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Preface

This is an introductory book in the subject of modeling and control of engineering systems. 
It serves as both a textbook for undergraduate engineering students and entry-level gradu-
ate students, and a reference book for practicing professionals. As a textbook, it is suitable 
for courses in: modeling of dynamic systems, feedback control systems, control engineer-
ing, and design and instrumentation of control systems. There is adequate material in the 
book for two 14-week courses, one at the junior (third-year undergraduate) or senior (fourth-
year undergraduate) level and the other at the first-year graduate level. In view of the ana-
lytical techniques, computer and software tools, instrumentation details, design methods, 
and practical considerations that are presented in the book, and in view of the simplified 
and snap-shot style presentation of more advanced theory and concepts, the book serves 
as a useful reference tool for engineers, technicians, project managers, and other practicing 
professionals in industry and in research laboratories, in the fields of control engineering, 
mechanical engineering, electrical and computer engineering, manufacturing and produc-
tion engineering, aeronautical and aerospace engineering, and mechatronics.

A control system is a dynamic system that contains a controller as an integral part. The 
purpose of the controller is to generate control signals, which will drive the process to be 
controlled (the plant) in the desired manner—to meet a set of performance specifications. 
Actuators are needed to perform control actions as well as to directly drive/operate the 
plant. Sensors and transducers are necessary to measure output signals (process responses) 
for feedback control; to measure input signals for feedforward control; to measure process 
variables for system monitoring, diagnosis and supervisory control; and for a variety of 
other purposes. Design is a necessary part as well, for it is design that enables us to build 
a control system that meets the performance requirements—starting, perhaps, with basic 
components such as sensors, actuators, controllers, compensators, and signal modification 
devices. The book addresses all these issues, starting from the basics and systematically 
leading to advanced concepts.

Control engineers should be able to model and analyze individual components or an 
integrated control system, design controllers, identify and select components for a control 
system, and choose parameter values so that the control system will perform the intended 
functions of the particular system while meeting a set of specifications. Proper control 
of an engineering system requires an understanding and a suitable “representation” of 
the system—a “model” of the system. Any model is an idealization of the actual system. 
Properties established and results derived are associated with the model rather than the 
actual system, whereas the excitations are applied to and the output responses are mea-
sured from the actual system. Modeling is often an essential task in control engineering. 
For instance, a good understanding of the system to be controlled may be gained through 
modeling and associated analysis and computer simulation. In fact a controller may be 
designed and its performance can be studied through modeling and computer simulation 
even before a physical controller is developed. Such an approach is often more economical 
and time effective. Furthermore there are control techniques called “model-based control” 
for which modeling is a requirement.

Important aspects of laboratory experimentation and instrumentation are included in 
the book. There are numerous worked examples, problems, and exercises, many of which 
are related to real-life situations and practical applications. Augmenting their traditional 
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role, the problems at the end of each chapter serve as valuable sources of information not 
found in the main text. In fact, the student is strongly advised to carefully read all the 
problems in addition to the main text. Complete solutions to the end-of-chapter prob-
lems are provided in a Solutions Manual, which is available to instructors who adopt the 
book.

The manuscript for the original book evolved from the notes developed by the author for 
mandatory undergraduate courses in dynamic system modeling and feedback control, and 
entry-level graduate courses in control system instrumentation and modern control engi-
neering for students in electrical and computer engineering, mechanical engineering, and 
chemical engineering at Carnegie Mellon University. During the development of the mate-
rial for those courses, a deliberate attempt was made as well to cover a major part of the 
syllabuses for similar courses offered in the Department of Mechanical Engineering at the 
Massachusetts Institute of Technology. At the University of British Columbia, the original 
material was further developed, revised, and enhanced for teaching courses in dynamic 
system modeling, control systems, intelligent control, mechatronics, and control sensors 
and actuators. The material in the book has acquired an application orientation through the 
author’s industrial experience at places such as IBM Corporation, Westinghouse Electric 
Corporation, Bruel and Kjaer, and NASA’s Lewis and Langley Research Centers.

The material presented in the book provides a firm foundation in modeling and control 
of engineering systems, for subsequent building up of expertise in the subject—perhaps 
in an industrial setting or in an academic research laboratory—with further knowledge 
of control hardware and analytical skills (along with the essential hands-on experience) 
gained during the process.

Main Features of the Book

There are several shortcomings in existing popular books on modeling and control. For 
example, some books “pretend” to consider practical applications by first mentioning a real 
engineering system before posing an analytical or numerical problem. For example, it may 
describe an automobile (with a graphical sketch and even a photo) and then make a state-
ment such as “let us approximate the automobile by the following transfer function.” No 
effort is made to relate the model to the physical system and to address such issues as why a 
particular control technique is suitable for controlling the system. Some other books exten-
sively use software tools for modeling and control system analysis without pointing out 
the fundamentals and the analytical basis behind the methodologies, ways of interpreting 
and validating the obtained results, and the practical limitations of the tools. While benefit-
ing from the successes of the popular books, the present book makes a substantial effort to 
overcome their shortcomings. The following are the main features of the book, which will 
distinguish it from other popular textbooks in the subjects of modeling and control:

Readability and convenient reference are given priority in the presentation and •	
formatting of the book.
Key concepts and formulas developed and presented in the book are summarized •	
in windows, tables, and lists, in a user-friendly format, throughout the book, for 
easy reference and recollection.
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A large number of worked examples are included and are related to real-life situ-•	
ations and the practice of control engineering, throughout the book.
Numerous problems and exercises, most of which are based on practical situa-•	
tions and applications, and carry additional useful information in modeling and 
control, are given at the end of each chapter.
The use of MATLAB•	  (is a registered trademark of The MathWorks, Inc. For 
product information, please contact: The MathWorks, Inc., 3. Apple Hill Drive, 
Natick, MA 01760-2.098 USA. Tel: 508 647 7000; Fax: 508-647-7001; E-mail:  
info@mathworks.com; Web: www.mathworks.com) Simulink, and LabVIEW, 
and associated toolboxes are described and a variety of illustrative examples are 
given for their use. Many problems in the book are cast for solution using these 
computer tools. However, the main goal of the book is not simply to train the stu-
dents in the use of software tools. Instead, a thorough understanding of the core 
and foundation of the subject as facilitated by the book will enable the student 
to learn the fundamentals and engineering methodologies behind the software 
tools; the choice of proper tools to solve a given problem; interpret the results gen-
erated by them; assess the validity and correctness of the results; and understand 
the limitations of the available tools.
Useful material that cannot be conveniently integrated into the main chapters is •	
given in three separate appendices at the end of the book.
The subject of modeling is treated using an integrated approach, which is uni-•	
formly applicable to mechanical, electrical, fluid, and thermal systems. An inspi-
ration is drawn from the concept of equivalent circuits and Thevenin’s theorem in 
the field of electrical engineering. 
The subject of intelligent control, particularly fuzzy logic control, is introduced. A •	
chapter on control system instrumentation is included, providing practical details 
for experiments in an undergraduate laboratory.
An •	 Instructor’s Manual is available, which provides suggestions for curriculum 
planning and development, and gives detail solutions to all the end-of-chapter 
problems in the book.

Clarence W. de Silva
Vancouver, British Columbia, Canada
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Units and Conversions (Approximate)

1 cm = 1/2..54 in = 0.3.9 in
1 rad = 57.3.°
1 rpm = 0.105 rad/s
1 g = 9.8 m/s2. = 3.2..2. ft/s2. = 3.86 in/s2.

1 kg = 2..2.05 lb
1 kg⋅m2. (kilogram-meter-square) = 5.467 oz⋅in2. (ounce-inch-square) = 8.85 lb.in.s2.

1 N/m = 5.71 × 10-3. lbf/in
1 N/m/s = 5.71 × 10-3. lbf/in/s
1 N⋅m (Newton-meter) = 141.6 oz⋅in (ounce-inch) 
1 J = 1 N.m = 0.948 × 10- 3. Btu = 0.2.78 kWh
1 hp (horse power) = 746 W (watt) = 550 ft⋅lbf
1 kPa = 1 × 103. Pa =  1 × 103. N/m2.  
          = 0.154 psi =  1 × 10- 2. bar
1 gal/min  = 3..8 L/min

Metric Prefixes:

giga G 109

mega M 106

kilo k 103.

milli m 10-3.

micro µ 10-6

nano n 10-9

pico p 10-12.
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1
Modeling and Control of Engineering Systems

The purpose of a controller is to make a plant (the system to be controlled) behave in a 
desired manner, while meeting a set of performance specifications. A control system is 
one that contains at least a plant and a controller. Design, development, modification, 
performance evaluation, and control of an engineering system require an understand-
ing and a suitable “representation” of the system. Specifically, a “model” of the system 
is required. This book will present integrated and unified methodologies for model-
ing an engineering system that possibly contains multidomain (mechanical, electrical, 
fluid, thermal, etc.) characteristics. Systematically the book will address the subject 
of control engineering, while highlighting model-based approaches where relevant. 
Overall, the book will treat modeling, analysis, simulation, design, instrumentation, 
and evaluation of control systems. The present introductory chapter sets the stage for 
this treatment.

1.1 Control Engineering

The purpose of a controller is to make a plant behave in a desired manner—meeting a set 
of performance specifications. The physical dynamic system (e.g., a mechanical system) 
whose response (e.g., vibrations or voltage spikes) needs to be controlled is called the plant 
or process. The device that generates the signal (or, command) according to some scheme 
(or, control law) and controls the response of the plant is called the controller. The plant and 
the controller are the two essential components of a control system. The system can be quite 
complex and may be subjected to known or unknown excitations (inputs), as in the case of 
an aircraft (see Figure 1.1).

Certain command signals, or inputs, are applied to the controller and the plant is expected 
to behave in a desirable manner (according to a set of performance specifications) under 
control. In feedback control, the plant has to be monitored and its response needs to be 
 measured using sensors and transducers, for feeding back into the controller. Then, the con-
troller compares the sensed signal with a desired response as specified externally, and 
uses the error to generate a proper control signal. Ideally a good control system should 
be: stable; fast; accurate; insensitive to noise, external disturbances, modeling errors and 
parameter variations; sufficiently sensitive to control inputs; and be free of undesirable 
coupling and dynamic interactions. Control engineering concerns development, imple-
mentation, operation, and evaluation of control systems. Control engineers should be able 
to model, analyze, simulate, design, develop, implement, and evaluate controllers and 
other parts of control systems.
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2 Modeling and Control of Engineering Systems

1.2 Application Areas

Application areas of control systems are numerous, and typically employ design, sensing, 
actuation, control, signal conditioning, component interconnection and interfacing, and 
communication, generally using tools of mechanical, electrical and electronic, computer, 
and control engineering. For example, control engineering is indispensible in the field of 
robotics. This is true regardless of the robotic application (e.g., industrial, domestic, secu-
rity/safety, entertainment, and so on). The humanoid robot shown in Figure 1.2. is a com-
plex and “intelligent” control system. Some other important areas of application of control 
are indicated below.

Transportation is a broad area where control engineering has numerous applications. In 
ground transportation in particular, automobiles, trains, and automated transit systems 
use control for proper operation. They include airbag deployment systems, antilock brak-
ing systems (ABS), cruise control systems, active suspension systems, and various devices 
for monitoring, toll collection, navigation, warning, and control in intelligent vehicular 
highway systems (IVHS). For example, a modern automated ground transit system such 
as the one shown in Figure 1.3. will require complex control technologies for a variety 
of functions such as motion and ride quality control, safety and security, lighting, heat-
ing, cooling, and ventilation. In air transportation, modern aircraft designs with advanced 
materials, structures, and electronics benefit from advanced controllers, flight simulators, 
flight control systems, navigation systems, landing gear mechanisms, traveler comfort 
aids, and the like.

Manufacturing and production engineering is another broad field that uses control tech-
nologies and systems. Factory robots (for welding, spray painting, assembly,  inspection, 
etc.), automated guided vehicles (AGVs), modern computer-numerical control (CNC) 
machine tools, machining centers, rapid (and virtual) prototyping systems, and microma-
chining systems are examples of control applications.

In medical and healthcare applications, robotic technologies for examination, surgery, 
rehabilitation, drug dispensing, and general patient care are being developed and imple-
mented, which use control technologies. Control applications are needed as well for patient 
transit devices, various diagnostic probes and scanners, beds, and exercise machines.

In a modern office environment, automated filing systems, multifunctional copying 
machines (copying, scanning, printing, fax, etc.), food dispensers, multimedia presenta-
tion and meeting rooms, and climate control systems incorporate control technologies.

In household applications, home security systems and robots, vacuum cleaners and 
robots, washers, dryers, dishwashers, garage door openers, and entertainment centers use 
control devices and technologies.

Aerodynamic
excitations

Engine
excitations Control surface

excitations

Aerodynamic
excitations

Body
response

Figure 1.1
Aircraft is a complex control system.
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Sensors
Actuators

Controller

Communication
system

Figure 1.2
A humanoid robot is a complex control system. (From American Honda Motor Co. Inc. With permission.)

Figure 1.3
Skytrain—the high-speed ground transit system in Vancouver, Canada—employs sophisticated control 
technologies.
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4 Modeling and Control of Engineering Systems

In the computer industry, hard disk drives (HDD), disk retrieval, access and ejection 
devices, and other electromechanical components can considerably benefit from high-
 precision control. The impact goes further because digital computers are integrated into 
a vast variety of other devices and applications, which are capable of executing complex 
control strategies.

In civil engineering applications, cranes, excavators, and other machinery for building, 
earth removal, mixing and so on, will improve their performance through modeling, anal-
ysis, simulation, and automated control.

In space applications, mobile robots such as NASA’s Mars exploration Rover, space-
 station robots, and space vehicles are fundamentally control systems.

It is noted that there is no end to the type of devices and applications that can incorpo-
rate control engineering. In view of this, the traditional boundaries between engineering 
disciplines will become increasingly fuzzy, and the field of control engineering will grow 
and evolve further through such merging of disciplines.

1.3 Importance of Modeling

In the area of automatic control, models are used in a variety of ways. In particular, an 
analytical model of the control system is needed for mathematical analysis and computer 
simulation of the system. A model of the system to be controlled (i.e., plant, process) may be 
used to develop the performance specifications, based on which a controller is developed 
for the system. In model-referenced adaptive control, for example, a reference model dic-
tates the desired behavior that is expected under control. This is an implicit way of using a 
model to represent performance specifications. In model-based control, a dynamic model 
of the actual process is employed to develop the necessary control schemes. In the early 
stages of design of a control system, some parts of the desired system do not exist. In this 
context, a model of the anticipated system, particularly an analytical model or a computer 
model, can be very useful, economical, and time efficient. In view of the complexity of a 
design process, particularly when striving for an optimal design, it is useful to incorporate 
system modeling as a tool for design iteration.

Modeling and design can go hand in hand, in an iterative manner. In the beginning, 
by knowing some information about the system (e.g., intended functions, performance 
specifications, past experience and knowledge of related systems) and using the design 
objectives, it will be possible to develop a model of sufficient (low to moderate) detail and 
complexity. By analyzing and carrying out computer simulations of the model it will be 
possible to generate useful information that will guide the design process (e.g., generation 
of a preliminary design). In this manner design decisions can be made, and the model can 
be refined using the available (improved) design.

It is unrealistic to attempt to develop a “universal model” that will incorporate all con-
ceivable aspects of the system. The model should be as simple as possible, and may address 
only a few specific aspects of interest in the particular study or application. For example, 
in the context of a HDD unit, as shown in Figure 1.4a, if the objective is vibration control, a 
simplified model as shown in Figure 1.4b and c will be useful.
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Modeling and Control of Engineering Systems 5

1.4 History of Control Engineering

The demand for servomechanisms in military applications during World War II provided 
much incentive and many resources for the growth of control technology. Early efforts 
were devoted to the development of analog controllers—electronic devices or circuits that 
generate proper drive signals for a plant (process). Parallel advances were necessary in 
actuators such as motors, solenoids, and valves, which are the driving means of a plant. For 
feedback control and feedforward control, further developments in sensors and transduc-
ers became essential. Innovations and improvements were necessary as well in the devices 
for signal processing, conditioning, and modification. With added sophistication in control 
systems, it was soon apparent that analog control techniques had serious limitations. In 
particular, linear assumptions were used to develop controllers even for highly nonlin-
ear plants. Furthermore, complex and costly circuitry was often needed to generate even 
simple control signals. Consequently, most analog controllers were limited to on/off and 
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Figure 1.4
(a) A hard-disk drive (HDD) unit of a computer. (b) Components for a simplified model. (c) A simplified model 
for vibration control.
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6 Modeling and Control of Engineering Systems

proportional-integral-derivative (PID) actions, where lead and lag compensation  networks 
were employed to compensate for weaknesses in such simple control actions.

The digital computer, first developed for large number-crunching jobs, was employed as 
a controller in complex control systems in the 1950s and 1960s. Originally, cost constraints 
restricted its use primarily to aerospace applications, which required the manipulation of 
large amounts of data (complex models, several hundred signals, and thousands of system 
parameters) for control and which did not face serious cost restraints. Real-time control 
requires fast computation, and the required speed of computation is determined by the 
control bandwidth (or the speed of control) and parameters (e.g., time constants, natural 
frequencies, and damping constants) of the process (plant) that is being controlled. For 
instance, prelaunch monitoring and control of a space vehicle would require digital data 
acquisition at high sampling rates (e.g., 50,000 samples/second). As a result of a favorable 
decline of computation costs (both hardware and software) in the subsequent years, wide-
spread application of digital computers as control devices (i.e., digital control) has become 
feasible. Dramatic developments in large-scale integration (LSI) technology and micropro-
cessors in the 1970s resulted in very significant drops of digital processing costs, which 
made digital control a very attractive alternative to analog control. Today, digital control has 
become an integral part of numerous systems and applications, including machine tools, 
robotic manipulators, automobiles, aircraft autopilots, nuclear power plants, traffic control 
systems, chemical process plants, and general mechatronic systems. Both  software-based 
digital controllers and faster yet less flexible hardware-based digital controllers, which 
employ digital circuits to perform control functions, are commonly used now.

Landmark developments in the history of control engineering are:

3.00 BC Greece (float valves and regulators for liquid level control)
1770 James Watt (steam engine, governor for speed control)
1868 James Maxwell (Cambridge University, theory of governors)
1877 E.J. Routh (stability criterion)
1893. A.M. Lyapunov (Soviet Union, stability theory, basis of state-space formulation)
192.7 H.S. Black and H.W. Bode (AT&T Bell Labs, electronic feedback amplifier)
193.0 Norbert Wiener (MIT, theory of stochastic processes)
193.2. H. Nyquist (AT&T Bell Labs, stability criterion from Nyquist gain/phase plot)
193.6 A. Callender, D.R. Hartee, and A. Porter (England, PID control)
1948 Claude Shannon (MIT, mathematical theory of communication)
1948 W.R. Evans (root locus method)
1940s Theory and applications of servomechanisms, cybernetics, and control (MIT, Bell Labs, etc.)
1959 H.M. Paynter (MIT, bond graph techniques for system modeling)
1960s Rapid developments in state-space techniques, optimal control, space applications (R. Bellman and 

R.E. Kalman in USA, L.S. Pontryagin in USSR, NASA) 
1965 Theory of fuzzy sets and fuzzy logic (L.A. Zadeh)
1970s Intelligent control; developments of neural networks; widespread developments of robotics and 

industrial automation (North America, Japan, Europe)
1980s Robust control; widespread applications of robotics and flexible automation
1990s Increased application of smart products; developments in mechatronics, microelectromechanical 

systems (MEMS)

The current trend and associate challenges of control engineering concern develop-
ments, innovations, and applications in such domains as MEMS; nanotechnology; embed-
ded, distributed, and integrated sensors, actuators, and controllers; intelligent multiagent 
systems; smart and adaptive structures; and intelligent vehicle-highway systems.
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Modeling and Control of Engineering Systems 7

1.5 Organization of the Book

The book consists of twelve chapters and three appendices. The chapters are devoted to 
presenting the fundamentals, analytical concepts, modeling, simulation and design issues, 
control, instrumentation, computer-based solutions, and applications of control systems. 
The book uniformly incorporates the underlying fundamentals of modeling and control 
into the development of useful analytical methods, integrated modeling approaches, and 
 common practical techniques of control, design, and instrumentation in a systematic man-
ner throughout the main chapters. The application of the concepts, approaches, and tools 
presented in the chapters are demonstrated through numerous illustrative examples and 
end of chapter problems.

Chapter 1 introduces the field of control engineering with a focus on the use of modeling 
in control. Application areas of control engineering are indicated. The historical develop-
ment of the field is presented. This introductory chapter sets the tone for the study, which 
spans the remaining 11 chapters.

Chapter 2. introduces the subject of modeling of a dynamic system. Analytical  models 
may be developed for mechanical, electrical, fluid, and thermal systems in a rather anal-
ogous manner, because some clear analogies exist among these four types of systems. 
Emphasized in the chapter are model types; the tasks of “understanding” and analytical 
representation (i.e., analytical modeling) of mechanical, electrical, fluid, and thermal sys-
tems; identification of lumped elements (inputs/sources, and equivalent capacitor, inductor, 
and resistor elements; considerations of the associated variables (e.g., through and across 
variables; state variables); and the development of state-space models and input–output 
models.

Chapter 3. studies linearization of a nonlinear system/model in a restricted range of 
operation, about an operating point. Real systems are nonlinear and they are represented 
by nonlinear analytical models consisting of nonlinear differential equations. Linear sys-
tems (models) are in fact idealized representations, and are represented by linear differen-
tial equations. First linearization of analytical models, particularly state-space models and 
input–output models is treated. Then linearization of experimental models (experimental 
data) is addressed.

Chapter 4 presents linear graphs—an important graphical tool for developing and 
representing a model of a dynamic system. State-space models of lumped-parameter 
dynamic systems; regardless of whether they are mechanical, electrical, fluid, thermal, or  
multidomain (mixed) systems; can be conveniently developed by using linear graphs. The 
chapter systematically studies the use of linear graphs in the development of analytical 
models for mechanical, electrical, fluid, and thermal systems.

Chapter 5 treats transfer-function models and the frequency-domain analysis of dynamic 
systems. A linear, constant-coefficient (time-invariant) time-domain model can be converted 
into a transfer function, and vice versa, in a simple and straightforward manner. A unified 
approach is presented for the use of the transfer function approach in the modeling and 
analysis of multidomain (e.g., mechanical and electrical) systems. Extension of the linear 
graph approach is presented, with the use of Thevenin and Norton equivalent circuits.

Chapter 6 studies response analysis and simulation. In particular, it provides informa-
tion regarding how a system responds when excited by an initial condition—free,  natural 
response, or when a specific excitation (i.e., input) is applied—forced response. Such a 
study may be carried out by the solution of differential equations (analytical) or by com-
puter simulation (numerical). The chapter addresses both approaches. In the latter case, in 
particular, the use of Simulink® is illustrated.
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8 Modeling and Control of Engineering Systems

Chapter 7 introduces common architectures of control systems. A good control system 
should satisfy a specified set of performance requirements with respect to such attributes 
as stability, speed, accuracy, and robustness. The chapter presents methods of specifying 
and analyzing the performance of a control system. Time-domain specifications are empha-
sized. Steady-state error, error constants, and control system sensitivity are discussed.

Chapter 8 concerns stability of a control system. Both time-domain and frequency-
domain techniques of stability analysis are presented. Routh–Hurwitz method, root locus 
method, Nyquist criterion, and Bode diagram method incorporating gain margin and 
phase margin are presented for stability analysis of linear time-invariant (LTI) systems.

Chapter 9 deals with design and tuning of controllers and compensators. Designing a 
control system may involve selection, modification, addition, removal, and relocation of 
components as well as selection of suitable parameter values for one or more of the com-
ponents in the control system in order to satisfy a set of design specifications. Once a control 
system is designed and the system parameters are chosen it may be necessary to further 
tune the parameters in order to achieve the necessary performance levels. Emphasized in 
the chapter are the frequency-domain and root-locus methods of designing lead and lag 
compensators. The Ziegler–Nichols method of controller tuning is given.

Chapter 10 studies digital control. In a digital control system, a digital device (e.g., a 
computer) is used as the controller. The chapter presents relevant issues of data sampling. 
A convenient way to analyze and design digital control systems is by the z-transform 
method. The theory behind this method is presented and issues such as stability analysis 
and controller/compensator design by the z-transform method are described.

Chapter 11 introduces several advanced and popular methodologies of control. What 
are commonly identified as modern control techniques are time-domain multivariable 
(multiinput–multioutput [MIMO]) techniques that use the state-space representation for 
the  system. The chapter presents some of the common techniques, particularly in the 
 categories of optimal control and modal control. In this context, linear quadratic regulator 
(LQR) and pole-placement control are studied. Fuzzy logic control, which has been quite 
popular in engineering/industrial applications in the context of intelligent control, is also 
presented.

Chapter 12. introduces the subject of instrumentation, as related to control engineering. 
It considers “instrumenting” of a control system with sensors, transducers, actuators, and 
associated hardware. The components have to be properly chosen and interconnected in 
order to achieve a specified level of performance. Relevant issues are addressed. A repre-
sentative set of analog and digital sensors are presented. Stepper motor and dc motor are 
presented as popular actuators in control systems. Procedures of motor selection and con-
trol are addressed. The use of the computer software tool LabVIEW® for data acquisition 
and control, particularly in laboratory experimentation, is illustrated.

Appendix A presents techniques and other useful information on Laplace transform 
and Fourier transform. Appendix B introduces several popular software tools and envi-
ronments that are available for simulation and control engineering both at the learning 
level and at the professional application level. Presented and illustrated in the appen-
dix are Simulink—a graphical environment for modeling, simulation, and analysis of 
dynamic systems; MATLAB® with its Control Systems Toolbox and Fuzzy Logic Toolbox; 
and LabVIEW, which is a graphical programming language and a program development 
environment for data acquisition, processing, display, and instrument control. Appendix 
C reviews linear algebra—the algebra of sets, vectors, and matrices. It is useful in the study 
of control systems in general and the state–space approach in particular.
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Modeling and Control of Engineering Systems 9

Problems

PROBLEM 1.1

A typical input variable is identified for each of the following examples of dynamic 
systems. Give at least one output variable for each system.

 a. Human body: Neuroelectric pulses
 b. Company: Information
 c. Power plant: Fuel rate
 d. Automobile: Steering wheel movement
 e. Robot: Voltage to joint motor

PROBLEM 1.2

According to some observers in the process control industry, early brands of analog 
control hardware had a product life of about 2.0 years. New hardware controllers can 
become obsolete in a couple of years, even before their development costs are  recovered. 
As a control instrumentation engineer responsible for developing an off-the-shelf 
 process controller, what features would you incorporate into the controller in order to 
correct this problem to a great extent?

PROBLEM 1.3

A soft-drink bottling plant uses an automated bottle-filling system. Describe the opera-
tion of such a system, indicating various components in the control system and their 
functions. Typical components would include a conveyor belt; a motor for the conveyor, 
with start/stop controls; a measuring cylinder, with an inlet valve, an exit valve, and 
level sensors; valve actuators; and an alignment sensor for the bottle and the measuring 
cylinder.

PROBLEM 1.4

One way to classify controllers is to consider their sophistication and physical complex-
ity separately. For instance, we can use an x–y plane with the x-axis denoting the physi-
cal complexity and the y-axis denoting the controller sophistication. In this graphical 
representation simple open-loop on-off controllers (say, opening and closing a valve) 
would have a very low controller sophistication value and an artificial-intelligence (AI)-
based “intelligent” controller would have a high controller sophistication value. Also, 
a passive device is considered to have less physical complexity than an active device. 
Hence, a passive spring-operated device (e.g., a relief valve) would occupy a position 
very close to the origin of the x-y plane and an intelligent machine (e.g., sophisticated 
robot) would occupy a position diagonally far from the origin. Consider five control 
devices of your choice. Mark the locations that you expect them to occupy (in relative 
terms) on this classification plane.
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2
Modeling of Dynamic Systems

Design, development, modification, and control of an engineering system require an under-
standing and a suitable “representation” of the system; specifically, a “model” of the system 
is required. Any model is an idealization of the actual system. Properties established and 
results derived are associated with the model rather than the actual system, whereas the 
excitations are applied to and the output responses are measured from the actual  system. 
This distinction is very important particularly in the context of the present treatment. An 
engineering system may consist of several different types of component; then, it is termed 
a multidomain (or mixed) system. Furthermore, it may contain  multifunctional components; for 
example, a piezoelectric component which can function as both a sensor and an actuator. 
It is useful to use analogous procedures for modeling such components. Then the compo-
nent models can be conveniently and systematically integrated to obtain the overall model. 
Analytical models may be developed for mechanical, electrical, fluid, and thermal systems 
in a rather analogous manner, because some clear analogies are present among these four 
types of systems. In view of the analogy, then, a unified approach may be adopted in the 
analysis, design, and control of engineering systems. Emphasized in this chapter are model 
types; the tasks of “understanding” and analytical representation (i.e., analytical modeling) 
of mechanical, electrical, fluid, and thermal systems; identification of lumped elements 
(inputs/sources, and equivalent capacitor, inductor, and resistor elements; considerations 
of the associated variables (e.g., through and across variables; state variables); and the 
development of state-space models and input–output (I/O) models.

2.1 Dynamic Systems

Each interacted component or element of an engineering system will possess an I/O (or 
cause-effect, or causal) relationship. A dynamic system is one whose response variables are 
functions of time and have nonnegligible “rates” of changes. Also, its present output 
depends not only on the present input but also on some historical information (e.g., previ-
ous input or output). A more formal mathematical definition can be given, but it is adequate 
to state here that a typical engineering system, which needs to be controlled, is a dynamic 
system. A model is some form of representation of a practical system. An analytical model 
(or mathematical model) comprises equations (e.g., differential equations) or an equivalent 
set of information, which represents the system to some degree of accuracy. Alternatively, 
a set of curves, digital data (e.g., arrays or tables) stored in a computer, and other numerical 
data—rather than a set of equations—may be termed a model, strictly a numerical model 
(or experimental model) from which a representative analytical model can be established 
or “identified” (the related topic is called “model identification” or “system identification” 
in the subject of automatic control).
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12 Modeling and Control of Engineering Systems

2.1.1 Terminology

A general representation of a dynamic system is given in Figure 2..1. The system is demar-
cated by a boundary that may be either real (physical) or imaginary (virtual). What is 
outside this boundary is the environment of the system. There are inputs that enter the 
system from the environment and there are outputs that are provided by the system into 
the environment. Some useful terms are:

System: Collection of interacting components of interest, demarcated by a system 
boundary.

Dynamic system: A system whose rates of changes of response/state variables cannot 
be neglected.

Plant or process: The system to be controlled.
Inputs: Excitations (known or unknown) applied to the system.
Outputs: Responses of the system.
State variables: A minimal set of variables that completely identify the “dynamic” state 

of the system. Note: If the state variables at one state in time and the inputs from that state 
up to a future state in time are known, the future state can be completely determined.

Control system: The system that includes at least the plant and its controller. It may include 
other subsystems and components (e.g., sensors, signal conditioning and modification).

Dynamic systems are not necessarily engineering, physical, or man-made systems. Some 
examples of dynamic systems with their representative inputs and outputs are given in 
Table 2..1. Try to identify several known and deliberately applied inputs; unknown and/or 
undesirable inputs (e.g., disturbances); desirable outputs; and undesirable outputs for each 
of these systems.

2.2 Dynamic Models

A dynamic model is a representation of a dynamic system. It is useful in analysis, com-
puter simulation, design, modification, and control of the system. An engineering physical 
system consists of a mixture of different types (e.g., mechanical, electrical, fluid, ther-
mal) of processes and components; it is typically a multidomain or mixed system. An 
integrated and unified development of a model is desirable, where all domains are mod-
eled together using similar approaches. Then analogous procedures are used to model 

System
boundary 

Inputs/
excitations

Outputs/
responses

Dynamic system

(Physical laws, state
variables, system

parameters)

Environment

Figure 2.1
Nomenclature of a dynamic system.
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Modeling of Dynamic Systems 13

all components, in developing an analytical model. This is the approach that is taken in 
this book. Analogies which exist in mechanical, electrical, fluid, and thermal systems are 
exploited for this purpose.

2.2.1 Model Complexity

It is unrealistic to attempt to develop a “universal model” that will incorporate all conceiv-
able aspects of the system. For example, an automobile model that will simultaneously 
represent ride quality, power, speed, energy consumption, traction characteristics, han-
dling, structural strength, capacity, load characteristics, cost, safety, and so on is not very 
practical and can be intractably complex. The model should be as simple as possible, and 
may address only a few specific aspects of interest in the particular study or application. 
Approximate modeling and model reduction are relevant topics in this context.

2.2.2 Model Types

One way to analyze a system is to impose excitations (inputs) on the system, measure the 
reactions (outputs) of the system, and fit the I/O data obtained in this manner into a suit-
able analytical model. This is known as “experimental modeling” or model identification or 
system identification. A model determined in this manner is called an experimental model. 
Another way to analyze a system is by using an analytical model of the system, which orig-
inates from the physical (constitutive) equations of the constituent components or processes 
of the system. Analytical models include state-space models, linear graphs, bond graphs, transfer 
function models (in the Laplace domain), and frequency domain models. Since developing a physi-
cal model (or prototype) of a system and testing it is often far less economical or practical 
than analyzing or computer-simulating an analytical model of the system, analytical mod-
els are commonly used in practical applications, particularly during the preprototyping 
stage. Instrumentation (exciters, measuring devices and analyzers) and computer systems 
for experimental modeling (e.g., modal testing and analyzing systems) are commercially 
available, and experimental modeling is done, if less often, than analytical modeling.

In general, models may be grouped into the following categories:

 1. Physical models (prototypes)
 2.. Analytical models
 3.. Computer (numerical) Models (data tables, arrays, curves, programs, files, etc.)
 4. Experimental models (use I/O experimental data for model “identification”)

Normally, mathematical definitions for a dynamic system are given with reference to 
an analytical model of the system; form example, a state-space model. In that context the 

Table 2.1

Examples of Dynamic Systems

System Typical Input Typical Outputs

Human body Neuroelectric pulses Muscle contraction, body movements
Company Information Decisions, finished products
Power plant Fuel rate Electric power, pollution rate
Automobile Steering wheel movement Front wheel turn, direction of heading
Robot Voltage to joint motor Joint motions, effector motion
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14 Modeling and Control of Engineering Systems

system and its analytical model are somewhat synonymous. In reality, however, an ana-
lytical model, or any model for that manner, is an idealization (or approximate representa-
tion) of the actual system. Analytical properties that are established and results that are 
derived would be associated with the model rather than the actual system, whereas the 
excitations are applied to and the output responses are measured from the actual system. 
This distinction should be clearly recognized.

Analytical models are quite useful in predicting the dynamic behavior (response) of a 
system for various types of excitations (inputs). For example, vibration is a dynamic phe-
nomenon and its analysis, practical utilization, and effective control require a good under-
standing of the vibrating system. Computer-based studies (e.g., computer simulation) may 
be carried out as well using analytical models in conjunction with suitable values for the 
system parameters (mass, stiffness, damping, capacitance, inductance, resistance, and so on). 
A model may be employed for designing an engineering system for proper performance. In 
the context of product testing, for example, analytical models are commonly used to develop 
test specifications and the input signals that are applied to the exciter in the test procedure. 
Dynamic effects and interactions in the test object, the excitation system, and their inter-
faces may be studied in this manner. Product qualification is the procedure that is used to 
establish the capability of a product to withstand a specified set of operating conditions. In 
product qualification by testing, the operating conditions are generated and applied to the 
test object by an exciter (e.g., shaker). In product qualification by analysis, a suitable analyti-
cal model of the product replaces the test specimen that is used in product qualification by 
testing. In the area of automatic control, models are used in a variety of ways. A model of the 
system to be controlled (plant, process) may be used to develop the performance specifica-
tions, based on which a controller is developed for the system. In model-referenced adaptive 
control, for example, a reference model dictates the desired behavior that is expected under 
control. This is an implicit way of using a model to represent performance specifications. In 
process control, a dynamic model of the actual process is employed to develop the necessary 
control schemes. This is known as model-based control.

The main advantages of analytical models (and computer models) over physical models 
are the following:

 1. Modern, high-capacity, high-speed computers can handle complex analytical 
models at high speed and low cost.

 2.. Analytical/computer models can be modified quickly, conveniently, and high 
speed at low cost.

 3.. There is high flexibility of making structural and parametric changes.
 4. Directly applicable in computer simulations.
 5. Analytical models can be easily integrated with computer/numerical/experimen-

tal models, to generate “hybrid” models.
 6. Analytical modeling can be conveniently done well before a prototype is built 

(in fact this step can be instrumental in deciding whether to prototype).

2.2.3 Types of analytical Models

The response of an analytical model to an applied excitation may be expressed in either 
the time-domain, where the response value is expressed a function of time (the  independent 
variable is time t), or in the frequency domain, where the amplitude and the phase angle of the 
response is expressed as a function of frequency (the independent variable is frequency w). 
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Modeling of Dynamic Systems 15

The time-domain response generally involves the solution of a set of differential equations 
(e.g., state equations). The frequency domain analysis is a special case of Laplace transform 
analysis (in the Laplace domain) where the independent variable is the Laplace variable s.  
The corresponding analytical model is a set of transfer functions. A transfer function is 
the ratio of the Laplace transform of the output variable divided by the Laplace trans-
form of the input variable. In the special case of the frequency domain, s = jw . We shall see 
in another chapter that mobility, admittance, impedance, and transmissibility are convenient 
transfer-function representations, in the frequency domain. For example, transmissibility 
is important in vibration isolation, and mechanical impedance is useful in tasks such as 
cutting, joining, and assembly that employ robots.

There are many types of analytical models. They include the following:

 1. Time-domain model: Differential equations with time t as the independent 
variable.

 2.. Transfer function model: Laplace transform of the output variable divided by the 
Laplace transform of the input variable (algebraic equation with the Laplace vari-
able s as the independent variable).

 3.. Frequency domain model: Frequency transfer function (or frequency response 
function) which is a special case of the Laplace transfer function, with s = jw . The 
independent variable is frequency w.

 4. Nonlinear model: Nonlinear differential equations (principle of superposition 
does not hold).

 5. Linear model: Linear differential equations (principle of superposition holds).
 6. Distributed (or continuous)-parameter model: Partial differential equations 

(Dependent variables are functions of time and space).
 7. Lumped-parameter model: Ordinary differential equations (dependent variables 

are functions of time, not space).
 8. Time-varying (or nonstationary or nonautonomous) model: Differential equations 

with time-varying coefficients (model parameters vary with time).
 9. Time-invariant (or stationary or autonomous) model: Differential equations with 

constant coefficients (model parameters are constant).
 10. Random (stochastic) model: Stochastic differential equations (variables and/or 

parameters are governed by probability distributions).
 11. Deterministic model: Nonstochastic differential equations.
 12.. Continuous-time model: Differential equations (time variable is continuously 

defined).
 13.. Discrete-time model: Difference equations (time variable is defined as discrete 

values at a sequence of time points).
 14. Discrete transfer function model: z-transform of the discrete-time output divided 

by the z-transform of the discrete-time input.

2.2.4 Principle of Superposition

All practical systems can be nonlinear to some degree. If the nonlinearity is negligible, for 
the situation being considered, the system may be assumed linear. Since linear systems/
models are far easier to handle (analyze, simulate, design, control, etc.) than nonlinear 
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16 Modeling and Control of Engineering Systems

systems/models, linearization of a nonlinear model, which may be valid for a limited 
range or set of conditions of operation, might be required. This subject is studied in detail 
in Chapter 3..

All linear systems (models) satisfy the principle of superposition. A system is linear if 
and only if the principle of superposition is satisfied. This principle states that, if y1 is the 
system output when the input to the system is u1, and y2. is the output when the input is u2., 
then a1 y1 + a2. y2. is the output when the input is a 1 u1 + a 2. u2. where a 1 and a 2. are any real 
constants. This property is graphically represented in Figure 2..2.a.

Another important property that is satisfied by linear systems is the interchangeability 
in series connection. This is illustrated in Figure 2..2.b. Specifically, sequentially connected 
linear systems (or subsystems or components or elements) may be interchanged without 
affecting the output of the overall system for a given input. Note that interchangeability in 
parallel connection is a trivial fact, which is also satisfied.

In this book, we will study/employ the following modeling techniques for response 
 analysis, simulation, and control of an engineering system:

 1. State models: They use state variables (e.g., position and velocity of lumped 
masses, force and displacement in springs, current through an inductor, voltage 
across a capacitor) to represent the state of the system, in terms of which the sys-
tem response can be expressed. These are time-domain models, with time t as the 
independent variable.

 2.. Linear graphs: They use line graphs where each line represents a basic component 
of the system, with one end as the point of action and the other end as the point of 
reference. They are particularly useful in the development of a state model.

 3.. Transfer function models including frequency domain models.

2.2.5 lumped Model of a Distributed System

As noted earlier, lumped-parameter models and continuous-parameter models are two 
broad categories of models for dynamic systems. In a lumped-parameter model, various 
characteristics of the system are lumped into representative elements located at a discrete 
set of points in a geometric space. The corresponding analytical models are ordinary 
differential equations. In most physical systems, the properties are continuously distrib-
uted in various components or regions; they have distributed-parameter (or continuous) 

(a)

And

Implies
Input α1u1 + α2u2 Output α1y1 + α2 y2System

Input u1 Output y1System

Input u2 Output y2System

(b)

Input u y´System A
Output y 

System B

Input u y´́System B 
Output y 

System A 

Figure 2.2
Properties of a linear system. (a) Principle of superposition. (b) Interchangeability in series connection.
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Modeling of Dynamic Systems 17

components. To represent system parameters that are continuously distributed in space, 
we need spatial coordinates.

These dynamic systems have time (t) and space coordinates (e.g., x, y, z) as the indepen-
dent variables. The corresponding analytical models are partial differential equations. 
For analytical convenience, we may attempt to approximate such distributed- parameter 
models into lumped-parameter ones. The accuracy of the model can be improved by 
increasing the number of discrete elements in such a model; for example, by using 
finite element techniques. In view of their convenience, lumped-parameter models are 
more commonly employed than continuous-parameter models. Continuous-parameter 
 elements may be included into otherwise lumped-parameter models in order to improve 
the model  accuracy. Let us address some pertinent issues by considering the case of a 
heavy spring.

2.2.5.1 Heavy Spring

A coil spring has a mass, an elastic (spring) effect, and an energy-dissipation characteristic, 
each of which is distributed over the entire coil. These characteristics are distributed phe-
nomena, in general. The distributed mass of the spring has the capacity to store kinetic 
energy by acquiring velocity. Stored kinetic energy can be recovered as work done through 
a process of deceleration. Furthermore, in view of the distributed flexibility of the coil, 
each small element in the coil has the capacity to store elastic potential energy through 
reversible (elastic) deflection. If the coil was moving in the vertical direction, there would 
be changes in gravitational potential energy, but we can disregard this in dynamic response 
studies if the deflections are measured from the static equilibrium position of the system. 
The coil will undoubtedly get warmer, make creaking noises, and over time will wear 
out at the joints, clear evidence of its capacity to dissipate energy. A further indication of 
damping is provided by the fact that when the coil is pressed and released, it will eventu-
ally come to rest; the work done by pressing the coil is completely dissipated. Even though 
these effects are distributed in the actual system, a discrete or lumped-parameter model 
is usually sufficient to predict the system response to a forcing function. Further approxi-
mations are possible under certain circumstances. For instance, if the maximum kinetic 
energy is small in comparison with the maximum elastic potential energy in general (par-
ticularly true for light stiff coils, and at low frequencies of oscillation), and if in addition 
the rate of energy dissipation is relatively small (determined with respect to the time span 
of interest), the coil can be modeled by a discrete (lumped) stiffness (spring) element only. 
These are modeling decisions.

In an analytical model, the individual distributed characteristics of inertia, flexibility, 
and dissipation of a heavy spring can be approximated by a separate mass element, a 
spring element, and a damper element, which are interconnected in some parallel–series 
configuration, thereby producing a lumped-parameter model. Since a heavy spring has its 
mass continuously distributed throughout its body, it has an infinite number of degrees 
of freedom. A single coordinate cannot represent its motion. But, for many practical pur-
poses, a lumped-parameter approximation with just one lumped mass to represent the 
inertial characteristics of the spring would be sufficient. Such an approximation may 
be obtained by using one of several approaches. One is the energy approach. Another 
approach is equivalence of natural frequency. Let us consider the energy approach first. 
Here we represent a distributed-parameter spring by a lumped-parameter “model” such 
that the original spring and the model have the same net kinetic energy and same poten-
tial energy. This energy equivalence is used in deriving a lumped mass parameter for the 
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18 Modeling and Control of Engineering Systems

model. Even though damping (energy dissipation) is neglected in the present analysis, it is 
not difficult to incorporate that as well in the model.

2.2.5.2 Kinetic Energy Equivalence

Consider the uniform, heavy spring shown in Figure 2..3., with one end fixed and the other 
end moving at velocity v. Note that ms = mass of spring; k = stiffness of spring; and l = length 
of spring.

In view of the linear distribution of the speed along the spring, with zero speed at the 
fixed end and v at the free end (Figure 2..3.b), the local speed of an infinitesimal element d x 
of the spring is given by (x/l)/v. Element mass = (ms/l)/d x. Hence, the element kinetic energy 
KE m l x x l vs= ( / )( / ) [( / ) ]1 2. 2.d . In the limit time, we have d x → dx. Accordingly, by performing 
the necessary integration, we get

 Total KE =  1
2.

1
2.

1
2.

2.

0

2.

3.
2.

0

2.m
l

dx
x
l

v
m v

l
x dx

m vs

l

s

l

s





= =∫ ∫ 3.3.
 (2..1)

Hence,

 Equivalent lumped mass concentrated at the free end = 1/3. × spring mass

Note: This derivation assumes that one end of the spring is fixed and, furthermore, the 
conditions are uniform along the spring.

An example of utilizing this result is shown in Figure 2..4. Here a system with a heavy 
spring and a lumped mass is approximated by a light spring (having the same stiffness) 
and a lumped mass.

(a) Velocity
v

Heavy spring
Mass ms, stiffness k 

l

x

(b)

x δx

l

k, ms
v

Figure 2.3
(a) A uniform heavy spring. (b) Analytical representation.

m 
k, ms

= 3
msm +

k 

Figure 2.4
Lumped-parameter approximation for an oscillator with heavy spring.
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2.2.5.3 Natural Frequency Equivalence

Now consider the approach of natural frequency equivalence. Here we derive an equiva-
lent lumped-parameter model by equating the fundamental (lowest) natural frequency 
of the distributed-parameter system to the natural frequency of the lumped-parameter 
model (in the one-degree-of-freedom case). The method can be easily extended to multi-
degree-of-freedom lumped-parameter models as well. We will illustrate our approach by 
using an example.

A heavy spring of mass ms and stiffness ks with one end fixed and the other end attached 
to a sliding mass m, is shown in Figure 2..5a. If the mass m is sufficiently larger than ms, 
then at relatively high frequencies the mass will virtually stand still. Under these condi-
tions we have the configuration shown in Figure 2..5b where the two ends of the spring are 
fixed. Also, approximate the distributed mass by an equivalent mass me at the mid point of 
the spring: each spring segment has double the stiffness of the original spring. Hence the 
overall stiffness is 4ks. The natural frequency of the lumped-model is

 w e
s

e

k
m

= 4
 (2..2.)

It is known from a complete analysis of a heavy spring (which beyond the present scope) 
that the natural frequency for the fixed-fixed configuration is

 w ps
s

e

n
k
m

=  (2..3.)

where n is the mode number. Then, for the fundamental (first) mode (i.e., n = 1), the natural 
frequency equivalence gives

 
4k
m

k
m

s

e

s

e

= p

or,

 m m me s s= ≈4
0 4

2.p
.  (2..4)

Note that since the effect of inertia decreases with increasing frequency, it is not neces-
sary to consider the case of high frequencies.

m

ms , ks
(a) (b)

me

2ks 2ks

Figure 2.5
(a) A lumped mass with a distributed-parameter system. (b) A lumped-parameter model of the system.
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20 Modeling and Control of Engineering Systems

The natural frequency equivalence may be generalized as an eigenvalue equivalence (pole 
equivalence) for any dynamic system. In this general approach, the eigenvalues of the 
lumped-parameter model are equated to the corresponding eignevalues of the distributed-
parameter system, and the model parameters are determined accordingly.

2.3 Lumped Elements and Analogies

A system may possess various physical characteristics incorporating multiple domains; 
for example, mechanical, electrical, thermal, and fluid components and processes. The 
procedure of model development will be facilitated if we understand the similarities of 
these various domains and in the characteristics of different types of components. This 
issue is addressed in this section.

The basic system elements in an engineering system can be divided into two groups: 
energy-storage elements and energy-dissipation elements. The dynamic “state” of a  
system is determined by its independent energy-storage elements and the associated state 
variables. Depending on the element we can use either an across variable or a through 
variable as its state variable.

2.3.1 across Variables and Through Variables

An across variable is measured across an element, as the difference in the values at the two 
ends. Velocity, voltage, pressure, and temperature are across variables. A through variable 
represents a property that appears to flow through an element, unaltered. Force, current, 
fluid flow rate, and heat transfer rate are through variables. If the across variable of an 
element is the appropriate state variable for that element, it is termed an A-type element. 
Alternatively, if the through variable of an element is the appropriate state variable for that 
element, it is termed a T-type element.

Analogies exist among mechanical, electrical, hydraulic, and thermal systems/processes. 
Next we state the physical equations (i.e., constitutive equations) of the basic elements in 
these four domains, identify appropriate state variables, and recognize analogies that exist 
across these domains.

2.3.2 Mechanical elements

For mechanical elements, it will be seen that the velocity (across variable) of each indepen-
dent mass and the force (through variable) of each independent spring are the appropriate 
state variables (response variables). Hence, mass is an A-type element and spring is a T-type 
element. These are energy-storage elements. The corresponding constitutive equations 
form the “state-space shell” for an analytical model. These equations will directly lead to a 
state-space model of the system, as we will illustrate.

The energy dissipating element in a mechanical system is the damper. It is called a 
D-type element. Unlike an independent energy-storage element, it does not define a state 
variable. The variables of a D-type element in an engineering system are completely deter-
mined by the independent energy-storage elements (A-type and T-type) in the system. The 
input elements (or source elements) of a mechanical system are the force source, where 
its force is the independent variable, which is not affected by the changes in the system 
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(while the associated velocity variable—the dependent variable—will be affected); and the 
velocity source, where its velocity is the independent variable, which is not affected by the 
changes in the system (while the associated force variable—the dependent variable—will 
be affected). These are “ideal” sources since in practice the source variable will be affected 
to some extent by the dynamics of the system, and is not completely “independent.”

2.3.2.1 Mass (Inertia) Element

Consider the mass element shown in Figure 2..6a. The constitutive equation (the physical 
law) of the element is given by Newton’s second law:

 m
dv
dt

f=  (2..5)

Here v denotes the velocity of mass m, measured relative to an inertial (fixed on earth) 
reference, and f is the force applied “through” the mass. Since power = fv = rate of change of 
energy, by substituting Equation 2..5, the energy of the element may be expressed as

 E fv dt m
dv
dt

v dt mv dv= = = ∫∫∫
or

 Energy E mv= 1
2.

2.  (2..6)

This is the well-known kinetic energy. Now by integrating Equation 2..5, we have

 v t v
m

f dt
t

( ) ( )= +-

-
∫0

1

0

 (2..7)

By setting t  =  0 +  in Equation 2..7, we see that as long as force f is finite,

 v(0 + )  =  v(0−) (2..8)

f m

v 
Position
reference x 

k 
f = kx

(a) (b) (c)

f

v

b

f = bv

Figure 2.6
Basic mechanical elements. (a) Mass (inertia). (b) Spring (stiffness element). (c) Damper (dissipating element).

76868.indb   21 7/8/09   5:04:20 PM



22 Modeling and Control of Engineering Systems

Note that 0- denotes the instant just before t = 0 and 0 +  denotes the instant just after t = 0. 
In view of these observations, we may state the following:

 1. An inertia is an energy-storage element (kinetic energy).
 2.. Velocity can represent the state of an inertia element. This is justified by two rea-

sons: First, from Equation 2..7, the velocity at any time t can be completely deter-
mined with the knowledge of the initial velocity and the applied force during the 
time interval 0 to t. Second, from Equation 2..6, the energy of an inertia element can 
be represented by the variable v alone.

 3.. Velocity across an inertia element cannot change instantaneously unless an infi-
nite force is applied to it.

 4. A finite force cannot cause an infinite acceleration (or step change in velocity) in 
an inertia element. Conversely, a finite instantaneous (step) change in velocity will 
need an infinite force. Hence, v is a natural output (or response) variable for an 
inertia element, which can represent its dynamic state (i.e., state variable), and f is 
a natural input variable for an inertia element.

 5. Since its state variable, velocity, is an across variable, an inertia is an A-type element.

2.3.2.2 Spring (Stiffness) Element

Consider the spring element (linear) shown in Figure 2..6b. The constitutive equation 
(physical law) for a spring is given by Hooke’s law:

 
df
dt

kv=  (2..9)

Here, k is the stiffness of the spring.
Note: We have differentiated the familiar force-deflection Hooke’s law, in order to be 

consistent with the response/state variable (velocity) that is used for its counterpart, the 
inertia element.

Now following the same steps as for the inertia element, the energy of a spring element 
may be expressed as

 E fv dt f
k

df
dt

dt
k

f df= = = ∫∫∫ 1 1

or

 Energy E
f
k

= 1
2.

2.
 (2..10)

This is the well-known (elastic) potential energy.
Also,

 f t f k v dt
t

( ) ( )= +-

-
∫0
0

 (2..11)
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We see that, as long as the applied velocity is finite,

 f(0 + )  =  f(0-) (2..12.)

In summary, we have

 1. A spring (stiffness element) is an energy-storage element (elastic potential energy).
 2.. Force can represent the state of a stiffness (spring) element. This is justified by two 

reasons: First, from Equation 2..11, the force of a spring at any general time t may 
be completely determined with the knowledge of the initial force and the applied 
velocity from time 0 to t. Second, from Equation 2..10, the energy of a spring ele-
ment can be represented in terms of the variable f alone.

 3.. Force through a stiffness element cannot change instantaneously unless an infi-
nite velocity is applied to it.

 4. Force f is a natural output (response) variable, which can represent its dynamic 
state (i.e., state variable), and v is a natural input variable for a stiffness element.

 5. Since its state variable, force, is a through variable, a spring is a T-type element.

2.3.2.3 Damping (Dissipation) Element

Consider the mechanical damper (linear viscous damper or dashpot) shown in Figure 2..6c. 
It is a D-type element (energy dissipating element). The constitutive equation (physical 
law) is:

 f  = bv (2..13.)

where b is the damping constant. Equation 2..13. is an algebraic equation. Hence either f or 
v can serve as the natural output variable for a damper, and either one can determine its 
state. However, since the state variables v and f are established by an independent inertial 
element and an independent spring element, respectively, a damper will not introduce a 
new state variable.

In summary:

 1. Mechanical damper is an energy dissipating element (D-type element).
 2.. Either force f or velocity v may represent its state.
 3.. No new state variable is defined by this element.

2.3.3 electrical elements

In electrical systems, capacitor is the A-type element, with voltage (across variable) as its 
state variable; and inductor is the T-type element, with current (through variable) as its 
state variable. These are energy-storage elements and their constitutive equations are dif-
ferential equations. The resistor is the energy dissipater (D-type element) and as usual, 
with an algebraic constitutive equation; it does not define a new state variable. These three 
elements are discussed below. The input elements (or source elements) of an electrical 
system are the voltage source, where its voltage is the independent variable, which is not 
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affected by the changes in the system (while the associated current variable—the depen-
dent variable—will be affected); and the current source, where its current is the indepen-
dent variable, which is not affected by the changes in the system (while the associated 
voltage variable—the dependent variable—will be affected). These are “ideal” sources 
since in practice the source variable will be affected to some extent by the dynamics of the 
system, and is not completely “independent.”

2.3.3.1 Capacitor Element

Consider the capacitor element shown in Figure 2..7a. Its constitutive equation (the physical 
law) is given by the differential equation:

 C
dv
dt

i=  (2..14)

Here v denotes the voltage “across” the capacitor with capacitance C, and i is the current 
“through” the capacitor. Since power is given by the product iv, by substituting Equation 
2..14, the energy in a capacitor may be expressed as

 E iv dt C
dv
dt

v dt Cv dv= = = ∫∫∫
or

 Energy E C v= 1
2.

2.  (2..15)

This is the familiar electrostatic energy of a capacitor.
Also,

 v t v
C

i dt
t

( ) ( )= +-

-
∫0

1

0

 (2..16)

Hence, for a capacitor with a finite current, we have

 v(0 + )  =  v(0-) (2..17)

(a)
i

–+

v

C
(b)

v

–+

v

L
(c)

v

–+

v
i = v

R
1

R

Figure 2.7
Basic electrical elements. (a) Capacitor. (b) Inductor. (c) Resistor (dissipating element).
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We summarize:

 1. A capacitor is an energy-storage element (electrostatic energy).
 2.. Voltage is an appropriate (natural) response variable (or state variable) for a capaci-

tor element. This is justified by two reasons: First, from Equation 2..16, the voltage 
at any time t can be completely determined with the knowledge of the initial volt-
age and the applied current during the time interval 0 to t. Second, from Equation 
2..15, the energy of a capacitor element can be represented by the variable v alone.

 3.. Voltage across a capacitor cannot change instantaneously unless an infinite cur-
rent is applied.

 4. Voltage is a natural output variable and current is a natural input variable for a 
capacitor.

 5. Since its state variable, voltage, is an across variable, a capacitor is an A-type element.

2.3.3.2 Inductor Element

Consider the inductor element shown in Figure 2..7b. Its constitutive equation (the physical 
law) is given by the differential equation:

 L
di
dt

v=  (2..18)

Here, L is the inductance of the inductor. As before, it can be easily shown that energy in 
an inductor is given by

 E Li= 1
2.

2.  (2..19)

This is the well-known electromagnetic energy of an inductor.
Also, by integrating Equation 2..18 we get

 i t i
L

v dt
t

( ) ( )= +-

-
∫0

1

0

 (2..2.0)

Hence, for an inductor, for a finite voltage we have

 i(0 + )  =  i(0-) (2..2.1)

To summarize:

 1. An inductor is an energy-storage element (electromagnetic energy).
 2.. Current is an appropriate response variable (or state variable) for an inductor. This 

is justified by two reasons: First, from Equation 2..2.0, the current at any time t 
can be completely determined with the knowledge of the initial current and the 
applied current during the time interval 0 to t. Second, from Equation 2..19, the 
energy of an inductor element can be represented by the variable i alone.

 3.. Current through an inductor cannot change instantaneously unless an infinite 
voltage is applied.
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 4. Current is a natural output variable and voltage is a natural input variable for an 
inductor.

 5. Since its state variable, current, is a through variable, an inductor is a T-type element.

2.3.3.3 Resistor (Dissipation) Element

Consider the resistor element shown in Figure 2..7c. It is a D-type element (energy dissipat-
ing element). The constitutive equation (physical law) is the well-known Ohm’s law:

 v = Ri (2..2.2.)

where R is the resistance of the resistor. Equation 2..2.2. is an algebraic equation. Hence 
either v or i can serve as the natural output variable for a resistor, and either one can deter-
mine its state. However, since the state variables v and i are established by an independent 
capacitor element and an independent inductor element, respectively, a damper will not 
introduce a new state variable.

In summary:

 1. Electrical resistor is an energy dissipating element (D-type element).
 2.. Either current i or voltage v may represent its state.
 3.. No new state variable is defined by this element.

2.3.4 Fluid elements

In a fluid component, pressure (P) is the across variable and the volume flow rate (Q) is the 
through variable. The three basic fluid elements are shown in Figure 2..8 and discussed 
below. Note the following:

 1. The elements are usually distributed, but lumped-parameter approximations are 
used here.

 2.. The elements are usually nonlinear (particularly, the fluid resistor), but linear 
models are used here.

The input elements (or source elements) of a fluid system are the pressure source, where 
its pressure is the independent variable, which is not affected by the changes in the system 
(while the associated flow rate variable—the dependent variable—will be affected); and 

Q

P1
P2

P = P1 – P2

dPQ = Cf dt

(a) (b) (c)
P2 P1

Q 

dQP = If dt

Q 

P2 P1

P = Rf Q

Figure 2.8
Basic fluid elements. (a) Capacitor. (b) Inertor. (c) Resistor.
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the flow source, where its flow rate is the independent variable, which is not affected by the 
changes in the system (while the associated pressure variable—the dependent variable—
will be affected).

2.3.4.1 Fluid Capacitor or Accumulator (A-Type Element)

Consider a rigid container with a single inlet through which fluid is pumped in at the vol-
ume flow rate Q, as shown in Figure 2..8a. The pressure inside the container with respect to 
the outside is P. We can write the linear constitutive equation

 Q C
d
dtf= P

 (2..2.3.)

where Cf  = fluid capacitance (capacity). Several special cases of fluid capacitance will be 
discussed later.

A fluid capacitor stores potential energy, given by 1/2. Cf
 P2.. Hence, this element is like 

a fluid spring. The appropriate state variable is the pressure difference (across variable) P. 
Contrast here that the mechanical spring is a T-type element.

2.3.4.2 Fluid Inertor (T-Type Element)

Consider a conduit carrying an accelerating flow of fluid, as shown in Figure 2..8b. The 
associated linear constitutive equation may be written as

 P I
dQ
dtf=  (2..2.4)

where If = fluid inertance (inertia).
A fluid inertor stores kinetic energy, given by 1/2. If Q2.. Hence, this element is a fluid iner-

tia. The appropriate state variable is the volume flow rate (through variable) Q. Contrast 
here that the mechanical inertia is an A-type element. Energy exchange between a fluid 
capacitor and a fluid inertor leads to oscillations (e.g., water hammer) in fluid systems, 
analogous to oscillations in mechanical and electrical systems.

2.3.4.3 Fluid Resistor (D-Type Element)

Consider the flow of fluid through a narrow element such as a thin pipe, orifice, or valve. 
The associated flow will result in energy dissipation due to fluid friction. The linear con-
stitutive equation is (see Figure 2..8c):

 P = Rf Q (2..2.5)

2.3.4.4 Derivation of Constitutive Equations

We now indicate the derivation of the constitutive equations for fluid elements.
 1. Fluid capacitor

 The capacitance in a fluid element may originate from:
 (a) Bulk modulus effects of liquids
 (b) Compressibility effects of gases
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 (c) Flexibility of the fluid container itself
 (d) Gravity head of a fluid column

Derivation of the associated constitutive equations is outlined below.

(a) Bulk modulus effect of liquids
Consider a rigid container. A liquid is pumped in at the volume flow rate Q. An increase 

of the pressure in the container will compress the liquid volume, thereby letting in more 
liquid (see Figure 2..9a). From calculus we have

 
dP
dt

P
V

dV
dt

= î
î

where V is the control volume of liquid. Now, the volume flow rate (into the container) is 
given by

 Q
dV
dt

= - .

The bulk modulus of liquid is defined by:

 b = -V
P
V
î
î

 (2..2.6)

Hence,

 
dP
dt V

Q Q
V dP

dt
= =b

b
or  (2..2.7)

and the associated capacitance is

 C
V

bulk = b
 (2..2.8)

P1
(a) (b) (c)

P2

P = P1– P2

V

P2

A

Q Q
P1

k

x0 x

Q

AP1

P2

h

Figure 2.9
Three types of fluid capacitance. (a) Bulk modulus or compressibility. (b) Flexibility of container. (c) Gravity 
head of fluid column.

76868.indb   28 7/8/09   5:04:26 PM



Modeling of Dynamic Systems 29

(b) Compression of gases
Consider a perfect (ideal) gas, which is governed by the gas law

 PV = mRT (2..2.9)

where P = pressure (units are pascals: 1 Pa = 1 N/m2.); V = volume (units are m3.); T = absolute 
temperature (units are degrees Kelvin, °K); m = mass (units are kg); R = specific gas constant 
(units: kJ/kg/°K where 1 J = 1 joule = 1 N.m; 1 kJ = 1000 J).

Isothermal case: Consider a slow flow of gas into a rigid container (see Figure 2..9a) so that 
the heat transfer is allowed to maintain the temperature constant (isothermal). Differentiate 
Equation 2..2.9 keeping T constant (i.e., RHS is constant):

 P
dV
dt

V
dP
dt

+ = 0

Noting that Q dV dt= -( / )  and substituting into this the above equation and Equation 
2..2.9 we get

 Q
V
P

dP
dt

mRT
P

dP
dt

= =
2.

 (2..3.0)

Hence, the corresponding capacitance is given by:

 C
V
P

mRT
Pcomp = =

2.
 (2..3.1)

Adiabatic case: Consider a fast flow of gas (see Figure 2..9a) into a rigid container so that 
there is no time for heat transfer (adiabatic ⇒ zero heat transfer). The associated gas law is 
known to be

 PVk = C  with  k = Cp/CV (2..3.2.)

where Cp = specific heat when the pressure is maintained constant; Cv = specific heat when 
the volume is maintained constant; C = constant; k = ratio of specific heats.

Differentiate Equation 2..3.2.:

 PkV
dV
dt

V
dP
dt

k k- + =1 0

Divide by Vk:

 
Pk
V

dV
dt

dP
dt

+ = 0

Now use Q dV dt= -( / )  as usual, and also substitute Equation 2..2.9:

 Q
V
kP

dP
dt

mRT
kP

dP
dt

= =
2.

 (2..3.3.)
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The corresponding capacitance is

 C
V
kP

mRT
kPcomp = =

2.
 (2..3.4)

(c) Effect of flexible container
Without loss of generality, consider a cylinder of cross-sectional area A with a spring-

loaded wall (stiffness k) as shown in Figure 2..9b. As a fluid (assumed incompressible) is 
pumped into the cylinder, the flexible wall will move through x.

 Conservation of flow: Q
d A x x

dt
A

dx
dt

= + =( ( ))0  (i)

 Equilibrium of spring: A(P2.-P1)  =  kx or x
A
k

P=  (ii)

Substitute (ii) in (i). We get

 Q
A
k

dP
dt

=
2.

 (2..3.5)

The corresponding capacitance is

 C
A
kelastic =

2.
 (2..3.6)

Note: For an elastic container and a fluid having bulk modulus, the combined capaci-
tance will be additive:

 Ceq = Cbulk + Celastic

A similar result holds for a compressible gas and an elastic container.
(d) Gravity head of a fluid column

Consider a liquid column (tank) having area of across section A, height h, and mass den-
sity r, as shown in Figure 2..9c. A liquid is pumped into the tank at the volume rate Q. As 
a result, the liquid level rises.

Relative pressure at the foot of the column P = P2. - P1 = rgh

 Flow rate Q
d Ah

dt
A

dh
dt

= =( )

Direct substitution gives

 Q
A
g

dP
dt

=
r

 (2..3.7)
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The corresponding capacitance is

 C
A
ggrav = r

 (2..3.8)

2.. Fluid inertor
First assume a fluid flow in a conduit, with a uniform velocity distribution across it. 

Along a small element of length ∆x of fluid, as shown in Figure 2..10, the pressure will 
change from P to P + ∆P, and the volume flow rate will change from Q to Q + ∆Q.

Mass of the fluid element = rA∆x
Net force in the direction of flow = -∆PA
Velocity of flow = Q/A
where r  = mass density of the fluid; A = area of cross section.
Assuming A to be constant, we have
Fluid acceleration = 1/A (dQ/dt).

Hence, Newton’s second law gives

 - =∆ ∆PA A x
A

dQ
dt

( )r 1

or

 - =∆ ∆
P

x
A

dQ
dt

r
 (2..3.9)

Hence,

 Fluid inertance I
x

Af =
r∆

 (2..40a)

where a nonuniform cross-section, A = A(x), is assumed. Then, for a length L, we have

 I
A x

dxf

L

= ∫ r( )
0

 (2..40b)

P P + ∆P

Q Q + ∆Q

∆x

Figure 2.10
A fluid flow element.
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For a circular cross-section and a parabolic velocity profile, we have

 I
x

Af =
2.r∆

 (2..40c)

or, in general:

 I
x

Af =a
r∆

 (2..40)

where a  is a suitable correction factor.
3.. Fluid resistor

For the ideal case of viscous, laminar flow we have (Figure 2..8c):

 P = Rf Q (2..41)

with
Rf = 12.8 mL/p d4 for a circular pipe of diameter d.
Rf = 12. mL/wb3. for a pipe of rectangular cross section (width w and height b) with b << w.
where L = length of pipe segment; m  = absolute viscosity of fluid (dynamic viscosity).
Note: Fluid stress = m (du/dy), where du/dy is the velocity gradient across the pipe.
u  = m/r  = kinematic viscosity.
Reynold’s number Re = uL/u  =ruL/m
u = fluid velocity along the pipe.
For turbulent flow, the resistance equation will be nonlinear, as given by:

 P = KRQn (2..42.)

2.3.5 Thermal elements

Thermal systems have temperature (T) as the across variable, as it is always measured 
with respect to some reference (or as a temperature difference across an element), and 
heat transfer (flow) rate (Q) as the through variable. Heat source and temperature source 
are the two types of source elements (inputs). The former type of source is more common. 
The latter type of source may correspond to a large reservoir whose temperature is hardly 
affected by heat transfer into or out of it. There is only one type of energy (thermal energy) 
in a thermal system. Hence there is only one type (A-type) energy-storage element (a ther-
mal capacitor) with the associated state variable, temperature. There is no T-type element 
in a thermal system (i.e., there are no thermal inductors). As a direct result of the absence 
of two different types of energy-storage elements (unlike the case of mechanical, electrical, 
and fluid system) a pure thermal system cannot exhibit natural oscillations. It can exhibit 
“forced” oscillations, however, when excited by an oscillatory input source.

2.3.5.1 Constitutive Equations

The constitutive equations in a thermal system are the physical equations for  thermal 
capacitors (A-type elements) and thermal resistors (D-type elements). There are no 
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T-type elements. There are three types of thermal resistance: conduction, convection, and 
radiation.

1. Thermal capacitor
Consider a control volume of an object, with various heat transfer processes Qi taking 

place at the boundary of the object (see Figure 2..11). The level of thermal energy in the 
object = rVcT, where T = temperature of the object (assumed uniform); V = volume of the 
object; r  = mass density of the object; c = specific heat of the object.

Since the net heat inflow is equal to the rate of change (increase) of thermal energy, the 
associated constitutive relation is

 Q Vc
dT
dti∑ = r  (2..43.)

where rVc is assumed constant. We write this as

 Q C
dT
dth=  (2..44)

where Ch = rVc  =  mc = thermal capacitance.
Here m = rV is the mass of the element.
Note: Thermal capacitance means the “capacity” to store thermal energy in a body.

2.. Thermal resistor
A thermal resistor provides resistance to heat transfer in a body or a medium. There are 

three general types of thermal resistance:
 (a) Conduction
 (b) Convection
 (c) Radiation

We will now give constitutive relations for each of these three types of thermal resistors.
(a) Conduction

The heat transfer in a medium takes place by conduction when the molecules of the 
medium itself do not move to transfer the heat. Heat transfer takes place from a point of 

V

ρ

c

Q1

Q4

Q3

Q2

Figure 2.11
A control volume of a thermal system.
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higher temperature to one of lower temperature. Specifically, heat conduction rate is pro-
portional to the negative temperature gradient, and is given by the Fourier equation:

 Q kA
T
x

= - î
î

 (2..45)

where x = direction of heat transfer; A = area of cross section of the element along which 
heat transfer takes place; k = thermal conductivity.

Equation 2..45 (Fourier) is a “local” equation. If we consider a finite object of length ∆x 
and cross section A, with temperatures T2. and T1 at the two ends, as shown in Figure 2..12.a, 
the one-dimensional heat transfer rate Q can be written according Equation 2..45 as

 Q kA
T T

x
= -( )2. 1

∆
 (2..46a)

or

 Q
R

T T
k

= -1
2. 1( )  (2..46b)

where

 R
x

kAk =
∆  = conductive thermal resistance (2..47)

(a) (b)

A Q

T2 T1

Wall 
Δx

Fluid Q

A

Tf 

Tw

(c)

Receiver
T2, A

Source
T1

Vacuum

Figure 2.12
Three types of thermal resistance. (a) An element of 1-D heat conduction. (b) A control volume for heat transfer 
by convection. (c) Heat transfer by radiation.
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(b) Convection
In convection, the heat transfer takes place by the physical movement of the heat-carry-

ing molecules in the medium. An example is the case of fluid flowing against a wall, as 
shown in Figure 2..12.b. The constitutive equation is

 Q = hcA(Tw-Tf) (2..48a)

where Tw = wall temperature; Tf = fluid temperature at the wall interface; A = area of cross-
section of the fluid control volume across which heat transfer Q takes place; hc = convection 
heat transfer coefficient.

In practice hc may depend on the temperature itself, and hence Equation 2..48a is nonlin-
ear in general. But, by approximating to a linear constitutive equation, we can write

 Q
R

T T
c

w f= -1
( )  (2..48b)

where

 R
h Ac

c

= 1  = convective thermal resistance  (2..49)

In natural convention, the particles in the heat transfer medium move naturally. In forced 
convection, they are moved by an actuator such as a fan or pump.
(c) Radiation

In radiation, the heat transfer takes place from a higher temperature object (source) to 
a lower temperature object (receiver) through energy radiation, without needing a physi-
cal medium between the two objects (unlike in conduction and convection), as shown in 
Figure 2..12.c. The associated constitutive equation is the Stefan–Boltzman law:

 Q c c A T Te r= -s ( )1
4

2.
4  (2..50a)

where A = effective (normal) area of the receiver; ce = effective emmissivity of the source; 
cr = shape factor of the receiver; s  = Stefan–Boltzman constant ( = 5.7 × 10-8 W/m2./°K4).

This corresponds to a nonlinear thermal resistor.
Heat transfer rate is measured in watts (W), the area in square meters (m2.), and the tem-

perature in degrees Kelvin (°K). The relation (Equation 2..50a) is nonlinear, which may be 
linearized as

 Q
R

T T
r

= -1
1 2.( )  (2..50b)

where Rr = radiation thermal resistance.
Since the slope î îQ T/  at an operating point may be given by 4 3.s c c ATe r ,  where T  is the 

representative temperature (which is variable) at the operating point, we have

 R
c c ATr

e r

= 1
4 3.s

 (2..51a)
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Alternatively, since T T T T T T T T1
4

2.
4

1
2.

2.
2.

1 2. 1 2.- = + + -( )( )( ) , we may use the approximate 
expression:

 R
c c A T T T Tr

e r

=
+ +
1

1
2.

2.
2.

1 2.s ( )( )
 (2..51b)

where the overbar denotes a representative (operating point) temperature.

2.3.5.2 Three Dimensional Conduction

Conduction heat transfer in a continuous 3.-D medium is represented by a distributed-
parameter model. In this case the Fourier equation (Equation 2..45) is applicable in each of 
the three orthogonal directions (x, y, z). To obtain a model, the thermal capacitance equa-
tion (Equation 2..43.) has to be applied as well.

Consider the small 3.-D model element of sides dx, dy, and dz, in a conduction medium, 
as shown in Figure 2..13.. First consider heat transfer into the bottom (dx × dy) surface in the 
z direction, which according to Equation 2..45 is:

 -k dx dy
T
z
î
î

.

Since the temperature gradient at the top (dx × dy) surface is ( / ) ( / )î î î îT z T z dx+ 2. 2.  (from 
calculus), the heat transfer out of this surface is k dx dy T z T z dz[( / ) ( / ) ]î î î î+ 2. 2. . Hence, the net 
heat transfer into the element in the z direction is k dx dy T z dz( / )î î2. 2.  or k dx dy dz T z( / )î î2. 2. .  
Similarly, the net heat transfer in the x and y directions are k dx dy dz T x( / )î î2. 2.  and
k dx dy dz T y( / )î î2. 2. , respectively.

The thermal energy of the element is r  dx dy dz cT where r  dx dy dz is the mass of the 
element and c is the specific heat (at constant pressure). Hence, the capacitance equation 
(Equation 2..43.) gives

 k dx dy dz
T

x
T

y
T

z
dx dy dz c

î
î

î
î

î
î

î2.

2.

2.

2.

2.

2.
+ +




= r TT

tî

x

y

z

dy

dx

dz

Figure 2.13
A 3.-D heat conduction element.
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or

 
î
î

î
î

î
î

î
î

2.

2.

2.

2.

2.

2.

1T
x

T
y

T
z

T
t

+ + =
a

 (2..52.)

where,

 a = k
cρ
 = thermal diffusivity.

Equation 2..52. is called the Laplace equation. Note that partial derivatives are used because 
T is a function of many variables; and derivatives with respect to x, y, z, and t would be 
needed. Hence, in general, distributed-parameter models have spatial variables (x, y, z) as 
well as the temporal variable (t) as independent variables, and are represented by partial 
differential equations.

2.3.5.3 Biot Number

This is a nondimensional parameter giving the ratio: [conductive resistance]/[convective 
resistance]. Hence from Equations 2..47 and 2..49 we have

 Biot number = R
R

xh A
kA

h x
k

k

c

c c= =∆ ∆
 (2..53.)

This parameter may be used as the basis for approximating the distributed-parameter 
model (Equation 2..52.) by a lumped-parameter one. Specifically, divide the conduction 
medium into slabs of thickness ∆x. If the corresponding Biot number ≤ 0.1, a lumped-pa-
rameter model may be used for each slab.

Table 2..2. summarizes the linear constitutive relationships, which describe the behavior 
of translatory-mechanical, electrical, thermal, and fluid elements. The analogy used in 
Table 2..2. between mechanical and electrical elements is known as the force-current anal-
ogy. This follows from the fact that both force and current are through variables, which are 
analogous to fluid flow through a pipe, and furthermore, both velocity and voltage are 
across variables, which vary across the flow direction, as in the case of fluid pressure along 
a pipe. This analogy appears more logical than a force-voltage analogy, as is clear from 
Table 2..3.. The correspondence between the parameter pairs given in Table 2..3. follows from 
the relations in Table 2..2.. A rotational (rotatory) mechanical element possesses constitu-
tive relations between torque and angular velocity, which can be treated as a generalized 
force and a generalized velocity, respectively (compare this with a rectilinear or transla-
tory mechanical element as listed in Table 2..2.).

2.3.6 Natural Oscillations

Mechanical systems can produce natural (free) oscillatory responses (or, free vibrations) 
because they can possess two types of energy (kinetic and potential energies). When one 
type of stored energy is converted into the other type repeatedly, back and forth, the 
resulting response is oscillatory. Of course, some of the energy will dissipate (through the 
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dissipative mechanism of a D-type element or damper) and the free natural oscillations 
will decay as a result. Similarly, electrical circuits and fluid systems can exhibit free, natu-
ral oscillatory responses due to the presence of two types of energy-storage mechanism, 
where energy can “flow” back and forth repeatedly between the two types of elements. 
But, thermal systems have only one type of energy-storage element (A-type) with only one 
type of energy (thermal energy). Hence, purely thermal systems cannot naturally produce 
oscillatory responses, unless forced by external means, or integrated with other types of 
systems that can produce natural oscillations (e.g., fluid systems).

Table 2.2

Some Linear Constitutive Relations

Constitutive Relation for

System Energy-Storage Elements
Energy Dissipating 

Elements

Type A-Type (across) Element
T-Type (through) 

Element
D-Type (dissipative) 

Element

Translatory-mechanical
v = velocity
f = force

Mass

m
dv
dt

f=

(Newton’s second law)
m = mass

Spring
df
dt

kv=

(Hooke’s law)
k = stiffness

Viscous damper
f  =  bv
b = damping constant

Electrical
v = voltage
i = current

Capacitor

C
dv
dt

i=

C = capacitance

Inductor

L
di
dt

v=

L = inductance

Resistor
Ri  =  v
R = resistance

Thermal
T = temperature difference
Q = heat transfer rate

Thermal capacitor

C
dT
dt

Qt =

Ct = thermal capacitance

None Thermal resistor
Rt Q  =  T
Rt = thermal resistance

Fluid
P = pressure difference
Q = volume flow rate

Fluid capacitor

C
dP
dt

Qf =

Cf = fluid capacitance

Fluid inertor

I
dQ
dt

Pf =

If = inertance

Fluid resistor
Rf Q  =  P
Rf = fluid resistance

Table 2.3

Force-current Analogy

System Type Mechanical Electrical

System-response variables:

Through-variables Force f Current i
Across-variables Velocity v Voltage v

System parameters m C
k 1/L

b 1/R
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2.4 Analytical Model Development

We have been able to make the following observations concerning analytical dynamic 
models:

A dynamic model is a representation of a dynamic system.•	
It is useful in analysis, simulation, design, modification, and control of a system.•	
In view of the multidomain nature of practical engineering systems, integrated •	
and unified development of models is desirable. Then all domains are modeled 
together using similar approaches.
It is desirable to use analogous procedures to model all components in a system.•	
Capability to incorporate multifunctional devices (e.g., piezoelectric elements •	
which work as both sensors and actuators) into the modeling framework is 
desirable.
Analogies exist in mechanical, electrical, fluid, and thermal systems.•	

A systematic procedure for the development of a lumped-parameter analytical model of 
a dynamic system involves formulating three types of equations:

 1. Constitutive equations (physical laws for the lumped elements).
 2.. Continuity equations (or node equations or equilibrium equations) for the through 

variables.
 3.. Compatibility equations (or loop equations or path equations) for the across 

variables.

Among these, the constitutive equations have been studied in the previous section.
A continuity equation is the equation written for the through variables at a junction (i.e., 

node) connecting several lumped elements in the system. It dictates the fact that there can-
not be any accumulation (storage) or disappearance (dissipation) or generation (source) of 
the through variables at a junction (i.e., what comes in must go out), because node is not 
an element but a junction that connects elements. Summation of forces (force balance or 
equilibrium), currents (Kirchhoff’s current law), fluid flow rates (flow continuity equation), 
or heat transfer rates at a junction to zero provides a continuity equation. Note that source 
elements, which generate inputs to the system, should be included as well in writing these 
equations.

A compatibility equation is the equation written for the across variables around a closed 
path (i.e., loop) connecting several lumped elements in the system. It dictates the fact that 
at a given instant, the value of the across variable at a point in the system should be unique 
(i.e., cannot have two or more different values). This guarantees the requirement that a 
closed path is indeed a closed path; there is no breakage of the loop (i.e., compatible). 
Summation of velocities, voltages (Kirchhoff’s voltage law), pressures, or temperatures 
to zero around a loop of elements provides a compatibility equation. Again, source ele-
ments, which generate inputs to the system, should be included as well in writing these 
equations.
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2.4.1 Steps of Model Development

Development of a suitable analytical model for a large and complex system requires a sys-
tematic approach. Tools are available to aid this process. The process of modeling can be 
made simple by following a systematic sequence of steps. The main steps are:

 1. Identify the system of interest by defining its purpose and the system boundary.

 2.. Identify or specify the variables of interest. These include inputs (forcing functions 
or excitations) and outputs (response).

 3.. Approximate (or model) various segments (components or processes or phenom-
ena) in the system by ideal elements, which are suitably interconnected.

 4. Draw a free-body diagram for the system where the individual elements are iso-
lated/separated, as appropriate.

 5. (a) Write constitutive equations (physical laws) for the elements.
 (b) Write continuity (or conservation) equations for through variables (equilibrium 

of forces at joints; current balance at nodes, fluid flow balance, etc.) at junctions 
(nodes) of the system.

 (c) Write compatibility equations for across (potential or path) variables around 
closed paths linking elements. These are loop equations for velocities (geo-
metric connectivity), voltage (potential balance), pressure drop, etc.

 (d) Eliminate auxiliary variables, which are redundant and not needed to define 
the model.

 6. Express the system boundary conditions and response initial conditions using system 
variables.

These steps should be self-explanatory, and should be integral with the particular  
modeling technique that is used. The associated procedures will be elaborated in the sub-
sequent sections and chapters where many illustrative examples will also be provided.

2.4.2 i/O Models

More than one variable may be needed to represent the response of a dynamic system. 
Furthermore, there may be more than one input variable in a system. Then we have a 
 multivariable system or a multiinput–multioutput (MIMO) system. A time-domain ana-
lytical model may be developed as a set of differential equations relating the response 
variables to the input variables. This is specifically a multivariable I/O model. Generally, 
this set of system equations is coupled, so that more than one response variable appears 
in each differential equation, and each equation cannot be analyzed, solved, or computer 
simulated separately.

2.4.3 State-Space Models

A particularly useful time-domain representation for a dynamic system is a state-space 
model. The state variables are a minimal set of variables which can define the dynamic 
state of a system. In the state-space representation, the dynamics of an nth order system 
is represented by n first-order differential equations, which generally are coupled. This 
is called a state-space model or simply a state model. An entire set of state equations can be 
 written as a single vector-matrix state equation.
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The choice of state variables is not unique: many choices are possible for a given system. 
Proper selection of state variables is crucial in developing an analytical model (state model) 
for a dynamic system. A general approach that may be adopted is to use across variables of 
the independent A-type (or, across-type) energy-storage elements and the through  variables 
of the independent T-type (or, through-type) energy-storage element as the state variables. 
Note that if any two elements are not independent (e.g., if two spring elements are directly 
connected in series or parallel) then only a single state variable should be used to represent 
both elements. Separate state variables are not needed to represent D-type (dissipative) 
elements because their response can be represented in terms of the state  variables of the 
energy-storage elements (A-type and T-type). State-space models and their characteristics 
are discussed in more detail now.

2.4.3.1 State-Space

The word “state” refers to the dynamic status or condition of a system. A complete descrip-
tion of the state will require all the variables that are associated with the time-evolution of 
the system response (i.e., both “magnitude” and “direction” of the response trajectory with 
respect to time). The state is a vector, which traces out a trajectory in the state-space. The 
associated analytical treatment requires a definition for the “state-space.” In particular, 
a second-order system requires a two-dimensional (or plane) space, a third-order system 
requires a three-dimensional space, and so on.

2.4.3.2 Properties of State Models

A state vector x is a column vector, which contains a minimum set of state variables  
(x1, x2., …, xn) which completely determine the state of a dynamic system. The number of 
states variables (n), is the order of the system.

Property 1
The state vector x(t0) at time t0 and the input (forcing excitation) u[t0, t1] over the time inter-
val [t0, t1], will uniquely determine the state vector x(t1) any future time t1. In other words, 
a transformation g can be defined such that

 x(t1) = g(t0, t1, x(t0), u[t0, t1]) (2..54)

Note that by the causality property of a dynamic system, future states can be determined 
if all the inputs from the initial time up to that future time are known. This means that the 
transformation g is nonanticipative (i.e., inputs beyond t1 are not needed to determine x(t1). 
Each forcing function u[t0, t1] determines corresponding “trajectory” of the state vector—
the state trajectory. The n-dimensional vector space formed by all possible state trajectories 
is the state-space.

Property 2
The state x(t1) and the input u(t1) at any time t1 will uniquely determine the system output 
(or response) vector y(t1) at that time. This can be expressed as:

 y(t1) = h(t1, x(t1), u(t1)) (2..55)

This states that the system response (output) at time t1 depends on the time, the input, 
and the state vector.
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The transformation h has no memory—the response at a previous time cannot be deter-
mined through the knowledge of the present state and input. Note also that, in general, the 
system outputs (y) are not identical to the system states (x) even though the former can be 
uniquely determined by the later.

A state model consists of a set of n first-order ordinary differential equations (time-
domain), which are coupled (i.e., interrelated). In the vector form this is expressed as:

  x f x u= ( , , t)  (2..56)

 y = h(x, u, t) (2..57)

Equation 2..56 represents the n state equations (first-order ordinary differential equations) 
and Equation 2..57 represents the algebraic output equations. If f is a nonlinear vector func-
tion, then the state model is nonlinear, which is the general case.

Summarizing:

A state model is a set of •	 n first-order differential equations (coupled) using n state 
variables (an nth order system).
State equations define the dynamic state of a system.•	
Required minimum set of state variables •	 x1, x2., … xnstate vector.

The state vector traces out a •	 trajectory in the state-space.

2.4.3.3 Linear State Equations

Nonlinear state models are difficult to analyze and simulate. Often linearization is neces-
sary, through various forms of approximations and assumptions. An nth order linear, state 
model is given by the state equations (differential):

   x a x a x a x a x b u b un n1 11 1 12. 2. 13. 3. 1 11 1 12. 2.= + + + + + + + ++ b ur r1

   x a x a x a x a x b u b un n2. 2.1 1 2.2. 2. 2.3. 3. 2. 2.1 1 2.2. 2.= + + + + + + + ++ b ur r2.

 

 

   x a x a x a x a x b u b un n n n nn n n n= + + + + + + +1 1 2. 2. 3. 3. 1 1 2. 2. ++ b unr r  (2..58a)

and the output equations (algebraic):

 y1  =  c11x1  +  c12.x2.  +  c13.x3.  +  …  +  c1nxn  +  d11u1  +  d12.u2.  +  …  +  d1rur

 y2.  =  c2.1x1  +  c2.2.x2.  +  c2.3.x3.  +  …  +  c2.nxn  +  d2.1u1  +  d2.2.u2.  +  …  +  d2.rur

 

 ym  =  cm1x1  +  cm2.x2.  +  cm3.x3.  +  …  +  cmnxn  +  dm1u1  +  dm2.u2.  +  …  +  dmrur (2..59a)
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where x dx dt= / ; x1, x2.,..., xn are the n state variables; u1, u2.,..., ur are the r input variables; and 
y1, y2.,..., ym are the m input variables. Equation 2..58 simply says that a change in any of the 
n variables and the r inputs of the system will affect the rate of change of any given state 
variable. In general, in addition to the states variables, the output variables are needed as 
well to represent the output variables, as indicated in Equation 2..59. More often, however, 
the input variables are not present in this set of output equations (i.e., the coefficients dij 
are all zero).

This state model may be rewritten in the vector-matrix form as

 x Ax Bu= +  (2..58b)

 y = Cx + Du (2..59b)

The bold-type upper-case letter indicates that the variable is a matrix; a bold-type lower-
case letter indicates a vector, typically a column vector. Specifically,

 x =
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where x  =  [x1   x2.   …   xn]T = state vector (nth order); u  =  [u1   u2.   …   ur]T  = input vector (rth 
order); y  =  [y1   y2.   …   ym]T = output vector (mth order); A = system matrix (n × n); B = input 
distribution matrix (n × r); C = output (or measurement) gain matrix (m × n); D = feedforward 
input gain matrix (m × r).

Note that [ ]T denotes the transpose of a matrix or vector. The system matrix A tells us 
how the system responds naturally without any external input, and B tells us the input u 
affects (i.e., how it is amplified and distributed when reaching) the system.

example 2.1

The concepts of state, output, and order of a system, and the importance of the system’s initial 
state, can be shown using a simple example. Consider the rectilinear motion of a particle of mass 
m subject to an input force u(t). By Newton’s second law, its position x can be expressed as the 
second-order differential equation:

 m
d x
dt

u t mx u
2

2
0= - =( ) or   (i)

We consider the following three cases and develop state models and I/O models for each case:
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Case 1: Position x is the output.
Case 2: Velocity x v=  is the output.
Case 3: Both position x and velocity x v=  are outputs.

i/O Models

Case 1:  Here output y = x. From Equation (i) m d y dt u t( / ) ( )2 2 =  is indeed the I/O model (a second-
order model).

Case 2:  Here output y x v= = . From Equation (i) m dy dt u t( / ) ( )=  is the I/O model (a first order model).
Case 3: Here the two outputs are y1 = x, y x v2= = . From Equation (i) the I/O model is

 m
d y
dt

u t
2

1
2
= ( )

 m
dy
dt

u t2 = ( )

This is also a second-order model.

State-Space Models

Case 1: Define two state variables x1  =  x, x
dx
dt2=

Then we have

 State equations: 





x x

x
m

u t

1 2

2
1

=

= ( )

 Output equation: y = x1

Case 1b: Another state model
Define the two state variables according to: x1 = -6x and x2 = -1/2(ẋ1)
Then, one state equation is given by one of the definitions itself, and the other state equation is 

obtained by substituting the two definitions into (i). We have

 State equations: 





x x

x
m

u t

1 2

2

2

3

= -

= ( )

 Output equation: y x= - 1
6 1

Case 2: Define one state variable x
dx
dt1=

 Corresponding state equation: x
m

u t1
1= ( )

 Output equation: y = x1

Note: Position cannot be determined from this model

Case 3:  Here we can use the same state equations as in Case 1 or Case 1b. Let us use Case 1 as 
an illustration.

 State equations: 





x x

x
m

u t

1 2

2
1

=

= ( )
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 Output equations: 
y

y

x

x
1

2

1

2

1 0

0 1






 =
















Case 3b:  Alternatively, if the state variables used in Case 1b are used we have the following state 
model.

 State equations: 





x x

x
m

u t

1 2

2

2

3

= -

= ( )

 Output equations: 
y

y

x

x
1

2

1

2

1 6 0

0 1 3






 =

-














/

/

In this example, it should be noted that the three variables x x, , and x  do not form a state vector 
because this is not a minimal set. Specifically, x is redundant as it is completely known from u.

Another important aspect can be observed when deriving the system response by directly inte-
grating the system equation (i). When the output is velocity, just one initial condition x( )0  is 
adequate, whereas if the output is position, two initial conditions x(0) and x( )0  are needed, to 
determine the complete response. In the latter case, just one initial state does not uniquely gener-
ate a state trajectory corresponding to a given forcing input. This intuitively clear fact, neverthe-
less, constitutes an important property of the state of a system: the number of initial conditions 
needed = order of the system.

Finally, it is also important to understand the nonuniqueness of the choice of state variables, as 
clear from Case 1 and Case 1b (or Case 3 and Case 3b).

Summarizing:

State vector is a least (minimal) set of variables that completely determines the •	
dynamic state of system  a state variable cannot be expressed as a linear combi-
nation of the remaining state variables
State vector is not unique; many choices are possible for a given system.•	
Output (response) variables can be completely determined from any such choice •	
of state variables.
State variables may or may not have a physical interpretation.•	

2.4.4 Time-invariant Systems

If in Equations 2..56 and 2..57, there is no explicit dependence on time in the functions f and 
h, the dynamic system is said to be time-invariant, or stationary, or autonomous. In this case, 
the system behavior is not a function of the time origin for a given initial state and input 
function. In particular, a linear system is time-invariant if the matrices A, B, C, and D (in 
Equations 2..58 and 2..59) are constant.

example 2.2

A torsional dynamic model of a pipeline segment is shown in Figure 2.14a. The free-body diagram 
in Figure 2.14b shows the internal torques acting at sectioned inertia junctions, for free motion. 
We will a state model for this system by using the generalized velocities (angular velocities Ωi) of 
the independent inertia elements and the generalized forces (torques Ti ) of the independent elastic 
(torsional spring) elements as the state variables. A minimum set of states, which is required for a 
complete representation, determines the system order.
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In this system there are two inertia elements and three spring elements—a total of five energy-
storage elements. However, the three springs are not independent. The motion of any two springs 
completely determines the motion of the third. This indicates that the system is a fourth-order 
system. The state vector is chosen as

 x = [Ω1   Ω2   T1   T2]T

To develop the state-space model, we first formulate the state-space shell by writing the consti-
tutive equations as follows:

Newton’s second law gives

 I T T1 1 1 2
Ω = - +

 I T T2 2 2 3
Ω = - -  (i)

Hooke’s law gives

 




T k

T k

1 1

2 2 2 1

=

= -

Ω

Ω Ω( )
 (ii)

The first, third, and fourth equations above are already in the final state-equation form. Only 
the second equation has to be further manipulated to eliminate T3, which is not a state variable. 
To accomplish this we write the compatibility equation—the displacement compatibility relation 
at inertia I2:

 
T
k

T
k

T
k

1

1

2

2

3

3

+ =  (iii)

Note: In this example, continuity equations (torque balance) are already satisfied, as shown in 
Figure 2.14b. Hence they need not be explicitly written.

Next, torque T3 in (i) is substituted in terms of T1 and T2, using (iii). This gives the remaining state 
equation (modified second equation of (i)):

 I
k
k

T
k
k

T2 2
3

1
1

3

2
21Ω = -





- +





The system matrix of the resulting state model is

 A =

-

- 





- +





0 0
1 1

0 0
1 1

1

1 1

2

3

1 2

3

2

I I

I
k
k I

k
k

kk

k k
1

2 2

0 0 0

0 0-

























 (iv)

k1 k2 k3

T1 T2 T3

I1 I2

Ω1 Ω2

(a)

T2

T3

(b)

T1

T1 T2

T2

T2

T3

Figure 2.14
(a) Dynamic model of a pipeline segment. (b) Free body diagram.
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The output (displacement) vector is

 y = +





T
k

T
k

T
k

T
1

1

1

1

2

2

,  (v)

which corresponds to the following output-gain matrix:

 C =



















0 0
1

0

0 0
1 1
1

1 2

k

k k

 (vi)

Note: There is no B matrix in this example because it concerns free (unforced) motion and there 
is no input.

2.4.5 Systematic Steps for State Model Development

At this stage it useful to summarize our systematic approach for formulating a state model. 
Note: Inputs (u) and outputs (y) are given

Step 1: State variable (x) selection.
 Across variables for independent A-type energy-storage elements.
 Through variables for independent T-type energy-storage elements.
Step 2: Write constitutive equations for all the elements (both energy-storage and 

dissipative elements).
Step 3: Write compatibility equations and continuity equations.
Step 4: Eliminate redundant variables.
Step 5: Express the outputs in terms of state variables.

example 2.3

The rigid output shaft of a diesel engine prime mover is running at known angular velocity Ω(t). It is 
connected through a friction clutch to a flexible shaft, which in turn drives a hydraulic pump (see 
Figure 2.15a). A linear model for this system is shown schematically in Figure 2.15b. The clutch is 
represented by a viscous rotatory damper of damping constant B1 (units: torque/angular velocity). 
The stiffness of the flexible shaft is K (units: torque/rotation). The pump is represented by a wheel 
of moment of inertia J (units: torque/angular acceleration) and viscous damping constant B2.

a.  Write down the two state equations relating the state variables T and w to the input Ω. Where 
T = torque in flexible shaft; w = pump speed.

K
T

T = B1(Ω–ω1)

(c)

J

B2

KB1 K
B1

J
B2

(a)

Ω ω1 ω Ω ω1
ω

(b)

Figure 2.15
(a) Diesel engine. (b) Linear model. (c) Free body diagram of the shaft. (d) Free-body diagram of the 
wheel.
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Hints:

 1. Free body diagram for the shaft is given in Figure 2.15c, where w1 is the angular speed at the 
left end of the shaft.

 2. Write down the torque “balance” and “constitutive” relations for the shaft, and eliminate w1.
 3. Draw the free body diagram for the wheel J and use D’Alembert’s principle.
 4. Comment on why the compatibility equations and continuity equations are not explicitly 

used in the development of the state equations.
 5. Express the state equations in the vector-matrix form.
 6. To complete the state-space model, determine the output equation for: (i) Output = w ; (ii) 

Output = T; (iii) Output = w1.
 7. Which one of the translatory systems given in Figure 2.16 is the system in Figure 2.15b 

analogous to?

Solution

a.

 Constitutive relation for K: 
dT
dt

K= -( )w w1  (i)

 Constitutive relation for B1: T  =  B1 (Ω - w1) (ii)

Substitute (ii) into (i):

 
dT
dt

K
B

T K K= - - +
1

w Ω  (iii)

This is one state equation.
Constitutive equation for J (D’Alembert’s principle, See Figure 2.15d):

 J T Tw = - 2  (iv)

 Constitutive relation for B2: T2 = B2w (v)

 Substitute (v) in (iv): 
d
dt

B
J J

T
w w= - +2 1

 (vi)

This is the second state equation.

(b)(a) (c)

Figure 2.16
Three translatory mechanical systems.
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Note: For this example it is not necessary to write the continuity and compatibility equations 
because they are implicitly satisfied by the particular choice of variables as given in Figure 2.15.

Important comments

 (1) Generally, some of the continuity equations (node equations) and compatibility equations 
(loop equations) are automatically satisfied by the choice of the variables. Then, we don’t 
have to write the corresponding equations.

 (2) In mechanical systems, typically, compatibility equations are automatically satisfied. This is 
the case in the present example. In particular, from Figure 2.17a we have:

 Loop 1 equation: w  + (- w ) = 0
 Loop 2 equation: w  + (w  - w ) + (Ω - w1) + (- Ω) = 0

 (3) Node equations may be written in further detail by introducing other auxiliary variables 
into the free-body diagram; and furthermore, the constitutive equations for the damping 
elements may be written separately. Specifically, from Figure 2.17b, we can write:

Node 1: Td1 - T  =  0
Node 2: T - TJ1  =  0
Node 3: TJ2 - Td2  =  0
Damper B1: Td1  =  B1 (Ω - w1)
Damper B2: Td2  =  B2w

b. Vector-matrix form of the state equations (iii) and (iv) is:

 
dT
dt

d
dt

K
B

K

J
B
J

w



















=

- -

-















1

21 

















+
















T K

w 0

Ω

with the state vector x  =  [T  w]T and the input u  =  [Ω].

c.

 (i) C  =  [0  1]; D  =  [0]
 (ii) C  =  [1  0]; D  =  [0]
 (iii) Here we use the continuity equation to express the output as

 w1
1

= -Ω T
B

J

T

T2 = B2ω

ω(a) (b)

T

T2 = B2ω

Jω.

ω

Figure 2.17
(a) Model details for writing. (a) Loop equations. (b) Node equations.

76868.indb   49 7/8/09   5:04:59 PM



50 Modeling and Control of Engineering Systems

Then, the corresponding matrices are

 C  =  [- 1/B1  0]; D  =  [1]

In this case, we notice a direct “feedforward” of the input Ω into the output w1 through the 
clutch B1. Furthermore, as will be clear from the material in Chapter 5, now the system transfer 
function will have its numerator order equal to the denominator order ( = 2). This is a characteristic 
of systems with direct feedforward of inputs into the outputs.

d. The translatory system in Figure 2.16a is analogous to the given rotatory system.

2.4.6 i/O Models from State-Space Models

Suppose that Equation 2..57 is substituted into Equation 2..56 to eliminate x and x, and a set 
of differential equations for y are obtained (with u and its derivatives present). The result is 
the I/O model, in the time-domain. If these I/O differential equations are nonlinear, then 
the system (or strictly, the I/O model) is nonlinear.

From the linear state model given by Equations 2..58 and 2..59, the I/O model is obtained 
as follows: First differentiate Equation 2..59 and eliminate x  by substituting Equation 2..58. 
Then use the resulting equation and Equation 2..59 to eliminate x.

example 2.4

Consider two water tanks joined by a horizontal pipe with an on–off valve. With the valve closed, 
the water levels in the two tanks were initially maintained unequal. When the valve was suddenly 
opened, some oscillations were observed in the water levels of the tanks. Suppose that the system is 
modeled as two gravity-type capacitors linked by a fluid resistor. Would this model exhibit oscillations 
in the water levels when subjected to an initial-condition excitation? Clearly explain your answer.

A centrifugal pump is used to pump water from a well into an overhead tank. This fluid system 
is schematically shown in Figure 2.18a. The pump is considered as a pressure source Ps(t) and the 
water level h in the overhead tank is the system output. The ambient pressure is denoted by Pa. 
The following system parameters are given:

Lv , dv = length and internal diameter of the vertical segment of pipe.
Lh, dh = length and internal diameter of the horizontal segment of pipe.
At = area of cross section of overhead tank (uniform).
r = mass density of water.
m = dynamic viscosity of water.
g = acceleration due to gravity.

Suppose that this fluid system is approximated by the lumped-parameter model shown in Figure 
2.18b.

 a. Give expressions for the equivalent linear fluid resistance of the overall pipe (i.e., com-
bined vertical and horizontal segments) Req, the equivalent fluid inertance within the 
overall pipe Ieq, and the gravitational fluid capacitance of the overhead tank Cgrv, in 
terms of the system parameters defined above.

 b. Treating x  =  [P3a  Q]T as the state vector, where P3a = pressure head of the overhead 
tank; Q = volume flow rate through the pipe develop a complete state-space model for 
the system. Specifically, obtain the matrices A, B, C, and D.

 c. Obtain the I/O differential equation of the system.

Solution

Since the inertia effects are neglected in the model, and only two capacitors are used as the 
energy-storage elements, there exists only one type of energy in this system. Hence this model 
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cannot provide an oscillatory response to an initial condition excitation (i.e., natural oscillations 
are not possible). But, the actual physical system has fluid inertia, and hence the system can 
exhibit an oscillatory response.

a.  Assuming a parabolic velocity profile, the fluid inertance in a pipe of uniform cross-section 
A and length L, is given by

 I
L

A
= 2r

Since the same volume flow rate Q is present in both segments of piping (continuity) we have, 
for series connection,

 I
L
d

L
d

L
d

L
deq

v

v

h

h

v

v

h

h

= + = +2
4

2
4

8
2 2 2

r
p

r
p

r
p( / ) ( / ) 22







The linear fluid resistance in a circular pipe is

 R
L

d
= 128

4

m
p

 where d is the internal diameter.

Again, since the same Q exists in both segments of the series-connected pipe,

 R
L
d

L
deq

v

v

h

h

= +





128
4 4

m
p

Also

 C
A

ggrv
t=
r

Overhead
tank

Ps(t)
+

Pa

Exit valve
(closed)

Area = At

Pa

Lh

I.D. = dh

_ 

Well

Centrifugal
pump 

I.D. = dvLv

(a)

(b)

Ps(t)
1 2 3

Pa

PaQ 
Req Ieq Cgrv h

Figure 2.18
(a) A system for pumping water from a well into an overhead tank (Note: I.D. means “internal diameter”). 
(b) A lumped-parameter model of the fluid system.
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b. State-space shell:

 
C

dP
dt

Q

I
dQ
dt

P

grv
a

eq

3

23

=

=

Remaining constitutive equation:

 P12 = Req Q

Note: Constitutive (node) equations are automatically satisfied.
Compatibility (loop) equations:

 P1a = P12 + P23 + P3a with P1a = Ps(t) and P3a = rgh

Now eliminate the auxiliary variable P23 in the state-space shell, using the remaining equations. 
We get

 
P P P P

P t R Q P

a a

s eq a

23 1 12 3

3

= - -

= - -( )

Hence, the state-space model is given by
State equations:

 
dP
dt C

Qa

grv

3 1=  (i)

 
dQ
dt I

P t P R Q
eq

s a eq= - - 
1

3( )  (ii)

Output equation:

 h
g

P a= 1
3r

 (iii)

Corresponding matrices are:

 A B C=
- -








 =









 =

0 1

1

0

1

C

I R I I
grv

eq eq eq eq

; ;
11

0 0
rg







=; D

c. Substitute Equation (i) into (ii):

 I C
d P
dt

P t P R C
dP
dteq grv

a
s a eq grv

a
2

3
2 3

3= - -( )

Now substitute Equation (iii) for P3a:

 I C
d h
dt

R C
dh
dt

h
g

P teq grv eq grv s

2

2

1+ + =
r

( )

This is the I/O model.
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Problems

PROBLEM 2.1

The use of solar energy is a sustainable way to generate electric power for houses. A 
schematic arrangement is shown in Figure P2..1a. Radiation from the sun is received 
at a solar panel, which consists of photovoltaic cells to convert solar energy to electric 
energy in the form of direct current (dc). Using an inverter, the dc power is converted 
into alternating current (ac) power of appropriate frequency (60 or 50 Hz) for house-
hold use. This supply is connected through a two-way meter to the supply line of 
the house and to the main electricity grid (Figure 2..1b). In this manner, any excess 
power from the solar panels can be sold to the grid and when the supply from the 
solar panel is not adequate (e.g., cloudy days, nights) electricity can be purchased 
from the grid.

The ac power is used for various household purposes such as operation of appliances, 
heating, and cooling.

 a. Explain why this is a multidomain (i.e., mixed) system.
 b. Identify several key components of the system (Note: some are shown in Figure 

P2..1a). Discuss various processes within the components that may be categorized 
into the mechanical, electrical, fluid, and thermal domains. Indicate applicable 
modeling issues for the overall system.

 c. Sketch the energy flow of the system, indicating relevant stages of energy 
conversion.

(a)

Solar radiation
Solar panel

2-Way
meter

Inverter

Applicances

Power grid

Sun

(b) Power
grid

Home
Two-way
electricity

meter

Inverter
(DC/AC

converter)

Photovoltaic
cells

Figure P2.1
(a) A solar-powered house. (b) Schematic diagram of the ac power supply.
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PROBLEM 2.2

What is a “dynamic” system, a special case of any system?
A typical input variable is identified or each of the following examples of dynamic 

systems. Give at least one output variable for each system.

 a. Human body: Neuroelectric pulses
 b. Company: Information
 c. Power plant: Fuel rate
 d. Automobile: Steering wheel movement
 e. Robot: Voltage to joint motor
 f. Highway bridge: Vehicle force

PROBLEM 2.3

Real systems are nonlinear. Under what conditions a linear model is sufficient in study-
ing a real system?

Consider the following system equations:

 a.  y t y y u t+ + + =( sin ) ( )2. 3. 5w
 b. 3. 2.y y u t- = ( )
 c. 3. 2. 3. y y y u t+ + = ( )
 d. 5 2. 3. 5 y y y u t+ + = ( )

 (i) Which ones of these are linear?
 (ii) Which ones are nonlinear?
 (iii) Which ones are time-variant?

PROBLEM 2.4

Give four categories of uses of dynamic modeling.
List advantages and disadvantages of experimental modeling over analytical modeling.

PROBLEM 2.5

Briefly explain/justify why voltage and not current is the natural state variable for an 
electrical capacitor; and current and not voltage is the natural state variable for an elec-
trical inductor.

 a. List several advantages of using as state variables, the across variables of inde-
pendent A-type energy-storage elements and through variables of independent 
T-type energy-storage elements, in the development of a state-space model for an 
engineering system.

 b. List three things to which the order of an electromechanical dynamic system is 
equal.

PROBLEM 2.6

What are the basic lumped elements of

 i. A mechanical system
 ii. An electrical system?

Indicate whether a distributed-parameter method is needed or a lumped-parameter 
model is adequate in the study of following dynamic systems:

 a. Vehicle suspension system (motion)
 b. Elevated vehicle guideway (transverse motion)

76868.indb   54 7/8/09   5:05:06 PM



Modeling of Dynamic Systems 55

 c. Oscillator circuit (electrical signals)
 d. Environment (weather) system (temperature)
 e. Aircraft (motion and stresses)
 f. Large transmission cable (capacitance and inductance).

PROBLEM 2.7

Write down the order of the systems shown in Figure P2..7.

PROBLEM 2.8

 a. Give logical steps of the analytical modeling process for a general physical system.
 b. Once a dynamic model is derived, what other information would be needed for 

analyzing its time response (or for computer simulation)?
 c. A system is divided into two subsystems, and models are developed for these 

subsystems. What other information would be needed to obtain a model for the 
overall system?

PROBLEM 2.9

Various possibilities of model development for a physical system are shown in Figure 
P2..9. Give advantages and disadvantages of the SM approach of developing an approxi-
mate model in comparison to a combined DM + MR approach.

u(t)
(a)

(b) (c) (d)

Figure P2.7
Models of four mechanical systems.

Physical
system

A

Accurate
model
B

Approximate
model
C

Detail
modeling
(DM)

Simplified
modeling
(SM)

Model
reduction
(MR)

Figure P2.9
Approaches of model development.
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PROBLEM 2.10

Describe two approaches of determining the parameters of a lumped-parameter model 
that is (approximately) equivalent to a distributed-parameter (i.e., continuous) dynamic 
system.

One end of a heavy spring of mass ms and stiffness ks is attached to a lumped mass m. 
The other end is attached to a support that is free to move, as shown in Figure P2..10.

Using the method of natural frequency equivalence, determine an equivalent lumped-
parameter model for the spring where the equivalent lumped mass is located at the free 
end (support end) of the system. The natural frequencies of a heavy spring with one end 
fixed and the other end free is given by

 w p
n

s

s

n
k
m

= -
2.

2. 1( )

where n is the mode number.

PROBLEM 2.11

 a. Why are analogies important in modeling of dynamic systems?
 b. In the force-current analogy, what mechanical element corresponds to an  

electrical capacitor?
 c. In the velocity-pressure analogy, is the fluid inertia element analogous to the 

mechanical inertia element?

PROBLEM 2.12

 a. What are through variables in mechanical, electrical, fluid, and thermal system?
 b. What are across variables in mechanical, electrical, fluid, and thermal systems?
 c. Can the velocity of a mass changes instantaneously?
 d. Can the voltage across a capacitor change instantaneously?
 e. Can the force in a spring change instantaneously?
 f. Can the current in an inductor change instantaneously?
 g. Can purely thermal systems oscillate?

PROBLEM 2.13

Answer the following questions true or false:

 a. A state-space model is unique.
 b. The number of state variables in a state vector is equal to the order of the system.
 c. The outputs of a system are always identical to the state variables.
 d. Outputs can be expressed in terms of state variables.
 e. State model is a time-domain model.

m

Free end

ms, ks

Figure P2.10
A mechanical system with a heavy spring and attached mass.
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PROBLEM 2.14

Consider a system given by the state equations

 




x x x

x x u

1 1 2.

2. 1

2.

2.

= +

= - +

in which x1 and x2. are the state variables and u is the input variable. Suppose that the 
output y is given by

 y = 2.x1 - x2..

a. Write this state-space model in the vector-matrix form:

 x Ax Bu= +

 y = Cx

and identify the elements of the matrices A, B, and C.
b. What is the order of the system?

PROBLEM 2.15

Consider the mass-spring system shown in Figure P2..15. The mass m is supported by a 
spring of stiffness k and is excited by a dynamic force f(t).

 a. Taking f(t) as the input, and position and speed of the mass as the two outputs, 
obtain a state-space model for the system.

 b. What is the order of the system?
 c. Repeat the problem, this time taking the compression force in the spring as the 

only output.
 d. How many initial conditions are needed to determine the complete response of 

the system?

PROBLEM 2.16

 a. Briefly explain why a purely thermal system typically does not have an oscilla-
tory response whereas a fluid system can.

 b. Figure P2..16 shows a pressure-regulated system that can provide a high-speed 
jet of liquid. The system consists of a pump, a spring-loaded accumulator, and a 
fairly long section of piping which ends with a nozzle. The pump is considered as 
a flow source of value Qs. The following parameters are important:

Spring

Mass
m

k

Position y

Force f (t) 

Figure P2.15
A mechanical system.
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A = area of cross section (uniform) of the accumulator cylinder
k = spring stiffness of the accumulator piston
L = length of the section of piping from the accumulator to the nozzle
Ap = area of cross section (uniform, circular) of the piping
Ao = discharge area of the nozzle
Cd = discharge coefficient of the nozzle
Q = mass density of the liquid.
Assume that the liquid is incompressible. The following variables are important:
P1r  = P1 - Pr = pressure at the inlet of the accumulator with respect to the ambient  

reference r
Q = volume flow rate through the nozzle
h = height of the liquid column in the accumulator.
 Note that the piston (wall) of the accumulator can move against the spring, thereby 
varying h.

 i. Considering the effects of the movement of the spring loaded wall and also the 
gravity head of the liquid, obtain an expression for the equivalent fluid capaci-
tance Ca of the accumulator in terms of k, A, r, and g. Are the two capacitances 
which contribute to Ca (i.e., wall stretching and gravity) connected in parallel or 
in series?

Note: Neglect the effect of bulk modulus of the liquid.

 ii. Considering the capacitance Ca, the inertance I of the fluid volume in the piping 
(length L and cross section area Ap), and the resistance of the nozzle only, develop 
a nonlinear state-space model for the system. The state vector x = [P1r  Q]T, and the 
input u = [Qs].

For flow in the (circular) pipe with a parabolic velocity profile, the inertance I
L

Ap

= 2.r

and for the discharge through the nozzle Q A c
P

o d
r= 2. 2.

r
 in which

Spring
k

Air

Accumulator Area A

Liquid

Pump

Nozzle

Liquid
sump

Ao , cd , ρ
Q 21

L
Ap

h

Qs

Figure P2.16
Pressure regulated liquid jet system.
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P2.r = pressure inside the nozzle with respect to the outside reference (r).
cd = discharge coefficient.

PROBLEM 2.17

A model for the automatic gage control (AGC) system of a steel rolling mill is shown in 
Figure P2..17. The rolls are pressed using a single acting hydraulic actuator with a valve 
displacement of u. The rolls are displaced through y, thereby pressing the steel that is 
being rolled. The rolling force F is completely known from the steel parameters for a 
given y.

 i. Identify the inputs and the controlled variable in this control system.
 ii. In terms of the variables and system parameters indicated in Figure P2..17, write 

dynamic equations for the system, including valve nonlinearities.
 iii. What is the order of the system? Identify the response variables.
 iv. What variables would you measure (and feed back through suitable controllers) 

in order to improve the performance of the control system?

PROBLEM 2.18

A simplified model of a hotwater heating systemis shown in Figure P2..18.

Qs = rate of heat supplied by the furnace to the water heater (1000 kW)
Ta = ambient temperature (°C)

mp

Area = A
Volume = V
Pressure = Ph

Ps − PhQ = ubcd

Valve

uFlexible line (ignore
stiffness and

damping)

Q

Supply
Ps

km cm

kr cr

mr y
Steel
plate

Rolls

yp

yc

Cylinder

F
F

mc

Piston

Damping cp

ρ

Figure P2.17
Automatic gage control (AGC) system of a steel rolling mill.
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Th = temperature of water in the water heater—assumed uniform (°C)
To = temperature of the water leaving the radiator (°C)
Qr = rate of heat transfer from the radiator to the ambience (kW)
M = mass of water in the water heater (500 kg)
m  = mass rate of water flow through the radiator (2.5 kg/min)

c = specific heat of water (42.00 J/kg/°C).
The radiator satisfies the equation

Th- Ta = Rr Qr

where Rr = thermal resistance of the radiator (2. × 10-3. °C/kW)

 a. What are the inputs to the system?
 b. Using Th as a state variable, develop a state-space model for the system.
 c. Give output equations for Qr and To.

PROBLEM 2.19

Consider a hollow cylinder of length l, inside diameter di, and the outside diameter do. 
If the conductivity of the material is k, what the conductive thermal resistance of the 
cylinder in the radial direction?

PROBLEM 2.20

 1. In the electro-thermal analogy of thermal systems, where voltage is analogous 
to temperature and current is analogous to heat transfer rate, explain why there 
exists a thermal capacitor but not a thermal inductor. What is a direct consequence 
of this fact with regard to the natural (free or unforced) response of a purely ther-
mal system?

 2.. A package of semiconductor material consisting primarily of wafers of crystalline 
silicon substrate with minute amounts of silicon dioxide is heat treated at high 
temperature as an intermediate step in the production of transistor elements. An 
approximate model of the heating process is shown in Figure P2..2.0.

  The package is placed inside a heating chamber whose walls are uniformly 
heated by a distributed heating element. The associated heat transfer rate into the 
wall is Qi. The interior of the chamber contains a gas of mass mc and specific heat 
cc , and is maintained at a uniform temperature Tc. The temperature of silicon is Ts 
and that of the wall is Tw. The outside environment is maintained at temperature 
To. The specific heats of the silicon package and the wall are denoted by cs and cw, 
respectively, and the corresponding masses are denoted by ms and mw as shown. 
The convective heat transfer coefficient at the interface of silicon and gas inside 
the chamber is hs, and the effective surface area is As. Similarly, hi and ho denote 

Radiator Rr To

Ta

Qr

m

Water
heater

Furnace

Qs(t) 

Th, M, c

Figure P2.18
A household heating system.
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the convective heat transfer coefficients at the inside and outside surfaces of the 
chamber wall, and the corresponding surface areas are Ai and Ao, respectively.

 (a) Using Ts, Tc, and Tw as state variables, write three state equations for the process.
 (b) Express these equations in terms of the parameters Chs = mscs, Chc = mccc , Chw = mwcw,  

Rs = 1/hs As , Ri = 1/hi Ai , and Ro = 1/ho Ao. Explain the electrical analogy and physical 
significance of these parameters.

 (c) What are the inputs to the process? If Ts is the output of importance, obtain the 
matrices A, B, C, and D of the state-space model.

 (d) Comment on the accuracy of the model in the context of the actual physical 
 process of producing semiconductor elements.

Heating
chamberChamber

wall

Qi

Uniform
heating
element

Tc
mc , cc

ToAo ho

Ai hi

Tw mw cw

As
hs

ms, Cs

Ts

Silicon
package

Figure P2.20
A model of the heat treatment of a package of silicon.
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63

3
Model Linearization

Real systems are nonlinear and they are represented by nonlinear analytical models con-
sisting of nonlinear differential equations. Linear systems (models) are in fact idealized 
representations, and are represented by linear differential equations. Clearly, it is far more 
convenient to analyze, simulate, design, and control linear systems. For this reason, non-
linear systems are often approximated by linear models.

It is not possible to represent a highly nonlinear system by a single linear model in its 
entire range of operation. For small “changes” in the system response, however, a linear 
model may be developed, which is valid in the neighborhood of an operating point of the 
system, under small response changes. In this chapter we will study linearization of a 
nonlinear system/model in a restricted range of operation, about an operating point. First 
linearization of both analytical models, particularly state-space models and input–output 
models will be treated. Then linearization of experimental models (experimental data) is 
addressed.

3.1 Model Linearization

Real systems are nonlinear and are represented by nonlinear analytical models. A device 
or system is considered linear if it can be modeled by linear differential equations, with 
time t as the independent variable. Common analytical techniques (e.g., response analysis, 
frequency domain analysis, eigenvalue problem analysis, simulation, control) use linear 
models. Furthermore it is far more convenient to solve, simulate, design, and control linear 
models. In particular, as has been observed in Chapter 2., the principle of superposition holds 
for linear systems, thereby making the analytical procedures far simpler.

Nonlinear devices and systems are often analyzed using linear techniques by consider-
ing small excursions about an operating point. This linearization is accomplished by intro-
ducing incremental variables for inputs and outputs. If one increment can cover the entire 
operating range of a device with sufficient accuracy, it is an indication that the device is 
linear. If the input–output relations are nonlinear algebraic equations, it represents a static 
nonlinearity. Such a situation can be handled simply by using nonlinear calibration curves, 
which linearize the device without introducing nonlinearity errors. If, on the other hand, 
the input–output relations are nonlinear differential equations, analysis usually becomes 
quite complex. This situation represents a dynamic nonlinearity. Common manifestations 
of nonlinearities in devices and systems are: saturation; dead zone; hysteresis; the jump 
phenomenon; limit cycle response; and frequency creation.

A nonlinear analytical model may contain several nonlinear terms. The approach taken 
here is to linearize each nonlinear term by using the first order Taylor series approxima-
tion, which involves only the first derivative of the nonlinear terms (i.e., the slope of its 
graphical representation). Note that a nonlinear term may be a function of more than one 
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independent variable. In that case the first derivatives with respect to all its independent 
variables are needed in the linearization process (i.e., slopes along all orthogonal  directions 
of the coordinate axes which represent the independent variables).

3.1.1 linearization about an Operating Point

Linearization is carried out about some operating point. This is typically the normal oper-
ating condition of the system. By necessity, the normal operating condition (steady-state 
or the equilibrium state). In a steady-state, by definition, the rates of changes of the system 
variables are zero. Hence, the steady-state (equilibrium state) is determined by setting the 
time-derivative terms in the system equations to zero and then solving the resulting alge-
braic equations. This may lead to more than one solution, since the steady-state (algebraic) 
equations themselves are nonlinear. The steady-state (equilibrium) solutions can be:

 1.  Stable (given a slight shift, the system response will eventually return to the origi-
nal steady-state).

 2..  Unstable (given a slight shift, the system response will continue to move away 
from the original steady-state), or

 3..  Neutral (given a slight shift, the system response will remain in the shifted 
condition).

Consider a nonlinear function f(x) of the independent variables x. Its Taylor series approx-
imation about an operating point ( )o, up to the first derivative, is given by

 f x f x
df x

dx
x x x xo

o
o( ) ( )

( )≈ + = +d dwith  (3..1a)

Note that dx represents a small change from the operating point.
Now denote operating condition by ( 

_ ) and a small increment about that condition by 
( ̂  ). We have

 f x x f x
df x

dx
x( ˆ) ( )

( ) ˆ+ ≈ +  (3..1b)

A graphical illustration of this approach to linearization is given in Figure 3..1.
From Equation 3..1 it is seen that the increment of the function, due to the increment in 

its independent variable, is

 d df f x f x
df x

dx
xo

o= - ≈( ) ( )
( )

 (3..2.a)

or

 ˆ ( ˆ) ( )
( ) ˆf f x x f x

df x
dx

x= + - ≈  (3..2.b)
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The error resulting from this approximation is

 Error =e f x x f x
df x

dx
x( ˆ) ( )

( ) ˆ+ - +





 (3..3.)

This error can be decreased by:

 1. Making the nonlinear function more linear
 2.. Making the change x̂  from the operating point smaller

Note: If the term is already linear, as for example, is the case of

 f = ax

where a is the coefficient (constant) of the term, the corresponding linearized incremental 
term is

  df = adx (3..4a)

or

 ˆ ˆf ax=  (3..4b)

This is obvious because, for a linear term, the first derivative (slope) is simply its coefficient.
Furthermore, the following incremental results hold for the time derivatives of the 

variables:

 d  x
dx
dt

x= =
ˆ

ˆ  (3..5)

Independent
variable

x

Function
(dependent variable)

Nonlinear
curve

f (x)

f (x– + x̂)

x– x– + x̂

× x̂f (x–) +

x–,  f (x–)

df (x–)

df (x–)

Linear
approximation

Operating point:

Slope = 
dx

dx

Figure 3.1
Linearization about an operating point.
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 d  x
d x
dt

x= =
2.

2.

ˆ
ˆ  (3..6)

3.1.2 Function of Two Variables

The process of linearization, as presented above, can be easily extended to functions of 
more than one independent variable. For illustration consider a nonlinear function f(x,y) of 
two independent variables x and y. The first order Taylor series approximation is

 f x y f x y
f x y

x
x

f x y
y

yo o
o o o o( , ) ( , )

( , ) ( , )≈ + +î
î

î
î

d d wwith x x x y y yo o= + = +d d,  (3..7a)

or

 f x x y y f x y
f x y

x
x

f x y
y

y( ˆ , ˆ) ( , )
( , ) ˆ ( , ) ˆ+ + ≈ + +î
î

î
î

 (3..7b)

where ( 
_ ) denotes the operating condition and ( ̂  ) denotes a small increment about that 

condition, as usual. In this case, for the process of linearization, we need two local slopes 
î îf x y x( , )/  and î îf x y y( , )/  along the two orthogonal directions of the independent vari-
ables x and y.

It should be clear now that linearization of a nonlinear system is carried out by replacing 
each term in the system equation by its increment, about an operating point. We summa-
rize below the steps of local linearization about an operating point:

 1. Select the operating point (or, reference condition). This is typically a steady-state, 
which can be determined by setting the time-derivative terms in the system equa-
tions to zero and solving the resulting nonlinear algebraic equations.

 2.. Determine the slopes (first order derivatives) of each nonlinear term (function) in 
the systems equation at the operating point, with respect to (along) each indepen-
dent variable.

 3.. Consider each term in the system equation. If a term is nonlinear, replace it by its 
slope (at the operating point) times the corresponding incremental variable. If a 
term is linear, replace it by its coefficient (which is indeed the constant slope of the 
linear term) times the corresponding incremental variable.

3.2 Nonlinear State-Space Models

Consider a general nonlinear, time-variant, nthorder system represented by n first order 
differential equations, which generally are coupled, as given by

 
dq
dt

f q q q r r r tn m
1

1 1 2. 1 2.= ( ), , . . ., , , , . . ., ,
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dq
dt

f q q q r r t

dq
d

n m

n

2.
2. 1 2. 1 2.= ( ), , . . ., , , , . . ., ,r …



tt
f q q q r r r tn n m= ( )1 2. 1 2., , . . ., , , , . . ., ,

 (3..8a)

The state vector is

 q = [q1, q2., …, qn]T (3..9a)

and the input vector is

 r = [r1, r2., …, rm]T (3..10a)

Equation 3..6a may be written in the vector notation:

 q f q r= ( , , t) (3..8b)

3.2.1 linearization

An equilibrium state of the dynamic system given by Equation 3..8 corresponds to the 
 condition when the rates of changes of the state variables are all zero:

 q = 0  (3..11)

This is true because in equilibrium (i.e., at an operating point) the system response 
remains steady and hence its rate of change is zero. Consequently, the equilibrium states 
q  are obtained by solving the set of n nonlinear algebraic equations

 f(q, r, t) = 0 (3..12.)

for a particular steady input r . Usually a system operates in the neighborhood of one of 
its equilibrium states. This state is the operating point of the system. The steady-state of a 
dynamic system is also an equilibrium state.

To study the stability of various equilibrium states of a nonlinear dynamic system, it is 
first necessary to linearize the system model about these equilibrium states. Linear mod-
els are also useful in analyzing nonlinear systems when it is known that the variations 
of the system response about the system operating point are small in comparison to the 
maximum allowable variation (dynamic range). As noted before, Equation 3..8 can be linear-
ized for small variations dq and dr about an equilibrium point ( )q r,  by employing up to 
only the first derivative term (i.e., O(1) term) in the Taylor series expansion of the nonlinear 
function f. The higher-order terms are negligible for small dq and dr. As explained before, 
for the scalar case, this method yields

 d d dq
f
q

q r t q
f
r

q r t r= +î
î

î
î

( , , ) ( , , )  (3..8)
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Denote the state vector and the input vector of the linearized system by

  dq = x = [x1, x2., …, xn]T (3..9b)

  dr = u = [u1, u2., …, um]T (3..10b)

This results in the linear model

 x Ax Bu= +  (3..13.)

The linear system matrix A(t) and the input distribution (gain) matrix B(t) are given by

 A( ) ( , , )t
f
q

q r t= î
î

 (3..14)

 B( ) ( , , )t
f
r

q r t= î
î

 (3..15)

If the dynamic system is a constant parameter (i.e., stationary or time-invariant) system, or 
if it can be assumed as such for the time period of interest, then A and B become constant 
matrices.

3.2.2 reduction of System Nonlinearities

Under steady conditions, system nonlinearities can be removed through calibration. Under 
dynamic conditions, however, the task becomes far more difficult. The following are some 
of the precautions and procedures that can be taken to remove or reduce nonlinearities in 
dynamic systems:

 1. Avoid operating the device over a wide range of signal levels.
 2.. Avoid operation over a wide frequency band.
 3.. Use devices that do not generate large mechanical motions.
 4. Minimize Coulomb friction and stiction (e.g., through lubrication).
 5. Avoid loose joints, gear coupling, etc., which can cause backlash.
 6. Use linearizing elements such as resistors and amplifiers.
 7. Use linearizing feedback.

Next, we will illustrate model linearization and operating point analysis using several 
examples, which involve state-space models and input–output models.

example 3.1

The robotic spray painting system of an automobile assembly plant employs an induction motor 
and pump combination to supply paint, at an overall peak rate of 15 gal/min, to a cluster of spray-
paint heads in several painting booths. The painting booths are an integral part of the production 
line in the plant. The pumping and filtering stations are in the ground level of the building and the 
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painting booths are in an upper level. Not all booths or painting heads operate at a given time. 
The pressure in the paint supply line is maintained at a desired level (approximately 275 psi or 1.8 
MPa) by controlling the speed of the pump, which is achieved through a combination of voltage 
control and frequency control of the induction motor. An approximate model for the paint pump-
ing system is shown in Figure 3.2.

The induction motor is linked to the pump through a gear transmission of efficiency h and speed 
ratio 1:r, and a flexible shaft of torsional stiffness kp. The moments inertia of the motor rotor and 
the pump impeller are denoted by Jm and Jp, respectively. The gear inertia is neglected (or lumped 
with Jm). The mechanical dissipation in the motor and its bearings is modeled as a linear viscous 
damper of damping constant bm. The load on the pump (the paint load plus any mechanical 
 dissipation) is also modeled by a viscous damper, and the equivalent damping constant is bp. The 
magnetic torque Tm generated by the induction motor is given by

 T
q
qm

m

m

= -
-

T0 0 0

0
2 2

w w w
w w

( )
( )

 (3.16)

in which wm is the motor speed. The parameter T0 depends directly (quadratically) on the phase 
voltage (ac) supplied to the motor. The second parameter w0 is directly proportional to the line 
frequency of the ac supply. The third parameter q is positive and greater than unity, and this 
parameter is assumed constant in the control system.

 a. Comment about the accuracy of the model shown in Figure 3.2.
 b. Taking the motor speed wm, the pump-shaft torque Tp, and the pump speed wp as the state 

variables, systematically derive the three state equations for this (nonlinear) model. Clearly 
explain all steps involved in the derivation. What are the inputs to the system?

 c. What do the motor parameters w0 and T0 represent, with regard to motor behavior? Obtain 
the partial derivatives îTm/îwm, îTm/îT0 and îTm/îw0 and verify that the first of these three 
expressions is negative and the other two are positive. Note: under normal operating condi-
tions 0 < wm < w0.

 d. Consider the steady-state operating point where the motor speed is steady at wm. Obtain 
expressions for wp, Tp, and T0 at this operating point, in terms of wm and w0.

 e. Suppose that (îTm/ îwm) = -b, (îTm/îT0) = b1, and (îTm/îw0) = b2 at the operating point given 
in (d). Note: Voltage control is achieved by varying T0 and frequency control by varying w0. 

bm

Jm

Tm

Induction
motor

r

Gear
transmission
(light)

Paint load
bp

Tp

1

kp

Flexible
shaft ωp

ωm

Jp

Pump

Figure 3.2
A model for a paint pumping system in an automobile assembly plant.
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Linearize the state model obtained in (b) about the operating pint and express it in terms of 
the incremental variables ŵm, T̂p , ŵ p, T̂0, and ŵ0. Suppose that the (incremental) output 
variables are the incremental pump speed ŵ p  and the incremental angle of twist of the 
pump shaft. Express the linear state-space model in the usual form and obtain the associ-
ated matrices A, B, C and D.

 f. For the case of frequency control only (i.e., T̂0  = 0) obtain the input–output model (dif-
ferential equation) relating the incremental output ŵ p  and the incremental input ŵ0. Using 
this equation show that if ŵ0  is suddenly changed by a step of ∆ŵ0  then d dtp

3 3ˆ /w  will 
immediately change by a step of b2rkp/Jm Jp ∆ŵ0 , but the lower derivatives of ŵ p  will not 
change instantaneously.

Solution

 a. Backlash and inertia of the gear transmission have been neglected in the model shown. 
This is not accurate in general. Also, the gear efficiency h, which is assumed constant here, 
usually varies with the gear speed.

  Usually there is some flexibility in the shaft (coupling), which connects the gear to the 
drive motor.

  Energy dissipation (in the pump load and in various bearings) has been lumped into a 
single linear viscous damping element. In practice, this energy dissipation is nonlinear and 
distributed.

 b. Motor speed wm = dqm/dt
 Load (pump) speed wp = dqp/dt
 where qm = motor rotation, and qp = pump rotation. Let Tg = reaction torque on the motor 

from the gear. By definition, gear efficiency is given by

 h
w
w

= =
T r

T
p m

g m

Output Power
Input Power

 Since r is the gear ratio, rwm is the output speed of the gear. Also, power = torque × speed. 
We have,

 T
r

Tg p=
h

 (i)

 The following three constitutive equations can be written:
  Newton’s second law (torque = inertia × angular acceleration) for the motor:

 T T b Jm g m m m m- - =w w  (ii)

  Newton’s second law for the pump:

 T b Jp p p p p- =w w  (iii)

  Hooke’s law (torque = torsional stiffness × angle of twist) for the flexible shaft:

 Tp = kp (rqm -qp) (iv)

 Equations (ii) through (iv) provide the three state equations. Specifically,

 Substitute Equation (i) into Equation (ii): J T b
r

Tm m m m m p
w w

h
= - -  (v)
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 Differentiate Equation (iv): T k rp p m p= -( )w w  (vi)

 Equation (iii): J T bp p p p p
w w= -  (vii)

 Equations (v) through (vii) are the three state equations. This is a nonlinear model with 
the state vector [wm  Tp  wp]T. The input is Tm. Strictly there are two inputs, in view of the 
torque-speed characteristic curve of the motor as given by Equation 3.16 and sketched in 
Figure 3.3, where the fractional slip S of the induction motor is given by

 S m= -( )w w
w

0

0

 (3.17)

 The two inputs are: w0, the speed of the rotating magnetic field, which is proportional to the 
line frequency; and T0 which depends quadratically on the phase voltage.

 c. From Equation 3.16:
  When wm = 0 we have Tm = T0. Hence

 T0 = starting torque of the motor.

  When Tm = 0, we have wm = w0. Hence,

  w0 = no-load speed.

  This is the synchronous speed—under no-load conditions, there is no slip in the induc-
tion motor (i.e., actual speed of the motor is equal to the speed w0 of the rotating magnetic 
field).

  Differentiate Equation 3.16 with respect to T0, w0, and wm. We have

 
î
î
T
T

q
q

m m

m0

0 0

0
2 2 1= -
-

=w w w
w w

b( )
( )

 (say) (3.18a)

 

î
î

T T q q qm m m m

w
w w w w w w w w

0

0 0
2 2

0 0 0 02 2= - - - -[( )( ) ( ) ]]
( )

[( ) ( ) ]
(

q

T q q
q

m

m m

w w

w w w w
w

0
2 2 2

0 0
2

0
2

0
2

1

-

= - + -
--

=
w

b
m
2 2 2)

(say)

 (3.18b)

M
ot

or
 ro

to
r s

pe
ed

Motor torque T
0Full slip

No slip

ωm

ωf S = 0 

S = 1
Ts Tmax

Unstable
region

Stable
region

Increasing field voltage
magnitude vf

Figure 3.3
Torque-speed characteristic curve of an induction motor.
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î
î

T T q qm

m

m m m

w
w w w w w w= - - - - -0 0 0

2 2
01 2[( )( ) ( )( )]

(qq

T q q
q

m

m

w w

w w w w
w

0
2 2 2

0 0 0
2

0
2

0
2

1

-

= - - + -
-

)

[( ) ( ) ]
( wwm

eb
2 2)

= - (say)

 (3.19)

  We have b1 > 0; b2 > 0; and be > 0.
  Note: be = electrical damping constant of the motor.

 d. At a steady-state operating point, the rates of changes of the state variables will be zero. 
Hence set   w wm p pT= = =0  in Equations (v) through (vii). We get

 0 = - -T b
r

Tm m m pw
h

 0 = -k rp m p( )w w

 0 = -T bp p pw

  Hence,

 w wp mr=  (viii)

 T b rp p m= w  (ix)

 T b r b
T q

qm m m p m
m

m

= + = -
-

w w h w w w
w w

2 0 0 0

0
2 2

( )
( )

(from Equation 3.16)

 or

 T
b r b q

q
m m p m

m
0

2
0
2 2

0 0

=
+ -

-
w h w w

w w w
( )( )

( )
 (x)

 e. Take the increments of the state Equations (v) through (vii). We get

 J b
r

T b Tm m m m p e mˆ ˆ ˆ ˆ ˆ ˆw w
h

w b b w= - - - + +1 0 2 0  (xi)

 ˆ ( ˆ ˆ )

T k rp p m p= -w w  (xii)

 
J T bp p p p pˆ ˆ ˆw w= -  (xiii)

  Note:

 ˆ ˆ ˆ ˆT
T T

T
T

T
m

m

m
m

m m= + 





+ 





î
î

î
î

î
îw

w
w0

0
0

ww w b b w0 1 0 2 0= - + +b Te mˆ ˆ ˆ  (xiv)
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 where in each partial derivative, the remaining independent variables are kept constant (by 
definition).

 Equations (xi) through (xiii) subject to (ix) are the three linearized state equations.
Define the linear:

 State vector x =  ˆ ˆ ˆw wm p p

T
T

 Input vector u =  
ˆ ˆT

T

0 0w

 Output vector y =  ˆ ˆw p s p

T
T k

We have

 A =
- + -

-
-













( ) ( )b b J r J

k r k

J b J

e m m m

p p

p p p

h 0

0

0 1





=
















=



; ;B C

b b1 2

0 0

0 0

0 0 1

0 1 0

J J

k

m m

p




 =;D 0

  Note: be = electrical damping constant of the motor; bm = mechanical damping constant of 
the motor.

 f. For frequency control, T̂0 = 0.
 Substitute Equation (xii) into Equation (xi) in order to eliminate ŵm. Then substitute Equation 

(xiii) into the result in order to eliminate T̂p. On simplification we get the input–output 
model (differential equation):

 

J J
d

dt
J b J b b

d

dt
k Jm p

p
m p p m e

p
p m

3

3

2

2

ˆ
[ ( )]

ˆw w
+ + + + +

rr J
b b b

d

dt

k
r b

p
p m e

p

p
p

2

2

η





+ +









 +

+

( )
ŵ

h
bb b rkm e p p+







=ˆ ˆw b w2 0

 (xv)

This is a third order differential equation, as expected, since the system is third order. Also, as 
we have seen, the state-space model is also third order.

Observation from Equation (xv):
When ŵ0 is changed by “finite” step ∆ŵ0, the RHS of Equation (xix) will be finite. Hence the 

LHS, and particularly highest derivative d dtp
3 3ˆ /w( )  also must change by a finite value.

Further verification: If as a result, d dtp
2 2ˆ /w  or lower derivatives also change by a finite step, 

then d dtp
3 3ˆ /w  should change by an infinite value (Note: derivative of a step = impulse.)

This contradicts the fact that RHS of Equation (xix) is finite. Hence d dtp
2 2ˆ /w , d dtpˆ /w , and ŵ p 

will not change instantaneously. Only d dtp
3 3ˆ /w  will change instantaneously by a finite value due 

to finite step change of ŵ0.
From Equation (xix): Resulting change of d dtp

3 3ˆ /w  is b2rkp/Jm Jp ∆ŵ0
Furthermore, the following somewhat general observations can be made from this example:

 1. Mechanical damping constant bm comes from bearing friction and other mechanical sources 
of the motor.

 2. Electrical damping constant be comes from the electromagnetic interactions in the motor.
 3. The two must occur together (e.g., in model analysis, simulation, design, and control). For 

example, whether the response is underdamped or overdamped depends on the sum bm + be 
and not the individual componentselectro-mechanical coupling.

76868.indb   73 7/8/09   5:05:40 PM



74 Modeling and Control of Engineering Systems

example 3.2

An automated wood cutting system contains a cutting unit, which consists of a dc motor and 
a cutting blade, linked by a flexible shaft and a coupling. The purpose of the flexible shaft is 
to position the blade unit at any desirable configuration, away from the motor itself. The cou-
pling unit helps with the shaft alignment (compensates for possible misalignment). A simplified, 
lumped-parameter, dynamic model of the cutting device is shown in Figure 3.4 and the following 
parameters and variables are used: Jm = axial moment of inertia of the motor rotor; bm = equivalent 
viscous damping constant of the motor bearings; k = torsional stiffness of the flexible shaft; Jc = axial 
moment of inertia of the cutter blade; bc = equivalent viscous damping constant of the cutter bear-
ings; Tm = magnetic torque of the motor; wm = motor speed; Tk = torque transmitted through the 
flexible shaft; wc = cutter speed; TL = load torque on the cutter from the workpiece (wood).

In comparison with the flexible shaft, the coupling unit is assumed rigid, and is also assumed 
light. The cutting load is given by

 TL = c |wc|wc (3.20)

The parameter c, which depends on factors such as the depth of cut and the material properties 
of the workpiece, is assumed constant in the present analysis.

 a. Using Tm as the input, TL as the output, and [wm  Tk  wc]T as the state vector, develop a com-
plete (nonlinear) state model for the system shown in Figure 3.4. What is the order of the 
system?

 b. Using the state model derived in (a), obtain a single input–output differential equation for 
the system, with Tm as the input and wc as the output.

 c. Consider the steady operating conditions where T Tm m= , w wm m= , T Tk k= , w wc c= , T TL L=  are 
all constants. Express the operating point values wm, Tk, wc, and TL in terms of Tm and the 
model parameters only. You must consider both cases Tm > 0 and Tm < 0.

 d. Now consider an incremental change T̂m in the motor torque and the corresponding changes 
ŵm, T̂k, ŵc , and T̂L in the system variables. Determine a linear state model (A, B, C, D) for 
the incremental dynamics of the system in this case, using x = [ ˆ ˆ ˆ ]w wm k c

TT  as the state 
vector, u =  T̂m

 as the input, and y =  T̂L  as the output.
 e. In the incremental model (see a), if the twist angle of the flexible shaft (i.e., qm - qc) is used 

as the output what will be a suitable state model? What is the system order then?

ωm

Coupling

Bearing

Magnetic
torque

ωc ωcTL = c

Tm

Jm

bm

k 

Torque Tk
ωc

bc

Wood load 

Cutter
blade Jc

Motor

Flexible 
shaft

Figure 3.4
A wood cutting machine.
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 f. In the incremental model, if the angular position qc of the cutter blade is used as the output 
variable, explain how the state model obtained in (a) should be modified. What is the sys-
tem order in this case?

  Hint for (b):

 
d
dt c c c c| | | |w w w w( ) = 2   (3.21)

 
d
dt c c c c c c

2

2
22 2w w w w w w( ) = + sgn( )  (3.22)

  Note: These results may be derived as follows: since |wc| = wc sgn wc we have

 
d
dt

d
dtc c c c c c c c cw w w w w w w w w( ) = = =( sgn ) sgn2 2 2 

and

 
d
dt c c c c c c

2

2
22 2w w w w w w( ) = +  sgn( )

  Note: Since sgn(wc) =  + 1 for wc > 0; = -1 for wc < 0; it is a constant and its time deriva-
tive is zero (except at wc = 0, which is not important here as it corresponds to the static 
condition).

Solution

 a. The free body diagram of the system is shown in Figure 3.5.
Constitutive equations of the three elements:

 J T b Tm m m m m k
w w= - -  (i)

 T kk m c= -( )w w  (ii)

 J T b cc c k c c c c
w w w w= - -  (iii)

  These are indeed the state equations, with

 State vector = [wm  Tk  wc]T

 Input vector = [Tm]

Jm

Tm

ωm

Tk

θm
bmθm

Tk

ωm ωc

kL

Tk

Jc

Tc

ωc

ωc ωcTL = c

bcθc
.

.

Figure 3.5
Free body diagram of the system.
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 Output vector = [TL] = c|wc|wc

 This is a third order system (three state variables; three state equations).
 b. Substitute Equation (ii) and its time derivative into Equation (i), to eliminate wm and wm:

 J T k T b T k Tm k c m m k c k[ ] [ ]  + = - + -w w

  Now substitute Equation (iii) and its time derivatives in this equation, to eliminate Tk and 
its time derivatives (using Equations 3.21 and 3.22):

    T J b ck c c c c c c= + +w w w w2

     T J b c ck c c c c c c c c= + + +w w w w w w2 2 2 sgn( )

 We get

 

J
k

J b c cm
c c c c c c c c
   w w w w w w+ + +[ ]+2 2 2 sgn( ) JJ

T
b
k

J b c b J

m c

m
m

c c c c c c m c c



  

w

w w w w w= - + +[ ]- -2 w w w wc c c c cb c+ +[ ]

  This can be rearranged as the input–output model (differential equation)

 

J J
d
dt

J b J b
d
dt

cJ
d
dtm c

c
m c c m

c
m c

c
3

3

2

2

2

2
w w w w+ + +( )

22

2 2

+ + +

+ +

( )

sgn(

J k J k b b
d
dt

b c
d
dt

cJ

m c m c
c

m c
c

m

w

w w ww w w w wc
c

m c c c c m
d
dt

k b b kc kT) ( )




+ + + =

2

 c. At the operating point, rates of changes of the state variables will be zero. Hence, from 
Equations (i) through (iii) we have

 0 = - -T b Tm m m kw  (iv)

 0 = -k m c( )w w  (v)

 0 = - -T b ck c c c cw w w  (vi)

 Case 1: Tm c> ⇒ >0 0w

 Eliminate Tk  using Equation (iv) and (vi):

 0 2= - - -T b b cm m m c c cw w w

  Since w wm c=  we get

 c b b Tc m c c mw w2 0+ + - =( )

 or (by solving the quadratic equation)

 wc
m c m c mb b b b cT

c
= - + ± + +( ) ( )2 4

2
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  Take the positive root:

 w wc
m c m m c

m
b b cT

c
b b

c
= + + - + =( ) ( )2 4

2 2

  From Equation (iv):

 T T b
b b cT

c
b b

ck m m
m c m m c= - + + - +









( ) ( )2 4
2 2

  From Equation (vi):

 T c T b b
b b cT

c
b b

L c c m m c
m c m m c= = - + + + - +w w ( )

( ) ( )2 4
2 2cc











 Case 2: Tm c< ⇒ <0 0w

 In this case

 0 2= - - +T b b cm m c c c cw w w

 or

 c b b Tc m c c mw w2 0- + + =( )

 wc
m c m c mb b b b cT

c
= + ± + -( ) ( )2 4

2

 Note: Tm < 0. Use the negative root:

 wc
m c m c mb b

c
b b cT

c
= + - + -( ) ( )

2
4

2

2

 The rest will follow as in Case 1.
 d. In linearizing Equations (i) through (iii) we note that the only nonlinear term is c|wc|wc 

whose slope (derivative) is d d d dc c c c c c c c c/ /w w w w w w w w w( ) = = =( sgn ) sgn2 2 2

  Consequently, by writing the increment of each term in Equations (i) through (iii), we get 
the linear state model:

 J T b Tm m m m m kˆ ˆ ˆ ˆw w= - -

 ˆ ( ˆ ˆ )

T kk m c= -w w

 J T b cc c k c c c cˆ ˆ ˆ ˆw w w w= - - 2

 with the output equation: ˆ ˆT cL c c= 2 w w
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 State vector x =  ˆ ˆ ˆw wm k c

T
T

 Input vector u =  T̂m

 Output vector y =  T̂L

  The corresponding state-model matrices are

 A =
- -

-
- +

















b J J

k k

J b c J

m m m

c c c c

1 0

0

0 1 2( )

;

w
BB C D=

















= [ ] =
1

0

0

0 0 2 0

J

c
m

c; ; [ ]w

 e. The twist angle of the flexible shaft is y = qm - qc = Tk/k
  This represents a new output equation: y = Tk/k
  Since no new state variables are introduced for this, exactly the same state equations as 

before are applicable, along with this new output equation.
System order = 3

 f. The new output equation: y = qc

  Since qc cannot be expressed as an algebraic equation of the three previous state variables, 
a new state variable qc has to be defined. This results in an additional state equation:

 
d
dt

c
c

q w=

The system order becomes 4 in view of the extra state variable (and extra state equation).

Discussion

Physically, the new output qc is obtained by placing an integrator in front of the old output wc. 
Hence:

 New system = old system + integrator at the output

From this series configuration of the old system and an integrator, it should be clear that, even 
though the system order has increased to 4 due to the new integrator, the basic dynamics of the 
system is still governed by the original third order system.

In particular, with the unified choice of across variables of independent A-type elements and 
through variables of independent T-type elements as the state variables, we end up with a unique 
third order state-space model for this system, which does not allow qc as a natural output. To 
provide the “unnatural” output qc there is no other option but to include a new integrator, which 
increases the system order by 1. The new state-space model corresponds to:

 A
A

B
Bold= [ ]



















=









×

0

0

0

0 0 1 0 04 4

old ;












= [ ] = [ ]

×4 1

0 0 0 1 0; ;C D

with the state vector x =  ˆ ˆ ˆ ˆw w qm c c

T
Tk
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example 3.3

A simplified model of an elevator is shown in Figure 3.6. The model parameters are: J = moment 
of inertia of the cable pulley; r = radius of the pulley; k = stiffness of the cable; m = mass of the car 
and its occupants.

 a. Which system parameters are variable? Explain.
 b. Suppose that the damping torque Td(w ) at the bearing of the pulley is a nonlinear function 

of the angular speed w of the pulley. Suppose that:

 State vector x = [w  f  v]T

 with f = tension force in the cable; v = velocity of the car (taken positive upwards).

 Input vector u = [Tm]T

 with Tm = torque applied by the motor to the pulley (positive in the direction indicated in 
Figure 3.6).

 Output vector as y = [v]

 Obtain a complete, nonlinear, state-space model for the system.
 c. With Tm as the input and v as the output, convert the state-space model into a nonlinear 

input–output differential equation model. What is the order of the system?
 d. Give an equation whose solution provides the steady-state operating speed v  of the  elevator 

car.

v

f

Cable
k

Car
m

Pulley
J

ω

Tm

Td

r 

Drive
motor

Figure 3.6
A simplified model of an elevator.
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 e. Linearize the nonlinear input–output differential-equation model obtained in (c), for small 
changes T̂m  of the input and v̂  of the output, about an operating point.

 Note: Tm  = steady-state operating point torque of the motor (assumed to be known).
 Hint: Denote dTd/dt as b(w ).

 f. Linearize the state-space model obtained in (b) and give the model matrices A, B, C, and D 
in the usual notation. Obtain the linear input–output differential equation from this state-
space model and verify that it is identical to what was obtained in (e).

Solution

 a. The parameter r is a variable due to winding/unwinding of the cable around the pulley. The 
parameter m is a variable because the car occupancy changes.

 b. The state equations are obtained simply by writing the constitutive equations (Newton’s 
second law for the two inertia elements and Hooke’s law for the spring element):

 J T rf Tm d
w w= - - ( )  (i)

 f k r v= -( )w  (ii)

 mv f mg = -  (iii)

 Output y = v

 c. Eliminate f by substituting Equation (iii) into Equations (i) and (ii):

 J T r m v g Tm d
 w w= - - -( ) ( )  (iv)

 mv k r v = -( )w  (v)

  Note: To eliminate a quantity we substitute the equation which contains the quantity by 
itself (not its derivatives or combinations of its nonlinear functions). So, in the above elimi-
nation we could also have substituted Equation (i) into Equations (ii) and (iii); but we could 
not have substituted Equation (ii) into Equations (i) and (iii).

 From Equation (v) we have

 w = +





1
r

m
k

v v

  Differentiate:

   w = +





1
r

m
k

v v

  Substitute these into Equation (iv), to eliminate w and w :

 
J
r

m
k

v v T r m v g T
r

m
k

v vm d   +




= - + - +


( )

1











 (vi)

  This is a third order model (because the highest derivative in Equation (vi) is third order).
 d. At steady-state v = 0. Hence  v v= =0 0and  also. Substitute into Equation (vi), to get the 

steady-state (algebraic) equation:

 T r mg T
v
rm d- - 




= 0

 where T Tm = steady-state value of the input Tm.
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 The solution of this nonlinear equation will give the steady-state operating speed v  of the 
elevator.

  Note: The same result may be obtained from the state Equations (i) through (iii). Specifically, 
under steady-state conditions:

 

0

0

0

= - -

= -

= -

T rf T

k r v

f mg

m d ( )

( )

w

w

  This can be converted into a single equation, by eliminating f and w .
 e. Linearize Equation (vi) by writing the increment of each term (Note: all terms in Equation (vi) 

are linear; the increment of the constant term is zero):

 
J
r

m
k

v v T r mv bmˆ ˆ ˆ ˆ ( ) ˆ  +




= - - w w  (vii)

 where b
dT

d
m( )

( )w w
w w w

=
=

  Now from Equation (v):

 mv k r vˆ ( ˆ ˆ) = -w  (viii)

  Substitute Equation (viii) into (vii), to eliminate ŵ . We get

 
J
r

m
k

v v T r mv b
r

m
k

vmˆ ˆ ˆ ˆ ( ) ˆ   +




= - - -w 1 ˆ̂v





 or

 
J
r

m
k

v
b m

rk
v

J
r

rm v
b

r
ˆ ( ) ˆ ˆ ( ) ˆ  + + +





+w w
vv Tm= ˆ

 f. Linearize Equations (i) through (iii) by writing the increment of each term in the equations 
(Note: all terms are linear; the increment of the constant term is zero):

 J T rf bmˆ ˆ ˆ ( ) ˆw w w= - -  (ix)

 ˆ ( ˆ ˆ)

f k r v= -w  (x)

 mv fˆ ˆ =  (xi)

 Output y v= ˆ

 Input u Tm= ˆ

 State vector x =  ˆ ˆ ˆw f v
T
.

76868.indb   81 7/8/09   5:06:06 PM



82 Modeling and Control of Engineering Systems

 The corresponding model matrices are:

 A B=

- -

-























=

b
J

r
J

rk k

m

J
( )

;

w
0

0

0
1

0

1

0

00

0 0 1 0
















= [ ] =; ;C D

 Substitute Equation (xi) and its time derivative into Equations (ix) and (x), to eliminate f̂  and 
̂
f :

 J T rmv bmˆ ˆ ˆ ( ) ˆ w w w= - -

 mv k r vˆ ( ˆ ˆ) = -w

 Now eliminate ŵ  by substituting the second equation into the first. We get the same result as 
before, for the input–output equation.

example 3.4

A rocket-propelled spacecraft of mass m is fired vertically up (in the Y-direction) from the earth’s 
surface (see Figure 3.7). The vertical distance of the centroid of the spacecraft, measured from the 
earth’s surface, is denoted by y. The upward thrust force of the rocket is f(t). The gravitational pull 
on the spacecraft is given by mg [R/R + y]2, where g is the acceleration due to gravity at the earth’s 
surface and R is the “average” radius of earth (about 6370 km). The magnitude of the aerodynamic 
drag force resisting the motion of the spacecraft is approximated by ky e y r 2 -  where k and r are 
positive and constant parameters, and y dy dt= / . Here, the exponential term represents the loss of 
air density at higher elevations.

