(i_{S 1}, i_{S 2}, i_{S 3}, r_{S}, \theta^{\prime}, \theta_{R}\right) d \theta^{\prime}\right) d \theta \\
& =\frac{2}{3} L_{S}\left(i_{S 1} \cos (4 \pi / 3)+i_{S 2} \cos (2 \pi / 3)+i_{S 3}\right)+\sqrt{\frac{2}{3}} K_{m} \cos \left(\theta_{R}-4 \pi / 3\right) \tag{7.65}
\end{align*}
$$

The factor $2 / 3$ in front of L_{S} and the factor $\sqrt{2 / 3}$ in front of K_{m} in equations (7.63), (7.64), and (7.65) are so that the expressions for L_{S} and K_{m} are the two-phase equivalent coefficient of inductance and back-emf constant, respectively, in the two-phase equivalent model.

In matrix form, the flux linkages may be written as

$$
\begin{align*}
{\left[\begin{array}{l}
\psi_{S 1}(t) \\
\psi_{S 2}(t) \\
\psi_{S 3}(t)
\end{array}\right]=} & \frac{2}{3} L_{S}\left[\begin{array}{ccc}
1 & \cos (2 \pi / 3) & \cos (4 \pi / 3) \\
\cos (2 \pi / 3) & 1 & \cos (2 \pi / 3) \\
\cos (4 \pi / 3) & \cos (-2 \pi / 3) & 1
\end{array}\right]\left[\begin{array}{c}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right] \\
& +\sqrt{\frac{2}{3}} K_{m}\left[\begin{array}{c}
\cos \left(\theta_{R}\right) \\
\cos \left(\theta_{R}-2 \pi / 3\right) \\
\cos \left(\theta_{R}-4 \pi / 3\right)
\end{array}\right] . \tag{7.66}
\end{align*}
$$

With the obvious definition for matrix C_{1}, the flux linkages are written more compactly as

$$
\left[\begin{array}{l}
\psi_{S 1}(t) \tag{7.67}\\
\psi_{S 2}(t) \\
\psi_{S 3}(t)
\end{array}\right]=C_{1}\left[\begin{array}{l}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right]+\sqrt{\frac{2}{3}} K_{m}\left[\begin{array}{c}
\cos \left(\theta_{R}\right) \\
\cos \left(\theta_{R}-2 \pi / 3\right) \\
\cos \left(\theta_{R}-4 \pi / 3\right)
\end{array}\right]
$$

With the stator voltages $u_{S 1}(t), u_{S 2}(t)$, and $u_{S 3}(t)$ assumed to be balanced and R_{S} the resistance in each stator phase, Faraday's law gives

$$
\begin{align*}
& u_{S 1}(t)=R_{S} i_{S 1}+\frac{d \psi_{S 1}(t)}{d t} \\
& u_{S 2}(t)=R_{S} i_{S 2}+\frac{d \psi_{S 2}(t)}{d t} \tag{7.68}\\
& u_{S 3}(t)=R_{S} i_{S 3}+\frac{d \psi_{S 3}(t)}{d t}
\end{align*}
$$

Three-Phase to Two-Phase Transformation

The stator voltages are (assumed) balanced and the machine is assumed to be wye-connected so that the stator currents are also balanced. The three-phase to two-phase transformation defined by (7.17) is again used to simplify the flux equations by defining

$$
\left[\begin{array}{c}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right] \triangleq Q\left[\begin{array}{c}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right],\left[\begin{array}{l}
\lambda_{S a}(t) \\
\lambda_{S b}(t) \\
\lambda_{S 0}(t)
\end{array}\right] \triangleq Q\left[\begin{array}{l}
\psi_{S 1}(t) \\
\psi_{S 2}(t) \\
\psi_{S 3}(t)
\end{array}\right]
$$

where (see problem 4)

$$
\begin{aligned}
\lambda_{S 0}(t) & =\frac{1}{\sqrt{3}}\left(\psi_{S 1}(t)+\psi_{S 2}(t)+\psi_{S 3}(t)\right) \equiv 0 \\
i_{S 0}(t) & =\frac{1}{\sqrt{3}}\left(i_{S 1}(t)+i_{S 2}(t)+i_{S 3}(t)\right) \equiv 0
\end{aligned}
$$

The dynamic equations for the stator flux linkages (7.68) then transform to

$$
\begin{align*}
& u_{S a}(t)=R_{S} i_{S a}+\frac{d \lambda_{S a}(t)}{d t} \\
& u_{S b}(t)=R_{S} i_{S b}+\frac{d \lambda_{S b}(t)}{d t} \tag{7.69}\\
& u_{S 0}(t)=R_{S} i_{S 0}+\frac{d \lambda_{S 0}(t)}{d t}
\end{align*}
$$

To find the expressions for the two-phase equivalent flux linkages in terms of the two-phase equivalent currents, recall that

$$
\left[\begin{array}{c}
\psi_{S 1}(t) \tag{7.70}\\
\psi_{S 2}(t) \\
\psi_{S 3}(t)
\end{array}\right]=C_{1}\left[\begin{array}{c}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right]+\sqrt{\frac{2}{3}} K_{m}\left[\begin{array}{c}
\cos \left(\theta_{R}\right) \\
\cos \left(\theta_{R}-2 \pi / 3\right) \\
\cos \left(\theta_{R}-4 \pi / 3\right)
\end{array}\right] .
$$

Then

$$
\begin{align*}
{\left[\begin{array}{c}
\lambda_{S a}(t) \\
\lambda_{S b}(t) \\
\lambda_{S 0}(t)
\end{array}\right] } & =Q C_{1} Q^{-1}\left[\begin{array}{c}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right]+Q \sqrt{\frac{2}{3}} K_{m}\left[\begin{array}{c}
\cos \left(\theta_{R}\right) \\
\cos \left(\theta_{R}-2 \pi / 3\right) \\
\cos \left(\theta_{R}-4 \pi / 3\right)
\end{array}\right] \\
& =\left[\begin{array}{ccc}
L_{S} & 0 & 0 \\
0 & L_{S} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right]+K_{m}\left[\begin{array}{c}
\cos \theta_{R} \\
\sin \theta_{R} \\
0
\end{array}\right] \tag{7.71}
\end{align*}
$$

or

$$
\begin{align*}
\lambda_{S a}(t) & =L_{S} i_{S a}(t)+K_{m} \cos \left(\theta_{R}\right) \\
\lambda_{S b}(t) & =L_{S} i_{S b}(t)+K_{m} \sin \left(\theta_{R}\right) \tag{7.72}\\
\lambda_{S 0} & \equiv 0 .
\end{align*}
$$

Collecting together equations (7.69) and (7.72), the two-phase equivalent equations for the stator and rotor currents of a wye connected three-phase motor become

$$
\begin{align*}
u_{S a} & =L_{S} \frac{d}{d t} i_{S a}+K_{m} \frac{d}{d t} \cos \left(\theta_{R}\right)+R_{S} i_{S a} \\
u_{S b} & =L_{S} \frac{d}{d t} i_{S b}+K_{m} \frac{d}{d t} \sin \left(\theta_{R}\right)+R_{S} i_{S b} \tag{7.73}\\
u_{S 0} & =0
\end{align*}
$$

where $i_{S 0} \equiv 0$.

Torque

The strategy is to compute the rotor torque $\overrightarrow{\boldsymbol{\tau}}_{R}$ by first determining the torque $\overrightarrow{\boldsymbol{\tau}}_{S}$ that the magnetic field of the rotor's permanent magnet produces on the stator windings and then use $\overrightarrow{\boldsymbol{\tau}}_{R}=-\overrightarrow{\boldsymbol{\tau}}_{S}$. The rotor's magnetic field at the inside surface of the stator is

$$
\overrightarrow{\mathbf{B}}_{R}\left(r_{S}, \theta-\theta_{R}\right)=\kappa B_{m} \frac{r_{R}}{r_{S}} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} .
$$

The torque on stator phase 1 is then computed by

$$
\begin{align*}
\vec{r}_{S 1} & =\int_{\theta=0}^{2 \pi} r_{S} \hat{\mathbf{r}} \times\left(i_{S 1}(t) \frac{N_{S}}{2} \sin (\theta) d \theta\left(+\ell_{1} \hat{\mathbf{z}}\right) \times\left(B_{\left.R\right|_{r=r_{S}}} \hat{\mathbf{r}}\right)\right) \\
& =\int_{\theta=0}^{2 \pi} r_{S} i_{S 1}(t) \frac{\ell_{1} N_{S}}{2} \sin (\theta)\left(\kappa B_{m} \frac{r_{R}}{r_{S}}\right) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\mathbf{z}} \\
& =i_{S 1}(t) \frac{\kappa B_{m} \ell_{1} r_{R} N_{S}}{2} \int_{\theta=0}^{2 \pi} \sin (\theta) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\mathbf{z}} \\
& =\kappa \ell_{1} r_{R} B_{m} N_{S} \frac{\pi}{2} i_{S 1}(t) \sin \left(\theta_{R}\right) \hat{\mathbf{z}} \\
& =\sqrt{\frac{2}{3}} K_{m} i_{S 1}(t) \sin \left(\theta_{R}\right) \hat{\mathbf{z}} \tag{7.74}
\end{align*}
$$

where K_{m} is as given in (7.62).

The torque on stator phase 2 of the rotor is then

$$
\begin{align*}
\overrightarrow{\boldsymbol{\tau}}_{S 2} & =\int_{\theta=0}^{2 \pi} r_{S} \hat{\mathbf{r}} \times\left(i_{S 2}(t) \frac{N_{S}}{2} \sin (\theta-2 \pi / 3) d \theta\left(+\ell_{1} \hat{\mathbf{z}}\right) \times\left(B_{R \mid r=r_{S}} \hat{\mathbf{r}}\right)\right) \\
& =\int_{\theta=0}^{2 \pi} r_{S} i_{S 2}(t) \frac{\ell_{1} N_{S}}{2} \sin (\theta-2 \pi / 3)\left(\kappa B_{m} \frac{r_{R}}{r_{S}}\right) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\mathbf{z}} \\
& =i_{S 2}(t) \frac{\kappa B_{m} \ell_{1} r_{R} N_{S}}{2} \int_{\theta=0}^{2 \pi} \sin (\theta-2 \pi / 3) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\mathbf{z}} \\
& =i_{S 2}(t) \frac{\kappa B_{m} \ell_{1} r_{R} N_{S}}{2} \int_{\theta=0}^{2 \pi} \frac{1}{2}\left(\sin \left(2 \theta-\frac{2 \pi}{3}-\theta_{R}\right)+\sin \left(\theta_{R}-\frac{2 \pi}{3}\right)\right) d \theta \hat{\mathbf{z}} \\
& =\kappa \ell_{1} r_{R} B_{m} N_{S} \frac{\pi}{2} i_{S 2}(t) \sin \left(\theta_{R}-2 \pi / 3\right) \hat{\mathbf{z}} \\
& =\sqrt{\frac{2}{3}} K_{m} i_{S 2}(t) \sin \left(\theta_{R}-2 \pi / 3\right) \hat{\mathbf{z}} . \tag{7.75}
\end{align*}
$$

Finally, the torque on stator phase 3 is computed as

$$
\begin{align*}
\vec{\tau}_{S 3} & =\int_{\theta=0}^{2 \pi} r_{S} \hat{\mathbf{r}} \times\left(i_{S 3}(t) \frac{N_{S}}{2} \sin (\theta-4 \pi / 3) d \theta\left(+\ell_{1} \hat{\mathbf{z}}\right) \times\left(B_{\left.R\right|_{r=r_{S}} \hat{\mathbf{r}}}\right)\right) \\
& =\int_{\theta=0}^{2 \pi} r_{S} i_{S 3}(t) \frac{\ell_{1} N_{S}}{2} \sin (\theta-4 \pi / 3)\left(\kappa B_{m} \frac{r_{R}}{r_{S}}\right) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\mathbf{z}} \\
& =i_{S 3}(t) \frac{\kappa B_{m} \ell_{1} r_{R} N_{S}}{2} \int_{\theta=0}^{2 \pi} \sin (\theta-4 \pi / 3) \cos \left(\theta-\theta_{R}\right) d \theta \hat{\mathbf{z}} \\
& =i_{S 3}(t) \frac{\kappa B_{m} \ell_{1} r_{R} N_{S}}{2} \int_{\theta=0}^{2 \pi} \frac{1}{2}\left(\sin \left(2 \theta-\frac{4 \pi}{3}-\theta_{R}\right)+\sin \left(\theta_{R}-\frac{4 \pi}{3}\right)\right) d \theta \hat{\mathbf{z}} \\
& =\kappa \ell_{1} r_{R} B_{m} N_{S} \frac{\pi}{2} i_{S 3}(t) \sin \left(\theta_{R}-4 \pi / 3\right) \hat{\mathbf{z}} \\
& =\sqrt{\frac{2}{3}} K_{m} i_{S 3}(t) \sin \left(\theta_{R}-4 \pi / 3\right) \hat{\mathbf{z}} . \tag{7.76}
\end{align*}
$$

The total torque is then $\tau_{S}=\tau_{S 1}+\tau_{S 2}+\tau_{S 3}$ or

$$
\begin{equation*}
\tau_{S}=\sqrt{\frac{2}{3}} K_{m}\left(i_{S 1} \sin \left(\theta_{R}\right)+i_{S 2} \sin \left(\theta_{R}-2 \pi / 3\right)+i_{S 3} \sin \left(\theta_{R}-4 \pi / 3\right)\right) \tag{7.77}
\end{equation*}
$$

Substitute

$$
\left[\begin{array}{c}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right] \triangleq Q^{-1}\left[\begin{array}{c}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right]=\sqrt{\frac{3}{2}}\left[\begin{array}{ccc}
2 / 3 & 0 & \sqrt{2} / 3 \\
-1 / 3 & 1 / \sqrt{3} & \sqrt{2} / 3 \\
-1 / 3 & -1 / \sqrt{3} & \sqrt{2} / 3
\end{array}\right]\left[\begin{array}{c}
i_{S a}(t) \\
i_{S b}(t) \\
i_{S 0}(t)
\end{array}\right]
$$

into (7.77) to obtain ($\left.i_{S 0}(t) \equiv 0\right)$

$$
\begin{equation*}
\tau_{S}=K_{m}\left(i_{S a} \sin \left(\theta_{R}\right)-i_{S b} \cos \left(\theta_{R}\right)\right) \tag{7.78}
\end{equation*}
$$

The torque on the rotor is then

$$
\begin{equation*}
\tau_{R}=-K_{m}\left(i_{S a} \sin \left(\theta_{R}\right)-i_{S b} \cos \left(\theta_{R}\right)\right) . \tag{7.79}
\end{equation*}
$$

Substituting the two-phase equivalent stator flux linkages (7.72) into (7.69) along with torque equation (7.79) gives the following two-phase equivalent mathematical model of a three-phase wye-connected permanent magnet synchronous motor

$$
\begin{align*}
u_{S a} & =L_{S} \frac{d i_{S a}}{d t}+K_{m} \frac{d}{d t} \cos \left(\theta_{R}\right)+R_{S} i_{S a} \\
u_{S b} & =L_{S} \frac{d i_{S b}}{d t}+K_{m} \frac{d}{d t} \sin \left(\theta_{R}\right)+R_{S} i_{S b} \\
J \frac{d \omega_{R}}{d t} & =K_{m}\left(i_{S b} \cos \left(\theta_{R}\right)-i_{S a} \sin \left(\theta_{R}\right)\right)-\tau_{L} \\
\frac{d \theta_{R}}{d t} & =\omega_{R} \tag{7.80}
\end{align*}
$$

which simplifies to

$$
\begin{align*}
L_{S} \frac{d i_{S a}}{d t} & =-R_{S} i_{S a}-K_{m} \omega_{R} \sin \left(\theta_{R}\right)+u_{S a} \\
L_{S} \frac{d i_{S b}}{d t} & =-R_{S} i_{S b}+K_{m} \omega_{R} \cos \left(\theta_{R}\right)+u_{S b} \\
J \frac{d \omega_{R}}{d t} & =K_{m}\left(i_{S b} \cos \left(\theta_{R}\right)-i_{S a} \sin \left(\theta_{R}\right)\right)-\tau_{L} \\
\frac{d \theta_{R}}{d t} & =\omega_{R} . \tag{7.81}
\end{align*}
$$

Figure 7.19 is a block diagram for using the two-phase equivalent model to simulate the three-phase model.

Remark

With $L=(2 / 3) L_{S}$, and $K=\sqrt{2 / 3} K_{m}$ the three-phase flux linkages can be written in a standard three-phase form as

$$
\left[\begin{array}{l}
\psi_{S 1} \tag{7.82}\\
\psi_{S 2} \\
\psi_{S 3}
\end{array}\right]=\left[\begin{array}{ccc}
L & -L / 2 & -L / 2 \\
-L / 2 & L & -L / 2 \\
-L / 2 & -L / 2 & L
\end{array}\right]\left[\begin{array}{c}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right]+K\left[\begin{array}{c}
\cos \left(\theta_{R}\right) \\
\cos \left(\theta_{R}-2 \pi / 3\right) \\
\cos \left(\theta_{R}-4 \pi / 3\right)
\end{array}\right]
$$

so that

$$
\begin{align*}
{\left[\begin{array}{ccc}
L & -L / 2 & -L / 2 \\
-L / 2 & L & -L / 2 \\
-L / 2 & -L / 2 & L
\end{array}\right]\left[\begin{array}{l}
d i_{S 1} / d t \\
d i_{S 2} / d t \\
d i_{S 3} / d t
\end{array}\right]=} & K \omega_{R}\left[\begin{array}{c}
\sin \left(\theta_{R}\right) \\
\sin \left(\theta_{R}-2 \pi / 3\right) \\
\sin \left(\theta_{R}-4 \pi / 3\right)
\end{array}\right] \\
& -R_{S}\left[\begin{array}{l}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right]+\left[\begin{array}{c}
u_{S 1} \\
u_{S 2} \\
u_{S 3}
\end{array}\right] . \tag{7.83}
\end{align*}
$$

FIGURE 7.19. Three-phase PM motor simulated using a two-phase equivalent model.

The torque is then written as

$$
\begin{equation*}
\tau_{R}=-K\left(i_{S 1} \sin \left(\theta_{R}\right)+i_{S 2} \sin \left(\theta_{R}-2 \pi / 3\right)+i_{S 3} \sin \left(\theta_{R}-4 \pi / 3\right)\right) \tag{7.84}
\end{equation*}
$$

As the currents are balanced $\left(i_{S 1}+i_{S 2}+i_{S 3} \equiv 0\right)$, equation (7.82) may be rewritten as

$$
\left[\begin{array}{l}
\psi_{S 1} \tag{7.85}\\
\psi_{S 2} \\
\psi_{S 3}
\end{array}\right]=\left[\begin{array}{ccc}
3 L / 2 & 0 & 0 \\
0 & 3 L / 2 & 0 \\
0 & 0 & 3 L / 2
\end{array}\right]\left[\begin{array}{l}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right]+K\left[\begin{array}{c}
\cos \left(\theta_{R}\right) \\
\cos \left(\theta_{R}-2 \pi / 3\right) \\
\cos \left(\theta_{R}-4 \pi / 3\right)
\end{array}\right]
$$

and equation (7.83) becomes

$$
\begin{align*}
{\left[\begin{array}{l}
d i_{S 1} / d t \\
d i_{S 2} / d t \\
d i_{S 3} / d t
\end{array}\right]=} & -\frac{2}{3} \frac{R_{S}}{L}\left[\begin{array}{c}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right]+\frac{2}{3} \frac{K}{L} \omega_{R}\left[\begin{array}{c}
\sin \left(\theta_{R}\right) \\
\sin \left(\theta_{R}-2 \pi / 3\right) \\
\sin \left(\theta_{R}-4 \pi / 3\right)
\end{array}\right] \\
& +\frac{2}{3} \frac{1}{L}\left[\begin{array}{c}
u_{S 1} \\
u_{S 2} \\
u_{S 3}
\end{array}\right] \tag{7.86}
\end{align*}
$$

7.4 Three-Phase, Sinusoidal, $60-\mathrm{Hz}$ Voltages*

Electric machines and power systems have been around for over 100 years. Basic choices in construction and operation of these systems were made along the way. In North America, this has resulted in a power system providing three-phase sinusoidal voltages operating at 60 Hz passing through three-phase transformers to power three-phase induction motors, light buildings, and so on. Why these specific choices? The answer to these questions are given in the book [61] by Laithewaite and Freris and are summarized below.

7.4.1 Why Three-Phase?

Modeling has been done of both two-phase and three-phase AC machines. One could consider a four-phase machine as well. Why are most electric machines three-phase? To answer this question, consider a simple generator shown in Figure 7.20 where a single-phase winding consists of three loops with one of the loops having a side in the slot at $\theta=\pi / 3$ (the other side of this loop in the slot at $\theta=4 \pi / 3$), another one at $\theta=\pi / 2$, and the third one at $\theta=2 \pi / 3$.

FIGURE 7.20. Computation of the emf in a distributed winding.
Consider the rotor to be a permanent magnet with the magnetic field in the air gap given by

$$
\overrightarrow{\mathbf{B}}_{R}\left(\theta-\theta_{R}\right)=B_{\mathrm{max}} \frac{r_{R}}{r} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} .
$$

With $d \overrightarrow{\mathbf{S}}=r_{S} d \theta d \ell \hat{\mathbf{r}}$ and the rotor moving at a constant angular speed so
that $\theta_{R}=\omega_{R} t$, the flux in the loop at θ_{i} is

$$
\begin{aligned}
\phi_{\theta_{i}} & =\int_{\substack{\text { Loop from } \\
\theta_{i}-\pi \text { to } \theta_{i}}} \overrightarrow{\mathbf{B}}_{R} \cdot d \overrightarrow{\mathbf{S}}=\int_{0}^{\ell_{1}} \int_{\theta=\theta_{i}-\pi}^{\theta=\theta_{i}} B_{\max } \frac{r_{R}}{r_{S}} \cos \left(\theta-\theta_{R}\right) \hat{\mathbf{r}} \cdot\left(r_{S} d \theta d \ell \hat{\mathbf{r}}\right) \\
& =2 \ell_{1} r_{R} B_{\max } \sin \left(\theta_{i}-\theta_{R}\right) .
\end{aligned}
$$

With $\theta_{R}=\omega_{R} t$, the corresponding emf is

$$
\xi_{\theta_{i}}=-\frac{d \phi_{\theta_{i}}}{d t}=V_{\max } \cos \left(\theta_{R}-\theta_{i}\right)=\operatorname{Re}\left\{V_{\max } e^{j\left(\omega_{R} t-\theta_{i}\right)}\right\}
$$

where $V_{\text {max }} \triangleq 2 \ell_{1} r_{R} B_{\max } \omega_{R}$. Denoting the three loops shown in Figure 7.20 as phase 1, the total emf generated in this phase is

$$
\begin{aligned}
\xi_{1} & =V_{\max } \operatorname{Re}\left\{e^{j\left(\omega_{R} t-\pi / 3\right)}+e^{j\left(\omega_{R} t-\pi / 2\right)}+e^{j\left(\omega_{R} t-2 \pi / 3\right)}\right\} \\
& =V_{\max } \operatorname{Re}\left\{e^{j \omega_{R} t}\left(e^{-j \pi / 3}+e^{-j \pi / 2}+e^{-j 2 \pi / 3}\right)\right\} \\
& =V_{\max }(1+\sqrt{3}) \cos \left(\omega_{R} t-\pi / 2\right)
\end{aligned}
$$

as $e^{-j \pi / 3}+e^{-j \pi / 2}+e^{-j 2 \pi / 3}=(1+\sqrt{3}) e^{-j \pi / 2}$.
On the other hand, if all three loops were located in the single pair of slots at $\theta=\pi / 2$ and $-\pi / 2$, then the generated voltage ζ_{1} would be

$$
\begin{aligned}
\zeta_{1} & =3 V_{\max } \operatorname{Re}\left\{e^{j \omega_{R} t} e^{-j \pi / 2}\right\} \\
& =3 V_{\max } \cos \left(\omega_{R} t-\pi / 2\right)
\end{aligned}
$$

The ratio of these two voltages is then

$$
\frac{\xi_{1}}{\zeta_{1}}=\frac{1+\sqrt{3}}{3}=0.91 .
$$

That is, by spreading the loops along the inside periphery of the stator, the voltage generated is about 91% of the voltage that would result if all the loops were put in the same slot. Why spread out the windings? A fundamental problem that limits the output power of an electric machine is the amount of heat it generates. So as to not damage the winding insulation by overheating, the amount of heat generated must be limited, and this is directly related to the amount of current in the windings. The addition of a fan on the rotor of the machine greatly enhances the heat transfer (removal) so that much larger currents could be used in the phase windings. (The payoff of being able to have larger currents in the windings greatly outweighs the loss of power due to the drag of the fan.) However, even with a fan, the amount of current in a winding at any location of the stator is still limited. With a current i_{S} in a phase winding, putting all three loops
at one location will generate three times the heat of putting just one loop at the one location. So, if more windings (loops) are desired to obtain a greater generated voltage, they must be distributed around the periphery for cooling (heat transfer) to avoid overheating the insulation.

The above analysis is now generalized to distributing the loops around the complete inner surface of the stator. Reiterating, to obtain more generated voltage out of the machine without overheating it, the loops must be distributed along the inner periphery of the stator.

Single Phase

First consider the case of a single-phase machine where N_{S} stator loops are equally spread around the complete 2π radians of the inner stator surface as shown in Figure 7.21 (a).

FIGURE 7.21. A single phase machine with a total of N_{S} turns/loops. (a) The first loop has sides 1 , the second loop has sides 2 , and so on. with the final loop having sides $N_{S}-N_{S}^{\prime}$. These loops are all electrically connected in series to make up the single-phase winding. (b) The phasors for each loop.

The top sides of the N_{S} loops are placed in slots on the inside surface of the stator core at

$$
\begin{equation*}
\theta_{i}=(i-1) \Delta \theta \quad \text { for } i=1, \ldots, N_{S} \tag{7.87}
\end{equation*}
$$

where $\Delta \theta=\pi / N_{S}$ and the other side of each loop is at the diametrically opposite side of the stator. Then the total voltage $\xi_{1 \mathrm{ph}}$ generated in this
single phase is

$$
\begin{align*}
\xi_{1 \mathrm{ph}}(t) & =\operatorname{Re}\left\{V_{\max }\left(\sum_{i=1}^{N_{S}} e^{j\left(\omega_{R} t-\theta_{i}\right)}\right)\right\}=\operatorname{Re}\left\{\left(\sum_{i=1}^{N_{S}} \underline{V}_{i}\right) e^{j \omega_{R} t}\right\} \\
& =\operatorname{Re}\left\{\underline{\boldsymbol{\xi}}_{1 \mathrm{ph}} e^{j \omega_{R} t}\right\}=\operatorname{Re}\left\{\left|\underline{\boldsymbol{\xi}}_{1 \mathrm{ph}}\right| e^{j<\underline{\xi}_{1 \mathrm{ph}}} e^{j \omega_{R} t}\right\} \tag{7.88}
\end{align*}
$$

where

$$
\underline{V}_{i} \triangleq V_{\max } e^{-j \theta_{i}}=V_{\max } e^{-j((i-1) \Delta \theta)}
$$

is the voltage phasor for loop $i-i^{\prime}$ and

$$
\underline{\boldsymbol{\xi}}_{1 \mathrm{ph}} \triangleq \sum_{i=1}^{N_{S}} \underline{V}_{i} .
$$

is the phasor for the total emf generated in the phase.
With N_{S} large (so $\Delta \theta=\pi / N_{S}$ is small), the phasors V_{i} in Figure 7.21 put end to end trace out (to a good approximation) a semicircle as illustrated in Figure 7.22 with their $\operatorname{sum} \underline{\boldsymbol{\xi}}_{1 \mathrm{ph}}=\sum_{i=1}^{N_{S}} \underline{V}_{i}$ being the diameter of the semicircle.

On the other hand, if all N_{S} loops are in the single pair of slots at $\pi / 2$ and $3 \pi / 2$, the generated voltage is ($\underline{V}_{1}=V_{\max }$ for the single-phase machine)

$$
\zeta_{1 \mathrm{ph}}(t)=\operatorname{Re}\left\{\left(N_{S} \underline{V}_{1} e^{-j \pi / 2}\right) e^{j \omega_{R} t}\right\}=\operatorname{Re}\left\{\underline{\boldsymbol{\zeta}}_{1 \mathrm{ph}} e^{j \omega_{R} t}\right\}
$$

with the magnitude of this voltage phasor given by

$$
\left|\underline{\boldsymbol{\zeta}}_{1 \mathrm{ph}}\right|=\left|N_{S} \underline{V}_{1}\right|=\sum_{i=1}^{N_{S}}\left|\underline{V}_{i}\right| .
$$

With r the radius of the semicircle, $\left|\underline{\xi}_{1 \mathrm{ph}}\right|$ is just the circumferential length πr of the semicircle. It then follows that

$$
\begin{aligned}
& \left|\underline{\boldsymbol{\xi}}_{1 \mathrm{ph}}\right|=\left|\sum_{i=1}^{N_{S}} \underline{V}_{i}\right|=2 r \\
& \left|\underline{\boldsymbol{\zeta}}_{1 \mathrm{ph}}\right|=\sum_{i=1}^{N_{S}}\left|\underline{V}_{i}\right|=\pi r
\end{aligned}
$$

or

$$
\frac{\left|\underline{\boldsymbol{\xi}}_{1 \mathrm{ph}}\right|}{\left|\underline{\boldsymbol{\zeta}}_{1 \mathrm{ph}}\right|}=\frac{2}{\pi}=0.636
$$

That is, for a single-phase machine, only 63.6% of the voltage is obtained distributing the N_{S} loops over the inner stator surface compared to being
able to put all N_{S} windings at a single location. However, the distributed winding can carry a much larger current without overheating and damaging the conductor insulation compared to having all the windings concentrated in one pair of slots.

FIGURE 7.22. A geometric representation of the phasor sum $\underline{\boldsymbol{\xi}}_{1 \mathrm{ph}}=\sum_{i=1}^{N_{S}} \underline{\mathbf{V}}_{i}$. The diameter of the semicircle is $\left|\sum_{i=1}^{N_{S}} \underline{V}_{i}\right|=2 r$ while its circumferential length is $\sum_{i=1}^{N_{S}}\left|\underline{\mathrm{~V}}_{i}\right|=\pi r$.

Two Phases

For a two-phase machine with phases 1 and 2 , the N_{S} loops of each phase are distributed over only π radians; that is, with $\Delta \theta=\pi /\left(2 N_{S}\right)$, the top side of the loops of phase 1 are in the slots at

$$
\theta_{i}=\frac{\pi}{4}+(i-1) \Delta \theta \quad \text { for } i=1, \ldots, N_{S}
$$

as shown in Figure 7.23(a).

FIGURE 7.23. (a) Distributed two-phase windings. (b) Phasor diagram of the voltages in the loops of phase 1 .

In this case, the voltage $\xi_{2 \mathrm{ph}}$ generated in this distributed winding is

$$
\begin{align*}
\xi_{2 \mathrm{ph}}(t) & =\operatorname{Re}\left\{V_{\max }\left(\sum_{i=1}^{N_{S}} e^{j\left(\omega_{R} t-\theta_{i}\right)}\right)\right\}=\operatorname{Re}\left\{\left(\sum_{i=1}^{N_{S}} \underline{V}_{i}\right) e^{j \omega_{R} t}\right\} \\
& =\operatorname{Re}\left\{\underline{\boldsymbol{\xi}}_{2 \mathrm{ph}} e^{j \omega_{R} t}\right\}=\operatorname{Re}\left\{\left|\underline{\boldsymbol{\xi}}_{2 \mathrm{ph}}\right| e^{j\left\langle\boldsymbol{\xi}_{2 \mathrm{ph}}\right.} e^{j \omega_{R} t}\right\} \tag{7.89}
\end{align*}
$$

where

$$
\underline{V}_{i} \triangleq V_{\max } e^{-j \theta_{i}}=V_{\max } e^{-j((i-1) \Delta \theta)}
$$

is the voltage phasor for loop $i-i^{\prime}$ and

$$
\underline{\boldsymbol{\xi}}_{2 \mathrm{ph}} \triangleq \sum_{i=1}^{N_{S}} \underline{V}_{i}
$$

is the phasor of the total emf generated in the phase.
With N_{S} large, the phasors \underline{V}_{i} put end-to-end trace out a quarter of a circle and their $\operatorname{sum} \underline{\boldsymbol{\xi}}_{2 \mathrm{ph}}=\sum_{i=1}^{N_{S}} \underline{V}_{i}$ is a chord of the circle as illustrated in Figure 7.23(b). The magnitude of this phasor is

$$
\left|\underline{\xi}_{2 \mathrm{ph}}\right|=\left|\sum_{i=1}^{N_{S}} \underline{V}_{i}\right|=\sqrt{2} r
$$

where r is the radius of the circle.
If all N_{S} loops are in a single-slot pair at $\pi / 2$ and $3 \pi / 2$, the generated voltage is $\left(\underline{V}_{1}=V_{\max } e^{-j \pi / 4}\right.$ for the two-phase machine so that $\underline{V}_{1} e^{-j \pi / 4}=$ $\left.V_{\max } e^{-j \pi / 2}\right)$

$$
\zeta_{2 \mathrm{ph}}(t)=\operatorname{Re}\left\{\left(N_{S} \underline{V}_{1} e^{-j \pi / 4}\right) e^{j \omega_{R} t}\right\}=\operatorname{Re}\left\{\underline{\zeta}_{2 \mathrm{ph}} e^{j \omega_{R} t}\right\}
$$

where the magnitude of this voltage phasor given by

$$
\left|\underline{\boldsymbol{\zeta}}_{2 \mathrm{ph}}\right|=\left|N_{S} \underline{V}_{1}\right|=\sum_{i=0}^{N_{S}}\left|\underline{V}_{i}\right|=\frac{2 \pi r}{4}
$$

as it is just the circumferential length of the quarter circle. The ratio of the magnitude of these two generated emfs is

$$
\frac{\left|\boldsymbol{\xi}_{2 \mathrm{ph}}\right|}{\left|\boldsymbol{\zeta}_{2 \mathrm{ph}}\right|}=\frac{2 \sqrt{2}}{\pi}=0.9 .
$$

Three Phases

For a three-phase motor with phases 1,2 and 3 , the N_{S} loops of each phase are distributed over $2 \pi / 3$ radians. With $\Delta \theta=\pi /\left(3 N_{S}\right)$, the top side of the loops of phase 1 are in the slots at

$$
\theta_{i}=\frac{\pi}{3}+(i-1) \Delta \theta \quad \text { for } i=1, \ldots, N_{S}
$$

as illustrated in Figure 7.24. The total voltage $\xi_{3 \text { ph }}$ generated in phase 1 is

$$
\begin{align*}
\xi_{3 \mathrm{ph}}(t) & =\operatorname{Re}\left\{V_{\max }\left(\sum_{i=1}^{N_{\mathrm{S}}} e^{j\left(\omega_{R} t-\theta_{i}\right)}\right)\right\}=\operatorname{Re}\left\{\left(\sum_{i=1}^{N_{S}} \underline{V}_{-i}\right) e^{j \omega_{R} t}\right\} \\
& =\operatorname{Re}\left\{\underline{\boldsymbol{\xi}}_{3 \mathrm{ph}} e^{j \omega_{R} t}\right\}=\operatorname{Re}\left\{\left|\underline{\xi}_{3 \mathrm{ph}}\right| e^{j\left\langle\boldsymbol{\xi}_{3 \mathrm{ph}}\right.} e^{j \omega_{R} t}\right\} \tag{7.90}
\end{align*}
$$

where

$$
\underline{V}_{i} \triangleq V_{\max } e^{-j \theta_{i}}=V_{\max } e^{-j((i-1) \Delta \theta)}
$$

is the voltage phasor for loop $i-i^{\prime}$ and

$$
\underline{\boldsymbol{\xi}}_{3 \mathrm{ph}} \triangleq \sum_{i=1}^{N_{S}} \underline{V}_{i}
$$

is the phasor of the total emf generated in the phase.

FIGURE 7.24. (a) Distributed three-phase windings. (b) Phasor diagram of the voltages in each loop of phase 1.

With N_{S} large, the phasors \underline{V}_{i} put end to end trace out a sixth of a circle and the sum $\underline{\boldsymbol{\xi}}_{3 \mathrm{ph}}=\sum_{i=1}^{N_{S}} \underline{V}_{i}$ is a chord of this circle as shown in Figure 7.24(b). The magnitude of the phasor $\underline{\boldsymbol{\xi}}_{3 \mathrm{ph}}$ is given by

$$
\left|\underline{\boldsymbol{\xi}}_{3 \mathrm{ph}}\right|=\left|\sum_{i=1}^{N_{S}} \underline{V}_{i}\right|=2 r \sin (\pi / 6)=r
$$

where r is the radius of the circle.
If all N_{S} loops are in a single-slot pair at $\pi / 2$ and $3 \pi / 2$, the generated voltage $\zeta_{3 \mathrm{ph}}(t)$ is given by $\left(V_{1}=V_{\max } e^{-j \pi / 3}\right.$ for the three-phase machine so that $\left.\underline{V}_{1} e^{-j \pi / 6}=V_{\max } e^{-j \pi / 2}\right)$

$$
\zeta_{3 \mathrm{ph}}(t)=\operatorname{Re}\left\{\left(N_{S} \underline{V}_{1} e^{-j \pi / 6}\right) e^{j \omega_{R} t}\right\}=\operatorname{Re}\left\{\underline{\zeta}_{3 \mathrm{ph}} e^{j \omega_{R} t}\right\}
$$

where the magnitude of this voltage phasor given by

$$
\left|\underline{\zeta}_{3 \mathrm{ph}}\right|=\left|N_{S} \underline{V}_{1}\right|=\sum_{i=0}^{N_{S}}\left|\underline{V}_{i}\right|=\frac{2 \pi r}{6}
$$

as it is just the circumferential length of the sixth of a circle. The ratio of these generated emfs is

$$
\frac{\left|\boldsymbol{\xi}_{3 \mathrm{ph}}\right|}{\left|\boldsymbol{\zeta}_{3 \mathrm{ph}}\right|}=\frac{3}{\pi}=0.955 .
$$

Four or More Phases

Consider a four-phase machine where the N_{S} loops of each phase are distributed over $\pi / 2$ radians, that is, with $\Delta \theta=\pi /\left(8 N_{S}\right)$, the top side of the loops of phase 1 are in the slots at

$$
\theta_{i}=\frac{\pi}{2}+(i-1) \Delta \theta \quad \text { for } i=1, \ldots, N_{S}
$$

The ratio of the voltage $\left|\underline{\boldsymbol{\xi}}_{4 \mathrm{ph}}\right|$ generated in the distributed windings to the voltage $\left|\zeta_{4 \mathrm{ph}}\right|$ generated if all the windings are in a single slot is

$$
\frac{\left|\boldsymbol{\xi}_{4 \mathrm{ph}}\right|}{\left|\boldsymbol{\zeta}_{4 \mathrm{ph}}\right|} \approx \frac{2 r \sin (\pi / 8)}{\pi r /(4)}=\frac{\sin (\pi / 8)}{\pi / 8}=0.975 .
$$

In general, for a machine with $n_{p h}$ phases, the ratio is given by

$$
\frac{\left|\underline{\boldsymbol{\xi}}_{\mathrm{nph}}\right|}{\left|\boldsymbol{\zeta}_{\mathrm{nph}}\right|} \approx \frac{2 r \sin \left(\frac{\pi}{2 n_{p h}}\right)}{2 r \frac{\pi}{2 n_{p h}}}=\frac{\sin \left(\frac{\pi}{2 n_{p h}}\right)}{\frac{\pi}{2 n_{p h}}} \rightarrow 1 \text { as } n_{p h} \rightarrow \infty .
$$

Finally, for a machine with $n_{p h}$ phases and N_{S} large, the sum $\sum_{i=1}^{N_{S}} \underline{V}_{i}$ from each phase spans a circumferential length of $(1 / 2)\left(2 \pi r / n_{p h}\right)$, which is approximately $N_{S} V_{\max }$, that is,

$$
\frac{1}{2} \frac{2 \pi r}{n_{p h}} \approx N_{S} V_{\max } \Longrightarrow 2 r \approx \frac{N_{S} V_{\max }}{\pi /\left(2 n_{p h}\right)} .
$$

Comparison

The table below summarizes the results of computing the ratio of the magnitude of the voltage in a distributed winding to that of a concentrated winding when the number of phases is $1,2,3$, and 4 .

$n_{p h}$	$\underline{\boldsymbol{\xi}}_{\mathrm{nph}}$
1	0.636
2	0.900
3	0.955
4	0.975

The quantity N_{S} denotes the total number of loops per phase so that total number of loops in a machine with $n_{p h}$ phases is $N_{\text {total }}=n_{p h} N_{S}$. To make a comparison of the voltage output of machines with different number of phases, it is assumed that the total number of windings $N_{\text {total }}$ is the same in each machine. For example, in a three-phase machine, the N_{S} loops of each phase are distributed over $2 \pi / 3$ radians making full use of the inside stator surface with $N_{\text {total }}=3 N_{S}$. In a three-phase generator, all the available surface area of the inside stator surface is used and the three independent phase voltages coming out of the machine produce 95.5% of the voltage compared to putting all the windings of each phase in a single pair of slots.

A comparison of the machines is done on the basis of the power that can be produced. That is, all things being equal other than the number of phases, how do the number of phases impact the amount of electric power that can be extracted from the machine? The three-phase, two-phase and single-phase machines are now considered in this context.

Let

$$
\begin{aligned}
\xi_{S 1}(t) & =\operatorname{Re}\left\{\underline{\boldsymbol{\xi}}_{3 \mathrm{ph}} e^{j \omega_{R} t}\right\} \\
\xi_{S 2}(t) & =\operatorname{Re}\left\{\underline{\boldsymbol{\xi}}_{3 \mathrm{ph}} e^{-j 2 \pi / 3} e^{j \omega_{R} t}\right\} \\
\xi_{S 3}(t) & =\operatorname{Re}\left\{\underline{\xi}_{3 \mathrm{ph}} e^{-j 4 \pi / 3} e^{j \omega_{R} t}\right\}
\end{aligned}
$$

be the generated voltages with $\underline{\boldsymbol{\xi}}_{3 \mathrm{ph}}=\sum_{i=1}^{N_{S}} \underline{V}_{i}$ the sum of the phasors in phase 1 .

In a three-phase machine, the generated output power is

$$
p_{3 \text { phase }}=i_{S 1} \xi_{S 1}+i_{S 2} \xi_{S 2}+i_{S 3} \xi_{S 3}
$$

and, in steady state with $\theta_{R}=\omega_{R} t$ and a balanced load, the currents constitute a three-phase balanced set of the form

$$
\begin{aligned}
i_{S 1} & =I \cos \left(\omega_{R} t+\angle \boldsymbol{\xi}_{3 \mathrm{ph}}-\phi_{3 \mathrm{ph}}\right) \\
i_{S 2} & =I \cos \left(\omega_{R} t-2 \pi / 3+\angle \boldsymbol{\xi}_{3 \mathrm{ph}}-\phi_{3 \mathrm{ph}}\right) \\
i_{S 3} & =I \cos \left(\omega_{R} t-4 \pi / 3+\angle \underline{\boldsymbol{\xi}}_{3 \mathrm{ph}}-\phi_{3 \mathrm{ph}}\right)
\end{aligned}
$$

Under these conditions, the output power is constant and equal to

$$
\begin{aligned}
& p_{3 \mathrm{phase}}=i_{S 1} \xi_{S 1}+i_{S 2} \xi_{S 2}+i_{S 3} \xi_{S 3} \\
& =\frac{\sin (\pi / 6)}{\pi / 6} N_{S} V_{\max } I\left(\cos \left(\omega_{R} t+\angle \underline{\boldsymbol{\xi}}_{3 \mathrm{ph}}\right) \cos \left(\omega_{R} t+\angle \underline{\boldsymbol{\xi}}_{3 \mathrm{ph}}-\phi_{3 \mathrm{ph}}\right)\right. \\
& \quad+\cos \left(\omega_{R} t+\angle \underline{\boldsymbol{\xi}}_{3 \mathrm{ph}}-2 \pi / 3\right) \cos \left(\omega_{R} t-2 \pi / 3+\angle \underline{\boldsymbol{\xi}}_{3 \mathrm{ph}}-\phi_{3 \mathrm{ph}}\right) \\
& \left.\quad+\cos \left(\omega_{R} t+\angle \underline{\boldsymbol{\xi}}_{3 \mathrm{ph}}-4 \pi / 3\right) \cos \left(\omega_{R} t-4 \pi / 3+\angle \underline{\boldsymbol{\xi}}_{3 \mathrm{ph}}-\phi_{3 \mathrm{ph}}\right)\right) \\
& =\frac{3}{2} \frac{\sin (\pi / 6)}{\pi / 6} N_{S} V_{\max } I \cos \left(\phi_{3 \mathrm{ph}}\right) \\
& =(0.955) \frac{1}{2} N_{\mathrm{total}} V_{\max } I \cos \left(\phi_{3 \mathrm{ph}}\right)
\end{aligned}
$$

where $N_{\text {total }}=3 N_{S}$ in a three-phase machine.
In a similar fashion, let

$$
\begin{aligned}
\xi_{S 1}(t) & =\operatorname{Re}\left\{\underline{\boldsymbol{\xi}}_{2 \mathrm{ph}} e^{j \omega_{R} t}\right\} \\
\xi_{S 2}(t) & =\operatorname{Re}\left\{\underline{\boldsymbol{\xi}}_{2 \mathrm{ph}} e^{-j \pi / 2} e^{j \omega_{R} t}\right\}
\end{aligned}
$$

be the generated voltages in the two-phase machine where $\underline{\boldsymbol{\xi}}_{2 \mathrm{ph}}=\sum_{i=1}^{N_{S}} \underline{V}_{i}$ is the sum of the voltage phasors of phase 1. It is straightforward to show that the power in a two-phase machine is constant and given by ($N_{\text {total }}=$ $2 N_{S}$ in a two-phase machine)

$$
\begin{aligned}
p_{2 \text { phase }}= & i_{S 1} \xi_{S 1}+i_{S 2} \xi_{S 2} \\
= & N_{S} \frac{\sin (\pi / 4)}{\pi / 4} V_{\max } I\left(\cos \left(\omega_{R} t+\angle \underline{\xi}_{2 \mathrm{ph}}\right) \cos \left(\omega_{R} t+\angle \underline{\boldsymbol{\xi}}_{2 \mathrm{ph}}-\phi_{2 \mathrm{ph}}\right)\right. \\
& \left.\quad+\cos \left(\omega_{R} t+\angle \underline{\boldsymbol{\xi}}_{2 \mathrm{ph}}-\frac{\pi}{2}\right) \cos \left(\omega_{R} t+\angle \underline{\boldsymbol{\xi}}_{2 \mathrm{ph}}-\frac{\pi}{2}-\phi_{2 \mathrm{ph}}\right)\right) \\
& =\frac{1}{2} \frac{\sin (\pi / 4)}{\pi / 4} N_{\mathrm{total}} V_{\max } I \cos \left(\phi_{2 \mathrm{ph}}\right) \\
= & (0.9) \frac{1}{2} N_{\text {total }} V_{\max } I \cos \left(\phi_{2 \mathrm{ph}}\right) .
\end{aligned}
$$

In a single-phase generator, there would be $N_{\text {total }}$ windings distributed around the inner stator surface. The power is not constant in this case as

$$
\begin{aligned}
\xi_{S 1}(t) & =\operatorname{Re}\left\{\underline{\boldsymbol{\xi}}_{1 \mathrm{ph}} e^{j \omega_{R} t}\right\} \\
i_{S 1} & =I \cos \left(\omega_{R} t+\angle \underline{\boldsymbol{\xi}}_{1 \mathrm{ph}}-\phi_{1 \mathrm{ph}}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
p_{\text {single-phase }} & =\xi_{S 1} i_{S 1} \\
& =\left(N_{\mathrm{total}} V_{\max } \cos \left(\omega_{R} t+\angle \underline{\boldsymbol{\xi}}_{\mathrm{iph}}\right)\right)\left(I \cos \left(\omega_{R} t+\angle \underline{\boldsymbol{\xi}}_{1 \mathrm{ph}}-\phi_{1 \mathrm{ph}}\right)\right) \\
& =N_{\mathrm{total}} V_{\mathrm{max}} I \frac{\sin (\pi / 2)}{\pi / 2} \frac{1}{2}\left(\cos \left(\phi_{1 \mathrm{ph}}\right)+\cos \left(2 \omega_{R} t+2 \angle \underline{\boldsymbol{\xi}}_{\mathrm{iph}}-\phi_{1 \mathrm{ph}}\right)\right) .
\end{aligned}
$$

The average power is

$$
\begin{aligned}
\left\langle p_{\text {single-phase }}\right\rangle & \triangleq \frac{1}{2 \pi} \int_{0}^{2 \pi} p_{\text {single-phase }}\left(\omega_{R} t\right) d\left(\omega_{R} t\right) \\
& =(0.64) \frac{1}{2} N_{\text {total }} V_{\max } I \cos \left(\phi_{1 \mathrm{ph}}\right) .
\end{aligned}
$$

For the same-size machine (that is, air gap length, rotor radius, stator radius, axial length, etc.) with the same total number of windings, the same current in the windings and operating at the same power factor (so that $\phi_{1 \mathrm{ph}}=\phi_{2 \mathrm{ph}}=\phi_{3 \mathrm{ph}}$), the single-phase machine can (on average) only generate $0.64 / 0.955$ or 67% of the power of the three-phase system. Similarly, the two-phase machine can only generate 0.9/0.955 (94.2\%) of a three-phase system. A three-phase machine can generate 95.5% (0.955) of the power that an ideal machine with an infinite number of phases could produce. Going to a four-phase machine results in a gain of only 2% compared to a threephase machine (that is, $\left.p_{4 \text { phase }}=(0.975 / 0.955) p_{3 \text { phase }}=(1.02) p_{3 \text { phase }}\right)$. This analysis shows that a three-phase generator is a good trade-off between complexity (that is, number of phases) and the achievable output power of the machine.

Sinusoidally Wound Stator

The windings in a practical machine can be approximately sinusoidally wound in two layers as illustrated in Figure 7.25 (see also Figures 7.1 and 7.2). As shown previously, the windings are distributed this way so that the radial magnetic field in the air gap produced by the stator currents is (approximately) sinusoidally distributed in space (as is the magnetic field due to the rotor currents). Note that the periphery of the inside surface of the stator has the loops evenly distributed (in two layers) over the complete circumference.

FIGURE 7.25. Three-phase sinusoidally wound PM synchronous motor.
In this case, the voltage produced by phase 1 is (see Figure 7.2)

$$
\begin{aligned}
\xi_{1} & =V_{\max } \operatorname{Re}\left\{e^{j\left(\omega_{R} t-\pi / 3\right)}+2 e^{j\left(\omega_{R} t-\pi / 2\right)}+e^{j\left(\omega_{R} t-2 \pi / 3\right)}\right\} \\
& =V_{\max } \operatorname{Re}\left\{e^{j \omega_{R} t}\left(e^{-j \pi / 3}+2 e^{-j \pi / 2}+e^{-j 2 \pi / 3}\right)\right\} \\
& =V_{\max }(2+\sqrt{3}) \cos \left(\omega_{R} t-\pi / 2\right)
\end{aligned}
$$

where $e^{-j \pi / 3}+2 e^{-j \pi / 2}+e^{-j 2 \pi / 3}=(2+\sqrt{3}) e^{-j \pi / 2}, \omega_{R} \triangleq d \theta_{R} / d t$, and $V_{\text {max }} \triangleq 2 \ell_{1} r_{R} B_{\max } \omega_{R}$.

This can be compared to the voltage produced by putting all four windings in a single slot where the ratio of the magnitude of these two voltages is $(2+\sqrt{3}) / 4=0.933$.

On the other hand, if only one layer was used, the four loops would be evenly spread over $2 \pi / 3$ radians. The resulting voltage would then be $\left(\Delta \theta=\frac{\pi / 3}{4}=\frac{\pi}{12}, \theta_{i}=\frac{9 \pi}{24}+(i-1) \frac{\pi}{12}\right.$ for $i=1,2,3,4$.

$$
\begin{aligned}
\xi_{1}= & V_{\max } \operatorname{Re}\left\{e^{j\left(\omega_{R} t-9 \pi / 24\right)}+e^{j\left(\omega_{R} t-11 \pi / 24\right)}+e^{j\left(\omega_{R} t-13 \pi / 24\right)}\right. \\
& \left.+e^{j\left(\omega_{R} t-15 \pi / 24\right)}\right\} \\
= & V_{\max } \operatorname{Re}\left\{e^{j \omega_{R} t}\left(e^{-j 9 \pi / 24}+e^{-j 11 \pi / 24}+e^{-j 13 \pi / 24}+e^{-j 15 \pi / 24}\right)\right\} \\
= & V_{\max }(\sin (9 \pi / 24)+\sin (11 \pi / 24)+\sin (13 \pi / 24)+\sin (15 \pi / 24)) \\
& \times \cos \left(\omega_{R} t-\pi / 2\right) \\
= & 3.83 V_{\max } \cos \left(\omega_{R} t-\pi / 2\right)
\end{aligned}
$$

and the ratio would be $3.83 / 4=0.958$. Though this gives a higher voltage output, this configuration requires 24 slots (one side of a loop in each slot) compared to the one of Figure 7.25 which requires only 12 slots (two loops
in each slot). The mechanical integrity of the machine usually favors going with 12 slots as there is more stator iron between the slots in this case.

7.4.2 Why AC?

Why is the power system AC and not DC? A three-phase generator supplies constant power by producing three balanced sinusoidal voltages to a balanced three-phase load. Historically, the use of AC power was important for efficient distribution of electric power over long distances. To explain, consider a three-phase generator connected to a balanced threephase power line which is then connected to a balanced three-phase load. Let the output voltages of the generator be of the form

$$
\begin{aligned}
& v_{S 1}=V \cos (\omega t-\pi / 2) \\
& v_{S 2}=V \cos (\omega t-\pi / 2-2 \pi / 3) \\
& v_{S 3}=V \cos (\omega t-\pi / 2-4 \pi / 3)
\end{aligned}
$$

and the corresponding currents are of the form

$$
\begin{aligned}
i_{S 1} & =I \cos (\omega t-\pi / 2-\phi) \\
i_{S 2} & =I \cos (\omega t-\pi / 2-2 \pi / 3-\phi) \\
i_{S 3} & =I \cos (\omega t-\pi / 2-4 \pi / 3-\phi)
\end{aligned}
$$

The frequency $\omega=2 \pi f$ is constant at 60 Hz (50 Hz in Europe). Here the quantities I and ϕ depend on the values of the inductances and resistances of the generator, the transmission line, and the load as well as the operating frequency. The power delivered by the generator is then

$$
p_{\text {generator }}=v_{S 1} i_{S 1}+v_{S 2} i_{S 2}+v_{S 3} i_{S 3}=\frac{3}{2} V I \cos (\phi)
$$

Let the power line have length ℓ and let R denote the resistance per unit length in each phase of the power line so that the average electric power lost in the line is then

$$
p_{\text {lost }}=\frac{3}{2} \ell R I^{2} .
$$

The power delivered to the load is then

$$
p_{\text {load }}=p_{\text {generator }}-p_{\text {lost }}=\frac{3}{2} V I \cos (\phi)-\frac{3}{2} \ell R I^{2}
$$

For a given total resistance ℓR in the line, one keeps the loss down by delivering the power using as little current as possible. For a given power factor $\cos (\phi)$ (fixed by the impedances of the load and power line), the power delivered $\frac{3}{2} V I \cos (\phi)$ depends on the product $V I$. The generator is designed to put out a large voltage V (accomplished by putting many
turns in each stator slot and having a strong rotor magnetic field ${ }^{10}$) so that the current is (relatively) small and yet the generator still delivers the requisite power needed by the load. ${ }^{11}$ However, though the power is efficiently delivered to the load, the voltage is too large to be used by the consumer (industrial or home). As this power is AC, it can be stepped down by a transformer to a level that can be used by the consumer for lighting, running motors, and so on. ${ }^{12}$ The induction motor was (and still is) so important because it could be started and run open-loop off of a three-phase AC power supply. ${ }^{13}$ (The synchronous motor would not work because it cannot be started by direct connection to a three-phase $60-\mathrm{Hz}$ AC source and can stall out of control quite easily under changing loads when run in open loop.) For these reasons, AC power won out over DC power many years ago. An interesting article on this history is Ref. [62].

7.4.3 Why Sinusoidal Voltages?

The question still remains as to why sinusoids for the voltages. The voltage out of the generator will be periodic as long as the generator is run at constant speed. Why is the rotor iron designed to produce a sinusoidally distributed magnetic field in the air gap resulting in sinusoidal voltages induced in the sinusoidally distributed stator windings? Again, the answer to this question is provided in Laithwaite and Freris [61]. It comes down to the fact that sinusoids are the only signals that can be passed through a stable linear time-invariant system and still be sinusoids. For example, consider the transmission of the power through a transformer. Let the threephase output voltages of the generator be of the form

$$
\begin{aligned}
v_{S 1} & =V \cos (\omega t) \\
v_{S 2} & =V \cos (\omega t-2 \pi / 3) \\
v_{S 3} & =V \cos (\omega t-4 \pi / 3)
\end{aligned}
$$

[^62]Let these voltages be input to a transformer in the power system so that with N_{2} / N_{1} the transformer ratio, the output voltages are then

$$
\begin{aligned}
v_{S 1}^{\prime} & =\frac{N_{2}}{N_{1}} v_{S 1} \\
v_{S 2}^{\prime} & =\frac{N_{2}}{N_{1}} v_{S 2} \\
v_{S 2}^{\prime} & =\frac{N_{2}}{N_{1}} v_{S 2}
\end{aligned}
$$

for an ideal transformer. The corresponding transfer function of the ideal transformer is then [see Figure 7.26(a)]

$$
G_{\text {ideal }}(j \omega) \triangleq \frac{V_{S 1}^{\prime}(j \omega)}{V_{S 1}(j \omega)}=\frac{N_{2}}{N_{1}} .
$$

However, real transformers are not ideal. Figure 7.26(b) shows an equivalent circuit model for a nonideal transformer connected to a resistive load.

FIGURE 7.26. (a) Ideal transformer. (b) Nonideal transformer whose primary is connected to one phase of a three-phase source and whose secondary is connected to a load.

With

$$
\begin{aligned}
a_{0} & =R_{1} R_{2}+R_{1} R_{L} \\
a_{1} & =L_{\ell 2} R_{1}+L_{m} R_{1} n^{2}+L_{\ell 1} R_{2}+L_{m} R_{2}+L_{\ell 1} R_{\text {load }}+L_{m} R_{L} \\
a_{2} & =L_{\ell 1} L_{\ell 2}+L_{\ell 2} L_{m}+L_{\ell 1} L_{m} n^{2} \\
b_{1} & =n R_{L} L_{m} \\
n & =N_{2} / N_{1}
\end{aligned}
$$

the transfer function of the nonideal transformer is

$$
G(s) \triangleq \frac{V_{L 1}(s)}{V_{S 1}(s)}=\frac{b_{1} s}{a_{2} s^{2}+a_{1} s+a_{0}} .
$$

The output voltages are then

$$
\begin{aligned}
& v_{L 1}(\omega t)=|G(j \omega)| V \cos (\omega t+\angle G(j \omega)) \\
& v_{L 2}(\omega t)=|G(j \omega)| V \cos (\omega t-2 \pi / 3+\angle G(j \omega)) \\
& v_{L 2}(\omega t)=|G(j \omega)| V \cos (\omega t-4 \pi / 3+\angle G(j \omega))
\end{aligned}
$$

which is still a balanced three-phase set of sinusoidal voltages! That is, they are sinusoidal voltages of the same form as the input only shifted in phase by $\angle G(j \omega)$ and scaled in amplitude by the factor $|G(j \omega)|$. In particular, a three-phase induction motor is designed to run efficiently off any threephase set of sinusoidal voltages.

Suppose the generator produced a periodic waveform $w_{S 1}(\omega t)$ that is not sinusoidal. The waveform $w_{S 1}(\omega t)$ can be expanded in a Fourier series as

$$
w_{S_{1}}(\omega t)=\sum_{n=1}^{\infty} A_{n} \cos \left(n \omega t+\Phi_{i}\right)
$$

where $A_{1} \neq 0$ and $A_{n} \neq 0$ for some $n \geq 2$ (in the sinusoidal case, $A_{n}=0$ for all $n \geq 2$). When passed through the (nonideal) transformer, the output voltage will then be

$$
w_{S 1}^{\prime}(\omega t)=\sum_{n=1}^{\infty} A_{n}|G(j n \omega)| \cos \left(n \omega t+\Phi_{i}+\angle G(j n \omega)\right)
$$

The output waveform is distorted when compared to the input waveform as the different harmonic components ($n=1,2, \ldots$) of the waveform are shifted in phase by different amounts $\angle G(j n \omega)$ and are scaled in amplitude by different amounts $|G(j n \omega)|$. As a result, the output waveform does not have the same shape as the input voltage.

Of course, in addition to transformers, the generated power goes through transmission lines that are effectively modeled by $R L C$ circuits and are also stable linear time-invariant systems. As long as the output voltage of the generator is a pure sinusoid, it may pass through any number of such systems and remain a pure sinusoid.

By designing the generator to produce a balanced set of three-phase sinusoidal voltages and designing the motors to run off of a balanced set of three-phase sinusoidal voltages, the transmission line and the transformer between the two will still output a (stepped-down) balanced three-phase set of sinusoidal voltages to provide the right match between the two.

7.4.4 Why 60 Hz ?

The use of 60 Hz for the frequency of a power system is trade-off just as all the other choices in a power system [61]. A $10-\mathrm{Hz}$ source would provide
too much flicker in electric lights as perceived by the human eye to be of use. However, 50 Hz or 60 Hz is of high enough frequency so that no flicker is perceived. As far as an upper limit in frequency, note that the angle ϕ between the voltage and current increases as the operating frequency increases so that the power factor $\cos (\phi)$ goes down at higher frequency. Further, the upper limit in frequency is also limited by losses and resonance problems. For example, in the iron of electric machines and transformers connected to a power system, the hysteresis losses go up in proportion to the frequency ($p_{\text {hysteresis_loss }} /$ volume $=\frac{\omega}{2 \pi} \oint_{\text {cycle }} H d B$) while the eddy current losses go up in proportion to the square of the frequency. Further, the distributed inductances and capacitances in the power line result in a transfer function for the power network that can have resonances at high frequencies, and thus the operating frequency of the power system must be well below any such resonant frequencies. Airplanes typically have a $400-\mathrm{Hz}$ power system, but as the power system is spatially contained, such resonances can be avoided by design. In the case of aircraft, using a power system with higher frequency reduces the amount of iron, and therefore weight, required in transformers, which is obviously important.

Problems

Calculations

Problem 1 Stator Flux Linkages

Carry out the integrations to compute the expressions for the stator fux linkages given in equations (7.5), (7.6), and (7.7).

Problem 2 Rotor Flux Linkages

Carry out the integrations to compute the expressions for the stator flux linkages given in equations (7.11), (7.12), and (7.13).

Problem 3 Balanced Conditions
Show that

$$
\begin{aligned}
1+\cos (2 \pi / 3)+\cos (4 \pi / 3) & =0 \\
\sin (2 \pi / 3)+\sin (4 \pi / 3) & =0 \\
1+e^{j 2 \pi / 3}+e^{j 4 \pi / 3} & =0 \\
\cos \left(\theta_{R}\right)+\cos \left(\theta_{R}-2 \pi / 3\right)+\cos \left(\theta_{R}-4 \pi / 3\right) & \equiv 0 \\
\cos \left(\theta_{R}\right)+\cos \left(\theta_{R}+2 \pi / 3\right)+\cos \left(\theta_{R}+4 \pi / 3\right) & \equiv 0
\end{aligned}
$$

Problem 4 Balanced Conditions
Using the identities from problem 3, and equations (7.10) and (7.15),
show that

$$
\begin{aligned}
\psi_{S 1}(t)+\psi_{S 2}(t)+\psi_{S 3}(t) & \equiv 0 \\
\psi_{R 1}(t)+\psi_{R 2}(t)+\psi_{R 3}(t) & \equiv 0 .
\end{aligned}
$$

Problem 5 Three-Phase to Two-Phase Transformation
Verify equation (7.20).
Problem 6 Three-Phase to Two-Phase Transformation
Verify equation (7.23).
Problem 7 Induction Motor with Unbalanced Voltages
The system of equations (7.25) are valid even if the voltages are not balanced. Explain why the two-phase model (7.31) is no longer an equivalent model, that is, knowledge of the two-phase variables $i_{S a}, i_{S b}, i_{R a}, i_{R b}, u_{S a}, u_{S b}$, ω, and θ is not enough to determine the three-phase variables $i_{S 1}, i_{S 2}, i_{S 3}, i_{R 1}$, $i_{R 2}, i_{R 3}, u_{S 1}, u_{S 2}, u_{S 3}, \omega$, and θ. What if $u_{S 0}=\sqrt{3} v_{\hat{N} N}=\left(u_{S 1}+u_{S 2}+\right.$ $\left.u_{S 3}\right) / \sqrt{3}$ is known?

Do the three-phase variables uniquely determine the two-phase variables if the voltages are unbalanced?

Problem 8 Induction Motor Torque
Verify the calculations used to derive the expressions for the phase torques given in equations (7.26), (7.27), and (7.28).

Problem 9 Three-Phase to Two-Phase Transformation
Show that with the three-phase to two-phase transformation given by (7.17), it follows that

$$
u_{S a}(t) i_{S a}(t)+u_{S b}(t) i_{S b}(t)=u_{S 1}(t) i_{S 1}(t)+u_{S 2}(t) i_{S 2}(t)+u_{S 3}(t) i_{S 3}(t)
$$

Problem 10 Three-Phase to Two-Phase Transformation
Do the calculations to verify that (7.30) is the correct expression for the two-phase equivalent torque.

Space Vector Induction Motor Models

Problem 11 Space Vector Form of the Three-Phase to Two-Phase Transformation

Defining $\underline{u}_{S} \triangleq u_{S a}+j u_{S b}$, show that the three-phase to two-phase transformation

$$
\left[\begin{array}{l}
u_{S a}(t) \\
u_{S b}(t)
\end{array}\right] \triangleq \sqrt{\frac{2}{3}}\left[\begin{array}{ccc}
1 & -1 / 2 & -1 / 2 \\
0 & \sqrt{3} / 2 & -\sqrt{3} / 2
\end{array}\right]\left[\begin{array}{l}
u_{S 1}(t) \\
u_{S 2}(t) \\
u_{S 3}(t)
\end{array}\right]
$$

may be written as

$$
\underline{u}_{S}=u_{S a}+j u_{S b}=\sqrt{\frac{2}{3}}\left(u_{S 1}+u_{S 2} e^{j 2 \pi / 3}+u_{S 3} e^{j 4 \pi / 3}\right)
$$

and similarly for $\underline{i}_{S}, \underline{i}_{R}$, and so on.
Problem 12 Alternative Definition of the Three-Phase to Two-Phase Transformation [1]
(a) Show that if the three-phase to two-phase transformation is defined by

$$
\begin{aligned}
\underline{u}_{S} & =u_{S 1}+u_{S 2} e^{j 2 \pi / 3}+u_{S 3} e^{j 4 \pi / 3} \\
\underline{i}_{S} & =i_{S 1}+i_{S 2} e^{j 2 \pi / 3}+i_{S 3} e^{j 4 \pi / 3} \\
\vdots & =\vdots
\end{aligned}
$$

that is, without the factor $\sqrt{2 / 3}$, then the equations of the induction motor are given by

$$
\begin{aligned}
R_{S} \underline{i}_{S}+L_{S} \frac{d}{d t} \underline{i}_{S}+M \frac{d}{d t}\left(\underline{i}_{R} e^{j n_{p} \theta_{R}}\right) & =\underline{u}_{S} \\
R_{R} \underline{i}_{R}+L_{R} \frac{d}{d t} \underline{i}_{R}+M \frac{d}{d t}\left(\underline{i}_{S} e^{-j n_{p} \theta_{R}}\right) & =0 \\
\frac{2}{3} n_{p} M \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{i}_{R} e^{j n_{p} \theta_{R}}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega_{R}}{d t} .
\end{aligned}
$$

(b) With the three-phase to two-phase transformation defined as in part (a), show that

$$
u_{S a}(t) i_{S a}(t)+u_{S b}(t) i_{S b}(t)=\frac{3}{2}\left(u_{S 1}(t) i_{S 1}(t)+u_{S 2}(t) i_{S 2}(t)+u_{S 3}(t) i_{S 3}(t)\right)
$$

Problem 13 Space Vector Representation of the Induction Motor
(a) Define

$$
\underline{i}_{r}=\underline{i}_{r a}+j \underline{i}_{r b} \triangleq \underline{i}_{R} e^{j n_{p} \theta_{R}} .
$$

Show that the system of equations

$$
\begin{aligned}
R_{S} \underline{i}_{S}+L_{S} \frac{d}{d t} \underline{i}_{S}+M \frac{d}{d t}\left(\underline{i}_{R} e^{j n_{p} \theta_{R}}\right) & =\underline{u}_{S} \\
R_{R} \underline{i}_{R}+L_{R} \frac{d}{d t} \underline{i}_{R}+M \frac{d}{d t}\left(\underline{i}_{S} e^{-j n_{p} \theta_{R}}\right) & =0 \\
n_{p} M \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{i}_{R} e^{j n_{p} \theta_{R}}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega_{R}}{d t}
\end{aligned}
$$

may be rewritten as

$$
\begin{align*}
R_{S} \underline{i}_{S}+L_{S} \frac{d}{d t} \underline{i}_{S}+M \frac{d}{d t} \underline{i}_{r} & =\underline{u}_{S} \\
R_{R} \underline{i}_{r}+\sigma_{R} M \frac{d}{d t} \underline{i}_{r}+M \frac{d}{d t}\left(\underline{i}_{S}+\underline{i}_{r}\right)-j n_{p} \omega_{R} \underline{\psi}_{R} & =0 \tag{7.91}\\
n_{p} M \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{i}_{r}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega_{R}}{d t}
\end{align*}
$$

in terms of \underline{i}_{S} and \underline{i}_{r}, where

$$
\underline{\psi}_{R} \triangleq L_{R} \underline{i}_{r}+M \underline{i}_{S} .
$$

[Note that the model (7.91) has no explicit dependence on θ_{R}.]
(b) With $L_{S}=\left(1+\sigma_{S}\right) M, L_{R}=\left(1+\sigma_{R}\right) M$, and

$$
\begin{aligned}
& \underline{\lambda}_{R}=L_{R} \underline{i}_{R}+M \underline{i}_{S} e^{-j n_{p} \theta_{R}} \\
& \underline{\psi}_{R}=\underline{\lambda}_{R} e^{j n_{p} \theta_{R}}=L_{R} \underline{i}_{r}+M \underline{i}_{S}
\end{aligned}
$$

show that the electrical equations of part (a) may be illustrated by the "equivalent circuit" of Figure 7.27.
(c) Put the result from part (a) in state space form.

FIGURE 7.27. Circuit representation of the electrical equations of an induction motor.

Remark 1 The quantity $\underline{\lambda}_{a g} \triangleq M\left(\underline{i}_{S}+\underline{i}_{r}\right)$ is called the air gap (or magnetizing) flux linkage (see Lipo and Novotny [7], page 75). The air-gap voltage is then defined as

$$
\underline{v}_{a g}=-\frac{d}{d t} \underline{\lambda}_{a g}=-\frac{d}{d t} M\left(\underline{i}_{S}+\underline{i}_{r}\right) .
$$

Remark 2 The notation $\underline{u}_{S}^{S}=u_{S d}+j u_{S q} \triangleq u_{S a}+j u_{S b}, i_{S}^{S}=i_{S d}+$ $j i_{S q} \triangleq i_{S a}+j i_{S b}$, and $\underline{i}_{R}^{S}=i_{R d}+j i_{R q} \triangleq \underline{i}_{r a}+j \underline{i}_{r b}=\underline{i}_{r}$ is often used for the equivalent two-phase model developed in this problem. The superscript " S " refers to the "stationary frame" while the d and q subscripts refer to the direct and quadrature axis, respectively. However, in this book, the dq notation is reserved for the field oriented coordinate system (see Chapters 8 and 9) so the reader must be wary when reading different authors.

Problem 14 Arbitrary Rotating Reference Frame
(a) Let

$$
\begin{aligned}
& \underline{i}_{S \varphi} \triangleq \underline{i}_{S} e^{-j \varphi} \\
& \underline{i}_{R \varphi} \triangleq i_{R \varphi a}+j i_{R \varphi b} \triangleq \underline{i}_{R} e^{-j\left(\varphi-n_{p} \theta_{R}\right)} \\
& \underline{u}_{S \varphi} \triangleq \underline{u}_{S} e^{-j \varphi}
\end{aligned}
$$

where $\varphi(t)$ is an arbitrary function of time. With $\omega_{\varphi} \triangleq d \varphi / d t$, show that a space vector representation of the induction motor model

$$
\begin{aligned}
R_{S} \underline{i}_{S}+L_{S} \frac{d}{d t} \underline{i}_{S}+M \frac{d}{d t}\left(\underline{i}_{R} e^{j n_{p} \theta_{R}}\right) & =\underline{u}_{S} \\
R_{R} \underline{i}_{R}+L_{R} \frac{d}{d t} \underline{i}_{R}+M \frac{d}{d t}\left(\underline{i}_{S} e^{-j n_{p} \theta_{R}}\right) & =0 \\
n_{p} M \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{i}_{R} e^{j n_{p} \theta_{R}}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega_{R}}{d t}
\end{aligned}
$$

in terms of $\underline{i}_{S \varphi}, \underline{i}_{R \varphi}$ and $\underline{u}_{S \varphi}$ is given by

$$
\begin{aligned}
\underline{u}_{S \varphi}= & R_{S} \underline{i}_{S \varphi}+L_{S} \frac{d}{d t} \underline{i}_{S \varphi}+j \omega_{\varphi} L_{S} \underline{\underline{i}}_{S \varphi}+M \frac{d}{d t} \underline{i}_{R \varphi}+j \omega_{\varphi} M \underline{i}_{R \varphi} \\
0= & R_{R} \underline{i}_{R \varphi}+L_{R} \frac{d}{d t} \underline{i}_{R \varphi}+j\left(\omega_{\varphi}-n_{p} \omega_{R}\right) L_{R} \underline{i}_{R \varphi}+M \frac{d}{d t} \underline{i}_{S \varphi} \\
& +j\left(\omega_{\varphi}-n_{p} \omega_{R}\right) M \underline{i}_{S \varphi} \\
J \frac{d \omega_{R}}{d t}= & n_{p} M \operatorname{Im}\left\{\underline{i}_{S \varphi}\left(\underline{i}_{R \varphi}\right)^{*}\right\}-\tau_{L} .
\end{aligned}
$$

Common choices for φ are $\varphi=0$ (the stationary coordinate system; see problem 13), $\varphi=n_{p} \omega_{R}$ (the rotor coordinate system), $\varphi=\angle \underline{u}_{S}$ (the synchronous coordinate system), and $\varphi=\angle\left(\underline{i}_{S}+\left(L_{R} / M\right) \underline{i}_{R} e^{j_{n_{p} \theta_{R}}}\right)=\angle \underline{\psi}_{R}$ (the field-oriented coordinate system; see problem 6 of Chapter 6 and problem 4 of Chapter 8).
(b) Put the result from part (a) in state-space form.

Problem 15 Space Vector Model with Leakage on the Rotor Side
(a) Starting from the model (7.91) derived in problem 13, make the change of variables

$$
\begin{aligned}
\underline{i}_{r}^{\prime} & \triangleq \frac{M}{L_{S}} \underline{i}_{r} \\
\underline{\psi}_{R}^{\prime} & \triangleq \frac{L_{S}}{M} \underline{\psi}_{R}=\left(L_{S} / M\right)\left(L_{R} \underline{i}_{r}+M \underline{i}_{S}\right)=L_{S} \underline{i}_{S}+\left(L_{S} / M\right)^{2} L_{R} \underline{i}_{r}^{\prime} \\
& =L_{S}\left(\underline{i}_{S}+\underline{i}_{r}^{\prime}\right)+\frac{\sigma L_{S}}{1-\sigma} \underline{i}_{r}^{\prime} \\
\underline{\lambda}_{S} & \triangleq L_{S} \underline{i}_{S}+M \underline{i}_{r}=L_{S}\left(\underline{i}_{S}+\underline{i}_{r}^{\prime}\right) .
\end{aligned}
$$

and show that the model may be rewritten as

$$
\begin{aligned}
R_{S} \underline{i}_{S}+\frac{d}{d t} \underline{\lambda}_{S} & =\underline{u}_{S} \\
R_{R}^{\prime} \underline{i}_{r}^{\prime}+\frac{d}{d t} \underline{\lambda}_{S}-j n_{p} \omega \underline{\psi}_{R}^{\prime}+L_{\sigma} \frac{d}{d t} \underline{i}_{r}^{\prime} & =0 \\
\frac{n_{p} M^{2}}{L_{S} L_{R}} \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{\psi}_{R}^{\prime}\right)^{*}\right\}=\frac{n_{p}}{L_{\sigma}} \operatorname{Im}\left\{\underline{\lambda}_{S}\left(\underline{\psi}_{R}^{\prime}\right)^{*}\right\} & =\tau
\end{aligned}
$$

where

$$
\begin{aligned}
\sigma & \triangleq 1-M^{2} / L_{S} L_{R} \\
R_{R}^{\prime} & \triangleq\left(L_{S} / M\right)^{2} R_{R} \\
L_{\sigma} & \triangleq \sigma L_{S} /(1-\sigma)
\end{aligned}
$$

(b) Show that an equivalent circuit representation of this model is

FIGURE 7.28.
where it is noted that there is leakage inductance only on the rotor side.

Problem 16 Space Vector Model with Leakage on the Stator Side
(a) Starting from the model (7.91) derived in problem 13 make the substitutions

$$
\begin{aligned}
\underline{i}_{r}^{\prime \prime} & \triangleq \frac{L_{R}}{M} \underline{i}_{r} \\
\underline{\psi}_{R}^{\prime \prime} & \triangleq \frac{M}{L_{R}} \underline{\psi}_{R}=\left(M / L_{R}\right)\left(L_{R} \underline{i}_{r}+M \underline{i}_{S}\right)=\left(M^{2} / L_{R}\right) \underline{i}_{S}+\left(M^{2} / L_{R}\right) L_{R} \underline{i}_{T}^{\prime \prime} \\
& =\left(M^{2} / L_{R}\right)\left(\underline{i}_{S}+\underline{i}_{r}^{\prime \prime}\right) \\
\underline{\lambda}_{S} & \triangleq L_{S} \underline{\underline{i}}_{S}+M \underline{i}_{r}=L_{S} \underline{i}_{S}+\left(M^{2} / L_{R}\right) \underline{i}_{r}^{\prime \prime}=\sigma L_{S} \underline{i}_{S}+\left(M^{2} / L_{R}\right)\left(\underline{i}_{S}+\underline{i}_{r}^{\prime \prime}\right)
\end{aligned}
$$

and show that the model (7.91) may be rewritten as

$$
\begin{aligned}
R_{S} \underline{i}_{S}+\sigma L_{S} \frac{d}{d t} \underline{i}_{S}+\frac{d}{d t}\left(M^{2} / L_{R}\right)\left(\underline{i}_{S}+\underline{i}_{r}^{\prime \prime}\right) & =\underline{u}_{S} \\
\left(M / L_{R}\right)^{2} R_{R} \underline{i}_{r}^{\prime \prime}+\frac{d}{d t}\left(M^{2} / L_{R}\right)\left(\underline{i}_{S}+\underline{i}_{r}^{\prime \prime}\right)-j n_{p} \omega\left(M / L_{R}\right) \underline{\psi}_{R} & =0 \\
\frac{n_{p}}{\sigma L_{S}} \operatorname{Im}\left\{\underline{\lambda}_{S}\left(\underline{\psi}_{R}^{\prime \prime}\right)^{*}\right\} & =\tau .
\end{aligned}
$$

(b) Show that an equivalent circuit representation of this model is

FIGURE 7.29.
where it is noted that there is leakage inductance only on the stator side.

Steady-State Induction Motor Models

Problem 17 Steady-State Solutions of the Induction Motor Equations
(a) Write a program to plot the circle diagram of Figure 7.11.
(b) Write a program to reproduce the plots of Figures 7.12, 7.13, and 7.15.

For the motor parameter values, use $R_{R}=3.9 \Omega, R_{S}=1.7 \Omega, L_{R}=$ $0.014 H, L_{S}=0.014 H, M=0.0117 H, J=0.00011 \mathrm{~kg}-\mathrm{m}^{2}, f=0 \mathrm{~N}-$ $\mathrm{m} /(\mathrm{rad} / \mathrm{s}), n_{p}=3, \omega_{S}=(2 \pi) 60 \mathrm{rad} / \mathrm{sec}$, and $U_{S}=80 \mathrm{~V}$. However, the analysis assumes the stator resistance is zero so set $R_{S}=0$.

Problem 18 Open-Loop Simulation of a Three-Phase Induction Machine
Let the parameter values of an induction motor be $R_{R}=2.1 \Omega, R_{S}=$ $1.85 \Omega, L_{R}=0.244 H, L_{S}=0.244 H, M=0.225 H, J=0.0185 \mathrm{~kg}$ $m^{2}, f=0 \mathrm{~N}-\mathrm{m} /(\mathrm{rad} / \mathrm{s}), n_{p}=3, \omega_{S}=(2 \pi) 60 \mathrm{rad} / \mathrm{sec}$. With $V_{\max }=200$ (peak), $I_{\max }=10$ (peak) simulate the open-loop machine based on the twophase equivalent model as indicated in Figure 7.19 with a 208-V (rms) line-to-line voltage applied. (That is, the phase to neutral peak voltage is $\left.V_{3 p h}=\sqrt{2}(208) / \sqrt{3}=169.8 \mathrm{~V}.\right)$

Problem 19 No-Load and Blocked-Rotor Tests
A standard method of determining the (two-phase equivalent) machine parameters is to use a couple of special tests called the no-load test and the blocked-rotor test. Both of these tests involve applying a balanced threephase set of sinusoidal voltages to the motor and measuring the resulting steady-state stator currents and stator power. In the no-load test, nothing is attached to the machine and so, after the voltages are applied, the machine quickly goes to steady state in which $n_{p} \omega_{R}=\omega_{S}$ (assuming no frictional losses). In this case, $S=0$ and the equivalent circuit of Figure 7.10 reduces to that of Figure 7. 30.

FIGURE 7.30. Equivalent circuit with no load so that $n_{p} \omega_{R}=\omega_{S} \Rightarrow S=0$.

The blocked-rotor test refers to having the rotor held immobile so that $\omega_{R} \equiv 0$. In this case, $S=1$ and the equivalent circuit of Figure 7.10 reduces to that of Figure 7.31(a). Usually, the impedances in the two branches satisfy

$$
j \omega_{S} M \gg j \omega_{S} \sigma_{R} M+R_{R}
$$

so that the equivalent circuit reduces to that shown in Figure 7.31(b).

(a)

(b)

FIGURE 7.31. (a) Equivalent circuit with a locked rotor so that $\omega_{R}=0 \Rightarrow S=1$. (b) Equivalent circuit if $j \omega_{S} M \gg j \omega_{S} \sigma_{R} M+R_{R}$.
(a) Run the simulation of problem 18 with no load. Assume that R_{S} is known (perhaps measured using an ohmmeter). Use the steady-state stator voltages and currents to compute $L_{S}=\left(1+\sigma_{S}\right) M$. (The amplitudes of the voltages and the currents along with the angle between them is needed.) How does this value of L_{S} compare with the actual value in the simulation? That is, what is the percent error?
(b) Run the simulation of problem 18 with a blocked rotor (if the currents exceed $I_{\text {max }}$, then reduce the input voltage) and assume that $\sigma_{S}=\sigma_{R}$. Using the known value of R_{S}, the value of L_{S} from part (a), and the measured stator voltages and currents, compute $\sigma_{S} M$ and R_{R} based on the equivalent circuit of Figure 7.31(b).
(c) Use the information from parts (a) and (b) to compute M, L_{R}, and $\sigma=1-M^{2} /\left(L_{S} L_{R}\right)$. How do they compare with the actual values in the simulation? That is, what is the percent error?
(d) Repeat parts (a), (b), and (c) with the viscous friction coefficient set to $f=0.00005$ rather than $f=0$.

Problem 20 Induction Generator (M. Bodson [63])
Consider the equivalent circuit of a three-phase induction machine in Figure 7.32.

FIGURE 7.32. Equivalent circuit of an induction motor.
(a) Suppose the motor shaft (rotor) is connected to a prime mover (e.g., a windmill) that turns at a constant angular speed $\omega_{R}>\omega_{S}$, where ω_{S} is the angular frequency of the balanced three-phase voltage set applied to the stator terminals (e.g., connect the stator terminals to a three-phase transmission line). Show that the power to the motor is negative; that is, electrical power is being delivered to the source voltage converted from the mechanical power supplied to shaft. (Hint: note that $S<0$.)
(b) Replace the three-phase power source by a three-phase impedance $Z_{S}=R+j \omega L$ as indicated schematically in Figure 7.33. The corresponding equivalent circuit is shown in Figure 7.34. Suppose the motor shaft is still connected to a prime mover (e.g., a windmill) that turns at a constant angular speed ω_{R}. Can there be a steady-state electrical power out of the motor into the impedance Z_{S} ? Explain.

FIGURE 7.33. Stator windings of an induction motor connected to a symmetric three-phase load.

FIGURE 7.34. An equivalent circuit of the induction motor where the source voltage is replaced by a passive load.

Problem 21 Equivalent Circuit With Leakage on the Stator Side [2]
Show that the circuit in Figure 7.35 where the leakage inductance is completely on the stator side is equivalent to the circuit given in Figure 7.10.

FIGURE 7.35. Equivalent circuit of induction motor with the leakage inductance completely on the stator side.

Problem 22 Equivalent Circuit With Leakage on the Rotor Side [2]
Show that the circuit in Figure 7.36 where the leakage inductance is completely on the rotor side is equivalent to the circuit given in Figure 7.10.

FIGURE 7.36. Equivalent circuit of induction motor with the leakage inductance completely on the rotor side.

Problem 23 Constant Speed Induction Machine as a Linear System
(a) Let $\left\{\underline{u}_{S}^{(1)}, \underline{i}_{S}^{(1)}, \underline{i}_{R}^{(1)}\right\}$ and $\left\{\underline{u}_{S}^{(2)}, \underline{i}_{S}^{(2)}, \underline{i}_{R}^{(2)}\right\}$ each be a solution set to

$$
\begin{aligned}
R_{S} \underline{i}_{S}+L_{S} \frac{d}{d t} \underline{i}_{S}+M \frac{d}{d t}\left(\underline{i}_{R} e^{j \theta_{R}(t)}\right) & =\underline{u}_{S} \\
R_{R} \underline{i}_{R}+L_{R} \frac{d}{d t} \underline{i}_{R}+M \frac{d}{d t}\left(\underline{i}_{S} e^{-j \theta_{R}(t)}\right) & =0
\end{aligned}
$$

where $\theta_{R}(t)$ is the same function of time for both inputs [e.g., $\theta_{R}(t)=\omega_{R} t$ with ω_{R} the same constant value for both inputs]. Under these conditions, show that the input

$$
\underline{u}_{S}=\underline{u}_{S}^{(1)}+\underline{u}_{S}^{(2)}
$$

results in the stator and rotor currents being

$$
\begin{aligned}
& \underline{i}_{S}=\underline{i}_{S}^{(1)}+\underline{i}_{S}^{(2)} \\
& \underline{i}_{R}=\underline{i}_{R}^{(1)}+\underline{i}_{R}^{(2)}
\end{aligned}
$$

(b) Assuming ω_{R} is constant and that the inputs are sinusoids so that

$$
\underline{u}_{S}^{(1)}=\sqrt{2} \underline{U}_{S}^{(1)} e^{j \omega_{S_{1}} t}=\sqrt{2}\left|\underline{U}_{S}^{(1)}\right| e^{j\left\langle\underline{U}_{S}^{(1)} e^{j \omega_{S_{1}} t}\right.}
$$

then the phasor equations (7.39) and (7.40) can be solved for $\underline{I}_{S}^{(1)}$ and $\underline{I}_{R}^{(1)}$, resulting in currents of the form

$$
\begin{aligned}
\underline{i}_{S}^{(1)} & =\sqrt{2} \underline{I}_{S}^{(1)} e^{j \omega_{S_{1}} t}=\sqrt{2}\left|\underline{I}_{S}^{(1)}\right| e^{j \angle \underline{I}_{S}^{(1)}} e^{j \omega_{S_{1}} t} \\
\underline{i}_{R}^{(1)} & =\sqrt{2} \underline{I}_{R}^{(1)} e^{j\left(\omega_{S_{1}}-\omega_{R}\right) t}=\sqrt{2}\left|\underline{I}_{R}^{(1)}\right| e^{j \angle \underline{I}_{R}^{(1)}} e^{j\left(\omega_{S_{1}}-\omega_{R}\right) t}
\end{aligned}
$$

Similarly, the input

$$
\underline{u}_{S}^{(2)}=\sqrt{2} \underline{U}_{S}^{(2)} e^{j \omega_{S 2} t}=\sqrt{2}\left|\underline{U}_{S}^{(2)}\right| e^{j \angle \underline{U}_{S}^{(2)} e^{j \omega_{S 2} t}}
$$

results in the stator and rotor currents being given by

$$
\begin{aligned}
& \underline{i}_{S}^{(2)}=\sqrt{2} \underline{I}_{S}^{(2)} e^{j \omega_{S 2} t}=\sqrt{2}\left|\underline{I}_{S}^{(2)}\right| e^{j<\underline{I}_{S}^{(2)}} e^{j \omega_{S 2} t} \\
& \underline{i}_{R}^{(2)}=\sqrt{2} \underline{I}_{R}^{(2)} e^{j\left(\omega_{S 2}-\omega_{R}\right) t}=\sqrt{2}\left|\underline{\underline{I}}_{R}^{(2)}\right| e^{j<\underline{I}_{R}^{(2)} e^{j\left(\omega_{\mathcal{S} 2}-\omega_{R}\right) t}}
\end{aligned}
$$

Use the results of part (a) to compute the torque produced by the motor due to the input

$$
\begin{equation*}
\underline{u}_{S}=\underline{u}_{S}^{(1)}+\underline{u}_{S}^{(2)}=\sqrt{2} \underline{U}_{S}^{(1)} e^{j \omega_{S 1} t}+\sqrt{2} \underline{U}_{S}^{(2)} e^{j \omega_{S 2} t} . \tag{7.92}
\end{equation*}
$$

(c) Consider the motor to be two-phase. Assuming $\theta_{R}=\omega_{R} t$ with ω_{R} constant, use

$$
\tau=M \operatorname{Im}\left\{\underline{\underline{i}}_{S}\left(\underline{i}_{R} e^{j \theta_{R}}\right)^{*}\right\}
$$

to find an expression for the torque produced by the input (7.92) in terms of the phasors $\left|\underline{I}_{S}^{(1)}\right| e^{j<I_{S}^{(1)}},\left|\underline{I}_{R}^{(1)}\right| e^{j<\underline{I}_{R}^{(1)}},\left|\underline{I}_{S}^{(2)}\right| e^{j \angle \underline{I}_{S}^{(2)}}$, and $\left|\underline{I}_{R}^{(2)}\right| e^{j<I_{R}^{(2)}}$. What is the average torque $\tau_{\text {avg }}$ where $\tau_{\text {avg }} \triangleq \lim _{T \rightarrow \infty}(1 / T) \int_{0}^{T} \tau(t) d t$? Of course, for $\omega_{S 2}=\omega_{S 1}$, the torque will be constant and equal to its average. Under what other conditions is the torque essentially (approximately) constant?
(d) Assuming $R_{S}=0$, show that the average torque computed in part (c) may be written as

$$
\tau_{a v g}=\frac{(1-\sigma)}{\sigma} \frac{U_{S 1}^{2}}{\omega_{S 1}^{2} L_{S}} \frac{2}{S_{p} / S_{1}+S_{1} / S_{p}}+\frac{(1-\sigma)}{\sigma} \frac{U_{S 2}^{2}}{\omega_{S 2}^{2} L_{S}} \frac{2}{S_{p} / S_{2}+S_{2} / S_{p}}
$$

where

$$
S_{1} \triangleq \frac{\omega_{S 1}-\omega_{R}}{\omega_{S 1}}, \quad S_{2} \triangleq \frac{\omega_{S 2}-\omega_{R}}{\omega_{S 2}}
$$

(e) Consider the special case with $\omega_{S 2}=-\omega_{S 1}$ and

$$
\begin{aligned}
& \underline{U}_{S}^{(1)}=\left|\underline{U}_{S}^{(1)}\right| e^{j \angle \underline{U}_{S}^{(1)}}=\frac{U_{S}}{2} e^{j \angle \underline{U}_{S}^{(1)}} \\
& \underline{U}_{S}^{(2)}=\left(\underline{U}_{S}^{(1)}\right)^{*}=\frac{U_{S}}{2} e^{-j \angle \underline{U}_{S}^{(1)}} .
\end{aligned}
$$

Show that the inputs to the two-phase motor are of the form

$$
\begin{aligned}
& u_{S a}(t)=\sqrt{2} U_{S} \cos \left(\omega_{S} t+\angle \underline{U}_{S}\right) \\
& u_{S b}(t)=0 .
\end{aligned}
$$

Show that the average torque is given by $\left(S \triangleq \frac{\omega_{S}-\omega_{R}}{\omega_{S}}\right)$

$$
\begin{aligned}
\tau_{a v g} & =\tau_{p}\left(\frac{2}{S_{p} / S+S / S_{p}}-\frac{2}{S_{p} /(2-S)+(2-S) / S_{p}}\right) \\
\tau_{p} & \triangleq \frac{1}{4} \frac{(1-\sigma)}{\sigma} \frac{U_{S}^{2}}{\omega_{S 1}^{2} L_{S}} .
\end{aligned}
$$

Plot $\tau_{\text {avg }} / \tau_{p}$ as a function of S / S_{p}. What is the average torque if $\omega_{R}=0$?
Problem 24 Single-Phase Induction Motor with a Shorted Phase
Background: Motors are needed in homes for the compressors used in refrigerators and air conditioners as well as for washing machines, dryers, and so on. A typical home has only a single-phase source available, for example, a $120-V$ (rms) 60-Hz wall outlet and the (two-phase) induction motor requires two voltage sources 90 degrees out of phase in time. Though the DC machine can run off of a single-phase source, the induction motor is the motor of choice because it is much cheaper. Based on problem 23, this problem outlines how an induction motor can be run using only a singlephase source $u_{S a}=\sqrt{2} U_{S} \cos \left(\omega_{S} t+\angle \underline{U}_{S}\right)$ with the other stator phase
shorted so that $u_{S b}=0$. (However, the standard way of running a singlephase induction motor is to open the second stator phase rather than short it.) Consider a two-phase induction motor with inputs $u_{S a}, u_{S b}$. Figure 7.37 illustrates a single-phase induction motor where the same voltage $u_{S a}$ is applied to both phases and phase b has a resistor R_{b} and capacitor C added in series in the winding. By part (e) of problem 23, if $u_{S a}(t)=$ $\sqrt{2}\left|\underline{U}_{S}\right| \cos \left(\omega_{S} t+\angle \underline{U}_{S}\right)$ and $u_{S b}(t) \equiv 0$ with $\omega_{R}=0$, then the average torque is zero. To start the motor, the switch in Figure 7.37 is opened. Denote by $Z_{a}(j \omega)=R_{S}+j \omega L_{S}$ and $Z_{b}(j \omega)=R_{S}+R_{b}+j \omega L_{S}+1 /(j \omega C)$ the impedances of the stator windings a and b, respectively, where the effect of the rotor has been neglected. Rewrite the stator phase b impedance as
$Z_{b}(j \omega)=R_{S}+R_{b}+j \omega L_{S}+1 /(j \omega C)=R_{S}+R_{b}+j\left(\omega^{2} L_{S} C-1\right) /(\omega C)$.

Choose $C=\frac{1}{(2 \pi 60)^{2} L_{S}}$ so that $Z_{b}(j \omega)=R_{S}+R_{b}$ for $\omega=\omega_{S}=60 \mathrm{~Hz}$. With $\omega L_{S} \gg R_{S}$, the impedances $Z_{a}\left(j \omega_{S}\right)$ and $Z_{b}\left(j \omega_{S}\right)$ are

$$
\begin{aligned}
& Z_{a}\left(j \omega_{S}\right) \approx j \omega_{S} L_{S} \\
& Z_{b}\left(j \omega_{S}\right)=R_{S}+R_{b} .
\end{aligned}
$$

The corresponding currents in the windings of phases a and b are then

$$
\begin{aligned}
& i_{S a}(t) \approx \frac{\sqrt{2} U_{S}}{\omega_{S} L_{S}} \sin \left(\omega_{S} t+\angle \underline{U}_{S}\right) \\
& i_{S b}(t) \approx \frac{\sqrt{2} U_{S}}{R_{S}+R_{b}} \cos \left(\omega_{S} t+\angle \underline{U}_{S}\right) .
\end{aligned}
$$

Finally, design the phase b resistance R_{b} such that $R_{S}+R_{b}=\omega_{S} L_{S}$ so that the phase currents are equal amplitude sinusoidal currents and $\pi / 2$ radians out of phase in time. These currents establish a rotating sinusoidally distributed magnetic field in the air gap just as in the case of the symmetric motor. In reality, the inductance, resistance, and capacitance in the phase windings are not set precisely to these ideal values, but the motor will still start. ${ }^{14}$ This is called a capacitor-start single-phase induction motor.

[^63]

FIGURE 7.37. Capacitor-start single-phase induction motor.
(a) Is open circuiting phase b the same as applying zero voltage to it?
(b) Consider a capacitor-start single-phase induction motor as described above. Suppose that after the motor gets up to speed $\omega_{R} \approx \omega_{S}$, the switch in Figure 7.37 is closed so

$$
\begin{aligned}
& u_{S a}(t)=\sqrt{2} U_{S} \cos \left(\omega_{S} t+\angle \underline{U}_{S}\right) \\
& u_{S b}(t)=0 .
\end{aligned}
$$

Assuming the rotor speed is essentially constant, it was shown in problem 23(d) that the average torque produced is given by

$$
\begin{aligned}
\tau_{a v g} & =\tau_{p}\left(\frac{2}{S_{p} / S+S / S_{p}}-\frac{2}{S_{p} /(2-S)+(2-S) / S_{p}}\right) \\
\tau_{p} & \triangleq \frac{1}{4} \frac{(1-\sigma)}{\sigma} \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}} \\
S & \triangleq \frac{\omega_{S}-\omega_{R}}{\omega_{S}} .
\end{aligned}
$$

Plot $\tau_{\text {avg }} / \tau_{p}$ for $S_{p}=0.1,0.2$ and 1. Based on these plots, explain why $0<S_{p} \ll 1$ for the single-phase induction motor to work.
(c) Using the two-phase induction motor model, simulate a single-phase induction motor by applying a $60-\mathrm{Hz}, 120-\mathrm{V}$ (rms) source voltage to one phase and $0 V$ to the other. Set the initial speed to be $\omega_{R}(0)=\omega_{S} / n_{p}$ where $\omega_{S}=2 \pi 60$. Use the parameter values of $L_{S}=0.157 H, L_{R}=0.157$ $H, M=0.148 H, R_{R}=0.6 \Omega, R_{S}=2.9 \Omega, n_{P}=2, J=0.01 \mathrm{~kg}-\mathrm{m}^{2}, f=0$ $N-\mathrm{m} / \mathrm{rad} / \mathrm{sec}$, and $\tau_{L}=0.8 \mathrm{~N}-\mathrm{m}$. Set $R_{S}=0$ for the calculations, but not
in the simulation. What is the value of S_{p} and τ_{p} for this motor? What is the value of S that the machine is operating at?

Problem 25 Torque-Slip Curve with Impressed Stator Currents
Suppose that the motor phases are fed by a three-phase current source rather than a three-phase voltage source. Use (7.47) to obtain U_{S}^{2} in terms of I_{S}^{2} and substitute this expression into (7.56) to show that the expression for the torque-slip curve in terms of the rms stator current I_{S} is

$$
\tau=\frac{3}{2}(1-\sigma) I_{S}^{2} \frac{2}{s_{p} / S+S / s_{p}}
$$

where $s_{p} \triangleq \sigma S_{p}=R_{R} /\left(\omega L_{R}\right)$.
Problem 26 Maximum Mechanical Power
The steady-state mechanical power is

$$
P_{m e c h}=\tau \omega_{R}=\tau_{p} \frac{2}{S_{p} / S+S / S_{p}}(1-S) \omega_{S}
$$

(a) Compute the normalized slip $S_{\text {maxpower }}$ corresponding to maximum power transfer for both motoring and generating.
(b) For both motoring and generating, compute the power and torque achieved when the normalized slip is at the values found in part (a).
(c) Let $\sigma=0.05$ and compute the rated slip S_{r} and maximum power transfer slip $S_{\text {maxpower }}$. Which is larger? By approximately how much?
(d) Compute the corresponding power factors when the machine is operating at S_{r} and $S_{\text {maxpower }}$. Which is larger and by how much?
(e) Compute the corresponding efficiencies when the machine is operating at S_{r} and $S_{\text {maxpower }}$. Which is larger and by how much?
(f) Compare operating the motor at S_{r} and $S_{\text {maxpower }}$ in terms of advantages and disadvantages.

Wound Rotor Synchronous Machines

These problems explore the mathematical modeling of wound rotor synchronous machines. For more detailed models of large (wound rotor) synchronous machines, see Krause et al. [4] and Ong [6].
Problem 27 Model of a Wound Rotor Synchronous Machine [1] A mathematical model of a balanced three-phase wound rotor synchronous motor can be found directly from the induction motor expressions for the flux linkages and torque. The difference in this case is that the rotor currents are held constant in a synchronous machine by a voltage source u_{F} applied to the rotor windings. In order to keep the rotor currents balanced let

$$
\begin{aligned}
i_{R 1} & =+i_{f} \\
i_{R 2} & =-i_{f} / 2 \\
i_{R 3} & =-i_{f} / 2
\end{aligned}
$$

in equation (7.2) where i_{f} is nominally constant.
(a) Show that the rotor torque τ_{R} is given by

$$
\tau_{R}=M i_{f}\left(-i_{S 1} \sin \left(\theta_{R}\right)-i_{S 2} \sin \left(\theta_{R}-\frac{2 \pi}{3}\right)-i_{S 3} \sin \left(\theta_{R}-\frac{4 \pi}{3}\right)\right)
$$

(b) Show that the flux linkages in the stator phases are given by

$$
\begin{aligned}
{\left[\begin{array}{l}
\psi_{S 1}(t) \\
\psi_{S 2}(t) \\
\psi_{S 3}(t)
\end{array}\right]=} & \frac{2}{3} L_{S}\left[\begin{array}{ccc}
1 & \cos (2 \pi / 3) & \cos (4 \pi / 3) \\
\cos (-2 \pi / 3) & 1 & \cos (2 \pi / 3) \\
\cos (-4 \pi / 3) & \cos (-2 \pi / 3) & 1
\end{array}\right]\left[\begin{array}{l}
i_{S 1}(t) \\
i_{S 2}(t) \\
i_{S 3}(t)
\end{array}\right] \\
& +M i_{f}\left[\begin{array}{c}
\cos \left(\theta_{R}\right) \\
\cos \left(\theta_{R}-2 \pi / 3\right) \\
\cos \left(\theta_{R}-4 \pi / 3\right)
\end{array}\right] .
\end{aligned}
$$

(c) Show that an equivalent two-phase model of the wound rotor synchronous machine is given by

$$
\begin{align*}
u_{S a} & =L_{S} \frac{d i_{S a}}{d t}+M \frac{d}{d t}\left(i_{F} \cos \left(\theta_{R}\right)\right)+R_{S} i_{S a} \\
u_{S b} & =L_{S} \frac{d i_{S b}}{d t}+M \frac{d}{d t}\left(i_{F} \sin \left(\theta_{R}\right)\right)+R_{S} i_{S b} \\
u_{F} & =L_{R} \frac{d i_{F}}{d t}+M \frac{d}{d t}\left(i_{S a} \cos \left(\theta_{R}\right)+i_{S b} \sin \left(\theta_{R}\right)\right)+R_{R} i_{F} \\
J \frac{d \omega_{R}}{d t} & =M i_{F}\left(-i_{S a} \sin \left(\theta_{R}\right)+i_{S b} \cos \left(\theta_{R}\right)\right)-\tau_{L} \tag{7.93}
\end{align*}
$$

where $u_{F} \triangleq \sqrt{3 / 2} u_{R 1}, i_{F}(t) \triangleq \sqrt{3 / 2} i_{f}(t)$. A block diagram for simulating a three-phase machine using a two-phase equivalent model is shown in Figure 7.38.

FIGURE 7.38. Using a two-phase equivalent model to simulate a three-phase machine.

Problem 28 State-Space Model of a Wound Rotor Synchronous Machine Develop a state space representation of the wound rotor synchronous motor model (7.93) given in problem (27) using $i_{S a}, i_{S b}, i_{F}, \omega_{R}$, and θ_{R} as the state variables and $u_{S a}, u_{S b}$, and u_{F} as the inputs.

Problem 29 DQ model of a Wound Rotor Synchronous Machine
Define

$$
\begin{aligned}
& {\left[\begin{array}{c}
i_{d} \\
i_{q}
\end{array}\right]=\left[\begin{array}{rr}
\cos \left(\theta_{R}\right) & \sin \left(\theta_{R}\right) \\
-\sin \left(\theta_{R}\right) & \cos \left(\theta_{R}\right)
\end{array}\right]\left[\begin{array}{l}
i_{S a} \\
i_{S b}
\end{array}\right]} \\
& {\left[\begin{array}{c}
u_{d} \\
u_{q}
\end{array}\right]=\left[\begin{array}{rr}
\cos \left(\theta_{R}\right) & \sin \left(\theta_{R}\right) \\
-\sin \left(\theta_{R}\right) & \cos \left(\theta_{R}\right)
\end{array}\right]\left[\begin{array}{l}
u_{S a} \\
u_{S b}
\end{array}\right]}
\end{aligned}
$$

(a) Rewrite the wound rotor synchronous motor model (7.93) given in problem (27) in terms of $i_{d}, i_{q}, i_{F}, \omega_{R}, \theta_{R}, u_{d}, u_{q}$, and u_{F}.
(b) Develop a state space dq model in terms of the state variables i_{d}, i_{q}, i_{F}, ω_{R}, and θ_{R} and the inputs u_{d}, u_{q}, and u_{F}.

Problem 30 Model of a Wound Rotor Synchronous Machine
Modify the approach in problem 27 to rederive the mathematical model of the wound rotor synchronous motor assuming that $i_{R 1}=i_{f}, i_{R 2}=0$, and $i_{R 3}=0$. That is, assume there is only one winding on the rotor .

This Page Intentionally Left Blank

8

Induction Motor Control

In this chapter, the methods of field-oriented control and a modification of it known as input-output linearization control are described. These techniques allow one to achieve fast, precise tracking of demanding trajectories using an induction motor. These controllers are based on the nonlinear differential equation model of the induction motor and require (full) state feedback. As measurements of the rotor flux linkages (or, equivalently, the rotor currents) are not usually available, they must be estimated and techniques to do this are also described. Experimental results are presented to demonstrate the effectiveness of these control schemes. The chapter ends with two optional sections. The first describes a systematic procedure to obtain the maximum torque from the machine without violating the voltage or current constraints. The final section presents a nonlinear least-squares approach to identification of the induction motor parameters.

8.1 Dynamic Equations of the Induction Motor

The starting point for the control of the induction motor is the system of nonlinear differential equations which characterize its behavior. As derived previously, the dynamics of a n_{p} pole-pair two-phase induction motor ${ }^{1}$ are given by the system of differential equations

$$
\begin{align*}
u_{S a}= & R_{S} i_{S a}+L_{S} \frac{d}{d t} i_{S a}+M \frac{d}{d t}\left(i_{R a} \cos \left(n_{p} \theta\right)-i_{R b} \sin \left(n_{p} \theta\right)\right) \\
u_{S b}= & R_{S} i_{S b}+L_{S} \frac{d}{d t} i_{S b}+M \frac{d}{d t}\left(i_{R a} \sin \left(n_{p} \theta\right)+i_{R b} \cos \left(n_{p} \theta\right)\right) \\
0= & R_{R} i_{R a}+L_{R} \frac{d}{d t} i_{R a}+M \frac{d}{d t}\left(+i_{S a} \cos \left(n_{p} \theta\right)+i_{S b} \sin \left(n_{p} \theta\right)\right) \\
0= & R_{R} i_{R b}+L_{R} \frac{d}{d t} i_{R b}+M \frac{d}{d t}\left(-i_{S a} \sin \left(n_{p} \theta\right)+i_{S b} \cos \left(n_{p} \theta\right)\right) \\
J \frac{d \omega}{d t}= & n_{p} M\left(i_{S b}\left(i_{R a} \cos \left(n_{p} \theta\right)-i_{R b} \sin \left(n_{p} \theta\right)\right)\right. \tag{8.1}\\
& \left.-i_{S a}\left(i_{R a} \sin \left(n_{p} \theta\right)+i_{R b} \cos \left(n_{p} \theta\right)\right)\right)-f \omega-\tau_{L} \\
\frac{d \theta}{d t}= & \omega
\end{align*}
$$

[^64]with the flux linkages of the motor phases given by
\[

$$
\begin{align*}
\lambda_{S a} & =L_{S} i_{S a}+M\left(i_{R a} \cos \left(n_{p} \theta\right)-i_{R b} \sin \left(n_{p} \theta\right)\right) \\
\lambda_{S b} & =L_{S} i_{S b}+M\left(i_{R a} \sin \left(n_{p} \theta\right)+i_{R b} \cos \left(n_{p} \theta\right)\right) \tag{8.2}\\
\lambda_{R a} & =L_{R} i_{R a}+M\left(+i_{S a} \cos \left(n_{p} \theta\right)+i_{S b} \sin \left(n_{p} \theta\right)\right) \\
\lambda_{R b} & =L_{R} i_{R b}+M\left(-i_{S a} \sin \left(n_{p} \theta\right)+i_{S b} \cos \left(n_{p} \theta\right)\right)
\end{align*}
$$
\]

where

$$
L_{S} \triangleq \frac{\mu_{0} \pi \ell_{1} \ell_{2} N_{S}^{2}}{8 g}, L_{R} \triangleq \frac{\mu_{0} \pi \ell_{1} \ell_{2} N_{R}^{2}}{8 g}, M \triangleq \frac{\kappa \mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{R}}{8 g} .
$$

Here N_{S} and N_{R} are the number of windings per pole-pair of the stator and rotor phases, respectively. The retarding torque produced by the friction in the ball bearings of the machine is modeled here by $-f \omega$, where f is called the coefficient of viscous friction. Of course, one could just consider this part of the load torque τ_{L}. However, as one can typically estimate f at the same time as estimating the motor parameters, $-f \omega$ then represents the "known" load torque and τ_{L} is then the "unknown" load torque. Also, to simplify the notation, the subscript " R " on θ_{R} and ω_{R} has now been dropped as there should be no confusion. As stated above, the mathematical model derived above is that of a sinusoidally wound, two-phase, n_{p} polepair induction motor. Nevertheless, it is standard practice to also use this model for induction motors with squirrel cage rotors (see Refs. [42][59] for experimental validation).

8.1.1 The Control Problem

The control problem is to choose $u_{S a}$ and $u_{S b}$ in such a way as to force ω and/or θ to track a given reference trajectory. Measurements of $i_{S a}, i_{S b}$, and θ are usually available for feedback control. However, measurements of $i_{R a}$ and $i_{R b}$ are typically not available. In fact, the most common type of induction motor is the squirrel cage motor, where rotor currents are distributed on the surface of the rotor making it very impractical to measure the current in each rotor bar. The resulting flux can be measured through the use of Hall sensors placed in the air gap, but such sensors are not economical and diminish the overall reliability of the control system.

The particular set of nonlinear differential equations (8.1) describing the induction motor is complicated and a control strategy is by no means selfevident. The solution lies in finding an equivalent set of equations which are simpler in form for which the control design becomes apparent. As a first step toward simplifying the above equations, the dynamic equations are rewritten in terms of some equivalent rotor flux linkages. This results
in an equivalent model in which the $\cos \left(n_{p} \theta\right)$ and $\sin \left(n_{p} \theta\right)$ expressions are eliminated. To proceed, define an equivalent set of rotor flux linkages as

$$
\left[\begin{array}{c}
\psi_{R a} \\
\psi_{R b}
\end{array}\right]=\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & -\sin \left(n_{p} \theta\right) \\
\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{l}
\lambda_{R a} \\
\lambda_{R b}
\end{array}\right]
$$

where upon substituting the expressions for the rotor fluxes in (8.2), one obtains

$$
\begin{align*}
\psi_{R a} & =L_{R}\left(i_{R a} \cos \left(n_{p} \theta\right)-i_{R b} \sin \left(n_{p} \theta\right)\right)+M i_{S a} \tag{8.3}\\
\psi_{R b} & =L_{R}\left(i_{R a} \sin \left(n_{p} \theta\right)+i_{R b} \cos \left(n_{p} \theta\right)\right)+M i_{S b}
\end{align*}
$$

The model of the induction motor in terms of the state variables $\psi_{R a}, \psi_{R b}$, $i_{S a}, i_{S b}$, and ω is now derived. ${ }^{2}$ Using (8.3) to eliminate the rotor currents, the first two equations of (8.1) may be rewritten as

$$
\begin{aligned}
& u_{S a}=R_{S} i_{S a}+L_{S} \frac{d}{d t} i_{S a}+M \frac{d}{d t}\left(\psi_{R a}-M i_{S a}\right) / L_{R} \\
& u_{S b}=R_{S} i_{S b}+L_{S} \frac{d}{d t} i_{S b}+M \frac{d}{d t}\left(\psi_{R b}-M i_{S b}\right) / L_{R}
\end{aligned}
$$

or

$$
\begin{aligned}
& u_{S a}=R_{S} i_{S a}+L_{S}\left(1-\frac{M^{2}}{L_{R} L_{S}}\right) \frac{d}{d t} i_{S a}+\frac{M}{L_{R}} \frac{d}{d t} \psi_{R a} \\
& u_{S b}=R_{S} i_{S b}+L_{S}\left(1-\frac{M^{2}}{L_{R} L_{S}}\right) \frac{d}{d t} i_{S b}+\frac{M}{L_{R}} \frac{d}{d t} \psi_{R b} .
\end{aligned}
$$

The third and fourth equations of (8.1) can be rewritten as

$$
\begin{aligned}
{\left[\begin{array}{l}
0 \\
0
\end{array}\right]=} & {\left[\begin{array}{l}
R_{R} i_{R a} \\
R_{R} i_{R b}
\end{array}\right]+\frac{d}{d t}\left(\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\right.} \\
& \left.\times\left[\begin{array}{l}
L_{R}\left(\cos \left(n_{p} \theta\right) i_{R a}-\sin \left(n_{p} \theta\right) i_{R b}\right)+M i_{S a} \\
L_{R}\left(\sin \left(n_{p} \theta\right) i_{R a}+\cos \left(n_{p} \theta\right) i_{R b}\right)+M i_{S b}
\end{array}\right]\right)
\end{aligned}
$$

or, simply

$$
\left[\begin{array}{c}
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
R_{R} i_{R a} \\
R_{R} i_{R b}
\end{array}\right]+\frac{d}{d t}\left(\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{l}
\psi_{R a} \\
\psi_{R b}
\end{array}\right]\right) .
$$

Expanding,

$$
\begin{aligned}
{\left[\begin{array}{l}
0 \\
0
\end{array}\right]=} & {\left[\begin{array}{l}
R_{R} i_{R a} \\
R_{R} i_{R b}
\end{array}\right]+\frac{d}{d t}\left(\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\right)\left[\begin{array}{l}
\psi_{R a} \\
\psi_{R b}
\end{array}\right] } \\
& +\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right] \frac{d}{d t}\left[\begin{array}{l}
\psi_{R a} \\
\psi_{R b}
\end{array}\right]
\end{aligned}
$$

[^65]Multiplying both sides on the left by $\left[\begin{array}{rr}\cos \left(n_{p} \theta\right) & -\sin \left(n_{p} \theta\right) \\ \sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)\end{array}\right]$ gives

$$
\begin{aligned}
{\left[\begin{array}{l}
0 \\
0
\end{array}\right]=} & {\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & -\sin \left(n_{p} \theta\right) \\
\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{r}
R_{R} i_{R a} \\
R_{R} i_{R b}
\end{array}\right]+\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & -\sin \left(n_{p} \theta\right) \\
\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right] } \\
& \times n_{p} \omega\left[\begin{array}{rr}
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right) \\
-\cos \left(n_{p} \theta\right) & -\sin \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{l}
\psi_{R a} \\
\psi_{R b}
\end{array}\right]+\frac{d}{d t}\left[\begin{array}{c}
\psi_{R a} \\
\psi_{R b}
\end{array}\right]
\end{aligned}
$$

which simplifies to

$$
\left[\begin{array}{l}
0 \\
0
\end{array}\right]=\left[\begin{array}{c}
\left(R_{R} / L_{R}\right)\left(\psi_{R a}-M i_{S a}\right) \\
\left(R_{R} / L_{R}\right)\left(\psi_{R b}-M i_{S b}\right)
\end{array}\right]-n_{p} \omega\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\psi_{R a} \\
\psi_{R b}
\end{array}\right]+\frac{d}{d t}\left[\begin{array}{l}
\psi_{R a} \\
\psi_{R b}
\end{array}\right]
$$

Finally, the torque equation becomes

$$
\begin{aligned}
J \frac{d \omega}{d t} & =n_{p} M\left(i_{S b} \frac{\psi_{R a}-M i_{S a}}{L_{R}}-i_{S a} \frac{\psi_{R b}-M i_{S b}}{L_{R}}\right)-f \omega-\tau_{L} \\
& =n_{p} \frac{M}{L_{R}}\left(i_{S b} \psi_{R a}-i_{S a} \psi_{R b}\right)-f \omega-\tau_{L}
\end{aligned}
$$

Collecting these equations together, the dynamic model of the induction motor in terms of the state variables $\theta, \omega, \psi_{R a}, \psi_{R b}, i_{S a}$, and $i_{S b}$ is then

$$
\begin{align*}
\frac{d \theta}{d t} & =\omega \\
\frac{d \omega}{d t} & =\frac{n_{p} M}{J L_{R}}\left(i_{S b} \psi_{R a}-i_{S a} \psi_{R b}\right)-\frac{f}{J} \omega-\frac{\tau_{L}}{J} \\
\frac{d \psi_{R a}}{d t} & =-\frac{R_{R}}{L_{R}} \psi_{R a}-n_{p} \omega \psi_{R b}+\frac{M R_{R}}{L_{R}} i_{S a} \\
\frac{d \psi_{R b}}{d t} & =-\frac{R_{R}}{L_{R}} \psi_{R b}+n_{p} \omega \psi_{R a}+\frac{M R_{R}}{L_{R}} i_{S b} \tag{8.4}\\
u_{S a} & =R_{S} i_{S a}+\sigma L_{S} \frac{d i_{S a}}{d t}+\frac{M}{L_{R}} \frac{d \psi_{R a}}{d t} \\
u_{S b} & =R_{S} i_{S b}+\sigma L_{S} \frac{d i_{S b}}{d t}+\frac{M}{L_{R}} \frac{d \psi_{R b}}{d t}
\end{align*}
$$

where

$$
\sigma \triangleq 1-\frac{M^{2}}{L_{R} L_{S}}
$$

is the leakage parameter. Substituting the expressions for $d \psi_{R a} / d t$ and $d \psi_{R b} / d t$ from the third and fourth equations of (8.4) into the fifth and sixth equations of (8.4) and rearranging, one obtains the state-space form
of the system given by (see Refs. [64][65])

$$
\begin{align*}
\frac{d \theta}{d t} & =\omega \\
\frac{d \omega}{d t} & =\mu\left(i_{S b} \psi_{R a}-i_{S a} \psi_{R b}\right)-(f / J) \omega-\tau_{L} / J \\
\frac{d \psi_{R a}}{d t} & =-\eta \psi_{R a}-n_{p} \omega \psi_{R b}+\eta M i_{S a} \\
\frac{d \psi_{R b}}{d t} & =-\eta \psi_{R b}+n_{p} \omega \psi_{R a}+\eta M i_{S b} \tag{8.5}\\
\frac{d i_{S a}}{d t} & =\eta \beta \psi_{R a}+\beta n_{p} \omega \psi_{R b}-\gamma i_{S a}+u_{S a} / \sigma L_{S} \\
\frac{d i_{S b}}{d t} & =\eta \beta \psi_{R b}-\beta n_{p} \omega \psi_{R a}-\gamma i_{S b}+u_{S b} / \sigma L_{S}
\end{align*}
$$

with

$$
\begin{equation*}
\eta \triangleq \frac{R_{R}}{L_{R}}, \beta \triangleq \frac{M}{\sigma L_{R} L_{S}}, \mu \triangleq \frac{n_{p} M}{J L_{R}}, \gamma \triangleq \frac{M^{2} R_{R}}{\sigma L_{R}^{2} L_{S}}+\frac{R_{S}}{\sigma L_{S}} \tag{8.6}
\end{equation*}
$$

FIGURE 8.1. Block diagram of an equivalent induction motor model.

8.2 Field-Oriented and Input-Output Linearization Control of an Induction Motor

Recall that the fictitious rotor flux linkages $\psi_{R a}$ and $\psi_{R b}$ were used in the state-space formulation rather than the actual rotor flux linkages $\lambda_{R a}$ and $\lambda_{R b}$ in order to eliminate $\cos \left(\theta_{R}\right)$ and $\sin \left(\theta_{R}\right)$ from the mathematical model. However, even with this simplification, it is still not clear how to design a controller. That is, how does one choose $u_{S a}$ and $u_{S b}$ in order to control the torque, speed and/or position of the motor? The key idea of field-oriented control is to go to another coordinate system or state variable representation
in which it becomes clear how to design a controller. There is an interesting analogy from mankind's understanding of the motion of the planets around the sun. Before the Polish astronomer Mikołaj Kopernik ${ }^{3}$ came along in the 1500 s , the view of the solar system was earth-centered; that is, the trajectories of the planets and the sun were described in terms of their motion with respect to the earth. The trajectories were quite complicated from this reference frame since the planets moved back and forth across the night sky while the sun appeared to go completely around the earth. Copernicus pointed out that if one viewed these motions from the sun's point of view, the planetary motions are quite simple. That is, one would jump into a new coordinate system where the sun is the stationary origin of the new coordinates. Then the erratic motions of the planets, as viewed from the earth, are now simple elliptical trajectories around the sun with the sun at one focus of the ellipse. The idea of field-oriented control is the same: Find a new coordinate system where the equations are simple enough that the way to control the system is self-evident.
For field-oriented control, the new coordinate system is a rotating system whose angular position is defined by

$$
\rho \triangleq \tan ^{-1}\left(\frac{\psi_{R b}}{\psi_{R a}}\right)
$$

That is, instead of working with $\left(\psi_{R a}, \psi_{R b}\right)$, one uses the polar coordinate representation $\left(\rho, \psi_{d}\right)$ given by (see Ref. [64])

$$
\begin{aligned}
\rho & =\tan ^{-1}\left(\frac{\psi_{R b}}{\psi_{R a}}\right) \\
\psi_{d} & =\sqrt{\psi_{R a}^{2}+\psi_{R b}^{2}}
\end{aligned}
$$

The phase currents and voltages are then transformed into the new coordinate system as

$$
\begin{gather*}
{\left[\begin{array}{c}
i_{d} \\
i_{q}
\end{array}\right] \triangleq\left[\begin{array}{rr}
\cos (\rho) & \sin (\rho) \\
-\sin (\rho) & \cos (\rho)
\end{array}\right]\left[\begin{array}{l}
i_{S a} \\
i_{S b}
\end{array}\right]} \tag{8.7}\\
{\left[\begin{array}{l}
u_{d} \\
u_{q}
\end{array}\right] \triangleq\left[\begin{array}{rr}
\cos (\rho) & \sin (\rho) \\
-\sin (\rho) & \cos (\rho)
\end{array}\right]\left[\begin{array}{l}
u_{S a} \\
u_{S b}
\end{array}\right] .} \tag{8.8}
\end{gather*}
$$

The quantity ψ_{d} is referred to as the magnitude of the rotor field fux while ρ is the angle of the rotor field flux. This coordinate system is one that is moving (oriented) with this field flux and thus is called the rotor-flux fieldoriented coordinate system. The currents i_{d} and i_{q} are called the direct and quadrature currents, respectively. Similarly, the voltages u_{d} and u_{q} are

[^66]called the direct and quadrature voltages, respectively. The rotation matrix used in (8.7) and (8.8) is called the direct quadrature or $d q$ transformation.

A mathematical model of the induction motor in which $\omega, i_{d}, i_{q}, \psi_{d}$, and ρ are the state variables and the inputs are u_{d} and u_{q} is now developed. The torque equation is $\left(\cos (\rho)=\psi_{R a} / \psi_{d}, \sin (\rho)=\psi_{R b} / \psi_{d}\right)$

$$
\begin{aligned}
\frac{d \omega}{d t} & =\mu\left(\psi_{R a} i_{S b}-\psi_{R b} i_{S a}\right)-(f / J) \omega-\tau_{L} / J \\
& \left.=\mu \psi_{d}\left(\psi_{R a} / \psi_{d}\right) i_{S b}-\left(\psi_{R b} / \psi_{d}\right) i_{S a}\right)-(f / J) \omega-\tau_{L} / J \\
& =\mu \psi_{d}\left(-\sin (\rho) i_{S a}+\cos (\rho) i_{S b}\right)-(f / J) \omega-\tau_{L} / J \\
& =\mu \psi_{d} i_{q}-(f / J) \omega-\tau_{L} / J .
\end{aligned}
$$

The equation describing the dynamics of the magnitude of the rotor flux is

$$
\begin{aligned}
\frac{d \psi_{d}}{d t}= & \frac{d}{d t} \sqrt{\psi_{R a}^{2}+\psi_{R b}^{2}} \\
= & \frac{1 / 2}{\sqrt{\psi_{R a}^{2}+\psi_{R b}^{2}}}\left(2 \psi_{R a} \frac{d}{d t} \psi_{R a}+2 \psi_{R b} \frac{d}{d t} \psi_{R b}\right) \\
= & \cos (\rho)\left(-\eta \psi_{R a}-n_{p} \omega \psi_{R b}+\eta M i_{S a}\right) \\
& +\sin (\rho)\left(-\eta \psi_{R b}+n_{p} \omega \psi_{R a}+\eta M i_{S b}\right) \\
= & -\eta\left(\cos (\rho) \psi_{R a}+\sin (\rho) \psi_{R b}\right)+n_{p} \omega\left(-\cos (\rho) \psi_{R b}+\sin (\rho) \psi_{R a}\right) \\
& +\eta M\left(\cos (\rho) i_{S a}+\sin (\rho) i_{S b}\right) \\
= & -\eta \psi_{d}+\eta M i_{d} .
\end{aligned}
$$

The rotor flux angle dynamics are then

$$
\begin{aligned}
\frac{d \rho}{d t}= & \frac{d}{d t} \tan ^{-1}\left(\frac{\psi_{R b}}{\psi_{R a}}\right) \\
= & \frac{1}{1+\left(\psi_{R b} / \psi_{R a}\right)^{2}} \frac{\dot{\psi}_{R b} \psi_{R a}-\psi_{R b} \dot{\psi}_{R a}}{\psi_{R a}^{2}} \\
= & \frac{1}{\psi_{R a}^{2}+\psi_{R b}^{2}}\left(\psi_{R a}\left(-\eta \psi_{R b}+n_{p} \omega \psi_{R a}+\eta M i_{S b}\right)\right. \\
& \left.-\psi_{R b}\left(-\eta \psi_{R a}-n_{p} \omega \psi_{R b}+\eta M i_{S a}\right)\right) \\
= & \frac{1}{\psi_{d}^{2}}\left(n_{p} \omega\left(\psi_{R a}^{2}+\psi_{R b}^{2}\right)\right)+\eta M \frac{1}{\psi_{d}}\left(\left(\psi_{R a} / \psi_{d}\right) i_{S b}-\left(\psi_{R b} / \psi_{d}\right) i_{S a}\right) \\
= & n_{p} \omega+\eta M \frac{1}{\psi_{d}}\left(\cos (\rho) i_{S b}-\sin (\rho) i_{S a}\right) \\
= & n_{p} \omega+\eta M \frac{i_{q}}{\psi_{d}} .
\end{aligned}
$$

The dynamic equation describing the direct current is

$$
\begin{aligned}
\frac{d i_{d}}{d t}= & \frac{d}{d t}\left(\cos (\rho) i_{S a}+\sin (\rho) i_{S b}\right) \\
= & \left(-\sin (\rho) i_{S a}+\cos (\rho) i_{S b}\right) \frac{d \rho}{d t}+\cos (\rho) \frac{d i_{S a}}{d t}+\sin (\rho) \frac{d i_{S b}}{d t} \\
= & i_{q} \frac{d \rho}{d t}+\cos (\rho)\left(\eta \beta \psi_{R a}+\beta n_{p} \omega \psi_{R b}-\gamma i_{S a}+\frac{u_{S a}}{\sigma L_{S}}\right) \\
& +\sin (\rho)\left(\eta \beta \psi_{R b}-\beta n_{p} \omega \psi_{R a}-\gamma i_{S b}+\frac{u_{S b}}{\sigma L_{S}}\right) \\
= & i_{q}\left(n_{p} \omega+\eta M \frac{i_{q}}{\psi_{d}}\right)+\eta \beta\left(\cos (\rho) \psi_{R a}+\sin (\rho) \psi_{R b}\right) \\
& +n_{p} \omega \beta\left(\cos (\rho) \psi_{R b}-\sin (\rho) \psi_{R a}\right)-\gamma\left(\cos (\rho) i_{S a}+\sin (\rho) i_{S b}\right) \\
& +\left(\cos (\rho) u_{S a}+\sin (\rho) u_{S b}\right) / \sigma L_{S} \\
= & i_{q} n_{p} \omega+\eta M \frac{i_{q}^{2}}{\psi_{d}}+\eta \beta \psi_{d}-\gamma i_{d}+\frac{u_{d}}{\sigma L_{S}} .
\end{aligned}
$$

The dynamic equation describing the quadrature current is

$$
\begin{aligned}
\frac{d i_{q}}{d t}= & \frac{d}{d t}\left(-\sin (\rho) i_{S a}+\cos (\rho) i_{S b}\right) \\
= & -\left(\cos (\rho) i_{S a}+\sin (\rho) i_{S b}\right) \frac{d \rho}{d t}-\sin (\rho) \frac{d i_{S a}}{d t}+\cos (\rho) \frac{d i_{S b}}{d t} \\
= & -i_{d} \frac{d \rho}{d t}-\sin (\rho)\left(\eta \beta \psi_{R a}+\beta n_{p} \omega \psi_{R b}-\gamma i_{S a}+\frac{u_{S a}}{\sigma L_{S}}\right) \\
& +\cos (\rho)\left(\eta \beta \psi_{R b}-\beta n_{p} \omega \psi_{R a}-\gamma i_{S b}+\frac{u_{S b}}{\sigma L_{S}}\right) \\
= & -i_{d}\left(n_{p} \omega+\eta M i_{q} / \psi_{d}\right)+\eta \beta\left(-\sin (\rho) \psi_{R a}+\cos (\rho) \psi_{R b}\right) \\
& -n_{p} \omega \beta\left(\sin (\rho) \psi_{R b}+\cos (\rho) \psi_{R a}\right)-\gamma\left(-\sin (\rho) i_{S a}+\cos (\rho) i_{S b}\right) \\
& +\left(-\sin (\rho) u_{S a}+\cos (\rho) u_{S b}\right) / \sigma L_{S} \\
= & -i_{d} n_{p} \omega-\eta M i_{d} i_{q} / \psi_{d}-n_{p} \omega \beta \psi_{d}-\gamma i_{q}+\frac{u_{q}}{\sigma L_{S}} .
\end{aligned}
$$

Collecting the above equations together, a state-space model in the field-
oriented coordinate system is given by

$$
\begin{align*}
\frac{d \theta}{d t} & =\omega \\
\frac{d \omega}{d t} & =\mu \psi_{d} i_{q}-(f / J) \omega-\tau_{L} / J \\
\frac{d \psi_{d}}{d t} & =-\eta \psi_{d}+\eta M i_{d} \tag{8.9}\\
\frac{d i_{d}}{d t} & =-\gamma i_{d}+\left(\eta M / \sigma L_{R} L_{S}\right) \psi_{d}+n_{p} \omega i_{q}+\eta M i_{q}^{2} / \psi_{d}+u_{d} / \sigma L_{S} \\
\frac{d i_{q}}{d t} & =-\gamma i_{q}-\left(M / \sigma L_{R} L_{S}\right) n_{p} \omega \psi_{d}-n_{p} \omega i_{d}-\eta M i_{q} i_{d} / \psi_{d}+u_{q} / \sigma L_{S} \\
\frac{d \rho}{d t} & =n_{p} \omega+\eta M i_{q} / \psi_{d} .
\end{align*}
$$

This model is now used to develop a very effective method of control. It is first assumed that all of the state-variables $\theta, \omega, \psi_{d}, i_{d}, i_{q}$, and ρ are available for feedback. This would mean that one physically measures θ, $\omega, i_{S a}, i_{S b}, i_{R a}$, and $i_{R b}$ and then uses these measurements to compute ψ_{d}, i_{d}, i_{q}, and ρ in real time. In practice, one is rarely able to measure the rotor currents $i_{R a}$ and $i_{R b}$. This problem can be resolved using an observer to estimate ρ and ψ_{d} as will be shown later. Then i_{d} and i_{q} can be computed using the estimated value for ρ and the measured stator currents $i_{S a}$ and $i_{S b}$.

FIGURE 8.2. Transformation to the field-oriented ($d q$) coordinate system.

8.2.1 Current-Command Field-Oriented Control

Note that the electromagnetic torque $\tau=J \mu \psi_{d} i_{q}$ is now just proportional to the product of two state variables. However, the differential equations
for i_{d} and i_{q} still contain quite complicated nonlinearities. One possibility to simplify these current dynamics is to use feedback cancellation; that is, let

$$
\begin{align*}
& u_{d}=-\left(\sigma L_{S}\right)\left(-\gamma i_{d}+\eta \beta \psi_{d}+n_{p} \omega i_{q}+\eta M i_{q}^{2} / \psi_{d}\right)+\left(\sigma L_{S}\right) v_{d} \tag{8.10}\\
& u_{q}=-\left(\sigma L_{S}\right)\left(-\gamma i_{q}-\beta n_{p} \omega \psi_{d}-n_{p} \omega i_{d}-\eta M i_{q} i_{d} / \psi_{d}\right)+\left(\sigma L_{S}\right) v_{q}
\end{align*}
$$

so that (8.9) simplifies to

$$
\begin{align*}
d \omega / d t & =\mu \psi_{d} i_{q}-(f / J) \omega-\tau_{L} / J \\
d \psi_{d} / d t & =-\eta \psi_{d}+\eta M i_{d} \\
d i_{d} / d t & =v_{d} \tag{8.11}\\
d i_{q} / d t & =v_{q} \\
d \rho / d t & =n_{p} \omega+\eta M i_{q} / \psi_{d}
\end{align*}
$$

For current-command control, one may choose

$$
\begin{aligned}
& v_{d}=K_{d I} \int_{0}^{t}\left(i_{d r}-i_{d}\right) d t+K_{d P}\left(i_{d r}-i_{d}\right) \\
& v_{q}=K_{q I} \int_{0}^{t}\left(i_{q r}-i_{q}\right) d t+K_{q P}\left(i_{q r}-i_{q}\right)
\end{aligned}
$$

and by appropriate choice of the PI gains, $i_{d} \rightarrow i_{d r}$ and $i_{q} \rightarrow i_{q r}$. However, in practice, this is not done. To explain, note that in applying the feedback (8.10), there is some uncertainty in the knowledge of the motor parameters and the state variables. The motor parameters R_{R} and R_{S} can vary significantly due to ohmic heating while L_{R} and L_{S} can also vary due to magnetic saturation. Furthermore, the state variables ρ and ψ_{d} must be estimated leaving uncertainty not only in their values, but in the currents i_{d} and i_{q} as the value of ρ is also needed to estimate them.

Experience has shown that the effect of the nonlinear terms in (8.9) can be eliminated by forcing the system into current-command mode using high-gain feedback [66]. That is, one applies the PI current loops

$$
\begin{align*}
& u_{d}=K_{d I} \int_{0}^{t}\left(i_{d r}-i_{d}\right) d t+K_{d P}\left(i_{d r}-i_{d}\right) \tag{8.12}\\
& u_{q}=K_{q I} \int_{0}^{t}\left(i_{q r}-i_{q}\right) d t+K_{q P}\left(i_{q r}-i_{q}\right)
\end{align*}
$$

directly to (8.9) to force i_{d} and i_{q} to track their corresponding references $i_{d r}$ and $i_{q r}$, respectively. Values of the gains in (8.12) can be found that result in fast responses $i_{d} \rightarrow i_{d r}$ and $i_{q} \rightarrow i_{q r}$ for the currents. Consequently, $i_{d r}$
and $i_{q r}$ can then be considered as the new inputs for the control design where the system equations simplify to (i.e., are approximated as)

$$
\begin{align*}
\frac{d \theta}{d t} & =\omega \tag{8.13}\\
\frac{d \omega}{d t} & =\mu \psi_{d} i_{q r}-(f / J) \omega-\tau_{L} / J \tag{8.14}\\
\frac{d \psi_{d}}{d t} & =-\eta \psi_{d}+\eta M i_{d r} \tag{8.15}\\
\frac{d \rho}{d t} & =n_{p} \omega+\eta M i_{q} / \psi_{d} \tag{8.16}
\end{align*}
$$

Remark Note the the subscript " r " is not used on i_{q} in (8.16). The reason for this is that one is only interested in controlling θ, ω, and ψ_{d}, but not ρ. However, one must estimate ρ (as well as ψ_{d}), and this equation will be used for that purpose using the estimated value i_{q} rather than the reference value $i_{q r}$.

FIGURE 8.3. Block diagram of a current-command field-oriented system model.
A block diagram for the current-command field-oriented system model is given in Figure 8.3. The "Flux Observer" block will be described in Section 8.3.1. For now, the reader should just understand this block to represent an algorithm to compute ρ and ψ_{d} from measurements of $i_{S a}, i_{S b}$, and ω.

Field-oriented control consists of using $i_{d r}$ to force ψ_{d} to track the constant flux reference $\psi_{d 0}=M i_{d 0}$. As a consequence, equations (8.13) and (8.14) become

$$
\begin{align*}
\frac{d \theta}{d t} & =\omega \tag{8.17}\\
\frac{d \omega}{d t} & =\mu \psi_{d 0} i_{q r}-(f / J) \omega-\tau_{L} / J \tag{8.18}
\end{align*}
$$

so that there is now a linear relationship between the input $i_{q r}$ and the speed. To complete the control design, let

$$
\left[\begin{array}{c}
\theta_{r e f}(t) \\
\omega_{r e f}(t) \\
\alpha_{r e f}(t)
\end{array}\right]=\left[\begin{array}{c}
\theta_{r e f}(t) \\
d \theta_{r e f} / d t \\
d^{2} \theta_{r e f} / d t^{2}
\end{array}\right]
$$

be the mechanical reference trajectory the motor is required to track. The control of speed/position is then done through the input $i_{q r}$. Specifically, choose

$$
\begin{align*}
i_{q r}=(& K_{0} \int_{0}^{t}\left(\theta_{r e f}-\theta\right) d t+K_{1}\left(\theta_{r e f}-\theta\right)+K_{2}\left(\omega_{r e f}-\omega\right) \\
& \left.+(f / J) \omega+\alpha_{r e f}\right) / \mu \psi_{d 0} . \tag{8.19}
\end{align*}
$$

With the proper choice of the gains K_{0}, K_{1}, and K_{2} (see problem 8), $\theta \rightarrow \theta_{\text {ref }}$ and $\omega \rightarrow \omega_{\text {ref }}$ even with a constant load torque τ_{L} acting on the motor.

The flux ψ_{d} is regulated to a constant value $\psi_{d 0}$ by

$$
\begin{equation*}
i_{d r}=K_{\psi I} \int_{0}^{t}\left(\psi_{d 0}-\psi_{d}\right) d t+K_{\psi P}\left(\psi_{d 0}-\psi_{d}\right)+i_{d 0} \tag{8.20}
\end{equation*}
$$

That is, with proper choice of the feedback gains (see problem 7), $\psi_{d} \rightarrow$ $\psi_{d 0}=M i_{d 0}$.

A block diagram of this trajectory tracking controller is given in Figure 8.4.

Remarks

The roles of ψ_{d} and $i_{q}\left(i_{d r}\right.$ and $\left.i_{q r}\right)$ could, in principle, be reversed, but this is not done because the input i_{d} 's ($i_{d r}$'s) ability to rapidly change ψ_{d} is limited by the rotor time constant $T_{R}=1 / \eta=L_{R} / R_{R}$, which is not the case for $i_{q}\left(i_{q r}\right)$.

FIGURE 8.4. Block diagram of a trajectory tracking controller using a field-oriented controller.

As $\psi_{d 0}$ is constant, one usually incorporates $\mu \psi_{d 0}$ directly into the controller gains as

$$
\begin{equation*}
i_{q r}=\bar{K}_{0} \int_{0}^{t}\left(\theta_{r e f}-\theta\right) d t+\bar{K}_{1}\left(\theta_{r e f}-\theta\right)+\bar{K}_{2}\left(\omega_{r e f}-\omega\right)-\bar{f} \omega+\bar{\alpha}_{r e f} \tag{8.21}
\end{equation*}
$$

where $\bar{K}_{0}=K_{0} /\left(\mu \psi_{d 0}\right), \bar{K}_{1}=K_{1} /\left(\mu \psi_{d 0}\right), \bar{K}_{2}=K_{2} /\left(\mu \psi_{d 0}\right), \bar{f}=f /\left(J \mu \psi_{d 0}\right)$, and $\bar{\alpha}_{r e f}=\alpha_{r e f} /\left(\mu \psi_{d 0}\right)$.

Also, in practice, one typically leaves out the term $\bar{\alpha}_{r}$ in (8.21) and the term $i_{d 0}$ in (8.20) and finds that there is no significant deterioration in tracking if the gains can be chosen large enough.

8.2.2 Experimental Results Using a Field-Oriented Controller

Some experimental results showing the type of servo performance that can be achieved are now presented [67]. The motor is a 6 -pole $\left(n_{p}=3\right) 1 / 12-$ horsepower two-phase induction motor with a squirrel cage rotor that is rated for 2.4 A (continuous) and 60 V . The rest of the hardware (see Figure 8.5) consists of a Motorola DSP56001 digital signal processing system for implementation of the control algorithm, two PWM amplifiers ($\pm 80 \mathrm{~V}$ and $\pm 6 \mathrm{~A}$), two analog-to-digital (A/D) converters to sample the stator currents, two digital-to-analog (D/A) converters to command voltage to the amplifiers, an electronic interface boards for the A/Ds and D/As, and a 2000 pulse/rev encoder (resolution of $360^{\circ} / 2000=0.18^{\circ}$) to sense the angular position of the rotor. The PC indicated in Figure 8.5 is used to write, edit, and download the assembly language programs to the DSP which execute the controller algorithms. The parameters were identified using the technique given in Stephan et al. [42] and are $M=0.0117 \mathrm{H}, R_{R}=3.9$ $\Omega, R_{S}=1.7 \Omega, L_{R}=0.014 \mathrm{H}, L_{S}=0.014 H, f=0.00014 \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec}$ and $J=0.00011 \mathrm{~kg}-\mathrm{m}^{2}$. The constant flux reference $\psi_{d 0}$ was chosen to be $\psi_{d 0}=M i_{d 0}=0.0117(5.5 / \sqrt{2})=0.0455 \mathrm{~Wb}$. (See problem 13 for an explanation of the choice $i_{d 0}=5.5 / \sqrt{2}$.)

FIGURE 8.5. Hardware setup.

Figure 8.6 is a plot of the measure motor position and its reference trajectory used to carry out the turn. This figure shows the controller was able to turn the motor 180° in 73 msec . The tracking of the motor position to its reference is close enough that they are indistinguishable in Figure 8.6. Their difference in encoder counts is plotted in Figure 8.7 where it is seen that the measured error is less than two counts $[=2(2 \pi / 2000)=0.00314$ radians] for the entire move.

FIGURE 8.6. θ and $\theta_{\text {ref }}$ in radians versus time in seconds. From Bodson et al. [67], (C) 2004 IEEE.

FIGURE 8.7. $\theta_{\text {ref }}-\theta$ in encoder counts versus time in seconds. From Bodson et al. [67], (C) 2004 IEEE.

The corresponding estimated speed and the speed reference are shown in Figure 8.8.

FIGURE 8.8. ω and $\omega_{\text {ref }}$ in radians/sec versus time in seconds. From Bodson et al. [67], (C) 2004 IEEE.

Finally, the quadrature current i_{q} and $i_{q r e f}=\alpha_{r e f} / \psi_{d 0}$ are given in Figure 8.9 while the flux ψ_{d} and its reference $\psi_{d r e f}=\psi_{d 0}$ are given in Figure 8.10.

FIGURE 8.9. i_{q} and $i_{q r e f}$ in amperes versus time in seconds. From Bodson et al. [67], (c) 2004 IEEE.

FIGURE 8.10. ψ_{d} and $\psi_{\text {dref }}$ in webers versus time in seconds. From Bodson et al. [67], (C) 2004 IEEE.

The PI current gains for the tracking error in (8.12) where chosen as $K_{d I}=740, K_{d P}=6.4, K_{q I}=740$, and $K_{q P}=6.4$. The gains for the trajectory tracking controller in (8.19) were set as

$$
\begin{align*}
& K_{0}=1.07 \times 10^{6} \\
& K_{1}=7.04 \times 10^{5} \tag{8.22}\\
& K_{2}=1.07 \times 10^{3}
\end{align*}
$$

and the gains for the flux regulator (8.20) were set to

$$
\begin{align*}
K_{\psi P} & =1600 \tag{8.23}\\
K_{\psi I} & =23000
\end{align*}
$$

8.2.3 Field Weakening

The torque is controlled through the quadrature current i_{q}. Inspection of the fifth equation in (8.9) reveals that in order to maintain or increase i_{q}, the voltage u_{q} must be chosen such that $d i_{q} / d t \geq 0$, that is,

$$
\begin{aligned}
u_{q} & \geq \sigma L_{S} \gamma i_{q}+M n_{p} \omega \psi_{d} / L_{R}+\sigma L_{S} n_{p} \omega i_{d}+\sigma L_{S} \eta M i_{q} i_{d} / \psi_{d} \\
& =\left(\frac{M^{2}}{L_{R}^{2}} R_{R}+R_{S}\right) i_{q}+\frac{M}{L_{R}} n_{p} \omega \psi_{d}+\sigma L_{S} n_{p} \omega i_{d}+\sigma L_{S} \frac{R_{R}}{L_{R}} i_{q} M i_{d} / \psi_{d}
\end{aligned}
$$

where (8.6) was used. Consider the machine in steady state so that $\psi_{d}=$ $M i_{d}$ and use the approximation $L_{S} \approx L_{R} \approx M$ so that this inequality reduces to

$$
u_{q} \geq\left(R_{R}+R_{S}\right) i_{q}+n_{p} \omega \psi_{d}+\sigma n_{p} \omega \psi_{d}+\sigma R_{R} i_{q}
$$

At higher speeds, the dominant term on the right-hand side of this inequality is $n_{p} \omega \psi_{d}$. When the motor speed reaches a high enough speed, called the base speed $\omega_{\text {base }}$, the required voltage to maintain the current i_{q} equals the maximum voltage $V_{\max }$ the amplifier can produce. To get around this problem, the flux ψ_{d} is decreased at higher speeds. The standard way to choose the flux reference is given by

$$
\psi_{\text {dref }}=\left\{\begin{array}{lll}
\psi_{d 0} & \text { for } & |\omega|<\omega_{\text {base }} \tag{8.24}\\
\psi_{d 0} \omega_{\text {base }} /|\omega| & \text { for } & |\omega| \geq \omega_{\text {base }}
\end{array}\right.
$$

which is plotted versus ω in Figure 8.11.

FIGURE 8.11. Flux reference for field weakening.
The direct current $i_{d r}$ is chosen to force ψ_{d} to track $\psi_{d r e f}$ specified by (8.24) so that above the base speed $\omega_{\text {base }}$ the term $n_{p} \omega \psi_{d}=n_{p} \omega_{b a s e} \psi_{d 0}$ is constant. This reduction of ψ_{d} above $\omega_{\text {base }}$ is referred to as field weakening. One way to choose the base speed $\omega_{\text {base }}$ is to set $n_{p} \omega_{\text {base }} \psi_{d 0}=V_{\max }$ or $\omega_{\text {base }}=V_{\max } /\left(n_{p} \psi_{d 0}\right)$, where $V_{\max }$ is the (equivalent two-phase) stator voltage maximum. The trade-off here is that one can have the motor achieve speeds above the base speed, but less torque is produced as $\tau=J \mu \psi_{d} i_{q}$ so that for the same i_{q}, decreasing ψ_{d} means that less torque is produced.

Another way to formulate the problem of selecting the flux reference is as a static optimization problem. That is, at each constant rotor speed ω, maximize

$$
\begin{equation*}
\tau=J \mu \psi_{d} i_{q} \tag{8.25}
\end{equation*}
$$

subject to the constraints

$$
\begin{equation*}
u_{d}^{2}+u_{q}^{2} \leq V_{\max }^{2}, i_{d}^{2}+i_{q}^{2} \leq I_{\max }^{2} . \tag{8.26}
\end{equation*}
$$

Such an approach is given in Section 8.4 based on Refs. [68] and [69].

8.2.4 Input-Output Linearization

In the above field-oriented control scheme, the speed ω and flux ψ_{d} are only asymptotically decoupled [64]. In other words, the speed equation (8.14) is linear only after ψ_{d} is constant. For high speeds, field weakening (i.e., decreasing ψ_{d}), is necessary so as not to exceed the stator voltage limit. Since in the field-weakening region, the flux reference varies as a function of the speed, the dynamics of ψ_{d} then interfere with the dynamics of ω. This coupling of the flux and speed dynamics can be eliminated by considering an input-output linearizing controller [64][65][70][71]. Recall the system (8.13)(8.16) repeated below:

$$
\begin{aligned}
\frac{d \theta}{d t} & =\omega \\
\frac{d \omega}{d t} & =\mu \psi_{d} i_{q r}-(f / J) \omega-\tau_{L} / J \\
\frac{d \psi_{d}}{d t} & =-\eta \psi_{d}+\eta M i_{d r} \\
\frac{d \rho}{d t} & =n_{p} \omega+\eta M i_{q} / \psi_{d} .
\end{aligned}
$$

In this model, $i_{d r}$ and $i_{q r}$ are the inputs. Let them now be specified by

$$
\begin{align*}
& i_{d r}=u_{1} \\
& i_{q r}=\frac{u_{2}}{\mu \psi_{d}} \tag{8.27}
\end{align*}
$$

so that the system becomes

$$
\begin{align*}
d \theta / d t & =\omega \\
d \omega / d t & =u_{2}-(f / J) \omega-\tau_{L} / J \\
d \psi_{d} / d t & =-\eta \psi_{d}+\eta M u_{1} \tag{8.28}\\
d \rho / d t & =n_{p} \omega+\eta M i_{q} / \psi_{d}
\end{align*}
$$

The flux dynamics are now decoupled from the speed dynamics. That is, the first three equations of (8.28) may be written as two decoupled linear subsystems

$$
\begin{equation*}
d \psi_{d} / d t=-\eta \psi_{d}+\eta M u_{1} \tag{8.29}
\end{equation*}
$$

and

$$
\begin{align*}
& d \theta / d t=\omega \tag{8.30}\\
& d \omega / d t=u_{2}-(f / J) \omega-\tau_{L} / J .
\end{align*}
$$

The input u_{1} is chosen to force the linear system (8.29) to track a given flux reference trajectory $\psi_{d r}$, and the input u_{2} is used to force
the linear system (8.30) to track a given mechanical reference trajectory $\left(\theta_{r e f}(t), \omega_{r e f}(t), \alpha_{r e f}(t)\right)$. After the input u_{2} is specified in order to accomplish the control task, the current reference $i_{q r}$ is then simply chosen to be $i_{q r}=u_{2} /\left(\mu \psi_{d}\right)$.

As system (8.28) is linear from the inputs u_{1}, u_{2} to the outputs ω, ψ, this controller is referred to as an input-output linearization controller. However, the overall system (8.28) is still nonlinear as the dynamics of ρ are nonlinear. The boundedness (stability) of ρ is guaranteed since it is an angle and reset to 0 every 2π radians.
The new inputs u_{1} and u_{2} may be chosen as follows:
Let $\psi_{\text {dref }}(t)$ be a desired flux reference and choose

$$
\begin{equation*}
u_{1}=i_{d r}=K_{\psi P}\left(\psi_{d r e f}-\psi_{d}\right)+K_{\psi I} \int_{0}^{t}\left(\psi_{d r e f}-\psi_{d}\right) d t+i_{d r e f} \tag{8.31}
\end{equation*}
$$

where $i_{\text {dref }}$ satisfies

$$
d \psi_{d r e f} / d t=-\eta \psi_{d r e f}+\eta M i_{d r e f}
$$

With proper choice of the feedback gains $K_{\psi P}$ and $K_{\psi I}$ (see problem 10), $\psi_{d} \rightarrow \psi_{d r e f}$.

Let $\left(\theta_{r e f}(t), \omega_{r e f}(t), \alpha_{r e f}(t)\right)$ be the mechanical reference trajectory the motor is required to track. Choosing

$$
\begin{align*}
u_{2}= & K_{0} \int_{0}^{t}\left(\theta_{r e f}-\theta\right) d t+K_{1}\left(\theta_{r e f}-\theta\right)+K_{2}\left(\omega_{r e f}-\omega\right) \\
& +\alpha_{r e f}+(f / J) \omega \tag{8.32}
\end{align*}
$$

and along with a proper choice of the gains K_{0}, K_{1}, and K_{2} (see problem 11) results in $\theta \rightarrow \theta_{\text {ref }}$ and $\omega \rightarrow \omega_{\text {ref }}$ even with a constant load torque τ_{L} acting on the motor. Figure 8.12 is a block diagram of the input-output linearization controller. The "speed observer" block will be described in Section 8.3.2. For now, the reader should understand it to be an algorithm to obtain an estimate $\hat{\omega}$ of the speed ω from knowledge of ψ_{d}, i_{q}, and θ.

Voltage Command Input-Output Control

An input-output linearization controller may also be designed for the fullorder (voltage command) system model (8.11). Specifically, the transformation

$$
\begin{aligned}
\omega & \triangleq \omega \\
\alpha & \triangleq \mu \psi_{d} i_{q} \\
\psi_{d} & \triangleq \psi_{d} \\
\psi_{d}^{\prime} & \triangleq-\eta \psi_{d}+\eta M i_{d} \\
\rho & \triangleq \rho
\end{aligned}
$$

is applied to (8.11), resulting in

$$
\begin{aligned}
d \omega / d t & =\alpha-(f / J) \omega-\tau_{L} / J \\
d \alpha / d t & =\mu \psi_{d}^{\prime} i_{q}+\left(\mu \psi_{d}\right) v_{q} \\
d \psi_{d} / d t & =\psi_{d}^{\prime} \\
d \psi_{d}^{\prime} / d t & =-\eta \psi_{d}^{\prime}+(\eta M) v_{d} \\
d \rho / d t & =n_{p} \omega+\eta M \alpha /\left(\mu \psi_{d}^{2}\right) .
\end{aligned}
$$

FIGURE 8.12. Block diagram of an input-output linearization controller.

With w_{d} and w_{q} being two new inputs, application of the feedback

$$
\begin{align*}
& v_{d}=\psi_{d}^{\prime} / M+w_{d} /(\eta M) \\
& v_{q}=-\mu \psi_{d}^{\prime} i_{q} /\left(\mu \psi_{d}\right)+w_{q} /\left(\mu \psi_{d}\right) \tag{8.33}
\end{align*}
$$

results in the input-output linearized system

$$
\begin{aligned}
d \omega / d t & =\alpha-(f / J) \omega-\tau_{L} / J \\
d \alpha / d t & =w_{q} \\
d \psi_{d} / d t & =\psi_{d}^{\prime} \\
d \psi_{d}^{\prime} / d t & =w_{d} \\
d \rho / d t & =n_{p} \omega+\eta M \mu \alpha / \psi_{d}^{2} .
\end{aligned}
$$

8.2.5 Experimental Results Using an Input-Output Controller

Some experimental results are now presented to show the increased performance that can be extracted from the motor using an input-output linearization controller [65][69]. The motor and experimental setup is the same as that used for the field-oriented controller.

An experiment requiring a point-to-point position move was carried out in which the motor was brought up to a speed of $8000 \mathrm{rev} / \mathrm{min}$ in 0.38 seconds and brought down from $8000 \mathrm{rev} / \mathrm{min}$ to $0 \mathrm{rev} / \mathrm{min}$ in 0.265 sec (see Figure 8.15). The PI current gains in (8.12) were set at $K_{d I}=9000, K_{d P}=$ $15, K_{q I}=9000$, and $K_{q P}=15$. The PI gains for the flux tracking controller (8.31) were chosen as $K_{\psi P}=10,000, K_{\psi I}=420,000$. The PID gains for the tracking error in (8.32) were chosen as $K_{0}=3.0 \times 10^{5}, K_{1}=5.5 \times 10^{4}$, and $K_{2}=125$. The sample rate was 4 kHz .

Figure 8.13 is a plot of the position and its reference where the tracking is close enough that they are indistinguishable in this figure. The difference $\theta_{\tau e f}-\theta$ in encoder counts is given in Figure 8.14. The maximum error is 34 encoder counts.

FIGURE 8.13. θ and $\theta_{\text {ref }}$ in radians versus time in seconds. From Bodson et al. [65], (c) 2004 IEEE.

FIGURE 8.14. $\theta_{\text {ref }}-\theta$ in encoder counts versus time in seconds. From Bodson et al. [65], (C) 2004 IEEE.

As Figure 8.14 shows, the final position error is zero at the end of the run which is a requirement of a point-to-point move. Comparing with Figure 8.18 , it is seen that the maximum position errors occur when either the acceleration or deceleration is at a maximum. This is especially true at about 0.1 sec where, in addition, the jerk ($\triangleq d \alpha / d t$) is discontinuous.

Figure 8.15 is a plot of the estimated speed and the reference speed. Note the excellent speed tracking despite the time-varying flux (see Figure 8.17).

FIGURE 8.15. ω and $\omega_{\text {ref }}$ in radians/sec versus time in seconds. From Bodson et al. [65], (c) 2004 IEEE.

Figure 8.16 is a plot of i_{q} along with its reference $i_{\text {qref }} \triangleq \alpha_{\text {ref }} /\left(\mu \psi_{\text {dref }}\right)$. Figure 8.17 shows a plot of $\psi_{d r e f}$ and ψ_{d}, where $\psi_{d r e f}$ is the result of solving the static optimization problem of equations (8.25) and (8.26) (see Section 8.4 and Refs. [68][69]). Figures 8.16 and 8.17 indicate that ψ_{d} and i_{q} vary significantly, yet the input-output controller forces the resultant torque $\tau=J \mu \psi_{d} i_{q}$ to provide smooth tracking of the position and speed as shown in Figures 8.13 and 8.15 , respectively.

The dashed line in Figure 8.18 is a plot of the reference torque $\tau_{r e f}$ ($\alpha_{r e f}=\tau_{r e f} / J$) corresponding to the position and speed references given in Figures 8.13 and 8.15. The solid line is a plot of the motors' optimum achievable torque by the motor given the voltage and current constraints [i.e., the solution $\tau_{\text {optimum }}$ for τ in equations (8.25) and (8.26)]. Note the closeness of the reference to the optimum.

FIGURE 8.16. i_{q} and $i_{q r e f}$ in amperes versus time in seconds. From Bodson et al. [65], (C) 2004 IEEE.

FIGURE 8.17. ψ_{d} and $\psi_{d r e f}$ in webers versus time in seconds. From Bodson et al. [65], (c) 2004 IEEE.

FIGURE 8.18. $\tau_{o p t i m u m}$ and $\tau_{\text {ref }}$ in N-m versus time in seconds. From Bodson et al. [65], (c) 2004 IEEE.

This high-speed experiment (i.e., the trajectories of Figures 8.13, 8.15, and 8.17) was attempted using a field-oriented controller and was not successful as the phase voltages exceed their limits. That is, the input-output linearization controller was essential for obtaining such high performance.

Remarks This control algorithm depends on the inner PI current control loops working satisfactorily. That is, they must be given sufficient time, as well as sufficient source voltage, to track the current references. As pointed out above, the dominant term in the equation for $d i_{q} / d t$ [fifth equation of (8.9)] is the back emf term given by $M n_{p} \omega \psi_{d} / L_{R} \approx n_{p} \omega \psi_{d}$ (see problem 9). When n_{p} is large, a small change in ω results in a correspondingly large change in the back emf, making it difficult (i.e., takes time) for the PI current controller to overcome this disturbance in order to track the reference $i_{q r}$. Typically, induction motors do not have a large number of pole pairs; and even if they do (say $n_{p}=12$), they are not usually run at high speeds. Consequently, the PI current loops usually perform satisfactorily. On the other hand, permanent magnet stepping (synchronous) motors typically have 50 pole pairs. In that case, the current dynamics must be taken into account (rather than swamped out by high-gain feedback) in order to achieve high performance. That is, for the same trajectory, less source voltage may be needed compared to the current-command input-output controller. (See Ref. [72] where voltage command was essential in achieving high-performance motion control of a 50 -pole-pair PM stepper motor.)

8.3 Observers

The field-oriented and input-output controllers require the rotor flux linkages in order to implement them. The simplest type of algorithm to estimate them based on observer theory is now presented. Also, when a position sensor is used, a speed sensor is typically not available. Instead, one usually numerically differentiates the position measurement to get the speed. However, it is shown how a smoother estimate can be found using a speed observer.

8.3.1 Flux Observer

Recall from (8.4) the dynamic equations of the flux linkages are given by $\left(\eta=1 / T_{R}\right)$

$$
\begin{align*}
\frac{d}{d t} \psi_{R a} & =-\eta \psi_{R a}-n_{p} \omega \psi_{R b}+\eta M i_{S a} \tag{8.34}\\
\frac{d}{d t} \psi_{R b} & =-\eta \psi_{R b}+n_{p} \omega \psi_{R a}+\eta M i_{S b}
\end{align*}
$$

A straightforward way to estimate the fluxes $\psi_{R a}$ and $\psi_{R b}$ is to simply implement a real-time simulation of the equations (8.34) on the controller processor. That is, the currents $i_{S a}$ and $i_{S b}$ are sampled from the motor through analog to digital (A/D) converters, the speed ω is known through a sensor and these quantities are then used to run the following real-time simulation of the flux linkage equations

$$
\begin{align*}
\frac{d}{d t} \hat{\psi}_{R a} & =-\eta \hat{\psi}_{R a}-n_{p} \omega \hat{\psi}_{R b}+\eta M i_{S a} \\
\frac{d}{d t} \hat{\psi}_{R b} & =-\eta \hat{\psi}_{R b}+n_{p} \omega \hat{\psi}_{R a}+\eta M i_{S b} \tag{8.35}
\end{align*}
$$

on the controller processor. The solutions to these equations are then used as the estimates of the fluxes for use in the feedback control algorithm.

Note that for this to work, it is implicitly assumed that (i) the model (8.34) is the correct dynamic model of the flux linkages, (ii) the parameters η and M are known, (iii) the currents and speed are measured precisely, and (iv) the numerical integration of (8.35) is done accurately. Under these conditions, it is now shown that the flux linkage estimates given by the solution to (8.35) will converge to the correct values even if the initial conditions $\psi_{R a}(0)$ and $\psi_{R b}(0)$ for (8.35) are unknown. This is important because it also implies the observer will work even in the presence of disturbances. For example, suppose at time t_{1} there is noise on the measurement of $\omega\left(t_{1}\right)$. Further, at time $t_{1}+\delta$, say, the noise is no longer present on
the speed measurement. Then, for $t_{1}<t<t_{1}+\delta$, the speed is measured as $\omega(t)+n(t)$ rather than the correct value of $\omega(t)$. This incorrect measurement is then being used in (8.35) to calculate the estimates $\hat{\psi}_{R a}(t)$ and $\hat{\psi}_{R b}(t)$. Consequently, these estimates are now incorrect. However, for $t>t_{1}+\delta$, the measured speed is again $\omega(t)$, that is, the correct value. Thus, one can model the situation at time $t=t_{1}+\delta$ as (8.35) being the correct equations with the initial conditions $\hat{\psi}_{R a}\left(t_{1}+\delta\right)$ and $\hat{\psi}_{R b}\left(t_{1}+\delta\right)$ being unknown. If the estimates from (8.35) converge to the true values irrespective of the initial conditions, the estimator (8.35) is able to recover from disturbances in the measurements.