Horizontal on earth’s surface

Vertical
direction

Y

X

Rocket
thrust f (t)

Spacecraft
mass m

(X, Y )

Figure 3.7
Coordinate system for the spacecraft problem.
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 a. Treating f as the input and y as the output, derive the input–output differential equation for 
the system.

 b. The spacecraft accelerates to a height of yo and then maintains a constant speed vo, still 
moving in the same vertical (Y) direction. Determine an expression for the rocket force that 
is need for this constant-speed motion. Express your answer in terms of yo, vo, time t, and 
the system parameters m, g, R, r, and k. Show that this force decreases as the spacecraft 
ascends.

 c. Linearize the input–output model (a) about the steady operating condition (b), for small 
variations ŷ  and ̂y  in the position and speed of the spacecraft, due to a force disturbance
ˆ( )f t .

 d. Treating y and y  as state variables and y as the output, derive a complete (nonlinear) state-
space model for the vertical dynamics of the spacecraft.

 e. Linearize the state-space model in (d) about the steady conditions in (b) for small variations 
ŷ  and ̂y  in the position and speed of the spacecraft, due to force disturbance ˆ( )f t .

 f. From the linear state model (e) derive the linear input–output model and show that the 
result is identical to what you obtained in (c).

Solution

 a. Newton’s second law in the Y-direction (constitutive equation):

 my mg
R

R y
k y ye f ty r  = -

+





- +-

2

( )  (i)

 b. At constant speed vo we have,

 y vo=  (ii)

 y
d
dt

vo= = 0  (iii)

  Integrate Equation (ii) and use the initial condition y = yo at t = 0. Position under steady 
conditions:

 y v t yo o= +  (iv)

 Substitute Equations (ii) and (iii) into Equation (i). The steady operating condition is given by:

 0

1
2= -

+ +





- +- +mg

v t y
R

k v v e f t
o o

o o
v t y r

s
o o( ) ( ))

 where fs(t) is the force of rocket at constant speed vo.
  Since vo is positive, we have

 f t
mg

v t y
R

kv es

o o

o
v t y ro o( ) ( )=

+ +





+ - +

1
2

2

  It is seen that this expression decreases as t increases, reaching zero in the limit.
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 c. Derivatives needed for the linearization (O(1) Taylor series terms):

 

d
dy y

R

R y
R

d
dy

y ye y r

1

1

2 1

1
2 3

+





= -
+





=-  --

=

-

- -

 


  

y y
r

e

d
dy

y ye y e

y r

y r y r2

  Note: These derivatives are determined as in Example 3.2.
  The input–output Equation (i) is linearized by writing the increment of each term, with the 

use of the above derivatives (slopes). We get the linearized input–output model

 my
mg
R y

R

y
k
r

y ye y k y ey rˆ ˆ ˆ   =
+





+ --2 1

1

23
-- +y ry f tˆ ˆ( )  (va)

 where y  is as given by Equation (iv).
  Since, under steady conditions, y vo= > 0  we have the linearized input–output model:

 my
mg
R y

R

y
k
r

v e y kv eo
y r

oˆ ˆ ˆ =
+





+ -- -2 1

1

23
2 yy ry f tˆ ˆ( ) +  (v)

  Note: Equation (v) represents an unstable system.
 d. State vector x = [ ] = [ ]x x y y

T T
1 2 

  From Equation (i), the state equations can be written as:

 x x1 2=  (vi)

 x
g

x
R

k
m

x x e
m

f tx r
2

1
2 2 2

1

1
1= -

+





- +- ( )  (vii)

  The output equation is

 y1 = x1

 e. To linearize the state model in (d) we use the derivatives (local lopes) as before:

 

d
dx x

R

R x
R

d
dx

x x e

1 1
2

1
3

1
2 2

1

1

2 1

1+





= -
+





-- -

- -

= -

=

x r x r

x r x r

x x
r

e

d
dx

x x e x e

1 1

1 1

2 2

2
2 2 22
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  At the steady operating (constant speed) conditions:

 x v t yo o1= +  and x vo2 0= >

  Accordingly, the linearized state-space model is obtained by writing the increment of 
each term in Equations (vi) and (vii):

 ˆ ˆx x1 2=  (viii)

 ˆ ˆ ˆ( )x
g

R
x
R

x
k

mr
v e x

k
o

x r
2

1
3 1

2
1

2

1

21=
+





+ --

mm
v e x

m
f to

x r- +1
2

1ˆ ˆ( )  (ix)

 with the output equation

 ˆ ˆy x1 1=  (x)

 f. Substitute Equation (viii) into (ix). We get

 ˆ ˆ ˆ( )x
mg

R
x
R

x
k

mr
v e xo

x r
1

1
3 1

2
1

2

1

1=
+





+ -- 22
1

1
1

k
m

v e x
m

f to
x r- +ˆ ˆ( )

  This result is identical to Equation (v), since ˆ ˆ.x y1=

3.3 Nonlinear Electrical Elements

The three lumped-parameter passive elements in an electrical system are: capacitor (an 
A-type of element with the across variable voltage as the state variable); inductor (a T-type 
element with the through variable current as the state variable); and resistor (a D-type ele-
ment representing energy dissipation, and no specific state variable is associated with it). 
The linear versions of these elements were introduced in Chapter 2.. Now let us briefly look 
into the general, nonlinear versions of these elements.

3.3.1 Capacitor

Electrical charge (q) is a function of the voltage (v) across a capacitor, as given by the non-
linear constitutive equation:

 q = q(v) (3..2.3.a)

For the linear case we have

 q = Cv (3..2.3.b)
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where C is the capacitance. Then the current i, which is given by dq/dt, is expressed by dif-
ferentiating Equation 3..2.3.b we get

 i C
dV
dt

V
dC
dt

= +  (3..2.4a)

where we have allowed for a time-varying capacitance. If C is assumed constant, we have 
the familiar linear constitutive equation:

 i C
dV
dt

=  (3..2.4b)

3.3.2 inductor

Magnetic flux linkage (l) of an inductor is a function of the current (i) through the induc-
tor, as given by the nonlinear constitutive equation:

  l = l(i) (3..2.5a)

For the linear case we have

  l = L i (3..2.5b)

where L is the inductance. The voltage induced in an inductor is equal to the rate of change 
of the flux linkage. Hence, by differentiating Equation 3..2.5b we get

 V L
di
dt

i
dL
dt

= +  (3..2.6a)

Assuming that the inductance is constant, we have the familiar linear constitutive 
equation:

 V L
di
dt

=  (3..2.6b)

3.3.3 resistor

In general the voltage across a (nonlinear) resistor is a function of the current through the 
resistor, as given by

 v = v(i) (3..2.7a)

In the linear case, we have the familiar Ohm’s law:

 v = R i (3..2.7b)

where R is the resistance, which can be time-varying in general. In most cases, however, we 
assume R to be a constant.
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3.4 Linearization Using Experimental Operating Curves

Linearization of analytical models was studied in the previous sections. In some situations 
an accurate analytical model may not be readily available for an existing physical system. 
Yet experiments may be conducted on the system to gather operating curves for the sys-
tem. These operating curves are useful in deriving a linear model, which can be valuable, 
for example, in controlling the system. This approach is discussed now, taking an electric 
motor as the example system.

3.4.1 Torque-Speed Curves of Motors

The speed versus torque curves of motors under steady conditions (i.e., steady-state oper-
ating curves) are available from the motor manufacturers. These curves have the charac-
teristic shape that they decrease slowly up to a point and then drop rapidly to zero. An 
example of an ac induction motor is given in Figure 3..3.. The operating curves of dc motors 
take a similar, not identical characteristic form, as shown in Figure 3..8. The shape of the 
operating curve depends how the motor windings (rotor and stator) are connected and 
excited. The torque at zero speed is the “braking torque” or “starting torque” or “stalling 
torque.” The speed at zero torque is the “no-load speed” which, for an ac induction motor, 
is also the “synchronous speed.”

Typically, these experimental curves are obtained as follows. The supply voltage to the 
motor windings is maintained constant; a known load (torque) is applied to the motor 
shaft; and once the conditions become steady (i.e., constant speed) the motor speed is 
 measured. The experiment is repeated for increments of torques within an appropriate 
range. This gives one operating curve, for a specified supply voltage. The experiment is 
repeated for other supply voltages and a series of curves are obtained.

It should be noted that the motor speed is maintained steady in these experiments as they 
represent “steady” operating conditions. That means the motor inertia (inertial torque) is 
not accounted for in these curves, while mechanical damping is. Hence, motor inertia has 
to be introduced separately when using these curves to determine a “dynamic” model for a 
motor. Since mechanical damping is included in the measurements, it should not be intro-
duced again. Of course, if the motor is connected to an external load, the damping, inertia, 
and flexibility of the load all have to be accounted for separately when using experimental 
operating curves of motors in developing models for motor-integrated dynamic systems.

ωm

Tm

v

Ts

(c)

ωo

(a) (b)
Speed ωm

Motor torque Tm

Small
slope

v
ωo

ωm

Tm

v

Ts

Figure 3.8
Torque-speed operating curves of dc motors. (a) Shunt-wound. (b) Series-wound. (c) Compound-wound.
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3.4.2 linear Models for Motor Control

Consider an experimental set of steady-state operating curves for a motor, each obtained 
at a constant supply/control voltage. In particular consider one curve measured at voltage 
vc and the other measured at voltage vc + ∆vc, where ∆Tm is the voltage increment from one 
operating to the other, as shown in Figure 3..9.

Draw a tangent to the first curve at a selected point (operating point O). The slope of the 
tangent is negative, as shown. Its magnitude b is given by

 Damping constant b
Tm

m vc

= -
=

î
îw constant

 = slope at O (3..2.8)

It should be clear that b represents an equivalent rotary damping constant (torque/angu-
lar speed) that includes both electro-magnetic and mechanical damping effects in the 
motor. The included mechanical damping comes primarily from the friction of the motor 
bearings and aerodynamic effects. Since a specific load is not considered in the operating 
curve, load damping is not included.

Draw a vertical line through the operating point O to intersect the other operating curve. 
We get:
∆Tm = torque intercept between the two curves
Since a vertical line is a constant speed line, we have

 Voltage gain k
T
v

T
vv

m

c

m

cm

= =
=

î
î w constant

∆
∆

 (3..2.9)

Since the motor torque Tm is a function of both motor speed wm and the input voltage vc 
(i.e., Tm = Tm(wm, vc)) we write from basic calculus:

 d
w

dw d
w

T
T T

v
vm

m

m v
m

m

c
c

c m

= +î
î

î
î

 (3..3.0a)

Motor torque
Tm

Motor speed ωm

∆Tm

vc+∆vc

b
vc1 O

Figure 3.9
Two steady-state operating curves of a motor at constant input voltage.
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or

  dTm = -bdwm + kvdvc (3..3.0)

where the motor damping constant b and the voltage gain kv are given by Equations 3..2.8 
and 3..2.9, respectively.

Equation 3..3.0 represents a linearized model of the motor. The torque needed to drive 
rotor inertia of the motor is not included in this equation (because steady-state curves 
are used in determining parameters). The inertia term should be explicitly present in the 
mechanical equation of the motor rotor, as given by Newton’s second law (see Figure 3..10), 
in the linearized (incremental) form:

 J
d

dt
T Tm

m
m L

dw d d= -  (3..3.1)

where Jm is the moment of inertia of the motor rotor and TL is the load torque (equivalent 
torque applied on the motor by the load that is driven by the motor).

Note that mechanical damping of the motor, as shown in Figure 3..10, is not included 
in Equation 3..3.1 because it (and electro-magnetic damping) is already included in 
Equation 3..3.0.

Problems

PROBLEM 3.1

What precautions may be taken in developing and operating a mechanical system, in 
order to reduce system nonlinearities?

Read about the followings nonlinear phenomena:

 i. Saturation
 ii. Hysteresis

Load shaft

Damping

Magnetic
torque

Jm

Load torque
TLTm

Motor rotor

bm

Figure 3.10
Mechanical system of the motor.
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 iii. Jump phenomena
 iv. Frequency creation
 v. Limit cycle
 vi. Deadband

 Two types of nonlinearities are shown in Figure P3..1.

In each case indicate the difficulties of developing an analytical for operation near:

 i. Point O
 ii. Point A

PROBLEM 3.2

An excitation was applied to a system and its response was observed. Then the 
excitation was doubled. It was found that the response also doubled. Is the system 
linear?

PROBLEM 3.3

 a. Determine the derivative d
dx

x|x|.

 b. Linearize the following terms about the operating point x = 2. :

 (i) 3.x3.

 (ii) |x|
 (iii) x2.

PROBLEM 3.4

A nonlinear device obeys the relationship y = y(u) and has an operating curve as shown 
in Figure P3..4.

 i. Is this device a dynamic system?
A linear model of the form y = ku is to be determined for operation of the device:

 ii. In a small neighborhood of point B
 iii. Over the entire range from A to B.

Suggest a suitable value for k in each case.

A

O Input

Output

Input

Output

O

A

(a) (b)

Figure P3.1
Two types of nonlinearities. (a) Ideal saturation. (b) Hysteresis.
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PROBLEM 3.5

A nonlinear damper is connected to a mechanical system as shown in Figure P3..5. The 
force f, which is exerted by the damper on the system, is c(v2. – v1)2. where c is a constant 
parameter.

 i. Give an analytical expression for f in terms of v1, v2., and c, which will be generally 
valid.

 ii. Give an appropriate linear model.
 iii. If the operating velocities v1 and v2. are equal, what will be the linear model about 

(in the neighborhood of) this operating point?

PROBLEM 3.6

Suppose that a system is in equilibrium under the forces Fi and Fo as shown in  
Figure P3..6. If the point of application of Fi is given a small “virtual” displacement x in 
the same direction as the force, suppose that the location of Fo moves through y = k x in 
the opposite direction to Fo.

 i. Determine Fo in terms of Fi (this is a result of the “principle of virtual work”).
 ii. What is the relationship between the small changes F̂i  and ˆ ,Fo  about the  operating 

conditions Fi and Fo , assuming that the system is in equilibrium?

B

Input

Output

A

Figure P3.4
The characteristic curve of a nonlinear device.

f

Nonlinear
(quadratic)

damper
System

v1

v2

Figure P3.5
A nonlinear mechanical system.
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PROBLEM 3.7

Characteristic curves of an armature-controlled dc motor are as shown in Figure P3..7. 
These are torque versus speed curves, measured at a constant armature voltage, at 
steady-state. For the neighborhood of point P, a linear model of the form

 ˆ ˆ ˆw = +k v k T1 2.

needs to be determined, for use in motor control. The following information is given:

The slope of the curve at P = -a.
The voltage change in the two adjacent curves at point P = ∆V.
Corresponding speed change (at constant load torque through P) = ∆w .
Estimate the parameters k1 and k2..

System
in equilibrium

Fo

Fi

x

Figure P3.6
Virtual displacement of a system in equilibrium.

Speed ω∆ω

Load
torque

T

Curves at constant
armature voltage P

V

V+∆V

Figure P3.7
Characteristic curves of an armature-controlled dc motor.
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PROBLEM 3.8

An air circulation fan system of a building is shown in Figure P3..8a, and a simplified 
model of the system may be developed, as represented in Figure P3..8b.

The induction motor is represented as a torque source t (t). The speed w of the fan, 
which determines the volume flow rate of air, is of interest. The moment of inertia of 
the fan impeller is J. The energy dissipation in the fan is modeled by a linear viscous 
damping component (of damping constant b) and a quadratic aerodynamic damping 
component (of coefficient d).

 a. Show that the system equation may be given by

 J b d tw w w w t+ + = ( )

 b. Suppose that the motor torque is given by

 t t t( ) ˆ sint ta= + Ω

 in which t  is the steady torque and t̂ a  is a very small amplitude (compared to t )  
of the torque fluctuations at frequency Ω. Determine the steady-state operating 
speed w  (which is assumed positive) of the fan.

 c. Linearize the model about the steady-state operating conditions and express it in 
terms of the speed fluctuations ŵ . From this, estimate the amplitude of the speed 
fluctuations.

PROBLEM 3.9

 a. Linearized models of nonlinear systems are commonly used in model-based con-
trol of processes. What is the main assumption that is made in using a linearized 
model to represent a nonlinear system?

 b. A three-phase induction motor is used to drive a centrifugal pump for incompress-
ible fluids. To reduce misalignment and associated problems such as vibration, 
noise, and wear, a flexible coupling is used for connecting the motor shaft to the 
pump shaft. A schematic representation of the system is shown in Figure P3..9.

Assume that the motor is a “torque source” of torque Tm, which is being applied to the 
motor of inertia Jm. Also, the following variables and parameters are defined for the 
system:

Jp  = moment of inertia of the pump impeller assembly
Ωm = angular speed of the motor rotor/shaft

(a)

Fan Air in

Speed ω

Induction
motor

Air out (b)

Impeller
inertia

J 
Motor              τ(t) ω
torque

Figure P3.8
(a) A motor-fan combination of a building ventilation system. (b) A simplified model of the ven-
tilation fan.
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Ωp = angular speed of the pump impeller/shaft
k  = torsional stiffness of the flexible coupling
Tf  = torque transmitted through the flexible coupling
Q  = volume flow rate of the pump
bm  = equivalent viscous damping constant of the motor rotor.

Also, assume that the net torque required at the ump shaft, to pump fluid steadily at 
a volume flow rate Q, is given by bpΩp, where Q = VpΩp and Vp = volumetric parameter of 
the pump (assumed constant).

Using Tm as the input and Q as the output of the system, develop a complete state-
space model for the system. Identify the model matrices A, B, C, and D in the usual 
notation, in this model. What is the order of the system?

 c. In (a) suppose that the motor torque is given by

 T
aSV

S Sm
f

b

=
+[ ]

2.

2.1 ( )

where the fractional slip S of the motor is defined as

 S m

s

= -1
Ω
Ω

Note that a and Sb are constant parameters of the motor. Also,

Ωs = no-load (i.e., synchronous) speed of the motor
Vf  = amplitude of the voltage applied to each phase winding (field) of the motor.

In voltage control Vf is used as the input, and in frequency control Ωs is used as the input. 
For combined voltage control and frequency control, derive a linearized state-space model, 
using the incremental variables V̂f  and Ωs, about the operating values Vf sand Ω , as the 
inputs to the system, and the incremental flow Q̂ as the output.

Flow out

Q =VpΩp

Flow in

Flexible
coupling

Induction
motor

Centrifugal
pump

Jm , bm

Ωm
Ωp

Jp

bpk

Figure P3.9
A centrifugal pump driven by an inductor motor.
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PROBLEM 3.10

 a. What are A-type elements and what are T-type elements?
 Classify mechanical inertia, mechanical spring, fluid inertia and fluid capacitor into 

these two types. Explain a possible conflict that can arise due to this classification.
 b. A system that is used to pump an incompressible fluid from a reservoir into an 

open overhead tank is schematically shown in Figure P3..10. The tank has a uni-
form across section of area A.

The pump is considered a pressure source of pressure difference P(t). A valve of con-
stant kv is placed near the pump in the long pipe line, which leads to the overhead tank. 
The valve equation is Q = kv P P1 2.-  in which Q is the volume flow rate of the fluid. The 
resistance to the fluid flow in the pipe may be modeled as Q = kp P P2. 3.-  in which kp is 
a pipe flow constant. The effect of the accelerating fluid is represented by the linear 
 equation I(dQ/dt) = P3. - P4 in which I denotes the fluids inertance. Pressures P1, P2., P3., 
and P4 are as marked along the pipe length, in Figure P3..10. Also P0 denotes the ambient 
pressure.

 i. Using Q and P40 as the state variables, the pump pressure P(t) as the input variable, 
and the fluid level H in the tank as the output variable, obtain a complete (nonlin-
ear) state-space model for the system. Note: P40 = P4 – P0. Density of the fluid = r.

 ii. Linearize the state equations about an operating point given by flow rate Q. 
Determine the model matrices A, B, C, and D for the linear model.

 iii. What is the combined linear resistance of the valve and piping?

PROBLEM 3.11

List several response characteristics of nonlinear systems that are not exhibited by 
 linear systems in general. Also, determine the response y of the nonlinear system

 
dy
dt

u t





=
1 3./

( )

when excited by the input u(t) = a1 sin w1t + a2. sin w2.t.
What characteristic of a nonlinear system does this result illustrate?

Tank
cross-section A

H

P(t)
+

Q

P1 kv P2 kp P3 I P4

P0

P0

Figure P3.10
A pumping system for an overhead tank.
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PROBLEM 3.12

Consider a mechanical component whose response x is governed by the relationship

 f = f x x( , )

where f denotes the applied (input) force and x  denotes velocity. The following three 
special cases are considered:

 a. Linear spring: f = kx
 b. Linear spring with a viscous (linear) damper: f kx bx= + 
 c. Linear spring with Coulomb friction: f kx f xc= + sgn( )

Suppose that a harmonic excitation of the form f  =  fo sin wt is applied in each case. 
Sketch the force–displacement curves for the three cases at steady-state. Which compo-
nents exhibit hysteresis? Which components are nonlinear? Discuss your answers.
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4
Linear Graphs

Among the graphical tools for developing and representing a model of a dynamic sys-
tem, linear graphs take an important place. In particular, state-space models of lumped-
 parameter dynamic systems; regardless of whether they are mechanical, electrical, fluid, 
thermal, or multidomain (mixed) systems; can be conveniently developed by linear graphs. 
Interconnected line segments (called branches) are used in a linear graph to represent a 
dynamic model. The term “linear graph” stems from this use of line segments, and does 
not mean that the system itself has to be linear. Particular advantages of using linear 
graphs for model development and representation are: they allow visualization of the 
 system  structure (even before formulating an analytical model); they help identify simi-
larities (structure, performance, etc.) in different types of systems; they are applicable for 
multidomain systems (the same approach is used in any domain); and they provide a uni-
fied approach to model multifunctional devices (e.g., a piezoelectric device which can func-
tion as both a sensors and an actuator). This chapter presents the use of linear graphs in the 
development of analytical models for mechanical, electrical, fluid, and thermal systems.

4.1 Variables and Sign Convention

Linear graphs systematically use through variables and across variables in providing a 
unified approach for the modeling of dynamic systems in multiple domains (mechanical, 
electrical, fluid, thermal). In accomplishing this objective it is important to adhere to stan-
dard and uniform conventions so that that there will not be ambiguities in a given linear 
graph representation. In particular, a standard sign convention must be established. These 
issues are discussed in this section.

4.1.1 Through Variables and across Variables

Each branch in the linear graph model has one through variable and one across variable asso-
ciated with it. Their product is the power variable. For instance, in a hydraulic or pneu-
matic system, a pressure “across” an element causes some change of fluid flow “through” 
the element. The across variable is the pressure, the through variable is the flow. Table 4.1 
lists the through and across variable pairs for the four domains considered in the present 
treatment.

4.1.2 Sign Convention

Consider Figure 4.1 where a general basic element (strictly, a single-port element, as dis-
cussed later) of a dynamic system is shown. In the linear graph representation, as shown in 
Figure 4.1b, the element is shown as a branch (i.e., a line segment). One end of any branch is 
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98 Modeling and Control of Engineering Systems

selected as the point of reference and the other end automatically becomes the point of action 
(see Figure 4.1a and c). The choice is somewhat arbitrary, and may reflect the physics of the 
actual system. An oriented branch is one to which a direction is assigned, using an arrow-
head, as in Figure 4.1b. The arrow head denotes the positive direction of power flow at each 
end of the element. By convention, the positive direction of power is taken as “into” the 
 element at the point of action, and “out of” the element at the point of reference. According 
to this convention, the arrowhead of a branch is always pointed toward the point of refer-
ence. In this manner the reference point and the action point are easily identified.

The across variable is always given relative to the point of reference. It is also con-
venient to give the through variable f and the across variable v as an ordered pair ( f v) 
on one side of the branch, as in Figure 4.1b. Clearly, the relationship between f and v 
(the constitutive relation or physical relation, as discussed in Chapters 2. and 3.) can be 
linear or nonlinear. The parameter of the element (e.g., mass, capacitance) is shown on 
the other side of the branch. It should be noted that the direction of a branch does not 
represent the positive direction of f or v. For example, when the positive directions of 
both f and v are changed, as in Figure 4.1a and c, the linear graph remains unchanged, 
as in Figure 4.1b, because the positive direction of power flow remains the same. In a 
given problem, the positive direction of any one of the two variables f and v should be 
preestablished for each branch. Then the corresponding positive direction of the other 
variable is  automatically determined by the convention used to orient linear graphs. It 
is customary to assign the same positive direction for f (and v) and the power flow at the 
point of action (i.e., the convention shown in Figure 4.1a is customary, not Figure 4.1c). 
Then the positive directions of the variables at the point of reference are automatically 
established.

Note that in a branch (line segment), the through variable ( f ) is transmitted through 
the element with no change in value; it is the “through” variable. The absolute value of 
the across variable, however, changes across the element (from v2. to v1, in Figure 4.1a). In 
fact, it is this change (v = v2. – v1) across the element that is called the across variable. For 

Table 4.1

Through and Across Variable Pairs in Several Domains

System Type (domain) Through Variable Across Variable

Hydraulic/pneumatic Flow rate Pressure
Electrical Current Voltage
Mechanical Force/torque Velocity/angular velocity
Thermal Heat transfer Temperature

Element
12

f f

v2 v1

v = v2 – v1Point of action
(power in)

Point of reference
(power out)

Energy stored
or dissipated

(a)

Element
12

f f

v = v2 – v1

f, v

12

v2 v1

(b) (c)

Figure 4.1
Sign convention for a linear graph. (a) A basic element and positive directions of its variables. (b) Linear graph 
branch of the element. (c) An alternative sign convention.
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example, v2. and v1 may represent electric potentials at the two ends of an electric element 
(e.g., a resistor) and then v represents the voltage across the element. According, the across 
variable, is measured relative to the point of reference of the particular element.

According to the sign convention shown in Figure 4.1, the work done on the element at 
the point of action (by an external device) is positive (i.e., power flows in), and work done 
by the element at the point of reference (on an external load or environment) is positive 
(i.e., power flows out). The difference in the work done on the element and the work done 
by the element (i.e., the difference in the work flow at the point of action and the point of 
reference) is either stored as energy (e.g., kinetic energy of a mass; potential energy of a 
spring; electrostatic energy of a capacitor; electromagnetic energy of an inductor), which 
has the capacity to do additional work; or dissipated (e.g., mechanical damper; electri-
cal resistor) through various mechanisms manifested as heat transfer, noise, and other 
phenomena.

In summary:

 1. An element (a single-port element) is represented by a line segment (branch). One 
end is the point of action and the other end is the point of reference.

 2.. The through variable f is the same at the point of action and the point of reference 
of an element; the across variable differs, and it is this difference (value relative to 
the point of reference) that is called the across variable v.

 3.. The variable pair ( f, v) of the element is shown on one side of the branch. Their 
relationship (constitutive relation) can be linear or nonlinear. The parameter of the 
element is shown on the other side of the branch.

 4. Power flow p is the product of the through variable and the across variable. By con-
vention, at the point of action, f and p are taken to be positive in the same direction; 
at the point of reference, f is positive in the opposite direction.

 5. The positive direction of power flow p (or energy or work) is into the element at 
the point of action; and out of the element at the point of reference. This direction 
is shown by an arrow on the linear graph branch (an oriented branch).

 6. The difference in the energy flows at the two ends of the element is either stored 
(with capacity to do further work) or dissipated, depending on the element type.

Linear graph representation is particularly useful in understanding rates of energy 
transfer (power) associated with various phenomena, and dynamic interactions in a physi-
cal system (mechanical, electrical, fluid, etc.) can be interpreted in terms of power trans-
fer. Power is the product of a through variable (a generalized force or current) and the 
corresponding across variable (a generalized velocity or voltage). For example, consider a 
mechanical system. The total work done on the system is, in part, used as stored energy 
(kinetic and potential) and the remainder is dissipated. Stored energy can be completely 
recovered when the system is brought back to its original state (i.e., when the cycle is 
 completed). Such a process is reversible. On the other hand, dissipation corresponds to irre-
versible energy transfer that cannot be recovered by returning the system to its initial state. 
(A fraction of the mechanical energy lost in this manner could be recovered, in principle, 
by operating a heat engine, but we shall not go into these thermodynamic details which 
are beyond the present scope). Energy dissipation may appear in many forms including 
temperature rise (a molecular phenomenon), noise (an acoustic phenomenon), or work 
used up in wear mechanisms.
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4.2 Linear Graph Elements

Many types of basic elements exist, which can be used in the development of a linear 
graph for a dynamic system. In this section we will discuss two types of basic elements 
in the categories of single-port elements and two-port elements. Analogous elements in 
these categories exist across the domains (mechanical, electrical, fluid, and thermal) for 
the most part.

4.2.1 Single-Port elements

Single-port (or, single energy port) elements are those that can be represented by a single 
branch (single line segment) of linear graph. These elements possess only one power (or 
energy) variable; hence the name “single-port.” They have two terminals. The general form 
of these elements is shown in Figure 4.1b.

In modeling mechanical systems we require three passive single-port elements, as shown 
in Figure 4.2.. These lumped-parameter mechanical elements are mass (or inertia), spring, 
and dashpot/damper. Although translatory mechanical elements are presented in Figure 
4.2., corresponding rotary elements are easy to visualize: f denotes an applied torque and v 
the relative angular velocity in the same direction. Note that the linear graph of an inertia 
element has a broken line segment. This is because, through an inertia, the force does not 
physically travel from one end of its linear graph branch to the other end, but rather the 
force “felt” at the two ends. This will be further discussed in Example 4.1.

mf

v2 = v v1 = 0

f f, v

Energy storage element (inertia/mass)
Mass = m

k

f f

v2
v = v2 – v1

v1

v2 v1

v = v2 – v1

ff
b

v = (1/m) f

f = mx = mv

f = kx = kv

f = kx

Energy storage element (spring)
Stiffness = k

Energy dissipation element (damper)
damping constant = b

m 

f, v
k

f, v
b 

f = bv

Figure 4.2
Single-port mechanical system elements and their linear-graph representations.
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Analogous single-port electrical elements may be represented in a similar manner. These 
are shown in Figure 4.3..

4.2.1.1 Source Elements

In linear graph models, system inputs are represented by source elements. There are two 
types of sources, as shown in Figure 4.4.

a. T-type source (e.g., force source, current source):
The independent variable (i.e., the source output, which is the system input) is the through 
variable f. The arrow head indicates the positive direction of f.

Note: For a T-type source, the sign convention that the arrow gives the positive direc-
tion of f still holds. However, the sign convention that the arrow is from the point of 
action to the point of reference (or the direction of the drop in the across variable) does 
not hold.

b. A-type source (e.g., velocity source, voltage source):
The independent variable is the across variable v. The arrow head indicates the positive 
direction of the “drop” in v. Note: + and - signs are also indicated, where the drop in v 
occurs from + to - terminals.

Note: For an A-type source, the sign convention that the arrow is from the point of action 
to the point of reference (or the direction of the drop in the across variable) holds.

However, the sign convention that the arrow gives the positive direction of f does not 
hold.

i, v

Energy storage element (capacitor)
Capacitance = C

dvC dt = i

diL dt = v

Energy storage element (inductor)
Inductance = L

Energy dissipation element (resistor)
Resistance = R

+ –

C

i, v
L

i , v
RR

v

+ –v

+ –v

Ci

Li

i

v = Ri

Figure 4.3
Single-port electrical system elements and their linear-graph representations.
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An ideal force source (a through-variable source) is able to supply a force input that is 
not affected by interactions with the rest of the system. The corresponding relative velocity 
across the force source, however, will vary as determined by the dynamics of the overall 
system. It should be clear that the direction of f(t) as shown in Figure 4.4a is the applied 
force. The reaction on the source would be in the opposite direction. An ideal velocity 
source (across-variable source) supplies a velocity input independent of the system to which 
it is applied. The corresponding force is, of course, determined by the system dynamics.

4.2.1.2 Effects of Source Elements

We have noted that the source variable (independent variable or input variable) of a source 
is unaffected by the dynamics of the system to which the source is connected. But the 
 covariable (dependent variable) will change. Another property associated with source 
 elements is identified next.

Source elements can serve as a means of inhibiting interactions between systems. 
Specifically, it follows from the definition of an ideal source that the dynamic behavior 
of a system is not affected by connecting a new system in series with an existing T-type 
source (e.g., force source or current source) or in parallel with an existing A-type source 
(e.g., velocity source or voltage source). Conversely, then, the original system is not affected 
by removing the connected new system, in each case. These two situations are illustrated 
in Figure 4.5. In general, linking (networking) a subsystem will change the order of the 
overall system (because new dynamic interactions are introduced) although the two situ-
ations in Figure 4.5 are examples where this does not happen. Another way to interpret 
these situations is to consider the original system and the new system as two uncoupled 
subsystems driven by the same input source. In this sense, the order of the overall system 
is the sum of the order of the individual (uncoupled) subsystems.

4.2.2 Two-Port elements

A two-port element has two energy ports and two separate, yet coupled, branches cor-
responding to them. These elements can be interpreted as a pair of single-port elements 
whose net power is zero. A transformer (mechanical, electrical, fluid, etc.) is a two-port 

f (t)

Point of action

v
(a) f (t)(b)

Point of action

(c)

f
Point of action

v (t) (d)

v(t)Reference
g

Reference
g

Point of action

+–

Figure 4.4
(a) T-type source (through variable input). (b) Linear graph representation of a T-type source. (c) A-type source.  
(d) Linear graph representation of an A-type source.
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element. Also, a mechanical gyrator is a two-port element. Examples of mechanical trans-
formers are a lever and pulley for translatory motions and a meshed pair of gear wheels 
for rotation. A gyrator is typically an element that displays gyroscopic properties. We 
shall consider only the linear case; i.e., ideal transformers and gyrators only. The extension 
to the nonlinear case should be clear.

4.2.2.1 Transformer

In an ideal transformer, the across variables in the two ports (branches) are changed with-
out dissipating or storing energy in the process. Hence the through variables in the two 
ports will also change. Examples of mechanical, electrical, and fluid transformers are 
shown in Figure 4.6a through d. The linear graph representation of a transformer is given 
in Figure 4.6e.

In Figure 4.6e, as for a single-port passive element, the arrows on the two branches (line 
segments) give the positive direction of power flow (i.e., when the product of the through 
variable and the across variable for that segment is positive). One of the two ports may be 
considered the input port and the other the output port. Let

 vi and fi = across and through variables at the input port

 vo and fo = across and through variables at the output port

The (linear) transformation ratio r of the transformer is given by

 vo = r vi (4.1)

Due to the conservation of power we have:

 fivi + fovo = 0 (4.2.)

By substituting Equation 4.1 into Equation 4.2. gives

 f
r

fo i= - 1
 (4.3.)

Here r is a dimensional parameter. The two constitutive relations for a transformer are 
given by Equations 4.1 and 4.3..

Original
system

(a)

=

Original
system

+

Added
system

Added
system

f (t)

f (t)

f (t)

Added
system

Added
system

(b)

= +

v(t)

v(t)

v(t)

+–

+–

+–

Original
systemOriginal

system

Figure 4.5
(a) Two systems connected in series to a T-type source. (b) Two systems connected in parallel to an A-type 
source.
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4.2.2.2 Electrical Transformer

As shown in Figure 4.6c, an electrical transformer has a primary coil, which is energized 
by an ac voltage (vi), a secondary coil in which an ac voltage (vo) is induced, and a common 
core, which helps the linkage of magnetic flux between the two coils. Note that a trans-
former converts vi to vo without making use of an external power source. Hence it is a pas-
sive device, just like a capacitor, inductor, or resistor. The turn ratio of the transformer:

 r
No= number of turns in the secondary coil ( ))

( )number of turns in the primary coil Ni

In Figure 4.6c, the two dots on the top side of the two coils indicate that the two coils are 
wound in the same direction.

In a pure and ideal transformer, there will be full flux linkage without any dissipation of 
energy. Then, the flux linkage will be proportional to the number of turns. Hence

  l o = rl i (4.4)

where l  denotes the flux linkage in each coil. Differentiation of Equation 4.4, noting that 
the induced voltage in coil is given by the rate of charge of flux, gives

 vo = r vi (4.1)

For an ideal transformer, there is no energy dissipation and also the signals will be in 
phase. Hence, the output power will be equal to the input power; thus,

 voio = vi ii (4.2.b)

vi vo
fo

fi

(b)

fi

vi

vo

fo
(a) (c) iivi

Primary turns Ni Secondary turns No

io vo

r= Ni
vi

No vo=

(d) 

Pi

Qi

Ai
Area

Vent A0Area

Frictionless

P0
Q0

Pi Ai = P0 A0 
Ai
A0 Pi

P0r = =

r

fi, vi fo, vo

Reference
g

(e)

fir
fo = −

vo = rvi
1

Figure 4.6
Transformer. (a) Lever. (b) Meshed gear wheels. (c) Electrical transformer. (d) Fluid transformer. (e) Linear graph 
representation.
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Hence, the current relation becomes

 i r io i= 1  (4.3.b)

4.2.2.3 Gyrator

An ideal gyroscope is an example of a mechanical gyrator (Figure 4.7a). It is simply a spin-
ning top that rotates about its own axis at a high angular speed w (positive in the x direc-
tion) and assumed to remain unaffected by other small motions that may be present. If 
the moment of inertia about this axis of rotation (x in the shown configuration) is J, the 
corresponding angular momentum is h = Jw, and this vector is also directed in the positive 
x direction, as shown in Figure 4.7b.

Suppose that the angular momentum vector h is given an incremental rotation dq about 
the positive z axis, as shown. The free end of the gyroscope will move in the positive y 
direction as a result. The resulting change in the angular momentum vector is dh = Jwdq 
in the positive y direction, as shown in Figure 4.7b. Hence the rate of change of angular 
momentum is

 
d
d

wdq
d

h
t

J
t

=  (i)

(b)

J

x

y

z

fi, vi

fo, vo

(a)

ω

δθ

δh = hδθ = j ωδθ

h = jω

L

M

fi , vi fo , vo

Reference
g

(c)

1
vo = Mfi
fo = – viM

Figure 4.7
(a) Gyrator (gyroscope or spinning top)—a two-port element. (b) Derivation of the constitutive equations.  
(c) Linear-graph representation.
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where d t is the time increment of the motion. Hence, in the limit, the rate of change of 
angular momentum is

 
dh
dt

J
d
dt

= w q
 (ii)

If the velocity given to the free end of the gyroscope, in the positive y direction, to gener-
ate this motion is vi (which will result in a force fi at that point, in the positive y direction) 
the corresponding angular velocity about the positive z axis is

 
d
dt

v
L

iq =  (iii)

in which L is the length of the gyroscope. Substitute Equation (iii) in Equation (ii). The rate 
of change of angular momentum is

 
dh
dt

J v
L

i= w  (4.5)

about the positive y direction. By Newton’s second law, to sustain this rate of change of 
angular momentum, it will require a torque equal to Jw vi/L in the same direction. If the 
corresponding force at the free end of the gyroscope is denoted by fo in the positive z-di-
rection, the corresponding torque is foL acting about the negative y-direction. It  follows 
that

 - =f L
J v

Lo
iw
 (4.6)

This may be expressed as

 f
M

vo i= - 1
 (4.7)

By the conservation of power (Equation 4.2.) for an ideal gyroscope, it follows from 
Equation 4.7 that

 vo = Mfi  (4.8)

in which, the gyroscope parameter

 M
L
J

=
2.

w
 (4.9)

Note: M is a “mobility” parameter (velocity/force), as discussed in Chapter 5.
Equations 4.7 and 4.8 are the constitutive equations of a gyrator. The linear graph repre-

sentation of a gyrator is shown in Figure 4.7c.
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4.3 Linear Graph Equations

Three types of equations have to be written to obtain an analytical model from a linear 
graph:

 1. Constitutive equations for all the elements that are not sources (inputs).
 2.. Compatibility equations (loop equations) for all the independent closed paths.
 3.. Continuity equations (node equations) for all the independent junctions of two 

or more branches.

Constitutive equations of elements have been discussed in detail in Chapter 2. and earlier 
in the present chapter. In the examples in Chapter 2., compatibility equations and con-
tinuity equations were not used explicitly because the system variables were chosen to 
satisfy these two types of equations. In modeling of complex dynamic systems, systematic 
approaches, which can be computer-automated, will be useful. In that context, approaches 
are necessary to explicitly write the compatibility equations and continuity equations. The 
related approaches and issues are discussed next.

4.3.1 Compatibility (loop) equations

A loop in a linear graph is a closed path formed by two or more branches. A loop equa-
tion (compatibility equation) is obtained by summing all the across variables along the 
branches of the loop is zero. This is a necessary condition because, at a given point in 
the linear graph there must be a unique value for the across variable, at a given time. For 
example, a mass and a spring connected to the same point must have the same velocity 
at a particular time, and this point must be intact (i.e., does not break or snap); hence, the 
system is “compatible.”

4.3.1.1 Sign Convention

 1. Go in the counter-clockwise direction of the loop.
 2.. In the direction of a branch arrow the across variable drops. This direction is 

taken to be positive (except in a T-source, where the arrow direction indicates an 
increase in its across variable, which is the negative direction).

The arrow in each branch is important, but we need not (and indeed cannot) always go 
in the direction of the arrows in the branches that form a loop. If we do go in the direction 
of the arrow in a branch, the associated across variable is considered positive; when we go 
opposite to the arrow, the associated across variable is considered negative.

4.3.1.2 Number of “Primary” Loops

Primary loops are a “minimal” set of loops from which any other loop in the linear graph 
can be determined. A primary loop set is an “independent” set. It will generate all the 
independent loop equations.

Note: Loops closed by broken-line (inertia) branches should be included as well in count-
ing the primary loops.
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example 4.1

Figure 4.8 shows a mass-spring-damper system and its linear graph. Each element in the linear 
graph forms a branch. As noted before, an inertia element is connected to the reference point 
(ground g) by a dotted line because the mass is not physically connected to ground, but all 
measurements must be referenced to the ground reference point. This reference point “feels” the 
inertia force of the mass. To understand this further, suppose that we push a free mass upwards by 
our hands, imparting it an acceleration. The required force is equal to the inertia force, which is 
the product of mass and acceleration. An equal force is transmitted to the ground though our feet. 
Clearly, the mass itself is not directly connected to the ground, yet the force applied to the mass 
and the force “felt” at the ground are equal. Hence the force “appears” to travel directly through 
the mass element to the ground. Similarly, in Figure 4.8, the input force from the “force source” 
also travels to (“felt at”) the reference point.

In this example, there are three primary loops. Note that loops closed by broken-line (inertia) 
branches are included in counting primary loops. The primary loop set can be chosen as (b - k, 
m - b, and m - f ), or as (b - k, m - b, and f - k), or any three closed paths.

One obvious choice of primary loops in this example is what is marked in Figure 4.8: Loop 1 
(m - k), Loop 2 (k - b), Loop 3 (b - f ). The corresponding loop equations are

 Loop 1 equation: v1 - v2 = 0

 Loop 2 equation: v2 - v3 = 0

 Loop 3 equation: v3 - v = 0

Once one has selected a primary set of loops (three loops in this example), any other loop will 
depend on this primary set. For example, an m - k loop can be obtained by algebraically adding 
the m - b loop and b - k loop (i.e., subtracting the b - k loop from the m - b loop). Similarly, the 
f - m loop is obtained by adding the f - b and b - m loops. That is:

 m - k loop = (m - b loop) - (b - k loop); or Loop 1 = (m - b loop) - Loop 2

 f - m loop = (f - b loop) + (b - m loop); or f - m loop = Loop 3 + (b - m loop)

m

k

f (t)

b

v1

Reference g
Reference g

2

1

m

k
b

f1, v1

f2, v2
f3, v3

f (t), v

Loop
1

Loop
2

Loop
3

(a) (b)

Figure 4.8
(a) A mass-spring-damper system. (b) Linear graph having two nodes and three primary loops.
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We can verify these relations using the three loop equations written before together with the 
following loop equations:

 m - b Loop equation (or b - m Loop equation): v1 - v3 = 0

 f - m Loop equation: v1 - v = 0

This example illustrates that the primary loop set becomes an “independent” set, which is the 
minimum number of loops required to obtain all the independent loop equations.

4.3.2 Continuity (Node) equations

A node is the point where two or more branches meet. A node equation (or, continuity 
equation) is created by equating to zero the sum of all the through variables at a node. 
This holds in view of the fact that a node can neither store nor dissipate energy; in effect 
saying, “what goes in must come out.” Hence, a node equation dictates the continuity of 
the through variables at a node. For this reason one must use proper signs for the variables 
when writing either node equations or loop equations. The sign convention that is used is: 
The through variable “into’’ the node is positive.

The meaning of a node equation in the different domains is:

Mechanical systems: Force balance; equilibrium equation; Newton’s third law; etc.
Electrical systems: Current balance; Kirchoff’s current law; conservation of charge; etc.
Hydraulic systems: Conservation of matter.
Thermal systems: Conservation of energy.

example 4.2

Revisit the problem given in Figure 4.8. The system has two nodes. Corresponding node equations 
are identical, as given below.

 Node 2 equation: - f1 - f2 - f3 + f = 0

 Node 1 equation: f1 + f2 + f3 - f = 0

This example illustrates the following important result:
Required number of node equations = Total number of nodes - 1.

example 4.3

Consider the L-C-R electrical circuit shown in Figure 4.9a. Its linear graph is drawn as in Figure 
4.9b. It should be clear that this electrical system is analogous to the mechanical system of Figure 
4.8. The system has three primary loops; one primary node; and a voltage source. We may select 
any three loops as primary loops; for example, (v-L, L-C, C-R) or (v-C, L-C, C-R) or (v-L, v-C, v-R), 
etc. No matter what set we choose, we will get the same “equivalent” loop equations. In particu-
lar, note that the across variables for all four branches of this linear graph are the same.

For example select Loop 1: L-v; Loop 2: C-L; Loop 3: R-C as the primary loops, as shown in 
Figure 4.9b. The necessary loop equation (three) and the node equations (one) are given below, 
with our standard sign convention.

 Loop 1 equation: - v1 + v = 0
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 Loop 2 equation: - v2 + v1 = 0

 Loop 3 Equation: - v3 + v2 = 0

 Node 2 equation: i - i1 - i2 - i3 + = 0

4.3.3 Series and Parallel Connections

If two elements are connected in series, their through variables are the same but the across 
variables are not the same (they add algebraically). If two elements are connected in paral-
lel, their across variables are the same but the through variables are not the same (they add 
algebraically). These facts are given in Table 4.2..

Let us consider two systems with a spring (k) and a damper (b), and an applied force 
( f(t)). In Figure 4.10a they are connected in parallel, and in Figure 4.10b they are connected 
in series. Their linear graphs are as shown in the figures. Note that the linear graph in (a) 
has two primary loops (two elements in parallel with the force source), whereas in (b) it 
has only one loop, corresponding to all elements in series with the force source. In Table 
4.1 we note the differences in their node and loop equations. These observations should be 
intuitively clear, without even writing the loop and node equations.

4.4 State Models from Linear Graphs

We can obtain a state model of a dynamic system from its linear graph. Each branch in the 
linear graph is a “model” of an actual system element of the system, with an associated “ 
constitutive relation,” As discussed in Chapter 2., for a mechanical system it is justifiable 
to use the velocities of independent inertia elements and the forces through independent 
stiffness (spring) elements as state variables. Similarly, for an electrical system, voltages 
across independent capacitors and currents through independent inductors are appropri-
ate state variables. In general then, in the linear graph approach we use:

State variables: Across variables of independent A-type elements and through variables 
of independent T-type elements.

L C Rv (t)

(a)

+

_
i, v(t) L C R

i1, v1

i2, v2

i3, v3

(b)

Loop
1 Loop

2

Loop
3

1

2

+
–

Figure 4.9
(a) An L-C-R circuit. (b) Its linear graph.
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In obtaining an analytical model from the linear graph of a system we write three types 
of equations:

 1. Constitutive equations for all the branches that are not source (input) elements
 2.. Compatibility equations for the independent loops
 3.. Continuity equations for the independent nodes

This approach will be further elaborated in this section.

4.4.1 System Order

It is known that A-type elements and T-type elements are energy storage elements. The 
system order is given by the number of independent energy-storage elements in the system. 
This is also equal to the number state variables; the order of the state-space model; the 
number of initial conditions required to solve the response of the analytical model; and the 
order of the input–output differential equation model.

The total number of energy storage elements in a system can be greater than the system 
order because some of these elements might not be independent.

4.4.2 Sign Convention

The important first step of developing a state-space model using linear graphs is indeed to 
draw a linear graph for the considered system. A sign convention should be established, as 
discussed before. The sign convention which we use is as follows:

 1. Power flows into the action point and out of the reference point of an element 
(branch). This direction is shown by the branch arrow (which is an oriented 
branch). Exception: In a source element power flows out of the action point.

 2.. Through variable ( f), across variable (v), and power flow ( fv) are positive in the 
same direction at an action point. At reference point, v is positive in the same 

Table 4.2

Series-Connected Systems and Parallel-Connected Systems

Series System Parallel System

Through variables are the same. Across variables are the same.
Across variables are not the same  
(they add algebraically).

Through variables are not the same 
(they add algebraically).

k

f (t)

b
k

b

f (t)

(a) (b)

f (t)

k b

f (t)

Figure 4.10
Spring-damper systems with a force source and their linear graphs. (a) Elements in parallel. (b) Elements in 
series.
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direction given by the linear-graph arrow, but f is taken positive in the opposite 
direction.

 3.. In writing node equations: Flow into a node is positive.
 4. In writing loop equations: Loop direction is counter-clockwise. A potential 

(A-variable) “drop” is positive (same direction as the branch arrow. Exception: In a 
T-source the arrow is in the direction in which the A-variable increases).

Note: Once the sign convention is established, the actual values of the variables can be 
positive or negative depending on their actual direction.

4.4.3 Steps of Obtaining a State Model

The following are the systematic steps for obtaining a set of state equations (a state-space 
model) from a linear graph:

 1. Choose as state variables: Across variables for independent A-type elements and 
through variables for independent T-type elements.

 2.. Write constitutive equations for independent energy storage elements. This will 
give the state-space shell.

 3.. Do similarly for the remaining elements (dependent energy storage elements and 
dissipation—D-type—elements, transformers, etc.).

 4. Write compatibility equations for the primary loops.
 5. Write continuity equations for the primary nodes (total number of nodes-1).
 6. In the state-space shell, retain state and input variables only. Eliminate all other 

variables using the loop and node equations and extra constitutive equations.

4.4.4 general Observation

Now some general observations are made with regard to a linear graph in terms of its 
geometric (topological) characteristics (nodes, loops, branches), elements, unknown and 
known variables, and relevant equations (constitutive, compatibility, and continuity).

First let

 Number of sources = s

 Number of branches = b

Since each source branch has one unknown variable (because one variable is the known 
input to the system—the source output) and all other passive branches have two unknown 
variables each, we have:

 Total number of unknown variables = 2.b - s (4.10)

Since each branch other than a source branch provides one constitutive equation, we 
have:

 Number of constitutive equations = b - s (4.11)
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Let

 Number of primary loops = l

Since each primary loop give a compatibility equation, we have:

 Number of loop (compatibility) equations = l

Let

 Number of nodes = n

Since one of these nodes does not provide an extra node equation, we have:

 Number of node (continuity) equations = n - 1 (4.12.)

Hence,

 Total number of equations = (b - s) + l + (n - 1) = b + l + n - s - 1

To uniquely solve the analytical model we must have:

 Number of unknowns = Number of equations or 2.b - s = b + l + n - s - 1

Hence we have the result

	 l = b - n + 1 (4.13.)

This topological result must be satisfied by any linear graph.

4.4.5 Topological result

As shown before, Equation 4.13. must be satisfied by a linear graph. Now we will prove by 
induction that this topological result indeed holds for any linear graph.

Consider Figure 4.11. Using the notation: Number of sources = s; Number of branches = b; 
Number of nodes = n; we proceed with the following steps.

Step 1: Start with Figure 4.11a: For this graph: l  = 1, b = 2., n = 2..
Hence, Equation 4.13. is satisfied.
Step 2: Add new loop to Figure 4.11a by using m nodes and m + 1 branches, as in Figure 

4.11b. For this new graph we have: l = 2.; n = 2. + m; b = 2. + m + 1 = m + 2..
Hence, Equation 4.13. is still satisfied.
Note: m = 0 is a special case.
Step 3: Start with a general linear graph having l loops, b ranches, and n nodes that  

satisfies Equation 4.13.. This is the general case of Step 1—Figure 4.11a.
Add a new loop by using m nodes and m + 1 branches (as in Step 2.).
We have

  l	 l + 1; n	 n + m; b	 b + m + 1

Equation 4.12. is still satisfied by these new values.
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Hence, by induction, Equation 4.13. is true in general.
Now we will present five mechanicalsystem examples to illustrate the development 

of state-space models using linear graphs. Since the approach is unified and uniform 
across various domains, the same approach is applicable in electrical, fluid, thermal, and 
multidomain (i.e., mixed) systems, as will be demonstrated later.

example 4.4

Let us develop a state-space model for the system shown in Figure 4.8, using its linear graph. There are 
four branches and one source. Thus, 2b - s = 7; we will need seven equations to solve for unknowns. 
Note from Figure 4.8 that there are three primary loops. In particular, in this example we have:

Number of line branches b = 4
Number of nodes n = 2
Number of sources s = 1 
Number of primary loops l = 3 
Number of unknowns = v1, f1, v2, f2, v3, f3, v = 7 
(Note: f(t), the input variable, is known)
Number of constitutive equations (one each for m, k, b) = b - s = 3
Number of node equations = n - 1 = 1
Number of loop equations = 3 (because there are three primary loops)

We have:

Total number of equations = constitutive equations + node equations + loop equations = 3 + 1 + 3 = 7.

Hence the system is solvable (seven unknowns and seven equations).
The steps of obtaining the state model are given next.

Step 1. Select state variables: Velocity v1 of mass m and force f2 of spring k  x1 = v1; x2 = f2
Input variable = applied forcing function (force source) f(t).
Step 2. Constitutive equations for m and k: These generate the state-space shell (model 
skeleton):

 From Newton’s second law: v m f1 11= ( / )  (i)

 Hooke’s law for spring: f kv2 2=  (ii)

(a) (b)

Figure 4.11
Proof of topological result. (a) Single loop with two branches. (b) Adding new branches to create a new loop.
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Step 3. remaining constitutive equation (for damper):

 f3 = bv3 (iii)

Step 4. Node and loop equations:

 Node equation (for Node 2): f - f1 - f2 - f3 = 0 (iv)

 Loop equation for Loop 1: v1 - v2 = 0 (v)

 Loop equation for Loop 2: v2 - v3 = 0 (vi)

 Loop equation for loop 3: v3 - v = 0 (vii)

Step 5. eliminate auxiliary variables:
To obtain state model, retain v1 and f2 and eliminate the auxiliary variables fl and v2 in Equations 
(i) and (ii).

From Equation (v): v2  = v1

From Equations (iv) and (iii): f1 = - f2 - bv3 + f  f1 = - f2 - bv1 + f (from Equations (vi) and (v))
Substituting these into the state-space shell (Equations (i) and (ii)) we get the state model:

 


 

v
b
m

v
m

f
m

f

f kv

1 1 2

2

1 1= - - +

=



with the state vector x = [x1 x2]T = [v1 f2]T and the input vector u = f(t).
The model matrices, in the usual notation, are:

 A B=
- -





 = 








b m m

k

m1

0

1

0
;

Note that this is a second-order system, as clear from the fact that the state vector x is a second-
order vector and, further, from the fact that the system matrix A is a 2 × 2 matrix. Also, note that 
in this system, the input vector u has only one element, f(t). Hence it is actually a scalar variable, 
not a vector.

The velocity (v) of the force source is not a state variable, and we need not use Equation (vii). 
When v and f(t) are positive, for example, power from the source flows out into Node 2.

example 4.5

A dynamic absorber is a passive vibration-suppression device, which is mounted on the vibrating 
area of the dynamic system. By properly tuning (selecting the parameters of) the absorber, it is 
possible to “absorb” most of the power supplied by an unwanted excitation (e.g., support motion, 
imbalance in rotating parts) in sustaining the absorber motion such that, in steady operation, the 
vibratory motions of the main system are inhibited. In practice, there should be some damping 
present in the absorber to dissipate the energy flowing into the absorber, without generating exces-
sive motions in the absorber mass. In the example shown in Figure 4.12a, the main system and the 
absorber are modeled as simple oscillators with parameters (m2, k2, b2) and (ml, kl, bl), respectively. 
The linear graph of this system can be drawn in the usual manner, as shown in Figure 4.12b. The 
external excitation (system input) is the velocity u(t) of the support. We note the following:

Number of branches = b = 7
Number of nodes = n = 4
Number of sources = s = 1
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Number of independent loops = l = 4
Number of unknowns = 2b - s = 13 
Number of constitutive equations = b - s = 6
Number of node equations = n - 1 = 3
Number of loop equations = 4

The four loop equations are provided by the four independent loops of the linear graph.
Check: Number of unknowns = 2b - s = 13

 Number of equations = (b - s) + (n - 1) + l = 6 + 3 + 4 = 13.

Hence the analytical model is solvable.

Step 1. Since the system has four independent energy storage elements (ml, m2, kl, k2) it is a fourth-
order system. The state variables are chosen as the across variables of the two masses (velocities v1 
and v2) and the through variables of the two springs (forces f1 and f2). Hence

 x = [x1, x2 x3 x4]T = [v1, v2 f3 f4]T

The input variable is u(t).
Step 2. The skeleton state equations (model shell) are:

 Newton’s second law for mass m1: v m
f1

1
1

1=

 Newton’s second law for mass m2: v m
f2

2
2

1=

 Hooke’s law for spring k1: 
f k v3 1 3=

 Hooke’s law for spring k2: 
f k v4 2 4=

Step 3. The remaining constitutive equations:

 For damper b1: f5 = b1v5

 For damper b2: f6 = b2v6

k2

u(t)

b2

v2

Reference g

Reference g

m2

m1

v1

k1
b1

f2, v2

f3, v3

f, u(t)

f1, v1m1

+
–

m2

k1

b1

f5, v5

k2

f4, v4

b2

f6, v6

(a) (b)

Figure 4.12
(a) A mechanical system with a shock absorber. (b) Linear graph of the system.
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Step 4. The node equations:

  -f1 + f3 + f5 = 0

  -f3 - f5 - f2 + f4 + f6 = 0

  -f4 - f6 + f = 0

The loop equations:

 v1 - v2 + v3 = 0

 v2 - u + v4 = 0

  -v4 + v6 = 0

  -v3 + v5 = 0
Step 5. Eliminating the auxiliary variables in the state-space shell.

The following state equations are obtained:

 





v b m v b m v m f

v b m v

1 1 1 1 1 1 2 1 3

2 1 2 1

1= -( ) + ( ) + ( )
= ( ) - bb b m v m f m f b m u t

f

1 2 2 2 2 3 2 4 2 21 1+( )[ ] - ( ) + ( ) + ( ) ( )


33 1 1 1 2

4 2 2 2

= - +

= - +

k v k v

f k v k u t ( )

This corresponds to:

 System matrix: A = 

-
- + -

-
-

b m b m m

b m b b m m m

k k

1 1 1 1 1

1 2 1 2 1 2 2

1 1

1 0

1 1

0 0

0

( )

kk2 0 0



















 Input distribution matrix: B = 

0

0
2 2

2

b m

k



















example 4.6

Commercial motion controllers are digitally controlled (microprocessor-controlled) high-torque 
devices capable of applying a prescribed motion to a system. Such controlled actuators can 
be considered as velocity sources. Consider an application where a rotatory motion control-
ler is used to position an object, which is coupled through a gear box. The system is modeled 
as in Figure 4.13. We will develop a state-space model for this system using the linear graph 
approach.

Step 1. Note that the two inertia elements m1 and m2 are not independent, and together comprise 
one storage element. Thus, along with the stiffness element, there are only two independent 
energy storage elements. Hence the system is second order. Let us choose as state variables, v1 
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and f2—the across variable of one of the inertias (because the other inertia will be “dependent”) 
and the through variable of the spring.

 Let x1 = v1 and x2 = f2

 Hence [x1  x2]T = [v1  f2]T

Step 2. The constitutive equations for m1 and k:  v
m

f f kv1 1 2 2
1= =;

Step 3. The remaining constitutive equations:

 For damper: f3 = bv3

 For the “dependent” inertia m2: v m
f4

2
4

1=

 For the transformer (pair of meshed gear wheels): v6 = rv5; f6 = -
1
r

 f5

Step 4. The node equations:

  -f6 - f1 = 0

 f - f2 = 0

 f2 - f3 - f4 - f5 = 0

v1

f2, v2

f1, v1

Reference
g

(r)

m1

m2

bu(t)

r

+
_

k

bf3, v3

f4, v4

f5, v5
f6, v6

m2
m1

f, u(t) 

Figure 4.13
(a) Rotary-motion system with a gear transmission. (b) Linear graph of the system.

76868.indb   118 7/8/09   5:06:43 PM



Linear Graphs 119

The loop equations:

 v6 - v1 = 0

 v3 - v4 = 0

 v4 - v5 = 0

  -v2 + u(t) - v3 = 0

Step 5. Eliminate the auxiliary variables.
Using equations from Steps 3 and 4, the auxiliary variable fl can be expressed as:

 f
r

f
b
r

v
m
r

v1 2 1
2

1
1= - -






The auxiliary variable v2 can be expressed as:

 v
r

v u t2 1
1= - + ( )

By substituting these equations into the state-space shell we obtain the following two state 
equations:

 





v
b

m r m
v

r
m r m

f1
1

2
2

1
1

2
2

2= -
+( )









 +

+( )










ff
k
r

v ku t2 1= - + ( )

Note that the system is second-order; only two state equations are present. The corresponding 
system matrix and the input-gain matrix (input distribution matrix) are:

 A B=
-
-






 = 







b m r m

k m k0

0
;

where m = m1r2 + m2 = equivalent inertia of ml and m2 when determined at the location of inertia m2.

example 4.7

 a. List several advantages of using linear graphs in developing a state-space model of a dynamic 
system.

 b. Electrodynamic shakers are commonly used in the dynamic testing of products. One pos-
sible configuration of a shaker/test-object system is shown in Figure 4.14a. A simple, linear, 
lumped-parameter model of the mechanical system is shown in Figure 4.14b.

Note that the driving motor is represented by a torque source Tm. Also, the following parameters 
are indicated:

Jm  = equivalent moment of inertia of motor rotor, shaft, coupling, gears, and the shaker platform
r1  = pitch circle radius of the gear wheel attached to the motor shaft
r2  = pitch circle radius of the gear wheel rocking the shaker platform
l  = lever arm from the center of the rocking gear to the support location of the test object
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mL = equivalent mass of the test object and its support fixture
kL  = stiffness of the support fixture
bL  = equivalent viscous damping constant of the support fixture
ks  = stiffness of the suspension system of the shaker table
bs  = equivalent viscous damping constant of the suspension system.

Since the inertia effects are lumped into equivalent elements it may be assumed that the shafts, 
gearing, platform and the support fixtures are light. The following variables are of interest:

wm = angular speed of the drive motor
vL  = vertical speed of motion of the test object
fL  = equivalent dynamic force of the support fixture (force in spring kL)
fs  = equivalent dynamic force of the suspension system (force in spring ks).

 i. Obtain an expression for the motion ratio:

 r = vertical movement of the shaker table at tthe test object support location
angular movvement of the drive motor shaft

 ii. Draw a linear graph to represent the dynamic model.

(a)

(b)

Drive
oscillator

Gearing

Test object

Support fixtureShaker
platform

DC motor

Jm

Tm

Motor

ωm

2r1

Gearing

2r2

ks
bs

mL

vL

kL
bL

Test
object

Suspension

Table

Support
fixture

l 

Figure 4.14
(a) A dynamic-testing system. (b) A model of the dynamic testing system.
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 iii. Using x = [wm, fs, fL, vL]T as the state vector, u = [Tm] as the input, and y = [vL fL]T as the output 
vector, obtain a complete state-space model for the system. For this purpose you must use 
the linear graph drawn in (ii).

Solution

 a. Linear graphs:

Use physical variables as states.•	
Provide a generalized and unified approach for mechanical, electrical, fluid, and thermal •	
systems. Hence they can be conveniently used in multidomain (i.e., mixed) systems.
Provide a unified approach to model multifunctional devices (e.g., a piezoelectric •	
device which can function as both a sensors and an actuator).
Show the directions of power flow in various parts of the system.•	
Provide a graphical representation of the system model.•	
Allow visualization of the system structure (even before formulating an analytical model).•	
Help identify similarities (structure, performance, etc.) in different types of systems.•	
Provide a systematic approach to automatically (using computer) generate state equations.•	

 b. (i) Let qm = rotation of the motor (drive gear).
 Hence, rotation of the output gear = (r1/r2)qm

 Hence, displacement of the table at the test object support point = l (r1/r2)qm

 Hence, r = l (r1/r2)
 (ii) The linear graph of the system is drawn as in Figure 4.15.
 (iii) Constitutive equations:

State-space shell:

 

J
d
dt

T

df
dt

k v

df
dt

k v

m
dv
dt

f

m
m

s
s

L
L L

L
L

w =

=

=

=

2

5

9

Tm, ω1
T2, ωm

T3, ω3

Jm r

f4, v4

f5, v5
f6, v6

fL, v7

f8, v8

f9, vL

kL

k5 bs

bL

mL

Figure 4.15
Linear graph of the shaker system.
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Others:
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Continuity (Node) equations
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Compatibility (Loop) equations:

 

- + =
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- + =
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L

v v

v v

v v v
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3

4 5
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Elimination/substitution results in the following:

 

J
d
dt

T T T T rf T r f f f fm
m

m m m s L
w = = - = + = + - - - -

=

2 3 4 6 8( )

TT r f b v f b v

T r f f b v b v

m s s L L

m s L s L

- + + +

= - + + +

( )

(

6 8

6 8 ))

 v6 = v5 = v4 = rw3 = rwm

 v8 = v7 = v6 - vL = v5 - vL = v4 - vL = rw3 - vL = rwm - vL

Hence,

 J
d
dt

T r f f r b rb r vm
m

m s L s m L m L
w w w= - + - - -( ) ( )2  (i)

 
df
dt

k v k v k r k rs
s s s s m= = = =5 4 3w w  (ii)

 
df
dt

k v k v v k v v k r v kL
L L L L L L L= = - = - = - =7 6 4 3( ) ( ) ( )w LL m Lr v( )w -  (iii)
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 m
dv
dt

f f f f b v f b r vL
L

L L L L L m L= = + = + = + -9 8 8 ( )w  (iv)

In summary, we have the following state equations:

 J
d
dt

T rf rf r b b rb vm
m

m s L s L m L L
w w= - - - + +2( )

 
df
dt

rks
s m= w

 
df
dt

rk k vL
L m L L= -w

 m
dv
dt

f rb b vL
L

L L m L L= + -w

with vL and fL as the outputs.
In the standard notation: x Ax Bu y Cx Du= + = +and where

 x = [wm, fs, fL, vL]T, u = [Tm], y = [vL fL]T

 A =

- + - - -

-

r
J

b b
r
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; ;C D= =

0 0 0 1

0 0 1 0
0

example 4.8

A robotic sewing system consists of a conventional sewing head. During operation, a panel of gar-
ment is fed by a robotic hand into the sewing head. The sensing and control system of the robotic 
hand ensures that the seam is accurate and the cloth tension is correct in order to guarantee the 
quality of the stitch. The sewing head has a frictional feeding mechanism, which pulls the fabric 
in a cyclic manner away from the robotic hand, using a toothed feeding element. When there is 
slip between the feeding element and the garment, the feeder functions as a force source and the 
applied force is assumed cyclic with a constant amplitude. When there is no slip, however, the 
feeder functions as a velocity source, which is the case during normal operation. The robot hand 
has inertia. There is some flexibility at the mounting location of the hand on the robot. The links of 
the robot are assumed rigid and some of its joints can be locked to reduce the number of degrees 
of freedom, when desired.

Consider the simplified case of a single-degree-of-freedom robot. The corresponding robotic 
sewing system is modeled as in Figure 4.16. Here the robot is modeled as a single moment of 
 inertia Jr which is linked to the hand with a light rack-and-pinion device with its speed transmis-
sion parameter given by:

 
Rack Tanslatory Movement
Pinion Rotatory Moveement

= r
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The drive torque of the robot is Tr and the associated rotatory speed is wr. Under conditions 
of slip the feeder input to the cloth panel is force ff , and with no slip the input is the velocity 
vf. Various energy dissipation mechanisms are modeled as linear viscous damping of damping 
constant b (with corresponding subscripts). The flexibility of various system elements is modeled 
by linear springs with stiffness k. The inertia effects of the cloth panel and the robotic hand are 
denoted by the lumped masses mc and mh, respectively, having velocities vc and vh, as shown in 
Figure 4.16.

Note: The cloth panel is normally in tension with tensile force fc. In order to push the panel, the 
robotic wrist is normally in compression with compressive force fr.

First consider the case of the feeding element with slip:

 a. Draw a linear graph for the model shown in Figure 4.16, orient the graph, and mark all the 
element parameters, through variables and across variables on the graph.

 b. Write all the constitutive equations (element physical equations), independent node equa-
tions (continuity), and independent loop equations (compatibility). What is the order of the 
model?

 c. Develop a complete state-space model for the system. The outputs are taken as the cloth 
tension fc, and the robot speed wr, which represent the two variables that have to be mea-
sured to control the system. Obtain the system matrices A, B, C, and D.

Now consider the case where there is no slip at the feeder element:
 d. What is the order of the system now? How is the linear graph of the model modified for 

this situation? Accordingly, modify the state-space model obtained earlier to represent the 
present situation and from that obtain the new model matrices A, B, C and D.

 e. Generally comment on the validity of the assumptions made in obtaining the model shown 
in Figure 4.16 for a robotic sewing system.

Solution

 a. Linear graph of the system is drawn as in Figure 4.17. Since in this case the feeder input to 
the cloth panel is force ff, a T-source, the arrow of the source element should be retained 
but the + and - signs (used for an A-source) should be removed.

 b. In the present operation ff is an input. This case corresponds to a fifth-order model, as will 
be clear from the development given below.

 Constitutive equations:

bh

mh

kr

bc

(Normally
compressed)

Hand
Robot

mc
br

kcfc
fr

ff , vf

Feeder
element

Cloth panel
vc

Jr

Rack

Pinion

ωm

Tr

vh

(Normally
tensioned)

Figure 4.16
A robotic sewing system.
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Figure 4.17
Linear graph of the robotic sewing system.

76868.indb   125 7/8/09   5:06:51 PM



126 Modeling and Control of Engineering Systems

 Continuity equations (Node equations):

 Node A: Tr - T1 - T2 = 0

 Node B: -f1 - f2 - fr = 0

 Node C: fr + fc + f7 - f5 - f4 = 0

 Node D: -fc + ff - f8 - f7 = 0

 Compatibility equations (Loop equations):
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- + + =

- + =

-

w w

w w

1

1 2

1 2

1 3

5

0

0

0

0

0

v v
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h c
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6 7
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 c. Eliminate unwanted variables as follows:
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 State-space model:
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; C = 
0 0 0 1 0
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 ; D = 0

 d. In this case, vf is an input, which is an A-source. The corresponding element in the linear 
graph given in Figure 4.17 should be modified to account for this. Specifically, the direc-
tion of the arrow of this source element should be reversed (because it is an A-source) and 
the + and - signs (used for an A-source) should be retained. Furthermore, the inertia element 
mc ceases to influence the dynamics of the overall system because, vc = vf in this case and is 
completely specified. This results from the fact that any elements connected in parallel with 
an A-source have no effect on the rest of the system. Accordingly, the branch representing 
the mc element should be removed from the linear graph.

Hence, we now have a fourth-order model, with

 State vector x = [ ]w r r h c
T

f v f ; Input vector u =  T vr f
T[ ]
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State model:
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 e. In practice, the cloth panel is not a rigid and lumped mass; damping and flexibility effects are 
 nonlinear; and conditions of pure force source and pure velocity source may not be maintained.

4.5 Miscellaneous Examples

Thus far in this chapter we have primarily considered the modeling of lumped-parameter 
mechanical systems—systems with inertia, flexibility, and mechanical energy dissipation. 
In view of the analogies that exist between mechanical, electrical, fluid, and thermal compo-
nents and associated variables, there is an “analytical” similarity between these four types of 
physical systems. Accordingly, once we have developed procedures for modeling and analy-
sis of one type of systems (say, mechanical systems) the same procedures may be extended 
(in an “analogous” manner) to the other three types of systems. This fact is exploited in the 
use of linear graphs in modeling mechanical, electrical, fluid, and thermal systems, in a uni-
fied manner, using essentially the same procedures. Furthermore, for this reason, a unified 
and integrated procedure is provided through linear graphs to model multidomain (mixed 
systems); for example electro-mechanical or mechatronic systems—systems that use a com-
bination of two or more types of physical components (mechanical, electrical, fluid, and 
thermal) in a convenient manner. In this section first we will introduce two useful compo-
nents: amplifier and dc motor, which are useful in electrical, electro-mechanical, and other 
types of multidomain systems. We will end the section with examples.

4.5.1 amplifiers

An amplifier is a common component, primarily in an electrical system or electrical sub-
system. Purely mechanical, fluid, and thermal amplifiers have been developed and envis-
aged as well. Two common characteristics of an amplifier are:

 1. They accomplish tasks of signal amplification.
 2.. They are active devices (i.e., they need an external power to operate).
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 3.. They are not affected (ideally) by the load which they drive (i.e., loading effects are 
small).

 4. They have a decoupling effect on systems (i.e., the desirable effect of reducing 
dynamic interactions between components).

Electrical signals voltage, current, and power are amplified using voltage amplifiers, 
current amplifiers, and power amplifiers, respectively. Operational amplifiers (opamps) 
are the basic building block in constructing these amplifiers. Particularly, an opamp, with 
feedback provides the desirable characteristics of: very high input impedance, low output 
impedance, and stable operation. For example, due to its impedance characteristics, the 
output characteristics of a good amplifier are not affected by the device (load) that is con-
nected to its output. In other words electrical loading errors are negligible.

Analogous to electrical amplifiers, a mechanical amplifier can be designed to provide 
force amplification (a T-type amplifier) or a fluid amplifier can be designed to provide pres-
sure amplification (an A-type amplifier). In these situations, typically, the device is active 
and an external power source is needed to operate the amplifier (e.g., to drive a motor-
mechanical load combination).

4.5.1.1 Linear Graph Representation

In its linear graph representation, an amplifier is considered as a “dependent source” 
element or a “modulated source” element. Specifically, the amplifier output depends on 
(modulated by) the amplifier input, and is not affected by the dynamics of any devices 
that are connected to the output of the amplifier (i.e., the load of the amplifier). This is the 
ideal case. In practice some loading error will be present (i.e., the amplifier output will be 
affected by the load which it drives).

The linear graph representations of an across-variable amplifier (e.g., voltage amplifier, 
pressure amplifier) and a through-variable amplifier (e.g., current amplifier, force  amplifier) 
are shown in Figure 4.18a and b, respectively. The pertinent constitutive equations in the 
general and linear cases are given as well in the figures.

i0 = kii

(Linear amplifier)

(b)
i0(t), v0

i0 = f (ii)

+

–

ii , vi i0 , v0(t)

v0 = f (vi)

v0 = kvi
(Linear amplifier)

(a)

ii , vi

Figure 4.18
Linear graph representation of (a) an across-variable amplifier (A-type amplifier) and (b) a through-variable 
amplifier (T-type amplifier).
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4.5.2 DC Motor

The dc motor is a commonly used electrical actuator. It converts dc electrical energy into 
mechanical energy. The principle of operation is based on the fact that when a conductor 
carrying current is placed in a magnetic field, a force is generated (Lorentz’s law). It is this 
force, which results from the interaction of two magnetic fields, that is presented as the 
magnetic torque in the rotor of the motor.

A dc motor has a stator and a rotor (armature) with windings which are excited by a 
field voltage vf and an armature voltage va, respectively. The equivalent circuit of a dc 
motor is shown in Figure 4.19a, where the field circuit and the armature circuit are shown 
separately, with the corresponding supply voltages. This is the separately excited case. If 
the stator filed is provided by a permanent magnet, then the stator circuit that is shown 
in Figure 4.19a is simply an equivalent circuit, where the stator current if can be assumed 
constant. Similarly, if the rotor is a permanent magnet, what is shown in Figure 4.19a is an 
equivalent circuit where the armature current ia can be assumed constant. The magnetic 
torque of the motor is generated by the interaction of the stator field (proportional to if) and 
the rotor field (proportional to ia) and is given by

 Tm = kif  ia (4.14)

A back-electromotive force (back e.m.f) is generated in the rotor (armature) windings to 
oppose its rotation when these windings rotate in the magnetic field of the stator (Lenz’s 
law). This voltage is given by

 v k ib f m= ′ w  (4.15)

where if  = field current; ia = armature current; wm = angular speed of the motor.
Note: For perfect transfer of electrical energy to mechanical energy in the rotor we have

 T i vm m a bw =  (4.16)

This is an electro-mechanical transformer.

 Field circuit equation: v R i L
di

dtf f f f
f= +  (4.17)

+

−

+ 

−

vf

if Rf

Lf

(a) (b)

Load shaft

Damping

Magnetic
torque

Jm

Load
TLTm

Armature

bm

vaωm

RaLa ia

Tm

TL

Stator (field circuit) Rotor (armature circuit)

Vb

Figure 4.19
(a) Equivalent circuit of a dc motor (separately excited). (b) Armature mechanical loading.
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where vf = supply voltage to stator; Rf = resistance of the field windings; Lf = inductance of 
the field windings.

 Armature (rotor) circuit equation: v R i L
di
dt

va a a a
a

b= + +  (4.18)

where va = armature supply voltage; R a = armature winding resistance; L a = armature 
leakage inductance.

Suppose that the motor drives a load whose equivalent torque is TL. Then from Figure 
4.19b.

 Mechanical (load) equation: J
d
dt

T T bm
m

m L m m
w w= - -  (4.19)

where Jm = moment of inertia of the rotor; bm = equivalent (mechanical) damping constant 
for the rotor; TL = load torque.

In field control of the motor, the armature supply voltage va is kept constant and the field 
voltage vf is controlled. In armature control of the motor, the field supply voltage vf is kept 
constant and the armature voltage va is controlled.

example 4.9

A classic problem in robotics is the case of robotic hand gripping and turning a doorknob to open 
a door. The mechanism is schematically shown in Figure 4.20a. Suppose that the actuator of the 
robotic hand is an armature-controlled dc motor. The associated circuit is shown in Figure 4.20b. 

(c)

Jd

bd

Tm

ωm kd

+
_

Tm, ωm

LaRa

i, va(t)

ia, vL

ib, vb

iR, vR

km

1

Electrical side
(complete)

Mechanical side
(incomplete)

Electro-mechanical
transformer

(d)

vb

La Ra

ia

+

_
va(t)Tm

ωmConstant
field

Armature circuit

(b)

Input
voltage

vL vR
(a)

Controller

Door with
knob Robot

hand

Figure 4.20
(a) Robotic hand turning a doorknob. (b) Armature-controlled dc motor of the robotic hand. (c) Mechanical 
model of the hand-doorknob system. (d) Incomplete linear graph.
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The field circuit provides a constant magnetic field to the motor, and is not important in the present 
problem. The armature (with motor rotor windings) circuit has a back e.m.f. vb, a leakage inductance 
La, and a resistance Ra. The input signal to the robotic hand is the armature voltage va(t) as shown. 
The rotation of the motor (at an angular speed wm) in the two systems of magnetic field generates 
a torque Tm (which is negative as marked in Figure 4.20b during normal operation). This torque 
(magnetic torque) is available to turn the doorknob, and is resisted by the inertia force (moment of 
inertia Jd), the friction (modeled as linear viscous damping of damping constant bd) and the spring 
(of stiffness kd) of the hand-knob-lock combination. A mechanical model is shown in Figure 4.20c. 
The dc motor may be considered as an ideal electromechanical transducer which is represented by 
a linear graph transformer. The associated equations are

 wm
m

bk
v= 1

 (4.20)

 T k im m b= -  (4.21)

Note: The negative sign in Equation 4.21 arises due to the specific sign convention. The linear 
graph may be easily drawn, as shown in Figure 4.20d, for the electrical side of the system.

Answer the following questions:

 a. Complete the linear graph by including the mechanical side of the system.
 b. Give the number of branches (b), nodes (n), and the independent loops (l) in the completed 

linear graph. Verify your answer.
 c. Take current through the inductor (ia), speed of rotation of the door knob (wd), and the 

resisting torque of the spring within the door lock (Tk) as the state variables, the armature 
voltage va(t) as the input variable, and wd and Tk as the output variables. Write the indepen-
dent node equations, independent loop equations, and the constitutive equations for the 
completed linear graph. Clearly show the state-space shell. Also verify that the number of 
unknown variables is equal to the number of equations obtained in this manner.

 d. Eliminate the auxiliary variables and obtain a complete state-space model for the system, 
using the equations written in (c) above.

Solution

 a. The complete linear graph is shown in Figure 4.21.
 b. b = 8, n = 5, l = 4 for this linear graph. It satisfies the topological relationship l = b - n + 1

+
_

iR, vR
Ra

La

ib, vb

i, va(t)

ia, vL

Tm, ωm

km

1

Tb , ωb
Td, ωd

Tk , ωk

Jd

bd

kd

Figure 4.21
The complete linear graph of the system.
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 c. Independent node equations:

 

i i

i i

i i

T T T T

R

R a

a b

m d b k

- =

- =

- =

- - - - =

0

0

0

0

 Independent loop equations:

 

v t v v va R L b

m d

d b

b k

( )- - - =

- =

- =

- =

0

0

0

0

w w

w w

w w

 Constitutive equations:

 

L
di
dt

v

J
d
dt

T

dT
dt

k

a
a

L

d
d

d

k
d k

=

=

=















w

w

Statee-space shell

 
v R i

T b
R a R

b d b

=
=



w

Auxiliary constitutive equaations

 
wm

m
b

m m b

k
v

T k i

=

= -







1
Electro-mechanical trannsformer

Note: There are 15 unknown variables (i, iR, ia, ib, Tm, Td, Tb, Tk, vR, vL, vb, wm, wd, wb, wk) and 15 
equations.

 Number of unknown variables = 2b - s = 2 × 8 - 1 = 15

 Number of independent node equations = n - 1 =  5 - 1 = 4

 Number of independent loop equations = l = 4

 Number of constitutive equations = b - s = 8 - 1 = 7

 Check: 15 = 4 + 4 + 7

 d. Eliminate the auxiliary variables from the state-space shell, by substitution:

 
v v t v v v t R i k

v t R i k

L a R b a a a m m

a a a

= - - = - -

= - -

( ) ( )

( )

w

mm dw
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T T T T T k i b

k i b T

d k m b k m b d b

m a d d k

= - - - = - + -

= - -

w

w

 w w wk b d= =

 Hence, we have the state-space equations:

 

L
di
dt

R i k v t

J
d
dt

k i b T

a
a

a a m d a

d
d

m a d d

= - - +

= - -

w

w w

( )

kk

k
d d

dT
dt

k= w

 with x  = [ia wd Tk]T, u = [ ]v ta( ) , and y = [ ]wd k
T

T  we have the state-space model

 
x Ax Bu

y Cx Du

= +

= +

 The model matrices are:

 A = 
- -

- -
















R L k L

k J b J J

k

a a m a

m d d d d

d

0

1

0 0

; B = 
1

0

0

La















; C = 
0 1 0

0 0 1






 ; D = 0

 Note 1: This is a multidomain (electro-mechanical model).
 Note 2: Multifunctional devices (e.g., a piezoelectric device that serves as both actuator and 

sensor) may be modeled similarly, using an electro-mechanical transformer (or, through the 
use of the “reciprocity principle”).

4.5.3 linear graphs of Thermal Systems

Thermal systems have temperature (T) as the across variable, as it is always measured 
with respect to some reference (or as a temperature difference across an element), and heat 
transfer (flow) rate (Q) as the through variable. Heat source and temperature source are the 
two types of source elements. The former is more common. The latter may correspond to a 
large reservoir whose temperature is virtually not affected by heat transfer into or out of it. 
There is only one type of energy (thermal energy) in a thermal system. Hence there is only 
one type (A-type) energy storage element with the associated state variable, temperature. 
As discussed in Chapter 2., there is no T-type element in a thermal system.

4.5.3.1 Model Equations

In developing the model equations for a thermal system, the usual procedure is followed 
as for any other system. Specifically we write:

 1. Constitutive equations (for thermal resistance and capacitance elements)
 2.. Node equations (the sum of heat transfer rate at a node is zero)
 3.. Loop equations (the sum of the temperature drop around a closed thermal path is 

zero)
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Finally, we obtain the state-space model by eliminating the auxiliary variables that are not 
needed.

example 4.10

A traditional Asian pudding is made by blending roughly equal portions by volume of treacle 
(a palm honey similar to maple syrup), coconut milk, and eggs, spiced with cloves and carda-
moms, and baking in a special oven for about 1 hour. The traditional oven uses charcoal fire in 
an earthen pit that is well insulated, as the heat source. An aluminum container half filled with 
water is placed on fire. A smaller aluminum pot containing the dessert mixture is placed inside the 
water bath and covered fully with an aluminum lid. Both the water and the dessert mixture are 
well stirred and assumed to have uniform temperatures. A simplified model of the oven is shown 
in Figure 4.22a.

Assume that the thermal capacitances of the aluminum water container, dessert pot, and the lid 
are negligible. Also, the following equivalent (linear) parameters and variables are defined:

Cr  = thermal capacitance of the water bath
Cd = thermal capacitance of the dessert mixture
Rr  = thermal resistance between the water bath and the ambient air
Rd  = thermal resistance between the water bath and the dessert mixture
Rc  = thermal resistance between the dessert mixture and the ambient air, through the covering lid
Tr  = temperature of the water bath
Td  = temperature of the dessert mixture
TS  = ambient temperature
Q  = input heat flow rate from the charcoal fire into the water bath.

 a. Assuming that Td is the output of the system, develop a complete state-space model for the 
system. What are the system inputs?

 b. In (a) suppose that the thermal capacitance of the dessert pot is not negligible, and is given 
by Cp. Also, as shown in Figure 4.22b, thermal resistances Rp1 and Rp2 are defined for the 
two interfaces of the pot. Assuming that the pot temperature is maintained uniform at Tp 
show how the state-space model of part (a) should be modified to include this improve-
ment. What parameters do Rp1 and Rp2 depend on?

 c. Draw the linear graphs for the systems in (a) and (b). Indicate in the graph only the system 
parameters, input variables, and the state variables.

Solution

 a. For the water bath:

 C
dT
dt

Q
R

T T
R

T Tw
w

w
w a

d
w d= - - - -1 1

( ) ( )  (i)

 For the dessert mixture:

 C
dT
dt R

T T
R

T Td
d

d
w d

c
d a= - - -1 1

( ) ( )  (ii)

 Equations (i) and (ii) are the state equations with:

 State vector x = [ ]T Tw d
T

,
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 Input vector u = [ ]Q Ta
T

,

 Output vector y = [ ]Td
T

 The corresponding matrices of the state-space model are:

 A = 
- +





- +





1 1 1 1

1 1 1 1

C R R C R

C R C R R

w w d w d

d d d d c




















; B = 

1 1

0
1

C C R

C R

w w w

d c



















; C =  0 1[ ] ; D =  0 0[ ]

(a)

Q
Heat transfer

Charcoal fire

Water

Dessert
mixture

Tw, Cw

Rc

Td , Cd

Rd Rw

Ta

(b)

Td

Tw

Tp, Cp

Rp2

Rp1

Figure 4.22
(a) A simplified model of an Asian dessert oven. (b) An improved model of the dessert pot.
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 b. For the dessert pot:

 C
dT

dt R
T T

R
T Tp

p

p
w p

p
p d= - - -1 1

1 2

( ) ( )  (iii)

 Equations (i) and (ii) have to be modified as

 C
dT
dt

Q
R

T T
R

T Tw
w

w
w a

p
w p= - - - -1 1

1

( ) ( )  (i*)

 C
dT
dt R

T T
R

T Td
d

p
w d

c
d a= - - -1 1

2

( ) ( )  (ii*)

The system has become third order now, with the state Equations (i*), (ii*), and (iii) and the cor-
responding state vector:

 x =  T T Tw d p
T

But u and y remain the same as before. Matrices A, B, and C have to be modified accordingly.
The resistance Rpi depends on the heat transfer area Ai and the heat transfer coefficient hi.
Specifically,

 R
h Api

i i

= 1

 c. The linear graph for (a) is shown in Figure 4.23a. The linear graph for (b) is shown in Figure 
4.23b.

+

–Ta

Td

Rd

Rc

Cd

Tw

Cw CQ

T = 0

Rw

(a) (b)

+
–Ta

TdRp2
Rc

Cd
Tw

CwQ

T = 0

Rw Cp

Tp
Rp1

Figure 4.23
Linear graph of the (a) simplified model and (b) improved model.
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Problems

PROBLEM 4.1

Select the correct answer for each of the following multiple-choice questions:

 i. A through variable is characterized by
 (a) being the same at both ends of the element
 (b) being listed first in the pair representation of a linear graph
 (c) requiring no reference value
 (d) all the above
 ii. An across variable is characterized by
 (a) having different values across the element
 (b) being listed second in the pair representation
 (c) requiring a reference point
 (d) all the above
 iii. Which of the following could be a through variable?
 (a) pressure
 (b) voltage
 (c) force
 (d) all the above
 iv. Which of the following could be an across variable?
 (a) motion (velocity)
 (b) fluid flow
 (c) current
 (d) all the above
 v. If angular velocity is selected as an element’s across variable, the accompanying 

through variable is
 (a) force
 (b) flow
 (c) torque
 (d) distance
 vi. The equation written for through variables at a node is called
 (a) a continuity equation
 (b) a constitutive equation
 (c) a compatibility equation
 (d) all the above
 vii. The functional relation between a through variable and its across variable is 

called
 (a) a continuity equation
 (b) a constitutive equation
 (c) a compatibility equation
 (d) a node equation
 viii. The equation that equates the sum of across variables in a loop to zero is known as
 (a) a continuity equation
 (b) a constitutive equation
 (c) a compatibility equation
 (d) a node equation
 ix. A node equation is also known as
 (a) an equilibrium equation
 (b) a continuity equation
 (c) the balance of through variables at the node
 (d) all the above
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 x. A loop equation is
 (a) a balance of across variables
 (b) a balance of through variables
 (c) a constitutive relationship
 (d) all the above

PROBLEM 4.2

A linear graph has ten branches, two sources, and six nodes.

 i. How many unknown variables are there?
 ii. What is the number of independent loops?
 iii. How many inputs are present in the system?
 iv. How many constitutive equations could be written?
 v. How many independent continuity equations could be written?
 vi. How many independent compatibility equations could be written?
 vii. Do a quick check on your answers.

PROBLEM 4.3

The circuit shown in Figure P4.3. has an inductor L, a capacitor C, a resistor R, and a 
voltage source v(t). Considering that L is analogous to a spring, and C is analogous to 
an inertia, follow the standard steps to obtain the state equations. First sketch the linear 
graph denoting the currents through and the voltages across the elements L, C, and R by 
( fl, vl), ( f2., v2.) and ( f3., v3.), respectively, and then proceed in the usual manner.

 i. What is the system matrix and what is the input distribution matrix for your 
choice of state variables?

 ii. What is the order of the system?
 iii. Briefly explain what happens if the voltage source v(t) is replaced by a current 

source i(t).

PROBLEM 4.4

Consider an automobile traveling at a constant speed on a rough road, as sketched in 
Figure P4.4a. The disturbance input due to road irregularities can be considered as a 
velocity source u(t) at the tires in the vertical direction. An approximate one- dimensional 
model shown in Figure P4.4b may be used to study the “heave” (up and down) motion 

v(t)
+

–

L

C
R

Figure P4.3
An electrical circuit.
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of the automobile. Note that v1 and v2. are the velocities of the lumped masses m1 and 
m2., respectively.

 a. Briefly state what physical components of the automobile are represented by the 
model parameters k1, m1, k2., m2., and b2.. Also, discuss the validity of the assump-
tions that are made in arriving at this model.

 b. Draw a linear graph for this model, orient it (i.e., mark the directions of the 
branches), and completely indicate the system variables and parameters.

 c. By following the step-by-step procedure of writing constitutive equations, node 
equations and loop equations, develop a complete state-space model for this sys-
tem. The outputs are v1 and v2.. What is the order of the system?

 d. If instead of the velocity source u(t), a force source f(t) which is applied at the same 
location, is considered as the system input, draw a linear graph for this modified 
model. Obtain the state equations for this model. What is the order of the system 
now?

Note: In this problem you may assume that the gravitational effects are completely bal-
anced by the initial compression of the springs with reference to which all motions are 
defined.

PROBLEM 4.5

Suppose that a linear graph has the following characteristics:
n = number of nodes
b = number of branches (segments)
s = number of sources
l = number of independent loops.

(a)

Reference 
Road surface

Forward speed
(constant)

Heave motion

(b)

k1
u(t)

v1

Ground reference

m1

m2

v2

k2
b2

Figure P4.4
(a) An automobile traveling at constant speed. (b) A crude model of the automobile for the heave 
motion analysis.
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Carefully explaining the underlying reasons, answer the following questions regard-
ing this linear graph:

 a. From the topology of the linear graph show that l = b - n + 1.
 b. What is the number of continuity equations required (in terms of n)?
 c. What is the number of lumped elements including source elements in the model 

(expressed in terms of b and s)?
 d. What is the number of unknown variables, both state and auxiliary, (expressed in 

terms of b and s)? Verify that this is equal to the number available equations, and 
hence the problem is solvable.

PROBLEM 4.6

An approximate model of a motor-compressor combination used in a process control 
application is shown n Figure P4.6.

Note that T, J, k, b, and w denote torque, moment of inertia, torsional stiffness, angular 
viscous damping constant, and angular speed, respectively, and the subscripts m and c 
denote the motor rotor and compressor impeller, respectively.

 a. Sketch a translatory mechanical model that is analogous to this rotatory mechani-
cal model.

 b. Draw a linear graph for the given model, orient it, and indicate all necessary vari-
ables and parameters on the graph.

 c. By following a systematic procedure and using the linear graph, obtain a com-
plete state-space representation of the given model. The outputs of the system are 
compressor speed wc and the torque T transmitted through the drive shaft.

PROBLEM 4.7

A model for a single joint of a robotic manipulator is shown in Figure P4.7. The usual 
notation is used. The gear inertia is neglected and the gear reduction ratio is taken as 
1:r (Note: r < 1).

 a. Draw a linear graph for the model, assuming that no external (load) torque is 
present at the robot arm.

 b. Using the linear graph derive a state model for this system. The input is the motor 
magnetic torque Tm and the output is the angular speed wr of the robot arm. What 
is the order of the system?

bm

Jm

Tm

k

bc
(Viscous) (Viscous)

Tc

ωc

Drive shaft

ωm

Motor rotor Compressor

Jc

Figure P4.6
A model of a motor-compressor unit.
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 c. Discuss the validity of various assumptions made in arriving at this simplified 
model for a commercial robotic manipulator.

PROBLEM 4.8

Consider the rotatory feedback control system shown schematically by Figure P4.8a. 
The load has inertia J, stiffness K and equivalent viscous damping B as shown. The 
armature circuit for the dc fixed field motor is shown in Figure P4.8b.

The following relations are known:
The back e.m.f. v KB V= w
The motor torque T K im T=

 a. Identify the system inputs.
 b. Write the linear system equations.

bm

Jm

Tm

k

(Viscous)
Motor

ωm

1:r

Gear box
(light)

Jr

Robot arm

ωr

Figure P4.7
A model of a single-degree-of-freedom robot.

(a) DC motor
Kv , KT

θm, ωm θlPower
amplifier

Ka

Potentiometer
Kp

vr va vm

B

K
J

Tm

–

Load
torque
Tl

Gear
ratio r 
 Output rotation

Input rotation

Figure P4.8
(a) A rotatory electromechanical system. (b) The armature circuit.
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PROBLEM 4.9

 a. What is the main physical reason for oscillatory behavior in a purely fluid system? 
Why do purely fluid systems with large tanks connected by small-diameter pipes 
rarely exhibit an oscillatory response?

 b. Two large tanks connected by a thin horizontal pipe at the bottom level are shown 
in Figure P4.9a. Tank 1 receives an inflow of liquid at the volume rate Qi when the 
inlet valve is open. Tank 2. has an outlet valve, which has a fluid flow resistance of 
Ro and a flow rate of Qo when opened. The connecting pipe also has a valve, and 
when opened, the combined fluid flow resistance of the valve and the thin pipe is 
Rp. The following parameters and variables are defined:

 C1, C2. = fluid (gravity head) capacitances of Tanks 1 and 2.
  r  = mass density of the fluid
 g = acceleration due to gravity
 P1, P2. = pressure at the bottom of Tanks 1 and 2.
 P0 = ambient pressure.

  Using P10 = P1 – P0 and P2.0 = P2. – P0 as the state variables and the liquid levels H1 
and H2. in the two tanks as the output variables, derive a complete, linear, state-
space model for the system.

(b)

vm
vb

ω = θ

i R L

Figure P4.8 (continued)

Inlet valve
Qi

Qp
Rp

P1 P2

H1
H2

C1 C2

P0
P0

Outlet valve
Ro

Qo

Po

Tank 1 Tank 2

Connecting
valve

(a)

Figure P4.9
(a) An interacting two-tank fluid system. (b) A noninteracting two-tank fluid system.
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 c. Suppose that the two tanks are as in Figure P4.9b. Here Tank 1 has an outlet valve 
at its bottom whose resistance is Rt and the volume flow rate is Qt when open. This 
flow directly enters Tank 2., without a connecting pipe. The remaining character-
istics of the tanks are the same as in (b).

 Derive a state-space model for the modified system in terms of the same variables 
as in (b).

PROBLEM 4.10

Give reasons for the common experience that in the flushing tank of a household toilet, 
some effort is needed to move the handle for the flushing action but virtually no effort 
is needed to release the handle at the end of the flush.

A simple model for the valve movement mechanism of a household flushing tank 
is shown in Figure P4.10. The overflow tube on which the handle lever is hinged, is 
assumed rigid. Also, the handle rocker is assumed light, and the rocker hinge is assumed 
frictionless.

The following parameters are indicated in the figure:

r  =  lv / lh = the lever arm ratio of the handle rocker
m = equivalent lumped mass of the valve flapper and the lift rod
k = stiffness of spring action on the valve flapper.
The damping force fNLD on the valve is assumed quadratic and is given by

 f a v vNLD VLD VLD=

where the positive parameter:
a  =  au for upward motion of the flapper (vNLD ≥ 0)
 = ad for downward motion of the flapper (vNLD < 0)
with au >> ad

Qi

(b)

Connecting
valve

Tank 1P0

P1

H1
C1

Rt

Qt

P2

H2

C2

P0

Outlet valve
Ro

Qo

Po

Tank 2

Figure P4.9 (continued)
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The force applied at the handle is f(t), as shown.
We are interested in studying the dynamic response of the flapper valve. Specially, 

the valve displacement x and the valve speed v are considered outputs, as shown in 
Figure P4.10. Note that x is measured from the static equilibrium point of the spring 
where the weight mg is balanced by the spring force.

 a. By defining appropriate through variables and across variables, draw a linear 
graph for the system shown in Figure P4.10. Clearly indicate the power flow 
arrows.

 b. Using valve speed and the spring force as the state variables, develop a (nonlin-
ear) state-space model for the system, with the aid of the linear graph. Specifically, 
start with all the constitutive, continuity, and compatibility equations, and elimi-
nate the auxiliary variables systematically, to obtain the state-space model.

 c. Linearize the state-space model about an operating point where the valve speed is 
v. For the linearized model, obtain the model matrices A, B, C, and D, in the usual 
notation. The incremental variables x̂  and v̂  are the outputs in the linear model, 
and the incremental variable ˆ( )f t  is the input.

 d. From the linearized state-space model, derive the input–output model (differen-
tial equation) relating ˆ( )f t  and x̂.

lh lv

f (t)
Hinge

(frictionless)

Handle
(light)

Overflow tube
(rigid)

Lift rod

Valve flapper
(equivalent mass m) 

Valve spring
(stiffness k)

Valve damper
(nonlinear)

x, v

Figure P4.10
Simplified model of a toilet-flushing mechanism.
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PROBLEM 4.11

A common application of dc motors is in accurate positioning of a mechanical load. A 
schematic diagram of a possible arrangement is shown in Figure P4.11. The actuator of 
the system is an armature-controlled dc motor. The moment of inertia of its rotor is Jr 
and the angular speed is wr. The mechanical damping of the motor (including that of its 
bearings) is neglected in comparison to that of the load.

The armature circuit is also shown in Figure P4.11, which indicates a back e.m.f. vb 
(due to the motor rotation in the stator field), a leakage inductance La, and a resistance 
Ra. The current through the leakage inductor is iL. The input signal is the armature volt-
age va(t) as shown. The interaction of the rotor magnetic field and the stator magnetic 
field (Note: the rotor field rotates at an angular speed wm) generates a “magnetic” torque 
Tm which is exerted on the motor rotor.

The stator provides a constant magnetic field to the motor, and is not important in 
the present problem. The dc motor may be considered as an ideal electromechanical 
transducer which is represented by a linear-graph transformer. The associated equa-
tions are:

 wm
m

bk
v= 1

 T k im m b= -

where km is the torque constant of the motor. Note: The negative sign in the second equa-
tion arises due to the specific sign convention used for a transformer, in the conven-
tional linear graph representation.

The motor is connected to a rotatory load of moment of inertia Jl using a long flexible 
shaft of torsional stiffness kl. The torque transmitted through this shaft is denoted by Tk. 
The load rotates at an angular speed w l and experiences mechanical dissipation, which 
is modeled by a linear viscous damper of damping constant bl.

Answer the following questions:

 a. Draw a suitable linear graph for the entire system shown in Figure P4.11, mark 
the variables and parameters (you may introduce new, auxiliary variables but not 
new parameters), and orient the graph.

 b. Give the number of branches (b), nodes (n), and the independent loops (l) in the 
complete linear graph. What relationship do these three parameters satisfy? How 
many independent node equations, loop equations, and constitutive equations 

Ra

bl

ib+

–

La

+

_
vb

(km)

Tm

JlJr

kl

kT

va(t)
Tk

Armature circuit

Rotor

Stator (constant field)

DC motor

Load

ωl

ωr

ωm

iL

Figure P4.11
An electro-mechanical model of a rotatory positioning system.

76868.indb   146 7/8/09   5:07:16 PM



Linear Graphs 147

can be written for the system? Verify the sufficiency of these equations to solve 
the problem.

 c. Take current through the inductor (iL), speed of rotation of the motor rotor (wr), 
torque transmitted through the load shaft (Tk), and speed of rotation of the load (w l) 
as the four state variables; the armature supply voltage va(t) as the input  variable; 
and the shaft torque Tk and the load speed w l as the output variables. Write the 
independent node equations, independent loop equations, and the constitutive 
equations for the complete linear graph. Clearly show the state-space shell.

 d. Eliminate the auxiliary variables and obtain a complete state-space model for the 
system, using the equations written in (c) above. Express the matrices A, B, C, and 
D of the state-space model in terms of the system parameters Ra, La, km, Jr, kl, bl, and 
Jl only.

PROBLEM 4.12

Consider a multidomain engineering system that you are familiar with (in your proj-
ects, research, engineering practice, informed imagination, through literature which 
you have read, etc.). It should include the mechanical structural domain (i.e., with 
inertia, flexibility, and damping) and at least one other domain (e.g., electrical, fluid, 
thermal).

 a. Using sketches, describe the system, by giving at least the following information:
 (i) The practical purpose and functions of the system.
 (ii) Typical operation/behavior of the system.
 (iii) System boundary.
 (iv) Inputs and outputs.
 (v) Characteristics of the main components of the system.
 b. Sketch a lumped-parameter model of the system, by approximating any signifi-

cant distributed effects using appropriate lumped elements, and showing how 
the lumped-parameter elements (including sources) are interconnected. You must 
justify your choice of elements and approximation decisions. Also, you must 
retain significant nonlinearities in the original system.

 c. Develop an analytical model of the system by writing the necessary constitutive 
equations, continuity equations, and compatibility equations. The model should 
be at least fifth-order but not greater than tenth-order.

 Note: Draw a linear graph of the system (particularly if you plan to use the linear 
graph approach to obtain the analytical model).

 d. Approximate the nonlinear elements by suitable linear elements.
 e. Identify suitable state variables for the linear system and develop a complete 

state-space model (i.e., matrices A, B, C, and D) for the system.
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5
Transfer-Function and Frequency-Domain Models

Transfer-function models (strictly, Laplace transfer-functions) are based on the Laplace 
transform, and are versatile means of representing linear systems with constant (time-
 invariant) parameters. Strictly, these are dynamic models in the Laplace domain. 
Frequency-domain models (or frequency transfer-functions) are a special category of 
Laplace domain models, and they are based on the Fourier transform. However, they 
are interchangeable—a Laplace domain model can be converted into the corresponding 
frequency domain model in a trivial manner, and vice versa. Similarly linear, constant-
coefficient (time-invariant) time-domain model (e.g., input–output differential equation or 
a state-space model) can be converted into a transfer-function, and vice versa, in a simple 
and straightforward  manner. A system with just one input (excitation) and one output 
(response) can be represented uniquely by one transfer-function. When a system has two 
or more inputs (i.e., an input vector) and/or two or more outputs (i.e., and output vector), its 
representation needs several transfer-functions (i.e., a transfer-function matrix is needed). 
The response characteristics at a given location (more correctly, in a given degree of free-
dom) can be determined using a single frequency-domain transfer-function. 

Transfer-function models were widely used in early studies of dynamic systems because 
they are algebraic functions rather than differential equations. In view of the simpler alge-
braic operations that are involved in transfer-function approaches, a substantial amount 
of information regarding the dynamic behavior of a system can be obtained with minimal 
computational effort. This is the primary reason for the popularity enjoyed by the trans-
fer-function methods prior to the advent of the digital computer. One might think that 
the abundance of high-speed, low-cost, digital computers would lead to the dominance 
of time-domain methods, over frequency-domain transfer-function methods. But there 
is evidence to the contrary in many areas, particularly in dynamic systems and control, 
due to the analytical simplicity and the intuitive appeal of transfer-function techniques. 
Only a minimal knowledge of the theory of Laplace transform and Fourier transform is 
needed to use transfer-function methods in system modeling, analysis, design, and con-
trol. Techniques of transfer-function models, both in the Laplace domain and the frequency 
(Fourier) domain are treated in the present chapter.

5.1 Laplace and Fourier Transforms

The logarithm is a transform which coverts the multiplication operation into an addition 
and the division operation into a subtraction, thereby making the analysis simpler. In a 
similar manner the Laplace transform converts differentiation into a multiplication by the 
Laplace variable s; and integration into a division by s, thereby providing significant ana-
lytical convenience. Fourier transform may be considered as a special case of the Laplace 
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transform. The corresponding results can be obtained simply by setting s = jw, where w is 
the frequency variable. Further details are found in Appendix A.

5.1.1 laplace Transform

The Laplace transform involves the mathematical transformation from the time-domain to 
the Laplace domain (also termed s-domain or complex frequency domain) according to:

 Y s y t st dt( ) ( )exp( )= -
∞

∫
0

 or Y s y t( ) ( )= L  (5.1)

where the Laplace operator  = L ; Laplace variable s = s + jw and j = -1 .
Note: The real value s  is chosen sufficiently large so that the transform integral (Equation 

5.1) is finite even when ∫y(t)dt is not finite.
The inverse Laplace transform is: 

 y t
j

Y s st ds
j

j

( ) ( )exp( )=
- ∞

+ ∞

∫1
2.p

s

s

 or y t Y s( ) ( )= -L 1  (5.2.)

which is obtained simply through mathematical manipulation (multiplying both side by 
appropriate exponential and integration) of the forward transform (Equation 5.1).

5.1.2 laplace Transform of a Derivative

Using Equation 5.1, the Laplace transform of the time derivative y dy dt= ( / )  may be deter-
mined as:

 L y e
dy
dt

dt sY s yst= = --

∞

∫
0

0( ) ( )  (5.3.)

Note: Integration by parts: ∫udv = uv - ∫vdu is used in obtaining the result (Equation 5.3.). 
Also y(0) is the initial condition (IC) of y(t) at t = 0.

By repeatedly applying Equation 5.2. we can get the Laplace transform of the higher 
derivatives; specifically,

 L L   y t s y t y s sY s y y( ) = [ ]- = - -( ) ( ) [ ( ) ( )] ( )0 0 0

gives the result

 L L y t s y t sy y( ) = ( )[ ]- -2. 0 0( ) ( )  (5.4)

Similarly we obtain

 L  y s Y s s y sy y= - - -3. 2. 0 0 0( ) ( ) ( ) ( )  (5.5)
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The general result is: 

 L
d y t

dt
s Y s s y s y

dn

n
n n n

n( )
( ) ( ) ( )= - - - -- -

-
1 2.

1
0 0 

yy
dtn-1

0( )  (5.6)

Note: With zero ICs, we have:

 L
d y t

dt
s Y s

n

n
n( )

( )=  (5.7) 

or, the time derivative corresponds to multiplication by s in the Laplace domain. As a result, 
differential equations (time-domain models) become algebraic equations (transfer-functions) 
resulting in easier mathematics. From the result (Equation 5.7) it is clear that the Laplace 
variable s can be interpreted as the derivative operator in the context of a dynamic system.

Note: ICs can be added separately to any model (e.g., Laplace model) after using Equation 
5.7. Hence in model transformation, first the ICs are assumed zero. 

5.1.3 laplace Transform of an integral

The Laplace transform of the time integral 
0
t y d∫ ( )t t  is obtained by the direct application 

of Equation 5.1 as:

 L y d e y d dt
s

d
dt

t

st

t

( ) ( ) (t t t t
0 00

1∫ ∫∫= = -





-

∞

ee y d dtst

t

-

∞

∫∫ ) ( )t t
00

 

Integrate by parts: udv uv vdu∫ ∫= - gives

 L y d
s

e y d
s

t

st

t

( ) ( ) |t t t t
0

0

0

1 1∫ ∫= -





- -


- ∞ 


= - + 





-

∞

-

∞

∫ ∫e y t dt
s

e y t dtst st( ) ( )0 0
1

0 0

The final result is

 L y d
s

Y s
t

( ) ( )t t
0

1∫ =  (5.8)

It follows that time integration becomes multiplication by 1/s in the Laplace domain. 
In particular 1/s can be interpreted as the integration operator, in the context of a dynamic 
system.

5.1.4 Fourier Transform 

The Fourier transform involves the mathematical transformation from the time-domain to 
the frequency domain according to:

 Y j y t j t dt( ) ( ) expw w= -( )
-∞

∞

∫  or Y j y t( ) ( )w = F  (5.9)
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where cyclic frequency variable = f; and angular frequency variable = w  = 2.p f
The inverse Fourier transform is:

 y t Y j j t d( ) ( ) exp= ( )
-∞

∞

∫1
2.p

w w w  or y t Y j( ) ( )= -F 1 w  (5.10)

which is obtained simply through mathematical manipulation (multiplying both side by 
appropriate exponential and integration) of the forward transform (Equation 5.9).

By examining the transforms (Equations 5.1 and 5.9) it is clear that the conversion from 
the Laplace domain into the Fourier (frequency) domain may be done simply by setting 
s = jw . Strictly, the one-sided Fourier transform is used here (where the lower limit of inte-
gration in Equation 5.9 is set to t = 0) because it then that Equation 5.1 becomes equal to 
Equation 5.1 with s = jw .

We summarize these results and observations below.

Laplace transform:

 Time-domain  Laplace (complex frequency) domain
 Time derivative  Laplace variable s
 Differential equations  Algebraic equations (easier math)
 Time integration  1/s

Fourier transform:

 Time-domain  Frequency domain

Conversion from Laplace to Fourier (one-sided): Set s = jw 
In using techniques of Laplace transform, the general approach is to first convert 

the time-domain problem into a s-domain problem (conveniently, by using Laplace 
transform tables); perform the necessary analysis (algebra rather than calculus) in the  
s-domain; and convert the results back into the time-domain (again, conveniently using 
Laplace transform tables). Further discussion, techniques and Laplace tables are found 
in Appendix A.

5.2 Transfer-Function

The transfer-function is a dynamic model represented in the Laplace domain. Specifically, 
the transfer-function G(s) of a linear, time-invariant, single-input–single-output (SISO) sys-
tem is given by the ratio of the Laplace-transformed output to the Laplace-transformed 
input, assuming zero initial conditions (zero ICs). This is a unique function, which rep-
resents the system (model); it does not depend on the input, the output, or the initial con-
ditions. A physically realizable linear, constant-parameter system possesses a unique 
transfer-function even if the Laplace transforms of a particular input to the system and 
the corresponding output do not exist. For example, suppose that the Laplace transform of 
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a particular input u(t) is infinite. Then the Laplace transform of the corresponding output 
y(t) will also be infinite. But the transfer-function itself will be finite.

Consider the nth-order linear, constant-parameter system given by:

 a
d y
dt

a
d y
dt

a y b u b
du
dtn

n

n n

n

n
+ +…+ = + +…+-

-

-1

1

1 0 0 1 bb
d u
dtm

m

m
 (5.11)

Note: For the time being we will assume m < n, or at worst m ≤ n when the corresponding 
systems are said to be physically realizable. For systems that possess dynamic delay (i.e., sys-
tems whose response does not tend to feel the excitation either instantly or ahead of time, 
or systems whose excitation or its derivatives are not directly fed forward to the output, we 
will have m < n. These are the systems that concern us most in real applications. 

Use the result (Equation 5.7) in Equation 5.11, assuming zero ICs. We obtain the transfer-
function:

 Y s
U s

G s
b b s b s
a a s a s

m
m

n
n

( )
( )

( )= = + +…+
+ +…+

0 1

0 1

 (5.12.)

It should be clear from Equations 5.11 and 5.12. that the transfer-function corresponding to 
a system differential equation can be written simply by inspection, without requiring any 
knowledge of Laplace-transform theory. Conversely, once the transfer-function is given, 
the corresponding time-domain (differential) equation should be immediately obvious.

Note: The dominator polynomial of a transfer-function is called the characteristic polyno-
mial, and the corresponding equation is called the characteristic equation: a0 + a1s + … + ansn = 0. 
These topics will be discussed later (in Chapter 6, in particular).

Transfer-functions are simple algebraic expressions. Differential equations are transformed 
into simple algebraic relations through the Laplace transform. This is a major advantage of 
the transfer-function approach. Once the analysis is performed using  transfer-functions, 
the inverse Laplace transform can convert the results into the corresponding time-domain 
results. This can be accomplished simply by using Laplace transform tables.

5.2.1 Transfer-Function Matrix

Consider the state variable representation of a linear, time-invariant system:

 x = +Ax Bu  (5.13.)

 y Cx Du= +  (5.14)

where x(t) is an nth-order state vector); u is an rth-order input (excitation); and y is the 
mth-order output (response) vector. This is a multiinput–multioutput (MIMO) system. 
The corresponding transfer-function model relates the output vector y to the input vector 
u. We will need m × n transfer-functions, or a transfer-function matrix, to represent this 
MIMO system. To obtain an expression for this matrix, we first apply Laplace transform to 
Equations 5.13. and 5.14 with zero ICs for x. We get

 s s s sX AX BU( ) ( ) ( )= +  (5.13.a)

 Y CX DU( ) ( ) ( )s s s= +  (5.14a)
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From Equation 5.13.a we have

 X I A BU( ) ( ) ( )s s s= - -1  (5.13.b)

in which I is the nth-order identity matrix (a matrix with 1 as its diagonal elements and 
0 for all other elements). By substituting Equation 5.13.b into Equation 5.14a we get the 
transfer-function relation:

 Y C I A B D U( ) ( ) ( )s s s= -( ) +[ ]-1  (5.15a)

or

 Y G U( ) ( ) ( )s s s=  (5.15)

The transfer-function matrix G(s) is an m × n matrix given by:

 G C I A B D( ) ( )s s= -( ) +-1  (5.16a)

In practical systems with dynamic delay, the excitation u(t) is not naturally fed forward 
to the response y; and as a result its is not instantaneously felt in the response y. Then we 
have D = 0 and Equation 5.16a becomes

 G C I A B( ) ( )s s= - -1  (5.16)

Several examples are presented to illustrate some approaches of obtaining transfer-func-
tion models when the time-domain (differential-equation) models are given.

example 5.1

Consider the simple oscillator (mass-spring-damper) shown in Figure 5.1. Its dynamic equation is 
obtained in a straightforward manner as:

 my by ky ku t + + = ( )  (5.17)

where the response (output) y of the mass is measured from its static equilibrium position (so that 
the gravitational force is balanced by the initial force in the spring). In Figure 5.1, the input u(t) 
comes from the force applied to the mass:

 f t ku t( ) ( )=  (5.18)

Alternatively u(t) may be considered the displacement of the support structure (base), without 
an applied force f. 

Take the Laplace transform of the system Equation 5.17 with zero ICs:

 ( ) ( ) ( )ms bs k Y s kU s2 + + =

The corresponding transfer-function is:

 G s
Y s
U s

k
ms bs k

( )
( )
( ) ( )

= =
+ +2

 (5.19a)
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or, by definingwn k m2= /  and 2zwn b m= /  where
Undamped natural frequency = w n

Damping ratio = z
we have the transfer-function:

 G s
s s

n

n n

( )
( )

=
+ +
w
zw w

2

2 22
 (5.19)

This is the transfer-function corresponding to the displacement output. It follows that the 
output velocity transfer-function (i.e., the transfer-function if the output is taken to be the  
velocity) is:

 
sY s
U s

sG s
s

s s
n

n n

( )
( )

( )
( )

= =
+ +
w
zw w

2

2 22
 (5.20)

Similarly, the output acceleration transfer-function is:

 
s Y s
U s

s G s
s

s s
n

n n

2
2

2 2

2 22
( )

( )
( )

( )
= =

+ +
w
zw w

 (5.21)

In Equation 5.21 we have the numerator order equal to the denominator order: m = n = 2. This 
means that the input (applied force) is instantly felt by the acceleration of the mass, which may be 
verified experimentally by using an accelerometer (sensor). This corresponds to a feedforward of 
the input, or zero dynamic delay. For example, this is the primary mechanism through which road 
disturbances are felt inside a vehicle having hard suspensions. 
Note: The characteristic equation of the system is 

 s sn n
2 22 0+ + =zw w  (5.22)

m

k

f (t)

b

v1

Figure 5.1
A damped simple oscillator.
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example 5.2

Let us consider again the simple oscillator of Example 5.1, given by:

  y y y u tn n n+ + =2 2 2zw w w ( )  (5.17b)

By defining the state variables as:

 x = [ ] = [ ]x x y y
T T

1 2 

where y = position and y  = velocity, a state model for this system can be expressed as:

 x x=
-






 + 








0 1

2

0
2 2w zw wn n n

u t( )

If we consider both displacement and velocity as outputs, we have:

 y x=

Note: The output gain matrix (measurement matrix) C = I (the identity matrix) and D = 0 in this 
case. From Equation 5.15a we get:

 

Y ( ) ( )
(

s
s

s
U s

sn n n

=
-

+














 =

-
1

2

0 1
2

1

2w zw w 22 2 2 22
2 1 0

+ +
+
-














zw w

zw
wn n

n

n ns
s

s
U

)
(

ω
ss

s s s
U s

n n

n

n

)

( )
( )=

+ +








1
22 2

2

2zw w
w
w

We observe that the transfer-function matrix is:

 G( )
( )

( )
s

s

s s
n

n

= 







w
w

2

2

∆
∆

in which the characteristic polynomial of the system is ∆( )s s sn n= + +2 22zw w .
The first element in G(s) is the displacement-output transfer-function, and the second element 

is the velocity-output transfer-function. These results agree with the expressions obtained in 
Example 5.1. 

Now, let us consider the acceleration y  as an output, and denote it by y3. It is clear from the 
system Equation 5.17b that: 

 y y y y u tn n n3
2 22= = - - + zw w w ( )

or, in terms of the state variables:

 y x x u tn n n3 2
2

1
22= - - +zw w w ( )
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Note that this output explicitly contains the input variable. This is a feedforward situation which 
implies that the matrix D becomes nonzero when acceleration y  is chosen as an output. In this 
case,

 Y s X s X s U s
s

n n n n
n

3 2
2

1
2

2

2 2( ) ( ) ( ) ( )= - - + = -zw w w zw w
∆∆ ∆( )

( )
( )

( ) ( )
s

U s
s

U s U sn
n

n- +w w w2
2

2

which simplifies to

 Y s X s X s U s
s

s
Un n n

n
3 2

2
1

2
2

2( ) ( ) ( ) ( )
( )

= - - + =zw w w w
∆

(( )s

This confirms the result for the acceleration-output transfer-function obtained in Example 5.1.

example 5.3

Consider the simplified model of a vehicle shown in Figure 5.2, which can be used to study the 
heave (vertical up and down) and pitch (front-back rotation) motions due to the road profile and 
other disturbances. For our purposes, let us assume that the road disturbances exciting the front 
and back suspensions are independent. The equations of motion for heave (y) and pitch (q ) are 
written about the static equilibrium configuration of the vehicle model (hence, gravity does not 
enter into the equations) for small motions:

 
my k u y l k u y l b u y l  = - + + - + + - +1 1 1 2 2 2 1 1 1( ) ( ) (q q    



q q

q q

) ( )

( )

+ - +

= - - + +

b u y l

J l k u y l b

2 2 2

1 1 1 1 1(( ) ( ) (    u y l l k u y l b u y1 1 2 2 2 2 2 2- +  + - + + -q q ++ l2 q )

Take the Laplace transform of these two equations with zero ICs (i.e., substitute s2Y for y, sY for  
y, etc.):

 
ms b b s k k Y s b l b l s k2

1 2 1 2 2 2 1 1 2+ + + +[ ] + - +( ) ( ) ( ) ( ) ( ll k l s

b s k U s b s k U s

2 1 1

1 1 1 2 2 2

-[ ]
= + + +

) ( )

( ) ( ) ( ) ( )

q

Vehicle
body

Vehicle
suspension

θ

Road
disturbances

k1
b1

k2 b2

u1(t)

u2(t)

J

l1 l2

ym

Figure 5.2
A model of a vehicle with its suspension system.
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( ) ( ) ( ) (b l b l s k l k l Y s Js b l b2 2 1 1 2 2 1 1

2
1 1

2- + -[ ] + + + 22 2
2

1 1
2

2 2
2

1 1 1 1

l s k l k l s

l b s k U s

) ( ) ( )

( ) (

+ +[ ]
= - +

q

)) ( ) ( )+ +l b s k U s2 2 2 2

Let the coefficients be expressed as:

 C m1=  C b s k7 2 2= +

 C b b2 1 2= +  C J8 =

 C k k3 1 2= +  C b l b l9 1 1
2

2 2
2= +

 C b l b l4 2 2 1 1= -  C k l k l10 1 1
2

2 2
2= +

 C k l k l5 2 2 1 1= -  C l b s k11 1 1 1= - +( )

 C b s k6 1 1= +  C l b s k12 2 2 2= +( )

Then:

 
C s C s C Y s C s C s C U s C U1

2
2 3 4 5 6 1 7 2+ +[ ] + +[ ] = +( ) ( ) ( )q (( )

( ) ( ) (

s

C s C Y s C s C s C s C U s4 5 8
2

9 10 11 1+[ ] + + +[ ] =q )) ( )+C U s12 2

In matrix form:

 
C s C s C C s C

C s C C s C s C

Y1
2

2 3 4 5

4 5 8
2

9 10

+ + +
+ + +









(ss

s

C

C
U s

C

C
U

)

( )
( )

q






 =







 + 








6

11
1

7

12
22( )s

Now, by taking the inverse of the left hand side matrix we get:

 
Y s

s s
P s Q s

Q s R s

( )

( ) ( )
( ) ( )

( ) ( )q






 =









1 1
∆

11

1 2

6 1

7 2-













l l

C U s

C U s

( )

( )

in which,

 

P s Js C s C

Q s C s C s

R s C s C s

( )

( )

( )

= + +

= - -

= + +

2
9 10

4 5

1
2

2 CC3

and ∆(s) is the characteristic polynomial of the system as given by the determinant of the trans-
formed system matrix:

 ∆ =
-

-






( ) det

( ) ( )

( ) ( )
s

P s Q s

Q s R s
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The transfer-function matrix is given by

 G( )
( )

( ) ( )

( ) ( )
s

s
P s Q s

Q s R s

C C

C C
= 







1 6 7

11 12∆ 






The individual transfer-functions are given by the elements of G(s) as: 

 
Y s
U s

P s l Q s
s

C
( )
( )

( ) ( )
( )1

1
6=

-[ ]
∆

  
q ( )

( )
( ) ( )

( )
s

U s
Q s l R s

s
C

1

1
6=

-[ ]
∆

 
Y s
U s

P s l Q s
s

C
( )
( )

( ) ( )
( )2

2
7=

+[ ]
∆

  
q ( )

( )
( ) ( )

( )
s

U s
Q s l R s

s
C

2

2
7=

+[ ]
∆

5.3 Frequency Domain Models

Any transfer-function is defined as the ratio of output to input. If the output and input are 
expressed in the frequency domain, the frequency transfer-function is given by the ratio of 
the Fourier transforms of the output to the input. Frequency-domain representations are par-
ticularly useful in the analysis, design, control, and testing of electro-mechanical systems. 
The signal waveforms encountered in such a system can be interpreted and represented as 
a series of sinusoidal components. Indeed, any waveform can be so represented, and sinu-
soidal excitation is often used in testing of equipment and components. It is usually easier to 
obtain frequency-domain models than the associated time-domain models by testing.

5.3.1 Frequency Transfer-Function (Frequency response Function)

Consider the time-domain system (Equation 5.11) whose transfer-function (in the Laplace-
domain) is given by Equation 5.12..

5.3.1.1 Response to a Harmonic Input

Suppose that a harmonic (sinusoidal) input, given in the complex form:

 u = uoejw t = uo (cos wt + j sin w t) (5.2.3.)

is applied to the system. After the conditions settle down (i.e., at steady state) the output 
(response) of the system will also be harmonic, given by:

 y = yoejw t = yo (cos wt + j sin w t) (5.2.4)

By substituting Equations 5.2.3. and 5.2.4 in Equation 5.11 and cancelling the common 
term ejw t we get 

 y
b j b j b

a j a j
o

m
m

m
m

n
n

n

= ( ) + ( ) + +

( ) + ( )
-

-

-

w w

w w
1

1
0

1


nn o

a
u- + +











1

0  (5.2.5a)
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or, in view of Equation 5.12.,

 y G j uo o= ( )w  (5.2.5b)

 Note
de

dt
j e

j t
j t:

w
ww=





 

Here, the frequency transfer-function (or, frequency response function) is given by

 G j G s
b b j b j
a a js j

m
m

( ) ( )|
( ) ( )
(

w w w
w

= = + + +
+= ω

0 1

0 1

…

)) ( )+ +… a jn
nw

 (5.2.6)

Note: Angular frequency variable (rad/s) w  = 2.p f where f = cyclic frequency variable  
(Hz).

Also, directly from the Laplace-domain result (Equation 5.12.) we have the frequency-
domain result:

 G j
Y j
U j

( )
( )
( )

w w
w

=  (5.2.6a)

where Y j y t( ) ( )w = F and U j t( ) ( )w = F  with F  denoting the Fourier transform operator. 

5.3.1.2 Magnitude (Gain) and Phase

Let us denote the magnitude of G(jw ) as:

 G j Mw( ) =  (5.2.7a)

and the phase angle of G(jw ) as:

 ∠ ( ) =G jw φ  (5.2.7b)

Then we can write

 G j M jM Me jw f f f( ) = + =cos sin  (5.2.7c)

and from Equations 5.2.4 and 5.2.5b:

 y = uo Mej(w t + f) (5.2.8)

Observations:
When a harmonic input of frequency w  is applied to the system:

 1. The output is magnified by M = |G(jw )|
 2.. The output has a phase lead w.r.t. input by f  = ∠G(jw ).
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Note: For practical systems ∠G(jw ) is typically a negative phase lead (i.e., output usually 
lags input).

It follows that G(jw ) constitutes a complete model for a linear, constant-parameter sys-
tem, as does G(s). 

5.3.2 bode Diagram (bode Plot) and Nyquist Diagram

The frequency transfer-function G(jw ) is in general a complex function of frequency w 
(which is a real variable). From the result (Equation 5.2.7) it should be clear that applying 
a harmonic (i.e., sinusoidal) excitation and measuring the amplitude gain and the phase 
change at the output (response) for a series of frequencies, is a convenient method of exper-
imental determination of a system model. This approach of “experimental modeling” is 
termed model identification. Either a sine-sweep or a sine-dwell excitation may be used with 
these tests. Specifically, a sinusoidal excitation is applied (i.e., input) to the system and the 
amplification factor and the phase-lead angle of the resulting response are determined at 
steady state. The frequency of excitation is varied continuously for a sine sweep, and in 
steps for a sine dwell. Sweep rate should be sufficiently slow, or dwell times should be suf-
ficiently long, to guarantee achieving steady-state response in these methods. The results 
are usually presented as either a pair of curves:

 |G( jw )|versus w

  ∠G( f ) versus w

with log axes for magnitude (e.g., decibels) and frequency (e.g., decades). This pair of 
curves is called the Bode plot or Bode diagram.

If the same information is plotted on the complex G(jw ) plane with the real part plotted 
on the horizontal axis and the imaginary part on the vertical axis, the resulting curve is 
termed Nyquist diagram or Argand plot or polar plot. 

In a Bode diagram the frequency is shown explicitly on one axis, whereas in a Nyquist 
plot the frequency is a parameter on the curve, and is not explicitly shown unless the curve 
itself is calibrated. In Bode diagrams, it is customary and convenient to give the magnitude 
in decibels (2.0log10|G(jw )|) and scale the frequency axis in logarithmic units (typically 
factors of 10 or decades). Since the argument of a logarithm should necessarily be a dimen-
sionless quantity, Y(jw ) and U(jw ) should have the same units, or the ratio of G(jw ) with 
respect to some base value such as G(0) should be used.

The arrow on the Nyquist curve indicates the direction of increasing frequency. Only the 
part corresponding to positive frequencies is actually shown. The frequency response func-
tion corresponding to negative frequencies is obtained by replacing w  by  - w  or, equivalently, 
jw  by  - jw . The result is clearly the complex conjugate of G( jw ), and is denoted G*( jw ):

 G j G s
s j

∗
=-

=( ) ( )w
w

 (5.2.9)

Since, in complex conjugation, the magnitude does not change and the phase angle 
changes sign, it follows that the Nyquist plot for G*(jw ) is the mirror image of that for 
G(jw ) about the real axis. In other words, the Nyquist plot for the entire frequency range w 
[ - ∞, + ∞] is symmetric about the real axis.

The shape of these plots for a simple oscillator is shown in Figure 5.3..
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162 Modeling and Control of Engineering Systems

5.4 Transfer-Functions of Electro-Mechanical Systems

Impedance is a transfer-function which is useful in both mechanical and electrical sys-
tems. Mobility is the inverse of mechanical impedance. Transmissibility is another 
 transfer-function that is useful in mechanical systems. In view of the existing analogies 
(e.g., force-current analogy) which have been studied in the previous chapters, similar 
treatments are possible concerning transfer-functions in mechanical and electrical sys-
tems. Several relevant topics are addressed next.

5.4.1 Significance of Transfer-Functions in Mechanical Systems

The significance of frequency transfer-function as a dynamic model can be explained by 
considering the simple oscillator (i.e., a single-degree-of-freedom mass-spring-damper 
system, as shown in Figure 5.1). Its force–displacement transfer-function, in the frequency 
domain, can be written as:

 G j
ms bs k

( )w =
+ +
1

2.
 with s = jw  (5.3.0)

in which m, b, and k denote mass, damping constant, and stiffness, respectively of the 
oscillator. When the excitation frequency w  is small in comparison to the system natural 
frequency k m/ , the terms ms2. and bs can be neglected with respect to k; and the system 
behaves as a simple spring. When the excitation frequency w  is much larger than the sys-
tem natural frequency, the terms bs and k can be neglected in comparison to ms2.. In this 
case the system behaves like a simple mass element. When the excitation frequency w  is 
very close to the natural frequency (i.e., s = jw ≈ j k m/ ), it is seen from Equation 5.3.0 that 
the term ms2. + k in the denominator of the transfer-function (i.e., the characteristic poly-
nomial) becomes almost zero, and can be neglected. Then the transfer-function can be 
approximated by G(jw ) = 1/(bs) with s = jw . 
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Figure 5.3
Frequency domain model of a simple oscillator: (a) Bode plot; (b) Nyquist plot.
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In summary:

 1. In the neighborhood of a resonance or natural frequency (i.e., for intermediate 
values of excitation frequencies), system damping becomes the most important 
parameter.

 2.. At low excitation frequencies the system stiffness is the most significant 
parameter.

 3.. At high excitation frequencies the mass is the most significant parameter.

Note: In these observations, instead of the physical parameters m, k, and b, we could use 
natural frequency wn = k m/ and the damping ratio z = b mk/( )2.  as the system parameters. 
Then the number of system parameters reduces to two, which is an advantage in parametric 
and sensitivity studies.

5.4.2 Mechanical Transfer-Functions

Any type of force or motion variable may be used as input and output variables in defining 
a transfer-function of a mechanical system. We can define several versions of frequency 
transfer-functions that may be useful in the modeling and analysis of mechanical systems. 
Some relatively common ones are given in Table 5.1. 

In the frequency domain:

 Acceleration = (jw ) × (Velocity)

 Displacement = Velocity/(jw )

In view of these relations, many of the alternative types of transfer-functions as defined 
in Table 5.1 are related to mechanical impedance and mobility through a factor of jw ; 
specifically:

 

Dynamic stiffness=Force/displacement=Impedannce

Receptance=Displacement/force=Mobil

× jw

iity/( )

Dynamic inertia=Force/acceleration

jw

==Impedance/( )

Accelerance=Acceleration/f

jw

oorce=Mobility× jw

Table 5.1

Definitions of useful Mechanical Transfer-Functions

Transfer-Function Definition (in Laplace or Frequency Domain)

Dynamic stiffness Force/displacement
Receptance (dynamic flexibility or 
compliance) Displacement/force

Mechanical impedance (Z) Force/velocity
Mobility (M) Velocity/force
Dynamic inertia Force/acceleration
Accelerance Acceleration/force
Force transmissibility (Tf) Transmitted force/applied force
Motion transmissibility (Tm) Transmitted velocity/applied velocity
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164 Modeling and Control of Engineering Systems

In these definitions the variables force, acceleration and displacement should be inter-
preted as the corresponding Fourier spectra. 

5.4.2.1 Mechanical Impedance and Mobility

In studies of mechanical systems, three types of frequency transfer-functions are particu-
larly useful. They are mechanical impedance, mobility, and transmissibility, as presented in 
Table 5.1. In mechanical impedance function, velocity is considered the input variable and 
the force is the output variable, whereas in the mobility function the converse applies. It is 
clear that mobility is the inverse of mechanical impedance. Either transfer-function may 
be used in a given problem, depending on the convenience of analysis, as will be clear 
from the examples presented in this chapter.

5.4.3 interconnection laws

Once the transfer-functions of the system components are known, the interconnection 
laws may be used to determine the overall transfer-function of the system. Two types of 
interconnection are useful:

 1. Series connection
 2.. Parallel connection

Determination of the interconnection laws is straightforward in view of the fact that:

 1. For series-connected elements: through variable is common and the across vari-
ables add.

 2.. For parallel-connected elements: across variable is common and the through vari-
ables add.

5.4.3.1 Interconnection Laws for Mechanical Impedance and Mobility

Since mobility is given by an across variable (velocity) divided by a through variable 
(force), it is clear (by dividing throughout by the common through variable) that for 
series-connected elements the mobilities add (or, the inverse of impedance will be 
additive). 

Since mechanical impedance is given by a through variable (force) divided by an across 
variable (velocity), it is clear (by dividing throughout by the common across variable) that 
for parallel-connected elements the mechanical impedances add (or, the inverse of mobil-
ity will be additive).

These interconnection laws are presented in Table 5.2..

5.4.3.2 Interconnection Laws for Electrical Impedance and Admittance

Since electrical impedance is given by an across variable (voltage) divided by a through 
variable (current), it is clear (by dividing throughout by the common through variable) that 
for series-connected elements the electrical impedances add (or, the inverse of admittance 
will be additive).
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Since admittance is given by a through variable (current) divided by an across vari-
able (voltage), it is clear (by dividing throughout by the common across variable) 
that for parallel-connected elements the admittances add (or, the inverse of electrical 
impedance will be additive). These interconnection laws for electrical are presented in  
Table 5.3..

5.4.3.3 A-Type Transfer-Functions and T-Type Transfer-Functions

Electrical impedance and mechanical mobility are “A-type transfer-functions” because 
they are given by: [across variable/through variable]. They follow the same interconnec-
tion laws (compare Tables 5.2. and 5.3.).

Table 5.2

Interconnection Laws for Mechanical Impedance (Z) and Mobility (M)

Series Connection Parallel Connection

M2M1

f 
Z2Z1

v1 v2
v M2

M1

f

Z2

Z1

v

f1

f2

v = v1 + v2. f = f1 + f2.

v
f

v
f

v
f

= +1 2. f
v

f
v

f
v

= =1 2.

M = M1 + M2. Z = Z1 + Z2.

1 1 1

1 2.Z Z Z
= + 1 1 1

1 2.M M M
= +

Table 5.3

Interconnection Laws for Electrical Impedance (Z) 
and Admittance (W)

Series Connections Parallel Connections

v = v1 + v2. i = i1 + i2.

v
i

v
i

v
i

= +1 2. i
v

i
v

i
v

= =1 2.

Z = Z1 + Z2. W = W1 + W2.

1 1 1

1 2.W W W
= + 1 1 1

1 2.Z Z Z
= +
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Electrical admittance and mechanical impedance are “T-type transfer-functions” because 
they are given by: [through variable/across variable]. They follow the same interconnec-
tion laws (compare Tables 5.2. and 5.3.).

5.4.4 Transfer-Functions of basic elements

Since a complex system can be formed through series and parallel interconnections of 
basic elements, it is possible to systematically generate the transfer-function of a complex 
system by using the transfer-functions of the basic elements. 

In Chapter 2., the linear constitutive relations for the mass, spring and the damper ele-
ments were presented as time-domain relations. The corresponding transfer-functions are 
obtained by replacing the derivative operator d/dt by the Laplace operator s. The frequency 
transfer-functions are obtained by substituting jw  or j2.pf for s. In this manner, the transfer-
functions of the basic (linear) mechanical elements: mass, spring, and damper may be 
obtained, as given in Table 5.4.

Similarly, in Chapter 2., the linear constitutive relations for the electrical capacitor, induc-
tor, and resistor elements were presented as time-domain relations. The corresponding 
transfer-functions are obtained by replacing the derivative operator d/dt by the Laplace 
operator s. In this manner, the transfer-functions of the basic (linear) electrical elements 
may be obtained, as given in Table 5.5.

Three examples are given next to demonstrate the use of impedance and mobility meth-
ods in frequency-domain models. 

Table 5.4

Mechanical Impedance and Mobility of basic Mechanical Elements

Element Time-domain Model Impedance 
Mobility (Generalized 

Impedance) 

Mass m m
dv
dt

f= Zm = ms M
msm =
1

Spring k df
dt

kv= Z
k
sk = M

s
kk =

Damper b
 

f bv= Z bb = M
bb =
1

Table 5.5

Impedance and Admittance of basic Electrical Elements

Element Time-domain Model Impedance (Z) Admittance (W)

Capacitor C C
dv
dt

i= Z
CsC =
1

Wc = Cs

Inductor L L
di
dt

v= ZL = Ls W
LsL =
1

Resistor R Ri = v ZR = R W
RR =
1
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example 5.4: ground-based Mechanical Oscillator 

Consider the simple oscillator shown in Figure 5.4a. Its mechanical circuit representation is given 
in Figure 5.4b. The input is the force f(t); accordingly, the source element is a force source (a 
through-variable source or T-source). The output (response) of the system is the velocity v. In this 
situation the transfer-function V(jw )/F(jw ) is a mobility function. On the other hand, if the input 
is the velocity v(t), the source element is a velocity source; and if force f is exerted on the envi-
ronment, it is the output, and the corresponding transfer-function F(jw )/V(jw ) is an impedance 
function.

Suppose that using a force source, a known forcing function is applied to this system (with zero 
ICs) and the velocity response is measured. If we were to move the mass exactly at this predeter-
mined velocity (using a velocity source), the force generated at the source would be identical to 
the originally applied force. In other words, mobility is the reciprocal (inverse) of impedance, as 
noted earlier. This reciprocity should be intuitively clear because we are dealing with the same 
system and same initial conditions. Due to this property, we may use either the impedance rep-
resentation or the mobility representation, depending on whether the elements are connected in 
parallel or in series, irrespective of whether the input is a force or a velocity. Once the transfer-
function is determined in one form, its reciprocal gives the other form.

In summary:

From the viewpoint of analysis/modeling of a linear system it is immaterial as to what type of 
transfer-function is used. In particular, mechanical impedance or mobility may be used with-
out affecting the analytical outcomes. From the physical point of view, however, one transfer-
function may not be realizable while another is (Note: Physical realizability will be addressed 
later in this chapter).

In the present example, the three elements are connected in parallel. Hence, as is clear from the 
impedance circuit shown in Figure 5.4c, the impedance representation (rather than the mobility 
representation) is more convenient. The overall impedance function of the system is:

 Z j
F j
V j

Z Z Z ms
k
s

b
ms b

m k b
s j

( )
( )
( )

w w
w w

= = + + = + + = +

=

2 ss k
s s j

+

= w

 (5.31a)

The mobility function is the inverse of Z(jw ):

 M j
V j
F j

s
ms bs k s j

( )
( )
( )

w w
w w

= =
+ + =

2
 (5.31b)

b k 

m 

f (t)

v 

Suspension

(a) v 

f (t)

0 

(b) v

f (t)

0 

Zk ZbZm

(c)

Figure 5.4
(a) Ground-based mechanical oscillator. (b) Schematic mechanical circuit. (c) Impedance circuit.

76868.indb   167 7/8/09   5:07:57 PM
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Note that if, physically, the input to the system is the force, the mobility function governs the 
system behavior. In this case, the characteristic polynomial of the system is s2 + bs + k, which cor-
responds to a simple oscillator and, accordingly, the (dependent) velocity response of the system 
would be governed by this characteristic polynomial. If, on the other hand, physically, the input is 
the velocity, the impedance function governs the system behavior. The characteristic polynomial 
of the system, in this case, is s, which corresponds to a simple integrator (1/s). The (dependent) force 
response of the system would be governed by an integrator type behavior. To explore this behavior 
further, suppose the velocity source has a constant value. The inertia force will be zero. The damp-
ing force will be constant. The spring force will increase linearly. Hence, the net force will have an 
integration (linearly increasing) effect. If the velocity source provides a linearly increasing velocity 
(constant acceleration), the inertia force will be constant, the damping force will increase linearly, 
and the spring force will increase quadratically. In fact, it will be seen from the later developments 
in this chapter and elsewhere, the mobility function (as given above), not the impedance function, 
is the physically realizable transfer-function for the oscillator example in Figure 5.4.

example 5.5: a Degenerate Case

Consider an intuitively degenerate example of a system as shown in Figure 5.5a. Note that the 
support motion is not associated with an external force. The mass m has an external force f and 
velocity v. At this point we shall not specify which of these variables is the input to the system. It 
should be clear, however, that v cannot be logically considered an input because the application 
of any arbitrary velocity to the support structure will generate a force at that location and this is not 
allowed for in the system shown in Figure 5.5. However, since vl = v, it follows from the mechani-
cal circuit representation shown in Figure 5.5b, and its impedance circuit shown in Figure 5.5c, 
that it is acceptable to indirectly consider v1 also as the input to the system when v is the input.

When v is the input to the system, the source element in Figure 5.5b becomes a velocity source. 
The corresponding impedance function is:

 F j
V j

Z msm s j

( )
( )
w
w w

= =
=

 (5.32a)

If, on the other hand, f is the input and v is the output, the mobility function is valid, which 
given by:

 V j
F j

M
msm

s j

( )
( )
w
w w

= =
=

1  (5.32b)

v1

b k 

m 
v 

v

v1

f 
(a) 

b k 

(b) 

Source 

f 
v

v1

(c) 

Source 

ZbZkZm

f 

0 

Figure 5.5
(a) A mechanical oscillator with support motion. (b) Schematic mechanical circuit. (c) Impedance circuit.
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Furthermore, since vl = v, an alternative impedance function:

 
F j
V j

ms
s j

( )
( )
w
w w

1

=
=

 (5.33a)

and a mobility function:

 
V j
F j ms s j

1 1( )
( )
w
w w

=
=

 (5.33b)

may be defined.

example 5.6: Oscillator with Support Motion

To show an interesting reciprocity property, consider the system shown in Figure 5.6a. In this 
example the motion of the mass m is not associated with an external force. The support motion, 
however, is associated with the force f. A schematic mechanical circuit for the system is shown 
in Figure 5.6b and the corresponding impedance circuit is shown in Figure 5.6c. They clearly 
indicate that the spring and the damper are connected in parallel, and the mass is connected in 
series with this pair. By impedance addition for parallel elements, and mobility addition for series 
elements, it is seen that the overall mobility function of the system is:

 
V j
F j

M
Z Z ms k

s
b

m
k b

s j

( )
( ) ( )
w
w

w

= +
+

= +
+





=

=

1 1 1 mms bs k
ms bs k s j

2 + +
+ =( ) w

 (5.34a)
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m 

v 

v 

v1

f 

(a) 

b k 

(b) 

Source 

0 

v

v1
(c) 

ZbZkZm

f 

0 

f 

m 

Figure 5.6
(a) A mechanical oscillator with support motion. (b) Schematic mechanical circuit. (c) Impedance circuit.
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It follows that if force at the support is the input (a force source) and the support velocity is 
the output, the system characteristic polynomial is ms(bs + k), which is known to be inherently 
unstable due to the presence of a free integrator, and has a nonoscillatory transient response.

Alternatively, if the support velocity is the input (a velocity source), the corresponding imped-
ance function is the reciprocal of the previous mobility function, and is given by:

 
F j
V j

ms bs k
ms bs k s j

( )
( )

( )w
w w

= +
+ + =

2
 (5.34b)

Furthermore, we have: 
V j
F j ms s j

1 1( )
( )
w
w w

=
=

The impedance function F(jw )/V1(jw ) is not admissible and is physically unrealizable because 
V1 cannot be an input for there is no associated force at that location. This is confirmed by the 
fact that the corresponding transfer-function is a differentiator—a physically nonrealizable device. 
The mobility function V1(jw )/F(jw ) corresponds to a simple integrator. Physically, when a force f 
is applied to the support it transmits to the mass, unchanged, through the parallel spring-damper 
unit. Accordingly, when f is constant, a constant acceleration is produced at the mass, causing its 
velocity to increase linearly (an “integration” behavior).

Maxwell’s principle of reciprocity is demonstrated by noting that in Examples 5.5 and 5.6 the 
mobility functions V1(f )/F(f ) are identical. What this means is that the support motion produced 
by applying a forcing excitation to the mass (system in Figure 5.5a) is equal to the motion of the 
mass when the same forcing excitation is applied to the support (system in Figure 5.6a), with the 
same initial conditions.

Note: Maxwell’s reciprocity property is valid for linear, constant-parameter systems in general, 
and is particularly useful in testing of multi-degree-of-freedom mechanical systems; for example, 
to determine a transfer-function that is difficult to measure, by measuring its symmetrical counter-
part in the transfer-function matrix.

5.4.5 Transmissibility Function

Transmissibility functions are transfer-functions that are particularly useful in the design 
and analysis of fixtures, mounts, and support structures for machinery, vehicles, and other 
engineering systems. In particular they are used in the studies of vibration isolation and 
vehicle suspension design. Two types of transmissibility functions—force transmissibility 
and motion transmissibility—can be defined. Due to a reciprocity characteristic of linear 
systems, it can be shown that these two transfer-functions are equal and, consequently, it 
is sufficient to consider only one of them. We will first consider both types of transmissibil-
ity functions and show their equivalence.

5.4.5.1 Force Transmissibility

Consider a mechanical system supported on a rigid foundation through a suspension 
system. If a forcing excitation is applied to the system, it is not directly transmitted to 
the foundation. The suspension system acts as an “isolation” device. Force transmissibil-
ity determines the fraction of the forcing excitation that is transmitted to the foundation 
through the suspension system at different frequencies, and is defined as:

 Force transmissibility =
Suspension force

Tf Applied force
F

F
s  (5.3.5)
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Note: This function is defined in the frequency domain, and accordingly Fs and F should 
be interpreted as the Fourier spectra of the corresponding forces.

A schematic diagram of a force transmissibility mechanism is shown in Figure 5.7a. The 
reason for the suspension force fs not being equal to the applied force f is attributed to the 
inertia path (broken line in Figure 5.7a) that is present in the mechanical system.

5.4.5.2 Motion Transmissibility

Consider a mechanical system supported through a suspension mechanism on a struc-
ture, which may be subjected to undesirable motions (e.g., seismic disturbances, road dis-
turbances, machinery disturbances). Motion transmissibility determines the fraction of 
the support motion that is transmitted to the system through its suspension at different 
frequencies. It is defined as:

 Motion transmissibility =
System motion

T
V

m
m

SSupport motion V
 (5.3.6)

Note: The velocities Vm and V are expressed in the frequency domain, as Fourier 
spectra.

A schematic representation of the motion transmissibility mechanism is shown in Figure 
5.7b. Typically, the motion of the system is taken as the velocity of one of its critical masses. 
Different transmissibility functions are obtained when different mass points (or degrees 
of freedom) of the system are considered.

Next, two examples are given to show the reciprocity property, which makes the force 
transmissibility and the motion transmissibility functions identical.

5.4.5.3 Single-Degree-of-Freedom System

Consider the single-degree-of-freedom systems shown in Figure 5.8. In these examples the 
system is represented by a point mass m, and the suspension system is modeled as a spring 
of stiffness k and a viscous damper of damping constant b. The model shown in Figure 5.8a 
is used to study force transmissibility. Its impedance circuit is shown in Figure 5.9a. The 

(a)

Suspension

Mechanical
system

f (t)

v(t)

Foundation

Inertia
force
path

Forcing
excitation

fs

(b)

Suspension

Mechanical
System

vm

Support
structure

Figure 5.7
(a) Force transmissibility mechanism. (b) Motion transmissibility mechanism.
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model shown in Figure 5.8b is used in determining the motion transmissibility. Its imped-
ance (or, mobility) circuit is shown in Figure 5.9b.

Note: mobility elements are suitable for motion transmissibility studies. 
Since force is divided among parallel branches in proportion to their impedances it  

follows from Figure 5.9a that:

 T
F
F

Z
Z Zf

s s

m b

= =
+

 (5.3.7a)

Since velocity is divided among series elements in proportion to their mobilities, it is 
clear from Figure 5.9b that:

 T
V
V

M
M M

Z
Z Z

Z
Z Zm

m m

m s

m

m s

s

m b

= =
+

=
+

=
+

1
1 1/

 (5.3.7b)

Consequently, we have:

 Tf = Tm (5.3.8)

b
k

m

f (t)(a)

fs

vm

bk

m

v (t)

(b)

Figure 5.8
Single-degree-of-freedom systems. (a) Fixed on ground. (b) With support motion.
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(b)
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Figure 5.9
Impedance circuits of (a) system in Figure 5.8a and (b) system in Figure 5.8b.

76868.indb   172 7/8/09   5:08:04 PM



Transfer-Function and Frequency-Domain Models 173

and a distinction between the two types of transmissibility is not necessary. Let us denote 
them by a common transmissibility function T. 

Note: It can be concluded that Figure 5.8a and b are complementary systems for 
transmissibility.

Since, Z ms Z k s bm s= = +and / , it follows that 

 T
bs k

ms bs k s j

= +
+ +





 =

2.
w

 (5.3.9a)

It is customary to consider only the magnitude of this complex transmissibility function. 
This, termed magnitude transmissibility, is given by:

 T
b k

b k m
= +

+ -






w
w w

2. 2. 2.

2. 2. 2. 2. 2.

1 2.

( )

/

 (5.3.9b)

5.4.5.4 Two-Degree-of-Freedom System

Consider the two-degree-of-freedom systems shown in Figure 5.10. The main system is 
represented by two masses linked through a spring and a damper. Mass m1 is considered 
the critical mass. (It is equally acceptable to consider mass m2. as the critical mass.) To deter-
mine the force transmissibility, from Figure 5.11a note that the applied force is divided in 
the ratio of the impedances among the two parallel branches. The mobility of the main 
right hand side branch is

 M
Z Z Zs m s

= +
+

1 1

1 2.

 (5.40)

k2

v(t)

b2

m2

m1

vm

k1
b1

(b)

k2 b2

m2

m1

f (t)

k1
b1

(a)

fs

Figure 5.10
Systems with two-degree-of-freedom (a) fixed on ground and (b) with support motion.
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and the force through that branch is

 ′=
+

















=
+







F M

Z
M

F
MZ

F

m
m

1

1
1

1
1

1

The force Fs through Zs is given by

 F
Z

Z Z
Fs

s

m s

=
+







′
2.

Consequently, the force transmissibility is given by:

 T
F
F MZ

Z
Z Zf

s

m

s

m s

= =
+





 +






1
11 2.

 (5.41)

where M is as given in Equation 5.40. 
To determine the motion transmissibility, from Figure 5.10b and the associated Figure 

5.11b, note that the velocity is distributed in proportion to the mobilities among the series 
elements. The impedance of the composite series unit in the bottom is

 Z
M M Mm s m

= +
+

1 1

2. 1 1

 (5.42.)

and the velocity across this unit is

 ′=
+

















=
+







V Z

M
Z

V
M Z

V

s
s

1

1
1

1

+

–

Mm1

Ms1 Mm2

Ms

0

vm

(b)

Zm1 Zs1

Zm2 Zs

f (t)

0

(a)

Figure 5.11
Impedance circuits of (a) system in Figure 5.10a and (b) system in Figure 5.10b.
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The velocity Vm of mass m1 is given by

 V
M

M M
Vm

m

s m

=
+







′1

1 1

As a result, the motion transmissibility can be expressed as

 T
V
V M Z

M
M Mm

m

s

m

s m

= =
+





 +






1
1

1

1 1

 (5.43.)

where Z is as given by Equation 5.42..
It remains to show that Tm = Tf . To this end, let us examine the expression for Tm. Since  

Zs = 1/Ms, Tm can be written as

 T
Z

Z Z
M

M Mm
s

s

m

s m

=
+





 +






1

1 1

Note: Z
M M

Z
s m
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+
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1 1
2.

Hence,
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=
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=
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Z
Z Z

s

m s2.

 (5.43.a)

This expression is clearly identical to Tf  as given in Equation 5.41, in view of Equation 5.40. 
Note: It can be concluded that Figure 5.10a and b are complementary systems for 

transmissibility.
The equivalence of Tf and Tm can be shown in a similar straightforward manner for 

higher degree-of-freedom systems as well. 

5.5 Equivalent Circuits and Linear Graph Reduction

We have observed that transfer-function approaches are more convenient than the dif-
ferential equation approaches, in dealing with linear systems. This stems primarily from 
the fact that transfer-function approaches use algebra rather than calculus. Also we have 
noted that when dealing with circuits (particularly, impedance and mobility circuits), 
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transfer-function approaches are quite natural. Since the circuit approaches are  extensively 
used in electrical systems, and as a result, quite mature procedures are available in that 
context, it is useful to consider extending such approaches to mechanical systems (and 
hence, to electro-mechanical systems). In particular, circuit reduction is convenient using 
Thevenin’s equivalence and Norton’s equivalence for electrical circuits. Linear graphs, 
as studied in Chapter 4, can be simplified as well by using transfer-function (frequency 
domain) approaches and circuit reduction. We will address these issues in this section. 

5.5.1 Thevenin’s Theorem for electrical Circuits

Thevenin’s theorem provides a powerful approach to reduce a complex circuit segment 
into a simpler equivalent representation. Two types of equivalent circuits are generated by 
this theorem:

 1. Thevenin equivalent circuit (consists of a voltage source and an impedance Ze in 
series).

 2.. Norton equivalent circuit (consists of a current source and an impedance Ze in 
parallel).