To show the convergence, subtract (8.35) from (8.34) to obtain error system

$$
\begin{align*}
& \dot{\varepsilon}_{R a}=-\eta \varepsilon_{R a}-n_{p} \omega \varepsilon_{R b} \tag{8.36}\\
& \dot{\varepsilon}_{R b}=-\eta \varepsilon_{R b}+n_{p} \omega \varepsilon_{R a}
\end{align*}
$$

where $\varepsilon_{R a} \triangleq \psi_{R a}-\hat{\psi}_{R a}, \varepsilon_{R b} \triangleq \psi_{R b}-\hat{\psi}_{R b}$ are the errors in the estimates.
Consider a (Lyapunov) function defined by

$$
\begin{aligned}
V(t) & \triangleq\left(\psi_{R a}(t)-\hat{\psi}_{R a}(t)\right)^{2}+\left(\psi_{R b}(t)-\hat{\psi}_{R b}(t)\right)^{2} \\
& =\varepsilon_{R a}^{2}(t)+\varepsilon_{R b}^{2}(t)
\end{aligned}
$$

If it can be shown $V(t) \rightarrow 0$ as $t \rightarrow \infty$, then $\hat{\psi}_{R a}(t) \rightarrow \psi_{R a}(t), \hat{\psi}_{R b}(t) \rightarrow$ $\psi_{R b}(t)$ as $t \rightarrow \infty$. To do this, compute

$$
\begin{aligned}
d V / d t & =2 \varepsilon_{R a} \dot{\varepsilon}_{R a}+2 \varepsilon_{R b} \dot{\varepsilon}_{R b} \\
& =2 \varepsilon_{R a}\left(-\eta \varepsilon_{R a}-n_{p} \omega \varepsilon_{R b}\right)+2 \varepsilon_{R b}\left(-\eta \varepsilon_{R b}+n_{p} \omega \varepsilon_{R a}\right) \\
& =-2 \eta\left(\varepsilon_{R a}^{2}+\varepsilon_{R b}^{2}\right) \\
& =-2 \eta V
\end{aligned}
$$

That is, $d V / d t=-2 \eta V$ with solution $V(t)=V(0) e^{-2 \eta t}$. Now, $V(0)=$ $\left(\psi_{R a}(0)-\hat{\psi}_{R a}(0)\right)^{2}+\left(\psi_{R b}(0)-\hat{\psi}_{R b}(0)\right)^{2}$ is unknown, but $V(t) \rightarrow 0$ regardless of the value of $V(0)$ and thus $\hat{\psi}_{R a}(t) \rightarrow \psi_{R a}(t), \hat{\psi}_{R b}(t) \rightarrow \psi_{R b}(t)$ as $t \rightarrow \infty$ independent of the initial conditions used for (8.35).

The nice thing about the development of this observer based on the model (8.34) is that one is able to show that the estimate converges to the actual flux. An equivalent representation of the system (8.34) is its polar coordinate form. That is, defining

$$
\begin{aligned}
\rho & \triangleq \tan ^{-1}\left(\psi_{R b} / \psi_{R a}\right) \\
\psi_{d} & \triangleq \sqrt{\psi_{R a}^{2}+\psi_{R b}^{2}}
\end{aligned}
$$

one then defines a flux estimator by

$$
\begin{align*}
\frac{d \hat{\rho}}{d t} & =n_{p} \omega+\eta M \hat{\imath}_{q} / \hat{\psi}_{d} \\
& =n_{p} \omega+\eta M\left(-i_{S a} \sin (\hat{\rho})+i_{S b} \cos (\hat{\rho})\right) / \hat{\psi}_{d} \tag{8.37}\\
\frac{d \hat{\psi}_{d}}{d t} & =-\eta \hat{\psi}_{d}+\eta M \hat{\imath}_{d} \\
& =-\eta \hat{\psi}_{d}+\eta M\left(i_{S a} \cos (\hat{\rho})+i_{S b} \sin (\hat{\rho})\right)
\end{align*}
$$

As the estimator (8.37) is just the polar coordinate form of (8.35), it follows that its solution will converge to the true values for ρ and ψ_{d}. The usefulness of the representation (8.37) is that the variables ψ_{d}, i_{d}, and i_{q} vary much slower than variables $\psi_{R a}(t)$ and $\psi_{R b}(t)$. For example, if the motor is running at a constant speed, the variables ψ_{d}, i_{d}, and i_{q} are constant no matter how high the speed. In contrast, $\psi_{R a}(t)$ and $\psi_{R b}(t)$ vary at the stator frequency, which at high speeds is quite large. This high frequency makes the numerical integration of (8.35) difficult in that a small time step is required.

Remarks

To implement either observer (8.35) or (8.37), η and M must be known. The parameter $\eta=1 / T_{R}=R_{R} / L_{R}$ and the resistance R_{R} can vary by 100% due to ohmic heating of the rotor windings [2].

8.3.2 Speed Observer

In a position (servo) control system, typically one has a position measurement (e.g., from an optical encoder), but a speed measurement is not available. It is standard practice in industry to compute the speed by a discrete differentiation of the position output (backward difference) from the optical encoder as

$$
\begin{equation*}
\hat{\omega}_{b d}(k T)=\frac{\theta(k T)-\theta((k-1) T)}{T} \tag{8.38}
\end{equation*}
$$

where T is the sample period. The difference $\theta(k T)-\theta((k-1) T)$ can be in error by no more than one count so that, using a 2000 pulse/rev encoder, the error in this estimate of the speed is tightly bounded by $(2 \pi / 2000) / T$. This noise is particularly significant at high sample rates and moderate to low speeds as less encoder counts are detected per sample period than at higher speeds. For example, in the experiment presented in Section 8.2.2 where the motor is turned 180° in 73 msec , the top speed of the motor was less than $75 \mathrm{rad} / \mathrm{sec}$ and a sample rate of 8 kHz was required. In this circumstance, the error bound on the speed computed by differentiation
is $(2 \pi / 2000) 8000=25.13 \mathrm{rad} / \mathrm{sec}$. This is shown in Figure 8.19. However, this noise (the difference $\omega-\hat{\omega}_{b d}$) has a high frequency, and for the most part the machine responds to the average value of $\hat{\omega}_{b d}$ over several time steps, which is close to the actual value.

FIGURE 8.19. $\hat{\omega}_{b d}$ and $\omega_{r e f}$ in radians/sec versus time in seconds. From Bodson et al. [67], (C) 2004 IEEE.

The speed estimate used to obtain Figure 8.8 (repeated in Figure 8.20) of Section 8.2.2 is much smoother and was computed using an observer.

FIGURE 8.20. $\hat{\omega}$ and $\omega_{\text {ref }}$ in radians/sec versus time in seconds. From Bodson et al. [67], (c) 2004 IEEE.

This approach is now described. In the field-oriented coordinates, the equation governing the speed in an induction motor is given by

$$
\begin{align*}
\frac{d \theta}{d t} & =\omega \\
\frac{d \omega}{d t} & =\mu \psi_{d} i_{q}-(f / J) \omega \tag{8.39}
\end{align*}
$$

The quantities ψ_{d} and i_{q} are not known, but can be estimated as shown above. Thus, consider an observer defined by

$$
\begin{align*}
\frac{d \hat{\theta}}{d t} & =\hat{\omega}+\ell_{1}(\theta-\hat{\theta}) \\
\frac{d \hat{\omega}}{d t} & =\mu \hat{\psi}_{d^{\prime}} \hat{\imath}_{q}-(f / J) \hat{\omega}+\ell_{2}(\theta-\hat{\theta}) \tag{8.40}
\end{align*}
$$

Assuming that $\hat{\psi}_{d} \hat{\imath}_{q} \rightarrow \psi_{d} i_{q}$ fast enough so that there are essentially equal, one subtracts (8.40) from (8.39) to obtain the error system

$$
\begin{align*}
\frac{d e_{1}}{d t} & =e_{2}-\ell_{1} e_{1} \\
\frac{d e_{2}}{d t} & =-(f / J) e_{2}-\ell_{2} e_{1} \tag{8.41}
\end{align*}
$$

where $e_{1}=\theta-\hat{\theta}$ and $e_{2}=\omega-\hat{\omega}$. The characteristic polynomial for the error system is then

$$
\operatorname{det}\left(s\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]-\left[\begin{array}{cc}
-\ell_{1} & 1 \\
-\ell_{2} & -f / J
\end{array}\right]\right)=s^{2}+\left(\ell_{1}+f / J\right) s+\ell_{2}+\ell_{1}(f / J)
$$

Choosing

$$
\begin{aligned}
& \ell_{1}=r_{1}+r_{2}-f / J \\
& \ell_{2}=r_{1} r_{2}-\ell_{1}(f / J)
\end{aligned}
$$

puts the roots of the characteristic polynomial at $-r_{1}$ and $-r_{2}$. It turns out in practice that this estimate of ω is much better than plain differentiation of the position [67]. This estimate is then used for the speed feedback and in the flux observer (8.37).

With the gains set as $\ell_{1}=1.8 \times 10^{3}$ and $\ell_{2}=8 \times 10^{5}$, the result of using the speed observer (8.40) is given in Figure 8.20. This same observer (with the same gain settings) was also used to obtain the speed estimate for the input output linearization controller in Figure 8.15. This approach to estimating ω can be modified to account for a load torque on the motor (see problem 25). A disadvantage of a speed observer is that the machine parameters must be known accurately $\left[\mu, f / J\right.$ for (8.40) and $\eta=1 / T_{R}, M$ for the flux observer] while the backward difference estimator (8.38) is independent of the machine parameters.

Remark The flux estimator (8.37) and speed estimator (8.40) are coupled; that is, to estimate the flux and speed, it is required to integrate the fourth-order system given by

$$
\begin{aligned}
\frac{d \hat{\rho}}{d t} & =n_{p} \hat{\omega}+\eta M\left(-i_{S a} \sin (\hat{\rho})+i_{S b} \cos (\hat{\rho})\right) / \hat{\psi}_{d} \\
\frac{d \hat{\psi}_{d}}{d t} & =-\eta \hat{\psi}_{d}+\eta M\left(i_{S a} \cos (\hat{\rho})+i_{S b} \sin (\hat{\rho})\right) \\
\frac{d \hat{\theta}}{d t} & =\hat{\omega}+\ell_{1}(\theta-\hat{\theta}) \\
\frac{d \hat{\omega}}{d t} & =\mu \hat{\psi}_{d}\left(-i_{S a} \sin (\hat{\rho})+i_{S b} \cos (\hat{\rho})\right)-(f / J) \hat{\omega}+\ell_{2}(\theta-\hat{\theta})
\end{aligned}
$$

where $i_{S a}, i_{S b}$ and θ are the measured "inputs" to this observer.

8.3.3 Verghese-Sanders Flux Observer*

Using the observer (8.35), it was shown that the magnitude of the error $V(t)=\left(\psi_{R a}(t)-\hat{\psi}_{R a}(t)\right)^{2}+\left(\psi_{R b}(t)-\hat{\psi}_{R b}(t)\right)^{2}$ went to zero exponentially as $V(t)=V(0) e^{-2 \eta t}$. For example, with $L_{R}=0.085$ Henries and $R_{R}=0.8$ ohms, $\eta=9.4$ so that $V(t)=V(0) e^{-2(9.4) t}=V(0) e^{-t / 05}$ and the error dies out after four time constants or $4 \times 0.05=0.2 \mathrm{sec}$. It is usually preferable to force the error to go to zero arbitrarily fast rather than just as $e^{-2 \eta t}$.

An ingenious approach has been given by Verghese and Sanders [73] that allows one to specify an arbitrary rate of convergence for the flux estimator. This was done by first observing that the four electrical equations in (8.4) may be broken up into two subsystems consisting of the flux system model

$$
\begin{align*}
\frac{d}{d t} \psi_{R a} & =-\frac{R_{R}}{L_{R}} \psi_{R a}-n_{p} \omega \psi_{R b}+\frac{M R_{R}}{L_{R}} i_{S a} \\
\frac{d}{d t} \psi_{R b} & =-\frac{R_{R}}{L_{R}} \psi_{R b}+n_{p} \omega \psi_{R a}+\frac{M R_{R}}{L_{R}} i_{S b} \tag{8.42}
\end{align*}
$$

and the voltage measurement model

$$
\begin{align*}
& u_{S a}=R_{S} i_{S a}+\sigma L_{S} \frac{d i_{S a}}{d t}+\frac{M}{L_{R}} \frac{d \psi_{R a}}{d t} \tag{8.43}\\
& u_{S b}=R_{S} i_{S b}+\sigma L_{S} \frac{d i_{S b}}{d t}+\frac{M}{L_{R}} \frac{d \psi_{R b}}{d t} .
\end{align*}
$$

The insight given by this decomposition is that a measurement of the voltages (assuming the currents and their derivatives are known) provides an estimate of the derivative of the flux linkages by equation (8.43), which
in turn can then be used to force the flux error to zero arbitrarily fast. Specifically, consider the estimator based on (8.42) defined by

$$
\begin{align*}
\frac{d}{d t} \hat{\psi}_{R a} & =-\frac{R_{R}}{L_{R}} \hat{\psi}_{R a}-n_{p} \omega \hat{\psi}_{R b}+\frac{M R_{R}}{L_{R}} i_{S a}+k\left(\hat{u}_{S a}-u_{S a}\right) \tag{8.44}\\
\frac{d}{d t} \hat{\psi}_{R b} & =-\frac{R_{R}}{L_{R}} \hat{\psi}_{R b}+n_{p} \omega \hat{\psi}_{R a}+\frac{M R_{R}}{L_{R}} i_{S b}+k\left(\hat{u}_{S b}-u_{S b}\right)
\end{align*}
$$

with the predicted measurements $\hat{u}_{S a}$ and $\hat{u}_{S b}$ given by

$$
\begin{align*}
& \hat{u}_{S a}=R_{S} i_{S a}+\sigma L_{S} \frac{d i_{S a}}{d t}+\frac{M}{L_{R}} \frac{d \hat{\psi}_{R a}}{d t} \tag{8.45}\\
& \hat{u}_{S b}=R_{S} i_{S b}+\sigma L_{S} \frac{d i_{S b}}{d t}+\frac{M}{L_{R}} \frac{d \hat{\psi}_{R b}}{d t} .
\end{align*}
$$

These expressions for $\hat{u}_{S a}$ and $\dot{\hat{u}}_{S b}$ (8.45) are then substituted into (8.44) and, after some rearrangement, result in the flux estimator given by

$$
\begin{align*}
\frac{d}{d t} \hat{\psi}_{R a}= & \frac{1}{1-k \frac{M}{L_{R}}}\left(-\frac{R_{R}}{L_{R}} \hat{\psi}_{R a}-n_{p} \omega \hat{\psi}_{R b}+\frac{M R_{R}}{L_{R}} i_{S a}\right. \\
& \left.+k\left(R_{S} i_{S a}+\sigma L_{S} \frac{d i_{S a}}{d t}-u_{S a}\right)\right) \tag{8.46}\\
\frac{d}{d t} \hat{\psi}_{R b}= & \frac{1}{1-k \frac{M}{L_{R}}}\left(-\frac{R_{R}}{L_{R}} \hat{\psi}_{R b}+n_{p} \omega \hat{\psi}_{R a}+\frac{M R_{R}}{L_{R}} i_{S b}\right. \\
& \left.+k\left(R_{S} i_{S b}+\sigma L_{S} \frac{d i_{S b}}{d t}-u_{S b}\right)\right) .
\end{align*}
$$

The idea here is that the system (8.46) is implemented in real time using the measured voltages $u_{S a}$ and $u_{S b}$ and currents $i_{S a}$ and $i_{S b}$, the measured speed ω, and the motor parameter values. The solutions $\hat{\psi}_{R a}$ and $\hat{\psi}_{R b}$ are then used as the estimate of the state variables $\psi_{R a}$ and $\psi_{R b}$.

To show that the estimator (8.46) works (i.e., $\hat{\psi}_{R a} \rightarrow \psi_{R a}, \hat{\psi}_{R b} \rightarrow \psi_{R b}$ if the gain k is chosen correctly), subtract (8.42) from (8.44) to obtain the error system

$$
\begin{align*}
\frac{d e_{R a}}{d t} & =-\eta e_{R a}-n_{p} \omega e_{R b}+k\left(\hat{u}_{S a}-u_{S a}\right) \tag{8.47}\\
\frac{d e_{R b}}{d t} & =-\eta e_{R b}+n_{p} \omega e_{R a}+k\left(\hat{u}_{S b}-u_{S b}\right)
\end{align*}
$$

where $e_{R a} \triangleq \hat{\psi}_{R a}-\psi_{R a}, e_{R b} \triangleq \hat{\psi}_{R b}-\psi_{R b}$.
Using (8.43) and (8.45), this is rewritten as

$$
\begin{align*}
\frac{d e_{R a}}{d t} & =-\eta e_{R a}-n_{p} \omega e_{R b}+\frac{k M}{L_{R}} \frac{d e_{R a}}{d t} \\
\frac{d e_{R b}}{d t} & =-\eta e_{R b}+n_{p} \omega e_{R a}+\frac{k M}{L_{R}} \frac{d e_{R b}}{d t} \tag{8.48}
\end{align*}
$$

or

$$
\begin{align*}
\frac{d e_{R a}}{d t} & =\frac{1}{1-k\left(M / L_{R}\right)}\left(-\eta e_{R a}-n_{p} \omega e_{R b}\right) \tag{8.49}\\
\frac{d e_{R b}}{d t} & =\frac{1}{1-k\left(M / L_{R}\right)}\left(-\eta e_{R b}+n_{p} \omega e_{R a}\right) .
\end{align*}
$$

Use of the (Lyapunov) function

$$
\begin{equation*}
V\left(e_{R a}, e_{R b}\right) \triangleq\left(e_{R a}^{2}+e_{R b}^{2}\right) / 2 \tag{8.50}
\end{equation*}
$$

with the error system (8.49) results in

$$
\begin{aligned}
\frac{d V}{d t} & =e_{R a} \frac{d e_{R a}}{d t}+e_{R b} \frac{d e_{R b}}{d t} \\
& =\frac{1}{1-k\left(M / L_{R}\right)}\left(e_{R a}\left(-\eta e_{R a}-n_{p} \omega e_{R b}\right)+e_{R b}\left(-\eta e_{R b}+n_{p} \omega e_{R a}\right)\right) \\
& =-\frac{\eta}{1-k\left(M / L_{R}\right)}\left(e_{R a}^{2}+e_{R b}^{2}\right) \\
& =-\frac{2 \eta}{1-k\left(M / L_{R}\right)} V
\end{aligned}
$$

Clearly then,

$$
V(t)=V(0) e^{-\left(\frac{2 \eta}{1-k M / L_{R}}\right) t}
$$

which can be made to go to zero arbitrarily fast by choosing the gain k close to (but less than) L_{R} / M. Note that by choosing $k>L_{R} / M$, the estimation error actually diverges. However, as $L_{R}=\left(1+\sigma_{R}\right) M$ where $\sigma_{R}>0$ is a small leakage constant [1], it is always true that $L_{R} / M>1$. Consequently, by choosing $k \leq 1$, one is assured of avoiding this problem.
The estimator (8.46) requires the derivative of the current to implement it. This can be avoided using the method as described in Ref. [73]. Specifically, (8.45) is substituted into (8.44) and rearranged by bringing all of the
terms with derivatives to the left-hand side, resulting in

$$
\begin{align*}
\left(1-k \frac{M}{L_{R}}\right) \frac{d \hat{\psi}_{R a}}{d t}-k \sigma L_{S} \frac{d i_{S a}}{d t}= & -\frac{R_{R}}{L_{R}} \hat{\psi}_{R a}-n_{p} \omega \hat{\psi}_{R b}+\frac{M R_{R}}{L_{R}} i_{S a} \\
& +k\left(R_{S} i_{S a}-u_{S a}\right) \tag{8.51}\\
\left(1-k \frac{M}{L_{R}}\right) \frac{d \hat{\psi}_{R b}}{d t}-k \sigma L_{S} \frac{d i_{S b}}{d t}= & -\frac{R_{R}}{L_{R}} \hat{\psi}_{R b}+n_{p} \omega \hat{\psi}_{R a}+\frac{M R_{R}}{L_{R}} i_{S b} \\
& +k\left(R_{S} i_{S b}-u_{S b}\right) .
\end{align*}
$$

Defining the auxiliary variables

$$
\begin{aligned}
& \hat{z}_{1}=\left(1-k \frac{M}{L_{R}}\right) \hat{\psi}_{R a}-k \sigma L_{S} i_{S a} \\
& \hat{z}_{2}=\left(1-k \frac{M}{L_{R}}\right) \hat{\psi}_{R b}-k \sigma L_{S} i_{S b}
\end{aligned}
$$

with inverse

$$
\begin{align*}
\hat{\psi}_{R a} & =\left(\hat{z}_{1}+k \sigma L_{S} i_{S a}\right) /\left(1-k \frac{M}{L_{R}}\right) \tag{8.52}\\
\hat{\psi}_{R b} & =\left(\hat{z}_{2}+k \sigma L_{S} i_{S b}\right) /\left(1-k \frac{M}{L_{R}}\right)
\end{align*}
$$

the system (8.51) has the form

$$
\begin{align*}
& \frac{d \hat{z}_{1}}{d t}=f_{1}\left(\hat{z}_{1}, \hat{z}_{2}, \omega, i_{S a}, i_{S b}, u_{S a}\right) \\
& \frac{d \hat{z}_{2}}{d t}=f_{2}\left(\hat{z}_{1}, \hat{z}_{2}, \omega, i_{S a}, i_{S b}, u_{S b}\right) \tag{8.53}
\end{align*}
$$

where f_{1} and f_{2} are simply the right-hand sides of (8.51) after substituting the expressions for $\hat{\psi}_{R a}$ and $\hat{\psi}_{R b}$ in terms of \hat{z}_{1} and \hat{z}_{2} from (8.52). The real-time solutions to (8.53) are then substituted into (8.52) to obtain the flux estimates.

Remarks As before, there are numerical issues to consider. In this case, the system (8.53) is driven by the stator currents which vary at the electrical frequency $\omega_{S}=\omega_{s l i p}+n_{p} \omega$ which can be quite large. This necessitates a small step size to accurately carry out the numerical integration of (8.53). An appropriate way to handle this issue is given in Ref. [73] (see problem 22).

As in any model-based scheme, these estimates are sensitive to parameter error. In this case, the significant parameter is the rotor time constant $T_{R}=1 / \eta$ as its value can vary as the rotor windings heat up or cool down. An analysis of this sensitivity is also given in [73]. A generalization of this observer is the Martin-Rouchon observer Refs. [74] [75] outlined in problem 27.

8.4 Optimal Field Weakening*

In Section 8.2.3, field weakening was introduced as means to achieve higher speeds without violating the stator voltage constraints with the trade off being that the available torque is less. In that approach, the reference for the (magnitude of the) flux linkage was specified by (8.24). In this section, the general problem of extracting the maximum torque from an induction motor without violating the voltage or current constraints is addressed systematically. There has been considerable work in this area including the approaches in Refs. [71][76][77][78][79][80]. Here the approach in Refs. [68][69] is presented. The field-oriented model of the motor as given in (8.9) is used as a starting point and, in order to obtain a tractable solution, the problem is formulated with the machine in steady state. Specifically, consider the following formulation:

Maximize the steady-state torque ($J \mu=n_{p} M / L_{R}$)

$$
\frac{n_{p} M}{L_{R}} \psi_{d} i_{q}
$$

subject to the constraints

$$
\begin{aligned}
u_{d}^{2}+u_{q}^{2} & \leq V_{\max }^{2} \\
i_{d}^{2}+i_{q}^{2} & \leq I_{\max }^{2} .
\end{aligned}
$$

Remark The actual physical constraints are

$$
\begin{aligned}
\left|u_{S a}\right| \leq V_{\max }, \quad\left|u_{S b}\right| \leq V_{\max } \\
\left|i_{S a}\right| \leq V_{\max }, \quad\left|i_{S b}\right| \leq V_{\max } .
\end{aligned}
$$

However, at constant rotor speed in steady state, the voltages and currents have the form

$$
\begin{aligned}
u_{S a} & =V \cos \left(\omega_{S} t+\phi\right) \\
u_{S b} & =V \cos \left(\omega_{S} t+\phi\right) \\
i_{S a} & =I \cos \left(\omega_{S} t+\varphi\right) \\
i_{S b} & =I \cos \left(\omega_{S} t+\varphi\right)
\end{aligned}
$$

where ω_{S} is the stator electrical frequency. As a consequence,

$$
\begin{aligned}
V^{2} & =u_{S a}^{2}+u_{S b}^{2}=u_{d}^{2}+u_{q}^{2} \leq V_{\max }^{2} \\
I^{2} & =i_{S a}^{2}+i_{S b}^{2}=i_{d}^{2}+i_{q}^{2} \leq I_{\max }^{2}
\end{aligned}
$$

so that in steady state the conditions are equivalent.
To proceed with the solution of the torque optimization problem, the system of equations (8.9) are written in steady state as

$$
\begin{align*}
& 0=\mu \psi_{d} i_{q}-(f / J) \omega-\tau_{L} / J \\
& 0=-\psi_{d}+M i_{d} \tag{8.55}\\
& 0=-\left(\frac{M^{2} R_{R}}{L_{R}^{2}}+R_{S}\right) i_{d}+\frac{\eta M}{L_{R}} \psi_{d}+\sigma L_{S} n_{p} \omega i_{q}+\sigma L_{S} M \frac{i_{q}^{2}}{T_{R} \psi_{d}}+u_{d} \tag{8.56}\\
& 0=-\left(\frac{M^{2} R_{R}}{L_{R}^{2}}+R_{S}\right) i_{q}-n_{p} \omega \psi_{d} \frac{M}{L_{R}}-\sigma L_{S} n_{p} \omega i_{d}-\sigma L_{S} M \frac{i_{q} i_{d}}{T_{R} \psi_{d}}+u_{q} \tag{8.57}
\end{align*}
$$

$$
\begin{equation*}
\frac{d \rho}{d t}=n_{p} \omega+M i_{q} /\left(T_{R} \psi_{d}\right)=\text { constant } \tag{8.58}
\end{equation*}
$$

Using $T_{S} \triangleq L_{S} / R_{S}, \psi_{d}=M i_{d}$, and making the substitution $\sigma=1-$ $M^{2} /\left(L_{S} L_{R}\right)$ into (8.57) results in (8.56) and (8.57) simplifying to

$$
\begin{align*}
\frac{u_{d}}{R_{S}} & =i_{d}-\sigma T_{S} i_{q}\left(n_{p} \omega+\frac{i_{q}}{T_{R} i_{d}}\right) \tag{8.59}\\
\frac{u_{q}}{R_{S}} & =i_{q}+T_{S} i_{d}\left(n_{p} \omega+\frac{i_{q}}{T_{R} i_{d}}\right) \tag{8.60}
\end{align*}
$$

8.4.1 Torque Optimization Under Current Constraints

In the case of only the current constraint being active, the problem reduces to maximizing

$$
\begin{equation*}
\tau=\frac{n_{p} M}{L_{R}} \psi_{d} i_{q}=\frac{n_{p} M^{2}}{L_{R}} i_{d} i_{q} \tag{8.61}
\end{equation*}
$$

subject to the constraint

$$
i_{d}^{2}+i_{q}^{2}=I^{2} \leq I_{\max }^{2}
$$

Defining

$$
\delta=i_{q} / i_{d}
$$

the expression for the torque may be rewritten as

$$
\begin{equation*}
\tau=\frac{n_{p} M^{2}}{L_{R}} \delta i_{d}^{2}=\frac{n_{p} M^{2}}{L_{R}} I^{2} \frac{\delta}{1+\delta^{2}} \tag{8.62}
\end{equation*}
$$

Optimizing (\max or \min) the torque requires $I=I_{\max }$. Also, solving $\partial \tau / \partial \delta=0$ gives $\delta= \pm 1$ and checking $\partial^{2} \tau / \partial \delta^{2}$ at $\delta= \pm 1$ results in the maximum torque for $I=I_{\text {max }}$ and $\delta=1\left(i_{d}=I_{\max } / \sqrt{2}\right)$ and the minimum torque for $I=I_{\max }$ and $\delta=-1\left(i_{d}=-I_{\max } / \sqrt{2}\right)$.

8.4.2 Torque Optimization Under Voltage Constraints

In the case of only the voltage constraint being active, the problem reduces to maximizing

$$
\begin{equation*}
\tau=\frac{n_{p} M}{L_{R}} \psi_{d} i_{q}=\frac{n_{p} M^{2}}{L_{R}} i_{d} i_{q} \tag{8.63}
\end{equation*}
$$

subject to the constraint

$$
u_{d}^{2}+u_{q}^{2}=V^{2} \leq V_{\max }^{2}
$$

Again letting $\delta=i_{q} / i_{d}$ and using (8.59) and (8.60), the square of the voltage V^{2} may be written as

$$
\begin{align*}
\frac{V^{2}}{R_{S}^{2}} & =\frac{u_{d}^{2}+u_{q}^{2}}{R_{S}^{2}} \\
& =\left(i_{d}-\sigma T_{S} i_{q}\left(n_{p} \omega+\frac{i_{q}}{T_{R} i_{d}}\right)\right)^{2}+\left(i_{q}+T_{S} i_{d}\left(n_{p} \omega+\frac{i_{q}}{T_{R} i_{d}}\right)\right)^{2} \\
& =i_{d}^{2}\left(\left(1-\sigma T_{S} \delta\left(n_{p} \omega+\delta / T_{R}\right)\right)^{2}+\left(\delta+T_{S}\left(n_{p} \omega+\delta / T_{R}\right)\right)^{2}\right) \tag{8.64}
\end{align*}
$$

and the torque is then rewritten as

$$
\begin{align*}
\tau & =\frac{n_{p} M^{2}}{L_{R}} \delta i_{d}^{2} \\
& =\frac{n_{p} M^{2}}{L_{R} R_{S}^{2}} V^{2} \frac{\delta}{\left(1-\sigma T_{S} \delta\left(n_{p} \omega+\delta / T_{R}\right)\right)^{2}+\left(\delta+T_{S}\left(n_{p} \omega+\delta / T_{R}\right)\right)^{2}} . \tag{8.65}
\end{align*}
$$

Remark

This expression for the torque is comparable to the standard torque-slip equation for the torque. Specifically, with $\omega_{S}=n_{p} \omega+\delta / T_{R}$ the electrical frequency, $S_{p}=1 /\left(\sigma \omega_{S} T_{R}\right)$ the normalized pull-out slip, and $S=\left(\omega_{S}-\right.$ $\left.n_{p} \omega\right) / \omega_{S}=\left(\delta / T_{R}\right) / \omega_{S}$ the normalized slip, this last expression for the torque reduces to (letting $R_{S} \rightarrow 0$)

$$
\begin{equation*}
\tau=n_{p} \frac{3}{2} \frac{1-\sigma}{\sigma} \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}} \frac{2}{S / S_{p}+S_{p} / S} \tag{8.66}
\end{equation*}
$$

where $U_{S} \triangleq \sqrt{2 / 3}(V / \sqrt{2})$ (see problem 31). $(V / \sqrt{2}$ is the two-phase equivalent rms voltage so that $\sqrt{2 / 3}(V / \sqrt{2})$ is the line-to-neutral rms voltage
in the three-phase machine.) The expression (8.65) gives the torque as a function of the slip $\left(\delta / T_{R}=\omega_{S}-n_{p} \omega\right)$ with the rotor speed ω held constant while the expression (8.66) gives the torque as function of the (normalized) slip with the electrical frequency ω_{S} held constant.

The denominator of (8.65) is always positive so that $\tau>0$ for $\delta>0$ and $\tau<0$ for $\delta<0$. As the torque (8.65) is proportional to V^{2}, the optimum torque is achieved choosing δ to optimize (8.65) with $V=V_{\text {max }}$. To compute the maxima and minima of τ with respect to δ, one sets

$$
\begin{align*}
\frac{\partial \tau}{\partial \delta} & =\frac{n_{p} M^{2}}{L_{R} R_{S}^{2}} V^{2} \frac{p(\delta)}{\left(\left(1-\sigma T_{S} \delta\left(n_{p} \omega+\delta / T_{R}\right)\right)^{2}+\left(\delta+T_{S}\left(n_{p} \omega+\delta / T_{R}\right)\right)^{2}\right)^{2}} \\
& =0 \tag{8.67}
\end{align*}
$$

where

$$
\begin{align*}
p(\delta)= & -3 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2} \delta^{4}-4 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)\left(T_{S} n_{p} \omega\right) \delta^{3} \\
& +\left(2 \sigma\left(\frac{T_{S}}{T_{R}}\right)-\sigma^{2}\left(T_{S} n_{p} \omega\right)^{2}-\left(1+\left(\frac{T_{S}}{T_{R}}\right)\right)^{2}\right) \delta^{2} \\
& +0 \cdot \delta+1+\left(T_{S} n_{p} \omega\right)^{2} \tag{8.68}
\end{align*}
$$

The solutions to $p(\delta)$ give the values of δ corresponding to local maxima and minima. Let δ_{0} be a solution to $p(\delta)=0$. The second derivative at such a δ_{0} is given by

$$
\begin{align*}
\left.\frac{\partial^{2} \tau}{\partial \delta^{2}}\right|_{\delta_{0}}= & \frac{n_{p} M^{2}}{L_{R} R_{S}^{2}} V^{2} \\
& \times \frac{p^{\prime}\left(\delta_{0}\right)}{\left(\left(1-\sigma T_{S} \delta\left(n_{p} \omega+\delta_{0} / T_{R}\right)\right)^{2}+\left(\delta_{0}+T_{S}\left(n_{p} \omega+\delta_{0} / T_{R}\right)\right)^{2}\right)^{2}} \tag{8.69}
\end{align*}
$$

where

$$
\begin{align*}
p^{\prime}(\delta)= & -12 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2} \delta^{3}-12 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)\left(T_{S} n_{p} \omega\right) \delta^{2} \\
& +2\left(2 \sigma\left(\frac{T_{S}}{T_{R}}\right)-\sigma^{2}\left(T_{S} n_{p} \omega\right)^{2}-\left(1+\left(\frac{T_{S}}{T_{R}}\right)\right)^{2}\right) \delta \\
= & -\delta\left(12 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2} \delta^{2}+12 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2}\left(T_{R} n_{p} \omega\right) \delta\right. \\
& \left.+2+4(1-\sigma)\left(\frac{T_{S}}{T_{R}}\right)+2\left(\frac{T_{S}}{T_{R}}\right)^{2}+2 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2}\left(T_{R} n_{p} \omega\right)^{2}\right) \tag{8.70}
\end{align*}
$$

The sign of $p^{\prime}\left(\delta_{0}\right)$ determines whether or not δ_{0} corresponds to a local minima or a local maxima.

Example 1 To study equation (8.68), consider an induction machine with parameter values $n_{p}=3, R_{S}=1.7 \mathrm{ohms}, L_{S}=0.014 \mathrm{H}, R_{R}=3.9$ ohms, $L_{R}=0.014 \mathrm{H}, M=0.0117 \mathrm{H}, V_{\max }=80 \mathrm{~V}, I_{\max }=6 \mathrm{~A}, J=$ $1.1 \times 10^{-4} \mathrm{~kg}-\mathrm{m}^{2}$ and $f=1.4 \times 10^{-4} \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec}$. Figure 8.21 is a plot of the four roots of $p(\delta)=0$ as the speed ω varies from 0 to 8000 rpm . In this example motor, only two of the roots are real in this speed range.

FIGURE 8.21. The four roots of $p(\delta)=0$ for $0 \leq \omega \leq 8000 \mathrm{rpm}$. From Bodson et al. [69], © 2004 IEEE.

Solutions of $p(\delta)=0$
The polynomial $p(\delta)$ is fourth order in δ and our interest here is to determine which of the roots optimizes the torque. For $\omega \geq 0$ and constant, there are two cases to consider: $\tau>0$ and $\tau<0$.
$\boldsymbol{\tau}>\mathbf{0}$: The first case is $\tau>0$ so that the machine is motoring. In this case $\delta>0$ as both i_{d} and i_{q} are positive. The Routh-Hurwitz test [37][81][46] (see problem 32) implies that $p(\delta)=0$ has exactly one positive root for all $\omega \geq 0$. Furthermore, for any $\delta>0$, it follows by equation (8.70) that $\partial^{2} \tau / \partial \delta^{2}<0$ so this unique positive root corresponds to a global maximum. In Figure 8.21, this unique positive root starts out at approximately 0.323 for $\omega=0$ and ends at approximately 2.2 for $\omega=800 \mathrm{rpm}$. The asymptotic value of this root is found by dividing (8.68) by $\sigma^{2}\left(T_{S} / T_{R}\right)^{2}\left(T_{S} n_{p} \omega\right)^{2}$ and letting $\omega \rightarrow \infty$ where it is seen that $p(\delta) /\left(\sigma^{2}\left(T_{S} / T_{R}\right)^{2}\left(T_{S} n_{p} \omega\right)^{2}\right) \rightarrow\left(T_{R} / T_{S}\right)^{2}\left(-\delta^{2}+1 / \sigma^{2}\right)$ and the positive root goes to $1 / \sigma(=3.33$ in Figure 8.21). Further, as $\omega \rightarrow \infty$,

$$
\tau(\delta) \rightarrow \tau(1 / \sigma)=\left(n_{p} M^{2} / L_{R} R_{S}^{2}\right) V^{2} /\left(2 \sigma\left(T_{S} n_{p} \omega_{R}\right)^{2}\right)
$$

$\boldsymbol{\tau}<\mathbf{0}$: The second case is $\tau<0$ so that the induction machine is generating. In this case, the minimum of τ is sought (i.e., maximizing $|\tau|$ with $\tau<0$) so that δ is negative with $i_{q}>0$ and $i_{d}<0$. As $p(\delta)$ is fourth order, it has four roots of which exactly one root is in the right-half plane. The remaining three roots all have negative real parts of which there are two possibilities. Either there are three real negative roots (two local minima and a local maximum) or there is one real negative root (single global minimum) and a complex conjugate pair with negative real parts.

First consider the solutions of (8.68) for ω small. In general, equation (8.68) has a unique negative root for sufficiently small speeds. To see this, let $\omega=0$ in (8.68) to obtain

$$
p(\delta)=-3 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2} \delta^{4}+\left(2 \sigma\left(\frac{T_{S}}{T_{R}}\right)-\left(1+\left(\frac{T_{S}}{T_{R}}\right)\right)^{2}\right) \delta^{2}+1=0
$$

Then with

$$
a \triangleq 3 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2}, b \triangleq\left(\frac{T_{S}}{T_{R}}\right)^{2}+2(1-\sigma)\left(\frac{T_{S}}{T_{R}}\right)+1, c \triangleq-1
$$

the quadratic formula gives

$$
\begin{equation*}
\delta^{2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \tag{8.71}
\end{equation*}
$$

where $-4 a c>0$ so that $\sqrt{b^{2}-4 a c}>b$. Consequently, one must choose the
$+\operatorname{sign}$ in (8.71) for δ^{2} to be positive. Doing so, let

$$
\begin{align*}
& \delta_{p o s} \triangleq \sqrt{\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}} \tag{8.72}\\
& \delta_{n e g} \triangleq-\sqrt{\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}} \tag{8.73}
\end{align*}
$$

be the (unique) positive and negative roots, respectively, of (8.68) for $\omega=0$. Note that $\delta_{\text {pos }}=0.323$ in Figure 8.21.

At high enough speeds, there are always two local minima. To see this, rewrite (8.68) as

$$
\begin{align*}
p(\delta)= & -3 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2} \delta^{4}-4 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2}\left(T_{R} n_{p} \omega\right) \delta^{3} \\
& +\left(1+2(1-\sigma)\left(\frac{T_{S}}{T_{R}}\right)+\left(\frac{T_{S}}{T_{R}}\right)^{2}+\sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2}\left(T_{R} n_{p} \omega\right)^{2}\right) \delta^{2} \\
& +0 \cdot \delta+1+\left(\frac{T_{S}}{T_{R}}\right)^{2}\left(T_{R} n_{p} \omega\right)^{2} . \tag{8.74}
\end{align*}
$$

It is now shown that one of the roots $\delta \rightarrow-T_{R} n_{p} \omega$ as $\omega \rightarrow \infty$. To do so, let $x \triangleq \delta /\left(T_{R} n_{p} \omega\right)$ in (8.74) and divide through by $-3 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2}\left(T_{R} n_{p} \omega\right)^{4}$ to obtain

$$
\begin{equation*}
x^{4}+\frac{4}{3} x^{3}+\frac{1}{3} x^{2}=-\frac{1+2(1-\sigma)\left(\frac{T_{S}}{T_{R}}\right)+\left(\frac{T_{S}}{T_{R}}\right)^{2}-1-\left(\frac{T_{S}}{T_{R}}\right)^{2}\left(T_{R} n_{p} \omega\right)^{2}}{3 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2}\left(T_{R} n_{p} \omega\right)^{4}} \tag{8.75}
\end{equation*}
$$

Equation (8.75) shows that $x=-1$ is a solution as $\omega \rightarrow \infty$; that is, $-T_{R} n_{p} \omega$ is an asymptotic solution to $p(\delta)=0$ for large ω. Substitution of $\delta=-T_{R} n_{p} \omega$ into (8.69) shows that $\partial^{2} \tau /\left.\partial \delta^{2}\right|_{\delta=-T_{R} n_{p} \omega}>0$ and thus corresponds to a minimum. Also, $\tau\left(-T_{R} n_{p} \omega\right) \rightarrow\left(n_{p} M^{2} / L_{R} R_{S}^{2}\right) V^{2} /\left(T_{R} n_{p} \omega_{R}\right)$ as $\omega \rightarrow \infty$. The other negative root corresponding to a local minimum is found by dividing (8.68) through by $\sigma^{2}\left(T_{S} / T_{R}\right)^{2}\left(T_{R} n_{p} \omega\right)^{2}$ and letting $\omega \rightarrow \infty$ to find $\delta \rightarrow-1 / \sigma$. Again using (8.69), it is seen that this root does indeed correspond to a local minimum where

$$
\tau(-1 / \sigma) \rightarrow-\frac{\left(n_{p} M^{2} / L_{R} R_{S}^{2}\right) V^{2}}{2 \sigma\left(T_{S} n_{p} \omega_{R}\right)^{2}}
$$

as $\omega \rightarrow \infty$. Comparing the expressions for the torque at the two minima, it is seen that for ω sufficiently large, $\tau\left(-T_{R} n_{p} \omega\right)<\tau(-1 / \sigma)$. As a consequence, $-1 / \sigma$ corresponds to an asymptotic local minimum while $-T_{R} n_{p} \omega$
corresponds to the asymptotic global minimum for the torque. In general, at sufficiently high speeds, the complex conjugate pair of roots must come together so that there are three negative real roots corresponding to the two minima and one local maximum. (From specific examples, it appears that the δ corresponding to the global minimum is the negative root that starts $\delta_{\text {neg }}$ for $\omega=0$ and remains real and negative throughout the speed range.)

For the specific motor example used in Figure 8.21, there is a unique negative root for the speed range $0 \leq \omega \leq 8000 \mathrm{rpm}$, that is, throughout the speed rating of the motor. However, it was shown above that if the speed is large enough, the complex conjugate pair of roots eventually come together.

Example 2 Consider a motor with the parameter values $n_{p}=3, R_{S}=$ $1.85 \mathrm{ohms}, L_{S}=0.244 \mathrm{H}, R_{R}=2.1 \mathrm{ohms}, L_{R}=0.244 \mathrm{H}, M=0.224 \mathrm{H}$, $V_{\max }=225 \mathrm{~V}$, and $I_{\max }=15 \mathrm{~A}$. Using these parameter values, Figure 8.22 is a plot of $\tau(\delta)$ versus δ for the fixed motor speed $\omega=200$ radians $/ \mathrm{sec}$. The torque is a maximum (motoring) at $\delta_{\max }=5.7$, but for generating, there is a global minimum at $\delta_{a}=-69$, a local minimum at $\delta_{b}=-8.8$, and a local maximum at $\delta_{c}=-20.8$.

Remark For future reference, the values of $\delta_{1}^{v c}$ and $\delta_{2}^{v c}$ in Figure 8.22 are where $V=V_{\max }, I=I_{\max }$. In particular, for $\delta_{1}^{v c}<\delta<\delta_{2}^{v c}$, it turns out that $I>I_{\max }$; for δ outside of this interval, it happens that $I \leq I_{\max }$. This will be shown below.

FIGURE 8.22. $\tau(\delta)$ in $\mathrm{N}-\mathrm{m}$ versus δ for $\omega=200 \mathrm{rad} / \mathrm{sec}$. At $\delta_{1}^{v c}$ and $\delta_{2}^{v c}$, both constraints are encountered (i.e., $V=V_{\max }$ and $I=I_{\max }$). The torque $\tau(\delta)$ has a global minimum at δ_{a}, a relative minimum at δ_{b}, and a relative maximum at δ_{c}. From Bodson et al. [69], (c) 2004 IEEE.

Numerical Solution of $p(\delta)=0$

The complete set of solutions to (8.68) can be found with a Newton-Raphsor technique provided it is initialized properly. A closed-form approximate solution for δ can be found if the slip $\omega_{\text {slip }}=i_{q} /\left(T_{R} i_{d}\right)=\delta / T_{R}$ is small (in magnitude) compared to the stator frequency $\omega_{S}=n_{p} \omega+i_{q} /\left(T_{R} i_{d}\right)$; that is, $\omega_{S} \approx n_{p} \omega$ so that (8.59) and (8.60) become

$$
\begin{align*}
\frac{u_{d}}{R_{S}} & =i_{d}-\sigma T_{S} i_{q} n_{p} \omega \tag{8.76}\\
\frac{u_{q}}{R_{S}} & =i_{q}+T_{S} i_{d} n_{p} \omega \tag{8.77}\\
\tau(\delta) & =\frac{n_{p} M^{2}}{L_{R} R_{S}^{2}} V^{2} \overline{\left(1-\sigma T_{S} \delta n_{p} \omega\right)^{2}}+\overline{\left(\delta+T_{S} n_{p} \omega\right)^{2}} \tag{8.78}
\end{align*}
$$

Setting $\partial \tau / \partial \delta=0$ gives

$$
\delta^{2}=\frac{1+\left(T_{S} \delta n_{p} \omega\right)^{2}}{1+\left(\sigma T_{S} \delta n_{p} \omega\right)^{2}}
$$

or

$$
\begin{equation*}
\delta= \pm \sqrt{\frac{1+\left(T_{S} \delta n_{p} \omega\right)^{2}}{1+\left(\sigma T_{S} \delta n_{p} \omega\right)^{2}}} \tag{8.79}
\end{equation*}
$$

At higher speeds for which $\sigma T_{S} \delta n_{p} \omega \gg 1$, this reduces further to $\delta^{2}=$ $1 / \sigma^{2}$. As shown above, $\delta=1 / \sigma$ corresponds to the global maximum for the torque $\tau>0$ while the solution $\delta=-1 / \sigma$ corresponds to a local minimum for the torque $\tau<0$. Also, as shown above, $\delta=-T_{R} n_{p} \omega$ is the asymptotic solution for the global minimum. [Note that the slip in this case is $\omega_{\text {slip }}=\delta / T_{R}=-n_{p} \omega$ which is not small in magnitude and, therefore, the equations (8.76)-(8.78) do not hold.]

To proceed with the numerical solution of (8.68), the global maximum is found by initializing the Newton-Raphson algorithm with the positive square root of (8.79). In the numerical examples given here, five iterations were sufficient to obtain a solution in the speed range $0 \leq \omega \leq 8000 \mathrm{rpm}$. To obtain the global minimum, the Newton-Raphson algorithm is initialized with $\delta_{\text {neg }}$ [see equation (8.73)] for speeds below $1 \mathrm{rad} / \mathrm{sec}$ and by $-T_{R} n_{p} \omega$ for all higher speeds. In the numerical examples here, this initialization resulted in a solution after five iterations in the speed range $0 \leq \omega \leq 8000$ rpm.

Remark It is straightforward to show that the problem just considered of choosing $\delta=i_{q} / i_{d}$ to maximize the torque $\tau=\left(n_{p} M^{2} / L_{R}\right) i_{d} i_{q}$ subject to the voltage constraint $u_{d}^{2}+u_{q}^{2}=V^{2} \leq V_{\text {max }}^{2}$ is equivalent to minimizing the voltage $u_{d}^{2}+u_{q}^{2}=V^{2}$ subject to the constant torque constraint $\tau=$ $\left(n_{p} M^{2} / L_{R}\right) i_{d} i_{q}=$ constant.

8.4.3 Torque Optimization Under Voltage and Current Constraints

The previous two subsections considered the problem of obtaining the optimum torque from an induction machine without violating the current and voltage constraints, respectively. At low speeds the back emf of the machine is small and the inrush of current results encountering the current limits. At high speeds, the back emf is dominates and one encounters the voltage limits. Between these limiting cases, it is not surprising that one would encounter both voltage and current limits simultaneously. This is now considered.

To proceed, rewrite (8.65) for the torque as

$$
\begin{align*}
\tau(\delta) & =\frac{n_{p} M^{2}}{L_{R}} V^{2} Q(\delta, \omega) \\
Q(\delta, \omega) & \triangleq \frac{\delta / R_{S}^{2}}{\left(1-\sigma T_{S} \delta\left(n_{p} \omega+\delta / T_{R}\right)\right)^{2}+\left(\delta+T_{S}\left(n_{p} \omega+\delta / T_{R}\right)\right)^{2}} . \tag{8.80}
\end{align*}
$$

Recall by equation (8.62) that the torque can also be written as

$$
\begin{equation*}
\tau(\delta)=\frac{n_{p} M^{2}}{L_{R}} I^{2} \frac{\delta}{1+\delta^{2}} \tag{8.81}
\end{equation*}
$$

Equation (8.80) was convenient when operating at the voltage constraint while equation (8.81) was convenient when operating at the current constraint. Under both constraints, the optimization problem is formulated as follows: Given

$$
\begin{equation*}
\tau(\delta)=\frac{n_{p} M^{2}}{L_{R}} I^{2} \frac{\delta}{1+\delta^{2}}=\frac{n_{p} M^{2}}{L_{R}} V^{2} Q(\delta, \omega), \tag{8.82}
\end{equation*}
$$

for each fixed speed ω, find the value of δ that optimizes the torque (maximum for motoring or minimum for generating) with $V^{2} \leq V_{\max }^{2}$ and $I^{2} \leq I_{\text {max }}^{2}$. As V^{2} and I^{2} appear linearly in (8.82), the optimal torque must occur with $V^{2}=V_{\max }^{2}$, or $I^{2}=I_{\max }^{2}$, or both. It has been shown in Section 8.4.2 that for a fixed voltage magnitude V the torque is optimized for some δ satisfying $\partial Q(\delta, \omega) / \partial \delta=0$, while for a fixed current magnitude I the torque is optimized for $\delta= \pm 1$. For each fixed ω, let $\delta_{\text {opt }}(\omega)$ denote the value of δ that optimizes the torque under both voltage and current constraints. Then at each such fixed speed, one of the following three cases must hold:

Case I $I^{2}=I_{\text {max }}^{2}$ and $V^{2}<V_{\text {max }}^{2} \Longrightarrow \delta_{o p t}= \pm 1$
Case II $V^{2}=V_{\max }^{2}$ and $I^{2}<I_{\max }^{2} \Longrightarrow \partial Q\left(\delta_{o p t}, \omega\right) / \partial \delta=0$
Case III $I^{2}=I_{\max }^{2}$ and $V^{2}=V_{\max }^{2} \Longrightarrow I_{\max }^{2} \frac{\delta_{o p t}}{1+\delta_{o p t}^{2}}=V_{\max }^{2} Q\left(\delta_{o p t}, \omega\right)$

Generating Mode

The following algorithm is then used to obtain $\delta_{o p t}$ and $\tau\left(\delta_{o p t}\right)$ for generator mode.

1. Let $\delta_{1}=-1$ and compute τ_{1}, V_{1} according to

$$
\begin{aligned}
\tau_{1} & \triangleq \frac{n_{p} M^{2}}{L_{R}} I_{\max }^{2} \frac{\delta_{1}}{1+\delta_{1}^{2}} \\
V_{1} & \triangleq \frac{\tau_{1}}{\frac{n_{p} M^{2}}{L_{R}} Q\left(\delta_{1}, \omega\right)}
\end{aligned}
$$

If $V_{1}>V_{\max }$, then τ_{1} is not the minimum torque and proceed to step 2. Otherwise, store the pair $\left(\delta_{1}, \tau_{1}\right)$ as a possible optimum pair ($\delta_{o p t}, \tau_{o p t}$) and then proceed to step 2.
2. Solve $\partial Q(\delta, \omega) / \partial \delta=0$ for its roots as explained in Section 8.4.2. There are then two possible subcases (a) and (b):
(a) One real negative root δ_{a} (the other two complex conjugate roots). In this case, compute

$$
\begin{aligned}
\tau_{2} & \triangleq \frac{n_{p} M^{2}}{L_{R}} V_{\max }^{2} Q\left(\delta_{a}, \omega\right) \\
I_{a}^{2} & \triangleq \frac{\tau_{2}}{\left(n_{p} M^{2} / L_{R}\right)} \frac{1+\delta_{a}^{2}}{\delta_{a}}
\end{aligned}
$$

If $I_{a}>I_{\max }$, then go to step 3 as this solution violates the current constraint. Otherwise, store the pair (δ_{a}, τ_{2}) as a possible candidate for ($\delta_{o p t}, \tau_{o p t}$) and proceed to step 3.
(b) Three real negative roots denoted as δ_{a}, δ_{b}, and δ_{c}. In this case, let δ_{a} correspond to the global minimum, δ_{b} correspond to the local minimum, and δ_{c} correspond to the local maximum (see Figure 8.22). Next compute

$$
\begin{aligned}
\tau_{a} \triangleq \frac{n_{p} M^{2}}{L_{R}} V_{\max }^{2} Q\left(\delta_{a}, \omega\right), I_{a}^{2} \triangleq \frac{\tau_{a}}{\left(n_{p} M^{2} / L_{R}\right)} \frac{1+\delta_{a}^{2}}{\delta_{a}} \\
\tau_{b} \triangleq \frac{n_{p} M^{2}}{L_{R}} V_{\max }^{2} Q\left(\delta_{b}, \omega\right), I_{b}^{2} \triangleq \frac{\tau_{b}}{\left(n_{p} M^{2} / L_{R}\right)} \frac{1+\delta_{b}^{2}}{\delta_{b}}
\end{aligned}
$$

If $I_{a}<I_{\max }$, then store $\left(\delta_{a}, \tau_{a}\right)$ as a possible candidate for ($\delta_{o p t}, \tau_{o p t}$) and proceed to step 3. Otherwise, check if $I_{b}<I_{\text {max }}$ is satisfied. If so, then store (δ_{b}, τ_{b}) as a possible candidate for ($\delta_{o p t}, \tau_{\text {opt }}$) and proceed to step 3. If not, just proceed to step 3.
3. Solve

$$
\frac{n_{p} M^{2}}{L_{R}} I_{\max }^{2} \frac{\delta}{1+\delta^{2}}=\frac{n_{p} M^{2}}{L_{R}} V_{\max }^{2} Q(\delta, \omega)
$$

and let δ_{3} denote the value corresponding to the minimum torque and denote the minimum torque as τ_{3}. Store $\left(\delta_{3}, \tau_{3}\right)$ as a possible candidate for ($\delta_{o p t}, \tau_{o p t}$).
4. Choose $\tau_{o p t}$ as the minimum value of the torque from steps 1,2 , and 3 and $\delta_{\text {opt }}$ as the corresponding value of δ.

Motoring Mode

The algorithm is similar, but simpler, in the motoring mode.

1. Let $\delta_{1}=1$ and compute τ_{1}, V_{1} according to

$$
\begin{aligned}
\tau_{1} & \triangleq \frac{n_{p} M^{2}}{L_{R}} I_{\max }^{2} \frac{\delta_{1}}{1+\delta_{1}^{2}} \\
V_{1} & \triangleq \frac{\tau_{1}}{\frac{n_{p} M^{2}}{L_{R}} Q\left(\delta_{1}, \omega\right)}
\end{aligned}
$$

If $V_{1}>V_{\max }$, then τ_{1} is not the maximum torque and proceed to step 2. Otherwise, store the pair (δ_{1}, τ_{1}) as a possible optimum pair $\left(\delta_{o p t}, \tau_{o p t}\right)$ and also proceed to step 2.
2. Solve $\partial Q(\delta, \omega) / \partial \delta=0$ for its roots as explained in Section 8.4.2. Let the unique positive root be denoted as δ_{a} and compute

$$
\begin{aligned}
\tau_{2} & \triangleq \frac{n_{p} M^{2}}{L_{R}} V_{\max }^{2} Q\left(\delta_{a}, \omega\right) \\
I_{a}^{2} & \triangleq \frac{\tau_{2}}{\left(n_{p} M^{2} / L_{R}\right)} \frac{1+\delta_{a}^{2}}{\delta_{a}} .
\end{aligned}
$$

If $I_{a}>I_{\max }$, then go to step 3 as this solution violates the constraint. Otherwise, store the pair (δ_{a}, τ_{2}) as a possible candidate for $\left(\delta_{o p t}, \tau_{o p t}\right)$ and then proceed to step 3.
3. Solve

$$
\frac{n_{p} M^{2}}{L_{R}} I_{\max }^{2} \frac{\delta}{1+\delta^{2}}=\frac{n_{p} M^{2}}{L_{R}} V_{\max }^{2} Q(\delta, \omega)
$$

and let δ_{3} denote the value corresponding to the maximum torque and denote the maximum torque as τ_{3}. Store (δ_{3}, τ_{3}) as a possible candidate for ($\delta_{o p t}, \tau_{o p t}$).
4. Choose $\tau_{\text {opt }}$ as the maximum value of the torque from steps 1,2 , and 3 and $\delta_{o p t}$ as the corresponding value of δ.

Remark If the induction machine is operating in the generating mode, step 2 above can lead to interesting solutions when the machine is at both the current and voltage limits. For example, in step 2 of the generating mode, for either subcase (a) or (b), the global minimum at δ_{a} will typically result in $I^{2}>I_{\max }^{2}$. However, in subcase (b), the local minimum at δ_{b} (found under the voltage constraint only) can turn out to be the global minimum when the current constraint is also taken into account. This is in fact the situation depicted in Figure 8.22. Specifically, at $\omega=200 \mathrm{rads} / \mathrm{sec}$, step 1 violates the voltage constraint while for step 2 the global minimum at $\delta_{a}=-69$ violates the current constraint (it can be shown that for $\delta_{1}^{v c}<\delta<\delta_{2}^{v c}, I>I_{\max }$). The local minimum at $\delta_{b}=-8.8$ producing the torque $\tau\left(\delta_{b}\right)=-4.4 \mathrm{~N}-\mathrm{m}$ does not violate the current constraint, that is,

$$
I_{b}^{2}\left(\delta_{b}\right) \triangleq\left(\tau\left(\delta_{b}\right) /\left(n_{p} M^{2} / L_{R}\right)\right)\left(1+\delta_{b}^{2}\right) / \delta_{b}<I_{\max }^{2} .
$$

Going on to step 3 of the algorithm, one solves $I_{\max }^{2} \delta /\left(1+\delta^{2}\right)=V_{\max }^{2} Q(\delta, \omega)$ for its real roots to obtain $\delta_{1}^{v c}=-22.9, \tau\left(\delta_{1}^{v c}\right)=-4.06 \mathrm{~N}-\mathrm{m}$ and $\delta_{2}^{v c}=$ $-116.4, \tau\left(\delta_{2}^{v c}\right)=-0.8 \mathrm{~N}-\mathrm{m}$ which are indicated in Figure 8.22 (the other two roots are complex conjugates). Consequently, $\delta_{o p t}=\delta_{b}=-8.8$ produces the global minimum torque of $\tau_{o p t}=-4.4 \mathrm{~N}-\mathrm{m}$.

Numerical Solution of $I_{\text {max }}^{2} \delta /\left(1+\delta^{2}\right)=V_{\text {max }}^{2} Q(\delta, \omega)$
Step 3 of the algorithm requires solving $I_{\max }^{2} \delta /\left(1+\delta^{2}\right)=V_{\max }^{2} Q(\delta, \omega)$ for δ with ω fixed. This is rewritten as a polynomial in δ by

$$
\begin{align*}
& \frac{V_{\max }^{2}}{R_{S}^{2} I_{\max }^{2}}\left(1+\delta^{2}\right)=\sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2} \delta^{4}+2 \sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2} T_{R} n_{p} \omega \delta^{3} \\
& +\left(1+2(1-\sigma)\left(\frac{T_{S}}{T_{R}}\right)+\left(\frac{T_{S}}{T_{R}}\right)^{2}+\sigma^{2}\left(\frac{T_{S}}{T_{R}}\right)^{2}\left(T_{R} n_{p} \omega\right)^{2}\right) \delta^{2} \\
& +\left(2(1-\sigma)\left(\frac{T_{S}}{T_{R}}\right)+2\left(\frac{T_{S}}{T_{R}}\right)^{2}\right) T_{R} n_{p} \omega \delta+1+\left(\frac{T_{S}}{T_{R}}\right)^{2}\left(T_{R} n_{p} \omega\right)^{2} \tag{8.83}
\end{align*}
$$

This equation does not lend itself to as complete an analysis as (8.68) because the coefficient of δ in (8.83) is not zero as was the case for (8.68). The four roots of (8.83) are plotted in Figure 8.23. Upon computing the values of the torque corresponding to these values of δ, it turns out the positive real root between 1 and 1.5 in Figure 8.23 is the root corresponding to the (global) maximum torque for speeds between 2940 rpm and 3330 rpm. Similarly, the negative real root which is approximately between -1 and -2 in Figure 8.23 corresponds to the (global) minimum torque (i.e., $\max |\tau|, \tau<0$) for speeds greater than 5410 rpm . These two sets of roots are easily found using the Newton-Raphson method and initializing it with $\delta=1$ and $\delta=-1$ for the maximum and the minimum torques, respectively.

FIGURE 8.23. The four roots of $I_{\max }^{2} \delta /\left(1+\delta^{2}\right)=V_{\max }^{2} Q(\delta, \omega)$ for $0 \leq \omega \leq 8000$ rpm. From Bodson et al. [69], (c) 2004 IEEE.

Base Speed

For low enough speeds, the machine is operating at the current limit to achieve optimum torque. The base speed $\omega_{\text {base }}$ can be defined as the speed where the flux linkage magnitude ψ_{d} is first decreased to avoid the voltage limit. Using the above analysis, a natural procedure to determine this base speed is possible as follows. Below the base speed, where $\delta=\delta_{1}$ with $\delta_{1}=1$ for motoring and $\delta_{1}=-1$ for generating, the torque is given by

$$
\tau\left(\delta_{1}\right)=\frac{n_{p} M^{2}}{L_{R}} I_{\max }^{2} \frac{\delta_{1}}{1+\delta_{1}^{2}}=\frac{n_{p} M^{2}}{L_{R}} \frac{I_{\max }^{2}}{2} \delta_{1} .
$$

The voltage required to achieve this torque is then

$$
\begin{align*}
& V^{2}=\frac{\tau\left(\delta_{1}\right)}{\frac{n_{p} M^{2}}{L_{R}} Q\left(\delta_{1}, \omega\right)} \\
& =\frac{n_{p} M^{2} I_{\max }^{2}}{L_{R}} \frac{\left(1-\sigma T_{S} \delta_{1}\left(n_{p} \omega+\delta_{1} / T_{R}\right)\right)^{2}+\left(\delta_{1}+T_{S}\left(n_{p} \omega+\delta_{1} / T_{R}\right)\right)^{2}}{\frac{n_{p} M^{2}}{L_{R}} \frac{\delta_{1}}{R_{S}^{2}}} \\
& =\frac{R_{S}^{2} I_{\max }^{2}}{2}\left(\left(1-\sigma T_{S} \delta_{1}\left(n_{p} \omega+\delta_{1} / T_{R}\right)\right)^{2}+\left(\delta_{1}+T_{S}\left(n_{p} \omega+\delta_{1} / T_{R}\right)\right)^{2}\right) . \tag{8.84}
\end{align*}
$$

To satisfy the voltage constraint, the condition $V^{2} \leq V_{\max }^{2}$ must hold. To compute the maximum speed for which this holds, set $V^{2}=V_{\max }^{2}$ in (8.84) and rearrange to obtain

$$
\begin{aligned}
2 \frac{V_{\max }^{2}}{R_{S}^{2} I_{\mathrm{max}}^{2}}= & \delta_{1}^{2}+2(1-\sigma) \frac{T_{S}}{T_{R}} \delta_{1}^{2}+\frac{T_{S}^{2}}{T_{R}^{2}} \delta_{1}^{2}\left(1+\sigma^{2} \delta_{1}^{2}\right)+\omega^{2} T_{S}^{2} n_{p}^{2}\left(1+\sigma^{2} \delta_{1}^{2}\right) \\
& +\omega 2 T_{S} \delta_{1} n_{p}\left(1-\sigma+\frac{T_{S}}{T_{R}}\left(1+\sigma^{2} \delta_{1}^{2}\right)\right)+1
\end{aligned}
$$

Using the fact that $\delta_{1}^{2}=1$, this simplifies to

$$
\begin{align*}
0= & \omega^{2} T_{S}^{2} n_{p}^{2}\left(1+\sigma^{2}\right)+\omega 2 T_{S} \delta_{1} n_{p}\left(1-\sigma+\frac{T_{S}}{T_{R}}\left(1+\sigma^{2}\right)\right) \\
& +1+2(1-\sigma) \frac{T_{S}}{T_{R}}+\frac{T_{S}^{2}}{T_{R}^{2}}\left(1+\sigma^{2}\right)+1-2 \frac{V_{\max }^{2}}{R_{S}^{2} I_{\max }^{2}} \tag{8.85}
\end{align*}
$$

In a practical motor, $V_{\max }^{2} \gg R_{S}^{2} I_{\text {max }}^{2}$ so that

$$
\begin{equation*}
1+2(1-\sigma) \frac{T_{S}}{T_{R}}+\frac{T_{S}^{2}}{T_{R}^{2}}\left(1+\sigma^{2}\right)+1-2 \frac{V_{\max }^{2}}{R_{S}^{2} I_{\max }^{2}} \approx 1+\left(1+\frac{T_{S}}{T_{R}}\right)^{2}-2 \frac{V_{\max }^{2}}{R_{S}^{2} I_{\max }^{2}}<0 . \tag{8.86}
\end{equation*}
$$

That is, the constant term of (8.85) is negative. The coefficient of ω is positive for $\delta_{1}=1$ and negative for $\delta_{1}=-1$. Using these facts, it follows using the Routh-Hurwitz stability test (see problem 33) that (8.86) has exactly one positive root each for $\delta_{1}=1$ and for $\delta_{1}=-1$. For the motor parameter values used in Figure 8.21, the positive solution of (8.86) for $\delta_{1}=1$ is $\omega_{\text {base }}=2990 \mathrm{rpm}$ (motoring) and the positive solution of (8.86) for $\delta_{1}=-1$ is $\omega_{\text {base }}=5410 \mathrm{rpm}$ (generating). These speeds can be seen in Figure 8.24.

Numerical Results

Here the motor used in example 1 (page 532 above) is analyzed in terms of the optimum torque it can produce. Its parameter values are $n_{p}=3, R_{S}=$ 1.7 ohms, $L_{S}=0.014 \mathrm{H}, R_{R}=3.9$ ohms, $L_{R}=0.014 \mathrm{H}, M=0.0117$ $\mathrm{H}, V_{\max }=80 \mathrm{~V}, I_{\max }=6 \mathrm{~A}, J=1.1 \times 10^{-4} \mathrm{~kg}-\mathrm{m}^{2}$ and $f=1.4 \times$ $10^{-4} \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec}$. Using the above algorithm, the maximum and minimum torques were computed and are shown in Figure 8.24 versus ω with the corresponding δ versus ω shown in Figure 8.25.

FIGURE 8.24. Maximum and minimum torque achievable versus ω (in rpm) for both optimal and standard field weakening. For the optimal field weakening, $\omega_{\text {base }}=2990 \mathrm{rpm}$ for motoring and $\omega_{\text {base }}=5410 \mathrm{rpm}$ for generating. From Bodson et al. [69], (C) 2004 IEEE.

FIGURE 8.25. δ versus ω in rpm corresponding to the maximum and minimum torque. From Bodson et al. [69], (C) 2004 IEEE.

FIGURE 8.26. Minimum torque versus ω in rpm under just the voltage contraint. From Bodson et al. [69], (c) 2004 IEEE.

The maximum torque is limited by the current constraint up to a speed of 2990 rpm and by the voltage constraint for speeds above 3330 rpm . There is a small speed range from 2990 rpm to 3330 rpm where both the voltage and current constraints are encountered. This last observation is more clearly illustrated in Figure 8.25. For the minimum torque, Figure 8.24 shows it is determined by the current constraint up to 5410 rpm and then by both the voltage and current constraints for all higher speeds. In other words, the minimum torque under just the voltage constraint alone is never achieved because it requires too much current. This is demonstrated vividly by Figure 8.26, which is a plot of the minimum torque achievable with only the voltage constraint and no current constraint. Comparing with Figure 8.24, it is clear that the current limits prevent these large negative torques from ever being achieved.

Comparison with Standard Field Weakening

Recall that the standard approach to field weakening is to choose the flux as

$$
\psi_{\text {dref }}(\omega)=\left\{\begin{array}{lll}
\psi_{d 0} & \text { for } & |\omega|<\omega_{\text {base }} \tag{8.87}\\
\psi_{d 0} \omega_{\text {base }} /|\omega| & \text { for } & |\omega| \geq \omega_{\text {base }}
\end{array}\right.
$$

where $\psi_{d 0}=M i_{d 0}$. For the machine of example 1 (page 532 above), the direct current reference is chosen as $i_{d 0}=6 / \sqrt{2} \mathrm{~A}$ to make the torque using the flux reference (8.87) equal to that of the optimal torque (i.e., choosing $\delta=1$ so that $i_{d}=i_{q}=I_{\text {max }} / \sqrt{2}$) below the base speed. The base speed is chosen as $\omega_{\text {base }}=2990 \mathrm{rpm}(\approx 300 \mathrm{rads} / \mathrm{sec})$ so as to coincide with the
speed at which the maximum possible torque achievable starts to decrease (see Figure 8.24).
To provide a fair comparison of the two approaches to field weakening, it is necessary to determine the maximum torque that can be delivered under the standard field weakening approach without violating the constraints. The motor torque is $J \mu \psi_{d} i_{q}$ and, as the flux is determined by (8.87) at any constant speed, the optimum torque in this situation is determined by optimizing i_{q} subject to the voltage and current constraints. To proceed, in (8.64) set $V=V_{\max }, i_{d}(\omega)=\psi_{\text {dref }}(\omega) / M$ with $\psi_{\text {dref }}(\omega)$ given by (8.87) and compute its roots. With $\delta_{\text {max }}$ the maximum real root of (8.64), the maximum i_{q} subject to the voltage constraint is simply $\delta_{\max } i_{d}$. Similarly, with $\delta_{\text {min }}$ the minimum real root of (8.64), the minimum i_{q} subject to the voltage constraint is $\delta_{\min } i_{d}$. To account for the current constraint, one just takes the values of i_{q} as just explained and tests if $\left|i_{q}\right| \leq I_{q \max } \triangleq$ $\sqrt{I_{\text {max }}^{2}-i_{d}(\omega)}$. If $\left.\mid i_{q}\right\} \leq I_{q \max }$ then i_{q} is left unchanged and it is at its optimum value. Otherwise, i_{q} is set to $\pm I_{q \text { max }}$ where the + is taken if $i_{q}>0$ and the $-\operatorname{sign}$ is taken if $i_{q}<0$. Figure 8.24 shows the maximum and minimum torques computed using the standard flux reference. It is interesting to note that this maximum torque is essentially the same as that produced by the optimum torque provided that $i_{d 0}$ and $\omega_{\text {base }}$ are chosen as in the optimum torque case.

The Optimal Flux Reference

The algorithm above for computing $\delta=i_{q} / i_{d}$ to achieve the optimum torque under both voltage and current constraints was derived assuming constant speed. However, achieving the optimum torque is of particular interest in high-performance applications where the speed varies greatly. Here it is shown that the algorithm is indeed applicable to such applications due to the fact that the electrical dynamics of a machine are typically much faster than the mechanical dynamics. Figure 8.24 shows that the torque optimization will have a significant advantage during deceleration. In fact, the flux and current references used for the input output controller of Section 8.2.4 were developed using the algorithm of this section. The speed trajectory of Figure 8.15 shows the motor goes from 0 rpm to 8000 rpm in 0.38 seconds and from 8000 rpm to 0 rpm in only 0.265 seconds. The corresponding position reference trajectory is given in Figure 8.13. For the speed reference trajectory of Figure 8.15 the corresponding optimum achievable torque $\tau_{\text {opt }}$ is shown as the solid curve in Figure 8.18 while the dashed curve is the torque reference $\tau_{r e f}$. Note that the torque reference is close to the optimum reference throughout most of the speed range. The quadrature current reference is chosen as

$$
i_{q r e f} \triangleq \frac{\tau_{r e f}}{J \mu \psi_{d r e f}}
$$

where, as stated above, $\tau_{\text {ref }}$ is the dashed curve in Figure 8.18. The direct current reference is then specified as

$$
i_{r e f}(\omega)=\frac{i_{\text {qref }}}{\delta\left(\omega_{r e f}\right)}=\frac{\tau_{\text {ref }}}{J \mu \delta\left(\omega_{\text {ref }}\right) \psi_{\text {dref }}}
$$

where $\delta\left(\omega_{r e f}\right)$ is the optimal i_{q} / i_{d} to optimize the torque and is shown in Figure 8.27.
This derivation has been done under the assumption of constant speed so that choosing $\psi_{d r e f}=M i_{r e f}$ would be consistent with this assumption. However, while the currents can be changed relatively fast, the flux may take time to build up. As a consequence, the flux reference is chosen as the solution to

$$
\begin{aligned}
\frac{d \psi_{\text {dref }}}{d t} & =-\frac{1}{T_{R}} \psi_{\text {dref }}+\frac{M}{T_{R}} i_{\text {dref }} \\
& =-\frac{1}{T_{R}} \psi_{\text {dref }}+\frac{M}{J \mu T_{R}} \frac{\tau_{r e f}}{\delta\left(\omega_{r e f}\right) \psi_{\text {dref }}}
\end{aligned}
$$

Figure 8.28 is a plot of the commanded voltage to the amplifier where it is noted that the it stays quite close to the $80-\mathrm{V}$ limit as the motor goes from 0 rpm to 8000 rpm .

FIGURE 8.27. Optimal $\delta\left(\omega_{r e f}(t)\right)=i_{q} / i_{d}$ versus time for the speed trajectory of Figure 8.15. From Bodson et al. [69], (C) 2004 IEEE.

FIGURE 8.28. $u_{S a}$ versus time. From Bodson et al. [69], (C) 2004 IEEE.

Figure 8.29 shows the phase current $i_{S a}$ versus time.

FIGURE 8.29. $i_{S a}$ versus time. From Bodson et al. [69], © 2004 IEEE.
The flux reference $\psi_{d r e f}$ and the (estimated) flux ψ_{d} are shown in Figure 8.17. The position reference and measured position are shown in Figure 8.13 with the position error given in Figure 8.14 in encoder counts. This shows that the position error for the last 100 samples is less than one encoder
count verifying that the motor comes into the final position to a complete stop.

The generalization of this approach to the situation in which the main magnetic path of the machine undergoes significant saturation has been considered in [82][83][84].

8.5 Identification of the Induction Motor Parameters*

The induction motor parameters are the mutual inductance M, the stator inductance L_{S}, the rotor inductance L_{R}, the stator resistance R_{S}, the rotor resistance R_{R}, the inertia of the rotor J and the load torque τ_{L}. Standard methods for the estimation of induction motor parameters include the locked rotor test, the no-load test, and the standstill frequency response test (see problem 19 of Chapter 7). In Ref. [85], an automatic procedure is described in which a sequence of such tests is performed, each designed to isolate and measure a specific parameter. The method is applied for the automatic tuning (self-commissioning) of an induction motor drive. In Ref. [86], another procedure is described, based primarily on the identification of the motor transfer function at standstill. The model is then refined to account for magnetic saturation and adaptation is included to compensate for the effects of heating. However, these approaches cannot be used online, that is, during normal operation of the machine. This is a disadvantage as some of the parameters do vary during operation. For example, field-oriented control requires knowledge of the rotor time constant $T_{R}=L_{R} / R_{R}$ in order to estimate the rotor flux linkages and R_{R} varies significantly due to ohmic heating. Based on the work in Refs. [42][59][87], a method for identifying the parameters of the induction motor that can be implemented online is now described. To proceed, recall the state-space model (8.5) of the induction motor given by

$$
\begin{align*}
\frac{d \omega}{d t} & =\frac{n_{p} M}{J L_{R}}\left(i_{S b} \psi_{R a}-i_{S a} \psi_{R b}\right)-\frac{\tau_{L}}{J} \\
\frac{d \psi_{R a}}{d t} & =-\frac{1}{T_{R}} \psi_{R a}-n_{p} \omega \psi_{R b}+\frac{M}{T_{R}} i_{S a} \\
\frac{d \psi_{R b}}{d t} & =-\frac{1}{T_{R}} \psi_{R b}+n_{p} \omega \psi_{R a}+\frac{M}{T_{R}} i_{S b} \tag{8.88}\\
\frac{d i_{S a}}{d t} & =\frac{\beta}{T_{R}} \psi_{R a}+\beta n_{p} \omega \psi_{R b}-\gamma i_{S a}+\frac{1}{\sigma L_{S}} u_{S a} \\
\frac{d i_{S b}}{d t} & =\frac{\beta}{T_{R}} \psi_{R b}-\beta n_{p} \omega \psi_{R a}-\gamma i_{S b}+\frac{1}{\sigma L_{S}} u_{S b}
\end{align*}
$$

where again

$$
\begin{array}{ll}
T_{R}=L_{R} / R_{R}, & \sigma=1-M^{2} /\left(L_{S} L_{R}\right) \\
\beta=M /\left(\sigma L_{S} L_{R}\right), & \gamma=R_{S} /\left(\sigma L_{S}\right)+M^{2} R_{R} /\left(\sigma L_{S} L_{R}^{2}\right)
\end{array}
$$

have been used to simplify the expressions. This model is then transformed into a coordinate system attached to the rotor where, for example, the current variables are transformed according to

$$
\left[\begin{array}{c}
i_{S x} \tag{8.89}\\
i_{S y}
\end{array}\right]=\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{c}
i_{S a} \\
i_{S b}
\end{array}\right] .
$$

An advantage of this transformation is that the signals in the moving frame (i.e., the (x, y) frame) typically vary slower than those in the (a, b) frame (they vary at the slip frequency rather than at the stator frequency). At the same time, the transformation does not depend on any unknown parameter in contrast to the field-oriented $d q$ transformation. The stator voltages and the rotor flux linkages are transformed as the currents resulting in the following model [87]:

$$
\begin{align*}
\frac{d i_{S x}}{d t} & =\frac{1}{\sigma L_{S}} u_{S x}-\gamma i_{S x}+\frac{\beta}{T_{R}} \psi_{R x}+n_{p} \beta \omega \psi_{R y}+n_{p} \omega i_{S y} \tag{8.90}\\
\frac{d i_{S y}}{d t} & =\frac{1}{\sigma L_{S}} u_{S y}-\gamma i_{S y}+\frac{\beta}{T_{R}} \psi_{R y}-n_{p} \beta \omega \psi_{R x}-n_{p} \omega i_{S x} \tag{8.91}\\
\frac{d \psi_{R x}}{d t} & =\frac{M}{T_{R}} i_{S x}-\frac{1}{T_{R}} \psi_{R x} \tag{8.92}\\
\frac{d \psi_{R y}}{d t} & =\frac{M}{T_{R}} i_{S y}-\frac{1}{T_{R}} \psi_{R y} \tag{8.93}\\
\frac{d \omega}{d t} & =\frac{n_{p} M}{J L_{R}}\left(i_{S y} \psi_{R x}-i_{S x} \psi_{R y}\right)-\frac{\tau_{L}}{J} . \tag{8.94}
\end{align*}
$$

8.5.1 Linear Overparameterized Model

Measurements of the stator currents $i_{S a}$ and $i_{S b}$ and voltages $u_{S a}$ and $u_{S b}$ as well as the position θ of the rotor are assumed to be available (velocity may then be reconstructed from position measurements). However, the rotor flux linkages $\psi_{R x}$ and $\psi_{R y}$ are not assumed to be measured. Standard methods for parameter estimation are based on equalities where known signals depend linearly on unknown parameters. However, the induction motor model described above does not fit in this category unless the rotor flux linkages are measured. The first step is to eliminate the fluxes $\psi_{R x}$ and $\psi_{R y}$ and their derivatives $d \psi_{R x} / d t$ and $d \psi_{R y} / d t$. The four equations (8.90), (8.91), (8.92), (8.93) can be used to solve for $\psi_{R x}, \psi_{R y}, d \psi_{R x} / d t$, and $d \psi_{R y} / d t$, but one is left without another independent equation(s) to set up a regressor system for the identification algorithm (see Chapter 2).