The theorem provides means to determine the equivalent source and the equivalent 
impedance for either of these two equivalent circuits.

Consider a (rather complex) segment of a circuit, consisting of impedances and source 
elements, as represented in Figure 5.12.a. According to the Thevenin’s theorem, this circuit 
segment can be represented by the Thevenin equivalent circuit, as shown in Figure 5.12.b 
or the Norton equivalent circuit, as shown in Figure 5.12.c so that for either equivalent 
circuit, the voltage v and the current i are identical to those at the output port of the con-
sidered circuit segment. 

Note: The circuit segment of interest (Figure 5.12.a) is isolated by “virtually” cutting (sepa-
rating) a complex circuit into the complex segment of interest and a quite simple (and fully 
known) segment which is connected to the complex segment. The “virtual” cut is made at 
the two appropriate terminals linking the two parts of the circuit. The two terminal ends 
formed by the virtual cutting is the “virtual” output port of the isolated circuit segment. 
Actually, these terminals are not in open-circuit condition because the cut is “virtual,” and 
a current flows through them.

V(s) = voltage across the cut terminals when entire circuit is complete 
I(s) = current through the cut terminals when entire circuit is complete

Impedances
and

sources

+

–

(a)

Ze

+

–

Isc(s)Voc(s) V(s)

I(s)

V(s)

I(s)

V(s)

I(s)
(c)

Ze
+

–

+

–

(b)

Figure 5.12
(a) Circuit segment with impedances and sources. (b) Thevenin equivalent circuit. (c) Norton equivalent 
circuit.
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Voc(s) = open-circuit voltage at cut the terminals (i.e., voltage with the terminals open)
Isc(s) = short-circuit current at cut terminals (i.e., current when the terminals are 

shorted)
Ze = equivalent impedance of the circuit segment with the source killed (i.e., voltage 

sources shorted and current source opened) =  Thevenin resistance

Note 1: Variables are expressed in the Laplace (or frequency domain) using the Laplace 
variable s.

Note 2: For a circuit segment with multiple sources, use superposition (linear system), by 
taking one source at a time.

example 5.7: illustrative example for Thevenin’s Theorem

As usual, we will use electrical impedances, in the Laplace domain. Consider the circuit in 
Figure 5.13a. We cut it as indicated by the dotted line and determine the Thevenin and Norton 
equivalent circuits for the left hand side portion.

Determination of the Equivalent Impedance Ze

First we kill the two sources (i.e., open the current source and short the voltage source so that the 
source signals become zero). The resulting circuit is shown in Figure 5.13b.

Note the series element and two parallel elements. Since the impedances add in series and 
inversely in parallel we have

 Z Z
Z Z

Z Z
Ls

R Cs
R Cs

Ls
R

RCse L
R C

R C

= +
+

= +
+

= +
+

/( )
/( )1 1

 (5.44)

Determination of Voc(s) for Thevenin Equivalent Circuit

We find the open-circuit voltage using one source at a time, and then use the principle of super-
position to determine the overall open-circuit voltage.

a. With Current Source I(s) Only

The circuit with the current source only (short the voltage source) is shown in Figure 5.13c.
The source current goes through the two parallel elements only, whose equivalent impedance 

is ( / )Z Z Z ZR C R C+ . Hence the voltage across it, which is also the open-circuit voltage (since no cur-
rent and hence no voltage drop along the inductor), is given by

 V
Z Z

Z Z
I soci

R C

R C

=
+( )

( )  (5.45a)

b. With Voltage Source V(s) Only

The circuit with the voltage source only (i.e., open the current source) is shown in Figure 5.13d.
The voltage drop across R should be equal to that across C, and hence the currents in these 

two elements must be in the same direction. But, the sum of the currents through these paral-
lel elements must be zero, by the node equation (since the open-circuit current is zero). Hence, 
each current must be zero and the voltages VR and VC must be zero. Furthermore, due to the  
open-circuit, the voltage VL across the inductor must be zero. Then from the loop equation, we 
have VOCV + V(s) = 0.

Or, 

 VOCV =  - V(s) (5.45b)
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Note the positive direction of potential drop for the open-circuit voltage, as needed for the 
Thevenin equivalent voltage source.

By superposition, the overall open-circuit voltage is

 V s V V
Z Z

Z Z
I s V soc oci ocv

R C

R C

( )
( )

( ) ( )= + =
+

-  (5.45)

The resulting Thevenin equivalent circuit is shown in Figure 5.13e.

Determination of ISC(s) for Norton Equivalent Circuit

We find the short-circuit current by taking one source at a time, and then using the principle of 
superposition.

a. With Current Source I(s) Only

The circuit with the current source only (short the voltage source) is shown in Figure 5.13f.
The source current goes through the three parallel elements, and the currents are divided 

inversely with the respective impedances. Hence the current through the inductor is (note the 
positive direction as marked, for the Norton equivalent current source)

 I
Z

Z Z Z
I ssci

L

R C L

=
+ +

1
1 1 1

/
( / / / )

( )  (5.46a)

ZR
ZC

ZL

Voci

(c)

ZR = R I(s)

ZL = Ls

1Zc Cs=

(b)
+ –

i(t)

v(t)

R C

L

R2 C2

Cut

(a)

ZR
ZC

ZL

Isci

(f ) 

+ 

–

Ze

Voc(s)

I(s)

(e) 

VR

+ –
V(s)

Vocv
ZCZR

ZL

VC

+ 

_ 

VL

(d) 

+ –
V(s)

ZCZR

ZL

Iscv

(g) 

ZeIsc(s)

(h) 

Figure 5.13
(a) An electrical impedance circuit. (b) Circuit with the sources killed. (c) Circuit with current source only.  
(d) Circuit with voltage source only. (e) Thevenin equivalent circuit. (f) Circuit with current source only.  
(g) Circuit with voltage source only. (h) Norton equivalent circuit.
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b. With Voltage Source V(s) Only

The circuit with the voltage source only (open the current source) is shown in Figure 5.13g.
Note from the circuit that the short-circuit current is the current that flows through the over-

all impedance of the circuit (series inductor and a parallel resistor and capacitor combination). 
According to the polarity of the voltage source, this current is in the opposite direction to the posi-
tive direction marked in Figure 5.13g. We have

 I s
V s

Z Z Z Z Zscv
L R C R C

( )
( )

( /( ))
= -

+ +
 (5.46b)

By superposition, the overall short-circuit current is

 I s I I
Z

Z Z Z
I s

V
sc sci scv

L

R C L

( )
/

( / / / )
( )= + =

+ +
-1

1 1 1
(( )

( /( ))
s

Z Z Z Z ZL R C R C+ +
 (5.46)

The resulting Norton equivalent circuit is shown in Figure 5.13h.

5.5.2 Mechanical Circuit analysis using linear graphs

For extending the equivalent-circuit analysis to mechanical systems, we use the force-cur-
rent analogy (see Chapters 2. and 4), where electrical impedance in analogous to mechanical 
mobility (A-type transfer-functions) and electrical admittance is analogous to mechanical 
impedance (T-type transfer-functions). This analogy is summarized in Table 5.6.

Accordingly, the reduction of a linear graph, in the frequency domain, is done by the 
following two steps:

 1. For each branch of the linear graph mark the mobility function (not mechanical 
impedance).

 2.. Carry out linear-graph analysis and reduction as if we are dealing with an electri-
cal circuit, in view of the analogy given in Table 5.6.

In particular, we do the following:

 1. For parallel branches: mobilities are combined by inverse relation 
M M M M M= +( )/( )1 2. 1 2. . Note: Velocity is common, force is divided inversely to 
branch mobilities.

 2.. For series branches: mobilities add (M = M1 + M2.). Note: Force is common; velocity 
is divided in proportion to mobility.

 3.. Killing a force source means open-circuiting it (so, transmitted force = 0).
 4. Killing a velocity source means short-circuiting it (so, velocity across = 0).

Table 5.6

Mechanical and Electrical Transfer-Function Analogy

Mechanical circuit Electrical circuit analogy
Mobility function Electrical impedance
Force Current
Voltage Velocity
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example 5.8: ground-based Mechanical Oscillator (revisited)

Let us revisit Example 5.4, this time equipped with Thevenin’s theorem and linear graphs. The 
system is shown in Figure 5.14a. Its linear graph is drawn as given in Figure 5.14b.

The mobility of the suspension unit (spring and damper on which the mass is supported) is

 M
s k b

s k b b k s
s

bs ks = +
=

+
=

+
( / )( / )

( / ) ( / ) ( / ) ( )
1
1

1
 (5.47)

The mobility of the mass element is

 M
msm =
1

 (5.48)

The linear graph given in Figure 5.14c is identical to that in Figure 5.14b, except that the suspen-
sion is shown as a single unit in Figure 5.14c.

Suppose that the linear graph in Figure 5.14b is cut (virtually) as shown and the part separated 
to the right is considered. 

Note: It should be obvious that its Norton equivalent circuit is indeed given in Figure 5.14c. 
The Thevenin equivalent circuit of the cut (right hand) segment is as shown in Figure 5.14d. 

Here, the open-circuit velocity (product of force and mobility of the circuit, with the cut terminals 
maintained in open-circuit, i.e., zero force) is

F(s)1
ms

s
k 1

b

Cut

(b)

bk

m

f (t)

v

Suspension

(a)

1Mm = ms
1

Ms =

Fs

(c) 

F (s)
(b + k/s)

1Mm = ms
Voc(s)

+

–

Me

(d)

Figure 5.14
(a) Ground-based oscillator. (b) Linear graph. (c) Norton equivalent circuit. (d) Thevenin equivalent circuit.
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 V s M F s
F s

b
k
s

oc s( ) ( )
( )= =
+





 (i)

The equivalent mobility of the cut (right hand side) circuit, with the source killed (i.e., opened 
for a force source) is the suspension mobility: 

 M Me s=  (ii)

Since force is divided inversely to mobilities in parallel paths. (Compare: Current is divided 
inversely to electrical impedances in parallel paths.), we have from Figure 5.14c, force through 
the suspension: 

 F
M

M M
F ss

m

m s

=
+( )

( )  (5.49a)

Accordingly, force transmissibility is obtained as

 T
M

M Mf
m

m s

=
+( )

 (5.49)

This is identical to what we obtained earlier (Equation 5.37a).
Note: As mentioned before, Norton equivalent circuit is given by the original circuit itself  

(Figure 5.14c) and will not provide any further useful information.
Now we will check the force through and the velocity across Mm for all circuits.
For Circuits in Figures 5.14b and c:

 
Velocity across mass element

Source force
M= oobility of circuit

We have

 Velocity across mass element =  M M
M M

F ss m

s m+
( )  (iii)

Note: Suspension and mass are connected in parallel.

 Force through mass element =  M
M M

F ss

s m+
( )  (iv)

Note: Equation (iv) is obtained simply by dividing Equation (iii) by the mass mobility or by noting 
that the source force is divided inversely with the mobilities of the two parallel path.

For Circuit in Figure 5.14d:
Since velocities are divided in proportion to mobilities in a series connection, we have

 Velocity across mass =  M
M M

V sm

e m
oc+

( )
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Substitute Equation (i) and use Equation (ii):

 Velocity across mass element =  M M
M M

F ss m

s m+
( )

This is identical to Equation (iii).

 Force through mass =  V s
M M

oc

e m

( )
+

Substitute Equations (i) and (ii).

 Force through mass element =  M
M M

F ss

s m+
( )

This is identical to Equation (iv), as expected.

example 5.9: Oscillator with Support Motion (revisited)

Let us revisit Example 5.6 using Thevenin’s theorem and linear graphs. The system is shown in 
Figure 5.15a. Its linear graph is drawn as given in Figure 5.15b.

As in Example 5.8 we have 

 M
s k b

s k b b k s
s

bs ks = +
=

+
=

+
( / )( / )

( / ) ( / ) ( / ) ( )
1
1

1  (5.47)

and

 M
msm =
1  (5.48)

The linear graph in Figure 5.15c is identical to that in Figure 5.15b, except that the suspension is 
shown as a single unit in Figure 5.15c. 

Suppose that the circuit in Figure 5.15b is cut as shown and the part separated to the right is 
considered. 

Note: Its Thevenin equivalent circuit is trivial, as shown in Figure 5.15c. 
The Norton equivalent circuit is as shown in Figure 5.15d. Here, the short-circuit force is

 F s
V s
Msc

s

( )
( )=  (i)

The equivalent mobility of the cut (right-side) circuit, with the source killed (i.e., shorted for a 
velocity source) is the suspension mobility: 

 Me = Ms (ii)

Since, in a series path, velocity is divided in proportion to mobilities. (Compare: In a series path, 
voltage is divided in proportion to electrical impedances.), we have from Figure 5.15c, velocity 
across the mass 

 V s
M

M M
V sm

m

m s

( ) ( )=
+

 (5.50a)
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Accordingly, motion transmissibility is given by

 T
M

M Mm
m

m s

=
+( )

 (5.50)

This is identical to what we obtained earlier (Equation 5.37b).
Note: As mentioned before, Thevenin equivalent circuit is the original circuit itself (Figure 5.15c) 

and will not provide any further useful information.
Now we will check the force through and the velocity across Mm for all circuits.
For Circuits in Figures 5.15b and c:

 Velocity across mass element V
M

M M
V sm

m

s m

=
+

( )  (iii)

V (s)

1
ms +

–

1
bs

k

Cut

Vm(b)
v1

bk

m

v

f

(a)

+

–

1
(b + k/s)

V (s)

Ms =

1
Mm =

ms

Vm(c)

Me

1Mm = ms

Fsc (s)

(d)

Figure 5.15
(a) Oscillator with support motion. (b) Linear graph. (c) Equivalent circuit. (d) Norton equivalent circuit.
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Note: Suspension and mass are connected in series. Hence velocities are divided in proportion 
to mobilities.

 Force through mass element =  V s
M Ms m

( )
+

 (iv)

For Circuit (d):

 Equivalent mobility of the two parallel elements =  M M
M M

e m

e m+

 Velocity across mass =  M M
M M

F se m

e m
sc+

( )

Substitute Equation (i) and use Equation (ii):

 Velocity across mass element =  M
M M

V sm

s m+
( )

This is identical to Equation (iii).

 Force through mass element =  M
M M

F se

e m
sc+

( )

Note: Force is divided inversely to mobilities in a parallel connection.
Substitute Equations (i) and (ii):

 Force through mass element =  V s
M Ms m

( )
+

This is identical to Equation (iv), as expected.

example 5.10: ground-based Two-Degree-of-Freedom Mechanical  
Oscillator (revisited)

Let us revisit the ground-based two-degree-of-freedom oscillator, this time using Thevenin’s theo-
rem and linear graphs. The system is shown in Figure 5.16a. Its linear graph is drawn as given in 
Figure 5.16b. Next Figure 5.16c is drawn by representing each suspension unit by a single branch. 

Since we are interested in the force Fs transmitted through the suspension unit Ms, this unit is 
cut out as in Figure 5.16d in order to determine the Thevenin equivalent circuit of the remaining 
system, which is shown in Figure 5.16e.

To determine the open-circuit velocity Voc(s) after the cut, note from Figure 5.16d that the force 
through the second parallel path is (divided inversely with mobilities)

 F
M

M M M
F sm

s m m
1

1

1 2 1

=
+ +( )

( )
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Hence, velocity across Mm2 is (product of force and mobility)

 V s M F
M M

M M M
F soc m

m m

s m m

( )
( )

( )= =
+ +2 1

1 2

1 2 1

The Thevenin equivalent mobility of Figure 5.16d is (by open-circuiting the force source and 
combining the remaining two parallel paths).

 M
M M M

M M Me
m s m

m s m

= +
+ +
2 1 1

2 1 1

( )
( )

From Figure 5.16e, force transmitted through the suspension is

 F
V s

M M
M M

M M M
F s

Ms
oc

e s

m m

s m m m

=
+

=
+ +

( )
( ) ( )

( )1 2

1 2 1

1

22 1 1

2 1 1

( )
( )
M M

M M M
Ms m

m s m
s

+
+ +

+
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–

Me
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(e) 
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Fs
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Cut

Ms
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Figure 5.16
(a) Ground-based two-degree-of-freedom oscillator. (b) Linear graph. (c) Linear graph showing suspension 
components. (d) Cutting out the suspension unit. (e) Thevenin equivalent circuit.
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Or

 F
M M F s

M M M M M M Ms
m m

m s m s s m m

=
+ + + +

1 2

2 1 1 1 2 1

( )
( ) ( )

 (5.51a)

Or

 Force transmissibility T
M M

M M M M M M Mf
m m

m s m s s m m

=
+ + + +

1 2

2 1 1 1 2 1( ) ( )
 (5.51)

We can show that this result is identical to the earlier result as follows:
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example 5.11: Two-Degree-of-Freedom Mechanical System with Support  
Motion (revisited)

Let us revisit the two-degree-of-freedom mechanical oscillator with support motion, this time 
armed with Thevenin’s theorem and linear graphs. The system is shown in Figure 5.17a. Its linear 
graph is drawn as given in Figure 5.17b. Next Figure 5.17c is drawn by representing each suspen-
sion unit by a single branch. 

Since we are interested in the velocity Vm transmitted to the mass element Mm1, this unit is cut 
out as in Figure 5.17c in order to determine the Norton equivalent circuit of the remaining system, 
which is shown in Figure 5.17d.

To determine the short-circuit force Fsc(s) after the cut, note from Figure 5.17c that this will be 
the force through Ms1 (after shorting the cut). Since there is a series branch Ms and two parallel 
branches Mm2 and Ms1, the force provided by the source velocity V(s) is:

 
V s

M M
M M

Ms m

s m
s

( )

( )
1 2

1 2+
+





This force is divided inversely according to the mobilities in the two parallel branches Mm2 and 
Ms1. Hence, the short-circuit force is

 F s
V s

M M
M M

M

M
Msc

s m

s m
s

m

s

( )
( )

( )
(

=

+
+





+1 2

1 2

2

1 MM
M

M M M M M
V s

m

m
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2

1 2 1 2) ( )
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+ +

The Norton equivalent mobility is obtained by short-circuiting the velocity source and combin-
ing the remaining two parallel branches Mm2 and Ms with the series branch Ms1. We get

 M M
M M

M M
M M M M M

M Me s
m s

m s

s m s m s

m s

= +
+

= + +
+

=1
2

2

1 2 2

2

( ) MM M M M M
M M

s m s s m

m s

1 2 1 2

2

+ +
+
( )

76868.indb   186 7/8/09   5:08:21 PM



Transfer-Function and Frequency-Domain Models 187

From Figure 5.17d, the velocity Vm is the product of the force and equivalent mobility: 

 V
M M

M M
F sm

m e

m e
sc=

+
1

1( )
( )

Note from the previous two results that

 F s M
M

M M
V ssc e

m

m s

( )
( )

( )=
+

2

2

V(s)

1
b2

1
m1s

+

–

s
k2

1
b1s

k1

1
m2s

(b) 

k2

v(t)

b2

m2

m1

vm

k1
b1

(a)

Mm1

+

–

Ms1
Vm

Ms

V(s)

Mm1 Me

Vm(d) 

Fsc(s)

Mm2

Cut 

(c) 

Figure 5.17
(a) Two-degree-of-freedom oscillator with support motion. (b) Linear graph. (c) Linear graph showing suspen-
sion components. (d) Norton equivalent circuit.
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Hence
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 Motion transmissibility T
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=
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 (5.52)

We can show that this is identical to the earlier result as follows:
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5.5.3 Summary of Thevenin approach for Mechanical Circuits

We now summarize the general steps in applying the Thevenin’s theorem to mechanical 
circuits that are represented by linear graphs, in the Laplace/frequency domain.

5.5.3.1 General Steps

 1. Draw the linear graph for the system and mark the mobility functions for all the 
branches (except the source elements).

 2.. Simplify the linear graph by combining branches as appropriate (series branches: 
add mobilities; parallel branches: inverse rule applies for mobilities) and mark the 
mobilities of the combined branches.

 3.. Depending on the problem objective (e.g., determine a particular force, velocity, 
transfer-function) determine which part of the circuit (linear graph) should be cut 
(i.e., the variable or function of interest should be associated with the part that is 
removed from the circuit) so that the equivalent circuit of the remaining part has 
to be determined.

 4. Depending on the problem objective establish whether Thevenin equivalence or 
Norton equivalence is needed. (Specifically: use Thevenin equivalence if a through 
variable needs to be determined, because this gives two series elements with a 
common through variable; use Norton equivalence if an across variable needs to 
be determined, because this gives two parallel elements with a common across 
variable.)
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 5. Determine the equivalent source and mobility of the equivalent circuit.
 6. Using the equivalent circuit determine the variable or function of interest.

5.6 Block Diagrams and State-Space Models

The transfer-function model G(s) of a SISO system can be represented by a single block 
with an input and an output, shown in Figure 5.18a. For a MIMO system the inputs and 
outputs are vectors u and y. The corresponding information (signal) lines are drawn 
thicker as in Figure 5.18b to indicate that they represent vectors. One disadvantage 
of the transfer-function representation is obvious from Figure 5.18: No information 
regarding how the various elements or components are interconnected within the sys-
tem can be uniquely determined from the transfer-function. It contains only a unique 
input–output description. For the same reason a given transfer-function can corre-
spond to different state-space models. We identify the transfer-function of a dynamic 
model by its inputs and outputs, not by its state variables, which are internal variables. 
However, the internal structure of a dynamic system can be indicated by a more elabo-
rate graphical representation. One such representation is provided by linear graphs, 
as we saw in Chapter 4. Another detailed representation can be provided by a block 
diagram with many blocks representing system elements or components, connected 
together. Such a detailed block diagram may be used to uniquely indicate the state 
variables in a particular model.

For example, consider the state-space model Equations 5.13. and 5.14. A block diagram 
that uniquely possesses this model is shown in Figure 5.19. Note the feedforward path cor-
responding to D. The feedback paths (corresponding to A) do not necessarily represent a 
feedback control system where “active” feedback paths are generated by an external con-
troller. The internal feedback paths shown in Figure 5.19 are natural feedback paths. Strictly 
speaking thicker signal lines should be used in this diagram since we are dealing with 
vector variables.

Two or more blocks in cascade can be replaced by a single block having the product of 
individual transfer-functions. The circle in Figure 5.19 is a summing junction. A negative 
sign at the arrow-head of an incoming signal corresponds to subtraction of that signal. As 
mentioned earlier, 1/s can be interpreted as integration, and s as differentiation. 

In generating and simplifying block diagrams, the rules indicated in Table 5.7 are quite 
useful. All the entries of the table are quite obvious, and may be verified by inspection. We 
note the following:

 1. Circle (summing junction): Two or more signals are added together forming a new 
signals.

u
G(s)

y

Input Output

(a) (b)
u y

Input
vector

Output
vector

G(s)

Figure 5.18
Block-diagram representation of a transfer-function model. (a) Single-input single-output (SISO) system.  
(b) Multi-input–multi-output (MIMO) system.
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 Note: Negative sign at arrow-head of incoming signal  subtract the signal.
 2.. Two or more blocks in cascade = single block having product of individual transfer-

functions.
 3.. Two or more blocks in parallel = single block having sum of individual transfer-

functions.

u B

–A

C

D

yxẋ

–

1
s

Figure 5.19
block-diagram representation of a state-space model.

Table 5.7

Basic Relations for Block-diagram Reduction

Description Equivalent Representation

Summing junction

x1

x2

x3

x3. = x1 + x2.

Cascade (series) 
connection

x1
x2G2G1

x1 x2G1G2

Parallel connection

x1
x2G1

G2
x1 x2G1 + G2

Shifting signal-
pickoff point

x1
x2

x2

G
x1 x2

x1 = x2/G

G

Shifting Signal-
application point

G
x1

x2

x3 G

x2/G

x1 x3

Reduction of 
feedback loop

–
G

H

x2x1 G
1 + GH

x2x1
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However, an explanation is appropriate for the last entry of the table, where the equiva-
lent block for a feedback loop is given. The result may be obtained as follows:

The feedback signal at the summing junction =   - Hx2.

Hence, the signal reaching the block G is x1  - Hx2.

Accordingly, output of the block G is G(x1 - Hx2.) which is equal to x2..
We have: G(x1 - Hx2.) = x2.

Straightforward algebra gives:

 x
G
GH

x2. 11
=

+
 (5.53.)

The equivalence of Figure 5.19 and the relations (Equations 5.13. and 5.14) should be obvi-
ous. Alternatively, the rules for block diagram reduction (given in Table 5.7) can be used to 
show that the system transfer-function is given by:

 Y s
U s

G s
CB

s A
D

( )
( )

( )
( )

= =
-

+  (5.54)

This is the scalar version of the matrix-vector Equation 5.15a.

5.6.1 Simulation block Diagrams

In a simulation block diagram each block contains either an integrator (1/s) or a constant 
gain term. The name originates from classical analog computer applications in which 
hardware modules of summing amplifiers and integrators (along with other units such as 
potentiometers and resistors) are interconnected to simulate dynamic systems. Recently, 
the same type of block diagrams has been in wide use for the purpose of computer simula-
tion of dynamic systems; for example, in software tools such as Simulink®.

In summary:
A simulation block diagram consists only of:

 1. Integration blocks
 2.. Constant gain blocks
 3.. Summing junctions

Also,

They are useful in computer simulation of dynamic systems.•	
They can be obtained from input–output models (see following examples) or state-•	
space models (see previous example or converse of the following examples).
Can be used to develop state-space models.•	
Not unique (see examples given next).•	

5.6.2 Principle of Superposition

As noted before, for a linear system, the principle of superposition applies. In particular if, 
with zero ICs, x is the response of a system to an input u, then drx/dtr is the response to the 
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input dru/dtr. Consequently, by the principle of superposition, a1x + a2.drx/dtr is the response 
to the input a1u + a2.dru/dtr. This form of the principle of superposition is quite useful in the 
analytical manipulation of block diagrams.

Using the same example for input–output differential equations, we now illustrate sev-
eral methods of obtaining state-space models through simulation block diagrams. In a 
simulation block diagram we have:

 1. State variables = Outputs of the integrators
 2.. State equations = Equations for signals going into the integration blocks
 3.. Algebraic output equation = Equation for the summing junction that generates y 

(far right).

example 5.12: Superposition Method

Consider the time-domain input–output model (differential equation) given by:

      y y y y u u u u+ + + = + + +13 56 80 6 11 6  (i)

The principle of superposition is applied now. Consider the differential equation:

   x x x x u+ + + =13 56 80  (ii)

This defines the “parent” (or, auxiliary) system. The simulation diagram for Equation (ii) is shown 
in Figure 5.20. Steps of obtaining this diagram are as follows: start with the highest-order derivative 
of the response variable (i.e., x ); successively integrate it until the variable itself (x) is obtained; 
feed the resulting derivatives of different orders to the summing junction (along with the input 
variable) to produce the highest-order derivative of the response variable such that the original 
differential Equation (ii) is satisfied. 

By the principle of superposition, it follows from Equations (i) and (ii) that:

 y x x x x= + + +  6 11 6  (iii)

u

13

56

ẋẋ̇ẋ̇̇

80

1
s

1
s

x1
s

–

Figure 5.20
The simulation diagram of system   x x x x u+ + + =13. 56 80 .
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Hence, the simulation diagram for the original system (Equation (i)) can be derived from  
Figure 5.20, as shown in Figure 5.21. 

In particular, note the resulting feedforward paths. The corresponding state model employs x 
and its derivatives as state variables:

 x x x x x x
T T

1 2 3[ ] = [ ] 

As indicated before, the state variables are the outputs of the integrators (see Figure 5.21). Also, 
as indicated before, a state equation is written by expressing how the signal that goes into the cor-
responding integration block (i.e., the first derivative of the corresponding state variable) is formed. 
Specifically, from Figure 5.21 we have:

 







x x

x x

x x x x u

1 2

2 3

3 1 2 380 56 13

=

=

= - - - +

 (iv)

As indicated before, the algebraic output equation is obtained by writing the signal summation 
equation for the summing junction (far right), which generates y. Specifically, from Figure 5.21 we 
have:

 y x x x x x x u= + + + - - - +6 11 6 80 56 131 2 3 1 2 3( )

or,

 y x x x u= - - - +74 45 71 2 3  (v)

u

13

56

80

1
s

1
s

x1
s

y6
x1x2x3

6

11

–

ẋ̇̇ ẋ̇ ẋ

Figure 5.21
The simulation diagram of      y y y y u u u u+ + + = + + +13. 56 80 6 11 6 .
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The corresponding model matrices are:

 A=
- - -

















0 1 0

0 0 1

80 56 13

; B =
















0

0

1

; C = - - -[ ]74 45 7 ; D = 1

The system matrix pair (A, B) is said to be in the companion form in this state model. Note: The 
system model is third order. Hence the simulation diagram needs three integrators, and the system 
matrix A is 3 × 3.

Note further that the “parent” (or, auxiliary) transfer-function (that of Equation (ii)) is given by:

 X
U s s s

=
+ + +

1
13 56 803 2

From Equation (iii), the output of the original system is given by:

 Y s X s X sX X s s s X= + + + = + + +3 2 3 26 11 6 6 11 6( )

Hence the transfer-function of the original system is:

 G s
Y
U

s s s
s s s

( ) = = + + +
+ + +

3 2

3 2

6 11 6
13 56 80

This agrees with the original differential Equation (i). Furthermore, in G(s), since the numerator 
polynomial is of the same order (third order) as the denominator polynomial (characteristic poly-
nomial), a nonzero feedforward gain matrix D is generated in the state model. 

example 5.13: grouping like-Derivatives Method

Consider the same input–output differential Equation (i) as in Example 5.12. By grouping the 
derivatives of the same order, it can be written in the following form:

      y u u y u y u y= + - + - + -( ) ( ) ( )6 13 11 56 6 80

By successively integrating this equation three times, we obtain:

 y u u y u y u y d d= + - + - + -{ } ′



∫∫∫ 6 13 11 56 6 80( ) t t dd ′′t  (i)a

Note the three integrations on the right hand side of this equation. Now draw the simulation 
diagram as follows: Assume that y is available. Form the integrand of the innermost integration 
in (i) a by feeding forward the necessary u term and feeding back the necessary y term. Perform 
the innermost integration. The result will form a part of the integrand for the next integration. 
Complete the integrand through feeding forward the necessary u term and feeding back the nec-
essary y term. Perform this second integration. The result will form a part of the integrand next 
the next (outermost) integration. Proceed as before to complete the integrand and perform the 
outermost integration. Feedforward the necessary u term to generate y, which was assumed to be 
known in the beginning. The result is shown in Figure 5.22.

Note: The “innermost” integration in (i)a forms the “outermost” feedback loop in the block 
diagram.

As in the previous example, the state variables are defined as the outputs of the integrators. The 
state equations are written by considering the signals that enter each integration block, to form the 
first derivative of the corresponding state variable. We get:
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x u x x u x x u

x u x

1 2 1 1 2

2 3

6 13 13 7

11 56

= + - + = - + -

= + -

( )

(( )

( )

x u x x u

x u x u x

1 1 3

3 1 1

56 45

6 80 80 7

+ = - + -

= - + = - - 44u

 (iv)a

The algebraic output equation is written by writing the equation for the summing junction (far 
right), which generates y. We get:

 y = x1 + u (v)a

This corresponds to:

 A = 
-
-
-

















13 1 0

56 0 1

80 0 0

; B = 
-
-
-

















7

45

74

; C =  1 0 0[ ] ; D = 1

This state model is the dual of the state model obtained in the previous example.

example 5.14: Factored-Transfer-Function Method

The method illustrated in this example is appropriate when the system transfer-function is avail-
able in the factorized form, with first-order terms expressed in the form:

 G s
s b
s a1( )

( )
( )

= +
+

Since the block diagram of the transfer-function 1/(s + a) is given by Figure 5.23a, it follows from 
the superposition method that the block diagram for (s + b)/(s + a) is as in Figure 5.23b. This is one 
form of the basic block-diagram module, which is used in this method. 

An alternative form of block diagram for this basic transfer-function module is obtained by 
noting the equivalence shown in Figure 5.24a. In other words, when it is needed to supply a 

u

13

56

80

1
s

y
6

x1x2x3

6

11

1
s

1
s

– – –

x1˙x2˙x3˙

Figure 5.22
Simulation diagram obtained by grouping like-derivatives.
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derivative signal u  at the input to an integrator, instead the signal u itself can be supplied at the 
output of the integrator. Now, note that the first-order transfer-function unit (s + b)/(s + a) has the 
terms u bu+  on the input side. The term bu is generated by cascading a block with simple gain b, 
as in Figure 5.24b. To provide u, instead of using the dotted input path in Figure 5.24b, that would 
require differentiating the input signal, the signal u itself is applied at the output of the integrator. 
It follows that the block diagram in Figure 5.23b is equivalent to that in Figure 5.24b.

Now, returning to our common example (Equation (i)), the transfer-function is written as:

 G s
s s s

s s s
( ) = + + +

+ + +

3 2

3 2

6 11 6
13 56 80

This can be factored into the form:

 G s
s
s

s
s

s
s

( )
( )
( )

( )
( )

( )
( )

= +
+

× +
+

× +
+

1
4

2
4

3
5

 (i)b

a

1
s

u x

–

a

1
s

xẋ

–

b

(a) (b)

y

Figure 5.23

The simulation diagrams of (a) 1/(s + a) and (b) (s + b)/(s + a).

1
s = 1

s

uu̇
(a)

u̇

(b)

1
s

a

bu y
_

Figure 5.24
(a) Two equivalent ways of providing an input derivative ( u). (b) An equivalent simulation diagram for  
(s + b)/(s + a).
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Note that there are two common factors (corresponding to “repeated poles” or “repeated eigen-
values”) in the characteristic polynomial (denominator). This has no special implications in the 
present method. The two versions of block diagram for this transfer-function, in the present meth-
ods, are shown in Figures 5.25 and 5.26. Here we have used the fact that the product of two trans-
fer-functions corresponds to cascading the corresponding simulation block diagrams. As before, 
the state variables are chosen as the outputs of the integrators, and the state equations are written 
for the input terms of the integrator blocks. The output equation comes from the summation block 
at the far right, which generates the output.

From Figure 5.25, the state equations are obtained as:

 







x u x

x x x u x x x u

x

3 3

2 3 2 3 2 3

1

4

4 4 4 3

2

= -

= - + - = - - +

=

( )

xx x x x u x x x u2 1 2 3 1 2 35 4 3 5 2 3- + - - + = - - - +( )

 (iv)b

u – 4x3 1
s

4

1
s

4

x3

ẋ3 ẋ2 ẋ1
2

x2

–– –

1
s 3

5

x1u y

Figure 5.25
Simulation block diagram obtained by factorizing the transfer-function.

1
s

4

1
s

4

2

31
s

5

x3

ẋ3 ẋ2

ẋ1

x2

x1

– –

–

u x3 + u x2 + x3 + u

x1 + x2 + x3 + u  

y

Figure 5.26
An alternative simulation diagram obtained by factorizing the transfer-function.
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The algebraic output equation is:

 
y x x x x u

x x x u

= + - - - +

= - - - +

3 5 2 3

2 2 3

1 1 2 3

1 2 3

( )
 (v)b

These corresponds to the state model matrices:

 A = 
- - -

- -
-

















5 2 3

0 4 3

0 0 4

; B = 
1

1

1

















; C =  - - -[ ]2 2 3 ; D = 1

The state equations corresponding to Figure 5.26 are:

 





x x u u x u

x x x u x

3 3 3

2 2 3 3

4 4 3

4 2

= - + + = - -

= - + + + +

( )

( ) ( uu x x u

x x x x u x x u

)

( ) (

= - - -

= - + + + + + +

4 2 2

5 3

2 3

1 1 2 3 2 3 )) = - - - -5 2 3 21 2 3x x x u

 (iv)c

The algebraic output equation is:

 y x x x u= + + +1 2 3  (v)c

These equations correspond to the state model matrices:

 A = 
- - -

- -
-

















5 2 2

0 4 2

0 0 4

; B = 
-
-
-

















2

2

3

; C =  1 1 1[ ] ; D = 1

Both system matrices are upper-diagonal (i.e., all the elements below the main diagonal are 
zero), and the main diagonal consists of the poles (eigenvalues) of the system. These are the roots 
of the characteristic equation. We should note the duality in these two state models (Equations (iv)
b and (iv)c). Note also that, if we group the original transfer-function into different factor terms, we 
get different state models. In particular, the state equations will be interchanged.

example 5.15: Partial-Fraction Method

The partial fractions of the transfer-function (i) b considered in the previous example are written 
in the form:

 G s
s s s

s s s
a

s
b

( )
( ) (

= + + +
+ + +

= -
+

-
3 2

3 2

6 11 6
13 56 80

1
4 ss

c
s+

-
+4 52) ( )

By equating the like terms on the two sides of this identity, or by using the fact that:

 

c s G s

b s G s

a
d
ds

s

s

s

= - +

= - +

= - +

=-

=-

( ) ( )

( ) ( )

(

5

4

4

5

2
4

)) ( )2

4

G s
s





 =-
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we can determine the unknown coefficients; thus

 a =  - 17, b = 6, c = 24

The simulation block diagram corresponding to the partial-fraction representation of the 
 transfer-function is shown in Figure 5.27. We have used the fact that the sum of two transfer-
functions corresponds to combining their block diagrams in parallel. Again the state variables 
are chosen as the outputs of the integrators. By following the same procedure as before, the 
corresponding state equations are obtained as:

 







x x u

x x x

x x u

1 1

2 2 3

3 3

5

4

4

= - +

= - +

= - +

The algebraic output equation is:

 y cx bx ax u= - - - +1 2 3

This corresponds to the state-model matrices:

 A = 
-

-
-

















5 0 0

0 4 0

0 0 4

; B = 
1

0

1

















; C =  - - -[ ]c b a ; D = 1

1
s

1
s

–b

–a

–c

yu

4 4

1
s

5

x3

ẋ3

ẋ1

ẋ2

x2

x1

_

__

Figure 5.27
Simulation block diagram obtained by the partial fraction method.
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In this case, the system matrix is said to be in the Jordan canonical form. If the eigenvalues are 
distinct (unequal), the matrix A, when expressed in the Jordan form, will be diagonal, and the 
diagonal elements will be the eigenvalues. When repeated eigenvalues are present, as in the pres-
ent example, the matrix A will consist of diagonal blocks (or Jordan blocks) consisting of upper-
diagonal submatrices with the repeated eigenvalues lying on the main diagonal, elements of unity 
at locations immediately above the main diagonal, and zero elements elsewhere. More than one 
Jordan block can exist for the same repeated eigenvalue. These considerations are beyond the 
scope of this chapter. 

example 5.16

A manufacturer of rubber parts uses a conventional process of steam-cured molding of latex. The 
molded rubber parts are first cooled and buffed (polished) and then sent for inspection and pack-
ing. A simple version of a rubber buffing machine is shown in Figure 5.28a. It consists of a large 
hexagonal drum whose inside surfaces are all coated with a layer of bonded emery. The drum is 

Three-phase
induction motor

Flexible
coupling

Emery surfaced
hexagonal drum

Self-aligning
bearing

Tm

Jm

θm θL

bm

kL

JL

Motor rotor

Drive
shaft

Tr

Drum

TNL
(Buffing
dissipation) 

(a) 

(b) 

Figure 5.28
A rubber buffing machine. (a) Schematic diagram. (b) Dynamic model. 
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supported horizontally along its axis on two heavy-duty, self-aligning bearings at the two ends, 
and is rotated using a three-phase induction motor. The drive shaft of the drum is connected to the 
motor shaft through a flexible coupling, in order to compensate for possible misalignments of the 
axes. The buffing process consists of filling the drum with rubber parts, steadily rotating the drum 
for a specified period of time, and finally vacuum-cleaning the drum and its contents. Dynamics 
of the machine affects the mechanical loading on various parts of the system such as the motor, 
coupling, bearings, shafts and the support structure. 

In order to study the dynamic behavior, particularly at the startup stage and under distur-
bances during steady-state operation, an engineer develops a simplified model of the buffing 
machine. This model is shown in Figure 5.28b. The motor is modeled as a torque source Tm, 
which is applied on the rotor having moment of inertia Jm and resisted by a viscous damping 
torque of damping constant bm. The connecting shafts and the coupling unit are represented 
by a torsional spring of stiffness kL. The drum and its contents are represented by an equivalent 
constant moment of inertia JL. There is a resisting torque on the drum, even at steady operating 
speed, due to the eccentricity of the contents of the drum. This is represented by a constant 
torque Tr. Furthermore, energy dissipation due to the buffing action (between the rubber parts 
and the emery surfaces of the drum) is represented by a nonlinear damping torque TNL, which 
may be approximated by

 T cNL L=  q qL  with c > 0

Note that qm and qL are the angles of rotation of the motor rotor and the drum, respectively, and 
these are measured from inertial reference lines which correspond to a relaxed configuration of 
spring kL.

 a. Comment on the assumptions made in the modeling process of this system and briefly dis-
cuss the validity (or accuracy) of the model.

 b. Show that the model equations are:

 
J T k b

J k c

m m m L m L m m

L L L m L

 



q q q q

q q q

= - - -

= - -

( )

( )  q qL L rT-

What are the inputs of this system?

 c. Using the speeds qm  and qL, and the spring torque Tk as the state variables, and the twist of 
the spring as the output, obtain a complete state-space model for his nonlinear system.

  What is the order of the state model?

 d. Suppose that under steady operating conditions, the motor torque is Tm, which is constant. 
Determine an expression for the constant speed w  of the drum in terms ofTm, Tr and appro-
priate system parameters under these conditions. Show that, as intuitively clear, we must 
have T Tm r>  for this steady operation to be feasible. Also obtain an expression for the spring 
twist at steady state, in terms of w , Tr, and the system parameters.

 e. Linearize the system equations about the steady operation condition and express the two 
equations in terms of the following “incremental” variables:

q1 = variation of qm about the steady value
q2 = variation of qL about the steady value
u = disturbance increment of Tm from the steady valueTm.
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 f. For the linearized system obtain the input–output differential equation, first considering q1 
as the output and next considering q2 as the output. Comment about and justify the nature 
of the homogeneous (characteristic-equation) parts of the two equations. Discuss, by exam-
ining the physical nature of the system, why only the derivatives of q1 and q2 and not the 
variables themselves are present in these input–output equations. 

  Explain why the derivation of the input–output differential equations will become consider-
ably more difficult if a damper is present between the two inertia elements Jm and JL.

 g. Consider the input–output differential equation for ql. By introducing an auxiliary variable 
draw a simulation block diagram for this system. (Use integrators, summers, and coefficient 
blocks only.) Show how this block diagram can be easily modified to represent the following 
cases:

 (i) q2 is the output.
 (ii) q1 is the output.
 (iii) q2 is the output.

  What is the order the system (or the number of free integrators needed) in each of the four 
cases of output considered in this example?

 h. Considering the spring twist (q1ñq2) as the output draw a simulation block diagram for the 
system. What is the order of the system in this case?

Hint: For this purpose you may use the two linearized second order differential equations 
obtained in (e).

 (i) Comment on why the “system order” is not the same for the five cases of output con-
sidered in (g) and (h).

Solution

 a. The assumptions are satisfactory for a preliminary model, particularly because very accurate 
control is not required in this process. Some sources of error and concern are as follows:

 (i) Since the rubber parts move inside the drum, JL is not constant and the inertia contribu-
tion does not represent a rigid system.

 (ii) Inertia of the shafts and coupling is either neglected or lumped with Jm and JL. 
 (iii) Coulomb and other nonlinear types of damping in the motor and the bearings have 

been approximated by viscous damping.
 (iv) The torque source model (Tm) is only an approximation to a real induction motor.
 (v) The resisting torque of the rubber parts (Tr) is not constant during rotation.
 (vi) Energy dissipation due to relative movements between the rubber parts and the inside 

surfaces of the drum may take a different form from what is given (a quadratic damping 
model).

 b. For Jm, Newton’s second law gives (see Figure 5.29a):

 J
d
dt

T b Tm
m

m m m k

2

2

q q= - -  (i)

 For spring kL, Hooke’s law gives (see Figure 5.29b):

 Tk = kL(qm – qL) (ii)
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 For JL, Newtons’ second law gives (see Figure 5.29c):

 J
d
dt

T T TL
L

k NL r

2

2

q = - -  (iii)

with

 T cNL L L=  q q  (iv)

 Substitute Equation (ii) into Equation (i):

 J T b km m m m m L m L
 q q q q= - - -( )  (v)

 Substitute Equations (ii) and (iv) into Equation (iii):

 J k c TL L L m L L L r
  q q q q q= - - -( )  (vi)

 Clearly, Tm and Tr are the inputs to the system (see Equations (v) and (vi)).
 c. Let q wm m=  and q wL L=

From Equation (i): 
d
dt

b
J J

T
J

Tm m

m
m

m
k

m
m

w w= - - +1 1

From Equations (iii) and (iv): 
d
dt

c
J J

T
J

TL

L
L L

L
k

L
r

w w w= - + -1 1

Differentiate Equation (ii): 
dT
dt

k kk
L m L L= -w w

The above three equations are the state equations.

 Output y = spring twist = q qm L-

Hence, from Equation (ii) we have

 y
k

T
L

= 1

Jm

Tm

bmθm

θm
.

θm θL θL

Tk

(a)

Tk

TkkL

(b)

JL

Tr

Tk
TNL

(c)

Figure 5.29
Figure 5.2.9 (a) Motor inertia. (b) Drive shaft. (c) Drum inertia.
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which is the output equation.
 The system is third order (three state equations).

 d. Under steady conditions:

 w w wm L= = ,  w wm L= =0 , T Tm m=

and q q qm L- = ∆ ; Tr remains a constant.
Then from Equations (v) and (vi):

 T b km m L- - ∆ =w q 0  (vii)

and

 k c TL r∆ - - =q w 2 0  (viii)

Without loss of generality, w is assumed to be positive.
Add the last two Equations (vii) and (viii) to eliminate kL∆q ; thus, 

 T b c Tm m r- - - =w w 2 0

or,

 c b T Tm m rw w2 0+ - - =( )

 Hence

 w = - ± 




+ -b

c
b
c

T T
c

m m m r

2 2

2
( )

 The proper solution is the positive one:

 w = 




+ - -b

c
T T

c
b
c

m m r m

2 2

2
( )

 and for this to be positive, we must have T Tm r> .
Next, from Equation (viii), the steady-state twist of the spring is:

 ∆ = -q w( )c T
k

r

L

2

 e. Taylor series expansion up to the first order term gives:

For Equation (v): J J q T u b b q k k q qm m m m m L L
  w w q+ = + - - - ∆ - -1 1 1 2( )

For Equation (vi): J J q k k q q c c q TL L L L r
  w q w w+ = ∆ + - - - -2 1 2

2
22( )

The steady-state terms cancel out (also, w = 0). Hence, we have the following linearized 
equations:

 J q u b q k q qm m L 1 1 1 2= - - -( )  (ix)
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 J q k q q c qL L 2 1 2 22= - -( ) w  (x)

 These two equations represent the linear model.
 f. From Equation (ix)

 q q
b
k

q
J
k

q
u
k

m

L

m

L L
2 1 1 1= + + -





   (xi)

From Equation (x)

 q q
c
k

q
J
k

q
L

L

L
1 2 2 2

2= + +





w    (x)

 Substitute Equation (xi) into Equation (xii) for q2:

 

q q
b
k

q
J
k

q
u
k

c
k

q
bm

L

m

L L L
2 1 1 1 1

2= + + -




+ +  w mm

L

m

L L

L

L

m

L

k
q

J
k

q
u
k

J
k

q
b
k

 




1 1

1

+ -





+ +  


q
J
k

q
u
k

m

L L
1 1+ -





which gives

 

J J
k

d q
dt

b J
k

c J
k

d q
dt

m L

L

m L

L

m

L
2

4
1

4 2 2

3
12+ +





w
33 2

2
1

2

2

2

+ + +





+ +

J
k

c b
k

J
k

d q
dt

c
k

b

m

L

m

L

L

L

L

m

w

w
kk

dq
dt k

u
c
k

du
dt

J
k

d u
dtL L L

L

L







= + +1
2 2

2

2

1 2 w
 (xiii)

 Next, substitute Equation (xii) into Equation (xi) for q1. We get:

 

J J
k

d q
dt

b J
k

c J
k

d q
dt

m L

L

m L

L

m

L
2

4
2

4 2 2

3
22+ +





w
33 2

2
2

2

2

2

+ + +





+ +

J
k

c b
k

J
k

d q
dt

c
k

b

L

L

m

L

m

L

L

m

w

w
kk

dq
dt k

u
L L







=2 1
 (xiv)

Observe that the left hand sides (homogenous or characteristic parts) of these two input–output 
differential equations are identical. The characteristic equation represents the “natural” dynamics 
of the system and should be common and independent of the input (u). Hence the result is justi-
fied. Furthermore, derivatives of u are present only in the q1 equation. This is justified because 
motion q1 is closer than q2 to the input u. Also, only the derivatives of q1 and q2 are present in 
the two equations. This is a property of a mechanical system that is not anchored (by a spring) to 
ground. Here the reference value for q1 or q2 could be chosen arbitrarily, regardless of the relaxed 
position of the inter-component spring (kL) and should not depend on u either. Hence the absolute 
displacements q1 and q2 themselves should not appear in the input–output equations, as clear 
from Equations (xiii) and (xiv). Such systems are said to possess rigid body modes. Even though 
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the differential equations are fourth order, they can be directly integrated once, and the system 
is actually third order (also see Chapter 3, Example 3.2). The position itself can be defined by an 
arbitrary reference and should not be used as a state in order to avoid this ambiguity. However, if 
position (q1 or q2 and not the twist q1 - q2) is chosen as an output, the system has to be treated as 
fourth order. Compare this to the simple problem of a single mass subjected to an external force, 
and without any anchoring springs.

If there is a damper between Jm and JL we cannot write simple expressions for q2 in terms of q1, 
and q1 in terms of q2, as in Equations (xi) and (xii). Here, the derivative operator D = (d/dt) has to 
be introduced for the elimination process, and the solution of one variable by eliminating the other 
one becomes much more complicated.

 g. Use the auxiliary equation

 a
d x
dt

a
d x
dt

a
d x
dt

a
dx
dt

u4

4

4 3

3

3 2

2

2 1+ + + =

where

 a
J J
k
m L

L
4 = , a

b J
k

c J
k

m L

L

m

L
3

2= +





w , a J
c b

k
Jm

m

L
L2

2= + +





w , a b cm1 2= + w

 It follows from Equation (xiv) that 

 q2 = x

 and from Equation (xiii) that 

 q x b x b x1 1 2= + + 

 whereb
c
kL

1
2= w

, and b
J
k

L

L
2= .

 Hence, we have the block diagram shown in Figure 5.30a for the relationship u → q1. 
 Note that four integrators are needed. Hence this is a fourth order system.

 (i) In this case the simulation block diagram is as shown in Figure 5.30b. This also needs 
four integrators (a fourth order system).

 (ii) In this case the simulation block diagram is as shown in Figure 5.30c. This only needs 
three integrators (a third order system).

 (iii) By differentiating the expression for q1, we have    q x b x b x1 1 2= + + . Hence the block dia-
gram in this case is as shown in Figure 5.30d. This needs three integrators (a third order 
system).

 h. Using Equations (ix) and (x) we get:

 J q u b q k q qm m L 1 1 1 2= - - -( )

 J q k q q c qL L 1 1 2 22= - -( ) w

Accordingly, we can draw the block diagram shown in Figure 5.30e. There are three integrators 
in this case. The system is third order. 

76868.indb   206 7/8/09   5:09:02 PM



Transfer-Function and Frequency-Domain Models 207

 i. When q1 and q2 are used as outputs, the system order increases to four. But, as discussed in 
(f), q1 and q2 are not realistic state variables for the present problem.

5.6.3 Causality and Physical realizability

Consider a dynamic system that is represented by the single input–output differential 
Equation 5.11, with n > m. The physical realizability of the system should dictate the causal-
ity (cause–effect) of this system that u should be the input and y should be the output. Its 
transfer-function is given by Equation 5.12.. Here, n is the order of the system, ∆(s) is the 
characteristic polynomial (of order n), and N(s) is the numerator polynomial (of order m) 
of the system.

We can prove the above by contradiction. Suppose that m > n. Then, if we integrate 
Equation 5.11 n times, we will have y and its integrals on the left hand side but the right 
hand side will contain at least one derivative of u. Since the derivative of a step function 
is an impulse, this implies that a finite change in input will result in an infinite change in 
the output (response). Such a scenario will require infinite power, and is not physically 
realizable. It follows that a physically realizable system cannot have a numerator order 
greater than the denominator order, in its transfer-function. If in fact m > n, then, what it 
means physically is that y should be the system input and u should be the system output. 
In other words, the causality should be reversed in this case. For a physically realizable 
system, a simulation block diagram can be established using integrals (1/s) alone, with-
out the need of derivatives (s). Note that pure derivatives are physically not realizable. 
If m > n, the simulation block diagram will need at least one derivative for linking u to 
y. That will not be physically realizable, again, because it would imply the possibility of 

u 1a4
x

a3

a2

a1

b2

b1
q1

Subsystem S

–

(a)

∫ ∫ ∫∫ẋ̇̇̇ ẋ̇̇ ẋ̇ ẋ

(b)

Subsystem
S

(has one
integrator)

x = q2

x = q2

u

(c)
S

(has one
integrator)

u

∫∫

∫ ∫

∫ẋ̇̇ ẋ̇

ẋ̇̇ ẋ̇

ẋ

∫ ∫x x

b2 

b1

q1S
(Needs one
integrator)

u 

(d)

ẋ̇̇ ˙̇ ˙ ˙

(e)

∫ ∫u 1
Jm

bm

q1

kL

q1

∫1
JL

2cω

q2q2
−

−– 
˙̇

˙̇ ˙

˙ q1–q2˙ q1–q2˙

Figure 5.30
Simulation block diagram (a) when q1 is the output; (b) when q2. is the output; (c) when q1  is the output; (d) when 
q2.  is the output; and (e) when the spring twist q1-q2. is the output. 
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producing an infinite response by a finite input. In other words, the simulation block 
diagram of a physical realizable system will not require feed-forward paths containing 
pure derivatives. 

Problems

PROBLEM 5.1
State whether true (T) or false (F).

 a. The output of a system will depend on the input.
 b. The output of a system will depend on the system transfer-function.
 c. The transfer-function of a system will depend on the input signal.
 d. If the Laplace transform of the input signal does not exist (say, infinite), then the 

transfer-function itself does not exist.
 e. If the Laplace transform of the output signal does not exist, then the transfer-

function itself does not exist.

PROBLEM 5.2
State whether true (T) or false (F).

 a. A transfer-function provides an algebraic expression for a system.
 b. The Laplace variable s can be interpreted as time derivative operator d/dt, assum-

ing zero ICs. 
 c. The variable 1/s may be interpreted as the integration of a signal starting at t = 0.
 d. The numerator of a transfer-function is characteristic polynomial. 
 e. A SISO, linear, time-invariant system has a unique (one and only one) transfer-

function.

PROBLEM 5.3
Consider the system given by the differential equation:   y y y u u+ + = +4 3. 2.

 a. What is the order of the system?
 b. What is the system transfer-function?
 c. Do we need Laplace tables to obtain the transfer-function?
 d. What are the poles?
 e. What is the characteristic equation?
 f. Consider the parent system:  x x x u+ + =4 3.
  Express y in terms of x, using the principle of superposition. 
 g. Using x x x x

T T
1 2.[ ] = [ ]  as the state variables, obtain a state-space model for 

the given original system (not the parent system).
 h. Using the superposition approach, draw a simulation block diagram for the 

system.
 i. Express the system differential equation in a form suitable for drawing a simula-

tion diagram by the “grouping like-derivatives” method.
 j. From (i) draw the simulation block diagram.
 k. Express the transfer-function (s + 2.)/(s + 3.) in two forms of simulation block 

diagrams.
 l. Using one of the two forms obtained in (k), draw the simulation block diagram for 

the original second-order system.
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 m. What are the partial fractions of the original transfer-function?
 n. Using the partial-fraction method, draw a simulation block diagram for the  

system. What is the corresponding state-space model?
 o. Obtain a state-space model for the system using (j).
 p. Obtain at least one state model for the system using the block diagram obtained 

in (l).
 q. What can you say about the diagonal elements of the system matrix A in (n) and 

in (p)?

PROBLEM 5.4
 a. List several characteristics of a physically realizable system. How would you 

recognize the physically realizability of a system by drawing a simulation block  
diagram, which uses integrators, summing junctions, and gain blocks?

 b. Consider the system given by the following input/output differential equation:

     y a y a y a y b u b u b u+ + + = + +2. 1 0 2. 1 0

  in which u is the input and y is the output. 
Is this system physically realizable?
Draw a simulation block diagram for this system using integrators, gains, and  

summing junctions only.

PROBLEM 5.5
Consider the control system shown in Figure P5.5.
The back e.m.f. v KB V= w
The motor torque T K im T=
Draw a simulation block diagram for the system.

(a) 

(b)

dc Motor
Kv , KT

Power
Amp. Ka

Potentiometer
Kp 

K 
B 

J 
vr va vm

−

Gear
ratio

r

Load
torque
Tl

θ

vm vb

i R L

ω = θ

Figure P5.5
(a) A rotatory electromechanical system. (b) The armature circuit.
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PROBLEM 5.6
It is required to study the dynamics behavior of an automobile during the very brief 
period of a sudden start from rest. Specifically, the vehicle acceleration a in the direction 
of primary motion, as shown in Figure P5.6a, is of interest and should be considered 
as the system output. The equivalent force f(t) of the engine, applied in the direction of 
primary motion, is considered as the system input. A simple dynamic model that may 
be used for the study is shown in Figure P5.6b. 

Note that k is the equivalent stiffness, primarily due to tire flexibility, and b is the equiv-
alent viscous damping constant, primarily due to dissipations at the tires and other mov-
ing parts of the vehicle, taken in the direction of a. Also, m is the mass of the vehicle.

 a. Discuss advantages and limitations of the proposed model for the particular 
purpose.

 b. Using force fk of the spring (stiffness k) and velocity v of the vehicle as the state 
variables, engine force f(t) as the input and the vehicle acceleration a as the output, 
develop a complete state-space model for the system.

  (Note: You must derive the matrices A, B, C, and D for the model).
 c. Draw a simulation block diagram for the model, employing integration and gain 

blocks, and summation junctions only.
 d. Obtain the input–output differential equation of the system. From this, derive the 

transfer-function (a/f in the Laplace domain).
 e. Discuss the characteristics of this model by observing the nature of matrix D, 

feed-forwardness of the block diagram, input and output orders of the input–
output differential equation, and the numerator and denominator orders of the 
system transfer-function.

PROBLEM 5.7
Consider a dynamic system, which is represented by the transfer-function (output-input):

 G s
s s s
s s s

( ) = + + +
+ + +

3. 2. 2. 1
4 3.

3. 2.

3. 2.

System output = y; system input = u.

(b)

Equivalent
engine force
f (t)

Equivalent
viscous damping
b

Vehicle mass
m

k fk

Equivalent
resisting spring

Speed v

(a) Acceleration a

Figure P5.6
(a) Vehicle suddenly accelerating from rest. (b) A simplified model of the accelerating vehicle.
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 a. What is the input–output differential equation of the system?
  What is the order of the system?
  Is this system physically realizable?
 b. Based on the “superposition method” draw a simulation block diagram for the 

system, using integrators, constant gain blocks, and summing junctions only. 
  Obtain a state-space model using this simulation block diagram, clearly giving 

the matrices A, B, C, and D.
 c. Based on the “grouping like-derivatives method” draw a simulation block dia-

gram, which should be different from what was drawn in (b), again using integra-
tors, constant gain blocks, and summing junctions only.

  Give a state-space model for the system, now using this simulation block diagram. 
This state-space model should be different from that in (b), which further illus-
trates that the state-space representation is not unique. 

PROBLEM 5.8
The electrical circuit shown in Figure P5.8 has two resistor R1 and R2., an inductor L, a 
capacitor C, and a voltage source u(t). The voltage across the capacitor is considered the 
output y of the circuit. 

 a. What is the order of the system and why?
 b. Show that the input–output equation of the circuit is given by

 a
d y
dt

a
dy
dt

a y b
du
dt

b u2.

2.

2. 1 0 1 0+ + = +

Express the coefficients a0, a1, a2., b0 and b1 in terms of the circuit parameters R1, R2., L, 
and C.

 c. Starting with the auxiliary differential equation:

 a x a x a x u2. 1 0 + + =

+

–

Voltage
source

u(t)

R1

R2

L

C

ic

il

Voltage
output

y

Figure P5.8
An RLC circuit driven by a voltage source.
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and using x = [ ]x x
T  as the state vector, obtain a complete state-space model for 

the system in Figure P5.8. Note that this is the “superposition method” of developing a 
state model.

 d. Clearly explain why, for the system in Figure P5.8, neither the current ic through 
the capacitor nor the time derivative of the output ( y) can be chosen as a state 
variable.

PROBLEM 5.9
Consider an nth order, linear, time-invariant dynamic system with input u(t) and 
 output y. When a step input was applied to this system it was observed that the output 
jumped instantaneously in the very beginning. Which of the following statements are 
true for this system?

 a. Any simulation block diagram of this system (consisting only of integrators, con-
stant-gain blocks, and summation junctions) will have at least one feedforward 
path.

 b. The D matrix does not vanish (i.e., D≠0) in its state-space model:

 
x Ax Bu

y Cx Du

= +

= +

 c. This is not a physically realizable system.
 d. The number of zeros in the system is equal to n.
 e. The number of poles in the system is equal to n.

In each case briefly justify your answer.

PROBLEM 5.10

In relation to a dynamic system, briefly explain your interpretation of the terms

 a. Causality
 b. Physical realizability

Using integrator blocks, summing junctions, and coefficient blocks only, unless it is 
absolutely necessary to use other types if blocks, draw simulation block diagrams for 
the following three input–output differential equations:

i. a
dy
dt

a y u1 0+ =

ii. a
dy
dt

a y u b
du
dt1 0 1+ = +

iii. a
dy
dt

a y u b
du
dt

b
d u
dt1 0 1 2.

2.

2.
+ = + +
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Note that u denotes the input and y denotes the output. Comment about causality and 
physical realizability of these three systems. 

PROBLEM 5.11
The Fourier transform of a position measurement y(t) is Y(jw). Answer true (T) or false (F):

 i. The Fourier transform of the corresponding velocity signal is:

 (a) Y(jw) 
 (b) jw Y (jw)
 (c) Y(jw)/(jw) 
  (d)  wY(jw)

 ii. The Fourier transform of the acceleration signal is:

 (a) Y(jw)
  (b)  w 2 Y(jw)
  (c)   - w 2 Y(jw )
  (d)  Y(jw )/(jw )

PROBLEM 5.12

Answer true (T) or false (F):

 i. Mechanical impedances are additive for two elements connected in parallel.
 ii. Mobilities are additive for two elements connected in series.

PROBLEM 5.13

The movable arm with read/write head of a disk drive unit is modeled as a simple oscil-
lator. The unit has an equivalent bending stiffness k = 10 dyne.cm/rad and damping 
constant b. An equivalent rotation u(t) radians is imparted at the read/write head. This 
in turn produces a (bending) moment to the read/write arm, which has an equivalent 
moment of inertia J = 1 × 10 - 3. gm.cm2., and bends the unit at an equivalent angle q about 
the centroid. 

 a. Write the input–output differential equation of motion for the read/write arm 
unit.

 b. What is the undamped natural frequency of the unit in rad/s? 
 c. Determine the value of b for 5% critical damping.
 d. Write the frequency transfer-function of the model.

PROBLEM 5.14

A rotating machine of mass M is placed on a rigid concrete floor. There is an isola-
tion pad made of elastomeric material between the machine and the floor, and is 
modeled as a viscous damper of damping constant b. In steady operation there is 
a predominant harmonic force component f(t), which is acting on the machine in 
the vertical direction at a frequency equal to the speed of rotation (n rev/s) of the 
machine. To control the vibrations produced by this force, a dynamic absorber of 
mass m and stiffness k is mounted on the machine. A model of the system is shown 
in Figure P5.14.
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 a. Determine the frequency transfer-function of the system, with force f(t) as the 
input and the vertical velocity v of mass M as the output.

 b. What is the mass of the dynamic absorber that should be used in order to virtu-
ally eliminate the machine vibration (a tuned absorber)?

PROBLEM 5.15

The frequency transfer-function for a simple oscillator is given by

 G
j

n

n n

( )
[ ]

w w
w w zw w

=
- +

2.

2. 2. 2.

 a. If a harmonic excitation u(t) = acoswnt is applied to this system what is the steady-
state response?

 b. What is the magnitude of the resonant peak?
 c. Using your answers to (a) and (b) suggest a method to measure damping in a 

mechanical system.
 d. At what excitation frequency is the response amplitude maximum under steady-

state conditions?
 e. Determine an approximate expression for the half-power (3. dB) bandwidth at 

low damping. Using this result, suggest an alternative method for the damping 
measurement.

PROBLEM 5.16

 a. An approximate frequency transfer-function of a system was determined by 
Fourier analysis of measured excitation-response data and fitting into an appro-
priate analytical expression (by curve fitting using the least squares method). 
This was found to be

b

M

m

k
f (t)

v

Figure P5.14
A mounted machine wit a dynamic absorber.

76868.indb   214 7/8/09   5:09:10 PM



Transfer-Function and Frequency-Domain Models 215

 G f
j f

( ) =
+

5
10 2.p

What is its magnitude, phase angle, real part, and imaginary part at f = 2. Hz? If the 
reference frequency is taken as 1 Hz, what is the transfer-function magnitude at 2. Hz 
expressed in dB? 

 b. A dynamic test on a structure using a portable shaker revealed the following: 
The accelerance between two locations (shaker location and accelerometer loca-
tion) measured at a frequency ratio of 10 was 3.5 dB. Determine the corresponding 
mobility and mechanical impedance at this frequency ratio.

PROBLEM 5.17

Answer true (T) or false (F):

 a. Electrical impedances are additive for two elements connected in parallel.
 b. Impedance, both mechanical and electrical, is given by the ratio of effort/flow, in 

the frequency domain.
 c. Impedance, both mechanical and electrical, is given by the ratio of across vari-

able/through variable, in the frequency domain.
 d. Mechanical impedance is analogous to electrical impedance when determining 

the equivalent impedance of several interconnected impedances.
 e. Mobility is analogous to electrical admittance (current/voltage in the frequency 

domain) when determining the equivalent value of several interconnected 
elements.

PROBLEM 5.18

Figure P5.18 shows two systems (a) and (b), which may be used to study force trans-
missibility and motion transmissibility, respectively. Clearly discuss whether the force 
transmissibility Fs/F (in the Laplace domain) in System (a) is equal to the motion trans-
missibility Vm/V (in the Laplace domain) in System (b), by carrying out the following 
steps:

 1. Draw the linear graphs for the two systems and mark the mobility functions for 
all the branches (except the source elements).

 2.. Simplify the two linear graphs by combining branches as appropriate (series 
branches: add mobilities; parallel branches; inverse rule applies for mobilities) 
and mark the mobilities of the combined branches.

 3.. Based on the objectives of the problem (i.e., determination of the force transmis-
sibility of System (a) and motion transmissibility of System (b)), for applying 
Thevenin’s theorem, determine which part of the circuit (linear graph) should 
be cut. (Note: The variable of interest in the particular transmissibility function 
should be associated with the part of the circuit that is cut.)

 4. Based on the objectives problem establish whether Thevenin equivalence or 
Norton equivalence is needed. (Specifically: Use Thevenin equivalence if a 
through variable needs to be determined, because this gives two series elements 
with a common through variable; Use Norton equivalence if an across variable 
needs to be determined, because this gives two parallel elements with a common 
across variable.)

 5. Determine the equivalent sources and mobilities of the equivalent circuits of the 
two systems.
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 6. Using the two equivalent circuits determine the transmissibility functions of 
interest.

 7. By analysis, examine whether the two mobility functions obtained in this manner 
are equivalent.

Note: Neglect the effects of gravity (i.e., assume that the systems are horizontal, sup-
ported on frictionless rollers).

Bonus: Extend you results to an n-degree-of-freedom system (i.e., one with n mass 
elements), structured as in Figure P5.18a and b.

(b)(a)

k2 b2

m2

m1

f (t)

k1
b1

fs

b3k3

m3

v(t)

vm

k2 b2

m2

m1

k1
b1

b3k3

m3

Figure P5.18
Figure P5.18 Two mechanical systems (a) for determining force transmissibility and (b) for determining motion 
transmissibility.
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6
Response Analysis and Simulation

An analytical model, which is a set of differential equations, has many uses in the analysis, 
design, and control of the corresponding system. In particular, it can provide information 
regarding how the system responds when excited by an initial condition (IC) (i.e., free, 
natural response) or when a specific excitation (input) is applied (i.e., forced response). 
Such a study may be carried out by

 1. Solution of the differential equations (analytical)
 2.. Computer simulation (numerical)

In this chapter we will address these two approaches. A response analysis carried out 
using either approach, is valuable in many applications such as design, control, testing, 
validation, and qualification. For large-scale and complex systems, a purely analytical 
study may not be feasible, and one may have to resort to numerical approaches and com-
puter simulation.

6.1 Analytical Solution

The response of a dynamic system may be obtained analytically by solving the associated 
differential equations, subject to the ICs. This may be done by

 1. Direct solution (in the time domain)
 2.. Solution using Laplace transform

Consider a linear time-invariant model given by the input–output differential equation 

 a
d y
dt

a
d y
dt

a y un

n

n n

n

n
+ + + =-

-

-1

1

1 0  (6.1)

At the outset, note that it is not necessary to specifically include derivative terms on the 
right hand side of Equation 6.1; for example b u b du dt b d u dtm

m m
0 1+ + +( / ) ( / ) , because once 

we have the solution (say, ys) for Equation 6.1 we can use the principle of superposition to 
obtain the general solution, which is given by b y b dy dt b d y dts s m

m
s

m
0 1+ + +( / ) ( / ) . Hence, 

we will consider only the case of Equation 6.1.
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6.1.1 Homogeneous Solution

The natural characteristics of a dynamic system do not depend on the input to the system. 
Hence, the natural behavior (or free response) of Equation 6.1 is determined by the homo-
geneous equation (i.e., with the input = 0):

 a
d y
dt

a
d y
dt

a yn

n

n n

n

n
+ + + =-

-

-1

1

1 0 0  (6.2.)

Its solution—the homogeneous solution—is denoted by yh and it depends as the system 
ICs. For a linear system the natural response is known to take an exponential form given 
by

 y ceh
t= l  (6.3.)

where c is an arbitrary constant and, in general, l can be complex. Substitute Equation 6.3. 
in Equation 6.2. with the knowledge that

 
d
dt

e et tl ll=  (6.4)

and cancel the common term celt, since it cannot be zero at all times. Then we have

 a a an
n

n
nl l+ + + =-
-

1
1

0 0  (6.5)

This is called the characteristic equation of the system. Note: the polynomial 
a a an

n
n

nl l+ + +-
-

1
1

0  is called the characteristic polynomial. Equation 6.5 has n roots  
l1, l2,…, ln. These are called poles or eigenvalues of the system. Assuming that they are dis-
tinct (i.e., unequal), the overall solution to Equation 6.2. becomes

 y c e c e c eh
t t

n
tn= + + +1 2.

1 2.l l l  (6.6)

The unknown constants c1, c2., …, cn are determined using the necessary n ICs y(0), 
y( )0 ,…, dn-1y(0)/dtn-1.

6.1.1.1 Repeated Poles

Suppose that at least two eigenvalues from the solution of Equation 6.5 are equal. 
Without loss of generality suppose in Equation 6.6 that l1 = l2. Then the first two terms 
in Equation 6.6 can be combined into the single unknown (c1 + c2.). Consequently there 
are only n - 1 unknowns in Equation 6.6 but there are n ICs for the system Equation 6.2.. 
It follows that another unknown needs to be introduced for obtaining a complete solu-
tion. Since a repeated pole is equivalent to a double integration (i.e., a term 1/(s-li)2. in the 
system transfer function), the logical (and correct) solution for Equation 6.5 in the case 
l1 = l2 is

 y c c t e c e c eh
t t

n
tn= + + + +( )1 2. 3.

1 3.l l l  (6.7)

This idea can be easily generalized for the case of three or more repeated poles (by add-
ing terms containing t2., t3., and so on).
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6.1.2 Particular Solution

The homogeneous solution corresponds to the “natural,” “free” or “unforced” response 
of a system and clearly it does not depend on the input function. The effect of the input 
is incorporated into the particular solution, which is defined as one possible function for y 
that satisfies Equation 6.1. We denote this by yp. Several important input functions and the 
corresponding form of yp which satisfies Equation 6.1 are given in Table 6.1.

The parameters A, B, A1, A2., B1, B2., and D in Table 6.1 are determined by substituting the 
pair u(t) and yp into Equation 6.1 and then equating the like terms. This approach is called 
the method of undetermined coefficients. 

The total response of the system Equation 6.1 is given by

 y y yh p= +  (6.8)

The unknown constants c1, c2.,…, cn in this result are determined by substituting into 
Equation 6.8 the ICs of the system.

Note: It is incorrect to determine c1, c2.,…, cn by substituting the ICs into yh only and then 
adding yp to the resulting yh. This is because the total response is y not yh. Furthermore, 
when u = 0, the homogeneous solution is identical to the free response (which is also the 
IC response, or the zero-input response). When an input is present, however, the homoge-
neous solution may not be identical to these other three types of response since they can be 
influenced by the forcing input as well as the natural dynamics of the system. These ideas 
are summarized in Box 6.1.

6.1.3 impulse response Function

Consider a linear dynamic system. The principle of superposition holds. More specifically, 
if y1 is the system response (output) to excitation (input) u1(t) and y2. is the response to exci-
tation u2.(t), then ay1 + by2. is the system response to input au1(t) + bu2.(t) for any constants a 
and b and any excitation functions u1(t) and u2.(t). This is true for both time-variant-param-
eter linear systems and constant-parameter linear systems.

A unit pulse of width ∆t starting at time t = t is shown in Figure 6.1a. Its area is unity. A 
unit impulse is the limiting case of a unit pulse as ∆t → 0. A unit impulse acting at time 
t = t is denoted by d (t - t ) and is graphically represented as in Figure 6.1b. In mathematical 
analysis, this is known as the Dirac delta function, and is defined by the two conditions:

 d t t( )t t- = ≠0 for  (6.9)

 →∞ =at t t

Table 6.1

Particular Solutions for useful Input Functions

Input u(t) Particular Solution yp

c A

ct + d At + B
sin ct A1 sin ct + A2. cos ct 
cos ct B1 sin ct + B2. cos ct 
ect Dect

76868.indb   219 7/8/09   5:09:14 PM



220 Modeling and Control of Engineering Systems

and

 
-∞

∞

∫ - =d t( )t dt 1 (6.10)

The Dirac delta function has the following well-known and useful properties:

 f t t dt f( ) ( ) ( )d t t- =
-∞

∞

∫  (6.11)

and

 
-∞

∞

=∫ - =d f t
dt

t dt
d f t

dt

n

n

n

n t
( )

( )
( )d t t  (6.12.)

for any well-behaved time function f(t). The system response (output) to a unit impulse 
excitation (input) acted at time t = 0, is known as the impulse response function and is denoted 
by h(t). 

(b)(a)
u(t) u(t)

tt0

∆τ

τ + ∆ττ τ0

1

Figure 6.1
Illustration of (a) unit pulse; (b) unit impulse.

BOx 6.1 SOME CONCEPTS OF SySTEM RESPONSE

Total response (T) = Homogeneous solution + Particular integral
 (H) (P)
  = Free response + Forced response
 (X) (F)
  = IC response + Zero IC response
 (X) (F)
  = Zero-input response + Zero state response
 (X) (F)

Note 1: In general, H ≠ X and P ≠ F
Note 2: With no input (no forcing excitation), by definition, H ≡ X
Note 3: At steady-state, F becomes equal to P. 
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6.1.3.1 Convolution Integral

The system output (response) to an arbitrary input may be expressed in terms of its impulse 
response function. This is the essence of the impulse response approach to determining 
the forced response of a dynamic system. Without loss of generality let us assume that the 
system input u(t) starts at t = 0; that is,

 u t t( ) = <0 0for  (6.13.)

For physically realizable systems (see Chapter 5), the response does not depend on the 
future values of the input. Consequently,

 y t t( ) = <0 0for  (6.14)

and

 h t t( ) = <0 0for  (6.15)

where y(t) is the response of the system, to any general excitation u(t).
Furthermore, if the system is a constant-parameter system, then the response does not 

depend on the time origin used for the input. Mathematically, this is stated as follows: if 
the response to input u(t) satisfying Equation 6.13. is y(t), which in turn satisfies Equation 
6.14, then the response to input u(t - t ), which satisfies,

 u t t( )- = <t t0 for  (6.16)

is y(t - t), and it satisfies

 y t t( )- = <t t0 for  (6.17)

This situation is illustrated in Figure 6.2.. It follows that the delayed-impulse input d (t - t ), 
having time delay t, produces the delayed response h(t - t ).

A given input u(t) can be divided approximately into a series of pulses of width ∆t 
and magnitudeu( )t Dt⋅ . In Figure 6.3., as ∆t → 0, the pulse shown by the shaded area 
becomes an impulse acting at t = t  having the magnitude u dt t⋅ . This impulse is given by 
d t t t( ) ( ) .t u d-   In a linear, constant-parameter system, it produces the responseh t u d( ) ( )-t t t .  
By integrating over the entire time duration of the input u(t) (i.e., by using the principle of 
superposition, since the system is linear) the overall response y(t) is obtained as

 y t h t u d( ) ( ) ( )= -
∞

∫
0

t t t  (6.18a)

Alternatively, by introducing the change of variables t → t - t  and correspondingly 
reversing the limits of integration (and changing the sign) we have

 y t h u t d( ) ( ) ( )= -
∞

∫
0

t t t  (6.18b)

Equation 6.18 is known as the convolution integral. This is in fact the forced response, 
under zero ICs. It is also a particular integral (particular solution) of the system.
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Note: The limits of integration in Equation 6.18 can be set in various manner in view of 
the fact that u(t) and h(t) are zero for t  <  0 (e.g., the lower limit may be set at t and the upper 
limit at t).

6.1.4 Stability

Many definitions are available for stability of a system. For example, a stable system may 
be defined as one whose natural response (i.e., free, zero-input, IC response) decays to 
zero. This is in fact the well-known asymptotic stability. If the IC response oscillates within 

u(t) y(t)

tt0 0

y(t–τ)u(t–τ)

τ τ tt0 0

Figure 6.2
Response to a delayed input.

Time t0 

Area = u(τ) ∆τ

τ + ∆ττ

Input
u(t) 

Figure 6.3
General input treated as a continuous series of impulses.
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finite bounds we say the system is marginally stable. For a linear, time-invariant system of 
the type Equation 6.1, the free response is of the form Equation 6.6, assuming no repeated 
poles. Hence, if none of the eigenvalues li have positive real parts, the system is considered 
stable, because in that case, the response (Equation 6.6) does not grow unboundedly. In 
particular, if the system has a single eigenvalue that is zero, or if the eigenvalues are purely 
imaginary pairs, the system is marginally stable. If the system has two or more poles that 
are zero, we will have terms of the form c1 + ct in Equation 6.6 and hence it will grow 
polynomially (not exponentially). Then the system will be unstable. Even in the presence 
of repeated poles, however, if the real parts of the eigenvalues are negative, however, the 
system is stable (because the decay of the exponential terms in the response will be faster 
than the growth of the polynomial terms—see Equation 6.7 for example).

Note: Since physical systems have real parameters, their eigenvalues must occur as con-
jugate pairs, if complex.

Since stability is governed by the sign of the real part of the eigenvalues, it can be repre-
sented on the eigenvalue plane (or the pole plane, s-plane, or root plane). This is illustrated 
in Figure 6.4.

6.2 First-Order Systems

Consider the first-order dynamic system with time constant t, input u, and output y, as 
given by

 t y y u t+ = ( ) (6.19)

Suppose that the system starts from y(0) = y0 and a step input of magnitude A is applied 
at that IC. The homogeneous solution is

 y ceh
t= - t

Im

Re

s-Plane
(Eigenvalue plane)

E

E

A

A

DB

C

C

Figure 6.4
Dependence of stability on the pole location (A and B are stable pole locations; C is a marginally stable location; 
D and E are unstable locations).
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The particular solution (see Table 6.1) is given by yp = A. Hence, the total response is

 y y y ce Ah p
t= + = +- t

Substitute the IC: y(0) = y0. We get C + A = y0. Hence

 
y y A e t

yh

step = - -( )0
t

Homogeneous
   + = -A y e

y

t

p

Particular Free

0
t

rresponse Forced
y

t

x

A e   + - -( )1 t

rresponse
y f

    (6.2.0)

The steady-state value is given by t → ∞:

 yss = A (6.2.1)

It is seen from Equation 6.2.0 that the forced response to a unit step input (i.e., A = 1) 
is( )1- -e t t . Due to linearity of the system, the forced response to a unit impulse input 
is( / )( ) ( / )d dt e et t1 1- =- -t tt . Hence, the total response to an impulse input of magnitude 
P is 

 y y e
P

et t
impulse = +- -

0
t t

t
 (6.2.2.)

This result follows from the fact that

 
d
dt

( )Step function Impulse function=  (6.2.3.)

and because, due to linearity, when the input is differentiated, the output is correspond-
ingly differentiated.

Note from Equations 6.2.0 and 6.2.2. that if we know the response of a first-order system to 
a step input, or to an impulse input, the system itself can be determined. This is known as 
model identification or experimental modeling. We will illustrate this by an example.

example 6.1: Model identification example

Consider the first-order system (model)

 t y y ku+ =  (i)

The system parameters are the time constant t and the gain parameter k. The IC is y(0) = y0.
Using Equation 6.20 we can derive the response of the system to a step input of magnitude A:

 y y e Ak et t
step = + -- -

0 1t t( ) (ii)

Note: Due to linearity, the forced response is magnified by k since the input is magnified by the 
same factor.
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Suppose that the unit step response of a first-order system with zero ICs, was found to be (say, 
by curve fitting of experimental data)

 y e t
step = - -2 251 5 2. ( ).

Then, it is clear from Equation (ii) that the system parameters are

 k = 2.25 and t = 1/5.2 = 0.192.

These two parameters completely determine the system model.

6.3 Second-Order Systems

A general high-order system can be represented by a suitable combination of first-order 
and second order models, using the principles of modal analysis. Hence, it is useful to 
study the response behavior of second-order systems as well. Examples of second-order 
systems include mass-spring-damper systems and capacitor-inductor-resistor circuits, 
which we have studied in previous chapters. These are called simple oscillators because 
they exhibit oscillations in the natural response (free, unforced response) when the level 
of damping is sufficiently low. We will study both free response and forced response of 
second-order systems.

6.3.1 Free response of an undamped Oscillator

The equation of free (i.e., no excitation force) motion of an undamped simple oscillator is 
of the general form

 x xn+ =w 2. 0  (6.2.4)

For a mechanical system of mass m and stiffness k, we have the undamped natural 
 frequency (whose meaning will be further discussed later)

 wn
k
m

=  (6.2.5a)

For an electrical circuit with capacitance C and inductance L we have

 wn LC
= 1

 (6.2.5b)

Note: These results can be immediately established from the electro-mechanical analogy 
(see Chapter 2.) which we use: m → C; k → 1/L; b → 1/R.

To determine the time response x of this system, we use the trial solution:

 x A= sin ( )w fnt +  (6.2.6)
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in which A and f are unknown constants, to be determined by the ICs (for x and x ); 
say,

 x xo( )0 = , x vo( )0 =  (6.2.7)

The parameter A is the amplitude and f is the phase angle of the response, as will be 
discussed later.

Substitute the trial solution (Equation 6.2.6) into Equation 6.2.4. We get

 ( )sin( )- + + =A A tn n nw w w f2. 2. 0

This equation is identically satisfied for all t. Hence, the general solution of Equation 6.2.4 
is indeed Equation 6.2.6, which is periodic and sinusoidal.

This response (Equation 6.2.6) is sketched in Figure 6.5 (the subscript in wn is dropped for 
convenience). Note that this sinusoidal, oscillatory motion has a frequency of oscillation of 
w (radians/s). Hence, a system that provides this type of natural motion is called a simple 
oscillator. In other words, the system response exactly repeats itself in time periods of T or 
at a cyclic frequency f = 1/T (cycles/s or Hz). 

Note: This fact may be verified by substituting t t T t f t= + = + = +1 2./ /p w  in Equation 
6.2.6, which will give the same x value. The frequency w is in fact the angular frequency 
given byw p= 2. f .

Also, the response has amplitude A, which is the peak value of the sinusoidal response. 
This is verified from Equation 6.2.6 because the maximum value of a sine function is 1. 
Now, suppose that we shift the response curve (Equation 6.2.6) to the right through a time 
interval off w/ . Take the resulting curve as the reference signal (whose signal value = 0 at 
t = 0, and increasing). It should be clear that the response shown in Figure 6.5 leads the 
reference signal by a time period off w/ . This may be verified from the fact that the value 
of the reference signal at time t is the same as that of the signal in Figure 6.5 at time t -f w/ .  
Hence f is termed the phase angle of the response, and it is indeed a phase lead. 

The left hand side portion of Figure 6.5 is the phasor representation of a sinusoidal 
response. In this representation, an arm of length A rotates in the counterclockwise direc-
tion at angular speed w . This arm is the phasor. The arm starts at an angular position f 

Response x

Time t

x

ω

ω ω ω

φ

φ φ–π φ–π2

A

0
–

Figure 6.5
Free response of an undamped simple oscillator.
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from the horizontal axis, at time t = 0. The projection of the arm onto the vertical (x) axis 
gives the time response. In this manner, the phasor representation can conveniently indi-
cate the amplitude, frequency, phase angle, and the actual time response (at any time t) of 
a sinusoidal motion.

6.3.2 Free response of a Damped Oscillator

Energy dissipation in a mechanical oscillator may be represented by a damping element. 
For an electrical circuit, a resistor accounts for energy dissipation. In either case, the equa-
tion motion of a damped simple oscillator without an input, may be expressed as 

  x x xn n+ + =2. 02.zw w  (6.2.8)

Note that z is called the damping ratio. 
Assume an exponential solution:

 x Ce t= l  (6.2.9)

This is justified by the fact that linear systems have exponential or oscillatory (i.e., com-
plex exponential) free responses (see Equation 6.6). A more convincing justification for this 
assumption will be provided later.

Substitute, Equation 6.2.9 into Equation 6.2.8. We get

 l zw l w l2. 2.2. 0+ +[ ] =n n
tCe .

Note that Celt is not zero for all t; hence, it can be removed from the above equation 
giving:

 l zw l w2. 2.2. 0+ + =n n  (6.3.0)

It follows that, when l satisfies Equation 6.3.0, then Equation 6.2.9 will represent a solu-
tion of Equation 6.2.8. As noted before, Equation 6.3.0 is the characteristic equation of the 
system. This equation depends on the natural dynamics of the system, not the forcing 
excitation or the ICs. Solution of Equation 6.3.0 gives the two roots:

 l zw z w= - ± -n n
2. 1

 = l1  and l2 (6.3.1)

These are the eigenvalues or poles of the system. When l l1 2.≠  (i.e., unequal poles), the 
general solution of Equation 6.2.8 is

 x C e C e t= +1 2.
1 2.l l  (6.3.2.)

The two unknown constants C1 and C2. are related to the integration constants, and can 
be determined by two ICs which should be known.

Ifl l l1 2.= = ; we have the case of repeated roots. In this case, as noted before, the general 
solution (Equation 6.3.2.) does not hold because C1 and C2. will no longer be independent 
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constants, which will not require two ICs for their determination. The repetition of the 
roots suggests that one term of the homogenous solution should have the multiplier t  
(a result of the associated double integration). Accordingly, the general solution is

 x C e C tet t= +1 2.
l l  (6.3.3.)

We can identify three ranges of damping, as discussed below, and the nature of the 
response will depend on the particular range of damping.

6.3.2.1 Case 1: Underdamped Motion (z <1)

In this case it follows from Equation 6.3.1 that the roots of the characteristic equation are

 l zw z w zw w l l= - ± - = - ± =n n n dj j1 2.
1 2.and  (6.3.4)

where w2. is the damped natural frequency, given by

 w z wd n= -1 2.  (6.3.5)

Note: l1 and l2 are complex conjugates, as required. In this case, the response (Equation 
6.3.2.) may be expressed as

 x e C e C en d dt j t j t= +- -zw w w[ ]1 2.  (6.3.6)

The term within the square brackets in Equation 6.3.6 has to be real, because it represents 
the time response of a real physical system. It follows that C1 and C2. also have to be com-
plex conjugates.

Note: e t j tj t
d d

dw w w= +cos sin ; e t j tj t
d d

d- = -w w wcos sin
So, an alternative form of the general solution would be

 x e A t A tnt
d d= +-zw w w[ cos sin ]1 2.  (6.3.7)

Here A1 and A2. are two unknown real-valued constants. By equating the coefficients in 
Equations 6.3.7 and 6.3.6 it can be shown that 

 A C C1 1 2.= +

 A j C C2. 1 2.= -( )  (6.3.8a)

Hence,

 C A jA1 1 2.
1
2.

= -( )

 C A jA2. 1 2.
1
2.

= +( )  (6.3.8b)

ICs:

76868.indb   228 7/8/09   5:09:32 PM



Response Analysis and Simulation 229

Let, x x x vo o( ) , ( )0 0= = as before. Then,

 x Ao = 1  (6.3.9a)

And v A Ao n d= - +zw w1 2.

or,

 A
v xo

d

n o

d
2. = +
w

zw
w

 (6.3.9b)

Yet, another form of the solution would be:

 x Ae tnt
d= +-zw w fsin( )  (6.40)

Here A and f are the two unknown constants with

 A A A= +1
2.

2.

2.  and sin .f =
+

A

A A
1

1
2.

2.

2.
 (6.41)

 Also, andcos tanf f=
+

=A

A A

A
A

2.

1
2.

2.

2.

1

2.

 (6.42.)

Note: The response x → 0 as t → ∞. This means the system is asymptotically stable.

6.3.2.2 Case 2: Overdamped Motion (z >1)

In this case, roots l1 and l2   of the characteristic Equation 6.3.0 are real and negative. 
Specifically, we have

 l zw z w1
2. 1 0= - + - <n n  (6.43.a)

 l zw z w2.
2. 1 0= - - - <n n  (6.43.b)

and the response (Equation 6.3.2.) is nonoscillatory. Also, since both l1 and l2 are nega-
tive (see Equation 6.43.), we have x → 0 as t → ∞. This means the system is asymptotically 
stable.

From the ICs x x x vo o( ) ,  ( )0 0= =  we get:

 x C Co = +1 2.  (i)

and

 v C Co = +l l1 1 2. 2.  (ii) 

Multiply the first IC (i) by l2 : l2x0 =  l2C1 +  l2C2. (iii)
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Subtract (ii) from (iii): v x Co o- = -l l l2. 1 1 2.( )

We get:

 C
v xo o

1
2.

1 2.

= -
-
l

l l
 (6.44a)

 Multiply the first IC (i) by l1: l l l1 1 1 1 2.x C Co = +  (iv)

Subtract (iv) from (ii): v x Co o- = -l l l1 2. 2. 1( )
We get:

 C
v xo o

2.
1

2. 1

= -
-
λ

λ λ
 (6.44b)

6.3.2.3 Case 3: Critically Damped Motion (ζ =1)

Here, we have repeated roots, given by

 l l1 2.= = -wn  (6.45)

The response, for this case is given by (see Equation 6.3.3.)

 x C e C ten nt t= +- -
1 2.
w w  (6.46)

Since the term e nt-w  goes to zero faster than t goes to infinity, we have:
te nt- →w 0 as t →∞. Hence the system is asymptotically stable.

Now use the ICs x x x vo o( ) , ( )0 0= = . We have:

 
x C

v C C

o

o n

=

= - +

1

1 2.w

Hence,

 C xo1=  (6.47a)

 C v xo n o2. = +w  (6.47b)

Note: When z = 1 we have the critically damped response because below this value, the 
response is oscillatory (underdamped) and above this value, the response is nonoscillatory 
(overdamped). It follows that we may define the damping ratio as

 z = =Damping ratio
Damping constant

Damping constannt for critically damped conditions

The main results for free (natural) response of a damped oscillator are given in Box 6.2.. 
The response of a damped simple oscillator is shown in Figure 6.6.
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BOx 6.2 FREE (NATURAL) RESPONSE OF A DAMPED  
SIMPLE OSCILLATOR

System equation:  x x xn n+ + =2. 02.zw w

Undamped natural frequency
 
wn

k
m

=
 
or

 
wn LC

= 1

Damping ratio
 
z = b

km2.
 

or z = 1
2.R

L
C

Note: Electro-mechanical analogy m → C; k → 1/L; b → 1/R
Characteristic equation: l zw l w2. 2.2. 0+ + =n n

Roots (eigenvalues or poles): l l zw z w1 2.
2. 1and = - ± -n n

Response: x C e C et t= + ≠1 2. 1 2.
1 2.l l l lfor unequal roots ( )

 x C C t e t= + = =( ) ( )1 2. 1 2.
l l l lfor equal roots

ICs: x x v(0) and (0)0= x  =  0

Case 1: Underdamped (z < 1)

Poles are complex conjugates: - ±zw wn dj

Damped natural frequency w z wd n= -1 2.

 

x e C e C e

e A

n d d

n

t j t j t

t
d

= +

=

- -

-

zw w

zw w

[ ]

[ cos

1 2.

1

ω

tt A t

Ae t

A C C A

d

t
d

n

+

= +

= +

-

sin ]

sin( )

and

2.

1 1 2.

w

w fzw

2.2. 1 2.

1 1 2. 2. 1 2.
1
2.

1
2.

= -

= - = +

=

j C C

C A jA C A jA

A A

( )

( ) and ( )

11
2.

2.

2. 1

2.

+ =A
A
A

and tan f

ICs give: A x A
v x

o
o n o

d
1 2.= = +

and
zw
w

Logarithmic decrement per radian: a
p

z
z

= =
-

1
2. 1 2.n

rln

where r
x t

x t nT
=

+
( )

( )
 = decay ratio over n complete cycles. For small z : z ≅ a

Case 2.: Overdamped (z > 1)

Poles are real and negative: l l zw z w1 2.
2. 1, = - ± -n n

 x C e C et t= +1
1

2.
2.l l

 C
v x

C
v x

1
0 2. 0

1 2.
2.

0 1 0

2. 1

= -
-

= -
-

l
l l

l
l l

and

Case 3.: Critically damped (z = 1)

Two identical poles: l l l w1 2.= = = - n

 x C C t e C x C v xnt
n= + = = +-( ) with and1 2. 1 0 2. 0 0

w w
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6.4 Forced Response of a Damped Oscillator

The forced response depends on both the natural characteristics of the system (free 
response) and the nature of the input. Mathematically, as noted before, the total response 
is the sum of the homogeneous solution and the particular solution. Consider a damped 
simple oscillator, with input u(t) scaled such that it has the same units as the response y:

  y y y u tn n n+ + =2. 2. 2.zw w w ( )  (6.48)

We will consider the response of this system to three types of inputs:

 1. Impulse input
 2.. Step input
 3.. Harmonic (sinusoidal) input

6.4.1 impulse response

Many important characteristics of a system can be studied by analyzing the system 
response to a baseline excitation (test excitation) such as an impulse, a step, or a sinusoi-
dal (harmonic) input. Characteristics that may be studied in this manner include: system 
stability, speed of response, time constants, damping properties, and natural frequencies. 
Furthermore, models and their parameters can be determined by this method (this subject 

0.5 1.0
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0.00

–0.10

–0.20

0

ζ < 1

Displacement
x (m)
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ζ < 1

0.5 1.0
t (s)

0.20

0.10
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ζ < 1

0.5 1.0
Time t (s)

0.20

0.10

0.00

–0.10

–0.20

0

x
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(c)

Figure 6.6
Free response of a damped oscillator. (a) Underdamped. (b) Critically damped. (c) Overdamped.
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is known as system identification, model identification or experimental modeling). As well, 
an insight can be gained into the system response for an arbitrary excitation. Responses 
to such test inputs can also serve as the basis for system comparison. For example, it is 
possible to determine the degree of nonlinearity in a system by exciting it with two input 
intensity levels, separately, and checking whether the proportionality is retained at the 
output; or when the excitation is harmonic, whether limit cycles are encountered by the 
response.

The response of the system (Equation 6.48) to a unit impulse input u t t( ) ( )= d  may be 
conveniently determined by the Laplace transform approach (see Section 6.5). However, in 
the present section we will use a time domain approach, instead. First integrate Equation 
6.48, over the almost zero interval from t t= =- +0 0to . We get

  y y y y y dt un n n( ) ( ) ( ) ( )0 0 2. 0 0 2. 2.+ - + -= - -[ ]- +zw w w (( )t dt
0

0

0

0

-

+

-

+

∫∫  (6.49)

Suppose that the system starts from rest. Hence, y(0-) = 0 and y( ) .0 0- =  When an impulse 
is applied over an infinitesimally short time period [0-, 0+] the system will not be able to 
move through a finite distance during that time. Hence, y(0+) = 0, and furthermore, the 
integral of y on the right hand side of Equation 6.49 also will be zero. Now by definition 
of a unit impulse, the integral of u on the right hand side of Equation 6.49 will be unity. 
Hence we have y n( )0 2.+ =w . It follows that as soon as a unit impulse is applied to the system 
(Equation 6.48) the ICs will become

 y y n( ) ( )0 0 0 2.+ += =and  w  (6.50)

Also, beyond t = +0  the input is zero (u t( ) = 0), according to the definition of an impulse. 
Hence, the impulse response of the system (Equation 6.48) is obtained by its homogeneous 
solution (as carried out before, for the case of free response), but with the ICs (Equation 6.50). 
The three cases of damping ratio z z z< > =( )1 1 1, , and  should be considered  separately. 
Then, we can conveniently obtain the following results:

 y t h t t tn
n dimpulse( ) ( ) exp( )sin= =

-
-w

z
zw w

1 2.
 for z < 1 (6.51a)

 y t h t t tn
impulse( ) ( ) [exp exp ]= =

-
-w

z
l l

2. 12.
1 2.  for z > 1 (6.51b)

 y t h t t tn nimpulse( ) ( ) exp( )= = -w w2.  for z = 1 (6.51c)

An explanation concerning the dimensions of h(t) is appropriate at this juncture. Note 
that y(t) has the same dimensions as u(t). Since h(t) is the response to a unit impulsed ( )t , it 
follows that these two have the same dimensions. The magnitude ofd ( )t is represented by 
a unit area in the u(t) versus t plane. Consequently, d ( )t has the dimensions of (1/time) or 
(frequency). It follows that h(t) also has the dimensions of (1/time) or (frequency).
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234 Modeling and Control of Engineering Systems

The impulse response functions given by Equation 6.51 are plotted in Figure 6.7 for 
some representative values of damping ratio. It should be noted that, for 0 1< <z , the 
angular frequency of damped vibrations iswd , which is smaller than the undamped natu-
ral  frequencywn .

6.4.2 The riddle of Zero iCs

For a second-order system, zero ICs correspond to y(0) = 0 and y (0) = 0. It is clear from 
Equations 6.51 that h(0) = 0, but h( )0 0≠ , which appears to violate the assumption of zero 
ICs. This situation is characteristic in a system response to an impulse and its higher deriv-
atives. This may be explained as follows. When an impulse is applied to a system at rest 
(zero initial state), the highest derivative of the system differential equation momentarily 
becomes infinity. As a result, the next lower derivative becomes finite (nonzero) at t = +0 . 
The remaining lower derivatives maintain their original zero values at that instant t = +0 . 
When an impulse is applied to the mechanical system given by Equation 6.48 for example, 
the acceleration y (t) becomes infinity and the velocity y t( )  takes a nonzero (finite) value 
shortly after its application ( )i.e., at t = +0 . The displacement y(t), however, would not have 
sufficient time to change at t = +0 . In this case the impulse input is therefore, equivalent 
to a velocity IC. This IC is determined by using the integrated form (Equation 6.49) of the 
system Equation 6.48, as has been done.

6.4.3 Step response

A unit step excitation is defined by

 U( )t t= >1 0for  (6.52.)
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Figure 6.7
Impulse response function of a damped oscillator.
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 = ≤0 0for t

Unit impulse excitation d ( )t  may be interpreted as the time derivative of U( )t :

 d ( )
( )

t
d t

dt
= U

 (6.53.)

Note: Equation 6.53. re-establishes the fact that for nondimensional U( )t , the dimension of 
d ( )t  is (time)- 1. Since a unit step is the integral of a unit impulse, the step response can be 
obtained directly as the integral of the impulse response:

 y t h d
t

step( ) ( )= ∫ t t
0

 (6.54)

This result also follows from the convolution integral (Equation 6.18b) because, for a 
delayed unit step, we have

 
U( ) for

for

t t

t

- = <

= ≥

t t

t

1

0
 (6.55)

Thus, by integrating Equations 6.51 with zero ICs the following results are obtained for 
step response:

 y t t tn dstep( ) exp( )sin( )= -
-

- + <1
1

1
1

2.z
zw w f zfor  (6.56a)

 y t t
n

step = -
-

-[ ] >1
1

2. 1
1

2.
1 2. 2. 1

z w
l l l l zexp exp for  (6.56b)

 y t tn nstep = - + - =1 1 1( )exp( )w w zfor  (6.56c)

with

 cos f z=  (6.57)

The step responses given by Equations 6.56 are plotted in Figure 6.8, for several values 
of damping ratio.

Note: Since a step input does not cause the highest derivative of the system equation to 
approach infinity at t = 0+, the initial conditions which are required to solve the system 
equation remain unchanged at t = 0+, provided that there are no derivative terms on the 
input side of the system equation. If there is a derivative term in the input side of the sys-
tem equation, then, a step will be converted into an impulse (due to differentiation), and 
the response will change accordingly.

The impulse response h(t) assumes a zero initial state. It should be emphasized as 
well that the response given by the convolution integral (Equation 6.18) is based on the 
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assumption that the initial state is zero. Hence, it is known as the zero-state response. As we 
have stated before, the zero-state response is not necessarily equal to the “particular solu-
tion” in mathematical analysis. Also, as t increases (t → ∞), this solution approaches the 
steady-state response denoted by yss, which is typically the particular solution. The impulse 
response of a system is the inverse Laplace transform of the transfer function. Hence, it 
can be determined using Laplace transform techniques. Some useful concepts of forced 
response are summarized in Box 6.3..

6.4.4 response to Harmonic excitation

In many engineering problems, the primary excitation typically has a repetitive periodic 
nature, and in some cases, this periodic input function may even be purely sinusoidal. 
Examples are excitations due to mass eccentricity and misalignments in rotational com-
ponents, tooth meshing in gears, and electromagnetic devices excited by ac or periodic 
electrical signals and frequency generators. In basic terms, the frequency response of a 
dynamic system is the response to a pure sinusoidal excitation. As the amplitude and the 
frequency of the excitation are changed, the response also changes. In this manner the 
response of the system over a range of excitation frequencies can be determined, and this 
set of input–output data, at steady-state, represents the frequency response. Here we are 
dealing with the frequency domain (rather than the time domain) and frequency (w) is the 
independent variable. 

Consider the damped oscillator with a harmonic input, as given by

  x x x a t u tn n+ + = =2. 2.zw w wcos ( )  (6.58)

The particular solution xp that satisfies (Equation 6.58) is of the form (see Table 6.1)

 x a t a tp = +1 2.cos sinw w {Except for the case: z w w= =0 and n} (6.59)
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Figure 6.8
Unit step response of a damped oscillator.
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where the constants a1 and a2. are determined by substituting Equation 6.59 into the system 
Equation 6.58 and equating the like coefficient; the method of undertermined coefficients. We 
will consider several important cases. 

1. Undamped Oscillator with Excitation Frequency ≠ Natural Frequency: 
We have

 x x a tn+ =w w2. cos  with w w≠ n  (6.60)

 Homogeneous solution: x A t A th n n= +1 2.cos sinw w  (6.61)

 Particular solution: x
a

tp
n

=
-( )

cos
w w

w
2. 2.

 (6.62.)

BOx 6.3 USEFUL CONCEPTS OF FORCED RESPONSE

Convolution integral: Response y h t u d h u t dt t= ∫ -( ) ( ) = ∫ ( ) -( )0 0t t t t t t

where u = excitation (input) and h = impulse response function (response to a unit 
impulse input).
Damped simple oscillator:  y y y u tn n n+ + = ( )2. 2. 2.zw w w

Poles (eigenvalues) l l zw z w z1 2.
2. 1 1, for= - ± - ≥n n

= - ± <zw w zn dj for 1
wn  = undamped natural frequency, wd  = damped natural frequency
z = damping ratio. 
Note: w z wd n= -1 2.

 
Impulse Response Function

Zero ICs( ) : h(t) =  w
z

zw w zn
n dt t

1
1

2.-
- <exp( )sin for  

 
=

-
-[ ] >

= -( )

w
z

l l z

w w

n

n n

t t

t t

2. 1
1

2.
1 2.

2.

exp exp for

exp ffor z = 1

 

Unit Step Response
Zero ICs step( ) = -

-
: ( )y t 1

1

1 z 2.2.

2.
1

1

1
1

2. 1

exp( ) sin ( ) for

  [

- + <

= -
-

zw w f z

z w
l

n d

n

t t

eexp exp ] for

  ( )exp( )

l l l z

w w

2. 2. 1 1

1 1

t t

t tn n

- >

= - + - ffor

cos

z

f z

=

=

1

Note: Impulse response =  d
dt

 (step response).
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Note: It can be easily verified that xp given by Equation 6.62. satisfies the forced system 
Equation 6.60. Hence it is a particular solution.

Complete solution:

 x A t A tn n

H

= +1 2.cos sinw w
Satisfies the homogeneouus equation
   +

-
a

nw 2. ww
w

2.( ) cos t

P Satisfies the forced equation equuation with input( )
  

 (6.63.)

Now A1 and A2. are determined using the ICs:

 x x x vo o( ) ( )0 0= =and   (6.64)

Specifically, we obtain

 x A
a

o
n

= +
-1 2. 2.w w

 (6.65a)

 v Ao n= 2.w  (6.65b)

Hence, the complete response is

 x x
a

t
v

to
n

n
o

n
n

H

= -
-







+
( )

cos sin
w w

w
w

w
2. 2.

Homoggeneous Solution
  

+
-
a

t
n

P

w w
w

2. 2.
cos

Particular Solution
  

 (6.66a)

 

= +x t
v

to n
o

n
n

X

cos sinw
w

w

Free response
(dependss only on ICs).

Comes from ; Sinusodalxh aat .w

w w

n

a

n  
+

-( )
cos

2. 2.
ww w
w w w w

t tn

t tn n

-[ ]
+ -

cos

sin
( )

sin
( )

2.
2. 2.

  

F *Forced response depends on inputt
Comes from both and .

( ).
xh xp

*Will exhibiit a beat phenomenon for small ;
i.e.,

w wn-
(( )/2. wave “modulated” by ( )/2. wavew w w wn n+ - ..

    (6.66b)

This is a “stable” response in the sense of bounded-input–bounded-output (BIBO) stability, 
as it is bounded and does not increase steadily.

Note: If there is no forcing excitation, the homogeneous solution H and the free response 
X will be identical. With a forcing input, the natural free response will be influenced by the 
input in general, as clear from Equation 6.66b.
2.. Undamped Oscillator with w =wn (Resonant Condition):

This is the degenerate case given by

 x x a t+ =w w2. cos  (6.67)
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In this case the particular solution xp that was used before is no longer valid because, 
then the particular solution would become the same as the homogeneous solution and 
the former would be completely absorbed into the latter. Instead, in view of the “double-
integration” nature of the forced system equation when w = wn (see the Laplace transform 
of Equation 6.67, Section 6.5) we use the following particular solution (P):

 x
at

tp = 2.w
wsin  (6.68)

This choice of particular solution is justified by the fact that it satisfies the forced system 
Equation 6.67.

 Complete solution:x A t A t
at

t= + +1 2. 2.
cos sin sinw w

w
w  (6.69)

 ICs: x x x vo o( ) ( )0 0= =and 

By substitution of ICs into Equation 6.69 we get:

 x Ao = 1  (6.70a)

 v Ao =w 2.  (6.70b)

The total response:

 
x x t

v
to

o

X

= +cos sinw
w

w

Free Response Depends on ICs
Sinusoidal with frequency

( )
* .w

  
+ at

t

F
2.w

wsin

Forced Response Depends on Input
Amplitude increases li

( )
* nnearly.

    (6.71)

Since the forced response increases steadily, this is an unstable forced response in 
the BIBO sense. Furthermore, the homogeneous solution H and the free response X 
are identical, and the particular solution P is identical to the forced response F in this 
case.

Note: The same system (undamped oscillator) gives a bounded response for some excita-
tions while producing an unstable response (steady linear increase) when the excitation 
frequency is equal to its natural frequency. Hence, the system is not quite unstable, but 
is not quite stable either. In fact, the undamped oscillator is said to be marginally stable. 
When the excitation frequency is equal to the natural frequency it is reasonable for the 
system to respond in a complementary and steadily increasing manner because this cor-
responds to the most “receptive” excitation. Specifically, in this case, the excitation comple-
ments and reinforces the natural response of the system. In other words, the system is “in 
resonance” with the excitation. This condition is called a resonance and the corresponding 
frequency is called resonant frequency. Later on we will address this aspect for the more 
general case of a damped oscillator.

Figure 6.9 shows typical forced responses of an undamped oscillator for a large differ-
ence in excitation frequency and natural frequency (Case 1); for a small difference in exci-
tation frequency and natural frequency (also Case 1), where a beat-phenomenon is clearly 
manifested; and for the resonant case where the excitation frequency equals the natural 
frequency (Case 2.).
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3.. Damped Oscillator:
In this case the equation of forced motion is

  x x x a tn n+ + =2. 2.zw w wcos  (6.72.)

Particular solution: Since derivatives of both odd order and even order are present in this 
equation, the particular solution should have terms corresponding to odd and even deriv-
atives of the forcing function (i.e., sin w t and cos w t). Hence, the appropriate particular 
solution will be of the form:

 x a t a tp = +1 2.cos sinw w  (6.73.)

We determine the coefficients in Equation 6.73. by the method of undetermined coeffi-
cients. Specifically, substitute Equation 6.73. into Equation 6.72.. We get:

- - + - +w w w w zw w w w w2.
1

2.
2. 1 2.2.a t a t a t a tncos sin sin cos[[ ] + +[ ] =w w w wn a t a t a t2.

1 2.cos sin cos

Equate like coefficients:

 - + + =w zw w w2.
1 2.

2.
12.a a a an n

 - - + =w zw w w2.
2. 1

2.
2.2. 0a a an n

Hence, we have

 ( )w w zw wn na a a2. 2.
1 2.2.- + =  (6.74a)

 - + - =2. 01
2. 2.

2.zw w w wn na a( )  (6.74b)

0

(a)

Time t

Response

0

(b)

Time t

Response

0 Time t

(c)
Response

Figure 6.9
Forced response of a harmonic-excited undamped simple oscillator. (a) For a large frequency difference. (b) For 
a small frequency difference (beat phenomenon). (c) Response at resonance.
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This can be written in the vector-matrix form:

 
( )

( )

w w zw w

zw w w w

n n

n n

2. 2.

2. 2.

2.

2.

-

- -













a

a

1

2.












=












a

0
 (6.74c)

Its solution is

 
a

a D
n n

n n

1

2.

2. 2.

2. 2.

1 2.

2.












=

- -

-

( )

( )

w w zw w

zw w w w





















a

o
 (6.75)

or

 a
D

an
1

2. 2.
= -( )w w

 (6.75a)

 a
D

an
2.

2.= zw w  (6.75b)

with the determinant given by

 D = ( ) ( )w w zw wn n
2. 2. 2. 2.2.- +  (6.76)

Some useful results on the frequency response of a simple oscillator are summarized in 
Box 6.4.

6.5 Response Using Laplace Transform

Transfer function concepts are discussed in Chapter 5, and transform techniques are out-
lined in Appendix A. Once a transfer function model of a system is available, its response 
can be determined using the Laplace transform approach. The steps are:

 1. Using Laplace transform table (Appendix A) determine the Laplace transform 
(U(s)) of the input.

 2.. Multiply by the transfer function (G(s)) to obtain the Laplace transform of the out-
put: Y s G s U s( ) ( ) ( )= .

Note: The ICs may be introduced in this step by first expressing the system equation in 
the polynomial form in s and then adding the ICs to each derivative term in the character-
istic polynomial.

 3.. Convert the expression in Step 2. into a convenient form (e.g., by partial fractions).
 4. Using Laplace transform table, obtain the inverse Laplace transform of Y(s), which 

gives the response y(t). 

Let us illustrate this approach by determining again the step response of a simple 
oscillator.
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6.5.1 Step response using laplace Transforms

Consider the oscillator system given earlier by Equation 6.48:

  y y y u tn n n+ + =2. 2. 2.zw w w ( )  (6.48)

Since L U( ) /t s= 1 , the unit step response of the dynamic system (Equation 6.48), with 
zero ICs, can be obtained by taking the inverse Laplace transform of

 Y s
s s s s s

n

n n

n
step( )

( ) ( )
=

+ +
=1

2.
12.

2. 2.

2.w
zw w

w
∆

 (6.77a)

Here the characteristic polynomial of the system is denoted as

 ∆( ) ( )s s sn n= + +2. 2.2.zw w  (6.78a)

BOx 6.4 HARMONIC RESPONSE OF A SIMPLE OSCILLATOR

Undamped oscillator:  x x a t x x x vn+ = = =w w2.
0 00 0cos ; ( ) , ( )

Forw w≠ n : x x t
v

t

X

n
n

n= +0
0cos sinw
w

w
  

++
-
a

t t

F
n

nw w
w w

2. 2.
[cos cos ]-

  

 For = resonance :w wn( ) x X
at

t= +Same
2.w

wsin

Damped oscillator:  x x x a tn n+ + =2. 2.zw w wcos

 x H
a

j
t

P
n n

= +
- +

-
w w zw w

w f
2. 2. 2.

cos( )
  

where tan f =
-

2.
2. 2.

zw w
w w

fn

n

;  = phase lag.

Particular solution P is also the steady-state response.
Homogeneous solution H = +A e A et t

1 2.
2.1l l

where and  are roots of, l l l zw l w1 2.
2. 2.2.+ + =n n 00 ( )characteristic equation

A1 and A2. are determined from ICs: x(0) = x0, x v( )0 0=
Resonant frequency:w z wr n= -1 2. 2.

The magnitude of P will peak at resonance.

Damping ratio:z w
w

w w
w w

= = -
+

∆
2.

2. 1

2. 1n

 for low damping

where ∆w = half-power bandwidth = w2. - w1

Note: Q-factor = =w
Dw z

n 1
2.

 for low damping
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To facilitate using the Laplace transform table, partial fractions of Equation 6.77a are 
determined in the form

 
a
s

a a s
s sn n

1 2. 3.
2. 2.2.

+ +
+ +( )zw w

in which, the constants a a a1 2. 3., and  are determined by comparing the numerator 
polynomial:

 w dw wn n na s s s a a s2.
1

2. 2.
2. 3.2.= + + + +( ) ( )

We get a a an1 2. 3.1 2. 1= = - =, ,zw and .
Hence,

 Y s
s

s
s s s

sn

n n

n
Step( )

( )
= + -

+ +
= + -1 2.

2.
1 2.

2. 2.

zw
zw w

zw
∆(( )s

 (6.77b)

Next, using Laplace transform tables, the inverse transform of Equation 6.77b is obtained, 
and verified to be identical to Equation 6.56.

6.5.2 incorporation of iCs

When the ICs of the system are not zero, they have to be explicitly incorporated into the 
derivative terms of the system equation, when converting into the Laplace domain. Except 
for this, the analysis using the Laplace transform approach is identical to that with zero 
ICs. In fact, the total solution is equal to the sum of the solution with zero ICs and the solu-
tion corresponding to the ICs. We will illustrate the approach using two examples.

6.5.2.1 Step Response of a First-Order System

Let us revisit the first-order dynamic system with time constant t, input u, and output y, 
as given by

 t y y u t+ = ( ) (6.19)

The IC is y(0) = y0. A step input of magnitude A is applied at that IC.
From Laplace tables (see Appendix A), convert each term in Equation 6.19 into the Laplace 

domain as follows:

 t [ ( ) ] ( ) /sY s y Y s A s- + =0  (6.79a)

Note how the IC is included in the derivative term, as clear from the Laplace tables. On 
simplification we get

 Y s
y

s
A

s s
y

s
A
s

A
s

( )
( ) ( ) ( ) (

=
+

+
+

=
+

+ -
+

t
t t

t
t

t
t

0 0

1 1 1 11)
 (6.79b)
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Now we use the Laplace tables to determine the inverse Laplace transform each term in 
Equation 6.79b. We get

 y y e Ak et t
Step = + -- -

0 1t t( ) (6.80)

This is identical to the previous result (Equation 6.2.0). The response is plotted in Figure 
6.10, for different values of the time constant t. Notice how the response becomes more 
sluggish (i.e., the response becomes slower) for larger values of the time constant. 

6.5.2.2 Step Response of a Second-Order System

As another illustrative example revisit the simple oscillator problem:

  y y y u tn n n+ + =2. 2. 2.zw w w ( )  (6.48)

Only the underdamped case is considered where 0 1< <z .
We use the Laplace transform approach to determine the response to a unit step input 

for the case with the ICs y y( ) ( ).0 0and   First use Laplace tables to convert each term in 
Equation 6.48 into the Laplace domain, as follows:

 s Y s sy y sY s y Y sn n
2. 2.0 0 2. 0( ) ( ) ( ) [ ( ) ( )] ( )- - + - + zw w == wn

s

2.
 (6.81a)

On simplification we have

 Y s
s s

sy y y
s

n n( )
( )

( ) ( ) ( )
( )

= + + +1 0 0 2. 02.w zw
∆ ∆


 (6.81b)

0
Time t

τ

A

Step response
y

y0

Figure 6.10
Step response of a first-order system.
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Here the characteristic polynomial is given by

 ∆( ) ( ) ( )s s s sn n n d= + + = + +2. 2. 2. 2.2.zw w zw w  (6.78b)

where the damped natural frequency wd is such that 

 w z wd n
2. 2. 2.1= -( )  (6.82.)

The zero state response (i.e., when the ICs are zero) corresponds to the first term on the 
right hand side of Equation 6.81b, which can be determined as before by noting that

 Y s
s s s s

s
s

n n n
Forced( )

( ) ( )
( )

( )
= = - - +1 12.w zw zw

∆ ∆ ∆
 (6.83.)

From Laplace tables, the zero state response (i.e., the forced part) is obtained as 

 y t t tn

d
n d nForced( ) exp( ) sin exp(= - - - -1

zw
w

zw w zw tt td) cos forw z < 1  (6.84a)

Now by combining the last two terms on the right hand side we get

 
y t t tn dForced( ) exp( ) sin ( ) for= -

-
- + <1

1

1 2.z
zw w f z 11

with cosf z=

 (6.84b)

This result is identical to what we obtained before.
The response to the ICs is given by the second term on the right hand side of Equation 

6.81b. Specifically

 Y s
sy y y

s
s yn n

IC( )
( ) ( ) ( )

( )
( ) ( )= + + = +0 0 2. 0 0 zw zw

∆ ∆∆ ∆( )
( ) ( )

( )s
y y

s
n+ + 0 0zw

The terms in this result are similar to those in Equation 6.83.. Term by term conversion 
into the time domain, using Laplace tables we have

 y t y t t
y y

IC n d
n

d

( ) ( )exp( ) cos
( ) ( )= - + +

0
0 0zw w zw
w







- <exp( ) sin forzw w zn dt t 1  (6.85)

The total response is given by the sum of Equations 6.84 and 6.85.

6.6 Determination of ICs for Step Response

When a step input is applied to a system, the initial values of the system variables may 
change instantaneously. However, not all variables will change in this manner since the 
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value of a state variable cannot change instantaneously. We will illustrate some related 
considerations using an example.

example 6.2

The circuit shown in Figure 6.11 consists of an inductor L, a capacitor C, and two resistors R and 
Ro. The input is the voltage vi(t) and the output is the voltage vo across the resistor Ro.

 a. Obtain a complete state-space model for the system.
 b. Obtain an input–output differential equation for the system.
 c. Obtain expressions for undamped natural frequency and the damping ratio of the system.
 d. The system starts at steady-state with an input of 5 V (for all t < 0). Then suddenly, the input 

is dropped to 1 V (for all t > 0), which corresponds to a step input as shown in Figure 6.12. 
For R = Ro = 1 Ω, L = 1 H, and C = 1 F, what are the ICs of the system and their derivatives at 
both t = 0- and t = 0 +? What are the final (steady-state) values of the state variables and the 
output variable? Sketch the nature of the system response.

+

–
vi(t)

R L

vR vL

iL

iC

C
Ro

io

vo

+

–

Node
A

vC

Loop 1 Loop 2

Figure 6.11
An electrical circuit.

Input
vi(t)

Time t

1.0

5.0

0

Figure 6.12
A step input.
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Solution
a. State variables:
Current through independent inductors (iL); voltage across independent capacitors (vc).
Constitutive equations:

 v L
di
dtL

L= ; i C
dv
dtC

C= ; v RiR L= ; v Rio o=

First two equations are for independent energy storage elements, and they form the state-space 
shell.
Continuity equation:

 Node A (Kirchhoff’s current law): iL - iC - io = 0

Compatibility equations:

 Loop 1 (Kirchhoff’s voltage law): vi - vR - vL - vC = 0 

 Loop 2 (Kirchhoff’s voltage law): vC - vo = 0

Eliminate auxiliary variables. We have the state equations:

 L
di
dt

v v v v v Ri vL
L i R C i L C= = - - = - -

 C
dv
dt

i i i i
v
R

i
v
R

C
C L o L

o

o
L

C

o

= = - = - = -

State equations:

 
di
dt L

Ri v vL
L C i= - - +1

[ ]  (i)

 
dv
dt C

i
v
R

C
L

C

o

= -1
[ ]  (ii)

Output equation:

 vo = vc

Vector-matrix representation

 x Ax Bu= + ; y = Cx

where

System matrix A =
- -

-








R L L

C R Co

/ /

/ / ( )

1

1 1
; input gain matrix B = 








1

0

/ L
; measurement gain matrix

C = [ ]0 1 ; state vector =  x = 







i

v
L

C

; input = u = [ ]vi ; output = y = [ ]vo

b. From (ii): i C
dv
dt

v
RL

C C

o

= +
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Substitute in (i) for iL:
L

d
dt

C
dv
dt

v
R

R C
dv
dt

v
R

vC C

o

C C

o

+




= - +




- CC iv+

This simplifies to the input–output differential equation (since vo = vC)

 LC
d v
dt

L
R

RC
dv
dt

R
R

v vo

o

o

o
o

2

2
1+ +





+ +





= ii  (iii)

c. The input–output differential equation is of the form

 
d v
dt

dv
dt

v
LC

vo
n

o
n o i

2

2
22

1+ + =zw w

Hence:

 Natural frequencywn
oLC

R
R

= +





1
1  (iv)

 Damping ratio z =
+





+





1

2 1LC
R
R

L
R

RC

o

o

 

(v)

Note: 1/LC has units of (frequency)2. RC and L/Ro have units of “time” (i.e., time constant).
d. ICs:

For t < 0 (initial steady-state):
di
dt

L = 0; 
dv
dt

c = 0
Hence

(i): di
dt L

Ri v vL
L C i

( )
[ ( ) ( ) ( )]

0
0

1
0 0 0

-
- - -= = - - +

(ii):

 

dv
dt C

i
v

R
C

L
C

o

( )
( )

( )0
0

1
0

0-
-

-
= = -





Substitute the given parameter values R = Ro = 1 Ω, L = 1 H, and C = 1 F, and the input vi(0-) = 5.0:

 - iL(0-) - vC(0-) + 5 = 0

 iL(0-) - vC(0-) = 0

We get

 iL(0-) = 2.5 A, vC(0-) = 2.5 V

State variables cannot undergo step changes (because that violates the corresponding physical 
laws—constitutive equations). Specifically:

Inductor cannot have a step change in current (needs infinite voltage).
Capacitor cannot have a step change in voltage (needs infinite current).

Hence,

 i iL L0 0 2 5+ -( ) = ( ) = . A

 v vc c0 0 2 5+ -( ) = ( ) = . V
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Note: Since vi ( ) .0 1 0+ = .

(i):
 

di
dt

i vL
L C

( )
( ) ( ) . . . .

0
0 0 1 0 2 5 2 5 1 0

+
+ += - - + = - - + = -44 0. A/s 0≠

(ii):

 

dv
dt

i vC
L C

( )
( ) ( ) . . .

0
0 0 2 5 2 5 0 0

+
+ += - = - = V/s

Final values:
As t → ∞ (at final steady-state)

 
di
dt

L = 0

 
dv
dt

c = 0

and vi =1 0.
Substitute:

(i):

 

di
dt

i vL
L C

( )
( ) ( ) .

∞
∞ ∞= = - - +0 1 0

(ii): dv
dt

i vC
L C

( )
( ) ( )

∞
∞ ∞= = -0

Solution: iL( ) .∞ = 0 5 A, vc ( ) .∞ = 0 5 V
For the given parameter values,

(iii):
 

d v
dt

dv
dt

vo o
o

2

2
2 2 1+ + =

Hence, wn = 2 and 2 2zwn = ,  or, z =1 2/
This is an underdamped system, producing an oscillatory response as a result. The nature of the 

responses of the two state variables is shown in Figure 6.13. Note: Output v vo c= .

example 6.3

A system is given by the transfer function

 

y
u s s

n

n n

=
+ +
w
zw w

2

2 22

where u = input; y = output; s = Laplace variable; and z w, n  are system parameters.

 a. Write the input–output differential equation of the system.
It is well-known that the response of this system to a unit step input with zero ICs: 

y y( ) ( )0 0 0 0- -= =and  is given by

 y e tnt
d= -

-
+ ≤ <-1

1

1
0 1

2z
w f zzw sin( ) for

where w z wd n= -1 2  and cosf z=
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 b. Determine y ( )0+  and y ( )0+  for this response.
Now consider the system given by the transfer function

 
y
u

s
s s

n

n n

= +
+ +
w t
zw w

2

2 2

1
2

( )
( )

where t  is an additional system parameter. The remaining parameters are the same as those given 
for the previous system.

 c. Write the input–output differential equation for this modified system.
 d. Without using Laplace transform tables, but using the result given for the original sys-

tem, determine the response of the modified system to a unit step input with zero ICs:
y y( ) ( )0 0 0 0- -= =and  .

The response must be expressed in terms of the given system parameters( , , )w z tn .

 e. Determine y y( ) ( )0 0+ +and   for this response. Comment on your result, if it is different from 
the values for y y( ) ( )0 0 0 0- -= =and  .

Solution

a.  To obtain the input–output differential equation, represent the Laplace variable s by the deriva-
tive operator d/dt in the given transfer function. We get:

iL

t

0.5

2.5

0

Slope = – 4 A/s

vc = vo

t

0.5

2.5

0

Slope = 0 V/s

Figure 6.13
Responses of the state variables.
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 d y
dt

dy
dt

y un n n

2

2
2 22+ + =zw w w  (i)

b. By direct substitution of t = +0  in the given response expression we have

 y( ) sin0 1
1

1
1

1

1
1 1 1 0

2 2
2+ = -

-
= -

-
× - = - =

z
f

z
z

Now differentiate the given response expression. We have

 y e t en nt
d d n

t= -
-

+ -- -1

1 2z
w w f zw wzw zw[ cos( ) sin( ddt +f )]

By substituting t = +0  in this expression we get:

 

y d n n( ) [ cos sin ]0
1

1

1

1
1

2 2
2+ = -

-
- = -

-
-

z
w f zw f

z
z w z -- -  =zw zn 1 02

c.  As before, to obtain the input–output differential equation, represent the Laplace variable s by 
the derivative operator d/dt in the given transfer function. We get:

 
d y
dt

dy
dt

y
du
dt

un n n

2

2
2 22+ + = +





zw w w t  (ii)

d.  Examine the two differential Equations (i) and (ii). The left hand sides are identical. The right 
hand sides, which represent the input to the system, are different, but the second corresponds 
to a linear superposition of the first. Since both systems are linear, from the “principle of super-
position” the forced response (i.e., with zero ICs) of system (ii)—call it y—is obtained from the 
forced response of system (i)—call it yo—as 

 y
dy
dt

yo
o= +t  (iii)

It is given that

 y e to
t

d
n= -

-
+-1

1

1 2z
w fzw sin( )  (iv)

and from (b)

 y e t eo
t

d d n
tn n= -

-
+ -- -1

1 2z
w w f zwzw zw[ cos( ) sin(ww fdt + )]  (v)
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Substitute Equations (iv) and (v) in Equation (ii). We get

 

y e t en nt
d d n

t
d= -

-
+ -- -t

z
w w f zw wzw zw

1 2
[ cos( ) sin( tt

e t

e

n

n

t
d

+

+ -
-

+

= -
-

-

-

f

z
w f

z

zw

zw

)]

sin( )1
1

1

1
1

1

2

2
tt

d d d n dt t t[sin( ) { cos( ) sin( )}w f t w w f zw w f+ + + - + ]]

sin( ) cos(= -
-

+ + - +-1
1

1
1

2
2

z
w f tw z w fzwe t tnt

d n d )) sin( )

[sin(

- +{ } 

= -
-

+-

z w f

z
wzw

d

t
d

t

e tn1
1

1 2
ff tw f w f f w f) {sin cos( ) cos sin( )}]+ + - +n d dt t

or,

 y e t tnt
d n d= -

-
+ --1

1

1 2z
w f tw wzw [sin( ) sin ]  (vi)

Note: The last step follows from the trigonometric identity

 sin( ) sin cos cos sinA B A B A B- = -

e. Substitute t = +0  in Equation (vi). We get

 y( ) [sin ]0 1
1

1
1

1

1
1 1 1 0

2 2
2+ = -

-
= -

-
-  = - =

z
f

z
z

Next, differentiate Equation (vi). We get

 

y e t tn t
d n d

n=
-

+ -

-
-

-zw
z

w f tw w

z

zw

1

1

1

2
[sin( ) sin ]

22
e t tnt

d d n d d
- + -zw w w f tw w w[ cos( ) cos ]

 (vii)

Substitute t = +0  in Equation (vii). We get

 

y n
d n d( ) [sin ] [ cos ]0

1

1

12 2
+ =

-
-

-
-

=

zw
z

f
z
w f tw w

zwnn
n n

1
1

1

1
1 1

2
2

2
2 2 2

-
-  - -

- - - 

=

z
z

z
z w z tw z

zwnn n n- -[ ]zw tw 2
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or,

 y n( )0 2+ = tw

Note: At t = +0  we have y( )0 0+ =  but y( ) .0 0+ ≠
The reason for nonzero rate (or, velocity, if y represents displacement) is as follows. When the 
input u is a step function, its derivative u  is an impulse function. In the modified system (ii) it is 
clear from the right hand side that a linear combination of a step and an impulse are applied to 
the system (when u is a step function). The impulse input component results in an instantaneous 
change in y  (or, instantaneous change in velocity).

6.7 Computer Simulation

Simulation of the response of a dynamic system by using a digital computer is perhaps 
the most convenient and popular approach to response analysis. An important advantage 
is that any complex, nonlinear, and time variant system may be analyzed in this manner. 
The main disadvantage is that the solution is not analytic, and is valid only for a specific 
excitation, under the particular ICs, over a limited time interval, and so on. Of course, 
symbolic approaches of obtaining analytical solutions using a digital computer are avail-
able as well. We will consider here numerical simulation only.

The key operation of digital simulation is integration over time. This typically involves 
integration of a differential equation of the form

 y f y u t= ( , , )  (6.86)

where u is the input (excitation) and y is the output (response). Note that the function f 
is nonlinear and time-variant in general. The most straightforward approach to digital 
integration of this equation is by using trapezoidal rule, which is the Euler’s method, as 
given by

 y y f y u t tn n n n n+ = +1 ( , , )∆  n = 0, 1, … (6.87)

Here tn is the nth time instant, u u tn n= ( ), y y tn n= ( ); and ∆t  is the integration time step  
(∆t t tn n= -+1 ). This approach is generally robust. But depending on the nature of the func-
tion f, the integration can be ill behaved. Also, ∆t has to be chosen sufficiently small. 

For complex nonlinearities in f, a better approach of digital integration is the Runge–
Kutta method. In this approach, in each time step, first the following four quantities are 
computed:

 g f y u tn n n1 = ( , , )  (6.88a)

 g f y g
t

u t
t

n n n2. 1 1 2.2. 2.
= +





+









+

∆ ∆
, ,/   (6.88b)
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 g f y g
t

u t
t

n n n3. 2. 1 2.2. 2.
= +





+









+

∆ ∆
, , /


 (6.88c)

 g f y g t u tn n n4 3. 1 1= + + +[( ), , ]∆  (6.88d)

Then, the integration step is carried out according to 

 y y g g g g
t

n n+ = + + + +1 1 2. 3. 42. 2.
6

( )
∆

 (6.89)

Note that u u t
t

n n+ = +



1 2. 2./ .

∆

Other sophisticated approaches of digital simulation are available as well. Perhaps 
the most convenient computer-based approach to simulation of a dynamic model is by 
using a graphic environment that uses block diagrams. Several such environments are 
commercially available. One that is widely used is Simulink®, which is an extension to 
MATLAB®.*

6.7.1 use of Simulink® in Computer Simulation

Perhaps the most convenient computer-based approach to simulation of a dynamic model 
is by using a graphic environment that uses block diagrams. Several such environments 
are commercially available. One that is widely used is Simulink, and is available as an 
extension to MATLAB®. It provides a graphical environment for modeling, simulating, 
and analyzing dynamic linear and nonlinear systems. Its use is quite convenient. First 
a suitable block diagram model of the system is developed on the computer screen, and 
stored. The Simulink environment provides almost any block that is used in a typical block 
diagram. These include transfer functions, integrators, gains, summing junctions, inputs 
(i.e., source blocks) and outputs (i.e., graph blocks or scope blocks). Such a block may be 
selected and inserted into the workspace as many times as needed, by clicking and drag-
ging using the mouse. These blocks may be converted as required, using directed lines. A 
block may be opened by clicking on it and the parameter values and text may be inserted 
or modified as needed. Once the simulation block diagram is generated in this manner, it 
may be run and the response may be observed through an output block (graph block or 
scope block). Since Simulink is integrated with MATLAB, data can be easily transferred 
between programs within various tools and applications.

6.7.1.1 Starting Simulink®

First enter the MATLAB® environment. You will the MATLAB command prompt >>. To start 
Simulink, enter the command: Simulink. Alternatively, you may click on the “Simulink” 
button at the top of the MATLAB command window. The Simulink Library Browser win-
dow should now appear on the screen. Most of the blocks needed for modeling basic sys-
tems can be found in the subfolders of the main Simulink folder. 

* MATLAB® and Simulink® are properties of The Mathworks, Inc.
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6.7.1.2 Basic Elements

There are two types of elements in Simulink®: blocks and lines. Blocks are used to  generate 
(or input), modify, combine, output, and display signals. Lines are used to transfer signals 
from one block to another. 

Blocks: The subfolders below the Simulink folder show the general classes of blocks avail-
able for use. They are 

Continuous: Linear, continuous-time system elements (integrators, transfer func-•	
tions, state-space models, etc.).
Discrete: Linear, discrete-time system elements (integrators, transfer functions, •	
state-space models, etc.).
Functions and tables: User-defined functions and tables for interpolating function •	
values.
Math: Mathematical operators (sum, gain, dot product, etc.).•	
Nonlinear: Nonlinear operators (Coulomb/viscous friction, switches, relays, etc.).•	
Signals and systems: Blocks for controlling/monitoring signals and for creating •	
subsystems.
Sinks: For output or display signals (displays, scopes, graphs, etc.).•	
Sources: To generate various types of signals (step, ramp, sinusoidal, etc.).•	

Blocks may have zero or more input terminals and zero or more output terminals. 
Lines: A directed line segment transmits signals in the direction indicated by its arrow. 

Typically, a line must transmit signals from the output terminal of one block to the input 
terminal of another block. One exception to this is, a line may be used to tap off the signal 
from another line. In this manner, the tapped original signal can be sent to other (one or 
more) destination blocks. However, a line can never inject a signal into another line; com-
bining (or, summing) of signals has to be done by using a summing junction. A signal can 
be either a scalar signal (single signal) or a vector signal (several signals in parallel). The 
lines used to transmit scalar signals and vector signals are identical; whether it is a scalar 
or vector is determined by the blocks connected by the line. 

6.7.1.3 Building an Application

To build a system for simulation, first bring up a new model window for creating the block 
diagram. To do this, click on the “New Model” button in the toolbar of the Simulink® 
Library Browser. Initially the window will be blank. Then, build the system using the fol-
lowing three steps: 

1. Gather Blocks
From the Simulink Library Browser, collect the blocks you need in your model. This can 

be done by simply clicking on a required block and dragging it into your workspace.
2.. Modify the Blocks
Simulink allows you to modify the blocks in your model so that they accurately reflect 

the characteristics of your system. Double-click on the block to be modified. You can mod-
ify the parameters of the block in the “Block Parameters” window. Simulink gives a brief 
explanation of the function of the block in the top portion of this window. 
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3.. Connect the Blocks
The block diagram must accurately reflect the system to be modeled. The selected 

Simulink blocks have be properly connected by lines, to realize the correct block diagram. 
Draw the necessary lines for signal paths by dragging the mouse from the starting point 
of a signal (i.e., output terminal of a block) to the terminating point of the signal (i.e., input 
terminal of another block). Simulink converts the mouse pointer into a crosshair when it is 
close to an output terminal, to begin drawing a line, and the pointer will become a double 
crosshair when it is close enough to be snapped to an input terminal. When drawing a 
line, the path you follow is not important. The lines will route themselves automatically. 
The terminals points are what matter. Once the blocks are connected, they can be moved 
around for neater appearance. A block can be simply clicked dragged to its desired loca-
tion (the signal lines will remain connected and will re-route themselves). 

It may be necessary to branch a signal and transmit it to more than one input terminal. 
To do this, first placing the mouse cursor at the location where the signal is to be branched 
(tapped). Then, using either the CTRL key in conjunction with the left mouse button or just 
the right mouse button, drag the new line to its intended destination. 

6.7.1.4 Running a Simulation

Once the model is constructed, you are ready to simulate the system. To do this, go to the 
Simulation menu and click on Start, or just click on the “Start/Pause Simulation” button 
in the model window toolbar (this will look like the “Play” button on a VCR). The simula-
tion will be carried out and the necessary signals will be generated.

General tips:

 1. You can save your model by selecting Save from the file menu and clicking the OK 
button (you should give a name to a file).

 2.. The results of a simulation can be sent to the MATLAB® window by the use of the 
“to workshop” icon from the Sinks window.

 3.. Use the Demux (i.e., demultiplexing) icon to convert a vector into several scalar 
lines. The Mux icon takes several scalar inputs and multiplexes them into a vector 
This is useful, for example, when transferring the results from a simulation to the 
MATLAB workspace).

 4. A sign of a Sum icon may be changed by double clicking on the icon and changing 
the sign. The number of inputs to a Sum icon may be changed by double clicking 
on the icon and correctly setting the number of inputs in the window.

 5. Be sure to set the integration parameters in the simulation menu. In particular, 
the default minimum and maximum step sizes must be changed (they should 
be around 1/100 to 1/10 of the dominant (i.e., slowest) time constant of your 
system).

example 6.4

Consider the time domain model given by:

      y y y y u u u u+ + + = + + +13 56 80 6 11 6

We build the Simulink® model, as given in Figure 6.14a.
The system response to an impulse input is shown in Figure 6.14b.
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example 6.5

Consider the model of a robotic sewing system, as studied in Figure 6.15a.
With the state vector x = [ ]w r r h c c

Tf v f v ; the input vector u = [ ]T fr f
T ; and the output vector

y = [ ]fc r
Tw , the following state-space model is obtained:

 x Ax Bu= + ; y = Cx + Du

where
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Figure 6.14
 (a) Simulink® model of the simulation block diagram. (b) System response.
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To carry out a simulation using Simulink®, we use the following parameter values:
mc = 0.6 kg
kc = 100 N/m
bc = 0.3 N/m/s
mh = 1 kg
bh = 1 N/m/s
kr = 200 N/m
br = 1 N/m/s
Jr = 2 kg.m2

r = 0.05 m

(a)
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bc

(Normally
compressed)

Hand
Robot

mc
br

kcfc
fr

ff , vf

Feeder
element

Cloth panel
vc
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Rack

Pinion

ωm

Tr

vh

(b)

Torque

x' = Ax+Bu

y = Cx+Du

State-space

Output force

Output angular
velocity

Input torque

Input force

Force

Figure 6.15
(a) A robotic sewing system. (b) Simulink model of a robotic sewing machine. (c) Simulation results.
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The matrices of the linear model are obtained as:

 

A =

- -
-
-
-

0 00125 0 025 0 0 0

10 0 200 0 0

0 1 1 3 1 0 3

0 0 10

. .

. .

00 0 100

0 0 0 5 1 67 0 5

0

. . .

.

-























=; B

55 0

0 0

0 0

0 0

0 1 67

0 0 0 1 0

1 0

.























=

;

C
00 0 0

0 0

0 0






 = 






; D

The Simulink model is built, as shown in Figure 6.15b. 
The response of the system to two impulse inputs is shown in Figure 6.15c.
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Figure 6.15 (continued)
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Problems

PROBLEM 6.1

The unit step response of a system, with zero ICs, was found to be 1 5 1 10. ( )- -e t . 
What is the input–output differential equation of the system? What is the transfer 
function?

PROBLEM 6.2

Discuss why the convolution integrals given below (where u is the input, y is the output, 
and h is the impulse response function) are all identical.

 y t h u t d( ) ( ) ( )= -
∞

∫
0

t t t

 y t h t u d( ) ( ) ( )= -
-∞

∞

∫ t t t

 y t h u t d( ) ( ) ( )= -
-∞

∞

∫ t t t

 y t h t u d
t

( ) ( ) ( )= -
-∞
∫ t t t

 y t h u t d
t

( ) ( ) ( )= -
-∞
∫ t t t

 y t h t u d
t

( ) ( ) ( )= -∫
0

t t t

 y t h u t d
t

( ) ( ) ( )= -∫
0

t t t

PROBLEM 6.3

A system at rest is subjected to a unit step input U( )t . Its response is given by

 y e t t tt= --2. (cos sin ) ( )U

 a. Write the input–output differential equation for the system.
 b. What is its transfer function?
 c. Determine the damped natural frequency, undamped natural frequency, and the 

damped ratio.
 d. Write the response of the system to a unit impulse and sketch it.
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PROBLEM 6.4

Consider the dynamic system given by the transfer function

 
Y s
U s

s
s s

( )
( )

( )
( )

= +
+ +

4
3. 2.2.

 a. Plot the poles and zeros of the systems on the s-plane.
 b. Indicate the correct statement among the following:

 (i) The system is stable
 (ii) The system is unstable
 (iii) The system stability depends on the input
 (iv) None of the above

 c. Obtain the system differential equation.
 d. Using the Laplace transfer technique determine the system response y(t) to a unit 

step input, with zero ICs.

PROBLEM 6.5

A dynamic system is represented by the transfer function

 
Y s
U s

G s
s s

n

n n

( )
( )

( )= =
+ +
w
zw w

2.

2. 2.2.

 a. Is the system stable?
 b. If the system is given an impulse input, at what frequency will it oscillate?
 c. If the system is given a unit step input, what is the frequency of the resulting out-

put oscillations? What is its steady-state value?
 d. The system is given the sinusoidal input

 u t a t( ) sin= w

Determine an expression for the output y(t) at steady-state in terms of a, w, wn, and z. At 
what value of w will the output y(t) be maximum at steady-state?

PROBLEM 6.6

A system at rest is subjected to a unit step input U( ).t  Its response is given by:

 y e t tt= -[ sin ] ( )2. U

 a. Write the input–output differential equation for the system.
 b. What is its transfer function?
 c. Determine the damped natural frequency, undamped natural frequency, and the 

damped ratio.
 d. Write the response of the system to a unit impulse and find y(0 +).
 e. What is the steady-state response for unit step input?

PROBLEM 6.7

 a. Define the following terms with reference to the response of a dynamic system:

 (i) Homogeneous solution
 (ii) Particular solution
 (iii) Zero-input (or free) response
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 (iv) Zero state (or forced) response
 (v) Steady-state response

 b. Consider the first-order system

 t dy
dt

y u t+ = ( )

in which u is the input, y is the output, and t is a system constant.

 (i) Suppose that the system is initially at rest with u = 0 and y = 0, and suddenly 
a unit step input is applied. Obtain an expression for the ensuing response 
of the system. Into which of the above five categories does this response fall? 
What is the corresponding steady-state response?

 (ii) If the step input in (i) above is of magnitude A what is the corresponding 
response?

 (iii) If the input in (i) above was an impulse of magnitude P what would be the 
response?

PROBLEM 6.8

An “iron butcher” is a head-cutting machine which is commonly used in the fish pro-
cessing industry. Millions of dollars worth salmon, is wasted annually due to inaccu-
rate head. cutting using these somewhat outdated machines. The main cause of wastage 
is the “over-feed problem.” This occurs when a salmon is inaccurately positioned with 
respect to the cutter blade so that the cutting location is beyond the collar bone and into 
the body of a salmon. An effort has been made to correct this situation by sensing the 
position of the collar bone and automatically positioning the cutter blade accordingly. 

A schematic representation of an electromechanical positioning system of a-salm-
on-head cutter is shown in Figure P6.8a. Positioning of the cutter is achieved through 
a lead screw and nut arrangement, which is driven by a brushless dc motor. The cut-
ter carriage is integral with the nut of the lead screw and the ac motor which derives 
the cutter blade, and has an overall mass of m (kg). The carriage slides along a lubri-
cated guideway and provides an equivalent viscous damping force of damping con-
stant b (N/m/s). The overall moment of inertia of the motor rotor and the lead screw 
is J (N/m2.) about the axis of rotation. The motor is driven by a drive system, which 
provides a voltage v to the stator field windings of the motor. Note that the motor has 
a permanent magnet rotor. The interaction between the field circuit and., the motor 
rotor is represented by Figure P6.8b. 

The magnetic torque Tm generated by the motor is given by

 T k im m f=

The force FL exerted by the lead screw in the y-direction of the cutter carriage is 
given by

 F
e
h

TL L= ,

in which

 h = Translatory motion of the nut
Rotatory motiion of lead screw

and e is the mechanical efficiency of the lead screw-nut unit.
The remaining parameters and variables, as indicated in Figure P6.8, should be self-

explanatory.
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 a. Write the necessary equations to study the displacement y of the cutter in response 
to an applied voltage v to the motor. What is the order of the system? Obtain the 
input–output differential equation for the system and from that determine the 
characteristic equation. What are the roots (poles or eigenvalues) of the character-
istic equation?

 b. Using summation junctions, integration blocks, and constant gain blocks only, 
draw a complete block diagram of the system, with v as the input and y as the 
output.

 c. Obtain a state-space model for the system, using v as the input and y as the 
output.

 d. Assume that L/R ratio is very small and can be neglected. Obtain an expression 
for the response y of the system to a step input with zero ICs. Show from this 
expression that the behavior of the system is unstable in the present form (i.e., 
without feedback control).

PROBLEM 6.9

Consider the two-mass system shown in Figure P6.9.

 a. What is the transfer function x f1/ ?
 b. For a harmonic excitation f(t), at what frequency will m1 be motionless?

Brushless
dc motor

Motor drive
system

Nut Lead screw

Cutter carriage

Inertia = J Mass = m

Cutter
motor

(ac)

Cutter
blade

Salmon

Conveyor
Guidway

(Damping constant = b)

y

(a)

if

J

R

L
Supply
voltage

v
Rotor

(b)

Figure P6.8
(a) A positioning system for an automated fish cutting machine. (b) The field circuit of the permanent-magnet 
rotor dc motor.
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PROBLEM 6.10

When two dissimilar metal wires are jointed at the two ends, to form a loop, and one 
junction is maintained at a different temperature from the other, a voltage is generated 
between the two junctions. A temperature sensor, which makes use of this property is 
the thermocouple. The cold junction is maintained at a known temperature (say, by dip-
ping into an ice-water bath). The hot junction is then used to measure the temperature 
at some location. The temperature of the hot junction (T) does not instantaneously reach 
that of the sensed location (Tf), in view of the thermal capacitance of the junction. Derive 
an expression for the thermal time constant of a thermocouple in terms of the following 
parameters of the hot junction:

m = mass of the junction
c = specific heat of the junction
h = heat transfer coefficient of the junction
A = surface area of the junction.

PROBLEM 6.11

Consider again Problem 4.9 in Chapter 4 (Figure P4.9).
Defining the time constants t 1 1= C Rp  andt 2. 2.= C Ro, and the gain parameter k R Ro p= /  

express the characteristic equation of the system in terms of these three parameters.
Show that the poles of the system are real and negative but the system is coupled 

(interacting).
Suppose that the two tanks are as in Figure P4.9b. Here Tank 1 has an outlet valve at 

its bottom whose resistance is Rt and the volume flow rate is Qt when open. This flow 
directly enters Tank 2., without a connecting pipe. The remaining characteristics of the 
tanks are the same as in (b).

Derive a state-space model for the modified system in terms of the same variables 
as in (b). Witht 1 1= C Rt , t 2. 2.= C Ro, and k R Ro t=  obtain the characteristic equation 
of this system. What are the poles of the system? Show that the modified system is 
noninteracting.

PROBLEM 6.12

Consider again Problem 4.10 in Chapter 4 (Figure P4.10).
Obtain expressions for the undamped natural frequency and the damping ratio of the 

linear model, in terms of the parameters a, v , m, and k. Show that the damping ratio 
increases with the operating speed. 

PROBLEM 6.13

Consider the fluid oscillation problem in Example 2..4 of Chapter 2. (Figure 2..18).
What is the characteristic equation of this system?
Using the following numerical values for the system parameters:

f (t)
k 

x1
x2

m1 m2

Figure P6.9
A two-car train.
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Lv  =  10.0 m, Lh  =  4.0 m,  dv  =  0.02.5 m, dh  =  0.02. m
r  =  1000.0 kg/m3.,  m  =  1.0 × 10 -3. N.s/m2., and tank diameter  =  0.5 m

compute the undamped natural frequency wn  and the damping ratio z of the system. 
Will this system provide an oscillatory natural response? If so what is the correspond-
ing frequency? If not, explain the reasons.

PROBLEM 6.14

The circuit shown in Figure P6.14 consists of an inductor L, a capacitor C, and two resis-
tors R and Ro. The input is the source voltage v ts( ) and the output is the voltage vo across 
the resistor Ro. 

 a. Explain why the current iL through the inductor and the voltage vC across the 
capacitor are suitable state variables for this circuit.

 b. Using iL and vC as the state variables, obtain a complete state-space model for the 
system. Specifically, express system equations in the vector-matrix form: 

 x Ax Bu= +

 y = Cx + Du

in the usual notation, where x is the state vector, u is the input vector, and y is the output 
vector, and determine all the elements of the four matrices A, B, C, and D in terms of the 
circuit parameters R, Ro, L, and C.

 c. The system starts at steady-state with a source voltage of 1 V (for all t < 0). Then 
suddenly, the source voltage (i.e., input) is increased to 10 V (for all t > 0), which 
corresponds to a step input. For R = Ro = 1 Ω, L = 1 H, and C = 1 F, determine the 
numerical values of the ICs of the following system variables at both t = 0- and 
t = 0 +: 

 (i) Voltage vL across the inductor
 (ii) Current iC through the capacitor
 (iii) Current i through the resistor R
 (iv) Current iL

 (v) Voltage vC

 (vi) Output voltage vo

Hint: A state variable cannot change its value instantaneously. 

DC

R L

C

vs
vC

vR vL

vRo
 = voRo

Loop
1

Loop
2

Ai iL

iC

+–

Figure P6.14
An electrical circuit with RLC elements.
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PROBLEM 6.15

Consider the linear system with constant coefficients, expressed in the time domain as

 a
d y
dt

a
dy
dt

a y b
d u
dt

b
d u
dt

b
du
d2.

2.

2. 1 0 3.

3.

3. 2.

2.

2. 1+ + = + +
tt

b u+ 0

u = input to the system
y = output of the system

The coefficients ai and bj are constants, and they are the system parameters.
The system may be represented in the block diagram form as in Figure P6.15, with the 
transfer function G(s).

 a. What is the order of the system? Give reasons.
 b. Express the transfer function of the system in terms of the system parameters.
 c. What is the characteristic equation of the system? Explain your result.
 d. Derive expressions for the poles of the system in terms of the given system 

parameters.
 e. If a0 > 0, a1 > 0, and a2. > 0, discuss the stability of the system. 
 f. First assume that the coefficients b3., b2., and b1 are zero, and b0 = 1. Then the “forced” 

(i.e., zero IC) response of this modified system for some input u(t) is denoted by 
x(t). Now if b3., b2., and b1 are all nonzero, and b0 ≠ 1, express in terms of x(t) and the 
system parameters, the response of this system to the same input u(t) as before 
(with zero ICs). Clearly indicate the reasons behind your answer.

 g. If b3. ≠ 0, discuss the “physical realizability” of the system.

Note: Give all details of your derivations. If you use new parameters or variables or 
any notation other than what is given in the problem, they have to be defined. 

PROBLEM 6.16

a. Answer “true” or “false” for the following:
The order of a system is equal to

 (i) The number of states in a state-space model of the system.
 (ii) The order of the input–output differential equation of the system.
 (iii) The number of ICs needed to completely determine the time response of the 

system.
 (iv) The number of independent energy-storage elements in a lumped-parameter 

model of the system.
 (v) The number of independent energy storage elements and energy dissipation 

elements in a lumped-parameter model of the system.

G(s)

System

Input u Output y 

Figure P6.15
Block diagram of the system.
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b.  A fluid pump has an impeller of moment of inertia J  and is supported on friction-
less bearings. It is driven by a powerful motor at speed wm, which may be treated as 
a velocity source, through a flexible shaft of torsional stiffness K. The fluid load to 
which the pump impeller is subjected may be approximated by a load torque cw w  
where w is the speed of the pump impeller. A schematic diagram of the system is 
shown in Figure P6.16a and a lumped-parameter model is shown in Figure P6.16b.
 Note that the motor speed wm is the input to the system. Treat the speed w of the 

pump impeller as the output of the system. 

 (i) Using the torque t in the drive shaft and the speed w of the pump as the state 
variables develop a complete (nonlinear) state-space model of the system.

 (ii) What is the order of the system?
 (iii) Under steady operating conditions, with constant input wm (when the rates of 

changes of the state variables can be neglected) determine expressions for the 
operating speed wo of the pump and the operating torque to of the drive shaft, 
in terms of the given quantities (e.g., wm, K, J, c).

 (iv) Linearize the state-space model about the steady operating conditions in (iii), 
using the incremental state variables t̂  andŵ , and the incremental input 
variable ŵm.

 (v) From the linearized state-space model, obtain a linear input–output dif-
ferential equation (in terms of the incremental input ŵm and incremental 
outputŵ ).

 (vi) Obtain expressions for the undamped natural frequency and the damping 
ratio of the linearized system, in terms of the parameters wo, K, J, c.

PROBLEM 6.17

Consider the simple oscillator shown in Figure P6.17, with parameters m = 4 kg, 
k = ×1 6 103.. N/m, and the two cases of damping:

 1. b = 80 N/m/s
 2.. b = 3.2.0 N/m/s

Using MATLAB® determine the free response in each case for an IC excitation.

K
J

Fluid resistance torque
ω

τ

ω

ωm

cω

(b)

(Velocity source)

Motor Flexible
shaft

Pump

(Inertial and fluid
resistance torque) 

Fluid in

Fluid out(a)

Figure P6.16
(a) A pump driven by a powerful motor; (b) A lumped-parameter model.
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PROBLEM 6.18

Consider the following equation of motion of the single-degree-of-freedom system 
(damped simple oscillator) shown in Figure P6.17: 

  y y y u tn n n+ + =2. 2. 2.zw w w ( )

With an undamped natural frequency ofwn = 10 rad/s, the step responses may be 
conveniently determined using Simulink® for the following cases of damping ratio z: 0, 
0.3., 0.5, 1.0, 2..0.

In particular, the block diagram model for the simulation can be formed as shown in 
Figure P6.18a, where each case of damping is simulated using the sub-model in Figure 
P6.18b. Obtain the step for these five cases of damping.