A new set of independent equations are found by differentiating equations (8.90) and (8.91) to obtain

$$
\begin{align*}
\frac{1}{\sigma L_{s}} \frac{d u_{S x}}{d t}= & \frac{d^{2} i_{S x}}{d t^{2}}+\gamma \frac{d i_{S x}}{d t}-\frac{\beta}{T_{R}} \frac{d \psi_{R x}}{d t}-n_{p} \beta \omega \frac{d \psi_{R y}}{d t}-n_{p} \beta \psi_{R y} \frac{d \omega}{d t} \\
& -n_{p} \omega \frac{d i_{S y}}{d t}-n_{p} i_{S y} \frac{d \omega}{d t} \tag{8.95}\\
\frac{1}{\sigma L_{s}} \frac{d u_{S y}}{d t}= & \frac{d^{2} i_{S y}}{d t^{2}}+\gamma \frac{d i_{S y}}{d t}-\frac{\beta}{T_{R}} \frac{d \psi_{R y}}{d t}+n_{p} \beta \omega \frac{d \psi_{R x}}{d t}+n_{p} \beta \psi_{R x} \frac{d \omega}{d t} \\
& +n_{p} \omega \frac{d i_{S x}}{d t}+n_{p} i_{S x} \frac{d \omega}{d t} . \tag{8.96}
\end{align*}
$$

Next, equations (8.90), (8.91), (8.92), and (8.93) are solved for $\psi_{R x}, \psi_{R y}$, $d \psi_{R x} / d t$, and $d \psi_{R y} / d t$ and substituted into equations (8.95) and (8.96) to obtain

$$
\begin{align*}
0= & -\frac{d^{2} i_{S x}}{d t^{2}}+\frac{d i_{S y}}{d t} n_{p} \omega+\frac{1}{\sigma L_{S}} \frac{d u_{S x}}{d t}-\left(\gamma+\frac{1}{T_{R}}\right) \frac{d i_{S x}}{d t}-i_{S x}\left(-\frac{\beta M}{T_{R}^{2}}+\frac{\gamma}{T_{R}}\right) \\
& +i_{S y} n_{p} \omega\left(\frac{1}{T_{R}}+\frac{\beta M}{T_{R}}\right)+\frac{u_{S x}}{\sigma L_{S} T_{R}}+n_{p} \frac{d \omega}{d t} i_{S y}-n_{p} \frac{d \omega}{d t} \frac{1}{\sigma L_{S}\left(1+n_{p}^{2} \omega^{2} T_{R}^{2}\right)} \\
& \times\left(-\sigma L_{S} T_{R} \frac{d i_{S y}}{d t}-\gamma i_{S y} \sigma L_{S} T_{R}-i_{S x} n_{p} \omega \sigma L_{S} T_{R}-\frac{d i_{S x}}{d t} n_{p} \omega \sigma L_{S} T_{R}^{2}\right. \\
& \left.-\gamma i_{S x} n_{p} \omega \sigma L_{S} T_{R}^{2}+i_{S y} n_{p}^{2} \omega^{2} \sigma L_{S} T_{R}^{2}+n_{p} \omega T_{R}^{2} u_{S x}+T_{R} u_{S y}\right) \tag{8.97}
\end{align*}
$$

and

$$
\begin{align*}
0= & -\frac{d^{2} i_{S y}}{d t^{2}}-\frac{d i_{S x}}{d t} n_{p} \omega+\frac{1}{\sigma L_{S}} \frac{d u_{S y}}{d t}-\left(\gamma+\frac{1}{T_{R}}\right) \frac{d i_{S y}}{d t}-i_{S y}\left(-\frac{\beta M}{T_{R}^{2}}+\frac{\gamma}{T_{R}}\right) \\
& -i_{S x} n_{p} \omega\left(\frac{1}{T_{R}}+\frac{\beta M}{T_{R}}\right)+\frac{u_{S y}}{\sigma L_{S} T_{R}}-n_{p} \frac{d \omega}{d t} i_{S x}+n_{p} \frac{d \omega}{d t} \frac{1}{\sigma L_{S}\left(1+n_{p}^{2} \omega^{2} T_{R}^{2}\right)} \\
& \times\left(-\sigma L_{S} T_{R} \frac{d i_{S x}}{d t}-\gamma i_{S x} \sigma L_{S} T_{R}+i_{S y} n_{p} \omega \sigma L_{S} T_{R}+\frac{d i_{S y}}{d t} n_{p} \omega \sigma L_{S} T_{R}^{2}\right. \\
& \left.+\gamma i_{S y} n_{p} \omega \sigma L_{S} T_{R}^{2}+i_{S x} n_{p}^{2} \omega^{2} \sigma L_{S} T_{R}^{2}-n_{p} \omega T_{R}^{2} u_{S y}+T_{R} u_{S x}\right) . \tag{8.98}
\end{align*}
$$

The set of equations (8.97) and (8.98) may be rewritten in regressor form as

$$
\begin{equation*}
y(t)=W(t) K \tag{8.99}
\end{equation*}
$$

where $y \in \mathbb{R}^{2}, W \in \mathbb{R}^{2 \times 15}$, and $K \in \mathbb{R}^{15}$ are given by

$$
\left.\begin{array}{rl}
K \triangleq & {\left[\begin{array}{lllllllll}
\gamma & \beta M & \frac{1}{\sigma L_{S}} & \frac{\beta M}{T_{R}^{2}} & \frac{1}{T_{R}} & \frac{\gamma}{T_{R}} & \frac{\beta M}{T_{R}} & T_{R} & \gamma T_{R}
\end{array} \quad \beta M T_{R}\right.} \\
& T_{R}^{2}
\end{array} \gamma_{R}^{2} \quad \frac{T_{R}^{2}}{\sigma L_{S}} \frac{1}{\sigma L_{S} T_{R}} \quad \frac{1}{\sigma L_{S}}\right]^{T}
$$

$$
\begin{aligned}
& W(t) \triangleq\left[\begin{array}{ccccccc}
-\frac{d i_{S x}}{d t} & n_{p}^{2} \omega^{2} i_{S x} & \frac{d u_{S x}}{d t} & i_{S x} & n_{p} \omega i_{S y}-\frac{d i_{S x}}{d t} & -i_{S x} & n_{p} \omega i_{S y} \\
-\frac{d i_{S y}}{d t} & n_{p}^{2} \omega^{2} i_{S y} & \frac{d u_{S y}}{d t} & i_{S y} & -n_{p} \omega i_{S x}-\frac{d i_{S y}}{d t} & -i_{S y} & -n_{p} \omega i_{S x}
\end{array}\right. \\
& -n_{p}^{2} \omega^{2} \frac{d i_{S x}}{d t}+n_{p}^{3} \omega^{3} i_{S y}+\frac{d \omega}{d t}\left(n_{p} \frac{d i_{S y}}{d t}+n_{p}^{2} \omega i_{S x}\right) \quad n_{p} i_{S y} \frac{d \omega}{d t}-n_{p}^{2} \omega^{2} i_{S x} \\
& -n_{p}^{2} \omega^{2} \frac{d i_{S y}}{d t}-n_{p}^{3} \omega^{3} i_{S x}+\frac{d \omega}{d t}\left(-n_{p} \frac{d i_{S x}}{d t}+n_{p}^{2} \omega i_{S y}\right) \quad-n_{p} i_{S x} \frac{d \omega}{d t}-n_{p}^{2} \omega^{2} i_{S y} \\
& n_{p}^{3} \omega^{3} i_{S y} \quad n_{p}^{2}\left(\omega \frac{d i_{S x}}{d t} \frac{d \omega}{d t}-\omega^{2} \frac{d^{2} i_{S x}}{d t^{2}}\right)+n_{p}^{3} \omega^{3} \frac{d i_{S y}}{d t} \quad n_{p}^{2}\left(\omega i_{S x} \frac{d \omega}{d t}-\omega^{2} \frac{d i_{S x}}{d t}\right) \\
& -n_{p}^{3} \omega^{3} i_{S x} \quad n_{p}^{2}\left(\omega \frac{d i_{S y}}{d t} \frac{d \omega}{d t}-\omega^{2} \frac{d^{2} i_{S y}}{d t^{2}}\right)-n_{p}^{3} \omega^{3} \frac{d i_{S x}}{d t} \quad n_{p}^{2}\left(\omega i_{S y} \frac{d \omega}{d t}-\omega^{2} \frac{d i_{S y}}{d t}\right) \\
& n_{p}^{2}\left(\omega^{2} \frac{d u_{S x}}{d t}-u_{S x} \omega \frac{d \omega}{d t}\right) \quad u_{S x} \quad n_{p}^{2} \omega^{2} u_{S x}-n_{p} u_{S y} \frac{d \omega}{d t} \\
& \left.n_{p}^{2}\left(\omega^{2} \frac{d u_{S y}}{d t}-u_{S y} \omega \frac{d \omega}{d t}\right) \quad u_{S y} \quad n_{p}^{2} \omega^{2} u_{S y}+n_{p} u_{S x} \frac{d \omega}{d t}\right]
\end{aligned}
$$

and

$$
y(t) \triangleq\left[\begin{array}{c}
\frac{d^{2} i_{S x}}{d t^{2}}-n_{p} i_{S y} \frac{d \omega}{d t}-n_{p} \omega \frac{d i_{S y}}{d t} \\
\frac{d^{2} i_{S y}}{d t^{2}}+n_{p} i_{S x} \frac{d \omega}{d t}+n_{p} \omega \frac{d i_{S x}}{d t}
\end{array}\right]
$$

The system (8.99) is linear in the parameters. However, this system is overparameterized, meaning that the components K_{i} of the parameter vector K are not independent of each other. The relationship between the parameters is

$$
\begin{align*}
K_{1} & =K_{6} K_{8}, K_{2}=K_{4} K_{8}^{2}, K_{3}=K_{8} K_{14}, K_{5}=1 / K_{8} \\
K_{7} & =K_{4} K_{8}, K_{9}=K_{6} K_{8}^{2}, K_{10}=K_{4} K_{8}^{3}, K_{11}=K_{8}^{2} \\
K_{12} & =K_{6} K_{8}^{3}, K_{13}=K_{14} K_{8}^{3}, K_{15}=K_{14} K_{8}^{2} \tag{8.100}
\end{align*}
$$

so that only the four parameters K_{4}, K_{6}, K_{8}, and K_{14} are independent. If the parameter vector is computed according to $K=R_{W}^{-1} R_{W y} \in \mathbb{R}^{15}$ as in Chapter 2, one would find out that the problem is numerically illconditioned. This means that small changes in the data matrices R_{W} and $R_{W y}$ will lead to large changes in the computed value for $K \in \mathbb{R}^{15}$ and therefore the value of K could not be considered valid. Furthermore, there is
no guarantee that the components of K computed in this way would satisfy the constraints (8.100). Note also that not all five electrical parameters R_{S}, L_{S}, R_{R}, L_{R}, and M can be retrieved from the K_{i} 's. The four parameters K_{4}, K_{6}, K_{8}, and K_{14} determine only the four independent parameters R_{S}, L_{S}, σ, and T_{R} by

$$
\begin{equation*}
R_{S}=\frac{K_{6}-K_{4}}{K_{14}}, T_{R}=K_{8}, L_{S}=\frac{1+K_{4} K_{8}^{2}}{K_{14} K_{8}}, \sigma=\frac{1}{1+K_{4} K_{8}^{2}} \tag{8.101}
\end{equation*}
$$

As $T_{R}=L_{R} / R_{R}$ and $\sigma=1-M^{2} /\left(L_{S} L_{R}\right)$, only L_{R} / R_{R} and M^{2} / L_{R} can be obtained and not M, L_{R} and R_{R} independently. This situation is inherent to the identification problem when some of the state variables (in this case the rotor flux linkages) are unknown and is not specific to the method. If the rotor flux linkages are not measured, machines with different R_{R}, L_{R}, and M, but identical L_{R} / R_{R} and M^{2} / L_{R}, will have the same input/output (i.e., voltage to stator currents and speed) characteristics. However, machines with different K_{i} parameters, yet satisfying the nonlinear relationships (8.100), will be distinguishable. (For a related discussion of this issue see Bellini et al. [88], where parameter identification is performed using torque-speed and stator current-speed characteristics.)

8.5.2 Nonlinear Least-Squares Identification

In this section, it is shown how the linear least-squares method described in Chapter 2 is modified to account for the constraint (8.100). Recall from Chapter 2 that the least-squares problem is to minimize

$$
\begin{equation*}
E^{2}(K)=\sum_{n=1}^{N}|y(n T)-W(n T) K|^{2}=R_{y}-2 R_{W y}^{T} K+K^{T} R_{W} K \tag{8.102}
\end{equation*}
$$

subject to the constraints

$$
\begin{align*}
K_{1} & =K_{6} K_{8}^{\prime}, K_{2}=K_{4} K_{8}^{2}, K_{3}=K_{8} K_{14}, K_{5}=1 / K_{8} \\
K_{7} & =K_{4} K_{8}, K_{9}=K_{6} K_{8}^{2}, K_{10}=K_{4} K_{8}^{3}, K_{11}=K_{8}^{2} \\
K_{12} & =K_{6} K_{8}^{3}, K_{13}=K_{14} K_{8}^{3}, K_{15}=K_{14} K_{8}^{2} \tag{8.103}
\end{align*}
$$

On physical grounds, the parameters K_{4}, K_{6}, K_{8}, and K_{14} are constrained to

$$
\begin{equation*}
0<K_{i}<\infty \quad \text { for } i=4,6,8,14 \tag{8.104}
\end{equation*}
$$

Also, based on physical grounds, the squared error $E^{2}(K)$ will be minimized in the interior of this region. Let

$$
\begin{align*}
& E^{2}\left(K_{p}\right) \triangleq \sum_{n=1}^{N}|y(n T)-W(n T) K|_{\substack{K_{1}=K_{6} K_{8} \\
K_{2}=K_{4} K_{8}^{2}}}^{2} \\
& \vdots \tag{8.105}\\
&= R_{y}-\left.2 R_{W y}^{T} K\right|_{\substack{K_{1}=K_{6} K_{8} \\
K_{2}=K_{4} K_{8}^{2}}}+\left.\left(K^{T} R_{W} K\right)\right|_{\substack{K_{1}=K_{6} K_{8} \\
K_{2}=K_{4} K_{8}^{2}}}
\end{align*}
$$

where

$$
K_{p} \triangleq\left[\begin{array}{llll}
K_{4} & K_{6} & K_{8} & K_{14}
\end{array}\right]^{T} .
$$

As just explained, the minimum of (8.105) must occur in the interior of the region and therefore at an extremum point. This then entails solving the four equations

$$
\begin{align*}
& r_{1}\left(K_{p}\right) \triangleq \frac{\partial E^{2}\left(K_{p}\right)}{\partial K_{4}}=0 \tag{8.106}\\
& r_{2}\left(K_{p}\right) \triangleq \frac{\partial E^{2}\left(K_{p}\right)}{\partial K_{6}}=0 \tag{8.107}\\
& r_{3}\left(K_{p}\right) \triangleq \frac{\partial E^{2}\left(K_{p}\right)}{\partial K_{8}}=0 \tag{8.108}\\
& r_{4}\left(K_{p}\right) \triangleq \frac{\partial E^{2}\left(K_{p}\right)}{\partial K_{14}}=0 . \tag{8.109}
\end{align*}
$$

The partial derivatives in (8.106)-(8.109) are rational functions in the parameters K_{4}, K_{6}, K_{8}, and K_{14}. Defining

$$
\begin{align*}
& p_{1}\left(K_{p}\right) \triangleq K_{8} r_{1}\left(K_{p}\right)=K_{8} \frac{\partial E^{2}\left(K_{p}\right)}{\partial K_{4}} \tag{8.110}\\
& p_{2}\left(K_{p}\right) \triangleq K_{8} r_{2}\left(K_{p}\right)=K_{8} \frac{\partial E^{2}\left(K_{p}\right)}{\partial K_{6}} \tag{8.111}\\
& p_{3}\left(K_{p}\right) \triangleq K_{8}^{3} r_{3}\left(K_{p}\right)=K_{8}^{3} \frac{\partial E^{2}\left(K_{p}\right)}{\partial K_{8}} \tag{8.112}\\
& p_{4}\left(K_{p}\right) \triangleq K_{8} r_{4}\left(K_{p}\right)=K_{8} \frac{\partial E^{2}\left(K_{p}\right)}{\partial K_{14}} \tag{8.113}
\end{align*}
$$

results in the $p_{i}\left(K_{p}\right)$ being polynomials in the parameters K_{4}, K_{6}, K_{8}, and K_{14} and having the same positive zero set (i.e., the same roots satisfying $\left.K_{i}>0\right)$ as the system (8.106)-(8.109). The degrees of the polynomials p_{i}
are given in the following table.

	$\operatorname{deg} K_{4}$	$\operatorname{deg} K_{6}$	$\operatorname{deg} K_{8}$	$\operatorname{deg} K_{14}$
$p_{1}\left(K_{p}\right)$	1	1	7	1
$p_{2}\left(K_{p}\right)$	1	1	7	1
$p_{3}\left(K_{p}\right)$	2	2	8	2
$p_{4}\left(K_{p}\right)$	1	1	7	1

All possible solutions to this set may be found using elimination theory as is now summarized.

Solving Systems of Polynomial Equations [89][90]

The question at hand is "Given two polynomial equations $a\left(K_{1}, K_{2}\right)=0$ and $b\left(K_{1}, K_{2}\right)=0$, how does one solve them simultaneously to eliminate (say) K_{2} ?". A systematic procedure to do this is known as elimination theory and uses the notion of resultants (see the appendix at the end of this chapter). Briefly, one considers $a\left(K_{1}, K_{2}\right)$ and $b\left(K_{1}, K_{2}\right)$ as polynomials in K_{2} whose coefficients are polynomials in K_{1}. Then, for example, letting $a\left(K_{1}, K_{2}\right)$ and $b\left(K_{1}, K_{2}\right)$ have degrees 3 and 2 , respectively, in K_{2}, they may be written in the form

$$
\begin{aligned}
& a\left(K_{1}, K_{2}\right)=a_{3}\left(K_{1}\right) K_{2}^{3}+a_{2}\left(K_{1}\right) K_{2}^{2}+a_{1}\left(K_{1}\right) K_{2}+a_{0}\left(K_{1}\right) \\
& b\left(K_{1}, K_{2}\right)=b_{2}\left(K_{1}\right) K_{2}^{2}+b_{1}\left(K_{1}\right) K_{2}+b_{0}\left(K_{1}\right) .
\end{aligned}
$$

The $n \times n$ Sylvester matrix, with

$$
n \triangleq \operatorname{deg}_{K_{2}}\left\{a\left(K_{1}, K_{2}\right)\right\}+\operatorname{deg}_{K_{2}}\left\{b\left(K_{1}, K_{2}\right)\right\}=3+2=5
$$

is defined by

$$
S_{a, b}\left(K_{1}\right) \triangleq\left[\begin{array}{ccccc}
a_{0}\left(K_{1}\right) & 0 & b_{0}\left(K_{1}\right) & 0 & 0 \\
a_{1}\left(K_{1}\right) & a_{0}\left(K_{1}\right) & b_{1}\left(K_{1}\right) & b_{0}\left(K_{1}\right) & 0 \\
a_{2}\left(K_{1}\right) & a_{1}\left(K_{1}\right) & b_{2}\left(K_{1}\right) & b_{1}\left(K_{1}\right) & b_{0}\left(K_{1}\right) \\
a_{3}\left(K_{1}\right) & a_{2}\left(K_{1}\right) & 0 & b_{2}\left(K_{1}\right) & b_{1}\left(K_{1}\right) \\
0 & a_{3}\left(K_{1}\right) & 0 & 0 & b_{2}\left(K_{1}\right)
\end{array}\right] .
$$

The resultant polynomial is then defined by

$$
\begin{equation*}
r\left(K_{1}\right)=\operatorname{Res}\left(a\left(K_{1}, K_{2}\right), b\left(K_{1}, K_{2}\right), K_{2}\right) \triangleq \operatorname{det} S_{a, b}\left(K_{1}\right) \tag{8.114}
\end{equation*}
$$

and is the result of eliminating the variable K_{2} from $a\left(K_{1}, K_{2}\right)=0$ and $b\left(K_{1}, K_{2}\right)=0$. In fact, the following is true (see Refs. [89] and [90]).

Theorem Any solution $\left(K_{1}^{0}, K_{2}^{0}\right)$ of $a\left(K_{1}, K_{2}\right)=0$ and $b\left(K_{1}, K_{2}\right)=0$ must satisfy $r\left(K_{1}^{0}\right)=0$.

Though the converse of this theorem is not necessarily true, the finite number of solutions of $r\left(K_{1}\right)=0$ are the only possible candidates for the
first coordinate (partial solutions) of the common zeros of $a\left(K_{1}, K_{2}\right)$ and $b\left(K_{1}, K_{2}\right)$. Whether or not such a partial solution results in a full solution is easily determined by back solving and checking the solution (see the Appendix).

Using the polynomials (8.110)-(8.113) and a computer algebra software program (e.g., Mathematica [91]), the variable K_{4} is eliminated first to obtain three polynomials in three unknowns as

$$
\begin{aligned}
r_{p 1 p 2}\left(K_{6}, K_{8}, K_{14}\right) & \triangleq \operatorname{Res}\left(p_{1}\left(K_{4}, K_{6}, K_{8}, K_{14}\right), p_{2}\left(K_{4}, K_{6}, K_{8}, K_{14}\right), K_{4}\right) \\
r_{p 1 p 3}\left(K_{6}, K_{8}, K_{14}\right) & \triangleq \operatorname{Res}\left(p_{1}\left(K_{4}, K_{6}, K_{8}, K_{14}\right), p_{3}\left(K_{4}, K_{6}, K_{8}, K_{14}\right), K_{4}\right) \\
r_{p 1 p 4}\left(K_{6}, K_{8}, K_{14}\right) & \triangleq \operatorname{Res}\left(p_{1}\left(K_{4}, K_{6}, K_{8}, K_{14}\right), p_{4}\left(K_{4}, K_{6}, K_{8}, K_{14}\right), K_{4}\right)
\end{aligned}
$$

where

	$\operatorname{deg} K_{6}$	$\operatorname{deg} K_{8}$	$\operatorname{deg} K_{14}$
$r_{p 1 p 2}$	1	14	1
$r_{p 1 p 3}$	2	22	2
$r_{p 1 p 4}$	1	14	1

Next K_{6} is eliminated to obtain two polynomials in two unknowns as

$$
\begin{aligned}
& r_{p 1 p 2 p 3}\left(K_{8}, K_{14}\right) \triangleq \operatorname{Res}\left(r_{p 1 p 2}\left(K_{6}, K_{8}, K_{14}\right), r_{p 1 p 3}\left(K_{6}, K_{8}, K_{14}\right), K_{6}\right) \\
& r_{p 1 p 2 p 4}\left(K_{8}, K_{14}\right) \triangleq \operatorname{Res}\left(r_{p 1 p 2}\left(K_{6}, K_{8}, K_{14}\right), r_{p 1 p 4}\left(K_{6}, K_{8}, K_{14}\right), K_{6}\right)
\end{aligned}
$$

where

	$\operatorname{deg} K_{8}$	$\operatorname{deg} K_{14}$
$r_{p 1 p 2 p 3}$	50	2
$r_{p 1 p 2 p 4}$	28	1

Finally K_{14} is eliminated to obtain a single polynomial in K_{8} as

$$
r\left(K_{8}\right) \triangleq \operatorname{Res}\left(r_{p 1 p 2 p 3}\left(K_{8}, K_{14}\right), r_{p 1 p 2 p 4}\left(K_{8}, K_{14}\right), K_{14}\right)
$$

where

$$
\operatorname{deg}_{K_{8}}\left\{r\left(K_{8}\right)\right\}=104
$$

The parameter K_{8} was chosen as the variable not eliminated because its degree was the highest at each step, meaning it would have a larger (in dimension) Sylvester matrix than using any other variable. The positive roots of $r\left(K_{8}\right)=0$ are found, which are then substituted into $r_{p 1 p 2 p 3}=0$ (or $r_{p 1 p 2 p 4}=0$) and which in turn are solved to obtain the partial solutions $\left(K_{8}, K_{14}\right)$. The partial solutions (K_{8}, K_{14}) are then substituted into $r_{p 1 p 2}=$ 0 (or $r_{p 1 p 3}=0$ or $r_{p 1 p 4}=0$), which are solved to obtain the partial solutions $\left(K_{6}, K_{8}, K_{14}\right)$ so that they in turn may be substituted into $p_{1}=0$ (or $p_{2}=0$, or $p_{3}=0$, or $p_{4}=0$) which is then solved to obtain the candidate
solutions ($K_{4}, K_{6}, K_{8}, K_{14}$). These candidate solutions are then checked to see which ones satisfy the complete system of polynomials equations (8.110)-(8.113) and those that do constitute the candidate solutions for the minimization. Based on physical considerations, the set of candidate solutions is nonempty. From the set of candidate solutions, the one that gives the smallest squared error is chosen.

Computational Issues

Due to the high degrees of the resultant polynomials, care must be taken to compute their roots. The data set is collected and brought into Mathematica [91]. The matrices R_{y}, R_{W}, and $R_{W y}$ are then computed and their entries converted to rational form. Finally the roots of the resultant polynomials are computed in Mathematica using rational arithmetic with 16 digits of precision.

Numerical Conditioning of the Nonlinear Least-Squares Solution

After finding the solution that gives the minimal value for $E^{2}\left(K_{p}\right)$, one needs to know if the solution makes sense. For example, in the linear leastsquares problem, there is a unique well-defined solution provided that the regressor matrix R_{W} is non singular (or in practical terms, its condition number is not too large). In the nonlinear case here, a Taylor series expansion about the computed minimum point $K_{p}^{*}=\left[K_{4}^{*}, K_{6}^{*}, K_{8}^{*}, K_{14}^{*}\right]^{T}$ to obtain ($i, j=4,6,8,14$)

$$
\begin{equation*}
E^{2}\left(K_{p}\right)=E^{2}\left(K_{p}^{*}\right)+\frac{1}{2}\left[K_{p}-K_{p}^{*}\right]^{T} \frac{\partial^{2} E^{2}\left(K_{p}^{*}\right)}{\partial K_{i} \partial K_{j}}\left[K_{p}-K_{p}^{*}\right]+\cdots \tag{8.115}
\end{equation*}
$$

One then checks that the Hessian matrix $\frac{\partial^{2} E^{2}\left(K_{p}^{*}\right)}{\partial K_{i} \partial K_{j}}$ is positive definite to ensure that the data set is sufficiently rich to identify the parameters. Its condition number is also computed to obtain a measure of the numerically reliability of the computations [92].

8.5.3 Calculating the Parametric Error Indices

The expression for the error index in Chapter 2 is still applicable for the nonlinear case. However, the method for computing the parametric error indices must be modified for the nonlinear least-squares estimation problem. Here, the parametric error index is defined as the maximum value of δK_{i} for $i=4,6,8,14$ such that

$$
\begin{equation*}
E^{2}\left(K_{p}^{*}+\delta K_{p}\right)=1.25 E^{2}\left(K_{p}^{*}\right) \tag{8.116}
\end{equation*}
$$

where $\delta K_{p} \triangleq\left[\begin{array}{llll}\delta K_{4} & \delta K_{6} & \delta K_{8} & \delta K_{14}\end{array}\right]^{T}$. Recall that in Chapter 2, $E^{2}\left(K_{p}^{*}+\delta K_{p}\right)=2 E^{2}\left(K_{p}^{*}\right)$ was used rather than (8.116). The choice is somewhat arbitrary as explained in Chapter 2.

In words, for all δK_{p} that resuit in a 25% increase in the residual error, the parametric index is the maximum possible value of δK_{i}. Mathematically, for $i=4,6,8$, and 14 , one maximizes

$$
\delta K_{i}
$$

subject to (8.116). This is straightforwardly setup as an unconstrained optimization using Lagrange multipliers by maximizing

$$
\begin{equation*}
\delta K_{i}+\lambda\left(E^{2}\left(K_{p}^{*}+\delta K_{p}\right)-1.25 E^{2}\left(K_{p}^{*}\right)\right) \tag{8.117}
\end{equation*}
$$

over all possible $\delta K_{p} \triangleq\left[\begin{array}{llll}\delta K_{4} & \delta K_{6} & \delta K_{8} & \delta K_{14}\end{array}\right]^{T}$ and λ. For example, with $i=4$, the extrema are solutions to

$$
\begin{align*}
1+\lambda \frac{\partial\left(E^{2}\left(K_{p}^{*}+\delta K_{p}\right)-1.25 E^{2}\left(K_{p}^{*}\right)\right)}{\partial \delta K_{4}} & =0 \tag{8.118}\\
\lambda \frac{\partial\left(E^{2}\left(K_{p}^{*}+\delta K_{p}\right)-1.25 E^{2}\left(K_{p}^{*}\right)\right)}{\partial \delta K_{6}} & =0 \tag{8.119}\\
\lambda \frac{\partial\left(E^{2}\left(K_{p}^{*}+\delta K_{p}\right)-1.25 E^{2}\left(K_{p}^{*}\right)\right)}{\partial \delta \overline{K_{8}}} & =0 \tag{8.120}\\
\lambda \frac{\partial\left(E^{2}\left(K_{p}^{*}+\delta K_{p}\right)-1.25 E^{2}\left(K_{p}^{*}\right)\right)}{\partial \delta K_{14}} & =0 \tag{8.121}\\
E^{2}\left(K_{p}^{*}+\delta K_{p}\right)-1.25 E^{2}\left(K_{p}^{*}\right) & =0 . \tag{8.122}
\end{align*}
$$

The equations (8.118) through (8.122) are transformed to five polynomial equations in the five unknowns $\delta K_{4}, \delta K_{6}, \delta K_{8}, \delta K_{14}$, and λ, and elimination theory is then used to solve this set.

8.5.4 Mechanical Parameters

Once the electrical parameters have been found, the two mechanical parameters $J, f\left(\tau_{L}=-f \omega\right)$ can be found using a linear least-squares algorithm. To do so, equations (8.95) and (8.96) are solved for $M \psi_{R x} / L_{R}$ and $M \psi_{R y} / L_{R}$, resulting in

$$
\begin{align*}
{\left[\begin{array}{l}
M \psi_{R x} / L_{R} \\
M \psi_{R y} / L_{R}
\end{array}\right]=} & \sigma L_{S} \frac{1}{\left(1 / T_{R}\right)^{2}+n_{p}^{2} \omega^{2}}\left[\begin{array}{cc}
1 / T_{R} & -\omega \\
\omega & 1 / T_{R}
\end{array}\right] \\
& \times\left[\begin{array}{l}
d i_{S x} / d t-u_{S x} /\left(\sigma L_{S}\right)+\gamma i_{S x}-n_{p} \omega i_{S y} \\
d i_{S y} / d t-u_{S y} /\left(\sigma L_{S}\right)+\gamma i_{S y}+n_{p} \omega i_{S x}
\end{array}\right] \tag{8.123}
\end{align*}
$$

Noting that

$$
\begin{equation*}
\gamma=\frac{R_{S}}{\sigma L_{S}}+\frac{1}{\sigma L_{S}} \frac{1}{T_{R}} \frac{M^{2}}{L_{R}}=\frac{R_{S}}{\sigma L_{S}}+\frac{1}{\sigma L_{S}} \frac{1}{T_{R}}(1-\sigma) L_{S} \tag{8.124}
\end{equation*}
$$

it is seen that the quantities on the right-hand side of (8.123) are all known once the electrical parameters have been computed. With $K_{16} \triangleq$ $n_{p} / J, K_{17} \triangleq f / J$, equation (8.94) may be rewritten as

$$
\frac{d \omega}{d t}=\left[\left(M / L_{R}\right)\left(\psi_{R x} i_{S y}-\psi_{R y} i_{S x}\right) \quad-\omega\right]\left[\begin{array}{c}
K_{16} \\
K_{17}
\end{array}\right]
$$

so that the standard linear squares approach of Chapter 2 is directly applicable. Then

$$
\begin{equation*}
J \triangleq n_{p} / K_{16}, f \triangleq n_{p} K_{17} / K_{16} . \tag{8.125}
\end{equation*}
$$

8.5.5 Simulation Results

The algorithm is first applied to simulated "data" to see how it performs under ideal conditions. In particular, the simulations are helpful in evaluating the usefulness of the parametric error indices. Here, a two polepair ($n_{p}=2$), three-phase induction motor model was simulated using Simulink with parameter values chosen to be

$$
\begin{aligned}
R_{S} & =9.7 \Omega, R_{R}=8.6 \Omega, L_{S}=L_{R}=0.67 \mathrm{H} \\
M & =0.64 \mathrm{H}, \sigma=0.088, J=0.011 \mathrm{~kg}-\mathrm{m}^{2}, \tau_{L}=3.7 \mathrm{~N}-\mathrm{m} .
\end{aligned}
$$

A 2048-line position encoder and 12-bit A/D converters were included in the simulation model in order to make the simulation data closer to actual experimental measurements. These values correspond to a $1 / 2-\mathrm{kW}$ machine with a synchronous frequency of 50 Hz . These machine parameter values correspond to the following K values:

$$
\begin{aligned}
K_{1} & =299.15, K_{2}=10.42, K_{3}=17.05, K_{4}=1717.18, K_{5}=12.84 \\
K_{6} & =3839.8, K_{7}=133.78, K_{8}=0.0779, K_{9}=23.31, K_{10}=0.8120 \\
K_{11} & =0.0061, K_{12}=1.82, K_{13}=0.1035, K_{14}=218.83, K_{15}=1.328
\end{aligned}
$$

for the electrical parameters and to

$$
K_{16}=181.82, \quad K_{17}=336.36
$$

for the mechanical parameters.
Figure 8.30 shows the simulated speed response (from standstill) of the induction motor after a balanced (open-loop) set of three-phase voltages of amplitude 466.7 V and frequency 50 Hz was applied to the machine.

The "data" $\left\{u_{S a}, u_{S b}, i_{S a}, i_{S b}, \theta\right\}$ were collected between 0 sec and 0.2 sec . The quantities $u_{S x}, u_{S y}, d u_{S x} / d t, d u_{S y} / d t, i_{S x}, i_{S y} d i_{S x} / d t, d i_{S y} / d t, d^{2} i_{S x} / d t^{2}$, $d^{2} i_{S y} / d t^{2}, \omega=d \theta / d t$, and $d \omega / d t$ were calculated and the regressor matrices R_{W}, R_{y}, and $R_{W y}$ were computed. The procedure explained in Section 8.5.2 was then carried out to compute K_{4}, K_{6}, K_{8}, and K_{14}. In this case,
there was only one extremum point that had positive values for all the K_{i}. The table

Parameter	True Value	Estimated Value	Parametric Error Index
K_{4}	1717.2	1743.4	13.23
K_{6}	3839.8	3917.5	24.59
K_{8}	0.0779	0.0780	0.00031
K_{14}	218.8	222.2	8.27

compares the electrical parameter values determined from the nonlinear least-squares procedure to their actual values (which are known only because this is simulation data). Also given in the table are the corresponding parametric error indices. The residual error index for the parameters K_{4}, K_{6}, K_{8}, and K_{14} was computed to be 3.15%.

FIGURE 8.30. Rotor speed versus time.
Using these values, the scaled flux linkages $M \psi_{R x} / L_{R}$ and $M \psi_{R y} / L_{R}$ were reconstructed according to (8.123) to estimate the mechanical parameters K_{16} and K_{17}. The table

Parameter	True Value	Estimated Value	Parametric Error Index
K_{16}	181.8	195.3	4.29
K_{17}	336.4	359.3	9.78

compares the mechanical parameter values determined from the least-squares procedure to their actual values along with the corresponding parametric
error indices. The residual error index for the mechanical parameters K_{16} and K_{17} was computed to be 4.26%.

The Hessian matrix for the identification of the parameters K_{4}, K_{6}, K_{8}, and K_{14} was calculated at the minimum point according to (8.115), resulting in

$$
\left\{\frac{\partial^{2} E^{2}\left(K_{p}^{*}\right)}{\partial K_{i} \partial K_{j}}\right\}=\left[\begin{array}{cccc}
7.534 & 0.2175 & 40.33 & -89.39 \\
0.2175 & 18.04 & 10.17 & -44.35 \\
40.33 & 10.17 & 5.308 \times 10^{4} & 1.112 \times 10^{3} \\
-89.39 & -44.35 & 1.112 \times 10^{3} & 1.876 \times 10^{3}
\end{array}\right]
$$

which is positive definite and has a condition number of 1.88×10^{4}. The table below compares the estimated machine parameters to their actual values.

Parameter	True Value	Estimated Value
T_{R}	0.0779 sec	0.0780 sec
σ	0.088	0.086
L_{S}	0.67 H	0.6698 H
R_{S}	9.7 ohms	9.8 ohms
J	$0.011 \mathrm{~kg}-\mathrm{m}^{2}$	$0.010 \mathrm{~kg}-\mathrm{m}^{2}$
τ_{L}	$3.7 \mathrm{~N}-\mathrm{m}$	$3.68 \mathrm{~N}-\mathrm{m}$

8.5.6 Experimental Results

A three-phase, $0.5-\mathrm{Hp}, 1735-\mathrm{rpm}$ ($n_{p}=2$ pole-pair) induction machine was used for the experiments. A 4096-pulse/rev optical encoder was attached to the motor for position measurements. The motor was connected to a threephase, $60-\mathrm{Hz}, 230-\mathrm{V}$ source through a switch with no load on the machine. When the switch was closed, the stator currents and voltages along with the rotor position were sampled at 4 kHz . Filtered differentiation (using digital filters) was used for calculating the acceleration and the derivatives of the voltages and currents. Specifically, the signals were filtered with a low-pass digital Butterworth filter followed by reconstruction of the derivatives using $d x(t) / d t=(x(t)-x(t-T)) / T$, where T is the sampling interval. The voltages and currents were put through a $3-2$ transformation to obtain the two-phase equivalent voltages $u_{S a}$ and $u_{S b}$ which are plotted in Figure 8.31.

The sampled two-phase equivalent current $i_{S a}$ and it simulated response $i_{S a_{-} \text {sim }}$ are shown in Figure 8.32 (the simulated current $i_{S a_{-} \text {sim }}$ is discussed below). The phase b current $i_{S b}$ is similar, but shifted by $\pi /\left(2 n_{p}\right)$. The calculated speed ω (from the position measurements) and the simulated speed $\omega_{\text {sim }}$ are shown in Figure 8.33 (the simulated speed $\omega_{\text {sim }}$ will also be discussed below).

FIGURE 8.31. Sampled two-phase equivalent voltages $u_{S a}$ and $u_{S b}$.

FIGURE 8.32. Phase a current $i_{S a}$ and its simulated response $i_{S a_{-}} \operatorname{sim}$.

FIGURE 8.33. Calculated speed ω and simulated speed $\omega_{\text {sim }}$.
Using the data $\left\{u_{S a}, u_{S b}, i_{S a}, i_{S b}, \theta\right\}$ collected between 5.57 sec to 5.8 sec , the quantities $u_{S x}, u_{S y}, d u_{S x} / d t^{2}, d u_{S y} / d t, i_{S x}, i_{S y} d i_{S x} / d t, d i_{S y} / d t, d^{2} i_{S x} / d t^{2}$, $d^{2} i_{S y} / d t^{2}$, and $\omega=d \theta / d t, d \omega / d t$ were calculated and the regressor matrices R_{W}, R_{y}, and $R_{W y}$ were computed. The procedure explained in Section 8.5 .2 was then carried out to compute K_{4}, K_{6}, K_{8}, and K_{14}. In this case, there was only one extremum point that had positive values for all the K_{i}. The table below presents. the parameter values determined using the nomanear least-squares methodology along with their corresponding parametric error indices.

Parameter	Estimated Value	Parametric Error Index
$K 4$	519.7	185.8
$K 6$	1848.3	796.4
$K 8$	0.1311	0.0103
$K 14$	259.5	59.4

The residual error index was calculated to be 13.43%. The motor's electrical parameters are computed using (8.101) to obtain

$$
\begin{align*}
R_{S} & =5.12 \mathrm{ohms} \tag{8.126}\\
T_{R} & =0.1311 \mathrm{sec} \tag{8.127}\\
L_{S} & =0.2919 \mathrm{H} \tag{8.128}\\
\sigma & =0.1007 \tag{8.129}
\end{align*}
$$

By way of comparison, the stator resistance was measured using an ohmmeter giving the value of 4.9 ohms and a no-load test was also run to compute the value of L_{S} resulting in 0.33 H .

The Hessian matrix for the identification of the parameters K_{4}, K_{6}, K_{8}, and K_{14} was calculated at the minimum point according to (8.115), resulting in

$$
\left\{\frac{\partial^{2} E^{2}\left(K_{p}^{*}\right)}{\partial K_{i} \partial K_{j}}\right\}=\left[\begin{array}{cccc}
0.0574 & 0.1943 & -0.0034 & -0.7655 \\
0.1943 & 2.584 & 10.17 & -44.35 \\
-0.0034 & 10.17 & 631.4 & 193.8 \\
-0.7655 & -44.35 & 193.8 & 3012
\end{array}\right]
$$

which is positive definite and has a condition number of 8.24×10^{4}.
Using the electrical parameters, the rotor flux linkages $\left(M / L_{R}\right) \psi_{R x}$ and $\left(M / L_{R}\right) \psi_{R y}$ were reconstructed and used to identify the mechanical parameters. The table below gives the estimated values and the parametric error indices.

Parameter	Estimated Value	Parametric Error Index
K_{16}	952.38	126.92
K_{17}	0.5714	0.1528

The residual error index was calculated to be 18.6%. The corresponding values for the motor parameters J and f are then computed using (8.125) to obtain

$$
\begin{align*}
J & =n_{p} / K_{16}=0.0021 \mathrm{~kg}-\mathrm{m}^{2} \tag{8.130}\\
f & =n_{p} K_{17} / K_{16}=0.0012 \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec} \tag{8.131}
\end{align*}
$$

Simulation of the Experimental Motor

Another useful way to evaluate the identified parameters (8.126)-(8.129) and (8.130)-(8.131) is to simulate the motor using these values with the measured voltages as input. One then compares the simulation's output (stator currents) with the measured outputs. To proceed in this manner, recall that only R_{S}, T_{R}, L_{S}, and σ can be identified, but this is all that is needed for the simulation. Specifically, defining

$$
\phi_{R a} \triangleq \frac{M}{L_{R}} \psi_{R a}, \quad \phi_{R b} \triangleq \frac{M}{L_{R}} \psi_{R b}
$$

the model (8.88) may be rewritten as

$$
\begin{align*}
\frac{d \omega}{d t} & =\frac{n_{p}}{J}\left(i_{S b} \phi_{R a}-i_{S a} \phi_{R b}\right)-\frac{\tau_{L}}{J} \\
\frac{d \phi_{R a}}{d t} & =-\frac{1}{T_{R}} \phi_{R a}-n_{p} \omega \phi_{R b}+\frac{1}{T_{R}} \frac{M^{2}}{L_{R}} i_{S a} \\
\frac{d \phi_{R b}}{d t} & =-\frac{1}{T_{R}} \phi_{R b}+n_{p} \omega \phi_{R a}+\frac{1}{T_{R}} \frac{M^{2}}{L_{R}} i_{S b} \tag{8.132}\\
\frac{d i_{S a}}{d t} & =\frac{1}{\sigma L_{S} T_{R}} \phi_{R a}+\frac{1}{\sigma L_{S}} n_{p} \omega \phi_{R b}-\gamma i_{S a}+\frac{1}{\sigma L_{S}} u_{S a} \\
\frac{d i_{S b}}{d t} & =\frac{1}{\sigma L_{S} T_{R}} \phi_{R b}-\frac{1}{\sigma L_{S}} n_{p} \omega \phi_{R a}-\gamma i_{S b}+\frac{1}{\sigma L_{S}} u_{S b}
\end{align*}
$$

where

$$
\frac{M^{2}}{L_{R}}=(1-\sigma) L_{S}, \gamma=\frac{R_{S}}{\sigma L_{S}}+\frac{1}{\sigma L_{S}} \frac{1}{T_{R}} \frac{M^{2}}{L_{R}}
$$

The model (8.132) uses only parameters that can be estimated. The experimental voltages shown in Figure 8.31 were then used as input to a simulation of the model (8.132) using the parameter values from (8.126)-(8.129) and (8.130)-(8.131). The resulting phase a current $i_{S a_{-} \text {sim }}$ from the simulation is shown in Figure 8.32, and corresponds well with the actual measured current $i_{S a}$. Similarly, the resulting speed $\omega_{\text {sim }}$ from the simulation is shown in Figure 8.33, where it is seen that the simulated speed is somewhat more oscillatory than the measured speed ω.

Remarks As explained above, M is not identifiable by the above method. However, it can be (and often is) estimated by assuming that $L_{R}=L_{S}$ (rotor and stator leakages are equal) so that $M=\sqrt{L_{S} L_{R}(1-\sigma)}=$ $L_{S} \sqrt{1-\sigma}$. For the above experimental motor, this gives $M=0.2768 \mathrm{H}$. Under this same assumption, an estimate for the rotor resistance is given by $R_{R}=L_{R} / T_{R}=L_{S} / T_{R}=2.23 \mathrm{ohms}$.

The combined parameter identification and velocity estimation problem is considered in Refs. [93][94][95][96] while in Ref. [97] the sensitivity of measurable outputs to the machine parameters are discussed.

During operation of the machine, the values of the rotor time constant $T_{R}=L_{R} / R_{R}$ and the stator resistance R_{S} change due to ohmic heating. If one is only concerned with the online identification (tracking) of these two parameter values, then the problem simplifies considerably. This particular case has been developed in [98] (see also [99]).

Appendix

Elimination Theory and Resultants

Given two polynomials $a\left(x_{1}, x_{2}\right)$ and $b\left(x_{1}, x_{2}\right)$, how does one find their common zeros? That is, the values (x_{10}, x_{20}) such that

$$
a\left(x_{10}, x_{20}\right)=b\left(x_{10}, x_{20}\right)=0 .
$$

Consider $a\left(x_{1}, x_{2}\right)$ and $b\left(x_{1}, x_{2}\right)$ as polynomials in x_{2} whose coefficients are polynomials in x_{1}. For example, let $a\left(x_{1}, x_{2}\right)$ and $b\left(x_{1}, x_{2}\right)$ have degrees 3 and 2 , respectively, in x_{2} so that they may be written in the form

$$
\begin{aligned}
a\left(x_{1}, x_{2}\right) & =a_{3}\left(x_{1}\right) x_{2}^{3}+a_{2}\left(x_{1}\right) x_{2}^{2}+a_{1}\left(x_{1}\right) x_{2}+a_{0}\left(x_{1}\right) \\
b\left(x_{1}, x_{2}\right) & =b_{2}\left(x_{1}\right) x_{2}^{2}+b_{1}\left(x_{1}\right) x_{2}+b_{0}\left(x_{1}\right) .
\end{aligned}
$$

Then there exist polynomials $\alpha\left(x_{1}, x_{2}\right)$ and $\beta\left(x_{1}, x_{2}\right)$ of the form

$$
\begin{aligned}
\alpha\left(x_{1}, x_{2}\right) & =\alpha_{1}\left(x_{1}\right) x_{2}+\alpha_{0}\left(x_{1}\right) \\
\beta\left(x_{1}, x_{2}\right) & =\beta_{2}\left(x_{1}\right) x_{2}^{2}+\beta_{1}\left(x_{1}\right) x_{2}+\beta_{0}\left(x_{1}\right)
\end{aligned}
$$

that is, satisfying

$$
\begin{aligned}
\operatorname{deg}_{x 2}\left\{\alpha\left(x_{1}, x_{2}\right)\right\} & =\operatorname{deg}_{x 2}\left\{b\left(x_{1}, x_{2}\right)\right\}-1 \\
\operatorname{deg}_{x_{2}}\left\{\beta\left(x_{1}, x_{2}\right)\right\} & =\operatorname{deg}_{x 2}\left\{a\left(x_{1}, x_{2}\right)\right\}-1
\end{aligned}
$$

and a polynomial $r\left(x_{1}\right)$ in one variable such that

$$
\alpha\left(x_{1}, x_{2}\right) a\left(x_{1}, x_{2}\right)+\beta\left(x_{1}, x_{2}\right) b\left(x_{1}, x_{2}\right)=r\left(x_{1}\right) .
$$

The polynomial $r\left(x_{1}\right)$ is called the resultant polynomial. So if $a\left(x_{10}, x_{20}\right)=$ $b\left(x_{10}, x_{20}\right)=0$, then $r\left(x_{10}\right)=0$. That is, if $\left(x_{10}, x_{20}\right)$ is a common zero of the pair $\left\{a\left(x_{1}, x_{2}\right), b\left(x_{1}, x_{2}\right)\right\}$, then the first coordinate x_{10} is a zero of $r\left(x_{1}\right)=0$. The roots of $r\left(x_{1}\right)$ are easy to find (numerically) as it is a polynomial in one variable. To find the common zeros of $\left\{a\left(x_{1}, x_{2}\right), b\left(x_{1}, x_{2}\right)\right\}$, one computes all roots $x_{1 i}, i=1, \ldots, n_{1}$, of $r\left(x_{1}\right)$. Next, for each such $x_{1 i}$, one (numerically) computes the roots of

$$
\begin{equation*}
a\left(x_{1 i}, x_{2}\right)=0 \tag{8.133}
\end{equation*}
$$

and the roots of

$$
\begin{equation*}
b\left(x_{1 i}, x_{2}\right)=0 . \tag{8.134}
\end{equation*}
$$

Any root $x_{2 j}$ that is in the solution set of both (8.133) and (8.134) for a given $x_{1 i}$ results in the pair ($x_{1 i}, x_{2 j}$) being a common zero of $a\left(x_{1}, x_{2}\right)$ and $b\left(x_{1}, x_{2}\right)$. Thus, this gives a method of solving polynomials in one variable to compute the common zeros of $\left\{a\left(x_{1}, x_{2}\right), b\left(x_{1}, x_{2}\right)\right\}$.

To see how one obtains $r\left(x_{1}\right)$, let

$$
\begin{align*}
& a\left(x_{1}, x_{2}\right)=a_{3}\left(x_{1}\right) x_{2}^{3}+a_{2}\left(x_{1}\right) x_{2}^{2}+a_{1}\left(x_{1}\right) x_{2}+a_{0}\left(x_{1}\right) \tag{8.135}\\
& b\left(x_{1}, x_{2}\right)=b_{2}\left(x_{1}\right) x_{2}^{2}+b_{1}\left(x_{1}\right) x_{2}+b_{0}\left(x_{1}\right) .
\end{align*}
$$

Next, one sees if polynomials of the form

$$
\begin{align*}
& \alpha\left(x_{1}, x_{2}\right)=\alpha_{1}\left(x_{1}\right) x_{2}+\alpha_{0}\left(x_{1}\right) \\
& \beta\left(x_{1}, x_{2}\right)=\beta_{2}\left(x_{1}\right) x_{2}^{2}+\beta_{1}\left(x_{1}\right) x_{2}+\beta_{0}\left(x_{1}\right) \tag{8.136}
\end{align*}
$$

can be found such that

$$
\begin{equation*}
\alpha\left(x_{1}, x_{2}\right) a\left(x_{1}, x_{2}\right)+\beta\left(x_{1}, x_{2}\right) b\left(x_{1}, x_{2}\right)=r\left(x_{1}\right) . \tag{8.137}
\end{equation*}
$$

Proceeding, the expressions (8.135) for $a\left(x_{1}, x_{2}\right)$ and $b\left(x_{1}, x_{2}\right)$ as well as the expressions (8.136) for $\alpha\left(x_{1}, x_{2}\right)$ and $\beta\left(x_{1}, x_{2}\right)$ are substituted into (8.137). Equating powers of x_{2}, equation (8.137) may then be represented in matrix form as

$$
\left[\begin{array}{ccccc}
a_{0}\left(x_{1}\right) & 0 & b_{0}\left(x_{1}\right) & 0 & 0 \\
a_{1}\left(x_{1}\right) & a_{0}\left(x_{1}\right) & b_{1}\left(x_{1}\right) & b_{0}\left(x_{1}\right) & 0 \\
a_{2}\left(x_{1}\right) & a_{1}\left(x_{1}\right) & b_{2}\left(x_{1}\right) & b_{1}\left(x_{1}\right) & b_{0}\left(x_{1}\right) \\
a_{3}\left(x_{1}\right) & a_{2}\left(x_{1}\right) & 0 & b_{2}\left(x_{1}\right) & b_{1}\left(x_{1}\right) \\
0 & a_{3}\left(x_{1}\right) & 0 & 0 & b_{2}\left(x_{1}\right)
\end{array}\right]\left[\begin{array}{c}
\alpha_{0}\left(x_{1}\right) \\
\alpha_{1}\left(x_{1}\right) \\
\beta_{0}\left(x_{1}\right) \\
\beta_{1}\left(x_{1}\right) \\
\beta_{2}\left(x_{1}\right)
\end{array}\right]=\left[\begin{array}{c}
r\left(x_{1}\right) \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

The 5×5 matrix on the left-hand side is called the Sylvester matrix and is denoted here by $S_{a, b}\left(x_{1}\right)$. The inverse of $S_{a, b}\left(x_{1}\right)$ has the form

$$
S_{a, b}^{-1}\left(x_{1}\right)=\frac{1}{\operatorname{det} S_{a, b}\left(x_{1}\right)} \operatorname{adj}\left(S_{a, b}\left(x_{1}\right)\right)
$$

where $\operatorname{adj}\left(S_{a, b}\left(x_{1}\right)\right)$ is the adjoint matrix and is a 5×5 polynomial matrix in x_{1}. Solving for $\alpha_{i}\left(x_{1}\right), \beta_{i}\left(x_{1}\right)$ gives

$$
\left[\begin{array}{c}
\alpha_{0}\left(x_{1}\right) \\
\alpha_{1}\left(x_{1}\right) \\
\beta_{0}\left(x_{1}\right) \\
\beta_{1}\left(x_{1}\right) \\
\beta_{2}\left(x_{1}\right)
\end{array}\right]=\frac{\operatorname{adj} S_{a, b}\left(x_{1}\right)}{\operatorname{det} S_{a, b}\left(x_{1}\right)}\left[\begin{array}{c}
r\left(x_{1}\right) \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

If $r\left(x_{1}\right)$ is chosen as $r\left(x_{1}\right)=\operatorname{det} S_{a, b}\left(x_{1}\right)$, then

$$
\left[\begin{array}{c}
\alpha_{0}\left(x_{1}\right) \\
\alpha_{1}\left(x_{1}\right) \\
\beta_{0}\left(x_{1}\right) \\
\beta_{1}\left(x_{1}\right) \\
\beta_{2}\left(x_{1}\right)
\end{array}\right]=\operatorname{adj} S_{a, b}\left(x_{1}\right)\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right] .
$$

This then guarantees that

$$
\alpha_{0}\left(x_{1}\right), \alpha_{1}\left(x_{1}\right), \beta_{0}\left(x_{1}\right), \beta_{1}\left(x_{1}\right), \beta_{2}\left(x_{1}\right)
$$

are polynomials in x_{1}. That is, the resultant polynomial is defined by $r\left(x_{1}\right) \triangleq \operatorname{det} S_{a, b}\left(x_{1}\right)$ and is the polynomial required for (8.137) to hold.

In summary, the polynomials $\left\{a\left(x_{1}, x_{2}\right), b\left(x_{1}, x_{2}\right)\right\}$ have a common zero at (x_{10}, x_{20}) only if $r\left(x_{10}\right) \triangleq \operatorname{det} S_{a, b}\left(x_{10}\right)=0$. For an arbitrary pair of polynomials $\{a(x), b(x)\}$ of degrees n_{a} and n_{b} in x, respectively, the Sylvester matrix $S_{a, b}$ is of dimension $\left(n_{a}+n_{b}\right) \times\left(n_{a}+n_{b}\right)$ (see Refs. [89][90][100]).

Remark It was just shown that if $a\left(x_{10}, x_{20}\right)=b\left(x_{10}, x_{20}\right)=0$, then $r\left(x_{10}\right) \triangleq \operatorname{det} S_{a, b}\left(x_{10}\right)=0$ as a simple consequence of (8.137). Does

$$
r\left(x_{10}\right) \triangleq \operatorname{det} S_{a, b}\left(x_{10}\right)=0
$$

imply that there exists x_{20} such that

$$
a\left(x_{10}, x_{20}\right)=b\left(x_{10}, x_{20}\right)=0 ?
$$

Not necessarily. However, the answer is yes if either of the leading coefficients in x_{2} of $a\left(x_{1}, x_{2}\right), b\left(x_{1}, x_{2}\right)$ are not zero at x_{10}, that is, $a_{3}\left(x_{10}\right) \neq 0$ or $b_{2}\left(x_{10}\right) \neq 0$ (see [89][90][100] for detailed explanations).

Example Let

$$
\begin{aligned}
a\left(x_{1}, x_{2}\right) & =x_{2}^{2}+x_{2}+x_{1} \\
b\left(x_{1}, x_{2}\right) & =-x_{1} x_{2}^{2}+x_{2}+1 .
\end{aligned}
$$

The resultant matrix is
$S_{a, b}\left(x_{1}\right)=\left[\begin{array}{cccc}a_{0}\left(x_{1}\right) & 0 & b_{0}\left(x_{1}\right) & 0 \\ a_{1}\left(x_{1}\right) & a_{0}\left(x_{1}\right) & b_{1}\left(x_{1}\right) & b_{0}\left(x_{1}\right) \\ a_{2}\left(x_{1}\right) & a_{1}\left(x_{1}\right) & b_{2}\left(x_{1}\right) & b_{1}\left(x_{1}\right) \\ 0 & a_{2}\left(x_{1}\right) & 0 & b_{2}\left(x_{1}\right)\end{array}\right]=\left[\begin{array}{cccc}x_{1} & 0 & 1 & 0 \\ 1 & x_{1} & 1 & 1 \\ 1 & 1 & -x_{1} & 1 \\ 0 & 1 & 0 & -x_{1}\end{array}\right]$
and the resultant polynomial is

$$
r\left(x_{1}\right)=\operatorname{det} S_{a, b}\left(x_{1}\right)=\left(3+x_{1}^{2}\right) x_{1}^{2}
$$

with roots

$$
\{0,0, j \sqrt{3},-j \sqrt{3}\} .
$$

The root at $x_{1}=0$ gives

$$
\begin{aligned}
a\left(0, x_{2}\right) & =x_{2}^{2}+x_{2}=0 \\
b\left(0, x_{2}\right) & =x_{2}+1=0
\end{aligned}
$$

making

$$
\{(0,-1)\}
$$

a common zero.
The root at $x_{1}=j \sqrt{3}$ gives

$$
a\left(j \sqrt{3}, x_{2}\right)=x_{2}^{2}+x_{2}+j \sqrt{3}=0
$$

with roots

$$
\left\{\frac{1}{2}-j \frac{\sqrt{3}}{2},-\frac{3}{2}+j \frac{\sqrt{3}}{2}\right\}
$$

and

$$
b\left(j \sqrt{3}, x_{2}\right)=-i \sqrt{3} x_{2}^{2}+x_{2}+1=0
$$

with roots

$$
\left\{\frac{1}{2}-j \frac{\sqrt{3}}{2},-\frac{1}{2}+j 0.2887\right\}
$$

The only common zero is then

$$
\left(j \sqrt{3}, \frac{1}{2}-j \frac{\sqrt{3}}{2}\right)
$$

Similarly, the root at $x_{1}=-j \sqrt{3}$ results in the common zero

$$
\left(-j \sqrt{3}, \frac{1}{2}+j \frac{\sqrt{3}}{2}\right)
$$

The set of common zeros of $a\left(x_{1}, x_{2}\right)$ and $b\left(x_{1}, x_{2}\right)$ is

$$
\left\{(0,-1),\left(j \sqrt{3}, \frac{1}{2}-j \frac{\sqrt{3}}{2}\right),\left(-j \sqrt{3}, \frac{1}{2}+j \frac{\sqrt{3}}{2}\right)\right\}
$$

Problems

Mathematical Models of the Induction Motor

Problem 1 State Space Form
Derive the state-space representation (8.5) from the representation (8.4).
Problem 2 Induction Motor Model in the Space Vector Formulation
The derivation of the model (8.4) is easier using the space vector representation

$$
\begin{aligned}
R_{S} \underline{i}_{S}+L_{S} \frac{d}{d t} \underline{i}_{S}+M \frac{d}{d t}\left(\underline{i}_{R} e^{j n_{p} \theta}\right) & =\underline{u}_{S} \\
R_{R} \underline{i}_{R}+L_{R} \frac{d}{d t} \underline{i}_{R}+M \frac{d}{d t}\left(\underline{i}_{S} e^{-j n_{p} \theta}\right) & =0 \\
n_{p} M \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{i}_{R} e^{j n_{p} \theta}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega}{d t} .
\end{aligned}
$$

To see this, define new (fictitious) fiux linkages as

$$
\underline{\psi}_{R} \triangleq \psi_{R a}+j \psi_{R b} \triangleq \underline{\lambda}_{R} e^{j n_{p} \theta}=L_{R} \underline{i}_{R} e^{j n_{p} \theta}+M \underline{i}_{S}
$$

and show that system of equations for the induction motor can rewritten in the space vector form as

$$
\begin{aligned}
\frac{d}{d t} \underline{\psi}_{R} & =\left(-\frac{1}{T_{R}}+j n_{p} \omega\right) \underline{\psi}_{R}+\frac{M}{T_{R}} \underline{i}_{S} \\
\underline{u}_{S} & =\frac{M}{L_{R}} \frac{d}{d t} \underline{\psi}_{R}+\sigma L_{S} \frac{d}{d t} \underline{i}_{S}+R_{S} \underline{i}_{S} \\
\frac{d \omega}{d t} & =\mu \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{\psi}_{R}\right)^{*}\right\}-\frac{\tau_{L}}{J}
\end{aligned}
$$

where $\mu \triangleq n_{p} M /\left(J L_{R}\right), \sigma \triangleq 1-M^{2} / L_{S} L_{R}$ is the leakage factor, and $T_{R} \triangleq L_{R} / R_{R}$ is the rotor time constant. This problem illustrates the power of the space vector representation as the manipulations of the equations are carried out using (complex) scalar variables rather than dealing with matrix multiplications, matrix inverses, and so on.

Problem 3 Induction Motor Model in Terms of the Flux Linkages
With $\lambda_{S a}, \lambda_{S b}$ the flux linkage in stator phases a and b respectively, define

$$
\lambda_{S} \triangleq \lambda_{S a}+j \lambda_{S b} \triangleq L_{S} \underline{i}_{S}+M \underline{i}_{R} e^{+j n_{p} \theta} .
$$

Similarly, let $\lambda_{R a}$ and $\lambda_{R b}$ be the flux linkage in rotor phases a and b, respectively, and define

$$
\underline{\lambda}_{R} \triangleq \lambda_{R a}+j \lambda_{R b} \triangleq L_{R} \underline{i}_{R}+M \underline{i}_{S} e^{-j n_{p} \theta} .
$$

(a) Show that the electrical equations of the induction motor may be written as

$$
\begin{aligned}
R_{S} \underline{\underline{i}}_{S}+\frac{d}{d t} \underline{\lambda}_{S} & =\underline{u}_{S} \\
R_{R} \underline{i}_{R}+\frac{d}{d t} \underline{\lambda}_{R} & =0
\end{aligned}
$$

(b) Using the fact that

$$
\left[\begin{array}{l}
\underline{i}_{S} \\
\underline{i}_{R} e^{+j n_{p} \theta}
\end{array}\right]=\frac{1}{L_{S} L_{R}-M^{2}}\left[\begin{array}{ll}
+L_{R} & -M \\
-M & +L_{S}
\end{array}\right]\left[\begin{array}{l}
\underline{\lambda}_{S} \\
\lambda_{R} e^{+j n_{p} \theta}
\end{array}\right]
$$

show that

$$
\begin{aligned}
\frac{R_{S}}{L_{S} L_{R}-M^{2}}\left(L_{R} \underline{\lambda}_{S}-M \underline{\lambda}_{R} e^{+j n_{p} \theta}\right)+\frac{d}{d t} \underline{\lambda}_{S} & =\underline{u}_{S} \\
\frac{R_{R}}{L_{S} L_{R}-M^{2}}\left(-M \underline{\lambda}_{S} e^{-j n_{p} \theta}+L_{S} \underline{\lambda}_{R}\right)+\frac{d}{d t} \underline{\lambda}_{R} & =0 \\
\frac{M}{L_{S} L_{R}-M^{2}} \operatorname{Im}\left\{\underline{\lambda}_{S}\left(\underline{\lambda}_{R} e^{+j n_{p} \theta}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega}{d t}
\end{aligned}
$$

is a representation of the induction motor in terms of $\underline{\lambda}_{S} \triangleq \lambda_{S a}+j \lambda_{S b}, \underline{\lambda}_{R} \triangleq$ $\lambda_{R a}+j \lambda_{R b}$, and ω.

Problem 4 Field-Oriented Induction Motor Model
The space vector model of the induction motor

$$
\begin{aligned}
\frac{d}{d t} \underline{\psi}_{R} & =\left(-\frac{1}{T_{R}}+j n_{p} \omega\right) \underline{\psi}_{R}+\frac{M}{T_{R}} \underline{i}_{S} \\
\underline{u}_{S} & =\frac{M}{L_{R}} \frac{d}{d t} \underline{\psi}_{R}+\sigma L_{S} \frac{d}{d t} \underline{i}_{S}+R_{S} \underline{i}_{S} \\
\frac{d \omega}{d t} & =\mu \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{\psi}_{R}\right)^{*}\right\}-\frac{\tau_{L}}{J}
\end{aligned}
$$

is derived in problem 2. Let $\underline{\psi}_{R} \triangleq \psi_{R a}+j \psi_{R b}=\psi_{d} e^{j \rho}$ where $\psi_{d} \triangleq$ $\sqrt{\psi_{R a}^{2}+\psi_{R b}^{2}}, \rho \triangleq \tan ^{-1}\left(\psi_{R b} / \psi_{R a}\right)$ and further let $\underline{i}_{d q} \triangleq i_{d}+j i_{q}=\underline{i}_{S} e^{-j \rho}$, and $\underline{u}_{d q} \triangleq u_{d}+j u_{q}=\underline{u}_{S} e^{-j \rho}$.
(a) Find the field-oriented space vector representation of the induction motor, that is, in terms of $\psi_{d}, \rho, \underline{i}_{d q} \triangleq i_{d}+j i_{q}$, and $\underline{u}_{d q} \triangleq u_{d}+j u_{q}$
(b) Use the answer from part (a) to find a state space representation of the field-oriented induction motor model, that is, in terms of the state variables $i_{d}, i_{q}, \psi_{d}, \rho, \omega$, and θ and the inputs u_{d} and u_{q}.

Problem 5 Stator Flux Induction Motor Model
(a) The stator fux linkage is given by

$$
\underline{\lambda}_{S}=L_{S} \underline{i}_{S}+M\left(\underline{i}_{R} e^{j n_{p} \theta}\right)=\lambda_{S} e^{j \rho_{S}}
$$

Rewrite the system model

$$
\begin{aligned}
R_{S} \underline{i}_{S}+L_{S} \frac{d}{d t} \underline{i}_{S}+M \frac{d}{d t}\left(\underline{i}_{R} e^{j n_{p} \theta}\right) & =\underline{u}_{S} \\
R_{R} \underline{i}_{R}+L_{R} \frac{d}{d t} \underline{i}_{R}+M \frac{d}{d t}\left(\underline{i}_{S} e^{-j n_{p} \theta}\right) & =0 \\
n_{p} M \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{i}_{R} e^{j n_{p} \theta}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega}{d t}
\end{aligned}
$$

in terms of $\underline{\lambda}_{S}, \underline{i}_{S}$, and ω.
(b) Put the result from part (a) in state space form.

Problem $6 \psi_{d}$ and ψ_{q}
Show that $\cos (\rho)=\psi_{R a} / \psi_{d}, \sin (\rho)=\psi_{R b} / \psi_{d}$, and

$$
\left[\begin{array}{c}
\psi_{d} \\
\psi_{q}
\end{array}\right] \triangleq\left[\begin{array}{rr}
\cos (\rho) & \sin (\rho) \\
-\sin (\rho) & \cos (\rho)
\end{array}\right]\left[\begin{array}{c}
\psi_{R a} \\
\psi_{R b}
\end{array}\right]
$$

where $\psi_{q} \equiv 0$.

Feedback Control and Reference Trajectories

Problem 7 Tracking a Constant Flux Reference
Let $e_{0}=\int_{0}^{t}\left(\psi_{d 0}-\psi_{d}\right) d t$ and $e_{1}=\psi_{d 0}-\psi_{d}$ and assuming that $\psi_{d 0}=$ $M i_{d 0}$, show how to choose the gains $K_{\psi P}$ and $K_{\psi I}$ in (8.20) so that $e_{0}(t) \rightarrow$ $0, e_{1}(t) \rightarrow 0$ as $t \rightarrow \infty$.

Problem 8 Trajectory Tracking via Field-Oriented Control
Let $e_{0}=\int_{0}^{t}\left(\theta_{\text {ref }}-\theta\right) d t, e_{1}=\theta_{\text {ref }}-\theta, e_{2}=\omega_{\text {ref }}-\omega$, and, assuming that $\psi_{d}=\psi_{d 0}$, show how to choose the gains K_{0}, K_{1}, and K_{2} in (8.19) so that the closed-loop poles are in the open left-half plane located at $-r_{1},-r_{2},-r_{3}$ $\left(r_{1}>0, r_{2}>0, r_{3}>0\right)$. If τ_{L} is constant, show that $e_{1}(t) \rightarrow 0, e_{2}(t) \rightarrow 0$ as $t \rightarrow \infty$. (Hint: Review Chapter 2.)

Problem 9 Back Emf

With reference to the field-oriented model (8.9) of the induction motor, explain why $M n_{p} \omega \psi_{d} / L_{R}$ is the back emf. (The term "back emf" refers to the voltage $v_{\text {backemf }}$ that results in energy conversion from electrical to mechanical, that is, $i_{q} v_{b a c k e m f}=\tau \omega$.)

Problem 10 Tracking a Time Varying Flux Reference
Consider the input-output linearization controller presented in Section 8.2.4. Let $\psi_{\text {dref }}(t)$ be a desired flux reference with $i_{\text {dref }}$ chosen to satisfy

$$
d \psi_{d r e f} / d t=-\eta \psi_{d r e f}+\eta M i_{d r e f}
$$

Choose

$$
u_{1}=i_{d r}=K_{\psi P}\left(\psi_{d r e f}-\psi_{d}\right)+K_{\psi I} \int_{0}^{t}\left(\psi_{d r e f}-\psi_{d}\right) d t+i_{d r e f}
$$

and with $e_{0}=\int_{0}^{t}\left(\psi_{\text {dref }}-\psi_{d}\right) d t, e_{1}=\psi_{\text {dref }}-\psi_{d}$, show how to choose the gains $K_{\psi P}$ and $K_{\psi I}$ such that $e_{0}(t) \rightarrow 0, e_{1}(t) \rightarrow 0$ as $t \rightarrow \infty$. (In practice, $i_{\text {dref }}$ is usually set to zero with no significant deterioration in tracking.)

Problem 11 Trajectory Tracking Via Input-Output Linearization
With $e_{0}=\int_{0}^{t}\left(\theta_{\text {ref }}-\theta\right) d t, e_{1}=\theta_{\text {ref }}-\theta, e_{2}=\omega_{\text {ref }}-\omega$ show how to choose the gains K_{0}, K_{1}, and K_{2} in (8.32) so that the closed-loop poles are in the open left-half plane located at $-r_{1},-r_{2},-r_{3}\left(r_{1}>0, r_{2}>0, r_{3}>0\right)$. Show that if τ_{L} is constant, then $e_{1}(t) \rightarrow 0, e_{2}(t) \rightarrow 0$ as $t \rightarrow \infty$.

Problem 12 Field Weakening
Explain why field weakening is only needed when the induction machine is motoring (accelerating). That is, even if the motor is running at high speed, but one wants to decelerate it down to zero (so it is generating rather than motoring), then the voltage limit $V_{\max }$ is not a constraint in bringing the flux ψ_{d} back up to $\psi_{d 0}$. (However, most amplifiers are switching amplifiers and the blocking voltage rating of the switches must be respected.)

Problem 13 Maximum Torque
In steady state the currents in a two-phase motor are of the form $i_{S a}=$ $I \cos \left(\omega_{S} t+\phi_{S}\right), i_{S b}=I \cos \left(\omega_{S} t+\phi_{S}-\pi / 2\right)$ so that $i_{d 0}^{2}+i_{q 0}^{2}=i_{S a}^{2}+i_{S b}^{2}=I^{2}$. Show that the steady-state torque $\tau=J \mu \psi_{d 0} i_{q 0}=J \mu M i_{d 0} i_{q 0}$ subject to $i_{d 0}^{2}+i_{q 0}^{2} \leq I_{\text {max }}^{2}$ is maximized by choosing $i_{d 0}=i_{q 0}=I_{\text {max }} / \sqrt{2}$. This is used only at lower speeds where the voltage constraint $u_{S a}^{2}+u_{S b}^{2} \leq V_{\text {max }}$ will not be violated. (Note that if, for example, $I_{\max }=6.0 \mathrm{~A}$, then one might choose $i_{d 0}=5.5 / \sqrt{2}$ so as to not operate at the current limit.)

Problem 14 Closed-Loop Poles of the Field-Oriented and Input-Output Controller
(a) Using the motor parameters given in Section 8.2.2 and the gains of the field-oriented controller given by (8.22) and (8.23), compute the closed loop poles of the mechanical trajectory tracking error system as well as the closed-loop poles of the fux tracking error system.
(b) Repeat part (a) using the gain values of the input-output controller of Section 8.2.5.

Problem 15 Simulation of an Input-Output Linearization Controller
Let the parameters of the system be $n_{p}=3, M=0.0117 H, R_{R}=3.9$ $\Omega, R_{S}=1.7 \Omega, L_{R}=0.014 H, L_{S}=0.014 H, f=0 \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec}$, and $J=$ $0.00011 \mathrm{~kg}-\mathrm{m}^{2}, i_{d 0}=5.5 / \sqrt{2}, \psi_{d 0}=M i_{d 0}, \omega_{\text {base }}=250 \mathrm{rad} / \mathrm{sec}, I_{\max }=6$ $A, V_{\max }=60 \mathrm{~V}[42]$.

Simulate the complete input-output linearization controller for the induction motor. To simplify the matter, do the complete simulation in continuous time and assume that both speed and position measurements are available. Specifically,

Add the flux observer using equations (8.37). Check that this is working by comparing ρ and ψ_{d} from the estimator with $\tan ^{-1}\left(\psi_{R b} / \psi_{R a}\right)$ and $\sqrt{\psi_{R b}^{2}+\psi_{R a}^{2}}$ from the simulation of the motor. Note from (8.37) that the direct and quadrature currents i_{d} and i_{q} are computed in the flux estimator.

Add the PI current controllers described by (8.12) to the simulation so that the setup of Figure 8.3 results. Check that current controllers are working by commanding constant currents $i_{d r}=i_{d 0}$ and $i_{q r}=i_{q 0}$ to see if $i_{d} \rightarrow i_{d 0}, i_{q} \rightarrow i_{q 0}$, respectively.

Choose $i_{d r}$ and $i_{q r}$ as given in (8.27) where u_{1} is chosen as given in (8.31) and u_{2} is chosen as given in (8.32). Let the flux reference be given by (8.24) where $\omega_{\text {base }}=250 \mathrm{rads} / \mathrm{sec}$ and $\psi_{d 0}=M i_{d 0}$ with $i_{d 0}=5.5 / \sqrt{2}$. Also, just take $i_{\text {dref }}=0$.
Add the trajectory generator to the simulation.
(a) Try a trajectory specified by $\omega_{\max }=75 \mathrm{rads} / \mathrm{sec}, t_{1}=0.025 \mathrm{sec}$ and $\theta_{f}=\pi$. Set the gains of the system to obtain tracking of the mechanical trajectory $\left(\theta_{r e f}, \omega_{r e f}\right)$ and the flux reference $\psi_{d 0}$, and run the simulation. Do you need to let the flux ψ_{d} build up before starting the 180° turn?
(b) Try a high-speed trajectory specified by $\omega_{\max }=(2 \pi / 60) 8000=838$
$\mathrm{rads} / \mathrm{sec}, t_{1}=1.5 \mathrm{~seconds}, t_{2}=t_{1}+0.1 \mathrm{sec}\left(\theta_{f}=\omega_{\text {max }} t_{2}\right)$. Set the gains of the system to obtain tracking of the mechanical trajectory $\left(\theta_{r e f}, \omega_{r e f}\right)$ and the flux reference $\psi_{d r e f}$, and run the simulation.
Problem $16 i_{\text {dref }}$
Given a mechanical trajectory mechanical trajectory $\left(\theta_{r e f}, \omega_{r e f}, \alpha_{r e f}\right)$, show how to obtain the reference current $i_{d r e f}$ corresponding to the flux reference $\psi_{\text {dref }}$ specified by (8.24).

Problem 17 Nested Loop Control Structure [2]
Consider the (nested loop) control structure of Figure 8.34 following Figures 12.14 and 12.27 of Ref. [2]. The block labeled "induction motor" is considered to be the model (8.9) with the decoupling feedback (8.10) applied, that is, the system (8.11). Using the model (8.11), and the controller given in Figure 8.34 with $\psi_{\text {dref }}$ given by (8.24), do an analysis of this controller. In particular, with $\psi_{\text {dref }}$ constant, can you show how to specify the controller gains so that the closed-loop system is stable? What if $\psi_{\text {dref }}$ is not constant?

FIGURE 8.34. Nested loop control structure for the induction motor.

Field Energy and Torque

Problem 18 Torque from Conservation of Energy
(a) Multiply the fourth equation of (8.9) by $\sigma L_{S} i_{d}$, the fifth equation of (8.9) by $\sigma L_{S} i_{q}$ and add to obtain

$$
\begin{aligned}
i_{d} u_{d}+i_{q} u_{q}= & \frac{1}{2} \sigma L_{S} \frac{d}{d t}\left(i_{d}^{2}+i_{q}^{2}\right)+\sigma L_{S} \gamma\left(i_{d}^{2}+i_{q}^{2}\right)-\left(\eta M / L_{R}\right) \psi_{d} i_{d} \\
& +\left(n_{p} M / L_{R}\right) \omega \psi_{d} i_{q} .
\end{aligned}
$$

(b) In Chapter 6 it was shown that the field energy (the energy stored in the magnetic field of the air gap) is given by

$$
\begin{aligned}
& W_{f e l d}\left(i_{S a}, i_{S b}, i_{R a}, i_{R b}, \theta\right) \triangleq \frac{1}{2} L_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)+\frac{1}{2} L_{R}\left(i_{R a}^{2}+i_{R b}^{2}\right) \\
& +M i_{S a}\left(i_{R a} \cos (\theta)-i_{R b} \sin (\theta)\right)+M i_{S b}\left(i_{R a} \sin (\theta)+i_{R b} \cos (\theta)\right)
\end{aligned}
$$

Show that in the $\left(i_{S a}, i_{S b}, \psi_{R a}, \psi_{R b}, \theta, \omega\right)$ coordinate system, the field energy is given by

$$
W_{f e l d}=\frac{1}{2} L_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)+\frac{1}{2} \frac{1}{L_{R}}\left(\psi_{R a}^{2}+\psi_{R b}^{2}\right)-\frac{1}{2} \frac{M^{2}}{L_{R}}\left(i_{S a}^{2}+i_{S b}^{2}\right)
$$

and therefore in the $d q$ coordinate system it is given by

$$
W_{\text {field }}=\frac{1}{2} \sigma L_{S}\left(i_{d}^{2}+i_{q}^{2}\right)+\frac{1}{2} \frac{1}{L_{R}} \psi_{d}^{2} .
$$

(c) Conservation of energy (power) requires that

$$
\frac{d}{d t} W_{f e l d}+R_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)+R_{R}\left(i_{R a}^{2}+i_{R b}^{2}\right)+\tau \omega=i_{S a} u_{S a}+i_{S b} u_{S b}
$$

where $\tau \omega$ is the mechanical power produced. Rewrite this in the field-oriented coordinate system and compare with the answer to part (a) to conclude that $\tau=\left(n_{p} M / L_{R}\right) \psi_{d} i_{q}$.

Observers

Problem 19 Discretization of the Flux Observer
Using Euler's approximation for the derivatives, that is,

$$
\begin{aligned}
\dot{\psi}_{R a}(k T) & \approx\left(\psi_{R a}((k+1) T)-\psi_{R a}(k T)\right) / T \\
\dot{\psi}_{R b}(k T) & \approx\left(\psi_{R b}((k+1) / T)-\psi_{R b}(k T)\right) / T
\end{aligned}
$$

a discretized version of (8.34) is given by

$$
\begin{aligned}
\psi_{R a}((k+1) T) & =(1-\eta T) \psi_{R a}(k T)-n_{p} T \omega(k T) \psi_{R b}(k T)+\eta M T i_{S a}(k T) \\
\psi_{R b}((k+1) T) & =n_{p} T \omega(k T) \psi_{R a}(k T)+(1-\eta T) \psi_{R b}(k T)+\eta M T i_{S b}(k T)
\end{aligned}
$$

An observer for this discretized system is then a discretized version of (8.35) given by
$\hat{\psi}_{R a}((k+1) T)=(1-\eta T) \hat{\psi}_{R a}(k T)-n_{p} T \omega(k T) \hat{\psi}_{R b}(k T)+\eta M T i_{S a}(k T)$
$\hat{\psi}_{R b}((k+1) T)=n_{p} T \omega(k T) \hat{\psi}_{R a}(k T)+(1-\eta T) \hat{\psi}_{R b}(k T)+\eta M T i_{S b}(k T)$,
Simulate this discrete version of the observer (8.35) with the inputs to the motor given by $u_{S a}=V \cos \left(\omega_{S} t\right), u_{S b}=V \sin \left(\omega_{S} t\right), \omega_{S}=(2 \pi) 60 \mathrm{rad} / \mathrm{sec}$, $V=80 \mathrm{~V}$, and $\tau_{L}=0$. Plot out the discrete estimates $\hat{\psi}_{R a}$ and $\hat{\psi}_{R b}$ and compare with the actual values $\psi_{R a}$ and $\psi_{R b}$, respectively. Try sample rates of $2 \mathrm{kHz}, 10 \mathrm{kHz}$, and 20 kHz .

Problem 20 Stability of a Discrete Flux Observer
Consider the stability of the discrete-time flux estimator of problem 19, define

$$
\begin{aligned}
& e_{R a}((k+1) T) \triangleq \psi_{R a}((k+1) T)-\hat{\psi}_{R a}((k+1) T) \\
& e_{R b}((k+1) T) \triangleq \psi_{R b}((k+1) T)-\hat{\psi}_{R b}((k+1) T)
\end{aligned}
$$

and show that these error variables satisfy

$$
\left[\begin{array}{c}
e_{R a}((k+1) T) \\
e_{R b}((k+1) T)
\end{array}\right]=\left[\begin{array}{rr}
1-\eta T & -n_{p} \omega(k) T \\
n_{p} \omega(k) T & 1-\eta T
\end{array}\right]\left[\begin{array}{c}
e_{R a}(k T) \\
e_{R b}(k T)
\end{array}\right] .
$$

Next, define the discrete-time function $V(k T)$ as

$$
V(k T) \triangleq e_{R a}^{2}(k T)+e_{R b}^{2}(k T)
$$

and show that

$$
V((k+1) T)=\left((1-\eta T)^{2}+\left(n_{p} \omega(k T) T\right)^{2}\right) V(k T)
$$

Use this to find the conditions on the sample period T and speed ω such that $V(k T) \rightarrow 0$ as $t \rightarrow \infty$. In particular, find the value of T that minimizes $(1-\eta T)^{2}+\left(n_{p} \omega_{\max } T\right)^{2}$, where $\omega_{\max }$ is the maximum speed the motor is to be run. With $\omega_{\max }=2 \pi(60)$ rads $/ \mathrm{sec}$ and sample rates of $330 \mathrm{~Hz}, 1 \mathrm{kHz}$, and 10 kHz , is the system (8.35) stable? Are your results consistent with your simulation?

Problem 21 Discretization of the Flux Observer in the Field-Oriented Coordinate System

Simulate a discrete-time version of the equations (8.37). Plot out the discrete estimates $\hat{\rho}$ and $\hat{\psi}_{d}$, compute $\hat{\psi}_{R a}=\hat{\psi}_{d} \cos (\hat{\rho})$ and $\hat{\psi}_{R b}=\hat{\psi}_{d} \sin (\hat{\rho})$ and compare with $\psi_{R a}$ and $\psi_{R b}$, respectively. Try sample rates of 330 Hz , 1 kHz , and 10 kHz .

Problem 22 Discretization of the Flux Observer Equations [73]
Consider another discretization of the flux equations (8.34) by writing them in the form

$$
\frac{d}{d t}\left[\begin{array}{c}
\psi_{R a} \\
\psi_{R b}
\end{array}\right]=\left[\begin{array}{cc}
-\eta & -n_{p} \omega \\
n_{p} \omega & -\eta
\end{array}\right]\left[\begin{array}{c}
\psi_{R a} \\
\psi_{R b}
\end{array}\right]+\eta M\left[\begin{array}{c}
i_{S a} \\
i_{S b}
\end{array}\right]
$$

(a) Assuming that $\omega(t), i_{S a}(t)$, and $i_{S b}(t)$ are constant over the sample period T, show that

$$
\begin{aligned}
{\left[\begin{array}{c}
\psi_{R a}((k+1) T) \\
\psi_{R b}((k+1) T)
\end{array}\right]=} & e^{\left(-\eta \mathbf{I}+n_{p} \omega(k T) \mathbf{J}\right) T}\left[\begin{array}{l}
\psi_{R a}(k T) \\
\psi_{R b}(k T)
\end{array}\right] \\
& +\left(\int_{0}^{T} e^{\left(-\eta \mathbf{I}+n_{p} \omega(k T) \mathbf{J}\right)(T \sim t)} \eta M d t\right)\left[\begin{array}{c}
i_{S a}(k T) \\
i_{S b}(k T)
\end{array}\right]
\end{aligned}
$$

where $\mathbf{I} \triangleq\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right], \mathbf{J} \triangleq\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$.
(b) Using the expressions

$$
\begin{aligned}
\int e^{a t} \cos (b t) d t & =\frac{e^{a t}}{a^{2}+b^{2}}(a \cos (b t)+b \sin (b t)) \\
\int e^{a(T-t)} \cos (b(T-t)) d t & =-\frac{e^{a(T-t)}}{a^{2}+b^{2}}(a \cos (b(T-t))+b \sin (b(T-t))) \\
\int e^{a t} \sin (b t) d t & =\frac{e^{a t}}{a^{2}+b^{2}}(a \sin (b t)-b \cos (b t)) \\
\int e^{a(T-t)} \sin (b(T-t)) d t & =-\frac{e^{a(T-t)}}{a^{2}+b^{2}}(a \sin (b(T-t))-b \cos (b(T-t)))
\end{aligned}
$$

show that

$$
e^{\left(-\eta \mathbf{I}+n_{p} \omega(k T) \mathbf{J}\right) T}=\left[\begin{array}{cc}
e^{-\eta T} & 0 \\
0 & e^{-\eta T}
\end{array}\right]\left[\begin{array}{cc}
\cos \left(n_{p} \omega(k T)\right) & -\sin \left(n_{p} \omega(k T)\right. \\
\sin \left(n_{p} \omega(k T)\right) & \cos \left(n_{p} \omega(k T)\right)
\end{array}\right]
$$

and

$$
\begin{aligned}
& \int_{0}^{T} e^{\left(-\eta \mathbf{I}+n_{p} \omega(k T) \mathbf{J}\right)(T-t)} d t=\frac{1}{\eta^{2}+\left(n_{p} \omega(k T)\right)^{2}} \\
& \times\left[\begin{array}{ll}
e^{-\eta T} d_{1}(k T)+\eta & -e^{-\eta T} d_{2}(k T)-n_{p} \omega(k T) \\
e^{-\eta T} d_{2}(k T)+n_{p} \omega(k T) & e^{-\eta T} d_{1}(k T)+\eta
\end{array}\right]
\end{aligned}
$$

where

$$
\begin{aligned}
d_{1}(k T) & \triangleq-\eta \cos \left(n_{p} \omega(k T) T\right)+n_{p} \omega(k T) \sin \left(n_{p} \omega(k T) T\right) \\
d_{2}(k T) & \triangleq-\eta \sin \left(n_{p} \omega(k T) T\right)-n_{p} \omega(k T) \cos \left(n_{p} \omega(k T) T\right) .
\end{aligned}
$$

(c) Use this discretization of the fux linkage equations to define an observer.
(d) With the fux estimate error defined by

$$
\begin{aligned}
& e_{R a}((k+1) T) \triangleq \psi_{R a}((k+1) T)-\hat{\psi}_{R a}((k+1) T) \\
& e_{R b}((k+1) T) \triangleq \psi_{R b}((k+1) T)-\hat{\psi}_{R b}((k+1) T)
\end{aligned}
$$

use the (Lyapunov) function

$$
V(k T) \triangleq e_{R a}^{2}(k T)+e_{R b}^{2}(k T)
$$

to show that

$$
V((k+1) T)=e^{-2 \eta T} V(k T) .
$$

(e) Simulate this discrete-time flux observer with the inputs to the motor given by $u_{S a}=V \cos \left(\omega_{S} t\right), u_{S b}=V \sin \left(\omega_{S} t\right)$ where $\omega_{S}=(2 \pi) 60 \mathrm{rad} / \mathrm{sec}$ and $V=80 V, \tau_{L}=0$. Plot out the discrete estimates $\hat{\psi}_{R a}$ and $\hat{\psi}_{R b}$, and compare with their actual values $\psi_{R a}$ and $\psi_{R b}$. Try sample rates of 330 Hz , 1 kHz , and 10 kHz .

Problem 23 Flux Observer Based on Position Measurements [67]
Consider the flux observer (8.37). Make a change of variables from $\left(\rho, \psi_{d}\right)$ to $\left(s, \psi_{d}\right)$ where $s(t) \triangleq \rho(t)-n_{p} \theta(t)$ and show that

$$
\begin{aligned}
\frac{d \hat{s}}{d t} & =\eta M\left(-i_{S a} \sin (\hat{\rho})+i_{S b} \cos (\hat{\rho})\right) / \hat{\psi}_{d} \\
\frac{d \hat{\psi}_{d}}{d t} & =-\eta \hat{\psi}_{d}+\eta M\left(i_{S a} \cos (\hat{\rho})+i_{S b} \sin (\hat{\rho})\right)
\end{aligned}
$$

where

$$
\hat{\rho}(t) \triangleq n_{p} \theta(t)+\hat{s}(t)
$$

is an estimator for ρ, ψ_{d}. Note that this flux estimator requires the stator currents and rotor position, but not the rotor speed.

Problem 24 Speed Observer
(a) Implement a discretized version of the speed observer

$$
\begin{aligned}
\frac{d \hat{\theta}}{d t} & =\hat{\omega}+\ell_{1}\left(\theta_{c}-\hat{\theta}\right) \\
\frac{d \hat{\omega}}{d t} & =\mu \hat{\psi}_{d} \hat{\imath}_{q}+\ell_{2}\left(\theta_{c}-\hat{\theta}\right)
\end{aligned}
$$

using the Euler approximation for the derivatives where $\theta_{c}(t) \triangleq \frac{2 \pi}{2000} N(t)$ in which $N(t)$ is the position of the motor in encoder counts. Set the inputs to the motor as $u_{S a}=V \cos \left(\omega_{S} t\right), u_{S b}=V \sin \left(\omega_{S} t\right)\left(\omega_{S}=(2 \pi) 60 \mathrm{rad} / \mathrm{sec}\right.$, and $V=80 \mathrm{~V})$. To simulate the encoder count N, simply set $N=$ floor $\left(\frac{2000}{2 \pi} \theta\right)$, where floor (x) is the largest integer less than or equal to x.
(b) Compare the speed estimate ú from the observer with that obtained from numerically differentiating the output of the encoder as $\hat{\omega}_{1}(k T)=\left(\theta_{c}(k T)-\theta_{c}((k-1) T)\right) / T$. Also, compare with the actual speed ω. Try sample rates of $1 \mathrm{kHz}, 2 \mathrm{kHz}$, and 10 kHz .
(c) Show that a (Euler) discretized version of the error equations for the above speed observer are given by

$$
\left[\begin{array}{l}
e_{1}(k+1) \\
e_{2}(k+1)
\end{array}\right]=\left[\begin{array}{rr}
1-\ell_{1} T & T \\
-\ell_{2} & 1
\end{array}\right]\left[\begin{array}{l}
e_{1}(k) \\
e_{2}(k)
\end{array}\right]
$$

where T is the sample period, ℓ_{1} and ℓ_{2} are the observer gains, $e_{1}(k)=$ $\theta_{c}(k T)-\hat{\theta}(k T)$ and $e_{2}(k)=\omega(k T)-\hat{\omega}(k T)$. Compute the eigenvalues of the error system in terms of T, ℓ_{1}, and ℓ_{2}. Is the discretized speed observer stable, that is, are the magnitudes of the eigenvalues less than 1 for the gains and sample rates chosen in your simulation?

Problem 25 Speed and Load-Torque Observer
Consider a modification of the speed observer to estimate any constant (or, slowly varying) load torque. Specifically, with the load torque τ_{L} assumed constant, consider a speed and load-torque estimator given by

$$
\begin{aligned}
\frac{d \hat{\theta}}{d t} & =\hat{\omega}+\ell_{1}(\theta-\hat{\theta}) \\
\frac{d \hat{\omega}}{d t} & =\mu \hat{\psi}_{d} \hat{\imath}_{q}-\hat{\tau}_{L} / J+\ell_{2}(\theta-\hat{\theta}) \\
\frac{d\left(\hat{\tau}_{L} / J\right)}{d t} & =0+\ell_{3}(\theta-\hat{\theta})
\end{aligned}
$$

(a) With $e_{1}=\theta-\hat{\theta}, e_{2}=\omega-\hat{\omega}$, and $e_{3}=\tau_{L} / J-\hat{\tau}_{L} / J$, find the equations describing the error system assuming $\hat{\psi}_{d} \hat{\imath}_{q}=\psi_{d} i_{q}$. For an appropriate choice of the observer gains ℓ_{1}, ℓ_{2}, and ℓ_{3}, show that $e(t)=$ $\left(e_{1}(t), e_{2}(t), e_{3}(t)\right) \rightarrow 0$ as $t \rightarrow \infty$.
(b) Assume that $\hat{\psi}_{d} \hat{\imath}_{q} \neq \psi_{d} i_{q}$, but that their difference is constant. That is, let $\varepsilon_{\tau / J} \triangleq \mu \hat{\psi}_{d} \hat{\imath}_{q}-\mu \psi_{d} i_{q}$ be constant. Show that it still true that $e_{1}(t)=$ $\theta(t)-\hat{\theta}(t) \rightarrow 0$ and $e_{2}(t)=\omega(t)-\hat{\omega}(t) \rightarrow 0$ as $t \rightarrow \infty$.

Problem 26 Flux and Speed Observer
Consider the following approach to estimating the flux linkages and speed simultaneously. The stator currents $i_{S a}$ and $i_{S b}$ and fux linkages $\psi_{R a}$ and $\psi_{R b}$ are rotated by the angle $n_{p} \theta$ to obtain

$$
\begin{gathered}
{\left[\begin{array}{c}
i_{S x} \\
i_{S y}
\end{array}\right] \triangleq\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{l}
i_{S a} \\
i_{S b}
\end{array}\right]} \\
{\left[\begin{array}{c}
\psi_{R x} \\
\psi_{R y}
\end{array}\right] \triangleq\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{c}
\psi_{R a} \\
\psi_{R b}
\end{array}\right] .}
\end{gathered}
$$

The currents $i_{S x}$ and $i_{S y}$ are known as the angle θ is measured. Note also that $\psi_{R x}=\lambda_{R a}$ and $\psi_{R y}=\lambda_{R b}$, that is, they are the actual flux linkages in the rotor windings as given in (8.2). In order to estimate the load torque, it is modeled as a constant so that its dynamic equation is taken to be $d\left(\tau_{L} / J\right) / d t=0$.
(a) In terms of the new state variables $i_{S x}, i_{S y}, \psi_{R x}=\lambda_{R a}$, and $\psi_{R y}=$
$\lambda_{1 R b}$, show that

$$
\begin{aligned}
\frac{d \psi_{R x}}{d t} & =-\frac{\boldsymbol{R}_{R}}{L_{R}} \psi_{R x}+\frac{M \boldsymbol{R}_{\boldsymbol{R}^{2}}}{\boldsymbol{L}_{R}} i_{S x} \\
\frac{d \psi_{R y}}{d t} & =-\frac{R_{R}}{L_{R}} \psi_{R y}+\frac{M R_{R}}{L_{R}} i_{S y} \\
\frac{d \theta}{d t} & =\omega \\
\frac{d \omega}{d t} & =\mu\left(i_{S \dot{y}} \psi_{R x}-i_{S x} \psi_{R y}\right)-\frac{f}{J} \omega-\tau_{L} / J \\
\frac{d\left(\tau_{L} / J\right)}{d t} & =0
\end{aligned}
$$

The key point here is that in this state-space representation, the (unmeasured) speed ω has been eliminated from the flux equations.
(b) Define an estimator for the flux linkages, speed, and load torque by

$$
\begin{aligned}
\frac{d \hat{\psi}_{R x}}{d t} & =-\frac{R_{R R}}{L_{R}} \hat{\psi}_{R x}+\frac{M R_{R}}{L_{R}} i_{S x} \\
\frac{d \hat{\psi}_{R x}}{d t} & =-\frac{R_{R}}{L_{R}} \hat{\psi}_{R y}+\frac{M R_{R}}{L_{R}} i_{S y} \\
\frac{d \theta}{d t} & =\hat{\omega}+\ell_{1}(\theta-\hat{\theta}) \\
\frac{d \omega}{d t} & =\mu\left(i_{S y} \hat{\psi}_{R x}-i_{S x} \hat{\psi}_{R y}\right)-\frac{f}{J} \omega-\frac{\hat{\tau}_{L}}{J}+\ell_{2}(\theta-\hat{\theta}) \\
\frac{d\left(\hat{\tau}_{L} / J\right)}{d t} & =0+\ell_{3}(\theta-\hat{\theta}) .
\end{aligned}
$$

With $e_{R x} \triangleq \psi_{R x}-\hat{\psi}_{R x}, e_{R y} \triangleq \psi_{R y}-\hat{\psi}_{R y}, e_{\theta} \triangleq \theta-\hat{\theta}, e_{\omega} \triangleq \omega-\hat{\omega}$, and $e_{\tau_{L}} \triangleq \tau_{L} / J-\hat{\tau}_{L}$, show that the error system is given by

$$
\begin{aligned}
\frac{d e_{R x}}{d t} & =-\frac{R_{R}}{L_{R}} e_{R x} \\
\frac{d e_{R y}}{d t} & =-\frac{R_{R}}{L_{R}} e_{R y} \\
\frac{d e_{\theta}}{d t} & =e_{\omega}-\ell_{1}(\theta-\hat{\theta}) \\
\frac{d e_{\omega}}{d t} & =\mu\left(i_{S y} e_{R x}-i_{S x} e_{R y}\right)-\frac{f}{J} e_{\omega}-e_{\tau_{L}}-\ell_{2}(\theta-\hat{\theta}) \\
\frac{d e_{\tau_{L}}}{d t} & =0-\ell_{3}(\theta-\hat{\theta}) .
\end{aligned}
$$

(c) As long as the currents $i_{S x}$ and $i_{S y}$ are bounded (consistent with the assumed current-command operation), show that the error system is stable. Note that the rate of convergence of the error dynamics of this observer is still limited by the rotor time constant $T_{R}=L_{R} / R_{R}=1 / \eta[73]$.

Flux Observers with an Arbitrary Rate of Convergence

Martin and Rouchon [74][75] have developed an observer that generalizes the results of Verghese and Sanders [73] presented in Section 8.3.3. Specifically, their method results in an error system with complex eigenvalues whose rate of convergence can be arbitrarily specified. This is outlined in the next problem.

Problem 27 Martin-Rouchon Observer [74][75]
The equations in space vector form may be written as

$$
\begin{align*}
& R_{S} \underline{i}_{S}+\frac{d}{d t} \underline{\lambda}_{S}=\underline{u}_{S} \tag{8.138}\\
& R_{R \underline{i}_{R}}+\frac{d}{d t} \underline{\lambda}_{R}=0
\end{align*}
$$

where $\underline{i}_{S}=i_{S a}+j i_{S b}$, and so on, and the flux linkages and currents are related by

$$
\begin{align*}
& \underline{\lambda}_{S} \triangleq \lambda_{S a}+j \lambda_{S b} \triangleq L_{S} \underline{i}_{S}+M \underline{i}_{R} e^{+j \theta_{R}} \\
& \underline{\lambda}_{R} \triangleq \lambda_{R a}+j \lambda_{R b} \triangleq L_{R} \underline{i}_{R}+M \underline{i}_{S} e^{-j \theta_{R}} \tag{8.139}
\end{align*}
$$

(a) Rearrange the first equation of (8.139) to obtain

$$
\underline{i}_{R} e^{j \theta_{R}}=\frac{1}{M}\left(\underline{\lambda}_{S}-L_{S} \underline{i}_{S}\right)
$$

and show that substituting this into the second equation of (8.139) results in

$$
\underline{\lambda}_{R} e^{j \theta_{R}}=\frac{L_{R}}{M} \underline{\lambda}_{S}+\sigma M \underline{i}_{S}
$$

where $\sigma=1-M^{2} /\left(L_{S} L_{R}\right)$.
(b) Multiply the second equation of (8.138) by $e^{-j \theta_{R}}$ and substitute the expressions for $\underline{i}_{R} e^{j \theta_{R}}$ and $\underline{\lambda}_{R} e^{j \theta_{R}}$ from part (a) into (8.138) to show that the electrical equations have the equivalent form

$$
\begin{aligned}
\frac{d}{d t} \underline{\lambda}_{S} & =-R_{S} \underline{i}_{S}+\underline{u}_{S} \\
\frac{d}{d t} \underline{i}_{S} & =\frac{\left(R_{R}-j \omega L_{R}\right) \underline{\lambda}_{S}-\left(R_{R} L_{S}+R_{S} L_{R}-j \omega \sigma L_{R} L_{S}\right) \underline{i}_{S}+L_{R} \underline{u}_{S}}{\sigma L_{R} L_{S}}
\end{aligned}
$$

(c) Consider the observer proposed in Refs. [74][75] given by

$$
\begin{aligned}
\frac{d}{d t} \hat{\hat{\lambda}}_{S}= & -R_{S} \underline{i}_{S}+\underline{u}_{S}+c_{1}\left(\underline{i}_{S}-\underline{\hat{\imath}}_{S}\right)\left(R_{R}-j \omega L_{R}\right) \\
\frac{d}{d t} \hat{\underline{\imath}}_{S}= & -\frac{\left(R_{R}-j \omega L_{R}\right) \hat{\lambda}_{S}-\left(R_{R} L_{S}+R_{S} L_{R}-j \omega \sigma L_{R} L_{S}\right) \underline{\underline{i}}_{S}+L_{R} \underline{u}_{S}}{\sigma L_{R} L_{S}} \\
& +\frac{c_{2}\left(\underline{i}_{S}-\hat{\imath}_{S}\right)\left(R_{R}-j \omega L_{R}\right)}{\sigma L_{R} L_{S}}
\end{aligned}
$$

where c_{1} and c_{2} are complex gains to be chosen.
(d) Set $\underline{\underline{\varepsilon}}_{\lambda}=\underline{\lambda}_{S}-\underline{\hat{\lambda}}_{S}$ and $\underline{\underline{\varepsilon}}_{i}=\underline{i}_{S}-\underline{\underline{\hat{v}}}_{S}$ and show the error system is given by

$$
\begin{aligned}
\frac{d}{d t} \varepsilon_{\lambda} & =-\left(R_{R}-j \omega L_{R}\right) c_{1} \varepsilon_{i} \\
\frac{d}{d t} \varepsilon_{i} & =\frac{\left(R_{R}-j \omega L_{R}\right)}{\sigma L_{R} L_{S}}\left(\underline{\varepsilon}_{\lambda}-c_{2} \underline{\varepsilon}_{i}\right)
\end{aligned}
$$

More compactly, one may write

$$
\begin{align*}
\frac{d}{d t}\left[\begin{array}{c}
\underline{\varepsilon}_{\lambda} \\
\underline{\varepsilon}_{i}
\end{array}\right] & =\left(R_{R}-j \omega L_{R}\right)\left[\begin{array}{cc}
0 & -c_{1} \\
\frac{1}{\sigma L_{R} L_{S}} & -\frac{1}{\sigma L_{R} L_{S}} c_{2}
\end{array}\right]\left[\begin{array}{l}
\underline{\varepsilon}_{\lambda} \\
\underline{\varepsilon}_{i}
\end{array}\right] \\
\frac{d}{d t} \underline{\varepsilon} & =\left(R_{R}-j \omega L_{R}\right) A \underline{\varepsilon} \tag{8.140}
\end{align*}
$$

with the obvious definitions for $\underline{\varepsilon}$ and A.
(e) Show the eigenvalues of A can be arbitrarily assigned by choosing c_{1} and c_{2} appropriately.
(f) Show that the solution to (8.140) is given by

$$
\underline{\varepsilon}(t)=e^{\left(R_{R} t-j \theta(t) L_{R}\right) A^{\varepsilon}(0)}
$$

(g) Show that c_{1} and c_{2} can be chosen so that $s_{1}=s_{1 a}+j s_{1 b} \operatorname{sign}(\theta(t))$ and $s_{2}=s_{2 a}+j s_{2 b} \operatorname{sign}(\theta(t))$ are the eigenvalues of A with $s_{1 a}<0, s_{1 b} \leq 0$, $s_{2 a}<0, s_{2 b} \leq 0$. That is, they are the roots of the polynomial

$$
s^{2}+\frac{c_{2}}{\sigma L_{R} L_{S}} s+\frac{c_{1}}{\sigma L_{R} L_{S}} .
$$

(As c_{1} and c_{2} are complex gains, this is possible to do with s_{1} and s_{2} not being complex conjugates.)
(h) Assuming $s_{1} \neq s_{2}$, show that the error $\varepsilon(t)$ is a linear combination of the complex exponentials

$$
\begin{aligned}
& e^{s_{1 a} R_{R} t+s_{1 b} \operatorname{sign}(\theta(t)) L_{R} \theta(t)+j\left(s_{1 b} \operatorname{sign}(\theta(t)) R_{R} t-s_{1 a} L_{R} \theta(t)\right)} \\
& e^{s_{2 a} R_{R} t+s_{2 b} \operatorname{sign}(\theta(t)) L_{R} \theta(t)+j\left(s_{2 b} \operatorname{sign}(\theta(t)) R_{R} t-s_{2 b} L_{R} \theta(t)\right)}
\end{aligned}
$$

which decay to zero.
Remark One may choose $s_{1 b}=s_{2 b}=0$ to simplify the expressions in part (h). However, as explained in [74][75], there is an advantage in choosing c_{1} and c_{2} such that s_{1} and s_{2} are not real. After the rotor position increases, $L_{R} \theta(t)$ typically is much larger than $R_{R} t$ so that a faster convergence rate results by having $s_{1 b}$ and $s_{2 b}$ both negative.

Dynamic Feedback Linearization

The concept behind feedback linearization is to find a coordinate system transformation such that the nonlinear dynamics represented in the new coordinate system can be canceled out by state feedback. This is a quite appealing approach when such a transformation exists. This theory has been worked out in that (checkable) necessary and sufficient conditions exist to determine the existence of such a transformation (see the excellent books by A. Isidori [52], H. Nijmeijer and A. J. van der Schaft [101], and R. Marino and P. Tomei [102] that described this theory is detail). However, it turns out that the system model (8.5) [or equivalently, the system model (8.9)] of the induction motor is not feedback linearizable [64]. Furthermore, the reduced-order model (8.13)-(8.16) with inputs $i_{d r}, i_{q r}$ and state variables ω, ψ_{d}, ρ is also not feedback linearizable. However, a quite interesting result is that for some dynamic systems which are not feedback linearizable, the addition of integrators in some of the inputs can result in the (higher-order) system being feedback linearizable [103][104][105]. This is a phenomenon of multi-input systems, in that a single-input system is dynamically feedback linearizable if and only if it is (statically) feedback linearizable [105]. This approach is explored in the next two problems.

Problem 28 Addition of an Integrator to the d-axis Input [106][107]
Consider the current command induction motor model as given in the system model (8.13)- (8.16) whose inputs are taken to be $i_{d r}$ and $i_{q r}$. A socalled dynamic feedback linearization controller can be found by the addition of an integrator to the d axis of field-oriented model. Specifically, define $x_{1} \triangleq \omega, x_{2} \triangleq \psi_{d}, x_{3} \triangleq \rho$ and $x_{4} \triangleq i_{d r}, d x_{4} / d t \triangleq v_{1}, v_{2} \triangleq i_{q r}$ so that the equations are now

$$
\begin{aligned}
d x_{1} / d t & =\mu x_{2} v_{2}-\tau_{L} / J \\
d x_{2} / d t & =-\eta x_{2}+\eta M x_{4} \\
d x_{3} / d t & =n_{p} x_{1}+\eta M v_{2} / x_{2} \\
d x_{4} / d t & =v_{1} .
\end{aligned}
$$

More compactly, this may be written as

$$
\frac{d x}{d t}=f(x)+g_{1} v_{1}+g_{1} v_{2}
$$

with

$$
f(x)=\left[\begin{array}{c}
-\tau_{L} / J \\
-\eta x_{2}+\eta M x_{4} \\
n_{p} x_{1} \\
0
\end{array}\right], g_{1}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right], g_{2}=\left[\begin{array}{c}
\mu x_{2} \\
0 \\
\eta M / x_{2} \\
0
\end{array}\right] \in \mathbb{R}^{4} .
$$

(a) Consider the nonlinear state-space transformation given by

$$
\begin{aligned}
z_{1} & =x_{2} \\
z_{2} & =-\eta x_{2}+\eta M x_{4} \\
z_{3} & =x_{1}-\mu x_{2}^{2} x_{3} / \eta M \\
z_{4} & =\frac{2 \mu}{M} x_{2} x_{3}\left(x_{2}-M x_{4}\right)-\frac{\mu n_{p}}{\eta M} x_{2}^{2} x_{1}-\tau_{L} / J .
\end{aligned}
$$

Show that in these new coordinates, the system equations become

$$
\begin{aligned}
\frac{d z_{1}}{d t} & =z_{2} \\
\frac{d z_{2}}{d t} & =a_{1}(x)+v_{1} b_{11}+v_{2} b_{12}(x) \\
\frac{d z_{3}}{d t} & =z_{4} \\
\frac{d z_{4}}{d t} & =a_{2}(x)+v_{1} b_{21}+v_{2} b_{22}(x)
\end{aligned}
$$

where

$$
\begin{aligned}
a_{1}(x)= & -\eta\left(-\eta x_{2}+\eta M x_{4}\right) \\
a_{2}(x)= & -2 \eta M \mu x_{3} x_{4}^{2}+6 \eta \mu x_{2} x_{3} x_{4}-4 \mu n_{p} x_{1} x_{2} x_{4}+\frac{\mu n_{p}}{\eta M J} \tau_{L} x_{2}^{2} \\
& +\frac{1}{M}\left(-4 \eta \mu x_{2}^{2} x_{3}+4 \mu n_{p} x_{1} x_{2}^{2}\right)
\end{aligned}
$$

and $b_{11}=\eta M, b_{12}(x)=-2 \mu x_{2} x_{3}, b_{21}=0, b_{22}(x)=-2 \mu\left(-\eta x_{2}+\eta M x_{4}\right)-$ $\frac{\mu^{2} n_{p}}{\eta M} x_{2}^{3}$.
(b) Show that application of the feedback

$$
\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]^{-1}\left[\begin{array}{l}
u_{1}-a_{1}(x) \\
u_{2}-a_{2}(x)
\end{array}\right]
$$

results in two decoupled second-order linear systems

$$
\begin{aligned}
d z_{1} / d t & =z_{2} \\
d z_{2} / d t & =u_{1} \\
d z_{3} / d t & =z_{4} \\
d z_{4} / d t & =u_{2} .
\end{aligned}
$$

(c) The controller is singular when

$$
\operatorname{det}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=-2 \eta M \mu\left(-\eta x_{2}+\eta M x_{4}\right)-\mu^{2} n_{p} x_{2}^{3}=0
$$

Rewrite this singularity condition in the dq coordinates and show that it becomes

$$
-(2 \eta M \mu) d \psi_{d} / d t-\mu^{2} n_{p} \psi_{d}^{3}=0 .
$$

Remark 1 This singularity can be avoided by choosing, for example, the input u_{1} to regulate ψ_{d} to a positive constant so that $d \psi_{d} / d t=0$. On the other hand, during field weakening when ψ_{d} is reduced, this condition just restricts how fast ψ_{d} can be decreased, that is,

$$
0 \geq d \psi_{d} / d t>-\left(\frac{\mu n_{p}}{2 \eta M}\right) \psi_{d}^{3}=-\left(\frac{n_{p}^{2}}{2 J R_{R}}\right) \psi_{d}^{3}
$$

At start-up of the motor, when the flux is brought up from zero to its nominal value, the singularity is not encountered as $d \psi_{d} / d t>0$.
Remark 2 Note that none of the state variables z_{i} are linearly related to the speed ω. Consequently, $d \theta / d t=\omega$ is not a linear function of the z_{i} so that the position cannot be appended to the coordinate system defining the z_{i} 's without losing linearity of the system. That is, if $d \theta / d t=\omega=x_{1}$ is appended to the z_{i} coordinate transformation, then it is straightforward to show that the resulting system is not feedback linearizable (a similar situation arises in the case of a shunt-connected DC motor [55]). This situation also complicates the speed control design, as the speed is indirectly controlled through the input u_{2} vis- a-vis $z_{3}=x_{1}-\mu x_{2}^{2} x_{3} /(\eta M)=\omega-$ $\mu \psi_{d}^{2} \rho /(\eta M)$. For example, if a constant speed ω_{0} is desired, $z_{3}=\omega_{0}-$ $\mu \psi_{d}^{2} \rho /(\eta M)$ must be tracked using the input u_{2}. This is sensitive to errors in the parameter values, as well as errors in the estimation of the state variables ψ_{d} and ρ.
Problem 29 Addition of an Integrator to the q-axis Input [106] [107]
It is quite natural to consider adding an integrator in the q axis of the system model (8.13)-(8.16) rather than the d axis for comparison. To proceed, let $x_{1}=\omega, x_{2}=\psi_{d}, x_{3}=\rho$ and $x_{4}=i_{q r}, d x_{4} / d t=v_{2}, v_{1}=i_{d r}$ so that the system (8.13)-(8.16) becomes

$$
\begin{aligned}
d x_{1} / d t & =\mu x_{2} x_{4}-\tau_{L} / J \\
d x_{2} / d t & =-\eta x_{2}+\eta M v_{1} \\
d x_{3} / d t & =n_{p} x_{1}+\eta M x_{4} / x_{2} \\
d x_{4} / d t & =v_{2} .
\end{aligned}
$$

More compactly, this may be written as

$$
\frac{d x}{d t}=f(x)+g_{1} v_{1}+g_{1} v_{2}
$$

with

$$
f(x)=\left[\begin{array}{c}
\mu x_{2} x_{4}-\tau_{L} / J \\
-\eta x_{2} \\
n_{p} x_{1}+\eta M x_{4} / x_{2} \\
0
\end{array}\right], g_{1}=\left[\begin{array}{c}
0 \\
\eta M \\
0 \\
0
\end{array}\right], g_{2}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \in \mathbb{R}^{4} .
$$

A feedback linearizing transformation is then

$$
\begin{aligned}
z_{1} & =x_{1} \\
z_{2} & =\mu x_{2} x_{4}-\tau_{L} / J \\
z_{3} & =x_{3} \\
z_{4} & =n_{p} x_{1}+\eta M x_{4} / x_{2}
\end{aligned}
$$

(a) Show that in these new coordinates, the system equations become

$$
\begin{aligned}
\frac{d z_{1}}{d t} & =z_{2} \\
\frac{d z_{2}}{d t} & =a_{1}(x)+v_{1} b_{11}+v_{2} b_{12} \\
\frac{d z_{3}}{d t} & =z_{4} \\
\frac{d z_{4}}{d t} & =a_{2}(x)+v_{1} b_{21}+v_{2} b_{22}
\end{aligned}
$$

where

$$
\begin{aligned}
& a_{1}(x)=-\eta \mu x_{2} x_{4} \\
& a_{2}(x)=\mu n_{p} x_{2} x_{4}+\eta^{2} M \frac{x_{4}}{x_{2}}-\frac{n_{p} \tau_{L}}{J}
\end{aligned}
$$

and $b_{11}=\eta M \mu x_{4}, b_{12}=\mu x_{2}, b_{21}=-\eta^{2} M^{2} x_{4} / x_{2}^{2}, b_{22}=\eta M / x_{2}$.
(b) Show that application of the feedback

$$
\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]^{-1}\left[\begin{array}{l}
u_{1}-a_{1}(x) \\
u_{2}-a_{2}(x)
\end{array}\right]
$$

results in two decoupled second-order linear systems

$$
\begin{aligned}
d z_{1} / d t & =z_{2} \\
d z_{2} / d t & =u_{1} \\
d z_{3} / d t & =z_{4} \\
d z_{4} / d t & =u_{2}
\end{aligned}
$$

results in two decoupled second-order systems as in the d-axis case.
Remark This controller is singular when

$$
\operatorname{det}\left[\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right]=2 \eta^{2} M^{2} \mu \frac{x_{4}}{x_{2}}=2 \eta^{2} M^{2} \mu \frac{i_{q r}}{\psi_{d}}=0
$$

This singularity condition is comparable to the condition that the torque $\tau=J \mu \psi_{d} i_{q}=J \mu x_{2} x_{4} \neq 0$ given in Ref. [108]. However, in contrast to Ref. [108], the approach here requires only a single transformation, and the resulting controller requires relatively little feedback computation. A drawback
here is the requirement that the quadrature current be nonzero ($\psi_{d}>0$ is straightforward to maintain and is common to other controllers $[1][64][70])$. Consequently, to use this controller would require switching to another control strategy when it is desired to change the sign of the torque. Note that, in contrast to the case where the integrator was in the d axis, one of the transformed state variables is the speed, which is easily controlled using the input u_{1}. By appending the state variable $z_{0}=\theta$ to the z-coordinate transformation gives a feedback linearizing controller for position control. However, to avoid the singularity of the controller, it is still required that $i_{q} \neq 0$.

Problem 30 The Induction Motor is a Flat System [74][109]
Another way of viewing dynamic feedback linearization is through the notion of flatness of a system. The concept of a system being flat is due to Michel Fliess [109] and has been applied to the induction motor by Martin and Rouchon [74]. The book [110] by H. Sira-Ramírez and S. K. Agrawal presents a nice introduction to the theory of flat systems in terms of applications and the book [111] by G. Conte, C. H. Moog and A. M. Perdon presents a nice introduction to the underlying mathematics. To motivate the concept of flatness, consider the Chua circuit example discussed by SiraRamírez and Agrawal ([110], p. 196), which is modeled by the third-order nonlinear system

$$
\begin{align*}
\frac{d x_{1}}{d t} & =p\left(-x_{1}+x_{2}-x_{1}\left(1-x_{1}^{2}\right)\right) \tag{8.141}\\
\frac{d x_{2}}{d t} & =x_{1}-x_{2}+x_{3} \tag{8.142}\\
\frac{d x_{3}}{d t} & =-q x_{2}+u \tag{8.143}
\end{align*}
$$

where p and q are known constant parameters. Let the (flat) output be $y=x_{1}$. The state can be written as function of y and its derivatives as follows:

$$
\begin{array}{rlr}
x_{1} & =y \\
x_{2} & =\dot{y} / p+y+y\left(1-y^{2}\right) & \text { (rearranging (8.141)) } \\
x_{3} & =\frac{d}{d t}\left(\dot{y} / p+y+y\left(1-y^{2}\right)\right)+\left(\dot{y} / p+y+y\left(1-y^{2}\right)\right)-y \\
& =\dot{y} / p+(2+1 / p) \dot{y}-3 y^{2} \dot{y}+y\left(1-y^{2}\right) & \text { (rearranging (8.142)) }
\end{array}
$$

or, more compactly,

$$
x=\varphi(y, \dot{y}, \ddot{y}) \in \mathbb{R}^{3} .
$$

Also, the input u can be written as function of y and its derivatives by
rearranging (8.143) to obtain

$$
\begin{align*}
u & =\frac{d}{d t}\left(\ddot{y} / p+(2+1 / p) \dot{y}-3 y^{2} \dot{y}+y\left(1-y^{2}\right)\right)+q\left(\dot{y} / p+y+y\left(1-y^{2}\right)\right) \\
& =\dddot{y} / p+(2+1 / p) \ddot{y}-6 y \dot{y}-3 y^{2} \ddot{y}+\dot{y}-3 y^{2} \dot{y}+(q / p) \dot{y}+q y+q y\left(1-y^{2}\right) \tag{8.144}\\
& =\phi(y, \dot{y}, \ddot{y}, \dddot{y}) \in \mathbb{R} .
\end{align*}
$$

The notion of flatness refers to defining an output variable y such that both the state and the input can be written as a function of this output and its derivatives. Thus, the Chua circuit model is a flat system. To see why the notion of flatness is useful, in the Chua circuit example define the new state variables $z_{1}=y, z_{2}=\dot{y}$, and $z_{3}=\ddot{y}$ so that

$$
\begin{aligned}
\frac{d z_{1}}{d t} & =z_{2} \\
\frac{d z_{2}}{d t} & =z_{3} \\
\frac{d z_{3}}{d t} & =\dddot{y}
\end{aligned}
$$

However, by equation (8.144),
$\dddot{y}=p u-p\left((2+1 / p) \ddot{y}-6 y \dot{y}-3 y^{2} \ddot{y}+\dot{y}-3 y^{2} \dot{y}+(q / p) \dot{y}+q y+q y\left(1-y^{2}\right)\right)$
so that setting
$u=(2+1 / p) \ddot{y}-6 y \dot{y}-3 y^{2} \ddot{y}+\dot{y}-3 y^{2} \dot{y}+(q / p) \dot{y}+q y+q y\left(1-y^{2}\right)+v / p$
the system becomes

$$
\begin{aligned}
\frac{d z_{1}}{d t} & =z_{2} \\
\frac{d z_{2}}{d t} & =z_{3} \\
\frac{d z_{3}}{d t} & =v
\end{aligned}
$$

which is a linear system. Furthermore, the flatness property allows a straightforward design of the reference trajectory and reference input. Specifically, let $y_{\text {ref }}(t)$ be the desired reference output so that

$$
\begin{aligned}
x_{r e f} & =\varphi\left(y_{r e f}, \dot{y}_{r e f}, \ddot{y}_{r e f}\right) \in \mathbb{R}^{3} \\
u_{r e f} & =\phi\left(y_{r e f}, \dot{y}_{r e f}, \ddot{y}_{r e f}, \dddot{y}_{r e f}\right) \in \mathbb{R} \\
z_{r e f} & =\left[y_{r e f}, \dot{y}_{r e f}, \ddot{y}_{r e f}\right]^{T} \in \mathbb{R}^{3}
\end{aligned}
$$

are the reference signals.

Remark For single-input systems, flatness is equivalent to feedback linearizability of which the Chua circuit is an example. For multi-input systems, flatness implies the system is dynamically feedback linearizable [110].
(a) Consider the space vector formulation of the induction motor model, that is,

$$
\begin{aligned}
R_{S} \underline{i}_{S}+L_{S} \frac{d}{d t} \underline{i}_{S}+M \frac{d}{d t}\left(\underline{i}_{R} e^{j n_{p} \theta_{R}}\right) & =\underline{u}_{S} \\
R_{R} \underline{i}_{R}+L_{R} \frac{d}{d t} \underline{i}_{R}+M \frac{d}{d t}\left(\underline{i}_{S} e^{-j n_{p} \theta_{R}}\right) & =0 \\
n_{p} M \operatorname{Im}\left\{\underline{i}_{S}\left(\underline{i}_{R} e^{j n_{p} \theta_{R}}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega_{R}}{d t}
\end{aligned}
$$

where $\underline{i}_{S} \triangleq i_{S a}+j i_{S b}, \underline{i}_{R} \triangleq i_{R a}+j i_{R b}, \underline{u}_{S} \triangleq u_{S a}+j u_{S b}$. With

$$
\begin{aligned}
& \underline{\lambda}_{S} \triangleq \lambda_{S a}+j \lambda_{S b} \triangleq L_{S} \underline{i}_{S}+M \underline{i}_{R} e^{+j n_{p} \theta_{R}} \\
& \underline{\lambda}_{R} \triangleq \lambda_{R a}+j \lambda_{R b} \triangleq L_{R} \underline{i}_{R}+M \underline{i}_{S} e^{-j n_{p} \theta_{R}}
\end{aligned}
$$

the electrical equations of the induction motor may be written as

$$
\begin{aligned}
R_{S} \underline{i}_{S}+\frac{d}{d t} \underline{\lambda}_{S} & =\underline{u}_{S} \\
R_{R} \underline{i}_{R}+\frac{d}{d t} \underline{\lambda}_{R} & =0
\end{aligned}
$$

In problem 8 of Chapter 6, it was shown that using

$$
\left[\begin{array}{l}
\underline{i}_{S} \\
\underline{i}_{R} e^{+j n_{p} \theta_{R}}
\end{array}\right]=\frac{1}{L_{S} L_{R}-M^{2}}\left[\begin{array}{ll}
+L_{R} & -M \\
-M & +L_{S}
\end{array}\right]\left[\begin{array}{l}
\underline{\lambda}_{S} \\
\underline{\lambda}_{R} e^{+j n_{p} \theta_{R}}
\end{array}\right],
$$

a model for the induction motor in terms of the flux linkages is

$$
\begin{aligned}
\frac{R_{S}}{\sigma L_{S} L_{R}}\left(L_{R} \underline{\lambda}_{S}-M \underline{\lambda}_{R} e^{+j n_{p} \theta_{R}}\right)+\frac{d}{d t} \underline{\lambda}_{S} & =\underline{u}_{S} \\
\frac{R_{R}}{\sigma L_{S} L_{R}}\left(-M \underline{\lambda}_{S} e^{-j n_{p} \theta_{R}}+L_{S} \underline{\lambda}_{R}\right)+\frac{d}{d t} \underline{\lambda}_{R} & =0 \\
\frac{M}{\sigma L_{S} L_{R}} \operatorname{Im}\left\{\underline{\lambda}_{S}\left(\underline{\lambda}_{R} e^{+j n_{p} \theta_{R}}\right)^{*}\right\}-\tau_{L} & =J \frac{d \omega_{R}}{d t} \\
\frac{d \theta_{R}}{d t} & =\omega_{R} .
\end{aligned}
$$

Show that

$$
\frac{M}{\sigma L_{S} L_{R}} \operatorname{Im}\left\{\underline{\lambda}_{S}\left(\underline{\lambda}_{R} e^{+j n_{p} \theta_{R}}\right)^{*}\right\}=-\operatorname{Im}\left\{\underline{i}_{R} \underline{\lambda}_{R}^{*}\right\}
$$

(b) Show that

$$
\begin{aligned}
J \frac{d \omega}{d t} & =-\operatorname{Im}\left\{\underline{i}_{R} \underline{\lambda}_{R}^{*}\right\}-\tau_{L} \\
& =-\frac{1}{R_{R}} \operatorname{Im}\left\{\frac{d \underline{\lambda}_{R}}{d t} \underline{\lambda}_{R}^{*}\right\}-\tau_{L} \\
& =-\frac{1}{R_{R}} \lambda_{R}^{2} \frac{d}{d t} \rho_{R}-\tau_{L}
\end{aligned}
$$

where $\underline{\lambda}_{R} \triangleq \lambda_{R} e^{j \rho_{R}}$.
(c) Show that

$$
\left[\begin{array}{l}
y_{1} \\
y_{2}
\end{array}\right] \triangleq\left[\begin{array}{c}
\theta \\
\rho_{R}
\end{array}\right]
$$

is a flat output. That is, show that

$$
\begin{aligned}
\lambda_{R} & =\underline{\varphi}_{1}(y, \dot{y}, \ddot{y}) \\
\underline{\lambda}_{R} & =\underline{\varphi}_{2}(y, \dot{y}, \ddot{y}, \dddot{y}) \\
\underline{u}_{S} & =\underline{\phi}(y, \dot{y}, \ddot{y}, \dddot{y}, \dddot{y}) .
\end{aligned}
$$

Explicitly compute the functions $\underline{\varphi}_{1}, \underline{\varphi}_{2}$, and ϕ.
(d) When is the transformation singular?

Optimal Field Weakening

Problem 31 Torque Expressions
Show that with $\omega_{S}=n_{p} \omega+\delta / T_{R}$ the electrical frequency, $S_{p}=1 /\left(\sigma \omega_{S} T_{R}\right)$ the normalized pull out slip, $S=\left(\omega_{S}-n_{p} \omega\right) / \omega_{S}=\left(\delta / T_{R}\right) / \omega_{S}$ the normalized slip, and letting $R_{S} \rightarrow 0$, the torque expression

$$
\tau=\frac{n_{p} M^{2}}{L_{R} R_{S}^{2}} V^{2} \frac{\delta}{\left(1-\sigma T_{S} \delta\left(n_{p} \omega+\delta / T_{R}\right)\right)^{2}+\left(\delta+T_{S}\left(n_{p} \omega+\delta / T_{R}\right)\right)^{2}}
$$

reduces to

$$
\tau=n_{p} \frac{3}{2} \frac{1-\sigma}{\sigma} \frac{U_{S}^{2}}{\omega_{S}^{2} L_{S}} \frac{2}{S / S_{p}+S_{p} / S}
$$

where $U_{S} \triangleq \sqrt{\frac{2}{3}} \frac{V}{\sqrt{2}} .(V / \sqrt{2}$ is the two-phase equivalent rms voltage so that $\sqrt{2 / 3}(V / \sqrt{2})$ is the line-to-neutral rms voltage in the three-phase machine.)

Problem 32 Positive root of $p(\delta)=0$
Use the Routh-Hurwitz test and the expression (8.68) to show that $p(\delta)=$ 0 has exactly one root in the right-half plane for all $\omega \geq 0$.

Problem 33 Base Speed
Use the Routh-Hurwitz test to show that equation (8.85) has only one root satisfying $\omega>0$ for $\delta_{1}= \pm 1$.

This Page Intentionally Left Blank

9

PM Synchronous Motor Control

Starting with a mathematical model of the PM synchronous machine, a field-oriented controller is developed for high-performance control. Experimental results are presented to illustrate the methodology. Following this, a systematic approach to field weakening is developed based on maximizing the torque obtainable from the machine without violating the voltage or the current constraints. Next, it is shown how the least-squares identification procedure developed in Chapter 2 can be used to determine the parameters of a PM synchronous machine. Finally, the structure and operation of PM stepper motors are described.

9.1 Field-Oriented Control

The approach presented here for high-performance control of a PM synchronous machine is based on the development in [72][112]. To proceed, the two-phase model of a PM synchronous machine with sinusoidally wound stator phases and n_{p} pole pairs is given by (see equation (6.40) of Chapter 6 where $n_{p}=1$)

$$
\begin{align*}
L_{S} \frac{d i_{S a}}{d t} & =-R_{S} i_{S a}+K_{m} \sin \left(n_{p} \theta\right) \omega+u_{S a} \\
L_{S} \frac{d i_{S b}}{d t} & =-R_{S} i_{S b}-K_{m} \cos \left(n_{p} \theta\right) \omega+u_{S b} \\
J \frac{d \omega}{d t} & =K_{m}\left(-i_{S a} \sin \left(n_{p} \theta\right)+i_{S b} \cos \left(n_{p} \theta\right)\right)-\tau_{L} \\
\frac{d \theta}{d t} & =\omega . \tag{9.1}
\end{align*}
$$

This is also the two-phase equivalent model of a three-phase PM synchronous machines [see equation (7.81) in Chapter 7]. Equation (9.1) is the starting point for the design of a field-oriented controller for the PM synchronous machine. For synchronous machines, the $d q$ transformations of the phase voltages and currents are given by

$$
\begin{align*}
& {\left[\begin{array}{l}
u_{d} \\
u_{q}
\end{array}\right] \triangleq\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{l}
u_{S a} \\
u_{S b}
\end{array}\right]} \tag{9.2}\\
& {\left[\begin{array}{l}
i_{d} \\
i_{q}
\end{array}\right] \triangleq\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{l}
i_{S a} \\
i_{S b}
\end{array}\right] .} \tag{9.3}
\end{align*}
$$

The direct current i_{d} corresponds to the component of the stator magnetic field along the axis of the rotor magnetic field, while the quadrature current i_{q} corresponds to the orthogonal component. The application of the $d q$ transformation to the original system (9.1) yields the system of equations

$$
\begin{align*}
L_{S} \frac{d i_{d}}{d t} & =-R_{S} i_{d}+n_{p} \omega L_{S} i_{q}+u_{d} \tag{9.4}\\
L_{S} \frac{d i_{q}}{d t} & =-R_{S} i_{q}-n_{p} \omega L_{S} i_{d}-K_{m} \omega+u_{q} \tag{9.5}\\
J \frac{d \omega}{d t} & =K_{m} i_{q}-\tau_{L} \tag{9.6}\\
\frac{d \theta}{d t} & =\omega \tag{9.7}
\end{align*}
$$

where u_{d} is the direct voltage, u_{q} is the quadrature voltage, i_{d} is the direct current, i_{q} is the quadrature current, ω is the angular velocity, and θ is the angular position. In this coordinate system, the transformed currents i_{d} and i_{q} vary approximately at the mechanical frequency of the motor. These variables typically have bandwidths in the range of $0-100 \mathrm{~Hz}$ compared with $0-5 \mathrm{kHz}$ bandwidth for $u_{S a}, u_{S b}, i_{S a}$ and $i_{S b}$.

The resulting $d q$ system model (9.4)-(9.7) is still nonlinear, however the nonlinear terms can now be canceled by state feedback. Specifically, choosing u_{d} and u_{q} to be of the form

$$
\begin{align*}
& u_{d}=R_{S} i_{d}-n_{p} \omega L_{S} i_{q}+L_{S} v_{d} \tag{9.8}\\
& u_{q}=R_{S} i_{q}+n_{p} \omega L_{S} i_{d}+K_{m} \omega+L_{S} v_{q} \tag{9.9}
\end{align*}
$$

results in the feedback linearized system

$$
\begin{align*}
\frac{d i_{d}}{d t} & =v_{d} \tag{9.10}\\
\frac{d i_{q}}{d t} & =v_{q} \tag{9.11}\\
\frac{d \omega}{d t} & =\left(K_{m} / J\right) i_{q}-\tau_{L} / J \tag{9.12}\\
\frac{d \theta}{d t} & =\omega . \tag{9.13}
\end{align*}
$$

Note that the original fourth-order system has been transformed into a first-order linear system (9.10) and a third-order linear system (equations (9.11)-(9.13)) which are decoupled from each other. As a consequence, linear control techniques can be used for the system (9.10)-(9.13) in these new variables.

9.1.1 Design of the Reference Trajectory and Inputs

The linearized system (9.10)-(9.13) is decoupled. However, constraints on the magnitude of the voltages introduce couplings. To achieve a desired
(reference) speed $\omega_{r e f}$ and acceleration $\alpha_{r e f}$, the required quadrature current is found from equation (9.6) to be

$$
i_{q r e f}=\frac{J}{K_{m}} \alpha_{r e f}+\frac{f}{K_{m}} \omega_{r e f}
$$

where $\tau_{L}=-f \omega$ is now assumed. The quadrature component i_{q} of the current produces torque while the direct component i_{d} does not produce any torque. However, in order to attain higher speeds, it is necessary to apply a negative direct current to cancel the effect of the back emf of the motor. Specifically, note from equation (9.5), the back-emf term in the $d q$ coordinates is $K_{m} \omega$ and a decoupling control law as in (9.9) requires that u_{q} cancel this back-emf term. For example, in the experiments to be presented below, $K_{m}=0.19 \mathrm{~V} / \mathrm{rad} / \mathrm{sec}$ so that the back-emf voltage at a speed of $2000 \mathrm{rpm}(209 \mathrm{radians} / \mathrm{sec}$) is about 41 V . However, the source voltage for this motor is only 40 V , so that cancellation of the back emf would lead to saturation at the input. However, if i_{d} were forced to be negative (field-weakening) by the correct choice of v_{d}, the term $-n_{p} \omega L_{S} i_{d}$ would help to cancel the back-emf term $-K_{m} \omega$ [see equation (9.5) or, equivalently, equation (9.9)]. The design of an appropriate reference for i_{d} is thus essential to avoid saturation of the phase voltages at high rotor speeds.

The desired (reference) direct current $i_{\text {dref }}$ is found by maximizing the torque, that is, $K_{m} i_{q}$ at constant speed subject to the constraint $u_{d}^{2}+u_{q}^{2}=$ $u_{S a}^{2}+u_{S b}^{2} \leq V_{\max }^{2}$ where $V_{\max }$ is fixed. In order to obtain a tractable solution, the optimization is carried out at constant speed under steadystate conditions. Under steady-state conditions, the relations (9.4)-(9.7) become

$$
\begin{aligned}
u_{d} & =R_{S} i_{d}-n_{p} \omega L_{S} i_{q} \\
u_{q} & =R_{S} i_{q}+n_{p} \omega L_{S} i_{d}+K_{m} \omega \\
K_{m} i_{q} & =\tau_{L} .
\end{aligned}
$$

The actual physical constraints for $u_{S a}, u_{S b}$ are of the form $\left|u_{S a}\right| \leq V_{\max }$, $\left|u_{S b}\right| \leq V_{\max }$ rather than $u_{S a}^{2}+u_{S b}^{2} \leq V_{\max }^{2}$. However, in steady-state operation, these conditions are equivalent (see problem 1). Using standard optimization techniques, the maximum is found to correspond to

$$
\begin{align*}
u_{\text {qref }}(\omega) & =\frac{R_{S}}{\sqrt{R_{S}^{2}+\left(n_{p} \omega L_{S}\right)^{2}}} V_{\max } \tag{9.14}\\
\frac{u_{\text {dref }}(\omega)}{u_{\text {qref }}(\omega)} & =-\frac{n_{p} \omega L_{S}}{R_{S}} \tag{9.15}\\
i_{\text {dref }}(\omega) & =-\frac{n_{p} L_{S} K_{m} \omega^{2}}{R_{S}^{2}+\left(n_{p} \omega L_{S}\right)^{2}} . \tag{9.16}
\end{align*}
$$

The inverse tangent of (9.15) is often referred to as the optimal lead angle [113][114][115]. It is the angle advance that the phase voltages $u_{S a}$ and
$u_{S b}$ need to be commanded relative to $n_{p} \theta$ (corresponding to the position of the rotor) to achieve the maximum torque at any given speed ω without violating the voltage constraints. The relationship (9.16) gives the corresponding direct current as a function of speed required to obtain the maximum torque. Although (9.14) through (9.16) were derived assuming constant speed, it will be seen below that they are very useful even under dynamic conditions.

Choosing the direct current to be negative as in (9.16) is referred to as field weakening. This comes from considering the terms

$$
-n_{p} \omega L_{S} i_{d}-K_{m} \omega=-\left(n_{p} L_{S} i_{d}+K_{m}\right) \omega
$$

in (9.5) where, as the value of K_{m} is proportional to the strength of rotor's magnetic field, making $i_{d}<0$ is viewed as weakening this field. A more general approach to obtaining the current references that also take into account the current constraints is given in Section 9.2.

After specifying a desired mechanical reference trajectory $\theta_{r e f}, \omega_{r e f}, \alpha_{r e f}$, the corresponding state trajectory $i_{d r e f}, i_{\text {qref }}, \omega_{\text {ref }}, \theta_{\text {ref }}$ and reference input voltages $u_{d r e f}, u_{q r e f}$ are computed. They are chosen to satisfy the system equations (9.4)-(9.7), that is,

$$
\begin{align*}
L_{S} \frac{d i_{d r e f}}{d t} & =-R_{S} i_{d r e f}+n_{p} \omega_{r e f} L_{S} i_{q r e f}+u_{d r e f} \tag{9.17}\\
L_{S} \frac{d i_{q r e f}}{d t} & =-R_{S} i_{q r e f}-n_{p} \omega_{r e f} L_{S} i_{d r e f}-K_{m} \omega_{r e f}+u_{q r e f} \tag{9.18}\\
J \frac{d \omega_{r e f}}{d t} & =K_{m} i_{q r e f}-f \omega_{r e f} \tag{9.19}\\
\frac{d \theta_{r e f}}{d t} & =\omega_{r e f} \tag{9.20}
\end{align*}
$$

The desired quadrature current is found by solving (9.19) for $i_{\text {qref }}$ and its derivative $d i_{\text {qref }} / d t$ is then found by differentiating this expression. The desired direct current $i_{\text {dref }}$ is given by (9.16) with ω replaced by $\omega_{\text {ref }}$, and its derivative is found by simply differentiating this expression. Doing these calculations gives

$$
\begin{align*}
i_{\text {dref }} & =\frac{-n_{p} L_{S} K_{m} \omega_{r e f}^{2}}{R_{S}^{2}+\left(n_{p} \omega_{r e f} L_{S}\right)^{2}} \tag{9.21}\\
i_{\text {qref }} & =\frac{J}{K_{m}} \alpha_{r e f}+\frac{f}{K_{m}} \omega_{r e f} \tag{9.22}\\
\frac{d i_{\text {dref }}}{d t} & =\frac{-2 K_{m} n_{p} \omega_{r e f} L_{S} R_{S}^{2}}{\left(R_{S}^{2}+\left(n_{p} \omega_{r e f} L_{S}\right)^{2}\right)^{2}} \alpha_{r e f} \tag{9.23}\\
\frac{d i_{\text {qref }}}{d t} & =\frac{J}{K_{m}} \frac{d \alpha_{r e f}}{d t}+\frac{f}{K_{m}} \alpha_{r e f} \tag{9.24}
\end{align*}
$$

Solving (9.17) and (9.18) for $v_{d r e f}$ and $v_{\text {qref }}$ results in

$$
\begin{align*}
& u_{d r e f}=L_{S} \frac{d i_{\text {dref }}}{d t}+R_{S} i_{d r e f}-n_{p} \omega_{r e f} L_{S} i_{q r e f} \tag{9.25}\\
& u_{\text {qref }}=L_{S} \frac{d i_{q r e f}}{d t}+R_{S} i_{q r e f}+n_{p} \omega_{r e f} L_{S} i_{d r e f}+K_{m} \omega_{r e f} \tag{9.26}
\end{align*}
$$

where the expressions in (9.21) through (9.24) are substituted into their respective places on the right-hand sides of (9.25) and (9.26). An important point here is that these references are chosen so as to not violate the current and voltage constraints, which typically requires some trial and error. For example, if $i_{q r e f}$ is too large, then the mechanical trajectory must be modified so that $\alpha_{r e f}$ is decreased [see equation (9.22)].

Remark Note that $u_{d r e f}, u_{\text {qref }}$ are not given by (9.14) and (9.15) because these are constant speed values for the voltages. Rather, one sets (9.21) as the desired direct current and (9.21) as the desired quadrature current, and then chooses the reference input voltages according to (9.25) and (9.26).

9.1.2 State Feedback Controller

Subtracting the system model (9.4)-(9.7) from the reference model (9.17)(9.20) gives

$$
\begin{align*}
L_{S} \frac{d}{d t}\left(i_{d r e f}-i_{d}\right)= & -R_{S}\left(i_{d r e f}-i_{d}\right)+n_{p} \omega_{r e f} L_{S} i_{\text {qref }}-n_{p} \omega L_{S} i_{q} \\
& +u_{d r e f}-u_{d} \tag{9.27}\\
L_{S} \frac{d}{d t}\left(i_{q r e f}-i_{q}\right)= & -R_{S}\left(i_{q r e f}-i_{q}\right)-n_{p} \omega_{r e f} L_{S} i_{d r e f}+n_{p} \omega L_{S} i_{d} \\
& -K_{m}\left(\omega_{r e f}-\omega\right)+u_{\text {qref }}-u_{q} \tag{9.28}\\
J \frac{d}{d t}\left(\omega_{r e f}-\omega\right)= & K_{m}\left(i_{\text {qref }}-i_{q}\right)-f\left(\omega_{r e f}-\omega\right) \tag{9.29}\\
\frac{d}{d t}\left(\theta_{r e f}-\theta\right)= & \omega_{r e f}-\omega . \tag{9.30}
\end{align*}
$$

The first step in specifying the state feedback control law is to use a feedback linearizing controller given by

$$
\begin{align*}
& u_{d}=-n_{p} \omega L_{S} i_{q}+u_{d r e f}+n_{p} \omega_{r e f} L_{S} i_{\text {qref }}-L_{S} v_{d} \tag{9.31}\\
& u_{q}=+n_{p} \omega L_{S} i_{d}+u_{\text {qref }}-n_{p} \omega_{r e f} L_{S} i_{\text {dref }}-L_{S} v_{q} \tag{9.32}
\end{align*}
$$

where v_{d} and v_{q} are new inputs yet to be defined. Substituting equations (9.31) and (9.32) for u_{d} and u_{q} into (9.27)-(9.30) results in the linear
system of equations

$$
\begin{align*}
L_{S} \frac{d}{d t}\left(i_{d r e f}-i_{d}\right) & =-R_{S}\left(i_{d r e f}-i_{d}\right)+v_{d} \tag{9.33}\\
L_{S} \frac{d}{d t}\left(i_{q r e f}-i_{q}\right) & =-R_{S}\left(i_{q r e f}-i_{q}\right)-K_{m}\left(\omega_{r e f}-\omega\right)+v_{q} \tag{9.34}\\
J \frac{d}{d t}\left(\omega_{r e f}-\omega\right) & =K_{m}\left(i_{q r e f}-i_{q}\right)-f\left(\omega_{r e f}-\omega\right) \tag{9.35}\\
\frac{d}{d t}\left(\theta_{r e f}-\theta\right) & =\omega_{r e f}-\omega . \tag{9.36}
\end{align*}
$$

Define the tracking error as

$$
e=\left[\begin{array}{l}
e_{1} \tag{9.37}\\
e_{2} \\
e_{3} \\
e_{4} \\
e_{5}
\end{array}\right] \triangleq\left[\begin{array}{c}
i_{\text {dref }}-i_{d} \\
i_{\text {qref }}-i_{q} \\
\omega_{\text {ref }}-\omega \\
\theta_{\text {ref }}-\theta \\
\int_{0}^{t}\left(\theta_{\text {ref }}(\tau)-\theta(\tau)\right) d \tau
\end{array}\right]
$$

where the integrator is added to the controller to eliminate any steady-state error due to constant disturbances (see Chapter 2). Using (9.33)-(9.36), the error (9.37) satisfies

$$
\frac{d e}{d t}=\left[\begin{array}{ccccc}
-R_{S} / L_{S} & 0 & 0 & 0 & 0 \tag{9.38}\\
0 & -R_{S} / L_{S} & -K_{m} / L_{S} & 0 & 0 \\
0 & K_{m} / J & -f / J & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0
\end{array}\right] e+\left[\begin{array}{cc}
1 / L_{S} & 0 \\
0 & 1 / L_{S} \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] v .
$$

where $v \triangleq\left[\begin{array}{ll}v_{d} & v_{q}\end{array}\right]^{T}$. More compactly,

$$
\frac{d e}{d t}=A e+B v
$$

with the obvious definitions for A and B. Through the use of a nonlinear state transformation, input transformation, and nonlinear feedback, a linear time-invariant error system has been obtained. The input v is chosen as the linear state feedback

$$
\begin{equation*}
v=-K e \tag{9.39}
\end{equation*}
$$

where K is taken to be of the form

$$
K=\left[\begin{array}{ccccc}
k_{11} & 0 & 0 & 0 & 0 \tag{9.40}\\
0 & k_{22} & k_{23} & k_{24} & k_{25}
\end{array}\right]
$$

The closed-loop error system is then

$$
\frac{d e}{d t}=(A-B K) e
$$

Using the techniques of Chapter 2, one can choose K such that the closedloop poles of $A-B K$ are placed at any desired location (see problem 2).

9.1.3 Speed Observer

The above controller design assumed full state measurements. However, a typical hardware setup provides only the current measurements and the position measurements. In order to estimate the speed from the position measurement (optical encoder) and current measurements, a reduced-order observer can be implemented according to

$$
\begin{align*}
\frac{d \hat{\theta}}{d t} & =\hat{\omega}+\ell_{1}(\theta-\hat{\theta}) \tag{9.41}\\
\frac{d \hat{\omega}}{d t} & =\left(K_{m} / J\right) i_{q}-(f / J) \hat{\omega}+\ell_{2}(\theta-\hat{\theta}) \tag{9.42}
\end{align*}
$$

where ℓ_{1} and ℓ_{2} are the observer gains and i_{q} is a known input to the observer as $i_{S a}, i_{S b}$, and θ are measured. Subtracting (9.41) from (9.7) and (9.42) from (9.6) results in

$$
\begin{align*}
\frac{d \varepsilon_{1}}{d t} & =\varepsilon_{2}-\ell_{1} \varepsilon_{1} \tag{9.43}\\
\frac{d e_{2}}{d t} & =-(f / J) \varepsilon_{2}-\ell_{2} \varepsilon_{1} \tag{9.44}
\end{align*}
$$

where $\varepsilon_{1} \triangleq \theta-\hat{\theta}, \varepsilon_{2} \triangleq \omega-\hat{\omega}$. One can then choose the observer gains ℓ_{1}, ℓ_{2} such that $\varepsilon_{1}(t) \rightarrow 0, \varepsilon_{2}(t) \rightarrow 0$ at any prescribed rate (see problem 3 and Chapter 2).

A block diagram illustrating the state feedback controller for a PM synchronous motor is given in Figure 9.1.

FIGURE 9.1. Controller block diagram. The state feedback controller is the composition of (9.31) and (9.32) with (9.39).

9.1.4 Experimental Results

The PM motor used in the experiments has $n_{p}=50$ pole pairs, two stator phases, and the following parameter values $I_{\max }=6.0 \mathrm{~A}, V_{\max }=40 \mathrm{~V}$, $R_{S}=0.55 \Omega, L_{S}=1.5 \mathrm{mH}, K_{m}=0.19 \mathrm{~N}-\mathrm{m} / \mathrm{A}, J=4.5 \times 10^{-5} \mathrm{~kg}-\mathrm{m}^{2}$, and $f=0.0008 \mathrm{~N}-\mathrm{m} / \mathrm{rads} / \mathrm{sec}$. The hardware setup used to implement the feedback controller consisted Motorola's Advanced Development System (ADS) including a Motorola DSP56001 digital signal processor, a DSP extension board, two Aerotech $20-\mathrm{kHz}$ PWM amplifier, and the above PM motor with a 2000 -counts/rev optical encoder.

FIGURE 9.2. Experimental setup. The motor is connected to a linear positioning table through a ball screw.

The data acquisition board was built by Aerotech, Inc. and has four 8bit A/D converters for sampling the voltages and currents, two 12 -bit D/A converters to output the control voltages and a timer chip that is used to set the sample rate and to count the optical encoder pulses.

The control algorithm described above was tested on two different trajectories. The first one was a fast point-to-point move in which the motor turned 0.9π radians in 30 msec . The second move forces the motor up to a speed of 3000 rpm and brings it back down into position. This move was chosen to study high-speed control of the PM motor where the use of the reference trajectory (9.21) is required.

Sample Period and Observer Gains

A sample rate of $10 \mathrm{kHz}(T=100 \mu \mathrm{sec})$ is required due to the high number of pole pairs. Specifically, the motor reaches speeds up to 3000 rpm , which corresponds to an electrical frequency of $(2 \pi / 60) \times 3000 \times n_{p}=1.57 \mathrm{kHz}$ for $n_{p}=50$.

The observer gains for both moves were chosen as $\ell_{1}=5272$ and $\ell_{2}=7.0 \times 10^{6}$, resulting in both closed-loop poles at -2646 . The observer computation, that is, the integration of the system (9.41), (9.42) as well as the control algorithm is carried out every $T=0.1 \mathrm{msec}(10 \mathrm{kHz})$.

As shown below (see Figure 9.5), the observer performed well and was essential to get the controller to track the particular demanding trajectories used (see Figures 9.3 and 9.5). It is reported in Ref. [72] that a speed
estimator based on the backward difference estimate $\omega(k T)=[\theta(k T)-$ $\theta((k-1) T)] / T$ did not result in closed-loop tracking for these same trajectories. As explained in Ref. [72], this is due to the fact when the velocity is computed by differentiating the position, the resolution of the velocity depends on the sample rate as well as the resolution of the encoder. Note that a 2000 -counts/rev encoder gives a minimum velocity resolution of $(2 \pi / 2000) / T$ (see Chapter 2), which for $T=1 / 10^{4} \mathrm{sec}$, gives a resolution of $31.4 \mathrm{rads} / \mathrm{sec}$ or 300 rpm ! As the reference trajectory for speed (Figure 9.5) requires the motor to go from zero to 141 rads $/ \mathrm{sec}(1350 \mathrm{rpm})$ in 10 msec, a sample rate of 10 kHz results in 100 iterations through the control loop in this time. On the other hand, a sample rate of 1 kHz would give a speed resolution of $3.14 \mathrm{rads} / \mathrm{sec}$, but only 10 control loop iterations! The simple difference algorithm will work if a 50,000 -counts/rev encoder is used (see Ref. [112]). However, this is not a practical choice for an industrial setup due to the cost and the fact that such an encoder is typically limited to lower motor speeds to work properly. (See Chapter 2 for more details on how an optical encoder works.)

Control of a $1.8-\mathrm{mm}$ Move

A typical high-performance application for a PM synchronous motor is in a positioning system. Specifically, consider the requirement to have the motor move (point-to-point) a small linear positioning table 1.8 mm under 30 msec using a smooth mechanical trajectory so as to not excite vibrations in the table. The specified position $\theta_{r e f}$, speed $\omega_{r e f}=d \theta_{r e f} / d t$ and acceleration $\alpha_{\text {ref }}=d \omega_{\text {ref }} / d t$ are chosen to make the table move 1.8 mm . This turns out to be a 0.9π radian turn of the motor as the motor is attached to the linear stage through a ball screw. Figures 9.3 and 9.5 show the desired position and speed references $\theta_{\text {ref }}$ and $\omega_{\text {ref }}$, respectively. That this move represents a very stringent performance requirement can be seen in Figure 9.6 , which shows that the corresponding the reference input $v_{d r}$ goes below -25 V leaving less than 15 V for the feedback controller. Furthermore, the current $i_{\text {qref }}$ is shown in Figure 9.8 and is over 4 A (limit of 6 A) in order to achieve the required torque $K_{m} i_{q}$.

In the implementation, the gains for the $1.8-\mathrm{mm}$ move were set as

$$
K=\left[\begin{array}{ccccc}
1.06 \times 10^{4} & 0 & 0 & 0 & 0 \\
0 & 1.78 \times 10^{4} & 3.40 \times 10^{2} & 3.80 \times 10^{6} & 1.07 \times 10^{7}
\end{array}\right]
$$

to place the closed-loop poles at -18178 for the first-order subsystem and at $-11047,-28.3,-54.89 \pm j 1190.7$ for the fourth-order subsystem. Figure 9.3 gives the actual and desired position response for the $1.8-\mathrm{mm}$ move of the positioning table (corresponding to a 0.9π radian rotation of the motor) using the state feedback controller of Figure 9.1. The last part of the position response is shown in more detail in Figure 9.4, showing that the motor achieves the required final position within one encoder count.

FIGURE 9.3. θ and $\theta_{\text {ref }}$ for the 1.8 mm move. From Bodson et al. [72], (c) 2004 IEEE.

FIGURE 9.4. θ in counts after 30 msecs. Desired position is 900 counts ($=2 \pi \times 900 / 2000=0.9 \pi)$. From Bodson et al. [72], (C) 2004 IEEE.

The desired and estimated (observer) speeds are shown in Figure 9.5.

FIGURE 9.5. $\hat{\omega}$ and $\omega_{\text {ref }}$ for the 1.8 -mm move. From Bodson et al. [72], (c) 2004 IEEE.

FIGURE 9.6. $v_{d r e f}$ for the $1.8-\mathrm{mm}$ move. From Bodson et al. [72], © 2004 IEEE.

Figures 9.7 and 9.8 show the tracking of the currents i_{d} and i_{q}.

FIGURE 9.7. i_{d} and $i_{d r e f}$ for the $1.8-\mathrm{mm}$ move. From Bodson et al. [72], (c) 2004 IEEE.

FIGURE 9.8. i_{q} and $i_{\text {qref }}$ for the $1.8-\mathrm{mm}$ move. From Bodson et al. [72], (C) 2004 IEEE.

The position and speed tracking are very good despite large fluctuations in the measured/calculated currents i_{d} and i_{q}.

Current Fluctuations in i_{d} and i_{q}

Simulations show that the fluctuations in the currents shown in Figures 9.7 and 9.8 are due to the limited resolution of the position measurement (2000-counts/rev encoder) and not to the PWM noise [72]. Specifically, the oscillatory behavior is present in the simulation when a 2000 counts/rev encoder was modeled, but not when a 50,000 -counts/rev encoder was modeled. As pointed out above, Figure 9.4 (note the units are in counts not radians) shows that the motor stays within one encoder count of the final position after 30 msec , which is the highest accuracy the controller can achieve with any given encoder. The oscillatory behavior of $\hat{\omega}$ at the end of the run in Figure 9.5 is a direct result of integrating the oscillating quadrature current i_{q}, that is, the noise due to quantization of the position θ. Consequently, the estimate of speed $\hat{\omega}$ is responding to the noisy oscillations in i_{q} and does not indicate that the controller is not maintaining the correct final position.

Remark It is straightforward to show that a permanent magnet DC brush motor with a torque constant of $K_{T}=0.2 \mathrm{~N}-\mathrm{m} / \mathrm{A}\left(K_{m}=0.19 \mathrm{~N}\right.$ m / A for the stepper motor used here), a moment of inertia $J=3.6 \times 10^{-4}$ $\mathrm{kg}-\mathrm{m}^{2}$ (the inertia is much larger than the stepper motor due to windings on the rotor), voltage ceiling limits of $\pm 80 \mathrm{~V}$, and a peak current limit of 22 A is unable to make such a move under 30 msec . This is due to the fact that field weakening is not possible. However, the above PM synchronous motor with voltage limits of $\pm 40 \mathrm{~V}$ and current limits of 6 A can indeed make such a move.

Control of a 3000-rpm Run

Figure 9.9 shows the actual and desired (reference) position using the controller to bring the motor up to 3000 rpm . The actual and estimated speeds are shown in Figure 9.10. Again, the tracking of the mechanical trajectory is quite good despite oscillatory behavior in i_{d} and i_{q} (see Figures 9.12 and 9.13). These oscillations are again attributed to the lack of resolution in the 2000 -counts/rev encoder. Note also that the reference input $v_{d r e f}$ (Figure 9.11) reaches -30 V , leaving less than 10 V for the feedback controller.

In the implementation, the gains for the 3000 -rpm run were set as

$$
\begin{aligned}
& K= \\
& {\left[\begin{array}{ccccc}
2.587 \times 10^{4} & 0 & 0 & 0 & 0 \\
0 & 2.446 \times 10^{4} & 6.031 \times 10^{2} & 2.935 \times 10^{6} & 1.004 \times 10^{7}
\end{array}\right]}
\end{aligned}
$$

to place the closed-loop poles at -26314 for the first-order subsystem and at $-24727,-3.4,-101 \pm j 893$ for the fourth-order subsystem.

FIGURE 9.9. θ and $\theta_{r e f}$ for the $3000-\mathrm{rpm}$ move. From Bodson et al. [72], (c) 2004 IEEE.

FIGURE 9.10. $\hat{\omega}$ and $\omega_{\text {ref }}$ for the 3000 -rpm move. From Bodson et al. [72], (C) 2004 IEEE.

FIGURE 9.11. $v_{\text {dref }}$ for the $3000-\mathrm{rpm}$ move. From Bodson et al. [72], (C) 2004 IEEE.

FIGURE 9.12. i_{d} and $i_{d r e f}$ for the 3000 -rpm move. From Bodson et al. [72], (C) 2004 IEEE.

FIGURE 9.13. i_{q} and $i_{\text {qref }}$ for the $3000-\mathrm{mm}$ move. From Bodson et al. [72], (C) 2004 IEEE.

9.1.5 Current Command Control

In the previous section the motor was voltage-controlled. The experiments presented there used a PM synchronous motor with $n_{p}=50$ pole pairs, making voltage control essential to obtain high performance. To explain, the equations of the PM machine are (9.4)-(9.7) which are repeated below.

$$
\begin{align*}
L_{S} \frac{d i_{d}}{d t} & =-R_{S} i_{d}+n_{p} \omega L_{S} i_{q}+u_{d} \tag{9.45}\\
L_{S} \frac{d i_{q}}{d t} & =-R_{S} i_{q}-n_{p} \omega L_{S} i_{d}-K_{m} \omega+u_{q} \tag{9.46}\\
J \frac{d \omega}{d t} & =K_{m} i_{q}-\tau_{L} \tag{9.47}\\
\frac{d \theta}{d t} & =\omega \tag{9.48}
\end{align*}
$$

Equations (9.45) and (9.46) show that $n_{p} \omega L_{S}$ is an impedance to changing i_{d}, i_{q} through the input voltages u_{d}, u_{q}. With n_{p} large, the time it takes to change a current through an input voltage can be of the same order of time it takes to change the speed through i_{q}. This made it essential in the previous section (where $n_{p}=50$) to design a voltage controller that accounts for the impedances $n_{p} \omega L_{S}$ in the current equations. However, it is also common to find PM synchronous motors with $n_{p}=2$ rather than
$n_{p}=50$. In this case, the impedance is 25 times less and one does not usually need to use voltage control, but, rather, current control methods can be employed. That is, using a PI current controller of the form

$$
\begin{align*}
& u_{q}=K_{p}\left(i_{q r e f}-i_{q}\right)+K_{I} \int_{0}^{t}\left(i_{q r e f}-i_{q}\right) d t \tag{9.49}\\
& u_{d}=K_{p}\left(i_{d r e f}-i_{d}\right)+K_{I} \int_{0}^{t}\left(i_{d r e f}-i_{q}\right) d t \tag{9.50}
\end{align*}
$$

and adjusting the gains appropriately, $i_{q r e f} \rightarrow i_{q}, i_{d r e f} \rightarrow i_{d}$ fast enough that one can consider $i_{q} \approx i_{q r e f}, i_{d} \approx i_{d r e f}$. Then a (mechanical) trajectory tracking controller can be designed based on the reduced-order system model

$$
\begin{align*}
\frac{d \omega}{d t} & =\left(K_{m} / J\right) i_{q r e f}-\tau_{L} / J \tag{9.51}\\
\frac{d \theta}{d t} & =\omega \tag{9.52}
\end{align*}
$$

where $i_{\text {qref }}$ is now considered as the input. Figure 9.14 is a block diagram illustrating a current command configuration. Experience shows that this works quite well if the number of pole pairs n_{p} is small. Equations (9.51) and (9.52) are identical in form to a DC motor so that, as in Chapter 2, one can choose a trajectory tracking controller in the form

$$
i_{q r e f}=\frac{J}{K_{m}}\left(K_{0} \int_{0}^{t}\left(\theta_{r e f}-\theta\right) d t+K_{1}\left(\theta_{r e f}-\theta\right)+K_{2}\left(\omega_{r e f}-\omega\right)+\alpha_{r e f}\right)
$$

and choose the gains K_{0}, K_{1}, and K_{2} such that $\theta \rightarrow \theta_{r e f}, \omega \rightarrow \omega_{r e f}$ despite any constant load torque τ_{L} acting on the motor.

FIGURE 9.14. Current command control of a PM synchronous motor.

One often chooses $i_{d r e f} \equiv 0$ in (9.49) if the speeds are not too high. However, field weakening may be required if one desires to run the machine at high speeds. In this case, the general approach to field weakening given in the next section would be a useful way to specify $i_{\text {dref }}$.

9.2 Optimal Field Weakening*

Maximization of the torque produced by electric motors is an important practical consideration, as optimization may yield the use of a smaller motor for a given application, or higher performance for a given motor. In this section, the problem of extracting all the available torque from a PM synchronous motor is considered. More specifically, given any fixed speed ω as well as the current and voltage constraints $I_{\max }$ and $V_{\max }$, respectively, it is shown how the voltages and currents in the machine must be chosen to obtain the optimum torque without violating the constraints. The approach here is from the development in Refs. [116][117].

As shown in the previous section, one of the reasons the available torque of electric motors decreases at high speed is due to the voltage limits. This is because the source voltage must overcome the increasing back-emf voltage to the detriment of building up the stator currents. Maximization of the torque at high speeds requires the use of field-weakening which, for synchronous motors, may be achieved optimally using a relatively simple strategy. At low speeds, the current limits restrict how much torque can be produced and the voltage limits play no role. At intermediate speeds as well as higher speeds, both the voltage and the current limits are active or just the voltage limits. This section provides algorithms to compute the speeds at which transitions occur between these modes, and describes control strategies required in each case.