In5 Out5

zeta = 2

In4 Out4

zeta = 1

In3 Out3

zeta = 0.5

In2 Out2

zeta = 0.3

In1 Out1

zeta = 0

Step

Scope

(a)

Figure P6.18
Use of Simulink to obtain the step response of a simple oscillator. (a) Overall Simulink model. (b) Simulink sub-
model for each case of damping.

x

b 

k 

m 

Figure P6.17
A damped simple oscillator.
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1
Out2

1
s

1
s

-K-
+
–

6

-K-

1
In2

(b)

Figure P6.18 (continued)
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7
Control System Structure and Performance

The purpose of control is to make a plant (i.e., the “dynamic” system to be controlled) 
behave in a desired manner, according to some performance specifications. The overall sys-
tem that includes at least the plant and the controller is called the control system. The 
control problem can become challenging due to such reasons as:

Complex system (many inputs and many outputs, dynamic coupling, nonlinear, •	
etc.)
Rigorous performance specifications•	
Unknown excitations (unknown inputs/disturbances/noise)•	
Unknown dynamics (incompletely known plant)•	

A good control system should satisfy performance requirements concerning such attri-
butes as: accuracy, stability, speed of response or bandwidth, sensitivity, and robustness. This 
chapter will introduce common architectures of control systems and will present methods 
of specifying and analyzing the performance of a control system. It is advised to study 
the concepts of transfer functions and block diagrams as presented in Chapter 5 before 
proceeding further.

7.1 Control System Structure

A schematic diagram of a control system is shown in Figure 7.1. The physical dynamic 
system (e.g., a mechanical system) whose response (e.g., motion, voltage, temperature, flow 
rate) needs to be controlled is called the plant or process. The device that generates the signal 
(or, command) according to some scheme (or, control law) and controls the response of the 
plant, is called the controller. The plant and the controller are the two essential  components 
of a control system. Certain command signals, or inputs, are applied to the controller and 
the plant is expected to behave in a desirable manner, under control. In a feedback control 
system, as shown in Figure 7.1, the plant has to be monitored and its response needs to 
be measured using sensors and transducers, for feeding back into the controller. Then, the 
controller compares the sensed signal with a desired response as specified externally, and 
uses the error to generate a proper control signal.

In the feedback control system in Figure 7.1, the control loop has to be closed, making 
measurements of the system response and employing that information to generate control 
signals so as to correct any output errors. Hence, feedback control is also known as closed-
loop control. In digital control, a digital computer serves as the controller. Virtually any con-
trol law may be programmed into the control computer.
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272 Modeling and Control of Engineering Systems

If the plant is stable and is completely and accurately known, and if the inputs to the plant 
can be precisely generated (by the controller) and applied, then accurate control might be 
possible even without feedback control. Under these circumstances a measurement sys-
tem is not needed (or at least not needed for feedback) and thus we have an open-loop 
control system. In open-loop control, we do not use current information on system response 
to determine the control signals. In other words, there is no feedback. The structure of an 
open-loop control system is shown in Figure 7.2.. Note that a sensor is not explicitly indi-
cated in this open-loop architecture. However, sensors may be employed within an open-
loop system to monitor the applied input, the resulting response, and possible disturbance 
inputs even though feedback control is not used.

Implicit here is the significance of sensors and actuators for a control system. This impor-
tance holds regardless of the specific control system architecture that is implemented in 
a given application. We will now outline several other architectures of control system 
implementation.

7.1.2 Feedforward Control

Many control systems have inputs that do not participate in feedback control. In other 
words, these inputs are not compared with feedback (measurement) signals to generate 
control signals. Some of these inputs might be important variables in the plant (process) 

Sensor /
transducer

Power
(for active sensors)

Mechanical system
(plant, process)

Response

Disturbance
excitation

Actuator

Power

Drive
excitation

Signal
conditioning

Power

Controller
(Digital or

analog) 

Power

Control
signal Reference

command

Signal
conditioning 

Power

Feedback
signal

Figure 7.1
Schematic diagram of a feedback control system.

(Reference
input)

Controlled
variable
(output)

Set point Controller ActuatorSignal
conditioning

Process
(plant)

Figure 7.2
An open-loop control system.
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itself. Others might be undesirable inputs, such as external disturbances and noise, which 
are unwanted yet unavoidable. Generally, the performance of a control system can be 
improved by measuring these (unknown) inputs and somehow using the information to 
generate control signals.

In feedforward control, unknown “inputs” are measured and that information, along 
with desired inputs, is used to generate control signals that can reduce errors due to these 
unknown inputs or variations in them. The reason for calling this method feedforward 
control stems from the fact that the associated measurement and control (and compensa-
tion) take place in the forward path of the control system. Note that in feedback control, 
unknown “outputs” are measured and compared with known (desired) inputs to generate 
control signals. Both feedback and feedforward schemes may be used in the same control 
system.

A block diagram of a typical control system that uses feedforward control is shown in 
Figure 7.3.. In this system, in addition to feedback control, a feedforward control scheme is 
used to reduce the effects of a disturbance input that enters the plant. The disturbance input 
is measured and fed into the controller. The controller uses this information to modify the 
control action so as to compensate for the disturbance input, “anticipating” its effect.

As a practical example, consider the natural gas home heating system shown in Figure 
7.4a. A simplified block diagram of the system is shown in Figure 7.4b. In conventional 
feedback control, the room temperature is measured and its deviation from the desired 
temperature (set point) is used to adjust the natural gas flow into the furnace. On–off con-
trol through a thermostat, is used in most such applications. Even if proportional or three-
mode (proportional-integral-derivative [PID]) control is employed, it is not easy to steadily 
maintain the room temperature at the desired value if there are large changes in other 
(unknown) inputs to the system, such as water flow rate through the furnace, temperature 
of water entering the furnace, and outdoor temperature. Better results can be obtained by 
measuring these disturbance inputs and using that information in generating the control 
action. This is feedforward control. Note that in the absence of feedforward control, any 
changes in the inputs w1, w2., and w3. in Figure 7.4b would be detected only through their 

Output

Reference
input Controller Plant

Measurement
for

feedforward

Measurement
for

feedback

Unknown
input

Figure 7.3
A system with feedback and feedforward control.
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effect on the feedback signal (room temperature). Hence, the subsequent corrective action 
can considerably lag behind the cause (Note: the cause is the change in wi). This delay will 
lead to large errors and possible instability problems. With feedforward control, informa-
tion on the disturbance input wi will be available to the controller immediately, and its 
effect on the system response can be anticipated, thereby speeding up the control action 
and also improving the response accuracy. Faster action and improved accuracy are two 
very desirable effects of feedforward control.

7.1.2.1 Computed-Input Control

In some applications, control inputs are computed by using, the desired outputs and accurate 
dynamic models for the plants, and the computed inputs are used for control purposes. This 
is the inverse model (or inverse dynamics) approach because the input is computed using the 

Room temperature
(output)

Temperature
set point
(input) Controller Furnace

Sensor-tranducer

(a)

Pilot flame
detector

Valve
actuator

Natural
gas Valve

Cold water
in

�ermal
insulation

Vent
Exhaust

gases

Main
flame

�ermostat

�ermocouple

Temperature controller
(On/Off) and transmitter

Hot water
out Room

radiator

Burner
chamberWater

Pilot
Flame

–

w1 w2 w3

Unknown
inputs

w1 = Water flow rate
w2 = Temperature of cold water into furnace
w3= Temperature outside the room

(b)

Figure 7.4
(a) A natural gas home heating system. (b) A block diagram representation of the system.
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output and a model (inverse model). This is a popular way for controlling robotic manipula-
tors, for example. In some literature this method is also known as feedforward control. To 
avoid confusion, however, it is appropriate to denote this method as computed-input control.

example 7.1

Consider the system shown by the block diagram in Figure 7.5a. Note:

Gp(s) = plant transfer function
Gc(s) = controller transfer function
H(s) = feedback transfer function
Gf(s) = feedforward compensation transfer function.

The disturbance input w is measured, compensated using Gf, and fed into the controller, along 
with the driving input u.

 a. In the absence of the disturbance input w, obtain the transfer function relationship between 
the output y and the driving input u.

 b. In the absence of the driving input u, obtain the transfer relationship between y and w.
 c. From (a) and (b), write an expression for y in terms of u and w.
 d. Show that the effect of disturbance is fully compensated if the feedforward compensator is 

given by

 G s
G sf

c

( ) =
( )
1

(a) (b)

u y

H(s)

+

–

Disturbance
input

w

Feedback
signal

Feedforward
signal

Output
y

Driving
input

u –

– +

Gf (s)

Gp(s)

Gc(s) Gp(s)

Gc(s)

H(s)

(c)

Gf (s)w y+ +

Step 1

w y+ +

Step 2

Step 3
yw

Gc(s) Gp(s)

1–GcGf
Gp

GcH

Gf (s) Gc(s) Gp(s)

Gc(s)H(s)H(s)

Figure 7.5
(a) A block diagram for a system with feedforward control. (b) The block diagram when the disturbance 
is removed. (c) Steps of block diagram reduction in the absence of the driving input.
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Solution

 a. When w = 0, we have the system shown in Figure 7.5b.

 Then, from the usual block diagram analysis (see Chapter 5, Table 5.7), we have the transfer 
function

 
y
u

G G
G G H

c p

c p
=

+1
 (i)

 b. When u = 0, the block diagram may be reduced using the concepts presented in Chapter 5 
(see Table 5.7), in four steps as shown in Figure 7.5c. In Step 1, the block diagram is redrawn 
after removing u. In Step 2, the feedback point is moved forward by a block and as a result 
the feedback block is multiplied by the transfer function of the forward block (see Table 5.7). 
In Step 3 we have used the following facts:

 (1) In a serial path the transfer functions multiply.
 (2) In parallel path the transfer functions add.

 Also note how the sign of the incoming signal at the first summing junction is taken care of 
in the reduced diagram. Finally, in Step 4, the feedback loop is represented by a single block 
(see Table 5.7).

 From the last step, we have the transfer function

 y
w

G G G

G G H
f c p

p c

=
-( )
+

1

1
 (ii)

 c. Since the system is linear, the principle of superposition applies. Accordingly, the over-
all transfer function relation when both inputs u and w are present, is given by adding 
Equations (i) and (ii):

 y
G G

G G H
u

G G G

G G H
wc p

c p

f c p

p c

=
+( ) +

-( )
+1

1

1
 (iii)

 d. When GfGc = 1, the second term of the right hand side of Equation (iii) vanishes. Consequently, 
the effect of the disturbance (w), on the output, is fully compensated.

7.1.3 Terminology

Some useful terminology introduced in this chapter is summarized below.

Plant or process: System to be controlled.
Inputs: Excitations (known, unknown) to the system.
Outputs: Responses of the system.
Sensors: The devices that measure system variables (excitations, responses, etc.).
Actuators: The devices that drive various parts of the system.
Controller: Device that implements the control law (generates the control signal).
Control law: Relation or scheme according to which control signal is generated.
Control system: At least the plant and the controller (may also include sensors, signal 

conditioning, etc.).
Feedback control: Plant response is measured and fed back into the controller. 

Control signal is determined according to error (between the desired and actual 
responses).
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Closed-loop control: Same as feedback control. There is a feedback loop (closed-
loop).

Open-loop control: Plant response is not used to determine the control action.
Feedforward control: Control signal is determined according to plant “excitation.”

The terminology that is particular to the process control practice (e.g., chemical pro-
cesses) is indicated in the feedback control system shown in Figure 7.6. In particular we 
note:

Actuator + valve together corresponds to the “actuator” in the conventional control 
terminology.

Control actuators: Torque motors in servovalves, etc.
Final control element corresponds to an actuator (typically a control valve).
Transmitter transmits the sensed signal to the controller (this can be integrated into 

sensor/transducer).

7.1.4 Programmable logic Controllers (PlCs)

A PLC is essentially a digital-computer-like system that can properly sequence a complex 
task, consisting of many discrete operations and involving several devices, which needs 
to be carried out in a sequential manner. PLCs are rugged computers typically used in 
factories and process plants, to connect input devices such as switches to output devices 
such as valves, at high speed at appropriate times in a task, as governed by a program. 
Internally, a PLC performs basic computer functions such as logic, sequencing, timing, 
and counting. It can carry out simpler computations and control tasks such as PID con-
trol. Such control operations are called continuous-state control, where process variables are 
continuously monitored and made to stay very close to desired values. There is another 
important class of controls, known as discrete-state control, where the control objective is 
for the process to follow a required sequence of states (or steps). In each state, however, 
some form of continuous-state control might be operated, but it is not quite relevant to the 
discrete-state control task. PLCs are particularly intended for accomplishing discrete-state 
control tasks.

There are many control systems and industrial tasks that involve the execution of a 
sequence of steps, depending on the state of some elements in the system and on some 
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Figure 7.6
A feedback system in the process control practice.
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external input states. For example, consider an operation of turbine blade manufacture. 
The discrete steps in this operation might be:

 1. Move the cylindrical steel billets into furnace.
 2.. Heat the billets.
 3.. When a billet is properly heated, move it to the forging machine and fixture it.
 4. Forge the billet into shape.
 5. Perform surface finishing operations to get the required aerofoil shape.
 6. When the surface finish is satisfactory, machine the blade root.

Note that the entire task involves a sequence of events where each event depends on the 
completion of the previous event. In addition, it may be necessary for each event to start 
and end at specified time instants. Such time sequencing would be important for coordinat-
ing the operation with other activities, and perhaps for proper execution of each operation 
step. For example, activities of the parts handling robot have to be coordinated with the 
schedules of the forging machine and milling machine. Furthermore, the billets will have 
to be heated for a specified time, and machining operation cannot be rushed without com-
promising product quality, tool failure rate, safety, etc. Note that the task of each step in the 
discrete sequence might be carried out under continuous-state control. For example, the 
milling machine would operate using several direct digital control (DDC) loops (say, PID 
control loops), but discrete-state control is not concerned with this except for the starting 
point and the end point of each task.

A process operation might consist of a set of two-state (on–off) actions. A PLC can  handle 
the sequencing of these actions in a proper order and at correct times. Examples of such 
tasks include sequencing the production line operations, starting a complex process plant, 
and activating the local controllers in a distributed control environment. In the early days 
of industrial control solenoid-operated electromechanical relays, mechanical timers, and 
drum controllers were used to sequence such operations. An advantage of using a PLC 
is that the devices in a plant can be permanently wired, and the plant operation can be 
modified or restructured by software means (by properly programming the PLC) without 
requiring hardware modifications and reconnection.

A PLC operates according to some “logic” sequence programmed into it. Connected 
to a PLC are a set of input devices (e.g., pushbuttons, limit switches, and analog sensors 
such as RTD temperature sensors, diaphragm-type pressure sensors, piezoelectric accel-
erometers, and strain-gauge load sensors) and a set of output devices (e.g., actuators such 
as dc motors, solenoids, and hydraulic rams, warning signal indicators such as lights, 
alphanumeric LED displays and bells, valves, and continuous control elements such as 
PID  controllers). Each such device is assumed to be a two-state device (taking the logical 
value 0 or 1). Now, depending on the condition of each input device and according to 
the programmed-in logic, the PLC will activate the proper state (e.g., on or off) of each 
output device. Hence, the PLC performs a switching function. Unlike the older gen-
eration of sequencing controllers, in the case of a PLC, the logic that determines the 
state of each output device is processed using software, and not by hardware elements 
such as hardware relays. Hardware switching takes place at the output port, however, 
for turning on or off the output devices are controlled by the PLC.

7.1.4.1 PLC Hardware

As noted before, a PLC is a digital computer that is dedicated to perform discrete-state 
control tasks. A typical PLC consists of a microprocessor, RAM, and ROM memory units, 
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and interface hardware, all interconnected through a suitable bus structure. In addition, 
there will be a keyboard, a display screen, and other common peripherals. A basic PLC 
system can be expanded by adding expansion modules (memory, input–output modules, 
etc.) into the system rack.

A PLC can be programmed using a keyboard or touch-screen. An already developed 
program could be transferred into the PLC memory from another computer or a periph-
eral mass-storage medium such as a hard disk. The primary function of a PLC is to switch 
(energize or de-energize) the output devices connected to it, in a proper sequence, depend-
ing on the states of the input devices and according to the logic dictated by the program. 
A schematic representation of a PLC is shown in Figure 7.7. Note the sensors and actuators 
in the PLC.

In addition to turning on and off the discrete output components in a correct sequence 
at proper times, a PLC can perform other useful operations. In particular, it can perform 
simple arithmetic operations such as addition, subtraction, multiplication, and division on 
input data. It is also capable of performing counting and timing operations, usually as part 
of its normal functional requirements. Conversion between binary and binary-coded deci-
mal (BCD) might be required for displaying digits on an LED panel, and for interfacing 
the PLC with other digital hardware (e.g., digital input devices and digital output devices). 
For example, a PLC can be programmed to make a temperature measurement and a load 
measurement, display them on an LED panel, make some computations on these (input) 
values, and provide a warning signal (output) depending on the result.

The capabilities of a PLC can be determined by such parameters as the number of 
input devices (e.g., 16) and the number of output devices (e.g., 12.) which it can handle, the 
number of program steps (e.g., 2.000), and the speed at which a program can be executed 
(e.g., 1 M steps/s). Other factors such as the size and the nature of memory and the nature 
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Schematic representation of a PLC.
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of timers and counters in the PLC, signal voltage levels, and choices of outputs, are all 
important factors.

7.1.5 Distributed Control

For complex processes with a large number of input–output variables (e.g., a chemical 
plant, a nuclear power plant) and with systems that have various and stringent operating 
requirements (e.g., the space shuttle), centralized DDC is quite difficult to implement. 
Some form of distributed control is appropriate in large systems such as manufacturing 
workcells, factories, and multicomponent process plants. A distributed control system 
(DCS) will have many users who would need to use the resources simultaneously and, 
perhaps, would also wish to communicate with each other. Also, the plant will need 
access to shared and public resources and means of remote monitoring and supervi-
sion. Furthermore, different types of devices from a variety of suppliers with different 
specifications, data types and levels may have to be interconnected. A communication 
network with switching nodes and multiple routes is needed for this purpose.

In order to achieve connectivity between different types of devices having different ori-
gins, it is desirable to use a standardized bus that is supported by all major suppliers of 
the needed devices. The Foundation Fieldbus or Industrial Ethernet may be adopted for 
this purpose. Fieldbus is a standardized bus for a plant, which may consist of an intercon-
nected system of devices. It provides connectivity between different types of devices hav-
ing different origins. Also, it provides access to shared and public resources. Furthermore, 
it can provide means of remote monitoring and supervision.

A suitable architecture for networking an industrial plant is shown in Figure 7.8. The 
industrial plant in this case consists of many “process devices” (PD), one or more PLCs and 
a DCS or a supervisory controller. The PDs will have direct input–output with their own 
components while possessing connectivity through the plant network. Similarly, a PLC 
may have direct connectivity with a group of devices as well as networked connectivity 
with other devices. The DCS will supervise, manage, coordinate, and control the overall 
plant.

PD   = Process device
PLC = Programmable logic controller
DCS = Distributed control system (Supervisory controller)

Internet
(TCP/IP, UDP)

PD 1
(with direct I/O)

PD r
(with direct I/O) PLC DCS

Fieldbus
(Foundation fieldbus, industrial ethernet, etc.)

Figure 7.8
A networked industrial plant.
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7.1.5.1 A Networked Application

A machine which has been developed by us for head removal of salmon is shown in 
Figure 7.9a. The system architecture of the machine is sketched in Figure 7.9b. The 
conveyor, driven by an ac motor, indexes the fish in an intermittent manner. Image of 
each fish, obtained using a digital charge-coupled device (CCD) camera, is processed to 
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determine the geometric features, which in turn establish the proper cutting location. 
A two-axis hydraulic drive unit positions the cutter accordingly, and the cutting blade 
is operated using a pneumatic actuator. Position sensing of the hydraulic manipulator 
is done using linear magnetostrictive displacement transducers, which have a resolu-
tion of 0.02.5 mm when used with a 12.-bit analog-to-digital converter. A set of six gage-
 pressure transducers are installed to measure the fluid pressure in the head and rod 
sides of each hydraulic cylinder, and also in the supply lines. A high-level imaging sys-
tem determines the cutting quality, according to which adjustments may be made on-
line, to the parameters of the control system so as to improve the process performance. 
The control system has a hierarchical structure with conventional direct control at the 
component-level (low level) and an intelligent monitoring and supervisory control sys-
tem at an upper level.

The primary vision module of the machine is responsible for fast and accurate detection 
of the gill position of a fish on the basis of an image of the fish as captured by the primary 
CCD camera. This module is located in the machine host and comprised of a CCD camera, 
an IEEE 13.94 board for image grabbing, a trigger switch for detecting a fish on the con-
veyor, and an National Instruments (NI) FPGA data acquisition (DAQ) board for analog 
and digital data communication between the control computer and the electro-hydraulic 
manipulator. The secondary vision module is responsible for acquisition and processing 
of visual information pertaining to the quality of the processed fish that leaves the cutter 
assembly. This module functions as an intelligent sensor in providing high-level informa-
tion feedback into the control module of the software. The hardware and the software 
associated with this module are a CCD camera at the exit end for grabbing images of 
processed fish, and developed image processing module based on NI LabVIEW® for visual 
data analysis. The CCD camera acquires images of processed fish under the direct control 
of the host computer, which determines the proper instance to trigger the camera by tim-
ing the duration it takes for the cutting operation to complete. The image is then grabbed 
in the image processing module software for further processing. In this case, however, 
image processing is accomplished to extract high-level information such as the quality of 
processed fish.

With the objective of monitoring and control of industrial processes from remote loca-
tions, we have developed a universal network architecture, both hardware and soft-
ware. The developed infrastructure is designed to perform optimally with Fast Ethernet 
(100Base-T) backbone where each network device only needs a low cost Network Interface 
Card (NIC). Figure 7.10 shows a simplified hardware architecture, which networks two 
machines (a fish processing machine and an industrial robot). Each machine is directly 
connected to its individual control server, which handles networked communication 
between the process and the web-server, DAQ, sending of control signals to the process, 
and the execution of low level control laws. The control server of the fish-processing 
machine contains one or more DAQ boards, which have analog-to-digital conversion 
(ADC), digital-to-analog conversion (DAC), digital input–output, and frame grabbers for 
image processing.

Video cameras and microphones are placed at strategic locations to capture live audio 
and video signals allowing the remote user to view and listen to a process facility, and to 
communicate with local research personnel. The camera selected in the present application 
is the Panasonic Model KXDP702. color camera with built-in pan, tilt and 2.1x zoom (PTZ), 
which can be controlled through a standard RS-2.3.2.C communication protocol. Multiple 
cameras can be connected in daisy-chained manner, to the video-streaming server. For 
capturing and encoding the audio–video (AV) feed from the camera, the Winnov Videum 
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1000 PCI board is installed in the video-streaming server. It can capture video signals at a 
maximum resolution of 640 × 480 at 3.0 fps, with a hardware compression that significantly 
reduces computational overheads of the video-streaming server. Each of the AV capture 
boards can only support one AV input. Hence multiple boards have to be installed.

7.1.6 Hierarchical Control

A favorite distributed control architecture is provided by hierarchical control. Here, 
distribution of control is available both geographically and functionally. A hierarchical 
structure can facilitate efficient control and communication in a complex control system. 
An example for a three-level hierarchy is shown in Figure 7.11. Management decisions, 
supervisory control, and coordination between plants in the overall facility are provided 
by the supervisory control computer, which is at the highest level (level 3.) of the hier-
archy. The next lower level (intermediate level) generates control settings (or reference 
inputs) for each control region (subsystem) in the corresponding plant. Set points and 
reference signals are inputs to the DDCs, which control each control region. The comput-
ers in the hierarchical system communicate using a suitable communication network. 
Information transfer in both directions (up and down) should be possible for best perfor-
mance and flexibility. In master-slave distributed control, only downloading of informa-
tion is available.

As another illustration, a three-level hierarchy of an intelligent mechatronic (electro-
 mechanical) system (IMS) is shown in Figure 7.12.. The bottom level consists of electro-
mechanical components with component-level sensing. Furthermore, actuation and direct 
feedback control are carried out at this level. The intermediate level uses intelligent pre-
processors for abstraction of the information generated by the component-level  sensors. 
The sensors and their intelligent preprocessors together perform tasks of intelligent sens-
ing. State of performance of the system components may be evaluated by this means, 

Process 1:
industrial

robot 

Process 2:
fish processing

machine

Control
server

Control
server

Web-server

Video-
streaming

server
Camera (pan/tilt/zoom)

+
microphone 

Internet

Remote
workstation

Figure 7.10
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and component tuning and component-group control may be carried out as a result. The 
top level of the hierarchy performs task-level activities including planning, scheduling, 
monitoring of the system performance, and overall supervisory control. Resources such 
as materials and expertise may be provided at this level and a human-machine interface 
would be available. Knowledge-based decision-making is carried out at both intermediate 
and top levels. The resolution of the information that is involved will generally decrease 
as the hierarchical level increases, while the level of “intelligence” that would be needed 
in decision-making will increase.

Within the overall system, the communication protocol provides a standard interface 
between various components such as sensors, actuators, signal conditioners, and con-
trollers, and also with the system environment. The protocol will not only allow highly 
flexible implementations, but will also enable the system to use distributed intelligence 
to perform preprocessing and information understanding. The communication protocol 
should be based on an application-level standard. In essence, it should outline what com-
ponents can communicate with each other and with the environment, without defining 
the physical data link and network levels. The communication protocol should allow for 
different component types and different data abstractions to be interchanged within the 
same framework. It should also allow for information from geographically removed loca-
tions to be communicated to the control and communication system of the IMS.
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7.2 Control System Performance

A good control system should possess the following performance characteristics:

 1. Sufficiently stable response (stability). Specifically, the response of the system to 
an initial-condition (IC) excitation should decay back to the initial steady-state 
(asymptotic stability). The response to a bounded input should be bounded 
(bounded-input–bounded-output—BIBO stability).

 2.. Sufficiently fast response (speed of response or bandwidth). The system should react 
quickly to a control input or excitation.

 3.. Low sensitivity to noise, external disturbances, modeling errors, and parameter 
variations (sensitivity and robustness).

 4. High sensitivity to control inputs (input sensitivity).
 5. Low error; for example, tracking error, and steady-state error (accuracy).
 6. Reduced coupling among system variables (cross sensitivity or dynamic coupling).
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As listed here, some of these specifications are rather general. Table 7.1 summarizes 
typical performance requirements for a control system. Some requirements might be 
conflicting. For example, fast response is often achieved by increasing the system gain, 
and increased gain increases the actuation signal, which has a tendency to destabilize 
a control system. Note further that what is given here are primarily qualitative descrip-
tions for “good” performance. In designing a control system, however, these descrip-
tions have to be specified in a quantitative manner. The nature of the used quantitative 
design specifications depends considerably on the particular design technique that is 
employed.

Some of the design specifications are time-domain parameters and the others are 
 frequency-domain parameters. We will primarily address the time-domain parameters in 
the present chapter.

7.2.1 Performance Specification in Time-Domain

Speed of response and degree of stability are two commonly used specifications in the 
conventional time-domain design of a control system. These two types of specifications 
are conflicting requirements in general. In addition, steady-state error is also commonly 
specified. Speed of response can be increased by increasing the gain of the control  system. 
This, in turn, can result in reduced steady-state error. Furthermore, steady-date error 
requirement can often be satisfied by employing integral control. For these reasons, first 
we will treat speed of response and degree of stability as the requirements for perfor-
mance specification in time-domain, tacitly assuming that there is no steady-state error. 
The steady-state error requirement will be treated separately.

Performance specifications in the time-domain are usually given in terms of the response 
of an oscillatory (under-damped) system to a unit step input, as shown in Figure 7.13.. First, 
assuming that the steady-state error is zero, note that the response will eventually settle 
at the steady-state value of unity. Then the following performance specifications can be 
stipulated:

Table 7.1

Performance Specifications for a Control System

Attribute Desired Value Objective Specifications

Stability level High The response does not grow 
without limit and decays to the 
desired value.

Percentage overshoot, settling 
time, pole (eigenvalue) locations, 
time constants, phase and gain 
margins, damping ratios.

Speed of response Fast The plant responds quickly to 
inputs/excitations.

Rise time, peak time, delay time, 
natural frequencies, resonant 
frequencies, bandwidth.

Steady-state error Low The offset from the desired 
response is negligible.

Error tolerance for a step input.

Robustness High Accurate response under uncertain 
conditions (input disturbances, 
noise, model error, etc.) and 
under parameter variation.

Input disturbance/noise 
tolerance, measurement error 
tolerance, model error tolerance.

Dynamic 
interaction

Low One input affects only one output. Cross-sensitivity, cross-transfer 
functions.
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Peak time (Tp): Time at which the response reaches its first peak value.
Rise time (Tr): Time at which the response passes through the steady-state value (nor-

malized to 1.0) for the first time.
Modified rise time (Trd): Time taken for the response to rise from 0.1 to 0.9.
Delay time (Td): Time taken for the response to reach 0.5 for the first time.
2.% settling time (Ts): Time taken for the response to settle within ±2.% of the steady-

state value (i.e., between 0.98 and 1.02.).
Peak magnitude (Mp): Response value at the peak time.

Percentage overshoot (P.O.): This is defined as

 P O. .= -(Peak magnitude Steady-state value)
Steaady-state value

×100%  (7.1a)

In the present case of unity steady-state value, this may be expressed as

 P O Mp. . ( )%= -100 1  (7.1b)

Note that Tr, Tp, Trd, and Td are “primarily” measures of the speed of response whereas Ts, 
Mp, and P.O. are “primarily” measures of the level of stability. Note further that Tr, Tp, Mp, 
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Figure 7.13
Conventional performance specifications used in the time-domain design of a control system.
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and P.O. are not defined for non oscillatory responses. Simple expressions for these time-
domain design specifications may be obtained, assuming that the system is approximated 
by a simple oscillator.

Specifications on the slope of the step-response curve (speed of response), percentage 
overshoot (stability), settling time (stability), and steady-state error can also be represented 
as boundaries to the step response curve. This representation of conventional time- domain 
specifications is shown in Figure 7.8.

7.2.2 Simple Oscillator Model

A damped simple oscillator (mechanical or electrical, as shown in Figure 7.14) may be 
expressed by the input–output differential equation (see Chapter 6):

 
d y
dt

dy
dt

y un n n

2.

2.
2. 2.2.+ + =zw w w  (7.2.)

where u = input (normalized); y = output (normalized); wn = undamped natural frequency; 
z = damping ratio.

The corresponding transfer function is given by (see Chapters 5 and 6)

 
Y s
U s s s

n

n n

( )
( ) = + +( )

w
zw w

2.

2. 2.2.
 (7.3.)

Suppose that a unit step input (i.e., U(s) = (1/s)) is applied to the system. As shown in 
Chapter 6, the resulting response of the oscillator, with zero ICs, is given by

 y t e tnt
d( ) = -

-
+( )-1

1

1 2.z
w fzw sin forz < 1  (7.4)

 where w z wd n= - =1 2. damped natural frequency (7.5)

 cosf z= ; sinf z= -1 2.  (7.6)
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Figure 7.14
A damped simple oscillator. (a) Mechanical. (b) Electrical.
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Now, using the simple oscillator model let us obtain expressions for some of the design 
specifications that were defined earlier.

Note: It is clear from Equation 7.4 that the steady-state value of the response (i.e., as t  ∞) 
is 1. Hence the steady-state error is zero. It follows that the present model does not allow 
us to address the issue of steady-state error. As indicated before, we will treat steady-
state separately. First we will quantify the specifications for stability and the speed of 
response.

The response given by Equation 7.4 is of the form shown in Figure 7.13.. Clearly, the first 
peak of the response occurs at the end of the first (damped) half cycle. It follows that the 
peak time is given by

 Tp
d

= p
w

 (7.7)

The same result may be obtained by differentiating Equation 7.4, setting it equal to zero, 
and solving for the first peak (Exercise: Check the result (Equation 7.7) by this approach).

The peak magnitude Mp and the percentage overshoot P.O. are obtained by substituting 
Equation 7.7 into Equation 7.4; thus,

 M Tp n p= + -( )1 exp zw  (7.8)

 P O Tn p. . exp= -( )100 zw  (7.9a)

Note: In obtaining this result we have used the fact that sinf z= -1 2. . Alternatively, by 
substituting Equations 7.5 and 7.7 into Equation 7.9a we get

 P O. . exp= - -( )100 1 2.pz z  (7.9b)

The settling time is determined by the exponential decay envelope of Equation 7.4. The 
2.% settling time is given by

 exp .-( ) = -zw zn sT 0 02. 1 2.  (7.10)

For small damping ratios, Ts is approximately equal to 4/(zwn). This should be clear from 
the fact that exp(-4) ≈ 0.02.. Note further that the poles (eigenvalues) of the system, as given 
by the roots of the characteristic equation

 s sn n
2. 2.2. 0+ + =zw w  (7.11)

are (see Chapters 5 and 6):

 p p jn d1 2., = - ±zw w  (7.12.)
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It follows that the time constant of the system (inverse of the real part of the dominant 
pole) is

 t
zw

= 1

n

 (7.13.)

Hence, an approximate expression for the 2.% settling time is

 Ts = 4t  (7.14)

Rise time is obtained by substituting y = 1 in Equation 7.14 and solving for t. This gives

 sin w fd rT +( ) = 0

or

 Tr
d

= -p f
w

 (7.15)

in which the phase angle f is directly related to the damping ratio, through Equation 7.6.
The expressions for the performance specifications, as obtained using the simple oscil-

lator model, are summarized in Table 7.2.. For a higher order system, when applicable, the 
damping ratio and the natural frequency that are needed to evaluate these expressions 
may be obtained from the dominant complex pole pair of the system.

In the conventional time-domain design, relative stability specification is usually pro-
vided by a limit on P.O. This can be related to damping ratio (z ) using a design curve. For 
the simple oscillator approximation, Equation 7.9b is used to calculate z when P.O. is speci-
fied. This relationship is plotted in Figure 7.15.

Table 7.2

Analytical Expressions for Time-Domain Performance Specifications (Simple Oscillator Model)

Performance Specification Parameter Analytical Expression (Exact for a Simple Oscillator)

Peak time Tp p/wd

Rise time Tr (p - f )/wd

Time constant t 1/(zwn)

2.% Settling time Ts - -( ) ≈ln .0 02. 1 42.z t t

Peak magnitude Mp 1
1 2.

+ -
-







exp
pz
z

P.O. 100
1 2.

exp -
-







pz
z
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example 7.2

A control system is required to have a percentage overshoot of less than 10% and a settling time 
of less than 0.8 seconds. Indicate this design specification as a region on the s-plane.

Solution

A 10% overshot means (see Table 7.2): 0 1
1 2

. exp= -
-







pz
zHence, z = 0.60 = cosf or: f = 53°

Next, Ts of 0.8 seconds means (see Table 7.2): Ts n= = =4 4 0 8t zw( ) ./  or: zwn = 5.0

For the given specifications we require f ≤ 53°and zwn ≥ 5.0. The corresponding region on the 
s-plane is given by the shaded area in Figure 7.16.

Note: In this example if we had specified a Tp spec as well, then it would correspond to an wd 
spec. This will result in a horizontal line boundary for the design region in Figure 7.16.

7.3 Control Schemes

By control we mean making a plant (process, machine, etc.), respond to inputs in a desired 
manner. In a regulator-type control system the objective is to maintain the output at a 
desired (constant) value. In a servomechanism-type control system the objective is for the 
output to follow a desired trajectory (i.e., a specified time response or a path with respect 
to time). In a control system, in order to meet a specified performance, a suitable control 
method has to be employed. We will discuss several common control schemes now.

In a feedback control system, as shown in Figure 7.17, the control loop has to be closed, by 
making measurements of the system response and employing that information to generate 
control signals so as to correct any output errors. Hence, feedback control is also known 
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Figure 7.15
Damping specification in terms of percentage overshoot (P.O.) using simple oscillator model.
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as closed-loop control. In Figure 7.17, since the feedback signal is not modified (i.e., gain = 1) 
before subtracting from the reference input, it represents “unity feedback.”

In selecting a proper controller Gc(s) for an application, the prime factors to be 
 considered are:

 1. Precision of the necessary response
 2.. Difficulty of controlling the plant (process) Gp(s)

Although the simplest controller that would produce the desired result should be 
selected, in some instances the required response cannot be realized even with a sophisti-
cated controller. Selection of the controller may be approached from several angles:

 1. Process transfer function (reaction curve or frequency domain) analysis
 2.. Time domain system (model) analysis

Input
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–

Controller Plant
Error

(correction)
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Control/
actuating
signal c 

Figure 7.17
A feedback control system with unity feedback.
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Figure 7.16
Design specification on the s-plane.
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 3.. Previous experience and human expertise (knowledge-based)
 4. Experimental investigation

In the present section we will concentrate only on the first two approaches.
A control law is a relationship between the controller output and the plant input. Common 

control modes are:

 1. On–off (bang-bang) control
 2.. Proportional (P) control
 3.. Proportional control combined with reset (integral, I) action and/or rate (deriva-

tive, D) action (i.e., multimode or multiterm control)

Control laws for commonly used control actions are given in Table 7.3.. Some advantages 
and disadvantages of each control action are also indicated as well in this table. Compare 
this information with what is given in Table 7.1.

The proportional action provides the necessary speed of response and adequate signal 
level to drive a plant. Besides, increased proportional action has the tendency to reduce 
steady-state error. A shortcoming of increased proportional action is the degradation of 
stability. Derivative action (or rate action) provides stability that is necessary for satisfac-
tory performance of a control system. In the time domain this is explained by the fact that 
the derivative action tends to oppose sudden changes (large rates) in the system response. 
Derivative control has its shortcomings, however. For example, if the error signal that drives 
the controller is constant, the derivative action will be zero and it has no effect on the sys-
tem response. In particular, derivative control cannot reduce steady-state error in a system. 
Also, derivative control increases the system bandwidth, which has the desirable effect of 
increasing the speed of response (and tracking capability) of control system. Derivative 
action has the drawback of allowing and amplifying high-frequency disturbance inputs 
and noise components. Hence, derivative action is not practically implemented in its pure 
analytic form, but rather as a lead circuit, as will be discussed in a later chapter.

The presence of an offset (i.e., steady-state error) in the output may be inevitable when 
proportional control alone is used for a system having finite dc gain. When there is an 
 offset, one way to make the actual steady-state value equal to the desired value would be 
to change the set point (i.e., input value) in proportion to the desired change. This is known 
as manual reset. Another way to zero out the steady-state error would be to make the dc 

Table 7.3

Comparison of some Common Control Actions

Control Action Control Law Advantages Disadvantages

On–off c
emax sgn( )

2.
1+[ ] Simple inexpensive Continuous chatter Mechanical 

problems Poor accuracy
Proportional kpe Simple Fast response Offset error (steady-state error) 

Poor stability
Reset (integral) 1

t i

edt∫ Eliminates offset Filters out noise Low bandwidth (Slow response) 
Reset windup Instability problems

Rate (derivative) t d
de
dt

High bandwidth (Fast response) 
Improves stability

Insensitive to dc error. Allows 
high-frequency noise Amplifies 
noise Difficult analog 
implementation
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gain infinity. This can be achieved by introducing an integral term (with transfer function 
1/s as discussed in Chapter 5) in the forward path of the control system (because 1/s→∞ 
when s = 0; i.e., at zero frequency because s = jw in the frequency domain, as discussed in 
Chapter 5). This is known as integral control or reset control or automatic reset.

7.3.1 Feedback Control with PiD action

Many control systems employ three-mode controllers or three-term controllers, which are PID 
controllers providing the combined action of proportional, integral and derivative modes. 
The control law for proportional plus PID control is given by

 c k e e edtp d
i

= + +



∫t

t
 1

 (7.16a)

or in the transfer function form (see Chapter 5):

 
c
e

k s
sp d

i

= + +





1
1t
t

 (7.16b)

in which

e = Error signal (controller input)
c = Control/actuating signal (controller output or plant input)
kp = Proportional gain
td = Derivative time constant
ti = Integral time constant.

Another parameter, which is frequently used in process control, is the integral rate. This 
is defined as

 ri
i

= 1
t

 (7.17)

The parameters kp, td, and ti  or ri  are the design parameters of the PID controller and are 
used in controller tuning as well.

example 7.3

Consider an actuator with transfer function

 G
s sp = +( )

1
0 5 1.

 (i)

Design:

 a. A position feedback controller.
 b. A tacho-feedback controller (i.e., position plus velocity feedback controller) that will meet 

the design specifications Tp = 0.1  and P.O. = 25%.

Solution

 a. Position feedback
 The block diagram for the position feedback control system is given in Figure 7.18a.
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 From the standard result for a closed-loop (see Chapter 5, Table 5.7):

 Closed-loop TF =
+

=
+( ) +

=
+ +

kG s
kG s

k
s s k

k
s s k

p

p

( )
( ) .1 0 5 1

2
2 22

 (ii)

 where, k is the gain of the proportional controller in the forward path.
 Note: In this case only one parameter (k) is available for specifying two performance require-

ments. Hence, it is unlikely that both specifications can be met.
 To check this further note from the denominator (characteristic polynomial) of Equation (ii) 

that zw wn n k= =1 22and .  Hence,

 z = 1

2k
 (iii)

 and

 w w zwd n n k= - = -2 2 2 1( )  (iv)

 For a given Tp we can compute wd using the expression in Table 7.2; k using Equation (iv); 
z using Equation (iii); and finally P.O. using Table 7.2.
 Alternatively, for a given P.O., we can determine z using Table 7.2; k using Equation (iii); 
wd using Equation (iv); and finally Tp using Table 7.8. These two sets of results are given in 
Table 7.4.
 Note: For Tp = 0.1 we have P.O. = 90.5%; For P.O. = 25% we have Tp = 1.39.

 Hence both requirements cannot be met with the single design parameter k, as expected.
 b. Tacho-feedback:

 The block diagram for the tacho-feedback system (a) is shown in Figure 7.18b.
 Tachometer is a velocity sensor. Customarily, tacho-feedback uses feedback of both 
position and velocity. Hence, the feedback transfer function is H = 1 + tvs, and from the 
standard result for a closed-loop system (see Chapter 5, Table 5.7):

(a)

Gp(s)
Input

u
Position
output y 

–

Controller Plant
k

(b)

Gp(s)
Input

u
Position
output y 

–

Controller Plant
k

Position + tacho
(1+τvS)

Figure 7.18
(a) Position feedback control system. (b) Tacho-feedback control system.

Table 7.4

Results for Position Control

Tp wd k z P.O.

0.1 10p 494.0 0.03.2. 90.5%

1.3.9 2..2.64 3..063. 0.404 2.5%
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Closed-loop TF =
+ × +( ) =

kG s

kG s s
k

s
p

p v

( )

( ) .1 1 0 5t ss k s

k
s k s k

v

v

+( )+ +( )

=
+ +( ) +

1 1

2
2 1 22

t

t

where k is the proportional gain and tv is the velocity feedback parameter (tacho gain). By com-
paring with the simple oscillator TF, we note

 wn k2 2=  (v)

 zw tn vk= +1  (vi)

Since two parameters (k and tv) are available to meet the two specifications, it is likely that the 
design goal can be achieved. The computation steps are given below:

As before, for Tp = 0.1 we have wd = 10p
Also, for P.O. = 25% we have z = 0.404
Hence, w w z pn d= - =/ .1 10 932

and zw pn = × =0 404 10 93 13 873. . .
Then we use Equation (v) to compute k.
Substitute in Equation (vi) to compute tv.
We get k = 590 and tv = 0.022.

7.4 Steady-State Error and Integral Control

It is easy to explain the presence of an offset (i.e., steady-state error) when proportional con-
trol is used for a system having finite dc gain. Consider a unity feedback system under 
proportional control, with proportional gain kp. At steady-state (i.e., at zero frequency;  
w = 0), we have s = 0 (because s = jw in the frequency domain; see Chapter 5). Then the sys-
tem transfer function G(s) can be represented by its dc gain G(0). The steady-state behavior 
of this system can be represented by the block diagram in Figure 7.19, with a constant input 
u (i.e., a steady input).

Note: yss is the steady-state response of the system and ess is the steady-state error.
It should be clear that ess could not be zero because then there would be no actuating 

(driving) signal for the plant and, consequently, the plant output would be zero, thereby 
violating the zero error (u - yss = 0) condition. Hence, an offset error will always be present 
in this control system.

To obtain an expression for the offset, note from Figure 7.19 that

G(0)

Constant
(steady)
input u   

Output
(steady-state)

yss
Amplifier

kp
–

Proportional
controller

Plant at
steady-stateError

(correction)
ess

Figure 7.19
Presence of offset error in a system under proportional control.
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 e u yss ss= -  (7.18)

and

 y k G ess p ss= ( )0

Hence,

 e
k G

uss
p

=
+ ( )











1
1 0

 (7.19)

This result further confirms the fact that a steady-state error is always present in the 
present system, with P control.

Note: An offset could result from an external disturbance such as a change in load as 
well.

7.4.1 Final Value Theorem (FVT)

The FVT is an important result of Laplace transforms, which is valuable in the analysis of 
the steady-state behavior of systems. The FVT states:

The steady-state value of a signal x(t) is given by

 x sx sss
s

= ( )
→

lim
0

 (7.2.0)

in which x(s) is the Laplace transform of x(t).
The result (Equation 7.19) can be formally obtained using the FVT, as described below.
Important note: In determining the steady-state value of a response (or, error) the nature 

of the input in the beginning is not important. What matters is the nature of the input for a 
sufficiently large time period at the end, inclusive of the settling time (i.e., at steady-state).

Accordingly, in the system shown in Figure 7.19, the constant input can be treated as a 
“step input” in the steady-state analysis. Hence, in the Laplace domain, the input is u/s (see 
Chapter 6 and Appendix A). Then, using the steady-state error of the system in Figure 7.19 
is given by

 e s
k G s

u
s k Gss

s p p
=

+ ( )








 =

+ ( )







→
lim

0

1
1

1
1 0 u

This is identical to the previous result (Equation 7.19).

7.4.2 Manual reset

As noted before, one way to make the steady-state value equal to the desired value would 
be to change the set point (i.e., input value) in proportion to the desired change. This is 
known as manual reset. Strictly, this method does not remove the offset but rather changes 
the output value. Note further that the percentage overshoot given in Table 7.2. is obtained 
with respect to the steady-state value, even though this is equal to the steady input value if 
there is no offset. These concepts can be illustrated by a simple example.
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example 7.4

A feedback control system of a machine tool is shown in Figure 7.20.

 a. Determine the steady-state value yss of the response and the steady-state error ess.
 b. Determine the percentage overshoot of the system with respect to the set point value.
 c. What should be the set point value in order to make the steady-state response value equal 

to a desired value of yo?

Solution

 a. Forward transfer function (machine tool) is G s
s s

( )
( )( )

=
+ +

36
1 4

 Note: G(0) is obtained by setting s = 0. We have G(0) = 9
 In the present system (unity feedback) the closed-loop transfer function is 

y
u

G s
G s

=
+

( )
( )1

.
 For a constant u, the steady-state value of the response is

 y
G

G
u u uss = +
=

+
=( )

( )
.

0
1 0

9
1 9

0 9  (i)

 Steady-state error e
G

u u uss = +
=

+
=1

1 0
1

1 9
0 1

( )
.

 b. Closed-loop transfer function =  G s
G s s s s s s
( )

( ) ( )( )1
36

1 4 36
36
5 40

36
2 2+

=
+ + +

=
+ +

=
+ 22 2zw wn ns +

 From the characteristic polynomial (denominator of the TF) of the closed-loop system we 
have: 2 5 402zw wn n= =and .

 Hence,z = =5

2 40
0 395. .

 Then, using the formula in Table 7.2, we have, P.O. = 25.9%.
 This value is computed with respect to the steady-state value. In order to determine the 
percentage overshoot w.r.t. the set point value, we proceed as follows:

 Peak magnitude M y up ss= + -
-















 = × +1

1
0 9 1 0 25

2
exp . ( .

pz
z

99)

 P.O. with respect to the set point u is:

 
M u

u
u u

u
p - × = + - × = +100

0 9 1 0 259
100 0 9 1 0 259

. [ . ]
( . [ . ]] ) . %- × =1 100 13 3

Constant input
(set point)

u

Response
y

Machine tool

–

36
(s+1)(s+4)

Figure 7.20
A feedback control system for a machine tool.
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 c. From Equation (i) it is seen that in order to get yss = yo, we must use a set point of

 u
y

yo
o= =

0 9
1 11

.
. .

7.4.3 automatic reset (integral Control)

Another way to zero out the steady-state error in Equation 7.19 is to make G(0) infinity. 
This can be achieved by introducing an integral term (1/s) in the forward path of the 
control system (because 1/s→∞ when s = 0). This is known as integral control or reset control 
or automatic reset. An alternative way to arrive at the same conclusion is by noting that an 
integrator can provide a constant output even when the error input is zero, because the 
initial value of the integrated (accumulated) error signal will be maintained even after 
the error goes to zero. Integral control is known as reset control because it can reduce 
the offset to zero, and can counteract external disturbances including load changes. A 
further advantage of integral control is its low-pass-filter action, which filters out high-
frequency noise. Since integral action cannot respond to sudden changes (rates) quickly, 
it has a destabilizing effect, however. For this reason integral control is practically imple-
mented in conjunction with proportional control, in the form of proportional plus integral 
(PI) control (a two-term controller), or also including derivative (D) control as PID control 
(a three-term controller).

7.4.4 reset Windup

The integral action integrates the error to generate the control action. Suppose that the sign 
of the error signal remains the same over a sufficiently long period of time. Then, the error 
signal can integrate into a very large control signal. It can then saturate the device that 
 performs the control action (e.g., a valve actuator can be in the fully open or fully closed 
position). Then, beyond that point, a change in the control action has no effect on the 
process. Effectively, the controller has locked in one position while the control signal may 
keep growing. This “winding up” of the control signal due to error integration, without 
causing a further control action, is known as reset windup.

Due to reset windup, not only will the controller take a longer time to bring the error to 
zero, but also when the error reaches zero, the integrated error signal will not be zero and 
the control actuator will remain saturated. As a result, the response will be pushed with 
the maximum control force, beyond the zero error value (desired value). It will take a fur-
ther period of time to unsaturate the control actuator and adjust the control action in order 
to push the response back to the desired value. Large oscillations (and stability problems) 
can result due to this.

Reset windup problems can be prevented by stopping the reset action before the control 
actuator becomes saturated. A simple approach is to first determine two limiting values 
(positive and negative) for the control signal beyond which the control actuator becomes 
saturated (or very nonlinear). Then, a simple logic implementation (hardware or software) 
can be used to compare the actual control signal with the limiting values, and deactivate 
the integral action if the control signal is outside the limits. This is termed reset inhibit or 
reset windup inhibit.
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7.5 System Type and Error Constants

Characteristics of a system can be determined by applying a known input (test input) and 
studying the resulting response or the error of the response. For a given input, system 
error will depend on the nature of the system (including its controller). It follows that, 
error, particularly the steady-state error, to a standard test input, may be used as a parame-
ter for characterizing a control system. This is the basis of the definition of error constants. 
Before studying that topic we should explain the term “system type.”

Consider the general feedback control system shown in Figure 7.2.1a. The forward transfer 
function is G(s) and the feedback transfer function is H(s). The closed-loop transfer function 
(see Chapter 5, Table 5.7) is (G/1 + GH) and the characteristic equation (denominator equa-
tion of the transfer function is 1 + GH = 0. It should be clear from this result that it is the loop 
transfer function GH, not the individual constituents G and H in the product separately, that 
primarily determines the dynamic behavior of the closed-loop system (which depends 
on the characteristic equation). Hence we may assume without loss of generality that the 
controller elements and any compensators as well as the plant (process) are in the forward 
path, and their dynamics are jointly represented by G(s); and the feedback transfer func-
tion H(s) has the necessary transducers and associated signal conditioning for the sensor 
that measures the system output y. Consequently it is proper to assume that the dc gain 
of H(s) to be unity (i.e., H(0) = 1) because the sensor would be properly calibrated to make 
correct measurements at least under static conditions.

Customarily, the controller input signal

 e u Hy= -  (7.2.1)

is termed error signal (even though the true error is y-u), because input u is “compared” 
with the feedback signal Hy and the difference is used to actuate the corrective measures 
(i.e., control action) so as to obtain the desired response. Note further that in Equation 
7.2.1 the signals u and Hy should have consistent units. For example in a velocity servo, 
the input command might be a speed setting on a dial (a physical angle in degrees, for 
example) and the output would be a velocity (in m/s, for example). But if the velocity is 
measured using a tachometer, the feedback signal, as typically is the case, would be a volt-
age. The velocity setting has to be properly converted into a voltage, for example by using 
a calibrated potentiometer as the input device, so that it could be compared with the feed-
back voltage signal for (analog) control purposes. Throughout the present discussion we 
assume consistent units for signals that are compared, and unity dc gain for the feedback 
transfer function. A further justification for the assumption of unity feedback (or at least 
unity dc gain in the feedback transfer function H(s)) in the following developments is the 

H(s)

Input
u

Output
yG(s)

–

Error
(correction)

e

(a) (b)

Input
u

Output
y

–
G(s)H(s)1/H(s)

Figure 7.21
(a) A general feedback control system; (b) Equivalent representation.
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fact that the system shown in Figure 7.2.1b, which is a unity feedback system, is equivalent 
to that in Figure 7.2.1a. This equivalence should be obvious by examining the two systems 
(or from the block diagram reduction steps presented in Chapter 5, Table 5.7).

7.5.1 Definition of System Type

Assuming that the feedback transfer function H(s) has unity dc gain, the system type is 
defined as the number of free integrators present in the forward transfer function G(s). 
For example, if there are no free integrators, it is a Type 0 system. If there is only one free 
integrator, it is a Type 1 system, and so on.

Obviously, the system type is a system property. Also, the steady-state error to a test input 
is also a system property. We will see that these two properties are related. Furthermore, 
system type is a measure of robustness with regard to steady-state error, in the presence of 
variations in system parameters.

7.5.2 error Constants

When a system is actuated by a “normalized” test signal such as a unit step, unit ramp, 
or unit parabola, its steady-state error may be considered a system property. Such system 
properties may be expressed as error constants. Note, however, that error constants can 
be defined only if the associated steady-state error is finite. That, in turn, will depend on 
the number of integrators in G(s), which is known as the system type (or type number), as 
defined before.

To formally define the three types of error constants associated with unit step input, 
unit ramp input, and unit parabolic input, consider once again the general system shown 
in Figure 7.2.1a. The error (correction) signal e is given by Equation 7.2.1. Furthermore, it is 
clear from Figure 7.2.1 that

 y Ge=  (7.2.2.)

Note: As customary, the same lower case letter is used to denote a time signal and its 
Laplace transform.

By substituting Equation 7.2.2. into Equation 7.2.1 we get

 e
GH

u=
+







1
1

 (7.2.3.)

By applying the FVT to Equation 7.2.3., the steady-state error may be expressed as

 e
su s
GH s

su s
Gss

s s
= ( )

+ ( )





= ( )

+→ →
lim lim

0 01 1 (( )s H 0( )






Since we assume unity dc gain for the feedback transfer function, we have H(0) = 1.
Hence,

 e
su s

G sss
s

= ( )
+ ( )





→

lim
0 1

 (7.2.4)

We will use this result to define the three commonly used error constants.
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7.5.2.1 Position Error Constant Kp

Consider a unit step input defined as

 
u t t

t

( ) = ≥

= <

1 0

0 0

for

for
 (7.2.5a)

Its Laplace transform is given by (see Chapter 6 and Appendix A)

 u s
s

( ) = 1
 (7.2.5b)

Then from Equation 7.2.4 we have

 e
Gss = + ( )
1

1 0
 (7.2.6)

Now G(0) will be finite only if the system is Type 0. In that case the dc gain of G(s) is 
defined, and is denoted by Kp. Thus,

 e
Kss

p
=

+
1

1
 (7.2.7)

Here, the position error constant:

 K G s Gp
s

= = ( )
→

lim ( )
0

0  (7.2.8)

This is termed position error constant because, for a position control system, a step input 
can be interpreted as a constant position input. It is seen from Equation 7.2.6 that for sys-
tems of Type 1 or higher, the steady-state error to a step input would be zero, because 
G(0) → ∞ in those cases.

7.5.2.2 Velocity Error Constant Kv

Consider a unit ramp input defined as

 
u t t t

t

( ) = ≥

= <

for

for

0

0 0
 (7.2.9a)

Its Laplace transform is given by (see Chapter 6 and Appendix A)

 u s
s

( ) = 1
2.

 (7.2.9b)

Then from Equation 7.2.4 we get

 e
s sG sss

s
=

+ ( )




→

lim
0

1
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or

 e
sG sss

s

=
( )

→

1

0
lim

 (7.3.0)

Now note that:

For a Type 0 system lim
s

sG s
→

( ) =
0

0

For a Type 1 system lim
s

sG s
→

( ) =
0

constant

For a Type 2. system lim
s

sG s
→

( ) = ∞
0

It follows from Equation 7.3.0 that for a Type 0 system ess → ∞ and for a Type 2. system 
ess → ∞. The steady-state error for a unit ramp is a nonzero constant only for a Type 1 
system, and is given by

 e
Kss

v
= 1

 (7.3.1)

Here, the velocity error constant:

 K sG sv
s

= ( )
→

lim
0

 (7.3.2.)

The constant Kv is termed velocity error constant because for a position control system, a 
ramp position input is a constant velocity input.

7.5.2.3 Acceleration Error Constant Ka

Consider a unit parabolic input defined as a

 
u t

t
t

t

( ) = ≥

= <

2.

2.
0

0 0

for

for
 (7.3.3.a)

Its Laplace transform is given by (see Chapter 6 and Appendix A)

 u s
s

( ) = 1
2.

 (7.3.3.b)

Then from Equation 7.2.4 we have

 e
s G sss

s

=
( )

→

1

0
2.lim

 (7.3.4)

It is now clear that for a Type 0 system or Type 1 system this steady-state error goes to 
infinity. For a Type 2. system the steady-state error to a unit parabolic input is finite, how-
ever, and is given by

 e
Kss

a
= 1

 (7.3.5)
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Here, the acceleration error constant:

 K s G sa
s

= ( )
→

lim
0

2.  (7.3.6)

The constant Ka is termed acceleration error constant because, for a position control sys-
tem, a parabolic position input is a constant acceleration input.

How the steady-state error depends on the system type and the input is summarized in 
Table 7.5.

Note: For control loops with one or more free integrators (i.e., system Type 1 or higher) 
the steady-state error to a step input would be zero. This explains why integral control is 
used to eliminate the offset error in systems under steady inputs, as noted previously.

example 7.5

Synchro transformer is a feedback sensor that is used in control applications. It consists of a trans-
mitter whose rotor is connected to the input member, and a receiver whose rotor is connected to 
the output member of the system to be controlled. The field windings of the stator and the rotor 
field are connected together in the Y-configuration (see Figure 7.22). The transmitter rotor has a 
single set of windings and is activated by an external ac source. The resulting signal generated 
in the rotor windings of the receiver is a measure of the position error (difference between the 
transmitter rotor angle and the receiver rotor angle). Consider a position servo that uses a synchro 
transformer. When the transmitter rotor turns at a constant speed of 120 rpm, the position error 
was found to be 2°. Estimate the velocity error constant of the control system. The loop gain of 
the control system is 50. Determine the required loop gain in order to obtain a steady-state error 
of 1° at the same input speed.

Table 7.5

Dependence on the Steady-State Error on the System Type

Input u(t) t ≥ 0 u(s)

Steady-State Error

Type 0 System Type 1 System Type 2 System

Unit step 1 1
s

1
1+ Kp

0 0

Unit ramp t 1
2.s

∞ 1
Kv

0

Unit parabola t2.

2.
1
3.s

∞ ∞ 1
Ka

AC
supply

vref

Receiver
(Control transformer)

Output

Transmitter

Rotor

~

Rotor

Figure 7.22
Synchro transformer.
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Solution

 Input speed = 120 rpm = ×120
60

2p rad/s

 Steady-state error = 2° = ×2
180
p

rad

Steady-state error for a unit ramp input (i.e., a constant speed of 1 rad/s at the input)

 ess = × × =2
180

120 2
60

1
360

p p
/ rad/rad/s s

From Equation 7.31, the velocity error constant

 Kv = -360 s 1

Since Kv is directly proportional to the loop gain of a control system, required loop gain for a 
specified steady-state error can be determined with the knowledge of Kv. In the present example, 
in view of Equation 7.31, the Kv required to obtain a steady-state error of 1° at 120 rpm is double 
the value for a steady-state error of 2°. The corresponding loop gain is 100. Note that the units of 
loop gain are determined by the particular control system, and is not known for this example even 
though the units of Kv are known to be s -1.

7.5.3 System Type as a robustness Property

For a Type 0 system, the steady-state error to a unit step input may be used as a design 
specification. The gain of the control loop (loop gain) can be chosen on that basis. For a 
system of Type 1 or higher, this approach is not quite appropriate, however, because the 
steady-state error would be zero no matter what the loop gain is. An appropriate design 
specification for a Type 1 system (i.e., a system having a single integrator in the loop) would 
be the steady-state error under a unit ramp input. Alternatively, the velocity error constant 
Kv may be used as a design specification. Similarly, for a Type 2. system, the steady-state 
error under a unit parabolic input, or alternatively the acceleration error constant Ka, may 
be used as a design specification. Note further that the system type number is a measure 
of the robustness of a system, as clear from Table 7.5. To understand this, we recall the fact 
that for a Type 0 system, steady-state error to a unit step input depends on plant gain and, 
hence, error will vary due to variations in the gain parameter. For a system of Type 1 or 
higher, steady-state error to a step input will remain zero even in the presence of variations 
in the gain parameter (a robust situation). For a system of Type 2. or higher, steady-state 
error to a ramp input as well as step input will remain zero in the presence of gain varia-
tions. It follows that as the type number increases, the system robustness with respect to 
the steady-state error to a polynomial input (step, ramp, parabola, etc.), improves.

7.5.4 Performance Specification using s-Plane

The s-plane is given by a horizontal axis corresponding to the real part of s and a vertical 
axis corresponding to the imaginary part of s. The poles of a damped oscillator are given 
by Equation 7.12.. Then, the pole location on the s-plane is defined by the real part -zwn 
and the imaginary part wd of the two roots. Note that the magnitude of the real part is 
the reciprocal of the time constant t (Equation 7.13.), and wd is the damped natural frequency 
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(Equation 7.5). Now recall the expressions for the performance specifications as given in 
Table 7.2.. The following facts are clear:

A “constant settling time line” is the same as a “constant time constant line” (i.e., •	
a vertical line on the s-plane).
A “constant peak time line” is the same as a “constant •	 wd line” (i.e., a horizontal 
line on the s-plane).
A “constant percentage overshoot line” is the same as a “constant damping ratio •	
line” (i.e., a radial line, cosine of whose angle with reference to the negative real 
axis is equal to the damping ratio z—see Equation 7.6).

These lines are shown in Figure 7.2.3.a, b, and c. Since a satisfactory design is expressed by 
an inequality constraint on each of the design parameters, we have indicated the accept-
able design region in each case.

Next consider an appropriate measure on the s-plane for steady-state error. We recall 
that for a Type 0 system, the steady-state error to a step input decreases as the loop gain 
increases. Furthermore, it is also known that the undamped natural frequency wn increases 
with the loop gain. It follows that for a system with variable gain:

A “constant steady-state error line” is a “constant wn line” (i.e., a circle on the s-plane, 
with radius wn and centered at the origin of the coordinate system). This line is shown in 
Figure 7.2.3.d.
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P.O.
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Figure 7.23
Performance specification on the s-plane. (a) Settling time. (b) Peak time. (c) Percentage overshoot (P.O.).  
(d) Steady-state error. (e) Combined specification.
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A composite design boundary and a design region (corresponding to a combined design 
specification) can be obtained by simply overlaying the four regions given in Figure 7.2.3.a 
through d. This is shown in Figure 7.2.3.e. Note that in Figure 7.2.3. we have disregarded the 
right half of the s-plane, at the outset, because it corresponds to an unstable system.

example 7.6

A simplified model of a control system for a paper winding mechanism used in a paper plant is 
shown in Figure 7.24. The model includes the time constants of the drive motor with load, and the 
gain of the control amplifier and other circuitry. For a preliminary design it is required to deter-
mine the system parameters K, tm, and te so as to meet the following design specifications (for the 
closed-loop system):

 a. 2% Settling time = 4/3 second.
 b. Peak time = p /4

Determine the minimum value of steady-state error ess to a unit ramp input and, hence, the maxi-
mum value of the velocity error constant Kv that is possible for this control system (closed-loop).

Select a value for K so that the closed-loop system behaves like a simple oscillator. Determine 
the corresponding values of ess and Kv and system parameters tm and te. Estimate the percentage 
overshoot of this resulting closed-loop system.

Solution

First we note that with the settling time Ts = 4/3, the closed-loop system must satisfy (see Table 7.2):

 
4 4

3zwn

=  or zwn = 3

Also, with a peak time of Tp =
p
4

 we have

 
p
w

p
d

=
4

 or wd = 4

Accordingly, we have

  wn = 5 and z = 0.6

Since the system is third-order, the closed-loop system should have a transfer function given by

 


G s
K

s p s sn n
( ) =

+( ) + +( )2 22zw w
 (i)

Winding
command

Winding
position

s (τms + 1) (τes + 1)
K

System model
G(s)

–

Figure 7.24
A simplified control system for a paper rolling mechanism.
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with p sufficiently large so that the expressions used for Ts and Tp are sufficiently accurate. 
Specifically, for large p, its contribution (Ce-pt) to the overall response of the system, will decay 
very fast. Once this happens, there is no effect from p, and the system will behave like a simple 
oscillator. With the values computed above, we have

 


G s
K

s p s s
( ) =

+( ) + +( )2 6 25
 (ii)

The corresponding open-loop transfer function

 G s
G s

G s
K

s p s s K
( ) = ( )

- ( ) = +( ) + +( ) -




1 6 252

Since this transfer function has a free integrator (closed-loop system is Type 1), as given in Figure 
7.17, we must have the constant terms in the denominator cancel out; thus

 K p= 25  (iii)

Hence,

 G s
K

s s p s p
( ) =

+ +( ) + +[ ]


2 6 6 25
 (iv)

The velocity error constant (Equation 7.32)

 K sG s
K

p
v

s
= ( ) =

+→
lim

0 6 25



Now substituting Equation (iii) for p we have

 K
K

K
v = +


6 25 25

 (v)

This is a monotonically increasing function for positive values of K . It follows that the maximum 
value of Kv is obtained when K →∞. Hence,

 Kvmax = =1
6 25

25
6

Corresponding steady-state error for a unit ramp input (see Table 7.5):

 essmin .= =6
25

0 24

As noted before, if the closed-loop system is to behave like a simple oscillator, the real pole has 
to move far to the left of the complex pole pair so that the real pole could be neglected. A rule of 
thumb is to use a factor of 10 as an adequate distance. Since zwn = 3, we must then pick

 p = 30

From Equation (iii) then K = × =25 30 750 . Substituting in Equation (v),

 Kv = × +
=750

6 750 25 25
3 66.
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Hence,

 ess = =1
3 66

0 25
.

.

Note that this value is quite close to the minimum possible value (0.24), and is quite satisfactory. 
From Equation (iv)

 G s
s s s s s s

( ) =
+ +( ) = +( ) +( )

750
36 205

750
7 09 28 912 . .

==
+( ) +( )
3 66

0 141 1 0 0346 1
.

. .s s s

So we have

 K = 3 66. , tm = 0 141. , t e = 0 0346.

Furthermore, since z = 0.6 for the closed-loop system, the percentage overshoot is (Table 7.2)

 P O. . exp . .= - × -( )100 0 6 1 0 36p

or

 P.O. = 9.5%

7.6 Control System Sensitivity

Accuracy of a control system is affected by parameter changes in the control system com-
ponents and by the influence of external disturbances. It follows that analyzing the sensi-
tivity of a feedback control system to parameter changes and to external disturbances is 
important.

Consider the block diagram of a typical feedback control system, shown in Figure 7.2.5. 
In the usual notation we have:

Gp(s) = transfer function of the plant (or the system to be controlled)
Gc(s) = transfer function of the controller (including compensators)

H(s)

Input
u 

Disturbance
ud

Controller
Control action

c
Output

y
Plant

–

Feedback
signal Feedback

system

Gc(s) Gp(s)

Figure 7.25
Block diagram representation of a feedback control system.
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H(s) = transfer function of the output feedback system (including the measurement 
system)

u = system input command
ud = external disturbancy input
y = system output.

Since what we have is a linear system (as necessary in the transfer function representation), 
the principle of superposition applies. In particular, if we know the outputs corresponding to 
two inputs when applied separately, the output when both inputs are applied simultane-
ously is given by the sum of the individual outputs.

First set ud = 0:
Then it is straightforward to obtain the input–output relationship:

 y
G G

G G H
uc p

c p

=
+









1

 (i)

Next set u = 0:
Then we obtain the input–output relationship:

 y
G

G G H
up

c p
d=

+








1

 (ii)

By applying the principle of superposition on Equations (i) and (ii), we obtain the overall 
input–output relationship:

 y
G G

G G H
u

G

G G H
uc p

c p

p

c p
d=

+








 +

+








1 1

 (7.3.7)

The closed-loop transfer function G  is given by y/u, with ud = 0; thus,

 G
G G

G G H
c p

c p

=
+ 1

 (7.3.8)

7.6.1 System Sensitivity to Parameter Change

The sensitivity of the system to a change in some parameter k may be expressed as the 
ratio of the change in the system output to the change in the parameter; i.e., ∆y/∆k. In the 
nondimensional form, this sensitivity is given by

 S
k
y

y
kk =

∆
∆

 (7.3.9)

Since y =  Gu, with ud = 0, it follows that for a given input u:
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∆ ∆y
y

G
G

=



Consequently, Equation 7.3.9 may be expressed as

 S
k
G

G
kk = 
∆

∆
 (7.40)

or, in the limit:

 S
k
G

G
kk = 
î
î  (7.41)

Now, by applying Equation 7.41 to Equation 7.3.8, we are able to determine expressions 
for the control system sensitivity to changes in various components in the control system. 
Specifically, by straightforward partial differentiation of Equation 7.3.8, separately with 
respect to Gp, Gc, and H, we get

 S
G G HGp

c p
=

+[ ]
1

1
 (7.42.)

 S
G G HGc

c p
=

+[ ]
1

1
 (7.43.)

 S
G G H

G G HH
c p

c p
= -

+[ ]1
 (7.44)

It is clear from these three relations that as the static gain (or, dc gain) of the loop (i.e., 
GcGpH, with s = 0) is increased, the sensitivity of the control system to changes in the plant 
and the controller decreases, but the sensitivity to changes in the feedback (measurement) 
system approaches (negative) unity. Furthermore, it is clear from Equation 7.3.7 that the 
effect of the disturbance input can be reduced by increasing the static gain of GcH. By com-
bining these observations, the following design criterion can be stipulated for a feedback 
control system:

 1. Make the measurement system (H) very accurate and stable.
 2.. Increase the loop gain (i.e., gain of GcGpH) to reduce the sensitivity of the control 

system to changes in the plant and controller.
 3.. Increase the gain of GcH to reduce the influence of external disturbances.

In practical situations, the plant Gp is usually fixed and cannot be modified. Furthermore, 
once an accurate measurement system is chosen, H is essentially fixed. Hence, most of the 
design freedom is available with respect to Gc only. It is virtually impossible to achieve all 
the design requirements simply by increasing the gain of Gc. The dynamics (i.e., the entire 
transfer function) of Gc (not just the gain value at s = 0) also have to be properly designed in 
order to obtain the desired performance of a control system.
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example 7.7

Consider the cruise control system given by the block diagram in Figure 7.26. The vehicle travels 
up a constant incline with constant speed setting from the cruise controller.

 a. For a speed setting of u = uo and a constant road inclination of ud = udo  derive an expressions 
for the steady-state values yss of the speed and ess of the speed error. Express your answers 
in terms of K, Kc, uo and udo.

 b. At what minimum percentage grade would the vehicle stall? Use steady-state conditions, 
and express your answer in terms of the speed setting uo and controller gain Kc.

 c. Suggest a way to reduce ess.
 d. If uo = 4, udo = 2 and K = 2, determine the value of Kc such that ess = 0.1.

Solution

 a. For ud = 0:

 y

K K
s s

K K
s s

u

c

c

= + +

+
+ +







( )( )

( )( )

1 10 1

1
1 10 1

 =  K K
s s K K

uc

c( )+ +( )+[ ]1 10 1

 For u = 0:

 y

K
s
K K

s s

u
v

d= +

+
+ +







-( )

( )( )

( )
10 1

1
1 10 1

 = - +
+ + +[ ]

K s
s s K K

u
c

d
( )

( )( )
1

1 10 1

 Hence, with both u and ud present, using the principle of superposition (linear system):

 y
K K

s s K K
u

K s
s s

c

c

=
+ + +[ ] - +

+ +( )( )
( )

( )( )1 10 1
1

1 10 1 ++[ ]K K
u

c
d  (i)

 If the inputs are constant at steady-state, the corresponding steady-state output does not 
depend on the nature of the inputs under starting conditions. Hence, in this problem what 
matters is the fact that the inputs and the output are constant at steady-state. Hence, without 
loss of generality, we can assume the inputs to be step functions.

Kc

s + 1

Speed
setting

u 

Percentage
grade

ud
Engine

controller
Error

e 

Output
speed

y
10s + 1

K–

Vehicle

–

Feedback signal

Figure 7.26
A cruise control system.
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 Note: Even if we assume a different starting shape for the inputs, we should get the same 
answer for the steady-state output, for the same steady-state input values. But the math-
ematics of getting that answer would be more complex.
 Now, using FVT, at steady-state:

 y
K K

s s K K
u
s

s
K s

ss
s

c

c

o=
+ + +[ ]

- +
→

lim
0 1 10 1

1
( )( )

. .
( ))

( )( )
.

s s K K
u
s

s
c

do

+ + +[ ]




1 10 1

 or,

 y
K K

K K
u

K
K K

uss
c

c
o

c
do=

+
-

+( ) ( )1 1
 (ii)

 Hence, the steady-state error:

 e u y u
K K

K K
u

K
K K

uss o ss o
c

c
o

c
do= - = -

+
+

+( ) ( )1 1

 or,

 e
K K

u
K
K K

uss
c

o
c

do=
+

+
+

1
1 1( ) ( )

 (iii)

 b. Stalling condition is yss = 0
 Hence, from Equation (ii) we get

 udo = Kcuo

 c. Since Kc is usually fixed (a plant parameter) and cannot be adjusted, we should increase Kc 
to reduce ess.

 d. Given uo = 4, udo = 2, K = 2, ess = 0.1

 Substitute in Equation (iii): 0 1
1

1 2
4

2
1 2

2.
( ) ( )

=
+

× +
+

×
K Kc c

 Hence: 1 + 2Kc = 80

 or Kc = 39.5

Problems

PROBLEM 7.1

 a. What is an open-loop control system and what is a feedback control system? Give 
one example of each case.

 b. A simple mass-spring-damper system (simple oscillator) is excited by an external 
force f(t). Its displacement response y (see Figure P7.1a) is given by the differential 
equation: my by ky f t + + = ( )

A block diagram representation of this system is shown in Figure P7.1b. Is this a feed-
back control system? Explain and justify your answer.
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PROBLEM 7.2

You are asked to design a control system to turn on lights in an art gallery at night, 
 provided that there are people inside the gallery. Explain a suitable control system, 
identifying the open-loop and feedback functions, if any, and describing the control 
system components.

PROBLEM 7.3

 a. Discuss possible sources of error that can make open-loop control or feedforward 
control meaningless in some applications.

 b. How would you correct the situation?

PROBLEM 7.4

Consider the natural gas home heating system shown Figure 7.4. Describe the func-
tions of various components in the system and classify them into the function groups: 
controller, actuator, sensor, and signal modification device. Explain the operation of the 
overall system and suggest possible improvements to obtain more stable and accurate 
temperature control.

PROBLEM 7.5

In each of the following examples, indicate at least one (unknown) input that should 
be measured and used for feedforward control to improve the accuracy of the control 
system.

 a. A servo system for positioning a mechanical load. The servo motor is a field-
controlled dc motor, with position feedback using a potentiometer and velocity 
feedback using a tachometer.

 b. An electric heating system for a pipeline carrying a liquid. The exit temperature 
of the liquid is measured using a thermocouple and is used to adjust the power of 
the heater.

yf (t)

k

m
y

f (t)

bk

s(ms + b)
1

–

(a) (b)

Figure P7.1
(a) A mechanical system representing a simple oscillator. (b) A block diagram representation of 
the simple oscillator.

76868.indb   314 7/8/09   5:11:55 PM



Control System Structure and Performance 315

 c. A room heating system. Room temperature is measured and compared with the set 
point. If it is low, a valve of a steam radiator is opened; if it is high, the valve is shut.

 d. An assembly robot that grips a delicate part to pick it up without damaging the part.
 e. A welding robot that tracks the seam of a part to be welded.

PROBLEM 7.6

Hierarchical control has been applied in many industries, including steel mills, oil 
refineries, chemical plants, glass works, and automated manufacturing. Most applica-
tions have been limited to two or three levels of hierarchy, however. The lower levels 
usually consist of tight servo loops, with bandwidths on the order of 1 kHz. The upper 
levels typically control production planning and scheduling events measured in units 
of days or weeks.

A five-level hierarchy for a flexible manufacturing facility is as follows: The lowest 
level (level 1) handles servo control of robotic manipulator joints and machine tool 
degrees of freedom. The second level performs activities such as coordinate trans-
formation in machine tools, which are required in generating control commands for 
 various servo loops. The third level converts task commands into motion trajectories 
(of manipulator end effector, machine tool bit, etc.) expressed in world coordinates. The 
fourth level converts complex and general task commands into simple task commands. 
The top level (level 5) performs supervisory control tasks for various machine tools 
and material-handling devices, including coordination, scheduling, and definition of 
basic moves. Suppose that this facility is used as a flexible manufacturing workcell for 
turbine blade production. Estimate the event duration at the lowest level and the control 
bandwidth (in hertz) at the highest level for this type of application.

PROBLEM 7.7

The PLC is a sequential control device, which can sequentially and repeatedly activate 
a series of output devices (e.g., motors, valves, alarms, signal lights) on the basis of the 
states of a series of input devices (e.g., switches, two-state sensors). Show how a pro-
grammable controller and a vision system consisting of a solid-state camera and a sim-
ple image processor (say, with an edge-detection algorithm) could be used for sorting 
fruits on the basis of quality and size for packaging and pricing.

PROBLEM 7.8

It is well known that the block diagram in Figure P7.8a represents a dc motor, for arma-
ture control, with the usual notation. Suppose that the load driven by the motor is a 
pure inertia element (e.g., a wheel or a robot arm) of moment of inertia JL, which is 
directly and rigidly attached to the motor rotor.

 a. Obtain an expression for the transfer function wm/va = Gm(s) for the motor with the 
inertial load, in terms of the parameters given in Figure P7.8a, and JL.

 b. Now neglect the leakage inductance La. Then, show that the transfer function in 
(a) can be expressed as Gm(s) = k/(ts + 1). Give expressions for t and k in terms of the 
given system parameters.

 c. Suppose that the motor (with the inertial load) is to be controlled using position 
plus velocity feedback. The block diagram of the corresponding control system is 
given in Figure P7.8b, where Gm(s) = k/(ts + 1). Determine the transfer function of 
the (closed-loop) control system GCL(s) = qm/qd in terms of the given system param-
eters (k, kp,t, tv). Note that qm is the angle of rotation of the motor with inertial load, 
and qd is the desired angle of rotation.
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PROBLEM 7.9

 a. A dc motor has a rotor of moment of inertia J and is supported on bearings which 
produce a nonlinear damping torque cw 2. which always acts opposite to the speed 
of rotation w of the rotor (see Figure P7.9a). If the magnetic torque T applied on the 
rotor is the input and the speed w of the rotor is the output, determine the input–
output differential equation of the system.

 What is the order of the system?
 b. Suppose that the motor in (a) rotates at a positive steady speed of w  under a con-

stant input torque of T .
 Obtain a linear input–output model of the system in (a) to study small varia-
tions ŵ  in the output speed for small changes T̂  in the input torque.

 (i) Determine the transfer function ˆ/ˆw T  of this linear model.
 (ii) Express the time constant t of the linear model in terms of the known quanti-

ties J, c, and w .
 (iii) Sketch (no derivation needed) the nature of the incremental response ŵ  to a 

small step change T̂  in the input torque.
 (iv) Sketch how the incremental response ŵ  in Equation (iii) changes as t  increases. 

Using this information discuss what happens to the speed of response of the 
systems as t increases.

(a)

(b)

Position feedback

Velocity feedback

––

Error

Desired
angular position

θd

ωm

τv

θmGm(s)

Controller/
drive

Motor/
load

Angular
speed

Angular
position

kp
1
s

k ḿ

Input
va 

Load
torque

TL
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torque
Tm

Output
speed

ωm
–

Rotor

–

Back e.m.f.

v
b

1
(Jms + bm)

km
(Las + Ra)

Figure P7.8
(a) Block diagram of a dc motor for armature control. (b) Motor control with feedback of position 
and velocity.
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 c. If in the nonlinear system described in (a), the output is the angle of rotation q 
(Note: q w= ) and the input is T as before, derive a state-space model (nonlinear) for 
the system. What is the order of this system?

 d. For the linearized system in (b) draw a block diagram using a summation junc-
tion, an integration (1/s) block, and constant-gain blocks only, again with T̂  as the 
input and ŵ  as the output.

 Comment on the feedback path present in this block diagram (Specifically, is 
this a natural/internal feedback path or does this represent a feedback control 
system?)

 Verify that this block diagram corresponds to the transfer function obtained in 
(b)(i).

 e. Denote the transfer function obtained in (b)(i) by Gp(s). Now suppose that a feed-
back control system is formed as shown in Figure P7.9b.

 Here, the incremental speed ŵ  is measured, compared with a derived/reference 
value ŵ r  and the error ˆ ˆw wr-  is multiplied by a control gain Kc to generate the 
incremental torque T̂  to the motor.

 (i) What is the transfer function ˆ/ ˆw w r  of the resulting closed-loop system?
 (ii) What is the time constant of the closed-loop system?
 (iii) What is the effect of the control gain kc on the speed of response of the control 

system?

(a)

(b)

Input torque
T

J

Output speed
ω

Nonlinear damping = cω2

(Always opposing ω)

–

Sensing and feedback

kc Gp(s)

Reference
incremental input ω̂r Incremental output ω̂

Controller
Motor

Figure P7.9
(a) A dc motor supported on nonlinear bearings. (b) A feedback control system for the motor.
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PROBLEM 7.10

Consider a field-controlled dc motor with a permanent-magnet rotor and electronic 
commutation. In this case the rotor magnetic field may be approximated to a constant. 
As a result, the motor magnetic torque may be approximately expressed as Tm = kmif 
where if = field current; km = motor torque constant.

Suppose that the load driven by the motor is purely inertial, with a moment of inertia 
JL, which is connected to the motor rotor (of inertia Jm) by a rigid shaft. A schematic 
representation of this system is given in Figure P7.10a, where the field (stator) circuit is 
clearly shown. Note that the field resistance is Rf, the field inductance is Lf, and the input 
(control) voltage to the field circuit is vf.

The mechanical dynamics of the motor system are represented by Figure P7.10b. Here, 
wm is the motor speed and bm is the mechanical damping constant of the motor. The 
damping is assumed to be linear and viscous.

 a. In addition to the torque equation given above, give the field circuit equation and 
the mechanical equation (with inertial load) of the motor, in terms of the system 
parameters given in Figure P7.10a and b. Clearly explain the principles behind 
these equations.

 b. From the equations given in (a) above, obtain an expression for the transfer func-
tion wm/vf = G(s) of the motor with the inertial load. The corresponding open-loop 
system is shown in Figure P7.10c.

 c. Express the mechanical time constant tm and the electrical time constant te of 
the (open-loop) motor system in terms of the system parameters given in Figure 
P7.10a and b.

 d. What are the poles of the open-loop system (with speed as the output)? Is the sys-
tem stable? Why? Sketch (Note: no need to derive) the shape of the output speed 
of the open-loop system to a step input in field voltage, with zero ICs. Justify the 
shape of this response.

 e. Now suppose that a proportional feedback controller is implemented on the 
motor system, as shown in Figure P7.10d, by measuring the output speed wm and 

Motor
rotor

Jm

Inertial
load

Magnetic
torque Tm Rigid

shaft  

Damping bm 

JL

(b)

G(s)

(c) Field-controlled
DC motor

Field
voltage

vf 
Speed

+ 

−

vf 

if 
Rf 

Lf 

Tm

Stator (field) circuit

Speed
Inertial
load

JL

ωm
ωm

ωm

ωm

(a)

Motor
rotor

Jm

G(s)
(d)

Proportional feedback

vf

kc

–

Figure P7.10
(a) A field-controlled dc motor with a permanent-magnet rotor. (b) Mechanical system of the motor 
with an inertial load. (c) Open-loop motor for speed control. (d) Proportional feedback system for 
speed control.
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feeding it back with a feedback gain kc. Express the resulting closed-loop transfer 
function in terms of tm, te, k, and kc, where k = km/Rf bm. What is the characteristic 
equation of the closed-loop system?

 f. For the closed-loop system, obtain expressions for the undamped natural fre-
quency and the damping ratio, in terms of tm, te, k, and kc. Give an expression for 
the control gain kc, in terms of the system parameters tm, te, and k, such that the 
closed-loop system has critical damping.

 g. Assuming that the closed-loop system is under-damped (i.e., the response is oscil-
latory), determine the time constants of this system. Compare them with the time 
constants of the open-loop system.

PROBLEM 7.11

A dc motor with velocity feedback is given by the block diagram in Figure P7.11 (without 
the feedforward control path indicated by the broken lines). The input is u, the  output 
is the motor speed wm, and the load torque is TL. The electrical dynamics of the motor 
are represented by the transfer function ke/(tes + 1) and the mechanical dynamics of the 
motor are represented by the transfer function km/(tms + 1) where s is the Laplace vari-
able, as usual.

 a. Obtain a transfer function equation relating the output wm to the two inputs u and 
TL in terms of the given parameters and the Laplace variable.

 b. Now include the feedfoward controller as shown by the broken line. Obtain an 
expression for the feedforward control transfer function Gf(s), in terms of the 
given parameters and the Laplace variable, such that the effects of the load torque 
would be fully compensated (i.e., not felt in the system response wm).

PROBLEM 7.12

Consider a thermal process whose output temperature T is related to the heat input W 
as follows: T = 0.5W

The units of T are °C and the units of W are watts. The heat generated by the propor-
tional controller of the process is given by: W = 10(T0 - T) + 1,000 in which To denotes the 
temperature set point. Determine the offset for the following three set points:

 Case 1: To = 500°

ke

(τes +1) (τms +1)
km

Gf (s)

Reference
input

u

Feedforward
control

Load
TL

Speed
ωm

Electrical
dynamics

Mechanical
dynamics

+

–

–

Figure P7.11
Control block diagram of a dc motor.
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 Case 2.: To = 2.00°

 Case 3.: To = 800°

PROBLEM 7.13

A linearized thermal plant is represented by T = gc where, T = temperature (response) of 
the plant; c = heat input to the plant; and g = transfer function (constant).

A proportional controller is implemented on the plant, to achieve temperature 
regulation, and it is represented by: c = ke + ∆c where, e = To - T = error signal into the 
controller; To = temperature set point (desired plant temperature); k = controller gain; 
and ∆c = controller output when the error is zero.

Under the given conditions suppose that there is no offset.

 a. Express ∆c in terms of To and g.
 b. If the plant transfer function changes to g′ what is the resulting offset To - T?
 c. If the set point is changed to To

′  for the original plant (g) what is the resulting 
offset T To

′ - ?

PROBLEM 7.14

A block diagram of a speed-control system is shown in Figure P7.14. Here the controlled 
process (say, an inertia with a damper) has a transfer function given by

 
1

1t s +

and the controller is a proportional controller with gain K.
Hence, the combined transfer function process and controller is K/ts + 1. If the process 

is given a unit step input, find the final steady-state value of the output. What is the 
resulting offset? Show that this decreases when K is increased.

PROBLEM 7.15

Fraction (or percentage) of the full scale of controller input that corresponds to the full 
operating range of the final control element (controller output) is termed proportional 
band. Hence: PB = ∆e/∆e × 100% in which, PB = proportional band (%); ∆E = full scale of 
controller input; and ∆e = range of controller input corresponding to the full range of 
final control element.

Obtain an equation relating PB to the proportional gain Kp of the controller. Use the 
additional parameter, ∆c = full range of the final control element.

Note: PB is dimensionless but Kp has physical units because ∆c and ∆e do not have the 
same units in general.

Error
e Output speedSpeed

command u K
(τs +1)

–

Figure P7.14
A speed control system.
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A feedback control system for a water heater is shown in Figure P7.15. A proportional 
controller with control law: W = 2.0e + 100 is used, where W denotes the heat transfer rate 
into the tank in watts and e denotes the temperature error in °C. The tank characteristic 
for a given fixed rate of water flow is known to be: W = 2.0T, where T is the temperature 
(°C) of the hot water leaving the tank. The full scale (span) of the controller is 500°C.

 a. What is the proportional gain and what is the proportional band of the 
controller?

 b. What is the set point value for which there is no offset error?
 c. If the set point is 40°C determine the offset.
 d. If the set point is 60°C determine the offset.
 e. If the proportional gain is increased to 80 watts/°C, what is the proportional band 

and what is the offset in (c)?
 f. Suppose the water flow rate is increased (load increased) so that the process law 

changes to W = 2.5T. Determine the set point corresponding to zero offset noting 
that this is different from the answer for (b). Also, determine the offset in this case 
when the set point is 50°C.

PROBLEM 7.16

Consider six control systems whose loop transfer functions (or, forward TFs with unity 
feedback) are given by:

a. 
1

2. 17 52.s s s+ +( ) +( )
 d. 

10 2.
2. 1012.

s
s s

+( )
+ +( )

b. 
10 2.
2. 17 52.

s
s s s

+( )
+ +( ) +( )

 e. 
1

2.s s +( )

c. 
10

2. 1012.s s+ +( )  f. 
s

s s2. 2. 101+ +( )

Compute the additional gain (multiplication) k needed in each case to meet a steady-
state error specification of 5% for a step input.

Cold water
in

Water tank

�ermocouple
Water temperature

T

Hot water
out

�ermocouple signal

Heat
controller

Heat
transfer

rate
WTemperature

setpoint
To

Figure P7.15
Feedback control of a water heater.
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PROBLEM 7.17

A tachometer is a device that is commonly used to measure speed, both rotatory (angu-
lar) and translatory (rectilinear). It consists of a coil which moves in a magnetic field. 
When the tachometer is connected to the object whose speed is to be sensed, the coil 
moves with the object and a voltage is induced in the coil. In the ideal case, the  generated 
voltage is proportional to the speed. Accordingly, the output voltage of the tachometer 
serves as a measure of the speed of the object. High frequency noise that may be present 
in the tachometer signal can be removed using a low-pass-filter.

Figure P7.17 shows a circuit, which may be used to model the tachometer-filter com-
bination. The angular speed of the object is w i and the tachometer gain is k. The leakage 
inductance in the tachometer is demoted by L and the coil resistance (possibly  combined 
with the input resistance of the filter) is denoted by R. The low-pass-filter has an opera-
tional amplifier with a feedback capacitance Cf and a feedback resistor Rf. Since the 
operational amplifier has a very high gain (typically 105-109) and the output signal vo is 
not large, the voltage at the input node A of the op-amp is approximately zero. It follows 
that vo is also the voltage across the capacitor.

 a. Comment on why the speed of response and the settling time are important in 
this application. Give two ways of specifying each of these two performance 
parameters.

 b. Using voltage vo across the capacitor Cf and the current i through the inductor L as 
the state variables and vo itself as the output variable, develop a state-space model 
for the circuit. Obtain the matrices A, B, C, and D for the model.

 c. Obtain the input–output differential equation of the model and express the 
undamped natural frequency wn and the damping ratio z in terms of L, R, Rf, and Cf. 
What is the output of the circuit at steady-state? Show that the filter gain kf is given 
by Rf/R and the discuss ways of improving the overall amplification of the system.

vo

vo

Output
signal

Low-pass
filter

Tacho-generated
voltage+

_

kωi

Tachometer

v1

i R A

vA ≈ 0

Rf

Cf i2

Leakage
inductance L

Figure P7.17
An approximate model for a tachometer-filter combination.
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 d. Suppose that the percentage overshoot of the system is maintained at or below 5% 
and the peak time at or below 1 ms. Also it is known that L = 5.0 mH and Cf = 10.0 µF. 
Determine numerical values for R and Rf that will satisfy the given performance 
specifications.

PROBLEM 7.18

Consider the proportional plus derivative (PPD) servo system shown in Figure P7.18. 
The actuator (plant) transfer function is given by

 
G s

s sp ( ) =
+( )

1
0 5 1.

.

By hand calculation complete the following table:

zwnTp 2..5 2..5 2..5 2..5 2..2. 2..1 2..0 2..0 2..0

wdTp 0.9p 0.75p 0.6p 0.55p 0.55p 0.2.5p 0.55p 0.2.p 0.1p
Tp

P.O.

Design a PPD controller (i.e., determine the controller parameters T and K) that approxi-
mately meets Tp = 0.09 and P.O. = 10%.

PROBLEM 7.19

Compare position feedback servo, tacho-feedback servo, and PPD servo with particular 
reference to design flexibility, ease of design, and cost.

Consider an actuator with transfer function

 G
s sp = +( )

1
0 5 1.

Design a position feedback controller and a tacho-feedback controller that will meet 
the design specifications Tp = 0.09 and P.O. = 10%.

PROBLEM 7.20

Consider the problem of tracking an aircraft using a radar device that has a velocity 
error constant of 10 s -1. If the airplane flies at a speed of 2.,000 km/hr at an altitude of 
10 km, estimate the angular position error of the radar antenna that tracks the aircraft.

Control
amplifier

PPD
controller

K
1

s(τas+1)

Actuator
Input

position
command

u
Position
output

yTs+1
–

Figure P7.18
An actuator with PPD servo control.
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PROBLEM 7.21

List three advantages and three advantages of open-loop control. Note: the disadvan-
tages will correspond to advantages of feedback control.

A process plant is represented by the block diagram shown in Figure P7.2.1a.

 a. What is the transfer function (y/u) of the plant?
 b. Determine the undamped natural frequency and the damping ratio of the plant.

 A constant-gain feedback controller with gains K1 and K2. is added to the plant as 
shown in Figure P7.2.1b.

 c. Determine the new transfer function of the overall control system.
 d. Determine the values of K1 and K2. that will keep the undamped natural frequency 

at the plant value (of (b)) but will make the system critically damped.
 e. Determine the values of K1 and K2. such that the overall control system has a natu-

ral frequency of 2.  and a 2.% settling time of 4 seconds.

PROBLEM 7.22

Describe the operation of the cruise control loop of an automobile, indicating the input, 
the output, and a disturbance input for the control loop. Discuss how the effect of a dis-
turbance input can be reduced using feedforward control.

Synthesis of feedforward compensators is an important problem in control system 
design. Consider the control system shown in Figure P7.2.2.. Derive the transfer function 

(a)

1
s

1
s

0.5

––
+

Output
y

Reference
input

u
+

(b)

1s
1
s

0.5

––
+

Output
y

Reference
input

u
+

K1

–

K2

–

Figure P7.21
(a) Simulation block diagram of a process. (b) Plant with a feedback controller.

Gc Gp
– + Response y

Reference
input

ur

Gf

–

H

Controller

Sensor/
transducer

Ga

Actuator Plant

Feedforward
compensator

Disturbance
input
ud

Figure P7.22
A feedback control system with feedforward compensation.
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relating the disturbance input ud and the plant output y. If you have the complete free-
dom to select any transfer function for the feedforward compensator Gf, what would be 
your choice? If the process bandwidth is known to be very low and if Gf is a pure gain, 
suggest a suitable value for this gain.

Suppose that a unit step input is applied to the system in Figure P7.2.2.. For what value 
of step disturbance ud will the output y be zero at steady-state?

PROBLEM 7.23

The transfer function of a field-controlled dc motor is given by

 G s
K

s Js b Ls R
m( ) =

+( ) +( )

for open-loop control, with the usual notation. The following parameter values are 
given: J = 10 kg.m2., b = 0.1 N.m/rad/s, L = 1 Henry, and R = 10 Ohms.

Calculate the electrical time constant and the mechanical time constant for the motor. 
Plot the open-loop poles on the s-plane. Obtain an approximate second order transfer 
function for the motor.

A proportional (position) feedback control system for the motor is shown in Figure 
P7.2.3.. What is the closed-loop transfer function? Express the undamped natural fre-
quency and damping ratio of the closed-loop system in terms of K, Km, J, R and b.

PROBLEM 7.24

A third-order closed-loop system with unity feedback is known to have the following 
characteristics:

 a. It behaves like a second-order system.
 b. Its 2.% settling time is 4 seconds.
 c. Its peak time is p seconds.
 d. Its steady-state value for a unit step input is = 1.

Determine the corresponding third-order open loop system (i.e., when the feedback is 
disconnected).

Explain why the steady-state error for a step input is zero for this closed-loop system.

PROBLEM 7.25

A control system with tacho-feedback is represented by the block diagram in Figure 
P7.2.5. The following facts are known about the control system:

 1. It is a third-order system but behaves almost like a second-order system.
 2.. Its 2.% settling time is 1 second, for a step input.

Motor

Reference
input Position outputGain

K

Controller

–

Figure P7.23
Block diagram of a position servo.

76868.indb   325 7/8/09   5:12:09 PM
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 3.. Its peak time is p/3. seconds, for a step input.
 4. Its steady-state error, to a step input, is zero.

 (a) Completely determine the third-order forward transfer function G(s).
 (b) Estimate the damping ratio of the closed-loop system.

PROBLEM 7.26

 a. Define the terms:
 (i) Open-loop transfer function
 (ii) Closed-loop transfer function
 (iii) Loop transfer function
 (iv) Forward transfer function
 (v) Feedback transfer function
 b. Consider the feedback control system given by the block diagram in Figure P7.2.6. 

The forward transfer function is denoted by G(s), which represents the plant and 
the controller.

The following information is given to you:

 1. This is a Type 1 system.
 2.. The overall closed-loop system is a damped oscillator given by

 y
u

K
s sn n

=
+ +2. 2.2.zw w

.

 3.. For the closed-loop system, the undamped natural frequency is √2. rad/s and the 
2.% settling time is 4 seconds.

Input
u

Outputs
yG(s)

–

(1 + 2s)

Figure P7.25
A control system with tacho-feedback.

–

G(s)
Input u Output y

Plant +
controller

Figure P7.26
A feedback control system.
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Determine (by clearly explaining all your steps):

 i. The transfer function G(s)
 ii. Damping ratio z
 iii. Damped natural frequency of the closed-loop system
 iv. Steady-state error of the closed-loop system for a unit step input
 v. Velocity error constant (of the closed-loop system)
 vi. Steady-state error of the closed-loop system for a unit ramp input
 vii. Percentage overshoot of the closed-loop system to a step input (Note: Just express 

as an exponential of a numerical quantity. No need to evaluate it)
 viii. Time constant of the closed-loop system
 ix. Peak time of the closed-loop system
 x. Rise time of the closed-loop system

PROBLEMS 7.27

 a. List three parameters each, which can be used to specify the performance of a 
control system with respect to:

 (i) Speed of response
 (ii) Relative stability

 Define these parameters.
 b. Consider the feedback control system given by the block diagram in Figure P7.2.7. 

The forward transfer function is denoted by G(s), which represents the plant and 
part of the controller. The feedback transfer function is given by H(s) = bs + 1.

 (i) As a hardware component of the system, what does this feedback transfer 
function represent?
 The following facts are known about the control system:

 (1) It is a third-order system but behaves almost like a second order damped 
oscillator (with no zeros).

 (2.) It is a Type 2. system.
 (3.) Its 2.% settling time is 4/3. seconds, for a step input.
 (4) Its peak time is p/4 seconds, for a step input.
 (ii) Completely determine the third-order forward transfer function G(s) (i.e., the 

numerical values of all its parameters) and the parameter b in the feedback 
transfer function.

 (iii) Estimate the damping ratio and the percentage overshoot of the closed-loop 
system.

 (iv) If a unit ramp input is applied to the system, what is the resulting steady-state 
error?

Input
u

Output
yG(s)

–

(1+bs)

Figure P7.27
A feedback control system.
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8
Stability and Root Locus Method

Stable response is a requirement for any control system. It ensures that the natural response 
to an initial condition excitation does not grow without bounds (or, more preferably, 
decays back to the initial condition) and the response to an input excitation (which itself 
is bounded) does not lead to an unlimited response. Asymptotic stability and bounded-
input-bounded-output (BIBO) stability are pertinent in this context. In designing a control 
system, the required level of stability can be specified in several ways, both in the time 
domain and the frequency domain. Some ways of performance specification, with regard 
to stability in the time domain, were introduced in Chapter 7. The present chapter revisits 
the subject of stability, in time and frequency domains. Routh–Hurwitz method, root locus 
method, Nyquist criterion, and Bode diagram method incorporating gain margin (GM) 
and phase margin (PM) are presented for stability analysis of linear time-invariant (LTI) 
systems.

8.1 Stablility

In this section we will formally study stability of an LTI system, in the time domain. The 
natural response (homogeneous solution) of a system differential equation is determined 
by the eigenvalues (poles) of the system. Hence, stability is determined by the system 
poles.

8.1.1 Natural response

Consider the LTI system:

 a
d y
dt

a
d y
dt

a y b
d u
dt

bn

n

n n

n

n m

m

m m+ + + = +-

-

- -1

1

1 0 1
dd u
dt

b u
m

m o

-

-
+ +

1

1
  (8.1)

where u is the input and y is the output. When there is no input, we have the homogeneous 
equation:

 a
d y
dt

a
d y
dt

a yn

n

n n

n

n
+ + + =-

-

-1

1

1 0 0  (8.2.)

It is well known (see Chapter 6) that the solution to this equation is of the exponential 
form

 y = Celt (8.3.)
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which can be verified by substituting Equation 8.3. into Equation 8.2.. Then, on canceling 
the common factor Celt, since Celt is not zero for a general t, we get

 anln + an-1ln-1 + … + a0 = 0 (8.4a)

If we use s instead of l in Equation 8.3. we have

 anSn + an-1Sn-1 + … + a0 = 0 (8.4)

Equation 8.4 is called the characteristic equation of the system (Equation 8.1) and its roots 
are called eigenvalues or poles of the system, as introduced in previous chapters. In general 
there will be n roots for Equation 8.4, and let us denote them by l1, l2.,…, ln. The solu-
tions of Equation 8.3. should be formed by combining the contributions of all these roots. 
Hence, the general solution to Equation 8.2., assuming that there are no repeated roots 
among l1, l2.,…, ln, is

 y C e C e C eh
t t

n
tn= + + +1 2.

1 2.l l l  (8.5)

This is the homogeneous solution of Equation 8.1, and it represents the natural response 
(the response to an initial-condition excitation) of the system. Note: This response does not 
depend on the input.

The constants C1, C2., …, Cn are unknowns (integration constants), which have to be deter-
mined by using the necessary n initial conditions (say, y(0), y′(0),…, yn-1(0)) of the system. If 
two roots are equal, then the corresponding integration constants Ci are not independent 
and can be combined into a single constant in Equation 8.5. Then we have the situation of 
n - 1 unknowns to be determined from n initial conditions. This is not a valid situation. In 
order to overcome this, when two roots are identical (repeated) a factor t has to be incor-
porated into one of the corresponding constants of integration. Without loss of generality, 
if l 1 = l 2. we have

 y C e C te C eh
t t

n
tn= + + +1 2.

1 1l l l  (8.6)

Note: Similarly, if there are three repeated roots, terms t and t2. have to be incorporated 
into the corresponding constants, and so on.

Next let us see how the natural response of a system depends on the nature of the poles. 
First, since the system coefficients (parameters) a0, a1,…, an (in Equations 8.1, 8.2., and 8.4 are 
all real, any complex roots of Equation 8.4 must occur in complex conjugates (i.e., in pairs 
of lr + jli and lr - jli, where lr and li are the real and the imaginary parts, respectively, of a 
complex root). The corresponding response terms are:

 e e t j tr i rj t t
i i

l l l l l±( ) = ±( )cos sin  (8.7)

Hence, it is clear that if a root (pole) has an imaginary part, then that pole produces 
an oscillatory (sinusoidal) natural response. Also, if the real part is negative, it generates 
an exponential decay and if the real part is positive, it generates an exponential growth 
(or, unstable response). These observations are summarized in Table 8.1 and further illus-
trated in Figure 8.1.

Note: Poles are the roots of the characteristic Equation 8.4 and hence they can be marked 
on the s-plane.
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Note: The case of repeated poles should be given special care. As noted before, the con-
stants of integration will have terms such as t and t2. (polynomial) in this case. These are 
growing (unstable) terms unless there are accompanied by decaying exponential terms, 
which will counteract the polynomial growth (because an exponential decay is stronger 
than a polynomial growth of any order).

8.2 Routh–Hurwitz Criterion

The Routh test or Routh–Hurwitz stability criterion is a simple way to determine whether 
a system is stable (i.e., whether none of the poles have positive real parts) by examining 
the characteristic polynomial, without actually solving the characteristic equation for its 

Table 8.1

Dependence of Natural Response on System Poles

Pole Nature of Response

Real
Negative Transient Decaying (stable)
Positive (Nonoscillatory) Growing (unstable)

Imaginary (pair) Oscillatory with constant amplitude Steady (marginally stable)

Complex (pair)
Negative real part Oscillatory with varying amplitude Decaying (stable)
Positive real part Growing (unstable)

Zero value Constant Marginally stable
Repeated Includes a linearly/ploynomially increasing term (unstable if not 

accompanied by exponential decay)

Im

Re

s-Plane
C2

C2

C1

C1

A2A1

D

B

B

Figure 8.1
Pole location on the s-plane and the corresponding response.
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roots. If the system is unstable, the Routh test also tells us how many poles are on the right 
half plane (RHP); i.e., the number of unstable poles. First a Routh array has to be formed 
in order to perform the test.

8.2.1 routh array

The characteristic equation of an nth-order system can be expressed as Equation 8.4. As 
noted in Chapters 5 and 6, this is also the denominator of the system transfer function, 
when equated to zero. This has n roots, which are the poles (or eigenvalues) of the system. 
It is possible to determine the stability of the system without actually finding these n roots, 
by forming a Routh array, as follows:

First Column Second Column Third Column …

sn an an-2. an-4 … ←First row

sn-1 an-1 an-3. an-5 … ←Second row

sn-2. b1 b2. b3. … ←Third row

sn-3. c1 c2. c3. … ←Fourth row
. . . . …
. . . . …
s0 h1 ←Last row

The first two rows are completed first, using the coefficients an, an-1,…, a1, a0 of the char-
acteristic polynomial, as shown. Note the use of alternate coefficients in these two rows. 
Each subsequent row is computed from the elements of the two rows immediately above 
it, by cross-multiplying the elements of those two rows. For example:

 

b
a a a a

a

b
a a a a

a

n n n n

n

n n n n

n

1
1 2. 3.

1

2.
1 4 5

= -

= -

- - -

-

- - -

-11

1
1 3. 1 2.

1

2.
1 5 1 3.

, etc.

c
b a a b

b

c
b a a b

b

n n

n n

= -

= -

- -

- -

11
, etc.

and so on, until the coefficients of the last row are computed.
The Routh–Hurwitz stability criterion states that for the system to be stable, the follow-

ing two conditions must be satisfied:

 1. All the coefficients (a0, a1,…, an) of the characteristic polynomial must be positive 
(i.e., same sign; because, all signs can be reversed by multiplying by - 1).

 2.. All the elements in the first column of the Routh array must be positive (i.e., same 
sign).

 3.. If the system is unstable, the number of unstable poles is given by the number of 
successive sign changes in the elements of the first column of Routh array.
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example 8.1

Consider a system whose closed-loop transfer function is G(s) = 2/(s3 - s2 + 2s + 1).
Without even completing a Routh array, it is seen that the system is unstable—from Condition 1 

of the Routh test (because, a negative coefficient is present in the characteristic polynomial).

example 8.2

Consider a system having the (closed-loop) transfer function G(s) = 2(s + 5)/(3s3 + s2 + 4s + 2).
Its Routh array is formed by examining the characteristic equation:

 3s3 + s2 + 4s + 2 = 0

The Routh array is

 

S

S

S b

S c

3

2

1
1

0
1

3 4

1 2

0

0

where

 

b

c
b

b

1

1
1

1

1 4 3 2
1

2

2 1 0
2

= × - × = -

= × - × =

The first column of the array has a negative value, indicating that the system is unstable. 
Furthermore, since there are “two” sign changes (positive to negative and then back to positive) in 
the first column, there are two unstable poles in this system.

8.2.2 auxiliary equation (Zero-row Problem)

A Routh array may have a row consisting of zero elements only. This usually indicates a 
marginally stable system (i.e., a pair of purely imaginary poles). The roots of the polynomial 
equation formed by the row that immediately precedes the row with zero elements, will 
give the values of these marginally stable poles.

example 8.3

Consider a plant G(s) = 1/s(s + 1) and a feedback controller H(s) = K(s + 5)/(s + 3). Its closed loop char-
acteristic polynomial (1 + GH = 0) is 1 + K(s + 5)/s(s + 1)(s + 3) = 0

 or: s(s + 1)(s + 3) + K(s + 5) = 0

 or: s3 + 4s2 + (3 + K)s + 5K = 0
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The Routh array is:

 

S K

S K

S
K

S K

3

2

1

0

1 3

4 5

12
4

0

5

+

-

Note that when K = 12, the third row (corresponding to s1) of the Routh array will have all zero 
elements.

The polynomial equation corresponding to the previous row (s2) is 4s2 + 5K = 0.
With K = 12, we have the auxiliary equation: 4s2 + 5 × 12 = 0 or s2 + 15 = 0 whose roots are s = ± j
15.
Hence when K = 12 we have a marginally stable closed-loop system, two of whose poles are ± j 
15. The third pole can be determined by comparing coefficients as shown below. This remain-

ing root has to be real (because if it is a complex root, it must occur as a conjugate pair of roots). 
Call it p. Then, with K = 12, on combining with the factor corresponding to the auxiliary equation 
(the complex root pair) the characteristic polynomial will be: (s - p)(s2 + 15). This must correspond 
to the same characteristic equation as given in the problem. Hence:

 s3 + 4s2 + 15s + 60 = (s - p)(s2 + 15) = 0

By comparing coefficients: 60 = - 15p or p = - 4
Hence the real pole is at - 4, which is stable. Since the other two poles are marginally stable, the 

overall system is also marginally stable.

8.2.3 Zero Coefficient Problem

If the first element in a particular row of a Routh array is zero, a division by zero will be 
needed when computing the next row. This will create an ambiguity as to the sign of the 
next element. This problem can be avoided by replacing the zero element by a small positive 
element e, and then completing the array in the usual manner.

example 8.4

Consider a system whose characteristic equation is s4 + 5s3 + 5s2 + 25 + 10 = 0.
Let us study the stability of the system.
Routh array is:

 

S

S

S

S

S

4

3

2

1

0

1 5 10

5 25 0

10 0

25 50
0

10

e
e
e
-

Note that the first element in the third row (s2) should be 5 × 5 - 25 × 1/5 = 0. But we have  represented 
it by e, which is positive and will tend to zero Then, the first element of the fourth row (s1) becomes 

76868.indb   334 7/8/09   5:12:16 PM



Stability and Root Locus Method 335

25e - 50/e. Since e is very small, 25e is also very small. Hence, the numerator of this quantity is 
negative, but the denominator (e) is positive. It follows that this element is negative (and large). This 
indicates two sign changes in the first column, and hence the system has two unstable poles.

In applying Routh–Hurwitz stability criterion, we may start with the system differential  equation. 
Consider Example 8.5.

example 8.5

Consider the differential equation

 
3 2 23

3

2

2

d y
dt

d y
dt

dy
dt

y
du
dt

u+ + + = +

in which u is the system input and y is the system output. To obtain the transfer function: change 
d/dt to s. The result of substituting s for d/dt (and s2 for d2/dt2) in the system differential equation 
is: (3s2 + 2s2 + s + 1) y = (2s + 1)u

 The system transfer function (output/input) is: 
y
u

s
s s s

=
+( )

+ + +( )
2 1

3 2 13 2

Routh array for the characteristic polynomial is constructed as:

 

S

S

S

S

3

2

1

0

3 1

2 1

12 0

1 0

/

This first column has no sign changes. Hence the system is stable.

8.2.4 relative Stability

Consider a stable system. The pole that is closest to the imaginary axis is the dominant 
pole, because the natural response from remaining poles will decay to zero faster, leaving 
behind the natural response of this (dominant) pole. It should be clear that the distance 
of the dominant pole from the imaginary axis is a measure of the “level of stability” or 
“degree of stability” or “stability margin” or “relative stability” of the system. In other 
words, if we shift the dominant pole closer to the imaginary axis, the system becomes less 
stable (i.e., the “relative stability” of the resulting system becomes lower).

The stability margin of a system can be determined by the Routh test. Specifically, con-
sider a stable system. All its poles will be on the left hand plane (LHP). Now, if we shift 
all the poles to the right by a known amount, the resulting system will be less stable. The 
stability of the shifted system can be established using the Routh test. If we continue this 
process of pole shifting in small steps, and repeatedly apply the Routh test, until the result-
ing system just goes unstable, then the total distance by which the poles have been shifted 
to the right provides a measure of the stability margin (or, relative stability) of the original 
system.
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example 8.6

A system has the characteristic equation: s3 + 6s2 + 11s + 36 = 0

 a. Using Routh–Hurwitz criterion determine the number of unstable poles in the system.
 b. Now move all the poles of the given system to the right of the s-plane by the real value 1. 

(i.e., add 1 to every pole). Now how many poles are on the RHP?

Note: You should answer this question “without” actually finding the poles (i.e., without solving 
the characteristic equation).

Solution

 a. Characteristic equation: s3 + 6s2 + 11s + 36 = 0
 Routh array:

s3 1 11
s2 6 36

s1 6 11 1 36
6

5
× - × = 0

s0 36

 Since the entries of the first column are all positive, there are no unstable poles in the 
 original system.

 b. Denote the shifted poles by s
 We have s = s + 1 or s = s - 1
 Substitute in the original characteristic equation. The characteristic equation of the system 

with shifted poles is:

 ( ) ( ) ( )  s s s- + - + - + =1 6 1 11 1 36 03 2

 or:      s s s s s s3 2 23 3 1 6 12 6 11 11 36 0- + - + - + + - + =

 or:   s s s3 23 2 30 0+ + + =

Routh array:

s3 1 2

s2 3 30

s1 3 2 1 30
3

3
× - × = - 0

s0 30

There are two sign changes in the first column. Hence, there are two unstable poles.

8.3 Root Locus Method

Root locus is the locus of (i.e., continuous path traced by) the closed-loop poles (i.e., roots 
of the characteristic equation) of a system, as one parameter of the system (typically the 
loop gain) is varied. Specifically, the root locus shows how the locations of the poles of a 
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closed-loop system change due to a change in some parameter of the loop transfer func-
tion. Hence, it indicates the stability of the closed-loop system as a function of the varied 
parameter. The method was published by W. R. Evans in 1948 but is used even today as a 
powerful tool for analysis and design of control systems. Since in the root locus method we 
use the system transfer function (specifically, the loop transfer function) and the associated 
“algebraic” approach to draw the root locus, we may consider this method as a frequency 
domain (strictly, Laplace domain) technique. On the other hand, since the closed-loop poles 
are directly related to the system response (in the time domain) and also to time-domain 
design specifications such as settling time, peak time, and percentage overshoot, the root 
locus method can be considered as a time domain technique as well. For these reasons we 
shall discuss the concepts of root locus without classifying the method into either the time 
domain or the Laplace domain.

The root locus starts from the open-loop poles (strictly speaking, loop poles). Hence, as 
the first step, these loop poles must be marked on the complex s-plane.

Consider the feedback control structure, as shown in Figure 8.2.. The overall transfer 
function of this system (i.e., the closed-loop transfer function) is

 
Y s
U s

G s
G s H s

( )
( )

( )
( ) ( )

=
+1

 (8.8)

The stability of the closed-loop system is completely determined by the poles (not zeros) 
of the closed-loop transfer function (Equation 8.8).

Note: Zeros are the roots of the numerator polynomial equation of a transfer function.
The closed-loop poles are obtained by solving the characteristic equation (the equation 

of the denominator polynomial):

 1 + G(s)H(s) = 0 (8.9a)

It follows that the closed-loop poles are (and hence, the stability of the closed-loop 
system is) completely determined by the loop transfer function G(s)H(s). It is clear that the 
roots of Equation 8.9a depend on both poles and zeros of G(s)H(s). Hence, stability of a 
closed-loop system depends on the poles and zeros of the loop transfer function.

Input
u

Output
y

H(s)

G(s)

Feedback
signal

–

Forward
transfer function

Feedback
transfer function

Loop transfer
function = G(s)H(s)

Figure 8.2
A feedback control system.

76868.indb   337 7/8/09   5:12:20 PM



338 Modeling and Control of Engineering Systems

8.3.1 rules for Plotting root locus

In theory, root locus can be plotted by successively varying any one parameter of the sys-
tem and solving the corresponding closed-loop characteristic equation. This is in fact the 
method used in most computer programs for root locus plotting. But in many situations 
an accurate plot is not needed. For preliminary studies it is adequate to roughly sketch the 
root locus, with the exact numerical values being computed only for several critical param-
eter values and root locations. In this section we will summarize the rules for sketching a 
root locus. The principle behind each rule will be explained but for the present purpose it 
is not necessary to rigorously derive these results.

Since the loop transfer function G(s)H(s) completely determines the closed-loop char-
acteristic equation given by Equation 8.9a, it is the transfer function GH that is analyzed 
in plotting a root locus. Equation 8.9a can be rewritten in several useful and equivalent 
forms. First, we have:

 GH = - 1 (8.9b)

Next, since GH can be expressed as a ratio of two monic polynomials (i.e., polynomials 
whose highest order term coefficient is equal to unity) N(s) and D(s), we can write:

 K
N s
D s

KN s D s
( )
( )

= 1 or ( ) ( ) 0- + =  (8.9c)

in which

N(s) = numerator polynomial of the loop transfer function
D(s) =denominator polynomial of the loop transfer function
K = loop gain.

Now since the polynomials can be factorized, we can write:

 K
s z s z s z
s p s p s p

m

n

-( ) -( ) -( )
-( ) -( ) -( ) = -

1 2.

1 2.

1
…
…

 (8.9d)

 or: (s - p1)(s - p2.)…(s - pn + K(s - z1)(s - z2.)…(s - zm) = 0 (8.9e)

in which

zi = a zero of the loop transfer function
pi = a pole of the loop transfer function
m = order of the numerator polynomial = number of zeros of GH

n = order of the denominator polynomial = number of poles of GH.

For physically realizable systems (see Chapters 5 and 6) we have m ≤ n. Equation 8.9c is in 
the “ratio-of-polynomials form” and Equation 8.9d is in the “pole-zero form.” Now we will 
list the main rules for sketching a root locus, and subsequently explain each rule.

Note: It is just one equation, the characteristic equation (Equation 8.9) of the closed-loop 
system, which generates all these rules.

8.3.1.1 Complex Numbers

Before stating the rules we need to understand some basic mathematics of complex num-
bers. A complex number has a real part and an imaginary part. This can be represented 

76868.indb   338 7/8/09   5:12:21 PM



Stability and Root Locus Method 339

by a vector (or a directed line) on the two-dimensional plane formed by a real axis and an 
orthogonal imaginary axis, as shown in Figure 8.3.a. In particular, a complex number r can 
be expressed as

 r = r cosq + jr sinq = rejq (i)

Note:

 1. r denoted by |r
–
| is the magnitude of the complex number (or vector) r

–

 2.. q denoted by ∠r
–
 is the phase angle of the complex number (or vector) r

–

Now for two complex numbers

 r r jr r e j
1 1 1 1 1 1

1= + =cos sinq q q  (ii)

 r r jr r e j
2. 2. 2. 2. 2. 2.

2.= + =cos sinq q q  (iii)

the product is

 
r r r jr r jr

r

1 2. 1 1 1 1 2. 2. 2. 2.= + +

=

( cos sin )( cos sin )q q q q

11 2. 1 2. 1 2. 1 2.r j[(cos cos sin sin ) (cos sin sq q q q q q- + - iin cos )] ( )q q q q
1 2. 1 2.

1 1= +r r e j
 (iv)

and the quotient is

 r
–1/rr

–2. = (r1 cosq1 + jr1 sinq1)/(r2. cosq2. + jr2. sinq2.)

Multiply the numerator and the denominator by (r2. cosq2. - jr2. sinq2.) and simplify. We get:

 

r
r

r
r

j j

r
r

1

2.

1

2.
1 1 2. 2.

1

2.

= + -

=

(cos sin )(cos sin )

[

q q q q

((cos cos sin sin ) (sin cos cosq q q q q q q1 2. 1 2. 1 2. 1+ + -j ssin )] ( )q q q
2.

1

2.

1 1= -r
r

e j

 (v)

r

Im

Re
θ

r = r cosθ + jr sinθ
  = re jθ

0

r

(a)
Im

Re0

r

(b)

a

r – a

Figure 8.3
(a) Complex number represented as a two-dimensional vector. (b) The complex number subtraction.
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Hence:

 1. In a product of complex numbers, the magnitudes multiply and the phase angles 
add.

 2.. In a quotient of complex numbers, the magnitudes divide and the phase angles 
subtract.

Next consider two complex numbers s and a, as shown in Figure 8.3.b. The complex num-
ber s - a is given by the vector line starting from the head of a and ending at the head of s , 
as shown. This can be confirmed by vector addition using triangle of vectors, since:

 a + s - a = s - a (vi)

8.3.1.2 Root Locus Rules

Rule 0 (symmetry): The root locus is symmetric about the real axis on the s-plane.
Rule 1 (number of branches): Root locus has n branches. They start at the n poles of the 
loop transfer function GH. Out of these, m branches terminate at the zeros of GH and the 
remaining (n - m) branches go to infinity, tangential to n - m lines called asymptotes.
Rule 2 (magnitude and phase conditions): The magnitude condition is:

 K

s z

s p

i

i

m

i

i

n

-

-

==

=

∏

∏
1

1

1  (8.10a)

The phase angle condition is:

 ∠ -( )- ∠ -( ) = +
= =
∑ ∑s p s z ri

i

n

i

i

m

1 1

2.p p  (8.10b)

 r = 0, ± 1, ± 2.,…

Rule 3 (root locus on real axis): Pick any point on the real axis. If (#poles – #zeros) of GH to 
the right of the point is odd, the point lies on the root locus.
Rule 4 (asymptote angles): The n - m asymptotes form angles

 q p p
r

r
n m

= +
-
2.

 r = 0, ± 1, ± 2.,… (8.11)

with respect to the positive real axis of the s-plane.
Rule 5 (break points): Break-in points and breakaway points of root locus are where two or 
more branches intersect. They correspond to the points of repeated (multiple) poles of 
the closed-loop system. These points are determined by differentiating the characteristic 
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equation (Equation 8.9c) with respect to s, substituting for K using Equation 8.9c again, as: 
K = - (D(a)/N(s)). This gives

 N s
dD
ds

D s
dN
ds

( ) ( )- = 0  (8.12.)

Note: The root-locus branches at a break point are equally spaced (in angle) around the 
break point.
Rule 6 (intersection with imaginary axis): If the root locus intersects the imaginary 
axis, the points of intersection are given by setting s = jw and solving the characteristic 
equation:

 D(jw) + KN(jw) = 0 (8.13.)

This gives two equations (one for the real terms and the other for the imaginary terms).
Alternatively, the Routh–Hurwitz criterion and the auxiliary equation for marginal sta-

bility, may be used to determine these points and the corresponding gain value (K).
Rule 7 (angles of approach and departure): The departure angle a of root locus, from a GH 
pole, is obtained using:

  a + ∠ at other poles - ∠ at zeros = p + 2.rp (8.14a)

The approach angle a to a GH zero is obtained using

  ∠ at poles - a - ∠ at other zeros = p + 2.rp (8.14b)

Note: Angles mentioned in Rule 7 are measured by drawing a line from the approach/
departure point to the other pole or zero of GH that is considered and determining the 
angle of that line measured from the positive real axis (i.e., horizontal line drawn to the 
right at the other pole or zero).
Rule 8 (intersection of asymptotes with real axis): Asymptotes meet the real axis at the 
centroid about the imaginary axis, of the poles and zeros of GH. Each pole is considered to 
have a weight of  + 1 and each zero a weight of - 1.

8.3.1.3 Explanation of the Rules

Rule 0: Since poles of any real system are either real or occur in complex conjugate pairs, 
the closed-loop poles must fall either on the real axis or as pairs that are symmetric about 
the real axis on the s-plane (on which the root locus is plotted). Hence the locus of these 
(closed-loop) poles must be symmetric about the real axis of the s-plane.
Rule 1: From Equation 8.9e it is clear that when we set K = 0, the closed-loop poles are iden-
tical to the poles of GH, and when we set K → ∞, the closed-loop poles are either equal to 
the zeros of GH or are at infinity. The latter is confirmed by the fact that Equation 8.9e may 
be written as: (s - z1)(s - z2.)…(s - zm) = - (s - p1)(s - p2.)…(s - pn)/K.

Here, as K → ∞, the right hand side = 0 for finite s, or else we must have s → ∞.
Rule 2: This is obtained directly from Equation 8.9d in view of the fact that the magnitude 
of - 1 is 1, and the phase angle of - 1 is p + 2.rp, where r is any integer (±).
Rule 3: This is a direct result of the phase angle condition (Equation 8.10b). Unless Rule 3. 
is satisfied, the right hand side of Equation 8.10b would be an even multiple of p (which is 
incorrect) rather than an odd multiple of p (correct).
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Rule 4: This is also a result of the phase angle condition (Equation 8.10b). But this time 
we use the fact that at infinity (i.e., s → ∞), a root locus and its asymptote are identical, and 
the fact that when s is at infinity the finite values zi and pi can be neglected in Equation 
8.10b. Then any of the angles ∠(s - pi) or ∠(s - zj) will be equal to the asymptote angle qr, and 
hence: ∑ ∠ -( )- ∑ ∠ -( ) = -= =i

n
i i

m
i rs p s z n m1 1 ( )q .

Rule 5: To understand this rule, consider the characteristic polynomial of a closed-loop 
system that has two identical poles. It will have a factor (s - p)2. where p is the double pole 
of the closed-loop system. If we differentiate the characteristic polynomial with respect to 
s, there still will remain a common factor (s - p). This means that, at a double pole, both the 
characteristic polynomial and its derivative will be equal to zero. Similarly, at a triple pole 
(three identical poles), the characteristic polynomial and its first and second derivatives 
will vanish, and so on.

Note: The angle condition (Equation 8.10b) may be used to verify that the root locus 
branches at a break point are equally spaced (in angle) around the break point.
Rule 6: This rule should be clear from common sense because s is purely imaginary on the 
imaginary axis. Furthermore, purely imaginary poles are marginally stable poles. If all the 
remaining poles are stable, we have a marginally stable system in this case.
Rule 7: This rule is also a direct consequence of the phase angle condition (Equation 8.10b). 
Specifically, consider a GH pole pi and a point (s) on the root locus very close to this pole. 
Then the angle ∠(s - pi) is in fact the angle of departure of the root locus from the pole pi. A 
similar argument can be made for the angle of approach to a GH zero zi.
Rule 8: To establish this rule using intuitive notions, consider Equation 8.9e, which can be 
written in the form

 (s - p1)(s - p2.)…(s - pn) = - K(s - z1)(s - z2.)…(s - zm) (8.9f)

Now define,

 s  = point at which asymptotes meet the real axis.

Then, the vector s s-  defines an asymptote line, where s denotes any general point on 
the asymptote.

Note: By definition, at infinity, a root locus branch and its asymptote line become 
identical. Hence, as s → ∞, the asymptote angle is s s-  where s is a point on the root 
locus at infinity.

As s → ∞, we notice that the vector lines (s - pi) and (s - zj) all appear to be identical to
( )s s- , for any finite pi and zj, and they all appear to come from the same point s  on the 
real axis. Hence, Equation 8.9f becomes

 s s K s sn m-( ) = - -( )  (8.15)

as s → ∞ on root locus.
Substitute Equation 8.15 into Equation 8.9f. We get

 s p s p s p s s s z s z sn
n m-( ) -( )… -( ) = -( ) -( ) -( )… --

1 2. 1 2. zzm( )  (8.16)

as s → ∞ on root locus.
Hence, by equating the coefficients of sn-1 terms in Equation 8.16 we have

 p n m s zi

i

n

i

i

m

= =
∑ ∑= -( ) +

1 1
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or

 s
n m

p zi

i

n

i

i

m

=
-( ) -











= =

∑ ∑1

1 1

 (8.17)

Note: Equation 8.17 is indeed Rule 8. Remember here that we need to consider only the 
real parts of pi and zi because the imaginary parts occur as conjugate pairs in complex 
poles or zeros, and they cancel out in the summation.

8.3.2 Steps of Sketching root locus

Now we list the basic steps of the normal procedure that is followed in sketching a root 
locus.

Step 1: Identify the loop transfer function and the parameter (gain K) to be varied in 
the root locus.

Step 2: Mark the poles of GH with the symbol ( × ) and the zeros of GH with the sym-
bol (o) on the s-plane.

Step 3: Using Rule 3. sketch the root locus segments on the real axis.
Step 4: Compute the asymptote angles using Rule 4 and the asymptote origin using 

Rule 8, and draw the asymptotes.
Step 5: Using Rule 5, determine the break points, if any.
Step 6: Using Rule 7 compute the departure angles and approach angles, if 

necessary.
Step 7: Using Rule 6, determine the points of intersection with the imaginary axis, 

if any.
Step 8: Complete the root locus by appropriately joining the points and segments 

that have been determined in the previous steps.

example 8.7

A dc servomotor uses a proportional feedback controller along with a low-pass filter to eliminate 
signal noise. A block diagram of the control system is shown in Figure 8.4. The component transfer 
functions are as given in the diagram.

Position
command

Output
position

Low-pass filter with
proportional control dc motor

–

Feedback path

K
(2s + 1)

1
s (4s + 1)

Figure 8.4
Block diagram of a dc servomotor.
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344 Modeling and Control of Engineering Systems

 a. Sketch the root locus for the closed-loop system indicating numerical values of the break 
points and asymptotes.

 b. Determine the value of gain K when the closed-loop system has two equal poles. What is 
the value of these poles?

 c. Determine the range of K for which the closed-loop system is stable.
 d. What is the frequency at which the system will oscillate when it is marginally stable?

Solution

 a. GH
K

s s s
=

+( ) +( )2 1 4 1
 The three GH poles are at: 0, -1/4 and -1/2.

 The three branches of the root locus will originate from these locations.
 There are no GH zeros. We mark the GH poles on the s-plane, as in Figure 8.5. From Rule 
3, the root locus segments on the real axis are between - ∞ and -1/2, and between -1/4 and 
0, as sketched in Figure 8.5.
 Since there are no GH zeros, the three root locus branches will end at asymptotes 
(infinity).
 The asymptote angles are: p ± 2rp /3 = ± 60° and 180° (Rule 4)
 Centroid s  of the poles is given by 3s  = 0 - 1/4 - 1/2 ⇒ s  = - 1/4
 The three asymptotes meet at this centroid (Rule 8). The asymptotes are drawn as in 
Figure 8.5.
 Closed-loop characteristic equation: s(2s + 1)(4s + 1) + K = 0

 or

 8s3 + 6s2 + s + K = 0 (i)

 Differentiate to determine break points: 24s2 + 12s + 1 = 0 ⇒ s = (-1/4) ± (1/4 3)
 The correct break point = (-1/4) + (1/4 3)
 Note: The solution (-1/4) - (1/4 3) cannot be a break point as it is not on the root locus 
(from Rule 3, as sketched before).
 The complete root locus can be sketched now, as shown in Figure 8.5.

 b. As obtained in (a), the repeated roots are given by the break point

 s = - + = -1
4

1
4 3

0 106.

s-Plane

Im

Re01–
2

1–
4

1 1–
4 4 3

+

60º

Figure 8.5
The root locus of the system in Figure 8.4.
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 Substitute in Equation (i): K = - 8(- 0.106)3 - 6(- 0.106)2 - (- 0.106) = 0.048
 c. Use Routh–Hurwitz criterion on the closed-loop characteristic equation (i).

 Routh array:

s3 8 1
s2 6 K

s1 6 8
6
- K

0

s0 K

 For stability we need K > 0 and 6 - 8K > 0.
 Hence, the stability region is given by: 0 < K < (3/4).

 d.
 Method 1:

 From Routh array, the row s1 becomes null when K = 3/4. The corresponding auxiliary 
equation is given by the previous row: 6s2 + K = 0 ⇒ 6s2 + 3/4 = 0.

 The corresponding imaginary roots are s = ± j (1/2 2).
 These are the points of intersection of the root locus with the imaginary axis, and they 

correspond to the frequency of oscillation at marginal stability.
 Method 2:

 Substitute s = jw in the closed-loop characteristic equation (i) for marginal stability. We get

 8(jw ) 3 + 6(jw ) 2 + jw + K = 0

  ⇒ - 8jw  3 - 6w  2 + jw + K = 0

  ⇒ - 6w  2 + K = 0 and - 8w  3 + w = 0

 ⇒ = =w w2 21
8

6and K

 ⇒ = =w 1
2 2

3
4

and K .

This gives the same result as before.

example 8.8

Consider the feedback control system shown in Figure 8.6. The following three types of control 
may be used:

 a. Proportional (P) control: Gc = K,
 b. Proportional + derivative (PD) control: Gc = K(1 + s),
 c. Proportional + integral (PI) control: Gc = K(1 + 1/s).

–

u y
Controller

Gc(s) 1
(s2 – 2s + 2)

Plant

Figure 8.6
A feedback control system.
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Sketch the root loci for these three cases and compare the behavior of the corresponding con-
trolled systems.

Solution

 a. The loop transfer function GH = K/(s2 - 2s + 2).
 The loop poles are at s = 1 ± j. The two root locus branches will start from them.
 These are marked on the s-plane in Figure 8.7a.
 There are no loop zeros.
 Hence, according to Rule 3, there are no segments of the root locus on the real axis.

Since there are no GH zeros, there are two asymptotes where the root locus branches will 
end (at infinity).

 The asymptote angles are: ± 90° (Rule 4).
 The pole centroid s  = (1 × 2/2) = 1.
 The asymptotes intersect at this centriod (Rule 8), and can be sketched as in Figure 8.7a.
 Note: Even though obvious, the departure angle a at the pole 1 + j can be determined by:

  a + 90° = 180° ⇒ a = 90° (Rule 7)

The complete root locus for this case (P control) is sketched in Figure 8.7a.
It is seen that the system is always unstable.

 b. The loop transfer function GH = K(1 + s)/(s2 - 2s + 2).
 There are two loop poles, at: s = 1 ± j from which the two branches of root locus originate.
 There is a loop zero at: -1 where one of the root locus branches terminates.
 These are marked on the s-plane in Figure 8.7b.

According to Rule 3, the root locus lies on the real axis between - ∞ and - 1, as sketched 
in Figure 8.7b.

 Since there are two loop poles and one loop zero, the root locus has one asymptote with 
asymptote angle 180° (Rule 1 and Rule 4).

 The departure angle a from pole 1+ j is determined by Rule 7:

  a + 90° -q = 180° (where tanq = 1
2

 or q = 26.6°) ⇒ a = 116.6°.

(a)

1

0

Im

Re1

Always unstable

×

×–1

(b)

–1 0
θ

α

θ

α
Im

Re–1 – 5

×

1
×–1

1

2

–2

(c)

–1 0

Im

Re

×

1

×–1

1

1.5
×

Figure 8.7
(a) Root locus for the system with P control. (b) Root locus for the system with PD control. (c) Root locus 
for the system with PI control.
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  Note: The departure angle from pole 1 - j may be determined simply by the symmetry of 
the root locus (Rule 0) or by Rule 7 as:

  a + (- 90°) - (-q ) = 180° (where q = 26.6° as before) ⇒ a = 243.4° or - 116.6°

 Break points (Rule 5):
 Here, N(s) = (1 + s) and D(s) = s2 - 2s + 2.
 Hence, the break point is given by (Equation 8.12):

 (1 + s)(2s - 2) - (s2 - 2s + 2) = 0  ⇒  s2 + 2s - 4 = 0  ⇒  s = -1 ±  5

 The correct break point must be on the root locus (i.e., < - 1). Hence we pick

 s = -1 -  5.

  The complete root locus for the present case of PD control is sketched in Figure 8.7b.
  It is seen that the system is unstable for low values of gain K, starting from 0, but becomes 

stable beyond a certain gain value. This is due to the inclusion of derivative control (or, a 
loop zero on the LHP), which has a stabilizing effect. The gain value and the frequency of 
marginal stability can be determined as usual. In the present case this is a relatively simple 
exercise. The closed-loop characteristic equation (Equation 8.9c) is:

 

K s
s s

s s K s

s K

( )
( )

( ) ( )

(

1
2 2

1 2 2 1 0
2

2

2

+
- +

= - ⇒ - + + + =

⇒ + -- + + =2 2 0) .s K

  Hence, for stability, we must have K > 2. The gain for marginal stability is K = 2. The corre-
sponding characteristic equation is s2 + K + 2 = 0, and the resulting marginally stable closed-
loop poles are s = ± j2

 c. The loop transfer function GH = K(1 + s)/s(s2 - 2s + 2).
Now there are three loop poles, at: s = 0 and 1 ± j from which the three branches of root 

locus originate.
 There is a loop zero at -1 where one of the root locus branches terminates.
 These are marked on the s-plane in Figure 8.7c.

According to Rule 3, the root locus lies on the real axis from 0 to -1, as sketched in Figure 
8.7b.

Since there are three loop poles and one loop zero, the root locus has two asymptotes with 
asymptote angles = ±90° (Rule 1 and Rule 4).

 The pole centroid s  = (1 × 2 - 1 × (- 1))/3 - 1 = 1.5.
 The asymptotes intersect at this point (Rule 8), as sketched in Figure 8.7c.
 The departure angle a from the pole 1 + j is determined by:

  a + 90° + 45° -q = 180° where tanq = 1
2

 or q = 26.6° ⇒ a = 71.6°

  Note: As usual, the departure angle from the other (conjugate) pole 1 - j is determined by 
symmetry as: a = - 71.6°.

 The complete root locus for the case with PI control is sketched in Figure 8.7c.
It is seen that the system is always unstable. In fact, the system is more unstable than with 

P control alone, and becomes worse as the gain K is increased. This is due to the pres-
ence of the integral (I) action in the controller, which has a destabilizing effect.
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example 8.9

Newton’s second law suggests that a very approximate model for an unconstrained rigid body is 
a double integrator. Aircraft, satellites, guideway vehicles, and robotic manipulators, in their direc-
tion of motion, can be crudely approximated by this model. Consider position feedback control 
of such a system. A compensator is used in the forward path of the control system as shown in 
Figure 8.8. The controller gain K includes gain in other components such as the plant, sensors, 
and the compensator. The parameters p and z, which determine the compensator pole and zero, 
are assumed positive. We are interested in studying the behavior of the control system for differ-
ent values of the controller gain. This is easily accomplished by sketching the root locus of the 
system. Show that:

 a. There is only one break point if p < z
 b. There is only one break point if z < p < 9z
 c. There are two break points if p = 9z
 d. There are three break points if p > 9z

Sketch the root locus for each of the four cases mentioned above and discuss stability of the 
closed-loop system in these cases.

Solution

The loop transfer function for this example is

 GH
K s z
s s p

=
+( )
+( )2

 (i)

The parameter that is varied in the root locus is the loop gain K. Before sketching the root locus, 
let us examine the possible break points, using Rule 5. Since

 N(s) = s + z (ii)

and

 D(s) = s2(s + p) (iii)

we have the condition for break points:

 (s + z)(3s2 + 2sp) - s2(s + p) = 0

which simplifies to:

 s[2s2 + (p + 3z)s + 2pz] = 0 (iv)

Position
response

Position
command

–

1
s2K

Controller
Compensator

(s + z)
(s + p)

Second law model for
transit vehicles,

satellites, robots, etc.

Figure 8.8
Feedback control of unconstrained motion of a mechanical device.
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We observe from Equation (iv) that the point s = 0 is always a break point. The remaining break 
points are obtained by solving:

 2s2 + (p + 3z)s + 2pz = 0 (v)

which gives

 s p z p z pz= - +( )± +( ) -1
4

3
1
4

3 16
2

 (vi)

The number of possible break points will depend on the sign of the discriminant—the expres-
sion under the square root sign: ∆ = (p + 3z)2 - 16pz

This expression can be expanded and factorized as:

  ∆ = (p - z)(p - 9z). (vii)

Five cases can be identified for examining the sign of ∆. However, since the case p = z provides 
a “pole-zero cancellation” in the compensator, it is not considered here. The remaining four cases 
correspond to those stated in the problem.

First, note from Equation (vi) that the two roots are always negative because the square root term 
is always less than (p + 3z). Now, let us examine the four possible cases.

Case 1: p < z

In this case we have ∆ > 0 and we get two real (and negative) roots from Equation (vi). We can 
show that these two points do not lie on the root locus and, hence, are not valid break points. First 
note from Step 3 of root locus sketching that the root locus segment on the real axis extends from 
- p to - z only. Now in the present case we have

 z = rp with r > 1 (viii)

Then from the coefficient of s0 in Equation (v) we note that the product of the roots is pz = rp2. 
If one of these roots is to the right of - p then, the other root will be to the left of - rp (i.e., to 
the left of - z) and consequently both roots fall outside the root locus segment. Therefore, it is 
adequate to show that one root of Equation (v) falls outside the root locus segment on the real 
axis, because then the other root also will fall outside the root locus, in the present case. Now 
substitute Equation (viii) into Equation (vi) with:

 r = 1 +d, d > 0 (ix)

We have:

 s p
p p= - - ± +3

4 4
9 82d d d  (x)

The positive square root in Equation (x) corresponds to a root that is to the right of - p. Hence, 
the other root will be to the left of - z and both roots are not acceptable as break points. In this 
case the only valid break point is s = 0. The asymptote angles are 90° and - 90° (Step 4) and the 
asymptote origin is

 s
p z

r
p p= - +

-( ) = -( ) = >
3 1

1
2 2

0d  (xi)

on the positive real axis. Hence, the asymptotes are on the RHP. The root locus for this case is 
sketched in Figure 8.9a.
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In the present case, the closed-loop system is unstable for all values of gain K because two 
branches of the root locus are entirely on the RHP. This is to be expected because the plant 
(double integrator) is marginally stable (actually unstable—see Table 8.1) and the compensator is 
a lag compensator (p < z), which has a destabilizing effect on systems.

Note: Further details on lag compensators are found later this chapter and in Chapter 9.

Case 2: z < p < 9z

In this case, ∆ as given by Equation (vii) will be negative. Hence, the roots of Equation (v) will be 
complex. It follows that the only possible break point in this case is s = 0, as in the previous case. 
The asymptote angles are 90° and - 90° as before. Also, with z = rp where r < 1, we have:

 s r
p= -( ) <1
2

0  (xii)

(a) p < z (r >1): Im

Re

(r – 1)p

0–p–z
(–rp)

(b) z < p < 9z (r <1): Im

Re–(r – 1)p 0–p –z

(c) p = 9z: Im

Re0–p
(–9z)

–z

(d) p > 9z: Im

Re0–p –z–4z

Figure 8.9
Root loci for the system in Figure 8.8. (a) p < z; (b) z < p < 9z; (c) p = 9z; (d) p > 9z. Note: z = rp.
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This indicates that the asymptotes are on the left half plane.
Note: s could lie anywhere from 0 to - p/2, and could be on or outside the root locus segment 

on the real axis. What is shown in Figure 8.9b is the situation when s  is to the right of - z.
The system is stable in the present case, which is to be expected because z < p corresponds to 

a lead compensator.
Note: Further details on lead compensators are found later in this chapter and in Chapter 9.

Case 3: p = 9z

In this case, ∆ = 0 and we have two identical roots for Equation (v) at:

 s p z z= - +( ) = -1
4

3 3

Since this point falls within the root locus segment on the real axis (i.e., between - z and - p) this 
is an acceptable break point. Furthermore, if the break point condition gives two identical roots, the 
characteristic equation has to have three identical roots (at s = - 3z). Hence, in this case, there are 
two break points, one at s = 0 (two identical roots) and the other at s = - 3z (three identical roots).

The origin (point of intersection) of the asymptotes is:

 s
p z z z

z= - +
-

= - + = -
( )3 1

9
2

4

The corresponding root locus is sketched in Figure 8.9c. In this case as well the system is stable 
for all values of K, which is to be expected because we have a lead compensator.

Note: Further details on lead compensators are found later in this chapter and in Chapter 9.

Case 4: p > 9z

In this case we note from Equation (vii) that ∆ > 0. Hence, we get two real roots for Equation (v). We 
can show using the same arguments as in Case 1 that both these roots are valid break points, both 
roots falling between - z and - p. It follows that there are three break points in this case. The root 
locus for this case is shown in Figure 8.9d. Once again the system is stable, for we are employing 
a lead compensator.

This example cautions that one should not rush to sketch a root locus without using complete 
information. In particular, one should obtain the asymptote origin and the break points before 
sketching a root locus. Depending on the nature of this information, the root loci can vary signifi-
cantly even when the system transfer functions are very similar.

Another observation we can make from the present example is that a dominant zero on the LH) 
will tend to attract the root locus to the LHP (a stabilizing effect), and a dominant pole will tend to 
push the root locus away from the LHP (a destabilizing effect).

example 8.10

Sketch the root locus for a system with the loop transfer function:

 GH
K

s s s s
=

+ + +( )( )2 2 22

Discuss the nature of the branches of the root locus at the break point.

Solution

This example may be solved manually in a straightforward manner. First we note the following.
There are four GH poles, at: 0, - 2, - 1 ± - j.
There are no GH zeros.
The root locus will be on the real axis between - 2 and 0.
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There will be four asymptotes, with asymptote angles 45°, 135°, 225°, and 315°.
The point of intersection of the asymptotes is -1 on the real axis, as determined by the centroid 

condition.
It can be shown that there is a break point at -1, where there will be eight branches of the root 

locus equally spaced at 45 .̊
Here we use MATLAB® Control Systems Toolbox (see Appendix B) to plot the root locus, as 

shown in Figure 8.10. The MATLAB code used for this purpose is:

 % ---Root locuts plot GH = K/(s(s + 2)(s^2 + 2s + 2))---
 num = [0 0 0 0 1];
 den = [1 4 6 4 0];
 rlocus(num,den)
 title(‘Root locus plot GH = K/(s(s + 2)(s^2 + 2s + 2)’)
 xlabel(‘Real Axis’)
 ylabel(‘Imagne Axis’)

example 8.11

Consider the feedback control system shown in Figure 8.11. The plant transfer function is

 G s
s sp( )

( )
=

+ -
1

22

–3.5 –3 –2.5 –2 –1.5 –1 –0.5 0 0.5 1 1.5
–2.5

–2

–1.5

–1

–0.5

0

0.5

1

1.5

2

2.5
Root locus plot GH=K/(s(s+2)(s2+2s+2)

Real axis

Im
ag

ne
 ax

is

Figure 8.10
Root locus plot obtained using MATLAB.

–

Controller
Gc(s)

Plant
Gp(s)

Input
u Output

y

Figure 8.11
A feedback control system.
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 a. Is the plant stable?
 What are its poles?
 What are its zeros?
 The controller transfer function is Gc(s) = K/s(s2 + 2s + 1).

 b. What kind of a controller is this? Explain.
 What are it’s poles?
 What are it’s zeros?

 c. Explaining all your steps, sketch the root locus of the given feedback control system as K 
changes from 0 to ∞.

 You must indicate the starting and the ending values of all the branches of the root locus.
 d. Determine the value of K when the closed-loop system becomes marginally stable. 

Determine the values of the corresponding marginally stable poles.

Solution

 a. The transfer function of the plant is:

 G s
s sp( )

( )
=

+ -
1

22
 (i)

 The characteristic equation of the system is: s2 + s - 2 = 0.
 Since one coefficient is negative (and the rest positive), it can be determined even before 

solving the characteristic equation that the system is unstable.
 The poles of the plant are given by the solution of: s2 + s - 2 = (s + 2)(s - 1) = 0.
 They are: s = - 2 and s = 1.
 From the numerator of Equation (i) it is clear that the system has no zeros.

 b. The controller transfer function is

 G s
K
s

s sc ( ) ( )= + +2 2 1  (ii)

 This may be expressed as: Gc(s) = K (2 + s + 1/s).
 Clearly, this is a PID controller.
 From Equation (ii) it is noted that the controller has a pole at s = 0. 
 The zeros are given by the roots of the numerator equation: 

 s2 + 2s + 1 = (s + 1)2 = 0

 It is seen that here are two equal zeros at -1.
 c. From the block diagram in Figure 8.11 it is clear that the loop transfer function of the system 

is GH = GcGp. From Equations (i) and (ii), we have:

 GH
K s

s s s
= +

- +
( )

( )( )
1

1 2

2

 (iii)

 We observe the following:
 (i) The loop transfer function GH has three poles at 0, 1, and - 2. The three branches of the 

root locus start from these points.
 (ii) The GH has two zeros (identical) at -1. Two branches of the root locus end at this 

point.
 (iii) The root locus will have 3 - 2 = 1 asymptote, whose asymptote angle is p ± 2rp /(3 - 2) = ± p.
  Hence, the third branch of the root locus will go to - ∞.
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 (iv) From the condition of odd [#poles – #zeros] to the right, we note that on the real axis, 
the segment from s = 1 to 0 and the segment from s = - 2 to - ∞ are on the root locus.

 (v) Break points correspond to repeated roots. They are given by the roots of N(dD/ds)–
D(dN/ds) = 0 where N = (s + 1)2 is the numerator polynomial of Equation (iii) and D = s(s - 1)
(s + 2) is the denominator polynomial of Equation (iii). This gives

 (s + 1)2 × (3s2 + 2s - 2) - (s3 + s2 - 2s) × 2(s + 1) = 0

 or, (s + 1)[(s + 1)(3s2 + 2s - 2) - 2(s3 + s2 - 2s)] = 0

 or, s = - 1 and (s + 1)(3s2 + 2s - 2) - 2(s3 + s2 - 2s) = 0.

  The former root corresponds to the obvious break-in point at the double zero. The 
latter equation gives the remaining break points (in fact, from the root locus sketch, it 
should be clear that there is only one other break point, and it has to occur between 
0 and 1) correspond to the roots of s3 + 3s2 + 4s - 2 = 0 From MATLAB® (see Appendix 
B), the three roots are: 1.689 ± j1.558 and 0.379. The only valid break point is the real 
root, which is between 0 and 1. This is given by s = 0.379. The corresponding gain value 
(K) is obtained by substituting this break point value (s = 0.379) into the characteristic 
equation:

 1 1
1

1 2
0

2

+ = + +
- +

=GH
K s

s s s
( )

( )( )
.

  The gain value at the break point is K = 0.294.
 (vi) The approach angle (to the double zero) qa is obtained using the angle condition 

p + p - 2qa = p + 2rp, or qa = ± p /2. This also follows from the symmetry of a root locus 
about the real axis.

 (vii) The break point angle must be ± p /2, by the requirement of equal angular spacing of the 
breaking branches (see Rule 5) or in view of the symmetry of a root locus about the real 
axis and the continuity of the slope of a root locus branch.

  From this information, the root locus may be sketched, as shown in Figure 8.12a.
  The root locus plot obtained using the following MATLAB code (see Appendix B) is 

shown in Figure 8.12b:

(b) Root locus
1
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0.2

0
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–4 –3.5 –3 –2.5 –2 –1.5 –1 –0.5
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0 0.5 1
–1

(a)

× ×
–2 –1

×
0

Im

Re

0.379

s-plane

1

–0.749

0.749 System: SYS
Gain: 1.28

Pole: –0.000793 + 0.749i
Damping: 0.00106

Overshoot (%): 99.7
Frequency (rad/sec): 0.749

System: SYS
Gain: 0.294
Pole: 0.379

Damping: –1
Overshoot (%): 0

Frequency (rad/sec): 0.379

Figure 8.12
The root locus of the system. (a) Manual sketch. (b) MATLAB plot.

76868.indb   354 7/8/09   5:12:40 PM



Stability and Root Locus Method 355

% File name: plotlocus.m
% Aug 15, 2008
% Mech466 solutions.
% ( 1 )
% This is the Matlab m-file used to plot 
% root locus of: 
%       K(s + 1)̂ 2
% GH = ------------
%      s(s-1)(s + 2)
clear all
% Specify transfer function directly as 
% rational expressions in s (Laplace variable).
  s = tf(‘s’); 
% Create the continuous-time transfer function SYS
  SYS = (s + 1)̂ 2/(s*(s-1)*(s + 2))
% Compute and plot the root locus of the SISO LTI model SYS.
  rlocus(SYS)
% ( 2 ) 
% Computes the roots of the polynomial whose coefficients
% are the elements of the vector A
  A = [1 3 4 -2];
  roots(A)

 d. The points of intersection of the root locus with the imaginary axis correspond to marginally 
stable closed-loop poles. Their locations and the corresponding value of the gain K may be 
obtained by the Routh array method, as given below.

  Closed-loop characteristic equation is given by 1 + GH = 0. Now in view of Equation (iii) 
we have:

 1 1
1

1 2
0

2

+ = + +
- +

=GH
K s

s s s
( )

( )( )
  s s s K s( )( ) ( )- + + + =1 2 1 02  

 s3 + s2 - 2s + K(s2 + 2s + 1) = 0  s3 + (K + 1)s2 + 2(K - 1)s + K = 0

Routh array:

s3 1 2(K - 1)
s2 (K + 1) K

s1 2 1
1

2( )K K
K
- -
+

0

s0 K

The third row becomes null when: 2(K2 - 1) - K = 0     2K2 - K - 2 = 0,

whose roots are: K = (1 ± 1 + 4 × 2 × 2)/2 × 2 = 1 ± 17/4.
The only valid root (since K varies from 0 to ∞) is: K = (1 +  17)/4 = 1.281.
For stability we must have K > (1 +  17)/4.
Note: This is a rare example where increasing the gain results in stability. This is caused by the 

double zero, which attract the unstable root locus branches to the left half plane (toward - 1), there 
by producing stability.

Under marginally stabile conditions (i.e., K = (1 +  17)/4 = 1.281), the corresponding marginally 
stable poles are given by the auxiliary equation:

 (K + 1)s2 + K = 0

76868.indb   355 7/8/09   5:12:41 PM



356 Modeling and Control of Engineering Systems

This gives the imaginary poles

 s j
K

K
j j= ±

+
= ± +

+ +
= ±

1
1 17 4

1 17 4 1
0 749

( )/
( )/

. .

8.3.4 Variable Parameter in root locus

The variable parameter in a root locus does not necessarily have to be the loop gain. Some 
other parameter (e.g., a time constant) may be put in the required form of a loop transfer 
function GH, with the parameter factored out, for the purpose of plotting the root locus. As 
a related point it should be clear that a root locus corresponds to a unique closed-loop char-
acteristic equation, it does not correspond to a unique loop transfer function. Specifically, 
two or more different G and H combination will result in the same closed-loop character-
istic equation and hence the same root locus. We will illustrate this by an example.

example 8.12

Consider the feedback control system shown in Figure 8.2. You are given two cases of this system 
with two different loop transfer functions, as follows:

 System 1: GH
K

s s s
=

+ +( )( )2 4

 System 2: GH
s K

s s s
= +

+ +
( )

( )2 6 7
.

 a. For System 1 determine the characteristic equation of the closed-loop system.
 b. For System 2 determine the characteristic equation of the closed-loop system.
 c. For System 1 determine the root locus (of course, of the closed-loop system) as the param-

eter K changes from 0 to ∞.
 You must by first determine the:

 (i) Segments of the root locus on the real axis.
 (ii) Angles of the asymptotes and the location where the asymptotes intersect the real axis.
 (iii) Break points.
 (iv) Points at which the root locus intersects with the imaginary axis, and the corresponding 

value of K (by using the Routh array method).
 (v) The range of values of K for which the closed-loop system is stable.
 d. For System 2 determine the root locus (of course, of the closed-loop system) as the parameter 

K changes from 0 to ∞.

Solution

 a. Characteristic equation: 1 + GH(s) = 0  1 + (K/s(s + 2)(s + 4)) = 0 

 s(s + 2)(s + 4) + K = 0  s(s2 + 6s + 8) + K = 0  s3 + 6s2 + 8s + K = 0

 b. Characteristic equation: 1 + (s + K/s(s2 + 6s + 7)) = 0  s(s2 + 2s + 7) + s + K = 0 

 s3 + 6s2 + 7s + s + K = 0  s3 + 6s2 + 8s + K = 0

 Note: The results in (a) and (b) are identical. Hence the two systems have exactly the same 
closed-loop poles as a function of K, and hence identical root loci, as K is varied from 0 to ∞.
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 c. GH
K

s s s
=

+ +( )( )2 4
 #poles n = 3; #zeros m = 0

 (i) The segment s = 0 to - 2 and s = - 4 to - ∞ are on the root locus, because there are an 
odd number of poles-zeros to the right of these segments.

 (ii) Asymptote angles = p + 2rp /n - m for r = 0, ± 1,…

  = p p p p+ = ±2
3

r
3

and

 The point of intersection of the asymptotes on the real axis is s which is given by

 s
p z
n m

i i= -
-

= - - = -Σ Σ 0 2 4
3

2

 (iii) Break points are given by the repeated poles of the closed system  ⇒ 

 N
dD
ds

D
dN
ds

- = 0

 where 
N s
D s s s s

( )
( ) ( )( )

=
+ +

1
2 4

 or: N(s) = 1 and D(s) = s3 + 6s2 + 8s

 Hence: 1 6 8 03 2× + +[ ] =d
ds

s s s   3s2 + 12s + 8 = 0

 Roots are: s = - ± - × ×
×

= - ±12 12 4 3 8
2 3

2
2
3

2

  The correct break point must be on the root locus. Hence from Equation (i), the break 
point = - 2 + (2/ 3) = - 0.845.

 (iv) Closed-loop characteristic equation:

 s3 + 6s2 + 8s + K = 0

Routh array:

s3 1 8
s2 6 K

s1 6 8 1
6

× - ×K
0

s0 K

The auxiliary equation, which is obtained when the row corresponding to s1 has all zeros (i.e., 
when K = 6 × 8 = 48) is: 6s2 + K = 0  6s2 + 48 = 0  s = ± j2 2.

These are the purely imaginary closed-loop poles. Hence, the root locus intersects the imagi-
nary axis at s = ±j2 2.

This occurs when K = 48.
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 (v) From the Routh array, for stability we must have 48 - K > 0 and K > 0. Hence the stability 
region is given by: 0 < K < 48

  With these results, the root locus for System 1 may be sketched as in Figure 8.13.
 d. Since the closed-loop characteristic equations of the two systems are identical, as a function 

of K (see (a) and (b)), their root loci must be identical, by definition.

8.4 Stability in the Frequency Domain

The concept of transfer function and frequency domain models have been discussed in 
Chapter 5 and response analysis in the frequency domain has been studied in Chapter 6. 
Some related concepts of Laplace and Fourier transforms are outlined in Appendix B. Now 
we will specifically use the concept of frequency transfer function (FTF) (or, frequency response 
function [FRF]), where the independent variable is frequency w radians/s or f cycles/s (or 
Hertz), to develop some useful techniques in the stability analysis of control systems. In 
particular, we will show that:

 1. Peak magnitude (and associated Q-factor and half-power bandwidth)
 2.. PM
 3.. GM

May be used as measures of relative stability, in the frequency domain. First we will 
summarize some fundamentals of FTF, which we have covered in Chapters 5 and 6.

× ××

Im

Re

– 4 – 2

3
2–2 +

22

–2 2

60º

s-plane 

Figure 8.13
Root locus of System 1 and System 2..
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8.4.1 response to a Harmonic input

Consider an LTI system, given in the time domain (linear ordinary differential equation 
with constant coefficients) by

 a
d y
dt

a
d y
dt

a y b
d u
dt

bn

n

n n

n

n m

m

m m+ + + = +-

-

- -1

1

1 0 1
dd u
dt

b u
m

m o

-

-
+ +

1

1
 . (8.18)

The system parameters (coefficients) a0, a1,…, an and b0, b1,…, bm are constant (time invari-
ant) by definition. The differential equation (Equation 8.18a) is an input–output model 
where u = system input, and y = system output. The order of the system is n.

The system transfer function (i.e., output-input ratio, in the Laplace domain), is

 G s
Y s
U s

b s b s b
a s a s
m

m
m

m

n
n

n
n

( ) = ( )
( ) =

+ + +
+

-
-

-

1
1

0

1


-- + +1

0 a
 (8.18b)

Note that when we know Equation 8.18a we can immediately write down Equation 8.18b, 
and vice versa. This confirms that the two representations (Equations 8.18a and 8.18b) are 
completely equivalent.

Suppose that a sinusoidal input of amplitude uo and frequency w is applied to the system 
(Equation 8.18a). This input may be represented in the “complex” form

 u = uoejwt = uo(cos wt + j sin wt) (8.19)

Actually what we are applying to the system is the real part of the right hand side of 
Equation 8.19. But in view of the relative ease of manipulating an exponential function in 
comparison to a sinusoidal function, we use the entire Equation 8.19 and then at the end 
take the real part of the result. The simplicity of analysis by using the exponential function 
stems particularly from the fact that d/dtest = sest and hence, after differentiation, the origi-
nal exponential function remains (albeit with a multiplication factor). This is easier than, 
say, using d/dtsin wt = w coswt and d/dt cos wt = - w sin wt where the function type changes 
on differentiation.

It is reasonable to assume (and, in fact, it can be verified through experiments and prac-
tical observations of real systems) that when a harmonic excitation is applied to a system 
(strictly, to a “linear” system) the response after a while becomes harmonic as well, oscil-
lating at the same frequency (Note: If experiments are carried out to observe this property, 
the system has to be “stable” as well). The amplitude of the resulting response will not 
be the same as that of the input, in general. Hence, the steady-state harmonic response of 
Equation 8.18a may be expressed as

 y = yoejwt (8.2.0a)

We will show later that not only the amplitude but also the “phase” of the output will be 
different from that of the input. Now substitute Equations 8.19 and 8.2.0 into Equation 8.18a 
and cancel the common term ejwt which is not zero for a general value of t. Then we have

 y
b j b j b

a j a j
o

m
m

m
m

n
n

n

= ( ) + ( ) + +

( ) + ( )
-

-

-

w w

w w
1

1
0

1


nn o

a
u- + +











1

0
 (8.2.1a)
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In view of Equation 8.18b, we note that what is in the square brackets is indeed the 
transfer function G(s) with s substituted by jw. This is the familiar FTF (or, FRF in the 
terminology of mechanical vibration) as discussed in Chapter 5. Hence,

 yo = G(s)|s = jw uo (8.2.1b)

 or yo = G(jw)uo (8.2.1c)

The amplitude uo of the input is clearly a real value. Also, G(jw) is a complex number 
in general, which has a real part and an imaginary; or, a magnitude and a phase angle. 
Suppose that this magnitude is M and the phase angle is f. Then

 Magnitude of G(jw) = |G(jw)| = M (8.2.2.a)

 Phase angle of G(jw) = ∠G(jw) =f (8.2.2.b)

Furthermore,

 G(jw) = M cosf + jM sin f = Mejf (8.2.3.)

Substitute Equation 8.2.3.c into Equation 8.2.1c, and use Equation 8.2.0. We get

 y = uoMej(wt +f) (8.2.0b)

The result (Equation 8.2.0b) states, in view of Equation 8.19 that for an input of uo cos wt 
the output will be uoM cos(wt +f) and similarly for an input of uo sin wt the output will 
be uoM sin (wt  +f). In summary, when a harmonic input is applied to the system having 
transfer function G(s), we have the following:

 1. The output will be magnified by magnitude |G(jw)|.
 2.. The output will have a phase lead equal to ∠G(jw), with respect to the input. In fact 

∠G(jw) is typically a negative phase lead. Hence the output usually lags the input, 
as a result of system dynamics.

8.4.2 Complex Numbers

A complex number is represented by a magnitude and a phase angle or a real part and 
an imaginary part, on the complex plane (where the horizontal axis is the real axis and 
the vertical axis is the imaginary axis). Clearly, complex numbers are important in the 
response analysis in the frequency domain. Some related results have been summarized 
previously, under the root locus method. In particular:

 1. In a product of complex numbers, the magnitudes multiply and the phase angles 
add.

 2.. In a quotient of complex numbers, the magnitudes divide and the phase angles 
subtract.

Furthermore, in dealing with the phase angle of a complex number, it is critical to know 
the proper quadrant on the complex plane where the number is located, as indicated in 
Figure 8.14.
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In particular, note the following:
 3.. Proper quadrant of a complex number (correct phase angle) is determined by the 

signs of the real part and the imaginary part of the complex number.
 4. An integer multiple of 3.60° may be added to or subtracted from a complex number 

without consequence.

8.4.3 resonant Peak and resonant Frequency

Resonant peak = peak point of a transfer function magnitude curve.
Resonant frequency = frequency at resonant peak.
Peak magnitude = value of the transfer function magnitude at resonance.

A second-order system (simple oscillator) can have only one resonant peak while higher 
order systems can have many resonant peaks and resonant frequencies.

example 8.13

Consider the mass-spring system shown in Figure 8.15a.
By Newton’s second law, the equation of motion to a forcing input u is given by:

 my ky u+ =  (i)

where u denotes the force input applied to the mass m, and y denotes the displacement output 
(response) of the mass. The spring constant (stiffness) is k. The overall system transfer function of 
the system (i.e., y/u in the Laplace domain) is

 G s
ms k

( ) =
+

1
2

 (ii)

Quadrant 1

0° < θ < 90° or

–360° < θ < –270° 

Quadrant 2

90° < θ < 180° or

–270° < θ < –180° 

Quadrant 3

180° < θ < 270° or

–180° < θ < -90° 

Quadrant 4

270° < θ < 360° or

–90° < θ < 0°

Imaginary
axis

Real
axis0

Figure 8.14
Phase angles corresponding to the four quadrants.
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Suppose that the forcing function is harmonic, as given by:

 u = uo sin wt (iii)

Note that

 G j
k m

w
w

( ) =
-

1
2

 (iv)

Hence:

 Magnitude M G j
k m

= ( ) =
-

 w
w
1

2
 (v)

and

 Phase f w w= ∠ ( ) = <G j k m0 for

 = - >p wfor k m  (vi)

The harmonic response of the system (in steady-state) is (see Chapter 6):

 y = uo M sin (wt +f) (vii)

It is clear from Equation (vi) that when w < ( / )k m  the response will be in phase with the input, and 
when w > ( / )k m  the response will be 180° out of phase with the input. The phase will switch from 
0° to 180° at the specific excitation frequency w =  ( / )k m .

Furthermore, the response amplitude will increase with the excitation frequency, up to the 
frequency w =  ( / )k m . Beyond that, the response amplitude will decrease with the excitation fre-
quency. In particular, at w =  ( / )k m  the response amplitude will be infinity. This is called a reso-
nance and corresponding frequency is called resonant frequency. These results are shown in the 
plots of magnitude |G(jw )| and phase lead ∠G(jw ) versus frequency w , in Figure 8.16.

Note: An important observation can be made about the system in this example, with reference 
to Figure 8.15b. The system has a natural feedback as a result of the spring, as shown (which can 
be established by writing Equation (i) in the form u - ky = my). According to this model then, the 
forward transfer function is:

 G s
ms

( ) = 1
2

 (viii)

and the feedback transfer function is:

 H(s) = k (ix)

(a)

m

k

u = uo sinωt

y

(b)

Input
(force)

u

Output
(displacement)

y
1

ms2

Spring
k

Natural
feedback

–

Figure 8.15
(a) An undamped simple oscillator. (b) Block diagram representation with a natural feedback.
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The overall (closed-loop) transfer function is:

 G s
G
GH ms k

( ) =
+

=
+1

1
2

 (x)

which is the same as Equation (ii). The loop transfer function is:

 GH
k

ms
=

2
 (xi)

It is GH that should be used to sketch the root locus of this simple oscillator. In view of the double 
pole at the origin (s = 0) in the loop transfer function (xi) we notice that the root locus falls entirely 
on the imaginary axis for any k. Hence, the system is always marginally stable.

8.4.4.1 Damped Simple Oscillator

If we include linear viscous damping in the oscillator shown in Figure 8.15a, the resulting 
damped simple oscillator has the transfer function (see Chapters 5 and 6):

 G s
s s

n

n n
( ) =

+ +






w
zw w

2.

2. 2.2.
 (8.2.4a)

where wn =  ( / )k m  = undamped natural frequency; z = b/2. k m/  damping ratio.
The FTF, FRF is given by:

 G j
s s j

n

n n s j

n

n

w w
zw w

w
w ww

( ) =
+ +







=
- +=

2.

2. 2.

2.

2. 2.2. 2.2.zw wn
 (8.2.4b)

Magnitude
|G( jω)|

Excitation
frequency ω

k

k m
0

Phase
∠G( jω)

0

–π

Figure 8.16
The magnitude and phase plots of an undamped simple oscillator.
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Its magnitude and phase are sketched in Figure 8.17.
Denominator of Equation 8.2.4b: ∆ = - +w w zw wn nj2. 2. 2.
And ∆ 2. 2. 2. 2. 2.

2.= -( ) + ( ) =w w zw wn n D
The resonant peak corresponds to minimum value of D, which is obtained by:

 
dD
d n nw

w w w zw w= -( ) -( ) + ( ) =2. 2. 2. 2. 02. 2. 2.

By solving this we get:

 Resonant frequency: w z w wr n n= - ≈1 2. 2. for low damping  (8.2.5)

Note: In the result (Equation 8.2.5) we must have z < 1/ 2.  in order to get a valid resonant 
frequency.

The resonant peak is obtained by substituting the resonant frequency (Equation 8.2.5) 
into Equation 8.2.4b and finding the magnitude of the result. We get

 Resonant peak: G j
r

w
z zw w( ) =

-=
1

2. 1 2.
 (8.2.6a)

–90

–180

0

Frequency ω

Phase lead (deg)
∠G( jω)

ωr ωn
ω

Amplification
(magnitude)

|G( jω)|

1
2ζ

1
2ζ 1–ζ2

1.0

0

Figure 8.17
The magnitude and phase plots of a damped simple oscillator.
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For small values of damping (i.e., z<< 1.0) we can approximate Equation 8.2.6a as the mag-
nitude at the undamped natural frequency:

 G j
n

w
zw w( ) ==
1

2.
 (8.2.6b)

Note: Phase of G(jw) at w = wn is - p/2..

8.4.3.2 Peak Magnitude

Some important parameters for the damped oscillator, in the frequency domain are indi-
cated in Figure 8.17. In particular note the resonant frequency and the corresponding peak 
magnitude, which depends only on the damping ratio z. Since damping is a measure of 
relative stability, the peak magnitude also may be used as a measure of relative stability, in 
the frequency domain.

8.4.4 Half-Power bandwidth

The half-power bandwidth is defined as the frequency interval (bandwidth) at (1/ 2.) 
 × resonant peak in the magnitude curve |G(jw)|.

Note: Since (Voltage)2. ∝ Power, we have: (1/2.) × Power  ⇒ (1/ 2.) × Voltage. This is the 
rationale for the terminology.

8.4.4.1 Damped Simple Oscillator

Let us determine the half-power bandwidth corresponding to the damped simple oscilla-
tor (Equation 8.2.4). See Figure 8.18. By definition, we solve for w in:

 1
2.

1
2. 2.

1

1 2.

2.

2. 2. 2.z
w

w w zw w w
w

z w
w

=
- +

=
- 




+

n

n n

n n

j
j






.

First we assume that z < 1/ 2. . Strictly speaking, we should assume that z < 1/(2. 2.), as 
will be clear from the final result. By squaring the previous equation we have:

 1
2. 4

1

1 42. 2. 2. 2. 2.×
=

-[ ] +z zr r

where r is the normalized (nondimensionalized) excitation frequency given by: r = w/wn.

 Hence: r r r r r4 2. 2. 2. 2. 4 2. 2. 2.

0

2. 1 4 8 2. 1 2. 1 8- + + = → - -( ) + -( )
>

z z z z
  

= 0. (i)

Now assume that z 2. < 1/8, which means z < 1/(2. 2.). Otherwise, we will not get two posi-
tive roots for r2. in Equation (i). Solution of Equation (i) for r2. will give two roots r1

2.  and r2.
2.  
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for r2.. Next, assume that r r2.
2.

1
2.> . Now compare r r r r2.

1
2. 2.

2.
2. 0-( ) -( ) =  with Equation (i). We 

have

 Sum of roots: r r2.
2.

1
2. 2.2. 1 2.+ = -( )z  (ii)

 Product of roots: r r2.
2.

1
2. 2.1 8= -( )z  (iii)

 Hence: r r r r r r2. 1
2.

2.
2.

1
2.

2. 1
2. 2.2. 2. 1 2. 2. 1 8-( ) = + - = -( ) - -z z

 = - - - × + ( )[ ]2. 4 2. 1 1 2. 82. 2. 4z z z( / ) O
 (by Taylor series expansion)

  ≅ 2. - 4z 2. - 2. + 8z 2. ≅ 4z 2.

 (because O(z 4) → 0 for small z )

Consequently, the half-power bandwidth (Δw), as shown in Figure 8.18, is given in the 
normalized form as:

 r r
n n

2. 1
2. 1 2.- = - = ≅w w
w

w
w

z∆
 (8.2.7)

Note: Damping ratio may be obtained once the magnitude of the frequency response func-
tion G(jw) is experimentally determined, using Equation 8.2.7 as:

 z
w w
w

w
w

w w
w w

≅
-( ) = ≅ -

+
2. 1 2. 1

2. 12. 2.n n

∆
 (8.2.8)

The Q-factor, which measures the sharpness of resonant peak (see Figure 8.18), is defined 
by

 Q-factor = =w
w z
n

∆
1

2.
 (8.2.9)

Frequency ωω1 ωn
∆ω

ω2

1

0

1
2ζ

2ζ
1

2

Amplification
(magnitude)

|G( jω)|

Figure 8.18
Peak magnitude, half-power bandwidth, and Q-factor as measures of relative stability in the frequency 
domain.
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The term originated from the field of electrical tuning circuits where the sharpness of the 
resonant peak is a desirable thing (quality factor). It follows that the Q-factor (inversely) as 
well as half-power bandwidth (directly) and peak magnitude (inversely) may be used as 
measures of relative stability (and damping), in the frequency domain.

8.4.5 Marginal Stability

If a dynamic system oscillates steadily in the absence of a steady external excitation, this 
condition represents a state of marginal stability. The “distance” to a state of marginal stabil-
ity is a measure of the level of stability, and is called a stability margin. In the present section 
we will formally develop the concepts of marginal stability and stability margin using a 
frequency transfer function model. First we will address marginal stability in qualitative 
terms and then develop an analytical basis.

8.4.5.1 The (1,0) Condition

Consider a feedback control system represented by the block diagram in Figure 8.19. We 
have assumed unity feedback, but this can be generalized later. In fact, without loss of 
generality we can interpret G in Figure 8.19 as the loop transfer function GH, because a 
system with a general feedback transfer function H can be reduced to a unity feedback 
system, through block diagram reduction, by placing GH as the forward transfer function 
(as discussed in Chapter 7 and also in the present chapter under the subject of root locus 
method).

Suppose that the open-loop transfer function G(s) is such that at a specific frequency of 
operation w, we have:

 1. Magnitude |G(jw)| = 1
 2.. Phase angle ∠G(jw) = - p

Then, if an error signal of frequency w is injected into the loop (due to noise, disturbance, 
initial excitation, etc.) its amplitude will not change while passing through G(s), but the 
phase angle will reduce by p . Hence the output signal y will have the same amplitude as 
the error signal e, but y will “lag” e by p . Since y is fed back into the loop with a negative 
feedback (Note: -1 corresponds to a further phase lag of p) the overall phase lag in the feed-
back signal, when reaching the forward path of the loop, will be 2.p . Since a phase change 
of 2.p is the same as no phase change, the feedback signal will have the same amplitude 
as the forward signal (i.e., gain = 1) and the same phase angle as the forward signal (i.e., 
phase = 0). This is called the (1,0) condition. Under this condition, it is clear that even in the 

Input
u Outputs

yG(s)

–

Error
e

Figure 8.19
A feedback control system with unity feedback.
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absence of an external input u, a harmonic signal of a specific frequency w can sustain in 
the loop without growing or decaying. This is a state of self-sustained steady oscillation. If 
such a condition of steady oscillation is possible, in the absence of a steady external input, 
the system is said to be marginally stable.

Note: the specific frequency w at which this condition of steady oscillation would be 
 feasible, is itself a property of the system, and depends on system parameters. In the  simple 
oscillator example, which we discussed earlier, this frequency is ( / )k m .

Next, consider a system with nonunity feedback with a feedback transfer function of 
H(s), as shown in Figure 8.2.0.

It should be clear that in applying the (1,0) condition for marginal stability, what matters 
is the overall gain and phase shift in the entire loop. Hence, in Figure 8.2.0 we need to con-
sider the overall loop transfer function G(s)H(s) and not the individual components. The 
(1,0) condition for marginal stability is, at a specific frequency of operation w :

 1. Magnitude |G(jw)H(jw)| = 1
 2.. Phase angle ∠G(jw)H(jw) = - p (8.3.0a)

With respect to the closed-loop system shown in Figure 8.2.0, the following nomenclature 
should be remembered:

G(s) = open-loop transfer function (or, forward transfer function)
H(s) = feedback transfer function
G(s)H(s) = loop transfer function

 
G
GH

G
1+

= = closed-loop transfer function.

Note: The characteristic equation of the closed-loop system G  is GH + 1 = 0. Hence, the 
stability of a closed-loop system is completely determined by the loop transfer function 
GH, as already concluded under the root locus method. Specifically, now we need to 
study the magnitude and the phase of GH(jw), in the frequency domain. In the special 
case of unity feedback (H = 1) we need to study G(jw). For convenience, in these studies 
we denote GH simply by G, keeping in mind that then G represents the loop transfer 
function GH.

Bode diagram (Bode plot) and Nyquist diagram (Nyquist plot) are convenient ways of 
graphically representing transfer functions (see Chapter 5). These plots are valuable in the 
stability of dynamic systems, in the frequency domain.

Input
u Outputs

y
–

Error
e G(s)

H(s)

Feedback signal
uf

Figure 8.20
A control system with nonunity feedback.
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8.4.6 PM and gM

Stability margin is an important performance specification, as noted in Chapter 7. In the 
conventional frequency domain design of control systems, stability requirement is speci-
fied using PM or GM. We will revisit the concept of marginal stability to introduce these 
two stability margins.

We have observed that stability of a closed-loop system is completely determined by the 
loop transfer function GH. Consider the feedback control system shown in Figure 8.2.0. The 
characteristic equation of the closed-loop system is G(s)H(s) = -1. The system is marginally 
stable if one pair of roots of the characteristic equation is purely imaginary (i.e., ± jw) while 
the remaining roots are not unstable. Hence the condition for marginal stability is, there 
exists a frequency w such that:

 G(jw) H (jw) = -1 (8.3.0b)

In fact the two conditions given by Equation 8.3.0a are exactly equivalent to this single 
complex equation (Equation 8.3.0b), because -1 has a magnitude of 1 and a phase angle of 
- p . It follows that if the plot of the loop transfer function GH in the complex plane (i.e., the 
polar plot of imaginary GH(jw) vs. real GH(jw)—the Nyquist plot—see Chapter 5), as w 
changes, passes through the point (-1,0), then the control system is marginally stable.

8.4.6.1 GM

Suppose that at a particular operating frequency w, the phase f = -180° but the gain (magni-
tude) M is less than unity (i.e., M < 1). Then, if the external u in Figure 8.2.0 is disconnected, 
the amplitude of the feedback signal will steadily decay. This, of course, corresponds to 
a stable system. The smaller the value of M, the more stable the system. Hence, a stability 
margin known as the gain margin gm can be defined as:

 g
G j H jm = ( ) ( )

1
w w

 (8.3.1a)

at the frequency w where ∠G(jw)H(jw) = -180°.
Note: If the magnitude (i.e., gain) of the transfer function GH(jw) is increased by a fac-

tor of gm at this frequency, then the marginal stability conditions (Equation 8.3.0) will be 
satisfied. Hence, gm is the margin by which the gain of a stable system may be increased 
so that the system becomes just unstable. It follows that the larger the gm, the better the 
degree of stability. It is convenient to express gm in decibels (dB) because the transfer func-
tion magnitude (in the frequency domain) is usually expressed in dB (particularly in Bode 
diagrams—see Chapter 5). Then,

 gm = - 2.0 log 10|G(jw) H(jw)| (8.3.1b)

at the frequency w where ∠G(jw)H(jw) = -180°.

8.4.6.2 PM

Suppose that there exists some frequency w at which the magnitude (i.e., gain) of the loop 
transfer function GH(jw) is M = 1 (i.e., 0 dB) but the phase f lies between 0 and -180°. This 
frequency wc is called the crossing frequency or crossover frequency, because it corresponds 
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to the point where the gain (magnitude) curve crosses the unity (0 dB) line. Since the 
phase angle decreases with frequency, there will be a higher frequency at which the 
phase is -180° but the gain (magnitude) will be less than unity (because the loop transfer 
 function magnitude usually decreases with increasing frequency, at high frequencies). 
This, as noted under the topic of GM, corresponds to a stable system. The amount by 
which the phase of the loop transfer function at gain = 0 dB, may be decreased (i.e., the 
phase lag in freased) until it reaches the -180° value, is termed PM (fm). Specifically, the 
PM is defined as:

  fm = 180° + ∠G (jw) H (jw) (8.3.2.)

at the frequency w where |G(jw)H(jw)| = 1.
The larger the PM, the more stable the system.
In summary, GM tells us the amount (margin) by which the gain may be increased at a 

phase of -180°, before the system becomes marginally stable; and PM tells us the amount 
(margin) by which the phase may be “decreased” (i.e., “phase lag” increased) at unity-gain, 
before the system becomes marginally unstable. A more rigorous development of the con-
cepts of GM and PM requires a knowledge of the Nyquist stability criterion, as presented in 
a separate section.

8.4.7 bode and Nyquist Plots

As discussed in Chapter 5, Bode diagram (Bode plot) and Nyquist diagram (Nyquist plot) 
are convenient graphical representations of transfer functions, in the frequency domain. 
Specifically, the Bode plot of a transfer function G(s) constitutes the following pair of curves:

Magnitude |G(jw)| versus frequency w,
Phase angle ∠G(jw) versus frequency w .

Note that the Bode plot requires two curves—one for gain and one for phase. These 
two curves can be represented as a single curve by using a so-called polar plot with a real 
axis and an imaginary axis. A polar plot is a way to represent both magnitude and phase 
of a rotating vector, with one curve. When phase = 0°, the vector (which represents the 
complex number) points to the right; when phase = 90°, the vector points up; and when 
phase = -180°, the vector points to the left, etc.

The solid curve in Figure 8.2.1a represents the path of the tip of the directed line (two-
dimensional vector) representing the frequency transfer function (i.e., complex transfer 
function in the frequency domain) as the frequency varies. Any one point represents both 
the amplitude (distance to origin) and phase (angle measured from the positive real axis), at 
one given frequency. Thus all the information in the two curves of the Bode plots (Figure 
8.2.1b) is represented by this single curve called Nyquist plot (or polar plot or argand plot).

The marginal stability condition is: (a) gain = 1 or 0 dB, and (b) phase lag = 180° at some 
specific operating frequency. A gain of 1 is represented by a vector of unit length. Its 
tip traces a unit circle with its center at the origin of the coordinate frame (see the broken-
line circle in Figure 8.2.1a). A phase of 180° corresponds to a horizontal vector pointing 
to the left from the origin (i.e., the negative real axis). The intersection of the Nyquist plot 
with the unity-gain circle gives the phase at the 0 dB point; the length of the vector (distance 
from origin) of the point where the Nyquist plot intersects the negative side of the real axis 
gives the gain at the critical 180° phase (lag) point.

Now formal definitions for GM gm and PM fm may be given using either the Nyquist 
diagram or the Bode diagram, as in Figure 8.2.1. Consider a stable  closed-loop system with 
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the transfer function G  = G/1 + GH. First we plot the Nyquist diagram for the loop transfer 
function GH as, for example, shown in Figure 8.2.1a. The factor by which the Nyquist curve 
should be expanded (say, by increasing its gain) in order to make the system marginally 
stable (i.e., to pass through the critical point (-1,0)) measures the relative stability (or, stabil-
ity margin) of the closed-loop system. The stability margins may be similarly defined using 
the Bode plot in Figure 8.2.1b.

GM: Gain margin gm is the reciprocal of the magnitude of the loop transfer function 
GH(jw) at the frequency (w) where the phase angle of the loop transfer function is -180°. 
It follows that the larger the gm, the larger the separation of the Nyquist curve from the 
 critical point (-1) and the better the closed-loop stability.

PM: Phase margin fm is the sum of 180° and the phase angle (in degrees) of the loop 
transfer function GH(jw) at the frequency (w) where the magnitude of GH(jw) is unity 
(or 0 dB).

These definitions follow from Equations 8.3.1 and 8.3.2..
The relative stability (stability margin) of a control system can be improved by adding a 

compensator so as to increase and GM. Since, in general, the GM of a system automatically 
improves when the PM of the system is improved, in design specifications it is adequate to 
consider only the PM. This subject is addressed in Chapter 9.

example 8.14

Figures 8.22a and b show Bode and Nyquist plots (of the loop transfer functions GH) for two 
systems. The one on the left is stable because the phase lag is less than 180° at the critical 0 dB 
(i.e., where gain = 1) point, and the gain is less than 1 at the critical phase lag point (i.e., where 
phase lag = 180°). Note that the amount by which the gain is less than 0 dB at the phase-crossover 
(-180°) point is the GM. Similarly, the amount by which the phase lag is less than 180° at the gain-
crossover point (0 db) is the PM.

–1
ωp

mφ

mφ

ωc

ω = 0+

ω = ∞

ωc ωp

ω

ω

–80°

Im

Re

GH ( jω)-plane

–1/gm

(a) (b)

20log10 gm

20 log10|GH|
(dB)

0

0

∠GH

Figure 8.21
Definition of gain margin and phase margin. (a) Using Nyquist diagram (b) Using Bode diagram.
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8.4.8 PM and Damping ratio relation

For a closed-loop system that can be approximated by a simple oscillator, a reasonably 
accurate relationship for damping ratio (closed-loop) may be established as described now. 
First note that the loop transfer function for a damped oscillator is:

 GH s
s s

n

n
( ) =

+( )
w
zw

2.

2.
 with H = 1

 This is easily verified in view of: G GH
s s

n

n n

1
2.

2.

2. 2.
+( ) =

+ +
w
zw w

 By definition, crossover frequency is given by: GH jw( ) = 1   
w

w w z w
n

n

2.

2. 2. 2.4
1

+
=

It can be shown that the positive solution of this equation is: wc = awn

 where a = + - ≈4 1 2. 12. 2.z z

(a)
Gain

Phase

–180° –180°

ωc ωp ωp ωc

0 dB
GM

PM

Frequency
(log)

Gain

Phase

0 dB

Frequency
(log)

ωp

ωc

ω

ω

ωp

ωc

–gm–1

1

PM

Im

Re –1

1

Im

Re

(b)

Figure 8.22
(a) Bode plots. (b) Nyquist plots, of a stable system (left) and an unstable system (right) (GM = gain  margin, 
PM = phase margin).
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Now, since GH j

j j
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w w zw

( ) =
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2.
, its phase angle is:

 ∠ ( ) = - +




= - -- -GH j

n

w p w
zw
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zw

0
2. 2. 2. 2.
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PM:

 

f p w
zw
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m

c

n
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n

= - - = - =- - -π
2. 2. 2. 2.

2.1 1 1tan tan tan nn

c

a

w

z z z= ≈ ≈- -tan tan1 12.
2. 2. radians (for small z z

p
) = × °

2.
180

 We have: fm = 100z degrees; z = 0.01 fm (8.3.3.)

in which fm is the PM in degrees, as determined from the loop transfer function. This rela-
tionship is acceptable in the damping range 0 ≤ z ≤ 0.6, and it provides a slightly conserva-
tive estimate for damping ratio in terms of the PM.

8.5 Bode Diagram Using Asymptotes

Any transfer function may be factorized into first order terms of the form (s + a) and the 
second order oscillatory terms (s2. + 2.zwns + wn

2.), 0 ≤ z < 0 in its denominator and the numera-
tor. Then, with the knowledge of the Bode plot of each of these terms, the Bode plot for the 
entire transfer function may be constructed (by using additions and subtractions only of 
the component plots). The rationale for this is (as noted before):

 1. In a product of complex numbers, the magnitudes multiply and the phase angles 
add.

 2.. In a quotient of complex numbers, the magnitudes divide and the phase angles 
subtract.

Note further that if a log scale is used for the magnitudes the multiplications and divi-
sions of the magnitudes may be “transformed” into additions and subtractions. This is 
indeed the normal case for Bode plots, where magnitude is given in decibels. The advan-
tage of the log scale for magnitude is that the Bode diagram for a product of several transfer 
functions can be obtained by simply adding the Bode plots for the individual transfer func-
tions. In this manner, the Bode plot of a complex system can be conveniently obtained with 
the knowledge of the Bode plots of its components (plant, controller, actuator, sensor, etc.)

When a log scale is used for both magnitude and frequency, it emphasizes the lower val-
ues in a range. The x-axis (frequency axis) of the Bode plot is marked in units of frequency, 
which may be incremented by factors of 2. (octaves) or factors of 10 (decades). Typically in a 
Bode plot, the frequency axis is graduated in decades. This is a log10 scale. The amplitude 
axis is given in decibels, which is also a log10 scale, specifically 2.0log10( ).
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Note: 2.0 log10( ) = 10 log10( )2.. Since power and energy are represented by the square of 
a  signal such as voltage, current, velocity, and force, we observe that 10 dB corresponds 
to a power (or energy) increase by a factor of 10 or a signal increase by a factor of 10. 
Similarly, 2.0 dB corresponds to a signal increase by a factor of 10 or a power increase by a 
factor of 100.

In a Bode plot, a linear scale is used to represent the phase angle.
The exercise of sketching a Bode diagram may be further simplified by first sketch-

ing the asymptotes of the elementary terms (s + a) and (s2. + 2.zwns  + wn
2.), 0 ≤ z < 0 and then 

approximating the actual curves, which will approach the asymptotes in the limit. This 
approach is illustrated now using examples.

example 8.15

Sketch the Bode plot of the transfer function of an armature controlled dc motor [output speed/
input voltage] given by G(s) = K/(t s + 1)

where:
K = Gain parameter (depends on motor constants, armature resistance, and dampers).
t  = Time constant (depends on motor inertia, motor constants, armature resistance, and damping).

Solution

This is a first order system. The frequency transfer function corresponding to the given TF is:

 G j
K

j
G j f

K
j f

w
t w

p
t p

( ) =
+( ) ( ) =

+( )1
2

2 1
or  (i)

Here w is the angular frequency (in rad/s) and f is the cyclic frequency (in cycles/s or Hz).
Note: The complex functions G(jw ) and G(j2pf ) may be denoted by G(w )and G(f ), respectively, 

for notational convenience (even though contrary to strict mathematical meanings).
The numerator term in the TF is a constant. The asymptotes for the numerator and the denomi-

nator of the TF are determined now. First we define a critical frequency (discussed later):

 fb =
1

2pt
 (ii)

 When f << fb: G(f ) ≈ K (iii)

The corresponding magnitude is K (or log10 K dB). This asymptote is a horizontal line as shown 
in Figure 8.23. The phase angle of this asymptote is zero.

 When f f G f
K
j fb>> ( ) ≈:
t p2

. (iv)

The magnitude of this function is K/(t  2p  f ). It monotonically decreases with frequency. If decibel 
scale (i.e., 20log10( ) dB) is used for the magnitude axis and decade scale (i.e., multiples of 10) for 
the frequency axis, the slope of this asymptote is - 20 dB/decade. The phase angle of this asymp-
tote is 90 .̊

The two asymptotes intersect at f =fb. This frequency is known as the break frequency (or cor-
ner frequency). Since a significant magnitude attenuation takes place for input signal frequencies 
greater than fb and in view of the fast decay of the natural response for large fb, it is appropriate to 
consider fb, given by Equation (ii), as a measure of bandwidth for a dc motor.

The asymptotes are drawn and the approximate Bode plots are sketched based on them (to 
approach them in the limit) as shown in Figure 8.23. For the normalized case of K = 1 the bode 
diagram of the given transfer function is shown in Figure 8.24, where angular frequency (w rad/s) 
is used instead of cyclic frequency (f Hz).
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Suppose that a sinusoidal signal is used as the input test signal to the plant (dc motor). As 
the input frequency is raised, it is found that the output amplitude decreases and the phase-lag 
increases. This confirms the shape of the Bode plot.

Note 1: Similarly it can be shown that for a transfer function component of the form G(s) = K(ts + 1), 
the second magnitude (gain) asymptote (beyond the break point of wb = 1/t ) will have a slope 
of  + 20 dB/decade and the second phase angle asymptote will be a constant at  + 90 .̊

Note 2: The advantages of using a log scale for frequency are the fact that a wide range of fre-
quencies can be accommodated in a limited plotting area, and that asymptotes to the magnitude 
curve become straight lines with slopes differing by fixed increments (by ± 20 dB/decade if decibel 
scale is used for magnitude and decade scale is used for frequency).

8.5.1 Slope-Phase relationship for bode Magnitude Curve

H. W. Bode obtained an equation relating to phase angle the slope of the Bode  magnitude 
(gain) curve. This approximate relationship is valid for a system whose loop transfer 
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Figure 8.23
Bode diagram of a dc motor transfer function.
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Figure 8.24
Bode diagram (plot of amplitude versus frequency and phase vs. frequency) of a first order system.
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function does not contain poles or zeros on the right hand plane (i.e., for a minimum-phase 
system). The approximate relationship is

  f = r × 90° (8.3.4)

in which

f = phase angle (in degrees) at frequency w.
r = normalized slope of the Bode magnitude curve at w (dB/decade/2.0dB/decade).

Note: r is obtained by determining the slope in decibels per decade and dividing the 
result by 2.0.

This approximate relation becomes exact when the asymptote curves (for both magni-
tude and phase) are used, as clear from Example 8.15.

8.5.1.1 Nonminimum-Phase Systems

A transfer function having no poles or zeros on the right hand plane is called a mini-
mum-phase system. A system having at least one zero or a pole on the right hand plane is 
a  nonminimum phase system. To under this, consider the factor (s + a) and another fac-
tor (s – a) in a transfer function, where a is a positive real quantity. The corresponding 
 frequency transfer function factors are (jw + a) and (jw - a) The first factor has a phase angle 
between 0° and 90° and the second factor has a phase angle 90° and 180°, which is larger 
and provides a nonminimum phase. A nonminimum phase systems can result in added 
complications to the system behavior. For example, a stable nonminimum phase system 
can have negative phase and GMs.

example 8.16

Consider an underdamped simple oscillator, which has the frequency transfer function (FTF):

 G j
K

jn n

w
w w zw w

z( ) =
- +( ) < <

2 2 2
0 1 (i)

Note: Underdamped means the damping ratio z is less than 1.
The break point for the asymptotes is the undamped natural frequency wn.
For w << wn the frequency transfer function (i) can be approximated by the static gain (i.e., the 

zero-frequency magnitude):

 G j
K

n

w
w

( ) ≈
2
. (ii)

The magnitude of this transfer function is a constant and hence the slope is zero (r = 0). The 
phase angle is zero as well, in this region. The corresponding gain and phase asymptote pair (for 
w = 0 to wn) is shown in Figure 8.25.

For w >> wn the frequency transfer function (i) can be approximated by:

 G j
Kw
w

( ) ≈ -
2

 (iii)

In this region the magnitude in decibels is 20log10(K/Ko) - 40log10 (w /wo)dB
Note: K and w are nondimensionalized because mathematically it is not correct to obtain 

the logarithm of a dimensional quantity. An important observation, however, is that when the 
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 frequency changes by 1 decade (i.e., when w /wo = 10), the magnitude of this expression changes 
by - 40 dB.

Hence, the slope of this asymptote is - 40 dB/decade. Since Equation (iii) represents a nega-
tive real quantity, its phase angle is -180°. The corresponding gain and phase asymptote pair (for 
w = wn to ∞) is shown in Figure 8.25.

Note: For this asymptote we have r = - 2 and it satisfies Bode’s slope-phase relationship (Equation 
8.34) as expected.

example 8.17

The open-loop transfer function of a control system with unity feedback (i.e., the loop transfer 
function), is given by

 G s
s

s s
( ) =

+( )
+ +( )

3
4 162

 a. Tabulate the magnitude |G(jw )| and phase angle ∠G(jw ) values for about six points of 
 frequency in the range w = 0 to w = 5.

 b. Plot the Nyquist diagram for G.
 c. Plot the Bode diagram for G, and indicate the asymptotes.
 d. If the open-loop system (G) is given the sinusoidal input u = 2 cos 2t
  what is the output at steady-state?
 e. Explain, using the Nyquist plot, why the closed-loop system G  given by G  = G/1 + G is 

stable.

Solution

By setting s = jw we get the FTF:

 G j
j

j
( )w w

w w
= +
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Figure 8.25
An example to illustrate the Bode slope-phase relationship.
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 Hence: G j( )w w
w w

= +
-( ) +

3

16 16

2 2

2 2 2
 (ii)

and

 
∠ = -

-
<

= -

- -

-

G j( ) tan tan

tan

w w w
w

w

w p

1 1
2

1

3
4

16
4

3

for

++
-

>-tan 1
2

4
16

4
w

w
wfor

 (iii)

Note: When w > 4, the real part of the denominator of the FTF (i) is negative (and the imaginary 
part is positive). Hence, the denominator term is in quadrant two of the complex plane (see Figure 
8.14). Its phase angle = p - [phase angle obtained by using positive real part] = p - tan-1(4w /w2–16). 
This has to be subtracted (because it corresponds to the denominator of Equation (i)) from the 
numerator phase angle (tan-1(w /3). This gives the second part in Equation (iii).

 a.

Frequency w 0 1 2 3 4 5 ∞
Magnitude
|G(jw )| (dB)

3/16 0.204 0.25 0.305 0.3125 0.266 0
(-14.5) (-13.8) (-12) (-10.3) (- 10.1) (- 11.5) (- ∞)

Phase ∠G(jw )(°) 0 3.5 0 - 14.7 - 36.8 - 55.2 - 90

 b. The Nyquist curve is now plotted as shown in Figure 8.26.
 Note: For negative frequencies (w = 0- to - ∞) the indicated curve (w = 0 +  to  + ∞) will be 

mirror-imaged about the real axis.

Nyquist plane

ω = 1

ω = 0ω = ∞

Im

Re

0 3/16

3

4

5

2

Figure 8.26
Nyquist curve of the example.
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 c. The Bode plot is shown in Figure 8.27.
 For small frequencies w << 3, the magnitude is approximately constant and equal to the 

static gain -14.5 dB and the phase angle is approximately zero. At w = 3, the first break point 
occurs due to the zero in the loop TF. As a result, a slope of  + 20 dB/decade is added to 
the magnitude asymptote and a phase “lead” of 90° is added to the phase asymptote, as 
shown. At w = 4, the second break point occurs, due to the second order (simple oscillator) 
term in the loop transfer function (see Example 8.16). This adds a slope of - 40 dB/decade to 
the magnitude asymptote (resulting in a net slope of - 20 dB/decade) and a phase angle of 
-180° to the phase asymptote (resulting in a net phase angle of -90°, which is a phase lag 
of 90°), as shown in Figure 8.27.

 Note: An asymptote (particularly a phase asymptote) does not provide good approximation 
to the actual Bode curve in a narrow frequency range (as clear in this example, for the fre-
quency interval [2,4]).

 d. For the open-loop system, G j
j

j
( )w w

w w
= +

- +( )
3

16 42

 At w = 2: |G(jw )| = 0.25

  ∠G(jw ) = 0° = 0 rad

Hence, the steady-state response for an input of u = 2 cos2t is

 y = 2 × 0.25 cos(2t + 0)

 or: y = 0.5 cos 2t

 e. Note from the Nyquist plot that, as the frequency increases, the magnitude (of the loop 
transfer function) remains less than 1 (or, 0 dB) and the phase “lag” never increases 
beyond 90°, in the entire frequency range (from 0 to ∞). Hence, the system is stable. 

Phase
(deg)

Magnitude
(dB)

–14.5

0

–90º

0º

Frequency ω

Asymptotes

Asymptotes

ω

3 42

Figure 8.27
Bode diagram of the example.
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Even though the PM and the GM are not numerically defined for this system, both may 
be taken positive in qualitative terms. The Nyquist plot remains entirely to the right of 
the critical point -1 on the transfer-function plane. Hence there is no possibility of the 
closed-loop system becoming even marginally stable (i.e., Nyquist plot will not cross the 
critical point).

example 8.18

A system with unity feedback has a loop transfer function whose Bode diagram is as shown in 
Figure 8.28.

Note: What is shown is the asymptotic magnitude curve with break points at 2 and 6, and the 
actual phase angle curve.

 1. Determine the closed-loop transfer function of the system. What is order of the system? 
Why?

 2. Determine the poles and zeros of the closed-loop system.
 3. Determine the PM of the system. Is the system stable? Explain your answer.
 4. Describe a practical way for increasing the PM of the given control system to 60°.

M
ag

ni
tu

de
 (d

B)
Ph

as
e a

ng
le

 (d
eg

)

20

10

0

–10

–20

–30

–100

–150

–200

0.1 0.2 0.4 1 2 4 6 10
Frequency ω (rad/s)

0.1 0.2 0.4
Frequency ω (rad/s)

1 2 4 6 10

–60 dB/dec

–40 dB/dec

–20 dB/dec

Figure 8.28
Bode magnitude asymptotes and phase curve of the loop transfer function.
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Solution

 1. In the magnitude asymptotic curve:

 (a) There is an initial slope of - 20 dB/decade. This corresponds to a free integrator (1/s).
 (b) There is a break at s = 2, with a change in the slope by - 20 dB/decade. This corresponds 

to a pole term (s + 2). Note: This term cannot be (s–2) since the Bode phase angle curve 
keeps monotonically decreasing.

 (c) There is a second break at s = 6, with a further change in the slope by - 20 dB/decade. 
This corresponds to a pole term (s + 6). As before, the term cannot be (s–6) since the 
Bode phase angle curve keeps monotonically decreasing.

Accordingly, the loop transfer function of the system is given by:

 GH s
K

s s s
( )

( )( )
=

+ +2 6

Only the gain parameter K needs to be determined. This can be done simply by noting that at 
the frequency value w = 0.2 rad/s, the magnitude is approximately 20 dB, which is equal to 10. 
Substitute in

 GH j
K

j j j
( )

( )( )
w

w w w
=

+ +2 6

We have

 
K

j j0 2 0 2 2 0 2 6
10

. | . || . |+ +
=

By neglecting 0.04 compared to 4, we get, approximately, K = 24.

 Hence: GH s
s s s

( )
( )( )

=
+ +

24
2 6

With unity feedback we have H = 1.
The Bode and Nyquist plots for the loop transfer function (GH) may be generated using the fol-

lowing MATLAB® code:
 % ---Bode plot GH = 24/(s(s + 2)(s + 6))--- 
 num = [0 0 0 24];
 den = [1 8 12 0];
 SYS = tf(num,den);
 bode(SYS)

 % ---Nyquist plot GH = 24/(s(s + 2)(s + 6))--- 
 num = [0 0 0 24];
 den = [1 8 12 0];
 SYS = tf(num,den);
 nyquist(SYS,(0:100))

The MATLAB generated plots are shown in Figure 8.29.
 Note: Selecting the proper scale is important in obtaining proper plots, particularly the 

Nyquist diagram. This is a particular disadvantage of computer-generated plots over those 
that are manually generated (using the first principles). In particular, Figure 8.29b does not 
show the fact that near zero (positive) frequency the phase angle of GH is about - 90˚ and 
the Nyquist curve touches the negative imaginary axis on the left hand side, and that at very 
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high (infinite) positive frequencies the phase angle of GH is about - 270º and the Nyquist 
curve touches the positive imaginary axis on the left hand side. Both low-frequency and 
high-frequency segments cannot be properly shown on computer-generated Nyquist plots. 
Use of a log scale can somewhat improve this situation. It should be cautioned that the log 
of the real and imaginary parts should not be taken (as the real and the imaginary parts can 
be negative). Instead, the log of the magnitude (actual magnitude, not the dB value) should 
be used, while the actual phase angle (linear scale) should be used.

 The closed-loop transfer function is:

 G s
G

G
s s s

s s s
s

( ) ( )( )

( )( )

=
+

= + +

+
+ +

=
1

24
2 6

1
24
2 6

24
(( )( )s s+ + +2 6 24

 Note: The denominator (characteristic) polynomial is third order, giving three closed-loop 
poles. Hence the closed-loop system is third order.

 2. Note from the numerator of G s( )  that the closed-loop system has no zeros.
 The poles (three) are given by the characteristic equation

 s(s + 2)(s + 6) + 24 = 0

Its roots are obtained using the following MATLAB® code:

 %Polynomial roots (s(s + 2)(s + 6) + 24)
 P = [1 8 12 24];
 roots(P)

The three roots are: - 6.7488, - 0.6256 ± j1.7790
Note that they all on the LHP, indicating a stable system.

 3. From the given Bode curve pair it is seen that at the magnitude of 0 db, the phase angle of 
GH(jw ) is approximately -150º. Hence,

 PM = 180º -150º = 30º
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Figure 8.29
MATLAB generated (a) Bode diagram, (b) Nyquist diagram.
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 Note the positive PM, indicating a stable system.
 This can be further confirmed by using Routh–Hurwitz criterion on the closed-loop charac-

teristic equation: s(s + 2) (s + 6) + 24 = 0 or s3 + 8s2 + 12s + 24 = 0.
Routh array:

s3 1 12
s2 8 24

s1 8 12 1 24
8

9
× - × = 0

s0 9 24 8 0
9

24
× - × =

 It is seen that all the coefficients of the characteristic polynomial are positive and that there 
are no sign changes in the first column of the array. Hence the system is stable.

 4. The PM of the system can be increased by including a lead compensator in the feedback 
path of the control system. The compensator transfer function is of the form

 t
at

as
s
+
+

< <1
1

0 1with

 The compensator parameters t and a can be determined by using established methods of 
compensator design.

8.5.2 ambiguous Cases of gM and PM

GM and PM may not be defined for some loop transfer functions. Specifically, if the mag-
nitude curve does not cross the 0 dB line, the PM of the system is not defined. Similarly, if 
the phase angle curve does not cross the (- 180°) line, the GM is not defined. It is possible 
as well (for rather complex and high order systems) to have multiple crossings of the 0 dB 
line and/or the - 180° line. In some such cases it is still possible to use the concepts of PM 
and GM to establish stability of the associated closed-loop systems.

Case 1: If the magnitude curve of the loop transfer function (GH) stays below 0 dB 
throughout the entire frequency range of operation (operating bandwidth) of the control 
system, then a PM is not defined. Yet, the control system is considered stable (amplitude 
stabilization) if the phase angle at the lowest magnitude value in the frequency range is 
between 0° and - 180°. In this case a positive GM can be established using the gain at the 
frequency where the phase angle is closest to - 180° (typically, at the high-frequency end of 
the operating bandwidth). Also, a positive PM can be established by using the phase angle 
at the lowest value of the magnitude. On the other hand, if the magnitude curve of GH 
remains greater than 0 dB throughout the operating bandwidth, the system is considered 
unstable. Then a negative GM can be defined using the gain value when the phase angle 
is closest to - 180°.

Case 2: If the phase angle of GH remains between 0° and - 180° within the entire oper-
ating bandwidth of the system, then a GM is not defined. In this case, the closed-loop 
control system is considered stable, assuming that the magnitude of GH is less than 0 dB 
at the high-frequency end of the operating bandwidth, particularly in the region where 
the is closest to - 180°. Then, a positive GM is defined using the magnitude value where 
the phase angle is closest to - 180°, and a positive PM can be defined using the phase 
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angle at the smallest magnitude value of the operating bandwidth (typically at the high-
frequency end).

Case 3: If there are multiple crossings of the 0 dB line, a unique PM is not defined. 
Similarly, if there are multiple crossings of the (- 180°) line, a unique GM is not defined. In 
these cases, a single PM or a single GM may be defined by taking the worst case (i.e., the 
smallest of the stability margins) or by considering a limited operating bandwidth that 
contains only a single crossing.

8.5.3 Destabilizing effect of Time Delays

Time delays, which are inherently present in control systems, can have a destabilizing 
effect on the system response. Time delays can result from various causes including trans-
port lags in systems such as chemical processes (e.g., flow changes under transient  pressure 
conditions and temperature changes due to mixing of fluids), measurement delays due to 
large time constants in sensors, and dynamic delays in mechanical systems with high 
inertia and damping.

A block diagram representation of a time delay is shown in Figure 8.3.0. Here a signal 
x(t) undergoes a pure delay by time t. Since the Laplace transform of the delayed signal is 
given by

 Lx(t - t) = exp (- ts)Lx(t) (8.3.5)

it is clear that the transfer function for a pure delay is

 G(s)delay = exp (- ts) (8.3.6)

In the frequency domain (s = jw) the magnitude of this transfer function is unity, and the 
phase angle is negative and monotonically decreasing with frequency w :

 |G(jw)|delay = 1 (8.3.7)

  ∠G(jw)delay = - tw (8.3.8)

It follows that due to a pure delay, the system magnitude is unchanged, but the phase 
angle is decreased. Consequently, the PM and GM of the system are reduced; a desta-
bilizing effect. Note further that the condition gets worse as the frequency increases. It 
 follows that a system operating at high frequencies is more likely to become unstable due 
to time delays. In control system design, specified PM should allow for the time delays 
that are present in various components in the control loop.

(a)
Pure delay

τ
x(t–τ)x(t) X (s)

(b)

exp(–τs)
exp(–τs)X(s)

Figure 8.30
Representation of a time delay. (a) Time domain representation. (b) Transfer function.
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8.6 Nyquist Stability Criterion

Let us revisit the feedback control system shown in Figure 8.2.0. The closed-loop transfer 
function is:

 G s
G
GH

( ) =
+1

 (8.3.9)

As noted previously, system stability is determined by the poles (eigenvalues) of G. 
These are the roots of the characteristic equation 1 + G(s)H(s) = 0. If all the poles are located 
on the left hand s-plane (i.e., if the real parts of the roots are all negative), the closed-loop 
system is stable. If there is at least one pole of G on the right hand s-plane (RHP), the sys-
tem is unstable. If there is a pole on the imaginary axis of the s-plane (including, of course, 
the origin), the closed-loop system is considered marginally stable, provided that there are 
no poles on the right half of the s-plane.

Note: Strictly, if there are two or more identical poles (i.e., repeated poles) on the imagi-
nary axis, the system is unstable.

Nyquist stability criterion follows from Cauchy’s theorem on complex mapping. Using 
this criterion, the stability of a closed-loop system can be determined simply by sketching 
the Nyquist diagram of the corresponding loop transfer function GH. As discussed before, 
to obtain the Nyquist plot we first set s = jw in GH(s) and plot the resulting function using 
the imaginary part as the y-coordinate and the real part as the x-coordinate, while varying 
the frequency parameter w from - ∞ to  + ∞. This is explained in Figure 8.3.1.

Consider the area to the right of the imaginary axis on the s-plane, which is enclosed by 
the closed contour as w is varied from - ∞ to  + ∞ and the contour is completed in the clock-
wise (right-handed) sense at infinity. As shown in Figure 8.3.1, the corresponding mapping 
of GH(jw) on the GH-plane is also a closed contour, which is the Nyquist diagram.

Im
ω = +∞

ω = +∞
ω = –∞

ω = –∞

ImIm

Re

Right-half
plane

s-Plane

s-plane contour

Map

Re

GH-Plane

–1

Nyquist plot

ω = 0+

ω = 0+

ω = 0–

ω = 0–

Figure 8.31
Generation of a Nyquist diagram.
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Note: Changing j to - j in a function of jw amounts to the same thing as changing w to 
- w . Furthermore, changing j to - j corresponds to changing the sign of the imaginary 
part of the complex function (i.e., complex conjugation) which forms a mirror image about 
the real axis. It follows that the Nyquist plot for negative frequencies is the mirror image 
of that for positive frequencies, about the real axis. Hence, it is only necessary to plot the 
Nyquist diagram for the positive frequencies (i.e., w = 0 to  + ∞).

8.6.1 Nyquist Stability Criterion

The Nyquist stability criterion states that

 p p N- =  (8.40)

in which

p  = number of unstable poles in the closed-loop transfer function G
p = number of unstable poles in the loop transfer function GH
N = number of clockwise encirclements of point -1 on the real axis by the Nyquist plot.

For stability of the closed-loop system we need p  = 0. Hence, we should have N = -p. For 
example, in Figure 8.3.1 we have two clockwise encirclements of the point -1. Hence N = 2.. 
From Equation 8.40 we have p  > 0 and the closed-loop system will always be unstable (even 
if GH is stable; i.e., p = 0).

Note: p and p  are nonnegative integers while the integer N can be positive, negative or 
zero.

The gain of GH can be changed (usually decreased) to shrink the Nyquist plot so that 
the point (- 1) is no longer encircled, however. This situation is shown in Figure 8.3.2.. Then, 

Im

Re

GH( jω)-plane

–1

d

0

Figure 8.32
Gain margin represented on the Nyquist plane.
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N = 0. Hence, it follows from Equation 8.40 that if GH is stable (p = 0) to begin with, the 
closed-loop system will remain stable. This indicates how, in many cases, an unstable sys-
tem can be stabilized by decreasing the gain, and vice versa. The degree of stability (or sta-
bility margin) can be measured by the distance d through which the Nyquist plot must be 
expanded along the real axis in order to have an encirclement of the point -1 (see Figure 
8.3.2.). The concepts of GM and PM are based on this fact.

Note: Typically we are interested in stable closed-loop systems ( G ), not marginally stable 
ones. Hence we will consider only those situations where the Nyquist curve (of GH) does 
not pass through -1, when using the Nyquist stability criterion.

8.6.2 loop Poles on the imaginary axis

Caution should be exercised when there are poles of GH on the imaginary axis of the 
s-plane. In this case, by properly choosing the contour on the s-plane, these marginally 
stable poles of GH can be excluded from the right half of the s-plane. Consequently, they 
are not counted in p of Equation 8.40.

A related problem arises due to the fact that at a pole of GH, the magnitude of GH will 
become infinite (because the denominator—characteristic polynomial—of GH will become 
zero, by definition of a pole). In generating the Nyquist curve, as w is varied from - ∞ to  + ∞ 
(see the left hand side figure of Figure 8.3.1) the jw will move along the imaginary axis of the 
s-plane. If there are poles (of GH) on the imaginary axis, the will be crossed by this path. At 
such a pole, the magnitude of GH(jw) will become infinite. In avoiding that pole, by loop-
ing around it on the right, the question arises as to in what sense (clockwise or counter-
clockwise) the corresponding infinite ends of the Nyquist curve should be connected. How 
the correct sense and connectivity are determined can be explained using examples.

Note: Even though the contour we follow in covering the right-hand s-plane is  clockwise 
(see left hand side figure of Figure 8.3.1) the corresponding contour of the GH-plane (i.e., 
the Nyquist curve) may not necessary move in the clockwise direction. In fact, some 
parts of the Nyquist curve may traverse clockwise while some other parts may traverse 
counterclockwise.

8.6.3 Steps for applying the Nyquist Criterion

In applying the Nyquist stability criterion, the following systematic steps may be 
followed.

Step 1: Establish the s-plane contour encompassing the RHP while excluding any 
poles (of the loop transfer function GH) on the imaginary axis. Count the number 
of loop poles (unstable) p inside this contour RHP.

Step 2: Plot/sketch the Nyquist curve for the positive frequency range: w = 0 +  to + ∞.
Step 3: In view of symmetry of the Nyquist curve about the real axis, plot/sketch the 

Nyquist for the negative frequency range: w = - ∞ to 0-.
Step 4: Close the loop of the Nyquist curve by connecting the open ends of the two 

segments (for the positive and negative frequencies).
Step 5: Count the number of clockwise encirclements N of the point -1 by the com-

plete Nyquist plot as obtained in Step 4. Note: Counterclockwise encirclements are 
counted as negative.

Step 6: Determine the number of unstable poles p  of the closed-loop transfer function 
using the Nyquist criterion: p  = p + N. If p  > 0 the closed-loop system is unstable.
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example 8.19

Sketch the Nyquist curve of the loop transfer function

 GH s
s

s s
( )

( )
( )

= +
-

2 1
1

 (i)

over the complete frequency range w = - ∞ to  + ∞. Using the Nyquist stability criterion determine 
the stability of the closed-loop system G/1 + GH.

Solution

 We have: GH j
j

j j
( )

( )
( )

w w
w w

= +
-

2 1
1

 (ii)

 Hence: GH j( )w w
w w w

= +
+

=2 1
1

22

2
 (iii)

  ∠GH(jw ) = tan-1w - [p /2 + (p - tan-1w )] = 2 tan-1w - 3p /2 (iv)

Note: The denominator term jw - 1 in Equation (ii) is in the second quadrant and its phase angle 
is in the range: 90° <q < 180° (see Figure 8.14). This leads to the proper selection of its phase angle 
as (p - tan-1w ) in Equation (iv).

 1. Behavior of the Nyquist curve at w = 0 + :
 From Equation (iii): Magnitude |GH|→ ∞
 See Equation (ii):
 The phase angle of jw + 1 (Quadrant 1) becomes a small positive angle (say d )

 The phase angle of jw - 1 (Quadrant 2) becomes p -d
  Phase angle of (jw + 1)/(jw - 1) becomes - p + 2d
  Phase angle of (jw + 1)/(jw (jw - 1)) becomes - 3p /2 + 2d

 It follows that at w = 0 +  the Nyquist curve is in the second quadrant, touching the positive 
imaginary axis at ∞.

 2. Behavior of the Nyquist curve at w → + ∞:
 As w → + ∞ we can neglect the constant terms in Equation (ii) in comparison.
 Then, tan-1w → p /2. In particular:

 The phase angle of jw + 1 becomes slightly smaller than p /2 
 The phase angle of jw - 1 becomes slightly bigger than p /2
  Phase angle of (jw + 1)/(jw –1) becomes a small negative angle (say -d )
  Phase angle of (jw + 1)/(jw (jw –1)) becomes - p /2 -d
 The magnitude |GH(jw )|→0

This means: As w → + ∞ the Nyquist curve will approach 0 (origin) touching the negative imagi-
nary axis from the left (third quadrant).

It is also clear from the above two steps that the Nyquist curve will intersect the negative 
real axis. At this point, ∠GH(jw ) = - p. To determine the corresponding value of the magnitude 
|GH(jw )| note from Equation (iii) that this occurs when tan-1w = p /4 or w = 1. Then from Equation 
(ii) we have the corresponding magnitude as |GH(jw )| = 2. It follows that the Nyquist curve crosses 
the real axis at - 2.

With this information we are now able to sketch the segment of the Nyquist curve for positive 
frequencies: w = 0 +  to + ∞, as the solid line shown in Figure 8.33b.
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Next, in view of the symmetry of a Nyquist plot about the real axis, we are able to sketch the 
segment of the Nyquist curve for negative frequencies: w = - ∞ to 0-, as the broken line shown in 
Figure 8.33b.

Now, in order to connect the open ends of the two segments of the Nyquist curve obtained 
above, we need to determine the behavior of the Nyquist curve near w = 0, which corresponds 
to a pole of GH(s). First, in order to avoid the pole of GH at s = 0, note the contour that we follow 
on the s-plane, as shown in Figure 8.33a. Specifically, we follow the edge of the vector (complex) 
given by:

 s =ee jq (8.41)

where e a very small positive number ( = magnitude of the complex number = radius of the vector) 
while the phase angle q changes from- p /2 through 0 to  + p /2.

For this (small) s, we can neglect the s terms in Equation (i) compared to 1. Then, from Equation 
(i) we have: GH(s)≈1/s(- 1). Since - 1 =e  jp we get:

 GH s e j( ) ( )≈ - +1
e

q p  (8.42)

as q changes from - p /2 through 0 to  + p /2.
It is clear from Equation 8.42 that, when the phase of s is q in this contour (of very mall magni-

tude e ), the phase of GH is - (q + p ) in a corresponding contour (of very large magnitude 1/e ). Some 
usefully values of these phase angle pairs are tabulated below:

∠s =q ∠GH = -q - p
- p /2 +d - p /2 -d
0 - p
 + p /2 -d - 3p /2 +d

(a)

Re

Im s-Plane

θ

εe jθ+ε

–ε

ω = +∞

ω = –∞

ω = –∞

ω = 0+

ω = 0–

ω = +∞
ω = 0+

ω = 0–

ε

0

RHP

(b)

Re

Im

–1–2 0

Figure 8.33
(a) Contour covering the RH s-plane while avoiding the GH poles on the imaginary axis. (b) Nyquist 
curve showing one counterclockwise encirclement of –1.
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Note: d is a very small positive angle.
It follows that as the frequency changes from w = 0- to w = 0 +  in the counterclockwise sense of the 

s-plane contour, while avoiding 0, the Nyquist curve will move from - j∞ (in the third quadrant—
touching the imaginary axis from the left) to + j∞ (in the second quadrant—touching the imaginary 
axis from the left), in the clockwise direction, passing the negative real axis (where phase = - p ).

The Nyquist curve can be completed now as in Figure 8.33b for the entire s-plane contour given 
in Figure 8.33a.

To determine stability of the closed-loop system, we apply the Nyquist criterion. Specifically, from 
Figure 8.33b we notice that the Nyquist curve has one counterclockwise encirclement of -1 giving:

N = number of clockwise encirclements of point -1 on the real axis = -1.
Also, from Equation (i) it is seen that GH(s) is unstable (with one unstable pole  + 1 inside the 

RHP contour). Note: We have avoided the marginally stable pole s = 0 when choosing our s-plane 
contour. Hence:

 p = number of unstable poles in GH = 1

Then from the Nyquist stability criterion (Equation 8.40):

 Number of unstable poles in the closed-loop transfer function = p = p + N = 1-1 = 0.

It follows that the closed-loop system is stable.

example 8.20

Consider a plant given by the transfer function Gp = K/(s2(ts + 1)). We can show using the Nyquist cri-
terion that the closed-loop system will always be unstable under proportional feedback control.

If we include PD control, the loop transfer function will be GH = K(tds + 1)/(s2(ts + 1)). Using the 
Nyquist criterion we can show that

When td < t the closed-loop system remains unstable (due to inadequate derivative action).
When td < t the closed-loop system becomes stable (adequate derivative action).

These two cases are left as exercises. We will only show here that the plant is unstable under 
proportional action.

Specifically, consider the loop transfer function

 GH s
K

s s
( ) =

+( )2 1
 (i)

Note: There are two poles of GH at the origin (i.e., on the imaginary axis). The contour shown in 
Figure 8.34a avoids these poles while encompassing the RHP. There no poles inside this contour. 
Hence p = 0

Next we sketch the Nyquist plot for positive frequencies, as follows:

 On the imaginary axis of the s-plane we have: s = jw (ii)

 Substitute Equation (ii) in Equation (i): GH j
K
j

( )w
w w

=
- +( )2 1

 (iii)

The denominator of Equation (iii) is a product of a negative real quantity (phase = p ) and a com-
plex quantity with positive real and imaginary parts (i.e., Quadrant 1; phase = tan-1w ).

 Total phase of the denominator = p + tan-1w

The numerator of Equation (iii) is a positive real quantity (phase = 0).
Hence,

 Phase of GH(jw ) = 0 -[p + tan-1w] = - p - tan-1w (iv)
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From Equations (iii) and (iv) we observe the following for GH(jw ) at the two limits of positive 
frequency:

At w = 0 + : magnitude = ∞; phase = - p -d1

At w = + ∞: magnitude = 0; phase = - p - (p /2 -d2) = - 3p /2 +d2

Note: Here d1 and d2 are very small positive angles.
It follows that the Nyquist curve for the positive frequencies is entirely in Quadrant 2 and: at 
w = 0 +  it touches the negative real axis at - ∞ from above (second quadrant), and at w = + ∞ it 
touches the left side of the positive imaginary axis (second quadrant) near the origin.

With this information, the Nyquist curve segment for positive frequencies can be sketched as 
the solid line in Figure 8.34b.

As well, we can now sketch the Nyquist curve segment for negative frequencies, which is the 
mirror image about the real axis—in view of the symmetry about the real axis (see the broken line 
in Figure 8.34b).

We connect the two free ends of these two segments of the Nyquist curve as follows:
These two connecting points are represented by the transfer function GH on the tiny circle 

which avoids the two poles at the origin. This tiny circle may be represented by:

 s =ee jq (v)

where e is a small radius (positive).

 Substitute Equation (v) in Equation (i): GH s
K
e j

( ) =
e q2 2

 (vi)

Note 1: For small s we have s + 1≈1
It follows from Equation (vi) that when the phase of s is q, in the tiny circular contour (v) near the 

origin of the s-plane, the phase of GH is - 2q in a corresponding contour of very large magnitude 
K/e 2. Some usefully values of these phase angle pairs are tabulated below:

∠s =q ∠GH = - 2q
- p /2 p
- p /4 p /2
0 0
p /4 - p /2
p /2 - p

Im

Re

p = 0

j∞

–j∞

s-plane

KGH =
s2(τs+1)

τ > 0

0

(a)
Im

Re

GH-plane

–1

N = 2 

(b)

Figure 8.34
(a) Contour covering the RH s-plane while avoiding the GH poles on the imaginary axis. (b) Nyquist 
curve for the system with P control, showing two clockwise encirclements of –1.
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It follows that as the frequency changes from w = 0- to w = 0 +  in the counterclockwise sense of 
the s-plane contour while avoiding 0, the Nyquist curve will move from - ∞ (just below the nega-
tive real axis) in the clockwise sense (passing the positive imaginary axis, positive real axis, and 
then the negative imaginary axis) at infinite magnitude, and will return to - ∞ (just above the nega-
tive real axis) The corresponding complete Nyquist curve is sketched in Figure 8.33b.

Note: There are two clockwise encirclements of -1 by the Nyquist curve. Hence N = 2.
From Equation (i) it is seen that GH(s) does not have any unstable inside the RHP contour). Note: 

We have avoided the marginally stable pole pair at s = 0 when choosing our s-plane contour.
Hence:
p = number of unstable poles in GH = 0.
Then from the Nyquist stability criterion (Equation 8.40):
Number of unstable poles in the closed-loop transfer function = p = p + N = 0 + 2 = 2.
It follows that the closed-loop system is unstable.

example 8.21

Consider the two examples with loop transfer functions

 GH s
s s

s s
( ) = +( )

+( ) +( )
1

2 12
 (i)

and

 GH s
s s

s s
( ) = +( )

+( ) +( )
2

1 12

These two problems have two entirely different Nyquist curves. We will consider the first prob-
lem here and leave the second one as an exercise.

 FTF of Equation (i): GH j
j j

j
w

w w
w w

( ) = +( )
+( ) - +( )

1
2 12

 (ii)

 Magnitude: GH j( )w w w
w w

= +
+ - +

2

2 2

1
4 1

 (iii)

 Phase: ∠GH(jw ) = 90° + tan-1w - tan-1w /2 if w  2 < 1

  = 90° + tan-1w - tan-1w /2 -180° if w  2 > 1 (iv)

Note: When w = 1- we have w  2 < 1; w = 1 +  we have w  2 > 1. These facts are useful when applying 
Equation (iv) in the neighborhood of w = 1.

From Equations (ii) through (iv) we can determine the following facts.

At w = 0: magnitude = 0; phase = 90°
At w = 1-: magnitude = ∞; phase = 90° + 45° - 26.6° - 0° = 108.4°
At w = 1+ : magnitude = ∞; phase = 90° + 45° - 26.6° - 180° = - 71.6°
At w = + ∞: magnitude = 0; phase = 90° + 90° - 90° - 180° = - 90°

From this information we can sketch the positive frequency segment of the Nyquist curve, as 
shown by the solid curve in Figure 8.35b.

By symmetry of a Nyquist curve abut the real axis, we can also sketch the negative frequency seg-
ment of the Nyquist curve. This is sketched as shown by the broken-line curve in Figure 8.35b.

To exclude the two poles of GH on the imaginary axis we use the contour shown in Figure 8.35a, 
which covers the RHP of GH. There are no unstable poles of GH in this contour. Hence: p = 0.
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behavior of the Nyquist Curve Near w = 1:
To connect the open ends of the Nyquist curve segments at w = 1- and w = 1 +  we proceed as 

follows.
The tiny semicircular contour that excludes the pole  + j on the s-plane (see Figure 8.35a) is given 

by:

 s = j +ee jq (v)

where e a very small positive number ( = radius of the semicircle) while the phase angle q changes 
from - p /2 through 0 to  + p /2.

Substitute Equation (v) in Equation (i):

 GH s
j e j e

j e j e

j j

j j
( ) = + + +( )

+ +( ) +
( )

( )
e e

e e

q q

q q

1
2 2 ++( )

+( )
+( )1

1
2 2


j j

j j e je q
 for small e (vi)

It is seen from Equation (vi) that near w = 1:

 Magnitude |GH(s)|→∞ (vii)

 Phase ∠GH = 90° + 45° - (26.6° + 90° +q ) = 18.4° -q (viii)

To connect the ends of the Nyquist curve at w = 1- to that at w = 1 + , we use Equation (viii) and 
prepare the following table:

q ∠GH = 18.4° -q
- 90° 108.4°
0 18.4°
 + 90° - 71.6°

It is seen that as the frequency changes from w = 1- to w = 1+  in the counterclockwise sense in 
the s-plane contour, while avoiding 1, the Nyquist curve will move in the clockwise sense from 
Quadrant 2 to Quadrant 4 through Quadrant 1, as shown in Figure 8.35b.

Im

Re

p = 0

–j

+j

0

GH(s) =
(s + 2) (s2 + 1)

s(s + 1) ω = 1–

Im

ω = 0+ ω = –∞
ω = +∞

ω = 1+
ω = –1+

ω = 0–

ω = –1–

–1

N = 0
108.4°

Re

GH-plane(a) (b)

Figure 8.35
(a) Contour covering the RH s-plane while avoiding the GH poles on the imaginary axis. (b) Nyquist 
curve for the system (No encirclements of –1).
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By using symmetry of the Nyquist curve about the real axis, the two open ends of the negative 
frequency segment (broken line) may be connected now.

To determine stability of the closed-loop system, we notice that the Nyquist curve does not have 
any encirclement of -1 giving:

N = number of clockwise encirclements of point -1 on the real axis = 0
Then from the Nyquist stability criterion (Equation 8.40):

 Number of unstable poles in the closed-loop transfer function =  p  = p + N = 0 - 0 = 0

It follows that the closed-loop system is stable.

8.6.4 relative Stability Specification

Characteristic equation of a closed-loop system is given by 1 + G(s)H(s) = 0. Hence, as noted 
before, the condition for marginal stability is: 1 + G(jw)H(jw) = 0.

Clearly this latter equation corresponds to the characteristic equation with a purely imag-
inary pole jw. Then, assuming that there are no poles on the right hand plane, the closed-
loop system will be marginally stable. The margins of stability PM and GM indicate how far 
the closed-loop system is from reaching the state of marginal stability. As a rule of thumb a 
GM of at least 6 dB and a PM of at least 3.0° are known to be adequate for good stability.

The foregoing concept of stability margins uses the state of marginal stability as the ref-
erence. For more stringent stability specifications, a specified stable state can be used as the 
reference for measuring relative stability. Specifically, suppose that instead of plotting the 
conventional Nyquist curve governed by G(jw)H(jw), we plot G(- s + jw)H(- s + jw) on the 
complex GH plane, where s is a known real positive parameter. If this modified Nyquist 
curve passes through the point -1 on the real axis, then what it means is s = - s + jw is a 
pole of the system. This is a stable pole. It follows that, by plotting the Nyquist curve of 
G(- s + jw)H(- s + jw) and using the same procedures of Nyquist curve analysis as before, it 
is possible to study the proximity of the poles of the closed-loop system to the stable pole 
s = - s + jw . In particular, if the Nyquist stability criterion is satisfied by this “modified” 
Nyquist curve of GH, then all the poles of the closed-loop system will be to the left of - s 
on the s-plane. By specifying s then we can specify the stability margin.

8.7 Nichols Chart

Root locus, Nyquist, and Bode procedures use the loop transfer function GH (or the 
open-loop transfer function G, assuming unity feedback) in studying the stability of the 
closed-loop system G  = G/(1 + GH). It is useful, then, to have a graphical procedure that 
will determine the closed-loop transfer function G  with the knowledge of the open-loop 
transfer function. Nichols chart provides such a tool, which is described now.

8.7.1 graphical Tools for Closed-loop Frequency response

Without loss of generality, consider a unity feedback control system with unity feedback 
(i.e., H = 1) as shown in Figure 8.3.6. The closed-loop transfer function is

 G
G

G
=

+1
 (8.43.)
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In analysis procedures involving root locus, Bode diagram, and Nyquist plot, what 
we use is the loop transfer function G to determine the characteristics of the closed-loop 
transfer function G.  In fact, G  can be uniquely determined from G, either analytically 
or computationally, using Equation 8.43.. Since it is the loop frequency response function 
G(jw) that is used in the procedures involving Bode and Nyquist plots, it is desirable to 
have a graphical tool that can generate the closed-loop frequency response function G(jw) 
directly from G(jw). The applicable relation is

 G j
G j

G j
( )

( )
( )

w w
w

=
+1

 (8.44)

The result is a frequency domain model of the closed-loop system. It carries a useful 
body of knowledge regarding the closed-loop system, and provides such information as 
system bandwidth, resonant frequencies, resonant peaks, and damping level, and also the 
steady-state response of the closed-loop system to a sinusoidal input (i.e., the frequency 
response), which are all useful in the analysis and design of a control system.

The Nyquist curve of G(jw) itself can serve as the graphical tool for determining G(jw). 
Specifically:

Vector from the coordinate origin (on the •	 G(jw)-plane) to a point on the Nyquist 
curve gives G(jw) at the corresponding frequency.
Vector from the point •	 -1 on the real axis to a point on the Nyquist curve gives 
1 + G(jw).

Each of these two vectors has a magnitude (length of the line segment) and a phase 
angle (angle made by the line segment with respect to the positive real axis). The magni-
tude of G(jw) is the ratio of these two lengths, and the phase angle of G(jw) is the differ-
ence in the phase angles of the two vectors, for the particular frequency (i.e., particular 
point on the Nyquist curve).

Graphical tools are available where these computations are already performed and 
marked on a grid, and hence more convenient, particularly when a manual method is 
needed for a quick analysis or design. In these tools, a grid is provided to plot G(jw), 
and a set of contours is provided on the grid to determine G(jw). One such tool is the 
pair: M circles and N circles; and the other is the Nichols chart. Of course, the two repre-
sentations are equivalent.

8.7.2 M Circles and N Circles

An M circle is a curve of constant magnitude of the closed-loop frequency response func-
tion (frequency transfer function) plotted on the Nyquist plane. Similarly, an N circle is a 
curve of constant phase angle of the closed-loop frequency response function (frequency 

G(s)
Input

u Outputs
y

–

Error
e

Figure 8.36
A closed-loop system with unity feedback.

76868.indb   395 7/8/09   5:13:33 PM



396 Modeling and Control of Engineering Systems

transfer function) plotted on the Nyquist plane. It can be shown that both sets of curves are 
circles. To illustrate this denote the real part and the imaginary part of the loop transfer 
function explicitly as

 G(jw) = X + jY (8.45)

Note that Y denotes the imaginary axis and X denotes the real axis of the Nyquist plane. 
Then from Equation 8.44 we have:

 G j
X jY

X jY
( )w = +

+ +1
 (8.46)

A constant magnitude curve for a particular magnitude value M of G(jw), as plotted on 
the X – Y (Nyquist) plane, is obtained from the relation:

 M
X jY

X jY
=

+
+ +

| |
| |1

 (8.47)

This simplifies to

 X
M

M
Y

M
M

+
-





 + =

-( )
2.

2.

2.
2.

2.

2. 2.1 1
 (8.48)

This a circle with its center at - M2./M2. - 1 on the real axis, and radius |M/M2. - 1|.
A family of M circles is shown in Figure 8.3.7.
The phase angle of the closed-loop frequency response function G(jw) is obtained from 

Equation 8.46 as

 ∠ = -
+

- -G j
Y
X

Y
X

( ) tan tanw 1 1

1

Re

Im

M = 0.7

M = 1.0

0.6
0.5

0.4

M = 1.3

1.4
1.5

1.6
1.8

2.0

G-plane

1 2–1–2–3–4
–2

–1

1

2

Figure 8.37
A family of M circles.
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A constant phase angle curve of G(jw), corresponding to a specific “tan” value N of the 
phase angle, is given by

 N
Y
X

Y
X

= -
+







- -tan tan tan1 1

1
 (8.49)

This can be simplified as

 X Y
N N

+





+ -





= + 





1
2.

1
2.

1
4

1
2.

2. 2. 2.

 (8.50)

This too is a circle. A family of N circles is shown in Figure 8.3.8.
Once the Nyquist plot for a particular loop transfer function G(jw) is drawn on the 

M  circle plane of Figure 8.3.7, the magnitude value of G(jw) for each point on the Nyquist 
curve can be easily obtained at the points of intersection with the M circles, and may be 
plotted against frequency to generate the magnitude curve of the closed-loop frequency 
response function. Similarly, the phase angle versus frequency curve for G(jw) can  
be obtained by plotting the Nyquist curve of G(jw) on Figure 8.3.8, and reading off the 
phase values at the points of intersection with the N circles.
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Im

1 2–1–2–3
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3
G-plane

= 20ºφ
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30º
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Figure 8.38
A family of N circles.
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8.7.3 Nichols Chart

The Nichols chart essentially combines both M circles and N circles onto a single chart. 
There are some differences, however. The two axes of the plane are no longer the real 
part (X) and the imaginary part (Y) of the loop transfer function G(jw). Instead, the 
vertical axis gives the magnitude of G(jw) in decibels and the horizontal axis gives  
the phase angle of G(jw) in degrees. Contours of constant magnitude (in dB) and con-
stant phase angle (in degrees) of the closed loop frequency response function G(jw) 
are given on a Nichols chart, as shown in Figure 8.3.9, which are obtained according to 
Equation 8.44.

As in the case of M circles and N circles, the frequency response plot of the loop trans-
fer function can be drawn on a Nichols chart (say using Bode or Nyquist data) and used 
to determine the magnitude and the phase versus frequency curves (i.e., the frequency 
response function) of the corresponding closed loop system G(jw).

example 8.22

Consider the loop transfer function G(s) = 1/(s(2s + 1)(0.5s + 1)) with unity feedback. The magnitude 
and phase values of this transfer function (G(jw )) can be computed and the Nichols chart may be 
plotted for a series of frequencies, using the following MATLAB® code:
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Figure 8.39
A Nichols chart.
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 % ---Nichols plot GH = 1/(s(0.5s + 1)(2s + 1))---
 num = [0 0 0 1];
 den = [1 2.5 1 0];
 SYS = tf(num,den);
 [mag,phase,w] = nichols(SYS);
 nichols(SYS); ngrid
 xlabel(‘Phase(deg)’);
 ylabel(‘Gain(dB)’);

The result is given by the solid curve in Figure 8.40.
Next, from the points of intersection of the magnitude contours, we can obtain the magnitude 

curve of the closed-loop transfer function (| G(jw )|) and from the points of intersection with the 
phase angle contours we can obtain the phase angle curve of the closed-loop transfer function 
(∠ G(jw )) as shown in Figure 8.41.

–225 –180 –135

+

–90
–15

–10

–5

0

5

10

15

20

 6 dB

3 dB

1 dB
Nichols chart

Phase(deg)

G
ai

n(
dB

)

Figure 8.40
Application example of Nichols chart.
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Figure 8.41
Closed-loop frequency response determined using Nichols chart.
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Problems

PROBLEM 8.1

A satellite-tracking system (typically a position control system) having the plant trans-
fer function Gp(s) = 1/s(2.s + 1) is controlled by a control amplifier with compensator, having 
the combined transfer function Gc(s) = K(s + 1)/(ts + 1) and unity feedback (H = 1). A block 
diagram of the control system is shown in Figure P8.1.

 a. Write the closed-loop characteristic equation (in polynomial form).
 b. Using the Routh–Hurwitz criterion for stability, determine the conditions that 

should be satisfied by the compensation parameter t and the controller gain K in 
order to maintain stability in the closed-loop system.

 c. Sketch this stability region using K as the horizontal axis and t as the vertical axis.
 d. When K = 5 and t = 3. find the poles (i.e., eigenvalues or roots) of the closed-loop 

system. What is the natural frequency of the system for these parameters values?

PROBLEM 8.2

A system is given by the input–output differential equation.

 
d y
dt

d y
dt

dy
dt

y
du
dt

u
3.

3.

2.

2.
6 11 6 2. 6+ + + = +

where u = input, y = output.

 a. Using Routh–Hurwitz criterion (and without solving the characteristic equation), 
determine how many poles of the system are on the LHP. Is the system stable?

 b. For a unit step input, determine the steady-state value of the response, by using 
the differential equation and explaining your rationale. Next, verify your answer 
using FVT.

 Suppose that all the poles of the given system are moved to the right by 1 (and the 
system zeros are not changed).

 c. Using Routh–Hurwitz criterion (and without actually solving the characteristic 
equation) determine the stability of the new system (with moved poles).

PROBLEM 8.3

A system is given by the input–output differential equation:

 
d y
dt

d y
dt

d y
dt

dy
dt

y
du
dt

u
4

4

3.

3.

2.

2.
3. 6 12. 8 2. 5+ + + + = +

where u = input, y = output.

u
Command

y
Response

Compensator
K(s + 1)
(τs + 1)

1
s(2s + 1)

Plant

–

Figure P8.1
Block diagram of a satellite-tracking system.

76868.indb   400 7/8/09   5:13:41 PM



Stability and Root Locus Method 401

 a. By using the Routh–Hurwitz criterion (without solving the characteristic equa-
tion, and without using a calculator), determine the stability of the system.

 b. Suppose that all the poles of the given system are moved to the right by a distance 
of 1. By using the Routh–Hurwitz criterion (and without actually solving the char-
acteristic equation) determine how many poles of the system are on the RHP. Is 
the new system stable?

Note: You must explain all your steps.

PROBLEM 8.4

 a. The poles of a system are given in the following five examples:

 (i) - 2., - 4 ± j5, - 3.
 (ii) - 2., - 4 ± j5,  + 3.
 (iii) - 2., - 4 ± j5, ± j3.
 (iv) - 2.,  + 4 ± j5, - 3.
 (v) - 4 ± j5, 0, 0

 In each case state giving reasons whether the system is stable, unstable, or mar-
ginally stable.

 b. A system has the characteristic equation:

 s3. + 12.s2. + 61s + 150 = 0

 (i) Using Routh–Hurwitz criterion determine whether the system is stable, 
unstable, or marginally stable.

 (ii) Now move all the poles of the given system to the right of the s-plane by the 
real value 3. (i.e., add 3. to every pole of the original system). Using Routh–
Hurwitz criterion determine whether this modified system is stable, unstable, 
or marginally stable. Justify your answer.

 (iii) Using the result in (ii) and without directly solving the characteristic equation 
determine all three poles of the original system.

Note: Give all the details of obtaining your results. You should answer this question 
without directly solving a third order characteristic equation.

PROBLEM 8.5

Consider the six transfer functions:

 a. 
1

2. 17 52.s s s+ +( ) +( )
 d. 

10 2.
2. 2.2.

s
s s

+( )
+ +( )

 b. 
10 2.
2. 17 52.

s
s s s

+( )
+ +( ) +( )

 e. 
s

s s2. 2. 2.+ +( )

 c. 
10
2. 2.2.s s+ +( )

 f. 
1

2.s s +( )

Suppose that these transfer functions are the plant transfer functions of five control 
systems under proportional feedback control. If the loop gain is variable, sketch the root 
loci of the five systems and discuss their stability.
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PROBLEM 8.6

The loop transfer function of a feedback control system is given by

 GH
K

s s s
=

+ +( )( )1 2.

 a. Sketch the root locus of the closed-loop system by first determining the:

 (i) location and the angles of the asymptotes
 (ii) break points
 (iii) points at which the root locus intersects with the imaginary axis, and the cor-

responding gain value.

 b. Fully justifying your answer, state whether the system is stable for K = 10.
 c. Suppose that a zero at - 3. is introduced to the control loop so that

 GH
K s

s s s
= +

+ +
( )

( )( )
3.

1 2.

Sketch the root locus of the new system.

PROBLEM 8.7

Explain why the variable parameter in a root locus does not necessarily have to be the 
loop gain. Sketch root loci for systems with the following loop transfer functions (GH), 
as the unknown parameter varies from 0 to ∞.

 a. 
2.

2.2.

s z
s s

+( )
+ +( )

 b. 
2. 4

10
s

s
+( )
+( )t

 c. 
1

2. 3. 3. 12.s a s a+ +( ) + +

PROBLEM 8.8

A control system has an unstable plant given by the transfer function

 G s
s sp ( ) =
- +( )
1

12.

By sketching root locus, discuss whether the plant can be stabilized using

 a. proportional (P) feedback control
 b. proportional plus derivative (PPD) control
 c. proportional plus integral (PI) control.

Are these observations intuitively clear?
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PROBLEM 8.9

Consider the feedback (closed-loop) control system shown in Figure P8.9.
You are given the following loop transfer function for the system:

 GH
s s K s K

=
+ + + + -

1
3. 2. 3. 13. 2. ( )

where K is a control system parameter which can be varied.
Determine the root locus of the closed-loop system as the parameter K changes from 

0 to ∞. Specifically, you must by first determine the:

 i. Segments of the root locus on the real axis.
 ii. Angles of the asymptotes and the location where the asymptotes intersect the real 

axis.
 iii. Break points (as numerical expressions, which need not be evaluated).
 iv. Points at which the root locus intersects with the imaginary axis, if it does.
 v. The range of values of K for which the closed loop system is stable.

Note: You must give details and justify all your steps.

PROBLEM 8.10

An interesting issue of force feedback control in robotic manipulators is discussed in 
the literature by Eppinger and Seering of the Massachusetts Institute of Technology. 
Consider the two models representing a robotic manipulator, which interacts with a 
workpiece, as shown in Figure P8.10a and b. In (a) robot is modeled as a rigid body 
(without flexibility) connected to ground through a viscous damper, and the workpiece 
is modeled as a mass-spring-damper system. In this case only the rigid body mode of 
the robot is modeled. The robot interacts with the workpiece through a compliant device 
(e.g., remote center compliance—RCC device or a robot hand), which has an effective 
stiffness and damping. In (b) the robot model has flexibility, and the workpiece is mod-
eled as a clamped rigid body, which cannot move. Note that in this second case a flexible 
(vibrating) mode as well as a rigid body mode of the robot are modeled. The interaction 
between the robot and the workpiece is represented the same way as in case (a). In both 
cases, the employed force feedback control strategy is to sense the force fc transmitted 
through the compliant terminal device (the force in spring kc), compare it with a desired 
force fd, and use the error to generate the actuator force fa. The controller (with driving 
actuator) is represented by a simple gain kf . This gain is adjusted in designing or tuning 
the feedback control system shown in Figure P8.10c.

Input
u

Output
yG(s)

H(s)

–

Figure P8.9
A feedback control system.
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404 Modeling and Control of Engineering Systems

 a. Derive the dynamic equations for the two systems and obtain the closed-loop 
characteristic equations.

 b. Give complete block diagrams for the two cases showing all the transfer 
functions.

 c. Using the controller gain kf as the variable parameter, sketch the root loci for the 
two cases.

 d. Discuss stability of the two feedback control systems. In particular, discuss how 
stability may be affected by the location of the force sensor. (Note: The two models 
are analytically identical except for the force sensor location.)

PROBLEM 8.11

Sketch the Bode magnitudes plots (asymptotes only when the exact curve needs numer-
ical computation) of the following common system elements:

 a. Derivative controller (ts)
 b. Integral controller (1/ts)
 c. First order simple lag network (1/ts + 1)
 d. PPD controller (ts + 1).

Also, sketch the polar plots (Nyquist plots) for these elements.

PROBLEM 8.12

The open-loop transfer function of a control system is given by

 G s
s

s s
( )

( )
= +

+ +
1

42.

 a. With this transfer function, if the loop is closed through a unity feedback, 
determine the PM. You should use direct computation rather than a graphical 
approach.

 b. If the input to the open-loop system is u = 3. cos 2.t determine the output y under 
steady conditions.

(a)

mr

Actuator
fa

br bc

mw

bw

Force sensor
kc

kw

yr yw

Robot Compliant
terminal device

Workpiece

(b)

m1

Actuator
fa

b1 b2

m2

bc

k2

y1
y2

Force sensor
kc

Workpiece

Robot Compliant
terminal device

Robot
system

Desired force
fd

Force transmitted
through kckf

Controller
+

actuator

–

(c)

fa
fc

Figure P8.10
(a) A model for robot–workpiece interaction. (b) An alternative model. (c) A simple force feedback 
scheme.
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PROBLEM 8.13

Consider the feedback control system shown in Figure P8.13..

 a. Clearly explain why the characteristic equation of the closed-loop system is given 
by:

 G(s) H(s) = -1 (i)

 Now suppose that the following equation is satisfied by the system:

 G(jw) H(jw) = -1 (ii)

 for a particular real parameter value w.
 b. Comment, with justification, on the stability of the system.

 What is the GM of the system? Explain.
 What is the PM of the system? Explain.
Suppose that a sinusoidal input: u = u0 sin wt is applied to the feedback control 

system, which satisfies Equation (ii).
 c. After a sufficiently long time what would be the nature of the response y?

 Clearly explain the reason for this behavior of the response.

PROBLEM 8.14

A system is shown in Figure P8.14. It was found to have the following properties:

 1. The system transfer function G(s) has two zeros and three poles.
 2.. The product of the three poles is - 4.
 3.. When the system was excited with a sinusoidal input u (as shown in Figure 

P8.14) at frequency w = 4, the output y at steady-state was found to be zero (i.e., no 
response).

–

Input
u Output

yG(s)

H(s)

Figure P8.13
A feedback control system.

G(s)

Input
u = u0 cosωt

Output
y = y0 cos(ωt +   )φ

System

Figure P8.14
An open-loop system.
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 4. When the system was excited with a sinusoidal input u (as shown in Figure P8.14) 
at frequency w = 2., the output y at steady-state was found to have a phase lag of 
180º with respect to the input (i.e., the response was in the opposite direction to 
the input).

 5. When the system was excited with a sinusoidal input u (as shown in Figure P8.14) 
at frequency w =  2.  the output y at steady-state was found to have a phase lag of 
90º with respect to the input.

 6. The dc gain of the system (i.e., the magnitude of the frequency transfer function 
at zero-frequency) is 8.

Determine the complete transfer function G(s) of the system (i.e., the numerical values 
of the five parameters in G(s)).

PROBLEM 8.15

A system was found to have the following properties:

 1. It is a second-order system
 2.. It has a zero at s = - z where z > 0.
 3.. Its dc gain (i.e., the magnitude of the frequency transfer function at zero  

frequency) is K.
 4. When the system is excited at its undamped natural frequency, the magnitude of the 

frequency transfer function is given by rK, where r > 0, and the phase angle is - 90°

In terms of the given parameters z, K, and r, determine the following:

 a. Undamped natural frequency of the system.
 b. Damping ratio of the system.
 c. Complete transfer function of the system.

PROBLEM 8.16

Consider a plant given by the transfer function Gp = K/s2.(ts + 1). We can show using the 
Nyquist stability criterion that the closed-loop system will always be unstable under 
proportional feedback control.

If we include proportional + derivative (PD or PPD) control instead, the loop transfer 
function will be GH = (K(tds + 1))/(s2.(ts + 1)). Using the Nyquist criterion show that:

 a. When td > t the closed-loop system becomes stable (adequate derivative action).
 b. When td < t the closed-loop system remains unstable (due to inadequate deriva-

tive action).

PROBLEM 8.17

Consider a system with loop transfer function: GH(s) = (s(s + 2.))/(s + 1)(s2. + 1).
Sketch the Nyquist curve for this loop transfer function and using the Nyquist stabil-

ity criterion determine the stability of the closed-loop system.

PROBLEM 8.18

 a. Define PM and GM of a system. For what type of linear system, the PM and GM 
considerations may not be appropriate in assessing relative stability?

 b. An approximate relationship for PM in terms of damping ratio z is given by:

  fm = 100z degrees

 Give the main steps of deriving this result using a damped oscillator model.

76868.indb   406 7/8/09   5:13:47 PM



Stability and Root Locus Method 407

 c. A position control system, which uses a dc motor to drive an inertial load, is rep-
resented by the block diagram given in Figure P8.18.

 The forward transfer function is given by G(s) = 2./s(2.s + 1)

 (i) Sketch the Nyquist diagram of G. On this basis, comment on the stability of 
the closed-loop system.

 (ii) Compute the PM and GM of the closed-loop system.
 (iii) Determine the exact damping ratio of the closed-loop system and check 

whether the result agrees with the approximate relation given in (a).
 (iv) A reference position input of u = 3.sin t is applied to the system. Determine the 

position response y at steady-state.

PROBLEM 8.19

Draw the Nichols curve for the open-loop transfer function in the frequency range 
w = 0.1 to 2.0 rad/s:

 G
s

s s
= +( )

+( )
2. 1
0 5 12. .

From that determine and sketch the Bode magnitude and phase curves for the closed-
loop transfer function G  = G/1 + G.

PROBLEM 8.20

Draw the Nichols curves for the open-loop transfer functions in the frequency range 
w = 0.1 - 2.0 rad/s:

 a. G s
s s

s s
( ) = +( )

+( ) +( )
1

2. 12.

 b. G s
s s

s s
( ) = +( )

+( ) +( )
2.

1 12.

From them determine and sketch the Bode magnitude and phase curves for the cor-
responding closed-loop transfer functions with unity feedback.

G(s)
Output position

y
–

Reference position
u

Figure P8.18
A position control system.
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9
Controller Design and Tuning

A control system, in general, consists of five types of components:

Plant•	 —the process to be controlled
Actuators•	  for driving the plant and for introducing control actions
Measuring devices•	  consisting of sensors and transducers for feedback control
Signal modification units•	  for conditioning and changing the form of signals in the 
control system
Controllers•	  for generating control signals to the plant

Designing a control system may involve selection, modification, addition, removal, and 
relocation of all these components as well as selection of suitable parameter values for 
one or more of the components in the control system in order to satisfy a set of design 
specifications. Once a control system is designed and the system parameters are chosen it 
may be necessary to further tune the parameters in order to achieve the necessary perfor-
mance levels. Tuning and retuning may be needed even before the system is prototyped, 
but commonly after the system is built (prototyped) and is in operation. We have already 
encountered several concepts and examples of designing a controller of a control system so 
as to satisfy a set of performance specifications. These concepts are further examined and 
enhanced in the present chapter.

9.1 Controller Design and Tuning

The performance of a control system can be improved in many ways. Three common 
approaches are as follows:

 1. Redesign or modify the plant
 2.. Substitute, add, modify, or relocate sensors, actuators and associated hardware
 3.. Introduce a new controller (or control scheme) or add a compensator for an existing 

controller

Plant redesign includes modification of the general structure of the plant as well as adjust-
ment of parameters. Plant redesign is usually a costly way to achieve design improvement, 
particularly when structural modifications are involved. Furthermore, there are serious 
limitations to the degree of plant modification that is feasible and the level of  performance 
improvement that can be achieved by this method both from practical and  economical 
points of view. This approach is, in general, unsuitable when quick and short-term solu-
tions are called for.
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410 Modeling and Control of Engineering Systems

Adding or improving sensors and actuators normally result in improvements in the 
flexibility and versatility of a control system. This is a very practical method of design 
improvement. At least in theory, system controllability and reliability can be improved by 
adding sensors. For example, state-space design techniques often provide superior control-
ler designs when all state variables in the plant are measurable. This is often not feasible, 
however, because all responses might not be available for measurement and the increased 
sensor cost might not justify the expected performance improvement. System controllabil-
ity can be improved by adding new actuators or improving the existing ones as well. Often, 
power requirements of the plant alone may call for improved actuators. As in the case of 
sensors, increased cost and system complexity are two major drawbacks of this approach.

Controller improvement (redesign) is usually a rather economical and convenient method 
of design implementation. This may be accomplished either by analog means or by using a 
digital controller. In the former case, appropriately designed analog circuitry (analog con-
trollers and compensators) is added at suitable locations in the control system. The modified 
control action that is generated in this manner can “compensate” for system weaknesses, 
thereby improving the overall performance. Proportional, integral, and derivative (PID) 
control actions and lead and lag compensation methods are commonly employed in indus-
trial control systems. Compensators are analog or digital components that are added to an 
existing controller in order to “compensate for” weaknesses of the controller.

9.1.1 Design Specifications

Typical step of designing a control system are:

Establish specifications for system performance (performance specifications or •	
design specifications). These may be provided by the customer or have to be devel-
oped by the control engineer.
Analyze and/or test the plant (or the original system in the case of design modifi-•	
cations). This step may involve system modeling.
Select suitable components and determine the parameter values to meet the per-•	
formance specifications. Commonly available (off the shelf) components should be 
used whenever possible. Many parameter values are available from the product 
data sheets provided by the manufacturers or vendors.
Analyze and/or test the overall system to evaluate and verify its performance. •	
Testing should involve the users (e.g., personnel from an industrial facility) of the 
designed control system when feasible, and should be done under realistic operat-
ing conditions.
Repeat the design iteration if the specifications are not satisfied.•	

The design process is greatly influenced by the nature of the controller and the perfor-
mance specifications used. Control systems can be designed by using either time-domain 
techniques or frequency-domain techniques. Many of the conventional methods of con-
trol system design are frequency-domain techniques and are particularly convenient 
when designing single-input–single-output (SISO) systems. State-space design techniques 
primarily use time domain concepts. These latter techniques are useful with multiinput, 
multioutput (MIMO) or multivariable systems. Since poles and zeros of a transfer function 
determine the time response of the corresponding system, it is difficult to classify some 
design techniques into time and frequency domains. For example, pole assignment using 
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state-space techniques is considered a time domain approach whereas root locus design 
may be considered a frequency domain (actually, Laplace domain) approach. Design speci-
fications may concern such attributes of a control system as: stability, bandwidth (speed of 
response), sensitivity and robustness, input sensitivity, and accuracy. In designing a control 
system, these attributes or descriptions have to be specified in quantitative terms. The nature 
of the design specifications used depends considerably on the type of the controller and the 
particular design technique that is employed. As discussed in several previous chapters, 
performance specifications can be made in both time domain and frequency domain.

9.1.2 Time-Domain Design Techniques

Common techniques of controller design in the time domain are listed below:

 1. Conventional design of proportional (P), derivative (D) and integral (I) controllers 
(Design specifications: percentage overshoot, rise time, delay time, peak time, set-
tling time, time constants, damping ratio, steady-state error.)

 2.. Optimal control using state-space approach (Specifications: expressed as a per-
formance function that will be optimized in the design process; e.g., final time, 
weighted quadratic integral of response variables, inputs, states, error variables, 
and inputs.)

 3.. Pole assignment using state-space approach (Specifications: required pole locations.)

9.1.3 Frequency-Domain Design Techniques

Common techniques of controller design in the frequency domain are listed below:

 1. Bandwidth design (Design specifications: resonant peak, bandwidth, resonant 
frequency.)

 2.. Bode and Nyquist design (Specifications: phase margin, gain margin, steady-state 
error, gain crossover frequency, slope of the transfer-function magnitude at gain 
crossover.)

 3.. Ziegler–Nichols tuning (Specifications: For example, a decay ratio of four in the 
closed-loop response.)

 4. Root locus design (Specifications: pole locations, or any other parameter such as 
error constant, gain, natural frequency, damping ratio, settling time, peak time, 
and percentage overshoot that can be expressed in terms of pole locations.)

In the next section, we will describe a conventional method of controller design in the time 
domain. Common approaches of controller design in the frequency domain and a popular 
approach of controller tuning are presented in the subsequent sections.

9.2 Conventional Time-Domain Design

Speed of response, degree of stability, and steady-state error are the three specifications 
that are most commonly used in the conventional time-domain design of a control system. 
Speed of response can be increased by increasing the control system gain. This, in turn, 
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can result in reduced steady-state error. Furthermore, steady-state error requirement can 
often be satisfied by employing integral control. For these reasons, one can treat speed of 
response and degree of stability as the only requirements in conventional time-domain 
design, and treat the steady-state error requirement separately.

The time-domain design of a proportional controller and a position plus velocity servo 
has been discussed in Chapter 7. The approach has to be modified for the design of a pro-
portional plus derivative (PD or PPD) controller. This issue is treated next.

9.2.1 Proportional Plus Derivative Controller Design

Actuators with proportional plus derivative (PD or PPD) error control are commonly used 
as position servos. The two main parameters that can be adjusted in a PPD control element 
are the control gain K and the derivative time constant td. Values for these two parameters 
can be chosen to provide specified levels of stability and speed of response, in a control 
system that employs a PPD servo.

The time-domain design problem is quite straightforward for proportional control and 
position plus velocity (tachometer) feedback control, as discussed in a previous chapter 
(see Chapter 7 in particular). This is so because, in both cases, the closed-loop transfer 
function does not contain finite zeros. With PPD error control, however, a finite zero enters 
into the closed-loop transfer function, making the design problem more difficult.

A common practice in the classical time-domain design of PPD controllers is to use the 
same design equations or curves as for position plus velocity feedback. This approach, 
however, may result in large errors when the finite zero that is introduced by the PPD 
controller becomes dominant. Hence a modification to the previous design approach is 
needed, which is discussed now.

Consider the PPD servo system represented by the block diagram in Figure 9.1. The 
derivative time constant of the PPD controller is denoted by td. The closed-loop transfer 
function of the system is

 G s
K s

s K s K
d

a d

( )
( )
( )

= +
+ + +
t

tt t t
1

2.
 (9.1)

which is of the form

 G s
s

s s
n d

n n

( )
( )

( )
= +

+ +
w t
zw w

2.

2. 2.

1
2.

 (9.2.)

Control
amplifier

PPD
controller

τds+1 K τs (τas+1)
1

Actuator
Input

position
command

u
Position
output

y
–

Figure 9.1
Block diagram of a PPD position servo system.
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The undamped natural frequency wn of the closed-loop system is given by

 w
ttn

m

K2. =  (9.3.)

and the damping ration z is given by

 2.zw t t
ttn

d

m

K= +
 (9.4)

Equation 9.2. has a finite zero (at s = -1/td). It follows that (by using the principle of super-
position, which is valid for linear systems) the step response of the PPD servo is given by:

 y y
dy
dtd= +∗

∗
t  (9.5)

in which y* is the simple oscillator step response (see Chapter 6) as given by:

 y
t

tn
d

∗ = - -
-

+1
1 2.

exp( )
sin( )

zw
z

w f  (9.6)

By substituting Equation 9.6 into Equation 9.5 we obtain

 y t tn d
n d= - - + +1

w t
h

zw w f h
sin

exp( )sin( )  (9.7)

in which

 h w t
zw t

=
-







-tan 1

1
d d

n d

 (9.8)

Peak time Tp is determined by the condition: (dy/dt) = 0. This gives:

 tan( ) tanw f h w
zw

fd p
d

n

T + + = =

or

 h w= -π d pT  (9.9)

By substituting Equation 9.9 into Equation 9.7 we get the peak response (at t = Tp),

 M
T

Tp
d d

d p
n p= + -1

w t
w

zw
sin

exp( )  (9.10)
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9.2.2 Design equations

There are four equations that govern the design of a PPD position servo. They can be 
obtained directly from the theory outlined above. With straightforward manipulation of 
the previous equations we get:

 
1
t
zw w

wd
n

d

d pT
= -

tan
 (9.11)

 
K

a
n dtt

zw w= +( )2. 2.  (9.12.)

 
1

2.
t

t
tt

zw
a

d

a
n

K+ =  (9.13.)

Percentage overshoot

 P O
T

Td d

d p
n p. .

sin
exp( )= -100w t

w
zw  (9.14)

These results can be expressed graphically and used in the design process. Alternatively, 
the equations can be solved using a nonlinear equation solver, after substituting the speci-
fications and known parameter values.

example 9.1

Consider PPD control of a dc motor represented in Figure 9.1, with the mechanical time constant 
ta = 0.5 s and the gain parameter t  = 1. Suppose that the design specifications are Tp = 0.09 s and 
P.O. = 12%. The plant transfer function for this example is

 G s
s sp( )
( . )

=
+

1
0 5 1

It can be verified that a PPD controller with parameters K = 277 and td = 0.078 will meet the 
design specifications.

9.3 Compensator Design in the Frequency Domain

Once the components such as actuators, sensors, and transducers are chosen for a control 
system and the control strategy (e.g., proportional feedback control) is decided upon, the 
design of the control system can be accomplished by determining the parameter values 
for the controller (and possibly for other components) that will bring about the desired 
performance. If the design specifications cannot be met by adjusting the parameters of 
the existing controller, then new components (called compensators) may have to be added 
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to the control system in order to meet the required performance. This process is known as 
control system compensation.

Lead compensation and lag compensation are the most commonly used methods of 
 compensation in the conventional frequency domain design of control systems. These 
 compensators improve the system performance by modifying the frequency response of 
the original control system. Both types of compensators can provide improved stability. 
The way this improvement is brought about by a lag compensator is not quite the same as 
the way it is achieved by a lead compensator, however. Lead compensation improves the 
speed of response (or bandwidth) as well, of the control system. Lag compensation improves 
the low-frequency performance (steady-state accuracy, in particular). Unfortunately, lag 
 compensation has the disadvantage of decreasing the system bandwidth. In general, 
combined lead-lad compensation, and perhaps several stages of this, may be needed for 
achieving large improvements in performance. Now we will study the behavior of lead 
compensation and lag compensation and how these compensators may be designed into 
a control system.

To get the loop transfer function of the compensated system, the compensator transfer 
function is multiplied by the loop transfer function GH of the uncompensated system. It 
follows that the compensator element may be added at any point in the control loop, since 
the end result of loop transfer function will be the same. Specifically, the compensator may 
be included either in the forward path or in the feedback path of the loop. In either case the 
analysis and the underlying design procedures are the same.

The design of a lead compensator or a lag compensator consists of two basic steps. They 
are:

 a. Select the system gain to meet the steady-state accuracy specification. This will 
result in improved speed of response as well.

 b. Choose the zero and the pole of the compensator to meet the phase margin speci-
fication (for relative stability).

The compensator design amounts to the selection of appropriate parameters (gains, poles, 
and zeros) for the compensator elements. Bode diagrams are particularly useful in the 
frequency-domain design of compensators (see Chapters 6 and 8). A particular advantage 
is the fact that the Bode plot for the compensated system is obtained by simply adding 
the Bode plot for the compensator to the Bode plot of the original uncompensated system, 
where the transfer function magnitudes are expressed in decibels. This follows from the 
fact that the phase angles of a transfer function product are additive, and the magnitudes 
are additive as well when a log scale (or decibel scale) is used.

9.3.1 lead Compensation

Lead compensation is a conventional frequency-domain design approach, which employs 
the derivative action (lead action) of a compensator circuit (or software) to improve 
 stability by directly increasing the phase margin. Also, lead compensation increases the 
 system bandwidth, thereby improving the speed of response. The speed of response may 
be  further increased and the steady-state accuracy improved as well by increasing the dc 
gain (zero-frequency gain) of the control loop. Lead compensation primarily modifies the 
high-frequency region of the system bandwidth, thereby improving transient characteris-
tics of the control system.
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The transfer function of a lead compensator is expressed as

 G
s

a s
ad( )s = +

+






< <t
t

1
1

0 1 (9.15)

Nyquist and Bode diagrams for this compensator are shown in Figure 9.2.. The maxi-
mum phase (lead) angle is obtained at a point within the frequency range [1/T,1/(aT)], and 
is given by:

 ∆ = -
+







-fm
a
a

sin 1 1
1

 (9.16)

This is obtained by drawing a tangent line to the Nyquist plot (which is a semicircle) as 
shown in Figure 9.2.a. It can be shown that the corresponding frequency is:

 w
t

c
a

= 1
 (9.17)
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Figure 9.2
Frequency transfer function of a lead compensator. (a) Nyquist plot. (b) Bode plot.
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and the transfer-function magnitude is: 1 a . In decibels this magnitude can be expressed 
as:

 M
ac =







2.0
1

10log dB  (9.18)

To verify these results note that in Figure 9.2.a, the transfer-function magnitude at the 
maximum phase angle is given by the length of the tangent to the Nyquist curve:
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This verifies Equation 9.18. Now if we substitute s j a= ( )t  into Equation (9.15) we get:
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1
1

This has a magnitude of 1 a , thus verifying Equation 9.17.
Notice from Figure 9.2.b that when a lead compensator is added to a system, its gain 

is amplified, particularly at high frequencies. This increases the crossing frequency. The 
phase angle of the uncompensated system at this new crossing frequency is typically more 
negative than that at the original crossing frequency. This means more phase lead (than 
would be required if the compensator had not produced a magnitude increase) has to be 
provided by the lead compensator in order to meet a specified phase margin. Usually, a 
correction angle df of a few degrees should be added to the required phase lead of the 
compensator (given by the difference: specified phase margin–phase margin of the uncom-
pensated system). The actual correction that is required depends on the rate at which the 
phase angle of the original system changes in the vicinity of the crossing frequency, but it 
is not precisely known beforehand.

The final value theorem (see Chapter 7) dictates that the lead compensator given by 
Equation 9.15 does not affect the steady-state accuracy. The reason is that the compensator 
has a unity dc gain—the magnitude at zero frequency, and it is the dc gain that determines 
the steady-state response of a transfer function. Note further that since the crossover 
 frequency increases through lead compensation, the system bandwidth also increases.

Using the results outlined above, an iterative procedure for lead compensator design can 
be stated. The procedure is considered optimal because each iteration utilizes the maxi-
mum phase lead that is offered by the compensator.

9.3.1.1 Design Steps for a Lead Compensator

The main steps of an iterative procedure for designing a lead compensator are now listed. 
Note: Just one iteration is adequate for most purposes. Each step in the design procedure is 
explained at the end of the listing. The control system configuration considered is shown 
in Figure 9.3..

Design Specifications: PMspec, ess
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Step 1: Compute the loop gain K that is needed to meet the steady-state error specifica-
tion. Obtain the Bode curves for the uncompensated system with this gain included in the 
loop. Determine the phase margin PMo

Step 2: Compute the required phase margin improvement:

 ∆ = - +f dfm spec oPM PM  (9.19)

Step 3: Compute the lead compensator parameter:

 a m

m

= - ∆
+ ∆

1
1

sin
sin

f
f

 (9.2.0)

Step 4: Compute the compensator gain at the maximum phase lead:

 M
ac =







10
1

10log dB  (9.2.1)

Step 5: From the uncompensated Bode gain curve, determine the frequency wc at which 
gain is (-Mc)dB

Step 6: Compute the remaining compensator parameter:

 t
w

= 1
a c

 (9.2.2.)

Step 7: Compute the Bode curves for the designed system (which includes the compen-
sator) and determine the PM of this compensated system

Step 8: If PM PMspec o- ≤df , stop. If the number of iterations exceeds the limit, stop. 
Otherwise, increase df by (PMspec - PM) and Go To Step 2..

Typically, a phase margin specification PMspec and a steady-state error specification ess are 
specified in the compensator design. The gain K that is required to meet the ess (for a step 
input) is computed in Step 1. Note: If the uncompensated loop has a free integrator (i.e., 
Type 1 system—see Chapter 7), the steady-state error for a step input will be zero. Then, 
there is no need to change the system gain, unless the steady-state error specification is 

G

H

Input
u Outputs

y

Compensator
τs+1

ατs+1
K

Gain

–

G = uncompensated forward transfer function
H = feedback transfer function

KGH = uncompensated loop transfer function

Figure 9.3
Forward (cascade) compensation of a control system.
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based on a rate input such as a ramp or a parabola. The steady-state response to a unit step 
input (1/s) is given by:

 y
s
s

G s
KG

KG H
K

Kss
s

= =
+

=
+→

lim ( )
( )

( ) ( )0

0
1 0 0 1

  (9.2.3.)

This result follows from the final value theorem—see Chapter 7. It assumes that the trans-
fer functions G(s) and H(s) do not contain free integrators and have unity dc gains. The 
steady-state error is given by:

 e y
K

K Kss ss= - = -
+

=
+

1 1
1

1
1

 (9.2.4)

The system gain that is computed in this manner, is added to the uncompensated sys-
tem. Note: If the uncompensated loop has one or more free integrators, the original gain is 
unchanged. The phase margin PMo of the uncompensated system (with gain K included) 
is determined in Step 1.

In Step 2. the required increase in phase margin is computed. A typical starting value 
for the correction angle df is 5°. It will be changed in subsequent iterations. One of the 
compensator parameters (a) is computed in Step 3.. Equation 9.2.0 follows from Equation 
9.16. Note: If ∆fm is excessive, a single compensator may not be adequate. For example, if 
the typical value of 1 decade is used as the separation between the zero and the pole of the 
lead compensator, then a = 0.1 and

 ∆ = -
+






= °-fm sin

.

.
1 1 0 1

1 0 1
50

A phase margin improvement of better than 50° would be very demanding on a sin-
gle compensator. In general, a single compensator should not be used to obtain a phase 
increase of more than 70°.

Equation 9.2.1, which is used in Step 4 to compute the gain at maximum phase lead of 
the compensator, follows directly from Equation 9.18. Frequency wc will be the crossing 
frequency of the compensated system. Manual determination of wc can be done simply by 
noting the frequency at which the gain is -Mc on the uncompensated Bode gain plot. For 
computer-based determination of this quantity, one has to add Mc to the uncompensated 
gain value and then obtain the crossing frequency of the resulting modified gain curve.

The remaining compensator parameter t is computed using Equation 9.2.2. in Step 6. 
This equation is identical to Equation 9.17. Note: wc is equal to the geometric mean of the 
compensator zero and the compensator pole. In Step 7, the compensator transfer function 
is included in the loop transfer function; the new Bode curves are computed; and the new 
phase margin PM is determined. The absolute error in the new phase margin is com-
puted in Step 8. If this is less than a prechosen error tolerance dfo, the design is concluded. 
Otherwise, the phase margin correction df is increased by an amount that is equal to the 
current error, and the design is repeated. An error tolerance of 1° is usually adequate.

If a single lead compensator is unable to provide the necessary gain increase, two or 
more compensators in cascade should be used. In that case the design could be done with 
one compensator at a time. The first compensator is designed for its optimum performance. 
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It is then included in the loop transfer function and the second compensator is designed 
for this modified loop transfer function, and so on. The computer-aided design procedure 
that was outlined previously can be easily extended to this case of designing higher order 
compensators in sequence.

When a lead compensator is added, the resulting crossing frequency wc of the compen-
sated system will be larger than that of the uncompensated system. This should be obvi-
ous from the gain curve in Figure 9.2.b. This means that the bandwidth of the compensated 
system is larger. This has the favorable effect of increasing the speed of response of the 
control system. Unfortunately, a lead compensator is also a high-pass filter. This means 
that the compensated system can allow higher-frequency noise, which will distort the 
signals in the control system. This is a shortcoming of lead compensation.

9.3.2 lag Compensation

If a control system has more than adequate bandwidth, a lag compensator can be used to 
simultaneously improve both steady-state accuracy and stability of the system. Since a lag 
compensator adds a phase lag to the loop, it actually has a destabilizing effect. But since 
the crossing frequency (hence, the system bandwidth) is reduced by a lag compensator, the 
phase lag will be lower in the neighborhood of the new crossing frequency than the phase 
lag near the old crossing frequency, thereby increasing the phase margin and improving 
system stability. It follows that even though a lead compensator and a lag compensator 
both improve system stability, the way they accomplish this is quite different. Also, a lag 
compensator inherently improves the low-frequency behavior, steady-state accuracy in 
particular, of the system. Furthermore, since a lag compensator is essentially a low-pass 
filter, it has the added advantage of filtering out high-frequency noise.

A lag compensator is given by the transfer function:

 G s
s
sg( ) = +
+







t
bt

1
1
b > 1 (9.2.5)

Its Bode diagram is shown in Figure 9.4. Since this compensator adds a negative slope 
(in the frequency range 1/(bt) to 1/t) to the original loop, the crossing frequency will 
decrease. If the phase margin at this new crossing frequency is adequate to meet the PM 
specification, the lag compensator will provide the required stability. Otherwise, a lead 
compensator should be used to further improve the stability of the system.

The phase lag contribution from a lag compensator is primarily limited to the frequency 
interval 1/(bt) to 1/t. This range should be shifted far enough to the left of the crossing 
frequency of the compensated system so that the phase lag of the compensator has a neg-
ligible effect on the phase-margin potential of the original system. One way to accomplish 
this would be to make 1/t a small fraction (typically 0.1) of the required crossing frequency. 
Using these considerations, a design procedure for a lag compensator is outlined below.

9.3.2.1 Design Steps for a Lag Compensator

The main steps of designing a lag compensator are given now. The considered control 
structure is the same as what is shown in Figure 9.3..

Design Specifications: PMspec, ess
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Step 1: Compute the loop gain K  that is needed to meet the steady-state error specifica-
tion. Obtain the Bode curves for the uncompensated system with this gain included in the 
loop.

Step 2: Compute the phase angle required at the new crossing frequency:

 f df= - ° +PMspec 180  (9.2.6)

Step 3: From the uncompensated Bode phase curve determine the frequency wc where 
the phase angle is f.

Step 4: Compute the lag compensator parameter:

 t
w

= 10

c

 (9.2.7)

Step 5: From the uncompensated Bode gain curve determine the magnitude Mc dB at wc.
Step 6: Compute the remaining compensator parameter b as follows:

 a
Mc= +
10

10110log  (9.2.8)

 b = -0 1 10 1. a  (9.2.9)
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Figure 9.4
Bode diagram of a lag compensator.
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Step 7: Compute the Bode curves for the designed system (which includes the lag com-
pensator) and determine the PM of this compensated system.

Step 8: If PM PMspec o- ≤df , stop. If the number of iterations exceeds the limit, stop. 
Otherwise increase df by (PMspec - PM) and Go To Step 2..

Most of the steps given above are self-explanatory. In Step 2., a correction angle df is used 
to account for the phase lag contributed by the lag compensator at frequency wc. In the first 
iteration, a correction angle of 5° is typically used. The required correction angle is small 
if the magnitude of the compensator zero (1/t) is quite small compared to the crossing 
frequency (wc). This is guaranteed in Step 4, through Equation 9.2.7. The magnitude of the 
uncompensated system (Mc) at wc (see Step 5) has to be exactly cancelled by the magnitude 
of the lag compensator at wc, in order to force wc to be the crossing frequency of the com-
pensated system. The necessary condition is:

 - =
+
+

M
j
jc

c

c

2.0
1
1

log
t w
bt w

 (9.3.0)

By substituting Equation 9.2.7 into Equation 9.3.0 we get:

 M
j

jc =
+
+

2.0
10 1
10 110log
b

 (9.3.1)

Equations 9.2.8 and 9.2.9 as given in Step 6 are obtained directly from Equation 9.3.1. An 
approximate relation is obtained by neglecting 1 compared to 10, as:

 b = 10 2.0Mc  (9.3.2.)

Usually, acceptable results are obtained in just one design iteration. In computer-aided 
design routines a maximum number of design iterations (typically five) should be speci-
fied. Then, if the design does not converge, the design computation is stopped when the 
maximum number of iterations is exceeded, and the best design among performed the 
several iterations is presented as the final design. Note: If the phase margin potential (i.e., 
the difference: 180°—minimum phase lag angle of the uncompensated system at a fre-
quency above the required bandwidth) is smaller than the phase margin specification, the 
lag compensator will be unable to meet the phase margin specification.

In some designs it may be necessary to modify both low frequency region and high fre-
quency region of the loop transfer function in order to: simultaneously reduce the steady-
state error to a desired level; improve the slow transients; filter out high-frequency noise; 
increase the speed of response; and improve the input-tracking capability. This may be 
achieved by using one or more lead-lag compensator stages.

For a good compensator design, the slope of the loop gain curve at the crossover fre-
quency should be approximately equal to (–2.0 dB/decade). Often, this condition is given as 
a design specification. It can be shown that if the slope at crossover is substantially smaller 
(algebraically) than (–2.0 dB/decade), it is quite difficult to accurately meet a phase-margin 
specification. To illustrate this, consider an underdamped oscillator. In this example (see 
Chapter 8) the slope at crossover is (–40 dB/decade) which is considerably smaller than 
the required (–2.0 dB/decade), and the phase angle changes rapidly from 0° to –180° in the 
neighborhood of the natural frequency wn. Now, recall the fact that we need to include a 

76868.indb   422 7/8/09   5:14:04 PM



Controller Design and Tuning 423

correction angle df in the design of a lead compensator because the phase lag angle of the 
uncompensated system at the compensated (new) crossover frequency is different from 
(usually larger than) that at the uncompensated (old) crossover frequency. Also, a correc-
tion angle df has to be included in the design of a lag compensator because the compensa-
tor adds a small phase lag in the neighborhood of the compensated crossover frequency. 
Should the phase angle of the uncompensated system changes rapidly (which is the case 
when the slope of the gain curve is (–40 dB/decade) or smaller), the design would be very 
sensitive to the phase angle correction df. Then it would be very difficult to meet the 
PM specification, usually resulting in either a substantially over-designed compensator 
or a substantially under-designed compensator. For example, for a lightly damped simple 
oscillator, if the compensated crossover frequency is less than wn (which will be the case 
with a lag compensator), the uncompensated loop itself will provide a phase margin of 
nearly 180° (an over-designed case). On the other hand, if the compensated crossover fre-
quency is greater than wn, the uncompensated loop will have a very small phase margin 
(approximately zero). Hence, a lead compensator will have to provide the entire require-
ment of design phase margin, which is not usually possible with a single compensator (an 
under-designed case).

9.3.3 Design Specifications in Compensator Design

More than a phase margin and a steady-state error might be specified in the design of 
a compensator. For example, a settling time and a bandwidth of the closed-loop system 
might also be specified. Since settling time is related to stability, one approach to meet this 
specification would be to first design the compensator to meet the phase margin specifi-
cation and subsequently check to see whether the design satisfies the settling time speci-
fication. If not, the phase margin specification should be increased and the compensator 
redesigned on that basis. Similarly, the bandwidth of the designed closed-loop system 
should also be checked. If it is not satisfied, the system gain should be increased and the 
compensator redesigned.

As noted in Chapter 8, it is possible to relate a phase margin specification (fm) to a damp-
ing ratio specification, using the simple oscillator model, as:

 f z
m a
= -tan 1 2.

deg.  (9.3.3.)

in which

 a = + -4 1 2.2. 2.z z  (9.3.4)

Equation 9.3.3. along with Equation 9.3.4 provides a relationship for the specifications of 
PM and z. In particular for small z, if we neglect O(z 2.) terms compared to unity, Equation 
9.3.4 can be approximated by a = 1. Then Equation 9.3.3. can be approximated as:

 f z z
pm = = ×2. 2.

180
radians deg.

or, approximately:

 f zm = 100 degrees  (9.3.5)
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example 9.2

A speed control system is shown by the block diagram in Figure 9.5. The motor is driven by con-
trol circuitry, approximated in this example by an amplifier of gain K. The signal y from the speed 
sensor is conditioned by a low-pass filter and compared with the speed command u. The resulting 
error signal is fed into the control amplifier. The controller may be tuned by adjusting the gain K. 
Since the required performance was not achieved by this adjustment alone, it was decided to add 
a compensator network into the forward path of the control loop. The design specifications are:

 1. Steady-state accuracy of 99.9% for a step input.
 2. P.O. of 10%.

Design:

 a. A lead compensator.
 b. A lag compensator.

to meet these design specifications.

Solution
From the time domain considerations using a damped oscillator model (see Chapter 7) a percent-
age overshoot of P.O.  = 10 corresponds to a damping ratio of z = 0.6. Then in view of Equation 
9.35 we have the equivalent phase margin specification:

 PMspec = °60

Next, note that the dc gain of the filter is H(0) = 1. Accordingly, we use Equation 9.24 to deter-
mine the gain that satisfies the steady-state error specification:

 
1

1
0 1
100+

=
K

.

This gives:

 K = 999

With this gain, the transfer function of the uncompensated loop is

 GH
s s

=
+ +
999

10 1 0 1 1( )( . )

Bode curve pair for this transfer function is shown in Figure 9.6.
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Figure 9.5
Compensator design for a velocity servo.
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 a. Lead Compensation
Here we follow the design steps as given earlier.

Step 1: The Bode plot with K = 999 gives a phase margin of

 PMo = °18 31at rad/s (4.9 Hz)

Step 2: Using a correction angle of 6° we have from Equation 9.19

 ∆ = - + = °fm 60 18 6 48

(This correction angle was actually obtained after one design iteration starting with a correction 
angle of 1°.)

Step 3: From Equation 9.20 we obtain one of the lead compensator parameters:

 a = - °
+ °

=1 48
1 48

0 15
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Figure 9.6
Bode curves for the compensator design example.
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Step 4: From Equation 9.21:

 Mc =





=10

1
0 15

8 210log
.

. dB

Step 5: The frequency corresponding to an uncompensated magnitude of –8.2 dB is obtained 
from the uncompensated Bode plot. This value (new crossing frequency) is:

 wc = 51rad/s (8.12 Hz)

Step 6: From Equation 9.22, the second parameter is obtained as:

 t =
×

=1
0 15 51

0 051
.

. s.

It follows that the transfer function of the lead compensator is:

 G s
s
sd ( )

.
.

= +
+







0 051 1
0 008 1

The Bode curve pair for the compensated loop transfer function is shown in Figure 9.6. It is 
seen that the phase margin specification has been satisfied. Also note the increased crossover 
frequency (and hence increased bandwidth).

b. Lag Compensation
By following the steps outlined earlier for lag compensator design, we can obtain a lag compensa-
tor that satisfies the design specifications. The pertaining computations are given below.

Step 1: As before we have K = 999.
Step 2: Using a correction angle of 5° (this was obtained after one computer iteration) we have 

from Equation 9.26:

 f = - + = - °60 180 5 115

Step 3: From the uncompensated Bode curves, the frequency corresponding to a phase angle 
of –115° is:

 wc = 5 rad/s (0.79 Hz)

Note: This step also verifies that a lag compensator can meet the given design specification (i.e., 
adequate phase margin is present in the uncompensated system), provided that a low bandwidth 
(less than 1 Hz) is acceptable.

Step 4: One parameter of the lag compensator is obtained from Equation 9.27:

 t = =10
5

2 0. s.

Step 5: The magnitude of the uncompensated system at wc  is (from Bode curve):

 Mc = 25 2. dB
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Step 6: From Equation 9.28:

 a = + =25 2
10

101 4 5210
.

log .

From Equation 9.29 the second parameter of the compensator is obtained as:

 b = - =0 1 10 1 18 34 52. ..

It follows that the transfer function of the lag compensator is

 G s
s
sg ( )

.
.

= +
+







2 0 1
36 6 1

Note from the Bode curves for the lag-compensated system (Figure 9.6) that the phase margin 
specification has been satisfied. Note further that the crossover frequency has been decreased 
substantially (from 31 to 5 rad/s) indicating a large reduction in the bandwidth of the control 
system.

Note: See Appendix B for a MATLAB® treatment of this example.

9.4 Design Using Root Locus

Root locus is the locus of the closed-loop poles as one parameter of the system (typically 
the loop gain) is varied (see Chapter 8). A set of design specifications can be met by locat-
ing the closed-loop poles inside the corresponding design region on the s-plane. Then the 
design process will involve the selection of parameters such as control gain, compensator 
poles and compensator zeros, so as to place the closed-loop poles in the proper design 
region. This can be accomplished by the root locus method.

9.4.1 Design Steps using root locus

Once the design region on the s-plane is chosen, the next step is to check whether the domi-
nant branch (i.e., branch closest to s = 0) of the root locus (for the closed-loop system) passes 
through that region. If it does, the corresponding value of the root locus variable (typically 
the loop gain) is computed using the magnitude condition (see Rule 2. given for sketch-
ing a root locus, in Chapter 8). If the steady-state error requirement is already included in 
the design specification (on the s-plane) as a limit on wn, then we do not need to proceed 
further. Otherwise, the applicable error constant (Kp, Kv, or Ka), as described in Chapter 7, 
should be computed using the design value of the loop gain, to check whether the steady-
state accuracy is adequate. If the design requirements are not met with the existing control 
loop, a compensator with dynamics (i.e., one having s terms), such as a lead compensator 
or a lag compensator, should be added to the loop and the compensator parameters should 
be chosen to satisfy the design specifications. To summarize, the design steps using the 
root locus method are as follows:

Step 1: Represent the design specifications as a region on the s-plane.
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Step 2: Plot the root locus to check whether at least one branch of the root locus passes 
through the design region while the other branches pass through regions to the left of the 
design region, for the same parameter values.

Step 3: If it does not satisfy the requirement in Step 2., add a compensator to the control 
loop and adjust the compensator parameters to achieve the requirement. If it does, then 
compute the corresponding root locus parameter (typically the loop gain) using the mag-
nitude condition.

Note: It is the dominant poles of the closed-loop system that should fall inside the design 
region (the remaining poles being to the left of the region, by definition).

The magnitude condition is an important equation in the root locus design. In this 
regard, a useful result can be obtained by using the closed-loop characteristic equation 
(see Chapter 8):

 K
s z s z s z
s p s p s p

m

n

( )( ) ( )
( )( ) ( )
- - -
- - -

= -1 2.

1 2.

1
…
…

 (9.3.6)

Since the coefficient of the second highest power (i.e., coefficient of sn-1) of a monic char-
acteristic polynomial (i.e., a polynomial with the coefficient of sn equal to 1) is equal to the 
sum of the roots except for a sign change, we observe from Equation 9.3.6 the following fact, 
which can be given as a rule for sketching root locus:

Rule 9: If m < n - 1, then the (sum of the closed-loop poles) = (sum of the GH poles) and 
this sum is independent of K.

9.4.2 lead Compensation

The lead compensator design using the root locus method is illustrated now. Essentially, 
we follow the three steps for root locus design, as presented earlier.

Lead compensator design in the frequency domain using Bode diagram was discussed 
previously. The objective of the method was to determine the zero (-z) and the pole (-p) of 
the lead compensator transfer function

 G
p
z

s z
s pc =
+
+







z p<  (9.3.7)

so that the design specifications are satisfied. The steps that are usually followed in the 
root locus method to design a lead compensator are given below.

Step 1: Select a closed loop pole pair (complex conjugates) that meets the design specifi-
cations. This should become the dominant pole pair of the closed-loop system.

Step 2: Locate the compensator zero (-z) vertically below the specified closed-loop pole.
Step 3: Locate the compensator pole (-p), to the left of -z so as to satisfy the angle condi-

tion of the root locus (Rule 2. given under root locus method, in Chapter 8).
Step 4: Compute the root locus parameter (usually gain K) at the design pole location, 

using the magnitude condition (Rule 2. in Chapter 8, under the root locus method).
In Step 1, the design pole pair of the closed-loop system is located in the design region 

of the s-plane, as discussed earlier. In Step 2., if there is a GH pole at the location where the 
compensator zero is to be located, we should locate the compensator zero sufficiently left 
of that location so that the compensator would not drastically alter the dynamic character-
istics of the uncompensated system, by producing a closed-loop pole that would dominate 

76868.indb   428 7/8/09   5:14:13 PM



Controller Design and Tuning 429

over the design poles. Step 3. makes sure that the root locus passes through the design 
point, and Step 4 provides the root locus parameter value at the design point.

example 9.3

Sheet steel, which many major industries such as the automobile industry and the household 
appliance industry depend on, is obtained by either hot rolling or cold rolling of thick plates or 
slabs of steel castings. The steel is passed through a pair of work rolls, which are driven by heavy 
duty a motor. The thickness of the rolled steel depends on the roll separation, which is adjusted by 
a hydraulic actuator (ram). Open-loop adjustment is not satisfactory in this application for reasons 
such as roll deformation, flexibility of rolled steel, and mill stretch. The thickness of the output 
steel coil is measured, and the roller separation is corrected accordingly, using feedback control. 
A simplified model for this control loop is shown in Figure 9.7a. Show that simple proportional 
control is inadequate for simultaneously meeting the following three specifications:

 a. A peak time < 0.2 s
 b. 2% settling time < 0.4 s
 c. P.O. < 10.

Determine the parameters for a suitable lead compensator that will satisfy these three control 
specifications. Compute the velocity error constant of the compensated system and the steady-
state error to a unit ramp input.

Roller separation
setting

Coil
thickness

Lead
compensator

K

Controller

(a)

(b)

–

1

Rolling mill
(s + z)
(s + p) s(s + 5)

Im

Re

s-plane

20

15.7

0–10–15

Design
point P

Design
region

P.O. Ts

ωd

69.5°

Figure 9.7
(a) Block diagram for the control system of a steel rolling mill. (b) Selection of a design point (P) on the 
s-plane.
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Solution
Using the formulas given in Chapter 7 (see Table 7.2) we find that:

 Tp = 0.2 s corresponds to wd  = 15.7 rad/s

 Ts = 0.4 s corresponds to zwn = 10 rad/s

 P.O. = 10% corresponds to z  = 0.35 or cos-1 z  = 69.5°

These design boundaries are drawn in Figure 9.7b and an acceptable design region is deter-
mined as a result. Any point in this region would be satisfactory. Usually, the design point in this 
region that is closest to the origin of the s-plane is chosen. But since a steady-state error specifi-
cation is not available, it is not known whether the design gain is satisfactory. As a compromise, 
the design point P (corresponding to wd = 20, zwn = 15, wn = 25, and z = 0.6) is chosen as shown in 
Figure 9.7b. The root locus of the uncompensated system is sketched in Figure 9.8a. Since it does 
not pass through the design region as superimposed in Figure 9.8a, it is concluded that propor-
tional control without compensation cannot meet the specifications.

Next, the compensator zero is located vertically below P. This gives: z = -15.
We know that the compensator pole lies to the left of this point. Now we are able to sketch 

the root locus for the compensated system, as in Figure 9.8b. Note: We have not yet determined 
all the parameters that are marked in this figure. We see from the figure that the design pole pair 
corresponds to the dominant poles of the closed-loop system, the third pole being located to their 
left (perhaps close to –p).

From geometry we can compute the following angles:

 Angle at the GH pole (0): f1
1180

20
15

126 87= ° - = °-tan .

 Angle at the GH pole (–5) : f2
1180

20
10

116 57= ° - = °-tan .

 Angle at the GH pole (–15) : = 90°

Im

Re

s-plane s-plane

0

Design
region

(a) (b)

Design
region

P

Im

Re0

Design point
P 20

–55
3φ 2φ 1φ

–22.5 –15 –5
90°

Figure 9.8
(a) Design region and the root locus of the uncompensated system. (b) Root locus of the compensated 
system.
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Hence, from the angle condition of plotting a root locus (see Chapter 8) for P to be a point 
on the root locus we must have the angle at the GH pole (–p), f3, satisfying the condition: 
f3 116 57 126 87 90 180+ + - =. .

Hence: f3
126 56

20
15

= ° =
-

-. tan
( )p

From this we have the compensator pole: p = 55

The compensator transfer function is: G s
s
sc ( )

( )
( )

= +
+

10
55

The loop gain K  at the design point is obtained using the magnitude condition (Rule 2 of root 
locus method—see Chapter 8). From geometry of Figure 9.8b we obtain:

 Distance from P to 0 =  20 15 252 2+ =

 Distance from P to –5 =  20 10 22 362 2+ = .

 Distance from P to –15 = 20

 Distance from P to –55 =  20 40 44 722 2+ = .

Hence the magnitude condition gives: 
K ×

× ×
=20

25 22 36 44 72
1

. .Or: K = 1250
Now using the result given in Chapter 7, the velocity error constant for the control system is 

computed as:

 K
s s
s s sv

s
= × +

+ +
=

→
lim

( )
( )( )

.
0

1250 15
5 40

93 75

Hence, the steady-state error to a unit ramp input is:

 ess = =1
93 75

0 011
.

.

This error is very small, and the design is concluded as satisfactory.
Note: Since the compensator pole is far to the left of the system poles, the real pole of the 

closed-loop system will not dominate and the compensated system will behave like a second-
order system.

Note: See Appendix B for a MATLAB® treatment of this example.

9.4.3 lag Compensation

We know that lag compensation improves the behavior in low frequency operation (par-
ticularly, steady-state accuracy) of a control system. Accordingly, lag compensation is 
 recommended if the uncompensated system has good transient response (i.e., satisfactory 
moderate-to-high-frequency performance) but has poor steady-state accuracy.

To explain the principle of lag compensation by the root locus method, consider the con-
trol system shown in Figure 9.9a. For a controller with gain value K Ko=  (i.e., the value of 
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the root locus parameter), the characteristic equation of the system without lag compensa-
tor Gc(s) is:

 1 0+ =K G so p( )  (9.3.8)

The roots of this characteristic equation give closed-loop poles. Suppose that the domi-
nant pole (one closest to the origin of the s-plane) obtained this way is shown as point S 
in Figure 9.9b. At point S, the angle condition and the magnitude condition are satisfied. 
Hence (see Chapter 8):

 ∠ - + +∠ - -∠ - - -∠ - = +( ) ( ) ( ) ( )s p s p s z s z rn m1 1 2.… … p p  (9.3.9)

 
s p s p
s z s z

Kn

m
o

- -
- -

=1

1




 (9.40)

Now let us include the lag compensator Gc(s) as shown in Figure 9.9a. Then for the same 
controller gain Ko (i.e., the root locus parameter value) the closed-loop characteristic equa-
tion is:

 1 0+ =K G s G so c p( ) ( )  (9.41)

Reference
input Output

Lag
compensator

Gc(s)

K

Controller

(a)

(b)

(s + z) (s – z1) (s – z2). . . (s – zm)
(s – p1) (s – p2). . . (s – pn)(s + p)

–

Plant
Gp(s)

Im

Re

s-plane

0–p–z

Closed-loop
pole s

2

δφ

φ
1φ

ab

Figure 9.9
(a) Block diagram of a system with a lag compensator. (b) Relationship of pole and zero of a lag compensator to 
dominant closed-loop pole (S) of uncompensated system.
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Generally, the roots of this equation are different from the roots of Equation 9.3.8. In 
 parti cular, now there may not be a root at point S in Figure 9.9b. But if we select the com-
pensator Gc(s) in an appropriate manner, we can make sure that the roots of Equation 9.3.8 
are “very close” to the roots of Equation 9.41 so that the transient performance of the sys-
tem is not significantly affected by compensation. In particular, the root locus of the com-
pensated system will be very similar to that of the uncompensated system except in the 
neighborhood of the compensator pole and zero. To examine the conditions that should 
be satisfied by the compensator to achieve this, let us write the angle condition and the 
magnitude condition corresponding to Equation 9.41:

 ∠ - + +∠ - -∠ - - -∠ - + = +( ) ( ) ( ) ( )s p s p s z s z rn m1 1 2.  d f p pp  (9.42.)

 
s p s p
s z s z

a
b

Kn

m
o

- -
- -

⋅ =1

1




 (9.43.)

in which

 d f f f= ∠ + -∠ + = -( ) ( )s p s z 1 2.  (9.44)

 a s p= +  (9.45)

 b s z= +  (9.46)

It follows that if df is very small, Equation 9.44 approximates to Equation 9.3.9. Similarly, 
if a ≈ b, then Equation 9.43. approximates to Equation 9.40.

Now we can conclude that the requirements for the closed-loop poles of the uncompen-
sated system to be “very close” to the closed-loop poles of the compensated system, for the 
same value of controller gain Ko, are:

 (i) df ≈ 0 (9.47)

and

 (ii) a ≈ b (9.48)

It follows that the lag compensator must satisfy these two requirements. But note that 
the dc gain of the compensated loop is z/p times the dc gain of the uncompensated loop:

 ( ) ( )dc gain dc gaincomp uncomp= z
p

 (9.49)

Since z > p for a lag compensator, this means that the dc gain has increased or, in other 
words, the error constant has increased. This is the reason for the decreased steady-state 
error due to lag compensation.

A disadvantage of lag compensation can be easily pointed out. Note that the number of 
closed-loop poles has increased by one due to compensation. One of these poles (the one 
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that is not close to the uncompensated closed-loop poles) is very close to the compensator 
pole and zero. Since the compensator pole and zero have to be chosen very close to the 
origin (and close together) in order to satisfy the conditions (Equations 9.47 and 9.48) it fol-
lows that the dominant closed-loop pole now is the one created by the compensator. This is 
obviously a slow pole producing a slowly decaying transient, even though the magnitude 
of this transient is usually small. Hence, the settling time will be increased to some extent 
due to lag compensation.

Usual steps of designing a lag compensator by the root locus method are given below.
Step 1: Determine an appropriate operating point for the uncompensated system so as to 

satisfy all the performance specifications, except the error constant specification.
Step 2: Select the compensator zero at about 0.1 × real part of the closed-loop operating 

pole of the uncompensated system.
Step 3: Select the compensator pole to meet the error constant (steady-state error) 

specification.
Step 4: Check for the margin of error introduced by the compensator.
All these steps should be clear from Example 9.4.

example 9.4

The motor and the load of a position servo system are represented by the plant transfer function: 

G s
s sp( )
( )

=
+
1

4
The controller is represented by a pure gain K  along with unity feedback. The system is shown 

in Figure 9.10a. Sketch the root locus and show that this servo system cannot simultaneously meet 
the following performance specifications:

 a. P.O. = 4.3
 b. Kv = 10.

Design a lag compensator to meet these specifications, within a margin of error. Estimate this 
margin of error. Sketch the root locus of the compensated system.

(a) (b) Im

Re

s-plane

0–4 –2

P'

P

a

2

45°

Position
command

Position
responseK

Controller

–

1
s (s+4)

Motor and
load

Figure 9.10
(a) Block diagram of an uncompensated position servo system. (b) Root locus of the uncompensated 
system.
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Solution
The loop transfer function of the uncompensated system is s/(s(s + 4)). The root locus is sketched 
in Figure 9.10b.

A P.O. of 4.3% corresponds to a damping ratio of z  = 0.707 (this can be verified using the 
equation given in Chapter 7, Table 7.2). The corresponding closed-loop pole location is shown as 
point P in Figure 9.10b. The controller gain for these operating conditions is obtained by using the 
magnitude condition:

 K = + × + =2 2 2 2 82 2 2 2

The corresponding velocity error constant (see Chapter 7) is:

 K s
s

s sv
s

= ×
+

= =
→

lim
( )0 4

8
4

2

This is less than the specified value of 10.
We can meet the Kv specification simply by increasing the controller gain to K = 40. Then,  however, 

the operating point moves to P′ in Figure 9.10b, where the closed-loop poles are -2 ± ja. Now the 
value of “a” is determined using the magnitude condition: √(a2 + 22) × √(a2 + 22) = 40  a = 6.

The corresponding undamped natural frequency = + =6 2 402 2  and the damping ratio 
z  = 0.316 = 2/ 40 . The P.O. with this z is 35.1% (from Table 7.2) which is much higher than the 
specified value. It follows that the specifications cannot be met by adjusting the controller gain 
alone.

Next, we add a lag compensator to the control loop. Since we want to keep the pole near point 
P in Figure 9.10b, the pole and the zero of the compensator transfer function:

 G s
s z
z pc ( )
( )
( )

= +
+

 (9.50)

should be chosen to be much closer to the origin than the operating point P. This is accomplished 
by making z equal to 10% of the real part of the operating pole. Accordingly we have: z = 0 2.

The velocity error constant, with the compensator added, is:

 K K
z
p pv = = ×

×
1
4

8 0 2
4
.

We have to make this value equal to 10 (the specification). Hence, we have:

 
8 0 2

4
10

×
×

=.
p

 p = 0 04.

The lag compensator transfer function is:

 G s
s

sc ( )
( . )

( . )
= +

+
0 2

0 04

The compensated system is shown in Figure 9.11a and its root locus is sketched in Figure 9.11b. 
The operating point (with K = 8) of the system is shown as P′ in Figure 9.11b. Note that the damping 
ratio at this point will be slightly different from the required 0.707, even though the velocity error 
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constant is exactly met (Kv = 10). The error in the damping ratio (or P.O.) can be determined by 
estimating the phase angle error and magnitude error near the operating point, as introduced by 
the compensator. Since the operating point (P′) is approximately -2  +  j2, the angle error:

 
df ≈ ∠ - + + -∠ - + +

≈ ° - °

( . ) ( . )

. .

2 2 0 04 2 2 0 2

134 4 132 0

j j

== °2 4.

The percentage error (since the vector angle of the operating point is approximately 45°) is:

 
2 4
45

100 5 3
.

. %
°
°

× =

The magnitude error is:
- + +
- + +

- = =
2 2 0 04
2 2 0 2

1 0 041 4 1
j
j

.
.

. . %

It follows that the error will be about 5%.

9.5 Controller Tuning

Ziegler–Nichols tuning is a procedure that is commonly used to set parameters of  PID 
 controllers—three-mode controllers or three-term  controllers—in industrial control sys-
tems. It uses rules of thumb based on practical experience and experimental observation 
with common types of control systems. We now present this tuning method as it provides 
quite satisfactory results even though it lacks theoretical rigor.

9.5.1 Ziegler–Nichols Tuning

Adjustment of controller parameters to improve the system performance (response) is 
known as controller tuning. Selection of parameter values for a controller is an  important 
final step in the control system design. This of course assumes that the design has pro-
gressed to the extent that everything about the control system (e.g., control system structure 
and components, process parameters, controller type) is known except for the parameter 
values of the controller. Even if the controller parameters are known for the initial design 
of the controller system, they may have to be further adjusted (or, “fine-tuned”) during 

(a) (b)

Position
command

Position
response(s + 0.2)

(s + 0.4) s(s + 4)

Lag
compensator

K = 8
Controller

−

1

Motor and
load

Im

Re

s-plane

0–0.04–0.2

P '

–1.92–4

Figure 9.11
(a) Block diagram of the lag compensated position servo. (b) Root locus of the compensated system 
(Operating point = P’).
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operation, as further information on the system performance becomes available and as the 
operating conditions change.

Controller tuning can be accomplished either by analysis of the control system or by 
testing. Many engineering systems are complex and nonlinear with noisy signals and 
unknown and time-varying parameter values. Controller tuning by analysis becomes a 
difficult task for such systems, and consequently controller tuning by testing becomes 
useful. In their original work, Ziegler and Nichols proposed two empirical methods for 
tuning three mode (PID) controllers:

 a. Reaction curve method
 b. Ultimate response method

Both methods of tuning are expected to provide approximately a quarter decay ratio (i.e., 
amplitude decays by a factor of four in each cycle) in the closed-loop system response. On 
the basis of a simple oscillator model (see Chapter 6) damping ratio may be expressed by 
the approximate relationship:

 z
p

=
+

1
2. r

A
A

i

i r

ln  (9.51)

in which
Ai  = response amplitude in the ith cycle
Ai + r = response amplitude in the (i + r)th cycle
We note from Equation 9.51 that the quarter decay ratio corresponds to:

 z
p

= ≈1
2.

4 0 2.2.ln .  (9.52.)

or a phase margin of approximately 2.2.° (see Equation 9.3.5). These are rough estimates, 
however, because their derivation is based on the simple oscillator model.

9.5.2 reaction Curve Method

In this method, first the open loop response of the plant alone (without any feedback and 
control) to a unit step input is determined. This response is known as the reaction curve. 
Note: If the step input used in the test is not unity, the response curve has to be appropri-
ately scaled (i.e., divided by the magnitude of the step input) in order to obtain the reaction 
curve.

We assume that the process is self-regulating, for open-loop test purposes, implying that 
it is stable and its (open-loop) step response eventually settles to a steady-state value, even 
though this assumption is actually not needed in Ziegler–Nichols tuning. The reaction 
curve of many processes that are self-regulating has the well-known S-shape as repre-
sented in Figure 9.12.. Note the parameters identified in the figure:

The lag time L is also known as dead time or delay time.
K is the steady-state value of the process variable (process response) for a “unit” step of 

process demand (process input).
T is termed cycle time.
R is the maximum slope of the process reaction curve.

76868.indb   437 7/8/09   5:14:27 PM



438 Modeling and Control of Engineering Systems

These parameters alone completely determine a first-order process with a time delay, as 
given by the transfer function:

 G s
Ke
Tsp

Ls

( )
( )

=
+

-

1
 (9.53.)

This is a self-regulating plant because it has a stable pole at -1/T. If instead the pole is at 
the origin of the s-plane (i.e., it is an integrator), we have a nonself-regulating plant. Higher-
order processes have to be approximated by Equation 9.53.. Once the parameters L and R 
are obtained from the experimentally determined reaction curve for the open-loop pro-
cess, the controller parameter values for proportional (P), proportional plus integral (PI), 
and PID controllers are determined according to the Ziegler–Nichols method as tabulated 
in the column named “Reaction curve method” in Table 9.1.

In conducting the step response test, the process should be first maintained steady at 
normal operating conditions, with the feedback transmitter disconnected and the control-
ler set to “manual.” The corresponding process load and other conditions should be kept 
constant during the test. A step test is conducted by changing the set point by 5% of the 
full range and recording the response until the steady state is reached. The response curve 
should be divided by the value of the step in order to get the reaction curve. Since hyster-
esis effects are usually present, it is a good practice to apply a step change in the reverse 
direction and determine the corresponding reaction curve and then take the average of the 
two curves. Accuracy can be improved by conducting several step tests in each direction 
and taking the average of all measured reaction curves.

The Ziegler–Nichols method is applicable even if the process is nonself-regulating, 
because the method does not directly depend on the steady-state value K or cycle time 
T (it depends on the slope K/T). Ziegler–Nichols method is particularly suitable for  

1

R

K

Process
response

y

0
L T

R = Reaction rate = K/T
L = Lag time
K = Steady state response
T = Cycle time

Time t

Figure 9.12
The reaction curve (response to a unit step input) of an idealized self-regulating process.
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nonself-regulating processes. In fact, the settings have to be modified when K is of the 
order of LR, which is the self-regulating case.

9.5.3 ultimate response Method

In this method, the closed-loop system with proportional control alone (i.e., integral and 
derivative control actions turned off) is tested to determine the ultimate gain Ku and the 
corresponding period of oscillation (ultimate period) Pu of the process response. Ultimate 
gain is the controller gain at which the closed-loop system is marginally stable; i.e., when 
the system response continuously cycles without a noticeable growth or decay. The 
Ziegler–Nichols controller settings are then determined using Ku and Pu, as given under 
the “Ultimate response method” in Table 9.1.

In conducting the test, first the process is connected with the controller in the feedback con-
trol mode with the integral rate ri (i.e., inverse of the integral time constant ti) and the derivative 
time td set to zero. Then, the process conditions are maintained at normal operating values. 
Next, the proportional gain is set to a small value and maintained there until the conditions 
are steady. Then, a step input change (typically 5% of the full scale) is applied and the process 
response is noted. It should decay quickly in view of the low value of Kp. The proportional 
gain is increased in sufficiently large steps and the test repeated to roughly estimate the 
value of Kp that makes the system marginally stable. Once a rough estimate is found, the test 
should be repeated in that neighborhood using small changes in proportional gain, in order 
to obtain a more accurate value for the ultimate gain. With the proportional gain set at this 
value, the process response (closed-loop) to a step input is recorded and from this data, the 
ultimate period of oscillations is determined. This step is explained in Figure 9.13..

Table 9.1

Ziegler–Nichols Controller Settings

Controller Parameter Reaction Curve Method Ultimate Response Method

P Kp
1

RL
0.5Ku

PI
Kp

0 9.
RL

0.45Ku

ti 3..3.L 0.83.Pu

PID

Kp

1 2..
RL 0.6Ku 

ti 2.L 0.5 Pu

td 0.5L 0.12.5Pu

Process
Step input Response

Ku

–

Controller

Pu

Figure 9.13
Test parameters in the ultimate response method of Ziegler–Nichols tuning.
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example 9.5

Consider the feedback control system shown in Figure 9.14. The process transfer function is: 

 G s
s s sp( )
( )

=
+ +
1

42

With proportional control, determine the proportional gain that will make the system marginally 
stable. What is the period of oscillations for that condition? Give suitable settings for a:

 a. proportional (P) controller
 b. PI controller
 c. PID controller

Solution

With proportional control (gain =  Kp), the closed-loop characteristic equation is:

 1
4

0
2

+
+ +

=
K

s s s
p

( )
 s s s Kp

3 2 4 0+ + + =

To find the condition for marginal stability, we use Routh–Hurwitz method (see Chapter 8). First, 
form the Routh array:

Column 1 Column 2

s3 1 4
S2 1 Kp

S1 4 - Kp 0

S0 Kp

For stability, the terms in the first column should be all positive. Hence we must have 4- Kp > 0 
and Kp > 0. Thus, the stability region is 0 < Kp < 4. Accordingly, the gain for marginal stability (ulti-
mate gain) is: Ku = 4.

The corresponding characteristic equation is: s3 + s2 + 4s + 4 = 0.
This factorizes into: (s + 1)(s2 + 4) = 0.
Note: s2 + 4 = 0 is the auxiliary equation, corresponding to the row s2 of Routh array with Kp =  Ku = 4.
The oscillatory root pair is: ± = ±j jnw 2.
Hence, the frequency of oscillations is: wn = 2 rad/s.

The period of oscillations (ultimate period) is:Pu
n

= = =2 2
2

p
w

p p seconds.

Now, from Table 9.1, we can determine the controller settings.

 a. Proportional control:

 Kp = × =0 5 4 2.