9.2.1 Formulation of the Torque Maximization Problem

The state-space model in the $d q$ coordinates is

$$
\begin{align*}
L_{S} \frac{d i_{d}}{d t} & =-R_{S} i_{d}+n_{p} \omega L_{S} i_{q}+u_{d} \tag{9.53}\\
L_{S} \frac{d i_{q}}{d t} & =-R_{S} i_{q}-n_{p} \omega L_{m} i_{d}-K_{m} \omega+u_{q} \tag{9.54}\\
J \frac{d \omega}{d t} & =K_{m} i_{q}-\tau_{L} \tag{9.55}\\
\frac{d \theta}{d t} & =\omega \tag{9.56}
\end{align*}
$$

For a constant speed ω, equations (9.53) - (9.55) yield

$$
\begin{align*}
u_{d} & =R_{S} i_{d}-n_{p} \omega L_{S} i_{q} \tag{9.57}\\
u_{q} & =R_{S} i_{q}+n_{p} \omega L_{S} i_{d}+K_{m} \omega \tag{9.58}\\
K_{m} i_{q} & =\tau_{L} . \tag{9.59}
\end{align*}
$$

The objective here is the maximization of the electrical torque $K_{m} i_{q}$ within the voltage and current constraints. The voltage and current constraints are incorporated into the problem statement by using the fact that, at constant speed, the phase voltages and the phase currents are sinusoidal, with peak magnitudes given by $\sqrt{u_{d}^{2}+u_{q}^{2}}$ and $\sqrt{i_{d}^{2}+i_{q}^{2}}$, respectively. Therefore, the phase voltages bounded by $V_{\max }$ and the phase currents bounded by $I_{\max }$ yield constraints in the $d q$ variables given by

$$
\begin{align*}
V & \triangleq \sqrt{u_{d}^{2}+u_{q}^{2}} \leq V_{\max } \tag{9.60}\\
I & \triangleq \sqrt{i_{d}^{2}+i_{q}^{2}} \leq I_{\max } \tag{9.61}
\end{align*}
$$

9.2.2 Speed Ranges and Transition Speeds

Because the torque may, in theory, be made arbitrarily large by increasing the voltage and current levels, optimal operation under constraints is always achieved with the limits on either the currents, the voltages or both being reached. A typical motor is characterized by three ranges of speed: a low-speed range where operation is constrained by the current limit only, an intermediate speed range where operation is constrained by both the voltage and the current limit, and a high-speed range where operation is constrained by the voltage limit only.

At a specific speed, torque maximization will be achieved for a specific choice of i_{d} and i_{q} for a current controlled drive, or a specific choice of u_{d} and u_{q} for a voltage controlled drive. The optimal values are denoted by $i_{d}^{*}, i_{q}^{*}, u_{d}^{*}$, and u_{q}^{*}. At each such speed, the torque optimization will result in the machine being at one of the three constraint conditions: (i) $V=V_{\max }$, (ii) $I=I_{\max }$, or (iii) $V=V_{\max }, I=I_{\max }$. Knowing what the solution is for each of these three possible constraint conditions, it remains to determine the speeds at which the system transitions from one constraint to another. The speed at which the system transitions between $V=V_{\max }$ and $V=V_{\max }, I=I_{\max }$ is referred to as the first transition speed and is denoted by ω_{1}. Similarly, the speed at which the system transitions between $I=I_{\max }$ and $V=V_{\max }, I=I_{\max }$ is referred to as the second transition speed and is denoted by ω_{2}. These speeds can be calculated after having obtained the form of the optimal solution in each speed range. In the analysis that follows, only the case $\omega \geq 0$ is considered because straightforward symmetry arguments easily yield the case $\omega \leq 0$.

Case 1: Optimization under just Current Constraints

First consider the case where only the current constraint is active. In this case, the optimum i_{d}^{*} must be zero and $i_{q}^{*}= \pm I_{\max }$ to optimize the torque. The overall solution is simply

$$
\begin{align*}
i_{d}^{*}(\omega) & =0 \tag{9.62}\\
i_{q}^{*}(\omega) & = \pm I_{\max } \tag{9.63}\\
u_{d}^{*}(\omega) & = \pm\left(-n_{p} \omega L_{S} I_{\max }\right) \tag{9.64}\\
u_{q}^{*}(\omega) & = \pm R_{S} I_{\max }+K_{m} \omega . \tag{9.65}
\end{align*}
$$

where the positive sign is chosen for positive torque and the negative sign is chosen for negative torque.

Case 2: Maximization under just Voltage Constraints

Torque maximization under the voltage constraint alone yields a solution which is referred to as optimal field-weakening and is well known (cf. Ref. [1], p. 266, and Ref. [114]). To obtain the solution, one solves (9.57) and (9.58) for i_{d} and i_{q}, so that

$$
\left[\begin{array}{c}
i_{d} \tag{9.66}\\
i_{q}
\end{array}\right]=\frac{1}{Z_{S}^{2}(\omega)}\left[\begin{array}{c}
R_{S} u_{d}+n_{p} \omega L_{S}\left(u_{q}-K_{m} \omega\right) \\
-n_{p} \omega L_{S} u_{d}+R_{S}\left(u_{q}-K_{m} \omega\right)
\end{array}\right]
$$

where $Z_{S}^{2}(\omega) \triangleq R_{S}^{2}+\left(n_{p} \omega L_{S}\right)^{2}$. Choosing ϕ so that $u_{d}=V \cos (\phi), u_{q}=$ $V \sin (\phi)$, the current i_{q} is given by

$$
\begin{equation*}
i_{q}=\frac{-n_{p} \omega L_{S} V \cos (\phi)+R_{S} V \sin (\phi)-R_{S} K_{m} \omega}{Z_{S}^{2}(\omega)} \tag{9.67}
\end{equation*}
$$

Equation (9.67) shows that the maximum current i_{q}, and therefore the maximum electrical torque, is obtained for

$$
\begin{aligned}
V & = \pm V_{\max } \\
\frac{d}{d \phi}\left(-n_{p} \omega L_{S} \cos (\phi)+R_{S} \sin (\phi)\right) & =0
\end{aligned}
$$

where the positive sign is chosen for positive torque and the negative sign is chosen for negative torque. Solving the second of these equations gives $\tan \left(\phi^{*}\right)=-R_{S} /\left(n_{p} \omega L_{S}\right)$. The optimal u_{d}^{*} and u_{q}^{*} therefore satisfy

$$
\begin{equation*}
\frac{u_{d}^{*}}{u_{q}^{*}}=-\frac{n_{p} \omega L_{S}}{R_{S}}=\frac{1}{\tan \left(\phi^{*}\right)} . \tag{9.68}
\end{equation*}
$$

This equation gives the value of the optimal lead angle for voltage-controlled drives. Equation (9.68) yields

$$
\begin{aligned}
& \sin \left(\phi^{*}\right)=R_{S} / Z_{S}(\omega) \\
& \cos \left(\phi^{*}\right)=-n_{p} \omega L_{S} / Z_{S}(\omega)
\end{aligned}
$$

and therefore

$$
\begin{align*}
u_{d}^{*}(\omega) & = \pm \frac{-n_{p} \omega L_{S}}{Z_{S}(\omega)} V_{\max } \tag{9.69}\\
u_{q}^{*}(\omega) & = \pm \frac{R_{S}}{Z_{S}(\omega)} V_{\max } \tag{9.70}
\end{align*}
$$

where the + sign is for positive torque and the - sign is for negative torque. Using these values for the voltages, one finds the resulting direct current i_{d}^{*} is given by [see (9.66) and (9.68)]

$$
\begin{equation*}
i_{d}^{*}(\omega)=-\frac{\left(n_{p} \omega L_{S}\right)\left(K_{m} \omega\right)}{Z_{S}^{2}(\omega)}=\frac{-n_{p} L_{S} K_{m} \omega^{2}}{R_{S}^{2}+\left(n_{p} \omega L_{S}\right)^{2}} \tag{9.71}
\end{equation*}
$$

which can be viewed as the optimal.field weakening current (compare with (9.21)). Similarly, the quadrature current is given by

$$
\begin{equation*}
i_{q}^{*}(\omega)=\frac{ \pm V_{\max } Z_{S}(\omega)-K_{m} \omega R_{S}}{Z_{S}^{2}(\omega)} \tag{9.72}
\end{equation*}
$$

Note that if $R_{S}=0$, then the motoring and braking quadrature currents are the negative of each other.

Case 3: Maximization under Voltage and Current Constraints

In the case where both the voltage and the current constraints are active, the optimization reduces to the solution of a system of algebraic equations, because there are as many constraints as degrees of freedom. The steadystate equations (9.57) and (9.58) are substituted into $u_{d}^{2}+u_{q}^{2}=V_{\max }^{2}$ and after some rearranging, results in

$$
\begin{equation*}
Z_{S}^{2}(\omega)\left(i_{d}^{2}+i_{q}^{2}\right)+K_{m}^{2} \omega^{2}+2 R_{S} K_{m} \omega i_{q}+2 n_{p} L_{S} K_{m} \omega^{2} i_{d}=V_{\max }^{2} \tag{9.73}
\end{equation*}
$$

Eliminating i_{d} using $i_{d}^{2}+i_{q}^{2}=I_{\max }^{2}$ leads to a quadratic equation for i_{q}^{*} of the form

$$
\begin{equation*}
\alpha(\omega) i_{q}^{* 2}+\beta(\omega) i_{q}^{*}+\gamma(\omega)=0 \tag{9.74}
\end{equation*}
$$

where

$$
\begin{align*}
& \alpha(\omega) \triangleq 4 R_{S}^{2} \omega^{2} K_{m}^{2}+4 n_{p}^{2} \omega^{4} L_{S}^{2} K_{m}^{2} \tag{9.75}\\
& \beta(\omega) \triangleq-4 R_{S} K_{m} \omega\left(V_{\max }^{2}-K_{m}^{2} \omega^{2}-Z_{S}^{2}(\omega) I_{\max }^{2}\right) \tag{9.76}\\
& \gamma(\omega) \triangleq\left(V_{\max }^{2}-K_{m}^{2} \omega^{2}-Z_{S}^{2}(\omega) I_{\max }^{2}\right)^{2}-4 I_{\max }^{2} n_{p}^{2} \omega^{4} L_{S}^{2} K_{m}^{2} \tag{9.77}
\end{align*}
$$

In this case, where both the voltage and the current constraints are active, $\beta^{2}(\omega)-4 \alpha(\omega) \gamma(\omega) \geq 0$ (see problem 4) and equation (9.74) has two real roots

$$
\begin{equation*}
i_{q}^{*}(\omega)=\frac{-\beta(\omega) \pm \sqrt{\beta^{2}(\omega)-4 \alpha(\omega) \gamma(\omega)}}{2 \alpha(\omega)} \tag{9.78}
\end{equation*}
$$

with the positive sign for motoring and the negative sign for braking. It then follows that

$$
\begin{align*}
i_{d}^{*}(\omega) & =-\sqrt{I_{\max }^{2}-i_{q}^{* 2}(\omega)} \tag{9.79}\\
u_{d}^{*} & =R_{S} i_{d}^{*}-n_{p} \omega L_{S} i_{q}^{*} \tag{9.80}\\
u_{q}^{*} & =R_{S} i_{q}^{*}+n_{p} \omega L_{S} i_{d}^{*}+K_{m} \omega . \tag{9.81}
\end{align*}
$$

Again note that if $R_{S}=0(\Rightarrow \beta(\omega)=0)$, the motoring and braking quadrature currents are just the negative of each other.

First Transition Speed ω_{1}

As previously explained, the speed at which the system transitions between $V=V_{\max }$ and $V=V_{\max }, I=I_{\max }$ is referred to as the first transition speed and is denoted by ω_{1}. To calculate ω_{1}, consider the machine to be operating under the current constraint only so that $i_{q}= \pm I_{\text {max }}$ and find the value of the speed for which the voltage limit is first encountered. Specifically, substitute (9.64) and (9.65) into $u_{d}^{2}(\omega)+u_{q}^{2}(\omega)=V_{\max }^{2}$ and rearrange to obtain the following equation for the first transition speed:

$$
\begin{equation*}
\left(K_{m}^{2}+\left(n_{p} L_{S} I_{\max }\right)^{2}\right) \omega_{1}^{2}+2 K_{m} K_{m} I_{\max } \omega_{1}=V_{\max }^{2} \tag{9.82}
\end{equation*}
$$

The equation has two real roots $\omega_{1 \text { pos }}>0$ and $\omega_{1 \text { neg }}<0$ (see problem 5). The positive root $\omega_{1 \text { pos }}$ corresponds to the case of positive torque. The negative root corresponds to the braking mode, that is, $\left|\omega_{1 \text { neg }}\right|$ is the transition speed when $i_{q}=-I_{\max }$ (see problem 5). If $R_{S}=0, \omega_{1 \text { neg }}=-\omega_{1 \text { pos }}$.

Second Transition Speed ω_{2}

Similarly, the speed at which the system transitions between $I=I_{\max }$ and $V=V_{\max }, I=I_{\max }$ is referred to as the second transition speed and is denoted by ω_{2}. To calculate ω_{2}, consider the machine to be operating under the voltage constraint only so that u_{d}^{*}, u_{q}^{*} are given by (9.69) and (9.70) resulting in the currents (9.71) and (9.72), then find the value of the speed for which the current limit is first encountered. Specifically, substitute the currents (9.71) and (9.72) into $i_{d}^{2}(\omega)+i_{q}^{2}(\omega)=I_{\text {max }}^{2}$ and rearrange to obtain

$$
\begin{equation*}
Z_{S}^{2}\left(\omega_{2}\right)\left(V_{\max }^{2}+\left(K_{m} \omega_{2}\right)^{2}-Z_{S}^{2}\left(\omega_{2}\right) I_{\max }^{2}\right)= \pm 2 K_{m} \omega_{2} R_{S} V_{\max } Z_{S}\left(\omega_{2}\right) \tag{9.83}
\end{equation*}
$$

Upon canceling $Z_{S}\left(\omega_{2}\right)$ and squaring both sides, one obtains
$Z_{S}^{2}\left(\omega_{2}\right)\left(\left(V_{\max }^{2}-R_{S}^{2} I_{\max }^{2}\right)-\left(n_{p}^{2} L_{S}^{2} I_{\max }^{2}-K_{m}^{2}\right) \omega_{2}^{2}\right)^{2}=\left(2 K_{m} R_{S} V_{\max }\right)^{2} \omega_{2}^{2}$.
This is a cubic equation in ω_{2}^{2} of the form

$$
\begin{equation*}
(x-a)^{2}(x+b)=c x \tag{9.85}
\end{equation*}
$$

where

$$
\begin{align*}
x & \triangleq \omega_{2}^{2} \tag{9.86}\\
a & \triangleq \frac{V_{\max }^{2}-R_{S}^{2} I_{\max }^{2}}{n_{p}^{2} L_{S}^{2} I_{\max }^{2}-K_{m}^{2}} \tag{9.87}\\
b & \triangleq \frac{R_{S}^{2}}{\left(n_{p} L_{S}\right)^{2}} \tag{9.88}\\
c & \triangleq \frac{\left(2 K_{m} R_{S} V_{\max }\right)^{2}}{\left(n_{p} L_{S}\right)^{2}\left(n_{p}^{2} L_{S}^{2} I_{\max }^{2}-K_{m}^{2}\right)^{2}} \tag{9.89}
\end{align*}
$$

To study the roots of equation (9.85), rearrange it as

$$
\begin{equation*}
1-c \frac{x}{(x-a)^{2}(x+b)}=0 \tag{9.90}
\end{equation*}
$$

Its root locations can then be found using the properties of the complementary root locus $[37][46][81]$, that is, the root locus corresponding to a zero at $x=0$, a pole at $x=-b$, a double pole at $x=a$, and a negative gain $k=-c$. This analysis is now broken down into two cases.

Case 1: $a>0$
The most common situation is the one in which $a>0$. The quantity $V_{\max }^{2}-$ $R_{S}^{2} I_{\max }^{2}>0$ for any practical motor, so that the case $a>0$ actually means that $n_{p}^{2} L_{S}^{2} I_{\max }^{2}-K_{m}^{2}>0$. In this case, the complementary root locus is shown in Fig. 9.15. For $c>0$, there is one negative root $x<-b$, a positive root $x<a$, and a positive root $x>a$. As $x=\omega_{2}^{2}$, the root $x<-b$ is extraneous and therefore ignored. To understand which of the other two roots may apply, rearrange equation (9.83) to obtain

$$
\begin{equation*}
Z_{S}^{2}(\omega)\left(n_{p}^{2} L_{S}^{2} I_{\max }^{2}-K_{m}^{2}\right)\left(\frac{V_{\max }^{2}-R_{S}^{2} I_{\max }^{2}}{n_{p}^{2} L_{S}^{2} I_{\max }^{2}-K_{m}^{2}}-\omega^{2}\right)= \pm 2 K_{m} \omega R_{S} V_{\max } Z_{S}(\omega) \tag{9.91}
\end{equation*}
$$

This expression shows that the root satisfying $x<a$ corresponds to positive torque ($+V_{\max }$) while the root satisfying $x>a$ corresponds to the negative torque $\left(-V_{\max }\right)$.

FIGURE 9.15. Locus of roots for $x=\omega_{2}^{2}$ of (9.90) with $a>0$.

Case 2: $a<0$

The solutions of (9.90), or equivalently (9.85), when $a<0$ are now considered. This case requires $K_{m}>n_{p} L_{S} I_{m a x}$. In this case, there is never a second transition speed in brake mode, while in the motor mode, there is either no second transition speed, or two second transition speeds (that is, two speeds ω_{21} and ω_{22} where the system transitions between the $V=V_{\max }$ constraint region and the $V=V_{\max }, I=I_{\max }$ constraint region.

In the case $a<0$, there are two possibilities for the complementary root locus as shown in Figure 9.16. These two possibilities are determined by the break-away points which are the roots of

$$
\begin{equation*}
\frac{d c}{d x}=\frac{d}{d x} \frac{(x-a)^{2}(b+x)}{x}=\frac{(x-a)\left(2 x^{2}+b x+a b\right)}{x^{2}}=0 . \tag{9.92}
\end{equation*}
$$

The solutions of this equation that belong to the complementary root locus are

$$
\begin{align*}
& x_{b 1}=a \\
& x_{b 2}=\frac{-b+\sqrt{b^{2}-8 a b}}{4} \tag{9.93}\\
& x_{b 3}=\frac{-b-\sqrt{b^{2}-8 a b}}{4} \quad \text { if }-a>b
\end{align*}
$$

The second root $x_{b 2}$ is the only break-away point on the positive real axis and therefore the only one that has physical significance. For roots of (9.90) to be real and positive, the given value of c must be greater than or equal to the value corresponding to the break-away point $x_{b 2}$. In other words, there are two positive roots x_{21}, x_{22} of (9.90) satisfying $x_{21}<x_{b 2}$ and $x_{22}>x_{b 2}$ if and only if

$$
\begin{equation*}
1-c \frac{x_{b 2}}{\left(x_{b 2}-a\right)^{2}\left(b+x_{b 2}\right)}>0 \tag{9.94}
\end{equation*}
$$

Note that, as $a<0$ (that is, $n_{p}^{2} L_{S}^{2} I_{\max }^{2}-K_{m}^{2}<0$), both x_{21} and x_{22} satisfy (9.91) [equivalently (9.83)], with + sign chosen ($+V_{\text {max }}$) rather than the -$\operatorname{sign}\left(-V_{\max }\right)$. In other words, both transition speeds $\omega_{21}=\sqrt{x_{21}}, \omega_{22}=$ $\sqrt{x_{22}}$ are associated with the motoring mode in contrast to the case $a>0$ where they were split between the two modes. As a result, there is no second transition speed in the brake mode. In motor mode, there are actually four speed ranges in this case. They are, in order of increasing speed, constrained by (1) current limits (2) current and voltage limits (3) voltage limits and (4) current and voltage limits.

FIGURE 9.16. Locus of roots for $x=\omega_{2}^{2}$ of (9.90) with $a<0$. (a) $-a<b$. (b) $-a>b$.

Although hypothetical motor parameters can be selected to obtain the case with $a<0$ and two second transition speeds, they do not correspond to realistic motors. The typical case is the one in which (9.94) is not satisfied, and there is no second transition speed in either motor or brake mode. Then, there are only two speed ranges for torque optimization: a low-speed range constrained by current limits, and a high-speed range constrained by voltage and current limits. Examples of both the typical case (Figure 9.15) and the atypical case (Figure 9.16) are given next.

9.2.3 Two Examples

The motor chosen for consideration is a three-phase PM synchronous motor (BM 500 from Aerotech Inc., Pittsburgh, PA) whose parameter values are given by $L=9.3 \times 10^{-4} \mathrm{H}, R_{S}=0.25 \mathrm{ohms}, J=13.9 \times 10^{-5} \mathrm{~kg}-\mathrm{m}^{2}, K=$ $0.198 \mathrm{~N}-\mathrm{m} / \mathrm{A}$ and $n_{p}=4$. The limits are given by $I_{\max }$ (continuous) $=18 \mathrm{~A}$, $I_{\text {max }}$ (peak) $=55 \mathrm{~A}$, and $V_{b u s}$ (bus voltage) $=160 \mathrm{~V}$. The motor bearings are rated for $10,000 \mathrm{rpm}$ or about $1000 \mathrm{rads} / \mathrm{sec}$, which is taken to be the maximum speed of the motor. The corresponding equivalent two-phase parameters are (see the first appendix at the end of this chapter) $L_{S}=$ $L+L / 2=14 \times 10^{-4} \mathrm{H}, K_{m}=(\sqrt{3 / 2}) K=0.243 \mathrm{~N}-\mathrm{m} / \mathrm{A}, I_{\max }$ (continuous) $=(\sqrt{3 / 2}) i_{\max }($ continuous $)=22 \mathrm{~A}, I_{\max }($ peak $)=\sqrt{3 / 2} i_{\max }($ peak $)=67.4$ $\mathrm{A}, V_{\max }=\sqrt{3 / 2}(2 / \pi) V_{b u s}=124.8 \mathrm{~V}$.

Continuous Current Limit

With $I_{\text {max }}=22 \mathrm{~A}$ and $V_{\max }=124.8 \mathrm{~V}$, Figure 9.17 is a plot of the maximum torque for $V=V_{\max }$, Figure 9.18 is a plot of the maximum torque for $I=I_{\max }$, and Figure 9.19 is a plot of the maximum torque for $V=V_{\max }$ and $I=I_{\max }$, all as a function of the speed ω (see the second appendix at the end of this chapter). Both positive and negative torques are given. The curves give the torques obtained by the three strategies, accounting for the voltage and current limits.

FIGURE 9.17. Maximum torque in N -m versus speed in $\mathrm{rad} / \mathrm{sec}$ with $V=V_{\max }$.

FIGURE 9.18. Maximum torque in $\mathrm{N}-\mathrm{m}$ versus speed in rad/sec with $I=I_{\text {max }}$.

FIGURE 9.19. Maximum torque in N -m versus speed in rad/sec with $I=I_{\text {max }}$ and $V=V_{\text {max }}$.

FIGURE 9.20. All three torque components in N -m versus speed in rad/sec.

Figure 9.20 is a plot of all three torque components where it is seen that the actual maximum (minimum) torque attainable is the largest (smallest)
of the three curves at each speed (the outer envelope of the curves).
In this case, the first transition speed for the motor mode is $\omega_{1 p o s}=592$ rads $/ \mathrm{sec}$ (see Figures 9.18 and 9.20), while the first transition speed for the brake mode is $\omega_{1 \text { neg }}=635 \mathrm{rads} / \mathrm{sec}$ (see Figures 9.18 and 9.20). Note that there are no second transition speeds. As one can see from Figure 9.17, the reason for this situation is that the torque curve obtained with optimal field-weakening (that is, operating at the voltage limit $V=V_{\max }$) falls rapidly due to the current limit. The torque is zero at the speed where the optimal field-weakening current is equal to the maximum current, leaving no torque-producing current. For this reason, a solution accounting for both current and voltage limits must be used at high speed.

Peak Current Limit

Now consider the peak current limit so that $I_{\max }=67.4 \mathrm{~A}$ and $V_{\max }=$ 124.8 V . Figure 9.21 is a plot of the maximum torque for $V=V_{\max }$, Figure 9.22 is a plot of the maximum torque for $I=I_{\max }$, and Figure 9.23 is a plot of the maximum torque for $V=V_{\max }$ and $I=I_{\max }$, all as a function of the speed ω. Both positive and negative torques are given. The curves give the torques obtained by the three strategies, accounting for the voltage and current limits.

FIGURE 9.21. Maximum torque in N -m versus speed in $\mathrm{rad} / \mathrm{sec}$ with $V=V_{\max }$.

FIGURE 9.22. Maximum torque in $\mathrm{N}-\mathrm{m}$ versus speed in $\mathrm{rad} / \mathrm{sec}$ with $I=I_{\text {max }}$.

FIGURE 9.23. Maximum torque in $\mathrm{N}-\mathrm{m}$ versus speed in rad/sec with $I=I_{\max }$ and $V=V_{\max }$.

FIGURE 9.24. All three torque components in N-m versus speed in rad/sec.

Figure 9.24 is a plot of all three torque components. Again, the actual maximum (minimum) torque is simply the maximum (minimum) of the three curves at each speed. In this case, the first transition speed for the motor mode is $\omega_{1 \text { pos }}=288$ rads $/ \mathrm{sec}$ (see Figures 9.22 and 9.24) while the second transition speed for the motor mode is $\omega_{1 p o s}=320.6 \mathrm{rads} / \mathrm{sec}$ (see Figures 9.21 and 9.24). The first transition speed for the brake mode is $\omega_{1 \text { neg }}=340.8 \mathrm{rads} / \mathrm{sec}$ (see Figures 9.22 and 9.24) while the second transition speed for the brake mode is $\omega_{2 n e g}=383 \mathrm{rads} / \mathrm{sec}$ (see Figures 9.21 and 9.24).

Simulation

The above analysis assumed constant speed, steady-state conditions. To see how this approach works under non-constant speed conditions, a timedomain simulation can be performed (see problem 8). In this simulation, the continuous current limit of $I_{\max }=22 \mathrm{~A}$ and voltage limit of $V_{\max }=124.8 \mathrm{~V}$ are used with the motor driven by the maximum possible torque until the speed reaches approximately the maximum speed $1000 \mathrm{rads} / \mathrm{sec}(10,000$ rpm or the rated speed of the motor bearings). As shown above, this motor with the continuous current limit of 22 A has only the two modes

$$
\begin{align*}
V & =V_{\max } \tag{9.95}\\
i_{d}^{*}(\omega) & =0 \tag{9.96}\\
i_{q}^{*}(\omega) & = \pm I_{\max } \tag{9.97}
\end{align*}
$$

and

$$
\begin{align*}
V & =V_{\max }, \quad I=I_{\max } \tag{9.98}\\
i_{q}^{*}(\omega) & =\frac{-\beta(\omega) \pm \sqrt{\beta^{2}(\omega)-4 \alpha(\omega) \gamma(\omega)}}{2 \alpha(\omega)} \tag{9.99}\\
i_{d}^{*}(\omega) & =-\sqrt{I_{\max }^{2}-i_{q}^{* 2}} \tag{9.100}
\end{align*}
$$

with

$$
\begin{aligned}
& \alpha(\omega) \triangleq 4 R_{S}^{2} \omega^{2} K_{m}^{2}+4 n_{p}^{2} \omega^{4} L_{S}^{2} K_{m}^{2} \\
& \beta(\omega) \triangleq-4 R_{S} K_{m} \omega\left(V_{\max }^{2}-K_{m}^{2} \omega^{2}-Z_{S}^{2}(\omega) I_{\max }^{2}\right) \\
& \gamma(\omega) \triangleq\left(V_{\max }^{2}-K_{m}^{2} \omega^{2}-Z_{S}^{2}(\omega) I_{\max }^{2}\right)^{2}-4 I_{\max }^{2} n_{p}^{2} \omega^{4} L_{S}^{2} K_{m}^{2}
\end{aligned}
$$

where the positive sign is for motoring and the negative sign is for braking. Consequently, for maximum positive torque, the current commands are (9.96) and (9.97) with the $+\operatorname{sign}$ up to $\omega_{1 \text { pos }}=592 \mathrm{rads} / \mathrm{sec}$ and then (9.99) and (9.100) are used as the current commands with the + sign for higher speeds. For negative torque, the current commands are (9.96) and (9.97) (with the $-\operatorname{sign}$) up to $\omega_{1 \text { neg }}=635 \mathrm{rads} / \mathrm{sec}$ and then (9.99) and (9.100) are used as the current commands (with the - sign) for higher speeds. A basic block diagram for running the motor with maximum torque is given in Figure 9.25.

FIGURE 9.25. Block diagram for commanding maximum torque.

The normalized optimal values $i_{d}^{*} / I_{\max }$ and $i_{q}^{*} / I_{\max }$ are graphed in Figure 9.26 corresponding to the normalized speed $\left.\omega_{\text {normalized }} \triangleq \omega /(2 \pi 10000 / 60)\right)$ given in Figure 9.27.

FIGURE 9.26. Optimal direct and quadrature currents versus time in seconds.

Figure 9.27 shows that the motor reaches the speed of $10,000 \mathrm{rpm}$ in about 40 msec .

FIGURE 9.27. Normalized speed versus time in seconds.

FIGURE 9.28. Normalized current and voltage versus time in seconds.
The normalized magnitude of the voltage $V / V_{\max }$ where $V=\sqrt{u_{d}^{2}+u_{q}^{2}}$ and the normalized current $I / I_{\max }$ where $I=\sqrt{i_{d}^{2}+i_{q}^{2}}$ are shown in Figure 9.28. Note that the voltage has peaks which are greater than the normalized limit of 1 at those times when the commanded current i_{q}^{*} undergoes step changes from the maximum positive value to the minimum negative value (or vice versa). The PI current controller given by $u_{q}=K_{p}\left(i_{q}^{*}-i_{q}\right)+$ $K_{I} \int_{0}^{t}\left(i_{q}^{*}-i_{q}\right) d t$ [see equation (9.49)] is commanding a large voltage due to the large step change in the error $i_{q}^{*}-i_{q}$ at these points in time. However, the voltage actually applied to the motor in the simulation was limited to $V_{\max }$, indicating that these commanded overvoltage peaks have no effect on the performance.

Remarks Of course, the general situation is that one is not always requesting maximum torque from the machine. One possibility is to set the direct current $i_{d}=i_{d}^{*}(\omega)$ so that the maximum torque is always readily available.

Note that the most complicated calculations are square roots and cubic roots so that the whole set of computations could be performed in real-time if the motor parameters were determined online, using an identification procedure such as described in the next section.

In general, there is an intermediate speed range where both the voltage and the current limits are reached. Consideration of this speed range not only provides the complete solution to the problem, but also provides a smooth connection between the solutions for the low and high speed regimes. Further, there are cases where the optimal operation at high speed is determined solely by the joint voltage/current limit solution. In such
cases, the conventional optimal field weakening formula never provides the optimum torque.

9.3 Identification of the PM Synchronous Motor Parameters*

This section requires an understanding of the material in Chapter 2 on least-squares identification. The identification of the parameters of a PM synchronous machine are conveniently carried out with the model in the $d q$ coordinate system given by

$$
\begin{align*}
L_{S} \frac{d i_{d}}{d t} & =-R_{S} i_{d}+n_{p} \omega L_{S} i_{q}+u_{d} \tag{9.101}\\
L_{S} \frac{d i_{q}}{d t} & =-R_{S} i_{q}-n_{p} \omega L_{S} i_{d}-K_{m} \omega+u_{q} \tag{9.102}\\
K \frac{d \omega}{d t} & =K_{m} i_{q}-\tau_{L} \tag{9.103}
\end{align*}
$$

For the identification of the motor parameters, the load torque is now taken to be a linear combination of viscous friction and coulomb friction given by

$$
\tau_{L}=-f \omega-f_{c} \operatorname{sgn}(\omega)
$$

where

$$
\operatorname{sgn}(\omega)=\left\{\begin{aligned}
1, & \omega>0 \\
0, & \omega=0 \\
-1, & \omega<0
\end{aligned}\right.
$$

The model (9.101), (9.102), (9.103) is rewritten in regressor form as

$$
\begin{equation*}
y(n T)=W(n T) K \tag{9.104}
\end{equation*}
$$

where the output vector y, regressor matrix W, and parameter vector K are defined as

$$
\left.\begin{array}{c}
y(n T) \triangleq\left[\begin{array}{c}
u_{d}(n T) \\
u_{q}(n T) \\
0
\end{array}\right] \in \mathbb{R}^{3}, \\
W(n T) \triangleq\left[\begin{array}{ccc}
i_{d}(n T) & \frac{d i_{d}(n T)}{d t}-n_{p} \omega(n T) i_{q}(n T) & 0 \\
i_{q}(n T) & \frac{d i_{q}(n T)}{d t}+n_{p} \omega(n T) i_{d}(n T) & \omega(n T) \\
0 & 0 & -i_{q}(n T) \\
0 & 0 & 0 \\
0 & 0 & 0 \\
& \frac{d \omega(n T)}{d t} & \omega(n T)
\end{array}\right]-\operatorname{sgn}(\omega(n T))
\end{array}\right] \in \mathbb{R}^{3 \times 6}
$$

and

$$
K \triangleq\left[\begin{array}{llllll}
R_{S} & L_{S} & K_{m} & J & f & f_{c}
\end{array}\right]^{T} \in \mathbb{R}^{6}
$$

As the model (9.101), (9.102), (9.103), or equivalently (9.104), is linear in the parameters, the linear least-squares technique of Chapter 2 applies directly. The error equation (9.105) is formed by subtracting the actual (measured) output $y(n T)$ from the estimated output $W(n T) K$ to obtain

$$
\begin{equation*}
e(n T) \triangleq W(n T) K-y(n T) \in \mathbb{R}^{2} \tag{9.105}
\end{equation*}
$$

If the model (9.104) of the motor were exact, and the voltages, currents, position, and speed could be measured exactly, then there is a parameter vector K such that $e(n T)=0$ for all time. However, (9.104) is not exactly satisfied due to modeling errors, nor can the voltages, currents, and so on. be measured exactly. In other words, the error $e(n T)$ is never zero for all time. By definition, for any value of the parameter vector K, the residual error $E^{2}(K)$ is equal to the sum of the norm squared error $e^{T}(n T) e(n T)$ over an interval $\left[n_{0} T, n_{1} T\right]$, that is,

$$
\begin{align*}
E^{2}(K) & =\sum_{n=n_{0}}^{n_{1}} e^{T}(n T) e(n T) \tag{9.106}\\
& =\sum_{n=n_{0}}^{n_{1}}(W(n T) K-y(n T))^{T}(W(n T) K-y(n T)) \tag{9.107}
\end{align*}
$$

The least-squares estimate K^{*} is the one that minimizes the residual error. Expanding (9.107), the residual error becomes

$$
\begin{aligned}
E^{2}(K)= & \sum_{n=n_{0}}^{n_{1}}\left(y^{T}(n T) y(n T)-y^{T}(n T) W(n T) K-K^{T} W^{T}(n T) y(n T)\right. \\
& \left.+K^{T} W^{T}(n T) W(n T) K\right) \\
= & \sum_{n=1}^{N} y^{T}(n T) y(n T)-\left(\sum_{n=1}^{N} y^{T}(n T) W(n T)\right) K \\
& -K^{T}\left(\sum_{n=1}^{N} W^{T}(n T) y(n T)\right)+K^{T}\left(\sum_{n=1}^{N} W^{T}(n T) W(n T)\right) K
\end{aligned}
$$

Making the definitions

$$
\begin{array}{ll}
R_{W} \triangleq \sum_{n=n_{0}}^{n_{1}} W^{T}(n T) W(n T) \in \mathbb{R}^{6 \times 6}, & R_{W y} \triangleq \sum_{n=n_{0}}^{n_{1}} W^{T}(n T) y(n T) \in \mathbb{R}^{6 \times 1} \\
R_{y W} \triangleq \sum_{n=n_{0}}^{n_{1}} y^{T}(n T) W(n T) \in \mathbb{R}^{1 \times 6}, & R_{y} \triangleq \sum_{n=n_{0}}^{n_{1}} y^{T}(n T) y(n T) \in \mathbb{R}
\end{array}
$$

it is written compactly as

$$
\begin{align*}
E^{2}(K) & =R_{y}-R_{y W} K-K^{T} R_{W y}+K^{T} R_{W} K \\
& =R_{y}-R_{y W} R_{W}^{-1} R_{W y}+\left(K-R_{W}^{-1} R_{W y}\right)^{T} R_{W}\left(K-R_{W}^{-1} R_{W y}\right) \tag{9.108}
\end{align*}
$$

where it is assumed R_{W} is invertible (The machine is sufficiently excited). The residual error is then minimized by choosing

$$
\begin{equation*}
K=K^{*} \triangleq R_{W}^{-1} R_{W y} \tag{9.109}
\end{equation*}
$$

This approach is the standard least-squares approach presented in Chapter 2.

Error Index

The residual error indicates how well the measured output $y(n T)$ fits the linear model $W(n T) \hat{K}$. A residual error of zero would indicate a perfect match for every point n. However, as noted above, due to noise, quantization errors, and unmodeled dynamics, the actual residual error is greater than zero. To quantify this fact, recall that the notion of an error index was developed in Chapter 2. Specifically, if all the parameters were set to zero, the residual error would be equal to $E^{2}(0)=R_{y}$. As $E^{2}\left(K^{*}\right)$ is the minimum residual error, it must be less than or equal to R_{y}. Using these two facts, an indication of how well the least-squares solution fits the data is found by defining a residual error index as

$$
\begin{equation*}
\text { Error Index } \triangleq \sqrt{\frac{E^{2}\left(K^{*}\right)}{E^{2}(0)}}=\sqrt{\frac{R_{y}-R_{y W} R_{W}^{-1} R_{W y}}{R_{y}}} \leq 1 \tag{9.110}
\end{equation*}
$$

Multiplying this by 100 , the error index can be viewed as a percentage of how well the data fits the linear relationship (9.104).

Parametric Error Index

The residual error index indicates how well the data set fits the model, but gives no indication as to how well the parameters are determined from the data. In Chapter 2, the idea of a parametric error index was developed to address this issue. Recall that to define the parametric error index, variations in the parameters that cause the residual error to double were considered. The residual error due to a variation of $\delta K=K-K^{*}=$ $K-R_{W}^{-1} R_{W y}$ in the parameters is given by $E^{2}(K)=E^{2}\left(K^{*}\right)+\delta K^{T} R_{W} \delta K$, which follows directly from (9.108). Setting $E^{2}(K)$ equal to $2 E^{2}\left(K^{*}\right)$ yields

$$
\begin{equation*}
E^{2}\left(K^{*}\right)=\delta K^{T} R_{W} \delta K \tag{9.111}
\end{equation*}
$$

If there were just a single parameter (so that R_{W} is a scalar), this would give an estimate of the parametric sensitivity as

$$
\delta K=\sqrt{\frac{E^{2}\left(K^{*}\right)}{R_{W}}}
$$

The general solution to (9.111) for $K \in \mathbb{R}^{n}$ was derived in Chapter 2 and is given by

$$
\delta K_{i}=\sqrt{E^{2}\left(K^{*}\right)\left(R_{W}^{-1}\right)_{i i}}
$$

and is taken to be the parametric error index. The percent parametric error index is then defined by

$$
\begin{equation*}
P E_{i} \triangleq \frac{\delta K_{i}}{K_{i}^{*}} \times 100 \tag{9.112}
\end{equation*}
$$

This index is equal to the percentage change in the parameter K_{i} corresponding to a doubling of the residual error and provides an indication of how sensitive the residual error is to each parameter estimate. For example, if $P E_{i}=10 \%$, then the residual error $E^{2}(K)$ is doubled for only a 10% change in the i th parameter relative to the optimal estimate K_{i}^{*} and therefore $E^{2}(K)$ is relatively sensitive to the estimated value of $K_{i} . P E_{i}$ can be interpreted as a measure of the order of magnitude of the errors on the parameters.

The parametric error indices were chosen to correspond to a doubling of the residual error. As pointed out in Chapter 2, this is an arbitrary as well as a conservative choice; it means that one looks for a parametric variation that would lead to an increase of error equal to 100% of the minimum residual error. If another level had been chosen, all the parametric error indices would have been scaled by the same constant factor. The parametric error indices are especially useful to compare relative sensitivities of different parameters and to give some idea of the values of the errors to be anticipated.

9.3.1 Experimental Results

Experimental results from Refs. [118][119] are now presented to illustrate the identification procedure. A 50-pole-pair ($n_{p}=50$) PM synchronous machine is used with a 2000 -pulses/rev encoder. Input voltages were commanded to the motor so that it would accelerate reasonably fast while not going over their limits. The sampling frequency is $T=50 \mathrm{kHz}$ (see the subsection below on signal processing). Figure 9.29 shows both the current i_{q} resulting from the input voltages and the simulated current $i_{q \text { sim }}$ resulting from a simulation using the identified parameters and the same input as the experiment. Similarly, Figure 9.30 shows the corresponding speed response ω and the simulated speed $\omega_{\text {sim }}$.

FIGURE 9.29. i_{q} and $i_{q s i m}$ for the identification experiment. From Blauch et al. [119], (C) 2004 IEEE.

Using the data collected between 0.01 sec and 0.03 sec , the parameters were computed according to (9.109) and their percent parametric error according to (9.112) and are given in the table below. The residual error computed using (9.110) was found to be 12%.

Parameter	Estimate	Parametric Error
R_{S} ohms	0.269	399%
$L_{S} \mathrm{H}$	0.0027	47.6%
$K_{m} \mathrm{~N}-\mathrm{m} / \mathrm{A}$	0.515	19.8%
$J \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{sec}^{2}$	0.000187	312%
$f \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec}$	0.0032	5040%
$f_{c} \mathrm{~N}-\mathrm{m}$	0.0693	4500%

For comparison, the resistance R_{S} was measured using an ohmmeter and was found to be 0.6 ohm . By locking the rotor at $\theta=0$, phase a is just a simple $R L$ circuit [see equation (9.1)] with a time constant of L_{S} / R_{S}. Commanding step voltages to phase a and computing the decay rate (time constant) in the current response, L_{S} / R_{S}, was found to be $0.0024 / 0.6=$ 0.004 , giving a value of $L_{S}=0.0024 \mathrm{H}$ for the inductance. The value of the resistance computed using the static rotor tests is further from its leastsquares value than the value of the inductance. This is simply due to the fact that the value of R_{S} is not very significant compared to the value of $n_{p} \omega L_{S}$ if the speed is just a little above zero. Note that in Figure 9.30 the speed is
$10 \mathrm{rad} / \mathrm{sec}$ or higher after 0.01 sec so that $n_{p} \omega L_{S} \geq 50 \times 10 \times 0.0024=1.2$ while $R_{S}=0.27 \mathrm{ohm}$. That is, the value of R_{S} does not impact the value of the residual error compared to the value of L_{S}, and this is reflected in the relative values of their parametric errors.

FIGURE 9.30. ω and $\omega_{\text {sim }}$ for the identification experiment. From Blauch et al. [119], (C) 2004 IEEE.

Note that the corresponding simulations in Figures 9.29 and 9.30 show a good correspondence with the actual measured data.

Two-Stage Identification

Note from the table above that values of the parametric indices of the friction parameters f and f_{c} indicate that they are much more uncertain than the stator resistance value, and that the moment of inertia J appears to be almost as uncertain as R_{S}. However, recall that the parametric indices are not absolute indicators of error. In fact, by doing the identification in two stages (i.e., first identifying the electrical parameters R_{S}, L_{S}, and K_{m} and then using these values to identify the mechanical parameters J, f, and f_{c}), the values of the parametric indices are significantly reduced though
the computed values of J, f, and f_{c} remain the same. In more detail, let

$$
\begin{aligned}
& W_{\text {elec }}(n T) \triangleq \triangleq\left[\begin{array}{ccc}
i_{d}(n T) & \frac{d i_{d}(n T)}{d t}-n_{p} \omega(n T) i_{q}(n T) & 0 \\
i_{q}(n T) & \frac{d i_{q}(n T)}{d t}+n_{p} \omega(n T) i_{d}(n T) & \omega(n T)
\end{array}\right] \\
& y_{\text {elec }}(n T) \triangleq\left[\begin{array}{c}
u_{d}(n T) \\
u_{q}(n T)
\end{array}\right], \quad K_{\text {elec }} \triangleq\left[\begin{array}{c}
R_{S} \\
L_{S} \\
K_{m}
\end{array}\right]
\end{aligned}
$$

so that

$$
y_{\text {elec }}(n T)=W_{e l e c}(n T) K_{e l e c}
$$

Defining

$$
\begin{aligned}
R_{W_{\text {elec }}} & \triangleq \sum_{n=n_{0}}^{n_{1}} W_{\text {elec }}^{T}(n T) W_{\text {elec }}(n T) \in \mathbb{R}^{2 \times 2} \\
R_{W_{\text {elec }}} & \triangleq \sum_{n=n_{0}}^{n_{1}} W_{\text {elec }}^{T}(n T) y_{e l e c}(n T) \in \mathbb{R}^{3 \times 1} \\
R_{y W_{e l e c}} & \triangleq \sum_{n=n_{0}}^{n_{1}} y_{\text {elec }}^{T}(n T) W_{\text {elec }}(n T) \in \mathbb{R}^{1 \times 3} \\
R_{y_{\text {elec }}} & \triangleq \sum_{n=n_{0}}^{n_{1}} y_{\text {elec }}^{T}(n T) y_{\text {elec }}(n T) \in \mathbb{R}
\end{aligned}
$$

the optimal estimate in the least-squares sense is then given by

$$
K_{e l e c}=R_{W_{e l e c}}^{-1} R_{W_{e l e c} y}
$$

Using the same data as above, the parameters and parametric errors were computed and are given in the table below. The values of the parameters are essentially the same as before.

Parameter	Estimate	Parametric Error
R_{S} ohms	0.268	399%
$L_{S} \mathrm{H}$	0.0027	47.6%
$K_{m} \mathrm{~N}-\mathrm{m} / \mathrm{A}$	0.515	19.8%

Next, using the value of K_{m} just found, the mechanical parameters are identified. To proceed, let

$$
\begin{aligned}
W_{\text {mech }}(n T) & \triangleq\left[\begin{array}{ll}
\frac{d \omega(n T)}{d t} & \omega(n T) \\
\operatorname{sgn}(\omega(n T))
\end{array}\right] \\
y_{\text {mech }}(n T) & =K_{m} i_{q}(n T), K_{\text {mech }} \triangleq\left[\begin{array}{c}
J \\
f \\
f_{c}
\end{array}\right]
\end{aligned}
$$

so that

$$
y_{\text {mech }}(n T)=W_{\text {mech }}(n T) K_{\text {mech }}
$$

Also, let

$$
\begin{aligned}
R_{W_{\text {mech }}} & \triangleq \sum_{n=n_{0}}^{n_{1}} W_{m e c h}^{T}(n T) W_{\text {mech }}(n T) \in \mathbb{R}^{2 \times 2} \\
R_{W_{\text {mech }}} & \triangleq \sum_{n=n_{0}}^{n_{1}} W_{m e c h}^{T}(n T) y_{m e c h}(n T) \in \mathbb{R}^{3 \times 1} \\
R_{y W_{\text {mech }}} & \triangleq \sum_{n=n_{0}}^{n_{1}} y_{m e c h}^{T}(n T) W_{\text {mech }}(n T) \in \mathbb{R}^{1 \times 3} \\
R_{y_{e l e c}} & \triangleq \sum_{n=n_{0}}^{n_{1}} y_{m e c h}^{T}(n T) y_{m e c h}(n T) \in \mathbb{R}
\end{aligned}
$$

so that optimal estimate in the least-squares sense is given by

$$
K_{\text {mech }}=R_{W_{\text {mech }}}^{-1} R_{W_{\text {mech }} y} .
$$

The parameter estimates and their parametric errors are

Parameter	Estimate	Parametric Error
$J \mathrm{~kg}-\mathrm{m}^{2} / \mathrm{sec}^{2}$	0.000187	13.2%
$f \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec}$	0.0032	214%
$f_{c} \mathrm{~N}-\mathrm{m}$	0.0693	191%

The error index was 10%. Note that parameter estimates are the same as before, but the parametric errors are significantly reduced and the error index is reduced slightly. However, the parametric errors still show the same relative uncertainty in that the estimate of J is much more certain than the values of f and f_{c}.

Signal Processing

A few words about processing the signals i_{d}, i_{q}, and θ when n_{p} is large are in order. Recall that the currents $i_{S a}$ and $i_{S b}$ are sampled and i_{d} and i_{q} computed according to

$$
\left[\begin{array}{l}
i_{d} \tag{9.113}\\
i_{q}
\end{array}\right]=\left[\begin{array}{ll}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{l}
i_{S a} \\
i_{S b}
\end{array}\right] .
$$

As the number of pole pairs is $n_{p}=50$, a mechanical speed of 3000 rpm corresponds to an electrical frequency of 1.57 kHz . So, even if one samples at 50 kHz , a delay of one sampling period corresponds to a rotor movement of $n_{p} T \times\left(3000 \mathrm{rpm} / 60 \frac{\mathrm{sec}}{\mathrm{min}}\right) \times 360^{\circ}=18^{\circ}$ for $n_{p}=50, T=1 /\left(50 \times 10^{3}\right)$, and, therefore, a phase lag in i_{d} and i_{q} of this same amount. A phase shift in
the measurement of the phase currents leads to a rotation by the same angle in the $d q$ coordinates. Consequently, as the electrical torque is proportional to i_{q} only, such a shift could significantly affect the torque. For this reason, the delays present in the system must be accounted for precisely [119]. Due to the zero-order holds, the D/A converters create a delay between the commanded and actual voltages equal to half the sampling period. A delay is also caused by the time required to measure the state variables, calculate the $d q$ transformation, and send the new commanded voltages. The PWM circuit also contains a low-pass filter to reduce circulation in the voltage regulator of the high-frequency noise. The filter has a DC gain of 1 and a cutoff frequency of 10 kHz . The delays due to the filter, PWM inverter, and zero-order hold were combined into a single delay of approximately $1.6 T$. If the commanded voltages are used (rather than the measured voltages), they must be delayed by this amount to reflect the voltages effectively applied to the motor. However, if n_{p} is small, these delays are typically of no significance.

Another issue of significance in the experiments is the filtering of the noise before processing by the least squares algorithm. The collected currents and voltages were transformed into the $d q$ coordinate system according to (9.113) and were filtered in order to remove as much of the measurement (PWM) noise as possible. A third-order Butterworth filter was used with a cutoff frequency of 500 Hz for the $d q$ currents and 100 Hz for the $d q$ voltages. This filtering was performed twice, forward and backward, to avoid the introduction of delays using the Matlab function filffilt (see Chapter 2). To obtain all the necessary signals for the identification procedure, the derivatives were reconstructed using the backward difference calculation $d x(k T) / d t \triangleq(x(k T)-x((k-1) T)) / T$. As such a reconstruction enhances high-frequency noise, the derivatives are filtered again using a third-order Butterworth with a cutoff frequency of 500 Hz .

9.4 PM Stepper Motors*

Motion (servo) control systems often use a particular type of permanent magnet machine called the stepper motor. Permanent magnet stepper motors are synchronous electric machines, but have a quite different construction than the PM synchronous machine described in Chapters 6 and 7. A typical PM stepper motor consists of a stator made of soft iron equipped with windings/coils and a permanent magnet rotor. As shown in Figure 9.31 , the rotor has two sets of teeth (left and right in Figure 9.31) which are out of alignment with each other by a tooth width. Typically, there are 50 teeth in each set; one set is magnetized as south poles and the other set is magnetized as north poles, resulting in $n_{p}=50$ pole pairs.

FIGURE 9.31. Cutaway view of a PM stepper motor. Drawn by Sharon Katz. From Section 9.7 of Ref. [120] and reproduced with permision of Marcel Dekker.

A photograph of a PM stepper motor is shown in Figure 9.32 where the rotor has been pulled out for viewing purposes.

FIGURE 9.32. Photograph of a PM stepper motor with the rotor pulled out from the stator. Courtesy of Prof. J. Douglas Birdwell of The University of Tennessee.

The stator by itself is shown in Figure 9.33 and has eight windings. Four of these windings make up phase a and the other four windings make up phase b. The four windings of phase a are each separated by a winding of phase b and vice versa.

FIGURE 9.33. Stator windings of a PM stepper motor. Four of the windings make up phase a and the other four windings make up phase b. Courtesy of Prof. J. Douglas Birdwell of The University of Tennessee.

Figure 9.34 shows a cross-sectional view of both the left and right sides of a simplified PM stepper motor with only 5 rotor teeth on each side and a stator with four windings. Here the left side of the PM rotor is magnetized as a south pole and the right side of the PM rotor is magnetized as a north pole. The rotor is made of a cylindrical permanent magnet core with the sets of teeth made of soft iron pressed onto either end.

FIGURE 9.34. Cross-sectional views of the left and right sides of a PM stepper motor. Adapted from Deltoro [29] and drawn by Sharon Katz. From Section 9.7 of Ref. [120] and reproduced with permision of Marcel Dekker.

The permanent magnet magnetizes the soft iron of the rotor teeth, making one set a south pole and the other a north pole. The motor is operated as a two-phase machine by connecting windings (coils) a_{1} and a_{2} in series to make phase a and windings b_{1} and b_{2} in series to make phase b. This
connection as a two-phase machine is now assumed is all that follows.

9.4.1 Open-Loop Operation of the Stepper Motor

Stepper motors were originally designed to be used in open-loop [113][114][29]. Their inherent stepping ability allows for accurate positioning to a set of discrete positions without feedback. To explain this, consider Figure 9.35(a) with the motor at $\theta=0$. The direction for positive current for phase a is as shown in the figure. As indicated there, when positive current is in phase a, winding a_{1} of the stator is magnetized as a north pole and winding a_{2} is magnetized as a south pole. Conversely, when negative current is in phase a, winding a_{1} of the stator is magnetized as a south pole and winding a_{2} is magnetized as a north pole. Similar remarks hold for phase b. Following the development in Ref. [29], the stepping motion is illustrated in Figures $9.35(\mathrm{a})-(\mathrm{e})$, which are adapted from Figure 9-23 of Deltoro [29]. Figure 9.35 (a) illustrates the starting point with phase a having positive current for a north-south (NS) orientation for windings $a_{1}-a_{2}$ and phase b having no current. In steady-state with $u_{S a}=u_{0}$, it follows that $i_{S a}=i_{0}$ ($u_{0}=R_{S} i_{0}$, where R_{S} is the resistance of phase a) and the motor is held by magnetic attraction at this location. For the first step, $i_{S a}$ is set to zero and $i_{S b}=i_{0}$ so that rotor tooth $N 2$ of (the right side) Figure 9.35(a) is attracted to stator winding b_{2} [see the right side of Figure 9.35(b)]. Similarly, the rotor tooth $S 2$ on the left side of Figure 9.35(a) is attracted to stator winding b_{1} [see the left side of Figure 9.35(b)].

FIGURE 9.35. (a) Starting point with $\theta=0$ where $u_{S a}=u_{0}, u_{S b}=0, i_{S a}=i_{0}$, and $i_{S b}=0$. Adapted from Deltoro [29] and drawn by Sharon Katz. From Section 9.7 of Ref. [120] and reproduced with permision of Marcel Dekker.

There are $360^{\circ} / 5=72^{\circ}$ between each rotor tooth and, by the geometry of the right side of Figure $9.35(\mathrm{a}), N 2$ is 18° from being aligned with winding b_{2}. The rotor then rotates counterclockwise 18° and, after a short transient
period, ends up in the position shown in Figure 9.35(b).

Figure 9.35(b) First step where $\theta=18^{\circ}$ with

$$
u_{S a}=0, u_{S b}=u_{0}, i_{S a}=0, i_{S b}=i_{0} .
$$

For the second step, one sets $u_{S a}=-u_{0}, u_{S b}=0, i_{S a}=-i_{0}$, and $i_{S b}=0$ so that winding a_{1} is now a south pole and winding a_{2} is a north pole [Figure $9.35(\mathrm{c})$]. Rotor tooth $N 3$ is then attracted to stator winding a_{1} and rotor tooth $S 3$ is attracted to stator winding a_{2}. The rotor then rotates another 18°; after a transient period, θ is 36°, ending up in the position shown in $9.35(\mathrm{c})$.

Figure 9.35(c) Second step where $\theta=36^{\circ}$ with

$$
u_{S a}=-u_{0}, u_{S b}=0, i_{S a}=-i_{0}, i_{S b}=0
$$

For the third step, one sets $u_{S a}=0, u_{S b}=-u_{0}, i_{S a}=0$, and $i_{S b}=-i_{0}$ so that winding b_{1} is now a south pole and winding b_{2} is a north pole [Figure $9.35(\mathrm{~d})]$. Rotor tooth $N 4$ is then attracted to stator winding b_{1} and rotor tooth $S 4$ is attracted to stator winding b_{2}. The rotor then rotates another 18°; after a transient period, θ is 54° as shown in $9.35(\mathrm{~d})$.

Figure $9.35(\mathrm{~d})$ Third step where $\theta=54^{\circ}$ with

$$
u_{S a}=0, u_{S b}=-u_{0}, i_{S a}=0, i_{S b}=-i_{0} .
$$

For the fourth step, one sets $u_{S a}=u_{0}, u_{S b}=0, i_{S a}=i_{0}$, and $i_{S b}=0$ so that winding a_{1} is now a north pole and winding a_{2} is a south pole [Figure $9.35(\mathrm{e})]$. Rotor tooth $S 5$ is then attracted to stator winding a_{1} and rotor tooth $N 5$ is attracted to stator winding a_{2}. The rotor then rotates another 18°; and after a transient period, θ is 72° as shown in $9.35(\mathrm{e})$.

Figure 9.35(e) Fourth step where $\theta=72^{\circ}$ with $u_{S a}=u_{0}, u_{S b}=0, i_{S a}=i_{0}, i_{S b}=0$.

Note that Figure $9.35(\mathrm{e})$ is identical to Figure 9.35(a) except for the labeling of the rotor teeth. That is, after four steps, the rotor has moved by an angular distance equal to the angle between two successive rotor teeth. In general, the step size is given by $360^{\circ} /\left(4 n_{p}\right)$. In this particular example, $n_{p}=5$ so that the step size is $360^{\circ} / 20=18^{\circ}$ and, with $n_{p}=50$, it follows that the step size is 1.8°.

A typical step response of a PM stepper motor with $n_{p}=50$ is shown
in Figure 9.36 , in which the motor rotates 1.8°. For example, starting with the motor as shown in Figure 9.35(a), set $u_{S a}=0$ and $u_{S b}=u_{0}$, and the response shown in Figure 9.36 results. This oscillatory behavior is due to the fact that the rotor motion (for small steps) is approximately the same as that of a pendulum with the only damping due to the viscous friction of the bearings (see below). To run the motor open loop at constant speed requires the stepping motion illustrated in Figures 9.35(a) through 9.35(e). If a step is initiated before the transient from the previous step have settled out sufficiently, the motor can lose synchronism, resulting in the position being off by a step or more, from which it cannot recover [114]. In fact, the motor can even reverse its direction [121]. As a result, the open-loop operation is traded off with a relatively long settling time and low-speed performance. Fast and precise positioning requires closed-loop control.

FIGURE 9.36. Step response showing rotor position going from the position in Figure 9.35 (a) to the position in Figure $9.35(\mathrm{~b})$. (θ in degrees versus time in seconds.)

9.4.2 Mathematical Model of a PM Stepper Motor

Following the developments in Refs.[113][114][115], the mathematical model is now derived using conservation of energy. With L_{S} the self inductance of each phase winding, the total flux linkage in the windings of the stator phases is given by

$$
\begin{aligned}
\lambda_{S a} & =L_{S} i_{S a}+\phi_{a}(\theta) \\
\lambda_{S b} & =L_{S} i_{S b}+\phi_{b}(\theta)
\end{aligned}
$$

where $\phi_{a}(\theta)$ and $\phi_{b}(\theta)$ are the flux linkages in stator phases a and b, respectively, produced by the rotor's permanent magnet. The surfaces of the rotor and stator teeth are shaped so that the flux linkages $\phi_{a}(\theta)$ and $\phi_{b}(\theta)$ are given by (see Refs. [113][115][114])

$$
\begin{aligned}
\phi_{a}(\theta) & =\lambda_{M} \cos \left(n_{p} \theta\right) \\
\phi_{b}(\theta) & =\lambda_{M} \sin \left(n_{p} \theta\right)
\end{aligned}
$$

where λ_{M} is a constant and $\theta=0$ corresponds to the rotor as shown in Figure 9.35. By Faraday's law, Ohm's law, and Kirchhoff's voltage law,

$$
\begin{aligned}
& u_{S a}-R_{S} i_{S a}-\frac{d}{d t} \lambda_{S a}=0 \\
& u_{S b}-R_{S} i_{S b}-\frac{d}{d t} \lambda_{S b}=0
\end{aligned}
$$

or

$$
\begin{aligned}
L_{S} \frac{d i_{S a}}{d t} & =-R_{S} i_{S a}+K_{m} \omega \sin \left(n_{p} \theta\right)+u_{S a} \\
L_{S} \frac{d i_{S b}}{d t} & =-R_{S} i_{S b}-K_{m} \omega \cos \left(n_{p} \theta\right)+u_{S b}
\end{aligned}
$$

where $K_{m} \triangleq n_{p} \lambda_{M}$ and $\omega=d \theta / d t$ is the rotor's angular speed. The power supplied by the source voltages $u_{S a}$ and $u_{S b}$ is $i_{S a} u_{S a}+i_{S b} u_{S b}$ and thus

$$
\begin{aligned}
i_{S a} u_{S a}+i_{S b} u_{S b}= & R_{S} i_{S a}^{2}+R_{S} i_{S b}^{2}+L_{S} i_{S a} \frac{d i_{S a}}{d t}+L_{S} i_{S b} \frac{d i_{S b}}{d t} \\
& -\left(i_{S a} e_{S a}+i_{S b} e_{S b}\right) \\
= & R_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)+\frac{d}{d t} \frac{1}{2} L_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)-\left(i_{S a} e_{S a}+i_{S b} e_{S b}\right)
\end{aligned}
$$

where the back-emf voltages $e_{S a}$ and $e_{S b}$ are defined by

$$
\begin{aligned}
& e_{S a} \triangleq-\frac{d}{d t} \phi_{a}(\theta)=K_{m} \omega \sin \left(n_{p} \theta\right) \\
& e_{S b} \triangleq-\frac{d}{d t} \phi_{b}(\theta)=-K_{m} \omega \cos \left(n_{p} \theta\right) .
\end{aligned}
$$

The term $R_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)$ represents ohmic losses in the resistance of the phases ultimately appearing as heat while the term $\frac{d}{d t} \frac{1}{2} L_{S}\left(i_{S a}^{2}+i_{S b}^{2}\right)$ represents the power stored in the inductance of the phases. The only other power in the system is the mechanical power $\tau \omega$ and thus the term $-\left(i_{S a} e_{S a}+i_{S b} e_{S b}\right)$ must be the mechanical power delivered to the rotor. That is,

$$
\tau \omega=-\left(i_{S a} e_{S a}+i_{S b} e_{S b}\right)
$$

so that the torque is given by

$$
\begin{align*}
\tau & =-\left(i_{S a} e_{S a}+i_{S b} e_{S b}\right) / \omega \\
& =-i_{S a} K_{m} \sin \left(n_{p} \theta\right)+i_{S b} K_{m} \cos \left(n_{p} \theta\right) \tag{9.114}
\end{align*}
$$

With J the rotor's moment of inertia and τ_{L} the load torque, the equations of a PM stepper motor are given by

$$
\begin{aligned}
L_{S} \frac{d i_{S a}}{d t} & =-R_{S} i_{S a}+K_{m} \omega \sin \left(n_{p} \theta\right)+u_{S a} \\
L_{S} \frac{d i_{S b}}{d t} & =-R_{S} i_{S b}-K_{m} \omega \cos \left(n_{p} \theta\right)+u_{S b} \\
J \frac{d \omega}{d t} & =-i_{S a} K_{m} \sin \left(n_{p} \theta\right)+i_{S b} K_{m} \cos \left(n_{p} \theta\right)-\tau_{L} \\
\frac{d \theta}{d t} & =\omega .
\end{aligned}
$$

Oscillatory Behavior of the Open-Loop PM Stepper Motor

Figure 9.36 shows the oscillatory behavior of a PM stepper motor about it final equilibrium position. To understand the nature of this oscillation, consider the torque expression (9.114) around $\theta=0$. Specifically, let the stepper motor be in the position shown in Figure $9.35(\mathrm{a})$, where $\theta=0$ and with $u_{S a}=u_{0}, u_{S b}=0, i_{S a}=i_{0}, i_{S b}=0$. Then

$$
\begin{equation*}
\tau \approx-i_{S a} K_{m} \sin \left(n_{p} \theta\right) \approx-i_{0} n_{p} K_{m} \theta \tag{9.115}
\end{equation*}
$$

for θ close to zero. The slope of the torque vs. θ curve at $\theta=0$ is $-i_{0} n_{p} K_{m}$ which is large for n_{p} large (e.g., $n_{p}=50$). That is, a slight disturbance of the rotor position θ from 0 results in a corresponding large increase in the restoring torque. Also, with $\tau_{L}=-f \omega$ a viscous friction load torque, the equation describing the rotor position for $|\theta|$ small is given by

$$
J \frac{d^{2} \theta}{d t^{2}}=-\left(i_{0} n_{p} K_{m}\right) \theta-f \frac{d \theta}{d t}
$$

or, with $\omega_{n}^{2} \triangleq i_{0} n_{p} K_{m} / J, 2 \zeta \omega_{n} \triangleq f / J$, this may be rewritten as

$$
\frac{d^{2} \theta}{d t^{2}}+2 \zeta \omega_{n} \frac{d \theta}{d t}+\omega_{n}^{2} \theta=0
$$

This is simply the equation of a pendulum (simple harmonic motion) with viscous damping and, as such, the response is oscillatory.

9.4.3 High-Performance Control of a PM Stepper Motor

As the mathematical model of the PM stepper motor is identical to that of a standard PM synchronous machine, the control is identical. In fact, the experimental motor used in Section 9.1.4 is a PM sitepper motor.

Appendices

Two-Phase Equivalent Parameters

In this Appendix, the calculation of the motor parameters from the manufacturer's data sheet is given. The manufacturer's parameters (Aerotech, Inc., Pgh PA) for their BM500 PM synchronous motor are given as follows: line-to-line inductance $L_{\ell-\ell}=0.028 \mathrm{H}$, line-to-line resistance $R_{\ell-\ell}=0.5$ ohms, line-to-line back-emf constant $K_{b}^{\ell-\ell}=23.6 \mathrm{~V}$ (peak) $/ \mathrm{krpm}$, torque constant $K_{T}=0.28 \mathrm{~N}-\mathrm{m} / \mathrm{A}(\mathrm{rms})$.

From Chapter 7, equation (7.83), the electrical equations of a three-phase PM synchronous machine are given by ($n_{p}=1$)

$$
\begin{align*}
L \frac{d i_{S 1}}{d t}-\frac{L}{2} \frac{d i_{S 2}}{d t}-\frac{L}{2} \frac{d i_{S 3}}{d t} & =K \omega \sin (\theta)-R_{S} i_{S 1}+u_{S 1} \tag{9.116}\\
-\frac{L}{2} \frac{d i_{S 1}}{d t}+L \frac{d i_{S 2}}{d t}-\frac{L}{2} \frac{d i_{S 3}}{d t} & =K \omega \sin (\theta-2 \pi / 3)-R_{S} i_{S 2}+u_{S 2} \tag{9.117}\\
-\frac{L}{2} \frac{d i_{S 1}}{d t}-\frac{L}{2} \frac{d i_{S 2}}{d t}+L \frac{d i_{S 3}}{d t} & =K \omega \sin (\theta-4 \pi / 3)-R_{S} i_{S 3}+u_{S 3} \tag{9.118}
\end{align*}
$$

The line-to-line inductance and resistance measurements are done with the rotor held fixed and applying voltage between phase 1 and 2 with phase 3 open-circuited. Subtracting equation (9.117) from equation (9.116), with $i_{S 2}=-i_{S 1}, i_{S 3}=0, \omega=0$ gives

$$
3 L \frac{d i_{S 1}}{d t}=u_{S 1}-u_{S 2}-2 R_{S} i_{S 1}
$$

Consequently, $3 L=0.028 \mathrm{H}$ and as $L=(2 / 3) L_{S}$ one obtains

$$
L_{S}=\frac{3}{2} \frac{0.028}{3} \mathrm{H}=0.014 \mathrm{H}
$$

while $2 R_{S}=0.5 \mathrm{ohm}$ gives

$$
R_{S}=0.25 \text { ohm }
$$

The line-to-line back-emf voltage is measured by externally driving the motor shaft at constant speed with the phases open circuited and measuring
the voltage between two-phases. In this setup, the voltages are given by

$$
\begin{aligned}
& u_{S 1}=-K \omega \sin (\theta) \\
& u_{S 2}=-K \omega \sin (\theta-2 \pi / 3)=-K \omega(-0.5 \sin (\theta)-\sqrt{3} / 2 \cos (\theta)) \\
& u_{S 3}=-K \omega \sin (\theta-4 \pi / 3)=-K \omega(-0.5 \sin (\theta)+\sqrt{3} / 2 \cos (\theta))
\end{aligned}
$$

where $\theta=\omega t$. Then

$$
\begin{aligned}
u_{S 2}-u_{S 3} & =\sqrt{3} K \omega \cos (\theta) \\
\frac{\left(u_{S 2}-u_{S 3}\right)_{\mathrm{peak}}}{\omega} & =\sqrt{3} K \frac{\mathrm{~V}}{\mathrm{rads} / \mathrm{sec}}
\end{aligned}
$$

and

$$
\begin{equation*}
K_{b}^{\ell-\ell}=\sqrt{3} K \frac{2 \pi / 60 \mathrm{rads} / \mathrm{sec}}{\mathrm{rpm}} \frac{1000 \mathrm{rpm}}{\mathrm{krpm}} \tag{9.119}
\end{equation*}
$$

From Chapter 7 (see the remark on page 456), $K=\sqrt{2 / 3} K_{m}$ so that

$$
\begin{align*}
K_{m} & =\sqrt{\frac{3}{2}} K=\frac{1}{\sqrt{2}} K_{b}^{\ell-\ell} \frac{\mathrm{V}(\text { peak })}{\mathrm{krpm}} \frac{\mathrm{krpm}}{1000 \mathrm{rpm}} \frac{\mathrm{rpm}}{2 \pi / 60 \mathrm{rads} / \mathrm{sec}} \\
& =\frac{1}{\sqrt{2}} 23.6 \frac{1}{1000} \frac{60}{2 \pi}=0.159 \frac{\mathrm{~V}(\mathrm{peak})}{\mathrm{rads} / \mathrm{sec}} \tag{9.120}
\end{align*}
$$

To compute the torque constant (which must equal the back-emf constant), consider the steady-state situation in which the currents are given by

$$
\begin{aligned}
i_{S 1} & =I_{3 p h} \cos (\omega t) \\
i_{S 2} & =I_{3 p h} \cos (\omega t-2 \pi / 3) \\
i_{S 3} & =I_{3 p h} \cos (\omega t-4 \pi / 3)
\end{aligned}
$$

where $I_{3 p h}$ is the peak current. The $3-2$ phase transformation results in

$$
\left[\begin{array}{c}
i_{S a} \\
i_{S b}
\end{array}\right]=\left[\begin{array}{c}
\sqrt{3 / 2} I_{3 p h} \cos (\omega t) \\
\sqrt{3 / 2} I_{3 p h} \sin (\omega t)
\end{array}\right]
$$

so that the torque is given by

$$
\begin{aligned}
\tau & =-\sqrt{\frac{3}{2}} K i_{S a} \sin \left(n_{p} \theta\right)+\sqrt{\frac{3}{2}} K i_{S b} \cos \left(n_{p} \theta\right) \\
& =\sqrt{\frac{3}{2}} K \sqrt{\frac{3}{2}} I_{3 p h} \sin \left(\omega t-n_{p} \theta\right) \\
& =\sqrt{2} \frac{3}{2} K I_{3 p h_{-} r m s} \sin \left(\omega t-n_{p} \theta\right) \\
& =K_{T} I_{3 p h_{-} r m s} \sin \left(\omega t-n_{p} \theta\right)
\end{aligned}
$$

where $I_{3 p h _r m s}$ is the rms current. The manufacturer's value for the torque constant \bar{K}_{T} is the torque per unit of rms phase current which this expression shows is equal to $K_{T}=\sqrt{2} \frac{3}{2} K \mathrm{~N}-\mathrm{m} / \mathrm{A}(\mathrm{rms})$ or

$$
K=\frac{1}{\sqrt{2}} \frac{2}{3} K_{T}
$$

K_{T} is given in units of $\mathrm{N}-\mathrm{m} / \mathrm{A}(\mathrm{rms})$ while K_{m} is in $\mathrm{N}-\mathrm{m} / \mathrm{A}$ (peak). Finally, putting in the numerical values gives

$$
\begin{equation*}
K_{m}=\sqrt{\frac{3}{2}} K=\frac{K_{T}}{\sqrt{3}}=\frac{0.28}{\sqrt{3}} \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{~A}(\text { peak })}=0.162 \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{~A}(\text { peak })} \tag{9.121}
\end{equation*}
$$

Consequently, computing K_{m} using the back-emf constant (9.120) gives the same value (within numerical accuracy) as computing K_{m} using the torque constant (9.121) as it must be.

Current Plots

In this appendix, the procedure used to compute the $d q$ currents given in Figures $9.17-9.24$ is described in detail.

Case 1

Here $i_{d}^{*}=0, i_{q}^{*}= \pm I_{\max }$ and the magnitude of the voltage required to achieve the maximum current $I_{\text {max }}$ must satisfy

$$
\begin{aligned}
u_{d}^{* 2}+u_{q}^{* 2} & =\left(-n_{p} \omega L I_{m a x}\right)^{2}+\left(R_{S} I_{\max }+K_{m} \omega\right)^{2} \\
& =Z_{S}^{2}(\omega) I_{\max }^{2}+2 R_{S} K_{m} \omega I_{\max }+K_{m}^{2} \omega^{2} \leq V_{\max }^{2}
\end{aligned}
$$

For higher speeds, this constraint cannot be satisfied and the current i_{q}^{*} must be reduced below $I_{\text {max }}$. Setting $i_{q}^{*}=I$, the maximum current available for i_{q}^{*} is found by solving

$$
Z_{S}^{2}(\omega) I^{2}+2 R_{S} K_{m} \omega I+K_{m}^{2} \omega^{2}=V_{\max }^{2}
$$

Solving,

$$
I_{ \pm}(\omega)=\frac{-R_{S} K_{m} \omega \pm \sqrt{\left(R_{S} K_{m} \omega\right)^{2}+V_{\max }^{2}-Z_{S}^{2}(\omega)\left(K_{m} \omega\right)^{2}}}{Z_{S}^{2}(\omega)}
$$

where the + sign is for motoring and the - sign is for braking. In summary, $i_{d}^{*} \equiv 0$ is the direct current reference and

$$
i_{q}^{*}= \begin{cases} \pm I_{\max }, & u_{d}^{* 2}+u_{q}^{* 2} \leq V_{\max }^{2} \\ I_{ \pm}(\omega), & u_{d}^{* 2}+u_{q}^{* 2} \geq V_{\max }^{2} \text { and } \\ & \left(R_{S} K_{m} \omega\right)^{2}+V_{\max }^{2}-Z_{S}^{2}(\omega)\left(K_{m} \omega\right)^{2}>0 \\ 0 & \text { otherwise }\end{cases}
$$

with + for motoring and - braking.

Case 2

Operating under only the voltage constraint, the optimal field weakening current is given by

$$
i_{d}^{*}=-\frac{\left(n_{p} \omega L_{S}\right)\left(K_{m} \omega\right)}{Z_{S}^{2}(\omega)}
$$

and the corresponding quadrature current is

$$
i_{q}^{*}=\frac{ \pm V_{\max } Z_{S}(\omega)-K_{m} \omega R_{S}}{Z_{S}^{2}(\omega)}
$$

This is the overall optimum as long as

$$
i_{d}^{* 2}+i_{q}^{* 2} \leq I_{\max }^{2}
$$

If this constraint is violated for $-I_{\max }<i_{d}^{*}<0$, then the quadrature current is limited to

$$
i_{q}^{*}= \pm \sqrt{I_{\max }^{2}-i_{d}^{* 2}}
$$

otherwise $i_{q}^{*}=0$. In summary, with $i_{d}^{*}=-\left(n_{p} \omega L\right)\left(K_{m} \omega\right) / Z_{S}^{2}(\omega)$ the direct current reference, the corresponding quadrature current is
$i_{q}^{*}= \begin{cases}\frac{ \pm V_{\max } Z_{S}(\omega)-K_{m} \omega R_{S}}{Z_{S}^{2}(\omega)}, & i_{d}^{* 2}+i_{q}^{* 2} \leq I_{\max }^{2} \\ \pm \sqrt{I_{\max }^{2}-i_{d}^{* 2}}, & i_{d}^{* 2}+i_{q}^{* 2} \geq I_{\max }^{2} \text { and }-I_{\max }<i_{d}^{*}<0 \\ 0 & \text { otherwise }\end{cases}$
with + for motoring and - braking.

Case 3

This case gives a direct current reference as $i_{d}^{*}=-\sqrt{I_{\max }^{2}-i_{q}^{* 2}}$ and the corresponding quadrature current is

$$
i_{q}^{*}= \begin{cases}\frac{-\beta(\omega) \pm \sqrt{\beta^{2}(\omega)-4 \alpha(\omega) \gamma(\omega)}}{2 \alpha(\omega)}, & \beta^{2}(\omega)-4 \alpha(\omega) \gamma(\omega) \geq 0 \\ 0 & \text { otherwise }\end{cases}
$$

with + for motoring and - braking.

Problems

Problem 1 Maximum Torque Under the Voltage Constraint

(a) With the PM synchronous machine at constant speed in steady state so that

$$
\begin{aligned}
u_{d} & =R_{S} i_{d}-n_{p} \omega L_{S} i_{q} \\
u_{q} & =R_{S} i_{q}+n_{p} \omega L_{S} i_{d}+K_{m} \omega \\
K_{m} i_{q} & =\tau_{L}
\end{aligned}
$$

hold, show that the torque is maximized under the constraint $u_{d}^{2}+u_{q}^{2} \leq V_{m a x}^{2}$ by choosing the voltages and currents as in (9.14)-(9.16).
(b) Explain why in steady state the physical constraints $\left|u_{S a}\right| \leq V_{\max }$, $\left|u_{S b}\right| \leq V_{\max }$ are equivalent to $u_{S a}^{2}+u_{S b}^{2} \leq V_{\text {max }}^{2}$.

Problem 2 State Feedback
Show how to choose the state feedback gain (9.40) such that the state feedback specified by (9.39) places the poles of the system (9.38) at any arbitrary location.

Problem 3 Observer
Show how to choose the gains ℓ_{1}, ℓ_{2} in (9.43) and (9.44) so that the error state $e(t)=\left[\begin{array}{ll}e_{1}(t) & e_{2}(t)\end{array}\right]^{T} \rightarrow 0$ at any given prescribed rate.

Problem 4 Maximum Torque Reference with $V=V_{\max }, I=I_{\max }$
Show that $\beta^{2}(\omega)-4 \alpha(\omega) \gamma(\omega) \geq 0$ with $\alpha(\omega), \beta(\omega)$, and $\gamma(\omega)$ given by (9.75), (9.76), and (9.77).

Problem 5 First Transition Speed

(a) Show that equation (9.82) has one positive root and one negative root.
(b) Show that $\left|\omega_{1 \text { neg }}\right|$, where $\omega_{1 \text { neg }}$ is the real negative root of (9.82), is the transition speed for $i_{q}=-I_{\max }$.

Problem 6 Open-Loop Simulation of a PM Synchronous Machine
Let a two-phase PM machine have parameter values. $n_{p}=50$ rotor teeth, $I_{\max }=6.0 \mathrm{~A}, I_{\max }=6.0 \mathrm{~A}, V_{\max }=40 \mathrm{~V}, R_{S}=0.55 \Omega, L_{S}=1.5 \mathrm{mH}$, $K_{m}=0.19 \mathrm{~N}-\mathrm{m} / A, J=4.5 \times 10^{-5} \mathrm{~kg}-\mathrm{m}^{2}$, and $f=0.0008 \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec}$. Simulate the machine based on equations (9.1). Can you get it to run open loop?

Problem 7 Closed-Loop Control of a PM Synchronous Machine

Using the parameter values of problem 6, simulate the complete closedloop controller of Figure 9.1. Do this for two trajectories.
(a) Do a fast turn of the motor from $\theta=0$ to $\theta=0.9 \pi$ radians using the trajectories of Figures 9:3-9.8.
(b) Do a high speed move from 0 to 25π radians using the trajectories of Figures 9.9-9.13.

Problem 8 Simulation of a PM Synchronous Machine Producing Maximum Torque

Let a three-phase PM synchronous motor have parameters values given by $L=9.3 \times 10^{-4} H, R=0.25$ ohms, $J=13.9 \times 10^{-5} \mathrm{~kg}-\mathrm{m}^{2}, K=0.198 \mathrm{~N}$ $m / A, n_{p}=4$. The limits are given by $i_{\max }$ (continuous) $=18 A, i_{\max }$ (peak) $=55 A$, and $V_{\text {bus }}$ (bus voltage) $=160 \mathrm{~V}$. The motor bearings are rated for $10,000 \mathrm{rpm}$ or about $1000 \mathrm{rads} / \mathrm{sec}$ which is taken to be the maximum speed of the motor. The corresponding equivalent two-phase parameters are $L_{S}=$ $L+L / 2=14 \times 10^{-4} H, K_{m}=(\sqrt{3 / 2}) K=0.243 \mathrm{~N}-\mathrm{m} / A, I_{\max }$ (continuous) $=(\sqrt{3 / 2}) i_{\max }($ continuous $)=22 A, I_{\max }($ peak $)=\sqrt{3 / 2} i_{\max }($ peak $)=67.4$ $A, V_{\max }=\sqrt{3 / 2}(2 / \pi) V_{b u s}=124.8 \mathrm{~V}$.

Do a simulation that implements the block diagram of Figure 9.25. Run the simulation for both the continuous current limit and the peak current limit.