Set point Response
Controller

1
s(s2 + s + 4)

Process

–

Figure 9.14
An example for the ultimate response method of Ziegler–Nichols tuning.
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 b. PI control:

 Kp = × =0 45 4 1 8. .

   t pi = =0 83 2 61. . s

 c. PID control:

 Kp = × =0 6 4 2 4. .

 t pi = =0 5 1 57. . s

 t pd = =0 125 0 393. . s

Note: See Appendix B for a MATLAB treatment of this example.

Problems

PROBLEM 9.1

Sketch an operational amplifier circuit for a PI controller and one for a lag-lead compen-
sator. In each case derive the circuit transfer function.

PROBLEM 9.2

Consider six control systems whose loop transfer functions are given by:

a. 1
2. 17 52.( )( )s s s+ + +

d. 10 2.
2. 1012.

( )
( )

s
s s

+
+ +

b. 10 2.
2. 17 52.

( )
( )( )

s
s s s

+
+ + +

e. 1
2.s s( )+

c. 10
2. 1012.( )s s+ +

f. s
s s( )2. 2. 101+ +

First compute the additional gain (multiplication) k needed in each case to meet 
a steady-state error specification of 5% for a step input. Plot the Bode curves for 
the systems with modified gain values. Determine the gain margins and phase 
margins.

If you were asked to pick one of these systems to design a single lead compensator or a 
lag compensator so that the compensated system would have a phase margin of exactly 
60°, which system would you pick? Discuss your answer by rationalizing why you did 
not pick the remaining five systems.

PROBLEM 9.3

A control system was found to have poor accuracy at low frequencies, poor speed of 
response at high frequencies, and a low stability margin in the operating bandwidth. 
Discuss what type of compensation you would recommend in order to improve the 
performance of this control system.
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PROBLEM 9.4

 a. Consider the compensator given by the transfer function

 G s
s

a sd( ) = +
+







t
t

1
1

0 1< <a

  Is this a lead compensator or lag compensator? Explain your answer by sketch-
ing the Bode plot of the transfer function.

 b. Derive an expression for the maximum phase angle available from a lead 
compensator.

 c. A feedback control system with two possible locations for a compensator of the 
form given in (a), is shown in Figure P9.4a.

Compensator?

Compensator?

Output
yPlant

–

Input u
(a)

(b)

–40

0

40

80

1 10 100

–270

–180

–90

0

Magnitude
(dB)

Phase angle
(deg)

Frequency (rad/s)

Figure P9.4
(a) Two possible locations for a compensator in a feedback control system. (b) The Bode diagram 
of a plant.
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 Is there any difference in the final effect of the compensator depending on the 
choice of its location in Figure P9.4? Explain your answer.

 d. In Figure P9.4(a) suppose that the plant transfer function has the Bode diagram 
shown in Figure P9.4(b).

What is the phase margin and what is the gain margin of the uncompensated feedback 
system with this plant?

Next suppose that a lead compensator or a lag compensator is added to the system, in 
the forward path of Figure P9.4(a). In each case, a phase margin of about 40° is required. 
By sketching how Figure P9.4(b) could be modified using a lead compensator or a lag 
compensator, explain how this phase margin specification could be achieved.

What are advantages and disadvantages of using a lag compensator to achieve this 
over a lead compensator?

PROBLEM 9.5

Both frequency domain Bode method and the root locus method can be used for design-
ing lead and lag compensators for control systems. Which method would you prefer in 
each of the following cases?

 a. Compensator design for a system with large time delays.
 b. Lead compensator design for a stable system with negligible time delay.
 c. Lag compensator design for an unstable system with negligible time delay.
 (i) Even though a lag compensator has a destabilizing effect in general, it can be 

used to stabilize some unstable systems. Using sketches of Bode diagrams for 
a typical situation, explain why this is true. What is a major shortcoming of 
this method of compensation?

 (ii) Specifications on peak time, settling time, and percentage overshoot are com-
monly used in controller design using the root locus method. Using sketches 
of design regions on the s-plane, give an example for a situation where all 
three specifications are necessary and an example where one specification is 
redundant.

PROBLEM 9.6

A control loop used for controlling roll motion of an aircraft is shown by the block dia-
gram in Figure P9.6. The following specifications must be met by the control system:

 i. A peak time ≤ p/2. seconds
 ii. 2.% settling time ≤ 2. seconds

 iii. P.O. ≤/3.%.

Show that the settling time specification is redundant.
Using root locus design, determine a set of control parameters (K, z, p) that will satisfy 

these specifications. What is the acceleration error constant of the system?

Wing aileron
deflection Roll motions + z

s + p

Compensator

K

Control
amplifier

–

1
s2

Aircraft

Figure P9.6
Roll motion control loop of an aircraft.
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PROBLEM 9.7

A speed control system is shown in Figure P9.7. Show that the specifications:

 i. P.O. ≤ 5%

 ii. Steady-state error ≤ 2.% to a step input

cannot be simultaneously satisfied by this system. You may use a sketch of the root 
locus of the system.

Design a suitable lag compensator to meet both specifications given by the equality 
conditions (i.e., P.O. = 5% and steady-state error = 2.%). Estimate the margin of error in the 
(actual) P.O. of the compensated control system. Sketch the root locus of the compen-
sated system.

PROBLEM 9.8

A microprocessor based loop tuner uses the response signal for a test input to compute 
in “almost” real-time, controller settings for P, PI, and PID control. Typical tuning speci-
fications include one of the following:

 i. Response with minimum overshoot for a step input.
 ii. Response with 10% overshoot for a step input.
 iii. Response with quarter decay ratio.

Using schematic diagrams, illustrate the physical connection of such a tuner to a pro-
cess control loop. Describe the main steps of control loop tuning.

PROBLEM 9.9

What is a self-regulating process? Strictly speaking, Ziegler–Nichols controller settings 
are applicable to nonself-regulating plants that may be approximated by

 G s
R
s

ep
Ls( ) = -

In the self-regulating case the plant transfer function is approximated by

 G s
Ke
Tsp

Ls

( )
( )

=
+

-

1

In this latter case an index of self-regulation can be defined as

 m
LR
K

=

Speed
command Output speed

K

Controller

–

1
(s + 2) (s + 6)

Motor and load

Figure P9.7
Block diagram of an uncompensated speed control system.
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When m = 0 (i.e., K is large and T is large, but the reaction rate R is finite), we have a 
nonself-regulating case. Explain how the Ziegler–Nichols controller settings in the reac-
tion curve method should be modified to include the parameter m.

PROBLEM 9.10

The feedback transmitter of the temperature control system of a heating process was 
 disconnected and the set point was changed by 10°C manually with the  controller 
dynamics inactive. The steady-state response was found to be 80°C. The recorded 
response provided the following values:

 Lag time L = 0.5 min

 Cycle time T = 2..0 min

Determine suitable settings for the PID controller used in this temperature control 
system.

PROBLEM 9.11

Explain a situation when the reaction curve method of controller tuning is preferred 
and a situation when the ultimate response method of controller tuning is preferred.

Consider a process with the transfer function: G s
s s sp( )
( )

=
+ +

1
2.52.

The control system has unity feedback. Determine suitable parameter settings for a 
three-mode (PID) controller.
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10
Digital Control

In a digital control system, a digital device is used as the controller. The digital  controller 
may be a hardware device consisting of permanent logic circuitry or a software device—a 
digital computer. Hardware controllers are inexpensive and fast, but lack flexibility or pro-
grammability. A software-based digital controller has programmable memory in addition 
to a central processor. The control algorithm is “programmed” into the computer memory 
and is used by the processor in real-time to generate the control signals. The control algo-
rithm in such a controller can be modified simply by reprogramming, without the need 
for hardware changes. Typically, data are sampled into a digital controller at a fixed sam-
pling period. This chapter will present relevant issues of data sampling. A convenient way 
to analyze and design digital control systems is by the z-transform method. The theory 
behind this method will be presented and issues such as stability analysis and controller/
compensator design by the z-transform method will be described.

10.1 Digital Control

In a digital control system, a digital device is used as the controller. The digital controller 
may be a hardware device that uses permanent logic circuitry to generate control signals. 
Such a device is termed a hardware controller. It does not have programmable memory. 
This type of controller is not flexible in the sense that the control algorithm cannot be 
modified without replacing hardware and furthermore, implementation of complex con-
trol algorithms by this hardware-based method can become difficult and expensive. But 
the method is typically very fast from the point of view of speed of generating the control 
signals, and is suitable for simple dedicated controllers. In mass production, hardware 
controllers are inexpensive. In a software-based digital controller a digital computer serves 
as the controller. A controller of this type has programmable memory devices in addition 
to a central processor. The control algorithm is stored in the computer memory in machine 
code (in binary code) and is used by the processor in real-time to generate the control 
 signals, perhaps on the basis of measured outputs from the plant (which is the case in feed-
back control) and other types of data. This along with associated input/output hardware 
and driver software forms the digital controller. The control algorithm in such a controller 
can be modified simply by reprogramming, without the need for hardware changes.

10.1.1 Computer Control Systems

In a computer-based control system, a digital computer serves as the controller. A digital 
feedback control system is shown in Figure 10.1. The information enters into the control 
computer in the digital form. Signals generated by the computer are in the digital form. 
Typically, they have to be converted into the analog form for use in the external purposes 
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such as driving a plant or its actuators. Virtually any control law may be programmed 
into the control computer. Control computers have to be fast and dedicated machines for 
real-time operation where processing has to be synchronized with plant operation and 
actuation requirements. This requires a real-time operating system. Apart from these 
requirements, control computers are basically no different from general-purpose digital 
computers. They consist of a processor to perform computations and to oversee data trans-
fer, memory for program and data storage during processing, mass storage devices to store 
information that is not immediately needed, and input/output devices to read in and send 
out information.

10.1.2 Components of a Digital Control System

Digital control systems might utilize digital instruments and additional processors as 
well for actuating, signal-conditioning, or measuring functions. For example, a stepper 
motor that responds with incremental motion steps when driven by pulse signals can be 
considered a digital actuator. Furthermore, it usually contains digital logic circuitry in its 
drive system. Similarly, a two-position solenoid is a digital (binary) actuator. Digital flow 
control may be accomplished using a digital control valve. A typical digital valve consists 
of a bank of orifices, each sized in proportion to a place value of a binary word (2.i, i = 0, 1, 
2., …, n). Each orifice is actuated by a separate rapid-acting on/off solenoid. In this man-
ner, many digital combinations of flow values can be obtained. Direct digital measure-
ment of displacements and velocities can be made using shaft encoders. These are digital 
transducers that generate coded outputs (e.g., in binary or gray-scale representation) or 
pulse signals that can be coded using counting circuitry. Such outputs can be read in by 
the control computer with relative ease. Frequency counters also generate digital signals 
that can be fed directly into a digital controller. When measured signals are in the analog 
form, an analog front end is necessary to interface the transducer and the digital control-
ler. Input/output interface cards that can take both analog and digital signals are available 
with digital controllers.

Analog measurements and reference signals have to be sampled and encoded prior to 
digital processing within the controller. Digital processing can be effectively used for 
 signal conditioning as well. Alternatively, digital signal processing (DSP) chips can func-
tion as digital controllers. However, analog signals have to be preconditioned using analog 
circuitry prior to digitizing in order to eliminate or minimize problems due to alias-
ing distortion (high-frequency components above half the sampling frequency appear-
ing as  low-frequency components) and leakage (error due to signal truncation) as well 

Output
(response)

Input commands
(digital) Control

computer

Digital-analog
converter

(DAC)
Actuator Plant

Analog-digital
converter

(ADC)

Analog sensors-
transducers

–

Figure 10.1
A digital feedback control system.
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as to improve the signal level and filter out extraneous noise. The drive system of a 
plant typically takes in analog signals. Often, the digital output from controller has to 
be converted into analog form for this reason. Both analog-to-digital conversion (ADC) and 
digital-to-analog conversion (DAC) can be interpreted as signal-conditioning (modifica-
tion) procedures. If more than one output signal is measured, each signal will have to 
be conditioned and processed separately. Ideally, this will require separate conditioning 
and processing hardware for each signal channel. A less expensive (but slower) alterna-
tive would be to time-share this expensive equipment by using a multiplexer. This device 
will pick one channel of data from a bank of data channels in a sequential manner and 
connect it to a common input device.

The current practice of using dedicated, microprocessor-based, and often decentralized 
(distributed) digital control systems in industrial applications can be rationalized in terms 
of the major advantages of digital control.

10.1.3 advantages of Digital Control

The following are some of the important advantages of digital control.

 1. Digital control is less susceptible to noise or parameter variation in instrumenta-
tion because data can be represented, generated, transmitted, and processed as 
binary words, with bits possessing two identifiable states.

 2.. Very high accuracy and speed are possible through digital processing. Hardware 
implementation is usually faster than software implementation.

 3.. Digital control can handle repetitive tasks extremely well, through programming.
 4. Complex control laws and signal-conditioning methods that might be impractical 

to implement using analog devices can be programmed.
 5. High reliability in operation can be achieved by minimizing analog hardware 

components and through decentralization using dedicated microprocessors for 
various control tasks.

 6. Large amounts of data can be stored using compact, high-density data storage 
methods.

 7. Data can be stored or maintained for very long periods of time without drift and 
without being affected by adverse environmental conditions.

 8. Fast data transmission is possible over long distances without introducing exces-
sive dynamic delays, as in analog systems.

 9. Digital control has easy and fast data retrieval capabilities.
 10. Digital processing uses low operational voltages (e.g., 0–12. V dc).
 11. Digital control is cost effective.

10.2 Signal Sampling and Control Bandwidth

Sampling of signals is needed in computer control systems. Aliasing distortion occurs 
when data are sampled from a continuous (analog) signal.
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10.2.1 Sampling Theorem

If a time signal x(t) is sampled at equal steps of ∆T, no information regarding its frequency 
spectrum X(  f  ) is obtained for frequencies higher than fc = 1/(2.∆T). This fact is known 
as Shannon’s sampling theorem, and the limiting (cut-off) frequency is called the Nyquist 
frequency.

It can be shown that the aliasing error is caused by “folding” of the high-frequency 
 segment of the frequency spectrum beyond the Nyquist frequency into the low- 
frequency segment. This is illustrated in Figure 10.2.. The aliasing error becomes more 
and more prominent for frequencies of the spectrum closer to the Nyquist frequency. In 
digital  signal analysis and control, a sufficiently small sample step ∆T should be chosen 
in order to reduce aliasing distortion in the frequency domain, depending on the highest 
frequency of interest in the analyzed signal. This however, increases the signal process-
ing time and the computer storage requirements, which is undesirable particularly in 
real-time  analysis. It also can result in stability problems in numerical computations. The 
Nyquist sampling criterion requires that the sampling rate (1/∆T) for a signal should be 
at least twice the highest frequency of interest. Instead of making the sampling rate very 
high, a moderate value that satisfies the Nyquist sampling criterion is used in practice, 
together with an antialiasing filter to remove the distorted frequency components.

10.2.2 antialiasing Filter

It should be clear from Figure 10.2. that, if the original signal is low-pass filtered at a  cut-off 
frequency equal to the Nyquist frequency, then the aliasing distortion due to sampling 
would not occur. A filter of this type is called an antialiasing filter. Analog hardware  filters 
may be used for this purpose. In practice, it is not possible to achieve perfect filtering. 
Hence, some aliasing could remain even after using an antialiasing filter. Such residual 
errors may be reduced by using a filter cut-off frequency that is slightly less than the 
Nyquist frequency. Then the resulting spectrum would only be valid up to this filter cut-
off frequency (and not up to the theoretical limit of Nyquist frequency). Aliasing reduces 
the valid frequency range in digital Fourier results. Typically, the useful frequency limit 
is fc/1.2.8 so that the last 2.0% of the spectral points near the Nyquist frequency should be 
neglected. Note that sometimes fc/1.2.8( ≅ 0.8 fc) is used as the filter cut-off frequency. In this 
case the computed spectrum is accurate up to 0.8 fc and not up to fc.

Spectral
magnitude

Frequency ffc
0

(a)

Folded
high-frequency

spectrum

fc

(b)
Spectral
magnitude

Frequency f
0

Aliasing

fc = Nyquist frequency

Original
spectrum

Figure 10.2
Aliasing distortion of a frequency spectrum. (a) Original spectrum. (b) Distorted spectrum due to aliasing.
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10.2.3 Control bandwidth

Control bandwidth represents the maximum possible speed of control. It is an impor-
tant specification in both analog control and digital control. In digital control, the data 
sampling rate (in samples/second) has to be several times higher than the control band-
width (in Hertz) so that sufficient data would be available to compute the control action. 
Also, from Shannon’s sampling theorem, control bandwidth is given by half the rate at 
which the control action is computed. The control bandwidth provides the frequency 
range within which a system can be controlled (assuming that all the devices in the 
system can operate within this bandwidth).

example 10.1

 a. If a sensor signal is sampled at fs Hz, suggest a suitable cut-off frequency for an antialiasing 
filter to be used in this application.

 b. Suppose that a sinusoidal signal of frequency f1 Hz is sampled at the rate of fs samples/s. 
Another sinusoidal signal of the same amplitude, but of a higher frequency f2 Hz was found 
to yield the same data when sampled at fs. What is the likely analytical relationship between 
f1, f2, and fs?

 c. Consider a plant of transfer function: G s k s( ) /( )= +1 t
  What is the static gain of this plant? Show that the magnitude of the transfer function reaches 

1 2/  of the static gain when the excitation frequency is 1/t rad/s. Note that the frequency, 
wb = 1/t rad/s, may be taken as the operating bandwidth of the plant.

 d. Consider a chip refiner that is used in the pulp and paper industry. The machine is used 
for mechanical pulping of wood chips. It has a fixed plate and a rotating plate, driven by 
an induction motor. The gap between the plates is sensed and is adjustable as well. As the 
plate rotates, the chips are ground into a pulp within the gap. A block diagram of the plate-
positioning control system is shown in Figure 10.3.

Suppose that the torque sensor signal and the gap sensor signal are sampled at 100 Hz and 
200 Hz, respectively, into the digital controller, which takes 0.05 s to compute each positional 
command for the servovalve. The time constant of the servovalve is (0.05/2p) s and that of the 
mechanical load is (0.2/2p) s. Estimate the control bandwidth and the operating bandwidth of the 
positioning system.

Digital
controller

ADC

ADC

Torque sensor
signal

Gap sensor
signal

DAC
(1 + τvs)

Kv

(1 + τms)

Km

Plate
movement

Servovalve
Mechanical

load

Figure 10.3
Block diagram of the plate positioning control system for a chip refiner.
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Solution

 a. In theory, the cut-off frequency of the antialiasing filter has to be (1/2)fs, which is the Nyquist 
frequency. In practice, however, 0.4 fs would be desirable, providing a useful spectrum of 
only up to 0.4 fs.

 b. f f f f f fc c c2 1 12= + + = -( )   f f fs2 1= -  (10.1)

 c. G j k j( ) /( )w t w= +1  = frequency transfer function where, w is in rad/s.
 Static gain is the transfer function magnitude at steady-state (i.e., at zero frequency).

Hence:

 Static gain = G(0) = k

 When w t=
1 : G j

k
j

( )
( )

w =
+1

 Hence G j
k

( )w =
2

 at this frequency.

This is the half-power bandwidth.
 d. Due to sampling, the torque signal has a bandwidth of 1/2 × 100 Hz = 50 Hz, and the gap 

sensor signal has a bandwidth of 1/2 × 200 Hz = 100 Hz. Control cycle time = 0.05 s, which 
provides control signals at a rate of 1/0.05 Hz = 20 Hz.

 Since: 20
50
2

100
2

Hz Hz, Hz< 





min

we have adequate bandwidth from the sampled sensor signals to compute the control signal. The 
control bandwidth from the digital controller

   = 1/2 × 20 Hz (from Shannon’s sampling theoreom) = 10 Hz

 But, the servovalve is also part of the controller. Its bandwidth

   =  1 1
2t ptv v

rad s Hz/ =  =  2
2 0 05

20
p

p × .
Hz Hz=

 Hence:

 Control bandwidth = min (10 Hz, 20 Hz) = 10 Hz.

 Bandwidth of the mechanical load

   =  1 1
2t ptm m

rad s Hz/ =  =  2
2 0 2

5
p

p ×
=

.
Hz Hz

 Hence:

 Operating bandwidth of the system = min (10 Hz, 5 Hz) = 5 Hz.
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example 10.2

Consider the digital control system for a mechanical position application, as schematically shown 
in Figure 10.4. The control computer generates a control signal according to an algorithm, on 
the basis of the desired position and actual position, as measured by an optical encoder. This 
digital signal is converted into the analog form using a DAC and is supplied to the drive ampli-
fier. Accordingly, the current signals needed to energize the motor windings are generated by the 
amplifier. The inertial element, which has to be positioned is directly (and rigidly) linked to the 
motor rotor and is resisted by a spring and a damper, as shown.

Suppose that the combined transfer function of the drive amplifier and the electromagnetic cir-
cuit (torque generator) of the motor is given by: k S se e e e/( )2 22+ +z w w  and the transfer function of 
the mechanical system including the inertia of the motor rotor is given by: k s sm m m m/( )2 22+ +z w w
Here:

 

k=equivalent gain

=damping ratio

=natural f

z

w rrequency

with the subscripts ()e and ()m denoting the electrical and mechanical components respectively.
Also:

 
∆Tc = time taken to compute each control actioon

pulse period of the position sensing∆Tp = encoder.

The following numerical values are given:

 w p z w p ze e m= = = =1000 0 5 100 0rad/s, rad/s, and m. , ..3

For the purpose of this example, you may neglect loading effects and coupling effects due to 
component cascading and signal feedback.

 i. Explain why the control bandwidth of this system cannot be much larger than 50 Hz.
 ii. If ∆Tc = 0.02 s, estimate the control bandwidth of the system.

Control
computer

Drive
amplifer

Power
supply

Motor Inertia

Spring
Damper

DAC

Encoder (position sensor) feedback

Figure 10.4
Digital control system for a mechanical positioning application.
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 iii. Explain the significance of ∆Tp in this application. Why, typically, ∆Tp should not be greater 
than 0.5∆Tc?

 iv. Estimate the operating bandwidth of the positioning system, assuming that significant plant 
dynamics are to be avoided.

 v. If wm = 500p rad/s and ∆Tc = 0.02s, with the remaining parameters kept as specified above, 
estimate the operating bandwidth of the system, again not exciting significant plant 
dynamics.

Solution

 i. The drive system has a resonant frequency less than 500 Hz. Hence the flat region of the 
spectrum of the drive system would be about 1/10th of this; i.e., 50 Hz. This would limit 
the maximum spectral component of the drive signal to about 50 Hz. Hence the control 
bandwidth would be limited by this value.

 ii. Rate at which the digital control signal is generated = (1/0.02) Hz = 50 Hz. By Shannon’s 
sampling theorem, the effective (useful) spectrum of the control signal is limited to 
(1/2) × 50 Hz = 25 Hz. Even though the drive system can accommodate a bandwidth of 
about 50 Hz, the control bandwidth would be limited to 25 Hz, due to digital control, in 
this case.

 iii. Note that ∆Tp corresponds to the sampling period of the measurement signal (for feedback). 
Hence its useful spectrum would be limited to 1/2∆Tp, by Shannon’s sampling theorem. 
Consequently, the feedback signal will not be able to provide any useful information of 
the process beyond the frequency 1/2∆Tp. To generate a control signal at the rate of 1/∆Tc 
samples/s, the process information has to be provided at least up to (1/∆Tc) Hz. To provide 
this information we must have:

 1
2

1
0 5

∆ ∆
∆ ∆

T T
T T

p c
p c≥ ≤or . .  (10.2)

Note: This guarantees that at least two points of sampled data from the sensor are used 
for computing each control action.

 iv. The resonant frequency of the plant (positioning system) is approximately (less than)
( / )100 2 50p p Hz Hz- . At frequencies near this, the resonance will interfere with control, 
and should be avoided if possible, unless the resonances (or modes) of the plant themselves 
need to be modified through control. At frequencies much larger than this, the process will 
not significantly respond to the control action, and will not be of much use (the plant will 
be felt like a rigid wall). Hence, the operating bandwidth has to be sufficiently smaller than 
50 Hz, say 25 Hz, in order to avoid plant dynamics.

Note: This is a matter of design judgment, based on the nature of the application (e.g., 
excavator, disk drive). Typically, however, one needs to control the plant dynamics. In that 
case it is necessary to use the entire control bandwidth (i.e., maximum possible control 
speed) as the operating bandwidth. In the present case, even if the entire control BW (i.e., 
25 Hz) is used as the operating BW, it still avoids the plant resonance.

 v. The plant resonance in this case is about ( / )500 2 250p p Hz Hz . This limits the operating 
bandwidth to about ( / )250 2 125p Hz Hz , so as to avoid plant dynamics. But, the control 
bandwidth is about 25 Hz because ∆Tc = 0.02 s. The operating bandwidth cannot be greater 
than this value, and would be  25 Hz.

10.2.4 bandwidth Design of a Control System

Based on the foregoing concepts, it is now possible to give a set of simple steps for design-
ing a control system on the basis of bandwidth considerations.

Step 1: Decide on the maximum frequency of operation (BWo) of the system based on the 
requirements of the particular application.
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Step 2: Select process components (e.g., electro-mechanical components) that have the 
capacity to operate at BWo and perform the required tasks.

Step 3: Select feedback sensors with a flat frequency spectrum (operating frequency 
range) greater than 4 × BWo.

Step 4: Develop a digital controller with a sampling rate greater than 4 × BWo for the sen-
sor feedback signals (keeping within the flat spectrum of the sensors) and a direct-digital 
control cycle time (period) of 1/(2. × BWo). Note: Digital control actions are generated at a 
rate of 2. × BWo.

Step 5: Select the control drive system (interface analog hardware, filters, amplifiers, 
actuators, etc.) that have a flat frequency spectrum of at least BWo.

Step 6: Integrate the system and test the performance. If the performance specifications 
are not satisfied, make necessary adjustments and test again.

10.2.5 Control Cycle Time

In the engineering literature it is often used that ∆Tc = ∆Tp, where ∆Tc = control cycle time 
(period at which the digital control actions are generated) and ∆Tp = period at which the 
feedback sensor signals are sampled (see Figure 10.5a). This acceptable in systems where 
the significant frequency range of the plant is sufficiently smaller than 1/∆Tp (and 1/∆Tc). 
In that case the sampling rate 1/∆Tp of the feedback measurements (and the Nyquist 
 frequency 0.5/∆Tp) will still be sufficiently larger than the significant frequency range of 

s1 s2 s3 s4

c1 c2 c3 c4 (Control instants)(a)

(b)

(c)

c1 c2 c3

s1 s2 s3 s4 s5 s6 s7

Computer control action
using 2 samples

Measure
2 samples

Magnitude

1
2∆tp

1
∆tp

1
∆tc

Frequency

Nyquist freq.

Figure 10.5
(a) Conventional sampling of feedback sensor signals for direct digital control. (b) Acceptable frequency charac-
teristic of a plant for case (a). (c) Improved sampling criterion for feedback signals in direct digital control.
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the plant (see Figure 10.5b) and hence the control system will function satisfactorily. But, 
the bandwidth criterion presented before satisfies ∆Tp ≤ ∆Tc This is a more desirable option. 
For example, in Figure 10.5c, two measurement samples are used in computing each con-
trol action. Here, the Nyquist frequency of the sampled feedback signals is double that of 
the previous case, and it will cover a larger (double) frequency range of the plant.

10.3 Digital Control Using z-Transform

In computer-based control systems, a suitable control algorithm has to be programmed 
into the memory of the control computer. A digital controller is functionally similar to 
its analog counterpart except that the input data to the controller and the output data 
from the controller are in the digital form (see Figure 10.1). The control law can be repre-
sented by a set of difference equations. These difference equations relate the discrete output 
 signals from the controller and the discrete input signals into the controller. The problem 
of developing a digital controller can be interpreted as the formulation of appropriate 
difference equations that are able to generate the required control signals. Similarly, just 
the same way as an analog controller may be represented by a set of analog transfer 
functions, a digital controller may be represented by a set of discrete transfer functions. 
These discrete transfer functions, in turn, can be transformed into a set of difference 
equations.

Once a control law is available in the analog form, as a transfer function, the correspond-
ing digital control law may be determined by obtaining the discrete transfer function that 
is equivalent to the analog transfer function. This approach is particularly useful when, for 
example, it is required to update (modernize) a well-established analog control system by 
replacing its analog compensator circuitry with a digital controller/compensator. Then the 
(Laplace) transfer function of the analog compensator can be obtained by testing or analy-
sis (or both) of the compensator. The eventual objective would be to develop a difference 
equation to represent the analog compensator. This is a basic task in the development of a 
digital controller, and is conveniently handled by the z-transform method. This approach 
is developed in the present section.

A discrete transfer function necessarily depends on the sampling period T used to con-
vert analog signals into discrete data (sampled data). Digital control action approaches 
the corresponding analog control action when T approaches zero. Faster sampling rates 
provide better accuracy and less aliasing error, but demand smaller processing cycle times, 
which in turn call for efficient processors and improved control algorithms for a given level 
of control complexity. Faster sampling rates are more demanding on the interface hard-
ware as well. A large word size is needed to accurately represent data. By increasing the 
word size (number of bits per word), the dynamic range and the resolution of the represented 
data can be improved and the quantization error decreased. Even though the processing 
cycle time will generally increase by increasing the word size, on average there is also a 
speed advantage to increasing the word size of a computer. The larger the program size 
(number of instructions per program) the greater the memory requirements and, further-
more, the slower the associated control cycle for a given control computer. It follows that 
sampling rate, processing cycle time, data word size, and memory requirements are crucial 
 parameters that are interrelated, in digital control.
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10.3.1 z-Transform

Consider an infinite sequence of data:

 { } { , , , , , , , , }.x x x x x x xk k k k k= - - + +… … … …1 0 1 1  (10.3.)

This sequence can be represented by a polynomial function of the complex variable z:

 X z x zk
k

k

( )= -

=-∞

∞

∑  (10.4)

X(z) is termed the z-transform of the sequence {xk}. This relationship may be expressed 
using the z-transform operator “Z” as:

	 Z{xk} = X(z) (10.5)

Note from Equation 10.4 that {xk} uniquely determines X(z) and vice versa. Since X(z) is a 
continuous polynomial function of z it is convenient to use the z-transform instead of the 
sequence which it represents, in analyses that involve sequences of data. In digital control 
systems in particular, inputs and outputs of a digital controller are such data sequences, 
which are defined at discrete-time points. Hence z-transform techniques are quite useful 
in the design of digital controllers and compensators.

Note: Generally, for the summation in Equation 10.4 to converge, the magnitude of z has 
to be restricted to at least |z|< 1.

In a digital control system, the controller reads sampled values of a continuous signal 
x(t). Assuming that the sampling period T is constant, the corresponding discrete data 
values are given by:

 xk = x(k · T). (10.6)

Typically the signal is zero for negative values of time; hence, xk = 0 for k < 0. But we will 
retain the full sequence including the negative portion of Equation 10.3. for the sake of 
analytical convenience.

example 10.3

Consider a unit step signal given by:

 
U ( )t t

t

= ≥

= <

1 0

0 0

for

for

Suppose that this signal is sampled at sampling period T. The corresponding data sequence is:

 { } { , , , , , , , , , , }Uk = 0 0 0 0 11 11… … …

Determine the z-transform of this sequence.
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Solution

By definition, the z-transform is given by:

 U ( )z z k= -
∞

∑
0

By summation of series this can be expressed in the closed form:

 U ( )
( )

z
z

=
- -

1
1 1

 Or: U ( )
( )

z
z

z
=

-1

example 10.4

Consider the unit ramp signal given by:

 
x t t t

t

( )= ≥

= <

for

for

0

0 0

What is the corresponding z-transform if the signal is sampled at period T?

Solution

Note that, by definition, the z-transform of the sampled data is expressed as:

 X z kTz T z kzk

k

k k

k

( )= =-

=

∞
- -

=

∞

∑ ∑
0 0

By using a well-known result in summation of series, this can be expressed in the closed form:

 
X z

Tz
z

( )
( )

=
-1 2

A z-transform depends on the sampling period T in general. z-transforms corresponding to a 
selected set of time signals, sampled at T, are listed in Table 10.1.

10.3.2 Difference equations

In the context of dynamic systems, difference equations are discrete-time models. Consider, 
in particular, a single-input single-output (SISO) system. The input to a discrete-time 
model of this system is the sequence {uk} and the output from the model is the sequence 
{yk} as represented in Figure 10.6.

An nth order linear dynamic system can be modeled in the continuous-time case by the 
nth order linear ordinary differential equation:

 a
d y
dt

a
d y
dt

a y b
d u
dt

bn

n

n n

n

n m

m

m m+ + + = +-

-

- -1

1

1 0 1
dd u
dt

b u
m

m

-

-
+ +

1

1 0  (10.7)
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in which:

 
u t

y

( ) =

=

Input

Output

The corresponding discrete-time model may be expressed by the nth order linear 
 difference equation:

 a y a y a y b u b u b uk k n k n k k m k m0 1 1 0 1 1+ + + = + + +- - - -   (10.8)

Note: The coefficients of the difference equation and the coefficients of the original 
differential equation are not identical. It is clear from Equation 10.8 that, provided the 

Table 10.1

Some useful z-Transforms

Time Signal x(t) z-Transform X(z)

Unit impulse d (t) 1/T

Unit pulse 1

Unit step u(t) z
z - 1

Unit ramp t Tz
z( )- 1 2.

exp(-at)
z

z aT- -exp( )

sin wt z T
z z T

sin
cos
w
w2. 2. 1- +

cos wt z z T
z z T

( cos )
cos

-
- +

w
w2. 2. 1

exp(-at)sin wt
z aT T

z z aT T aT
exp( )sin

exp( )cos exp( )
-

- - + -
w

w2. 2. 2.

exp(-at)cos wt
z z aT T

z z aT T a

2.

2. 2. 2.
- -

- - + -
exp( )cos

exp( )cos exp(
w

w TT)

t exp(-at)
Tz aT

z aT

exp( )

exp( )

-

- -[ ]2.

Discrete-time
model

Input
sequence

{uk}

Output
sequence

{yk}

Figure 10.6
Block diagram representation of a single-input single-output discrete model.
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input sequence {uk} is known, the output sequence {yk} can be computed starting with 
the first n values of the sequence, which should be known. These initial n values are the 
initial conditions(ICs), which are required to determine the complete solution of a differ-
ence equation. In general, the model parameters ai and bi in Equation 10.8 depend on the 
sampling period T.

10.3.3 Discrete Transfer Functions

For a time-invariant (i.e., constant-parameter) linear system, the coefficients ai  and bi  in 
Equation 10.7 are constants. Then, the system transfer function is given by

 G s
b b s b s
a a s a s

m
m

n
n

( )= + + +
+ + +

0 1

0 1




 (10.9)

This analog transfer function is obtained, in theory, by applying the Laplace transforma-
tion, with zero ICs, to Equation 10.7. In an analogous manner, by applying the z-transform 
to Equation 10.8, the corresponding discrete transfer function is obtained. To show this 
approach, multiply Equation 10.8 by z-k and sum over k(-∞, ∞). This gives:

 
a y z a y z a y z

b u z b

k
k

k
k

n k n
k

k
k

0 1 1

0

-
-

-
-

-

-

∑ ∑ ∑
∑

+ + + =

+

…

11 1u z b u zk
k

m k m
k

-
-

-
-∑ ∑+ +…

which can be rewritten in the form:

 
a y z a z y z a z y zk

k
k

k
n

n
k n

k
0 1

1
1

1- -
-

- - -
-

- -∑ ∑+ + +( ) ( nn

k
k

k
k

m
m

k mb u z b z u z b z u

)

( )

∑
∑ ∑

=

+ + +- -
-

- - -
-0 1

1
1

1  zz k m- -∑ ( )

 (i)

Since all summations on the left hand side of Equation (i) run through -∞ to  + ∞ each of 
them is equal to Y(z) as evident from Equation 10.4. Similarly, each summation on the right 
hand side of Equation (i) is equal to U(z). It follows that Equation (i) can be written as:

 ( ) ( ) ( ) (a a z a z Y z b b z b z Un
n

m
m

0 1
1

0 1
1+ + + = + + +- - - -… … zz)

Hence, the discrete transfer function is given by:

 G z
Y z
U z

b b z b z
a a z a

m
m

n

( )
( )
( )

= = + + +
+ + +

- -

-
0 1

1

0 1
1


 zz n-

 (10.10)

As mentioned earlier, the parameters ai and bi depend on the sampling period T in 
 general. Equations 10.8 and 10.10 represent discrete models and the Equations 10.7 and 10.9 
represent continuous (analog) models of a dynamic system.

76868.indb   460 7/8/09   5:14:59 PM



Digital Control 461

10.3.4 Time Delay

It should be intuitively clear from the preceding development that z -1 can be interpreted as 
an operator representing a time delay by one sampling period. Specifically:

 Z{ } ( )x z X zk-
-=1

1  (10.11)

This result can be verified directly from the definition of the z-transform—Equation 10.4. 
In general, for a delay of r sampling periods we have:

 Z{ } ( )x z X zk r
r

-
-=  (10.12.)

This should be compared with the property of Laplace transformation that allows us to 
interpret the Laplace variable s as the time-derivative operator.

A time delay by T in the continuous-time case can be represented by the transfer 
function exp (-Ts), as can be verified using the definition of Laplace transform (see 
Appendix A). This establishes an equivalence between the z-transform and the Laplace 
transform, through the relation: z -1 = exp (Ts)

Or:

 z Ts= exp( )  (10.13.)

Caution should be exercised when using Equation 10.13.. This equation provides a “map-
ping” between the s-domain and the z-domain. Specifically, suppose that we have the 
two functions G1(s) and G2.(z). As s varies in some manner (say, along some contour) on 
the s-plane, there is a corresponding variation of G1(s) in the G1(s)-plane. Then, z varies on 
the z-plane according to the mapping Equation 10.13. and G2.(z) varies on the G2.(z)-plane 
according to this variation of z. Note carefully that, nowhere did we imply that G1 and 
G2. are the same functions. It is clear that G2.(z) is “not” obtained by simply substituting 
Equation 10.13. in to G1(s). Hence, one should not attempt to obtain the discrete trans-
fer function  corresponding to a continuous (analog) transfer function by substituting 
Equation 10.13. into the analog transfer function.

Now we will establish another important property of the z-transform. Consider a signal 
x(t). Its Laplace transform is denoted by X(s). If we sample x(t) at period T, we have the data 
sequence {xk}. The corresponding z-transform is denoted by X(z). Note: Here X(s) and X(z) 
are convenient notations. We should keep in mind that they represent two entirely differ-
ent functions. X(z) is not obtained from X(s) by substituting z for s.

If we delay x(t) by an integer multiple of T, say rT, the resulting signal is x(t - rT). Its 
Laplace transform is given by exp(-rTs)X(s).

Now if we sample this delayed signal x(t - rT) at sampling period T, we get the delayed 
sequence {xk-r}. From Equation 10.12. we note that the corresponding z-transform is z-rX(z). 
Thus we can state the following general result.

General result: Consider a signal x(t) whose Laplace transform is X(s). Consider also a 
signal y(t) whose Laplace transform can be expressed as:

 Y s f Ts X s( ) (exp( )) ( )= ⋅
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in which f( ) is a polynomial function of exp(Ts). Then the z-transform of the sequence {yk}, 
obtained by sampling y(t) at period T, is given by:

 Y z f z X z( ) ( ) ( )= ⋅  (10.14)

in which X(z) is the z-transform of the sequence {xk}, which is obtained by sampling 
x(t) at period T. This result and several other properties of the z-transform are given in 
Table 10.2..

10.3.5 s–z Mapping

Equation 10.13. represents a mapping between the complex z-plane and the complex s-plane. 
This is one of the most important relationships in z-transform analysis. Let us further dis-
cuss the nature of this mapping.

Consider the case of complex poles:

 s jn d= - ±zw w  (10.15)

These poles correspond to, for instance, a simple oscillator with undamped natural fre-
quency wn, damped natural frequency wd, and damping ratio z. An s-plane representation 
of these complex conjugate poles is given in Figure 10.7. By substituting Equation 10.15 into 
Equation 10.13. we get the corresponding pole locations on the z-plane:

 z T jn d= - ±exp( ( ))zw w  (10.16)

The magnitude of these two poles (on the z-plane) is:

 z T n= -exp( )zw  (10.17)

and the phase angle is:

 ∠ = ±z T dw  (10.18)

Let us discuss several special mappings given by these (magnitude and phase) 
relationships.

Table 10.2

Some useful Properties of the z-transform

Item z-Transform Results

x(t) X(z)

a x t a x t1 1 2. 2.( ) ( )+ a X z a X z1 1 2. 2.( ) ( )+

x t rT( )- z X zr- ( )

Y s f Ts X s( ) (exp( )) ( )= Y z f z X z( ) ( ) ( )=

Final value theorem x z X zss
z

= -
→

lim( ) ( )
1

1
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 1. Constant zwn Lines: From Equation 10.17 it follows that when zwn is a constant, |z| 
is also a constant. Hence, constant zwn lines on the s-plane (i.e., lines parallel to the 
imaginary axis) map onto circles centered at the origin on the z-plane, as shown in 
Figure 10.8.
 Note in particular that when zwn = 0 (line A), we have |z|= 1—a unit circle. The 
left hand side of the s-plane corresponds to the “inside” of the unit circle and 
the right hand side of the s-plane corresponds to the “outside” of the unit circle 
on the z-plane.

 2.. Constant wd Lines: It should be clear from Equation 10.18 that constant wd lines 
on the s-plane (i.e., lines parallel to the real axis) map onto constant phase angle 
lines on the z-plane. This is shown in Figure 10.9. Each line on the s-plane can be 
divided into a part on the left hand plane and a part on the right hand plane (RHP).  
Correspondingly, on the z-plane the line is divided into a part within the unit 
circle and a part outside the unit circle.
 The fact that a mapping from the s-plane to the z-plane is a many-to-one mapping 
should be clear from Equation 10.18. Note in particular that all the lines given by:

 T r cdw p= +2.  (10.19)

 on the s-plane, for integer r and constant c, are mapped onto the same line on the 
z-plane. This is because any integer change of r corresponds to a phase change by 
2.p on the z-plane, which returns the line to its original location.

Im

Re

s-plane

ωd

–ωd

ωn

ωn

ζ = cosφ

φ

–ζωn

Pole

Pole

Figure 10.7
Representation of complex-conjugate poles on the s-plane.
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 3.. Constant z Lines: It can be shown that constant z lines on the s-plane (i.e., straight 
lines through the origin) map onto spirals on the z-plane. This situation is sketched 
in Figure 10.10.

10.3.6 Stability of Discrete Models

Under the heading of constant zwn lines, in the previous section, we noted that the left-half 
s-plane is mapped onto the inside of the unit circle on z-plane, as shown in Figure 10.11. It 
follows that stable poles in a discrete transfer function are those within the unit circle on 
the z-plane.

10.3.7 Discrete Final Value Theorem (FVT)

In the continuous-time case we have the familiar FVT:

 x sX sss
s

=
→

lim ( )
0

 (10.2.0)

Im

Re

s-PlaneAB– B+

0

Im

Re

z-Plane

A
B–

B+

0 1–1

Figure 10.8
Constant zwn lines.
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A+

A
A–

B
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Figure 10.9
Constant wd lines.
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in which xss is the steady-state value of the signal x(t);

 x x tss
t

=
→∞

lim ( )  (10.2.1)

and X(s) is the Laplace transform of x(t). It is assumed that a steady-state value exists for 
the considered signal.

To establish the discrete-time counterpart of the FVT, let us return to the definition of the 
z-transform—Equation 10.4. Assume that the steady-state value given by:

 x xss
k

k=
→∞

lim  (10.2.2.)

exists for the discrete-time signal (sequence) {xk}. Now consider the product:

 ( ) ( ) ( )z X z z x zk
k- = - ∑ -1 1

Im

Re

s-Plane

0

Im

Re

z-Plane

A

0

Unit circle

A–

A

A–

Figure 10.10
Constant z lines are spirals on the z-plane.
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Figure 10.11
Stability region for discrete-time models.
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If the sequence {xk} converges to a steady-state value for a sufficiently large value of k = N, 
we can assume that:

 xN ≈ xN + r for all r > 0

Hence, we can write:

 ( ) ( ) ( ) ( )z X z z x z z x zk
k

N

N
k

N

- ≈ - + --

-∞

-
-

∞

∑ ∑1 1 1
1

Since the first summation on the right hand side of this relation is finite, its product with 
(z - 1) will vanish as z → 1. The second summation on the right hand side can be written 
as:

 z z z
z

z
z
z

k

N

N k
N N

-
∞

- -
∞ -

-

- +

∑ ∑= =
-

=
-

0
1

1

1 1

Its product with (z - 1) will approach unity as z → 1. Hence:

 lim( ) ( )
z

Nz X z x
→

- ≈
1

1

Exact equality is obtained as N → ∞:

 x z X zss
z

= -
→

lim( ) ( )
1

1  (10.2.3.)

Equation 10.2.3. is the discrete-time FVT. This is listed in Table 10.2., along with other 
important properties of the z-transform.

10.3.8 Pulse response Function

It is well known that if g(t) is the impulse response function (i.e., response to a unit impulse 
input d(t) of a system, then its Laplace transform G(s) is the transfer function of the system.

We write:

 Lg t G s( ) ( )=  (10.2.4)

The response y(t) to a general input u(t) is given by the convolution integral (see Chapter 6 
and Appendix A):

 y t g t u d g u t d( ) ( ) ( ) ( ) ( )= - = -∫ ∫t t t t t t  (10.2.5)

The limits of integration may be chosen depending on the nonzero regions of the two 
functions g(t) and u(t).
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Now consider the unit pulse input (given at k = 0), which is defined by the sequence:

 { , , , , , , , , , , }… … … …0 0 0 1 0 0 0

Note: The only nonzero sample value in this sequence is the “1” given at k = 0.
The z-transform of this sequence is unity, as clear from Equation 10.4. This is given as 

the first entry in Table 10.1. From Equation 10.10 it follows that the z-transform of the pulse 
response sequence {gk} is the discrete transfer function G(z):

 Z{ } ( )g G zk =  (10.2.6)

The discrete convolution given below may be used to obtain the response to a general 
input, once the pulse response is known:

 y g u g uk k r r

r

r k r

r

= =- -∑ ∑  (10.2.7)

Equation 10.2.7 may be verified by direct substitution of Equation 10.4 into Equation 10.10.

10.3.8.1 Unit Pulse and Unit Impulse

The unit pulse is a pulse of unity height (magnitude) applied at t = 0. Pulse width is the 
sampling period T. Note that the area of this pulse is T and not unity. Since the sample 
value of the unit pulse is 1 for the first sample and zero thereafter, as shown earlier, the 
z-transform of the unit pulse is 1.

A distinction between the unit pulse and the unit impulse should be recognized. The 
unit impulse d (t) has an infinite height at t = 0 and its area is unity. To sample such a signal, 
in practice, a very small sampling period T has to be used. Then, in the discrete approxi-
mation, the unit impulse is assumed to extend over the entire sample period of the first 
sample. The magnitude of the first sample has to be 1/T so that the area under the signal 
is unity, and this is inconsistent with the definition of the unit impulse. It follows that the 
z-transform of the unit impulse signal (whose Laplace transform is s) is given by 1/T. These 
two important observations are listed as the first two entries of Table 10.1.

10.4 Digital Compensation

In Chapter 9, we noticed that analog compensator design could be interpreted as the devel-
opment of a transfer function G(s) that would modify the control signal so as to generate a 
desired system response. Signal modification by an analog transfer function is schemati-
cally shown in Figure 10.12.a. Let us consider the possibility of using a digital device to 
accomplish the same task. This is termed digital compensation.

In a software-based digital compensator, a digital computer reads a sequence of data 
{uk} as obtained by sampling the true continuous-time signal u(t), and produces a sequence 
of output data { }yk

∗  according to the compensation algorithm, which is stored inside the 
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computer. The compensation algorithm may be expressed as an appropriate difference 
equation. Suppose that the discrete transfer function corresponding to this difference 
equation is G(z). This process is schematically shown in Figure 10.12.b or equivalently, in 
Figure 10.12.c. Our objective in digital compensation is to establish a G(z) that corresponds 
to an ideal analog compensator G(s) such that the error between {yk} and { }yk

∗  is sufficiently 
small.

Note: {yk} is obtained by sampling the ideal (analog) compensator output y(t) according 
to yk = y(k · T).

It should be intuitively clear that if T = 0 (i.e., infinite sampling rate) the output sequence 
{ }yk

∗  would be identical to {yk}, in theory. We know, however, that due to practical limita-
tions it is impossible to achieve such a realization. The error ( )y yk k

∗ -  depends primarily 
on the sampling period T and the holding method used for each input sample during this 
period.

The continuous and discrete equivalence is achieved by modeling the discrete compen-
sation process as follows:

First sample the input signal u(t) at sampling period T and then hold (or extrapolate) the 
sampled data to generate an equivalent continuous signal u*(t). Next, pass this through the 
ideal compensator G(s). The resulting output is y*(t), which when sampled at period T, pro-
duces the sampled data sequence { }yk

∗ . Clearly, in general y*(t) is different from the ideal y(t), 
due to the error between u(t) and u*(t) as a result of the “sample and hold” operation (with 
nonzero T). Hence, the error between the digital compensator and the analog compensator 
is caused essentially by this discrepancy between u(t) and u*(t).

10.4.1 Hold Operation

The purpose of a hold operation is to extrapolate a data sequence (sampled data points) to 
obtain a piecewise continuous signal. The type of hold is determined by the extrapolation 
scheme that is used. If the data value is held constant until the next data value has arrived 
(i.e., extrapolation by a zeroth order polynomial) we have a zero-order hold. Only the current 

Ideal
analog

compensator
G(s)

u(t) y(t)

G(s)
u(t) yk*

Sample

(a)

(b)

(c)

Hold
uk u*(t) y*(t)

Sample

Digital compensator G(z)

Equivalent
digital

compensator
G(z)

uk

U(z) Y*(z)

yk*

Figure 10.12
Digital compensation (a) An ideal analog compensator. (b) Schematic representation of digital compensation. 
(c) Equivalent digital compensator.

76868.indb   468 7/8/09   5:15:13 PM



Digital Control 469

data value is used in this extrapolation. This is typically the hold method used in ADC, 
since a constant data value is needed during the ADC process. If the current data value 
and the previous data value are used to extrapolate to the next data value using a straight 
line (i.e., extrapolation by a first-order polynomial), it is a first-order hold. If the current data 
sample and the two previous data samples are used to extrapolate to the next data sample 
by a quadratic curve (i.e., extrapolation by a second order polynomial), we have a second 
order hold, and so on. These various types of data hold are illustrated in Figure 10.13..

10.4.2 Discrete Compensator

We now return to the schematic diagram in Figure 10.12.b. In the present analysis we will 
employ a zero-order hold, as this is what is commonly used in ADC. This may not be accu-
rate enough, however, in some applications unless sufficiently small T is employed.

The zero-order hold converts a sampled data sequence {uk} into a continuous series of 
pulses. Consider, in general, the pulse corresponding to the data sample uk. The Laplace 
transform of a pulse of unit height and width T that is originating at time t = t, is given by 
subtracting a unit step signal at t = t + T from a unit step signal at t = t :

 
∆t ( ) ( ) ( )

exp( ) exp( (

s u t u t T

s
s

s

= - - - -

= - - -

L Lt t

t1 1 tt +T s) )

Or:

 ∆t ( ) exp( )[ exp( )]s
s

s Ts= - - -1
1t  (10.2.8)

Sampling
instant

D
at

a v
al

ue

k – 2 k – 1 k k + 1

First-order hold

Second order hold
True value

Zero-order hold

Figure 10.13
Several types of data hold.
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Hence, the Laplace transform of a pulse of magnitude uk given at time t = kT is:

 u s
u
s

kTs Tsk k
k∆ ( ) exp( )[ exp( )]= - - -1  (10.2.9)

Note: This result is obtained by using t = kT in Equation 10.2.8.
It follows that, in Figure 10.12.b, the Laplace transform of the sampled and extrapolated 

(S/H) signal u*(t) is given by:

 U s
u
s

kTs Tsk

k

∗ = - - -∑( ) exp( )[ exp( )]1

Or:

 U s
s

Ts u kTsk

k

∗ = - - -∑( ) [ exp( )] exp( )
1

1  (10.3.0)

The corresponding output signal y*(t) has the Laplace transform:

 Y s Ts u kTs
G s

sk
∗ = - - -∑( ) {[ exp( )] exp( )}

( )
1  (10.3.1)

At this stage we use Equation 10.14 to obtain Y *(z):

 Y z z u z
G s

sk
k∗ - -= - 



∑( ) {[ ] }

( )
1 1 Z

in which Z[ ] denotes the z-transform of the sequence generated by a continuous signal 
whose Laplace transform is [ ].

Now using the definition of U(z)—Equation 10.4, we get:

 Y z z U z
G s

s
∗ -= - 





( ) ( ) ( )
( )

1 1 Z  (10.3.2.)

It follows that the discrete transfer function G(z) that is equivalent to the analog transfer 
function G(s) is given by (see Figure 10.12.c):

 G z z
G s

s
( ) ( )

( )= - 





-1 1 Z  (10.3.3.)

Note: For the sake of emphasis, let us repeat what we have mentioned earlier. G(z) is 
“not” obtained by replacing s in G(s) according to the mapping equation (Equation 10.13.). 
Furthermore, G(z) is “not” obtained by replacing s by z in G(s).
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Equation 10.3.3. provides an important result, which may be directly employed to design 
digital compensators. The main steps of this procedure are given below.

Step 1: Design an analog compensator G(s) to meet a given set of design specifications.
Step 2: Using Equation 10.3.3. obtain the discrete transfer function G(z) of the correspond-

ing digital compensator.
Step 3: Obtain the difference equation corresponding to G(z).
The resulting difference equation can be programmed into a digital computer, forming 

the digital compensator.

example 10.5

Consider the lead compensator: G s
s
sc ( )

.
.

= +
+







0 051 1
0 008 1

as obtained in Chapter 9 for a motor speed control design problem. This is of the form:

 G s
bs
asc ( )= +
+







1
1

Derive a digital compensator corresponding to this analog compensator.

Solution

To use Equation 10.33 we first determine the partial fractions:

 ( )
( ) ( )
bs

s as
A
s

B
as

+
+

= +
+

1
1 1

This gives the constants A and B. The time signals corresponding to these partial fractions are 
known from Laplace transform tables (see Appendix A). Specifically:

 L- =1 1
s

unit step function

 L-

+





= -1 1

1s a
t aexp( / )

The corresponding discrete sequences have the z-transforms (see Table 10.1):

 z
z -1

 and z
z T a- -exp( / )

Hence, we have from Equation 10.33:

 G z z
Az
z

B
a

z
z T ac ( ) ( )

( ) ( exp( / ))
= -

-
+

- -






-1
1

1 == + -
- -

A
B
a

z
z T a

( )
( exp( / ))

1

This may be written as: G z K
z
z

K
z
zc ( )

( )
( )

( )
( )

= -
-

= -
-

-

-

b
a

b
a

1
1

1

1
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In view of Equations 10.8 and 10.10 we can write the corresponding difference equation as:

 y y K u uk k k k- = -- -a b1 1( )

This is the difference equation that should be programmed into the computer, for digital 
compensation.

example 10.6

Using Equation 10.33 develop a discrete-time integrator and a discrete-time differentiator.
Note: Since a zero-order hold is assumed, the results may not be very accurate.

Solution

For the continuous integrator we have: G s
s

( ) = 1

To use Equation 10.33 we have to determine: Z Z
G s

s s
( )




= 





1
2

Note: L- =1
2

1
s

t

Hence, from Table 10.1: Z
1

12 2s
Tz

z





=

-( )

Then, from Equation 10.33, we get the discrete transfer function for the integrator as:

 
G z z

Tz
z

T
z

Tz
z

( ) ( )
( ) ( ) ( )

= -
-

=
-

=
-

-
-

-
1

1 1 1
1

2

1

1

In view of Equations 10.8 and 10.10, we have the corresponding difference equation:

 y y Tuk k k- =- -1 1

 Or: y y Tuk k k= +- -1 1

This is the familiar forward rectangular rule of integration. This difference equation can be pro-
grammed into a control computer for use as a simple integration algorithm.

Next, since the continuous differentiator is given by: G(s) = s we have from Equation 10.33, the 
corresponding z-transform representation as:

 G z z
s
s

z( ) ( ) ( )= - 




= -- -1 11

1
1

1Z Z (1).

We know that 1 is the Laplace transform of the unit impulse d (t). Hence, from Table 10.1, its 
z-transform is given by 1/T. Accordingly, the discrete differentiator is given by:

 G z z
T

( ) ( )= - -1
11

If the input to the differentiator is u(t) and the differentiated output is y(t), the difference equation 
of this discrete differentiator is given by:

 y
T

u uk k k= - -
1

1( )
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This is the familiar backward difference rule for differentiation. The results of the present example 
may be used to develop an algorithm for a digital PID controller.

10.4.3 Direct Synthesis of Digital Compensators

The method of digital compensation (and control) as described in the previous sections is 
an indirect method in the sense that first an analog compensator or controller is developed 
and then it is approximated by a discrete transfer function using the z-transform method. 
Finally the corresponding difference equation is programmed into a digital device. An 
alternative method (a direct synthesis method) starts with a discrete transfer function G z( ) 
of a closed-loop system that responds with a desired response {yk} when a known input 
{uk} is applied, as indicated in Figure 10.14a. For example, G z( ) may be the discrete transfer 
function of a simple oscillator with specified values for damping ratio, natural frequency, 
and dc gain. Now, since the discrete transfer function Gp(z) of the process (plant) to be con-
trolled is assumed to be known, it is a straightforward algebraic exercise to determine a 
compensator transfer function Gc(z) that will produce G z( ) for a given feedback structure. 
For example, if the unity feedback control structure, as shown in Figure 10.14b, is used we 
notice that:

 G z
G z G z

G z G z
c p

c p

( )
( ) ( )

[ ( ) ( )]
=

+1
 (10.3.4)

Now by straightforward algebraic manipulation, we get an expression for the desired 
compensator/controller:

 G z
G z

G z G zc
p

( )
( )

( )[ ( )]
=

-


1

 (10.3.5)

Since both G z( )  and Gp(z) are known, we can directly determine Gc(z).

10.4.4 Causality requirement

Note that the discrete transfer function Gc(z) that is obtained by direct synthesis, as 
described above, may not be physically realizable, and even when physically realizable 
it may not be well behaved. Hence, direct programming of the difference equation cor-
responding to this synthesized Gc(z) into the control computer may not always produce 
the desired response. To illustrate this, note that when a discrete transfer function Gc(z) 

Discrete input

(a)

U(z)
Discrete output

Y(z)~G(z)

Desired
closed-loop

transfer
function

(b)

Gp(z)Gc(z)
U(z) Y(z)E(z)

Compensator/
controller

–

Plant

Figure 10.14
A direct synthesis method for digital compensators and controllers. (a) Desired system. (b) Unity feedback 
control structure.
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is expanded as a series in powers of z -1, we cannot have negative powers (i.e., we cannot 
have positive powers of z in the series expansion of Gc(z)). Otherwise, the corresponding 
difference equation will require future input values to determine the present output value, 
thereby violating the causality requirement for a “realizable” dynamic system. Hence, it is 
clear from Equation 10.3.5 that the specification G z( ) for a direct design will be limited by 
the nature of Gp(z). In particular, it can be shown that for Gc(z) to be realizable (i.e., for not 
to violate the causality requirement) it is required that the lowest power of z -1 in the series 
expansion of G z( ) be greater than or equal to the lowest power of z -1 in the series expan-
sion of Gp(z).

It should be understood that, in the discrete transfer function block diagrams shown in 
Figure 10.14a and b, the signal paths carry discrete sequences such as {uk} and {yk}, and not 
continuous signals. In particular, in Figure 10.14b, the error (correction) signal is in fact {ek} 
and is given by:

 e u yk k k= -  (10.3.6)

and hence:

 E z U z Y z( ) ( ) ( )= -  (10.3.7)

The closed-loop equation (Equation 10.3.4) originates from Equation 10.3.7. If some of the 
signal paths were analog, Equation 10.3.4 would not hold exactly. For example, suppose 
that Gc(z) and Gp(z) correspond to the continuous transfer functions Gc(s) and Gp(s), respec-
tively. But, G z( ) will not be exactly equal to the discrete transfer function corresponding to 
the analog closed-loop transfer function:

 
G s G s

G s G s
c p

c p

( ) ( )
( ) ( )1+ 

10.4.5 Stability analysis using bilinear Transformation

Nyquist stability criterion and associated concepts of gain margin and phase margin can-
not be directly extended to discrete transfer functions. The reason for this is straightfor-
ward: the stability region on the s-plane is the left hand plane whereas the stability region 
on the z-plane is the unit circle area. To overcome this difficulty, another transformation 
that maps a unit circle on to the left hand plane is used. One such transformation is the 
bilinear transformation given by:

 w
z
z

= -
+

1
1

 (10.3.8)

Note that in this case the unit circle on the z-plane (|z|≤ 1) is mapped onto the left hand 
side of the w-plane (Re(w) ≤ 0). This is illustrated in Figure 10.15. Its relationship to the 
s-plane is given by the mapping equation (Equation 10.13.). Specifically:

 w
Ts
Ts

= -
+

exp( )
exp( )

1
1

 (10.3.9)
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On the imaginary axis (frequency axis) of the s-plane we have s = jw . On the w-plane, this 
corresponds to the line:

 w
Tj
Tj

j
T= -

+
= 





exp( )
exp( )

tan
w
w

w1
1 2.

 (10.40)

This is clearly the imaginary axis of the w-plane. It follows that the frequency axis of the 
s-plane corresponds to the imaginary axis of the w-plane. Consequently, we can define a 
frequency variable w * for the w-plane. In view of Equation 10.40, w * is related to the true 
frequency w through:

 w w∗ = 





tan
T
2.

 (10.41)

This is a monotonic, but nonlinear, relationship. As a result of this monotonic relation-
ship between the s-plane and the w-plane, we are able to use the same concepts of relative 
stability (gain margin, phase margin, etc.) for a discrete transfer function, when expressed 
in terms of the w variable (i.e., for a transfer function G(w)). Similarly, the well-known 
Routh–Hurwitz stability criterion (see Chapter 8) can be applied to the denominator polyno-
mial of G(w), in order to determine the stability of a discrete-time system.

10.4.6 Computer implementation

Digital control is particularly preferred when the control algorithms are complex. The 
algorithm for a three-point controller (proportional integral derivative [PID] controller) for 
example, is quite simple and straightforward. Even though a PID controller can be easily 
implemented by analog means, or even by a hardware digital controller, one may decide to 
employ a simple microprocessor as the controller in each PID loop of a control system. 
The microprocessor approach has the advantages of low cost, small size, and flexibility. In 

Im

Re

w-Plane

Im

Re

z-Plane

Stable
Stable

z – 1w
z + 1

=

Figure 10.15
Bilinear transformation.
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particular, integration with a higher-level supervisory controller in a distributed-control 
environment will be rather convenient when microprocessor-based loop controllers are 
employed. Also integration of PID loops with more complex control schemes such as lin-
earizing control (nonlinear feedback control) and adaptive control will be simplified when 
the software-based digital control approach is used. Digital implementation of lead and 
lag compensators can be slightly more difficult than the implementation of three-point 
controllers.

Problems

PROBLEM 10.1

Into what classification of control system components (actuators, signal modification 
devices, controllers, and measuring devices) would you put the following?

 a. Stepping motor
 b. Proportional-plus-integration circuit
 c. Power amplifier
 d. ADC
 e. DAC
 f. Optical increment encoder
 g. Process computer
 h. FFT analyzer
 i. Digital signal processor

PROBLEM 10.2

Compare analog control and direct digital control for motion control in high-speed 
applications of industrial manipulators. Give some advantages and disadvantages of 
each control method for this application.

PROBLEM 10.3

What is an antialiasing filter? In a particular application, the sensor signal is sampled 
at fs Hz. Suggest a suitable cut-off frequency for an antialiasing filter to be used in this 
application.

PROBLEM 10.4

 a. Consider a multi degree-of-freedom robotic arm with flexible joints and links. 
The purpose of the manipulator is to accurately place a payload. Suppose that the 
second natural frequency (i.e., the natural frequency of the second flexible mode) 
of bending of the robot, in the plane of its motion, is more than four times the first 
natural frequency.

 Discuss pertinent issues of sensing and control (e.g., types and locations of the 
sensors, types of control, operating bandwidth, control bandwidth, sampling rate 
of sensing information) if the primary frequency of the payload motion is:

 (i) one-tenth of the first natural frequency of the robot.
 (ii) very close to the first natural frequency of the robot.
 (iii) twice the first natural frequency of the robot.
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 b. A single-link space robot is shown in Figure P10.4. The link is assumed to be uni-
form with length 10 m and mass 400 kg. The total mass of the end effector and the 
payload is also 400 kg. The robot link is assumed to be flexible while the other com-
ponents are rigid. The modulus of rigidity of bending deflection of the link in the 
plane of robot motion is known to be EI = 8.2.5 × 109 N.m2.. The primary natural fre-
quency of bending motion of a uniform cantilever beam with an end mass is given 
by: w l1 1

2.= EI m/

where: m = mass per unit length
l1 = mode shape parameter for mode 1.
For [beam mass/end mass] = 1.0, it is known that l1l = 1.875 where l = beam length.
Give a suitable operating bandwidth for the robot manipulation. Estimate a suitable 

sampling rate for response measurements, to be used in feedback control. What is the 
corresponding control bandwidth, assuming that the actuator and the signal condition-
ing hardware can accommodate this bandwidth?

PROBLEM 10.5

Suppose that the frequency range of interest in a particular signal is 0–2.00 Hz. Determine 
a suitable sampling rate (digitization speed) and the cut-off frequency for an appropri-
ate antialiasing (low-pass) filter.

PROBLEM 10.6

A computer-based open-loop control system for a dc motor is shown by the block dia-
gram in Figure P10.6. In response to an input command, the control computer generates 
digital values corresponding to a desired continuous input. These digital values are 

Robot joint
(direct-drive

and rigid)

End
effector

Rigid
payload

DC
servo
motor

Robot link
(flexible)

Figure P10.4
A single-link robotic manipulator.

Control
computer 

DAC
Input specification
(e.g., ramp)

1
s (s + 1)

Motor
with drive

Position

Figure P10.6
Open-loop digital control of a dc motor (unstable).
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converted into the analog form and supplied to the motor drive circuit in real-time. The 
motor and its drive circuitry can be modeled by the transfer function:

 G s
s s

( )
( )

=
+
1

1

Suppose that the conversion time T of the DAC is T = 1 s.

 a. Using the z-transform approach, obtain a difference equation that will approxi-
mate the motor response.

 b. Assuming that the continuous input is a unit ramp, compute the first four discrete 
output values (at sampling period T = 1 s) using the difference equations, with 
zero initial values.

 c. For a unit ramp input, determine an expression for Y(z)—the z-transform of the 
discrete output values. By long division, obtain the first four discrete output val-
ues and compare them with the results in (b).

 d. Suppose the input is a unit step. Using the difference equation, with zero ICs, 
compute the first few output samples. Show that the response behaves in an 
unstable manner. What is the main source of this instability (nature of the system 
or recursive algorithm)?

PROBLEM 10.7

Consider a continuous-time system given by the transfer function:

 G s
s s

( )
( . )

=
+ +

1
1 2. 12.

 a. Determine the undamped natural frequency and damping ratio of the system.
 b. Write the input/output differential equation for this system.
 c. Write an expression for the system response y(t) for a unit step input. Plot this 

response.
 d. From the plotted time response determine the % overshoot (P.O.) and the peak 

time (Tp) for the system.
 e. Determine the discrete transfer function G(z), which relates the discrete input and 

output data.
 f. Write the difference equation corresponding to this discrete transfer function.
 g. Using this difference equation, compute the time response of the system for a unit 

step input,
 (i) using the sampling period T = 1 s
 (ii) using the sampling period T = 0.5 s

Plot these two curves on the same paper (same scale) along with the exact response 
curve obtained in (c). Compare the three curves. Discuss any discrepancies. (Compare, 
in particular, P.O., and Tp for the three curves.)

PROBLEM 10.8

What are advantages of digital control over analog control? A lead compensator was 
designed for a control system using the classical analog approach. Its transfer function 
was found to be: G s s sc( ) ( )/( )= + +2. 1 1 .

Assuming a sampling period of T = 1, obtain a difference equation for digital imple-
mentation of this lead compensator.

PROBLEM 10.9

Consider a system whose transfer function is G(s). The corresponding discrete transfer 
function G(z) is obtained using:
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 G z z
G s

s
( ) ( )

( )= - 





-1 1 Z

in which the operator Z	denotes z-transformation. Note that the response of the system 
computed using the difference equation given by G(z) is the same as the response of 
the original system G(s), if the analog input was first sampled, then each sample is held 
using a zero-order hold circuit, then the resulting analog signal is applied to the origi-
nal analog system G(s) and, finally, the resulting response is sampled at the same sam-
pling frequency as the input. Using this fact, explain why the discrete transfer function 
corresponding to G1(s)G2.(s) is not identical to the product G1(z)G2.(z) in which:

G1(z) = discrete transfer function corresponding to G1(s)
G2.(z) = discrete transfer function corresponding to G2.(s).

If G1(s) and G2.(s) are known, would you prefer the former process (i.e., convert the 
product G1(s)G2.(s)) or the latter process (i.e., convert G1(s) and G2.(s) separately and take 
the product) in order to obtain a difference equation for the product transfer function 
G1(s)G2.(s), for computer implementation?

PROBLEM 10.10

Schematic representation of signal processing associated with a vibration-test system is 
shown in Figure P10.10. An acceleration signal x(t) of the test object is measured using 
an accelerometer/charge amplifier combination and sampled into the signal-processing 
computer at sampling period T. This discrete acceleration sequence {xk} is then inte-
grated using parabolic integration, to form a velocity sequence {yk}. Show that the para-
bolic integration algorithm is given by:

 y y
T

x x xk k k k k+ + -= + + -[ ]1 1 112.
5 8

Note: In the parabolic integration algorithm, the discrete data are interpolated (every 
three points xk-1, xk, xk + 1) using a quadratic curve (a parabola).

What is the discrete transfer function G(z) corresponding to this difference equation? 
Using this, derive an algorithm for double integration of x(t), to obtain the displace-
ment response. Show that the associated discrete transfer function is marginally stable. 
What is the practical implication of this observation? Suggest a way to improve this 
situation.

Charge
amplifier

S/H and
ADC

Digital
computer

Accelerometer

Displacement
history

Test
object

Acceleration
signal
x(t) Disk

storage

Shaker

Figure P10.10
A vibration test system.
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PROBLEM 10.11

Consider the analog feedback control system shown in Figure P10.11a. If we sample the 
error (correction) signal as shown in Figure P10.11b, this is equivalent to sampling both 
input signal and feedback signal. If the output signal is also sampled, then the signal 
paths can be completely represented by discrete sequences (only the holding operation 
is needed to convert the discrete sequences to sample and hold outputs). Hence, the dis-
crete transfer function of the system shown in Figure P10.11c is identical to that of the 
system shown in Figure P10.11b. Note that G(z) and H(z) are, respectively, the discrete 
transfer functions corresponding to G(s) and H(s). What is the closed-loop discrete trans-
fer function G z( ) corresponding to Figure P10.11b or c? Now suppose that the input and 
the output are sampled (and not the feedback signal). In this case we have the system 
shown in Figure P10.11d. What is the closed-loop discrete transfer function in this case? 
Verify that this is not identical to, but could be approximated by, the previous case.

Which discrete model (Figure P10.11c or Figure P10.11d) would be more accurate in 
the following two cases:

 a. The forward path of the control loop has a digital controller, and a digital trans-
ducer (say, optical encoder) is used to measure the response signal for feedback.

 b. The forward path of the control loop has a digital controller (computer) but the 
output sensor used to obtain the feedback signal is analog.

Is any one of the two discrete models shown in Figure P10.11 exactly equivalent to the case 
where the forward path and the feedback path are completely analog except that a digital 
transducer (with a zero-order hold) is used to measure the output signal for feedback?

G(s)

H(s)

Input

(a)

(b)

(c)

(d)

Output
Y(s)U(s)

G(s)

H(s)

U(s) Sample
and hold

Sample
and hold

Sample
and hold

Sample
and hold

–

–

G(z)

H(z)

Discrete
input

Discrete
output

Y(z)U(z)

G(s)

H(s)

U(s)

–

–

Figure P10.11
Discrete transfer function models of a closed-loop analog system. (a) Analog system. (b) Sampling 
the error and the output. (c) A discrete system equivalent to (b). (d) Sampling the input and the 
output.
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PROBLEM 10.12

Consider the general control loop shown in Figure P10.12.. The case of unity feedback 
(i.e., feedback transfer function H = 1) is shown. Note that a loop with nonunity feed-
back H(s) can be reduced to this equivalent form by moving H(s) to the forward path 
of the loop and dividing the reference input by H(s), since U - HY = (U/H - Y)H. Hence, 
the unity feedback case shown in Figure P10.12. can be considered the general case. The 
controller, with analog transfer function Gc(s), converts the error (actually correction) 
signal e(t) into the control signal c(t). Consider the following three types of controllers, 
which are commonly used in industrial control systems:

 a. Proportional plus integral (PI) control given by

 G s K
sc p

i

( ) = +





1
1
t

 b. Proportional plus derivative (PPD) control given by

 G s K sc p d( ) ( )= +1 t

 c. Proportional plus integral plus derivative (PID) control given by

 G s K
s

sc p
i

d( ) = + +





1
1
t

t

By approximating the integration

 i t e t dt( ) ( )= ∫
by the forward rectangular rule:

 i i Tek k k= +- -1 1

and the differentiation

 d t
d
dt

e t( ) ( )=

by the backward difference rule:

 d
T

e ek k k= - -
1

1( )

Process

Reference
input ResponseController

Gc(s)
–

Control
signal

c(t)

u(t) y(t)

Error
(correction)

e(t)

Figure P10.12
A general control loop.
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obtain difference equations (digital control algorithms) for the three types of controllers 
PI, PPD, and PID. Note that the discrete control sequence {ci} can be computed from the 
discrete error (correction) sequence {ei} using these difference equations.

Give the discrete transfer functions (functions of z) corresponding to these three dif-
ference equations. Compare them with the functions obtained by converting the con-
tinuous transfer functions Gc(s) into the corresponding discrete transfer functions Gc(z) 
using the standard z-transform method.

PROBLEM 10.13

Consider a discrete transfer function Gc(z). It may be expressed as a ratio of rational 
polynomials in z-1. Suppose that the numerator polynomial is:

 N z b z b zm
m

m
m( ) ( )- -

+
- += + +1

1
1 

and the denominator polynomial is:

 D z a z a zn
n

n
n( ) ( )- -

+
- += + +1

1
1 

in which m and n are nonnegative integers. Show that for the causality requirement of 
Gc(z) to be satisfied (i.e., for Gc(z) to be physically realizable) we must have m ≥ n.

Now consider the direct synthesis of digital controllers and compensators using the 
z-transform approach. Note that Gp(z) is fixed by the given system and G z( ) is defined 
by the specified (required) performance of the closed-loop system. Of course, both Gp(z) 
and G z( ) have to be realizable. Suppose that the series expansion (obtained, say, be long 
division) of Gp(z) in powers of z-1 has n as the lowest power, and a similar series expan-
sion of G z( ) has m as the lowest power. Show that for Gc(z) to be physically realizable, we 
must have m ≥ n.

PROBLEM 10.14

A deadbeat controller is a digital controller that provides a system response, which will 
settle down to the steady-state value in a finite (a very few) number of sample periods.

Note: The settling time of a system can be determined by the free response of the 
system to a unit pulse.

Consider a closed-loop system G z( ) that includes a deadbeat controller. Suppose that 
G z( ) is expanded as a series in powers of z-1. Discuss characteristics of this series such 
that G z( ) represents a deadbeat control system.
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11
Advanced Control

The emphasis of the present book has been on conventional control (also known as classical 
control) which is commonly used in academic curricula and engineering/industrial appli-
cations. It primarily deals with single-input–single-output (SISO) systems both in time 
domain and frequency domain. What are commonly identified as modern control tech-
niques are time domain multivariable (multiinput–multioutput [MIMO]) techniques that 
use the state-space representation for the system. The present chapter will present some 
of these advanced control techniques, particularly in the categories of optimal control and 
modal control. In this context, linear quadratic regulator and pole-placement control will 
be studied as two particularly popular multivariable control techniques. Another control 
method that has been quite popular in engineering/industrial applications is fuzzy logic 
control, which is also presented in this chapter.

11.1 Modern Control

The class of multivariable (or MIMO) control that is identified as “modern control” depends 
primarily on the state-space representation the system to be controlled (see Chapter 2.). The 
associated first order ordinary differential equations may be nonlinear (i.e., may contain 
nonlinear functions of the state variables), coupled (i.e., one equation may contain more 
than one state variable), and time-variant (i.e., may have the variable t explicitly in the 
equations, and the system parameters will vary with time). The so-called modern control 
techniques originated primarily in the United States and the former Soviet Union in the 
early 1950s. Hence the term “modern control” is a misnomer.

In the present chapter we will present in detail the following two “modern” control 
techniques:

 a. Linear quadratic regulator (LQR)
 b. Pole placement

In LQR, the objective is to minimize a cost function (maximize a performance index) and 
hence this technique falls under the general category of optimal control. In pole placement, 
the objective is to locate the poles (i.e., eigenvalues) of the system so that the modes (i.e., 
fundamental free natural responses) of the system behave in a desired manner (with 
respect to stability, speed of response, etc.) and hence this technique falls into the category 
of modal control. Both these techniques are state-space methods, and are specifically based 
on a linear representation (linear model) of the system (plant) that is controlled.

Several other modern control techniques will be outlined without presenting all the 
details. The chapter will be concluded with an introductory presentation of fuzzy logic 
control (FLC) which is a rule-based (or knowledge-based) control technique which falls 
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into the class of intelligent control. FLC does not explicitly use a model of the system to be 
controlled (plant)—it is a model-free technique. It uses control knowledge that is expressed 
as a set of rules containing fuzzy terms such as “large” and “fast.” Observations on the 
plant behavior (e.g., through response measurement) are matched with the rule base to 
generate control actions (which are the inferences of the decision-making system).

11.2 Time Response

The time response of a system describes how the system responds as a function of time 
(see Chapter 6). The frequency response describes how the system responds as a function 
of frequency (see Chapters 5, 6, and 8). Since the objective of control is to make the sys-
tem behave in a desired manner, it is important to analyze how the system variables, the 
output variables in particular, vary with time. Both free response and forced response are 
important.

11.2.1 The Scalar Problem

Consider the first order system:

 x a t x b t u t= +( ) ( ) ( )  (11.1)

where x is the state (or response) and u is the input.
Note: Time-varying parameters a and b.

11.2.1.1 Homogeneous Case (Input u = 0)

 x a t x= ( )  ⇒   dx/x = a(t)dt

Integrate:

 ln
( )
( )

( ) ( ) ( )
( )x t

x t
a x t x t e

o
t

t

o

a d

o

to

t

= ⇒ = ∫∫ t t t
 (11.2.)

 If a = constant x(t) = x(to)ea(t-to) (11.3.)

Note: The initial condition (IC) x(to) must be specified for unique solution. Also x(t) 
depends on the time difference (t-to), not the absolute time, when a is constant.

11.2.1.2 Nonhomogeneous (Forced) Case

Multiply Equation 11.1 by k(t):

 k(t)x
.
 - k(t)a(t)x = k(t)b(t)u(t) (i)
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Pick k(t) such that:

 k t k t a t
.

( ) ( ) ( )= -  (ii)

(to make the left hand side an exact differential). Then, the system equation (Equation 11.1) 
has a solution:

 k t k t eo

a d
to

t

( ) ( )
( )

= ∫- t t
 (iii)

Hence, Equation (i) can be written as

 
d
dt

kx kb t u t[ ] ( ) ( )=  (iv)

Integrate:

 k t x t k t x t k b u do o

t

t

o

( ) ( ) ( ) ( ) ( ) ( ) ( )= + ∫ t t t t

We get:

 x t
k t
k t

x t
k
k t

b u do
o

t

t

o

( )
( )
( )

( )
( )
( )

( ) ( )= + ∫ t t t t

 = ∫ + ∫-∫x t e e b u do

a d a d

t

t

to

t

to

t

o

( ) ( ) ( )
( ) ( )t t t t

t t tt

Final result:

 x t x t e e b uo

a d a d

t

t

to

t

to

t

o

( ) ( ) ( )
( ) ( )

= ∫ + ∫-∫t t t t
t (( )t td  (11.4)

For constant a:

 x t e x t e b u da t t
o

a t

t

t

o

o

( ) ( ) ( ) ( )( ) ( )= +- -∫ t t t t  (11.5)

Note: In general (see Chapter 6),
zero-input response ≠ homogeneous solution (complementary solution)
zero state (zero IC) response ≠ particular solution

(because the input affects the unknown coefficients in the homogeneous solution).

76868.indb   485 7/8/09   5:15:42 PM



486 Modeling and Control of Engineering Systems

example 11.1

Let, particular solution = zero state response + ea t to( )-

This satisfies the system differential equation (Equation 11.1), with constant a. Then, homoge-
neous (complementary) solution = e x ta t t

o
o( )[ ( ) ]- -1 .

11.2.2 Time response of a State-Space Model

The foregoing concepts of time response may be extended to the multivariable case of a 
state-space model.

11.2.2.1 Case of Constant System Matrix

Assume that A is a constant matrix.

 Homogeneous Case: x = Ax  (11.6)

 This satisfies: x xA( ) ( )( )t e tt t
o

o= -  (11.7)

 Nonhomogeneous (Forced) Case: x Ax Bu= + ( )t  (11.8)

 Let K(t) satisfy K K A( ) ( )t t= -  (i)

 For example K A( ) ( )t e t to= - -  (ii)

Multiply Equation 11.8 throughout by K(t). Then, as for the scalar case:

 
d
dt

t t t tK x B u( ) ( ) ( ) ( )[ ] = K  (iii)

Integrate Equation (iii):

 x K K x K K u( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t do o

t

t

o

= +- -∫1 1 t t t  (iv)

With Equation (ii):

 x x B uA A( ) ( ) ( ) ( )( ) ( )t e t e dt t
o

t

t

t

o

o

= +- -∫ t t t t  (11.9)

11.2.2.2 Matrix Exponential

Note that the matrix exponential (which is called the state-transition matrix, because 
it changes the state vector over time) is needed for the response analysis of a constant-
 parameter state-space model. This matrix is given by:

 e I t ttA A A= + + +1
2.

2. 2.

!
...  (11.10)
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Some properties:

 e I t tt- = - + +A A A
1
2.

2. 2.

!


 
d
dt

e I t et tA AA A A= + +[ ] =

 eAt e-At = I

Hence

 e et tA A[ ] =- -1

11.2.2.3 Methods of Computing eAt

Method 1 (Laplace Transform Method):
According to Equation 11.7: x Ax xA= ⇒ =x( ) ( )t e t 0

Take Laplace Transform (see Appendix A):

 sX(s) - x(0) = AX(s) ⇒ x(t) = L-1 (sI - A)-1 x(0)

Hence

 eAt = L-1 (sI - A)-1 (11.11)

Method 2 (Modal Transformation Method):
Determine the eigenvectors (see Appendix C) of A, and assemble them into the modal 
matrix M. Form the matrix J through the similarity transformation:

 J = M-1AM (11.12.)

At least in the case when A has distinct eigenvalues, it is known that J (the Jordan matrix) 
is diagonal, with eigenvalues as its diagonal elements. Then

 e

e

e

e

t

t

t

tn

J =



















l

l

l

1

2.

0 0
0 0

0 0 0

 (11.13.)

It is known that:

 eAt = MeJt M-1 (11.14)

Method 3 (Matrix Element Evaluation):
Consider the series expression of each matrix element in:

 e t ttA I A A= + + +1
2.

2. 2. 
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Then, see whether a closed-form expression can be written for each matrix element. 
Alternatively, for small t (e.g., for digital simulation over small time steps) truncate the 
series expression.

Method 4 (Use Cayley Hamilton Theorem):
See Appendix C. Determine coefficients a 0, a 1, …, a n-1 by solving

 

e

e

t
n

n

t
n

n

l

l

a a l a l

a a l

1
0 1 1 1 1

1

0 1

= + + +

= + +

-
-...

...



++ -
-a ln n

n
1

1

where l i are the eigenvalues of A. Then (see Appendix C),

 eAt = a 0I + a 1A + … + a n-1 An-1 (11.15)

example 11.2

Consider the system matrix:

 A =
-









0 1

0 2

We will determine the matrix exponential of this matrix by each of the four methods that were 
outlined before.

Method 1:

 s
s

s
I A- =

-
+









1

0 2

 ( ) ( )s s s s

s

I A- = +

+



















-1

1 1
2

0
1

2

Take inverse Laplace of each term, using Laplace transform tables (see Table A.1). We get

 e L s s s

s

eAt
t

= +

+



















= --
-

1
2

1 1
2

0
1

2

1
1
2

1( ) (( )











-0 2e t

Method 2:
Determine eigenvalues of A: l 1 = 0, l 2 = - 2
Determine eigenvectors by solving: [A - l I]x  = 0
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We get

 For l 1: x1

1

0
= 






 For l 2: 
2 1

0 0

0

0

1

22












 =






 ⇒ =

-








x

x
x

Then, form the modal matrix M and determine its inverse:

 M M=
-







 =

-



















-
1 1

0 2

1
1
2

0
1
2

1, .

Form the exponential of the Jordan matrix J.

 e
e

e
t

t
J = 






-

0

2

0

0

Finally, use Equation 11.13 to determine the matrix exponential:

 e
e

t
t

A =
-
















-













-

1 1

0 2

1 0

0

1
1
2

0
1
2

2






 = -( )













-

-

1
1
2

1

0

2

2

e

e

t

t

Method 3:
Write the series expansion: e t ttA I A

A= + + +2
2

2
...

 = 





 + -







 + -







 +

1 0

0 1

0 1

0 2 2
0 1

0 2

2
2

t
t
!

....

 =
- - + - +





- +

1
1
2

1
2

1 2
2
2

2
3

0 1 2

2 3

t
t t

t

( )
!

( )
!

...

(( )
!

( )
!

( )
!

...2
2

2
2

2
3

2 3 3t t t- - +



















 = -( )













-

-

1
1
2

1

0

2

2

e

e

t

t
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Method 4:
Form the two coefficient equations, using the eigenvalues,

 
a a l
a a l

l
l

l

l
0 1 1

0 1 2

1

2

1

2

0

2

+ =
+ =





=
= -

e

e

t

t
for

.

and solve for the coefficients:

 ⇒ = = -( )-a a0 1
21

1
2

1, e t

Then,

 e et tA I A I A= + = + -( )-a a0 1
21

2
1

 = -( )













-

-

1
1
2

1

0

2

2

e

e

t

t

example 11.3

Find the response to initial state x(0) of the system x x=
-









0 1

0 2
Here we use the result (Equation 11.7) and the matrix exponential determined in the previous 

example. We have

 x x xA( ) ( )
( )

( )t e
e

e

t
t

t

= = -













-

-

0
1

1
2

1

0
0

2

2

 = + -













-

-

x x e x

e x

t

t

1 2
2

2

2
2

0
1
2

0
1
2

0

0

( ) ( ) ( )

( )

example 11.4

For the circuit shown in Figure 11.1a, the input voltage ei(t) is given in Figure 11.1b. The output is 
voltage e0.

 i. Using current through inductor 2 H and voltage across the capacitor 1/2 F as the state vari-
ables, obtain a complete state model (including output equation) for the system.

 ii. Determine the value of the state vector at t = 0 + .
 iii. Find the eigenvalues and the corresponding eigenvectors of the system.
 iv. Using Equation (iii), obtain an expression for the state-transition matrix eAt.
 v. Obtain the response (output) y(t) for the given input.
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Solution

See Figure 11.2.
The state-space shell:

 2
di
dt

vL =

 
1
2

de
dt

ic =

Loop 1 (Compatibility equation): ei - 2iL - v - ec = 0
Node A (Continuity equation): iL - i - (ec)/2 = 0
Eliminate the auxiliary variables v and i:

 2 2
di
dt

e i ec
i L c= - -

 
1
2 2

de
dt

i
ec

L
c= -

Hence, the state equations are:

 
di
dt

i e eL
L c i= - - +1

2
1
2

2

4

ei

t

ei(t) e0F2
1

iL

2Ω
+

–

2Ω
2H

(a) (b)

ec

+

–

+
–

Figure 11.1
(a) An electrical circuit. (b) Input to the circuit.

e0F2
1

2Ω

2Ω
+

–

2H

v+

+

–

–
ec

+

–
1

2
A

i

ei(t)

iL

Figure 11.2
Writing equations for the electrical circuit.
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de
dt

i ec
L c= -2

The output equation: e0 = ec

 i. A B= - -

-















=














1
1
2

2 1

1
2
0

 C = [0 1] D = 0

 ii. Note: State variables cannot undergo step changes. Hence

 ec(0 + ) = ec(0-) iL(0 + ) = iL(0-)

 At t = 0-: (diL/dt) = (dec/dt) = 0 (steady-state)

 ei = 4

 Hence:

 0 0
1
2

0
1
2

4= - - + ×- -i eL c( ) ( )

 0 = 2iL(0-) - ec(0-)

 Solve: iL(0-) = 1, ec(0-) = 2

 Hence: x( )0
1

2
+ = 







 iii. Find eigenvalues by solving the characteristic equation:

 l l

l
lI A- = +

- +
= +( ) + =1

1
2

2 1
1 1 0

2

 Hence: l  + 1 =  ± j

 Or: l 1 = -1 + j l 2 = -1 - j

 Determine the corresponding eigenvectors:

 x1

1
2

2

0

0
:

j

j

a jb

p jq
ja

-















+
+







=






 ⇒ -- + + =

- - + - =

b p
j
q

a jb jp q

1
2 2

0

2 2 0

 Hence: a + (q/2) = 0, -b + (1/2) p = 0

  ⇒ q = -2a, p = 2b

76868.indb   492 7/8/09   5:15:56 PM



Advanced Control 493

 x1 2 2
=

+
-









a jb

a ja
Pick a = 1, b = 0

 x1

1

2
=

-






j

 Hence: x2

1

2
= 





j

 iv. We will use Method 2 to determine the matrix exponential.

 Form the modal matrix M =
-








1 1

2 2j j

 Note: |M| = 2j + 2j = 4j ≠ 0 (nonsingular matrix).

 Form the matrix inverse: M- =
-






 =

-



















1 1
4

2 1

2 1

1
2 4
1
2 4

j
j

j

j

j

 e
e

e
t

j t

j t
J = 








- +

- -

( )

( )

1

1

0

0

 By Method 2 of determining matrix exponential, we have:

 e e e
j j

e

e
t t t

jt

jt
A JM M= =

-













- -

-
1

1 1

2 2

0

0

11
2 4
1
2 4

j

j-



















 =
-






 -









-
-

-
e

e e

je je

j

j
t

jt jt

jt jt2 2

1
2 4
1
2 4










 =
+( ) -( )

- -( )
-

- -

-

e
e e

j
e e

j e e e

t

jt jt jt jt

jt jt

1
2 4

1
2

jjt jt

t

e
e

t t

t+( )



















=
-

-

- cos sin

sin c

1
2

2 oost















 v. x x BuA A( ) ( ) ( )( )t e e dt t

t

= + -∫0
0

t t t

 =
-

















 +- -e

t t

t t
et cos sin

sin cos

1
2

2

1

2
(( ) cos( ) sin( )

sin( ) cos( )

t t t

t t

- - - -

- -


t t t

t t

1
2

2
























×∫

1
2
0

2
0

d
t

t
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 =
-
+







 +- - -e

t t

t t
et t

cos sin

(cos sin )

cos(
( )

2
t

tt

t
d

t
-
-







∫ t
t
t

)

sin( )2
0

Now, direct integration gives:

 e t d
e

t tt

t
t

- -
-

- = - -∫ ( ) cos( ) (cos sin )t t t
0

1
2 2

 e t d
e

t tt

t
t

- -
-

- = - +∫ ( ) sin( ) (cos sin )t t t
0

1
2 2

Hence:

 x( )
cos sin cos sin

cos sin
t e

t t t t

t t

t=
- - +

+ -

-

1
2

1
2

2 2
11
2

1
2

1
2
1
2

cos sint t-



















+



















 =
-

+



















+-e
t t

t t

t

1
2

1
2

3
2

3
2

cos sin

cos sin

11
2
1
2



















Note that the ICs are satisfied: x( )0
1

2
= 




.

11.2.3 Time response by laplace Transform

Time variation of the state vector of a linear, constant-parameter dynamic system 
(Equation 11.8) can be obtained using the Laplace transform method (see Appendix A 
and Chapter 6). This idea was already used for the unforced case (u = 0), in the context of 
determining the matrix exponential. Now, let us address the general (forced) case more 
formally. The Laplace transform of the forced state-space equation:

 x Ax Bu= + ( )t  (11.8)

is given by:

 sX(s)-x(0) = AX(s) + BU(s) (11.16)

Consequently:

 x(t) = L-1 (sI - A)-1 x(0) + L-1 (sI - A)-1 BU(s) (11.17)

in which I denotes the identity (unit) matrix. Note that L-1 denotes the inverse Laplace 
transform operator. The square matrix (sI - A)-1 is known as the resolvent matrix. Its inverse 
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Laplace transform is the state-transition matrix, as clear from Equation 11.9 and already seen 
in Equation 11.11. Specifically:

  F(t) = L-1(sI - A)-1 (11.18)

We have already seen that F(t) is equal to the matrix exponential:

  F(t) = exp(At) = I + At +  1
2.

2.

!
A t2. + … (11.19)

It follows from Equation 11.18 that the state-transition matrix maybe analytically deter-
mined as a closed-form matrix function by the direct use of inverse Laplace transforma-
tion on each term of the resolvent matrix. Since the product in the Laplace domain is a 
convolution integral in the time domain, and vice versa (see Appendix A) the second term 
on the right hand side of Equation 11.17 can be expressed as a matrix convolution integral. 
Hence, Equation 11.17 may be expressed as:

 x x Bu( )= ( ) (0)+ ( ) ( )t t t dF F t t t
0

t

∫ -  (11.2.0)

The first part of this solution is the zero-input response; the second part is the zero state 
response.

11.2.4 Output response

State variables are not necessarily measurable and generally are not system outputs. 
Linearized relationship between state variables and system output (response) variables 
y(t) may be expressed as:

 y(t) = Cx(t) (11.2.1)

in which the output vector is:

 y = [y1, y2., …, yp]T (11.2.2.)

and C denotes the output (measurement) gain matrix. Hence, once x is known, y can be 
determined by using Equation 11.2.1.

11.2.4.1 Transfer Function Matrix

Suppose that the number of inputs m > 1 and the number of outputs p > 1. By substitut-
ing the Laplace transformed equation (Equation 11.2.1) into Equation 11.16, with zero IC 
(x(0) = 0) we get the input-output relation

 Y(s) = H(s) U(s) (11.2.3.)

where the transfer function matrix H(s) of the system is given by

 H(s) = C(sI-A)-1 B (11.2.4)
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11.2.5 Modal response

A dynamic system has a set of natural, unforced responses that represent the preferred 
dynamics of the system. Such a preferred motion is called a “modal response” or a “mode 
of motion.” Analytically, a mode of a linear, time-invariant system is represented by an 
eigenvalue and the corresponding eigenvector. In particular, with regard to a state-space 
model, in a given mode of response the state vector will remain proportional to the cor-
responding eigenvector, and the time variation of the associated response will be given by 
the time exponential function of the corresponding eigenvalue.

Since modal response corresponds to free (unforced) response of the system, we con-
sider the corresponding state-space model

 x Ax=  (11.6)

Eigenvectors of A: nontrivial solutions x  of

 Ax  = l x  or (A - l I) x  = 0 (11.2.5)

For a nontrivial (i.e., nonzero) solution to be possible, the matrix (A - l I) should be sin-
gular (i.e., it should not have a finite inverse. Otherwise x  = 0). Hence, we must have:

 |A - l I| = 0 (11.2.6)

which is the characteristic equation of the system, whose roots are the eigenvalues (poles) 
of the system: l 1, l 2., …, l n.

Note: If x  is a solution of Equation 11.2.5 then any multiple ax  of it is also a solution. 
Hence, an eigenvector is arbitrary up to a multiplication factor.

Assume that A is a normal matrix; i.e.,

 AAH = AH A (11.2.7)

⇒ x 1, x 2., …, x n will be linearly independent eigenvectors, and will form a basis for the 
state-space Σ (see Appendix C).

Consider the forced state-space model

 x Ax B u= + ( ) ( )t t  (11.2.8)

where B may be time-variant.
Note: x ∈ ∑ and B(t)u(t) ∈ ∑
Hence, the state vector can be expressed as a linear combination of the eigenvectors:

 x(t) = q1(t)x 1 + … + qn(t)x n (11.2.9)

Also:

 B(t)u(t) = b 1(t) x 1 + … + b n(t)x n (11.3.0)

Substitute Equations 11.2.9 and 11.3.0 into Equation 11.2.8.

  ⇒   q qn n n n n1 1 1 1 1 0- -( ) + + - -( ) =l b x l b xq q
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Hence,

 q qi i i i- - =l b 0 [∵ xi are linearly independent] for all i (11.3.1)

 Form the modal matrix: M = |x 1,x 2.,…,x n| (11.3.2.)

 Equation 11.2.9 can be written as: x = Mq (11.3.3.)

This is a transformation between the state vector x and the modal coordinate vector q.
Substitute Equation 11.3.3. into Equation 11.2.8:

 q M AMq M Bu= +- -1 1  (11.3.4)

The Jordan matrix:

 J = M-1AM = diag(l 1, l 2 , l 3 ,…, l n) (11.3.5)

is a diagonal matrix of eigenvalues, in view of Equation 11.2.5. Hence, Equation 11.3.4 rep-
resents a set of uncoupled first order differential equations (see Equation 11.3.1), which can 
be integrated to obtain the modal responses qi.

11.2.5.1 State Response through Modal Response

Step 1: Integrate the uncoupled Equation 11.3.4 to determine the responses qi:

 q t e q t e di
t t

i o
t

i

t

t

i o i

o

( ) ( ) ( )( ) ( )= +- -∫l l t b t t  (11.3.6)

Step 2: Transform the resulting response vector q back to x using Equation 11.3.3..

 Note: eAt = MeJt M-1 (this is a method to compute eAt) (11.3.7)

 x(t) = eAt x(0) = MeJt M-1 x(0) = MeJt q(0) (11.3.8)

11.2.5.2 Advantages of Modal Decomposition

 1. Easier to determine the response.
 2.. Gives better insight about system and its response (e.g., stability, controability, 

observability).
 3.. Useful in system modeling (e.g., model reduction) and design (e.g., pole placement).

example 11.5

Consider the mechanical system shown in Figure 11.3. This may be interpreted as a model of a 
motor and a rotor (of moments of inertia I1 and I2, respectively, which are connected through a 
fluid coupling (of damping constant b1).
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The equations of motion are:

 I b1 1 1 1 2
w w w= - -( )  (i)

 I b2 2 1 1 2
w w w= -( )  (ii)

which form a second order state-space model.
Let I1 = I2 = 1, b1 = 1

 The system matrix A =
-

-








1 1

1 1
 (iii)

By straightforward mathematics, the eigenvalues of A are:

  l 1 = 0, l 2 = -2

and the corresponding eigenvectors are:

 x x1 2

1

1

1

1
= 




 =

-






,

Hence the state response for free motion (input = 0) may be expressed as:

 
w
w

1

2
1 2

1

1

1

1






 =






 + -







q t q t( ) ( )

 = 




 + -







 =






 +p e p e pt t

1 2 1
1 2

1

1

1

1

1

1
l l pp e t

2
2

1

1
-

-






  (iv)

The constants p1 and p2 are determined by the ICs w 1(0) and w 2(0), using Equation (iv). The state-
space of the system (which is a plane for this second order problem) is shown in Figure 11.4. The 

I1 I2

b1

ω1 ω2

Figure 11.3
A rotor driven by a motor through fluid coupling.
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two eigenvectors are indicated as two lines, the first one having a slope of 1 and the other having 
a slope of -1. We observe the following:

 1. If the initial state vector falls on one of the eigenvectors, the subsequent response will 
remain on the same eigenvector.

 2. If the ICs are such that p2 = 0, then the second mode will not enter into the response. The 
response will remain on the line with slope 1, which corresponds to the first mode. (In fact, 
the system will be stationary in this case, because mode 1 has a zero eigenvalue.)

 3. If the ICs are such that p1 = 0, then mode 1 will not enter the response. Then, the response 
will remain on the line of slope -1, which corresponds to mode 2.

 4. Since the second mode has a negative eigenvalue, the corresponding modal response will 
eventually decay to zero. Hence, the response for any arbitrary IC will eventually end up on 
the first eigenvector (line of slope 1).

example 11.6

A torsional dynamic model of a pipeline segment is shown in Figure 11.5a. Free-body diagrams in 
Figure 11.5b show internal torques acting at sectioned inertia junctions, for free motion.

The state vector is chosen as:

 x = [Ω 1, Ω 2, T1, T2]T (i)

The corresponding system matrix may be determined as (see Chapter 2):

 A =

0 0
1 1

0 0
1 1

1

1 1

2

3

1 2

3

2

1

-

- 





- +





I I

I
k
k I

k
k

k 00 0 0

0 02 2-























k k

 (ii)

ω2

ω1

ξ1

ξ2

Figure 11.4
State-space and the eigenvectors of the example system.
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The displacements are used as outputs:

 y = +





T
k

T
k

T
k

T
1

1

1

1

2

2

,  (iii)

This output vector corresponds to the output-gain matrix:

 C =



















0 0
1

0

0 0
1 1
1

1 2

k

k k

 (iv)

For the special case given by I1 = I2 = I and k1 = k3 = k, the system eigenvalues are

 l l w1 1 1, = ± = ±j j
k
I

 l l w2 2 2
22

, = ± = ± +
j j

k k
I

 (v)

The magnitudes of these are in fact the two natural frequencies of oscillation of the system. The 
corresponding eigenvectors are:

 X X R I1 1 1 1
1

1 1 12
0, , , ,= ± = [ ]j jk

Ta w w ∓

 X X R I2 2 2 2
2

2 2 1 22
2, , , ,= ± = - ±[ ]j jk jk

Ta w w ∓  (vi)

I1(a)

(b)

I2

k1 k2

Ω1 Ω2

T1 T2

k3

T3

T1 T2 T2 T3

T1 T2 T2 T3

Figure 11.5
(a) Dynamic model of a pipeline segment. (b) Free-body diagrams.
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where a 1 and a 2 are arbitrary constants, because eigenvectors are arbitrary up to a multiplication 
factor.

Note that the first two elements of the state vector correspond to the angular velocities of 
the two inertia elements. In a modal motion of a particular natural frequency, the amplitude of 
 velocity will be proportional to the amplitude of displacement. The modal contributions to the 
displacement vector (or velocity vector) are given by the first two elements of the eigenvectors:

 Y1 1 1

1

1
= 




 a wsin t

and

 Y2 2 2

1

1
=

-






 a wsin t  (x)

The mode shapes of motion are given by the amplitude vectors S1 = [1,1]T and S2 = [1, - 1]T, 
which are sketched in Figure 11.6. In general, each modal contribution introduces two unknown 
parameters a i and Fi, into the free response (homogeneous solution), where Fi are the phase 
angles associated with the sinusoidal terms. For an n-degree-of-freedom (i.e., order-2n) system, 
this results in 2n unknowns, the determination of which requires the 2n ICs x(0).

11.2.6 Time-Varying Systems

In this case the system matrix is time dependent, and is given by A(t).

 Homogeneous (free) system: x A x= ( )t  (11.3.9)

Let x1 be the response to initial state [1,0,…,0]T, and so on.

 Form the matrix: U(t) = [x1, x2., …, xn] (Fundamental solution matrix) (11.40)

1st Mode

2nd Mode
Node

Figure 11.6
Mode shapes of the pipeline segment.
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Then, for any arbitrary initial state x(to) it is clear that the state response is:

 x(t) = U(t)x(to) (11.41)

 Nonhomogeneous (forced) system: x A x B u= +( ) ( )t t  (11.42.)

Differentiate Equation 11.41 and substitute Equation 11.3.9:

  x U x( ) ( ) ( )t t to=  = A(t)x(t) = A(t)U(t)x(to)

Hence:

 U( )t  = A(t)U(t) (11.43.)

The fundamental solution matrix U(t) is nonsingular in general. Hence:

 U(t)U-1(t) = In (11.44)

Differentiating Equation 11.44 and using Equation 11.43. we can show that:

 
d

dt
t

U
U A

-
-= -

1
1 ( )  (11.45)

We now use Equation 11.45 to get a perfect differential form for Equation 11.42.: 
x A x B u- =( ) ( )t t

Premultiply Equation 11.42. by U-1. This gives

 
d
dt

t tU x U B u- -[ ] =1 1( ) ( )

Integrate:

 U x U x U B u- -= + ∫1 1( ) ( ) ( ) ( ) ( ) ( )t t t do o

t

t

o

t t t t

Premultiply by U(t):

 x U U x U U B u( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t t t t t do o

t

= +- -1 1 t t t t
oo

t

∫  (11.46)

Note: According to Equation 11.41 U(t0) = I (the identity matrix), but is not substituted in 
Equation 11.46 for the sake of mathematical clarity.

 Define state-transition matrix: F(t, t ) = U(t)U-1(t ) (11.47)
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Then, Equation 11.46 may be written as:

 x x B u( ) ( , ) ( ) ( , ) ( ) ( )t t t t t do o

t

t

o

= + ∫F F t t t t  (11.48)

From Equation 11.48, for the homogeneous case (u = 0) we have:

 x(t) = F(t, to)x(to) (11.49)

which is identical to Equation 11.41, because U(t0) = I.

11.2.6.1 Properties of the State-Transition Matrix

 1. F(t , t ) = In for any t 

 2.. 
d
dt

t t tF t F t( , ) ( ) ( , )= A

 3.. F(t, t ) = F-1(t, t )

 4. F(t2., t0) = F(t2.,t1)F(t1, t0)

Note: For constant A, we have:

  F(t, t ) = eA(t-t )

11.3 System Stability

As discussed in Chapter 8, if the response of a system grows beyond some acceptable level 
(say, goes to infinity in a mathematical sense) then the system is unstable. If the plant is 
unstable, the controller should make it stable, or it will not be possible to achieve the con-
trol objective. Now we will study some important concepts of stability in both linear and 
nonlinear systems. State-space models will be primarily used for this purpose.

11.3.1 Stability of linear Systems

In classical control, stability of linear systems is determined using such approaches as the 
Routh–Hurwitz criterion, Bode diagrams, and root locus, as discussed in Chapter 8. In the 
present context of modern control, we will examine the stability of a linear, constant coef-
ficient (time-invariant), and free (unforced) state-space model:

 x Ax=  (11.50)

Eigenvectors of A are the nontrivial solutions x of

 Ax  = l x  or (A - l I)x  = 0 (11.51)
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For a nontrivial (i.e., nonzero) solution to be possible, the matrix (A - l I) should be 
 singular (i.e., it should not have a finite inverse. Otherwise x  = 0). Hence, we must have:

 |A - l I| = 0 (11.52.)

which is the characteristic equation of the system, whose roots are the eigenvalues 
(poles) l 1,l 2., …, l n of the system. Assume distinct (i.e., unequal) eigenvalues. Then, the 
 eigenvectors corresponding to these eigenvalues will be linearly independent. Accordingly, 
we can express the solution to Equation 11.50 as:

 x(t) = q1(t)x 1 + … + qn(t)x n (11.53.)

which may be written as:

 x = Mq (11.54)

This is a transformation between the state vector x and the modal coordinate vector q:

 q = [q1, q2., …, qn]T (11.55)

The modal matrix M is the matrix of eigenvectors, as given by:

 M = [x 1,x 2.,…,x n] (11.56)

In view of Equation 11.51, the following relation is satisfied:

 AM = MJ or J = M-1 AM (11.57)

where the Jordan matrix J is the diagonal matrix of eigenvalues:

 J = diag(l 1, l 2. , l 3. ,…, l n) (11.58)

The substitution of the transformation (Equation 11.54) into the system equation (Equation 
11.50) gives the transformed system:

 q M AMq= -1  = Jq (11.59)

This is the set of uncoupled equations:

 q qi i i- =l 0  for i = 1, 2., …, n (11.60)

The solution of Equation 11.60 is:

 q t e qi i
l( ) ( )= l t 0  (11.61)

Substitute Equation 11.61 into Equation 11.53.. We get:

 x( ) ( ) ... ( )t q e q et
n

t
n

n= + +1 10 01l lx x  (11.62.)

76868.indb   504 7/8/09   5:16:17 PM



Advanced Control 505

The IC qi(0) may be absorbed into the eigenvectors x i, which are arbitrary up to a  
multiplication factor. Note that the above development is for the special case of free 
response, which is all what is needed with regard to system stability.

Equation 11.62. indicates that, if none of the eigenvalues of the system have a positive 
real part, then none of the terms on the right hand side of Equation 11.62. will grow. In that 
case, the free response of the system will not grow (will remain bounded), and the system 
is considered stable. In particular, if all the eigenvalues have negative real parts, the free 
response will decay to zero, and the system is said to be asymptotically stable.

11.3.1.1 General Case of Repeated Eigenvalues

The previous development assumed that the eigenvalues of the system are distinct; i.e., no 
repeated eigenvalues. Now let us relax that assumption and develop some concepts for the 
case of repeated eigenvalues. Still, the system stability will depend on the nature of the 
eigenvalues.

The system matrix A is of size n × n matrix (i.e., nth order system). Suppose that the 
eigenvalue l i of A has a multiplicity mi and the remaining eigenvalues are distinct. Also, 
suppose that

 Rank(A - l iI) = ri (11.63.)

Then, from linear algebra, it is known that

 1. There are n - ri independent eigenvectors corresponding to the eigenvalue l i.
 2.. There are mi - (n - ri) generalized eigenvectors corresponding to l i
 3.. Together, 1 and 2. form a set of mi independent vectors for the mi repeated eigenval-

ues l i
 4. Together with the n - mi independent eigenvectors corresponding to the  remaining 

distinct eigenvalues, there are a total of n independent vectors, which may be 
assembled to form the generalized modal matrix M for A.

In the present case, the Jordan matrix:

 J = M-1 AM (11.64)

will be block diagonal (not strictly diagonal).
Note: Each independent eigenvector will have a Jordan block ⇒ In total there will be  

ai = n - ri Jordan blocks for the eigenvalue l i.

11.3.1.2 Generalized Eigenvectors

Eigenvector of l i is given by: (A - l lI)x  = 0. Call this eigenvector x 1
Generalized eigenvectors of rank k are given by:

  x 1 = (A - l iI)x 2., x 2. = (A - l iI)x 3., …, x k = (A - l iI)x k-1 (11.65)

Note: (A - l iI)p x p = 0 for p = 1, 2., …, k
We will illustrate these results by examples.
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example 11.7

Consider a system given by the system matrix

 A = - -
-

















5 4 3

1 0 3

1 2 1

The eigenvalues are: l 1 = -2,l 2 = l 3 = 4.
Rank (A - l 2I) = 2 = ri

So, there exists one eigenvector for l  = -2; and one eigenvector and one generalized  eigenvector 
l  = 4.

Note: n = 3 and for l  = 4 we have mi = 2; ri = 2; ai = n - ri = 1 (number of Jordan blocks); mi - ai =  
2 - 1 = 1 (number of generalized eigenvectors).

Independent eigenvectors are:

 x x1 2

1

1

1

1

1

1

= -
-

















= -
















,

Generalized eigenvector: (A - 4I)x  = x 2

 

1 4 3

1 4 3

1 2 3

1

1

1

- - -
- -
































= -
a

b

c 













 A solution: 

a

b

c
















=

-
















=

0

1

1
3x

Form the modal matrix and determine its inverse:

 M M= - -
- -

















=
- -

-

1 1 0

1 1 1

1 1 1

1
2

0 1 1

2 1 1

2 2 0

1,
















Note: det(M) = 2 ≠ 0. Hence M is nonsingular, as required.
The Jordan matrix is:

 J M AM= =

-















-1

2 0 0

0 4 1

0 0 4

|

|

Note the Jordan block corresponding to the eigenvalue 4, in the bottom right hand corner of J.
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example 11.8

Consider the system with system matrix A =
-

- -
-

















2 2 1

1 1 1

1 2 2

System order n = 3; eigenvalues are: l 1 = l 2 = l 3 = 1; multiplicity mi = 3.
Rank (A - l 1I) = 1 = ri; ai = n - ri = 2 ⇒ two independent eigenvectors.
mi - ai = 1 ⇒ one generalized eigenvector.
Eigenvectors: (A - l 1I)x  = 0 ⇒

 x x1 2

1

1

1

1

0

1

= -
-

















=
















Generalized eigenvector: (A - l 1I)x  = x 1 or x 2 ⇒

 

1 2 1

1 2 1

1 2 1

1

1

1

-
- -
- -
































= -

-

a

b

c
















⇒
















=
















a

b

c

1

0

0

Form the modal matrix and the Jordan matrix:

 M J M AM= -
-

















= =-

1 1 1

1 0 0

1 0 1

1 1 0

0 1 0

0 0 1

1,

|

|
















Note the Jordan block in the top left hand corner of J.

11.3.2 Stability from Modal response for repeated eigenvalues

Again consider the unforced case of constant A: x Ax=
Form the generalized modal matrix M for the case with repeated eigenvalues (general-

ized eigenvectors). The modal transformation x = Mq gives:

 

q M AMq

q q

x M M x

j

J

=

=

=

-

-

1

1

0

0

e

e

t

t

( )

( )

 (11.66) 

Where:

 J

J

J

J

=



















1

2.

0

0
0 p

 (11.67)
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The Jordan blocks are J1, J2., …, Jp. Hence:

 e
e

e
t

t

tp

J
J

J= 







1

0
0

  (System stability depends on this) (11.68)

11.3.2.1 Possibilities of Jordan Blocks and Modal Responses

 1. J J
i i

t te ei i= ⇒ ≡l l,

 2.. J J
i

i

i

t te e
t

i i= 





⇒ = 








l
l

l1
0

1
0 1

 3.. J J
i

i

i

i

t te e

t
t

i i=















⇒ =

l
l

l

l

1 0
0 1
0 0

1
2.

0 1

2.

!
tt

0 0 1





















 4. J J
i

i

i

i

i

t te e

t
t

i i=



















⇒ =

l
l

l
l

l

1 0
1

1
0

1
2.

2.

!! !

!

t

t
t

t

3.

2.

3.

1
2.

1
0 1

























and so on. So, if there are generalized eigenvectors (i.e., if the number of linearly indepen-
dent eigenvectors is less than the multiplicity of the corresponding eigenvalue) then, we 
get “t” terms in the modal respose (exponential of the Jordan matrix).

Conclusions:

 1. Re(l i) < 0 ⇒ Stable
 2.. Re(l i) = 0 and *all independent eigenvectors ⇒ Stable *has one or more generalized 

eigenvectors ⇒ Unstable
 3.. Re(l i) > 0 ⇒ Unstable

11.3.3 equilibrium

If a system remains in a particular state at all times, when not excited by an external force, 
then the system is said be in an equilibrium state. Mathematically,

If x(t0) = xe and x(t) = xe for all t ≥ t0, with u = 0 ⇒ xe equilibrium point.
There are three types of equilibrium: stable, unstable, and neutral.

Definition 1: (Stability in the Sense of Lyapunov)
The origin (x = 0) of the state-space is a stable equilibrium point (in the sense of Lyapunov—
i.s.L) if for any e > 0 there exists d(e, t0) > 0 such that if ||x(t0)|| < d then ||x(t)|| < e for all t > t0.

Note 1: If we make e  very small, unless the system is asymptotically stable, d (e , t0) might 
not exist.
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Note 2: In nonmathematical terms, “stability i.s.L” means that for any finite IC, the state 
response will remain finite (bounded).

Definition 2:
The origin is an asymptotically stable equilibrium point if:

 1. Stable, and

 2.. There exists d ′(t0) such that if x( )t0  < d ′ then lim ( )
x

t
→∞

=x 0

For time-variant systems:
Uniformly stable ⇒ d  is not a function of t0

Uniformly asymptotically stable ⇒ d ′ is not a function of t0.

11.3.3.1 Bounded-Input Bounded-State (BIBS) Stability

For a bounded input and an arbitrary IC, the state x(t) is bounded. Mathematically:

 If | |u| |< K and for arbitrary x(t0) there exists d (K, t0, x(t0)) > 0

 such that | |x(t)| |< d  ⇒ BIBS stable.

11.3.3.2 Bounded-Input Bounded-Output (BIBO) Stability

This is defined similar to BIBS stability, except using output y instead of state x.
Note: If d  and d ′ can be made arbitrarily large ⇒ globally stable.

11.3.4 Stability of linear Systems

Consider the general time-variant case.

 x(t) = F(t, t0)x(t0) (11.69)

Stable (i.s.L) iff ||F(t, t0)|| ≤ N(t0) for all t (BIBS stability).
Note: “iff” means “if and only if”
Asymptotically stable iff | |F (t, t0)| |→ 0 as t → ∞.

 Output y W u( ) ( , ) ( )t t d
t

=
-∞
∫ t t t  (11.70)

 BIBO Stable iff y W M( ) ( , )t t d
t

= ≤
-∞
∫ t t  for all t.

Note: We have already discussed linear constant (time-invariant) systems.

11.3.4.1 Frobenius’ Theorem

If a i are eigenvalues of e t tt tA( )( ( , ))- =0
0F  and l i are eigenvalues of A

then, a l
i

t te i= -( ).0

Note: This theorem leads to the same conclusions on stability as obtained above.
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11.3.4.2 First Method of Lyapunov

A system is stable for small disturbances about an operating point if the linearized system 
at the operating point is asymptotically stable.

Note 1: Use Taylor series expansion to linearize the system (see Chapter 3.).
Note 2: No conclusion if Re(l i) = 0 for the linearized system.

example 11.9

Consider the second order nonlinear state-space model:

 




x x x

x x t

1 1 2
3

2 1

2

4

=- +

= + + cos

Define small increments as:

 x x x x x1 1 1 1= + ⇒ =ˆ ˆ 

 x x x x x2. 2. 2. 2. 2.= + ⇒ =ˆ ˆ 

with the input u u u= + ˆ  = cos t
Operating point (equilibrium point):
Note: Average value of the input is ū = 0 for the cosine function.
Then, at the equilibrium point:

 0 2 1 2
3= - +x x

 0 41= +x

 ⇒ = - = -x x1 24 2,

The linearized state-space model is:

 ˆ ˆ ˆ ˆ ˆx x x x x x1 1 2 2 1 22 3 2 6= - + = - -

 ˆ ˆ ˆx x u2 1= +

 System matrix A =
- -







2 6

1 0
 ⇒ Characteristic polynomial (l  + 2)l  + 6 = 0.

 or, l 2 + 2l  + 6 = 0 ⇒ eigenvalues l = - ± - = - ±2 4 24
2

1 5j

⇒ Asymptotically stable
Eliminate x̂2 in the linearized state-space model. We get the system differential equation (input-

output equation) 

 ˆ ˆ ˆ ˆ x x x u1 1 12 6 6+ + = -

which confirms the above characteristic equation.
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example 11.10

Consider the mechanical system in Figure 11.7, which has a linear spring, a nonlinear spring, and 
a lumped mass. The state variables are defined as: x1 = x and x2 = x. Then, the state-space model is 
obtained (by writing Newton’s second law) in the usual manner as

 x x1 2=

 x x x x f t2 1 1 1
3
2

1
2

1
2

= - - + ( )

with the input f t f t( ) ˆ( )= +10  (see Figure 11.8).
Operating point:
Substitute f =10 and zero rates of changes. We get

 0 2= x̂

 0
3
2

1
2

1
2

101 1 1= - - + ×x x x

 
For x1 0> :

 
0

3
2

1
2

51 1
2= - - +x x

 ⇒ + - = ⇒x x1
2

13 10 0

 x1 2=  or -5 (Reject -5).

m
f (t)

m=2
k1=1, k2=3

k1 x |x|

k2 x

x

Figure 11.7
A Nonlinear mechanical system.

t

f̂

f

0

1

Figure 11.8
Input function.
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 For :x1 0<

 
0

3
2

1
2

5 3 10 01 1
2

1
2

1= - + + ⇒ - + =x x x x

 ⇒ = ± - =x1
3 9 40

2
complex  (Reject both roots).

Linearization:
Since x̂1 > 0 we have |x1| = x1. Hence, the nonlinear term in the second state equation may be 

approximated as: - = - = - +[ ]1
2

1
2

1
2

21 1 1
2

1
2

1 1x x x x x x̂ .

It follows that the linearized model is:

 ˆ ˆ , x x1 2=

 ˆ ˆ ˆ ˆ( )x x x x f t2 1 1 1
3
2

1
2

= - - +

with |x1| = 2.
The system matrix is:

 A j=
-














⇒ + = ⇒ = ±

0 1

7
2

0

7
2

0
7
2

2
1 2l l l,

  ⇒ Both roots are imaginary ⇒ Stable (i.s.L).

example 11.11

Consider the second order nonlinear state-space model:

 x x x1 1 2= - +

 x x x u t2 1 2= + ( )

The operating point is obtained from:

 
0

0

1 2

1 2

= - +

= +

x x

x x u

which gives: x x u1 2= = ± -
It follows that for a real system we must have ū  < 0.
Linearized state-space model is:

 ˆ ˆ ˆx x x1 1 2= - +

 ˆ ˆ ˆ ˆ( )x x x x x u t2 2 1 1 2= + +
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The system matrix is:

 
A =

-





 ⇒ + - - =

+ - -

1 1
1 0

1

2 1
1 2

2
1

x x
x x

x

( )( )

( )

l l

l l xx x1 2 0- =

Note: The product of the eigenvalues l 1l 2 = - -x x1 2.

For x x u1 2= = - : l 1l 2 < 0 ⇒ One eigenvalue will have a positive real part.
  ⇒ Unstable system.

For x x u1 2= = - - : Both eigenvalues will have negative real parts.
  ⇒ Asymptotically stable system.

example 11.12

Consider the Vander Pol equation (which, for example, represents the voltage build-up in a non-
linear oscillator):

  V a V V kV Q a k- - + = > >( ) , ,2 1 0 0

Here Q is the input.
Operating point:
Let us assume that Q = const.

 At the operating point  V V kV Q V V
Q
k

= = ⇒ = ⇒ =0

Let V = V v+ ˆ . The corresponding linearized equation is:

 ˆ ( ) ˆ ˆ v a V v kv- - + =2 1 0

It follows that we must have a V( )2 1 0- <  for stability.
Hence, if a > 0 we must have V <1 for stability.
If V = 0  ⇒ No conclusion about system stability.

11.3.5 Second Method (Direct Method) of lyapunov

Stability of a system may be determined by the second method of Lyapunov, which is 
described now.

Theorem 1: If a positive definite function V x( ) can be determined such that V x( ) is nega-
tive semidefinite then the origin is stable i.s.L.

Note: Such V x( ) is called a Lyapunov function (not necessarily a quadratic form). See 
Appendix C for the definitions of positive definite, etc. Also, V x( ) should be single-valued, 
continuous, and have continuous partial derivates.

Theorem 2: In Theorem 1, if V x( ) is negative definite then the origin is asymptotically 
stable.

Note: Theorems 1 and 2. concern local stability at some ICs or operating points.
Theorem 3: If Theorem 2. is satisfied and, in addition, V x( ) → ∞ as | |x| |→ ∞, then the ori-

gin is globally asymptotically stable.
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example 11.13

Consider the electrical circuit shown in Figure 11.9.
Define the state variables (see Chapter 2): x1 = i; x2 = V
We get the following state-space model:

 





x
L

x
L

e

x
C

x

i1 2

2 1

1 1

1

= - +

=

Consider the unforced (free) case: ei = 0.

Try the positive definite function: E Li CV= +1
2

1
2

2 2

as a Lyapunov function. Differentiate and substitute the state equations:

 

 E Li
di
dt

CV V

Lx
L

x Cx
C

x

= +

= -




+ =1 2 2 1

1 1
0  ⇒ negative semidefinite.

  ⇒ Stable i.s.L., but not asymptotically (globally) stable.
 Note: E → ∞ as| |x| |→ ∞.

example 11.14

Consider the second order nonlinear state-space model

 x x ax x x1 2 1 1
2

2
2= - +( )

 x x ax x x2 1 2 1
2

2
2= - - +( )

Let us check stability of this system.
Try the positive definite function: V x x x( ) = +1

2
2
2. Differentiate and substitute the state equations:

   V x x x x x a x x( ) ( )= + = - +2 2 21 1 2 2 1
2

2
2 2

i

+
ei

–

L

C

v

Figure 11.9
An electrical circuit.
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This is negative definite. Also, V x( )→∞ as x →∞.
Hence, the system is globally asymptotically stable. See Figure 11.10 for a sketch of a free 

response of the system in the state-space (state plane, for this second-order system). The radii ci 
are the constant values of V(x).

example 11.15

Let us examine the stability of the nonlinear, second order state-space model:

 x x1 2=

 x ax bx x2 2 2
3

1= - - -

As a Lyapunov function we try: V x x x( ) = +1
2

2
2

Differentiate and substitute the state equations:

   V x x x x ax bx x a bx= + = - +[ ] = - +2 2 21 1 2 2 2
2

2
4

2
2

2
2( ) [[ ]

Case 1: a > 0, b > 0
V is negative semidefinite ⇒ Stable i.s.L

Case 2: a < 0, b < 0
V is positive semidefinite ⇒ Most likely unstable (or at best marginally stable).

Case 3: a > 0, b > 0
Let b b= -  .
For stability we must have a bx x

a
b

- > ⇒ <
2

2
2
20 . This gives the stability region (i.s.L), as 

sketched in Figure 11.11.

11.3.5.1 Lyapunov Equation

Consider the free (unforced), linear, constant (time-invariant) system:

 x Ax=  (11.71)

c1

c2

c3

Figure 11.10
Free response of the asymptotically stable system.
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and the quadratic form:

 V(x) = xT Px (11.72.)

where the matrix P is taken to be symmetric without any loss of generality. Assume that 
P is positive definite so that the quadratic form (Equation 11.72.) is positive definite (see 
Appendix C). Differentiate Equation 11.72. and substitute Equation 11.71:

   V x x Px x Px x APx x PAx x AP PA x( ) ( )= + = + = +T T T T T  (11.73.)

It follows that the system (Equation 11.71) is stable i.s.L if:

 AP + PA = -N (11.74)

where N is a positive semidefinite matrix. Equation 11.74 is called Lyapunov equation.
Theorem: A linear constant system is stable i.s.L if the Lyapunov equation AP + PA = -N 

is satisfied where A is the system matrix, P is a positive definite matrix, and N is a positive 
semidefinite matrix.

Note: In the above, if N is positive definite, the system is asymptotically stable.
Procedure:

 1. Pick N to be positive semidefinite (Note: N and P are symmetric)
 2.. Solve the (1/2.)n(n + 1) equations in Equation 11.74 (Note: n is the system order)
 3.. Check conditions for the positive definiteness of P (for example, apply Sylvester’s 

Theorem—see Appendix C).

example 11.16

Consider the second-order system equation (unforced)

  x a x a x+ + =1 0 0

x1

Stable
i.s.L.

–a/b
~

a/b
~

x2

Figure 11.11
Stability region (shaded area).
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The system matrix in the companion form is: A =
- -








0 1

0 1a a

 Use: P = 







P P

P P
11 12

12 22

 and P = 







2 0

0 0

Lyapunov equation gives:

 

2 2

0

2 2 0

0 12

11 1 12 0 22

12 1 22

a P

P a P a P

P a P

=
- + + =
- + =













  Note: 

1
2

1 3n n( )+ =

 Solution: P
a

P
a a

P
a a

a a12
0

22
0 1

11
0 1

2

0 1

1 1= = = +
, ,

Apply Sylvester’s theorem for positive definiteness of P:

 P
a a

a a11
0 1

2

0 1

0= + >  and P11P22-P12
2 =  a

a a
0

0
2

1
2

0>

From second condition: a0 > 0
From first condition: a1 > 0
Note: These are identical to the Routh–Hurwitz conditions of stability, in classical control.
⇒ eigenvalues of A will have negative real parts in this case.
⇒ asymptotically stable (not just stable i.s.L).
Theorem: The solution P of (the modified Lyapunov equation) ATP + PA = -I is positive definite 

iff the eigenvalues of A have negative real parts.
Note: This theorem will guarantee asymptotic stability for a linear constant system, through the 

solution of Lyapunov’s equation.

example 11.17

Re-do Example 11.16 with N = I.

11.4 Controllability and Observability

A controller that is commonly used in modern control engineering is state feedback 
 (constant-gain). In this, the system states are measured and fed back through constant- 
gain amplifiers, into the system. Two main questions arise in this context:

 1. Can the state (vector) of the system be changed from any arbitrary value to any 
other specified value in a finite time, through state feedback?

 2.. If not all the states in the system are available for measurement (observation) then, 
can the full state vector be completely determined from the outputs (or, measur-
able states) of the system over a finite duration?
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The first question relates to controllability and the second question to observability of 
the system. In the present section we will discuss these two questions and some related 
issues. Note that since the origin of the state-space can be chosen arbitrarily, we can make 
the specified (second) state in Question 1 to be the origin.

Definition 1: A linear system is controllable at time t0 if we can find an input u that trans-
fers any arbitrary state x(t0) to the origin (x = 0) in some finite time t1. If this is true for any 
t0 then the system is said to be completely controllable.

Definition 2: A linear system is observable at time t0 if we can completely determine the 
state x(t0) from the output measurements y over the duration [t0, t1] for finite t1. If this is true 
for any t0 then the system is said to be completely observable.

Now consider the time-invariant (i.e., constant-parameter) linear case only.

Criteria 1
Without giving a solid proof, we give some basic criteria for controllability now. These 

criteria should be intuitively clear.
 Consider the state-space model:

 x Ax Bu= +  (11.75)

 y = Cx + Du (11.76)

Assume distinct eigenvalues  ⇒  the Jordan matrix J is diagonal. Apply the modal 
transformation: 

 x = M q (11.77)

where M is the matrix of independent eigenvectors (corresponding to the distinct eigen-
values) of the system. We get:

 q Jq M Bu= + -1  (11.78)

 y = CMq + Du (11.79)

Then, the following are clear from Equations 11.78 and 11.79:

Controllable iff M-1B has all nonzero rows.
Observable iff C M has all nonzero columns.

To verify the first statement, note that if the ith row of M-1B is zero, then the input u has 
no effect on the corresponding modal response qi. Then, that mode is not controllable.

To verify the second statement, note that if the ith column of C M is zero, then the modal 
response qi will never be included in the output y. Then that mode is not observable.

Criteria 2
General criteria for controllability and observability of a linear constant system are as 
follows:

 Controllable iff Rank [ B | A B|…|An-1B] = n (11.80)

 Observable iff Rank [CT | AT CT |…| An-1 CT] = n (11.81)

Note: Iff means “If and only if.”

76868.indb   518 7/8/09   5:16:49 PM



Advanced Control 519

Controllability Proof:
An indication of the procedure for the proof of Equation 11.80 is given now. The state 
response (forced) of system (Equation 11.75) is

 x x B uA A( ) ( ) ( ) ( )( ) ( )t e t e dt t
o

t

t

t

o

o

= +- -∫ t t t t  (11.82.)

If controllable, from Definition 1, we must have (with t0 = 0 and t = t1)

 0 ( ) ( ) ( )( )= + ⇒ = -- -∫e x e Bu x e BuA A At t

t

d1 1

1

0 0
0

t tt t (( )t td
t

0

1

∫  (i)

 
= + + + +∫ -

-[ ( ) ( ) ( ) ... ( )a t a t a t a t0

0

1 2.
2.

1
1

1

I A A A
t

n
n ]] ( )Bu t td

(from the finite series expansion of the matrix exponential)

 

=

=

∫∑

∑
=

-

-

-

A B u

A B

j
j

t

j

n

j

j

n

j

d

v

a t t t( ) ( )
00

1

0

1

1

Since the right hand side above should be able to form any arbitrary state vector on the 
left hand side, it is required that the terms AjB together should span the n-dimensional 
vector space (state-space); see Appendix C. In other words, the controllability matrix

 P = [B|AB|…|An-1B] (11.83.)

must have the rank n.
Note: What we proved is the “if” part. The “only if” part can be proved by starting with 

Rank [B|AB|…|An-1B] = n and the showing that the relation (i) can be made to hold for any 
arbitrary x(t1).

Observability Proof:
Consider the output equation (Equation 11.76) and substitute the state response (Equation 
11.82.):

 y(t) = Cx(t) + Du(t)

 = + +-∫C dt t

t

[ ( ) ( ) ]( )e x e Bu DuA A0
0

t t t  (ii)
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Here, without loss of generality, we have taken t0 = 0. For observability, then, we need to 
determine a condition such that x(0) can be completely determined with the output infor-
mation from time 0 to finite t. Rearranging (ii) we get:

 Ce x y C e Bu DuA At t

t

t d( ) ( ) ( )( )0
0

= - --∫ t t t

By using the finite series expansion for the matrix exponential we have:

 C[a 0(t) I + a 1(t) A + … + a n-1(t)An-1] x(0) = y(t) - f(u)

where the terms containing u are combined together. Note that the right hand side is com-
pletely known. Multiplying out the left hand side, the above result is written as:

 [a 0C + a 1CA + … + a n-1CAn-1] x(0) = f(y,u) (iii)

where the right hand side is completely known. We require a condition such that Equation 
(iii) can be solved to obtain a unique solution for x(0). In other words, Equation (iii) needs 
to form a set of n linearly independent equations. It is intuitively clear (see Appendix C) 
that the required condition is, the observability matrix:

 Q = [CT |ATCT |…|An-1 CT] (11.84)

must have the rank n (i.e., the columns within [ ] should span the state-space. Here we have 
used the following theorem.

Theorem: If X is a real matrix, then X and XT X have the same rank.

Criteria 3 (Pole-Zero Cancellation)
Controllability and observability may be interpreted as well, in terms of pole-zero cancel-
lation in the system transfer function. To illustrate this, consider a SISO system with pole-
zero cancellation in its transfer function G(s). We will show that a state variable realization 
of the system that includes the cancelled pole is either uncontrollable or unobservable or 
both.

The system transfer function (output-input in the Laplace domain, with zero ICs) is:

 G s
Y s
U s

( )
( )
( )

=  (11.85)

Suppose that the cancelled pole (eigenvalue) is s = p. Expressing the system in the Jordan 
canonical form, with the cancelled pole p (assumed to be distinct), we have

 q q
b

u=
∆







+ 





p a
0

0 1  (11.86)

 y = [a2. | CT]q (11.87)
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Note that ∆ in (11.86) is a block diagonal matrix (consisting of Jordan blocks). Also, for the 
SISO case, u and y in Equations 11.86 and 11.87 are scalars. Hence, we can write

 
Y s
U s

G s a
s p

s
a
b

T( )
( )

( ) [ ]= = -
- ∆










-

2.

1
10

C
I0




 = -
























-

[ ]

|
|
|
|

( )
a

s p
s

aT
2.

1

1

1

C
Q b0

0
  (11.88)

 Where: Q = (sI - ∆)-1 (11.89)

Multiply out the right hand side of Equation 11.88:

 G s
a

s p
s

aT( ) [ ( )]=
-







2. 1C Q
b

Further multiplication gives:

 G s
a a
s p

sT( ) ( )=
-

+1 2. C Q b  (11.90)

Note from Equation 11.90 that three cases of pole-zero cancellation (i.e., the p term van-
ishes) are possible. These cases are considered below.

Case 1: a1 = 0, a2. ≠0
It is clear from Equation 11.86 that in this case the input will not influence the mode cor-
responding to pole p. Hence the system is not controllable.

Case 2: a1≠0, a2. = 0
It is clear from Equation 11.87 that in this case the modal response corresponding to pole p 
will not enter into the output y. Hence the system is not observable.

Case 3: a1 = 0, a2. = 0
It is clear from Equations 11.86 and 11.87 that in this case system is neither controllable nor 
observable.

In general, the following two theorems can be stated.

Theorem 1: The system (A, B) is controllable iff (sI-A)-1B has no pole-zero cancellations.
Theorem 2: The system (A, C) is observable iff C(sI-A)-1 has no pole-zero cancellations.

11.4.1 Minimum (irreducible) realizations

If a pole-zero cancellation is possible, what this means is that the system can be reduced 
to a lower order one. A state-space realization (A,B,C) is said to be a minimum  realization 
if pole-zero cancellations are not possible, and hence the system order (dimension of the 
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state-space) cannot be reduced further. Equivalently, according to Criteria 3. presented 
above, a realization (A,B,C) is minimal iff (A,B) is controllable and (A,C) is observable).

example 11.18

Consider the system represented by the simulation block diagram in Figure 11.12.
It is clear from Figure 11.12 that (see Chapter 5) the state-space model (the two state equations 

and the output equation) is:

 





x x u

x x x u

y x

1 1

2 1 2

2

2= - +

= - - +

=

It follows that the corresponding matrices are:

 A B C=
-
- -






 = 





 = [ ]2 0

1 1

1

1
0 1, ,

Let us check controllability and observability of this system using the three groups of criteria that 
were presented before.
Criteria 2:

 Controllability matrix P =
-
-









1 2

1 2
.

Note that the two columns of this matrix are not linearly independent. This is further confirmed 
since the determinant of P is zero. Hence the rank of P has to be less than 2. In fact it is clear that 
Rank P = 1 ⇒ uncontrollable.

Observability matrix Q =
-
-









0 1

1 1
. Note that the Det Q≠0 (also, the two columns of Q are 

clearly independent). Hence, Rank Q = 2 ⇒ observable.
Criteria 3:
Controllability Check:

Straightforward linear algebra gives

 s
s

s
s

s s
s

I A I A- =
+

+






⇒ - =

+ +
+

-
2 0

1 1
1

1 2
1

1( )
( )( )

00

1 2- +






⇒s

 ( )
( )( )

( )
(

s
s s

s

s
s

s
I A B- =

+ +
+
+







 =

+
+

-1 1
1 2

1

1
1

1))( )s +





2

1

1

u
+

–

x1
. x2

.x1 x2
y

–

–
∫

2

∫

Figure 11.12
Simulation block diagram of a system.
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⇒ pole-zero cancellation ⇒ system is uncontrollable.
Specifically, the mode with eigenvalue l 1 = -1 is uncontrollabile.
Observability Check:
Straightforward linear algebra gives

 C I A( )
( )( )

( )s
s s

s- =
+ +

- +[ ]-1 1
1 2

1 2  ⇒ no cancellation ⇒ observable.

Criteria 1:
Eigenvalues of the system are obtained as follows:

 l
l

l
l l lI A I A- =

+
+







⇒ - = + + =

2 0

1 1
2 1 0( )( )

(for eigenvalues). Hence, the eigenvalues are: l 1 = -1, l 2 = -2.
The eigenvectors are obtained as follows:

 For l x1 11
1 0

1 0

0

0

0

1
= - 












 =






 ⇒ = 





:
a

b 


 For l x2 22
0 0

1 1

0

0
0= -

-












 =






 ⇒ - = ⇒:

a

b
a b == 







1

1

The modal matrix (matrix of independent eigenvectors) M = 







0 1
1 1Controllability Check:

 M M B- -=
-

-
-






 =

-





 ⇒ =

-
1 11

1
1 1

1 0

1 1

1 0

1 1

1( ) 00

1

1

0

1












 =






  ⇒ uncontrollable.

Specifically, the mode with the eigenvalue l 1 is uncontrollable.
Observability Check:

 CM = [ ]





 = [ ]0 1

0 1

1 1
1 1  ⇒ observable.

Note: The modal equations of the system are:

 





q q

q q u

y q q

1 1

2 2

1 2

2

= -

= - +

= +

⇐Jordan canonical form.

A simulation block diagram of this form is shown in Figure 11.13. Note that the input u does not 
reach the first mode (q1), and hence, that mode is uncontrollable.
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example 11.19

What do you think of the system:

 x x=

-
- -


















+

-



1 2 1 2

1 1 3 2

0 0 2 0

3 2 7 6

3

2

0

1















=
- - - -






u y x;

1 2 3 4

4 3 2 1

Solution

Here note that the third state equation is uncoupled from the rest and does not contain an input 
term. Specifically, we have:

 x x3 32=

Hence, the state x3 is uncontrollable.

example 11.20

What do you think of the system:

 x x=

-



















+









1 2 3 4

0 1 0 0

4 3 2 1

0 0 0 3

1

2

3

4











u

 y = [0 1 0 -3]x

Solution

Here note from the output equation that the states x1 and x3 are not “directly” present in the output 
variables. Furthermore, note from the state equations that the states x2 and x4 are uncoupled from 
the rest, and hence, these two states will not carry information about the states x1 and x3. It follows 
that the x1 and x3 are unobservable.

q2

q1

y

2

u

+

+

–

–

q1
. ∫

∫

Figure 11.13
A system with an uncontrollable mode.
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11.4.2 Companion Form and Controllability

Consider the input-output differential equation model of a system, as given by:

 
d y
d

a
d y
d

a y u
n

t
n

n

tn n

+ + + =+

-

-
1

1

0
1

...  (11.91)

A state-space model x Ax Bu= +  may be obtained by defining the state variables as x1 = y, 
x2. =  y , …, xn = dn-1y/dtn-1. This model is said to be in the companion form, and its matrices 
are:

 A =

0 1 0 0
0 0 1 0
0 0 0 0

0 0 0

. . .

. . .

. . .
. . . . . . .
. . . . . . .

. . . 11

0 1 2. 1- - - -





























-a a a an. . .

, B ==























0
0

0
1

  (11.92.)

Using this model, according to Equation 11.83. we form the controllability matrix:

 P =
-

- - +














- -

0 0 1
0 0

1
0 1
1

0

0 2. 1 0



 

a

a a a an n " " 








 (11.93.)

It can be shown that the determinant of the controllability matrix is nonzero. Specifically, 
Det P = 1. Hence, Rank P = n ⇒ system is controllable.

Conclusion: If a system can be expressed in the companion form, then it is controllable.

11.4.3 implication of Feedback Control

Now let us address the implication of feedback (constant-gain) on the controllability and 
observability of a system. First we will consider the general case of output feedback. The 
results can be used then for the special case of state feedback (where, C = I).

Consider the system:

 x Ax Bu= +  (11.94)

 y = Cx (11.95)

This system may be represented by the block diagram in Figure 11.14.
Suppose that (A, B) is uncontrollable and (A, C) is unobservable. Now apply the output 

feedback control:

 u = uref - ky (11.96)
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where uref is some reference input. Substitute Equation 11.96 into Equations 11.94 and 11.95, 
to obtain the closed-loop system:

 x A BKC x Buref= - +( )  (11.97)

This closed-loop system is shown in Figure 11.15. Note that the block denoted as the “Plant” 
is the open-loop system given in Figure 11.14.

The following two questions are posed:

Is the closed-loop system (A-B K C, B) controllable for some K?
Is the closed-loop system (A-B K C, C) observable for some K?
The answers to these questions are provided by the following two theorems.

Theorem 3: If (A, B) is uncontrollable, then for any compatible K, (A-B K C, B) is also 
uncontrollable.

Theorem 4: If (A, C) is unobservable, then for any compatible K, (A-B K C, C) is also 
unobservable.

Proof: What the controller (Equation 11.96) did was to change the nature of the input u. 
But, it is given that the system (Equation 11.94), Equation 11.95 is uncontrollable and unob-
servable for any u. Q.E.D.

11.4.4 State Feedback

 1. Now consider the case of full state feedback, as given by:

 u = uref - Kx (11.98)

This is simply a special case of the output feedback (Equation 11.96), with C = I. Hence the 
Theorems 3. and 4 still hold. Specifically, an uncontrollable and an unobservable system 
will remain uncontrollable and unobservable with state feedback.

C
yxu

B

A

+
x

∫
x.

Figure 11.14
The open-loop system (plant).

Plant

K

uref

–

y

Figure 11.15
The closed-loop system.
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example 11.21

Consider the open-loop system:

 A B=
-
- -






 = 








2 0

1 1

1 2

1 2
, .

 Controllability matrix: P B AB= =
- -
- -







[ , ]

1 2 2 4

1 2 2 4

Note that all the columns in P are simple multiples of each other (i.e., they are linearly dependent). 
Hence:

Rank P = 1 ⇒ uncontrollable.
Now apply a state feedback with the feedback gain matrix:

 K = 







a b

c d

 Then we have BK A BK=
+ +
+ +







 - =

- - - - -a c b d

a c b d

a c b2 2

2 2

2 2
and

22

1 2 1 2

d

a c b d- - - - - -






 .

The controllability matrix of the closed-loop system is

 P B,(A BK)B= - =
- - - - - - - - - -

[ ]
1 2 2 2 2 2 2 2 2( ) (a b c d a b c dd

a b c d a b c d

)

( ) ( )1 2 2 2 2 2 2 2 2- - - - - - - - - -






 .

Again we note that all the columns of the controllability matrix are linearly dependent. Hence, 
Rank P = 1 ⇒ uncontrollable.

11.4.5 Stabilizability

It is clear that (see Criterion 1 of controllability) if a system is controllable, then every one 
of its modes can be controlled by the input. In particular, any unstable modes (i.e., cor-
responding eigenvalues having positive real parts) can be stabilized through control. It 
follows that controllable systems are stabilizable. If a system is uncontrollable, still it is 
stabilizable provided that all its unstable modes are controllable.

example 11.22

Consider the state-space realization:

 A B C= 





 = 





 = [ ]0 2

1 1

1

1
0 1, , .

It can be easily verified that:

 Controllability matrix P B AB= = 





[ , ]

1 2

1 2
.
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The two columns of P are linearly dependent (also, Det P = 0). Hence, Rank P = 1 ⇒ system is 
uncontrollable.

Note: It follows that what is given is not a minimum realization and that a pole-zero cancellation 
can be made.

 Observability matrix Q C A C= = 





[ , ]T T T

0 1

1 1

Note that Det Q≠0. Hence Rank Q = 2 ⇒ system is observable.
Now let us check whether the system is stabilizable. For this, we need to determine the modes of 

the system. If both modes of the system are unstable, then the system is not stabilizable, because it 
is uncontrollable. If both modes are stable, of course it is stabilizable (even without any feedback 
control). If one of the modes is unstable, then if that mode is controllable, the system is stabiliz-
able. But, if the unstable mode is uncontrollable, then the system is not stabilizable. Let us check 
for these possibilities.

Eigenvalues:

 Det ( )l
l

l
I A- =

-
- -

=
2

1 1
0  ⇒ l 2-l -2 = 0 ⇒ l 1 = -1, l 2 = 2.

Note: First mode is stable and the second mode is unstable.
Eigenvectors: (l I- A)x  = 0

 For l 2: 
- -
- -













 =






 ⇒ =

-1 2

1 2

0

0

2

1
11

12
1

x
x

x







 For l 2: 
2 2

1 1

0

0

1

1
21

22
2

-
-













 =






 ⇒ = 



x

x
x




 The modal matrix M M=
-





⇒ =

-
-

- -






 =

-
-

2 1

1 1
1
3

1 1

1 2

1 3 1
1

( )
/ / 33

1 3 2 3/ /






 ⇒

 M- =
-











 =






1

1 3 1 3

1 3 2 3

1

1

0

1
B

/ /

/ /

It is seen that the first (stable) mode is uncontrollable and the second (unstable) mode is control-
lable (according to Criterion 1 of controllability). Hence the overall system is stabilizable.

11.5 Modal Control

Since the overall response of a system depends on the individual modes, it should be pos-
sible to control the system by controlling its modes. This is the basis of modal control. A 
mode is determined by the corresponding eigenvalue and eigenvector. In view of this, a 
popular approach of modal control is the pole placement or pole assignment. In this method 
of controller design, the objective is to select a feedback controller that will make the poles 
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of the closed-loop system take up a set of desired values. The method of pole placement is 
addressed in this section.

Consider the uncontrolled (open-loop) system:

 x Ax Bu= +  (11.99)

in the usual notation. Assume that all n states are available for feedback (in particular, 
assume that all n states are measurable). In general, we can implement a constant-gain 
feedback control law of the form:

 u = -Kx (11.100)

in which K is the feedback gain matrix. By substituting Equation 11.100 into Equation 11.99 
we get the closed-loop (controlled) system:

 x (A BK)u= -  (11.101)

It follows that the closed-loop poles are the eigenvalues of the closed-loop system matrix  
(A - BK). With this particular control structure, the problem of controller design reduces to 
the selection of a proper K that will assign desired values to the closed-loop poles.

11.5.1 Controller Design by Pole Placement

First we will study the case of a single input. Clearly, the results can be then extended to 
the case of multiple inputs. The system (Equation 11.99) for the case of a single input may 
be expressed as:

 x Ax bu= +  (11.102.)

where u is a scalar (single) input, and hence, b is a column vector of the same dimension 
(n) as the state vector. This open-loop system is shown in Figure 11.16. Next, using the com-
plete state feedback control law:

 u = uref - Kx (11.103.)

one gets the closed-loop control system:

 x A bK x b= - +( ) uref  (11.104)

b (sI – A)–1

u x

Figure 11.16
The open-loop system.
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where A-bK = closed-loop system matrix. The closed-loop system is shown in Figure 
11.17.

Question: When can we arbitrarily assign (place) the poles of the closed-loop system 
matrix Ã = A-bK?

Theorem: Iff (A, b) is controllable, we can arbitrarily place the system poles using com-
plete sate feedback for the corresponding single input.

Proof (By Construction): (If Part)
Suppose that the coefficients of the characteristic polynomial are ai, and that the system 

is expressed in the companion form (Note: Any other form has to be transformed into this 
form) in which:

 A =

- - -



















-

0 1 0 0
0 0 1 0

0 1 1





    

 a a an

, bb =























0
0
0

1


 (11.105)

It was shown that (A,b) is controllable in this case. Suppose that the feedback matrix is:

 K = [k1 k2. … kn] (11.106)

Then:

 bK =























0 0 0
0 0 0

0 0 0

1 2.





   



k k kn

and the closed-loop system matrix is:

 

 

 

  

 

A A bK= - =

- - - -












-

0 1
0 0

1

0 1 1a k a kn n 






 (11.107)

(sI–A)–1b

K

uref xu

Figure 11.17
The closed-loop system.
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The open-loop poles are: (l1, l 2., …, ln) and the corresponding characteristic polynomial is:

 sn + an-1sn-1 + … + a0 = (s - l 1)(s - l 2.) … (s - l n) (11.108)

Suppose that the closed-loop poles are to be located at the arbitrary values: ( , , , )   l l l1 2. n .  
According to Equation 11.107 it is clear that the desired poles can be assigned if the cor-
responding characteristic polynomial satisfies:

 s a k s a k s sn
n n

n+ + + + + = - --
-( ) ( ) ( )( ) (1

1
0 1 1 2.   l l ss n- l )  (11.109)

Clearly the gains ki can be chosen to satisfy this equation.
According to this procedure, the following steps can be given for the controller design in 

pole placement with single input:

Step 1: If the system is not in companion form, transform into the companion form 
using x = Rz (This is possible, if the system is controllable).

Step 2: Form the closed-loop characteristic polynomial using desired poles: 
( , , , )   l l l1 2. n , resulting in the coefficients ãi, i = 0,1,…,n - 1.

Step 3: By equating coefficients determine the feedback gains:

 ki = ãi-1 - ai - 2., i = 1,2.,…,n (11.110)

Step 4: The corresponding feedback control law is

 uref - u = Kz = KR-1 x (11.111)

example 11.23

A mechanical plant is given by the input-output differential equation  x x u+ = , where u is the 
input and x is the output. Determine a feedback law that will yield approximately a simple oscilla-
tor response with a damped natural frequency of 1 unit and a damping ratio of 1/√2.

Solution

It is well known that a stable complex conjugate pair of poles, representing damped oscillations, 
may be expressed as:

  l 1, l 2 = -x w n ± jw d (11.112)

where:
w n = undamped natural frequency
z  = damping ratio,

and, the damped natural frequency is:

 w z wd n= -1 2  (11.113)

It is given that  w d = 1 and z  = 1/√2. Hence, from Equation 11.113 we get w n = √2 and hence, z w n = 1. 
It follows that we need to place two poles at -1 ± j. Also the third pole has to be far from these two 
on the left hand plane (LHP); say, at -10. We perform the following steps of pole placement design:
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Step 1: Define the state variables as x1 = x, x2 =  x1 , and x3 =  x2 . The corresponding state-space 
model is:

 







x x

x x

x x u

1 2

2 3

3 3

=

=

= - +

with the matrices:

 A b=
-

















=
















0 1 0

0 0 1

0 0 1

0

0

1

Step 2: The characteristic equation of the closed-loop system should be:

 l l l l l l2 3 22 2 10 12 22 20+ +( ) +( ) = + + +   

Step 3: The open-loop characteristic polynomial is l 3 + l 2
Hence, according to Equation 11.110 the control gains have to be chosen as:

 k1 = 20 - 0 = 20

 k2 = 22 - 0 = 22

 k3 = 12 - 1 = 11

Step 4: The corresponding feedback control law is:

 uref - u = [20 22 11] x

Note: Transformation R is

 R b Ab A b= [ ]

- - -
- -

- - - - - --

-

-

-

| | n

n

n

n

a a

a a

a

1

1 1

2 2

1

1 0

11 1 0 0

1 0 0 0 0

- -
-























 (11.114)

Question: Consider the multiinput case:

 x = Ax + Bn × r ur × 1 (11.115)

Can we convert this into the companion (rational) canonical form:

 A B∗

-

∗=

- - -



















=

1 0

1

0 1

0

1 11 1a a ao n... ... 11



















 (11.116)
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using a suitable transformation of the type:

 x = Rz (11.117)

so that:

 A* = R-1 AR (11.118)

 B* = R-1 B (11.119)

answer: Not in general. Otherwise, the result:

 ż = A*z + B*u (11.120)

would imply that the system is controllable with just any one of the r inputs, which is a restrictive 
assumption, and cannot be true in general.

Note: If the system is controllable with any one input in the u vector, then we should be able to 
put (A*, B* ) in the above form (Can you provide a proof for this?).

Observation 1: If a multiinput system can be put in the rational companion form, system is 
controllable with any ui chosen from the u vector.

Observation 2: The control law u = uref - Kx that can place the poles at arbitrary locations, is not 
unique in the multiinput case in general.

Proof: Consider the special case of rational companion form (A*, B*) in general (transformed 
from (A, B), using R according to Equations 11.117 through 11.120).

First pick the feedback gain matrix:

 K =



















k kn1

0

... ...

which gives:

 A B K A∗ ∗ ∗- = -

0 0... ... ...

... ... ... ... ...

... ... .... ... ...

... ... ...

... ... ...

0 0

1k kn























From this K, we can assign poles arbitrarily.
Alternatively, pick:

 K A B K A=



















⇒ - =∗ ∗ ∗

0 0

0
1

... ...

... ...k kn --

0 0... ... ...

... ... ... ... ...

... ... ... ... ...

00 0

1

... ... ...

... ... ...k kn























From this K as well, we can assign pole arbitrarily. So there are at least r possible K matrices that 
will do the job.
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11.5.2 Pole Placement in the Multiinput Case

Consider the system:

 x Ax B u= × ×+ n r r 1  (11.12.1)

Use the feedback controller:

 u = uref - Kx (11.12.2.)

 ⇒ = -( ) +x A BK x Buref  (11.12.3.)

We want to assign the poles:

 G l l l= { }   
1 2., , , n  (11.12.4)

to Ã.
The corresponding closed-loop characteristic polynomial is:

 ∆( )l l= - +I A BK   (11.12.5)

 = 0 if l l= i

  = |(l I-A)[I + (l I-A)-1 BK]| = |l I-A| |I + (l I-A)-1 BK|

  = ∆(l ) |I + F(l ) BK|

  = ∆(l ) |Ir + KF(l ) B| (11.12.6)

The last step (Equation 11.12.6) is obtained in view of the fact that the three matrices 
within the product of the right hand side expression may be rotated as indicated, which 
will be proved in the next section. Note that:

  F(l ) = (l I - A)-1 (11.12.7)

which is called the resolvent matrix, and is in fact the Laplace transform of the state-
 transition matrix (with l  = s):

  F(t) = L-1F(s) (11.12.8)

Also, r is the number of inputs (dimension of the input vector) and Ir is the identity matrix 
of size r.

Proof:
Consider System 1 shown in Figure 11.18.