Problem 9 Controlling Two PM Motors with One Amplifier [122]
Consider a situation in which two identical PM synchronous machines are connected in parallel to the same amplifier. This means that the same voltages $u_{S a}, u_{S b}$ are simultaneously applied to both motors. The dq voltages of each motor are given by

$$
\begin{aligned}
& {\left[\begin{array}{l}
u_{d 1} \\
u_{q 1}
\end{array}\right]=\left[\begin{array}{rr}
\cos \left(n_{p} \theta_{1}\right) & \sin \left(n_{p} \theta_{1}\right) \\
-\sin \left(n_{p} \theta_{1}\right) & \cos \left(n_{p} \theta_{1}\right)
\end{array}\right]\left[\begin{array}{l}
u_{S a} \\
u_{S b}
\end{array}\right]} \\
& {\left[\begin{array}{l}
u_{d 2} \\
u_{q 2}
\end{array}\right]=\left[\begin{array}{rr}
\cos \left(n_{p} \theta_{2}\right) & \sin \left(n_{p} \theta_{2}\right) \\
-\sin \left(n_{p} \theta_{2}\right) & \cos \left(n_{p} \theta_{2}\right)
\end{array}\right]\left[\begin{array}{l}
u_{S a} \\
u_{S b}
\end{array}\right]}
\end{aligned}
$$

and note that these dq voltages are not the same as the angle of the two motors may not be equal. The model of the two motors in the dq-coordinate
system are then

$$
\begin{aligned}
L \frac{d i_{d 1}}{d t} & =-R_{S} i_{d 1}+n_{p} \omega_{1} L i_{q 1}+v_{d 1} \\
L \frac{d i_{q 1}}{d t} & =-R_{S} \dot{i}_{q 1}-n_{p} \omega_{1} L i_{d 1}-\omega_{1} K_{e q}+v_{q 1} \\
J \frac{d \omega_{1}}{d t} & =K_{e q} i_{q 1}-\tau_{L 1} \\
\frac{d \theta_{1}}{d t} & =\omega_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
L \frac{d i_{d 2}}{d t} & =-R_{S} i_{d 2}+n_{p} \omega_{2} L i_{q 2}+v_{d 2} \\
L \frac{d i_{q 2}}{d t} & =-R_{S} i_{q 2}-n_{p} \omega_{2} L i_{d 2}-\omega_{2} K_{e q}+v_{q 2} \\
J \frac{d \omega_{2}}{d t} & =K_{e q} i_{q 2}-\tau_{L 2} \\
\frac{d \theta_{2}}{d t} & =\omega_{2}
\end{aligned}
$$

Show that using the feedback

$$
\left[\begin{array}{c}
v_{q 1} \\
v_{q 2}
\end{array}\right]=\left[\begin{array}{ll}
-\sin \left(n_{p} \theta_{1}\right) & \cos \left(n_{p} \theta_{1}\right) \\
-\sin \left(n_{p} \theta_{2}\right) & \cos \left(n_{p} \theta_{2}\right)
\end{array}\right]\left[\begin{array}{l}
u_{S a} \\
u_{S b}
\end{array}\right]
$$

and current command control

$$
\begin{aligned}
& v_{q 1}=K_{p}\left(i_{q 1 r e f}-i_{q 1}\right)+K_{I} \int_{0}^{t}\left(i_{q 1 r e f}-i_{q 1}\right) d t \\
& v_{q 2}=K_{p}\left(i_{q 2 r e f}-i_{q 2}\right)+K_{I} \int_{0}^{t}\left(i_{q 2 r e f}-i_{q 2}\right) d t
\end{aligned}
$$

that the position and speed of each motor can be forced to track a trajectory. Is there any singularity in the controller? How should $i_{q 1 r e f}, i_{q 2 r e f}$ be specified?

Problem 10 Half-Stepping of a PM Stepper Motor
Assume that the stepper motor starts out in the position shown in Figure
9.35. Fill in the table below to show the stepping of the motor.

$u_{S a}$	$u_{S b}$	θ (degrees)
u_{0}	0	0
u_{0}	u_{0}	
0	u_{0}	
$-u_{0}$	u_{0}	
$-u_{0}$	0	
$-u_{0}$	$-u_{0}$	
0	$-u_{0}$	
u_{0}	$-u_{0}$	
u_{0}	0	

Problem 11 PM Synchronous Motor with a Salient Rotor [51]
Some PM synchronous motors are constructed in such a way that the rotor exhibits significant saliency due to a nonuniform air gap. In this case, the flux linkages in the stator phases due to the stator currents depends on the rotor position. Specifically, the stator flux linkages are given by

$$
\begin{aligned}
\lambda_{S a} & =L_{S} i_{S a}+K_{m} \cos \left(n_{p} \theta\right)+L_{g}\left(i_{S a} \cos \left(2 n_{p} \theta\right)+i_{S b} \sin \left(2 n_{p} \theta\right)\right) \\
\lambda_{S b} & =L_{S} i_{S b}+K_{m} \sin \left(n_{p} \theta\right)+L_{g}\left(i_{S a} \sin \left(2 n_{p} \theta\right)-i_{S b} \cos \left(2 n_{p} \theta\right)\right)
\end{aligned}
$$

where the third term in each expression is due to the nonuniform air gap (saliency) of the rotor. Notice that these terms have a period of π / n_{p} while the flux linkage due to the permanent magnet rotor has a period of $2 \pi / n_{p}$.

FIGURE 9.37. PM sychronous motor with a salient rotor $\left(n_{p}=1\right)$.
(a) Use a conservation of energy (power) argument to show that the
motor torque is given by

$$
\begin{aligned}
\tau= & 2 n_{p} L_{g}\left(\left(i_{S a}^{2}-i_{S b}^{2}\right) \sin \left(2 n_{p} \theta\right)+2 i_{S a} i_{S b} \cos \left(2 n_{p} \theta\right)\right) \\
& +n_{p} K_{m}\left(-i_{S a} \sin \left(n_{p} \theta\right)+i_{S b} \cos \left(n_{p} \theta\right)\right)
\end{aligned}
$$

(b) Show that using the dq transformation given by

$$
\begin{aligned}
{\left[\begin{array}{c}
i_{d} \\
i_{q}
\end{array}\right] } & =\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{c}
i_{S a} \\
i_{S b}
\end{array}\right] \\
{\left[\begin{array}{c}
u_{d} \\
u_{q}
\end{array}\right] } & =\left[\begin{array}{rr}
\cos \left(n_{p} \theta\right) & \sin \left(n_{p} \theta\right) \\
-\sin \left(n_{p} \theta\right) & \cos \left(n_{p} \theta\right)
\end{array}\right]\left[\begin{array}{l}
u_{S a} \\
u_{S b}
\end{array}\right]
\end{aligned}
$$

that the equations of the salient PM synchronous motor are given by

$$
\begin{aligned}
L_{d} \frac{d i_{d}}{d t} & =-R i_{d}-n_{p} \omega L_{q} i_{q}+u_{d} \\
L_{q} \frac{d i_{q}}{d t} & =-R i_{q}-n_{p} \omega L_{d} i_{d}-n_{p} \omega K_{m}+u_{q} \\
J \frac{d \omega}{d t} & =n_{p}\left(K_{m} i_{q}+\left(L_{d}-L_{q}\right) i_{q} i_{d}\right) \\
\frac{d \theta}{d t} & =\omega
\end{aligned}
$$

where

$$
\begin{aligned}
L_{d} & \triangleq L_{S}+L_{g} \\
L_{q} & \triangleq L_{S}-L_{g} .
\end{aligned}
$$

(c) Consider the change of coordinates

$$
\begin{aligned}
\theta & =\theta \\
\omega & =\omega \\
\alpha & =\frac{n_{p}}{J}\left(K_{m} i_{q}+\left(L_{d}-L_{q}\right) i_{q} i_{d}\right) \\
i_{d} & =i_{d}
\end{aligned}
$$

and show that the motor model is then of the form

$$
\begin{aligned}
\frac{d \theta}{d t} & =\omega \\
\frac{d \omega}{d t} & =\alpha \\
\frac{d \alpha}{d t} & =f_{1}\left(\omega, i_{d}, i_{q}\right)+2 L_{g} n_{p} u_{d} / L_{d}+n_{p}\left(K_{m}+2 L_{g} i_{d}\right) u_{q} / L_{q} \\
\frac{d i_{d}}{d t} & =f_{2}\left(\omega, i_{d}, i_{q}\right)+u_{d} / L_{d}
\end{aligned}
$$

Give the explicit expressions for f_{1} and f_{2}.
(d) Show that the nonlinear feedback

$$
\left[\begin{array}{c}
u_{d} \\
u_{q}
\end{array}\right]=\left[\begin{array}{cc}
\frac{2 L_{g} n_{p}}{L_{d}} & \frac{n_{p}\left(K_{m}+2 L_{g} i_{d}\right)}{L_{q}} \\
\frac{n_{p}\left(K_{m}+2 L_{g} i_{d}\right)}{L_{q}} & 0
\end{array}\right]^{-1}\left[\begin{array}{l}
-f_{1}+v_{d} \\
-f_{2}+v_{q}
\end{array}\right]
$$

results in a linear system.
(e) Under what conditions is the nonlinear feedback of part (d) singular? Is it a practical problem? Explain.

10

Trapezoidal Back-Emf PM Synchronous Motors (BLDC)

In this chapter a mathematical model of a trapezoidal back-emf synchronous motor is derived and a control scheme for it is developed. This machine is also known as the brushless DC (BLDC) motor, and this terminology will be explained in Section 10.8.1. Despite the name "brushless DC motor", this is a PM synchronous machine where the magnetic fields are uniformly distributed in the air gap (rather than sinusoidally distributed). With the motor running at constant speed, this results in a back emf that has a trapezoidal shape in time, and hence the name trapezoidal back emf motor.

10.1 Construction

Figure 10.1 shows the basic construction of a three-phase BLDC motor [25]. Figure 10.2 is a redrawing of Figure 10.1 without the rotor so as to show the layout of the three stator phases more clearly.

FIGURE 10.1. Construction of a PM trapezoidal back-emf machine. Adapted from Mohan [25].

Figure 10.2 shows that there are three sets of windings which are uniformly wound ${ }^{1}$ on the inside surface of the stator. Phase 1 with current $i_{S 1}$ has its turns uniformly wound between $\pi / 3$ and $2 \pi / 3$ on one side of the stator's inside surface and between $4 \pi / 3$ and $5 \pi / 3$ on the other side of the stator. Similarly, phase 2 with current $i_{S 2}$ has its turns uniformly wound between π and $4 \pi / 3$ and between 0 and $\pi / 3$ while phase 3 with current $i_{S 3}$ has its turns uniformly wound between $2 \pi / 3$ and π and between $5 \pi / 3$ and 2π.

FIGURE 10.2. Three uniformly wound stator phases in a BLDC machine.
Figure 10.3 shows the PM rotor of Figure 10.1 by itself [25].

FIGURE 10.3. Rotor of a single pole-pair PM magnet rotor for a BLDC motor. Adapted from Mohan [25].

[^67]The magnetic axis of the rotor as well as the angle Δ between the north and south poles are indicated. The permanent magnet rotor is constructed by bonding permanent magnets on the surface of a cylindrical core of laminated soft iron. As usual, the rotor position is taken to be along the magnetic axis of the rotor (see Figure 10.3). The permanent magnets on the rotor set up a uniformly (in θ) distributed magnetic field in the air gap given by

$$
\begin{align*}
& \overrightarrow{\mathbf{B}}_{R}\left(r, \theta-\theta_{R}\right)= \\
& \left\{\begin{array}{cl}
B_{R 0} \frac{r_{R}}{r} \hat{\mathbf{r}} & \text { for } \\
-\frac{\pi}{2}+\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{\pi}{2}-\frac{\Delta}{2} \\
-B_{R 0} \frac{r_{R}}{r} \frac{\left(\theta-\theta_{R}-\pi / 2\right)}{\Delta / 2} \hat{\mathbf{r}} & \text { for } \\
-B_{R 0} \frac{\pi}{2}-\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{\pi}{2}+\frac{\Delta}{2} \\
B_{R 0} \frac{r_{R}}{r} \frac{\left(\theta-\theta_{R}-3 \pi / 2\right)}{\Delta / 2} \hat{\mathbf{r}} & \text { for } \quad \frac{\pi}{2}+\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{3 \pi}{2}-\frac{\Delta}{2} \\
\frac{3 \pi}{2}-\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{3 \pi}{2}+\frac{\Delta}{2}
\end{array}\right. \tag{10.1}
\end{align*}
$$

where the parameter Δ represents the angular distance between the north and south pole magnets on the rotor. Also, the factor r_{R} / r ensures that conservation of flux holds in the air gap. The radial magnetic field distribution in the air gap due to the rotor's permanent magnet is illustrated in Figure 10.4.

FIGURE 10.4. The radial magnetic field distribution $\overrightarrow{\mathbf{B}}_{R}\left(r, \theta-\theta_{R}\right)$.

In Sections 10.2 through $10.7, \Delta$ will be taken to be zero to simplify the analysis with no significant impact on the resulting mathematical model. In this case, (10.1) simplifies to

$$
\overrightarrow{\mathbf{B}}_{R}\left(r, \theta-\theta_{R}\right)=\left\{\begin{align*}
B_{R 0} \frac{r_{R}}{r} \hat{\mathbf{r}} & \text { for }-\pi / 2 \leq \theta-\theta_{R} \leq \pi / 2 \tag{10.2}\\
-B_{R 0} \frac{r_{R}}{r} \hat{\mathbf{r}} & \text { for }+\pi / 2 \leq \theta-\theta_{R} \leq 3 \pi / 2
\end{align*}\right.
$$

10.2 Stator Magnetic Field $\overrightarrow{\mathbf{B}}_{S}$

The magnetic field $\overrightarrow{\mathbf{B}}_{S}$ produced stator currents is now derived. As illustrated in Figure 10.1, the stator winding density of a BLDC is uniform over inner periphery of the stator. Specifically, stator phase 1 has a winding density given by

$$
N_{S_{1}}(\theta)=\left\{\begin{array}{cl}
\frac{N_{S}}{\pi / 3} & \text { for } \frac{\pi}{3} \leq \theta \leq \frac{2 \pi}{3} \text { and } \frac{4 \pi}{3} \leq \theta \leq \frac{5 \pi}{3} \\
0 & \text { elsewhere }
\end{array}\right.
$$

The total number of windings (turns or loops) making up phase 1 is then

$$
\int_{\pi / 3}^{2 \pi / 3} \frac{N_{S}}{\pi / 3} d \theta=N_{S}
$$

Similarly, $N_{S 2}(\theta)=N_{S 1}(\theta-2 \pi / 3)$ and $N_{S 3}(\theta)=N_{S 1}(\theta-4 \pi / 3)$. To determine the radial magnetic field in the air gap produced by the current in stator phase 1 , Ampère's law with $\overrightarrow{\mathbf{H}} \equiv 0$ in the iron is applied to the path $1-2-3-1$ of Figure 10.5 to obtain [by symmetry, $H_{S 1}\left(i_{S 1}, \pi+\theta\right)=$ $\left.-H_{S 1}\left(i_{S 1}, \theta\right)\right]$

$$
2 g H_{S 1}\left(i_{S 1}, \theta\right)= \begin{cases}N_{S} i_{S 1}, & -\pi / 3 \leq \theta \leq \pi / 3 \\ \int_{\theta}^{2 \pi / 3} \frac{N_{S} i_{S 1}}{\pi / 3} d \theta-\int_{4 \pi / 3}^{\theta+\pi} \frac{N_{S} i_{S 1}}{\pi / 3} d \theta, & \pi / 3 \leq \theta \leq 2 \pi / 3 \\ -N_{S} i_{S 1}, & 2 \pi / 3 \leq \theta \leq 4 \pi / 3 \\ \int_{\theta}^{5 \pi / 3}-\frac{N_{S} i_{S 1}}{\pi / 3} d \theta+\int_{7 \pi / 3}^{\theta+\pi} \frac{N_{S} i_{S 1}}{\pi / 3} d \theta, & 4 \pi / 3 \leq \theta \leq 5 \pi / 3\end{cases}
$$

FIGURE 10.5. Path $1-2-3-1$ for applying Ampère's law. Note that for the path drawn, $\pi / 3 \leq \theta \leq 2 \pi / 3$.
or

$$
\overrightarrow{\mathbf{H}}_{S 1}\left(i_{S 1}, \theta\right)=\left\{\begin{array}{lll}
\frac{N_{S} i_{S 1}}{2 g} \hat{\mathbf{r}} & \text { for } & -\pi / 3 \leq \theta \leq \pi / 3 \\
\frac{N_{S} i_{S 1}}{2 g} \frac{6}{\pi}\left(\frac{\pi}{2}-\theta\right) \hat{\mathbf{r}} & \text { for } & \pi / 3 \leq \theta \leq 2 \pi / 3 \\
-\frac{N_{S} i_{S 1}}{2 g} \hat{\mathbf{r}} & \text { for } & 2 \pi / 3 \leq \theta \leq 4 \pi / 3 \\
\frac{N_{S} i_{S 1}}{2 g} \frac{6}{\pi}\left(\theta-\frac{3 \pi}{2}\right) \hat{\mathbf{r}} & \text { for } & 4 \pi / 3 \leq \theta \leq 5 \pi / 3
\end{array}\right.
$$

where it was assumed that $\overrightarrow{\mathbf{H}}_{S 1}$ is constant across the air gap. Then $\overrightarrow{\mathbf{B}}_{S 1}=$ $\mu_{0} \overrightarrow{\mathbf{H}}_{S 1}$ in the air gap. A factor of r_{R} / r is now included to ensure that $\overrightarrow{\mathbf{B}}_{S 1}$ satisfies conservation of flux in the air gap. Consequently, the magnetic field $\overrightarrow{\mathbf{B}}_{S 1}=B_{S 1}\left(i_{S 1}, r, \theta\right) \hat{\mathbf{r}}$ at any point (r, θ) in the air gap due to the current
$i_{S 1}$ in phase 1 is given by

$$
B_{S 1}\left(i_{S 1}, r, \theta\right) \hat{\mathbf{r}}=\left\{\begin{array}{lll}
\frac{\mu_{0} N_{S} i_{S 1}}{2 g} \frac{r_{R}}{r} \hat{\mathbf{r}} & \text { for } & -\pi / 3 \leq \theta \leq \pi / 3 \tag{10.3}\\
\frac{\mu_{0} N_{S} i_{S 1}}{2 g} \frac{r_{R}}{r} \frac{6}{\pi}\left(\frac{\pi}{2}-\theta\right) \hat{\mathbf{r}} & \text { for } & \pi / 3 \leq \theta \leq 2 \pi / 3 \\
-\frac{\mu_{0} N_{S} i_{S 1}}{2 g} \frac{r_{R}}{r} \hat{\mathbf{r}} & \text { for } & 2 \pi / 3 \leq \theta \leq 4 \pi / 3 \\
\frac{\mu_{0} N_{S} i_{S 1}}{2 g} \frac{r_{R}}{r} \frac{6}{\pi}\left(\theta-\frac{3 \pi}{2}\right) \hat{\mathbf{r}} & \text { for } & 4 \pi / 3 \leq \theta \leq 5 \pi / 3
\end{array}\right.
$$

Similarly,

$$
\begin{aligned}
& B_{S 2}\left(i_{S 2}, r, \theta\right)=B_{S 1}\left(i_{S 2}, r, \theta-2 \pi / 3\right) \\
& B_{S 3}\left(i_{S 3}, r, \theta\right)=B_{S 1}\left(i_{S 3}, r, \theta-4 \pi / 3\right)
\end{aligned}
$$

A plot of the normalized radial magnetic field $B_{S 1}\left(i_{S 1}, r, \theta\right) /\left(\frac{\mu_{0} N_{S} i_{S 1}}{2 g} \frac{r_{R}}{r}\right)$ due to the current in stator phase 1 for $-\pi / 3 \leq \theta \leq 2 \pi$ is in Figure 10.6.

FIGURE 10.6. Normalized magnetic field $B_{S 1}\left(i_{S 1}, r, \theta\right) /\left(\frac{\mu_{0} N_{S i} i_{1}}{2 g} \frac{r_{R}}{r}\right)$.

This is also illustrated in Figure 10.7 which shows the direction of radial magnetic field distribution $B_{S 1}\left(i_{S 1}, r, \theta\right)$ in the air gap at each angular position θ. In particular, the magnetic field due to $i_{S 1}$ is radially out to the right of the dashed vertical line and radially in to the left of the vertical line.

FIGURE 10.7. The radial magnetic field distribution $\overrightarrow{\mathbf{B}}_{S 1}\left(i_{S 1}, r, \theta\right)$ in the air gap due to the current $i_{S 1}$ in stator phase 1.

10.3 Stator Flux Linkage Produced by $\overrightarrow{\mathbf{B}}_{S}$

The flux $\phi_{11}\left(i_{S 1}, \theta\right)$ in a winding of stator phase 1 at the angle θ where $\pi / 3 \leq \theta \leq 2 \pi / 3$, due to the current in stator phase 1 , is now computed using the flux surface shown in Figure 10.8.

FIGURE 10.8. Flux surface for a winding of stator phase 1 to calculate the flux produced by the magnetic field of $i_{S_{1}}$.

Using the expression (10.3) for $\overrightarrow{\mathbf{B}}_{S 1}$, the flux produced by $\overrightarrow{\mathbf{B}}_{S 1}$ in a winding of stator phase 1 with one side at θ and the other at $\theta-\pi$ is given by

$$
\begin{aligned}
& \phi_{11}\left(i_{S 1}, \theta\right)=\int_{0}^{\ell_{1}} \int_{\theta-\pi}^{\theta} \overrightarrow{\mathbf{B}}_{S 1}\left(i_{S 1}, r_{S}, \theta^{\prime}\right) \cdot\left(r_{S} d \theta^{\prime} d \ell \hat{\mathbf{r}}\right) \\
& =r_{S} \ell_{1} \int_{-\pi / 3}^{\pi / 3} \frac{\mu_{0} N_{S} i_{S 1}}{2 g} \frac{r_{R}}{r_{S}} d \theta^{\prime}+r_{S} \ell_{1} \int_{\pi / 3}^{\theta} \frac{\mu_{0} N_{S} i_{S 1}}{g \pi / 3} \frac{r_{R}}{r_{S}}\left(\frac{\pi}{2}-\theta^{\prime}\right) d \theta^{\prime} \\
& \quad+r_{S} \ell_{1} \int_{\theta+\pi}^{5 \pi / 3} \frac{\mu_{0} N_{S} i_{S 1}}{g \pi / 3} \frac{r_{R}}{r_{S}}\left(\theta^{\prime}-\frac{3 \pi}{2}\right) d \theta^{\prime} \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S} i_{S 1}}{2 g}\left(\frac{2 \pi}{3}-\left.\frac{1}{2} \frac{6}{\pi}\left(\frac{\pi}{2}-\theta^{\prime}\right)^{2}\right|_{\pi / 3} ^{\theta}+\left.\frac{1}{2} \frac{6}{\pi}\left(\theta^{\prime}-\frac{3 \pi}{2}\right)^{2}\right|_{\theta+\pi} ^{5 \pi / 3}\right) \\
& = \\
& \quad \frac{\mu_{0} r_{R} \ell_{1} N_{S} i_{S 1}}{2 g}\left(\frac{2 \pi}{3}-\frac{3}{\pi}\left(\left(\frac{\pi}{2}-\theta\right)^{2}-\left(\frac{\pi}{6}\right)^{2}\right)\right. \\
& \left.\quad+\frac{3}{\pi}\left(\left(\frac{\pi}{6}\right)^{2}-\left(\theta-\frac{\pi}{2}\right)^{2}\right)\right) \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S} i_{S 1}}{2 g}\left(-\frac{6}{\pi}\left(\theta-\frac{\pi}{2}\right)^{2}+\frac{5 \pi}{6}\right) .
\end{aligned}
$$

As the outward normal was used to compute the flux, $-d \phi_{11} / d t>0$ means that this induced emf in stator phase 1 will push current in the same direction as that chosen for positive current flow in stator phase 1 .

The total fux linkage $\lambda_{S 1}\left(i_{S 1}, 0,0\right)$ in stator phase 1 due to the current in phase 1 , is then found by adding up the fluxes in each winding of phase 1. That is,

$$
\begin{aligned}
\lambda_{S 1}\left(i_{S 1}, 0,0\right) & =\int_{\pi / 3}^{2 \pi / 3} \phi_{11}\left(i_{S 1}, \theta\right) \frac{N_{S}}{\pi / 3} d \theta \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S}^{2} i_{S 1}}{2 g} \frac{3}{\pi} \int_{\pi / 3}^{2 \pi / 3}\left(-\frac{6}{\pi}\left(\theta-\frac{\pi}{2}\right)^{2}+\frac{5 \pi}{6}\right) d \theta \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S}^{2} i_{S 1}}{2 g}\left(-\left.\frac{18}{\pi^{2}} \frac{1}{3}\left(\theta-\frac{\pi}{2}\right)^{3}\right|_{\pi / 3} ^{2 \pi / 3}+\frac{5}{2}\left(\frac{2 \pi}{3}-\frac{\pi}{3}\right)\right) \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S}^{2} i_{S 1}}{2 g}\left(-\frac{\pi}{18}+\frac{5}{2} \frac{\pi}{3}\right)=\frac{\mu_{0} r_{R} \ell_{1} \pi N_{S}^{2} i_{S 1}}{2 g}\left(\frac{14}{18}\right) \\
& =L_{S} i_{S 1}
\end{aligned}
$$

where $\left(r_{R}=\ell_{2} / 2\right)$

$$
L_{S} \triangleq\left(\frac{7}{3}\right) \frac{\mu_{0} \ell_{1} \ell_{2} \pi}{12 g} N_{S}^{2}
$$

The flux $\phi_{21}\left(i_{S 1}, \theta\right)$ in a winding of stator phase 2 at an angle $\theta(\pi \leq \theta \leq$ $4 \pi / 3$), produced by the magnetic field of stator phase 1 , is computed using
the flux surface shown in Figure 10.9. With $\pi \leq \theta \leq 4 \pi / 3$, this flux is computed as

$$
\begin{align*}
& \phi_{21}\left(i_{S 1}, \theta\right)=\int_{0}^{\ell_{1}} \int_{\theta-\pi}^{\theta} \overrightarrow{\mathbf{B}}_{S 1}\left(i_{S 1}, r_{S}, \theta^{\prime}\right) \cdot\left(r_{S} d \theta^{\prime} d \ell \hat{\mathbf{r}}\right) \\
& =r_{S} \ell_{1} \int_{\theta-\pi}^{\pi / 3} \frac{\mu_{0} N_{S} i_{S 1}}{2 g} \frac{r_{R}}{r_{S}} d \theta^{\prime}+r_{S} \ell_{1} \int_{\pi / 3}^{2 \pi / 3} \frac{\mu_{0} N_{S} i_{S 1}}{g \pi / 3} \frac{r_{R}}{r_{S}}\left(\frac{\pi}{2}-\theta^{\prime}\right) d \theta^{\prime} \\
& \quad+r_{S} \ell_{1} \int_{2 \pi / 3}^{\theta}-\frac{\mu_{0} N_{S} i_{S 1}}{2 g} \frac{r_{R}}{r_{S}} d \theta^{\prime} \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S} i_{S 1}}{2 g}\left(\frac{4 \pi}{3}-\theta-\left.\frac{6}{\pi} \frac{1}{2}\left(\theta^{\prime}-\frac{\pi}{2}\right)^{2}\right|_{\pi / 3} ^{2 \pi / 3}-\left(\theta-\frac{2 \pi}{3}\right)\right) \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S} i_{S 1}}{g}(\pi-\theta) . \tag{10.4}
\end{align*}
$$

FIGURE 10.9. Flux surface for a winding of stator phase 2 to calculate the flux produced by the magnetic field of $i_{S 1}$. The windings of phase 2 are shown shaded.

The total flux linkage $\lambda_{S 2}\left(i_{S 1}, 0,0\right)$ in stator phase 2 produced by the current in stator phase 1 is then

$$
\begin{aligned}
\lambda_{S 2}\left(i_{S 1}, 0,0\right) & =\int_{\pi}^{4 \pi / 3} \phi_{21}\left(i_{S 1}, \theta\right) \frac{N_{S}}{\pi / 3} d \theta=-\left.\frac{3}{\pi} \frac{\mu_{0} r_{R} \ell_{1} N_{S}^{2}}{g} i_{S 1} \frac{1}{2}(\pi-\theta)^{2}\right|_{\pi} ^{4 \pi / 3} \\
& =-\frac{\mu_{0} r_{R} \ell_{1} \pi N_{S}^{2}}{6 g} i_{S 1}=-M i_{S 1}
\end{aligned}
$$

where $\left(r_{R}=\ell_{2} / 2\right)$

$$
M \triangleq \frac{\mu_{0} \ell_{1} \ell_{2} \pi}{12 g} N_{S}^{2}
$$

The flux $\phi_{31}\left(i_{S 1}, \theta\right)$ in a winding of stator phase 3 at an angle θ where $5 \pi / 3 \leq \theta \leq 2 \pi$ produced by the magnetic field of stator phase 1 is computed using the flux surface shown in Figure 10.10.

FIGURE 10.10. Flux surface for a winding of stator phase 3 to calculate the flux produced by the magnetic field of $i_{S 1}$. The windings of phase 3 are shown shaded.

Proceeding, with $5 \pi / 3 \leq \theta \leq 2 \pi$,

$$
\begin{align*}
& \phi_{31}\left(i_{S 1}, \theta\right)=\int_{0}^{\ell_{1}} \int_{\theta-\pi}^{\theta} \overrightarrow{\mathbf{B}}_{S 1}\left(i_{S 1}, r_{S}, \theta^{\prime}\right) \cdot\left(r_{S} d \theta^{\prime} d \ell \hat{\mathbf{r}}\right) \\
& =r_{S} \ell_{1} \int_{\theta-\pi}^{4 \pi / 3}-\frac{\mu_{0} N_{S} i_{S 1}}{2 g} \frac{r_{R}}{r_{S}} d \theta^{\prime}+r_{S} \ell_{1} \int_{4 \pi / 3}^{5 \pi / 3} \frac{\mu_{0} N_{S} i_{S 1}}{g \pi / 3} \frac{r_{R}}{r}\left(\theta^{\prime}-\frac{3 \pi}{2}\right) d \theta^{\prime} \\
& +r_{S} \ell_{1} \int_{5 \pi / 3}^{\theta} \frac{\mu_{0} N_{S} i_{S 1}}{2 g} \frac{r_{R}}{r_{S}} d \theta^{\prime} \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S} i_{S 1}}{2 g}\left(-\left(\frac{7 \pi}{3}-\theta\right)+\left.\frac{6}{\pi} \frac{1}{2}\left(\theta^{\prime}-\frac{3 \pi}{2}\right)^{2}\right|_{4 \pi / 3} ^{5 \pi / 3}+\left(\theta-\frac{5 \pi}{3}\right)\right) \\
& =\frac{\mu_{0} r_{R} \ell_{1} N_{S} i_{S 1}}{g}(\theta-2 \pi) . \tag{10.5}
\end{align*}
$$

The total flux linkage in stator phase 3 produced by the current in stator
phase 1 is then

$$
\begin{aligned}
\lambda_{S 3}\left(i_{S 1}, 0,0\right) & =\int_{5 \pi / 3}^{2 \pi} \phi_{31}\left(i_{S 1}, \theta\right) \frac{N_{S}}{\pi / 3} d \theta=\left.\frac{3}{\pi} \frac{\mu_{0} r_{R} \ell_{1} N_{S}^{2}}{g} i_{S 1} \frac{1}{2}(\theta-2 \pi)^{2}\right|_{5 \pi / 3} ^{2 \pi} \\
& =-\frac{\mu_{0} r_{R} \ell_{1} \pi N_{S}^{2}}{6 g} i_{S 1}=-M i_{S 1}
\end{aligned}
$$

with

$$
M \triangleq \frac{\mu_{0} \ell_{1} \ell_{2} \pi}{12 g} N_{S}^{2}
$$

The other phases are computed similarly. In summary, the flux linkages in the stator phases due to the stator currents are given by

$$
\begin{aligned}
& \lambda_{S 1}\left(i_{S 1}, i_{S 2}, i_{S 3}\right)=+L_{S} i_{S 1}-M i_{S 2}-M i_{S 3} \\
& \lambda_{S 2}\left(i_{S 1}, i_{S 2}, i_{S 3}\right)=-M i_{S 1}+L_{S} i_{S 2}-M i_{S 3} \\
& \lambda_{S 3}\left(i_{S 1}, i_{S 2}, i_{S 3}\right)=-M i_{S 1}-M i_{S 2}+L_{S} i_{S 3}
\end{aligned}
$$

where

$$
\begin{equation*}
L_{S}=\frac{7}{3} \frac{\mu_{0} \ell_{1} \ell_{2} \pi}{12 g} N_{S}^{2}, \quad M=\frac{\mu_{0} \ell_{1} \ell_{2} \pi}{12 g} N_{S}^{2} \tag{10.6}
\end{equation*}
$$

In matrix form, the flux linkages are given by

$$
\left[\begin{array}{l}
\lambda_{S 1} \\
\lambda_{S 2} \\
\lambda_{S 3}
\end{array}\right]=\left[\begin{array}{rrr}
L_{S} & -M & -M \\
-M & L_{S} & -M \\
-M & -M & L_{S}
\end{array}\right]\left[\begin{array}{l}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right] .
$$

The inverse of the inductance matrix on the right is

$$
\frac{1}{\left(L_{S}-2 M\right)\left(M+L_{S}\right)}\left[\begin{array}{ccc}
L_{S}-M & M & M \\
M & L_{S}-M & M \\
M & M & L_{S}-M
\end{array}\right]
$$

where by $(10.6), L_{S}=(7 / 3) M$ results in $\left(L_{S}-2 M\right)\left(M+L_{S}\right)>0$.

10.4 Stator Flux Linkage Produced by $\overrightarrow{\mathbf{B}}_{R}$

The flux linkage $\lambda_{S 1_{-} R}\left(\theta_{R}\right)$ in the windings of phase 1 due to the magnetic field of the PM rotor is now computed. The first step is to compute the flux $\phi_{S 1_{-} R}\left(i_{S 1}, \theta\right)$ in each of the windings of stator phase 1 produced by the rotor's magnetic field. Recall that the top sides of the windings of phase 1 are located in the interval $\pi / 3 \leq \theta \leq 2 \pi / 3$.

Case 1. As Figure 10.11 illustrates, in this case the computation of the flux in a loop of stator phase 1 produced by the rotor's magnetic field is done with rotor angle in the interval $\pi / 6 \leq \theta_{R} \leq 5 \pi / 6$.

FIGURE 10.11. Computation of the flux in a loop of stator phase 1 produced by the rotor's magnetic field when $\pi / 6 \leq \theta_{R} \leq 5 \pi / 6$.

Case 2. Figure 10.12 illustrates the computation of the flux in a loop of stator phase 1 produced by the rotor's magnetic field when $-\pi / 6 \leq \theta_{R} \leq$ $\pi / 6$ and $\theta_{R}+\pi / 2 \leq \theta \leq 2 \pi / 3$.

FIGURE 10.12. Computation of the flux in a loop of stator phase 1 produced by the rotor's magnetic field when $-\pi / 6 \leq \theta_{R} \leq \pi / 6$ and $\theta_{R}+\pi / 2 \leq \theta \leq 2 \pi / 3$.

Case 3. Figure 10.13 illustrates the computation of the flux in a loop of
stator phase 1 produced by the rotor's magnetic field when $-\pi / 6 \leq \theta_{R} \leq$ $\pi / 6$ and $\pi / 3 \leq \theta \leq \theta_{R}+\pi / 2$.

FIGURE 10.13. Computation of the flux in a loop of stator phase 1 produced by the rotor's magnetic field when $-\pi / 6 \leq \theta_{R} \leq \pi / 6$ and $\pi / 3 \leq \theta \leq \theta_{R}+\pi / 2$.

With reference to Figures 10.11, 10.12 and 10.13 , and using the expression (10.2) for the magnetic field produced by the rotor, it follows that

$$
\begin{aligned}
& \phi_{S 1_{-} R}\left(i_{S 1}, \theta\right)=\int_{0}^{\ell_{1}} \int_{\theta-\pi}^{\theta} \overrightarrow{\mathbf{B}}_{R}\left(r_{S}, \theta^{\prime}-\theta_{R}\right) \cdot\left(r_{S} d \theta^{\prime} d \ell \hat{\mathbf{r}}\right) \\
& \iint_{0}^{\ell_{1}} \int_{\theta_{R}-\pi / 2}^{\theta} B_{R 0} r_{R} d \theta^{\prime} d \ell+\int_{0}^{\ell_{1}} \int_{\theta-\pi}^{\theta_{R}-\pi / 2}-B_{R 0} r_{R} d \theta^{\prime} d \ell \\
& \text { for } \pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\
& \begin{array}{r}
\int_{0}^{\ell_{1}} \int_{\theta_{R}+\pi / 2}^{\theta}-B_{R 0} r_{R} d \theta^{\prime} d \ell+\int_{0}^{\ell_{1}} \int_{\theta-\pi}^{\theta_{R}+\pi / 2} B_{R 0} r_{R} d \theta^{\prime} d \ell \\
\text { for } \theta_{R}+\pi / 2 \leq \theta \leq 2 \pi / 3 \\
\text { and }-\pi / 6 \leq \theta_{R} \leq \pi / 6
\end{array} \\
& \int_{0}^{\ell_{1}} \int_{\theta_{R}-\pi / 2}^{\theta} B_{R 0} r_{R} d \theta^{\prime} d \ell+\int_{0}^{\ell_{1}} \int_{\theta-\pi}^{\theta_{R}-\pi / 2}-B_{R 0} r_{R} d \theta^{\prime} d \ell \\
& \text { for } \pi / 3 \leq \theta \leq \theta_{R}+\pi / 2 \\
& \text { and }-\pi / 6 \leq \theta_{R} \leq \pi / 6 \text {. }
\end{aligned}
$$

Simplifying, this becomes

$$
\phi_{S 1_{-} R}\left(i_{S 1}, \theta\right)=\left\{\begin{array}{cl}
2 r_{R} \ell_{1} B_{R 0}\left(\theta-\theta_{R}\right) & \text { for } \pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\
-2 r_{R} \ell_{1} B_{R 0}\left(\theta-\theta_{R}-\pi\right) & \text { for } \theta_{R}+\pi / 2 \leq \theta \leq 2 \pi / 3 \\
& \text { and }-\pi / 6 \leq \theta_{R} \leq \pi / 6 \\
2 r_{R} \ell_{1} B_{R 0}\left(\theta-\theta_{R}\right) & \text { for } \pi / 3 \leq \theta \leq \theta_{R}+\pi / 2 \\
& \text { and }-\pi / 6 \leq \theta_{R} \leq \pi / 6 .
\end{array}\right.
$$

The total fux linkage $\lambda_{S 1_{-} R}\left(\theta_{R}\right)$ in stator phase 1 produced by the rotor's magnetic field is then

$$
\lambda_{S 1_{-} R}\left(\theta_{R}\right)=\int_{\pi / 3}^{2 \pi / 3} \phi_{S 1_{-} R}\left(i_{S 1}, \theta\right) \frac{N_{S}}{\pi / 3} d \theta .
$$

Evaluating, this becomes

$$
\begin{aligned}
& \lambda_{S 1_{-}}\left(\theta_{R}\right) \\
& = \begin{cases}\int_{\pi / 3}^{2 \pi / 3} 2 r_{R} \ell_{1} B_{R 0}\left(\theta-\theta_{R}\right) \frac{N_{S}}{\pi / 3} d \theta & \text { for }+\pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\
\int_{\pi / 3}^{\theta_{R}+\pi / 2} 2 r_{R} \ell_{1} B_{R 0}\left(\theta-\theta_{R}\right) \frac{N_{S}}{\pi / 3} d \theta & \\
+\int_{\theta_{R}+\pi / 2}^{2 \pi / 3}-2 r_{R} \ell_{1} B_{R 0}\left(\theta-\theta_{R}-\pi\right) \frac{N_{S}}{\pi / 3} d \theta & \text { for }-\pi / 6 \leq \theta_{R} \leq \pi / 6 .\end{cases}
\end{aligned}
$$

Simplifying, this becomes
$\lambda_{S 1_{-} R}\left(\theta_{R}\right)=\left\{\begin{array}{lr}\left.\frac{3}{\pi} r_{R} \ell_{1} N_{S} B_{R 0}\left(\theta-\theta_{R}\right)^{2}\right|_{\pi / 3} ^{2 \pi / 3} & \text { for }+\pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\ r_{R} \ell_{1} B_{R 0} \frac{N_{S}}{\pi / 3}\left(\left.\left(\theta-\theta_{R}\right)^{2}\right|_{\pi / 3} ^{\theta_{R}+\pi / 2}-\left.\left(\theta-\theta_{R}-\pi\right)^{2}\right|_{\theta_{R}+\pi / 2} ^{2 \pi / 3}\right) \\ & \text { for }-\pi / 6 \leq \theta_{R} \leq \pi / 6\end{array}\right.$
which reduces to
$\lambda_{S 1_{-} R}\left(\theta_{R}\right)=\left\{\begin{array}{lll}r_{R} \ell_{1} N_{S} B_{R 0}\left(2\left(\frac{\pi}{3}-\theta_{R}\right)+\frac{\pi}{3}\right) & \text { for } & +\pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\ r_{R} \ell_{1} N_{S} B_{R 0}\left(-\frac{6}{\pi} \theta_{R}^{2}+\frac{5 \pi}{6}\right) & \text { for } & -\pi / 6 \leq \theta_{R} \leq \pi / 6 .\end{array}\right.$

By symmetry, $\lambda_{S 1_{-} R}\left(\theta_{R} \pm \pi\right)=-\lambda_{S 1_{-} R}\left(\theta_{R}\right)$ so that the total flux linkage in stator phase 1 due to the rotor's magnetic field may be written as
$\lambda_{S 1_{-} R}\left(\theta_{R}\right)= \begin{cases}+r_{R} \ell_{1} N_{S} B_{R 0}\left(-\frac{6}{\pi} \theta_{R}^{2}+\frac{5 \pi}{6}\right), & -\frac{\pi}{6} \leq \theta_{R} \leq \frac{\pi}{6} \\ +r_{R} \ell_{1} N_{S} B_{R 0}\left(2\left(\frac{\pi}{3}-\theta_{R}\right)+\frac{\pi}{3}\right), & \frac{\pi}{6} \leq \theta_{R} \leq \frac{5 \pi}{6} \\ -r_{R} \ell_{1} N_{S} B_{R 0}\left(-\frac{6}{\pi}\left(\theta_{R}-\pi\right)^{2}+\frac{5 \pi}{6}\right), & \frac{5 \pi}{6} \leq \theta_{R} \leq \frac{7 \pi}{6} \\ -r_{R} \ell_{1} N_{S} B_{R 0}\left(2\left(\frac{\pi}{3}-\left(\theta_{R}-\pi\right)\right)+\frac{\pi}{3}\right), & \frac{7 \pi}{6} \leq \theta_{R} \leq \frac{11 \pi}{6} .\end{cases}$
Define $\lambda_{R}\left(\theta_{R}\right)$ as

$$
\lambda_{R}\left(\theta_{R}\right) \triangleq \lambda_{S 1_{-} R}\left(\theta_{R}\right) / M_{S R}
$$

where $M_{S R} \triangleq 2 r_{R} \ell_{1} N_{S} B_{R 0}$ is the coefficient of mutual inductance between the stator and the rotor. A plot of $\lambda_{R}\left(\theta_{R}\right)$ versus θ_{R} is given in Figure 10.14.

FIGURE 10.14. $\lambda_{R}\left(\theta_{R}\right)$ versus θ_{R}.

A simple computation shows that

$$
-1 \leq \frac{\partial \lambda_{R}\left(\theta_{R}\right)}{\partial \theta_{R}} \leq 1
$$

The total flux linkage in each stator phase may now be written in terms of $\lambda_{R}\left(\theta_{R}\right)$ as

$$
\begin{aligned}
& \lambda_{S 1_{-} R}\left(\theta_{R}\right)=M_{S R} \lambda_{R}\left(\theta_{R}\right) \\
& \lambda_{S 2_{-} R}\left(\theta_{R}\right)=M_{S R} \lambda_{R}\left(\theta_{R}-2 \pi / 3\right) \\
& \lambda_{S 3_{-} R}\left(\theta_{R}\right)=M_{S R} \lambda_{R}\left(\theta_{R}-4 \pi / 3\right) .
\end{aligned}
$$

10.5 Emf in the Stator Windings Produced by $\overrightarrow{\mathbf{B}}_{R}$

By Faraday's law, the back emf induced in the windings of phase 1 by rotor's magnetic field is given by

$$
e_{S 1} \triangleq-\frac{d}{d t} M_{S R} \lambda_{R}\left(\theta_{R}\right)= \begin{cases}+M_{S R} \frac{6 \theta_{R}}{\pi} \omega_{R}, & -\pi / 6 \leq \theta_{R} \leq \pi / 6 \tag{10.7}\\ +M_{S R} \omega_{R}, & \pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\ -M_{S R} \frac{6\left(\theta_{R}-\pi\right)}{\pi} \omega_{R}, & 5 \pi / 6 \leq \theta_{R} \leq 7 \pi / 6 \\ -M_{S R} \omega_{R}, & 7 \pi / 6 \leq \theta_{R} \leq 11 \pi / 6\end{cases}
$$

where $\omega_{R}=d \theta_{R} / d t$. With $e_{p} \triangleq M_{S R}=2 r_{R} \ell_{1} N_{S} B_{R 0}$ and

$$
\begin{equation*}
e\left(\theta_{R}\right) \triangleq \frac{e_{S 1}}{M_{S R} \omega_{R}}=-\frac{\partial \lambda_{R}\left(\theta_{R}\right)}{\partial \theta_{R}} \tag{10.8}
\end{equation*}
$$

the back emf in each stator phase may now be written succinctly as

$$
\begin{aligned}
e_{S 1} & =e_{p} e\left(\theta_{R}\right) \omega_{R} \\
e_{S 2} & =e_{p} e\left(\theta_{R}-2 \pi / 3\right) \omega_{R} \\
e_{S 2} & =e_{p} e\left(\theta_{R}-4 \pi / 3\right) \omega_{R}
\end{aligned}
$$

As $-1 \leq e\left(\theta_{R}\right) \leq 1, e_{p} \omega_{R}$ is the peak value of the back emf. A plot of the back emfs $e_{S 1}\left(\theta_{R}\right), e_{S 2}\left(\theta_{R}\right)$, and $e_{S 3}\left(\theta_{R}\right)$ at constant angular speed ω_{R} are given in Figures 10.15, 10.16, and 10.17, respectively. Note that each one has a trapezoidal shape and is the reason this machine is referred to as a trapezoidal back-emf synchronous motor.

FIGURE 10.15. $e_{S_{1}}\left(\theta_{R}\right)$ versus θ_{R}.

FIGURE 10.16. $e_{S 2}\left(\theta_{R}\right)$ versus θ_{R}.

FIGURE 10.17. $e_{S 3}\left(\theta_{R}\right)$ versus θ_{R}.

10.6 Torque

The magnetic force exerted by the rotor's magnetic field $\overrightarrow{\mathbf{B}}_{R}\left(r_{S}, \theta-\theta_{R}\right)$ on the top axial side (i.e., $\pi / 3 \leq \theta \leq 2 \pi / 3$) of a winding of phase 1 is (see Figure 10.18)

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{S 1}\left(r, \theta-\theta_{R}\right) & =i_{S 1}\left(\ell_{1} \hat{\mathbf{z}}\right) \times \overrightarrow{\mathbf{B}}_{R}\left(r_{S}, \theta-\theta_{R}\right) \\
& =i_{S 1} \ell_{1} B_{R}\left(r_{S}, \theta-\theta_{R}\right) \hat{\mathbf{z}} \times \hat{\mathbf{r}} \\
& =i_{S 1} \ell_{1} B_{R}\left(r_{S}, \theta-\theta_{R}\right) \hat{\boldsymbol{\theta}} .
\end{aligned}
$$

On the bottom side (i.e., $4 \pi / 3 \leq \theta \leq 5 \pi / 3$) the force is

$$
\begin{aligned}
\overrightarrow{\mathbf{F}}_{S 1}\left(r, \theta-\theta_{R}\right) & =i_{S 1}\left(-\ell_{1} \hat{\mathbf{z}}\right) \times \overrightarrow{\mathbf{B}}_{R}\left(r_{S}, \theta-\theta_{R}\right) \\
& =-i_{S 1} \ell_{1} B_{R}\left(r_{S}, \theta-\theta_{R}\right) \hat{\mathbf{z}} \times \hat{\mathbf{r}} \\
& =-i_{S 1} \ell_{1} B_{R}\left(r_{S}, \theta-\theta_{R}\right) \hat{\boldsymbol{\theta}}
\end{aligned}
$$

The total torque on the axial sides of the windings of phase 1 produced by the rotor's magnetic field is then

$$
\begin{aligned}
\tau_{S 1}= & \int_{\pi / 3}^{2 \pi / 3} \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{S 1} \frac{N_{S}}{\pi / 3} d \theta+\int_{4 \pi / 3}^{5 \pi / 3} \overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}_{S 1} \frac{N_{S}}{\pi / 3} d \theta \\
= & \int_{\pi / 3}^{2 \pi / 3} i_{S 1} \ell_{1} B_{R}\left(r_{S}, \theta-\theta_{R}\right) r_{S} \frac{N_{S}}{\pi / 3} d \theta \hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} \\
& -\int_{4 \pi / 3}^{5 \pi / 3} i_{S 1} \ell_{1} B_{R}\left(r_{S}, \theta-\theta_{R}\right) r_{S} \frac{N_{S}}{\pi / 3} d \theta \hat{\mathbf{r}} \times \hat{\boldsymbol{\theta}} \\
= & i_{S 1} \ell_{1} \frac{N_{S}}{\pi / 3}\left(\int_{\pi / 3}^{2 \pi / 3} r_{S} B_{R}\left(r_{S}, \theta-\theta_{R}\right) d \theta\right. \\
& \left.-\int_{4 \pi / 3}^{5 \pi / 3} r_{S} B_{R}\left(r_{S}, \theta-\theta_{R}\right) d \theta\right) \hat{\mathbf{z}} \\
= & 2 i_{S 1} \ell_{1} \frac{N_{S}}{\pi / 3} \int_{\pi / 3}^{2 \pi / 3} r_{S} B_{R}\left(r_{S}, \theta-\theta_{R}\right) d \theta \hat{\mathbf{z}}
\end{aligned}
$$

where the fact that $B_{R}\left(r_{S}, \theta-\theta_{R}\right)=-B_{R}\left(r_{S}, \theta-\theta_{R} \pm \pi\right)$ was used to obtain the last expression.

FIGURE 10.18. The force $\overrightarrow{\mathbf{F}}_{S 1}\left(r, \theta-\theta_{R}\right)=-i_{S 1} \ell_{1} B_{R}\left(r_{S}, \theta-\theta_{R}\right) \hat{\boldsymbol{\theta}}$ exerted on a winding on the top side of stator phase 1 by the magnetic field of the rotor's permanent magnet.

Using the expression for the rotor's magnetic field given in (10.2), the integral is broken up as

$$
\begin{aligned}
& \int_{\pi / 3}^{2 \pi / 3} r_{S} B_{R}\left(r_{S}, \theta-\theta_{R}\right) d \theta \\
& =\left\{\begin{array}{lll}
\int_{\pi / 3}^{\theta_{R}+\pi / 2} r_{R} B_{R 0} d \theta+\int_{\theta_{R}+\pi / 2}^{2 \pi / 3}-r_{R} B_{R 0} d \theta & \text { for } & -\frac{\pi}{6} \leq \theta_{R} \leq \frac{\pi}{6} \\
\int_{\pi / 3}^{2 \pi / 3} r_{R} B_{R 0} d \theta & \text { for } & \frac{\pi}{6} \leq \theta_{R} \leq \frac{5 \pi}{6} \\
\int_{\pi / 3}^{\theta_{R}-\pi / 2}-r_{R} B_{R 0} d \theta+\int_{\theta_{R}-\pi / 2}^{2 \pi / 3} r_{R} B_{R 0} d \theta & \text { for } & \frac{5 \pi}{6} \leq \theta_{R} \leq \frac{7 \pi}{6} \\
\int_{\pi / 3}^{2 \pi / 3}-r_{R} B_{R 0} d \theta & \text { for } & \frac{7 \pi}{6} \leq \theta_{R} \leq \frac{11 \pi}{6}
\end{array}\right.
\end{aligned}
$$

which simplifies to

$$
\begin{aligned}
& \int_{\pi / 3}^{2 \pi / 3} r_{S} B_{R}\left(r_{S}, \theta-\theta_{R}\right) d \theta \\
& = \begin{cases}+r_{R} B_{R 0}\left(\theta_{R}+\pi / 6\right)-r_{R} B_{R 0}\left(\pi / 6-\theta_{R}\right), & -\frac{\pi}{6} \leq \theta_{R} \leq \frac{\pi}{6} \\
+r_{R} B_{R 0} \pi / 3, & \frac{\pi}{6} \leq \theta_{R} \leq \frac{5 \pi}{6} \\
-r_{R} B_{R 0}\left(\theta_{R}-5 \pi / 6\right)+r_{R} B_{R 0}\left(7 \pi / 6-\theta_{R}\right), & \frac{5 \pi}{6} \leq \theta_{R} \leq \frac{7 \pi}{6} \\
-r_{R} B_{R 0} \pi / 3, & \frac{7 \pi}{6} \leq \theta_{R} \leq \frac{11 \pi}{6}\end{cases}
\end{aligned}
$$

Combining terms results in

$$
\int_{\pi / 3}^{2 \pi / 3} r_{S} B_{R}\left(r_{S}, \theta-\theta_{R}\right) d \theta=\left\{\begin{array}{lc}
+2 r_{R} B_{R 0} \theta_{R}, & -\pi / 6 \leq \theta_{R} \leq \pi / 6 \\
+r_{R} B_{R 0} \pi / 3, & \pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\
-2 r_{R} B_{R 0}\left(\theta_{R}-\pi\right), & 5 \pi / 6 \leq \theta_{R} \leq 7 \pi / 6 \\
-r_{R} B_{R 0} \pi / 3, & 7 \pi / 6 \leq \theta_{R} \leq 11 \pi / 6
\end{array}\right.
$$

Thus, the total torque exerted on the axial windings of phase 1 is then

$$
\tau_{S 1}=\left\{\begin{array}{lll}
+2 \ell_{1} r_{R} N_{S} B_{R 0} \frac{6 \theta_{R}}{\pi} i_{S 1} & \text { for } & -\pi / 6 \leq \theta_{R} \leq \pi / 6 \\
+2 \ell_{1} r_{R} N_{S} B_{R 0} i_{S 1} & \text { for } & \pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\
-2 \ell_{1} r_{R} N_{S} B_{R 0} \frac{6\left(\theta_{R}-\pi\right)}{\pi} i_{S 1} & \text { for } & 5 \pi / 6 \leq \theta_{R} \leq 7 \pi / 6 \\
-2 \ell_{1} r_{R} N_{S} B_{R 0} i_{S 1} & \text { for } & 7 \pi / 6 \leq \theta_{R} \leq 11 \pi / 6
\end{array}\right.
$$

The torque exerted on the rotor by the magnetic field produced by the stator currents of phase 1 is then $\tau_{R 1}=-\tau_{S 1}$, that is,

$$
\tau_{R 1}=\left\{\begin{array}{llr}
-2 \ell_{1} r_{R} N_{S} B_{R 0} \frac{6 \theta_{R}}{\pi} i_{S 1} & \text { for } & -\pi / 6 \leq \theta_{R} \leq \pi / 6 \\
-2 \ell_{1} r_{R} N_{S} B_{R 0} i_{S 1} & \text { for } & \pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\
+2 \ell_{1} r_{R} N_{S} B_{R 0} \frac{6\left(\theta_{R}-\pi\right)}{\pi} i_{S 1} & \text { for } & 5 \pi / 6 \leq \theta_{R} \leq 7 \pi / 6 \\
+2 \ell_{1} r_{R} N_{S} B_{R 0} i_{S 1} & \text { for } & 7 \pi / 6 \leq \theta_{R} \leq 11 \pi / 6
\end{array}\right.
$$

With $\tau_{p}=2 \ell_{1} r_{R} N_{S} B_{R 0}$ (note that $\tau_{p}=M_{S R}=e_{p}$), this may be rewritten compactly as

$$
\tau_{R 1}\left(\theta_{R}, i_{S 1}\right)=\left\{\begin{array}{lll}
-\tau_{p} \frac{6 \theta_{R}}{\pi} i_{S 1} & \text { for } & -\pi / 6 \leq \theta_{R} \leq \pi / 6 \\
-\tau_{p} i_{S 1} & \text { for } & \pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\
+\tau_{p} \frac{6\left(\theta_{R}-\pi\right)}{\pi} i_{S 1} & \text { for } & 5 \pi / 6 \leq \theta_{R} \leq 7 \pi / 6 \\
+\tau_{p} i_{S 1} & \text { for } & 7 \pi / 6 \leq \theta_{R} \leq 11 \pi / 6
\end{array}\right.
$$

However, by (10.7) and (10.8), it follows that

$$
\tau_{R 1}\left(\theta_{R}, i_{S 1}\right)=-\tau_{p} e\left(\theta_{R}\right) i_{S 1}
$$

and similarly

$$
\begin{aligned}
\tau_{R 2}\left(\theta_{R}, i_{S 2}\right) & =-\tau_{p} e\left(\theta_{R}-2 \pi / 3\right) i_{S 2} \\
\tau_{R 3}\left(\theta_{R}, i_{S 3}\right) & =-\tau_{p} e\left(\theta_{R}-4 \pi / 3\right) i_{S 2}
\end{aligned}
$$

10.7 Mathematical Model

The stator flux linkages are given by

$$
\begin{aligned}
& \lambda_{1}\left(i_{S 1}, i_{S 2}, i_{S 3}\right)=+L_{S} i_{S 1}-M i_{S 2}-M i_{S 3}+e_{p} \lambda_{R}\left(\theta_{R}\right) \\
& \lambda_{2}\left(i_{S 1}, i_{S 2}, i_{S 3}\right)=-M i_{S 1}+L_{S} i_{S 2}-M i_{S 3}+e_{p} \lambda_{R}\left(\theta_{R}-2 \pi / 3\right) \\
& \lambda_{3}\left(i_{S 1}, i_{S 2}, i_{S 3}\right)=-M i_{S 1}-M i_{S 2}+L_{S} i_{S 3}+e_{p} \lambda_{R}\left(\theta_{R}-4 \pi / 3\right)
\end{aligned}
$$

and the phase torques are

$$
\begin{aligned}
\tau_{R 1}\left(\theta_{R}, i_{S 1}\right) & =-\tau_{p} e\left(\theta_{R}\right) i_{S 1} \\
\tau_{R 2}\left(\theta_{R}, i_{S 2}\right) & =-\tau_{p} e\left(\theta_{R}-2 \pi / 3\right) i_{S 2} \\
\tau_{R 3}\left(\theta_{R}, i_{S 3}\right) & =-\tau_{p} e\left(\theta_{R}-4 \pi / 3\right) i_{S 3} .
\end{aligned}
$$

With R_{S} the resistance in each stator phase and $u_{S 1}, u_{S 2}$, and $u_{S 3}$ the voltages applied to each stator phase, the mathematical model is then

$$
\begin{aligned}
\frac{d}{d t} \lambda_{1}\left(i_{S 1}, i_{S 2}, i_{S 3}\right) & =-R_{S} i_{S 1}+u_{S 1} \\
\frac{d}{d t} \lambda_{2}\left(i_{S 1}, i_{S 2}, i_{S 3}\right) & =-R_{S} i_{S 2}+u_{S 2} \\
\frac{d}{d t} \lambda_{3}\left(i_{S 1}, i_{S 2}, i_{S 3}\right) & =-R_{S} i_{S 3}+u_{S 3} \\
J \frac{d \omega}{d t} & =\tau_{R 1}\left(\theta_{R}, i_{S 1}\right)+\tau_{R 2}\left(\theta_{R}, i_{S 2}\right)+\tau_{R 3}\left(\theta_{R}, i_{S 3}\right)-\tau_{L} \\
\frac{d \theta_{R}}{d t} & =\omega_{R}
\end{aligned}
$$

or

$$
\begin{aligned}
\frac{d}{d t}\left(L_{S} i_{S 1}-M i_{S 2}-M i_{S 3}+e_{p} \lambda_{R}\left(\theta_{R}\right)\right) & =-R_{S} i_{S 1}+u_{S 1} \\
\frac{d}{d t}\left(-M i_{S 1}+L L_{S} i_{S 2}-M i_{S 3}+e_{p} \lambda_{R}\left(\theta_{R}-2 \pi / 3\right)\right) & =-R_{S} i_{S 2}+u_{S 2} \\
\frac{d}{d t}\left(-M i_{S 1}-M i_{S 2}+L_{S} i_{S 3}+e_{p} \lambda_{R}\left(\theta_{R}-4 \pi / 3\right)\right) & =-R_{S} i_{S 3}+u_{S 3} \\
J \frac{d \omega_{R}}{d t} & =\tau-\tau_{L} \\
\frac{d \theta_{R}}{d t} & =\omega_{R}
\end{aligned}
$$

with

$$
\tau \triangleq-\tau_{p} e\left(\theta_{R}\right) i_{S 1}-\tau_{p} e\left(\theta_{R}-2 \pi / 3\right) i_{S 2}-\tau_{p} e\left(\theta_{R}-4 \pi / 3\right) i_{S 3} .
$$

This system is often written in the form $\left(e\left(\theta_{R}\right)=-\partial \lambda_{R}\left(\theta_{R}\right) / \partial \theta_{R}\right)$

$$
\begin{aligned}
{\left[\begin{array}{c}
u_{S 1} \\
u_{S 2} \\
u_{S 3}
\end{array}\right]=} & {\left[\begin{array}{rrr}
L_{S} & -M & -M \\
-M & L_{S} & -M \\
-M & -M & L_{S}
\end{array}\right] \frac{d}{d t}\left[\begin{array}{l}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right]+R_{S}\left[\begin{array}{l}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right] } \\
& -e_{p}\left[\begin{array}{c}
e\left(\theta_{R}\right) \\
e\left(\theta_{R}-2 \pi / 3\right) \\
e\left(\theta_{R}-4 \pi / 3\right)
\end{array}\right] \omega_{R} \\
J \frac{d \omega_{R}}{d t}= & -\tau_{p} e\left(\theta_{R}\right) i_{S 1}-\tau_{p} e\left(\theta_{R}-2 \pi / 3\right) i_{S 2}-\tau_{p} e\left(\theta_{R}-4 \pi / 3\right) i_{S 3}-\tau_{L} \\
\frac{d \theta_{R}}{d t}= & \omega_{R} .
\end{aligned}
$$

With balanced stator currents, this may be rewritten as (see problem 1)

$$
\begin{aligned}
{\left[\begin{array}{l}
u_{S 1} \\
u_{S 2} \\
u_{S 3}
\end{array}\right]=} & {\left[\begin{array}{rrr}
L_{S}+M & 0 & 0 \\
0 & L_{S}+M & 0 \\
0 & 0 & L_{S}+M
\end{array}\right] \frac{d}{d t}\left[\begin{array}{l}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right]+R_{S}\left[\begin{array}{l}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right] } \\
& -e_{p}\left[\begin{array}{c}
e\left(\theta_{R}\right) \\
e\left(\theta_{R}-2 \pi / 3\right) \\
e\left(\theta_{R}-4 \pi / 3\right)
\end{array}\right] \omega_{R} \\
J \frac{d \omega_{R}}{d t}= & -\tau_{p} e\left(\theta_{R}\right) i_{S 1}-\tau_{p} e\left(\theta_{R}-2 \pi / 3\right) i_{S 2}-\tau_{p} e\left(\theta_{R}-4 \pi / 3\right) i_{S 3}-\tau_{L} \\
\frac{d \theta_{R}}{d t}= & \omega_{R} .
\end{aligned}
$$

In state-space form this becomes

$$
\begin{aligned}
\frac{d i_{S 1}}{d t} & =\frac{e_{p}}{L_{S}+M} \omega_{R} e\left(\theta_{R}\right)-\frac{R_{S}}{L_{S}+M} i_{S 1}+\frac{1}{L_{S}+M} u_{S 1} \\
\frac{d i_{S 2}}{d t} & =\frac{e_{p}}{L_{S}+M} \omega_{R} e\left(\theta_{R}-2 \pi / 3\right)-\frac{R_{S}}{L_{S}+M} i_{S 2}+\frac{1}{L_{S}+M} u_{S 2} \\
\frac{d i_{S 3}}{d t} & =\frac{e_{p}}{L_{S}+M} \omega_{R} e\left(\theta_{R}-4 \pi / 3\right)-\frac{R_{S}}{L_{S}+M} i_{S 3}+\frac{1}{L_{S}+M} u_{S 3} \\
\frac{d \omega_{R}}{d t} & =-\left(\tau_{p} / J\right) e\left(\theta_{R}\right) i_{S 1}-\left(\tau_{p} / J\right) e\left(\theta_{R}-2 \pi / 3\right) i_{S 2} \\
& -\left(\tau_{p} / J\right) e\left(\theta_{R}-4 \pi / 3\right) i_{S 3}-\tau_{L} / J \\
\frac{d \theta_{R}}{d t} & =\omega_{R}
\end{aligned}
$$

where $e_{p}=\tau_{p}$.

Remark

In this formulation of the mathematical model, $e\left(\theta_{R}\right)=-\partial \lambda_{R}\left(\theta_{R}\right) / \partial \theta_{R}$ was used [see equation (10.8)] so that the back emfs in each phase $e_{S 1}=$ $e_{p} e\left(\theta_{R}\right), e_{S 2}=e_{p} e\left(\theta_{R}-2 \pi / 3\right)$, and $e_{S 3}=e_{p} e\left(\theta_{R}-4 \pi / 3\right)$ have the same sign convention as the corresponding applied stator voltages $u_{S 1}, u_{S 2}$, and $u_{S 3}$, respectively. This is consistent with Faraday's law and with the sign conventions chosen for the back emf in the induction and synchronous machines. However, in the literature, it is common to use $\varepsilon\left(\theta_{R}\right) \triangleq \partial \lambda_{R}\left(\theta_{R}\right) / \partial \theta_{R}$ for the back emf [15]; that is, the sign convention is opposite to that used here. This formulation is explored in problem 4. (In Chapter 1, both sign conventions were considered for the back emf of the DC motor.)

10.8 Operation and Control

At constant angular speed, Figure 10.19 is a graphical representation of the relationships between the back emf voltages (note their trapezoidal shape)

$$
\begin{align*}
& e_{S 1}=e_{p} e\left(\theta_{R}\right) \omega_{R} \\
& e_{S 2}=e_{p} e\left(\theta_{R}-2 \pi / 3\right) \omega_{R} \tag{10.9}\\
& e_{S 3}=e_{p} e\left(\theta_{R}-4 \pi / 3\right) \omega_{R}
\end{align*}
$$

the phase currents $i_{S 1}, i_{S 2}$, and $i_{S 3}$, the power absorbed in each phase by the back emfs $p_{S 1} \triangleq e_{S 1} i_{S 1}, p_{S 2} \triangleq e_{S 2} i_{S 2}, p_{S 3} \triangleq e_{S 3} i_{S 3}$, and the total power absorbed by the back emfs $p \triangleq e_{S 1} i_{S 1}+e_{S 2} i_{S 2}+e_{S 3} i_{S 3}$. In order to obtain the current profile $i_{S 1}$ shown in Figure 10.19, the current reference $i_{S 1 r}$ for the current in phase 1 is chosen as

$$
i_{S 1 r}=\left\{\begin{array}{lll}
-I_{p} & \text { if } & e_{S 1}=+E_{p}=+e_{p} \omega_{R} \\
+I_{p} & \text { if } & e_{S 1}=-E_{p}=-e_{p} \omega_{R} \\
0 & \text { otherwise } &
\end{array}\right.
$$

or, from the expressions (10.7) and (10.8) for $e_{S 1}$, it is seen that $i_{S 1 r}$ may be written as

$$
i_{S 1 r}\left(\theta_{R}\right)=I_{p} i_{S}\left(\theta_{R}\right)
$$

where

$$
i_{S}\left(\theta_{R}\right) \triangleq\left\{\begin{array}{rcc}
0 & \text { for } & -\pi / 6 \leq \theta_{R} \leq \pi / 6 \tag{10.10}\\
-1 & \text { for } & \pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\
0 & \text { for } & 5 \pi / 6 \leq \theta_{R} \leq 7 \pi / 6 \\
1 & \text { for } & 7 \pi / 6 \leq \theta_{R} \leq 11 \pi / 6
\end{array}\right.
$$

Choosing the gains in the PI current controller

$$
\begin{equation*}
u_{S 1}=K_{P}\left(i_{S 1 r}-i_{S 1}\right)+K_{I} \int_{0}^{t}\left(i_{S 1 r}(\tau)-i_{S 1}(\tau)\right) d \tau \tag{10.11}
\end{equation*}
$$

appropriately results in $i_{S 1} \rightarrow i_{S 1 r}$. Similarly, one chooses $i_{S 2 r}=I_{p} i_{S}\left(\theta_{R}-\right.$ $2 \pi / 3)$ and $i_{S 3 r}=I_{p} i_{S}\left(\theta_{R}-4 \pi / 3\right)$ and then employs PI current controllers of the form (10.11) to force $i_{S 2} \rightarrow i_{S 2 r}, i_{S 3} \rightarrow i_{S 3 r}$.

Figure 10.19 shows that the current is commutated (i.e., is switched from one phase to another) every $\pi / 3$ radians or 60°. For example, at $\theta_{R}=\pi / 6$ the current $-I_{p}$ in phase 3 goes (is commutated) to phase 1. After another $\pi / 3$ radians so that $\theta_{R}=\pi / 2$, the current I_{p} in phase 2 is commutated to phase 3 . Note that one need only know the rotor position at the discrete locations $30^{\circ}, 60^{\circ}, 90^{\circ}, 150^{\circ}, 210^{\circ}, 270^{\circ}$, and 330° to carry out the commutation of the phases, i.e., to implement $i_{S 1 r}, i_{S 2 r}, i_{S 3 r}$. Usually these motors are equipped with Hall effect sensors that detect these discrete rotor positions for current commutation.

To determine torque produced using these current references, consider the electrical power absorbed by the back emfs which is given by

$$
\begin{aligned}
e_{S 1} i_{S 1}+e_{S 2} i_{S 2}+e_{S 3} i_{S 3}= & e_{p} e\left(\theta_{R}\right) \omega_{R} i_{S 1}+e_{p} e\left(\theta_{R}-2 \pi / 3\right) \omega_{R} i_{S 2} \\
& +e_{p} e\left(\theta_{R}-4 \pi / 3\right) \omega_{R} i_{S 3}
\end{aligned}
$$

Choosing the current references as just described, it is seen from the plots in Figure (10.19) that this last expression reduces to

$$
\begin{aligned}
e_{S 1} i_{S 1}+e_{S 2} i_{S 2}+e_{S 3} i_{S 3}= & e_{p} e\left(\theta_{R}\right) \omega_{R} i_{S 1 r}+e_{p} e\left(\theta_{R}-2 \pi / 3\right) \omega_{R} i_{S 2 r} \\
& +e_{p} e\left(\theta_{R}-4 \pi / 3\right) \omega_{R} i_{S 3 r} \\
= & -2 e_{p} \omega_{R} I_{p}
\end{aligned}
$$

which is negative for $\omega_{R}>0, I_{p}>0$. Where does this power go? It is converted into mechanical power as is now shown (see also problem 2).

FIGURE 10.19. Back emf, currents, and power waveforms ($E_{p} \triangleq e_{p} \omega_{R}$). Note that the commutation of the phase currents occurs every $\pi / 3$ radians at $\pi / 6, \pi / 2,5 \pi / 6,7 \pi / 6,9 \pi / 6$, and $11 \pi / 6$. Adapted from Krishnan [15].

Specifically, with the currents chosen as above, the mechanical power is

$$
\begin{aligned}
\tau \omega_{R} & =-\tau_{p} e\left(\theta_{R}\right) \omega_{R} i_{S 1}-\tau_{p} e\left(\theta_{R}-\frac{2 \pi}{3}\right) \omega_{R} i_{S 2}-\tau_{p} e\left(\theta_{R}-\frac{4 \pi}{3}\right) \omega_{R} i_{S 3} \\
& =-e_{p} e\left(\theta_{R}\right) \omega_{R} i_{S 1 r}-e_{p} e\left(\theta_{R}-\frac{2 \pi}{3}\right) \omega_{R} i_{S 2 r}-e_{p} e\left(\theta_{R}-\frac{4 \pi}{3}\right) \omega_{R} i_{S 3 r} \\
& =2 e_{p} \omega_{R} I_{p} \\
& =2 \tau_{p} I_{p} \omega_{R}
\end{aligned}
$$

That is, the torque is simply given by

$$
\tau=2 \tau_{p} I_{p}
$$

This suggests a control scheme in which the current references are chosen as

$$
\begin{align*}
i_{S 1 r} & =I_{p} i_{S}\left(\theta_{R}\right) \\
i_{S 2 r} & =I_{p} i_{S}\left(\theta_{R}-2 \pi / 3\right) \tag{10.12}\\
i_{S 3 r} & =I_{p} i_{S}\left(\theta_{R}-4 \pi / 3\right)
\end{align*}
$$

and

$$
\begin{align*}
& u_{S 1}=K_{P}\left(i_{S 1 r}-i_{S 1}\right)+K_{I} \int_{0}^{t}\left(i_{S 1 r}(\tau)-i_{S 1}(\tau)\right) d \tau \\
& u_{S 2}=K_{P}\left(i_{S 2 r}-i_{S 2}\right)+K_{I} \int_{0}^{t}\left(i_{S 2 r}(\tau)-i_{S 2}(\tau)\right) d \tau \tag{10.13}\\
& u_{S 1}=K_{P}\left(i_{S 3 r}-i_{S 3}\right)+K_{I} \int_{0}^{t}\left(i_{S 3 r}(\tau)-i_{S 3}(\tau)\right) d \tau .
\end{align*}
$$

If the PI current controller performs well enough to assume $i_{S 1}=i_{S 1 r}$, $i_{S 2}=i_{S 2 r}$ and $i_{S 3}=i_{S 3 r}$, then

$$
\frac{d \omega}{d t}=\frac{\tau}{J}-\frac{\tau_{L}}{J}=\frac{2 \tau_{p}}{J} I_{p}-\frac{\tau_{L}}{J} .
$$

One then simply chooses

$$
\begin{align*}
I_{p}= & \frac{J}{2 \tau_{p}} \alpha_{r} \tag{10.14}\\
\alpha_{r}= & K_{I} \int_{0}^{t}\left(\theta_{r e f}(\tau)-\theta(\tau)\right) d \tau+K_{P}\left(\theta_{r e f}(t)-\theta(t)\right) \\
& +K_{D}\left(\omega_{r e f}(t)-\omega(t)\right)+\alpha_{r e f} . \tag{10.15}
\end{align*}
$$

With $e_{0}(t) \triangleq \int_{0}^{t}\left(\theta_{r e f}(\tau)-\theta(\tau)\right) d \tau, e_{1}(t) \triangleq \theta_{r e f}(t)-\theta(t)$, and $e_{2}(t) \triangleq$ $\omega_{r e f}(t)-\omega(t)$, the closed-loop system for the mechanical variables is

$$
\frac{d}{d t}\left[\begin{array}{l}
e_{0} \\
e_{1} \\
e_{2}
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-K_{I} & -K_{P} & -K_{D}
\end{array}\right]\left[\begin{array}{c}
e_{0} \\
e_{1} \\
e_{2}
\end{array}\right]+\left[\begin{array}{c}
0 \\
0 \\
1 / J
\end{array}\right] \tau_{L}
$$

With $r_{1}>0, r_{2}>0, r_{3}>0$, set the gains as

$$
\begin{aligned}
K_{D} & =r_{1}+r_{2}+r_{3} \\
K_{P} & =r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3} \\
K_{I} & =r_{1} r_{2} r_{3}
\end{aligned}
$$

so that the closed-loop characteristic polynomial is

$$
\begin{aligned}
a(s) & =\operatorname{det}\left(s I-\left[\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 1 \\
-K_{I} & -K_{P} & -K_{D}
\end{array}\right]\right) \\
& =s^{3}+K_{I} s^{2}+K_{P} s-K_{I} \\
& =s^{3}+\left(r_{1}+r_{2}+r_{3}\right) s^{2}+\left(r_{1} r_{2}+r_{1} r_{3}+r_{2} r_{3}\right) s+r_{1} r_{2} r_{3} \\
& =\left(s+r_{1}\right)\left(s+r_{2}\right)\left(s+r_{3}\right)
\end{aligned}
$$

With this choice of gains, the closed-loop poles are $p_{1}=-r_{1}, p_{2}=-r_{2}$, and $p_{3}=-r_{3}$. As shown in Chapter 2, if the load torque is constant, then $e_{1}(t) \rightarrow 0, e_{2}(t) \rightarrow 0$ as $t \rightarrow \infty$. Of course, this controller assumes that $i_{S 1} \rightarrow i_{S 1 r}, i_{S 2} \rightarrow i_{S 2 r}$, and $i_{S 3} \rightarrow i_{S 3 r}$ fast enough that it can be assumed that currents are equal to their reference values.

Remark

Note that the set of currents $i_{S 1 r}=I_{p} i_{S}\left(\theta_{R}\right), i_{S 2 r}=I_{p} i_{S}\left(\theta_{R}-2 \pi / 3\right)$, and $i_{S 3 r}=I_{p} i_{S}\left(\theta_{R}-4 \pi / 3\right) i_{S 1 r}$ are balanced, that is,

$$
I_{p} i_{S}\left(\theta_{R}\right)+I_{p} i_{S}\left(\theta_{R}-2 \pi / 3\right)+I_{p} i_{S}\left(\theta_{R}-4 \pi / 3\right) \equiv 0
$$

However, the back emf voltages $e_{S 1}\left(\theta_{R}\right), e_{S 2}\left(\theta_{R}\right)$ and $e_{S 3}\left(\theta_{R}\right)$ are not balanced as

$$
\begin{aligned}
e_{S 1}\left(\theta_{R}\right)+e_{S 2}\left(\theta_{R}\right)+e_{S 3}\left(\theta_{R}\right)= & -e_{p} \omega_{R}\left(e\left(\theta_{R}\right)+e\left(\theta_{R}-2 \pi / 3\right)\right. \\
& \left.+e\left(\theta_{R}-4 \pi / 3\right)\right)
\end{aligned}
$$

is not identically zero (see Figure 10.19). This is in contrast to a threephase PM synchronous machine with sinusoidally distributed windings in which the back emf voltages are balanced.

10.8.1 The Terminology "Brushless DC Motor"

The terminology brushless $D C$ motor or $B L D C$ is used for this machine because usually the motor is combined with an optical encoder, current measurements, Hall sensors for current commutation, an amplifier and feedback controller so that it behaves like a DC motor. That is, as indicated in Figure 10.20, the currents and motor position are fed back to the controller;
the controller then uses PI current loops of the form (10.11) to force the currents to track the references

$$
\begin{align*}
i_{S 1 r}\left(\theta_{R}\right) & =I_{p} i_{S}\left(\theta_{R}\right) \\
i_{S 2 r}\left(\theta_{R}\right) & =I_{p} i_{S}\left(\theta_{R}-2 \pi / 3\right) \tag{10.16}\\
i_{S 3 r}\left(\theta_{R}\right) & =I_{p} i_{S}\left(\theta_{R}-4 \pi / 3\right)
\end{align*}
$$

where $i_{S}\left(\theta_{R}\right)$ is given by (10.10). The input to the controller is simply I_{p} so that with the inner current control loops working properly, the equations of the motor become

$$
\begin{aligned}
J \frac{d \omega}{d t} & =2 \tau_{p} I_{p}-\tau_{L} \\
\frac{d \theta}{d t} & =\omega
\end{aligned}
$$

which is the same form as current command DC motor with torque constant $K_{T}=2 \tau_{p}$.

FIGURE 10.20. Block diagram for a brushless DC motor.
The system of Figure 10.20 is what one refers to as a "brushless DC motor" which the user obtains as a complete system from the manufacturer. Then, in the same way as for a DC motor, one simply chooses the "DC current" I_{p} as in equations (10.14) and (10.15) to use the BLDC as a servo (positioning) system.

Remark Typically, the position sensor for the current commutation, that is, for tracking the current references (10.16), is done with Hall effect sensors rather than an encoder. This is because to track the current references (10.16), the phase current plots in Figure 10.19 show that one only needs to determine the position of the rotor at multiples of $\pi / 3$ or 60° as the current in any particular phase changes only at some multiple of 60°. Hall effect sensors provide a simple inexpensive way to detect the rotor position at multiples of 60°.

10.9 Microscopic Viewpoint of BLDC Machines*

The microscopic viewpoint of the Physics of BLDC machine is described in this section. In this analysis, the system will be assumed to be in steady-state so that $\theta_{R}=\omega_{R} t-\delta, i_{S 1}=I_{S} \cos \left(\omega_{S} t\right), i_{S 2}=I_{S} \cos \left(\omega_{S} t-\right.$ $2 \pi / 3), i_{S 3}=I_{S} \cos \left(\omega_{S} t-4 \pi / 3\right)$, and $\omega_{S}=\omega_{R}$.

10.9.1 Axial Electric Field $\overrightarrow{\mathbf{E}}_{R}$

It is now shown that the rotating radial magnetic field of the PM rotor produces an axial electric field in the air gap. Recall that the magnetic field produced by the rotor magnet is

$$
\begin{align*}
& \overrightarrow{\mathbf{B}}_{R}\left(r, \theta-\theta_{R}\right) \\
& =\left\{\begin{array}{cc}
B_{R 0} \frac{r_{R}}{r} \hat{\mathbf{r}} & \text { for } \\
-B_{R 0} \frac{r_{R}}{r} \frac{\left(\theta-\theta_{R}-\pi / 2\right)}{\Delta / 2} \hat{\mathbf{r}} & \text { for } \\
-B_{R 0} \frac{r_{R}}{2} \hat{\mathbf{r}}-\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{\pi}{2}+\frac{\Delta}{2} \\
B_{R 0} \frac{r_{R}}{r} \frac{\left(\theta-\theta_{R}-3 \pi / 2\right)}{\Delta / 2} \hat{\mathbf{r}} & \text { for } \frac{3 \pi}{2}-\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{3 \pi}{2}+\frac{\Delta}{2}
\end{array}\right. \tag{10.17}
\end{align*}
$$

where the parameter $\Delta>0$ is now taken to be small, but nonzero. Maxwell's equations require that the divergence of the magnetic induction field $\overrightarrow{\mathbf{B}}_{R}$ be identically zero. In cylindrical coordinates with $\overrightarrow{\mathbf{B}}=B_{r} \hat{\mathbf{r}}+B_{\theta} \hat{\boldsymbol{\theta}}+B_{z} \hat{\mathbf{z}}$, the divergence is written as

$$
\nabla \cdot \overrightarrow{\mathbf{B}}=\frac{1}{r} \frac{\partial}{\partial r}\left(r B_{r}\right)+\frac{1}{r} \frac{\partial B_{\theta}}{\partial \theta}+\frac{\partial B_{z}}{\partial z} .
$$

A straightforward calculation (note that $B_{R \theta}=0, B_{R z}=0$) shows that $\nabla \cdot \overrightarrow{\mathbf{B}}_{R}=0$.