The following transfer relations are obtained:
Open-loop system: x Ax Bu= +
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Laplace transform gives:

 X = (sI - A)-1 BU = F(s) BU (i)

Closed-loop system: Use the feedback controller u = uref - Kx
Laplace transform gives:

 U = Uref - KX (ii)

Substitute Equation (ii) in Equation (i):

 X = F(s) B(Uref - KX) (iii)

Simple manipulation gives:

 [I + F(s) BK]-1 X = BUref

The corresponding transfer relation is:

 X = [I + F(s) BK]-1 BUref (11.12.9)

Hence, the characteristic polynomial of the closed-loop system is:

 ∆ = +
≈
( ) ( )s sI BKF  (11.13.0)

Now consider System 2. shown in Figure 11.19.
Note that System 2. is obtained from System 1 simply by moving the reference input (uref) 

to the output side of block B. Accordingly, this input has been multiplied by B to retain the 
system equivalence. It follows that the two systems 1 and 2. should have the same charac-
teristic polynomial.

B Ф(s)

K

x

–

uref

Figure 11.18
Control system 1.

Buref

B

K
x

Ф(s)

+
–

Figure 11.19
System 2., an equivalent version of system 1.
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The transfer relation for System 2. may be obtained directly by writing the signal  
equation (continuity) for the summing junction. Alternatively, it may be obtained from 
Equation (iii) by noting the following analogy:

System 1 System 2

uref Buref 

x x
B F(s)

F(s) K 

K B

By either approach, the continuity equation for the summing junction of System 2. is

 K BU BX XF ref -  =   (iv)

 Or: I K B X K BUr ref+[ ] =F F

Hence, the transfer relation for System 2. is:

 X I K B K BU= +[ ]-r refF F1
 (11.13.1)

where Ir is the rth order identity matrix (r = number of inputs). It follows from Equation 
11.13.1 that the characteristic polynomial of the closed-loop system (System 2.) is

 ∆( )s r= +I K BF  (11.13.2.)

Since Equations 11.13.0 and 11.13.2. should be identical in view of the system equivalence, 
the proof is complete.

11.5.3 Procedure of Pole Placement Design

For realizing the required set of closed-loop poles G l l l= { , , , }   
1 2. n  the characteristic equa-

tion  ∆( )li = 0 has to be satisfied. Then, according to Equation 11.12.6 we need

 I K Br i+ =F l( ) 0, i = 1, 2., …, n (11.13.3.)

One way of achieving this would be to make one column of the matrix I K Br i+ F l( )  equal 
to the null column vector 0. To accomplish this, for a given pole li  pick an appropriate 
column bi in the matrix F l( )i B, also pick the corresponding column a i of Ir, and then set:

  a i + Kb i = 0 n × 1 (11.13.4)

Collect the n columns b i, i = 1, 2., …, n such that they form a linearly independent set of vec-
tors. Assemble the n Equations 11.13.4 as:

 [a 1 a 2. … a n] + K[b 1 b 2. … b n] = 0n × n (11.13.5)
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Since the set of vectors b i are linearly independent, the matrix assembled from them 
should be nonsingular, and can be inverted. Hence Equation 11.13.5 can be written as:

 K = -[a 1  a n] [b 1  b n]-1 (11.13.6)

The result (Equation 11.13.6) gives a feedback controller that will assign the closed-loop 
poles at the specified locations.

Note: The design (Equation 11.13.6) is not unique because more than one set of linearly 
independent vectors b i would be possible.

example 11.24

The open-loop system A = 







0 2

0 3
, B = 







0

1
 is given. 

We will design a feedback controller that will place the closed-loop poles at G l l= - - ={ , } { , }3 4 1 2
  .

From Equation 11.127, the resolvent matrix of the open-loop system is:

 F l
l l

l
l

( )
( )

=
-

-







1
3

3 2

0

The open-loop poles are directly obtained from this result as l 1 = 0, l 2 = 3. Now form the matrix 
product:

 F l
l l l

( )
( )

B =
-









1
3

2
 (i)

Note that since the system has only one input, this product is a column vector, and hence there is 
only one choice of b i for each closed-loop pole li .

For l1  = -3: Substitute in Equation (i) to get:

 b1
1

18
2

3

1
9
1
6

=
-






 =

-



















Also, since Ir in Equation 11.133 is a scalar for this single-input system, we have the corresponding 
a 1 = 1 (scalar).

For l2  = -4: Substitute in Equation (i) to get

 b2
1

28
2

4

1
14

1
7

=
-






 =

-



















and as before, the corresponding a 2 = 1.
Finally Equation 11.136 gives the feedback gain matrix (row vector):

 K = -[ ]
- -



















= -[ ]
-

-

1 1

1
9

1
14

1
6

1
7

1 1
36 18

1

447 28
6 10

-






 = [ ]
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11.5.4 Placement of repeated Poles

At a repeated root, the derivative of the characteristic polynomial also becomes zero. It fol-
lows that, for a repeated pole li , we have the additional equation

 
d

d il
l ∆( ) = 0  (11.13.7)

Note: If a pole is repeated three times, the second derivative of the characteristic polyno-
mial also vanishes, giving the necessary two additional equations, and so on.

Now, according to Equation 11.13.7 the derivative of Equation 11.13.3. and also that of 
Equation 11.13.4 should vanish. But, since the terms a i and K are independent of l , the 
derivative of Equation 11.13.4) is:

 K
d

d il
b = 0 (11.13.8)

Again, it is understood that the chosen column d di ib l l( )/  has to be independent with respect 
to the other chosen columns b k. Then Equation 11.13.8 provides the additional  equation that 
should be augmented with the n-1 independent equations of Equation 11.13.5, correspond-
ing to the n-1 distinct poles, so as to be able to carry out the matrix inversion in the modi-
fied Equation 11.13.6 in obtaining the feedback gain matrix K. Specifically, if the pole li  is 
repeated two give like poles, then Equation 11.13.6 has to be modified as follows:

 K = -[ ]


- -a a a b b b l
l

b1 1 1 10, , , ,
( )

,  

i n i

i i
n

d
d





-1

 (11.13.9)

example 11.25

If in the previous example we are required to place the closed-loop poles at  l l1 2 3= = - , an 
appropriate feedback controller is designed now.

The additional Equation 11.138 is obtained by performing:

 
d
d

d
dl

b
l l l l l l

l
l1 2 2 2

1
3

2 1
3

4 6
=

-






 = -

- +
-


( ) ( ) 




= × -







 = -



















1
18 18

18

9

1
18

1
36

Then, Equation 11.139 is written as:

 K = -[ ]
- -



















= - [ ]

-

1 0

1
9

1
18

1
6

1
36

36 1 0
4 2

1

-- -







-

6 1

1
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11.5.5 Placement of Some Closed-loop Poles at Open-loop Poles

In some situations it may be required to retain some of the poles unchanged after feedback 
control. Mathematically, then, what is required would be place some of the closed-loop 
poles at the chosen open-loop poles. It is clear that, for such a pole, Equation 11.12.6 is 
 satisfied for any control K:

  ∆(l ) |Ir + KF(l ) B| = 0 (11.140)

because the open-loop characteristic polynomial ∆(l ) also vanishes at the desired closed-
loop pole. Then, we need to consider Equation 11.140 in its entirety in an expanded form, 
not just the second factor on the left hand side of Equation 11.140), as given in Equation 
11.13.3.. First, we write Equation 11.140 as: |∆(l ) Ir + K∆(l )F(l )B| = 0.

Since the first term inside the determinant vanishes at the common pole, one has:

 |K∆(l )F(l )B| = 0 (11.141)

As before, we make the determinant on the left hand side of Equation 11.141 vanish by set-
ting a column within it be zero. Hence:

 K∆(l )F(l )B = 0 (11.142.)

In Equation 11.142., it should be clear that there is the same identical factor ∆(l ) in the 
denominator of the resolvent matrix F(l ), which will cancel out, leaving behind the 
Adjoint matrix of l I-A (see Appendix C). Hence, it will be finite for the value of the com-
mon pole. Specifically, we have:

 KAdj(l I - A)B = 0 (11.143.)

This result will provide the necessary equation for Equation 11.13.5 (and Equation 11.13.6), 
in determining the feedback controller K. The approach is illustrated now using an 
example.

example 11.26

Consider the same open-loop system as in the two previous examples. Suppose that the closed-
loop poles are to be placed at  l l1 20 3= = -, , where 0 is also an open-loop pole. We now develop 
an appropriate feedback controller to achieve this.

Since l1  is identical to an open-loop pole, we have to use Equation 11.143 for this pole. 

Specifically: ∆(l ) = l (l -3) and F (l ) = ( )
( )

l
l l

l
l

I A- =
-

-





-1 1

3
3 2

0

 which gives: ∆(l ) F (l ) = Adj(l I - A) = 
l

l
-








3 2

0
 ⇒  Adj( )l

l
I A B- = 








2

The equation corresponding to Equation 11.143 for the common pole is:

 K K
2

0
2

0
0

l l l

















= ⇒ 




 =

= i

 (i)
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This is one equation for K. We already had the other equation, from the original example as:

 1

2
18

3
18

0+
-



















=K  (ii)

By assembling Equations (i) and (ii) we get:

 1 0

1
9

2

1
6

0
0[ ]+



















= ⇒K
-

 

K = -[ ]
-



















= - [ ]
-


-

1 0

1
9

2

1
6

0
18 1 0

2 36

3 0

1








= - [ ] -





 = - -

-1

18
108

1 0
0 36

3 2
1
6

0 366 0 6[ ] = [ ]

 Check: A - BK = 





 -







 = -









0 2

0 3

0 0

0 6

0 2

0 3
 ⇒  ∆( ) ( )l l l= + 3

example 11.27

Figure 11.20 shows an inverted pendulum that is mounted on a mobile carriage. This model may 
be used for the analysis of the dynamic response and stability of systems such as rockets, space 
robots, and excavators. Suppose that the state variables are defined as: x =  z z

T
, , , q q

M
Force u(t)

.

z, z.

m

θ θ,θ

Figure 11.20
An inverted pendulum on a carriage.
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and the equations of motion are linearized about an operating point, to obtain the linear state-
space model:

 x x=
-



















+

-






0 1 0 0

0 0 1 0

0 0 0 1

0 0 11 0

0

1

0

1














u  (i)

It can be easily verified that the open-loop characteristic polynomial is:

  ∆(l ) = l 4 - 11l 2 ⇒ l 1 = l 2 = 0, l 3 = √11, l 4 = -√11⇒ unstable.

Also, it can be verified (say, by Criterion 2) that the system is controllable.
⇒ Can assign poles arbitrarily using full state feedback.

 Let the required closed-loop poles be G l l l l= [ , , , ]   
1 2 3 4  = [-1, -2, -1-j, -1 + j].

 Use the feedback controller: u = uref - Kx (ii)

where the feedback gain matrix (row vector) is K = [k1 k2 k3 k4].
Substitute Equation (ii) in Equation (i) to obtain the closed-loop system:

 x (A BK)x Bu= - + ref

 
=

- - - -

-

















0 1 0 0

1

0 0 0 1

11

1 2 3 4

1 2 3 4

k k k k

k k k k




+

-








  

x

0

1

0

1













u

A

ref

 (iii)

The characteristic polynomial of the closed-loop system is:

 ∆( ) ( ) ( )l l l l l= + - + - + - -4
2 4

3
1 3

2
2 111 10 10k k k k k k

   = (l  + 1) (l  + 2) (l  + 1 + j) (l  + 1-j) (as required)

   = l 4 + 5l 3 + 10l 2 + 10l  + 4

By comparing the like coefficients in the characteristic polynomial, we require:

 k1 = -0.4

 k2 = -1

 k3 = -21.4

 k4 = -6
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Note 1: With the assigned poles, the system will be asymptotically stable
⇒ Inverted pendulum balances, and the car returns to the initial position.
Note 2: See Appendix B for a MATLAB® treatment of this problem.

11.5.6 Pole Placement with Output Feedback

Often all the states may not be available for sensing and feedback in the control system. 
In that case a convenient option for control would be to use the system outputs (which are 
typically measurable) in place of the state variables, for feedback. Accurate placement of 
all the closed-loop poles at arbitrary locations may not be achievable with output feedback 
control. In this context the following theorem is useful.

Theorem: Consider the (controllable) system:

 x Ax u= +  (11.144)

and the output equation:

 y = Cx (11.145)

Note: B = In = nth order identity matrix ⇒ (A, B) controllable for any A.
There exists an output feedback:

 u = uref - Ky (11.146)

that will assign any set of poles (complex ones should be in conjugates) to the closed-loop 
system if the system (A, C) is observable.

Proof: Assume.
Note: The closed loop system is:

 x Ax u KCx A KC x uref ref= + - = - +[ ] [ ]  (11.147)

example 11.28

Consider the open-loop system:

 
x x= -

-

















+
-

-















0 0 5

1 0 1

0 1 3

2 0

1 2

0 1 

= [ ]

u

y x0 0 1

We can verify that:
(A, B) is controllable.
(A,C) is observable.
Note: B ≠ In in this system.
The characteristic polynomial of the open-loop system is shown to be:

  ∆(l ) = l 3 + 3l 2 + l  - 5 = [(l  + 2)2 + 1][l  - 1]⇒ unstable.

Now use the output feedback controller u = uref - Ky
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with the control gain matrix:

 K = 







k

k
1

2

The closed-loop system matrix is:

 

A A BK= -

= -
-
















-

-
-









C

0 0 5

1 0 1

0 1 3

2 0

1 2

0 1















[ ] =

-
- +

-

k

k

k

k k

k

1

2

1

2 10 0 1

0 0 5 2

1 0 2 1

0 1 22 3-

















The corresponding closed-loop characteristic polynomial is shown to be:

 ∆( ) ( ) ( ) ( )l l l l= + + + + - - +3
2

2
1 2 13 1 2 2 5k k k k

Pick: k1 = -3, k2 = -2.

The corresponding closed-loop characteristic polynomial is ∆(l ) = l 3 + l 2 + 2l  + 1.
The corresponding poles are computed to be:

   l l l1 2 30 57 0 22 1 3 0 22 1 3= - = - + = - -. , . . , . .j j

Note: The closed-loop system is asymptotically stable.
If we use only one input (say u1) (i.e., k2 = 0), we have:

 ∆( ) ( ) ( )l l l l= + + + - +3 2
1 13 1 2 5k k

Note: There is no choice of values for k1 where (1 + k1) and -(2k1 + 5) are both positive. ⇒ we 
cannot even make the system stable.

Similarly, if we set k1 = 0 (only u2 is used), we have

 ∆( ) ( ) ( )l l l l= + + + - -3
2

2
23 1 2 5k k

This is unstable for any k2.
Note: This example shows that leaving some of the inputs aside in a multivariable system can 

have disastrous consequences.
It has been mentioned that the assumption that all states are measurable and available for 

feedback is highly unrealistic. In most practical situations in order to implement a complete state 
feedback law, which may be developed as discussed previously, the complete state vector has to 
be estimated from the measurement (output) vector y or from a portion of the state vector x. A 
device (or a filter) that will generate the full state vector from output measurements or part of the 
state vector is known as a state estimator or an observer. Once a state estimator and a complete-
state feedback control law are designed, the control scheme can be implemented by measuring 
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y or some of the state variables, supplying them to the state estimator (a digital computer) that 
will generate an estimate of x in real time and supplying the estimated x to the controller that will 
simply multiply it by the gain matrix K to generate the feedback control signal.

11.6 Optimal Control

A system can be controlled using a feedback control law so as to satisfy some perfor-
mance requirements. In the previous section our objective was to place the system poles 
(eigenvalues) at suitable locations. Assuming that all states are available for feedback, 
we know that a constant-gain feedback of the state variables is able to accomplish this 
objective. Also, a constant-gain feedback of system outputs is able to achieve the same 
objective in a limited sense, under some special conditions. In the present section we will 
discuss optimal control, where the objective is to optimize a suitable objective function 
(e.g., maximize a performance index or minimize a cost function), by using an appropriate 
control law. A particularly favorite performance index is the infinite-time quadratic inte-
gral of the state variables and input variables, and a popular control law is again a linear 
constant-gain feedback of the system states. The associated controller is known as the 
LQR. Now, we will discuss this particular controller in some detail, after introducing the 
general optimal control problem, with sufficient analytical details.

11.6.1 Optimization through Calculus of Variations

The calculus of variations is a powerful approach that is used in the mathematics of opti-
mization. In particular, the approach can be used to determine the optimal conditions 
of time integrals of functions, subject to various boundary conditions (BCs). In optimal 
control, the functions of state variables and input variables are particularly considered. 
The underlying approaches are first presented for the scalar (not vector) case of the sys-
tem variables.

Consider the objective function:

 J x g x t x t t dt
t

t

o

f

( ) ( ( ), ( ), )= ∫   (11.148)

which needs to be optimized. Specifically, its relative extremum is to be determined. In 
Equation 11.148 g is interpreted as a function of a system variable (e.g., state variable) x and 
its time derivative x. Note that the time variable t is explicitly present in g, thereby allow-
ing the possibility of “time optimal control.” Suppose that there are no constraint equa-
tions (i.e., consider the unconstrained optimization problem).

First assume that the starting time t0 and the end time tf of the process are fixed (speci-
fied). In applying the calculus of variations, we consider the variation in the cost function 
J as a result of a small virtual variation in the system response (trajectory) x(t). For optimal 
conditions (i.e., the extremum of J), the variation d J of J has to be set to zero. Specifically, 
we express the variation in J as:
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d d d dJ g dt
g
x

x
g
x

x dt
t

t

t

t

t

o

f

o

f

= = +





=

∫ ∫ îî
î
î 



oo

f

o

f

o

ft

t

t

t

t

g
x

xdt
g
x

x
d
dt

g∫ ∫+ 





-î
î

î
î

î
î

d d
 x

xdtd

(integratiion by parts)

= -



∫

t

t

o

f

g
x

d
dt

g
x

xdt
î
î

î
î 
d ++ 





î
î

g
x

x
t

t

o

f


d

= 0 (for an optimum of JJ)

 (11.149)

Note that in Equation 11.149 we have not included changes in the end times, as they are 
taken to be fixed. First, we will consider below two cases under these conditions. Then we 
will allow for free end times and consider two further cases.

Case 1: End Times to, tf Fixed; End States x(t0), x(tf) Specified
An example of a trajectory x(t) and a small admissible variation (one that satisfies the BCs) 
for this case is sketched in Figure 11.2.1.

Since the end states x(t0) and x(tf) are also fixed in this case, we have the BCs d x(t0) = 0 and 
d x(tf) = 0. Accordingly, the second term on the right hand side of the final result in Equation 
11.149 must be zero. Furthermore, since Equation 11.149 must vanish at the extremum con-
ditions, for any arbitrary, small variation d x, it is required that the term within the square 
brackets representing the coefficient of d x must vanish as well. Specifically, then, the opti-
mal condition is given by

x(t0) δx(t)

Optimal
trajectory

Variation
(admissible)

t0 tf
t

x(tf)

x(t)

Figure 11.21
A trajectory and an admissible variation (fixed-fixed boundary conditions).
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î
î

î
î

g
x

g
x

- =d
dt 

0 (11.150)

This necessary condition for optimality is known as the Euler equation.

example 11.29

Find the extremal trajectory x* (t) corresponding to the extremum of the cost function:

 J x t x t dt= +∫
0

1

2 2[ ( ) ( )]

with the BCs: x(0) = 0, x(1) = 1.
Apply Euler equation (Equation 11.150) with: g x x x t x t( , ) ( ) ( ) = +2 2

 We have: 2 2 0x
d
dt

x- =( )

Hence: x x- = 0 for optimal trajectory.
The solution of this differential equation is: x = a1et + a2e-t

Substitute the BCs:

 0 = a1 + a2 ⇒ a2 = -a1

 1 1 11
2

1= + ⇒ - =a e
a
e

a e e( / )

 We get: x
e

e
e et t∗ -=

-
-

2 1
[ ]

(Note: Once we specify x(t) ⇒ x* (t) is known. Hence J is a function of x alone.)

Case 2: t0 and tf Fixed; x(t0) Specified, x(tf) Free
A trajectory and an admissible variation for this situation is sketched in Figure 11.22. In this  
case as well, the Euler equation has to be satisfied (using the same argument as before).  
Hence:

 î
î

î
î

g
x

d
dt

g
x

- =


0 (11.150)

But, the free BC needs special treatment. Specifically, in Equation 11.149 in the present case, d x(tf) 
is arbitrary. Hence, its coefficient must vanish:

 î
î

g
x t tf


=

= 0  (11.151)
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example 11.30

Consider the same cost function as in the previous example:

 J x t x t dt= +∫
0

1

2 2[ ( ) ( )]

Suppose that x(1) is free. Consider the two cases:

 a. x(0) = 0
 b. x(0) = 1.

As before, from Euler equation we get: x x- = 0

 Its solution is known to be: x = a1et + a2e-t (i)

 Hence, by differentiating Equation (i) we get: x a e a et t= - -
1 2  (ii)

The free BC gives (from Equation 11.151):

 2 0 1 0
1

 x x
t=
= ⇒ =( )

Case (a): Given that x(0) = 0, substitute in Equations (i) and (ii):

 

0

0 0
1

1 2

1
2

2 1

1

= +

= -








⇒

= -

= +





a a

a e
a
e

a a

a e
e

Hence, a1 = 0 and a2 = 0, which correspond to the trivial solution x(t) = 0.
Case (b): Here x(0) = 1:

 

1

0

1 2

1
2

2 1
2

= +

= - ⇒ =

a a

a e
a
e

a a e

x

t

Optimal
trajectory

Admissible variation

x(t0)

t0 tf

x(tf)

Figure 11.22
A trajectory and an admissible variation (Fixed-free BCs).
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Hence we get:

 a e
a

e

a
e

e

1
2

1 2

2

2

2

1 1

1
1

1

( )+ = ⇒
=

+

=
+

 The optimal trajectory is x t
e

e et t( )
( )

( )=
+

+ -1
1 2

2

Now we will consider two cases where the end time is not fixed. In this case d tf ≠ 0 and con-
sequently, will introduce new terms into the variation of J, in addition to what is given in Equation 
11.149.

Case 3: t0 Fixed, tf Free; x(t0) and x(tf) Specified
A sketch of this case is given in Figure 11.23.

Here there are two components that contribute to the variation in J.

 d d d dJ J J tf
= +( ) ( )Change in

trajectory

Change
 = 0 for extremum (as usual)

 (d J) Change in trajectory = same as given in Equation 11.149.

 = -





+ 



∫

t

t

o

f
g
x

d
dt

g
x

xdt
g
x

x
î
î

î
î

î
î 

d d
tt

t

o

f

The first term gives the Euler equation as before:

 
î
î

î
î

g
x

d
dt

g
x

- =


0

(on optimal trajectory)

 (11.150)

x

t

Optimal trajectary

An admissible variation
x(t0)

t0 tf tf + δ tf

δx (tf )
x(tf)

Figure 11.23
A trajectory and an admissible variation (fixed-fixed BCs; free end time).
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 The second term = î
î

g
x

x t
t

f

f

d ( )

But, it is clear from Figure 11.23 that d dx t x tf t f
f

( ) ≅ -  ⇒

 Second term = - î
î

g
x

x t
t

f

f

 d

 Next consider: ( ) |d dd

d

J gdt g tt

t

t t

t ff

f

f f

fChange = ≅
+

∫

Hence the total variation corresponding to d tf is g
g
x

x t
t

f

f

-





î
î 
 d  

which also must vanish under optimal conditions. But, since tf is free, d tf must be arbitrary. Hence, 
its coefficient must vanish. This gives the BC:

 g
g
x

x
tf

-




=î

î 
 0 (11.152)

example 11.31

Consider the same cost function as in the previous examples:

 J x t x t dt

tf

= +[ ]∫
0

2 2( ) ( )

Find the optimal solution for the BC

 a. x(0) = 0 and x(tf) = 1, with tf free
 b. x(0) = 1 and x(tf) = 2, with tf free

As before, from Euler equation we get: x x- = 0

 which has the solution: x = a1et + a2e-t (i)

Case (a): The two BCs give:

 0 = a1 + a2 (ii)

 1 1 2= + -a e a et tf f  (iii)

From Equation 11.152 we get

 
g

g
x

x x x x x x
t

t t
f

f
-




= + -[ ] = -[ ]î

î 
   2 2 2 2 22

ff f
a e a e a e a e a at t t t

t t
= + - -[ ] = [ ]- -( ) ( )1 2

2
1 2

2
1 24

ff

a a= =4 01 2

 (iv)
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From Equations (ii) and (iv) we get a1 = 0 and a2 = 0, which correspond to the trivial solution x(t) = 0, 
and furthermore Equation (iii) is not satisfied for finite tf. Hence, this case is not feasible.

Case (b): The two BCs give:

 1 = a1 + a2 (v)

 2 1 2= + -a e a et tf f  (vi)

and, as before, the free end time condition (Equation 11.152) gives:

 a1 a2 = 0 (iv)

From Equation (iv) and (v) it is clear that two solutions are possible:

 1. a1 = 0, a2 = 1
 2. a2 = 0, a1 = 1

Substitute in Equation (vi);

 1. 2= ⇒-e tt
f

f no positive solution for
 2. 2 2= ⇒ =e tt

f
f ln

Case 4: t0 Fixed; x(t0) Specified; tf and xf Free
In this case we assume that xf and tf are completely free and independent of each other so that tf 
can take any value in a set and xf can take any value in another set. A trajectory and an admissible 
variation thereof for this situation are sketched in Figure 11.24.

Note: In this case we can consider either d tf and d x(tf) are arbitrary or d tf and d xf are arbitrary. 
Both will result in the same BC.

We proceed as in Case 3:

  d J = (d J)change-trajectory + (d J)change-tf

 = -





+∫
t

t

t t

f

f f

g
x

d
dt

g
x

xdt
g
x

x

0

î
î

î
î

î
î

î
 
d ( )

(( )d J traject

  
  

+

-

g t t

J

f
f

tf

d
d( )change

 (11.153)

x

t0 tf
tf  + δtf

t

x(tf) + δxf

x(tf) + δx(tf)

x(tf)

x0

Figure 11.24
A trajectory and an admissible variation (starting conditions fixed; end conditions completely free).

76868.indb   550 7/8/09   5:17:48 PM



Advanced Control 551

The first term on the right hand side of Equation 11.153 gives the Euler equation, as before.

 î
î

î
î

g
x

d
dt

g
x

- =


0 (11.150)

(on optimal trajectory)

Now, since d tf and d x(tf) are arbitrary, their coefficients in Equation 11.153 must vanish. These 
result in the end conditions:

 î
î

g
x tf

= 0 (11.154)

 g tf
= 0  (11.155)

Alternatively, the same BCs (Equations 11.154 and 11.155) may be obtained by using the fact that 
d tf and d xf are arbitrary. We start by noting (see Figure 11.24) that:

 d d dx x t x tf f f= +( )   (11.156)

Substitute (Equation 11.156) in the boundary terms of (Equation 11.153) to give:

 î
î

g
x

x x t g tt f f t ff f
d d d-[ ]+ = 0

 Or: î
î

î
î

g
x

x g x
g
x

tt f
t

ff

f





d d+ -





= 0 (11.157)

Since d xf is arbitrary, from Equation (i) above we get the same result as above:

 î
î

g
x tf

= 0  (11.154)

Since d tf is arbitrary, from Equation (i) we have:

 g x
g
x tf

-




=


î
î

0  (11.158)

Substitute Equation 11.154 into Equation 11.157: ⇒ g tf
= 0, which is Equation 11.155 as obtained 

before.
Now we will consider three examples for the application of this case.

example 11.32

Consider the usual cost function: J x t x t dt

tf

= +[ ]∫ 2 2

0

( ) ( )
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with the initial state specified (completely) as (a): x(0) = 0 and (b): x(0) = 1, while the final time and 
state are free.

We proceed as before by applying Euler equation, which gives:

 x = a1et + a2e-t

Also, we have:

 g x x a e a et t= + = +[ ]-2 2
1
2 2

2
2 22

 
î
î

g
x

x a e a et t


= = -[ ]-2 2 1 2

The BCs (Equations 11.155 and 11.154) give:

 0 2 1
2 2

2
2 2= +[ ]-a e a et tf f  (i)

 0 2 1 2= -[ ]-a e a et tf f  (ii)

For finite tf: multiply Equation (i) by exp(2tf). We get:

 a a e a atf
2
2

1
2 4

1 20 0= -[ ]⇒ = =,  (iii)

Multiply Equation (ii) by exp(tf). We get:

 a a e tf
2 1

2= [ ]  (iv)

a. The IC gives: 0 = a1 + a2.
This satisfies both Equations (iii) and (iv), but the solution is trivial and is not useful.
b. The IC gives 1 = a1 + a2

This can satisfy Equation (iv) but not Equation (iii). Hence, a solution does not exist.

example 11.33

Consider the cost function: J x t x t dt

tf

= - +[ ]∫ 2 2

0

( ) ( )
with the IC x(0) = 0.

Euler equation gives: - - =2 2 0
d
dt

x( ) ⇒ x + =1 0

 ⇒ = - + ⇒ = - + +x t a x t a t a1
2

1 2
1
2

IC gives 0 = a2.
The final conditions give:

 g t a t t at f f ff
= - - +




+ - +[ ] =2

1
2

02
1 1

2
 (i)
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î
î

g
x

x t at t ff f
= = - +( ) =2 2 01  (ii)

From Equation (ii) we get:

 a1 = tf (iii)

Substitute Equation (iii) in Equation (i):

 - - +




= ⇒ = ⇒2

1
2

0 02 2t t tf f f trivial solution.

example 11.34

Consider the cost function: J x t x dt

tf

= -[ ]∫  2 2

2

( )
/p

with the IC x
p
2

1




= . The final time and state are free.

Euler equation gives:

 - - =2 2 0x
d
dt

x( )  ⇒  x x+ = 0  ⇒ 

 x = a1 sin(t) + a2 cos(t)

The IC gives 1 = a1

   ⇒ x = sin(t) + a2 cos(t)

 x t a t= -cos( ) sin( )2

Hence we have:

 

g x x

t a t a t

= -

= + -

 2 2

2
2
2 2

22cos ( ) sin ( ) sin( )cos(( ) sin ( ) cos sin( )cos( )

co

t t a t a t t- - -

=

2
2
2 2

22

ss( ) cos( ) sin( )

cos(

2 2 2 2

2 2

2
2

2t a t a t

g
x

x

- -

= =î
î 

 tt a t) sin( )- 2 2

Now substitute in the final conditions (Equations 11.154 and 11.155):

 
0 2 2

0 2 2

2

2
2

= -

= -

cos( ) sin( )

cos( ) cos( )

t a t

t a t

f f

f f -- 2 22a tfsin( )

Solve these two (nonlinear) simultaneous equations to determine tf and a2, and hence x(t).

Case 5: to Fixed, x(t0) Specified; tf and xf are Related through xf = q (tf)
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Here, as in Case 4, the initial state is completely specified. The final time and state are not com-
pletely free however, but related according to a specified function.

We can use the variation given by Equation 11.153 subject to:

 xf = q (tf) (11.159)

The Euler equation holds as usual:

 î
î

î
î

g
x

d
dt

g
x

- =


0 (11.150)

The final conditions are governed by Equation 11.157:

 î
î

î
î

g
x

x g x
g
x

tt f
t

ff

f





d d+ -





= 0 (11.157)

subject to Equation 11.159, which should be expressed in the differential form:

 d q dt t tf f f= ( )  (11.160)

Substitute Equation 11.160 in Equation 11.157 to get:

 





q dî
î

î
î

g
x

g x
g
x

tt ff
+ -





= 0 (i)

Since d tf in Equation (i) can be treated as arbitrary, its coefficient must vanish. Accordingly, we 
have the end condition:

 





q î
î

î
î

g
x

g x
g
x tf

+ -




= 0 (11.161)

example 11.35

Consider the cost function: J x t x t dt

tf

= +[ ]∫
0

2 2( ) ( )

with the IC x(0) = 0, and the final condition q  = t.
Here, Euler equation, as before, gives:

 x = a1et + a2e-t (i)

 IC: 0 = a1 + a2 (ii)

Also, from the given information we have:

 

g x t x t a e a e

g
x

x t

t t= + = +[ ]

=

-2 2
1
2 2

2
2 22

2

( ) ( )

(




î

î
)) ( )= -

=

-2

1

1 2a e a et t

q

 (iii)
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Substitute Equation (ii) in the final condition (Equation 11.161):

 1 2 2 21 2 1
2 2

2
2 2

1× - + + -- -( ) ( ) (a e a e a e a e a et t t tf f f f tt tf fa e-[ ] =-
2

2 0)  (iv)

and since x = t at the final state, we get from Equation (i):

 t a e a ef
t tf f= + -

1 2  (v)

Now, Equation (iv) simplifies to:

 2 4 01 2 1 2( )a e a e a at tf f- + =-  (iv)*

Substitute Equation (ii) in Equations (iv)* and (v):

 
t a e e

a e e a

f
t t

t t

f f

f f

= -

+ - =

-

-

1

1 1
22 4 0

( )

( )
 (vi)

Solve the nonlinear simultaneous equations (vi) to determine tf and a1, and hence x(t).

11.6.2 Cost Function having a Function of end State

Now consider a cost function that has an explicit term which is a function of the end 
state, as:

 J g x x t dt h x t tf f

t

t f

= +∫ ( , , ) ( ( ), )

0

 (11.162.)

where the IC is specified. We can write Equation 11.162. as:

 J g
dh
dt

dt h x t t
t

t f

= +





+∫
0

0 0( ( ), )  (11.162.)*

which can be verified by integrating the second term of the integrand. Now the last term in 
Equation 11.162.* is a constant, and may be dropped. Consequently, we have the equivalent 
cost function:

  J g
dh
dt

dt g
h
t

h
x

x
t

t

t

f

= +





= + +



∫

0

î
î

î
î

00

t f

dt∫  (11.163.)

 Let: g g
h
t

h
x

xa = + +î
î

î
î
  (11.164)
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As usual, then, Euler equation is:

 
î
î

î
î

g
x

d
dt

g
x

a a- = 0 (11.150)*

which, in view of Equation 11.164, may be written as:

 î
î

î
î î

î
î

î
î

î
î

g
x

h
x t

h
x

x
d
dt

g
x

h
x

+ + - +




=

2. 2.

2.
0


⇒⇒

 
î
î

î
î

î
î î

î
î

î
î
î
î

g
x

d
dt

g
x

h
x t

h
x

x
t

h- 




+ + -




2. 2.

2. xx x
h
x

x- = ⇒î
î
î
î
 0

 î
î

î
î

g
x

d
dt

g
x

- 




=


0 (11.150)

It is seen that the Euler equation remains the same as before.
The end condition is obtained using Equation 11.157 as before, to get:

 î
î

î
î

g
x

x g
g
x

x ta
t f a

a
t ff f 

d d+ -





= 0 (11.157)*

Substitute Equation 11.164 in Equation 11.157* ⇒ 

 î
î

î
î

î
î

î
î

î
î

îg
x

h
x

x g
h
t

h
x

x
g
xt

f

f





+





+ + - - +d hh
x

x t
t

f

f
î















= ⇒ d 0

 î
î

î
î

î
î

î
î

g
x

h
x

x g
g
x

x
h
tt

f
tf

 
+





+ - +





d
ff

t fd = 0 (11.165)

This condition may be applied, as usual. For example, if the end time and state are free, 
then the two coefficients in Equation 11.165 should vanish. If there exits a relation between 
the end state and time, its differential form should be substituted in Equation 11.165, and 
the resulting coefficient should be set to zero.

11.6.3 extension to the Vector Problem

Thus far, we treated the “scalar” problem of optimization where the system trajectory x(t) is 
a scalar (or, the state-space is one-dimensional). Now let us extend the ideas to the “vector” 
case where x(t) is an nth order vector. The corresponding cost function (which is a scalar) 
may be expressed as (see Equation 11.162.)

 J g t dt h t tf f

t

t f

= +∫ ( , , ) ( ( ), )x x x

0

 (11.166)
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Then, we have the following optimal conditions:

 Euler Equation: î
î

î
î

g d
dt

g
T

x x
-




=


0 (11.167)

Note that Equation 11.167 is given as a column vector equation.

 Boundary (Final) Condition: î
î

î
î

î
î

î
î

g h
g

g h
tt

f
tf

 


x x
x

x
x+





+ - +





d
ff

t fd = 0 (11.168)

Note that Equation 11.168 is a scalar equation.

11.6.4 general Optimal Control Problem

The general problem of optimization, in control systems, should satisfy the system equa-
tions (state-space equations) and also a set of constraints. Note that the system equations 
themselves are constraints (dynamic constraints), and may be incorporated into an “aug-
mented” cost function through the use of Lagrange multipliers. This general problem is 
presented now.

The objective function that is to be optimized is expressed as

 J g t dt h t tf f

t

t f

( ) ( , , ) ( ( ), )u x u x= +∫
0

 (11.169)

where x is an n-vector (i.e., an nth order vector), u is an m-vector, subject to the n state equa-
tions (dynamic constraints):

 x f x,u= ( , )t  (11.170)

and r isoperimetric constraints:

 e x k( , )t dt
t

t f

=∫
0

 (11.171)

This optimization problem is solved by first converting the constraints (Equation 11.171) 
into state-space equations and then incorporating the overall set of state equations into 
an augmented cost function, through Lagrange multipliers. The associated steps are 
given below.

Method:

 1. Define r new state variables

 x e dn i i

t

t

+ = ∫ ( , )x t t
0

 i = 1, 2.,…, r (11.172.)*
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 with xn + i (t0) = 0 and xn + i(tf) = ki (11.173.)

 Then x e t f tn i i n i+ += =( , ) ( , )x x  i = 1, 2.,…, r (11.172.)

 (say)
 2.. Use n + r Lagrange multipliers l .

 The constrained optimization problem is

  
  J g t T

ga

= + -{ ( , , ) ( )}x u f xl ddt h t tf f

t

t f

+∫ ( ( ), )x

0

 (11.174)

 This gives the Euler equations:

 d
dt

g ga
T

a
Tî

î
î
îx x






- 





= 0 (n + r equations) ⇒ 

 d
dt

g
T

( ) 0- - 




- =l lî

î
î
îx

f
x

 (n + r equations) ⇒

 l l= - +





î
îx

f( )g T

T

 (n + r equations) (11.175)

Note: The last r equations give li = 0  for i = n + 1, …, n + r because the right hand side is 
not a function xn + 1, …, xn + r.

Also the original state equations (dynamic constraints) must be satisfied:

 x f=

 which may be written as:

 x f= ∂
∂

+



l

l( )g T

T

 (11.176)

Note: The Equations 11.176 are equivalent to Euler equations with respect to l .
Specifically (d/dt)[îga/î l ]T-[î ga/î l ]T = 0; but since ga does not have l  terms, the first term 

on the left hand side will vanish, giving [î ga/î l ]T = 0, which then gives Equation 11.176.
Furthermore, if we write Euler equations with respect to u, we have (d/dt)[î ga/î u ˙]T- 

[î ga/î u]T = 0. As before, the first term on the left hand side will vanish,  giving [î ga/î u]T = 0. 
Hence in view of ga as given in Equation 11.174 we get:

 î
î

( )g T T+




=l f

u
0  (11.177)

The result (Equation 11.177) corresponds to Pontryagin’s minimum principle, as will be 
noted later.
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11.6.5 boundary Conditions

The boundary (final) conditions for the augmented (constrained) optimization problem 
may be obtained from Equation 11.168 by substituting ga for g. Specifically:

 
î
î

î
î

î
î

î
î

g h
g

g h
t

a

t
f a

a

f



x x

x
x

x+





+ - +





d  = ⇒
t

f

f

td 0

 - +





+ + - + +


l d l lT

t
f

T Th
g

h
t

f

î
î

î
îx

f x xx ( )  


= ⇒
t

f

f

td 0

 - +





+ + +





=λT

t
f

T

t
f

h
g

h
t

t
f f

î
î

î î
îx

x fd d 0  (11.178)

Note: d xf = 0 for the states xn + 1, …, xn + r because they are fixed at k1, …, kr.

11.6.6 Hamiltonian Formulation

The same results as obtained before may be expressed in a convenient and compact form 
using the Hamiltonian formulation. Here, we define the Hamiltonian:

 H(x, u, l , t) = g(x, u, t) + l Tf (11.179)

It follows from the results (Equations 11.175 and 11.176) that:

 l = - î
î

TH
x

 (11.180)

 x = ∂
∂

TH
l

 (11.181)

The boundary (final) conditions (Equation 11.178) may be written as:

 - +





+ +





=l d dT

t
f

t
f

h
H

h
t

t
f f

î
î

î
îx

x 0 (11.182.)

11.6.7 Pontryagin’s Minimum Principle

The result (Equation 11.178) may be written as:

 
î
î

TH
u

= 0 (11.183.)

This is known as Pontryagin’s Minimum Principle, and is stated as follows:
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An optimal control must minimize the Hamiltonian.
This is a necessary but not sufficient condition, and is true for both bounded and 

unbounded u. Note that if the Hamiltonian is expressed as the negative of what is given in 
Equation 11.179, we get Pontryagin’s Maximun Principle.

11.7 Linear Quadratic Regulator (LQR)

Often, the system to be controlled is represented by a linear model, which will hold at 
least in a small neighborhood of the operating point. Furthermore, a cost function that is 
a time integral of a quadratic form in the state and input variables, is applicable in many 
situations; for example, in designing an asymptotically stable regulator that uses minimal 
control energy. Then, what results is an LQR. Specifically, we seek to minimize the cost 
function:

 J t t t t x tT

t

t

T T
f f

f

= + +∫1
2.

1
2.

0

[ ( ) ( ) ] ( ) ( )x Q x u R d x Su  (11.184)

subject to the dynamic constraints given by a set of linear (but, can be time-varying) state 
equations:

 x t t= +A B u( ) ( )x  (11.185)

In Equation 11.184 it is assumed that Q is positive semidefinite, R is positive definite, and 
S is positive semidefinite (see Appendix C). Also, without loss of generality, these three 
weighting matrices are assumed symmetric. The final time tf is assumed fixed and the final 
state x(tf) is assumed free.

The solution to the LQR optimal control problem is now determined using the 
Hamiltonian approach, as developed before. First we form the Hamiltonian:

 H xT T T= + + +1
2.

1
2.

x Q u Ru Ax Bul ( ) (11.186)

11.7.1 The euler equations

Equations 11.180 and 11.183. give:

 l l= - = - +î
î

T
TH

x
Qx A[ ]

 
î
î
HT

T

u
Ru B= = +0 l
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Hence we have the optimality conditions:

 l l= - -Qx AT  (11.187)

 u = -R-1 BTl  (11.188)

11.7.2 boundary Conditions

For the given problem d tf = 0 and d xf is arbitrary. Hence, in Equation 11.182. the coefficient 
of d xf must vanish, and we get:

 - +




= ⇒ - + 











l lT
T

T

t

hî
î

î
îx x

0
1
2.

x Sx
ff

t tf f= ⇒ - + =0 0l( ) ( )Sx

  l (tf) = Sx(tf) (11.189)

Note: Equation 11.188 gives the feedback control law. But here we need to determine the 
Lagrange multiplier l , by solving Equation 11.187 subject to the final condition (Equation 
11.189).

Kalman has shown that the solution of Equation 11.187 this is of the form:

  l  = K(t)x (11.190)

Proof: A proof of Equation 11.190 may be given by construction, as follows. Differentiate 
Equation 11.190 to get:

   l = +Kx Kx

 = + +Kx K Ax Bu ( ) (by substituting Equation 11.185)
 = + + - -Kx KAx KB R B Kx( )1 T  (by substituting Equations 11.188 and 11.190)

 = + - -( )K KA KBR B K1 T x  (i)

  = -(Q + ATK)x (from Equations 11.187 and 11.190) (ii)

Hence, from Equations (i) and (ii) we have

 [ ]K KA A K KBR B K Q x+ + - + =-T T1 0  (iii)

Now we can show that the expression within the brackets in Equation (iii) must vanish, 
as x ≠ 0 in general. Specifically, if x = 0 then with u = 0, the system will stay in this equilib-
rium state for ever giving the minimal solution for J. Hence at least during an early time 
interval we must have x ≠ 0, and Equation (iii) gives:

 K KA A K KBR B K Q+ + - + =-T T1 0  (11.191)
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with the BC obtained from Equations 11.189 and 11.190 as:

 K(tf ) = S (11.192.)

Equation 11.191 is the nonlinear, time-varying (nonsteady) matrix Riccati equation, whose 
solution must be symmetric since K(tf) = S is symmetric . This completes the proof, since 
Equation 11.190 is shown to be a suitable solution. Equations 11.188 and 11.190 then provide 
the optimal controller:

 u = -R-1 BT Kx (11.193.)

Note: Integrate Equation 11.191 backwards from tf to t0 using the BC (Equation 11.192.) to get 
the gain matrix K(t). Store this and then compute the feedback control signal u using Equation 
11.193.. To perform the integration, set t = -t . Then, Equation 11.191 may be written as:

 
d
d

T TK
KA A K KBR B K Q

t
= + - +-1  (11.194)

Integrate Equation 11.194 from -tf to -t0, with the modified IC:

 K(-tf) = S (11.195)

Note 1: Since K is symmetric, only (1/2.)n (n + 1) equations need to be integrated.
Note 2: If x(tf) = 0, then from Equation (iii) above, it follows that the Riccati equation need 

not be satisfied at t = tf for optimality. Then K(tf) can become ambiguous.

11.7.3 infinite-Time lQr

Now we will consider the special time-invariant (stationary) case of the problem given by 
Equations 11.184 and 11.185, with S = 0 and the final time is infinity:

 J dtT T= +[ ]∫1
2.

0

x Qx u Ru
∞

 (11.196)

 x Ax Bu= +  (11.197)

Note: The weighting matrices Q and R and the system matrices A and B are constant in 
this case.

Kalman has shown that the solution to this problem can be obtained from the previous 
solution of Equation 11.191, at steady-state, by setting t → ∞. Since K is a constant matrix, at 
steady-state, we have K = 0. The optimal control law for this LQR problem is then

 u = -R-1 BT Kx (11.198)

where K is the positive definite solution of the nonlinear, steady-state, matrix Riccati 
equation:

 KA + ATK - KBR-1 BTK + Q = 0 (11.199)
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As before, since K is symmetric, only (1/2.)n(n + 1) equations need to be solved. The optimal 
controller (Equation 11.198) is shown by the feedback control system in Figure 11.2.5.

example 11.36

A plant is given by the state equation (simple integrator): x u=
with the end conditions: x(0) = 1, x(1) free.
The system is to be controlled so as to minimize the cost function:

 J x u dt= +∫ ( )2 2

0

1

Determine the optimal control signal, optimal trajectory, and the control law.

Solution

Method 1 (General Solution Approach):
Hamiltonian: H = x2 + u2 + l u
Hamilton (Euler) Equations:

 l = - = -î
î
H
x

x2  (i)

 
î
î
H
u

u u= + = ⇒ = -2 0
1
2

l l  (ii)

BCs (Equation 11.182):

 - +





+ +





l d dî
î

î
î

h
x

x H
h
t

t
f

f
t

f

f

But, h = 0 and hence î h/î x = 0, î h/î t = 0 for this case. Also, d tf = 0. Then, setting the coefficient 
of d xf to zero, we get the BC

  l (1) = 0 (iii)

R–1 BT K

xuopt
Plant

Optimal feedback controller
(LQR)

–

Figure 11.25
Linear quadratic regulator (LQR).
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Substitute the state equation in Equation (ii). This and Equation (i) give

 



 x

x
x

= -

= -






⇒ = - = -

1
2
2

1
2

l

l
l

( )

( )

iv

i

11
2

2( )- = ⇒x x

 x x x c e c et t- = ⇒ = + -0 1 2  (v)

Substitute the given IC x(0) = 1:

 c1 + c2 = 1 (vi)

From Equations (iv), (v) and (vi):

 l = - = - - = - +- -2 2 2 21 2 1 2x c e c e c e c et t t t( )  (vii)

Substitute Equation (vii) in Equation (iii):

  l (1) = 0 = -2c1e + 2c2e-1 (viii)

Solve Equations (vi) and (viii):

 - + - = ⇒c e c
e1 11
1

0( )

 c
e1 2

1
1

=
+( )

 c
e

e2

2

2 1
=

+

From Equations (vii) and (ii), the optimal control signal is u c e c e c e c et t t t= - - + = - ⇒- -1
2

2 21 2 1 2( )

 u
e

e
e

e
eopt

t t=
+

-
+

-1
1 12

2

2( ) ( )

From Equation (v), the corresponding optimal trajectory is:

 x
e

e
e

e
eopt

t t=
+

+
+

-1
1 12

2

2( ) ( )

(Check: x  = u).
The optimal control law may be determined as the ratio uopt/xopt, and is left here as an 

exercise.
Method 2 (Riccati Equation, Linear Regulator, Approach):
For the given problem,

 Q = 2, R = 2, S = 0, A = 0, B = 1
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Then, from Equation 11.193

 u R B Kx Kx KxT= - = - × × = --1 1
2

1
1
2

 (i)

where K satisfies Equations 11.194 and 11.195: K KA A K KBR BK QT+ + - + =-1 0 ; K(tf) = S ⇒

 K K- + =1
2

2 02 ; K(1) = 0 ⇒  2 4 2dK
dt

K= - -( )  ⇒  dK
K

dt
4

1
22-

= -  ⇒ 

 
1
4

2
2

1
2

log
+
-

= - +K
K

t C

Substitute K(1) = 0: -1/2 + C = 0 ⇒ 

 
1
4

2
2

1
2

1
2

log
+
-

= - +K
K

t

which simplifies to:

 K
e
e

t

t
= -

-

-

-

2 1
1

2 1

2 1

[ ]
[ ]

( )

( )
 (ii)

Substitute Equation (ii) in Equation (i) to obtain the optimal control law: u = (-1/2)Kx ⇒ 

 u
e
e

xopt

t

t
= - -

+

-

-

[ ]
[ ]

( )

( )

2 1

2 1

1
1

Note: This result can be substituted in the state equation and integrated, to determine the opti-
mal x(t), and is left as an exercise.

Check:
Substitute the result for xopt(t) as obtained from Method 1, into the optimal control law obtained 

in Method 2:

 u
e
e

x
e

opt

t

t

t

= - -
+

= - --

-

- -[ ]
[ ]

[ ]( )

( )

( )2 1

2 1

2 11
1

1
[[ ]( )e e

e
e

e
e

t
t t

- -
-

+ +
+

+




2 1 2

2

21
1

1 1

 = - -
+ +

+
- -

- -
-[ ]

[ ]
[ ]

( )

( )

e
e

e
e

e e
t

t

t
t

2 1

2 1 2
2 21

1 1
1

 =
+

-
+

-1
1 12

2

2( ) ( )e
e

e e
e

t
t

This is identical to the optimal control signal as obtained in Method 1, and hence confirms that 
the results obtained from Method 1 and Method 2 are identical.
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11.7.4 Control System Design

Assuming that all n states are available for feedback (in particular, assuming that all n states 
are measurable), we can implement a constant-gain feedback control law of the form:

 u = -Kx (11.2.00)

in which K is the feedback gain matrix, which is determined by the optimal control 
approach as described in this section; for example, by minimizing the infinite-time qua-
dratic integral. Standard software packages use efficient recursive algorithms to solve the 
matrix Riccati equation, which is needed in this approach. In particular, MATLAB® may 
be used (see Appendix B).

The assumption that all states are measurable and available for feedback is somewhat 
unrealistic in general. In many practical situations in order to implement a complete state 
feedback law developed as above, the complete state vector has to be estimated from the 
measurement (output) vector y or from a portion of the state vector. A device (or a filter) 
that will generate the full state vector from output measurements or part of the state vector 
is known as a state estimator or an observer. Once a state estimator and a complete state 
feedback control law are designed, the control scheme can be implemented by measuring 
y or some of the state variables, supplying them to the state estimator (a digital computer) 
that will generate an estimate of x in real time, and supplying the estimated x to the con-
troller that will simply multiply it by the control gain K to generate the feedback control 
signal. Furthermore, since the poles of the closed-loop system can be placed at arbitrary 
locations using just on input (assuming controllability), the remaining control inputs may 
be used to optimize to some extent an appropriate performance index. Such an approach 
will combine modal control and optimal control, and is beyond the scope of the present 
treatment.

example 11.37

Consider the damped mechanical system shown in Figure 11.26a. The equations of motion of the 
system are:

 
m

m

c

c

k k

k k

0

0

0

0

3 2

2 5






 + 






 +

-
-






 y y yy = ( )











0

f t

Assume the following parameters values: m = 2 kg, k = 10 N.m-1, c = 0.6 N.s.m-1.
Suppose that the displacement and velocities of the masses are taken as the states. An LQR 

controller may be developed using MATLAB®, to generate the forcing inputs for the system. In 
this example, the following MATLAB code is used, which is self-explanatory, with the indicated 
parameter values:

clear;
global u A B
m = 2.0;
k = 10.0;
c = 0.6;
M = [m 0 ;

 0 m];
K = [3*k -2*k;
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 -2*k 5*k];
C = [c 0;
   0 c];
u = [0;0];
%Construct A,B
A1 = -inv(M)*K;
A2 = -inv(M)*C;
B1 = inv(M)
A = [ 0 0 1 0;
   0 0 0 1;
 A1(1,1) A1(1,2) A2(1,1) A2(1,2);
 A1(2,1) A1(2,2) A2(2,1) A2(2,2)];
B = [ 0 0 
   0 0 
 B1(1,1) B1(1,2) 
 B1(2,1) B1(2,2)];
%define the costfunction weighting matrix Q,R
Q = [1, 1, 1, 1];
Q = diag(Q,0);
%decrease element of R can have fast response 
R = [6 0;
   0 6];
[Kp,S,E] = lqr(A, B, Q, R); 
t0 = 0;
tf = 30;
x0 = [0.1 0 0 0];%Define initial condition
T = 0.003; % Define the sampling time
t_init = t0;
t_final = T;
x1_last = x0(1);
x2_last = x0(2);
x3_last = x0(3);
x4_last = x0(4);
for i = 1:(tf/T)
err = odeset(‘RelTol’, 1e-6,’AbsTol’,1e-8 );
[t,w] = ode45(‘sysmodel’,[t_init t_final],[x1_last x2_last x3_last 
x4_last],err);
x1lst = w(:,1);
x2lst = w(:,2);
x3lst = w(:,3);
x4lst = w(:,4);
kq = size(w(:,1));
x1_last = x1lst(kq(1));
x2_last = x2lst(kq(1));
x3_last = x3lst(kq(1));
x4_last = x4lst(kq(1));
q1(i) = w(1,1);
q2(i) = w(1,2);
q3(i) = w(1,3);
q4(i) = w(1,4);
q = [q1(i);q2(i);q3(i);q4(i)];
u = -Kp*q;%Control feedback
tt(i) = t_init;
t_init = t_final;
t_final = t_final + T
end
figure(1);
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subplot(2,2,1),plot(tt,q1);
subplot(2,2,2),plot(tt,q2);
subplot(2,2,3),plot(tt,q3);
subplot(2,2,4),plot(tt,q4);
function wd = sysmodel(t,w);
 global A B u 
 wd = zeros(4,1);
 wd = A*w + B*u;

The system response under LQR control is shown in Figure 11.26b.
Note: See Appendix B for further MATLAB control system examples.
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Figure 11.26
(a) A vibrating system; (b) the response under LQR control.
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11.8 Other Advanced Control Techniques

Now we will outline several advanced control techniques, which may be classified into the 
same group as modern control techniques. It is beyond the scope of the present book give 
details of these techniques. The present section is intended to be an introduction to these 
techniques rather than a rigorous treatment.

11.8.1 Nonlinear Feedback Control

Simple, linear servo control is known to be inadequate for transient and high-speed opera-
tion of complex plants. Past experience of servo control in process applications is exten-
sive, however, and servo control is extensively used in many commercial applications (e.g., 
robots). For this type of control to be effective, however, nonlinearities and dynamic cou-
pling must be compensated faster than the control bandwidth at the servo level. One way 
of accomplishing this is by implementing a linearizing and decoupling controller inside 
the servo loops. This technique is termed feedback linearization technique (FLT). One such 
technique that is useful in controlling nonlinear and coupled dynamic systems such as 
robots is outlined here.

Consider a mechanical dynamic system (plant) given by:

 M q
q

n q
q

f( ) = 




+ ( )d

dt
d
dt

t
2.

2.
,  (11.2.01)

in which:

 f =



















=

f

f

fr

1

2.


vector of input forces at various locations of the system

 q =



















=

q

q

qr

1

2.


vector of response variables (e.g., positions)

 at the forcing locations of the system

M(q) = inertia matrix (nonlinear)
n(q,(dq/dt)) = a vector of remaining nonlinear effects in the system (e.g., damping, backlash, 
gravitational effects)

Now suppose that we can model M by M̂ and n by n̂. Then, let us use the nonlinear (lin-
earizing) feedback controller given by:

 f MK e
q

n= + -




-- ∫ˆ ˆe T Ti ddt

d
dt

1  (11.2.02.)
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in which
e = qd - q = error (correction) vector
qd = desired response

and K, Ti, and Td are constant control parameter matrices. This control scheme is shown in 
Figure 11.2.7. By substituting the controller equation (Equation 11.2.02.) into the plant equa-
tion (Equation 11.2.01) we get:

 M
q

n n MK e T e T
qd

dt
dt

d
dti d

2.

2.
1= - + + -





- ∫ˆ ˆ  (11.2.03.)

If our models are exact, we have M = M̂  and n = n̂. Then, because the inverse of matrix M̂  
exists in general (because the inertia matrix is positive definite), we get

 
d
dt

dt
d
dti d

2.

2.
1q

K e T e T
q= + -





- ∫  (11.2.04)

Equation 11.2.04 represents a linear, constant parameter system with PID control. The 
 proportional control parameters are given by the gain matrix K, the integral control 
parameters by Ti, and the derivative control parameters by Td. It should be clear that we 
are free to select these parameters so as to achieve the desired response. In particular, if 
these three parameter matrices are chosen to be diagonal, then the control system, as given 
by Equation 11.2.04 and shown in Figure 11.2.7 will be uncoupled (i.e., one input affects only 
one output) and will not contain dynamic interactions. In summary, this controller has the 
advantages of linearizing and decoupling the system; its disadvantages are that accurate 
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Figure 11.27
The structure of the model-based nonlinear feedback control system.
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models will be needed and that the control algorithm is crisp and unable to handle quali-
tative or partially known information, learning, etc.

Instead of using analytical modeling, the parameters in M̂  and n̂ may be obtained 
through the measurement of various input-output pairs. This is called model identification, 
and can cause further complications in terms of instrumentation and data processing 
speed, particularly because some of the model parameters must be estimated in real 
time.

11.8.2 adaptive Control

An adaptive control system is a feedback control system in which the values of some or 
all of the controller parameters are modified (adapted) during the system operation (in 
real time) on the basis of some performance measure, when the response (output) require-
ments are not satisfied. The techniques of adaptive control are numerous because many 
criteria can be employed for modifying the parameter values of a controller. According to 
the above definition, self-tuning control falls into the same category. In fact, the terms “adap-
tive control” and “self-tuning control” have been used interchangeably in the technical lit-
erature. Performance criteria used in self-tuning control may range from time-response or 
frequency-response specifications, parameters of “ideal” models, desired locations of poles 
and zeros, and cost functions. Generally, however, in self-tuning control of a system some 
form of parameter estimation or identification is performed on-line using input-output 
measurements from the system, and the controller parameters are modified using these 
estimated parameter values. A majority of the self-tuning controllers developed in the 
literature is based on the assumption that the plant (process) is linear and time-invariant. 
This assumption does not generally hold true for complex industrial processes. For this 
reason we shall restrict our discussion to an adaptive controller that has been developed 
for nonlinear and coupled plants.

On-line estimation or system identification, which may be required for adaptive control, 
may be considered to be a preliminary step of “learning.” In this context, learning control 
and adaptive control are related, but learning is much more complex and sophisticated 
than a quantitative estimation of parameter values. In a learning system, control decisions 
are made using the cumulative experience and knowledge gained over a period of time. 
Furthermore, the definition of learning implies that a learning controller will “remember” 
and improve its performance with time. This is an evolutionary process that is true for 
intelligent controllers, but not generally for adaptive controllers.

Here, we briefly describe a model-referenced adaptive control (MRAC) technique. The gen-
eral approach of MRAC is illustrated by the block diagram in Figure 11.2.8. In nonadaptive 
feedback control the response measurements are fed back into the drive controller through 
a feedback controller, but the values of the controller parameters (feedback gains) them-
selves are unchanged during operation. In adaptive control these parameter values are 
changed according to some criterion. In model-referenced adaptive control, in particular, 
the same reference input that is applied to the physical system is applied to a reference 
model as well. The difference between the response of the physical system and the output 
from the reference model is the error. The ideal objective is to make this error zero at all 
times. Then, the system will perform just like the reference model. The error signal is used 
by the adaptation mechanism to determine the necessary modifications to the values of 
the controller parameters in order to reach this objective. Note that the reference model is 
an idealized model which generates a desired response when subjected to the reference 
input, at least in an asymptotic manner (i.e., the error converges to zero). In this sense 
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it is just a means of performance specification and may not possess any resemblance or 
 analogy to an analytical model of the process itself. For example, the reference model may 
be chosen as a linear, uncoupled system with desired damping and bandwidth properties 
(i.e., damping ratios and natural frequencies).

A popular approach to derive the adaptive control algorithm (i.e., the equations express-
ing how the controller parameters should be changed in real time) is through the use of the 
MIT rule. In this method, the controller parameters are changed in the direction opposite 
to the maximum slope of the quadratic error function. Specifically, the quadratic function

 V(p) = eTWe (11.2.05)

is formed, where e is the error signal vector shown in Figure 11.2.8. W is a diagonal and 
positive-definite weighting matrix, and p is a vector of control parameters which will be 
changed (adapted) during control. The function V is minimized numerically with respect 
to p during the controller operation, subject to some simplifying assumptions. The details 
of the algorithm are found in the literature.

The adaptive control algorithm described here has the advantage that it does not neces-
sarily require a model of the plant itself. The reference model can be chosen to specify the 
required performance, the objective of MRAC being to drive the response of the  system 
toward that of the reference model. Several drawbacks exist in this scheme, however. 
Because the reference model is quite independent of the plant model, the required control 
effort could be excessive and the computation itself could be slow. Furthermore, a new con-
trol law must be derived for each reference model. Also, the control action must be gener-
ated much faster than the speed at which the nonlinear terms of the plant change because 
the adaptation mechanism has been derived by assuming that some of the nonlinear terms 
remain more or less constant.

Many other adaptive control schemes depend on a reasonably accurate model of the 
plant, not just a reference model. The models may be obtained either analytically or 
through identification (experimental). Adaptive control has been successfully applied in 
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Figure 11.28
Model-referenced adaptive controller.
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complex, nonlinear, and coupled systems, even though it has several weaknesses, as men-
tioned previously.

11.8.3 Sliding Mode Control

Sliding mode control, variable structure control, and suction control fall within the same 
class of control techniques, and are somewhat synonymous. The control law in this class is 
generally a switching controller. A variety of switching criteria may be employed. Sliding 
mode control may be treated as an adaptive control technique. Because the switching sur-
face is not fixed, its variability is somewhat analogous to an adaptation criterion. Specifically, 
the error of the plant response is zero when the control falls on the sliding surface.

Consider a plant that is modeled by the nth order nonlinear ordinary differential 
equation:

 
d y
dt

f t u t d t
n

n
= ( ) + ( ) + ( )y,  (11.2.06)

where

y = response of interest
u(t) = input variable
d(t) = unknown disturbance input
f(•) = an unknown nonlinear model of the process which depends on the response 

vector: y = 





-

-
y y

d y
dt

n

n

T

, , , 
1

1

A time-varying sliding surface is defined by the differential equation:

 s t
d
dt

y
n

y,( ) = +





=
-

l
1

0  (11.2.07)

with l  > 0. Note the response error ỹ = y - yd, where yd is the desired response. Similarly, 
ỹ = y - yd may be defined. It should be clear from Equation 11.2.07 that if we start from rest 
with zero initial error (ỹ(0) = 0 with all the derivative of ỹ up to the n - 1th derivative being 
zero at t = 0) then s = 0 corresponds to ỹ(t) = 0 for all t. This will guarantee that the desired 
trajectory yd(t) is tracked accurately at all times. Hence, the control objective would be to 
force the error state vector ỹ onto the sliding surface s = 0. This control objective will be 
achieved if the control law satisfies

 s sgn(s) ≤ -h  with h  > 0 (11.2.08)

where sgn(s) is the signum function.
The nonlinear process f (y, t) is generally unknown. Suppose that f t f t f t( , ) ( , ) ( , )y y y= + ∆


 

where ˆ( , )f ty  is a completely known function, and ∆f represents modeling uncertainty. 
Specifically, consider the control equation:

 u f t
n

p
d y
dt

Kp
n p

n p
p

n

= - -
-





-
-

-
=

-

∑ˆ( , )y
1

1

1

l


(( , )sgn( )y t s  (11.2.09)
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where K(y,t) is an upper bound for the total uncertainty in the system (i.e., disturbance, 
model error, speed of error reduction, etc.) and:

 
n

p
n

p n p
-




= -

- -
1 1

1
( )!

!( )!

This sliding-mode controller satisfies Equation 11.2.08, but has drawbacks arising from 
the sgn(s) function. Specifically, very high switching frequencies can result when the con-
trol effort is significant. This is usually the case in the presence of large modeling errors 
and disturbances. High-frequency switching control can lead to the excitation of high-
frequency modes in the plant. It can also lead to chattering problems. This problem can be 
reduced if the signum function in Equation 11.2.09 is replaced by a saturation function, with 
a boundary layer  ± F, as shown in Figure 11.2.9. In this manner, any switching that would 
have occurred within the boundary layer would be filtered out. Furthermore, the switch-
ing transitions would be much less severe. Clearly, the advantages of sliding mode control 
include robustness against factors such as nonlinearity, model uncertainties, disturbances, 
and parameter variations.

11.8.4 linear Quadratic gaussian (lQg) Control

This is an optimal control technique that is intended for quite linear systems with random 
input disturbances and output (measurement) noise. Consider the linear system given by 
the set of first order differential equations (state equations):

 
d
dt
x

Ax Bu Fv= + +  (11.2.10)

and the output equations:

 y = Cx + w (11.2.11)
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Figure 11.29
Switching functions used in sliding mode control. (a) Signum function. (b) Saturation function.
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in which

 x =



















x

x

xn

1

2.


is the state vector,

 u =



















u

u

ur

1

2.


is the vector of system inputs, and
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The vectors v and w represent input disturbances and output noise, respectively, which 
are assumed to be white noise (i.e., zero-mean random signals whose power spectral den-
sity junction is flat) with covariance matrices V and W. Also, A is called the system matrix, 
B the input distribution matrix, and C the output formation matrix. In LQG control the 
objective is to minimize the performance index (cost function):

 J E dtT T= +( )












∞

∫ x Qx u Ru
0

 (11.2.12.)

in which Q and R are diagonal matrices of weighting and E denotes the “expected value” 
(or mean value) of a random process. In the LQG method the controller is implemented as 
the two-step process:

 1. Obtain the estimate x̂  for the state vector x using a Kalman filter (with gain Kf).
 2.. Obtain the control signal as a product of x̂  and a gain matrix K0, by solving a 

noise-free linear quadratic optimal control problem.

This implementation is shown by the block diagram in Figure 11.3.0. As mentioned before, 
it can be analytically shown that the noise-free quadratic optimal controller is given by the 
gain matrix:

 K0 = R-1 BT P0 (11.2.13.)

where P0 is the positive semidefinite solution of the algebraic Riccati equation:

 ATP0 + P0A - P0BR-1 BT P0 + Q = 0 (11.2.14)
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The Kalman filter is given by the gain matrix:

 Kf = Pf CT W-1 (11.2.15)

where Pf is obtained as before by solving:

 APf + Pf AT - Pf CT W-1 CPf + FVFT = 0 (11.2.16)

An advantage of this controller is that the stability of the closed-loop control system 
is guaranteed as long as both the plant model and the Kalman filter are stabilizable and 
detectable. Note that if uncontrollable modes of a system are stable, the system is stabiliz-
able. Similarly, if the unobservable modes of a system are stable, the system is detectable. 
Another advantage is the precision of the controller as long as the underlying assumptions 
are satisfied, but LQG control is also a model-based “crisp” scheme. Model errors and 
noise characteristics can significantly affect the performance. Also, even though stabil-
ity is guaranteed, good stability margins and adequate robustness are not guaranteed 
in this method. Computational complexity (solution of two Riccati equations) is another 
drawback.

11.8.5 H∞ Control

This is a relatively new optimal control approach which is quite different from the LQG 
method. However, this is a frequency-domain method. This technique assumes a linear 
plant with constant parameters, which may be modeled by a transfer function in the SISO 
case or by a transfer matrix in the MIMO case. Without going into the analytical details, let 
us outline the principle behind H∞ control.

Consider the MIMO, linear, feedback control system shown by the block diagram in 
Figure 11.3.1, where I is an identity matrix. It satisfies the relation:

 GGc[yd - y] = y

or

 [I + GGc]y = GGc yd (11.2.17)

B

A
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–Kf
–K0 PlantIntegrator

Reference input
(desired response)

yd

–
Kalman

filter

dt
dx̂

x̂

Noise-free
optimal

controller

System
response

y

Figure 11.30
Linear quadratic Gaussian (LQG) control.
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Because the plant G is fixed, the underlying design problem here is to select a suitable 
controller Gc that will result in a required performance of the system. In other words, the 
closed-loop transfer matrix:

 H I GG GG= +[ ]-c c
1

 (11.2.18)

must be properly “shaped” through an appropriate choice of Gc. The required shape of H(s) 
may be consistent with the classical specifications such as

 1. Unity |H(jw )| or large |GGc(jw )| at low frequencies in order to obtain small 
steady-state error for step inputs

 2.. Small |H(jw )| or small |GGc(jw )| at large frequencies so that high-frequency noise 
would not be amplified, and further, the controller would be physically realizable.

 3.. Adequately high gain and phase margins in order to achieve required stability 
levels.

Of course, in theory there is an “infinite” number of possible choices for Gc(s) that will 
satisfy such specifications. The H∞ method uses an optimal criterion to select one of these 
“infinite” choices. Specifically, the choice that minimizes the so-called “H∞ norm” of the 
closed-loop transfer matrix H(s), is chosen. The rationale is that this optimal solution is 
known to provide many desired characteristics (with respect to stability, robustness in the 
presence of model uncertainty and noise, sensitivity, etc.) in the control system.

The H∞ norm of a transfer matrix H is the maximum value of the largest singular value of 
H(jw ), maximum being determined over the entire frequency range. A singular value of 
H(jw ) is the square root of an eigenvalue of the matrix H(jw )HT(jw ).

The H∞ control method has the advantages of stability and robustness. The disadvan-
tages are that it is a “crisp” control method that is limited to linear, time-invariant systems, 
and that it is a model-based technique.

11.9 Fuzzy Logic Control

An intelligent controller may be interpreted as a computer-based controller that can some-
what “emulate” the reasoning procedures of a human expert in the specific area of control, 
to generate the necessary control actions. Here, techniques from the field of artificial intel-
ligence (AI) are used for the purpose of acquiring and representing knowledge and for 

Reference
inputs Gc (s) Model

Gc (s)yd

Plant

Outputs
y–

Controller

Figure 11.31
A linear multivariable feedback control system.
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generating control decisions through an appropriate reasoning mechanism. With steady 
advances in the field of AI, especially pertaining to the development of practical expert 
systems or knowledge systems, there has been a considerable interest in using AI techniques 
for controlling complex processes. Complex engineering systems use intelligent control to 
cope with situations where conventional control techniques are not effective.

Intelligent control depends on efficient ways of representing and processing the control 
knowledge. Specifically, a knowledge base has to be developed and a technique of rea-
soning and making “inferences” has to be available. Knowledge-based intelligent control 
relies on knowledge that is gained by intelligently observing, studying, or understanding 
the behavior of a plant, rather than explicitly modeling the plant, to arrive at the control 
action. In this context, it also heavily relies on the knowledge of experts in the domain, 
and also on various forms of general knowledge. Modeling of the plant is implicit here. 
Soft computing is an important branch of study in the area of intelligent and knowledge-
based systems. It has effectively complemented conventional AI in the area of machine 
intelligence (computational intelligence). Fuzzy logic, probability theory, neural networks, 
and genetic algorithms are cooperatively used in soft computing for knowledge repre-
sentation and for mimicking the reasoning and decision-making processes of a human. 
Decision making with soft computing involves approximate reasoning, and is commonly 
used in intelligent control. This section presents an introduction to intelligent control, 
emphasizing FLC.

11.9.1 Fuzzy logic

Fuzzy logic is useful in representing human knowledge in a specific domain of appli-
cation and in reasoning with that knowledge to make useful inferences or actions. The 
conventional binary (bivalent) logic is crisp and allows for only two states. This logic can-
not handle fuzzy descriptors, examples of which are “fast” which is a fuzzy quantifier and 
“weak” which is a fuzzy predicate. They are generally qualitative, descriptive, and subjec-
tive and may contain some overlapping degree of a neighboring quantity, for example, 
some degree of “slowness” in the case of the fuzzy quantity “fast.” Fuzzy logic allows for 
a realistic extension of binary, crisp logic to qualitative, subjective, and approximate situ-
ations, which often exist in problems of intelligent machines where techniques of AI are 
appropriate.

In fuzzy logic, the knowledge base is represented by if-then rules of fuzzy descriptors. 
Consider the general problem of approximate reasoning. In this case the knowledge base K 
is represented in an “approximate” form, for example, by a set of if-then rules with anteced-
ent and consequent variables that are fuzzy descriptors. First, the data D are preprocessed 
according to:

 FD = FP(D) (11.2.19)

which, in a typical situation, corresponds to a data abstraction procedure called “fuzzifica-
tion” and establishes the membership functions or membership grades that correspond to 
D. Then for a fuzzy knowledge base FK, the fuzzy inference FI is obtained through fuzzy-
predicate approximate reasoning, as denoted by:

 FI = FK ° FD (11.2.2.0)

This uses a composition operator “°” for fuzzy matching of data (D) with the knowledge 
base (K) is carried out, and making inferences (I) on that basis.
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Fuzzy logic is commonly used in “intelligent” control of processes and machinery. In this 
case the inferences of a fuzzy decision making system are the control inputs to the process. 
These inferences are arrived at by using the process responses as the inputs  (context data) 
to the fuzzy decision-making system.

11.9.2 Fuzzy Sets and Membership Functions

A fuzzy set has a fuzzy boundary. The membership an element lying on the boundary is 
fuzzy: there is some possibility that the element is inside the set and a complementary pos-
sibility that it is outside the set. A fuzzy set may be represented by a membership function. 
This function gives the grade (degree) of membership within the set, of any element of the 
universe of discourse. The membership function maps the elements of the universe on to 
numerical values in the interval [0, 1]. Specifically:

  m A (x): X → [0, 1] (11.2.2.1)

where m A(x) is the membership function of the fuzzy set A in the universe in X. Stated in 
another way, fuzzy set if A is a set of ordered pairs:

 A x x x X xA A= ∈ ∈{( , ( )); , ( ) [ , ]}m m 0 1  (11.2.2.2.)

The membership function m A(x) represents the grade of possibility that an element x 
belongs to the set A. It follows that a membership function is a possibility function and not a 
probability function. A membership function value of zero implies that the corresponding 
element is definitely not an element of the fuzzy set. A membership function value of unity 
means that the corresponding element is definitely an element of the fuzzy set. A grade of 
membership greater than 0 and less than 1 corresponds to a noncrisp (or fuzzy) member-
ship, and the corresponding elements fall on the fuzzy boundary of the set. The closer the 
m A(x) is to 1 the more the x is considered to belong to A, and similarly the closer it is to 0 
the less it is considered to belong to A. A typical fuzzy set is shown in Figure 11.3.2.a and its 
membership function is shown in Figure 11.3.2.b.

Note: A crisp set is a special case of fuzzy set, where the membership function can take 
the two values 1 (membership) and 0 (nonmembership) only. The membership function of 
a crisp set is given the special name characteristic function.

(a) (b)

Universe X
(element x)

Fuzzy boundary

Fuzzy set A

x

Membership
grade µA(x)

1.0

0

Fuzzy Fuzzy

Figure 11.32
(a) A fuzzy set; (b) The membership function of a fuzzy set.
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11.9.3 Fuzzy logic Operations

It is well known that the “complement”, “union”, and “intersection” of crisp sets correspond 
to the logical operations NOT, OR, and AND, respectively, in the corresponding crisp, biva-
lent logic. Furthermore, it is known that, in the crisp bivalent logic, the union of a set with 
the complement of a second set represents an “implication” of the first set by the second set. 
Set inclusion (i.e., extracting a subset) is a special case of implication in which the two sets 
belong to the same universe. These operations (connectives) may be extended to fuzzy sets 
for corresponding use in fuzzy logic fuzzy reasoning. For fuzzy sets, the applicable connec-
tives must be expressed in terms of the membership functions of the sets which are operated 
on. In view of the isomorphism between fuzzy sets and fuzzy logic, both the set operations 
and the logical connectives can be addressed together. Some basic operations that can be 
defined on fuzzy sets and the corresponding connectives of fuzzy logic are described now. 
Several methods are available to define the intersection and the union of fuzzy sets.

11.9.3.1 Complement (Negation, NOT)

Consider a fuzzy set A in a universe X. Its complement A′ is a fuzzy set whose membership 
function is given by:

 m mA Ax x x X′( ) ( )= - ∈1 for all  (11.2.2.3.)

The complement in fuzzy sets corresponds to the negation (NOT) operation in fuzzy 
logic, just as in crisp logic, and is denoted by A  where A now is a fuzzy logic proposition 
(or a fuzzy state).

A graphic (membership function) representation of complement of a fuzzy set (or, nega-
tion of a fuzzy state) is given in Figure 11.3.3..

11.9.3.2 Union (Disjunction, OR)

Consider two fuzzy sets A and B in the same universe X. Their union is a fuzzy set con-
taining all the elements from both sets, in a “fuzzy” sense. This set operation is denoted 
by ∪. The membership function of the resulting set A ∪ B is given by

 m m mA B A Bx x x x X∪ = ∀ ∈( ) max[( ( ), ( )]  (11.2.2.4)

0

1

A

A´

Figure 11.33
Fuzzy set complement or fuzzy logic NOT.
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The union corresponds to a logical OR operation (called Disjunction), and is denoted by 
A∪B, where A and B are fuzzy states or fuzzy propositions. The rationale for the use of max 
to represent fuzzy-set union is that, because element x may belong to one set or the other, 
the larger of the two membership grades should govern the outcome (union). Furthermore, 
this is consistent with the union of crisp sets. Similarly, the appropriateness of using max 
to represent fuzzy-logic operation “OR” should be clear. Specifically, since either of the 
two fuzzy states (or propositions) would be applicable, the larger of the corresponding 
two membership grades should be used to represent the outcome. A graphic (membership 
function) representation of union of two fuzzy sets (or, the logical combination OR of two 
fuzzy states in the same universe) is given in Figure 11.3.4.

Even though set intersection is applicable to sets in a common universe, a logical “OR” 
may be applied for concepts in different universes. In particular, when the operands 
belong to different universes, orthogonal axes have to be used to represent them in a com-
mon membership function.

11.9.3.3 Intersection (Conjunction, AND)

Again, consider two fuzzy set A and B in the same universe X. Their intersection is a fuzzy 
set containing all the elements that are common to both sets, in a “fuzzy” sense. This set 
operation is denoted by ∩. The membership function of the resulting set A ∩ B is given by:

 m m mA B A Bx x x x X∩ = ∀ ∈( ) min[( ( ), ( )]  (11.2.2.5)

The union corresponds to a logical AND operation (called Conjunction), and is denoted 
by A ∩ B, where A and B are fuzzy states or fuzzy propositions. The rationale for the use of 
min to represent fuzzy-set intersection is that, because the element x must simultaneously 
belong to both sets, the smaller of the two membership grades should govern the outcome 
(intersection).

Furthermore, this is consistent with the intersection of crisp sets. Similarly, the appro-
priateness of using min to represent fuzzy-logic operation “AND” should be clear. 
Specifically, since both fuzzy states (or propositions) should be simultaneously present, 
the smaller of the corresponding two membership grades should be used to represent the 
outcome. A graphic (membership function) representation of intersection of two fuzzy 
sets (or, the logical combination AND of two fuzzy states in the same universe) is given 
in Figure 11.3.5.

0

1 A

B

A ∪ B

Figure 11.34
Fuzzy set union or fuzzy logic OR.
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11.9.3.4 Implication (If-Then)

An if-then statement (a rule) is called an “implication.” In a knowledge-based system, the 
knowledge base is commonly represented using if-then rules. In particular, a knowledge 
base in fuzzy logic may be expressed by a set of linguistic rules of the if-then type, con-
taining fuzzy terms. In fact a fuzzy rule is a fuzzy relation. A knowledge base containing 
several fuzzy rules is also a relation, which is formed by combining (aggregating) the 
individual rules according to how they are interconnected.

Consider a fuzzy set A defined in a universe X and a second fuzzy set B defined in 
another universe Y. The fuzzy implication “If A then B,” is denoted by A→B. Note that in 
this fuzzy rule, A represents some “fuzzy” situation, and is the condition or the antecedent 
of the rule. Similarly, B represents another fuzzy situation, and is the action or the conse-
quent of the fuzzy rule. The fuzzy rule A→B is a fuzzy relation. Since the elements of A are 
defined in X and the elements of B are defined in Y, the elements of A→B are defined in the 
Cartesian product space X × Y. This is a two-dimensional space represented by two orthogo-
nal axes (x-axis and y-axis), and gives the domain in which fuzzy rule (or fuzzy relation) 
is defined. Since A and B can be represented by membership functions, and additional 
orthogonal axis is needed to represent the membership grade.

Fuzzy implication may be defined (interpreted) in several ways. Two definitions of fuzzy 
implication are:

Method 1:

 m m mA B A Bx y x y x X y Y→ = ∀ ∈ ∀ ∈( , ) min[( ( ), ( )] ,  (11.2.2.6)

Method 2:

 m m mA B A Bx y x y x X y Y→ = - + ∀ ∈ ∀ ∈( , ) min[ , { ( ) ( )}] ,1 1  (11.2.2.7)

These two methods are approaches for obtaining the membership function of the partic-
ular fuzzy relation given by an if-then rule (implication). Note that the first method gives 
an expression that is symmetric with respect to A and B. This is not intuitively satisfying 
because “implication” is not a commutative operation (specifically, A→B does not neces-
sarily satisfy B→A). In practice, however, this method provides a good, robust result. The 
second method has an intuitive appeal because in crisp bivalent logic, A→B has the same 

0

1 A

B

A ∩ B

Figure 11.35
Fuzzy set intersection or fuzzy logic AND.
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truth table as [(NOT A) OR B] and hence are equivalent. Note that in Equation 11.2.2.7, the 
membership function is upper-bounded to 1 using the bounded sum operation, as required 
(A membership grade cannot be greater than 1). The first method is more commonly used 
because it is simpler to use and often provides quite accurate results.

An example of fuzzy implication using the first method is shown in Figure 11.3.6. Here 
the implication from a fuzzy set (Figure 11.3.6a to another fuzzy set (Figure 11.3.6b) is given 
by the fuzzy set in Figure 11.3.6c).

11.9.4 Compositional rule of inference

In knowledge-based systems, knowledge is often expressed as rules of the form:

 “IF condition Y1 is y1 AND IF condition Y2. is y2. THEN action C is c.”

In fuzzy knowledge-based systems (e.g., fuzzy control systems), rules of this type are 
 linguistic statements of expert knowledge in which y1, y2., and c are fuzzy quantities (e.g., 
small negative, fast, large positive). These rules are fuzzy relations that employ the fuzzy 
implication (IF-THEN). The collective set of fuzzy relations forms the knowledge base of 
the fuzzy system. Let us denote the fuzzy relation formed by this collection of rules as 
the fuzzy set K. This relation is an aggregation of the individual rules, and may be repre-
sented by a multivariable membership function. In a fuzzy decision making process (e.g., 
in FLC), the rulebase (knowledge base) K is first collectively matched with the available 
data (context). Next, an inference is made on another fuzzy variable that is represented in 
the knowledge base, on this basis. The matching and inference making are done using the 
composition operation, as discussed previously. The application of composition to make 
inferences in this manner is known as the compositional rule of inference (CRI).

Membership
grade

1

0
0.0 1.0 2.0 Speed (m/s)

1

0
0.0 10.0 20.0 Power (hp)

Power 

Speed  
1

0

0.0

0.0 20.0

2.0

(a) Membership
grade

(b)

Membership
grade

(c)

Figure 11.36
(a) Fuzzy set A; (b) Fuzzy set B; (c) Fuzzy implication AB.
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For example, consider a control system. Usually the context would be the measured out-
puts Y of the process. The control action that drives the process is C. Typically, both these 
variables are crisp, but let us ignore this fact for the time being and assume them to be 
fuzzy, for general consideration. Suppose that the control knowledge base is denoted by 
R, a fuzzy relation. The method of obtaining the rule-base R is analogous to model identi-
fication in conventional crisp control. Then, by applying the CRI we get the fuzzy control 
action as:

 m m mC
Y

Y R= maxmin( , ) (11.2.2.8)

11.9.5 extensions to Fuzzy Decision Making

Thus far we have considered fuzzy rules of the form:

 IF x is Ai AND IF y is Bi THEN z is Ci (11.2.2.9)

where Ai, Bi, and Ci are fuzzy states governing the ith rule of the rulebase. This is the 
the Mamdani approach (Mamdani system or Mamdani model) named after the person 
who pioneered the application of this approach. Here, the knowledge base is represented 
as fuzzy protocols and represented by membership functions for Ai, Bi, and Ci, and the 
 inference is obtained by applying the CRI. The result is a fuzzy membership function, 
which typically has to be defuzzified for use in practical tasks.

Several variations to this conventional method are available. One such version is the 
Sugeno model (or, Takagi-Sugeno-Kang model or TSK model). Here, the knowledge base has 
fuzzy rules with crisp functions as the consequent, of the form:

 IF x is Ai AND IF y is Bi THEN ci = fi(x, y) (11.2.3.0)

for Rule i, where, fi is a crisp function of the condition variables (antecedent) x and y. Note 
that the condition part of this rule is the same as for the Mamdani model (Equation 11.2.2.9), 
where Ai and Bi are fuzzy sets whose membership functions are functions of x and y, 
respectively. The action part is a crisp function of the condition variables, however. The 
inference ˆ( , )c x y  of the fuzzy knowledge-based system is obtained directly as a crisp func-
tion of the condition variables x and y, as follows:

For Rule i, a weighting parameter wi(x, y) is obtained corresponding to the condition 
membership functions, as for the Mamdani approach, by using either the “min” operation 
or the “product” operation. For example, using the “min” operation we form:

 w x y x yi A Bi i
( , ) min[ ( ), ( )]= m m  (11.2.3.1)

The crisp inference ˆ( , )c x y  is determined as a weighted average of the individual rule 
inferences (crisp) ci = fi(x, y) according to:

 ˆ( , )
( , ) ( , )

c x y
w c
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w x y f x yi i
i
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 (11.2.3.2.)

76868.indb   584 7/8/09   5:18:42 PM



Advanced Control 585

where r is the total number of rules. For any data x and y, the knowledge-based action 
ˆ( , )c x y  can be computed from Equation 11.2.3.2., without requiring any defuzzification. The 
Sugeno model is particularly useful when the actions are described analytically through 
crisp functions, as in conventional crisp control, rather than linguistically. The TSK 
approach is commonly used in the applications of direct control and in simplified fuzzy 
models. The Mamdani approach, even though popular in low-level direct control, is par-
ticularly appropriate for knowledge representation and processing in expert systems and 
in high-level (hierarchical) control systems.

11.9.6 basics of Fuzzy Control

Fuzzy control uses the principles of fuzzy logic-based decision making to arrive at the 
control actions. The decision making approach is typically based on the CRI, as presented 
before. In essence, some information (e.g., output measurements) from the system to be 
controlled is matched with a knowledge base of control for the particular system, using 
CRI. A fuzzy rule in the knowledge base of control is generally a “linguistic relation” of 
the form:

 IF Ai THEN IF Bi THEN Ci (11.2.3.3.)

where Ai and Bi are fuzzy quantities representing process measurements (e.g., process 
error and change in error) and Ci is a fuzzy quantity representing a control signal (e.g., 
change in process input). What we have is a rule-base with a set of (n) rules:

 Rule 1: A1 and B1 ⇒ C1

 Rule 2.: A2. and B2. ⇒ C2.

 

 Rule n: An and Bn ⇒ Cn

Because these fuzzy sets are related through IF-THEN implications and because an 
implication operation for two fuzzy sets can be interpreted as a “minimum operation” on 
the corresponding membership functions, the membership function of this fuzzy relation 
may be expressed as:

  m Ri(a, b, c) = min[m Ai (a), m Bi (b), m Ci (c)] (11.2.3.4)

The individual rules in the rule-base are joined through ELSE connectives, which are OR 
connectives (“unions” of membership functions). Hence, the overall membership function 
for the complete rule-base (relation R) is obtained using the “maximum” operation on the 
membership functions of the individual rules:

  m R (a, b, c) = max
i

 m Ri (a, b, c) = max
i

 min[m Ai (a), m Bi (b), m Ci (c)] (11.2.3.5)

In this manner the membership function of the entire rule-base can be determined (or, 
“identified” in the terminology of conventional control) using the membership functions of 
the response variables and control inputs. Note that a fuzzy knowledge base is a multivari-
able function—a multidimensional array (a three-variable function or a dimensional array 
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in the case of Equation 11.2.3.5) of membership function values. This array corresponds 
to a fuzzy control algorithm in the sense of conventional control. The control  rule-base 
may represent linguistic expressions of experience, expertise, or knowledge of the domain 
experts (control engineers, skilled operators, etc.). Alternatively, a control engineer may 
instruct an operator (or a control system) to carry out various process tasks in the usual 
manner; monitor and analyze the resulting data; and learn appropriate rules of control, 
say by using neural networks.

Once a fuzzy control knowledge base of the form given by Equation 11.2.3.5 is obtained, 
we need a procedure to infer control actions using process measurements, during control. 
Specifically, suppose that fuzzy process measurements A′ and B′ are available. The corre-
sponding control inference C′ is obtained using the CRI (i.e., inference using the composi-
tion relation). The applicable relation is:

 m c m a m b m a b cC
a b

A B R′ ′ ′( ) sup min[ ( ), ( ), ( , , )]
,

=  (11.2.3.6)

Note that in fuzzy inference, the data fuzzy sets A′ and B′ are jointly matched with the 
knowledge-base fuzzy relation R. This is a “join” operation, which corresponds to an 
AND operation (an “intersection” of fuzzy sets), and hence the min operation applies for 
the membership functions. For a given value of control action c, the resulting fuzzy sets 
are then mapped (projected) from a three-dimensional space X × Y × Z of knowledge onto 
a one-dimensional space Z of control actions. This mapping corresponds to a set of OR 
connectives, and hence the sup operation applies to the membership function values, as 
expressed in Equation 11.2.3.6.

Actual process measurements are crisp. Hence, they have to be fuzzified in order to 
apply the CRI. This is conveniently done by reading the grade  values of the member-
ship functions of the measurement at the specific measurement values. Typically, the 
control action must be a crisp value as well. Hence, each  control inference C′ must be 
defuzzified so that it can be used to control the process. Several methods are available 
to accomplish defuzzification. In the mean of maxima method the control element corre-
sponding to the maximum grade of membership is used as the control action. If there 
is more than one element with a maximum (peak) membership value, the mean of 
these values is used. In the center of gravity (or centroid) method the centroid of the mem-
bership function of control decision is used as the value of crisp control action. This 
weighted control action is known to provide a somewhat sluggish, yet more robust 
control.

Because process measurements are crisp, one method of reducing the real-time com-
putational overhead is to precompute a decision table relating quantized measurements 
to crisp control actions. The main disadvantage of this approach is that it does not allow 
for convenient modifications (e.g., rule changes and quantization resolution adjustments) 
during operation. Another practical consideration is the selection of a proper sampling 
period in view of the fact that process responses are generally analog signals. Factors 
such as process characteristics, required control bandwidth, and the processing time 
needed for one control cycle, must be taken into account in choosing a sampling period. 
Scaling or gain selection for various signals in a FLC system is another important consid-
eration. For reasons of processing efficiency, it is customary to scale the process variables 
and control signals in a fuzzy control algorithm. Furthermore, adjustable gains can be 
cascaded with these system variables so that they may serve as tuning parameters for the 
controller. A proper tuning algorithm would be needed, however. A related consideration 
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is real-time or on-line modification of a fuzzy rule-base. Specifically, rules may be added, 
deleted, or modified on the basis of some scheme of learning and self-organization. For 
example, using a model for the process and making assumptions such as input-output 
monotonicity, it is possible during control to trace and tag the rules in the rule-base that 
need attention. The control-decision table can be modified accordingly.

Hardware fuzzy processors ( fuzzy chips) may be used to carry out the fuzzy inference at 
high speed. The rules, membership functions, and measured context data are generated 
as usual, through the use of a control “host” computer. The fuzzy processor is located in 
the same computer, which has appropriate interface (input-output) hardware and driver 
software. Regardless of all these, it is more convenient to apply the inference mechanism 
separately to each rule and then combine the result instead of applying it to the entire 
 rule-base using the CRI.

Fuzzy logic is commonly used in direct control of processes and machinery. In this case 
the inferences of a fuzzy decision making system form the control inputs to the process. 
These inferences are arrived at by using the process responses as the inputs (context data) 
to the fuzzy system. The structure of a direct fuzzy controller is shown in Figure 11.3.7. 
Here, y represents the process output, u represents the control input, and R is the relation, 
which represents the fuzzy control knowledge base.

example 11.38

Consider the room comfort control system schematically shown in Figure 11.38. The temperature 
(T) and humidity (H) are the process variables that are measured. These sensor signals are provided 
to the fuzzy logic controller, which determines the cooling rate (C) that should be generated by the 
air conditioning unit. The objective is to maintain a particular comfort level inside the room.

Intelligent
machine

Control input u΄ Machine response y΄

(motor currents, voltages, etc.) (motions, etc.)

Fuzzification

y΄ → µY΄ (y)

Defuzzification

µU΄ (u) → u΄ µU΄ (u) = µY΄ (y) º R

Knowledge base
R: ELSE (IF Yi THEN Ui)
i

Inference engine
(Compositional Rule of Inference)

Figure 11.37
Structure of a direct fuzzy controller.
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A simplified fuzzy rule-base of the comfort controller is graphically presented in Figure 11.39. 
The temperature level can assume one of two fuzzy states (HG, LW), which denote high and 
low, respectively, with the corresponding membership functions. Similarly, the humidity level can 
assume two other fuzzy states (HG, LW) with associated membership functions. Note that the 
membership functions of T are quite different from those of H, even though the same nomencla-
ture is used. There are four rules, as given in Figure 11.39. The rule-base is:

H T

Fuzzy logic
controller

Temperature
sensor

Humidity
sensor

Room

Air
conditioner

Cooling rate
C

Figure 11.38
Comfort control system of a room.

Rule 1:

Rule 2:

Rule 3:

Rule 4:

10

10

10

10

10

10

Control inference:

Centroid
C´

10

10

10

T H C

T H C

T H C

T H0.9 C

10

10

10

Figure 11.39
The fuzzy knowledge base of the comfort controller.
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Rule 1: if T is HG and H is HG then C is PH
Rule 2: else if T is HG and H is LW then C is PL
Rule 3: else if T is LW and H is HG then C is NL
Rule 4: else if T is LW and H is LW then C is NH

and if

The nomenclature used for the fuzzy states is as follows:

Temperature (T) Humidity (H) Change in Cooling Rate (C)

HG = High HG = High PH = Positive High
LW = Low LW = Low PL = Positive Low

NH = Negative High
NL = Negative Low

Application of the CRI is done here by using individual rule-based composition. Specifically, the 
measured information is composed with individual rules in the knowledge base and the results 
are aggregated to give the overall decision. For example, suppose that the room temperature is 
30°C and the relative humidity is 0.9. Lines are drawn at these points, as shown in Figure 11.39, 
to determine the corresponding membership grades for the fuzzy states in the four rules. In each 
rule the lower value of the two grades of process response variables is then used to clip (or 
modulate) the corresponding membership function of C (a min operation). The resulting “clipped” 
membership functions of C for all four rules are superimposed (a max operation) to obtain the 
control inference C′ as shown. This result is a fuzzy set, and it must be defuzzified to obtain 
a crisp control action ĉ  for changing the cooling rate. The centroid method may be used for 
defuzzification.

11.9.7 Fuzzy Control Surface

A fuzzy controller is a nonlinear controller. A well-defined problem of fuzzy control, with 
analytical membership functions and fuzzification and defuzzification methods, and well-
defined fuzzy logic operators, may be expressed as a nonlinear control surface through 
the application of the CRI. The advantage then is that the generation of the control action 
becomes a simple and very fast step of reading the surface value (control action) for given 
values of crisp measurement (process variables). The main disadvantage is, the controller 
is fixed and cannot accommodate possible improvements to control rules and member-
ship functions through successive learning and experience. Nevertheless, this approach to 
fuzzy control is quite popular. A useful software tool for developing fuzzy controllers is 
the MATLAB® Fuzzy Logic Toolbox.

example 11.39

A schematic diagram of a simplified system for controlling the liquid level in a tank is shown 
in Figure 11.40a. In the control system, the error (actually, correction) is given by: e = Desired 
level-Actual level.

The change in error is denoted by ∆e. The control action is denoted by u, where u > 0 corresponds 
to opening the inflow valve and u<0 corresponds to opening the outflow valve. A low-level direct 
fuzzy controller is used in this control system, with the control rule-base as given in Figure 11.40b.

The membership functions for E, ∆E, and U are given in Figure 11.40c. Note that the error 
measurements are limited to the interval [-3a, 3a] and the ∆error measurements to [-3b, 3b]. The 
control actions are in the range [-4c, 4c].
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Following the usual steps of applying the CRI for this fuzzy logic controller, we can develop a 
crisp control surface u(e, ∆e) for the system, expressed in the three-dimensional coordinate sys-
tem (e, ∆e, u), which then can be used as a simple and fast controller. This method is described 
next.

The crisp control surface is developed by carrying out the rule-based inference for each point: 
(e, ∆e) in the measurement space E × ∆E, using individual rule-based inference. Specifically:

 m m m mU
i j

Ei o Ej o Uku e e u′( ) max min[ ( ), ( ), ( )]
,

= ∆ ∆  (11.237)

Liquid level
sensor

Level
controller

Desired
level

Outflow

Inflow

Valve
actuator

(a)

Valve
actuator

(b)
∆E NL NS ZO PS PL

NL NL NL NM NS ZO

NS NL NM NS ZO PS

ZO NM NS ZO PS PM

PS NS ZO PS PM PL

PL ZO PS PM PL PL

E

(c)

e

NL NS ZO PS PL

–3b –b 3b2b0–2b b

1.0 

NL NS ZO PS PL

–3a –a 3a2a0–2a a

μE(e)

μ∆E(∆e)

μU(U)

∆e

1.0 

NL NM NS 1.0 ZO PS PLPM

u0 4c3c2cc–c–2c–4c –3c

Figure 11.40
(a) Liquid level control system. (b) The control rule-base. (c) The membership functions of Error, Change in 
Error, and Control Action.
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where:
m U = control inference membership function
eo = crisp context variable “error” defined in [-3a, 3a]
∆eo = crisp context variable “change in error” defined in [-3b, -3b]
Ei = fuzzy states of “error”
∆Ej = fuzzy states of “change in error”
Uk = fuzzy states of “control action”
(i, j, k) = possible combinations of fuzzy states of error, change in error, and control action, within 

the rule-base.
To find the crisp control inference (u′) for a set of crisp context data (e, ∆e), the fuzzy inference 
m U′ (u) is defuzzified using the center of gravity (centroid) method, which for the continuous case, 
is:

 u
u u du

u du

u U
U

u U
U

′
′

′

= ∈

∈

∫
∫

m

m

( )

( )
 (11.238a)

or, for the discrete case, it is:

 u
u u du

u du

u U
i U i

u U
U i

i

i

′
′

′

= ∈

∈

∑
∑

m

m

( )

( )
 (11.238b)

where U = [-4c, 4c]. Also, if the geometric shape of the inference is simple (e.g., piecewise linear), 
the centroid can be computed by the moment method:

 ′ = =

=

∑
∑

u
area m

area

i i
i

n

i
i

n
1

1

 (11.238c)

where:
areai = area of the ith subregion
mi = distance of the centroid of the ith subregion, on the control axis.
To demonstrate this procedure, consider a set of context data (eo, ∆eo), where eo is in [-3a, -2a] 

and ∆eo is in [-b/2, 0]. Then, from the membership functions and the rule-base, it should be clear 
that only two rules are valid in this region, as given below:

R1: if e is NL and ∆e is NS then u is NL
R2: if e is NL and ∆e is ZO then u is NM

Since, in the range [-3a, -2a], the membership grade of singleton fuzzification of eo is always 1, 
the lower grade of the two context values is the one corresponding to the singleton fuzzification of 
∆eo for both rules. Then, in applying the individual rule-based inference, the lower grade value of 
the two context variables is used to clip off the corresponding membership function of the control 
action variable U in each rule (this is a min operation). The resulting membership functions of U 
for the two applicable rules are superimposed (this is a max operation) to obtain the control infer-
ence U’, as shown in Figure 11.41.
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For defuzzification, we apply the moment method to find the centroid of the resulting member-
ship function of control inference, as shown in Figure 11.42. Note that the critical points in Figures 
11.41 and 11.42 (e.g., -∆eo/b, -c(∆eo/b + 3), etc.) are found from the corresponding membership 
functions.

From the moment method, we obtain the crisp control action as a function of e and ∆e. The 
above procedure is repeatedly applied to all possible ranges of e [-3a, 3a] and ∆e [-3b, 3b], to 

Control actionChange in errorError

Min

Max
1.0

NL

1.0

1.0

1.0

1.0

1.0
NM

R1:

R2:

Inference membership function

1.0

NL
µE

NL
µE

µU

µU

µ∆E

µ∆E

NS

ZO

–3a –2a –a 0 –3c–4c –2c –c 0

–3c–4c –2c –c 0

–3c–4c –2c –c 0

–3b –2b –b 0

–3a –2a –a 0

b

–3b –2b –b 0 be0 ∆eo

µU'

–∆eo/b

∆eo/b+1

–∆eo/b
∆eo/b+1

Figure 11.41
Individual rule-based inference for eo[-3.a, -2.a] and ∆eo[-b/2., 0].

–c–3c–4c

1.0
µU'

–2c

(i)

(ii)
(iii)

(iv)

u

–∆eo/b

∆eo/b+1

–c (∆eo/b+3)
–c (∆eo/b+2)c (∆eo/b–2)

Figure 11.42
Subregions and critical points for calculation of the centroid.
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obtain the complete control surface. Also, the procedure can be implemented in a computer 
program to generate a control surface. A control surface with a = 1, b = 2, and c = 0.5 is shown in 
Figure 11.43.

In the present example what we have applied is in fact the Mamdani approach (Mamdani 
 system or Mamdani model). Sugeno model (or TSK model) could have been used as well, thereby 
avoiding the defuzzification step.

Problems

PROBLEM 11.1

Consider the double pendulum (or a two-link robot with revolute joints) having arm 
lengths l1 and l2., and the end masses m1 and m2., as shown in Figure P11.1.

 a. Obtain the equations of motion for the system in terms of the absolute angles of 
swing q 1 and q 2. about the vertical equilibrium configuration. Linearize the equa-
tions for small motions q q q q1 1 2. 2., , and .

 b. For the special case of m1 = m2. = m and l1 = l2. = l, what are the natural frequencies of 
the system?

 c. Express the free response of the system to an IC excitation of q (0) and q (0).
 d. Express the free response as obtained in (c) for the case l = 9.81 m with  

q (0) = [1-(1/√2.)]T and q (0) = 0. Sketch this response for a time period of 2.0 
seconds.

Control action
u´

2

1

0

–1

–2
3

2

1

0

–1

–2

–3
–6 –4 –2 0 2 4 6

Error
e

Change in error
∆e

Figure 11.43
Control surface with a = 1, b = 2., and c = 0.5.
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PROBLEM 11.2

Prove the following results:

 a. F(t, t ) = In for any t 

 b. 
d
dt

t t t( , ) ( ) ( , )t F t= A

 c. F(t, t) = F-1 (t, t )
 d. F(t2., t0) = F(t2., t1) F(t1, t0)

where F(t1, t2.) is the state-transition matrix of a time-varying system whose system 
matrix is A(t).

PROBLEM 11.3

Consider a system whose system matrix is:

 A =
-

-
-

















2. 4 1
0 2. 3.
0 0 2.

 a. Determine the eigenvalues of the system.
 b. What are the corresponding eigenvectors (and, if necessary, generalized 

eigenvectors)?
 c. Discuss stability of the system.

m1

θ1

θ2

l1

l2

m2

Figure P11.1
A double pendulum or a two-link robot arm with revolute joints.
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PROBLEM 11.4

A SISO dynamic system has the following transfer function:

 G s
s

s s s
( )

( )
( )( )( )

= +
+ + +

2. 2.
1 3. 4

 a. What are the eigenvalues of the system?
 b. What are the corresponding eigenvectors?
 c. Discuss system stability.

PROBLEM 11.5

A system has matrix:

 A =
















1 2. 3.
0 1 4
0 0 1

Obtain the Jordan form J of this system.

PROBLEM 11.6

Consider the dynamic system represented by the input-output differential equation:

      y y y y u u u u+ + + = + + +15 74 12.0 6 11 6

 a. Express the system in a state-space form.
 b. Determine the eigenvalues and eigenvectors of the system matrix.
 c. What is the Jordan form of the system?

PROBLEM 11.7

Consider the second order nonlinear state-space model (Van der Pol’s equation):

 x x1 2.=

 x x a x x2. 1 1
2.

2.1= - + -( )

Investigate the stability of the system with respect to the parameter a.

PROBLEM 11.8

A state-space realization of a dynamic system is given by:

 A B C=
-
-






 = 





 = [ ]2. 0

1 1
1
1

0 1, ,

 a. Is the system controllable?
 b. Is the system observable?
 c. Is the system stabilizable?
 d. Is the system detectable?
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PROBLEM 11.9

A state-space realization of a dynamic system is given by:

 A B C=
-
-






 = 





 = [ ]2. 0

1 1
0
1

1 1, ,

Investigate controllability and observability of the system through pole-zero cancellation.

PROBLEM 11.10

Consider a system with the following matrices:

 A B=
-
- -






 = 








2. 0
1 1

0 2.
1 0

, .

 a. Is the system controllable with respect to the first input?
 b. Is the system controllable with respect to the second input?
 c. Is the system controllable with respect to both inputs?

PROBLEM 11.11

Without using the mathematical condition of controllability, investigate the controlla-
bility of the following system:

 x x=

-
-
- -



















+

-

-

1 2. 1 2.
0 1 0 0
3. 1 2. 2.
3. 2. 7 6

3.
0
1

1



















u

Is the system stabilizable?

PROBLEM 11.12

Through direct observation and without performing any numerical calculations, estab-
lish the observability of the following state-space realization:

 x =

-

- -



















+
-





1 2. 3. 2.
0 1 0 0
0 0 2. 0
0 1 0 2.

1
2.
1

3.

x














u

 y = [0 -2. 1 0]x

PROBLEM 11.13

Consider the open-loop system given by:

 A B=
-
-







 = 







1 2.
0 1

0
1

,

 a. What are the eigenvalues of the system?
 b. Design a complete state feedback law that will place the eigenvalues of the system 

at G  = {-2., -3.}.
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PROBLEM 11.14

For the system in Problem 11.13., design a complete state feedback law that will place the 
eigenvalues at G  = {-2., -1}.

PROBLEM 11.15

For the system in Problem 11.13., design a complete state feedback law that will place the 
eigenvalues at G  = {-2., -2.}.

PROBLEM 11.16

Consider an open-loop system whose transfer function is:

 G( )
( )

s
s s

=
+
2.

2.

Design a complete state feedback law that will place the system eigenvalues at G  = {-2., -2.}.

PROBLEM 11.17

A third order open-loop system has the state-space realization:

 A B= - -
-

















=
-









1 0 0
1 1 0

2. 3. 1

0
0
1

0
1
0

,







= -[ ], C 1 2. 0

 a. Check whether the system is controllable and observable.
 b. Design a complete-state feedback law that will place the system poles at G  =  

{-1, -1, -1}.
 c. Design an output feedback law that will stabilize the open-loop system.

PROBLEM 11.18

Find the optimal trajectory x*(t) corresponding to the minimum of the cost function:

 J x t x t dt= +∫ [ ( ) ( )]2. 2.

0

2.

2. 

with the BC: x(0) = 0, x(2.) = 4.

PROBLEM 11.19

Find the optimal trajectory x*(t) corresponding to the minimum of the cost function:

 J x t x t dt= +∫
0

2.

2. 2.2.[ ( ) ( )]

with the BC: x(0) = 2., x(2.) is free.

PROBLEM 11.20

Consider the cost function:

 J x t x t dt

t f

= +∫
0

2. 2.2.[ ( ) ( )]

Find the optimal trajectory and the corresponding final time for the BC x(0) = 1 and 
x(tf) = 4, with tf free.
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PROBLEM 11.21

Consider the cost function:

 J x t x t dt

t f

= +∫
0

2. 2.[ ( ) ( )]

Find the optimal trajectory and the corresponding final time for the following BC:
IC x(0) = 1, and the final condition q  = 2.e-t.

PROBLEM 11.22

A plant is given by the state equation:

 x x u= +2.

with the end conditions: x(0) = 1, x(1) free. The system is to be controlled so as to
Minimize the cost function:

 J x u dt= +∫ ( )2. 2.

0

1

Determine the optimal control signal, optimal trajectory, and the control law.

PROBLEM 11.23

Discuss why nonlinear feedback control could be very useful in controlling complex 
mechanical systems with nonlinear and coupled dynamics. What are the shortcom-
ings of nonlinear feedback control? Consider the two-link manipulator that carries a 
point load (weight W) at the end effector, as shown in Figure P11.2.3.. Its dynamics can 
be expressed as:

 Iq b+ = t

where q = vector of (relative rotations) q1 and q2.

t  = vector of drive torques t 1 and t 2. at the two joints, corresponding to the coordinates 
q1 and q2.

I = second order inertia matrix = 
I I

I I
11 12.

2.1 2.2.









b = vector of joint-friction, gravitational, centrifugal, and coriolis torques (components 
are b1 and b2.)

Neglecting joint friction, and with zero payload (W = 0), show that

 

I m d I I m d d d q

I I

11 1 1
2.

1 2. 2. 1
2.

2.

2.
1 2. 2.

12.

= + + + + +( )
=

l l cos

2.2.1 2. 2. 2.
2.

2. 2. 2.

2.2. 2. 2. 2.
2.

1 1 1

+ + +

= +

=

I m d m d q

I I m d

b m gd

l cos

ccos cos cosq m g d q d q q

m d q

1 2. 1 1 2. 1 2.

2. 1 2. 2.
2.

+ + +( )[ ]
- l  ssin sin

cos

q m d q q q

b m gd q q

2. 2. 1 2. 1 2. 2.

2. 2. 2. 1 2.

2.-

= +( )
l  

++m d q q2. 1 2. 1
2.

2.l  sin
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The geometric parameters l1, l2., d1, and d2. are defined in Figure P11.2.3..
What variables have to be measured for nonlinear feedback control? Noting that the 

elements of b are more complex (even after neglecting joint friction, backlash, and pay-
load) than the elements of I, justify using nonlinear feedback control for this system 
instead of using a control method based on an accurate dynamic model.

PROBLEM 11.24

 i. Which control method would you recommend for each of the following 
applications:

 (a) Servo control of a single-axis positioning table with a permanent-magnet dc 
motor (linear).

 (b) Active control of a vehicle suspension system (liner, multivariable).
 (c) Control of a rotary cement kiln (nonlinear, complex, difficult to model).
 ii. A metallurgical process consists of heat treatment of a bulk of material for a speci-

fied duration of time at a suitable temperature. The heater is controlled by its fuel 
supply rate. A schematic diagram of the system is shown in Figure P11.2.4a.

x

y

q1

q2

m2g

m1g

W

PayloadEnd
effector

I2

I1

d1

l2

d2

l1

Figure P11.23
A two-link robotic manipulator.
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Material in

Fuel flow
in (F )

Material out

Temperature
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Material
bulk (M) Furnace

Fuzzy
controller

Reference
inputs

(a)

Valve
actuator

(b)

1.0

0 100 200 300 400 500 600
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Temperature (ºC)

Material mass (kg)

1.0
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0 50 100 150 200

1.0
µF RD MN IN

75 125

250

Figure P11.24
(a) A metallurgical heat treatment process. (b) Membership functions.
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The following fuzzy quantities are defined, with the corresponding states:

 T: Temperature of the material (LW = low; HG = high)
M: Mass of the material (SM = small; LG = large)
 P: Process termination time (FR = far; NR = near)
 F: Fuel supply rate (RD = reduce; MN = maintain; IN = increase)

The membership functions of these quantities are given in Figure P11.2.4b. A simple 
rule-base that is used in a fuzzy controller for the fuel supply unit is given below:

If T is LW and P is FR then F is IN
or if T is HG then F is RD
or if M is SM and P is NR then F is MN
or if M is LG and P is FR then F is IN
or if P is NR then F is RD
End if.

At a given instant, the following set of process data is available:

Temperature = 3.00°C
Material mass = 800 kg
Process operation time = 1.3. hr

Determine the corresponding inference membership function for the fuel supply, and a 
crisp value for the control action. Comment on the suitability of this inference.

PROBLEM 11.25

Consider the experimental setup of an inverted pendulum shown in Figure P11.2.5.
Suppose that direct FLC is used to keep the inverted pendulum upright. The process 

measurements are the angular position, about the vertical (ANG) and the angular veloc-
ity (VEL) of the pendulum. The control action (CNT) is the current of the motor driving 
the positioning trolley. The variable ANG takes two fuzzy states: positive large (PL) and 
negative large (NL). Their memberships are defined in the support set [-3.0°, 3.0°] and are 
trapezoidal. Specifically:

Motor
drive unite

Central
microprocessor

Power
supply

Inverted
pendulum

Trolley

Resolver
Chain
drive

dc
motor

Monitor and 
keyboard

Figure P11.25
A computer-controlled inverted pendulum.
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m PL = 0 for ANG = [-3.0°, -10°]
  = linear [0,1.0] for ANG = [-10°, 2.0°]
  = 1.0 for ANG = [2.0°, 3.0°]
m NL = 1.0 for ANG = [-3.0°, -2.0°]
 = linear [1.0, 0] for ANG = [-2.0°, 10°]
  = 0 for ANG = [10°, 3.0°]

The variable VEL takes two fuzzy states PL and NL, which are quite similarly defined 
in the support set [-60°/s, 60°/s]. The control inference CNT can take three fuzzy states: 
Positive large (PL), no change (NC), and negative large (NL). Their membership func-
tions are defined in the support set [-3.A, 3.A] and are either trapezoidal or triangular. 
Specifically:

m PL = 0 for CNT = [-3.A, 0]
 = linear [0,1.0] for CNT = [0.2.A]
 = 1.0 for CNT = [2.A, 3.A]
m NC = 0 for CNT = [-3.A, -2.A]
 = linear [0, 1.0] for CNT = [-2.A, 0]
 = linear [1.0, 0] for CNT = [0, 2.A]
 = 0 for CNT = [2.A, 3.A]
m NL = 1.0 for CNT = [-3.A, -2.A]
 = linear [1.0,0] for CNT = [-2.A, 0]
 = 0 for CNT = [0, 3.A]

The following four fuzzy rules are used in control:

if ANG is PL and VEL is PL then CNT is NL
Else if ANG is PL and VEL is NL then CNT is NC
Else if ANG is NL and VEL is PL then CNT is NC
Else if NAG is NFL and EL is NFL then CT is LP
End if.

 a. Sketch the four rules in a membership diagram for the purpose of making control 
inferences using individual rule-based inference.

 b. If the process measurements of ANG = 5° and VEL = 15°/s are made, indicate on 
your sketch the corresponding control inference.
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12
Control System Instrumentation

This chapter introduces the subject of instrumentation, as related to control engineering. 
It considers the “instrumenting” of a control system with sensors, transducers, actuators, 
and associated hardware. The components have to be properly chosen and interconnected 
in order to achieve a specified level of performance. Relevant issues are addressed. A rep-
resentative set of analog and digital sensors are presented. Stepper motor and dc motor 
are presented as popular actuators in control systems. Procedures of motor selection and 
control are addressed. The use of the computer software tool LabVIEW® for data acquisi-
tion and control, particularly in laboratory experimentation, is illustrated.

12.1 Control System Instrumentation

A control system contains a controller as an integral part. The purpose of the controller is 
to generate control signals, which will drive the process to be controlled (the plant) in the 
desired manner. Actuators are needed to perform the control actions as well as to drive the 
plant directly. Sensors and transducers are necessary to measure output signals (process 
responses) for feedback control; to measure input signals for feedforward control; to mea-
sure process variables for system monitoring, diagnosis and supervisory control; and for 
a variety of other purposes. Since many different types and levels of signals are present 
in a control system, signal modification (including signal conditioning and signal conver-
sion) is indeed a crucial function associated with any control system. In particular, signal 
modification is an important consideration in component interfacing.

Potentiometers, differential transformers, resolvers, synchros, gyros, strain gauges, 
tachometers, piezoelectric devices, fluid flow sensors, pressure gauges, thermocouples, 
thermistors, and resistance temperature detectors (RTDs) are examples of sensors used to 
measure process response for monitoring its performance and possible feedback for control. 
Actuating devices (actuators) include stepper motors, dc motors, ac motors, solenoids, valves, 
and relays, which are also commercially available to various specifications. An actuator may 
be directly connected to the driven load, and this is known as the “direct-drive” arrange-
ment. More commonly, however, a transmission device may needed to convert the actuator 
motion into a desired load motion and for proper matching of the actuator with the driven 
load. An important factor that we must consider in any practical control system is noise, 
including external disturbances. Noise may represent actual contamination of signals or the 
presence of other unknowns, uncertainties, and errors, such as parameter variations and 
modeling errors. Furthermore, weak signals will have to be amplified, and the form of a 
signal might have to be modified at various points of interaction. Charge amplifiers, lock-in 
amplifiers, power amplifiers, switching amplifiers, linear amplifiers, pulse-width-modulated 
(PWM) amplifiers, tracking filters, low-pass filters, high-pass filters, band-pass filters, and 
band-reject filters or notch filters are some of the signal-conditioning devices used in analog 
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control systems. Additional components, such as power supplies and surge-protection units, 
are often needed in control, but they are only indirectly related to control functions. Relays 
and other switching and transmission devices, and modulators and demodulators may also 
be included.

The subject of control system instrumentation deals with “instrumenting” a control sys-
tem through the incorporation of suitable sensors, actuators, and associated hardware. It 
is clear that the subject should deal with sensors and transducers, actuators, signal modi-
fication, and component interconnection. Several applications and their use of sensors and 
actuators are noted in Table 12..1. A simplified schematic example of an “instrumented” 
control system is shown in Figure 12..1.

Table 12.1

Sensors and Actuators Used in Some Common Engineering Applications

Process Typical Sensors Typical Actuators

Aircraft Displacement, speed, acceleration, elevation, 
heading, force pressure, temperature, fluid 
flow, voltage, current, global positioning 
system (GPS)

dc motors, stepper motors, relays, 
valve actuators, pumps, heat 
sources, jet engines

Automobile Displacement, speed, force, pressure, 
temperature, fluid flow, fluid level, voltage, 
current

dc motors, stepper motors, valve 
actuators, pumps, heat sources

Home heating system Temperature, pressure, fluid flow Motors, pumps, heat sources
Milling machine Displacement, speed, force, acoustics, 

temperature, voltage, current
dc motors, ac motors

Robot Optical image, displacement, speed, force, 
torque, voltage, current

dc motors, stepper motors,  
ac motors, hydraulic actuators

Wood drying kiln Temperature, relative humidity, moisture 
content, air flow

ac motors, dc motors, pumps, heat 
sources

User interface
commands

Digital control
computer

Signal conditioning/
amplification

Process

Actuator
Sensor

Signal conditioning/
filtering

Response

Figure 12.1
An instrumented feedback control system.
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12.2 Component Interconnection

When components such as sensors and transducers, control boards, process (plant) equip-
ment, and signal-conditioning hardware are interconnected, it is necessary to match 
impedances properly at each interface in order to realize their rated performance level. 
One adverse effect of improper impedance matching is the loading effect. For example, in 
a measuring system, the measuring instrument can distort the signal that is being mea-
sured. The resulting error can far exceed other types of measurement error. Both electri-
cal and mechanical loading are possible. Electrical loading errors result from connecting 
and output unit such as a measuring device that has a low input impedance to an input 
device such as a signal source. Mechanical loading errors can result in an input device 
due to inertia, friction, and other resistive forces generated by an interconnected output 
component.

Impedance can be interpreted either in the traditional electrical sense or in the mechani-
cal sense, depending on the type of signals that are involved. For example, a heavy acceler-
ometer can introduce an additional dynamic load, which will modify the actual acceleration 
at the monitoring location. Similarly, a voltmeter can modify the currents (and voltages) in 
a circuit, and a thermocouple junction can modify the temperature that is being measured 
as a result of the heat transfer into the junction. In mechanical and electrical systems, 
loading errors can appear as phase distortions as well. Digital hardware also can produce 
loading errors. For example, an analog-to-digital conversion (ADC) board can load the 
amplifier output from a strain gage bridge circuit, thereby affecting digitized data.

Another adverse effect of improper impedance consideration is inadequate output sig-
nal levels, which make the output functions such as signal processing and transmission, 
component driving, and actuation of a final control element or plant very difficult. In con-
text of sensor-transducer technology it should be noted here that many types of trans-
ducers (e.g., piezoelectric accelerometers, impedance heads, and microphones) have high 
output impedances on the order of a thousand megohms (1 megohm or 1 MΩ  = 1 × 106 Ω). 
These devices generate low output signals, and they would require conditioning to step 
up the signal level. Impedance-matching amplifiers, which have high input impedances and 
low output impedances (a few ohms), are used for this purpose (e.g., charge amplifiers are 
used in conjunction with piezoelectric sensors). A device with a high input impedance has 
the further advantage that it usually consumes less power (v2./R is low) for a given input 
voltage. The fact that a low input impedance device extracts a high level of power from the 
preceding output device may be interpreted as the reason for loading error.

12.2.1 Cascade Connection of Devices

Consider a standard two-port electrical device. The output impedance Zo of such a device is 
defined as the ratio of the open-circuit (i.e., no-load) voltage at the output port to the short-
circuit current at the output port.

Open-circuit voltage at output is the output voltage present when there is no current 
flowing at the output port. This is the case if the output port is not connected to a load 
(impedance). As soon as a load is connected at the output of the device, a current will flow 
through it, and the output voltage will drop to a value less than that of the open-circuit  
voltage. To measure the open-circuit voltage, the rated input voltage is applied at the input 
port and maintained constant, and the output voltage is measured using a voltmeter 
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that has a very high (input) impedance. To measure the short-circuit current, a very low-
 impedance ammeter is connected at the output port.

The input impedance Zi is defined as the ratio of the rated input voltage to the correspond-
ing current through the input terminals while the output terminals are maintained as an 
open circuit.

Note that these definitions are associated with electrical devices. A generalization is 
possible by interpreting voltage and velocity as across variables, and current and force as 
through variables. Then mechanical mobility should be used in place of electrical impedance, 
in the associated analysis.

Using these definitions, input impedance Zi and output impedance Zo can be represented 
schematically as in Figure 12..2.a. Note that vo is the open-circuit output voltage. When a 
load is connected at the output port, the voltage across the load will be different from vo. 
This is caused by the presence of a current through Zo. In the frequency domain, vi and vo 
are represented by their respective Fourier spectra. The corresponding transfer relation can 
be expressed in terms of the complex frequency response (transfer) function G (jw) under 
open-circuit (no-load) conditions:

 v Gvo i=  (12..1)

Now consider two devices connected in cascade, as shown in Figure 12..2.b. It can be eas-
ily verified that the following relations apply:

 v G vo i1 1=  (12..2.)
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 v G vo i= 2. 2.  (12..4)

These relations can be combined to give the overall input–output relation:

 v
Z

Z Z
G G vo

i

o i
i=

+
2.

1 2.
2. 1  (12..5)

We see from Equation 12..5 that the overall frequency transfer function differs from the 
ideally expected product (G2.G1) by the factor:
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Figure 12.2
(a) Schematic representation of input impedance and output impedance. (b) Cascade connection of two two-
port devices.
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Note that cascading has “distorted” the frequency response characteristics of the two 
devices. If Zo1/Zi2. <<1, this deviation becomes insignificant. From this observation, it can be 
concluded that when frequency response characteristics (i.e., dynamic characteristics) are 
important in a cascaded device, cascading should be done such that the output impedance 
of the first device is much smaller than the input impedance of the second device.

12.2.2 impedance Matching amplifiers

When two electrical components are interconnected, current (and energy) will flow 
between the two components. This will change the original (unconnected) conditions. This 
is known as the (electrical) loading effect, and it has to be minimized. At the same time, 
adequate power and current would be needed for signal communication, conditioning, 
display, etc. Both situations can be accommodated through proper matching of imped-
ances when the two components are connected. Usually an impedance matching amplifier 
(impedance transformer) would be needed between the two components.

From the analysis given in the preceding section, it is clear that the signal-conditioning 
circuitry should have a considerably large input impedance in comparison to the output 
impedance of the sensor-transducer unit in order to reduce loading errors. The problem 
is quite serious in measuring devices such as piezoelectric sensors, which have very high 
output impedances. In such cases, the input impedance of the signal-conditioning unit 
might be inadequate to reduce loading effects; also, the output signal level of these high-
impedance sensors is quite low for signal transmission, processing, actuation, and control. 
The solution for this problem is to introduce several stages of amplifier circuitry between 
the output of the first hardware unit (e.g., sensor) and the input of the second hardware 
unit (e.g., data acquisition unit). The first stage of such an interfacing device is typically an 
impedance-matching amplifier that has very high input impedance, very low output imped-
ance, and almost unity gain. The last stage is typically a stable high-gain amplifier stage to 
step up the signal level. Impedance-matching amplifiers are, in fact, operational amplifiers 
with feedback.

When connecting a device to a signal source, loading problems can be reduced by mak-
ing sure that the device has a high input impedance. Unfortunately, this will also reduce 
the level (amplitude, power) of the signal received by the device. In fact, a high-impedance 
device may reflect back some harmonics of the source signal. A termination resistance 
may be connected in parallel with the device in order to reduce this problem.

In many data acquisition systems, output impedance of the output amplifier is made 
equal to the transmission line impedance. When maximum power amplification is desired, 
conjugate matching is recommended. In this case, input impedance and output impedance 
of the matching amplifier are made equal to the complex conjugates of the source imped-
ance and the load impedance, respectively.

12.2.3 Operational amplifier

Operational amplifier is a very versatile device, primarily due to its very high input imped-
ance, low output impedance, and very high gain. An op-amp could be manufactured in 
the discrete-element form using, say, ten bipolar junction transistors and as many discrete 
resistors or alternatively (and preferably) in the modern monolithic form as an IC chip 
that may be equivalent to over 100 discrete elements. In any form, the device has an input 
impedance Zi, an output impedance Zo and a gain K. Hence, a schematic model for an op-amp 
can be given as in Figure 12..3.a. Op-amp packages are available in several forms. Very 
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common is the eight-pin dual in-line package (DIP) or V package, as shown in Figure 12..3.b. 
The assignment of the pins (pin configuration or pin-out) is as shown in the figure, which 
should be compared with Figure 12..7a. Note the counter clockwise numbering sequence 
starting with the top left pin next to the semi circular notch (or, dot). This convention of 
numbering is standard for any type of IC package, not just op-amp packages. Other pack-
ages include eight-pin metal-can package or T package, which has a circular shape instead 
of the rectangular shape of the previous package, and the 14-pin rectangular “Quad” pack-
age which contains four op-amps (with a total of eight input pins, four output pins, and 
two power supply pins). The conventional symbol of an op-amp is shown in Figure 12..3.c. 
Typically, there are five terminals (pins or lead connections) to an op-amp. Specifically, 
there are two input leads (a positive or noninverting lead with voltage vip and a negative or 
inverting lead with voltage vin), an output lead (voltage vo), and two bipolar power supply 
leads (+vs or vCC or collector supply and -vs or vEE or emitter supply). The typical supply 
voltage is ±2.2. V. Some of the pins may not be normally connected; for example, pins 1, 5, 
and 8 in Figure 12..3.b.

The open loop voltage gain K is very high (105–109) for a typical op-amp. Furthermore, 
the input impedance Zi could be as high as 10 MΩ (typical is 2. MΩ) and the output imped-
ance is low, of the order of 10 Ω and may reach about 75 Ω for some op-amps.

In analyzing operational amplifier circuits under unsaturated conditions, we use the fol-
lowing two characteristics of an op-amp:

 1. Voltages of the two input leads should be (almost) equal.
 2.. Currents through each of the two input leads should be (almost) zero.

The first property is credited to high open-loop gain, and the second property to high 
input impedance in an operational amplifier.

–vs
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+vs
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(Positive power supply
–Collector vCC) 

Inputs Output
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Zi
K vi vo = K vi

+

–

+
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(a)
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–Emitter vEE)
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–

+

Pin Designations:
1  Offset null
2  Inverting input
3  Noninverting input
4  Negative power supply vEE
5  Offset null
6  Output
7  Positive power supply vCC
8  NC (Not connected)

(c)
–

+

vo

vin

vip

Figure 12.3
Operational amplifier. (a) A schematic model. (b) Eight-pin dual in-line package (DIP). (c) Conventional circuit 
symbol.

76868.indb   608 7/8/09   5:19:20 PM



Control System Instrumentation 609

12.2.3.1 Use of Feedback in Op-Amps

An op-amp cannot be used without modification as an amplifier because it is not very 
stable in the open-loop form. The two main factors which contribute to this problem are: 
frequency response and drift. In other words, op-amp gain K does not remain constant; it 
can vary with frequency of the input signal (i.e., frequency response function is not flat in 
the operating range); and, also it can vary with time (i.e., drift). Since gain K is very large, by 
using feedback we can virtually eliminate its effect at the amplifier output. This closed-loop 
form of an op-amp has the advantage that the characteristics and the accuracy of the out-
put of the overall circuit depends on the passive components (e.g., resistors and capacitors) 
in it, which can be provide at high precision, and not the parameters of the op amp itself.

12.2.4 instrumentation amplifiers

An instrumentation amplifier is typically a special-purpose voltage amplifier dedicated to 
instrumentation applications. Examples include amplifiers used for producing the output 
from a bridge circuit (bridge amplifier) and amplifiers used with various sensors and trans-
ducers. An important characteristic of an instrumentation amplifier is the  adjustable-gain 
capability. The gain value can be adjusted manually in most instrumentation  amplifiers. 
In more sophisticated instrumentation amplifiers the gain is programmable and can be set 
by means of digital logic. Instrumentation amplifiers are normally used with low-voltage 
signals.

12.2.4.1 Differential Amplifier

Usually, an instrumentation amplifier is also a differential amplifier (sometimes termed 
difference amplifier). In a differential amplifier both input leads are used for signal input, 
whereas in a single-ended amplifier one of the leads is grounded and only one lead is 
used for signal input. Ground-loop noise can be a serious problem in single-ended amplifi-
ers. Ground-loop noise can be effectively eliminated using a differential amplifier because 
noise loops are formed with both inputs of the amplifier and, hence, these noise signals are 
subtracted at the amplifier output. Since the noise level is almost the same for both inputs, 
it is canceled out. Any other noise (e.g., 60 Hz line noise) that might enter both inputs with 
the same intensity will also be canceled out at the output of a differential amplifier.

A basic differential amplifier that uses a single op-amp is shown in Figure 12..4a. The 
input–output equation for this amplifier can be obtained as:

Inputs

(a) (b)

Output

R
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vi2
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Rf
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R4

Output
+

–

+

–
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Figure 12.4
(a) A basic differential amplifier. (b) A basic instrumentation amplifier.
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 v
R

R
v vo

f
i i= -( )2. 1  (12..7)

Two things are clear from Equation 12..7. First, the amplifier output is proportional to the 
“difference” and not the absolute value of the two inputs vi1 and vi2.. Second, voltage gain 
of the amplifier is Rf/R. This is known as the differential gain. It is clear that the differential 
gain can be accurately set by using high-precision resistors R and Rf.

The basic differential amplifier, shown in Figure 12..4a and discussed above, is an impor-
tant component of an instrumentation amplifier. In addition, an instrumentation amplifier 
should possess the capability of adjustable gain. Furthermore, it is desirable to have a very 
high input impedance and very low output impedance at teach input lead. It is desir-
able for an instrumentation amplifier to possess a higher and more stable gain, and also a 
higher input impedance than a basic differential amplifier. An instrumentation amplifier 
that possesses these basic requirements may be fabricated in the monolithic IC form as a 
single package. Alternatively, in may be built using three differential amplifiers and high 
precision resistors, as shown in Figure 12..4b. The amplifier gain can be adjusted using the 
fine-tunable resistor R2.. Impedance requirements are provided by two voltage-follower 
type amplifiers, one for each input, as shown. The variable resistance d R4 is necessary to 
compensate for errors due to unequal common-mode gain. The equation for the instru-
mentation amplifier (with d R4 = 0) is:

 v
R
R

R
R

v vo i i= +





-( )4

3.

1

2.
2. 11

2.
 (12..8)

12.3 Motion Sensors

By motion, we mean the four kinematic variables:

Displacement (including position, distance, proximity, and size or gage)•	
Velocity•	
Acceleration•	
Jerk•	

Note that each variable is the time derivative of the preceding one. Motion measure-
ments are extremely useful in controlling mechanical responses and interactions in con-
trol systems. Numerous examples can be cited: the rotating speed of a work piece and the 
feed rate of a tool are measured in controlling machining operations. Displacements and 
speeds (both angular and translatory) at joints (revolute and prismatic) of robotic manipu-
lators or kinematic linkages are used in controlling manipulator trajectory. In high-speed 
ground transit vehicles, acceleration and jerk measurements can be used for active sus-
pension control to obtain improved ride quality. Angular speed is a crucial measurement 
that is used in the control of rotating machinery, such as turbines, pumps, compressors, 
motors, and generators in power-generating plants. Proximity sensors (to measure dis-
placement) and accelerometers (to measure acceleration) are the two most common types 
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of measuring devices used in machine protection systems for condition monitoring, fault 
detection, diagnostic, and on-line (often real-time) control of large and complex machin-
ery. The accelerometer is often the only measuring device used in controlling dynamic test 
rigs. Displacement measurements are used for valve control in process applications. Plate 
thickness (or gage) is continuously monitored by the automatic gage control (AGC) system 
in steel rolling mills.

12.3.1 linear-Variable Differential Transformer (lVDT)

Differential transformer is a noncontact displacement sensor, which does not possess 
many of the shortcomings of the potentiometer. It is a variable-inductance transducer, and 
is also a variable-reluctance transducer and a mutual-induction transducer. Furthermore, 
unlike the potentiometer, the differential transformer is a passive device.

In its simplest form (see Figure 12..5), the LVDT consists of an insulating, nonmagnetic 
“form” (a cylindrical structure on which a coil is wound, and is integral with the housing), 
which has a primary coil in the mid-segment and a secondary coil symmetrically wound 
in the two end segments, as depicted schematically in Figure 12..5b. The housing is made 
of magnetized stainless steel in order to shield the sensor from outside fields. The primary 
coil is energized by an ac supply of voltage vref. This will generate, by mutual induction, 
an ac of the same frequency in the secondary coil. A core made of ferromagnetic material 
is inserted coaxially through the cylindrical form without actually touching it, as shown. 
As the core moves, the reluctance of the flux path changes. The degree of flux linkage 
depends on the axial position of the core. Since the two secondary coils are connected 
in series opposition, so that the potentials induced in the two secondary coil segments 
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Figure 12.5
LVDT. (a) A commercial unit. (From: Scheavitz Sensors, Measurement Specialties, Inc. With permission.)  
(b) Schematic diagram. (c) A typical operating curve.
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oppose each other, it is seen that the net induced voltage is zero when the core is centered 
between the two secondary winding segments. This is known as the null position. When 
the core is displaced from this position, a nonzero induced voltage will be generated. At 
steady-state, the amplitude vo of this induced voltage is proportional to the core displace-
ment x in the linear (operating) region (see Figure 12..5c). Consequently, vo may be used 
as a measure of the displacement. Note that because of opposed secondary windings, 
the LVDT provides the direction as well as the magnitude of displacement. If the output 
signal is not demodulated, the direction is determined by the phase angle between the 
primary (reference)  voltage and the secondary (output) voltage, which includes the carrier 
signal.

For an LVDT to measure transient motions accurately, the frequency of the reference 
voltage (the carrier frequency) has to be at least ten times larger than the largest significant 
frequency component in the measured motion, and typically can be as high as 2.0 kHz. For 
quasi-dynamic displacements and slow transients on the order of a few Hertz, a standard 
ac supply (at 60 Hz line frequency) is adequate. The performance (particularly sensitiv-
ity and accuracy) is known to improve with the excitation frequency, however. Since the 
amplitude of the output signal is proportional to the amplitude of the primary signal, 
the reference voltage should be regulated to get accurate results. In particular, the power 
source should have a low output impedance.

12.3.2 Signal Conditioning

Signal conditioning associated with differential transformers includes filtering and 
amplification. Filtering is needed to improve the signal-to-noise ratio of the output signal. 
Amplification is necessary to increase the signal strength for data acquisition and process-
ing. Since the reference frequency (carrier frequency) is induced into (and embedded in) 
the output signal, it is also necessary to interpret the output signal properly, particularly 
for transient motions.

The secondary (output) signal of an LVDT is an amplitude-modulated signal where the 
signal component at the carrier frequency is modulated by the lower-frequency transient 
signal produced as a result of the core motion (x). Two methods are commonly used to 
interpret the crude output signal from a differential transformer: rectification and demod-
ulation. Block diagram representations of these two procedures are given in Figure 12..6. 
In the first method (rectification) the ac output from the differential transformer is  rectified 
to obtain a dc signal. This signal is amplified and then low-pass filtered to eliminate any 
high-frequency noise components. The amplitude of the resulting signal provides the 
transducer reading. In this method, phase shift in the LVDT output has to be checked 
separately to determine the direction of motion. In the second method (demodulation), the 
carrier frequency component is rejected from the output signal by comparing it with a 
phase-shifted and amplitude-adjusted version of the primary (reference) signal. Note that 
phase shifting is necessary because, as discussed before, the output signal is not in phase 
with the reference signal. The result is the modulating signal (proportional to x), which is 
subsequently amplified and filtered.

As a result of advances in miniature integrated circuit technology, differential trans-
formers with built-in microelectronics for signal conditioning are commonly available 
today. A dc differential transformer uses a dc power supply (typically, ±15 V) to activate it. 
A built-in oscillator circuit generates the carrier signal. The rest of the device is identical 
to an ac differential transformer. The amplified full-scale output voltage can be as high as 
±10 V. Advantages of the LVDT include the following.

76868.indb   612 7/8/09   5:19:23 PM



Control System Instrumentation 613

 1. It is essentially a noncontacting device with no frictional resistance. Near-ideal 
electromechanical energy conversion and light-weight core will result in very 
small resistive forces. Hysteresis (both magnetic hysteresis and mechanical back-
lash) is negligible.

 2.. It has low output impedance, typically on the order of 100 Ω (Signal amplification 
is usually not needed beyond what is provided by the conditioning circuit.)

 3.. Directional measurements (positive/negative) are obtained.
 4. It is available in small sizes (e.g., 1 cm long with maximum travel of 2. mm).
 5. It has a simple and robust construction (inexpensive and durable).
 6. Fine resolutions are possible (theoretically, infinitesimal resolution; practically, 

much better than a coil potentiometer).

12.3.3 DC Tachometer

This is a permanent-magnet (PM) dc velocity sensor in which the principle of electromag-
netic induction between a permanent magnet and a conducting coil is used. Depending on 
the configuration, either rectilinear speeds or angular speeds can be measured. Schematic 
 diagrams of the two configurations are shown in Figure 12..7. These are passive transduc-
ers, because the energy for the output signal vo is derived from the motion (measured 
 signal) itself. The entire device is usually enclosed in a steel casing to shield (isolate) it from 
ambient magnetic fields.

In the rectilinear velocity transducer (Figure 12..7a), the conductor coil is wound on a core 
and placed centrally between two magnetic poles, which produce a cross-magnetic field. 
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Signal-conditioning methods for a differential transformer. (a) Rectification. (b) Demodulation.
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The core is attached to the moving object whose velocity v must be measured. This  velocity 
is proportional to the induced voltage vo. Alternatively, a moving magnet and a fixed coil 
may be used as a dc tachometer. This arrangement is perhaps more desirable since it elimi-
nates the need for any sliding contacts (slip rings and brushes) for the output leads, thereby 
reducing mechanical loading error, wear, and related problems.

The dc tachometer (or, tachogenerator) is a common transducer for measuring angular 
velocities. Its principle of operation is the same as that for a dc generator (or, back-driving 
of a dc motor). This principle of operation is illustrated in Figure 12..7b. The rotor is directly 
connected to the rotating object. The output signal that is induced in the rotating coil 
is picked up as dc voltage vo using a suitable commutator device—typically consisting of 
a pair of low-resistance carbon brushes—that is stationary but makes contact with the 
 rotating coil through split slip rings so as to maintain the direction of the induced voltage 
the same throughout each revolution. According to Faraday’s law, the induced voltage is 
proportional to the rate of change of magnetic flux linkage. For a coil of height h and width  
2.r that has n turns, moving at an angular speed wc in a uniform magnetic field of flux 
density b, this is given by:

 v nhr ko c c= ( ) =2. b w w  (12..9)

This proportionality between vo and wc is used to measure the angular speed wc. The 
 proportionality constant k is known as the back-e.m.f. constant or the voltage constant.

12.3.3.1 Electronic Commutation

Slip rings and brushes and associated drawbacks can be eliminated in a dc tachometer by 
using electronic commutation. In this case a PM rotor together with a set of stator wind-
ings are used. The output of the tachometer is drawn from the stationary (stator) coil. It has 
to be converted to a dc signal using an electronic switching mechanism, which has to be 
synchronized with the rotation of the tachometer. As a result of switching and associated 
changes in the magnetic field of the output signal, induced voltages known as switching 
transients will result. This is a drawback in electronic commutation.

12.3.4 Piezoelectric accelerometer

The piezoelectric accelerometer (or, crystal accelerometer) is an acceleration sensor, 
which uses a piezoelectric element to measure the inertia force caused by acceleration.  
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Permanent-magnet dc transducers. (a) Rectilinear velocity transducer. (b) DC tachometer.
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A piezoelectric velocity transducer is simply a piezoelectric accelerometer with a built-in 
integrating amplifier in the form of a miniature integrated circuit.

The advantages of piezoelectric accelerometers over other types of accelerometers are 
their light weight and high-frequency response (up to about 1 MHz). However, piezoelec-
tric transducers are inherently high output impedance devices, which generate small volt-
ages (on the order of 1 mV). For this reason, special impedance-transforming amplifiers 
(e.g., charge amplifiers) have to be employed to condition the output signal and to reduce 
loading error.

A schematic diagram for a compression-type piezoelectric accelerometer is shown in 
Figure 12..8. The crystal and the inertia mass are restrained by a spring of very high stiff-
ness. Consequently, the fundamental natural frequency or resonant frequency of the device 
becomes high (typically 2.0 kHz). This gives a reasonably wide useful range (typically up 
to 5 kHz). The lower limit of the useful range (typically 1 Hz) is set by factors such as the 
limitations of the signal-conditioning system, the mounting methods, the charge leakage 
in the piezoelectric element, the time constant of the charge-generating dynamics, and the 
signal-to-noise ratio.

In a compression-type crystal accelerometer, the inertia force is sensed as a  compressive 
normal stress in the piezoelectric element. There are also piezoelectric accelerometers 
where the inertia force is applied to the piezoelectric element as a shear strain or as a ten-
sile strain.

For an accelerometer, acceleration is the signal that is being measured (the measurand). 
Hence, accelerometer sensitivity is commonly expressed in terms of electrical charge per 
unit acceleration or voltage per unit acceleration. Sensitivity depends on the piezoelectric 
properties, the way in which the inertia force is applied to the piezoelectric element (e.g., 
compressive, tensile, shear), and the mass of the inertia element. If a large mass is used, the 
reaction inertia force on the crystal will be large for a given acceleration, thus generating a 
relatively large output signal. Large accelerometer mass results in several disadvantages, 
however. In particular:

 1. The accelerometer mass distorts the measured motion variable (mechanical load-
ing effect).

 2.. A heavy accelerometer has a lower resonant frequency and hence a lower useful 
frequency range.

For a given accelerometer size, improved sensitivity can be obtained by using the shear-
strain configuration. In this configuration, several shear layers can be used (e.g., in a delta 
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A compression-type piezoelectric accelerometer.
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arrangement) within the accelerometer housing, thereby increasing the effective shear 
area and hence the sensitivity in proportion to the shear area. Another factor that should 
be considered in selecting an accelerometer is its cross-sensitivity or transverse sensitiv-
ity. Cross-sensitivity is present because a piezoelectric element can generate a charge in 
response to forces and moments (or, torques) in orthogonal directions as well. The prob-
lem can be aggravated due to manufacturing irregularities of the piezoelectric element, 
including material unevenness and incorrect orientation of the sensing element, and due 
to poor design. Cross-sensitivity should be less than the maximum error (percentage) that 
is allowed for the device (typically 1%).

12.3.4.1 Charge Amplifier

Piezoelectric signals cannot be read using low-impedance devices. The two primary rea-
sons for this are:

 1. High output impedance in the sensor results in small output signal levels and 
large loading errors.

 2.. The charge can quickly leak out through the load.

A charge amplifier is commonly used as the signal-conditioning device for piezoelectric 
sensors, in order to overcome these problems to a great extent. Because of impedance trans-
formation, the impedance at the output of the charge amplifier becomes much smaller 
than the output impedance of the piezoelectric sensor. This virtually eliminates loading 
error and provides a low-impedance output for purposes such as signal communication, 
acquisition, recording, processing, and control. Also, by using a charge amplifier circuit 
with a relatively large time constant, speed of charge leakage can be decreased.

12.3.5 Digital Transducers

Any measuring device that presents information as discrete samples and that does not 
introduce a quantization error when the reading is represented in the digital form may 
be classified as a digital transducer. Digital measuring devices (or digital transducers, 
as they are commonly known) generate discrete output signals such as pulse trains or 
encoded data that can be directly read by a digital controller. Nevertheless, the sensor 
stage of a  digital measuring device is usually quite similar to that of an analog counter-
part. There are digital measuring devices that incorporate microprocessors to perform 
numerical manipulations and conditioning locally and provide output signals in either 
digital form or analog form. These measuring systems are particularly useful when the 
required variable is not directly measurable but could be computed using one or more 
measured outputs (e.g., power = force × speed). Although a microprocessor is an integral 
part of the measuring device in this case, it performs not a measuring task but, rather, a 
conditioning task.

When the output of a digital transducer is a pulse signal, a common of reading the 
signal is by using a counter, either to count the pulses (for high-frequency pulses) or to 
count clock cycles over one pulse duration (for low-frequency pulses). The count is placed 
as a digital word in a buffer, which can be accessed by the host (control) computer, typi-
cally at a constant frequency (sampling rate). On the other hand, if the output of a digital 
transducer is automatically available in a coded form (e.g., natural binary code or gray 
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code) it can be directly read by a computer. In the latter case, the coded signal is normally 
generated by a parallel set of pulse signals; each pulse transition generates one bit of the 
digital word, and the numerical value of the word is determined by the pattern of the 
generated pulses. Data acquisition from (i.e., computer interfacing) a digital transducer is 
commonly done using a general-purpose input–output (I/O) card; for example, a motion 
control (servo) card, which may be able to accommodate multiple transducers (e.g., eight 
channels of encoder inputs with 2.4-bit counters), or using a data acquisition card specific 
to the particular transducer.

There are several advantages of digital signals (or, digital representation of information) 
in comparison to analog signals. Notably:

 1. Digital signals are less susceptible to noise, disturbances, or parameter variation 
in instruments because data can be generated, represented, transmitted, and pro-
cessed as binary words consisting of bits, which possess two identifiable states.

 2.. Complex signal processing with very high accuracy and speed are possible through 
digital means (hardware implementation is faster than software implementation).

 3.. High reliability in a system can be achieved by minimizing analog hardware 
components.

 4. Large amounts of data can be stored using compact, high-density, data storage 
methods.

 5. Data can be stored or maintained for very long periods of time without any drift 
or being affected by adverse environmental conditions.

 6. Fast data transmission is possible over long distances without introducing signifi-
cant dynamic delays, as in analog systems.

 7. Digital signals use low voltages (e.g., 0-12. V dc) and low power.
 8. Digital devices typically have low overall cost.

12.3.6 Shaft encoders

Any transducer that generates a coded (digital) reading of a measurement can be termed 
an encoder. Shaft encoders are digital transducers that are used for measuring angular 
displacements and angular velocities. Shaft encoders can be classified into two categories, 
depending on the nature and the method of interpretation of the transducer output: incre-
mental encoders, absolute encoders.

The output of an incremental encoder is a pulse signal, which is generated when the 
transducer disk rotates as a result of the motion that is being measured. By counting the 
pulses or by timing the pulse width using a clock signal, both angular displacement and 
angular velocity can be determined. With an incremental encoder, displacement is obtained 
with respect to some reference point. The reference point can be the home position of the 
moving component (say, determined by a limit switch); or a reference point on the encoder 
disk, as indicated by a reference pulse (index pulse) generated at that location on the disk. 
Furthermore, the index pulse count determines the number of full revolutions.

An absolute encoder (or, whole-word encoder) has many pulse tracks on its transducer 
disk. When the disk of an absolute encoder rotates, several pulse trains—equal in number 
to the tracks on the disk—are generated simultaneously. At a given instant, the magnitude 
of each pulse signal will have one of two signal levels (i.e., a binary state), as determined 
by a level detector (or, edge detector). This signal level corresponds to a binary digit (0 or 1).  
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Hence, the set of pulse trains gives an encoded binary number at any instant. The pulse 
windows on the tracks can be organized into some pattern (code) so that the generated 
binary number at a particular instant corresponds to the specific angular position of the 
encoder disk at that time. The pulse voltage can be made compatible with some digital 
interface logic (e.g., transistor-to-transistor logic, or TTL). Consequently, the direct digital 
readout of an angular position is possible with an absolute encoder, thereby expediting 
digital data acquisition and processing. Absolute encoders are commonly used to measure 
fractions of a revolution. However, complete revolutions can be measured using an addi-
tional track, which generates an index pulse, as in the case of incremental encoder.

12.3.7 Optical encoder

By far, the optical encoder is most popular and cost effective encoder used in motion sens-
ing. The optical encoder uses an opaque disk (code disk) that has one or more circular 
tracks, with some arrangement of identical transparent windows (slits) in each track. A 
parallel beam of light (e.g., from a set of light-emitting diodes (LEDs)) is projected to all 
tracks from one side of the disk. The transmitted light is picked off using a bank of pho-
tosensors on the other side of the disk, which typically has one sensor for each track. This 
arrangement is shown in Figure 12..9a, which indicates just one track and one pick-off sen-
sor. The light sensor could be a silicon photodiode or a phototransistor. Since the light from 
the source is interrupted by the opaque regions of the track, the output signal from the 
photosensor is a series of voltage pulses. This signal can be interpreted (e.g., through edge 
detection or level detection) to obtain the increments in the angular position. The resulting 
pulse count gives the angular position and the pulse frequency gives the angular velocity 
of the disk.

The opaque background of transparent windows (the window pattern) on an encoder 
disk may be produced by contact printing techniques. The precision of this production 
procedure is a major factor that determines the accuracy of optical encoders. Note that  
a transparent disk with a track of opaque spots will work equally well as the encoder 
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(a) Schematic representation of an (incremental) optical encoder. (b) Components of a commercial incremental 
encoder. (From: BEI Electronics, Inc. With permission.)
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disk of an optical encoder. In either form, the track has a 50% duty cycle (i.e., length of 
the  transparent region = length of the opaque region). A commercially available optical 
encoder is shown in Figure 12..9b.

An incremental encoder disk requires only one primary track that has equally spaced 
and identical window (pick-off) regions. The window area is equal to the area of the inter-
window gap (i.e., 50% duty cycle). Usually, a reference track that has just one window 
is also present in order to generate a pulse (known as the index pulse) to initiate pulse 
counting for angular position measurement and to detect complete revolutions. It will also 
need a sensor at a quarter-pitch separation (pitch = center-to-center distance between adja-
cent windows) to generate a quadrature signal, which will identify the direction of rotation. 
Some designs of incremental encoders have two identical tracks, one at a quarter-pitch 
offset from the other, and the two pick-off sensors are placed radially without offset. The 
two (quadrature) signals obtained with this arrangement will be similar to those with the 
previous arrangement. A pick-off sensor for receiving a reference pulse is also used in 
some designs of incremental encoders (three-track incremental encoders).

In many control applications, encoders are built into the plant itself, rather than being 
externally fitted onto a rotating shaft. For instance, in a robot arm, the encoder might be 
an integral part of the joint motor and may be located within its housing. This reduces 
coupling errors (e.g., errors due to backlash, shaft flexibility, and resonances added by 
the transducer and fixtures), installation errors (e.g., misalignment and eccentricity), and 
overall cost. Encoders are available in sizes as small as 2. cm and as large as 15 cm in 
diameter.

12.4 Stepper Motors

Stepper motors are a popular type of actuators. They are driven in fixed angular steps 
(increments). Each step of rotation is the response of the motor rotor to an input pulse (or 
a digital command). In this manner, the stepwise rotation of the rotor can be synchro-
nized with pulses in a command-pulse train, assuming of course that no steps are missed, 
thereby making the motor respond faithfully to the input signal (pulse sequence) in an 
open-loop manner. Like a conventional continuous-drive motor, a stepper motor is also 
an electromagnetic actuator, in that it converts electromagnetic energy into mechanical 
energy to perform mechanical work. The terms stepper motor, stepping motor, and step motor 
are synonymous and are often used interchangeably.

One common feature in any stepper motor is that the stator of the motor contains several 
pairs of field windings (or phase windings) that can be switched on to produce electro-
magnetic pole pairs (N and S). These pole pairs effectively pull the motor rotor in sequence 
so as to generate the torque for motor rotation. By switching the currents in the phases in 
an appropriate sequence, either a clockwise (CW) rotation or a counterclockwise (CCW) 
rotation can be produced. The polarities of a stator pole may have to be reversed in some 
types of stepper motors in order to carry out a stepping sequence. Although the com-
mands that generate the switching sequence for a phase winding could be supplied by a 
microprocessor or a personal computer (a software approach) it is customary to generate it 
through hardware logic in a device called a translator or an indexer. This approach is more 
effective because the switching logic for a stepper motor is fixed, as noted in the foregoing 
discussion. Microstepping provides much smaller step angles. This is achieved by changing 
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the phase currents by small increments (rather than on, off, and reversal) so that the detent 
(equilibrium) position of the rotor shifts in correspondingly small angular increments.

12.4.1 Stepper Motor Classification

Most classifications of stepper motors are based on the nature of the motor rotor. One 
such classification considers the magnetic character of the rotor. Specifically, a variable-
reluctance (VR) stepper motor has a soft-iron rotor while a PM stepper motor has a mag-
netized rotor. The two types of motors operate in a somewhat similar manner. Specifically 
the stator magnetic field (polarity) is stepped so as to change the minimum reluctance 
(or detent) position of the rotor in increments. Hence both types of motors undergo simi-
lar changes in reluctance (magnetic resistance) during operation. A disadvantage of VR 
stepper motors is that since the rotor is not magnetized, the holding torque is zero when 
the stator windings are not energized (power-off). Hence, there is no capability to hold 
the load at a given position under power-off conditions unless mechanical brakes are 
employed. A hybrid stepper motor possesses characteristics of both VR  steppers and PM 
steppers. The rotor of a hybrid stepper motor consists of two rotor segments connected by 
a shaft. Each rotor segment is a toothed wheel and is called a stack. The two rotor stacks 
form the two poles of a permanent magnet located along the rotor axis. Hence an entire 
stack of rotor teeth is magnetized to be a single pole (which is different from the case of a 
PM stepper where the rotor has multiple poles). The rotor polarity of a hybrid stepper can 
be provided either by a permanent magnet, or by an electromagnet using a coil activated 
by a unidirectional dc source and placed on the stator to generate a magnetic field along 
the rotor axis.