The rotor's magnetic field in the air gap induces an axial electric field in the air gap. This electric field can be computed using Faraday's law in differential form, that is,

$$
\nabla \times \overrightarrow{\mathbf{E}}_{R}=-\frac{\partial \overrightarrow{\mathbf{B}}_{R}}{\partial t}
$$

In cylindrical coordinates, the curl of $\overrightarrow{\mathbf{E}}_{R}$ is given by $\nabla \times \overrightarrow{\mathbf{E}}_{R}=$

$$
\left(\frac{1}{r} \frac{\partial E_{R z}}{\partial \theta}-\frac{\partial E_{R \theta}}{\partial z}\right) \hat{\mathbf{r}}+\left(\frac{\partial E_{R r}}{\partial z}-\frac{\partial E_{R z}}{\partial r}\right) \hat{\boldsymbol{\theta}}+\left(\frac{1}{r} \frac{\partial\left(r E_{R \theta}\right)}{\partial r}-\frac{1}{r} \frac{\partial E_{R r}}{\partial \theta}\right) \hat{\mathbf{z}}
$$

Then

$$
-\frac{\partial \overrightarrow{\mathbf{B}}_{R}\left(r, \theta-\theta_{R}\right)}{\partial t}=\left\{\begin{array}{ccc}
0 & \text { for } & -\frac{\pi}{2}+\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{\pi}{2}-\frac{\Delta}{2} \\
-B_{R 0} \frac{r_{R}}{r} \frac{2}{\Delta} \omega_{R} \hat{\mathbf{r}} & \text { for } & \frac{\pi}{2}-\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{\pi}{2}+\frac{\Delta}{2} \\
0 & \text { for } & \frac{\pi}{2}+\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{3 \pi}{2}-\frac{\Delta}{2} \\
B_{R 0} \frac{r_{R}}{r} \frac{2}{\Delta} \omega_{R} \hat{\mathbf{r}} & \text { for } & \frac{3 \pi}{2}-\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{3 \pi}{2}+\frac{\Delta}{2} .
\end{array}\right.
$$

Now,

$$
\frac{\partial E_{R \theta}}{\partial z}=0 \quad \text { and } \quad \frac{\partial E_{R r}}{\partial z}=0
$$

as it is assumed there is no dependence in z. Thus,

$$
\nabla \times \overrightarrow{\mathbf{E}}_{R}=\frac{1}{r} \frac{\partial E_{R z}}{\partial \theta} \hat{\mathbf{r}}
$$

and Faraday's law in differential form reduces to

$$
\frac{1}{r} \frac{\partial E_{R z}}{\partial \theta}=-\frac{\partial B_{R}\left(r, \theta-\theta_{R}\right)}{\partial t} .
$$

The solution is

$$
E_{R z}\left(\theta-\theta_{R}, t\right)=-\int_{\theta_{R}+\pi / 2}^{\theta} r \frac{\partial B_{R}\left(r, \theta-\theta_{R}\right)}{\partial t} d \theta
$$

where $\theta_{R}+\pi / 2$ was chosen as the reference position for the integration as $\left.E_{R z}\left(\theta-\theta_{R}, t\right)\right|_{\theta=\theta_{R}+\pi / 2}=0$ (see Figure 10.21 and problem 7). Evaluating the integral gives

$$
\begin{aligned}
& E_{R z}\left(\theta-\theta_{R}, t\right) \\
& = \begin{cases}-\frac{2 r_{R} B_{R 0}}{\Delta} \omega_{R}\left(\theta-\theta_{R}-\pi / 2\right) & \text { for } \\
-r_{R} B_{R 0} \omega_{R} & \text { for } \frac{\pi}{2}-\frac{\Delta}{2} \leq \theta-\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{\pi}{2}+\frac{\Delta}{2} \\
\frac{2 r_{R} B_{R 0}}{\Delta} \omega_{R}\left(\theta-\theta_{R}-3 \pi / 2\right) & \text { for } \quad \frac{3 \pi}{2}-\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{\Delta \pi}{2}+\frac{\Delta}{2} \\
r_{R} B_{R 0} \omega_{R} & \text { for }-\frac{\pi}{2}+\frac{\Delta}{2} \leq \theta-\theta_{R} \leq \frac{\pi}{2}-\frac{\Delta}{2}\end{cases}
\end{aligned}
$$

Letting $\Delta \rightarrow 0$, this becomes

$$
E_{R z}\left(\theta-\theta_{R}, t\right) \hat{\mathbf{z}}=\left\{\begin{array}{lll}
+r_{R} B_{R 0} \omega_{R} \hat{\mathbf{z}} & \text { for } & -\pi / 2 \leq \theta-\theta_{R} \leq \pi / 2 \tag{10.18}\\
-r_{R} B_{R 0} \omega_{R} \hat{\mathbf{z}} & \text { for } & \pi / 2 \leq \theta-\theta_{R} \leq 3 \pi / 2
\end{array}\right.
$$

which is illustrated in Figure 10.21.

FIGURE 10.21. Axial electric field $\overrightarrow{\mathbf{E}}_{R}$ produced by $\overrightarrow{\mathbf{B}}_{R}$.

10.9.2 Emf Induced in the Stator Phases

Consider a winding of phase 1 where the axial side 1 is at the location θ with $2 \pi / 3 \leq \theta \leq \pi / 3$ and the other axial side 1^{\prime} of the winding is at $\theta+\pi$. To compute the emf $\zeta_{S 1}(\theta)$ in this winding, let

$$
d \vec{\ell}=\left\{\begin{aligned}
d \ell \hat{\mathbf{z}} & \text { for side } 1 \\
-d \ell \hat{\mathbf{z}} & \text { for side } 1^{\prime} .
\end{aligned}\right.
$$

For $\pi / 3 \leq \theta \leq 2 \pi / 3$ and using (10.18), it follows that

$$
\begin{aligned}
& \zeta_{S_{1}}(\theta)=\int_{\substack{\text { stator winding whose } \\
\text { sides are at } \theta \text { and } \theta+\pi}} \overrightarrow{\mathbf{E}}_{R}(\theta) \cdot d \vec{\ell}
\end{aligned}
$$

The total emf $\xi_{S 1}$ induced in stator phase 1 due to the rotor's magnetic field is then

$$
\xi_{S 1}=\int_{\substack{\text { All windings of } \\ \text { stator phase } 1}} \overrightarrow{\mathbf{E}}_{R} \cdot d \vec{\ell}=\int_{\pi / 3}^{2 \pi / 3} \zeta_{S 1}(\theta) \frac{N_{S}}{\pi / 3} d \theta .
$$

Evaluating the integral gives

$$
\xi_{S 1}=\left\{\begin{array}{lll}
\int_{\pi / 3}^{2 \pi / 3} 2 r_{R} \ell B_{R 0} \omega_{R} \frac{N_{S}}{\pi / 3} d \theta & \text { for } & \pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\
\int_{\theta_{R}+\pi / 2}^{2 \pi / 3}-2 r_{R} \ell B_{R 0} \omega_{R} \frac{N_{S}}{\pi / 3} d \theta & & \\
+\int_{\pi / 3}^{\theta_{R}+\pi / 2} 2 r_{R} \ell B_{R 0} \omega_{R} \frac{N_{S}}{\pi / 3} d \theta & \text { for } & -\pi / 6 \leq \theta_{R} \leq \pi / 6 \\
\int_{\pi / 3}^{2 \pi / 3}-2 r_{R} \ell B_{R 0} \omega_{R} \frac{N_{S}}{\pi / 3} d \theta & \text { for } & 7 \pi / 6 \leq \theta_{R} \leq 11 \pi / 6 \\
\int_{\pi / 3}^{\theta_{R}-\pi / 2}-2 r_{R} \ell B_{R 0} \omega_{R} \frac{N_{S}}{\pi / 3} d \theta & & \\
+\int_{\theta_{R}-\pi / 2}^{2 \pi / 3} 2 r_{R} \ell B_{R 0} \omega_{R} \frac{N_{S}}{\pi / 3} d \theta & \text { for } & 5 \pi / 6 \leq \theta_{R} \leq 7 \pi / 6 .
\end{array}\right.
$$

This simplifies to

$$
\xi_{S 1}=\left\{\begin{array}{lll}
2 r_{R} \ell N_{S} B_{R 0} \omega_{R} & \text { for } & \frac{\pi}{6} \leq \theta_{R} \leq \frac{5 \pi}{6} \\
-2 r_{R} \ell B_{R 0} \omega_{R} \frac{N_{S}}{\pi / 3}\left(\frac{2 \pi}{3}-\theta_{R}-\frac{\pi}{2}\right) & & \\
+2 r_{R} \ell B_{R 0} \omega_{R} \frac{N_{S}}{\pi / 3}\left(\theta_{R}+\frac{\pi}{2}-\frac{\pi}{3}\right) & \text { for } & -\frac{\pi}{6} \leq \theta_{R} \leq \frac{\pi}{6} \\
-2 r_{R} \ell N_{S} B_{R 0} \omega_{R} & \text { for } & \frac{7 \pi}{6} \leq \theta_{R} \leq \frac{11 \pi}{6} \\
-2 r_{R} \ell B_{R 0} \omega_{R} \frac{N_{S}}{\pi / 3}\left(\theta_{R}-\frac{\pi}{2}-\frac{\pi}{3}\right) & \text { for } & \frac{5 \pi}{6} \leq \theta_{R} \leq \frac{7 \pi}{6}
\end{array}\right.
$$

or, finally

$$
\begin{aligned}
\xi_{S 1} & =\int_{\substack{\text { All windings of } \\
\text { stator phase 1 }}} \overrightarrow{\mathbf{E}}_{R} \cdot d \vec{\ell} \\
& = \begin{cases}+2 r_{R} \ell N_{S} B_{R 0} \omega_{R} & \text { for } \quad \pi / 6 \leq \theta_{R} \leq 5 \pi / 6 \\
+2 r_{R} \ell N_{S} B_{R 0} \omega_{R} \frac{6 \theta_{R}}{\pi} & \text { for } \\
-\pi / 6 \leq \theta_{R} \leq \pi / 6 \\
-2 r_{R} \ell N_{S} B_{R 0} \omega_{R} & \text { for } 7 \pi / 6 \leq \theta_{R} \leq 11 \pi / 6 \\
-2 r_{R} \ell N_{S} B_{R 0} \omega_{R} \frac{6\left(\theta_{R}-\pi\right)}{\pi} & \text { for } 5 \pi / 6 \leq \theta_{R} \leq 7 \pi / 6\end{cases}
\end{aligned}
$$

which is the same expression as (10.7) derived in the macroscopic case.

Problems

Problem 1 BLDC Motor Model

The electrical equations for the BLDC were derived as

$$
\begin{aligned}
{\left[\begin{array}{l}
u_{S 1} \\
u_{S 2} \\
u_{S 3}
\end{array}\right]=} & R_{S}\left[\begin{array}{c}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right]+\frac{d}{d t}\left[\begin{array}{rrr}
L_{S} & -M & -M \\
-M & L_{S} & -M \\
-M & -M & L_{S}
\end{array}\right]\left[\begin{array}{l}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right] \\
& +e_{p}\left[\begin{array}{c}
e\left(\theta_{R}\right) \\
e\left(\theta_{R}-2 \pi / 3\right) \\
e\left(\theta_{R}-4 \pi / 3\right)
\end{array}\right] \omega_{R} .
\end{aligned}
$$

Assuming the stator currents are balanced, show that

$$
\begin{aligned}
{\left[\begin{array}{l}
u_{S 1} \\
u_{S 2} \\
u_{S 3}
\end{array}\right]=} & R_{S}\left[\begin{array}{l}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right]+\frac{d}{d t}\left[\begin{array}{ccc}
L_{S}+M & 0 & 0 \\
0 & L_{S}+M & 0 \\
0 & 0 & L_{S}+M
\end{array}\right]\left[\begin{array}{l}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right] \\
& -e_{p}\left[\begin{array}{c}
e\left(\theta_{R}\right) \\
e\left(\theta_{R}-2 \pi / 3\right) \\
e\left(\theta_{R}-4 \pi / 3\right)
\end{array}\right] \omega_{R} .
\end{aligned}
$$

Problem 2 Conservation of Energy
The model of the BLDC may be written as

$$
\begin{aligned}
& \frac{d}{d t} \Lambda\left[\begin{array}{c}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right]-e_{p}\left[\begin{array}{c}
e\left(\theta_{R}\right) \\
e\left(\theta_{R}-2 \pi / 3\right) \\
e\left(\theta_{R}-4 \pi / 3\right)
\end{array}\right] \omega_{R}+R_{S}\left[\begin{array}{c}
i_{S 1} \\
i_{S 2} \\
i_{S 3}
\end{array}\right]=\left[\begin{array}{c}
u_{S 1} \\
u_{S 2} \\
u_{S 3}
\end{array}\right] \\
&-\tau_{p} e\left(\theta_{R}\right) i_{S 1}-\tau_{p} e\left(\theta_{R}-2 \pi / 3\right) i_{S 1}-\tau_{p} e\left(\theta_{R}-4 \pi / 3\right) i_{S 1}-\tau_{L}=J \frac{d \omega_{R}}{d t} .
\end{aligned}
$$

Do an energy balance based on these equations to account for the energy stored in the magnetic fields in the air gap/iron due to the stator currents, the ohmic losses in the stator windings, the energy stored in the rotational motion of the rotor and the energy converted to mechanical power. In particular, show that $e_{p}=\tau_{p}$ must hold for energy conservation to hold.

Problem 3 Power Density in PM Synchronous Machines [15]
Consider two PM motors, one is a three-phase BLDC motor and the second one is a three-phase PM synchronous (sinusoidally wound stator) motor. Let both motors have the same stator resistance R_{S} and the same torque/back-emf constants ($\tau_{p}=K_{T}$ or, equivalently, $e_{p}=K_{m}$), and rotate at the same constant speed. Let $I_{\text {bldc }}$ and $I_{\text {synch }}$ be the peak current limit in the $B L D C$ and the PM synchronous motor, respectively.
(a) Show that the rms current in each phase of the BLDC is $\sqrt{2 / 3} I_{b l d c}$ while in the $P M$ synchronous motor it is $I_{\text {synch }} / \sqrt{2}$.
(b) Let the peak currents in the motors be chosen so they both have the same ohmic losses, that is,

$$
3 R_{S}\left(\sqrt{\frac{2}{3}} I_{b l d c}\right)^{2}=3 R_{S}\left(\frac{I_{s y n c h}}{\sqrt{2}}\right)^{2}
$$

or

$$
I_{b l d c}=\frac{\sqrt{3}}{2} I_{s y n c h} .
$$

Choose the current references in the BLDC according to (10.12) in order to obtain the maximum torque out of the machine for a given current. In this case, the steady-state power produced by the BLDC is constant and equal to

$$
2 e_{p} I_{p}
$$

Assume in the PM synchronous motor that it is possible to have the stator currents in phase with their corresponding stator voltages (unity power factor) so that the steady-state power produced by the PM motor is

$$
3 \frac{K_{m}}{\sqrt{2}} \frac{I_{\text {synch }}}{\sqrt{2}}
$$

where $K_{m}=K_{T}$ is the back emf constant. Show that, under these conditions, the ratio of the output power of the BLDC machine to the PM synchronous machine is 1.155 .

Problem 4 Mathematical Model of the BLDC
In the literature, the normalized back emf is usually taken to be $\varepsilon\left(\theta_{R}\right) \triangleq$ $\partial \lambda_{R}\left(\theta_{R}\right) / \partial \theta_{R}$ rather than $e\left(\theta_{R}\right) \triangleq-\partial \lambda_{R}\left(\theta_{R}\right) / \partial \theta_{R}$ as in equation (10.8). That is, the back emfs are then taken to be

$$
\begin{aligned}
\varepsilon_{S 1} & =\epsilon_{p} \varepsilon\left(\theta_{R}\right) \omega_{R} \\
\varepsilon_{S 2} & =\epsilon_{p} \varepsilon\left(\theta_{R}-2 \pi / 3\right) \omega_{R} \\
\varepsilon_{S 3} & =e_{p} \varepsilon\left(\theta_{R}-4 \pi / 3\right) \omega_{R}
\end{aligned}
$$

(compare with 10.9). This is just a different sign convention for the back emfs; that is, these back emfs have a sign convention that is opposite to that of the applied phase voltages $u_{S 1}, u_{S 2}$, and $u_{S 3}$.
(a) Rewrite the mathematical model of the motor in terms of $\varepsilon\left(\theta_{R}\right)$.
(b) How do the waveforms in Figure 10.19 change as a result of using $\varepsilon\left(\theta_{R}\right)$?

Problem 5 Simulation of a BLDC
Simulate an open-loop three-phase trapezoidal back-emf synchronous motor. Set the parameters as $R_{S}=0.7 \Omega, L_{S}=2.72 \mathrm{mH}, M=0.15 \mathrm{mH}, \tau_{p}=$ $e_{p}=0.5128 \mathrm{~N}-\mathrm{m} / A, J=0.0002 \mathrm{~kg}-\mathrm{m}^{2}, f=0.002 \mathrm{~N}-\mathrm{m} / \mathrm{rad} / \mathrm{sec}, n_{p}=$
$1, \omega_{S}=(2 \pi) 10 \mathrm{rad} / \mathrm{sec}, V=V_{\max }=200 \mathrm{~V}($ peak $), I_{\max }=10 \mathrm{~A}$, and $\tau_{L}=0$ [15]. Apply a three-phase set of trapezoidal voltages to the motor with a peak of $V_{m a x}$ and plot (a) $i_{S a}$ and $i_{S b}$, (b) ω, and (c) θ. Does the speed ω need to be initialized to a value close to the synchronous speed value ω_{S} in order to run open loop?

Problem 6 Closed-Loop Control of a BLDC
Add the closed-loop controller (10.13), (10.14), and (10.15) to the simulation of the BLDC in problem 5. Use only proportional control in the current controller. Have the motor do a point-to-point move in which it goes from 0 to 240 radians and achieves a maximum speed of 400 rads/sec in 0.5 sec .

Problem 7 Rotor Electric Field
Show that at $\theta=\theta_{R}+\pi / 2$ the axial electric field due to motion of the rotor magnet is zero, that is,

$$
\left.E_{R z}\left(\theta-\theta_{R}, t\right)\right|_{\theta=\theta_{R}+\pi / 2}=0 .
$$

Hint: Consider a half-cylindrical-shaped loop containing the rotor with one axial side fixed at the angular position θ_{0} in the air gap and, consequently, the other side fixed at $\theta_{0}+\pi$ (the loop does not rotate). Use Faraday's law to show that the emf generated in this loop by the rotor's magnetic field is zero when the position of the rotor is such that $\theta_{0}=\theta_{R}+\pi / 2 \pm n \pi$.

Problem 8 Permeability of a Permanent Magnet
Explain why, as far as the stator magnetic field $\overrightarrow{\mathrm{B}}_{S}$ is concerned, the permeability of the permanent magnets on the rotor is $\mu=\mu_{0} \mu_{r}=\mu_{0}$. Show that this implies that the "effective" air gap (i.e., the value for g) is the sum of the actual air-gap length and the thickness of the PM magnets on the rotor surface.

Trigonometric Table and Identities

Trigonometric Table

Trigonometric Identities

$$
\begin{aligned}
e^{j \theta} & =\cos (\theta)+j \sin (\theta) \\
a \cos (\theta)+b \sin (\theta) & =\sqrt{a^{2}+b^{2}} \cos \left(\theta+\tan ^{-1}(b / a)\right) \\
\sin (2 \theta) & =2 \sin (\theta) \cos (\theta) \\
\cos (2 \theta) & =\cos ^{2}(\theta)-\sin ^{2}(\theta)=2 \cos ^{2}(\theta)-1 \\
& =1-2 \sin ^{2}(\theta) \\
\cos ^{2}(\theta) & =\frac{1+\cos (2 \theta)}{2} \\
\sin ^{2}(\theta) & =\frac{1-\cos (2 \theta)}{2} \\
\cos \left(\theta_{1} \pm \theta_{2}\right) & =\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right) \mp \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right) \\
\sin \left(\theta_{1} \pm \theta_{2}\right) & =\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right) \pm \cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)=\frac{1}{2} \cos \left(\theta_{1}+\theta_{2}\right)+\frac{1}{2} \cos \left(\theta_{1}-\theta_{2}\right) \\
& \sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)=\frac{1}{2} \cos \left(\theta_{1}-\theta_{2}\right)-\frac{1}{2} \cos \left(\theta_{1}+\theta_{2}\right) \\
& \sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)=\frac{1}{2} \sin \left(\theta_{1}+\theta_{2}\right)+\frac{1}{2} \sin \left(\theta_{1}-\theta_{2}\right) \\
& \cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)=\frac{1}{2} \sin \left(\theta_{1}+\theta_{2}\right)-\frac{1}{2} \sin \left(\theta_{1}-\theta_{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
\frac{3}{2}= & \cos ^{2}(\theta)+\cos ^{2}(\theta-2 \pi / 3)+\cos ^{2}(\theta-4 \pi / 3) \\
\frac{3}{2}= & \sin ^{2}(\theta)+\sin ^{2}(\theta-2 \pi / 3)+\sin ^{2}(\theta-4 \pi / 3) \\
0= & \sin (\theta) \cos (\theta)+\sin (\theta-2 \pi / 3) \cos (\theta-2 \pi / 3) \\
& \quad+\sin (\theta-4 \pi / 3) \cos (\theta-4 \pi / 3) \\
0= & \cos (\theta)+\cos (\theta-2 \pi / 3)+\cos (\theta-4 \pi / 3) \\
0= & \sin (\theta)+\sin (\theta-2 \pi / 3)+\sin (\theta-4 \pi / 3)
\end{aligned}
$$

$$
\begin{aligned}
& \frac{3}{2} \cos \left(5 \theta_{1}+\theta_{2}\right)=\sin \left(5\left(\theta_{1}+\pi / 2\right)\right) \cos \left(\theta_{2}\right) \\
& +\sin \left(5\left(\theta_{1}+\pi / 2-2 \pi / 3\right)\right) \cos \left(\theta_{2}-2 \pi / 3\right) \\
& +\sin \left(5\left(\theta_{1}+\pi / 2-4 \pi / 3\right)\right) \cos \left(\theta_{2}-4 \pi / 3\right) \\
& -\frac{3}{2} \cos \left(7 \theta_{1}-\theta_{2}\right)=\sin \left(7\left(\theta_{1}+\pi / 2\right)\right) \cos \left(\theta_{2}\right) \\
& +\sin \left(7\left(\theta_{1}+\pi / 2-2 \pi / 3\right)\right) \cos \left(\theta_{2}-2 \pi / 3\right) \\
& +\sin \left(7\left(\theta_{1}+\pi / 2-4 \pi / 3\right)\right) \cos \left(\theta_{2}-4 \pi / 3\right) \\
& \frac{3}{2} \sin \left(\theta_{1}-\theta_{2}\right)=\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\sin \left(\theta_{1}-2 \pi / 3\right) \cos \left(\theta_{2}-2 \pi / 3\right) \\
& +\sin \left(\theta_{1}-4 \pi / 3\right) \cos \left(\theta_{2}-4 \pi / 3\right) \\
& \frac{3}{2} \cos \left(\theta_{1}-\theta_{2}\right)=\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\sin \left(\theta_{1}-2 \pi / 3\right) \sin \left(\theta_{2}-2 \pi / 3\right) \\
& +\sin \left(\theta_{1}-4 \pi / 3\right) \sin \left(\theta_{2}-4 \pi / 3\right) \\
& -\frac{3}{2} \sin \left(\theta_{1}-\theta_{2}\right)=\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\cos \left(\theta_{1}-2 \pi / 3\right) \sin \left(\theta_{2}-2 \pi / 3\right) \\
& +\cos \left(\theta_{1}-4 \pi / 3\right) \sin \left(\theta_{2}-4 \pi / 3\right) \\
& \frac{3}{2} \cos \left(\theta_{1}-\theta_{2}\right)=\cos \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\cos \left(\theta_{1}-2 \pi / 3\right) \cos \left(\theta_{2}-2 \pi / 3\right) \\
& +\cos \left(\theta_{1}-4 \pi / 3\right) \cos \left(\theta_{2}-4 \pi / 3\right) \\
& \frac{3}{2} \sin \left(\theta_{1}+\theta_{2}\right)=\sin \left(\theta_{1}\right) \cos \left(\theta_{2}\right)+\sin \left(\theta_{1}-4 \pi / 3\right) \cos \left(\theta_{2}-2 \pi / 3\right) \\
& +\sin \left(\theta_{1}-2 \pi / 3\right) \cos \left(\theta_{2}-4 \pi / 3\right) \\
& -\frac{3}{2} \cos \left(\theta_{1}+\theta_{2}\right)=\sin \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\sin \left(\theta_{1}-4 \pi / 3\right) \sin \left(\theta_{2}-2 \pi / 3\right) \\
& +\sin \left(\theta_{1}-2 \pi / 3\right) \sin \left(\theta_{2}-4 \pi / 3\right) \\
& \frac{3}{2} \sin \left(\theta_{1}+\theta_{2}\right)=\cos \left(\theta_{1}\right) \sin \left(\theta_{2}\right)+\cos \left(\theta_{1}-4 \pi / 3\right) \sin \left(\theta_{2}-2 \pi / 3\right) \\
& +\cos \left(\theta_{1}-2 \pi / 3\right) \sin \left(\theta_{2}-4 \pi / 3\right)
\end{aligned}
$$

This Page Intentionally Left Blank

References

[1] Werner Leonhard, Control of Electrical Drives, Springer-Verlag, Berlin, 1985.
[2] Werner Leonhard, Control of Electrical Drives, 3rd Edition, Springer-Verlag, Berlin, 2001.
[3] Paul C. Krause, Analysis of Electric Machinery, McGraw-Hill, New York, 1986.
[4] Paul C. Krause, Oleg Wasynczuk, and Scott D. Sudhoff, Analysis of Electric Machinery and Drive Systems, 2nd Edition, John Wiley \& Sons, New York, 2002.
[5] C. B. Gray, Electrical Machines and Drive Systems, Longman Scientific \& Technical, New York, 1989.
[6] Chee-Mun Ong, Dynamic Simulation of Electric Machinery using Matlab/Simulink, Prentice-Hall, Upper Saddle River, NJ, 1998.
[7] D. W. Novotny and T. A. Lipo, Vector Control and Dynamics of AC Drives, Oxford University Press, New York, 1996.
[8] Peter Vas, Vector Control of AC Machines, Clarendon Press, Oxford, 1990.
[9] J. M. D. Murphy and F. G. Turnbull, Power Electronic Control of AC Motors, Pergamon, Elmisford, NY, 1988.
[10] I. Boldea and S. A. Nasar, Vector Control of AC Drives, CRC Press, Boca Raton, FL, 1992.
[11] B. Adkins and R. G. Harley, The General Theory of Alternating Current Machines, Chapman and Hall, New York, 1975.
[12] A. M. Trzynadlowski, The Field Orientation Principle in Control of Induction Motors, Kluwer Academic Publishers, Hingham, MA, 1994.
[13] M. P. Kazmierkowski and H. Tunia, Automatic Control of Converter Fed Drives, Elsevier, Amsterdam, 1994.
[14] B. K. Bose, Modern Power Electronics and AC Drives, PrenticeHall, Upper Saddle River, NJ, 2002.
[15] R. Krishnan, Electric Motor Drives: Modeling, Analysis, and Control, Prentice-Hall, Upper Saddle River, NJ, 2001.
[16] Romeo Ortega, Antonio Loria, Per Johan Nicklasson, and Hebert Sira-Ramírez, Passivity-Based Control of Euler-Lagrange Systems: Mechanical, Electrical and Electromechanical Applications, SpringerVerlag, Berlin, 1998.
[17] Darren M. Dawson, Jun Hu, and Timothy C. Burg, Nonlinear Control of Electric Machinery, Marcel Dekker, New York, 1998.
[18] F. Khorrami, P. Krishnamurthy, and H. Melkote, Modeling and Nonlinear Adaptive Control of Electric Motors, Springer-Verlag, Berlin, 2003.
[19] Stephen J. Chapman, Electric Machinery Fundamentals, McGrawHill, New York, 1985.
[20] H. H. Woodson and J. Melcher, Electromechanical Dynamics: Part 1 Discrete Systems, John Wiley \& Sons, New York, 1968.
[21] L. W. Matsch and J. Derald Morgan, Electromagnetic and Electromechanical Machines, 3rd edition, John Wiley \& Sons, New York, 1986.
[22] George McPherson and Robert D. Laramore, An Introduction to Electrical Machines and Transformers, 2nd edition, John Wiley \& Sons, New York, 1990.
[23] D. V. Richardson, Rotating Electric Machinery and Transformer Technology, Reston Publishing Co., Reston, VA, 1978.
[24] Paul C. Krause and O. Wasynczuk, ELECTROMECHANICAL Motion Devices, McGraw-Hill, New York, 1989.
[25] Ned Mohan, ELECTRIC DRIVES: An Integrative Approach, MNPERE, Minneapolis, 2001.
[26] G. R. Slemon and A. Straughen, Electric Machines, Addison-Wesley, Reading, MA, 1980.
[27] J. Sokira and W. Jaffe, Brushless DC Motors Electronic Commutation and Controls, TAB Books, Blue Ridge Summit, PA, 1990.
[28] George J. Thaler and Milton L. Wilcox, Electric Machines: Dynamics and Steady State, John Wiley \& Sons, New York, 1966.
[29] Vincent Deltoro, Electric Machines and Power Systems, PrenticeHall, Englewood Cliffs, NJ, 1985.
[30] Mohamed E. El-Hawary, Principles of Electric Machines with Power Electronic Applications, John Wiley \& Sons, New York, 2002.
[31] P.C. Sen, Principles of Electric Machines and Power Electronics, John Wiley \& Sons, New York, 1989.
[32] G. R. Slemon, Electric Machines and Drives, Addison-Wesley, Reading, MA, 1992.
[33] Uri Haber-Schaim, John H. Dodge, Robert Gardner, and Edward Shore, PSSC Physics, 7th Edition, Kendall/Hunt, Dubuque, IA, 1991.
[34] D. Halliday and R. Resnick, Physics Volume II, John Wiley \& Sons, New York, 1962.
[35] Melvin Schwartz, Principles of Electrodynamics, Dover Publications, New York, 1972.
[36] Roald K. Wangsness, Electromagnetic Fields, John Wiley \& Sons, New York, 1979.
[37] K. Ogata, Modern Control Engineering, Prentice-Hall, Englewood Cliffs, NJ, 1970.
[38] A. R. Bergen and V. Vittal, Power Systems Analysis, 2nd Edition, Prentice-Hall, Upper Saddle River, NJ, 2000.
[39] C. W. deSilva, Control Sensors and Actuators, Prentice-Hall, Englewood Cliffs, NJ, 1989.
[40] C. W. deSilva, Mechatronics: An Integrative Approach, CRC Press, Boca Raton, FL, 2004.
[41] T. Kailath, Linear Systems, Prentice-Hall, Englewood Cliffs, NJ, 1980.
[42] J. Stephan, M. Bodson, and J. Chiasson, "Real-time estimation of induction motor parameters", IEEE Transactions on Industry Applications, vol. 30, no. 3, pp. 746-759, May/June 1994.
[43] Alan V. Oppenheim and Alan S. Willsky, Signals $\&$ Systems, 2nd Edition, Prentice-Hall, Englewood Cliffs, NJ, 1997.
[44] E. W. Kamen and B. S. Heck, Fundamentals of Signals and Systems using the Web and Matlab, 2nd Edition, Prentice-Hall, Upper Saddler River, NJ, 2000.
[45] Michael J. Roberts, Signals and Systems - Analysis using Transform Methods and MATLAB, McGraw-Hill, New York, 2003.
[46] G. F. Franklin, J. D. Powell, and A. Emami-Naeini, Feedback Control of Dynamic Systems, Addison-Wesley, Reading, MA, 1986.
[47] William A. Wolovich, Automatic Control Systems, Saunders College Publishing, Fort Worth, TX, 1994.
[48] Peter Dorato, ANALYTICAL FEEDBACK SYSTEM DESIGN An Interpolation Approach, Brooks/Cole, Pacific Grove, CA, 1999.
[49] Graham C. Goodwin, Stefan F. Graebe, and Mario E. Salgado, Control System Design, Prentice-Hall, Upper Saddle River, NJ, 2001.
[50] Vladimir Kučera, Discrete Linear Control: The Polynomial Approach, John Wiley \& Sons, New York, 1979.
[51] M. Bodson and J. Chiasson, "Differential-geometric methods for control of electric motors", International Journal of Robust and Nonlinear Control, vol. 8, pp. 923-954, 1998.
[52] A. Isidori, Nonlinear Control Systems, Springer-Verlag, Berlin, 1989.
[53] J. Chiasson, "Nonlinear differential-geometric techniques for control of a series DC motor", IEEE Transactions on Control Systems Technology, vol. 2, no. 1, pp. 35-42, March 1994.
[54] Samir Mehta and John Chiasson, "Nonlinear control of a series DC motor: Theory and experiment", IEEE Transactions on Industrial Electronics, vol. 45, no. 1, pp. 134-141, February 1998.
[55] J. Chiasson and M. Bodson, "Nonlinear control of a shunt DC motor", IEEE Transactions on Automatic Control, vol. 38, no. 11, pp. 1662-1665, November 1993.
[56] Bodine Electric Co., HANDBOOK: Small Motor, Gearmotor and Control, Bodine Electric Company, Chicago, IL, 1993.
[57] John Kassakian, Martin Schlecht, and George Verghese, Principles of Power Electronics, Addison-Wesley, Reading, MA, 1991.
[58] A. E. Fitzgerald, C. Kingsley Jr., and S. D. Umans, Electric Machinery, McGraw-Hill, New York, 1983.
[59] Kaiyu Wang, John Chiasson, Marc Bodson, and Leon M. Tolbert, "A nonlinear least-squares approach for estimation of the induction motor parameters", in Proceedings of the IEEE Conference on Decision and Control, December 2004, pp. 3856-3861.
[60] Joachim Holtz, "On the spatial propagation of transient magnetic fields in ac machines", IEEE Transactions on Industry Applications, vol. 32, no. 4, pp. 927-937, July/August 1996.
[61] E. R. Laithwaite and L. L. Freris, Electric Energy: Its Generation, Transmission and Use, McGraw-Hill, New York, 1980.
[62] Frank Wicks, "How George Westinghouse changed the world", Mechanical Engineering, pp. 74-79, October 1996.
[63] Marc Bodson, "Induction machines as generators", Private communication, May 2003, Denali National Park, Alaska.
[64] R. Marino, S. Peresada, and P. Valigi, "Adaptive input-output linearizing control of induction motors", IEEE Transactions on Automatic Control, vol. 38, no. 2, pp. 208-221, February 1993.
[65] M. Bodson, J. Chiasson, and R. Novotnak, "High performance induction motor control via input-output linearization", IEEE Control Systems Magazine, vol. 14, no. 4, pp. 25-33, August 1994.
[66] R. Lessmeier, W. Shumacher, and W. Leonhard, "Microprocessorcontrolled ac-servo drives with synchronous or induction motors: Which is preferable?", IEEE Transactions Industry Applications, vol. IA-22, no. 5, pp. 812-819, September/October 1986.
[67] M. Bodson, J. Chiasson, and R. Novotnak, "Nonlinear speed observer for high-performance induction motor control", IEEE Transactions on Industrial Electronics, vol. 42, no. 4, pp. 337-343, August 1995.
[68] Marc Bodson and John Chiasson, "A systematic approach to selecting optimal flux references in induction motors", in Record of the 27th Annual Meeting of the Industry Applications Society, October 1992, Houston, TX.
[69] M. Bodson, J. Chiasson, and R. Novotnak, "A systematic approach to selecting flux references for torque maximization in induction motors", IEEE Transactions on Control Systems Technology, vol. 3, no. 4, pp. 388-997, December 1995.
[70] Z. Krzeminski, "Nonlinear control of the induction motor", in 10th IFAC World Congress, 1987, pp. 349-354.
[71] G. S. Kim, I. J. Ha, and M. S. Ko, "Control of induction motors for both high dynamic performance and high-power efficiency", IEEE Transactions on Industrial Electronics, vol. 39, no. 4, pp. 323-333, August 1992.
[72] M. Bodson, J. Chiasson, R. Novotnak, and R. Rekowski, "High performance nonlinear control of a permanent magnet stepper motor", IEEE Transactions Control Systems Technology, vol. 1, no. 1, pp. 5-14, March 1993.
[73] George C. Verghese and Seth Sanders, "Observers for flux estimation in induction machines", IEEE Transactions on Industrial Electronics, vol. 35, no. 1, pp. 85-84, February 1988.
[74] Phillipe Martin and Pierre Rouchon, "Two remarks on induction motors", in CESA'96 IMACS Multiconference, Symposium on Control, Optimization and Supervision, Lilles, 1996, pp. 76-79.
[75] Phillipe Martin and Pierre Rouchon, "Two simple flux observers for induction motors", International Journal of Adaptive Control and Signal Processing, vol. 14, pp. 171-175, 2000.
[76] X. Xu and D. W. Novotny, "Selection of the flux reference for induction machines in the field weakening region", IEEE Transactions on Industry Applications, vol. 28, no. 6, pp. 1353-1358, 1992.
[77] F. M. H. Khater, R. D. Lorenz, D. W. Novotny, and K. Tang, "Selection of the flux reference in field oriented induction machine controllers with consideration of magnetic saturation effects", IEEE Transactions on Industry Applications, vol. 23, no. 2, pp. 276-282, 1987.
[78] V. R. Stefanovic and T. H. Barton, "Static torque characteristics of an induction motor with variable frequency supply", in Proceedings of the IEEE PES Winter Meeting, 1972, pp. 1-3, New York.
[79] I. T. Wallace, D. W. Novotny, R. D. Lorenz, and D. M. Divan, "Increasing the dynamic torque per ampere capability of induction machines", IEEE Transactions on Industry Applications, vol. 30, no. 1, pp. 146-153, January/February 1994.
[80] S. H. Kim, S. K. Sul, and M. H. Park, "Maximum torque control of an induction machine in the field weakening region", in Conference Record of the Industrial Applications Society, 1993, pp. 401-407.
[81] B. C. Kuo, Automatic Control Systems, Prentice-Hall, Englewood Cliffs, NJ, 1987.
[82] R. Novotnak, J. Chiasson, and M. Bodson, "High-performance motion control of an induction motor with magnetic saturation", in Proceedings of the 34th IEEE Conference on Decision and Control, December 1995, pp. 2145-2150, New Orleans, LA.
[83] R. Novotnak, Nonlinear Control of an Induction Motor with Saturation: Theory and Experiment, PhD thesis, University of Pittsburgh, 1995.
[84] R. Novotnak, J. Chiasson, and M. Bodson, "High-performance motion control of an induction motor with magnetic saturation", IEEE Transactions on Control Systems Technology, vol. 7, no. 3, pp. 315327, May 1999.
[85] A. Khambadkone and J. Holtz, "Vector-controlled induction motor drive with a self-commissioning scheme", IEEE Transactions on Industrial Electronics, vol. 38, no. 5, pp. 322-327, October 1991.
[86] G. Heinemann and W. Leonhard, "Self-tuning field-oriented control of an induction motor drive", in Proceedings of the 1990 International Power Electronics Conference, April 1990, Tokyo, Japan.
[87] J. Stephan, "Real-time estimation of the parameters and fluxes of induction motors", Master's thesis, Carnegie Mellon University, 1992.
[88] A. Bellini, A. De Carli, and M. La Cava, "Parameter identification for induction motor simulation", Automatica, vol. 12, pp. 383-386, 1976.
[89] David Cox, John Little, and Donal O'Shea, IDEALS, VARIETIES, AND ALGORITHMS An Introduction to Computational Algebraic Geometry and Commutative Algebra, 2nd Edition, Springer-Verlag, Berlin, 1996.
[90] Joachim von zur Gathen and Jürgen Gerhard, Modern Computer Algebra, Cambridge University Press, Cambridge, UK, 1999.
[91] Stephen Wolfram, Mathematica, A System for Doing Mathematics by Computer, 2nd Edition, Addison-Wesley, Reading, MA, 1992.
[92] David Kincaid and Ward Cheney, Numerical Analysis: Mathematics of Scientific Computing, 3rd edition, Brooks/Cole, Pacific Grove, CA, 2002.
[93] Miguel Vélez-Reyes, W. L. Fung, and J. E. Ramos-Torres, "Developing robust algorithms for speed and parameter estimation in induction machines", in Proceedings of the IEEE Conference on Decision and Control, 2001, pp. 2223-2228, Orlando, Florida.
[94] M. Vélez-Reyes, K. Minami, and G. Verghese, "Recursive speed and parameter estimation for induction machines", in Proceedings of the IEEE Industry Applications Conference, 1989, pp. 607-611, San Diego, California.
[95] Miguel Vélez-Reyes and George Verghese, "Decomposed algorithms for speed and parameter estimation in induction machines", in Proceedings of the IFAC Nonlinear Control Systems Design Symposium, 1992, pp. 156-161, Bordeaux, France.
[96] Miguel Vélez-Reyes, Decomposed algorithms for parameter estimation, PhD thesis, Massachusetts Institute of Technology, 1992.
[97] Miguel Vélez-Reyes, Milan Mijalković, Aleksandar M. Stanković, Silva Hiti, and James Nagashima, "Output selection for tuning of field-oriented controllers: Steady-state analysis", in Conference Record of Industry Applications Society, October 2003, pp. 20122016, Salt Lake City, UT.
[98] Kaiyu Wang, John Chiasson, Marc Bodson, and Leon M. Tolbert, "Tracking the rotor time constant of an induction motor traction drive for HEVs", in Proceedings of the IEEE Workshop on Power Electronics in Transportation (WPET), October 2004, pp. 83-88.
[99] John Chiasson, Kaiyu Wang, Mengwei Li, Marc Bodson, and Leon M. Tolbert, "Algebraic methods for nonlinear systems: Parameter identification and state estimation", in Current Trends in Nonlinear Systems and Control. Laura Menini, Luca Zaccarian and Chaouki T. Abdallah, Eds., 2005, pp. 57-76, Birkhäuser.
[100] David Cox, John Little, and Donal O'Shea, Using Algebraic Geometry, Springer-Verlag, Berlin, 1998.
[101] Henk Nijmeijer and A. J. van der Schaft, Nonlinear Dynamical Control Systems, Springer-Verlag, 1990.
[102] R. Marino and P. Tomei, Nonlinear Control Design - Geometric, Adaptive and Robust, Prentice-Hall, Englewood Cliffs, NJ, 1995.
[103] B. Charlet, J. Levine, and R. Marino, "Two sufficient conditions for dynamic feedback linearization", in Analysis and Optimization of Systems, Lecture Notes in Contral and Information Sciences. A. Bensoussan and J. L. Lions, Eds., 1988, vol. 111, pp. 181-192, SpringerVerlag, Berlin.
[104] B. Charlet, J. Levine, and R. Marino, "On dynamic feedback linearization", Systems and Control Letters, vol. 13, no. 2, pp. 143-151, August 1989.
[105] B. Charlet, J. Levine, and R. Marino, "Sufficient conditions for dynamic feedback linearization", SIAM Journal on Control and Optimization, vol. 29, no. 1, pp. 38-57, January 1991.
[106] J. Chiasson, "Nonlinear controllers for induction motors", in Proceedings of the IFAC Conference on System Structure and Control, July 1995, pp. 572-583, Nantes, France.
[107] J. Chiasson, "A new approach to dynamic feedback linearization control of an induction motor", IEEE Transactions on Automatic Control, pp. 391-397, March 1998.
[108] J. Chiasson, "Dynamic feedback linearization of the induction motor", IEEE Transactions on Automatic Control, vol. 28, no. 10, pp. 1588-1594, 1993.
[109] M. Fliess, J. Levine, P. Martin, and P. Rouchon, "Flatness and defect of nonlinear systems: introductory theory and applications", International Journal of Control, vol. 61, no. 6, pp. 1327-1361, 1995.
[110] Hebertt Sira-Ramírez and Sunil K. Agrawal, Differentially Flat Systems, Marcel-Dekker, New York, 2004.
[111] G. Conte, C. H. Moog, and A. M. Perdon, Noninear Control Systems, Lecture Notes in Control and Information Sciences, Volume 242, Springer-Verlag, 1999.
[112] R. Novotnak, "A'state feedback tracking controller for a PM stepper motor", Master's thesis, University of Pittsburgh, 1991.
[113] B. Kuo and J. Tal, Incremental Motion Control, Step Motors and Control Systems, Vol. II, SRL Publishing, Champaign, IL, 1987.
[114] P. P. Acarnley, Stepping Motors: A Guide to Modern Theory and Practice, Peter Peregrinus, Ltd., London, 1982.
[115] T. Kenjo, Stepping Motors and Their Microprocessor Control, Clarendon, New York, 1984.
[116] A. Verl and Marc Bodson, "Torque maximization for permanent magnet synchronous motors", IEEE Transactions on Control Systems Technology, vol. 6, no. 6, pp. 740-745, November 1998.
[117] Marc Bodson, John Chiasson, and Leon M. Tolbert, "A complete characterization of torque maximization for permanent magnet nonsalient synchronous motors", in Proceedings of the American Control Conference, June 2001, Arlington, VA.
[118] A. Blauch, "High-speed parameter estimation of step motors", Master's thesis, Carnegie Mellon University, 1992.
[119] A. Blauch, M. Bodson, and J. Chiasson, "High-speed parameter estimation of stepper motors", IEEE Transactions on Control Systems Technology, vol. 1, no. 4, pp. 270-279, April 1993.

700 References
[120] Marc Bodson and John Chiasson, "Open and closed loop control of a permanent magnet stepper motor", in Handbook of Electric Motors. Richard H. Engelmann and William H. Middendorf, Eds., 1995, pp. 540-552, Marcel Dekker, New York.
[121] Marc Bodson, Jeffrey S. Sato, and Stephen R. Silver, "Spontaneous speed reversals in stepper motors", in Proceedings of the 2003 Conference on Decision and Control, December 2003, Maui, Hawaii.
[122] J. Chiasson, D. Seto, F. Sun, A. Stanković, and S. Bortoff, "Independent control of two PM motors using a single inverter: Application to elevator doors", International Journal of Mechatronics, vol. 15, no. 1, pp. 95-110, February 2005.

Index

36-slot machine, 287
Air-gap voltage
Induction motor, 478
Ampère's law, 194, 249, 259, 264, 269
Examples, 196
Ideal transformer, 228
Modification to account for 1/r dependence, 286
Amplifier
Saturation, 152
Voltage limit, 71
Arbitrary rotating reference frame
Induction motor, 478
Armature reaction
DC motor, 38
Armature winding
Definition, 315
Azimuthal magnetic field, 269, 292
B-H curve
Definition, 207
Back emf
Trapezoidal back-emf PM synchronous motor, 666
Backward difference speed estimator
DC motor, 77, 153
Balanced conditions
Induction motor
Three-phase, 421
Base speed
DC motor, 47
Induction motor, 509, 541
Block diagram

Block Diagram Reduction, 74
Blocked-rotor test
Induction motor, 481
Bodson, M., 483
Bound current, 191
Brushless DC motor (BLDC), see Trapezoidal back-emf PM synchronous motor
Butterworth filter, 116, 163
Chapman, S. J., 213, 214
Clarke's transformation, 433
Classical control
Internal model principle, 149
PID, 131, 140
Tracking and disturbance rejection, 129
Co-energy, 393, 411
Induction motor, 393
Torque from co-energy, 397
Wound rotor synchronous motor, 411
Coercive force
Definition, 208
Coercivity
Definition, 208
Commutation
BLDC motor, 674
Multiloop DC motor, 32
Single-loop DC motor, 9
Conservation of flux, 186, 252, 254, 365
Control
Trapezoidal back-emf PM synchronous motor, 673
Current

Drift speed, 28
Current command
DC motor, 74,152
Current command control
PM synchronous motor, 606
Cylindrical coordinates
Definition, 7
DC motor
Arcing, 20
Armature flux, 17, 41, 63
Multiloop motor, 42
Armature reaction, 38
Armature winding
Definition, 315
Back emf, 15
Backward difference speed estimator, 77,153
Base speed, 47
Block diagram, 74
Brush shifting, 62
Commutation
Multiloop motor, 32
Single-loop motor, 9
Current command, 74
Field flux linkage, 40
Field weakening, 46
Field winding
Definition, 315
Mathematical model, 20, 71
Microscopic viewpoint, 23
Single-loop motor, 26
Multiloop DC motor, 31
Nested loop controller, 90, 158
Neutral plane, 62
Parameter identification, 96 , 160
Permanent magnet DC motor
Mathematical model, 43
Schematic diagram, 22
Self-inductance, 18
Separately excited DC motor, 166
Conservation of energy, 64

Field control, 168
Mathematical model, 44
Series DC motor, 166
Feedback linearization, 171
Field weakening, 171
Mathematical model, 64
Speed and load-torque observer, 172,173
Shunt DC motor, 166
Feedback linearization, 174
Input-output linearization, 174
Mathematical model, 65
Simulation
Closed-loop simulation, 155
Open-loop simulation, 62
Single-loop, 5
Skewing of armature windings, 62
Speed and load-torque observer, 153
Speed controller, 77
Speed observer, 79
State feedback control, 86,155
Integrator for load torque disturbance rejection, 157
Stator iron construction, 37
Tachometer, 29
Single-loop motor, 30
Torque, 6
Voltage and current limits, 22
Distributed windings, 245
Approximate sinusoidally wound, 249, 280
Flux linkage, 284
Self-inductance, 283
Two-phase machine, 284
Sinusoidailly wound
Radial magnetic field, 259
Sinusoidally wound, 257
Three-phase
36-slot machine, 287
Uniformly distributed winding, 285
Drift speed, 28

Electric and magnetic fields
In the air gap, 276
Electric field
In the air gap, 275
Electromotive force (emf)
Definition, 12, 28
Elimination theory, 554
Encoder
Current fluctuations due to encoder resolution, 603
Encoder noise, 109
How it works, 72
End turn, 246

Faraday's law, 11, 57
Example
Linear DC machine, 14
Single-loop DC motor, 15
Ideal transformer, 229
Microscopic viewpoint, 323
Sign convention for the induced emf, 13
Surface element vector, 12
Feedback linearization
Induction motor
Dynamic feedback linearization, 582
Input-output linearization, 511
PM synchronous motor, 592, 595
Experimental results, 599, 603
Series DC motor, 171
Shunt DC motor, 174
Field weakening
DC motor, 46, 171
Induction motor
Comparison of the optimal with the standard approach, 544
Current constraints, 529
Optimal approach, 528
Standard approach, 509

Voltage and current constraints, 537
Voltage constraints, 530
PM synchronous motor, 592, 608
Example, 615
Simulation, 620
Transition speed, 609
Field winding
DC motor
Definition, 315
Synchronous motor
Definition, 315
Field-oriented control
Induction motor
Current command, 501
Experimental results, 506, 514
Input-output linearization, 511
Voltage command, 512
PM synchronous motor, 591
Field-oriented model
Induction motor, 497
Filtering, 108, 162
Bilinear transformation, 121
Butterworth filters, 116
Causality, 112
Digital filters, 122
Discretization using the trapezoidal rule, 120
Distortion, 114
filtfilt, 126, 165
Frequency response, 112
Implementation, 118
Low-pass filter, 113
Noncausal filtering, 126
Representations, 111
Signal flow diagram, 164
State-space representation, 124
The filter command, 164
Final value theorem, 156
Flat systems, 586
Fliess, M., 586
Flux linkage

Definition, 40, 266
Trapezoidal back-emf PM synchronous motor, 661
Flux linkages in AC machines, 370
Fourier series expansion, 279
Free current, 206
Gauss's law, 183, 281
Divergence of the magnetic field, 292
Gears, 52
Global coupling factor, 369
Gray, C. B., 274
Hysteresis, 209
Loss, 223
Ideal filter, 162
Ill conditioned, 551
Induction motor
Air-gap voltage, 478
Arbitrary rotating reference frame, 478
Armature winding
Definition, 315
Base speed, 509, 541
Control problem, 494
Dynamic feedback linearization, 582
Equivalent circuit, 436, 446
Experimental results, 506
Field-oriented control, 501
Field-oriented model, 497
Flatness, 586
Flux observer, 519
Input-output linearization, 511
Leakage on the rotor side, 479, 484
Leakage on the stator side, 480, 484
Magnetic field energy, 393
Mathematical model, 363, 493
Microscopic viewpoint, 317, 326
Energy conversion, 321

Torque, 321
Multiple pole-pairs, 387
Nested loop controller, 573
Neutral, 423
Optimal flux reference, 545
Parameter identification, 548
Physics of, 296
Radial air-gap magnetic field, 364
Simulation
Input-output linearization controller, 572
Open-loop, 481
Space vector, 402
Squirrel cage rotor, 386
Comparison with a sinusoidally wound rotor, 344
Emfs, 336
Equivalent rotor circuit, 341
Rotor fluxes, 336
Rotor magnetic field, 342
Steady-state analysis, 334
Torque, 337
Stator and rotor magnetic fields rotate synchronously, 391
Steady-state analysis, 434
Blocked-rotor test, 481
Circle diagram, 438
Efficiency, 448
Equivalent circuit, 484
Impressed stator currents, 489
Maximum mechanical power, 489
No-load test, 481
Power factor, 439
Power factor angle, 439
Power transfer, 444
Pull-out slip, 443
Pull-out torque, 443
Rated current, 440
Rated slip, 439
Theory versus experiment, 448
Torque, 441

Torque-slip curve, 442
Three-phase
Balanced conditions, 421
Mathematical model, 413
Motor neutral, 416
Rotor flux linkages, 420
Simulation using a two-phase equivalent model, 430
Sinusoidal windings, 415
Stator flux linkages, 419
Symmetric, 415
Two-phase equivalent model, 425, 430
Two-phase equivalent parameters, 420
wye-connected, 416
Three-phase to two-phase transformation, 424,432
Torque
Three-phase, 427
Torque from co-energy, 393, 397
Torque from magnetic field energy, 396
Torque optimization, 528
Two-phase
Mathematical model, 383
Two-phase equivalent model, 430
Direct axis, 433,478
Quadrature axis, 433, 478
Zero sequence, 425
Input-output linearization
Induction motor, 497, 511
Series DC motor, 171
Shunt DC motor, 174
Internal model principle, 149
Laplace transform
Final value theorem, 156
Reference trajectory, 159
Leakage, 366
Lenz's law, 14
Leonhard, W., 434
Long-pitched winding, 291

Magnetic field energy
Induction motor, 393
Magnetic field intensity
Definition, 207
Motivation for the definition, 204
Magnetic fields
B is normal to the surface of soft iron, 217
Computing B and H in magnetic circuits, 211
Conservation of flux, 186
Continuity of the normal component of $B, 188$
DC motor
Air-gap magnetic field, 6
Definition, 183
Experimental field distribution, 177
Solenoid, 198
Magnetic force
Definition, 3
Magnetic force law
Definition, 185
Magnetic materials, 177
B is normal to the surface of soft iron, 217
Bound current, 191
Continuity of the normal component of $\mathrm{B}, 188$
Dipole moments, 192
$\mathrm{H}=0$ in ideal magnetic materials, 212,217
Hysteresis loop, 209
Hysteresis loss, 223
Magnetic field intensity H
Definition, 207
Motivation for the definition, 204
Modeling, 190
Permanent magnets, 219
Permeability, 204
Quantum mechanics, 193
Rare earth materials for PM machines, 225

Relating B to M, 201
Silicon steel, 225
Relative permeability, 225
Magnetization
Definition, 194
Magnetization vector, 195
Magnetizing inductance
Transformer, 230
Magnetomotive force (mmf), 264
Martin, P., 528
Mathematical model
Trapezoidal back-emf PM synchronous motor, 671
Matrix
Postive definite, 101
Postive semidefinite, 101
Symmetric, 101
Microscopic viewpoint, 315, 356
Axial electric field, 316
DC motor, 23
Single-loop motor, 26
Induction motor, 317, 326
Energy conversion, 321
Torque, 321
Trapezoidal back-emf PM synchronous motor, 679
Wound rotor synchronous machine, 334
Moment of inertia
Definition, 47
Multiple pole-pairs
Induction motor, 387, 405
Wound rotor synchronous motor, 408

Nested loop controller
DC motor, 90, 158
Induction motor, 573
Neutral
Induction motor, 416, 423
No-load test
Induction motor, 481
Numerical conditioning, 556
Observers

DC motor, 79
Comparison of a speed observer with a backward difference estimator, 154
Discretization of the speed observer equations, 82
Position cannot be estimated from speed, 154
Recovery from a disturbance, 153
Speed and load-torque observer, 153
Speed observer, 79
Induction motor
Flux observer, 519, 574
Load-torque observer, 578
Martin-Rouchon flux observer, 580
Speed observer, 521
Verghese-Sanders flux observer, 524
PM synchronous motor, 597
Series DC motor
Speed and load-torque observer, 172
Speed and load-torque observer in field weakening, 173
Oersted, Hans, 183

Parameter identification
DC motor, 96, 160
Error Index
DC motor, 103
Error index
Induction motor, 556
PM synchronous motor, 626
Induction motor, 548
Experimental results, 560
Mechanical parameters, 557
Nonlinear least-squares, 552
Overparameterized model, 549
Simulation, 558

Least-squares approximation, 99
Parametric error indices, 161
DC motor, 103
Induction motor, 556
PM synchronous motor, 626
PM synchronous motor, 624
Experimental results, 627
Sufficient excitation
DC motor, 99
Induction motor, 556
PM synchronous motor, 626
Permanent magnets, 219
Relative permeability, 234
Permeability
Permanent magnet, 234
PM synchronous motor, 390
Armature winding
Definition, 315
Experimental results, 598, 599, 603
Mathematical model, 363, 591
Two-phase, 408
Parameter identification, 624
Radial air-gap magnetic field, 364
Simulation
Closed-loop control, 646
Open-loop control, 646
Three-phase
Mathematical model, 449, 456
Six pole, 288
Stator flux linkages, 451
Torque, 454
Pole-pairs
Definition, 67
Power factor
Induction motor, 439
Power factor angle
Induction motor, 439
Rated conditions
Interpretation, 440
Rated current, 440

Rated slip, 439
Rated torque, 443
Rational arithmetic, 556
Reluctance
Definition, 215
Remanence
Definition, 208
Resultants, 554
Retentivity
Definition, 208
Rotating magnetic fields, 245, 262, 293
Rotor flux linkage, 375
Rouchon, P., 528

Salient rotor, 313
Sanders, S., 524
Schwartz, M., 193, 265
Separately excited DC motor, 166
Armature control, 166
Field control, 168
Mathematical model, 44
Series DC motor, 166
Feedback linearization, 171
Mathematical model, 64
Speed and load torque observer, 172
Speed and load-torque observer, 173
Short-pitched winding
Self-inductance, 291
Short-pitched windings, 361
Flux linkage, 289
Shunt DC motor, 166, 173
Mathematical model, 65
Slip rings, 247
Slip speed, 302
Solenoid
Experimental field distribution, 180
Magnetic field, 198
Radial magnetic field, 227
Space vector
Flux linkage model, 569

Induction motor model, 402, 430, 476, 477, 568
Rotor flux model, 570
Stator flux model, 570
Spatial harmonics, 282
Special theory of relativity
Transformation of the elec-
tromagnetic field, 327
Squirrel cage rotor, 386
Steady-state analysis, 334
State feedback control
DC motor, 86, 155
Block diagram, 89
Integator for load torque
disturbance rejection, 157
PM synchronous motor, 595
Stator flux linkage, 370
Stator magnetic field
Trapezoidal back-emf PM synchronous motor, 654
Steady-state analysis
Induction motor
Circle diagram, 481
Efficiency, 448
Equivalent circuit, 436, 446, 484
Impressed stator currents, 489
Maximum mechanical power, 489
Power transfer, 444
Rated torque, 443
Torque, 441
Torque-slip curve, 442
Squirrel cage rotor, 334
Stepper motors, 632
Surface current density, 200, 205
Sylvester matrix, 554
Symmetric three-phase AC machine, 415
Synchronous motor
Armature winding
Definition, 315
Field winding
Definition, 315

Mathematical model, 388
Physics of, 302
Tachometer
DC motor, 29
Single-loop motor, 30
Three-phase generator
Induced voltage, 66
Three-phase to two-phase transformation, 432
Induction motor, 424
PM synchronous motor, 453
Toroid
Solenoid, 200
Torque, 380
Definition, 47
Induction motor
Three-phase, 427
Torque from co-energy, 393
Induction motor, 397
Torque from magnetic field energy
Induction motor, 396
Trapezoidal back-emf PM synchronous motor, 668
Wound rotor synchronous motor
From co-energy, 411
Torque optimization
Induction motor, 528
Current constraints, 529
Generator mode, 538
Motoring mode, 539
Optimal flux reference, 545
Voltage and current constraints, 537
Voltage constraints, 530
Synchronous motor, 608
Total leakage factor, 385
Tracking and disturbance rejection, 129
Trajectory generation, 82, 93
Continuous jerk, 155
Transformer
Ideal, 228, 229

Magnetizing inductance, 230
Trapezoidal back-emf PM synchronous motor, 651
Back emf, 666
BLDC terminology, 677
Construction, 651
Control, 673
Flux linkage, 657, 661
Mathematical model, 671
Microscopic viewpoint, 679
Operation, 673
Stator magnetic field, 654
Torque, 668
Two stage identification
PM synchronous motors, 629
Two-phase machine
Approximate sinusoidal winding, 284

Verghese, G., 524
Voltage
Definition, 28
Why 60 Hz ?, 474
Why AC?, 471
Why sinusoidal voltages?, 472
Why three-phase?, 458
Wound rotor synchronous machine, 489
dq model, 409
Mathematical model, 409
Multiple pole-pairs, 408
Zero component
Induction motor, 431

[^0]: ${ }^{1}$ Sections marked with an asterisk (*) may be skipped without loss of continuity.

[^1]: ${ }^{1}$ Motors are designed so that the conductors are perpendicular to the external magnetic field.

[^2]: ${ }^{2}$ Actually it will be shown in a later chapter that the magnetic field must be of the form $\overrightarrow{\mathbf{B}}= \pm B\left(r_{0} / r\right) \hat{\mathbf{r}}$ in the air gap, that is, it varies as $1 / r$ in the air gap. However, as the air gap is small, the $\overrightarrow{\mathbf{B}}$ field is essentially constant across the air gap.

[^3]: ${ }^{3}$ The rotor loop is also referred to as the armature winding and the current in it as the armature current.

[^4]: ${ }^{4} \xi$ is the Greek letter "xi" and is pronounced "ksi".

[^5]: ${ }^{5} \theta_{R} \bmod \pi$ is the remainder after θ_{R} is divided by π. For example, $\theta_{R}=5 \pi / 2=$ $4 \times \pi+\pi / 2$ so that $5 \pi / 2 \bmod \pi=\pi / 2$.

[^6]: ${ }^{6}$ The notation ψ is used to distinguish this flux from the flux ϕ in the loop due to the external permanent magnet. However, the total flux using an inward normal would be $\psi-\phi$ as the outward normal was used to compute ϕ in Section 1.3.4.
 ${ }^{7} \mathrm{It}$ appears from equation (1.5) and Figure 1.16 that L can vary with θ_{R}. However, in an actual motor, there are loops spread evenly around the complete periphery of the rotor and, due to symmetry, the total self-inductance does not depend on θ_{R}.

[^7]: ${ }^{8}$ Note that the electromotive force is not a force, but rather an energy per unit charge.

[^8]: ${ }^{9}$ Sections marked with an asterisk (*) may be skipped without loss of continuity.

[^9]: ${ }^{10}$ The figure shows a gap between the brushes and the commuator, but this was done for illustration and there is no gap in reality. Also, for illustrative purposes, the brushes are shown inside the commutator when in fact they are normally pressed against the commutator from the outside.

[^10]: ${ }^{11}$ See problem 6 and Chapter 3.

[^11]: ${ }^{12}$ It will be seen later that field-oriented control of an induction motor results in a mathematical model of the induction motor that looks similar to these equations!

[^12]: ${ }^{13}$ Using your right hand, curl your fingers in the direction from the first vector $\overrightarrow{\mathbf{r}}$ to the second vecotor $\overrightarrow{\mathbf{F}}$. Then your thumb points in the direction of $\overrightarrow{\mathbf{r}} \times \overrightarrow{\mathbf{F}}$.

[^13]: ${ }^{14}$ An interesting exception are magnetic bearings where the axel is levitated by magnetic fields so that there is no mechanical contact.

[^14]: ${ }^{1}$ That is, a current which is larger than the amplifier can produce would be commanded to the amplifier. The voltage output of the amplifier will increase (in order to increase the current) until it reaches the maximum possible value $V_{\max }$ and then it will saturate at this maximum value.

[^15]: ${ }^{2}$ The terminology "nested" just refers to one of the loops being inside the other.
 ${ }^{3}$ That is, the response from $\bar{\omega}_{\text {ref }}(t) \rightarrow \omega(t)$.
 ${ }^{4}$ However, if the position loop is intact, then there is no guarantee that $\bar{\omega}_{r e f}$ (defined as the output of the position loop) equals $\omega_{r e f} \triangleq d \theta_{r e f} / d t$.

[^16]: ${ }^{5}$ However, as noted in the beginning of this section, the gains for this controller are not usually chosen according to (2.23). Rather, $K_{\omega P}$ is varied until a satisfactory speed response is obtained. With $K_{\omega P}$ fixed at this value, the gains $K_{\theta P}$ and $K_{\theta I}$ are varied until the position response is satisfactory.

[^17]: ${ }^{6}$ In other words, if $K_{i}+\delta K_{i}$ produces essentially the same value of $E^{2}(K)$ as K_{i}, then one is not sure if $K_{i}+\delta K_{i}$ or K_{i} is the better estimate.

[^18]: ${ }^{7}$ Recall that by assumption $y(t)=0$ for $t<0$ and $t>T_{f}$, which implies $y\left(T_{f}-t\right)=0$ for $t<0$ and $t>T_{f}$.
 ${ }^{8}$ If $\mathcal{L}\{x(t)\}=X(s)$, then $\mathcal{L}\{x(-t)\}=X(-s)$ and $\mathcal{L}\left\{x\left(t-t_{0}\right)\right\}=e^{-t_{0} s} X(s)$ so that $\mathcal{L}\left\{x\left(-\left(t-t_{0}\right)\right)\right\}=e^{-t_{0} s} \mathcal{L}\{x(-t)\}=e^{-t_{0} s} X(-s)$.

[^19]: ${ }^{9}$ Note that if the gain K can be made large, then the disturbance term $\tau_{0} /\left(K_{T} K\right)$ perhaps could be made negligible.

[^20]: ${ }^{10}$ This could be a model for the noise on the DC bus of an amplifier when it uses a full-wave rectifier to convert the $120-\mathrm{Hz} \mathrm{AC}$ outlet to DC.

[^21]: ${ }^{11}$ This is assuming the poles are distinct. If they are not, the proof is easily modified with the same final result.

[^22]: ${ }^{12}$ If $b(s)=s^{k} \bar{b}(s), \bar{b}(0) \neq 0$, then $G_{c}(s)$ need only be type $j-k$ so that $a_{c}(s) b(s)=$ $s^{j-k} \bar{a}_{c}(s) s^{k} \bar{b}(s)=\bar{a}_{c}(s) \bar{b}(s)$.

[^23]: ${ }^{13}$ In the case that there is no magnetic saturation, $\lambda_{f}\left(i_{f}\right)=L_{f} i_{f}$ so that $i_{f}=\lambda_{f} / L_{f}$.

[^24]: ${ }^{1}$ It turns out that there will always be some $\overrightarrow{\mathbf{B}}$ field leaving the tube-shaped outer surface of the iron (leakage). However, by magnetizing the material as shown in the figure, the main $\overrightarrow{\mathbf{B}}$ field strength goes around to the air gap and the part that leaves the tube-shaped outer surface of the iron is much weaker.

[^25]: ${ }^{2}$ This ability of materials such as iron to align their magnetic moments together to form domains which grow and align in the same direction as an externally applied magnetic field is succesfully explained only by quantum mechanics.

[^26]: ${ }^{3}$ The subscript θ on B_{θ} has now been dropped without confusion because the other components of the magnetic field are insignificant (see problem 6).

[^27]: ${ }^{4}$ For now, consider a "soft" magnetic material to be one that has a B versus B_{0} curve similar to that of Figure 3.33 and whose slope is orders of magnitude greater than one.

[^28]: ${ }^{5}$ By definition $\overrightarrow{\mathbf{H}} \triangleq \overrightarrow{\mathbf{B}} / \mu_{0}-\overrightarrow{\mathbf{M}}$ and on physcial grounds $\overrightarrow{\mathbf{B}}$ and $\overrightarrow{\mathbf{M}}$ point in the same direction which in this case is the $\hat{\boldsymbol{\theta}}$ direction inside the toroid. Consequently, $\overrightarrow{\mathbf{H}}$ will also be in the $\hat{\boldsymbol{\theta}}$ direction and may be written in the form $\overrightarrow{\mathbf{H}}=H \hat{\boldsymbol{\theta}}$.
 ${ }^{6} H_{c}$ is not a force so "coercive force" is not a good name. The value of H_{c} depends on the particular $B-H$ loop that the system is going through.

[^29]: ${ }^{7}$ Reference [56] gives the permeability range as 5 to 10 kilogauss/oersted $=0.5 \times 10^{4}$ to 1.0×10^{4} gauss / 10^{3} ampere/meter) $=0.5 \times 10^{-3}$ to 1.0×10^{-3} telsa/(ampere/meter). The relative permeability is found by dividing through by $\mu_{0}=4 \pi \times 10^{-7}$ henry/meter giving 400 to 800 .
 ${ }^{8}$ This is the temperature at which the material loses it magnetic properties.

[^30]: ${ }^{1}$ That the currents in the rotor loops are in the directions indicated in the figure can only be proven using the analysis developed in later chapters.

[^31]: ${ }^{1}$ This assumption does not appear to be realistic especially in the above figure. Copper is not a magnetic material so $\overrightarrow{\mathbf{H}} \neq 0$ inside. The assumption of an "infinitesimal cross section" for the wire allows one to still take $\int \overrightarrow{\boldsymbol{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=0$ across the wire as its crosssectional area is infinitesmal. Although on the face of it this assumption may not seem reasonable, it does lead to a model that is not only reasonable, but quite good. Again, the reader is encouraged to think of Figure 4.6(b) in this derivation and all that follow.

[^32]: ${ }^{2}$ It would have been just as valid to use r_{S} / r where r_{S} is the inside radius of the stator, or a value $r_{0}, r_{R}<r_{0}<r_{S}$ satisfying $\int_{r_{R}}^{\tau_{S}}\left(r_{0} / r_{R}\right) d r=g$ (see problem 11).

[^33]: ${ }^{3}$ The figure shows a single phase wound such that there is one loop at $\pi / 6$, two loops at $\pi / 3$, three loops at $\pi / 2$, two loops at $2 \pi / 3$, and one loop at $5 \pi / 6$ (see problem 4, where such a winding is analyzed). However, again following Refs. [3] and [24], the sine curve envelope of these loops is used to indicate that it is sinusoidally wound.

[^34]: ${ }^{4}$ See problem 11 for a discussion how Ampère's law changes when the factor r_{R} / r is added.

[^35]: ${ }^{5}$ See M. Schwartz [35], page 156.

[^36]: ${ }^{6}$ Remember that the cross-sectional area of the windings is modeleded as being infnitesimal.

[^37]: ${ }^{1}$ See problem 2 for the analysis when $L_{R}>0$.

[^38]: ${ }^{2}$ Note that $\left(N_{S} / 2\right)|\sin (\theta-\pi / 2)|=\left(N_{S} / 2\right) \sin (\theta-\pi / 2)$ for $\pi / 2 \leq \theta \leq 3 \pi / 2$ and $\left(N_{S} / 2\right)|\sin (\theta-\pi / 2)|=-\left(N_{S} / 2\right) \sin (\theta-\pi / 2)$ for $-\pi / 2 \leq \theta \leq \pi / 2$.

[^39]: ${ }^{3}$ See equation (5.12).

[^40]: ${ }^{4}$ Note that as $V_{\text {airgap }} B_{R \max } \frac{N_{s}}{4 g}=\pi \ell_{1} \ell_{2} g \frac{\mu_{0} N_{F} I_{F}}{2 g} \frac{N_{s}}{4 g}=\left(\mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{R} / 8 g\right) I_{F}$, these flux linkages may also be written in the form $\lambda_{S a}\left(\theta_{R}\right)=M I_{F} \cos \left(\theta_{R}\right), \lambda_{S b}\left(\theta_{R}\right)=$ $M I_{F} \sin \left(\theta_{R}\right)$ where, $M \triangleq\left(\mu_{0} \pi \ell_{1} \ell_{2} N_{S} N_{R} / 8 g\right)$ is called the coeffcient of mutual inductance.

[^41]: ${ }^{5}$ Only those paths that do not go through the field coil are being considered. At those angles θ corresponding to going through the field coil, it will turn out that the $\overrightarrow{\mathbf{B}}$ field due to the current in the coil is weak and can be neglected.

 As before, it is assumed that the stator windings have an infinitesimal cross section so that $\int \overrightarrow{\mathbf{H}} \cdot d \overrightarrow{\boldsymbol{\ell}}=0$ across the winding because $d \overrightarrow{\boldsymbol{\ell}}=0$.

[^42]: ${ }^{6}$ Each loop has four sides. The term rotor bar refers to the sides of a loop which go along the length of the rotor. The other two sides of the loop are referred to as the end turns. Consequently, there are two rotor bars per loop and so each pair of loops has four rotor bars. With N_{R} the number of pairs of loops, there are then $4 N_{R}$ rotor bars around the periphery of the rotor.

[^43]: ${ }^{7}$ Later the quantity $S_{p} \triangleq \frac{R_{R}}{\sigma \omega_{S} L_{R}}$ will be defined as the pull out slip so that $s_{p} \triangleq$ $\frac{R_{R}}{\omega_{S} L_{R}}=\sigma S_{p}$ where σ is the so-called leakage parameter (also defined later). For the reader familiar with the torque-slip curve of an induction motor, the quantity s_{p} rather than the pull out slip S_{p} occurs because impressed currents are used here rather than impressed voltages (see problem 25 of Chapter 7).

[^44]: ${ }^{8} \mathrm{This}$ argument is perhaps more convincing from the microscopic point of view. It is shown in an optional section of this chapter that the rotating magnetic field $\overrightarrow{\mathbf{B}}_{S}(r, \theta, t)=$

[^45]: ${ }^{9}$ By symmetry, diametrically opposite sides of the rotor have emfs which are opposite in sign, but equal in magnitude.
 ${ }^{10}$ As $i=1, \ldots, 4 N_{R}$, the angles φ_{i} go from $\varphi_{1}=0$ to $\varphi_{4 N_{R}}=\frac{\pi}{2} \frac{4 N_{R}-1}{N_{R}}=2 \pi-\frac{\pi}{2} \frac{1}{N_{R}}$.

[^46]: ${ }^{11}$ The magnitude of the currents are written in the (nonstandard) form $\left|I_{S}\right|=I_{S} / \sqrt{2}$, $\left|\underline{\mathrm{I}}_{R}\right|=I_{R_{\text {wound }}} / \sqrt{2}$ so that $I_{S}, I_{R_{\text {wound }}}$ are peak values (rather than rms values) to facilitate a comparison with the squirrel cage rotor torque.

[^47]: ${ }^{1}$ It is now easy to see that $\oint_{S} \overrightarrow{\mathbf{B}}_{R a} \cdot d \overrightarrow{\mathbf{S}}=0$ for any closed surface in the air gap. Ampere's law will also continue to hold for $g \ll r_{R}$ using the approximation $\int_{\ell=0}^{\ell=g} r_{R} /\left(r_{R}+\ell\right) d \ell \approx g$.

[^48]: ${ }^{2}$ As iron is a good magnetic material, $\overrightarrow{\mathbf{B}}_{R}$ is perpendicular at both the surface of the rotor iron and the stator iron.
 ${ }^{3}$ For example, a similar analysis can be done to account for the leakage through S_{4} and S_{6}.

[^49]: ${ }^{4}$ Note that the leakage factor κ has been included as this is the stator magnetic field on the rotor side of the air gap.

[^50]: ${ }^{5}$ There is an expression identical in form for the torque of a synchronous motor!

[^51]: ${ }^{6}$ Actually, as the iron is assumed to have infinite permeability ($\mu_{r}=\infty$), the stored energy is all in the air gap. This is simply because electromagnetic theory allows one to write the stored field energy as $W_{\text {field }}=(1 / 2) \int_{\substack{\text { rotor and } \\ \text { stator iron }}}\left(B^{2} /\left(\mu_{0} \mu_{r}\right)\right) d V+$ $(1 / 2) \int_{\text {air gap }}\left(B^{2} / \mu_{0}\right) d V=(1 / 2) \int_{\text {air gap }}\left(B^{2} / \mu_{0}\right) d V$ as $\mu_{r}=\infty$.

[^52]: ${ }^{7}$ This derivation assumed that (6.45) held, that is, that magnetic saturation was not present. This result does not hold if magnetic saturation is present. A more general result that holds in the presence of magnetic saturation is given in the next subsection.
 ${ }^{8}$ However, the expressions (6.45) are valid only for the linear magnetics case, that is, no magnetic saturation.

[^53]: ${ }^{9}$ The expression (6.49) is valid only for the linear magnetics case. To determine the field energy in the general case, one would lock the rotor so that $i_{S a} e_{S a}+i_{S b} e_{S b}+$ $i_{R a} e_{R a}+i_{R b} e_{R b}=\frac{d}{d t} W_{\text {feld }}\left(i_{S a}, i_{S b}, i_{R a}, i_{R b}, \theta_{R}\right)$ holds. Then one would try to integrate this expression to obtain $W_{\text {feld }}$. Though the left-hand side is known, such a calculation would typically require numerical techniques in the presence of magnetic saturation. The "Achilles heel" in this approach is trying to find the field energy $W_{\text {field }}$.
 ${ }^{10}$ In the case of linear magnetics, the expressions (6.45) would be used. However, in the case of magnetic saturation, one proceeds as follows: For each phase, integrate $\lambda(t)=\int_{0}^{t}(u-R i) d t$ to compute the phase flux as the currents $i_{S a}, i_{S b}, i_{R a}$, and $i_{R b}$ are varied between $-I_{\max }$ and $I_{\max }$, and the rotor position is varied for $0 \leq \theta_{R} \leq \frac{2 \pi}{n_{p}}$. This then gives the phase flux as a function of $i_{S a}, i_{S b}, i_{R a}, i_{R b}$, and θ_{R}.

[^54]: ${ }^{1}$ Of course, in the use of Ampère's law, it is still assumed that the cross section of the winding is negligible in order to obtain a relatively simple analytical expression for the radial magnetic field in the air gap.

[^55]: ${ }^{2}$ Balanced just means $i_{S 1}+i_{S 2}+i_{S 3} \equiv 0$.

[^56]: ${ }^{3}$ See, for example, Appendix 4.1 of Murphy and Turnbull [9].

[^57]: ${ }^{4}$ In this section, $U_{S} \triangleq\left|\underline{U}_{S}\right|$ is an rms voltage rather than a peak voltage. This is to keep the notation in this section consistent with standard practice.

[^58]: ${ }^{5}$ Setting $L_{S}=\left(1+\sigma_{S}\right) M, L_{R}=\left(1+\sigma_{R}\right) M$ is just saying that L_{S} and L_{R} are slightly greater than M. Due to leakage, this is always true as $\sigma=1-M^{2} /\left(L_{S} L_{R}\right)>0$.

[^59]: ${ }^{6}$ This is primarily done so that the expressions that are now derived for the stator input impedance, power factor, and torque have a nice form.

[^60]: ${ }^{7}$ Recall that this analysis assumes $R_{S}=0$. The mechanical losses (friction, windage, etc.) have also been assumed to be zero in this analysis.

[^61]: ${ }^{8}$ Remember that $R_{S}=0$ is still assumed.
 ${ }^{9}$ The synchronous motor speed is the rotor speed with no load and rated frequency applied.

[^62]: ${ }^{10} V \propto N_{\text {total }} V_{\text {max }}=N_{\text {total }} 2 \ell_{1} r_{R} B_{\text {tnax }} \omega_{R}$
 ${ }^{11}$ As pointed out in Ref. [61], it is still a tradeoff in the sense that the higher the voltage adopted, the higher costs in the insulation for the power lines, the higher the transmission towers, the wider the right-of-way for the transmission lines, and so on. This cost must be traded off with the cost due to energy losses in the power line.
 ${ }^{12}$ Of course, transformers don't work with DC voltages and it was only in the latter part of the 20th century that power elecronics has provided the means to step down DC voltages.
 ${ }^{13}$ The argument for the DC generation was that the DC motor could be employed by the end user. However, as the voltage could not be large in order to run the DC motor, the transmitted voltages from the DC generator must be (relatively) small. The losses in the power lines delivering this DC power (low voltage and high current) over large distances are so great that a DC power grid would have required building a power station every 2 kilometers or so!

[^63]: ${ }^{14}$ Even if the parameter values are set exactly as described, this is still approximate because the effect of the rotor on the stator impedance has been ignored (compare with the equivalent circuit model of the symmetric induction motor).

[^64]: ${ }^{1}$ (Or, the two-phase equivalent model of a three phase motor.)

[^65]: ${ }^{2}$ See problem 2 where this set of equations is rederived in a simpler fashion using the space vector representation.

[^66]: ${ }^{3}$ Better known as Copernicus.

[^67]: ${ }^{1}$ By uniformly wound, it is meant that the number of turns between θ and $\theta+d \theta$ is constant independent of the angle θ.