Another practical classification that is used in this book is based on the number of 
“stacks” of teeth (or rotor segments) present on the rotor shaft. In particular, a hybrid step-
per motor has two stacks of teeth. Further sub classifications are possible, depending on 
the tooth pitch (angle between adjacent teeth) of the stator and tooth pitch of the rotor. In 
a single-stack stepper motor, the rotor tooth pitch and the stator tooth pitch generally have 
to be unequal so that not all teeth in the stator are ever aligned with the rotor teeth at 
any instant. It is the misaligned teeth that exert the magnetic pull, generating the driving 
torque. In each motion increment, the rotor turns to the minimum reluctance (stable equi-
librium) position corresponding to that particular polarity distribution of the stator. In 
multiple-stack stepper motors, operation is possible even when the rotor tooth pitch is equal 
to the stator tooth pitch, provided that at least one stack of rotor teeth is rotationally shifted 
(misaligned) from the other stacks by a fraction of the rotor tooth pitch. In this design, it is 
this inter-stack misalignment that generates the drive torque for each motion step. It should 
be obvious that unequal-pitch multiple stack steppers are also a practical possibility. In 
this design, each rotor stack operates as a separate single-stack stepper motor. A photo-
graph of the internal components of a two-stack stepper motor is given in Figure 12..10.

12.4.2 Driver and Controller

In principle, the stepper motor is an open-loop actuator. In its normal operating mode, 
the stepwise rotation of the motor is synchronized with the command pulse train. Under 
highly transient conditions near rated torque, “pulse missing” can be a problem.

A stepper needs a “control computer” or at least a hardware “indexer” to generate the 
pulse commands and a “driver” to interpret the commands and correspondingly generate 
the proper currents for the phase windings of the motor. This basic arrangement is shown 
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in Figure 12..11a. For feedback control, the response of the motor has to be sensed (say, 
using an optical encoder) and fed back into the controller (see the dotted line in Figure 
12..11a) for taking the necessary corrective action to the pulse command, when an error is 
present. The basic components of the driver for a stepper motor are identified in Figure 
12..11b. It consists of a logic circuit called “translator” to interpret the command pulses and 
switch the appropriate analog circuits to generate the phase currents. Since sufficiently 
high current levels are needed for the phase windings, depending on the motor capacity, 
the drive system includes amplifiers powered by a power supply.

The command pulses are generated either by a control computer (a desktop computer 
or a microprocessor)—the software approach or by a variable-frequency oscillator (or, 
an indexer)—the basic hardware approach. For bidirectional motion, two pulse trains are 
necessary—the position-pulse train and the direction-pulse train, which are determined 
by the required motion trajectory. The position pulses identify the exact times at which 
angular steps should be initiated. The direction pulses identify the instants at which the 
direction of rotation should be reversed. Only a position pulse train is needed for unidi-
rectional operation. Generation of the position pulse train for steady-state operation at a 
constant speed is a relatively simple task. In this case, a single command identifying the 
stepping rate (pulse rate), corresponding to the specified speed, would suffice. The logic 
circuitry within the translator will latch onto a constant-frequency oscillator, with the 

Figure 12.10
A commercial two-stack stepper motor (From: Danaher Motion. With permission.)
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frequency determined by the required speed (stepping rate), and continuously cycle the 
switching sequence at this frequency. This is a hardware approach to open-loop control 
of a stepping motor. For steady-state operation, the stepping rate can be set by manually 
adjusting the knob of a potentiometer connected to the translator. For simple motions (e.g., 
starting from rest and stopping after reaching a certain angular position), the commands 
that generate the pulse train (commands to the oscillator) can be set manually. Under the 
more complex and transient operating conditions that are present when following intricate 
motion trajectories, however, a computer-based (or, microprocessor-based) generation of 
the pulse commands, using programmed logic, would be necessary. This is a software 
approach, which is usually slower than the hardware approach. Sophisticated feedback 
control schemes can be implemented as well through such a computer-based controller.

The translator module has logic circuitry to interpret a pulse train and “translate” it into 
the corresponding switching sequence for stator field windings (on/off/reverse state for 
each phase of the stator). The translator also has solid-state switching circuitry (using gates, 
latches, triggers, etc.), to direct the field currents to the appropriate phase windings accord-
ing to the particular switching state. A “packaged” system typically includes both indexer 
(or, controller) functions and driver functions. As a minimum, it possesses the capability 
to generate command pulses at a steady rate, thus assuming the role of the pulse generator 
(or, indexer) as well as the translator and switching amplifier functions. The stepping rate 
or direction may be changed manually using knobs or through a user interface.

The translator may not have the capability to keep track of the number of steps taken by 
the motor (i.e., a step counter). A packaged device that has all these capabilities, including 
pulse generation, the standard translator functions, and drive amplifiers, is termed a preset 
indexer. It usually consists of an oscillator, digital microcircuitry (integrated-circuit chips) 
for counting and for various control functions, and a translator, and drive circuitry in a 
single package. The required angle of rotation, stepping rate, and direction are set either 
manually, by turning the corresponding knobs. With a more sophisticated programmable 
preset indexer, these settings can be programmed through computer commands from a 
standard interface. An external pulse source is not needed in this case. A programmable 
indexer—consisting of a microprocessor and microelectronic circuitry for the control of 
position and speed and for other programmable functions, memory, a pulse source (an 
oscillator), a translator, drive amplifiers with switching circuitry, and a power supply—
represents a “programmable” controller for a stepping motor. A programmable indexer 
can be programmed using a personal computer or a hand-held programmer (provided 
with the indexer) through a standard interface (e.g., RS2.3.2. serial interface). Control signals 
within the translator are on the order of 10 mA, whereas the phase windings of a stepper 
motor require large currents on the order of several amperes. Control signals from the 
translator have to be properly amplified and directed to the motor windings by means of 
“switching amplifiers” for activating the required phase sequence.

Power to operate the translator (for logic circuitry, switching circuitry, etc.), and to oper-
ate phase excitation amplifiers comes from a dc power supply (typically 2.4 V dc). A regu-
lated (i.e., voltage maintained constant irrespective of the load) power supply is preferred. 
A packaged unit that consists of the translator (or preset indexer), the switching amplifiers, 
and the power supply, is what is normally termed a motor-drive system. The leads of the out-
put amplifiers of the drive system carry currents to the phase windings on the stator (and 
to the rotor magnetizing coils located on the stator in the case of an electromagnetic rotor) 
of the stepping motor. The load may be connected to the motor shaft directly or through 
some form of mechanical coupling device (e.g., harmonic drive, tooth-timing belt drive, 
hydraulic amplifier, rack and pinion).
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12.4.3 Stepper Motor Selection

Selection of a stepper motor for a specific application cannot be made on the basis of 
 geometric parameters alone. Torque and speed considerations are often more crucial in 
the selection process. For example, a faster speed of response is possible if a motor with a 
larger torque-to-inertia ratio is used.

12.4.3.1 Torque Characteristics and Terminology

The torque that can be provided to a load by a stepper motor depends on several factors. 
For example, the motor torque at constant speed is not the same as that when the motor 
“passes through” that speed (i.e., under acceleration, deceleration, or general transient con-
ditions). In particular, at constant speed there is no inertia torque. Also, the torque losses 
due to magnetic induction are lower at constant stepping rates in comparison to variable 
stepping rates. It follows that the available torque is larger under steady (constant-speed) 
conditions. Another factor of influence is the magnitude of the speed. At low speeds (i.e., 
when the step period is considerably larger than the electrical time constant), the time 
taken for the phase current to build up or turned off is insignificant compared to the 
step time. Then the phase current waveform can be assumed rectangular. At high step-
ping rates, the induction effects dominate and as a result a phase may not reach its rated 
current during the duration of a step. As a result, the generated torque will be degraded. 
Furthermore, since the power provided by the power supply is limited, the torque × speed 
product of the motor is limited as well. Consequently, as the motor speed increases,  
the available torque must decrease in general. These two are the primary reasons for 
the characteristic shape of a speed-torque curve of a stepper motor where the peak 
torque occurs at a very low  (typically zero) speed, and as the speed increases the avail-
able torque decreases. Eventually, at a particular limiting speed (known as the no-load 
speed) the available torque becomes zero.

The characteristic shape of the speed-torque curve of a stepper motor is shown in Figure 
12..12.. Some terminology is also given. What is given may be interpreted as experimental 
data measured under steady operating conditions (and averaged and interpolated). The 
given torque is called the “pull-out torque” and the corresponding speed is the “pull-out 
speed.” In industry, this curve is known as the “pull-out curve.”

Peak torque

Starting torque
(stand-still torque)

Torque
(N.m or oz-in)

No-load Speed

Speed
(rpm or steps/s)

0

Figure 12.12
The speed-torque characteristics of a stepper motor.
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Holding torque is the maximum static torque (see e.g. Equation 6.3.6), and is different 
from the maximum (pull-out) torque defined in Figure 12..12.. In particular, the holding 
torque can be about 40% greater than the maximum pull-out torque, which is typically 
equal to the starting torque (or, stand-still torque). Furthermore, the static torque becomes 
higher if the motor has more than one stator pole per phase and if all these poles are 
excited at a time. The residual torque is the maximum static torque that is present when the 
motor phases are not energized. This torque is practically zero for a VR motor, but is not 
negligible for a PM motor. In some industrial literature, detent torque takes the same mean-
ing as the residual torque. In this context, detent torque is defined as the torque ripple that 
is present under power-off conditions. A more appropriate definition for detent torque is 
the static torque at the present detention position (equilibrium position) of the motor, when 
the next phase is energized. According to this definition, detent toque is equal to Tmax sin 
2.p/p where Tmax is the holding torque, and p is the number of phases.

Some further definitions of speed-torque characteristics of a stepper motor are given in 
Figure 12..13.. The pull-out curve or the slew curve here takes the same meaning as what is 
given in Figure 12..12.. Another curve known as the start-stop curve or pull-in curve is also 
given.

The pull-out curve (or, slew curve) gives the speed at which motor can run under steady 
(constant-speed) conditions, under rated current and using appropriate drive circuitry. But, 
the motor is unable to steadily accelerate to the slew speed, starting from rest and apply-
ing a pulse sequence at constant rate corresponding to the slew speed. Instead, it should 
be accelerated first up to the pull-in speed by applying a pulse sequence corresponding to 
this speed. After reaching the start–stop region (pull-in region) in this manner, the motor 
can be accelerated to the pull-out speed (or to a speed lower than this, within the slew 
region). Similarly, when stopping the motor from a slew speed, it should be first deceler-
ated (by down-ramping) to a speed in the start-stop region (pull-in region) and only when 
this region is reached satisfactorily, the stepping sequence should be turned off.

Since the drive system determines the current and the switching sequence of the motor 
phases and the rate at which the switching pulses are applied, it directly affects the speed-
torque curve of a motor. Accordingly, what is given in a product data sheet should be 
interpreted as the speed-torque curve of the particular motor when used with a specified 
drive system and a matching power supply, and operating at rated values.

Pull-out curve
(slew curve)

Start-stop curve
(pull-in curve)

Torque

Slew region
(pull-out region)

Speed0

Start-stop region
(pull-in region)

Figure 12.13
Further speed-torque characteristics and terminology.
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12.4.3.2 Stepper Motor Selection Process

The effort required in selecting a stepper motor for a particular application can be reduced 
if the selection is done in a systematic manner. The following steps provide some guide-
lines for the selection process:

Step 1: List the main requirements for the particular application, according to the conditions 
and specifications for the particular application. These include operational requirements 
such as speeds, accelerations, and required accuracy and resolution, and load characteris-
tics, such as size, inertia, fundamental natural frequencies, and resistance torques.

Step 2: Compute the operating torque and stepping rate requirements for the particular 
application.

Newton’s second law is the basic equation employed in this step. Specifically, the required 
torque rating is given by:

 T T J
tR eq= + wmax

∆
 (12..10)

where
TR = net resistance torque
Jeq = equivalent moment of inertia (including rotor, load, gearing, dampers, etc.)
wmax = maximum operating speed
∆t = time taken to accelerate the load to the maximum speed, starting from rest.
Step 3: Using the torque versus stepping rate curves pull-out curves) for a group of com-

mercially available stepper motors, select a suitable stepper motor.
The torque and speed requirements determined in Step 2. and the accuracy and resolu-

tion requirements specified in Step 1 should be used in this step.
Step 4: If a stepper motor that meets the requirements is not available, modify the basic 

design.
This may be accomplished by changing the speed and torque requirements by add-

ing devices such as gear systems (e.g., harmonic drive) and amplifiers (e.g., hydraulic 
amplifiers).

Step 5: Select a drive system that is compatible with the motor and that meets the opera-
tional requirements in Step 1.

Motors and appropriate drive systems are prescribed in product manuals and catalogs 
available from the vendors. For relatively simple applications, a manually controlled preset 
indexer or an open-loop system consisting of a pulse source (oscillator) and a translator 
could be used to generate the pulse signal to the translator in the drive unit. For more 
 complex transient tasks, a software controller (a microprocessor or a personal computer), or 
a customized hardware controller may be used to generate the desired pulse command in 
open-loop operation. Further sophistication may be incorporated by using digital proces-
sor-based closed-loop control with encoder feedback, for tasks that require very high accu-
racy under transient conditions and for operation near the rated capacity of the motor.

The single most useful piece of information in selecting a stepper motor is the torque 
versus stepping rate curve (the pull-out curve). Other parameters that are valuable in 
the selection process include:

 1. The step angle or the number of steps per revolution.
 2.. The static holding torque (maximum static torque of motor when powered at rated 

voltage).
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 3.. The maximum slew rate (maximum steady-state stepping rate possible at rated 
load).

 4. The motor torque at the required slew rate (pull-out torque, available from the 
pull-out curve).

 5. The maximum ramping slope (maximum acceleration and deceleration possible at 
rated load).

 6. The motor time constants (no-load electrical time constant and mechanical time 
constant).

 7. The motor natural frequency (without an external load and near detent posi tion).
 8. The motor size (dimensions of poles, stator and rotor teeth, air gap and hous ing, 

weight, rotor moment of inertia).
 9. The power supply ratings (voltage, current, and power).

example 12.1

A schematic diagram of an industrial conveyor unit is shown in Figure 12.14. In this application, 
the conveyor moves intermittently at a fixed rate, thereby indexing the objects on the conveyor 
through a fixed distance d in each time period T. A triangular speed profile is used for each motion 
interval, having an acceleration and a deceleration that are equal in magnitude (see Figure 12.15). 

Stepping
motor

Conveyor Belt
(mc)

Objects (mL)

Speed v

r

Js

Jd

Jg 2

Jg1
Jm

r

m

Step-down
gear

(p : 1)

Figure 12.14
Conveyor unit with intermittent motion.

Speed v

Time t

vmax

0

Distance d

T

Figure 12.15
Speed profile for a motion period of the conveyor.
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The conveyor is driven by a stepper motor. A gear unit with step down speed ratio p:1, where p>1, 
may be used if necessary, as shown in Figure 12.15.

 a. Explain why the equivalent moment of inertia Je at the motor shaft, for the overall system, is 
given by:

 J J J p J J J r p m me m g g d s c L= + + + + + +1
2

2
2 21( / )( ) ( / )( )

 where Jm, Jg1, Jg2, Jd, and Js are the moments of inertia of the motor rotor, drive gear, driven 
gear, drive cylinder of the conveyor, and the driven cylinder of the conveyor, respectively; 
mc and mL are the overall masses of the conveyor belt and the moved objects (load), respec-
tively; and r is the radius of each of the two conveyor cylinders.

 b. Four models of stepping motor are available for the application. Their specifications are 
given in Table 12.2 and the corresponding performance curves are given in Figure 12.16. 
The following values are known for the system:

 d = 10 cm, T = 0.2 seconds, r = 10 cm, mc = 5 kg, mL = 5 kg, Jd = Js = 2.0 × 10-3 kg m2.

Also two gear units with p = 2 and 3 are available, and for each unit Jg1 = 50 × 10-6 kg m2 and 
Jg2 = 200 × 10-6 kg m2.

Indicating all calculations and procedures, select a suitable motor unit for this application. You 
must not use a gear unit unless it is necessary to have one with the available motors.

What is the positioning resolution of the conveyor (rectilinear) for the final system?
Note: Assume an overall system efficiency of 80% regardless of whether a gear unit is used.

Solution
 a. Angular speed of the motor and drive gear  = wm.

 Angular speed of the driven gear and conveyor cylinders = (wm/p).
 Rectilinear speed of the conveyor and objects v = (rwm/p).

Table 12.2

Stepper Motor Data

Model 50SM 101SM 310SM 1010SM

NEMA Motor frame size 2.3. 3.4 42.
Full step angle degrees 1.8
Accuracy percent ± 3. (noncumulative)

Holding torque
oz-in 3.8 90 3.70 1050
N-m 0.2.7 0.64 2..61 7.42.

Detent torque
oz-in 6 18 2.5 2.0
N-m 0.04 0.13. 0.18 0.14

Rated phase current Amps 1 5 6 8.6

Rotor inertia
oz-in-sec2. 1.66 × 10-3. 5 × 10-3. 2.6.5 × 10-3. 114 × 10-3.

kg-m2. 11.8 × 10-6 3.5 × 10-6 187 × 10-6 805 × 10-6

Maximum radial load
lb 15 3.5 40
N 67 156 178

Maximum thrust load
lb 2.5 60 12.5
N 111 2.67 556

Weight
lb 1.4 2..8 7.8 2.0
kg 0.6 1.3. 3..5 9.1

Operating temperature °C -55 to +50
Storage temperature °C -55 to +13.0

Source: Aerotech, Inc. With permission.
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 Determination of the equivalent inertia:
 Determination of the equivalent moment of inertia of the system, as referred to the motor 

rotor, is an important step of the motor selection. This done by determining the kinetic 
energy of the overall system and equating it to the kinetic energy of the equivalent system 
as follows:

 

KE J J J J J
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 Hence, the equivalent moment of inertia as felt at the motor rotor, is:

 J J J
p

J J J
r
p

m me m g g d s c L= + + + + + +1 2 2

2

2

1
( ) ( )  (i)

 b. Area of the speed profile is equal to the distance travelled. Hence:

 d v T= 1
2 max  (ii)
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Figure 12.16
Stepper motor performance curves. (From: Aerotech, Inc. With permission.)
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Substitute numerical values: 0 1
1
2

0 2. .max= v  vmax .=1 0 m/s

The acceleration/deceleration of the system: a
v
T

= = =max

/
.

. /
.

2
1 0

0 2 2
10 0m/s m/s2 2

Corresponding angular acceleration/deceleration of the motor:

 a = pa
r

 (iii)

With an overall system efficiency of h, the motor torque Tm that is needed to accelerate/deceler-
ate the system is given by:

 h aT J J
pa
r

J J
p

J J J
r
p

mm e e m g g d s= = = + + + + +[ ( ) (1 2 2

2

2

1
cc Lm

pa
r

+ )]  (iv)

Note: An alternative way to include energy dissipation into this equation is by using two separate 
terms: frictional torque referred to the motor rotor and gear efficiency. In the present problem, for 
simplicity, we use a single efficiency term whether a gear is present or not. In practice, however, it 
should be clear that the overall efficiency drops when a gear transmission is added.

 Maximum speed of the motor:wmax
max= pv
r

 (v)

Without gears (p = 1) we have from Equation (iv):

 hT J J J r m m
a
rm m d s c L= + + + +[ ( )]2  (vi)

 From Equation (v):wmax
max= v
r

 (vii)

Substitute numerical values.

Case 1: Without gears
For an efficiency value h = 0.8 (i.e., 80% efficient), we have from Equation (vi):

 0 8 2 10 2 10 0 1 5 5
10
0 1

3 3 2. [ . ( )]
.

T Jm m= + × + × + +- - N.m

 Or: T Jm m= +125 0 0 104. [ . ] N.m

 From Equation (vii): w
pmax

.
.

.= = × =1 0
0 1

10
60
2

95 5rad/s rpm rpm

The operating speed range is 0-95.5 rpm.
Note: The torque at 95.5 rpm is less than the starting torque for the first two motor models, and 

not so for the second two models (see the speed-torque curves in Figure 12.16). We must use the 
weakest point (i.e., lowest torque) in the operating speed range, in the motor selection process. 
Allowing for this requirement, Table 12.3 is formed for the four motor models.

It is seen that without a gear unit, the available motors cannot meet the system requirements.
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Case 2: With gears
Note: Usually the system efficiency drops when a gear unit is introduced. In the present exercise 
we use the same efficiency for reasons of simplicity.

With an efficiency of 80%, we have h = 0.8. Then from Equation (iv):

 0 8 50 10
1

200 10 2 10 2 106
2

6 3 3. (T J
pm m= + × + × + × + ×- - - - ))

.
( )

.
+ +





×0 1
5 5

10
0 1

2

2p
p N.m

 T J
p

pm m= + × + × ×





- -125 0 50 10
1

104 2 106
2

3. . N.mm

 From Equation (v): w
pmax

.
.

= = ×1 0
0 1

10
60
2

p
prad/s rpmwmax .= 95 5p rpm

First try the case of p = 2 we have wmax = 191.0 rpm. Table 12.4 is formed for the present case.
It is seen that with a gear of speed ratio p = 2, motor model 1010 SM satisfies requirement.
With full stepping, step angle of the rotor = 1.8°. Corresponding step in the conveyor motion is 

the positioning resolution.

 With p = 2 and r = 0.1 m, the position resolution is 
1 8

2. 180
0 1 1 57 10 3..

. .
°

°
× × = × -p

m.

12.5 dc Motors

A dc motor converts direct current electrical energy into rotational mechanical energy. A 
major part of the torque generated in the rotor (armature) of the motor is available to drive 
an external load. The dc motor is probably the earliest form of electric motor. Because of fea-
tures such as high torque, speed controllability over a wide range, portability, well-behaved 

Table 12.3

Data for Selecting a Motor without a Gear Unit

Motor Model
Available Torque

at wmax (N.m) Motor Rotor Inertia (kg.m2) Required Torque (N.m)

50 SM 0.2.6 11.8 × 10-6 13..0

101 SM 0.60 3.5.0 × 10-6 13..0

3.10 SM 2..58 187.0 × 10-6 13..0

1010 SM 7.41 805.0 × 10-6 13..1

Table 12.4

Data for Selecting a Motor with a Gear Unit

Motor Model
Available Torque

at wmax (N.m) Motor Rotor Inertia (kg.m2) Required Torque (N.m)

50 SM 0.2.5 11.8 × 10-6 6.53.

101 SM 0.58 3.5.0 × 10-6 6.53.

3.10 SM 2..63. 187.0 × 10-6 6.57

1010 SM 7.41 805.0 × 10-6 6.73.
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speed-torque characteristics, easier and accurate modeling, and adaptability to various 
types of control methods, dc motors are still widely used in numerous control applications 
including robotic manipulators, transport mechanisms, disk drives, positioning tables, 
machine tools, and servovalve actuators.

The principle of operation of a dc motor is illustrated in Figure 12..17. Consider an electric 
conductor placed in a steady magnetic field at right angles to the direction of the field. 
Flux density B  is assumed constant. If a dc current is passed through the conductor, the 
magnetic flux due to the current will loop around the conductor, as shown in the figure. 
Consider a plane through the conductor, parallel to the direction of flux of the magnet. On 
one side of this plane, the current flux and the field flux are additive; on the opposite side, 
the two magnetic fluxes oppose each other. As a result, an imbalance magnetic force F  is 
generated on the conductor, normal to the plane. This force is given by (Lorentz’s law):

 F = Bil (12..11)

where
B = flux density of the original field
i = current through the conductor
l  = length of the conductor
Note: If the field flux is not perpendicular to the length of the conductor, it can be resolved 

into a perpendicular component that generates the force and to a parallel component that 
has no effect.

The active components of i, B, and F are mutually perpendicular and form a right-hand 
triad, as shown in Figure 12..17. Alternatively, in the vector representation of these three 
quantities, the vector F can be interpreted as the cross product of the vectors i and B. 
Specifically, F = i × B.

If the conductor is free to move, the generated force will move it at some velocity v in 
the direction of the force. As a result of this motion in the magnetic field B, a voltage is 
induced in the conductor. This is known as the back electromotive force, or back e.m.f., and 
is given by:

 vb = Blv (12..12.)

N pole S pole

Current i

Field B

Force F

Magnetic field
B

i
Current through

conductor

F

Figure 12.17
Operating principle of a dc motor.
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According to Lenz’s law, the flux due to the back e.m.f. vb will be opposing the flux due 
to the original current through the conductor, thereby trying to stop the motion. This is the 
cause of electrical damping in motors. Equation 12..11 determines the armature torque (motor 
torque), and Equation 12..12. governs the motor speed.

12.5.1 rotor and Stator

A dc motor has a rotating element called rotor or armature. The rotor shaft is supported 
on two bearings in the motor housing. The rotor has many closely spaced slots on its 
periphery. These slots carry the rotor windings, as shown in Figure 12..18a. Assuming the 
field flux is in the radial direction of the rotor, the force generated in each conductor will 
be in the tangential direction, thereby generating a torque (force × radius), which drives the 
rotor. The rotor is typically a laminated cylinder made from a ferromagnetic material. A 
ferromagnetic core helps concentrate the magnetic flux toward the rotor. The lamination 
reduces the problem of magnetic hysteresis and limits the generation of eddy currents 
and associated dissipation (energy loss by heat generation) within the ferromagnetic mate-
rial. More advanced dc motors use powdered-iron-core rotors rather than the laminated-
iron-core variety, thereby further restricting the generation and conduction/dissipation of 
eddy currents and reducing various nonlinearities such as hysteresis. The rotor windings 
(armature windings) are powered by the supply voltage va.

The fixed magnetic field (which interacts with the rotor coil and generates the motor 
torque) is provided by a set of fixed magnetic poles around the rotor. These poles form the 
stator of the motor. The stator may consist of two opposing pole of a permanent magnet. In 
industrial dc motors, however, the field flux is usually generated not by a permanent mag-
net but electrically in the stator windings, by an electromagnet, as schematically shown 
in Figure 12..18a. Stator poles are constructed from ferromagnetic sheets (i.e., a laminated 
 construction). The stator windings are powered by supply voltage vf, as shown in Figure 
12..18a. Furthermore, note that in Figure 12..18a, the net stator magnetic field is perpendicu-
lar to the net rotor magnetic field, which is along the commutation plane. The resulting 
forces that attempt to pull the rotor field toward the stator field may be interpreted as the 
cause of the motor torque (which is maximum when the two fields are at right angles).
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Figure 12.18
(a) Schematic diagram of a dc motor. (b) Commutator wiring.
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12.5.2 Commutation

A plane known as the “commutation plane” symmetrically divides two adjacent stator 
poles of opposite polarity. In the two-pole stator shown in Figure 12..18a, the commutation 
plane is at right angles to the common axis of the two stator poles, which is the direction of 
the stator magnetic field. It is noted that on one side of the plane, the field is directed toward 
the rotor, while on the other side the field is directed away from the rotor. Accordingly, 
when a rotor conductor rotates from one side of the plane to the other side, the direction 
of the generated torque will be reversed. Such a scenario is not useful since the average 
torque will be zero in that case.

In order to maintain the direction of torque in each conductor group (one group is num-
bered 1, 2., 3., and the other group is numbered 1’, 2.’, and 3.’, in Figure 12..18a), the direc-
tion of current in a conductor has to change as the conductor crosses the commutation 
plane. Physically, this may be accomplished by using a split ring and brush commuta-
tor, shown schematically in Figure 12..18b. The armature voltage is applied to the rotor 
windings through a pair of stationary conducting blocks made of graphite (conducting 
soft carbon), which maintain sliding contact with the split ring. These contacts are called 
“brushes” because historically, they were made of bristles of copper wire in the form of a 
brush. The graphite contacts are cheaper, more durable primarily due to reduced sparking 
(arcing) problems, and provide more contact area (less electrical contact resistance). Also 
the contact friction is lower. The split ring segments, equal in number to the conductor 
slots in the rotor, are electrically insulated from one another, but the adjacent segments 
are connected by the armature windings in each opposite pair of rotor slots, as shown 
in Figure 12..18b. For the rotor position shown in Figure 12..18, note that when the split 
ring rotates in the counter-clockwise direction through 3.0°, the current paths in conduc-
tors 1 and 1’ reverse but the remaining current paths are unchanged, thus achieving the 
required commutation.

12.5.3 brushless dc Motors

There are several shortcomings of the slip ring and brush mechanisms, which are used for 
current transmission through moving members, even with the advances from the histori-
cal copper brushes to modern graphite contacts. The main disadvantages include rapid 
wearout, mechanical loading, wear and heating due to sliding friction, contact bounce, 
excessive noise, and electrical sparks (arcing) with the associated dangers in hazardous 
(e.g., chemical) environments, problems of oxidation, problems in applications that require 
wash-down (e.g., in food processing), and voltage ripples at switching points.

Conventional remedies to these problems—such as the use of improved brush designs 
and modified brush positions to reduce arcing—are inadequate in sophisticated applica-
tions. Also, the required maintenance (to replace brushes and resurface the split-ring com-
mutator) can be rather costly.

Brushless dc motors have PM rotors. Since in this case the polarities of the rotor cannot 
be switched as the rotor crosses a commutation plane, commutation is accomplished by 
electronically switching the current in the stator winding segments. Note that this is the 
reverse of what is done in brushed commutation, where the stator polarities are fixed and 
the rotor polarities are switched when crossing a commutation plane. The stator windings 
of a brushless dc motor can be considered the armature windings whereas for a brushed 
dc motor, rotor is the armature.

PM motors are less nonlinear than the electro-magnet motors because the field strength 
generated by a permanent magnet is rather constant and independent of the current 
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through a coil. This is true whether the permanent magnet is in the stator (i.e., a brushed 
motor) or in the rotor (i.e., a brushless dc motor or a PM stepper motor).

12.5.4 DC Motor equations

Consider a dc motor with separate windings in the stator and the rotor. Each coil has a 
resistance (R) and an inductance (L). When a voltage (v) is applied to the coil, a current (i) 
flows through the circuit, thereby generating a magnetic field. As discussed before, a force 
is produced in the rotor windings, and an associated torque (Tm), which turns the rotor. 
The rotor speed (wm) causes the flux linkage of the rotor coil with the stator field to change 
at a corresponding rate, thereby generating a voltage (back e.m.f.) in the rotor coil.

Equivalent circuits for the stator and the rotor of a conventional dc motor are shown 
in Figure 12..19a. Since the field flux is proportional to field current if, we can express the 
magnetic torque of the motor as:

 Tm = kif ia (12..13.)

This directly follows from Equation 12..11. Next, in view of Equation 12..12., the back e.m.f. 
generated in the armature of the motor is given by:

 vb = k′ifwm (12..14)

The following notation has been used:

if = field current
ia = armature current
wm = angular speed of the motor.

and k and k’ are motor constants, which depend on factors such as the rotor dimensions, 
the number of turns in the armature winding, and the permeability (inverse of reluctance) 
of the magnetic medium. In the case of ideal electrical-to-mechanical energy conversion at 
the rotor (where the rotor coil links with the stator field), we have Tmwm = vb ia with consis-
tent units (e.g., torque in Newton-meters, speed in radians per second, voltage in volts, and 
current in amperes). Then we observe that

 k = k’ (12..15)
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Figure 12.19
(a) The equivalent circuit of a conventional dc motor (separately excited). (b) Armature mechanical loading 
diagram.
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The field circuit equation is obtained by assuming that the stator magnetic field is not 
affected by the rotor magnetic field (i.e., the stator inductance is not affected by the rotor) 
and that there are no eddy current effects in the stator. Then, from Figure 12..19a:

 vf = R i L
di

dtf f f
f+  (12..16)

where vf = supply voltage to the stator; Rf = resistance of the field winding; Lf = inductance 
of the field winding.

The equation for the armature rotor circuit is written as (see Figure 12..19a).

 va = R i L
di
dta a a

a+ + vb (12..17)

where va = supply voltage to the armature; R a = resistance of the armature winding; 
La = leakage inductance in the armature winding.

It should be emphasized here that the primary inductance or mutual inductance in the 
armature winding is represented in the back e.m.f. term vb. The leakage inductance, which 
is usually neglected, represents the fraction of the armature flux that is not linked with the 
stator and is not used in the generation of useful torque. This includes self-inductance in 
the armature.

The mechanical equation of the motor is obtained by applying Newton’s second law to 
the rotor. Assuming that the motor drives some load, which requires a load torque TL to 
operate, and that the frictional resistance in the armature can be modeled by a linear vis-
cous term, we have (see Figure 12..19b):

 J
d
dt

T T bm
m

m L m m
w w= - -  (12..18)

where Jm = moment of inertia of the rotor; bm = equivalent (mechanical) damping constant 
for the rotor.

Note: The load torque may be due, in part, to the inertia of the external load that is 
coupled to the motor shaft. If the coupling flexibility is neglected, the load inertia may be 
directly added to (i.e., lumped with) the rotor inertia after accounting for the possible exis-
tence of a speed reducer (gear, harmonic drive, etc.). In general, a separate set of equations 
is neces sary to represent the dynamics of the external load. Equations 12..13. through 12..18 
form the dynamic model for a dc motor.

12.5.4.1 Steady-State Characteristics

In selecting a motor for a given application, its steady-state characteristics are a major 
determining factor. In particular, steady-state torque-speed curves are employed for 
this purpose. The rationale is that, if the motor is able to meet the steady-state operating 
requirements, with some design conservatism, it should be able to tolerate small devia-
tions under transient conditions of short duration. In the separately excited case shown 
in Figure 12..19a, where the armature circuit and field circuit are excited by separate and 
independent voltage sources, it can be shown that the steady-state torque-speed curve is 
a straight line.
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The shape of the steady-state speed-torque curve will be modified if a common voltage 
supply is used to excite both the field winding and the armature winding. Here, the two 
windings have to be connected together. There are three common ways the windings of 
the rotor and the stator are connected. They are known as: Shunt-wound motor; Series-
wound motor; and Compound-wound motor. In a shunt-wound motor, the armature 
windings and the field windings are connected in parallel. In the series-wound motor, 
they are connected in series. In the compound-wound motor, part of the field windings is 
connected with the armature windings in series and the other part is connected in par-
allel. In a shunt-wound motor at steady-state, the back e.m.f. vb depends directly on the 
supply voltage. Since the back e.m.f. is proportional to the speed, it follows that speed 
controllability is good with the shunt-wound configuration. In a series-wound motor, the 
relation between vb and the supply voltage is coupled through both the armature windings 
and the field windings. Hence its speed controllability is relatively poor. But in this case, a 
relatively large current flows through both windings at low speeds of the motor, giving a 
higher starting torque. Also, the operation is approximately at constant power in this 
case. Since both speed controllability and higher starting torque are desirable charac-
teristics, compound-wound motors are used to obtain a performance in between the 
two extremes. The torque-speed characteristics for the three types of winding con-
nections are shown in Figure 12..2.0.

Speed ωm
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(c) (d)

(b)

Tm
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Figure 12.20
Torque-speed characteristic curves for dc motors (a) Shunt-wound. (b) Series-wound. (c) Compound-wound.  
(d) General case.
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12.5.5 experimental Model for dc Motor

In general, the speed-torque characteristic of a dc motor is nonlinear. A linearized dynamic 
model can be extracted from the speed-torque curves. One of the parameters of the model 
is the damping constant. First we will examine this.

12.5.5.1 Electrical Damping Constant

Newton’s second law governs the dynamic response of a motor. In Equation 12..18, for 
example, bm denotes the mechanical (viscous) damping constant and represents mechani-
cal dissipation of energy. As is intuitively clear, mechanical damping torque opposes 
motionhence the negative sign in the bmwm term in Equation 12..18. Note, further, that 
the magnetic torque Tm of the motor is also dependent on speed wm. In particular, the back 
e.m.f., which is governed by wm, produces a magnetic field, which tends to oppose the 
motion of the motor rotor. This acts as a damper, and the corresponding damping constant 
is given by:

 b
T

e
m

m

= - î
îw

 (12..19)

This parameter is termed the electrical damping constant. Caution should be exercised when 
experimentally measuring be. Note that in constant speed tests, the inertia torque of the 
rotor will be zero; there is no torque loss due to inertia. Torque measured at the motor shaft 
includes as well the torque reduction due to mechanical dissipation (mechanical damping) 
within the rotor, however. Hence the magnitude b of the slope of the speed-torque curve as 
obtained by a steady-state test is equal to be+bm, where bm is the equivalent viscous damp-
ing constant representing mechanical dissipation at the rotor.

12.5.5.2 Linearized Experimental Model

To extract a linearized experimental model for a dc motor, consider the speed-torque 
curves shown in Figure 12..2.0d. For each curve, the excitation voltage vc is maintained 
constant. This is the voltage that is used in controlling the motor, and is termed control 
voltage. It can be, for example, the armature voltage, the field voltage, or the voltage that 
excites both armature and field windings in the case of combined excitation (e.g., shunt-
wound motor). One curve in Figure 12..2.0d is obtained at control voltage vc and the other 
curve is obtained at vc+∆vc. Note also that a tangent can be drawn at a selected point 
(operating point O) of a speed-torque curve. The magnitude b of the slope (which is nega-
tive) corresponds to a damping constant, which includes both electrical and mechani-
cal damping effects). What mechanical damping effects are included in this parameter 
depends entirely on the nature of mechanical damping that was present during the test 
(primarily bearing friction). We have the damping constant as the magnitude of the slope 
at the operating point:

 b
Tm

m vc

= -
=

î
îw constant

 (12..2.0)
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Next draw a vertical line through the operating point O. The torque intercept ∆Tm between 
the two curves can be determined in this manner. Since a vertical line is a constant speed 
line, we have the voltage gain:

 k
T
v

T
vv

m

c

m

cm

= =
=

î
î w constant

∆
∆

 (12..2.1)

Now, using the well-known relation for total differential we have:

 d
w

dw d dw d
w

T
T T

v
v b k vm

m

m v
m

m

c
c m v c

c m

= + = - +î
î

î
î

 (12..2.2.)

Equation 12..2.2. is the linearized model of the motor. This may be used in conjunction with 
the mechanical equation of the motor rotor, for the incremental motion about the operat-
ing point:

 J
d

dt
T Tm

m
m L

dw d d= -  (12..2.3.)

Note that Equation 12..2.3. is the incremental version of Equation 12..18 except that the 
overall damping constant of the motor (including mechanical damping) is included in 
Equation 12..2.2.. The torque needed to drive the rotor inertia, however, is not included 
in Equation 12..2.2. because the steady-state curves are used in determining the param-
eters for this equation. The inertia term is explicitly present in Equation 12..2.3..

12.5.6 Control of dc Motors

Both speed and torque of a dc motor may have to be controlled for proper performance 
in a given application of a dc motor. By using proper winding arrangements, dc motors 
can be operated over a wide range of speeds and torques. Because of this adaptability, dc 
motors are particularly suitable as variable-drive actuators. Historically, ac motors were 
employed almost exclusively in constant-speed applications, but their use in variable-
speed applications was greatly limited because speed control of ac motors was found to be 
quite difficult, by conventional means. Since variable-speed control of a dc motor is quite 
convenient and straightforward, dc motors have dominated in industrial control applica-
tions for many decades.

Following a specified motion trajectory is called servoing, and servomotors (or servo-
actuators) are used for this purpose. The vast majority of servomotors are dc motors with 
feedback control of motion. Servo control is essentially a motion control problem, which 
involves the control of position and speed. There are applications, however, that require 
torque control, directly or indirectly, but they usually require more sophisticated sensing 
and control techniques. Control of a dc motor is accomplished by controlling either the 
stator field flux or the armature flux. If the armature and field windings are connected 
through the same circuit, both techniques are incorporated simultaneously. Specifically, 
the two methods of control are: Armature control and field control.
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12.5.6.1 Armature Control

In an armature-controlled dc motor, the armature voltage va is used as the control input, 
while keeping the conditions in the field circuit constant. In particular, the field current if 

is assumed constant. Consequently, Equations 12..13. and 12..14 can be written as:

 T k im m a=  (12..2.4)

 v kb m m= ′w  (12..2.5)

The parameters km and ′km  are termed the torque constant and the back e.m.f. constant, 
respectively.

Note: With consistent units, km =  ′km  in the case of ideal electrical-to-mechanical energy 
conversion at the motor rotor.

In the Laplace domain, Equation 12..17 becomes:

 v v L s R ia b a a a- = +( )  (12..2.6)

Note: For convenience, time domain variables (functions of t) are used to denote their 
Laplace transforms (functions of s). It is understood, however, that the time functions are 
not identical to the Laplace functions.

In the Laplace domain, the mechanical equation (Equation 12..18) becomes:

 T T J s bm L m m m- = +( )w  (12..2.7)

where Jm and bm denote the moment of inertia and the rotary viscous damping constant, 
respectively, of the motor rotor. Equations 12..2.2. through 12..2.7 are represented in the block 
diagram form, in Figure 12..2.1. Note that the speed wm is taken as the motor output. If the  
motor position qm is considered the output, it is obtained by passing wm through an integra-
tion block 1/s. Note, further, that the load torque TL, which is the useful (effective) torque 
transmitted to the load that is being driven, is an (unknown) input to the system. 
Usually, TL increases with wm because a larger torque is necessary to drive a load at a 
higher speed. If a linear (and dynamic) relationship exists between TL and wm at the 
load, a feedback path can be completed from the output speed to the input load torque 
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Figure 12.21
Open-loop block diagram for an armature-controlled dc motor.
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through a proper load transfer function (load block). The system shown in Figure 
12..2.1 is not a feedback control system. The feedback path, which represents the back 
e.m.f., is a “natural feedback” and is characteristic of the process (dc motor); it is not 
an external control feedback loop.

The overall transfer relation for the system is obtained by first determining the output 
for one of the inputs with the other input removed, and then adding the two output com-
ponents obtained in this manner, in view of the principle of superposition, which holds for a 
linear system. We get:

 wm
m

a
a a

L
k

s
v

L s R
s

T= - +
∆ ∆( )

( )
( )

 (12..2.8)

where ∆(s) is the characteristic polynomial of the system, given by

 ∆( ) ( )( )s L s R J s b k ka a m m m m= + + + ′  (12..2.9)

This is a second order polynomial in the Laplace variable s.

12.5.6.2 Motor Time Constants

The electrical time constant of the armature is:

 t a
a

a

L
R

=  (12..3.0)

which is obtained from Equation 12..17 or 12..2.6. The mechanical response of the rotor is 
governed by the mechanical time constant:

 t m
m

m

J
b

=  (12..3.1)

which is obtained from Equation 12..18 or 12..2.7. Usually, tm is several times larger than ta,  
because the leakage inductance La is quite small (leakage of the flux linkage is 
negligible for high-quality dc motors). Hence, ta can be neglected in comparison to tm 
for most practical purposes. In that case, the transfer functions in Equation 12..2.8 become 
first order.

Note that the characteristic polynomial is the same for both transfer functions in 
Equation 12..2.8, regardless of the input (va or TL). This should be the case because, ∆(s) 
determines the natural response of the system and does not depend on the system 
input. True time constants of the motor are obtained by first solving the characteristic 
equation ∆(s)  = 0 to determine the two roots (poles or eigenvalues), and then taking the 
reciprocal of the magnitudes (Note: Only the real part of the two roots is used if the 
roots are complex). For an armature-controlled dc motor, these true time constants are 
not the same as ta and tm because of the presence of the coupling term k km m′  in ∆(s) (see 
Equation 12..2.9). This also follows from the presence of the natural feedback path (back 
e.m.f.) in Figure 12..2.1.

76868.indb   640 7/8/09   5:19:50 PM



Control System Instrumentation 641

example 12.2

Determine an expression for the dominant time constant of an armature-controlled dc motor.

Solution
By neglecting the electrical time constant in Equation 12.29, we have the approximate character-
istic polynomial: 

 ∆( ) ( )s R J s b k ka m m m m= + + ′  ∆( ) ( )s k s= ′ +t 1

where t = overall dominant time constant of the system.
It follows that the dominant time constant is given by:

 t =
+ ′

R J
R b k k

a m

a m m m( )
 (12.32)

12.5.6.3 Field Control

In field-controlled dc motors, the armature current is assumed to be kept constant, and the 
field voltage is used as the control input. Since ia is assumed constant, Equation 12..13. can 
be written as:

 Tm = kaif (12..3.3.)

where ka is the electromechanical torque constant for the motor. The back e.m.f. relation 
and the armature circuit equation are not used in this case. Equations 12..16 and 12..18 are 
written in the Laplace form as:

 v L s R if f f f= +( )  (12..3.4)

 T T J s bm L m m m- = +( )w  (12..3.5)

Equations 12..3.3. through 12..3.5 can be represented by the open-loop block diagram given 
in Figure 12..2.2..

Note that even though ia is assumed constant, this is not strictly true. This should be 
clear from the armature circuit equation (Equation 12..17). It is the armature supply  voltage 
va that is kept constant. Even though La can be neglected, then, ia depends on the back 
e.m.f. vb, which changes with the motor speed as well as the field current if. Under these 
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Figure 12.22
Open-loop block diagram for a field-controlled dc motor.
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conditions, the block representing ka in Figure 12..2.2. is not a constant gain, and in fact it is 
not linear. At least, a feedback will be needed into this block from output speed. This will 
also add another electrical time constant, which depends on the dynamics of the armature 
circuit. It will also introduce a coupling effect between the mechanical dynamics (of the 
rotor) and the armature circuit electronics. For the present purposes, however, we assume 
that ka is a constant gain.

Now, we return to Figure 12..2.2.. Since the system is linear, the principle of superposition 
holds. According to this, the overall output wm is equal to the sum of the individual out-
puts due to the two inputs vf and TL, taken separately. It follows that transfer relationship 
is given by:

 wm
a

f f m m
f

m m
L

k
L s R J s b

v
J s b

T=
+ +

-
+( )( ) ( )
1

 (12..3.6)

In this case, the electrical time constant originates from the field circuit and is given by:

 t f
f

f

L

R
=  (12..3.7)

The mechanical time constant tm of the field-controlled motor is the same as that for the 
armature-controlled motor, and can be defined by Equation 12..3.1:

 t m
m

m

J
b

=  (12..3.1)

The characteristic polynomial of the open-loop field-controlled motor is:

 ∆( ) ( )( )s L s R J s bf f m m= + +  (12..3.8)

It follows that tf and tm are the true time constants of the system, unlike in an armature 
controlled motor. As in an armature-controlled dc motor, however, the electrical time con-
stant is several times smaller and can be neglected in comparison to the mechanical time 
constant. Furthermore, as for an armature-controlled motor, the speed and the angular 
position of a field-controlled motor have to be measured and fed back for accurate motion 
control.

12.5.7 Feedback Control of dc Motors

Open-loop operation of a dc motor, as represented by Figures 12..2.1 (armature control) and 
12..2.2. (field control), can lead to excessive error and even instability, particularly because of 
the unknown load input and also due to the integration effect when position (not speed) is 
the desired output (as in positioning applications). Feedback control is necessary in these 
circumstances.

In feedback control, the motor response (position, speed, or both) is measured using an 
appropriate sensor and fed back into the controller, which generates the control signal for 
the drive hardware of the motor. An optical encoder can be used to sense both position 
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and speed and a tachometer may be used to measure the speed alone. The following three 
types of feedback control are important:

 1. Velocity feedback
 2.. Position plus velocity feedback
 3.. Position feedback with a multi term controller

12.5.7.1 Velocity Feedback Control

Velocity feedback is particularly useful in controlling the motor speed. In velocity feed-
back, motor speed is sensed using a device such as a tachometer or an optical encoder, 
and is fed back to the controller, which compares it with the desired speed, and the error 
is used to correct the deviation. Additional dynamic compensation (e.g., lead or lag com-
pensation) may be needed to improve the accuracy and the effectiveness of the controller, 
and can be provided using either analog circuits or digital processing. The error signal 
is passed through the compensator in order to improve the performance of the control 
system.

12.5.7.2 Position Plus Velocity Feedback Control

In position control, the motor angle qm is the output. In this case, the open-loop system has 
a free integrator, and the characteristic polynomial is s(t s + 1). This is a marginally stable 
system. In particular, if a slight disturbance or model error is present, it will be integrated 
out, which can lead to a diverging error in the motor angle. In particular, the load torque 
TL is an input to the system, and is not completely known. In control systems terminology, 
this is a disturbance (an unknown input), which can cause unstable behavior in the open-
loop system. In view of the free integrator at the position output, the resulting unstable 
behavior cannot be corrected using velocity feedback alone. Position feedback is needed to 
remedy the problem. Both position and velocity feedback are needed. The feedback gains 
for the position and velocity signals can be chosen so as to obtain the desired response 
(speed of response, overshoot limit, steady-state accuracy, etc.). Block diagram of a position 
plus velocity feedback control system for a dc motor is shown in Figure 12..2.3.. The motor 
block is given by Figure 12..2.1 for an armature-controlled motor, and by Figure 12..2.2. for a 
field-control motor (Note: Load torque input is integral in each of these two models). The 
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Position plus velocity feedback control of a dc motor.
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drive unit of the motor is represented by an amplifier of gain ka. Control system design 
involves selection of proper parameter values for sensors and other components in the 
control system.

12.5.7.3 Position Feedback with PID Control

A popular method of controlling a dc motor is to use just position feedback, and then com-
pensate for the error using a three-term controller having the proportional, integral and 
derivative (PID) actions. A block diagram for this control system is shown in Figure 12..2.4.

In the control system of a dc motor (Figure 12..2.3. or 12..2.4), the desired position command 
may be provided by a potentiometer, as a voltage signal. The measurements of position and 
speed also are provided as voltage signals. Specifically, in the case of an optical encoder, 
the pulses are detected by a digital pulse counter, and read into the digital controller. This 
reading has to be calibrated to be consistent with the desired position command. In the 
case of a tachometer, the velocity reading is generated as a voltage, which has to be cali-
brated then, to be consistent with the desired position signal.

It is noted that proportional plus derivative control (PPD control or PD control) with 
position feedback, has a similar effect as position plus velocity (speed) feedback control. 
But, the two are not identical because the latter adds a zero to the system transfer func-
tion, requiring further considerations in the controller design, and affecting the motor 
response. In particular, the zero modifies the sign and the ratio in which the two response 
components corresponding to the two poles contribute to the overall response.

12.5.8 Motor Driver

The driver of a dc motor is a hardware unit, which generates the necessary current to 
energize the windings of the motor. By controlling the current generated by the driver, 
the motor torque can be controlled. By receiving feedback from a motion sensor (encoder, 
tachometer, etc.), the angular position and the speed of the motor can be controlled.

Note: When an optical encoder is provided with the motor—a typical situation—it is not 
necessary to use a tachometer as well, because the encoder can generate both position and 
speed measurements.

The drive unit primarily consists of a drive amplifier, with additional circuitry and a 
dc power supply. In typical applications of motion control and servoing, the drive unit 
is a servoamplifier with auxiliary hardware. The driver is commanded by a control input 
provided by a host computer (personal computer or PC) through an interface (I/O) card.  
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PID control of the position response of a dc motor.
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A suitable arrangement is shown in Figure 12..2.5. Also, the driver parameters (e.g., ampli-
fier gains) are software programmable and can be set by the host computer.

The control computer receives a feedback signal of the motor motion, through the inter-
face board, and generates a control signal, which is provided to the drive amplifier, again 
through the interface board. Any control scheme can be programmed (say, in C language) 
and implemented in the control computer. In addition to typical servo control schemes 
such as PID and position-plus-velocity feedback, other advanced control algorithms (e.g., 
optimal control techniques such as linear quadratic regulator (LQR) and linear quadratic 
Gaussian (LQG), adaptive control techniques such as model-referenced adaptive control, 
switching control techniques such as sliding-mode control, nonlinear control schemes 
such as feedback linearization technique (FLT), and intelligent control techniques such 
as fuzzy logic control) may be applied in this manner. If the computer does not has the 
processing power to carry out the control computations at the required speed (i.e., con-
trol bandwidth), a digital signal processor (DSP) may be incorporated into the computer. 
But, with modern computers, which can provide substantial computing power at low cost, 
DSPs are not needed in most applications.

12.5.8.1 Interface Board

The I/O card is a hardware module with associated driver software, based in a host 
computer (PC), and connected through its bus (ISA bus). It forms the input–output link 
between the motor and the controller. It can provide many (say, eight) analog signals to 
drive many (eight) motors, and hence termed a multi axis card. It follows that the digital-
to-analog conversion (DAC) capability is built into the I/O card (e.g., 16 bit DAC including 
a sign bit, ±10 V output voltage range). Similarly, the ADC function is included in the I/O 
card (e.g., eight analog input channels with 16 bit ADC including a sign bit, ±10 V output 
voltage range). These input channels can be used for analog sensors such as tachometers, 
potentiometers, and strain gauges. Equally important are the encoder channels to read 
the pulse signals from the optical encoders mounted on the dc servomotors. Typically the 
encoder input channels are equal in number to the analog output channels (and the num-
ber of axes; e.g., eight). The position pulses are read using counters (e.g., 2.4-bit counters), 
and the speed is determined by the pulse rate. The rate at which the encoder pulses are 
counted can be quite high (e.g., 10 MHz). In addition a number of bits (e.g., 3.2.) of digital 
input and output may be available through the I/O card, for use in simple digital sensing, 
control, and switching functions.

Control
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Interface (I/O)
board

dc
motor

Encoder

Drive
amplifier

Control computer

Figure 12.25
Components of a dc motor control system.
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12.5.8.2 Drive Unit

The primary hardware component of the motor drive system is the drive amplifier. In 
 typical motion control applications, these amplifiers are called servo amplifiers. Two types 
of drive amplifiers are commercially available:

 1. Linear amplifier.
 2.. Pulse-width-modulation (PWM) amplifier.

A linear amplifier generates a voltage output, which is proportional to the control input 
provided to it. Since the output voltage is proportioned by dissipative means (using resis-
tor circuitry), this is a wasteful and in efficient approach. Furthermore, fans and heat sinks 
have to be provided to remove the generated heat, particularly in continuous operation. To 
understand the inefficiency associated with a linear amplifier, suppose that the operating 
output range of the amplifier is 0-2.0 V, and that the amplifier is powered by a 2.0 V power 
supply. Under a particular operating condition, suppose that the motor is applied 10 V and 
draws a current of 4 A. The power used by the motor then is 10 × 4 W = 40 W. Still, the power 
supply provides 2.0 V at 5 A, thereby consuming 100 W. This means, 60 W of power is dis-
sipated, and the efficiency is only 40%. The efficiency can be made close to 100% using mod-
ern PWM amplifiers, which are nondissipative devices depending on high-speed switching 
at constant voltage to control the power supplied to the motor, as discussed next.

Modern servo amplifiers use PWM to drive servomotors efficiently under variable-speed 
conditions, without incurring excessive power losses. Integrated microelectronic design 
makes them compact, accurate, and inexpensive. The components of a typical PWM drive 
system are shown in Figure 12..2.6. Other signal conditioning hardware (e.g., filters) and 
auxiliary components such as isolation hardware, safety devices including tripping hard-
ware, and cooling fan are not shown in the figure. In particular, note the following com-
ponents, connected in series:

 1. A velocity amplifier (a differential amplifier).
 2.. A torque amplifier.
 3.. A PWM amplifier.
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Figure 12.26
The main components of a PWM drive system for a dc motor.
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The power can come from an ac line supply, which is rectified in the drive unit to provide 
the necessary dc power for the electronics. Alternatively, leads may be provided for an 
external power supply (e.g., 15 V dc). The reference velocity signal and the feedback signal 
(from an encoder or a tachometer) are con nected to the input leads of the velocity amplifier. 
The resulting difference (error signal) is conditioned and amplified by the torque amplifier 
to generate a current corresponding to the required torque (corresponding to the driving 
speed). The motor current is sensed and fed back to this amplifier, to improve the torque 
performance of the motor. The output from the torque amplifier is used as the modulating 
signal to the PWM amplifier. The reference switching frequency of a PWM amplifier is 
high (on the order of 2.5 kHz). PWM is accomplished by varying the duty cycle of the gener-
ated pulse signal, through switching control, as explained next. The PWM signal from the 
amplifier (e.g., at 10 V) is used to energize the field windings of a dc motor. A brushless dc 
motor needs electronic commutation. This may be accomplished using the encoder signal 
to time the switching of the current through the stator windings.

Consider the voltage pulse signal shown in Figure 12..2.7. The following notation is used:
T = pulse period (i.e., interval between the successive on times)
To = on period (i.e., interval between on time to the next off time).
Then, the duty cycle is given by the percentage:

 d
T
T

o= × 100%   (12..3.9)

Note: In PWM, voltage level vref and the pulse frequency 1/T are kept fixed, and what is 
varied is To.

PWM is achieved by “chopping” the reference voltage so that the average voltage is var-
ied. It is easy to see that, with respect to an output pulse signal, the duty cycle is given by 
the ratio of average output to the peak output:

 Duty cycle
Average output

Peak output
= × 100%  (12..40)

Equation 12..3.9 or 12..40 also verifies that the average level of a PWM signal is proportional 
to the duty cycle (or the on time period To) of the signal. It follows that the output level 
(i.e., the average value) of a PWM signal can be varied simply by changing the signal-on 
time period (in the range 0 to T) or equivalently by changing the duty cycle (in the range 
0-100%). This relationship between the average output and the duty cycle is linear. Hence 

Voltage

vref

To

T

On OnOff
Time t

Figure 12.27
Duty cycle of a PWM signal.
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a digital or software means of generating a PWM signal would be to use a straight line 
from 0 to the maximum signal level, spanning the period (T) of the signal. For a given out-
put level, the straight line segment at this height, when projected on the time axis, gives 
the required on-time interval (To).

12.5.9 dc Motor Selection

DC motors, dc servomotors in particular, are suitable for applications requiring continu-
ous operation (continuous duty) at high levels of torque and speed. Brushless permanent-
magnet motors with advanced magnetic material provide high torque/mass ratio, and are 
preferred for continuous operation at high throughput (e.g., component insertion machines 
in the manufacture of printed-circuit boards, portioning and packaging machines, print-
ing machines) and high speeds (e.g., conveyors, robotic arms), in hazardous environments 
(where spark generation from brushes would be dangerous), and in applications that need 
minimal maintenance and regular wash-down (e.g., in food processing applications). For 
applications that call for high torques and low speeds at high precision (e.g., inspection, 
sensing, product assembly), torque motors or regular motors with suitable speed reducers 
(e.g., harmonic drive, gear unit commonly using worm gears, etc.) may be employed.

A typical application involves a “rotation stage” producing rotary motion for the load. 
If an application requires linear (rectilinear) motions, a “linear stage” has to be used. 
One option is to use a rotary motor with a rotatory-to-linear motion transmission device 
such a lead screw or ball screw and nut, rack and pinion, or conveyor belt. This approach 
introduces some degree of nonlinearity and other errors (e.g., friction, backlash). For high-
 precision applications, linear motor provides a better alternative. The operating principle 
of a linear motor is similar to that of a rotary motor, except linearly moving armatures on 
linear bearing or guideways are used instead of rotors mounted on rotary bearings.

When selecting a dc motor for a particular application, a matching drive unit has to be 
chosen as well. Due consideration must be given to the requirements (specifications) of 
power, speed, accuracy, resolution, size, weight, and cost, when selecting a motor and a 
drive system. In fact vendor catalogs give the necessary information for motors and match-
ing drive units, thereby making the selection far more convenient. Also, a suitable speed 
transmission device (harmonic drive, gear unit, lead screw and nut, etc.) may have to be 
chosen as well, depending on the application.

12.5.9.1 Motor Data and Specifications

Torque and speed are the two primary considerations in choosing a motor for a particular 
application. Speed-torque curves are available, in particular. The torques given in these 
curves are typically the maximum torques (known as peak torques), which the motor can 
generate at the indicated speeds. A motor should not be operated continuously at these 
torques (and current levels) because of the dangers of overloading, wear, and malfunc-
tion. The peak values have to be reduced (say, by 50%) in selecting a motor to match the 
torque requirement for continuous operation. Alternatively, the continuous torque values 
as given by the manufacturer should be used in the motor selection.

Motor manufacturers’ data that are usually available to users include the following:

 1. Mechanical data.
Peak torque (e.g., 65 N.m).•	
Continuous torque at zero speed or continuous stall torque (e.g., 2.5 N.m).•	
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Frictional torque (e.g., 0.4 N.m).•	
Maximum acceleration at peak torque (e.g., 3.3.•	  × 103. rad/s2.).
Maximum speed or no-load speed (e.g., 3.,000 rpm).•	
Rated speed or speed at rated load (e.g., 2.,400 rpm).•	
Rated output power (e.g., 5,100 W).•	
Rotor moment of inertia (e.g.,0.002. kg.m•	 2.).
Dimensions and weight (e.g., 14 cm diameter, 3.0 cm length, 2.0 kg).•	
Allowable axial load or thrust (e.g., 2.3.0 N).•	
Allowable radial load (e.g., 700 N).•	
Mechanical (viscous) damping constant (e.g., 0.12. N.m/krpm).•	
Mechanical time constant (e.g., 10 ms).•	

 2.. Electrical data.
Electrical time constant (e.g., 2. ms).•	
Torque constant (e.g., 0.9 N.m/A for peak current or 1.2. N.m/A rms current).•	
Back e.m.f. constant (e.g., 0.95 V/rad/s for peak voltage).•	
Armature/field resistance and inductance (e.g., 1.0 •	 Ω, 2. mH).
Compatible drive unit data (voltage, current, etc.).•	

 3.. General data.
Brush life and motor life (e.g., 5•	  × 108 revolutions at maximum speed).
Operating temperature and other environmental conditions (e.g., 0•	 -40°C).
Thermal resistance (e.g., 1.5•	 °C/W).
Thermal time constant (e.g., 70 minutes).•	
Mounting configuration.•	

Quite commonly, motors and drive systems are chosen from what is commercially avail-
able. Customized production may be required, however, in highly specialized and research 
and development applications where the cost may not be a primary consideration. The 
selection process involves matching the engineering specifications for a given application 
with the data of commercially available motor systems.

12.5.9.2 Selection Considerations

When a specific application calls for large speed variations (e.g., speed tracking over a 
range of 10 dB or more), armature control is preferred. Note, however, that at low speeds 
(typically, half the rated speed), poor ventilation and associated temperature buildup can 
cause problems. At very high speeds, mechanical limitations and heating due to frictional 
dissipation become determining factors. For constant-speed applications, shunt-wound 
motors are preferred. Finer speed regulation may be achieved using a servo system with 
encoder or tachometer feedback or with phase-locked operation. For constant power appli-
cations, the series-wound or compound-wound motors are preferable over shunt-wound 
units. If the shortcomings of mechanical commutation and limited brush life are critical, 
brushless dc motors should be used.

A simple way to determine the operating conditions of a motor is by using its torque-
speed curve, as illustrated in Figure 12..2.8. What is normally provided by the manufacturer 
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is the peak torque curve, which gives the maximum torque the motor (with a matching 
drive system) can provide at a given speed, for short periods (say, 3.0% duty cycle). The 
actual selection of a motor should be based on its continuous torque, which is the torque 
that the motor is able to provide continuously at a given speed, for long periods without 
overheating or damaging the unit. If the continuous torque curve is not provided by the 
manufacturer, the peak torque curve should be reduced by about 50% (or even by 70%) 
for matching with the specified operating requirements. The minimum operating torque 
Tmin is limited mainly by loading considerations. The minimum speed wmin is determined 
primarily by operating temperature. These boundaries along with the continuous torque 
curve define the useful operating region of the particular motor (and its drive system), 
as indicated in Figure 12..2.8a. The optimal operating points are those that fall within this 
 segment on the continuous torque-speed curve. The upper limit on speed may be imposed 
by taking into account transmission limitations in addition to the continuous torque-speed 
capability of the motor system.

12.5.9.3 Motor Sizing Procedure

Motor sizing is the term used to denote the procedure of matching a motor (and its drive 
system) to a load (demand of the specific application). The load may be given by a load 
curve, which is the speed-torque curve representing the torque requirements for operating 
the load at various speeds (see Figure 12..2.9). Clearly, greater torques are needed to drive a 
load at higher speeds. For a motor and a load, the acceptable operating range is the inter-
val where the load curve overlaps with the operating region of the motor (segment AB in 
Figure 12..2.9). The optimal operating point is the point where the load curve intersects with 
the speed-torque curve of the motor (point A in Figure 12..2.9).

Sizing a dc motor is similar to sizing a stepper motor, as studied before. The same equa-
tions may be used for computing the load torque (demand). The motor characteristic 
(speed-torque curve) gives the available torque, as in the case of a stepper motor. The main 
difference is: a stepper motor is not suitable for continuous operation for long periods and 
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Figure 12.28
(a) Representation of the useful operating region for a dc motor. (b) Speed-torque characteristics of a commer-
cial brushless dc servomotor with a matching amplifier. (From: Aerotech, Inc. With permission.)
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at high speeds, whereas a dc motor can perform well in such situations. In this context, a dc 
motor can provide high torques, as given by its “peak torque curve,” for short periods, and 
reduced torques, as given by its “continuous torque curve” for long periods of operation. 
In the motor sizing procedure, then, the peak torque curve may be used for short periods 
of acceleration and deceleration, but the continuous torque curve (or, the peak torque curve 
reduced by about 50%) must be used for continuous operation for long periods.

12.5.9.4 Inertia Matching

The motor rotor inertia (Jm) should not be very small compared to the load inertia (JL). This 
is particularly critical in high speed and highly repetitive (high throughput) applications. 
Typically, for high speed applications, the value of JL/Jm may lie in the range 5-2.0. For low 
speed applications, JL/Jm can be as high as 100. This assumes direct drive applications.

A gear transmission may be needed between the motor and the load in order to amplify 
the torque available from the motor, which also reduces the speed at which the load is 
driven. Then, further considerations have to be made in inertia matching. In particular, 
neglecting the inertial and frictional loads due to gear transmission, it can be shown that 
best acceleration conditions for the load are possible if:

 
J
J

rL

m

= 2.  (12..41)

where r is the step down gear ratio (i.e., motor speed/load speed). Since JL/r2. is the load 
inertia as felt at the motor rotor, the optimal condition (Equation 12..41) is when this 
 equivalent inertia (which moves at the same acceleration as the rotor) is equal to the rotor 
inertia (Jm).

12.5.9.5 Drive Amplifier Selection

Usually, the commercial motors come with matching drive systems. If this is not the 
case, some useful sizing computations can be done to assist the process of selecting a 
drive amplifier. As noted before, even though the control procedure becomes linear and 
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Figure 12.29
Sizing a motor for a given load.
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convenient when linear amplifiers are used, it is desirable to use PWM amplifiers in view 
of their high efficiency (and associated low thermal dissipation).

The required current and voltage ratings of the amplifier, for a given motor and a load, 
may be computed rather conveniently. The required motor torque is given by:

 T J T Tm m L f= + +a  (12..42.a)

where
a  = highest angular acceleration needed from the motor
TL = worst-case load torque
Tf =  frictional torque on the motor
If the load is a pure inertia (JL), Equation 12..42.a becomes:

 T J J Tm m L f= + +( )a  (12..42.b)

The current required to generate this torque in the motor is given by:

 i
T
k

m

m

=  (12..43.)

where km is the torque constant of the motor.
The voltage required to drive the motor is given by:

 v k Rim m= ′ +w  (12..44)

where ′ =k km m  is the back e.m.f. constant, R is the winding resistance, and wm is the highest 
operating speed of the motor in driving the load. For a PWM amplifier, the supply voltage 
(from a dc power supply) is computed by dividing the voltage in Equation 12..44 by the 
lowest duty cycle of operation.

Note 1: For “peak curve” operation, pick amplifier and power supply with these ratings 
(voltage, current, power).

Note 2: For “continuous curve” operation, increase the current rating proportionately.
Note 3: If several amplifiers use the same single power supply: Increase the power rating 

of power supply in proportion.

12.5.10 Summary of Motor Selection

It is a component matching problem.•	
Components: Load, Motor, Sensors, Drive Systems, Transmission (Gear), etc.•	
Typically: Motor and sensor (e.g., encoder) come together; Motor may include a •	
harmonic drive (Transmission); Drive system (PWM amplifier, power supply, etc.) 
commercially come matched to the motor.
Typically: Match the motor to the load; Select a gear unit if necessary.•	
Continuous operation has more stringent performance requirements (due to ther-•	
mal problems) than peak (intermittent) operation.
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example 12.3

A load of moment of inertia JL = 0.5 kg.m2 is ramped up from rest to a steady speed of 200 rpm in 
0.5 s using a dc motor and a gear unit of step down speed ratio r = 5. A schematic representation of 
the system is shown in Figure 12.30a and the speed profile of the load is shown in Figure 12.30b. 
The load exerts a constant resistance of TR = 55N.m throughout the operation. The efficiency of the 
gear unit is e = 0.7. Check whether the commercial brushless dc motor with its drive unit, whose 
characteristics are shown in Figure 12.28b, is suitable for this application. The moment of inertia 
of the motor rotor is Jm = 0.002kg.m2

Solution
The load equation to compute the torque required from the motor is given by:

 T J
J

er
r

T
erm m

L R= +





+
2
a  (12.45)

where a  = load acceleration, and the remaining parameters are as defined in the example. The 
derivation of Equation 12.45 is straightforward. From the given speed profile we have:

Maximum load speed = 200 rpm = 20.94 rad/s

 Load acceleration =  20 94
0 5
.
.

.rad/s =42 rad/s2 2

Substitute the numerical values in Equation 12.44, under worst-case conditions, to compute the 
required torque from the motor. We have:

 Tm = +
×







× +
×

0 002
0 05

0 7 5
5 42

55 0
0 7 52

.
.

.
.

.
N.m  = 1.02+15.71 N.m = 16.73 N.m

Under worst-case conditions, at least this much of torque would be required from the motor, 
operating at a speed of 200 × 5 = 1000 rpm. Note from Figure 12.28b that the load point (1000 
rpm, 16.73 N.m) is sufficiently below even the continuous torque curve of the given motor (with 
its drive unit). Hence this motor is adequate for the task.
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Figure 12.30
(a) A load driven by a dc motor through a gear transmission. (b) Speed profile of the load.
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12.6 Control Experiments Using LabVIEW®

In this section two experiments in control which are used in the mandatory undergradu-
ate course in feedback control in the Department of Mechanical Engineering, University of 
British Columbia, are outlined. These two experiments use the software tool LabVIEW or 
Laboratory Virtual Engineering Workbench, which is described in Appendix B.

12.6.1 experiment 1: Tank level Display

The main objective of this laboratory experiment is to employ LabVIEW®s graphical 
programming tool for monitoring, data acquisition and display in a two-tank fluid flow 
 system. Specific objectives are:

Build a LabVIEW G program that acquires voltage signals corresponding to the •	
liquid levels of the tanks.
Calibrate the LabVIEW program to display the liquid levels.•	
Determine the valve resistance using the experimental data acquired through the •	
developed LabVIEW program and fundamentals of fluid flow through valves.

12.6.1.1 Procedure

The experimental setup is schematically shown in Figure 12..3.1. It contains two intercon-
nected tanks that can continuously supply fluid at two different flow rates.

In the first part of experiment, a virtual instrument VI is built whose front panel and 
block diagram are as shown in Figures 12..3.2. and 12..3.3., respectively. The purpose of the VI 
is to perform the following functions:

To continuously acquire signals from the two pressure transducers placed in the •	
base of two tanks.
To convert the acquired signal counts into voltages and display them.•	
To convert the voltages into liquid levels, display them and monitor their time •	
response.

12.6.1.2 Creating the Front Panel

The front panel shown in Figure 12..3.2. has three digital indicators for Volts A, Volts B, and 
Time (seconds), two tank level indicators to display the current liquid levels, a waveform 
chart that displays the time response of the liquid levels in the tanks, and a stop button to 
stop data acquisition. The steps of building the front panel are:

 1. Select New VI from the LabVIEW® startup screen.
 2.. Create the three digital indicators: Select Digital Indicator from the Numeric 

Indicators (Num Inds) subpalette of the Controls palette. Drag and drop the 
 indicator on the front panel. Type Volts A inside the label box. Using the position-
ing tool from the Tools palette, drag the indicator to the desired location on the 
front panel. Repeat the process to create the other two indicators, and label them. 
Note: Each time you create a new control or indicator, LabVIEW automatically 
 creates the corresponding terminals in the block diagram.

76868.indb   654 7/8/09   5:20:03 PM



Control System Instrumentation 655

Inlet
valve A

Valve AB

Process
valve A

Process
valve B

Pump

Disturbance
valve

Inlet
valve B

Control
unitProportional

control
valve

Tank BTank A

Pressure
transducer A

Pressure
transducer B

Figure 12.31
Schematic experimental setup for the two-tank fluid flow system.

Figure 12.32
The front panel.
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 3.. Similarly, create the two tank level indicators by dragging them from the Numeric 
subpalette of the Controls palette. Add labels and position the tanks. You can set 
the upper limit of the scale of each tank to read 2.5.0 (inches) (Note: 1 inch = 2..54 cm) 
by directly typing over the initial 10.0 upper limit.

 4. Create the waveform chart by selecting it from the Graph Indicators (Graph Inds) 
subpalette of the Controls palette. Add the chart label, position it and set its y-axis 
upper limit. If you right-click on the graph using the mouse, a pop menu will 
appear, which will allow you to control the functionality and appearance; for 
example, showing or hiding the graph palette and the x-axis scale. Set the x-axis 
scale to AutoScale X, also select the y-axis scale, and make sure that there is no 
check mark beside AutoScale Y. You can also resize the legend of the chart by drag-
ging its corners to allow for the two variables.

 5. Create the stop button by selecting it from the Boolean subpalette of the Controls 
palette.

12.6.1.3 Creating the Block Diagram

Switch to the block diagram window and note the different terminals that LabVIEW® auto-
matically created corresponding to the front panel objects. Use Figure 12..3.1 as a guide for 
positioning the different terminals in the diagram.

The subVI Get Single Scan.vi is set up to communicate with the data acquisition card 
installed in the computer and to perform a single scan on two specified channels to which 
the pressure transducers are connected. The Get Single Scan.vi SubVI takes the device num-
ber and the channels to scan the input. The SubVI also returns two double values corre-
sponding to the pressure signals. The output from Two Ch Single Scan.vi subVI are 12.-bit 
unsigned integers ranging from zero to 4,095 (largest 12.-bit integer), which are internally 
converted to value in Volts.

Figure 12.33
Block diagram.
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The voltages are then converted into liquid heights using two sets of linear conversion 
factors each consisting of a slope and an intercept. The following steps are used to build 
the block diagram:

 1. Insert the subVI Get Single Scan.vi into the block diagram by choosing Select a VI 
from the Functions palette. This subVI has two output terminals and two input 
terminals.

 2.. Create a new constant for the device input terminal and set the value to 1 by 
selecting the Numeric Constant from the Numeric subpalette of the All Functions 
palette.

 3.. Create two measurement channels by selecting the NI Measurement and then 
selecting the Data Acquisition subpalettes from the All Functions palette.

 4. Right click on a channel and select “New Channel.” Make sure that the drop down 
list box has Analog Input selected, and then press the next button. Type “Tank A” 
for channel name and leave the description blank, and then press the next button 
(if Tank A is already made create a Tank C for practice). Make sure that Voltage 
is selected on the drop down menu, and then press the next button. This ensures 
that the readings are Voltage measurements. It will now ask you to name the units 
for this measurement (optional). Insert Volts in the Units box, set the minimum 
and maximum values to -5 V and +5 V, respectively, and press the next button. 
Select “No scaling” and press the next button. It will ask what device you want to 
use. This allows you to select between multiple devices in systems that have more 
than one. Select Dev1, set “Which channel…” to 0, select the analog input mode of 
“Referenced single ended”, and click the finish button. Repeat for “Tank B” but set 
the analog channel (“Which channel…”) to 1.

 5. Left click on the first channel and set it to “Tank A.” Left click on the second chan-
nel and set it to “Tank B.” You may select “Tank A” or “Tank B” on both channel 
tools of the block diagram even though you setup each only once. This enables 
the user to setup the channels just once at the beginning and have them available 
anywhere in the program.

 6. To combine the signals from “Tank A” and “Tank B”, place Build Array from the 
Array subpalette from the Functions palette. To make two input channels, right 
click the placed Build Array block and select Add Input.

 7. Add the two sets of Volts to Inches linear conversion factors with preliminary val-
ues of 1.0, 1.0, 0.0 and 0.0 to the block diagram by selecting Numeric Constant from 
the Numeric subpalette of the All Functions palette. Label these constants as slope 
and intercept as shown. The values of these conversion factors may be adjusted 
later.

 8. The waveform chart has a single input terminal. To plot two variables, they must 
be “bundeled” together into a cluster using the Bundle function available in the 
Cluster subpalette of the All Functions palette. Add a Bundle function to the block 
diagram. The Bundle function has two input terminals and one output terminal.

 9. Using the wiring tool found on the Tools palette, wire the terminals of the objects 
on the block diagram as shown in Figure 12..3.1. To wire from one terminal to 
another, click on the first terminal, move the tool to the second terminal, and 
click on the second terminal. It does not matter on which terminal you initiate 
the wiring.
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 10. The current status of the block diagram may allow the VI to perform a single data 
acquisition operation for the tank level. To perform this operation repeatedly, the 
objects in the block diagram must be placed inside a While Loop found in the 
Structures subpalette of the Functions palette. The While Loop is a resizable box. 
The While Loop is placed in the block diagram by clicking with the While Loop 
icon in an area above and to the left of all the objects that need to be executed 
within the loop, and then draging out a rectangle while holding down the mouse 
button. The While Loop has two terminals: a Boolean input terminal (if symbol 
is loop executes while input is TRUE) and an optional numeric output terminal 
that outputs the number of times the loop has executed. Note: In the diagram the 
constants for the device and for the channels are placed outside of the while loop. 
This has no bearing on how the program operates. But if these are to be controls 
so that you can configure which channels are which only on program start, then it 
is vital that the controls be outside of the while loop. Otherwise during each loop 
the program will recheck these controls and set them to the values present at the 
time of activation. The stop button must to be in the while loop. Otherwise it only 
checks the status of the button once at startup and does not change the value dur-
ing execution of the program.

 11. To control the loop timing, place the Wait Until Next ms Multiple function located 
in the Time & Dialog subpalette of the Functions palette inside the loop. This tim-
ing control function has a single input terminal and a single optional output ter-
minal. It waits until the millisecond timer is a multiple of the specified input value 
(in ms) before returning the optional millisecond timer value. Wire a Numeric 
Constant of 100.0 (ms) to the input terminal of the timing function.

 12.. To display the elapsed time since the start of the run, first convert the time step of 
the While Loop execution in milliseconds to seconds (i.e., divide by 1000.0), then 
multiply it by the number of times the loop has executed (i), and wire the result to 
the Time (seconds) digital indicator.

 13.. To stop data acquisition and exit the While loop, the stop button terminal should be 
wired to the Boolean input terminal of the loop. Since the default output value of 
the stop button is FALSE and clicking the button will change it into TRUE, the while 
loop by default stops on a TRUE condition. Hence wiring the button directly to the 
Boolean input terminal will stop the program when the stop button is pressed.

 14. Select Save from the File menu to save the work on a disk or flash memory. You 
can run the VI by clicking on the Run button on either the front panel or block 
diagram Toolbars.

12.6.1.4 Calibrating the VI

If you run the present VI, the displayed tank levels will be the voltage readings and not 
the actual heights. Selection of the appropriate values for linear conversion factors (slope 
and intercept) from volts to inches, for each pressure transducer, can be accomplished as 
follows:

 1. Run the Tank Level Display VI.
 2.. While Inlet Valve A is open and all other valves are closed, turn on the pump to 

fill Tank A with water to a known height, say 6 inches. Turn the pump off, wait 
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for one second, and record the corresponding voltage. (Turning the pump off also 
reduces the noise in the voltage reading).

 3.. Repeat Step 2. for water heights of 8, 10, 12., … , 2.0 inches.
 4. Use the eight data points to plot the height against the voltage for Tank A. The 

slope and intercept can then be measured graphically.
 5. Close Inlet Valve A, open Inlet valve B, and repeat Steps 2.-4 for Tank B.
 6. Stop the Tank Level Display VI.
 7. Insert the slope and intercept values into the block diagram by typing them over 

the preliminary values 1.0, 1.0, 0.0 and 0.0 for the conversion factors.
 8. Now the Tank Level Display VI is ready to display actual tank levels.

12.6.1.5 Finding the Resistances of the Process Valves

The inside diameter of each tank is 5 inches and the outside diameters of the two pipes 
that run inside each tank are 1.2.5 inches and 0.875 inches. Use the following steps to deter-
mine the resistance of Process Valves A and B:

 1. Run the Tank Level Display VI.
 2.. While the Inlet Valve A is open and all other valves are closed, turn on the pump 

to fill Tank A with water. Turn the pump off.
 3.. Open the Process Valve A and let the tank drain.
 4. Using the time indicator on the front panel of the Tank Level Display VI, monitor 

the height drop from about 2.0 inches to about 5 inches by recording the time and 
the corresponding tank height using 10 s time intervals.

 5. Use the linear equation for the flow rate through a constriction (a  = 1) to graph the 
resistance of Process Valve A versus the water height in Tank A.

 6. Use a similar procedure to graph the resistance of Process Valve B versus the water 
height in Tank B.

The graphs obtained in this manner are based on the assumption of slow laminar flow 
through the valve (a  = 1). However, a value of a  = 2. is more suitable for high flow rates and 
flows through short constrictions such as valves.

Assuming the operating height of water in Tank A to be hAo
= 10  inches, use the time 

interval that contains this height to find the resistance of Process Valve A based on the 
linearized equation at this operating point. Also find a linearized value for the resistance 
of Process Valve B at an operating height of hBo

= 7  inches.
To find the resistance of Valve AB at the same operating point hAo

= 10  inches and hBo
= 7  

inches, fill Tank A to an initial height of 12. inches and Tank B to 5 inches. Open Valve AB 
and allow Tank A to drain into Tank B. Record the time it takes for Tank A level to drop 
from 10.5 inches to 9.5 inches (or Tank B height to rise from 6.5 inches to 7.5 inches). In this 
case, assuming the water level in Tank A is higher than that in B, the flow through Valve 
AB, which connects the two tanks A and B, can be written as

 r r rA
h
t

A
h
t R

g h hA
A

B
B

AB
A B

∆
∆

∆
∆

= - = - -1
( )  (12..46)
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which can be linearized about the operating point h h hA A Ao
= + ∆  and h h hB B Bo

= + ∆  to give 
(see Chapter 3.):
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12.6.2 experiment 2: Process Control using labVieW®

The objectives of this experiment are to use LabVIEW VI to: implement and compare ON/
OFF control and proportional control strategies; use these controllers to control the; and 
examine the time responses of the system (liquid levels in the tanks of Figure 12..3.1) under 
disturbance and step inputs.

12.6.2.1 Two-Tank System

The experimental system contains two tanks of 5 inches in diameter which are capable of 
holding up to 2.4 inches of water (Figure 12..3.1). The pump may be turned on or off and the 
control valve may be adjusted to control the flow rates.

The front panel and the block diagram of the Tank Level Control VI are shown in Figures 
12..3.4 and 12..3.5, respectively. Note: In the block diagram the True/False case structure cor-
responding to the selected controller is left blank, which must be completed by you. The 
purpose of this VI is to continuously acquire signals from the pressure transducers at the 
base of the two liquid tanks and: convert the acquired readings into voltages and then into 
liquid heights; Select either ON/OFF control or proportional control as needed; Select an 
appropriate voltage (0-10 V) to control the input flow through the proportional control 
valve according to the desired control strategy; Convert the voltage into integer counts; 
Send the selected control signal to the control valve.

Figure 12.34
Front panel of the tank level control VI.
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12.6.2.2 Description of the Front Panel

The front panel of the Tank Level Control VI (see Figure 12..3.4) consists of the following 
controls and indicators:

 1. A control switch to shift between ON/OFF control and proportional control.
 2.. Two digital controls to set the high and low limits for the ON/OFF control.
 3.. Two digital controls to define the set value and gain for the proportional control.
 4. A waveform chart to plot the acquired tank level as well as the high limit, the low 

limit, and the set value.
 5. Four digital indicators to show Tank A level, Tank B level, the voltage signal to the 

proportional control valve, and the elapsed time.
 6. A stop button.

Figure 12..3.5 shows the block diagram with the proportional controller selected. It can 
switch to the ON/OFF block diagram by clicking the “True/False” switch. Note: The neces-
sary instructions must be provided within the Case Structure box to implement the two 
control algorithms. The block diagram consists of the following functions:

 1. Terminals corresponding to the control switch, digital controls, digital indicators, 
waveform chart and stop button on the front panel.

 2.. The subVI Get Single Scan.vi to acquire the signal reading from the pressure 
transducer.

 3.. Conversion factors to transform the acquired volts into liquid level units. Use the 
values obtained from Experiment 1.

Figure 12.35
Block diagram of the tank level control VI.
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 4. A Case Structure that can allow for two different sets of instructions to be executed 
according to the selected control algorithm. The case structure has all the necessary 
variables, which are used within, wired to its left border. The output from the right 
border of the case structure is the voltage signal sent to the flow control valve.

 5. Conversion factors to transform the voltage into integer counts.
 6. The subVI A0 One Point.vi to send the signal to the valve.
 7. A while loop to continuously repeat the data acquisition and control process. It has 

Shift Registers attached to its border to allow for the previous value of the control 
voltage signal to be stored and made available for use in the next iteration of the 
while loop.

 8. A timing function to control the time between two successive While loop itera-
tions and to calculate the elapsed time.

 9. A True/False case structure that sends a 0 V signal to the valve to terminate the 
control process once the stop button is hit.

12.6.2.3 ON/OFF Control Algorithm

In ON/OFF control, the level should fluctuate within a range of high and low level limits 
supplied by the user, according to the following algorithm:

 1. If the acquired tank level is between the two limits, the last valve setting should 
be preserved.

 2.. If the tank level exceeds the high limit, the valve must be completely shut off by 
sending a signal of 0 V.

 3.. If the tank level drops below the low limit, the valve is turned fully open by send-
ing a signal of 10 V.

12.6.2.4 Proportional Control Algorithm

For proportional control, the user provides a set value for the desired tank level and an 
appropriate gain. The proportional control scheme is as follows:

 1. The acquired tank level is first subtracted from the set value to get the level error 
signal.

 2.. The level error is multiplied by the controller gain, giving the product in units of 
volts.

 3.. The resulting voltage signal is limited to be within 0 and 10 volts. If it is less than 
0, send a 0 V, and if it is higher than 10, use 10 V.

The block diagrams of the ON/OFF Control and the Proportional Control are shown in 
Figures 12..3.6 and 12..3.7, respectively.

12.6.2.5 Single-Tank Process Control

Water level in Tank B is controlled by controlling the flow through the proportional control 
valve. The water flows into Tank B through Inlet Valve B. Process Valve B should be fully 
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open. Inlet Valve A and Valve AB should be closed. The operating liquid height in Tank B 
is to be maintained at 7 inches. Initially the Disturbance Valve should be closed.

ON/OFF Control Procedure:

 1. Start with Tank B empty.
 2.. Turn on the pump.
 3.. Select ON/OFF control and set the High and Low Limits to 8 and 6 inches, 

respectively.
 4. Run the VI.
 5. Test the operation of the implemented ON/OFF algorithm (observe the voltage 

signal).
 6. Examine and sketch the time response of the system.
 7. Record the filling and draining times between the two limits.
 8. Calculate the filling and draining rates (slope of the level-time curve).
 9. Open the Disturbance Valve.
 10. Examine and sketch the time response of the system to the disturbance.
 11. Record the filling and draining times between the two limits.

Figure 12.36
Block diagram of ON/OFF control.
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Proportional Control Procedure:

 1. Start with Tank B empty.
 2.. Turn on the pump.
 3.. Select Proportional control with a set value of 7 inches and a gain of 1.0.
 4. Run the VI.
 5. Test the operation of the implemented proportional control algorithm.
 6. Examine and sketch the time response of the system.
 7. Record the steady-state level of the response and the corresponding voltage 

signal.
 8. Calculate the steady-state error.
 9. Open the Disturbance Valve.
 10. Examine and sketch the time response of the system to the disturbance.
 11. Find the steady-state error and the corresponding voltage signal under distur-

bance input.
 12.. Close the Disturbance Valve.
 13.. Set the gain to 3..0 and repeat Steps 6–12..

Figure 12.37
Block diagram of proportional control.
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 14. Set the gain to 5.0 and repeat Steps 6–12..
 15. With a gain of 5.0 and the Disturbance Valve closed, increase the set value to 9 

inches. Examine the response of the system to this step input.

For the ON/OFF control of the single-tank system with and without disturbance, the cor-
responding system time responses are shown in Figure 12..3.8.

For the proportional control of the single-tank system with and without disturbance, the 
corresponding system time responses are shown in Figures 12..3.9 through 12..41.

From the responses it is seen that as the gain is increased the system steady-state error 
decreases. Similarly, opening the disturbance valve increases the steady-state error.

Without disturbance(a) (b) With disturbance

Figure 12.38
ON/OFF control with and without disturbance.

Without disturbance(a) (b) With disturbance

Figure 12.39
Proportional control with and without disturbance (gain = 1.0).

76868.indb   665 7/8/09   5:20:11 PM



666 Modeling and Control of Engineering Systems

Problems

PROBLEM 12.1

A lag network used as the compensatory element of a control system is shown in Figure 
P12..1. Show that its transfer function is given by (vo/vi) = Z2./(R1+Z2.) where Z2. = R2.+(1/Cs).

What is the input impedance and what is the output impedance for this circuit?
Also, if two such lag circuits are cascaded as shown in Figure 2..2.b, what is the overall 

transfer function?

Without disturbance(a) (b) With disturbance

Figure 12.40
Proportional control with and without disturbance (gain = 3..0).

Figure 12.41
Proportional control without disturbance (set value = 9, gain = 5.0).
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How would you make this transfer function become close to the ideal result:  
{Z2./(R1+Z2.)}2.

PROBLEM 12.2

Consider a dc power supply of voltage vs and output impedance (resistance) Rs. It is used 
to power a load of resistance Rl , as shown in Figure P12..2.. What should be the relation-
ship between Rs and Rl if the objective is to maximize the power absorbed by the load?

PROBLEM 12.3

Consider the mechanical system where a torque source (motor) of torque T and moment 
of inertia Jm is used to drive a purely inertial load of moment of inertia JL as shown in 
Figure P12..3.a. What is the resulting angular acceleration q  of the system? Neglect the 
flexibility of the connecting shaft.

vi
R2

R1
+

Z2
vo

C

+

–

–

Figure P12.1
A single circuit module.

Rs

+

–

vs

Vl

Rl

+

–

Figure P12.2
A load powered by a dc power supply.
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Now suppose that the load is connected to the same torque source through an ideal 
(loss free) gear of motor-to-load speed ratio r : 1, as shown in Figure P12..3.b. What is the 
resulting acceleration q g  of the load?

Obtain an expression for the normalized load acceleration a g=  q q/  in terms of r and 
p = JL/Jm. Sketch a versus r for p = 0.1, 1.0, and 10.0. Determine the value of r in terms of p 
that will maximize the load acceleration a.

Comment on the results obtained in this problem.

PROBLEM 12.4

Figure P12..4 shows a schematic diagram of a simplified signal conditioning system for 
an LVDT. The system variables and parameters are as indicated in the figure.

In particular:

 

x t( ) = displacement of the LVDT core (measurannd, to be measured)

frequency of the carw c = rrier voltage

output signal of the systemvo = (measurement).

Jm JL

Motor Load

Torque source
(a) (b)

θ

θg

T

Jm

JL

Gear
r : 1

T

Figure P12.3
An inertial load driven by a motor. (a) Without gear transmission. (b) With a gear transmission.

+

_
+

_

R

C

LVDT Amplifier Multiplier Low-pass Filter

x(t)

Carrier
signal

vp sin ωct
v1 v2

R2

R1

R1

R1v3
Output

vo

Figure P12.4
Signal conditioning system for an LVDT.
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The resistances R1, R2., and R, and the capacitance C are as marked. In addition, we may 
introduce a transformer parameter r for the LVDT, as required.

 i. Explain the functions of the various components of the system shown in Figure 
P12..4.

 ii. Write equations for the amplifier and filter circuits and, using them, give expres-
sions for the voltage signals v1, v2., v3., and vo marked in Figure P12..4. Note: the 
excitation in the primary coil is vp sin wct.

 iii. Suppose that the carrier frequency is wc = 500 rad/s and the filter resistance 
R = 100k©. If no more than 5% of the carrier component should pass through the 
filter, estimate the required value of the filter capacitance C. Also, what is the use-
ful frequency range (measurement bandwidth) of the system in rad/s, with these 
parameter values?

 iv. If the displacement x(t) is linearly increasing (i.e., speed is constant), sketch the 
signals u(t), v1, v2., v3., and vo as functions of time.

PROBLEM 12.5

A dc tachometer is shown schematically in Figure P12..5a. The field windings are pow-
ered by dc voltage vf. The across variable at the input port is the measured angular 
speed w i. The corresponding torque Ti is the through variable at the input port. The 
output voltage vo of the armature circuit is the across variable at the output port. The 
corresponding current io is the through variable at the output port. The free-body dia-
gram of the armature is shown in Figure P12..5b. Obtain a transfer-function model for 

(Output port)
vf

J, b

Rfif

+

–

Ra

Lf

La

+

+

(a)

(b)

–

–

io

vo
vg

(Input port)

Inertia
J

Damping b

Tg

Ti, ωi

Ti, ωi

Figure P12.5
A dc tachometer example. (a) Equivalent circuit. (b) Armature free-body diagram.
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this device. Discuss the assumptions needed to “decouple” this result into a practical 
input–output model for a tachometer. What are the corresponding design implications? 
In particular discuss the significance of the mechanical time constant and the electrical 
time constant of the tachometer.

PROBLEM 12.6

Applications of piezoelectric sensors are numerous; push-button devices and switches, 
airbag micro-electromechanical (MEMS) sensors in vehicles, pressure and force sens-
ing, robotic tactile sensing, accelerometers, glide testing of computer disk-drive heads, 
excitation sensing in dynamic testing, respiration sensing in medical diagnostics, and 
graphics input devices for computers. Discuss advantages and disadvantages of piezo-
electric sensors.

What is cross-sensitivity of a sensor? Indicate how the anisotropy of piezoelectric 
crystals (i.e., charge sensitivity quite large along one particular crystal axis) is useful in 
reducing cross-sensitivity problems in a piezoelectric sensor.

PROBLEM 12.7

As a result of advances in microelectronics, piezoelectric sensors (such as accelerom-
eters and impedance heads) are now available in miniature form with built-in charge 
amplifiers in a single integral package. When such units are employed, additional signal 
conditioning is usually not necessary. An external power supply unit is needed, how-
ever, to provide power for the amplifier circuitry. Discuss the advantages and disadvan-
tages of a piezoelectric sensor with built-in microelectronics for signal conditioning.

A piezoelectric accelerometer is connected to a charge amplifier. An equivalent circuit 
for this arrangement is shown in Figure P12..7.

 a. Obtain a differential equation for the output vo of the charge amplifier, with accel-
eration a as the input, in terms of the following parameters: Sa = charge sensitivity 
of the accelerometer (charge/acceleration); Rf = feedback resistance of the charge 
amplifier; tc =  time constant of the system (charge amplifier).

 b. If an acceleration pulse of magnitude ao and duration T is applied to the accelerom-
eter, sketch the time response of the amplifier output vo. Show how this response 
varies with tc. Using this result, show that the larger the tc the more accurate the 
measurement.

Output
vo

–vo/K
+

−A

+

−
Charge

amplifier

Rf

Cf

CcC

Piezoelectric
sensor

Cable

q

K

Figure P12.7
A piezoelectric sensor and charge amplifier combination.
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PROBLEM 12.8

A positioning table uses a backlash-free high precision lead screw of lead 2. cm/rev, 
which is driven by a servo motor with a built-in optical encoder for feedback control. If 
the required positioning accuracy is ±10 µm determine the number of windows required 
in the encoder track. Also, what is the minimum bit size required for the digital data 
register/buffer of the encoder count?

PROBLEM 12.9

The rotating speed can be determined using an incremental optical encoder by two ways: 
For high speeds, pulse are counted over a sample period and the pulse rate is computed; 
For low speeds, the duration of a pulse is timed and since the angle of rotation corre-
sponding to a pulse is a known fixed value, the speed is counted from the information.

An incremental encoder with 500 windows in its track is used for speed measure-
ment. Suppose that:

 a. in the pulse-counting method, the count (buffer) is read at the rate of 10 Hz.
 b. in the pulse-timing method, a clock of frequency 10 MHz is used.

Determine the percentage resolution for each of these two methods when measuring a 
speed of:

 i. 1 rev/s
 ii. 100 rev/s.

PROBLEM 12.10

Consider the two quadrature pulse signals (say, A and B) from an incremental encoder. 
Using sketches of these signals, show that in one direction of rotation, signal B is at a 
high level during the up-transition of signal A, and in the opposite direction of rotation, 
signal B is at a low level during the up-transition of signal A. Note that the direction of 
motion can be determined in this manner, by using level detection of one signal during 
the up-transition of the other signal.

PROBLEM 12.11

Suppose that a feedback control system (Figure P12..11) is expected to provide an accuracy 
within ± ∆y for a response variable y. Explain why the sensor that measures y should have 
a resolution of ±(∆y/2.) or better for this accuracy to be possible. An x–y table has a travel 
of 2. m. The feedback control system is expected to provide an accuracy of ±1 mm. An 
optical encoder is used to measure the position for feedback in each direction (x and y).  
What is the minimum bit size that is required for each encoder output buffer? If the 
motion sensor used is an absolute encoder, how many tracks and how many sectors 
should be present on the encoder disk?

System

Error
e

Response
y

Reference input
u = yd

–

Sensory feedback

Figure P12.11
A feedback control loop.
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PROBLEM 12.12

Compare and contrast an optical incremental encoder against a potentiometer, by  
giving advantages and disadvantages, for an application involving the sensing of a rota-
tory motion.

A schematic diagram for the servo control loop of one joint of a robotic manipulator 
is given in Figure P12..12..

The motion command for each joint of the robot is generated by the robot controller, 
in accordance with the required trajectory. An optical incremental encoder is used for 
both position and velocity feedback in each servo loop. Note that for a six-degree-of-
freedom robot there will be six such servo loops. Describe the function of each hard-
ware component shown in the figure and explain the operation of the servo loop.

After several months of operation the motor of one joint of the robot was found to be 
faulty. An enthusiastic engineer quickly replaced the motor with an identical one with-
out realizing that the encoder of the new motor was different. In particular, the original 
encoder generated 2.00 pulses/rev whereas the new encoder generated 72.0 pulses/rev. 
When the robot was operated the engineer noticed an erratic and unstable behavior at 
the repaired joint. Discuss reasons for this malfunction and suggest a way to correct 
the situation.

PROBLEM 12.13

 a. A position sensor is used in a microprocessor-based feedback control system for 
accurately moving the cutter blades of an automated meat-cutting machine. The 
machine is an integral part of the production line of a meat processing plant. What 
are primary considerations in selecting the position sensor for this application? 
Discuss advantages and disadvantages of using an optical encoder in comparison 
to a LVDT in this context.

 b. Figure P12..13. illustrates one arrangement of the optical components in a linear 
incremental encoder.

The moving code plate has uniformly spaced windows as usual, and the fixed masking 
plate has two groups of identical windows, one above each of the two photodetectors. 
These two groups of fixed windows are positioned in half-pitch out of phase so that 
when one detector receives light from its source directly through the aligned windows 

Control
processor DAC PWM

amplifier

Power
supply

5 V dc

PWM signal

Permanent-
magnet dc

motor

Incremental
encoder

20 V

20 kHz
signal

(internal)
Max.

     2.5 V

10 V dc
2 A

Feedback pulse signals

(1/4 phase offset)

Motion
command

Figure P12.12
A servo loop of a robot.
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of the two plates, the other detector has the light from its source virtually obstructed by 
the masking plate.

Explain the purpose of the two sets of photodiode-detector units, giving a schematic 
diagram of the necessary electronics. Can the direction of motion be determined with 
the arrangement shown in Figure P12..13.? If so, explain how this could be done. If not, 
describe a suitable arrangement for detecting the direction of motion.

PROBLEM 12.14

Typically, when a digital transducer is employed to generate the feedback signal for an 
analog controller, a digital-to-analog converter (DAC) would be needed to convert the 
digital output from the transducer into a continuous (analog) signal. Similarly, when a 
digital controller is used to drive an analog process, a DAC has to be used to convert the 
digital output from the controller into the analog drive signal. There exist ways, how-
ever, to eliminate the need for a DAC in these two types of situations.

 a. Show how a shaft encoder and a frequency-to-voltage converter can replace an 
analog tachometer in an analog speed-control loop.

 b. Show how a digital controller with PWM can be employed to drive a dc motor 
without the use of a DAC.

PROBLEM 12.15

 a. What parameters or features determine the step angle of a stepper motor? What 
is microstepping? Briefly explain how microstepping is achieved.

 b. A stepper-motor-driven positioning platform is schematically shown in Figure 
P12..15. Suppose that the maximum travel of the platform is L and this is accom-
plished in a time period of ∆t. A trapezoidal velocity profile is used with a region 
of constant speed V in between an initial region of constant acceleration from rest 
and a final region of constant deceleration to rest, in a symmetric manner.

 (i) Show that the acceleration is given by: 

 a = V2./(V·∆t - L)

 The platform is moved using a mechanism of light, inextensible cable and 
a pulley, which is directly (without gears) driven by a stepper motor. The 
platform moves on a pair of vertical guideways that use linear bearings and, 
for design purposes, the associated frictional resistance to platform motion 

Code plate
(moving)

Photodetector

Masking plate
(stationary)

Photodiode

Figure P12.13
Photodiode-detector arrangement of a linear optical encoder.
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may be neglected. The frictional torque at the bearings of the pulley is not 
negligible, however. Suppose that:

 
Frictional torque of the pulley

Load torque oon the pulley from the cable
= e

 Also, the following parameters are known:
 Jp = moment of inertia of the pulley about the axis of rotation
 r = radius of the pulley
 m = equivalent mass of the platform and its payload.

 (ii) Show that the maximum operating torque that is required from the stepper 
motor is given by: 

 T J J e mr
a
r

e rmgm p= + + +  + +( ) ( )1 12.

 in which Jm = moment of inertia of the motor rotor.
 (iii) Suppose that V = 8.0 m/s, L = 1.0 m, ∆t  = 1.0 s, m = 1.0 kg, Jp = 3..0 × 10-4 kg.m2.,  

r = 0.1 m, and e = 0.1.
  Four models of stepper motor are available, and their specifications given in 

Table 12..2. and Figure 12..16. Select the most appropriate motor (with the cor-
responding drive system) for this application. Clearly indicate all your com-
putations and justify your choice.

 (iv) What is the position resolution of the platform, as determined by the chosen 
motor?

Travel
L

Stepper motor

Pully
(radius r, inertia Jp)

Cable
(inelastic) Frictionless guideway

(linear bearings)

Platform and payload
(total mass m)

Figure P12.15
An automated positioning platform.
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PROBLEM 12.16

An armature-controlled dc motor uses 2. hp under no-load conditions to maintain a 
constant speed of 600 rpm. The motor torque constant km = 1 V.s, the rotor moment of 
inertia Jm = 0.1 kg.m2., and the armature circuit parameters are Ra = 10 Ω and La = 0.01 H. 
Determine the electrical damping constant, the mechanical damping constant, the elec-
trical time constant of the armature circuit, the mechanical time constant of the rotor, 
and the true time constants of the motor.

PROBLEM 12.17

Consider the position and velocity control system of Figure 12..2.3.. Suppose that the 
motor model is given by the transfer function k sm m/( )t + 1 . Determine the closed-loop 
transfer function qm/qd. Next consider proportional plus derivative control system (i.e., 
Figure 12..2.4, with the integral controller removed) and the same motor model. What is 
the corresponding closed-loop transfer function (qm/qd)? Compare these two types of 
control, particularly with respect to speed of response, stability (percentage overshoot), 
and steady-state error.

PROBLEM 12.18

Figure P12..18 shows a schematic arrangement for driving a dc motor using a linear 
amplifier. The amplifier is powered by a dc power supply of regulated voltage vs. Under 
a particular condition suppose that the linear amplifier drives the motor at voltage vm 
and current i. Assume that the current drawn from the power supply is also i. Give an 
expression for the efficiency at which the linear amplifier is operating under these con-
ditions. If vs = 50 V, vm = 2.0 V and i = 5 A, estimate the efficiency of operation of the linear 
amplifier.

PROBLEM 12.19

A brushless dc motor and a suitable drive unit are to be chosen for a continuous drive 
application. The load has a moment of inertia 0.016 kg.m2., and faces a constant resisting 
torque of 3.5.0 N.m (excluding the inertia torque) throughout the operation. The applica-
tion involves accelerating the load from rest to a speed of 2.50 rpm in 0.2. s, maintaining 
it at this period for extended periods, and then decelerating to rest in 0.2. s. A gear unit 
with step down gear ratio 4 is to be used with the motor. Estimate a suitable value for 
the moment of inertia of the motor rotor, for a fairly optimal design. Gear efficiency is 
known to be 0.8. Determine a value for continuous torque and a corresponding value for 
operating speed on which a selection of a motor and a drive unit can be made.

Linear
amplifier

dc
motor

Motor
excitation
voltage vm

Current i

Power supply
voltage

vs

Figure P12.18
A linear amplifier for a dc motor.
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PROBLEM 12.20

You are a control engineer who has been assigned the task of designing and instrument-
ing a control system. In the final project report you will have to describe the steps of 
establishing the design/performance specifications for the system, selecting and siz-
ing sensors, transducers, actuators, drive systems, controllers, signal conditioning and 
interface hardware, and software for the instrumentation and component integration 
of this system. Keeping this in mind, write a project proposal giving the following 
information:

 1. Select a process (plant) as the system to be developed. Describe the plant indicat-
ing the purpose of the plant, how the plant operates, what is the system boundary 
(physical or imaginary), what are important inputs (e.g., voltages, torques, heat trans-
fer rates, flow rates), response variables (e.g., displacements, velocities, temperatures, 
pressures, currents, voltages), and what are important plant parameters (e.g., mass, 
stiffness, resistance, inductance, conductivity, fluid capacity). You may use sketches.

 2.. Indicate the performance requirements (or, operating specifications) for the plant 
(i.e., how the plant should behave under control). You may use any available infor-
mation on such requirements as accuracy, resolution, speed, linearity, stability, 
and operating bandwidth.

 3.. Give any constraints related to cost, size, weight, environment (e.g., operating 
temperature, humidity, dust-free or clean room conditions, lighting, wash-down 
needs), etc.

 4. Indicate the type and the nature of the sensors and transducers present in the 
plant and what additional sensors and transducers might be needed for properly 
operating and controlling the system.

 5. Indicate the type and the nature of the actuators and drive systems present in the 
plant and which of these actuators have to be controlled. If you need to add new 
actuators (including control actuators) and drive systems, indicate such require-
ments in sufficient detail.

 6. Mention what types of signal modification and interfacing hardware would be 
needed (i.e., filters, amplifiers, modulators, demodulators, ADC, DAC, and other 
data acquisition and control needs). Describe the purpose of these devices. Indicate 
any software (e.g., driver software) that may be needed along with this hardware.

 7. Indicate the nature and operation of the controllers in the system. State whether 
these controllers are adequate for your system. If you intend to add new control-
lers briefly give their nature, characteristics, objectives, etc. (e.g., analog, digital, 
linear, nonlinear, hardware, software, control bandwidth).

 8. Describe how the users and/or operators interact with the system, and the nature 
of the user interface requirements (e.g., graphic user interface or GUI).

The following plants/systems may be considered:

 1. A hybrid electric vehicle
 2.. A household robot
 3.. A smart camera
 4. A smart airbag system for an automobile
 5. Rover mobile robot for Mars exploration, developed by NASA.
 6. An automated guided vehicle (AGV) for a manufacturing plant
 7. A flight simulator
 8. A hard disk drive for a personal computer
 9. A packaging and labeling system for a grocery item
 10. A vibration testing system (electrodynamic or hydraulic)
 11. An active orthotic device to be worn by a person to assist a disabled or weak hand 

(which has some sensation, but not fully functional)
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Appendix A: Transform Techniques

Many people use “transforms” without even knowing it. A “transform” is simply a  number, 
variable, or function in a different form. For example, since 102. = 100, you can use the expo-
nent (2.) to represent the number 100. Doing this for all numbers (i.e., using their exponent 
to the base 10), results in a “table of logarithms.” One can perform mathematical compu-
tations using only “logarithms.” The logarithm transforms all numbers into their expo-
nential equivalents; a table of such transforms (i.e., a log table) enables a user to quickly 
transform any number into its exponent, do the computations using exponents (where, a 
product becomes an addition and a division becomes a subtraction), and transform the 
result back (i.e., inverse logarithm) into the original form. It is seen that the computations 
have become simpler by using logarithms, but at the cost of the time and effort for trans-
formation and inverse transformation.

Other common transforms include the Laplace Transform, Fourier Transform, and 
Z-transform. In particular, the Laplace Transform provides a simple, algebraic way to solve 
(i.e., integrate) a linear differential equation. Most functions that we use are of the form tn, 
sin w t, or et, or some combination of them. Thus, in the expression 

 y = f(t)

the function y is quite likely a power, a sine, or an exponential function. Also, often, we 
have to work with derivatives and integrals of these functions, and differential equations 
containing these functions. These tasks can be greatly simplified by the use of the Laplace 
transform.

Concepts of frequency-response analysis originate from the nature of the response of a 
dynamic system to a sinusoidal (i.e., harmonic) excitation. These concepts can be general-
ized because the time-domain analysis, where the independent variable is time (t) and the 
frequency-domain analysis, where the independent variable is frequency (w) are linked 
through the Fourier transformation. Analytically, it is more general and versatile to use the 
Laplace transformation, where the independent variable is the Laplace variable (s) which 
is complex (nonreal). This is true because analytical Laplace transforms may exist even for 
time functions that do not have “analytical” Fourier transforms. But with compatible defi-
nitions, the Fourier transform results can be obtained form the Laplace transform results 
simply by setting s = jw. In the present appendix we will formally introduce the Laplace 
transformation and the Fourier transformation, and will illustrate how these techniques are 
useful in the analysis of dynamic systems. The preference of one domain over another will 
depend on such factors as the nature of the excitation input, the type of the analytical model 
available, the time duration of interest, and the quantities that need to be determined.

A.1 Laplace Transform

The Laplace transformation relates the time domain to the Laplace domain (also called  
s-domain or complex frequency domain). The Laplace transform Y(s) of a piecewise-
 continuous function or signal y(t) is given, by definition, as
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 Y s y t st dt( ) ( )exp( )= -
∞

∫
0

 (A.1)

and is denoted using the Laplace operator L, as

 Y(s) = Ly(t) (A.1)*

Here, s is a complex independent variable known as the Laplace variable, defined by

 s = s  + jw (A.2.)

where s is a real-valued constant that will make the transform (Equation A.1) finite, w is 
simply frequency, and j = √–1. The real value (a) can be chosen sufficiently large so that 
the integral in Equation A.1 is finite even when the integral of the signal itself (i.e., ∫y(t)dt)  
is not finite. This is the reason why, for example, Laplace transform is better behaved  
than Fourier transform, which will be defined later, from the analytical point of view. 
The symbol s can be considered to be a constant, when integrating with respect to t, in 
Equation A.1. 

The inverse Laplace transform (i.e., obtaining y from its Laplace transform) is

 y t
j

Y s st ds
j

j

( ) ( )exp( )=
-

+

∫1
2.p

s w

s w

 (A.3.)

and is denoted using the inverse Laplace operator L - 1, as

 y(t) = L - 1Y(s) (A.3.)*

The integration in Equation A.3. is performed along a vertical line parallel to the imagi-
nary (vertical) axis, located at s  from the origin in the complex Laplace plane (s-plane). For 
a given piecewise-continuous function y(t), the Laplace transform exists if the integral in 
Equation A.1 converges. A sufficient condition for this is

 
0

∞

∫ - < ∞y t t dt( ) ( )exp s  (A.4)

Convergence is guaranteed by choosing a sufficiently large and positive s. This property is  
an advantage of the Laplace transformation over the Fourier transformation. 

a.1.1 laplace Transforms of Some Common Functions

Now we determine the Laplace transform of some useful functions using Equation A.1. 
Usually, however, we use Laplace transform tables to obtain these results.
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A.1.1.1 Laplace Transform of a Constant

Suppose our function y(t) is a constant, B. Then the Laplace transform is:

 

L B Y s Be dt

B
e

st( ) = ( ) =

=

-

∞

-

∫
0

sst

s
B
s-

=
∞

0

A.1.1.2 Laplace Transform of the Exponential

If y(t) is eat, its Laplace transform is

 

L e e e dt

e dt

a s
e

at st at

a s t

a s

( ) =

=

=
-( )

-

∞

-( )
∞

-

∫

∫

0

0

1 (( )
∞

=
-

t

s a
0

1

Note: If y(t) is e - at, it is obvious that the Laplace transform is

 

L e e e dt

e dt

a s

at st at

a s t

- - -

∞

- +( )
∞

( ) =

=

= -
-( )

∫

∫

0

0

1
ee

s a
a s t- +( )

∞

=
+

0

1

This result can be obtained from the previous result simply by replacing a with - a.

A.1.1.3 Laplace Transform of Sine and Cosine

In the following, the letter j = -1 . If y(t) is sin w t, the Laplace transform is

 L sin sinw wt e t dtst( ) = ( )-

∞

∫
0
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Consider the identities:

 ejw  t = cos w t + j sin w t

 e-jw  t = cos w t - j sin w t

If we add and subtract these two equations, respectively, we obtain the expressions for the 
sine and the cosine in terms of e jw  t and e - jw  t:

 cosw w wt e ej t j t= +( )-1
2.

 sinw w wt
i

e ej t j t= -( )-1
2.

 L cosw w wt L e L ej t j t( ) = ( ) + ( )-1
2.

1
2.

 L sinw w wt L e L ej t j t( ) = ( ) - ( )-1
2.

1
2.

We have just seen that

 L e
s a

at( ) =
-
1

; L e
s a

at-( ) =
+
1

Hence,

 L e
s j t

j tw

w
( ) =

-
1

; L e
s j t

j t-( ) =
+

w

w
1

Substituting these expressions, we get

 

L cosw
w w

w

t
s j s j

s j

( ) =
-






+

+






= +

1
2.

1 1
2.

1

1
2. ss j

s j

s j

s
s

2. 2. 2. 2.

2. 2.

- ( )
+ -

- ( )












=
+

w
w
w

w
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L sinw

w

w wt
j
L e e

j s j

j t j t( ) = -( )

=
-






-

-1
2.

1
2.

1 1
2. jj s j

j
s j

s j

s j

s j

1

1
2. 2. 2. 2. 2.

+






= +
- ( )

+ -
- ( )



w

w
w

w
w










=
+







=
+

1
2.

2.
2. 2.

2. 2.

j
j

s

s

w
w

w
w

A.1.1.4 Laplace Transform of a Derivative

Let us transform a derivative of a function. Specifically, the derivative of a function y of t is 
denoted by y dy dt= ( / ).  Its Laplace transform is given by

 L  y e ydt e
dy
dt

dtst st( ) = =-

∞

-

∞

∫ ∫
0 0

 (A.5)

Now we integrate by parts, to eliminate the derivative within the integrand.
Integration by Parts: From calculus we know that d(uv) = udv + vdu

By integrating we get uv udv vdu= + ∫∫
Hence,

 udv uv vdu∫ = -  (A.6)

This is known as integration by parts.
In Equation A.5, let

 u = e - st and v = y

Then, dv dy
dy
dt

dt ydt= = = 

 du
du
dt

dt se dtst= = - - .
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Substitute in Equation A.5 to integrate by parts:

 L y e dyst( ) = -

∞

∫
0

 

= = -

= ( ) - - ( )

= -

∫ ∫

∫- ∞ -

∞

udv uv vdu

e y t se y t dt

y

st st
0

0

00

0

( ) + ( )[ ]
= ( ) -

s y t

s y y

L

L ( )

where y(0) = initial value of y. This says that the Laplace transform of a first derivative y , 
equals s times the Laplace transform of the function y minus the initial value of the func-
tion (the initial condition).

Note: We can determine the Laplace transforms of the second and higher derivatives by 
repeated application this result, for the first derivative. For example, the transform of the 
second derivative is given by

 L L L[ ( )]
( )

[ ( )] ( )


 y t
dy t

dt
s y t y s= 




= - =0 {{ [ ( )] ( )} ( )s y t y yL - -0 0

 or, L L[ ( )] [ ( )] ( ) ( ) y t s y t sy y= - -2. 0 0

a.1.2 Table of laplace Transforms

Table A.1 shows the Laplace Transforms of some common functions. Specifically, the table 
lists functions as y(t), and their Laplace transforms (on the right) as Y(s) or Ly(t). If one is 
given a function, one can get its Laplace transform from the table. Conversely, if one is 
given the transform, one can get the function from the table. 

Some general properties and results of the Laplace transform are given in Table A.2..
In particular, note that, with zero initial conditions, differentiation can be interpreted as 

multiplication by s. Also, integration can be interpreted as division by s.

A.2 Response Analysis

The Laplace transform method can be used in the response analysis of dynamic sys-
tems, mechatronic and control systems in particular. We will give examples for the 
approach.
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Table a.1

Laplace Transform Pairs

y(t) = L -1[Y(s)] L [y(t)] = Y(s) 

B B/s

e - at 1/(s + a)

e at 1/(s - a)

Sinh at a/(s2 - a2)

cosh at s/(s2 - a2)

sin w t w /(s2. + w  2.)

cos w t s/(s2. + w  2.)

e - at sin w t w /((s + a)2. + w  2.)

e - at cos w t s + a/((s + a)2. + w  2.)

Ramp t 1/s2.

e - at (1 - at) s/(s + a)2.

y(t) Y(s)

(dy/dt) = y. sY(s) - y(0) 

(d 2.y/dt2.) = ÿ s 2.Y(s) - sy(0) - y. (0)

(d 3.y/dt3.) = y... s 3.Y(s) - s2.y(0) - sy.(0) - ÿ(0)

a

t

y t dt∫ ( )
1 1

0
s

Y s
s

y t dt
a

( ) ( )- ∫
af(t) + bg(t) aF(s) + bG(s)

Unit step U(t) = 1 for t ≥ 0
 = 0 otherwise

1/s

Delayed step
cU(t - b)
C
00 b t

c
s

e bs-

Pulse
c[U(t) - U(t - b)]
C

0
0 b t

c
e
s

bs1-





-

Impulse function d (t) 1

Delayed impulse

d ( ) ( )t b U t b- = -

0 b t

e - bs

Sine pulse

0 p/w t0

1 w
w

p w

s
e s

2. 2.
1

+






+( )-( )
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example a.1

The capacitor-charge equation of the RC circuit shown in Figure A.1 is

 e = iR + v (i)

 For the capacitor, i C
dv
dt

=  (ii)

Substitute Equation (ii) in Equation (i) to get the circuit equation:

 e RC
dv
dt

v= +  (iii)

Table a.2

Important Laplace Transform Relations

L -1F(s) = f(t) L f(t) = F(s) 

1
2.p

s

s

j
F s st ds

j

j

- ∞

+ ∞

∫ ( )exp( )
0

∞

∫ -( )f t st dt( )exp

k1f1(t) + k2.f2.(t) k1F1(s) + k2.F2.(s)

exp( - at) f(t) F(s + a) 
f(t - t) exp( - t s)F(s)

f t
d f t

dt
n

n

n
( )( )

( )= s F s s f s f

f

n n n

n

( ) ( ) ( )

( )

- -

- -

- + - +

- +

1 2. 1

1

0 0

0

-∞
∫
t

f t dt( ) F s
s

f t dt

s
( )

( )
+ -∞∫

0

tn
n

sn

!
+1

tne-at n

s a
n

!

+( ) +1

i

e

R

C v

Figure a.1
An RC circuit with applied voltage e and voltage v across capacitor.
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Take the Laplace transform of each term in Equation (iii), with all initial conditions = 0:

 E(s) = RCsV(s) + V(s)

The transfer function expressed as the output–input ratio (in the transform form) is:

 
V s
E s

V s
sRCV s V s sRC s

( )
( ) =

( )
( ) + ( ) = +

=
+

1
1

1
1t

 (iv)

where t  = RC.
The actual response can now be found from Table A.1 for a given input E. The first step is to get 

the transform into proper form (like Line 2):

 
1

1
1

1
1

t
t
ts s

a
s a

a
s a+

=
+ ( ) = +

=
+







where a = 1/t. Suppose that input (excitation) e is a unit impulse. Its Laplace transform (see 
Table A.1) is E = 1. Then from Equation (iv),

 V s
s

( ) =
+

1
1t

From Line 2 of Table A.1, the response is 

 v ae e
RC

eat t t RC= = =- - -1 1
t

τ

A common transfer function for an overdamped second-order system (e.g., one with two RC 
circuit components of Figure A.1) would be

 
V s
E s s s
( )
( ) = +( ) +( )

1
1 11 2t t

This can be expressed as “partial fractions” in the from

 
A

s
B

s1 11 2+
+

+t t

and solved in the usual manner.

example a.2

The transfer function of a thermal system is given by

 G s
s s

( ) =
+( ) +( )

2
1 3
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If a unit step input is applied to the system, with zero initial conditions, what is the resulting 
response?

Solution

 Input U s
s

( ) = 1
 (for a unit step)

 Since 
Y s
U s s s
( )
( ) = +( ) +( )

2
1 3

the output (response)

 Y s
s s s

( ) =
+( ) +( )

2
1 3

Its inverse Laplace transform gives the time response. For this, first convert the expression into 
partial fractions as

 
2

1 3 1 3s s s
A
s

B
s

C
s+( ) +( ) = +

+( ) + +( )  (i)

The unknown A is determined by multiplying Equation (i) throughout by s and then setting  
s = 0. We get

 A =
+( ) +( ) =

2
0 1 0 3

2
3

Similarly, B is obtained by multiplying Equation (i) throughout by (s + 1) and then setting s = - 1. 
We get

 B =
-( ) - +( ) = -

2
1 1 3

1

Next, C is obtained by multiplying Equation (i) throughout by (s + 3) and then setting s = - 3. We 
get

 C =
-( ) - +( ) =

2
3 3 1

1
3

Hence,

 Y s
s s s

( ) = -
+( ) + +( )

2
3

1
1

1
3 3
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Take the inverse transform using Line 2 of Table A.1.

 y t e et t( ) = - +- -2
3

1
3

3

example a.3

The transfer function of a damped simple oscillator is known to be of the form

 
Y s
U s s s

n

n n

( )
( ) = + +( )

w
zw w

2

2 22

where wn = undamped natural frequency; z = damping ratio.
Suppose that a unit step input (i.e.,U s s( ) = ( / )1 ) is applied to the system. Using Laplace transform 

tables determine the resulting response, with zero initial conditions.

Solution

 Y s
s s s

n

n n

( ) = ⋅
+ +( )

1
2

2

2 2

w
zw w

The corresponding partial fractions are of the form

 Y s
A
s

Bs C
s s s s sn n

n

n n

( ) = + +
+ +( ) = + +2 2

2

2 22 2zw w
w
zw w(( )  (i)

We need to determine A, B, and C.
Multiply Equation (i) throughout by s and set s = 0. We get

 A = 1

Next note that the roots of the characteristic equation

 s sn n
2 22 0+ + =zw w

are

 s jn n n d= - ± - = - ±zw z w zw w2 1

These are the poles of the system and are complex conjugates. Two equations for B and C are 
obtained by multiplying Equation (i) by s n n+ - -zw z w2 1  and setting s n n= - + -zw z w2 1  and 
by multiplying Equation (i) by s n n+ + -zw z w2 1  and setting s n n= - - -zw z w2 1 . We obtain  
B = -1 and C = - 2z wn. Consequently,
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where w z wd n= - =1 2 damped natural frequency.
Now use Table A.1 to obtain the inverse Laplace transform:

 

y t e t e tstep
t

d
t

d
n n( ) = - -

-

=

- -1
1

1

2
zw zww z

z
wcos sin

--
-

+[ ]

= -

-

-

e
t t

e

n

n

t

d d

zw

zw

z
f w f w

1

1

2
sin cos cos sin

tt

dt
1 2-

+( )
z

w fsin

where cos f  = z  = damping ratio; sinf z= -1 2 .

example a.4

The open-loop response of a plant to a unit impulse input, with zero initial conditions, was found 
to be 2e - t sin t. What is the transfer function of the plant?

Solution
By linearity, since a unit impulse is the derivative of a unit step, the response to a unit impulse is 

given by the derivative of the result given in the previous example; thus

 

y t e t eimpulse
n t

d
dn( ) =

-
+( )-

-
-zw

z
w f w

z
zw

1 12 2
sin --

-

+( )

=
-

+( )

zw

zw

w f

w
z

f w f

n

n

t
d

n t
d

t

e t

cos

cos sin
1 2

-- +( )[ ]sin cosf w fdt

or

 y t e timpulse
n t

d
n( ) sin=

-
-w

z
wzw

1 2

Compare this with the given expression. We have

 
w
z
n

1
2

2-
= ;zwn =1; wd =1

But,

 w zw wn n d
2 2 2 1 1 2= ( ) + = + =

Hence

 wn = 2
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Hence

 z = 1
2

The system transfer function is:

 
w
zw w

n

n ns s s s

2

2 2 22
2
2 2+ +( ) = + +

example a.5

Express the Laplace transformed expression

 X s
s s s

s s
( ) = + + +

+( ) +( )
3 25 9 7

1 2

as partial fractions. From the result, determine the inverse Laplace function x(t).

Solution

 X s s
s s

( ) = + +
+

-
+

2
2

1
1

2

From Table A.1, we get the inverse Laplace transform

 x t
d
dt

t t e et t( ) = ( ) + ( ) + -- -d d2 2 2

where d (t) = unit impulse function. 

A.3 Transfer Function

By the use of Laplace transformation, a convolution integral equation can be converted into 
an algebraic relationship. To illustrate this, consider the convolution integral which gives 
the response y(t) of a dynamic system to an excitation input u(t), with zero initial condi-
tions. By definition Equation A.1, its Laplace transform, is written as

 Y s h u t d st dt( ) ( ) ( ) exp( )= - -
∞ ∞

∫∫
0 0

t t t  (A.7)
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Note that h(t) is the impulse-response function of the system. Since the integration with 
respect to t is performed while keeping t constant, we have dt = d(t - t). Consequently,

 Y s u t s t d t h( ) ( )exp[ ( )] ( ) ( )exp= - - - -
-

∞ ∞

∫ ∫
t

t t t t
0

(( )-s dt t

The lower limit of the first integration can be made equal to zero, in view of the fact that 
u(t) = 0 for t < 0. Again, by using the definition of Laplace transformation, the foregoing 
relation can be expressed as

 Y(s) = H(s)U(s) (A.8)

in which

 H s( ) = Lh t h t st dt( ) ( )exp( )= -
∞

∫
0

 (A.9)

Note that, by definition, the transfer function of a system, denoted by H(s), is given by 
Equation A.8. More specifically, system transfer function is given by the ratio of the 
Laplace-transformed output and the Laplace-transformed input, with zero initial condi-
tions. In view of Equation A.9, it is clear that the system transfer function can be expressed 
as the Laplace transform of the impulse-response function of the system. Transfer function 
of a linear and constant-parameter system is a unique function that completely represents 
the system. A physically realizable, linear, constant-parameter system possesses a unique 
transfer function, even if the Laplace transforms of a particular input and the correspond-
ing output do not exist. This is clear from the fact that the transfer function is a system 
model and does not depend on the system input itself. 

Note: The transfer function is also commonly denoted by G(s). But in the present context 
we use H(s) in view of its relation to h(t). 

Consider the nth order linear, constant-parameter dynamic system given by

 a
d y
dt

a
d y
dt

a y b u b
du t

dtn

n

n n

n

n
+ + + = +-

-

-1

1

1 0 0 1
( ) ++ + b

d u t
dtm

m

m

( )
 (A.10)

For a physically realizable system, m ≤ n. By applying Laplace transformation and then 
integrating by parts, it may be verified that

 L
d f t

dt
s F s s f s

df
dt

dk

k
k k k

k( ) ˆ( ) ( )
( )= - - - +- -1 2.0
0


--

-

1

1

0f
dtk

( )
 (A.11)

By definition, the initial conditions are set to zero in obtaining the transfer function. This 
results in

 H s
b b s b s
a a s a s

m
m

n
n

( ) = + + +
+ +

0 1

0 1




 (A.12.)
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for m ≤ n. Note that Equation A.12. contains all the information that is contained in Equation 
A.10. Consequently, transfer function is an analytical model of a system. The transfer func-
tion may be employed to determine the total response of a system for a given input, even 
though it is defined in terms of the response under zero initial conditions. This is quite 
logical because the analytical model of a system is independent of the initial conditions of 
the system.

A.4 Fourier Transform

The Fourier transform Y( f) of a signal y(t) relates the time domain to the frequency domain. 
Specifically,

 

Y f y t j ft dt

y t e dtt

( ) ( )exp( )

( )

= -

=

-∞

+∞

-

-∞

+

∫ 2.p

w

∞∞

∫
 (A.13.)

Using the Fourier operator “F ” terminology:

 Y( f) = F  y(t) (A.14)

Note that if y(t) = 0 for t < 0, as in the conventional definition of system excitations and 
responses, the Fourier transform is obtained from the Laplace transform by simply chang-
ing the variable according to s = j2.p f or s = jw . The Fourier is a special case of the Laplace, 
where, in Equation A.2., s  = 0:

 Y f Y s
s j f

( ) ( )=
= 2.p

 (A.15)

or

 Y Y s
s j

( ) ( )w
w

=
=

 (A.16)

The (complex) function Y( f) is also termed the (continuous) Fourier spectrum of the (real) 
signal y(t). The inverse transform is given by:

 y t Y f j ft df( ) ( )exp( )=
-∞

+∞

∫ 2.p  (A.17)

or, y(t) = F  - 1Y( f) 
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Note that according to the definition given by Equation A.13., the Fourier spectrum Y( f) 
is defined for the entire frequency range f(- ∞, + ∞) which includes negative values. This 
is termed the two-sided spectrum. Since, in practical applications it is not possible to have 
“negative frequencies,” the one-sided spectrum is usually defined only for the frequency 
range f(0, ∞). 

In order that a two-sided spectrum have the same amount of power as a one-sided 
spectrum, it is necessary to make the one-sided spectrum double the two-sided spec-
trum for f>0.

If the signal is not sufficiently transient (fast-decaying or damped), the infinite integral 
given by Equation A.13. might not exist, but the corresponding Laplace transform might 
still exist.

a.4.1 Frequency-response Function (Frequency Transfer Function)

The Fourier integral transform of the impulse-response function is given by

 H f h t j ft dt( ) ( )exp( )= -
-∞

∞

∫ 2.p  (A.18)

where f is the cyclic frequency (measured in cycles/s or Hertz). This is known as the 
 frequency-response function (or, frequency transfer function) of a system. Fourier trans-
form operation is denoted as F h(t) = H( f). In view of the fact that h(t) = 0 for t < 0, the lower 
limit of integration in Equation A.18 could be made zero. Then, from Equation A.9, it is clear 
that H( f) is obtained simply by setting s = j2.p  f in H(s). Hence, strictly speaking, we should 
use the notation H (j2.p  f) and not H( f). But for the notational simplicity we denote H(j2.p  f) 
by H( f). Furthermore, since the angular frequency w  = 2.p f, we can express the frequency 
response function by H(jw), or simply by H(w) for the notational convenience. It should be 
noted that the frequency-response function, like the (Laplace) transfer function, is a com-
plete representation of a linear, constant-parameter system. In view of the fact that both 
u(t) = 0 and y(t) = 0 for t < 0, we can write the Fourier transforms of the input and the output 
of a system directly by setting s = j2.p  f = jw in the corresponding Laplace transforms. 

Then, from Equation A.8, we have

 Y( f) = H( f)U( f) (A.19)

Note: Sometimes for notational convenience, the same lowercase letters are used to rep-
resent the Laplace and Fourier transforms as well as the original time-domain variables. 

If the Fourier integral transform of a function exists, then its Laplace transform also 
exists. The converse is not generally true, however, because of poor convergence of the 
Fourier integral in comparison to the Laplace integral. This arises from the fact that the 
factor exp(- s  t) is not present in the Fourier integral. For a physically realizable, linear, 
constant-parameter system, H( f) exists even if U( f) and Y( f) do not exist for a particular 
input. The experimental determination of H( f), however, requires system stability. For the 
nth order system given by Equation A.10, the frequency-response function is determined 
by setting s = j2.p  f in Equation A.12. as

 H f
b b j f b j f
a a j f a j

m
m

n

( )
( )
(

= + + +
+ + +

0 1

0 1

2. 2.
2. 2.
p p
p

 pp f n)  (A.2.0)
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This, generally, is a complex function of f, which has a magnitude denoted by |H( f)| and 
a phase angle denoted by ∠ H( f).

A.5 The s-Plane

We have noted that the Laplace variable s is a complex variable, with a real part and an imag-
inary part. Hence, to represent it we will need two axes at right angles to each other—the 
real axis and the imaginary axis. These two axes from a plane, which is called the s-plane. 
Any general value of s (or, any variation or trace of s) may be marked on the s-plane.

a.5.1 an interpretation of laplace and Fourier Transforms

In the Laplace transformation of a function f(t) we multiply the function by e - st and inte-
grate with respect to t. This process may be interpreted as determining the “components” 
F(s) of f(t) in the “direction” e - st where s is a complex variable. All such components F(s) 
should be equivalent to the original function f(t).

In the Fourier transformation of f(t) we multiply it by e - jw t and integrate with respect to t. 
This is the same as setting s = jw . Hence, the Fourier transform of f(t) is F(jw). Furthermore, 
F(jw) represents the components of f(t) that are in the direction of e - jw t. Since e - jw t =  
cos w t - j sin w t, in the Fourier transformation what we do is to determine the sinusoidal 
components of frequency w, of a time function f(t). Since s is complex F(s) is also complex 
and so is F(jw). Hence they all will have a real part and an imaginary part.

a.5.2 application in Circuit analysis

The fact that sin w t and cos w t are 90° out of phase is further confirmed in view of

 ejw t = cos w t + j sin w t (A.2.1)

Consider the RLC circuit shown in Figure A.2.. For the capacitor, the current (i) and the 
voltage (v) are related through

 i C
dv
dt

=  (A.2.2.)

If the voltage v = v0 sin w t, the current i = v0w C cos w t. Note that the magnitude of v/i is  
1/w C (or, 1/2.p  fC where w  = 2.p f; f is the cyclic frequency and w is the angular frequency). 
But v and i are out of phase by 90°. In fact, in the case of a capacitor, i leads v by 90°. The 
equivalent circuit resistance of a capacitance is called reactance, and is given by

 X
fCC = 1

2.p
 (A.2.3.)

 = 1
wC

 (A.2.4)
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Note that this parameter changes with the frequency.
We cannot add the reactance of the capacitor and the resistance of the resistor algebra-

ically; we must add them vectorialy because the voltages across a capacitor and resistor in 
series are not in phase, unlike in the case of a resistor. Also, the resistance in a resistor does 
not change with frequency. In a series circuit, as in Figure A.2., the current is identical in 
each element, but the voltages differ in both amplitude and phase; in a parallel circuit, the 
voltages are identical, but the currents differ in amplitude and phase.

Similarly, for an inductor 

 v L
di
dt

=  (A.2.5)

The corresponding reactance is

 XL = w L = 2.p  fL (A.2.6)

If the voltage (E) across R in Figure A.2.a is in the direction shown in Figure A.2.b (i.e., 
pointing to the right), then the voltage across the inductor L must point upwards (90° lead-
ing) and the voltage across the capacitor C must point down (90° lagging). Since the current 
(I) is identical in each component of a series circuit, we see the directions of IR, IXL and IXC 
as in Figure A.2.b, giving the impedance triangle shown in Figure A.2.c.

To express these reactances in the s domain, we simply substitute s for jw :

 - =jX
sCC
1

 jXL = sL

The series impedance of the RLC circuit can be expressed as

 Z R jX jX R sL
sCL C= + - = + + 1

In this discussion, note the use of -1  or j, to indicate a 90° phase change. 

E

R

L

C

(a)

XL – XC

ER or IR

EC or IXC

EL or IXL

R

Z

(b) (c)

θ

Figure a.2
(a) Series RLC circuit. (b) Phases of voltage drops. (c) Impedance triangle.
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Modeling, analysis, design, data acquisition, and control are important activities within 
the field of Control Engineering. Computer software tools and environments are needed 
for effectively carrying out these, both at the learning level and at the professional 
application level. Several such environments and tools are commercially available. A 
selected few, which are particular useful for the tasks related to the present book are 
outlined here.

MATLAB®* is an interactive computer environment with a high-level language and tools 
for scientific and technical computation, modeling and simulation, design, and control of 
dynamic systems. Simulink® is a graphical environment for modeling, simulation, and 
analysis of dynamic systems, and is available as an extension to MATLAB. LabVIEW is 
a graphical programming language and a program development environment for data 
acquisition, processing, display, and instrument control.

B.1 Simulink®

Computer simulation of a dynamic model by using Simulink is outlined in Chapter 6.  
Simulink is a graphic environment that uses block diagrams. It is an extension to 
MATLAB.

B.2 MATLAB®

MATLAB interactive computer environment is very useful in computational activities in 
mechatronics. Computations involving scalars, vectors, and matrices can be carried out 
and the results can be graphically displayed and printed. MATLAB toolboxes are available 
for performing specific tasks in a particular area of study such as control systems, fuzzy 
logic, neural network, data acquisition, image processing, signal processing, system identi-
fication, optimization, model predictive control, robust control, and statistics. User guides, 
Web-based help, and on-line help from the parent company, The MathWorks, Inc., and 
various other sources. What is given here is a brief introduction to get started in MATLAB 
for tasks that are particularly related to control systems and mechatronics. 

b.2.1 Computations

Mathematical computations can be done by using the MATLAB® command window. 
Simply type in the computations against the MATLAB prompt “>>” as illustrated next.

* MATLAB® and Simulink® are registered trademarks and products of The MathWorks, Inc. LabVIEW is a 
product of National Instruments, Inc.
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b.2.2 arithmetic

An example of a simple computation using MALAB® is given below.
>> x = 2.; y =  - 3.;
>> z = x^2. - x*y + 4
z = 14

In the first line we have assigned values 2. and 3. to two variables x and y. In the next 
line, the value of an algebraic function of these two variables is indicated. Then, MATLAB 
provides the answer as 14. Note that if you place a “;” at the end of the line, the answer will 
not be printed/displayed.

Table B.1 gives the symbols for common arithmetic operations used in MATLAB.
Following example shows the solution of the quadratic equation ax2. + bx + c = 0:

>> a  =  2.;b = 3.;c = 4;
>> x = ( - b + sqrt(b^2. - 4*a*c))/(2.*a)
x  = 
 - 0.7500 + 1.1990i
The answer is complex, where i denotes -1. Note that the function sqrt( ) is used, which 

provides the positive root only. Some useful mathematical functions are given in Table B.2..
Note: MATLAB is case sensitive.

Table b.2

Useful Mathematical Functions in MATLAB

Function Description

abs( ) Absolute value/magnitude 
acos( ) Arc-cosine (inverse cosine)
acosh( ) Arc-hyperbolic-cosine
asin( ) Arc-sine
atan( ) Arc-tan
cos( ) Cosine
cosh( ) Hyperbolic cosine
exp( ) Exponential function
imag( ) Imaginary part of a complex number
log( ) Natural logarithm
log10( ) Log to base 10 (common log)
real( ) Real part of a complex number
sign( ) Signum function
sin( ) Sine
sqrt( ) Positive square root
tan( ) Tan function

Table b.1

MATLAB® Arithmetic Operations

Symbol Operation

+ Addition

- Subtraction

* Multiplication
/ Division
^ Power
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b.2.3 arrays

An array may be specified by giving the start value, increment, and the end value limit. 
An example is given below.
>> x = (.9: - .1:0.42.)
x = 

0.9000 0.8000 0.7000 0.6000 0.5000
The entire array may be manipulated. For example, all the elements are multiplied by p  

as below:
>> x = x*pi
x = 

2..82.74  2..513.3.  2..1991  1.8850  1.5708
The second and the fifth elements are obtained by:

>> x([2. 5])
ans  = 

2..513.3.  1.5708

Next we form a new array y using x, and then plot the two arrays, as shown in 
Figure B.1.
>> y = sin(x);
>> plot(x,y)

A polynomial may be represented as an array of its coefficients. For example, the qua-
dratic equation ax2. + bx + c = 0 as given before, with a  =  2., b  =  3., and c  = M4, may be solved 
using the function “roots” as below.
>> p = [2. 3. 4];
>> roots(p)
ans  = 

 - 0.7500 + 1.1990i
- 0.7500 - 1.1990i

The answer is the same as what we obtained before.

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3
1.5 2 2.5 3

Figure b.1
A plot using MATLAB®.
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b.2.4 relational and logical Operations

Useful relational operations in MATLAB® are given in Table B.3.. Basic logical operations 
are given in Table B.4.

Consider the following example.
>> x = (0:0.2.5:1)*pi
x  = 

0  0.7854  1.5708  2..3.562.  3..1416
>> cos(x)>0
ans  = 

1 1 1 0 0
>> (cos(x)>0)&(sin(x)>0)
ans  = 

0 1 1 0 0

In this example, first an array is computed. Then the cosine of each element is computed. 
Next it is checked whether the elements are positive. (A truth value of 1 is sent out if true 
and a truth value of 0 if false.) Finally the “AND” operation is used to check whether both 
corresponding elements of two arrays are positive. 

b.2.5 linear algebra

MATLAB® can perform various computations with vectors and matrices (see Appendix C). 
Some basic illustrations are given here.

A vector or a matrix may be specified by assigning values to its elements. Consider the 
following example.
>> b = [1.5  - 2.];
>> A = [2. 1; - 1 1];
>> b = b’

Table b.3

Some Relational Operations

Operator Description

< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to
= = Equal to 
~= Not equal to

Table b.4

Basic Logical Operations

Operator Description

& AND
| OR
~ NOT
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b  = 
  1.5000
- 2..0000

>> x = inv(A)*b
x  = 

  1.1667
 - 0.83.3.3.
In this example, first a second order row vector and 2.×2. matrix are defined. The 

row vector is transposed to get a column vector. Finally the matrix–vector equation 
Ax = b is solved according to x = A-1b. The determinant and the eigenvalues of A are 
determined by:

>> det(A)
ans  = 

3.
>> eig(A)
ans  = 

1.5000 + 0.8660i
1.5000 - 0.8660i

Both eigenvectors and eigenvalues of A computed as:

>> [V,P] = eig(A)
V  = 

0.7071  0.7071
 - 0.3.53.6 + 0.612.4i  - 0.3.53.6 - 0.612.4i

P  = 
1.5000 + 0.8660i   0     

0    1.5000 - 0.8660i
Here the symbol V is used to denote the matrix of eigenvectors. The symbol P is used to 

denote the diagonal matrix whose diagonal elements are the eigenvalues.
Useful matrix operations in MATLAB are given in Table B.5 and several matrix func-

tions are given in Table B.6.

b.2.6 M-Files

The MATLAB® commands have to be keyed in on the command window, one by one. 
When several commands are needed to carry out a task, the required effort can be tedious. 
Instead, the necessary commands can be placed in a text file, edited as appropriate (using 

Table b.5

Some Matrix Operations in MATLAB

Operation Description

+ Addition

- Subtraction

* Multiplication
/ Division
^ Power
‘ Transpose
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text editor), which MATLAB can use to execute the complete task. Such a file is called 
an M-file. The file name must have the extension “m” in the form filename.m. A toolbox 
is a collection of such files, for use in a particular application area (e.g., control systems, 
fuzzy logic). Then, by keying in the M-file name at the MATLAB command prompt, the 
file will be executed. The necessary data values for executing the file have to be assigned 
beforehand.

B.3 Control Systems Toolbox

There are several toolboxes with MATLAB®, which can be used to analyze, compute, 
simulate, and design control problems. Both time-domain representations and frequency-
domain representations can be used. Also, both classical and modern control problems 
can be handled. The application is illustrated here through several conventional control 
problems discussed in Chapters 7 through 11.

b.3.1 Compensator Design example

Consider again the design problem given in Chapter 9, Example 9.2. (Figure 9.5). The 
MATLAB® single-input–single-output (SISO) Design Tool is used here to solve this 
problem. 

B.3.1.1 Building the System Model

Build the transfer function model of the Motor and Filter, in the MATLAB® workspace, as 
follows:

 Motor_G = tf([999], [10 1]);
 Filter_H = tf([1], [0.1 1]);

To Open the SISO Design Tool, type 
 sisotool
at the MATLAB prompt (>>). 

B.3.1.2 Importing Model into SISO Design Tool

Select Import Model under the File menu. This opens the Import System Data dialog box, 
as shown in Figure B.2.a.

Table b.6

Useful Matrix Functions in MATLAB

Function Description

det( ) Determinant
inv( ) Inverse
eig( ) Eigenvalues
[ , ]=eig( ) Eigenvectors and eigenvalues
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Use the following steps to import the motor and filter models:

 1. Select Motor_G under SISO Models.
 2.. Place it into the G Field under Design Model by pressing the right arrow button to 

the left of G.
 3.. Similarly import the filter model.
 4. Press OK

Figure b.2
(a) Importing the model into the SISO Design Tool. (b) Root locus and Bode plots for the motor model. (c) Closed-
loop step response of the motor system without compensation. (d) Root locus and Bode plots of the compen-
sated system. (e) Closed-loop step response of the compensated system.
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Now in the main window of the SISO Design Tool, will show the root locus and Bode 
plots of open-loop transfer function GH (see Figure B.2.b). As given in the figure, the phase 
margin is 18.2.º, which occurs at 3.0.8 rad/s (4.9 Hz). 

The closed-loop step response, without compensation, is obtained by selecting Tools 
→ Loop responses → closed-loop step from the main menu. The response is shown in 
Figure B.2.c. It is noted that the phase margin is not adequate, which explains the oscilla-
tions and the long settling time. Also the P.O. is about 140%, which is considerably higher 
than the desired one (10%) and is not acceptable. 
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B.3.1.3 Adding Lead and Lag Compensators

To add a lead compensator, right-click the mouse in the white space of the Bode magni-
tude plot, choose Add Pole/Zero and then lead in the right-click menu for the open-loop 
Bode diagram. Move the zero and the pole of the lead compensator to get a desired phase 
margin about 60º. 

To add a lag compensator, choose Add Pole/Zero and then lag in the right-click menu for 
the open-loop Bode diagram. Move the zero and the pole of the lag compensator to get a 
desired phase angle of about –115º at the crossing frequency, which corresponds to a phase 
margin of 180º - 115º  =  65º. 

With the added lead and lag compensators, the root locus and Bode plots of the system are 
shown in Figure B.2.d. The closed-loop step response of the system is shown in Figure B.2.e. 

b.3.2 PiD Control with Ziegler–Nichols Tuning

Consider Example 9.5 given in Chapter 9, Figure 9.14. The SISO Design Tool is used. First 
build the transfer function model of the given system (call it Mill).

 Mill_G = tf([1], [1 1 4 0]);
 Filter_H = tf([1], [1]);

As before, import the system model into the SISO Design Tool. 

B.3.2.1 Proportional Control

Even without using the Routh–Hurwitz method, we can change the gain setting by trial 
and error to obtain the proportional gain that will make the system marginally stable. As 
seen in Figure B.3.a, when K  =  4, the gain margin is just below 0 dB, which makes the sys-
tem unstable. The response of the system is shown in Figure B.3.b. 
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Referring to the Ziegler–Nichols controller settings, as given in Table 9.1, we can obtain 
the proper proportional gain as Kp  =  0.5 × 4  =  2.. The corresponding system response is 
shown in Figure B.3.c.
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Figure b.3
(a) Root locus and Bode plots of the system with proportional gain Kp = 4. (b) Step response of the closed-loop 
system with Kp=4. (c) Step response of the closed-loop system with Kp = 2.. (d) Bode plot of the system with PI 
control. (e) Step response of the system with PI control. (f) Bode plot of the system with PID control. (g) Step 
response of the system with PID control.
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B.3.2.2 PI Control

Note that the period of oscillations (ultimate period) is 
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Figure b.3 (continued)
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Hence, from the Ziegler–Nichols settings given in Table 9.1, we have for a PI controller,

 Kp = 0.45 × 4 = 1.8
  ti = 0.83.p  = 2..61 seconds.

Hence, the PI controller transfer function is 
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Insert this controller into C in the SISO Design Tool. 
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The corresponding system Bode plot and the step response are shown in Figures B.6d 
and e, respectively.

B.3.2.3 PID Control

From the Ziegler–Nichols settings given in Table 9.1, we have for a PID controller,

Kp = 0.6 × 4 = 2..4
ti = 0.5p  = 1.57 seconds
td = 0.12.5p  = 0.3.93. seconds.

The corresponding transfer function of the PID controller is 
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Use the MATLAB® function roots to calculate the roots of the numerator polynomial. 
 R = roots([0.94 2..4 1.53.]);

 R = −1.3.2.17
 −1.2.3.15
Hence, the transfer function of the PID controller is 
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Insert this controller into C of the SISO Design Tool. The corresponding Bode plot and 
the step response of the controlled system are shown in Figure B.6f and g.
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b.3.3 root locus Design example

Consider Example 9.3. given in Chapter 9, Figure 9.7. Again, the SISO Design Tool is used. 
First build the transfer function model for the rolling mill with no filter:

 Mill_G = tf([1], [1 5 0]);
 Filter_H = tf([1], [1]);
Then, as before, import the system model into the SISO Design Tool. The root locus 

and the step response of the closed-loop system are shown in Figures B.7a and b. From 
Figure B.4b, it is seen that the peak time and the 2.% settling time do not meet the design 
specifications. 

To add a lead compensator, right-click in the white space of the root locus plot, choose 
Add Pole/Zero and then lead in the right-click menu. Left-click on the root locus plot 
where we want to add the lead compensator. 

Now we have to adjust the pole and zero of the lead compensator and the loop gain 
so that the root locus passes through the design region. To speed up the design process, 
turn on the grid setting for the root locus plot. The radial lines are constant damping 
ratio lines and the semicircular curves are constant undamped natural frequency lines 
(see Chapter 7). 

On the root locus plot, drag the pole and zero of the lead compensator (pink cross 
or circle symbol on the plot) so that the root locus moves toward the design region.  
Left-click and move the closed-loop pole (small pink-color square box) to adjust the 
loop gain. As you drag the closed-loop pole along the locus, the current location of that 
pole, and the system damping ratio and natural frequency will be shown at the bottom 
of the graph. 

Drag the closed-loop pole into the design region. The resulting lead compensator, the 
loop gain and the corresponding root locus are shown in Figure B.4c. The step response of 
the compensated closed-loop system is shown in Figure B.4d.

b.3.4 MaTlab® Modern Control examples

Several examples in modern control engineering are given now to illustrate the use of 
MATLAB in control. The background theory is found in Chapter 11.

B.3.4.1 Pole Placement of a Third Order Plant

A mechanical plant is given by the input-output differential equation  x x u+ = , where u 
is the input and x is the output. Determine a feedback law that will yield approximately a 
simple oscillator with a damped natural frequency of 1 unit and a damping ratio of 1/ 2. .

To solve this problem, first we define the state variables as x1 = x, x x2. 1=  , and x x3. 2.=  . The 
corresponding state-space model is
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Step response(b)
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Figure b.4
(a) Root locus and Bode plots of the rolling mill system without compensation. (b) Step response of the closed-
loop system without compensation. (c) Root locus of the compensated system. (d) Step response of the compen-
sated closed-loop system. 
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The open-loop poles and zeros are obtained using the following MATLAB® commands:
>> A = [0 1 0; 0 0 1; 0 0  - 1];
>> B = [0; 0; 1];
>> C = [1 0 0];
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>> D = [0];
>> sys_open = ss(A,B,C,D);
>> [nat_freq_open,damping_open,poles_open] = damp(sys_open)
>> pzmap(sys_open)

The open-loop poles are: [0 0 -1]T.
The step response of the open-loop system is obtained using the command:

>> step(sys_open)
The result is shown in Figure B.5a. Clearly, the system is unstable.
With the desired damped natural frequency w d = 1 and damping ratio z  = 1/ 2. , we get 

the undamped natural frequency w n = √2. and hence, z w n = 1. It follows that we need to 
place two poles at -1 ± j. Also the third pole has to be far from these two on the left half 
plane (LHP); say, at -10. The corresponding control gain K can be computed using the 
“place” command in MATLAB:
>> p = [ - 1 + j  - 1 - j  - 10];
>> K = place(A,B,p)
place: ndigits =  15
K  = 

2.0.0000 2.2..0000 11.0000

The corresponding step response of the closed-loop system is shown in Figure B.5b.

B.3.4.2 Linear Quadratic Regulator (LQR) for a Third Order Plant

For the third order plant in the previous example, we design a LQR, which has a state 
feed-back controller (see Chapter 11), using MATLAB® Control Systems Toolbox. The 
MATLAB command K = lqr(A,B,Q,R) computes the optimal gain matrix K such that the 
state-feedback law u =  - Kx minimizes the quadratic cost function

 J dtT T= +
∞

∫
0

( )x Qx u Ru

The weighting matrices Q and R are chosen to apply the desired weights to the various 
states and inputs. The MATLAB commands for designing the controller are:
>> A = [0 1 0; 0 0 1; 0 0  - 1];
>> B = [0; 0; 1];
>> C = [1 0 0];
>> D = [0];
>> Q = [2. 0 0 ;0 2. 0 ; 0 0 2.];
>> R = 2.;
>> Klqr = lqr(A,B,Q,R)
>> lqr_closed = ss(A - B*Klqr,B,C,D);
>> step(lqr_closed)

The step response of the system with the designed LQR controller is shown in Figure B.6.
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B.3.4.3 Pole Placement of an Inverted Pendulum on Mobile Carriage

The system is described in Example 11.2.7, Chapter 11, Figure 11.2.0. The linearized  
state-space model is 
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Figure b.5
(a) Step response of the open-loop system. (b) Step response of the third order system with pole-placement 
control.
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As before, the open-loop poles and zeros are obtained using the MATLAB® commands:

>> A = [0 1 0 0; 0 0 –1 0; 0 0 0 1; 0 0 11 0];
>> B = [0; 1; 0;  - 1];
>> C = [1 0 0 0; 0 0 1 0];
>> D = 0;
>> sys_open = ss(A,B,C,D);
>> [nat_freq_open,damping_open,poles_open] = damp(sys_open)
>> pzmap(sys_open)
 Open-loop poles are: [0  0  3..3.166  -3..3.166]T. Note that the system is unstable. The 
impulse response of the open-loop system is obtained using the command:
>> impulse(sys_open)

The response is shown in Figure B.7a.

Let the desired closed-loop poles be G   = [-1 -2. -1 – j -1 + j]. Use the feedback 
controller

 u = uref - Kx
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Step response of the third order system with LQR control.
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where the feedback gain matrix is K = [k1 k2. k3. k4]. As before, K is computed using the 
“place” command:
>> p = [ - 1 –2.  - 1 + j  - 1 - j];
>> K = place(A,B,p)
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Figure b.7
(a) Impulse response of the inverted pendulum (theta) on a moving carriage (z). (b) Impulse response of the 
pole-placement controlled inverted pendulum on carriage.
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place: ndigits =  15
K  = 
 - 0.4000  - 1.0000  - 2.1.4000  - 6.0000

The corresponding impulse response of the closed-loop system is shown in Figure 
B.7b.

Note that, with the assigned poles, the inverted pendulum balances and the car returns 
to the initial position.

B.3.4.4 LQG Controller for an Inverted Pendulum Mounted with Mobile Carriage

The LQR is designed using the MATLAB® Control Systems Toolbox, as before (for the third 
order system). The commands are:

>> A = [0 1 0 0; 0 0  - 1 0; 0 0 0 1; 0 0 11 0];
>> B = [0; 1; 0;  - 1];
>> C = [1 0 0 0; 0 0 1 0];
>> D = 0;
>> Q = [2. 0 0 0;0 2. 0 0; 0 0 2. 0; 0 0 0 2.];
>> R = 2.;
>> Klqr = lqr(A,B,Q,R)
>> lqr_closed = ss(A - B*Klqr,B,C,D);
>> impulse(lqr_closed)

The impulse response of the controlled system is shown in Figure B.8.
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Figure b.8
Impulse response of the LQR controlled inverted pendulum on carriage.
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B.4 Fuzzy Logic Toolbox

The use of fuzzy logic in intelligent control has been discussed in Chapter 11. The 
Fuzzy Logic Toolbox of MATLAB® is quite useful in this regard. Using it we cre-
ate and edit fuzzy decision-making systems (for control and other applications) by 
means of interactive graphical tools or command-line functions. Simulink® can be 
used to simulate the developed fuzzy system. The-time workshop can create portable 
C code from a Simulink environment for use in real-time and nonreal-time applica-
tions. The toolbox also provides source codes in C for implementing a stand-alone 
fuzzy inference engine. The stand-alone C-code fuzzy inference engine can read an 
FIS file (the file format for saving the fuzzy engine in MATLAB). In other words, it 
is able to parse the stored information, to perform fuzzy inference directly, or it can 
be embedded in other external applications. The design process of a fuzzy decision-
making system involves the following general steps, as discussed in Chapter 11: Input 
Data, Fuzzification, Implication (or, Fuzzy Rules), Aggregation (or, Composition), and 
Inference Defuzzification.

b.4.1 graphical editors

There are five primary graphic user interface (GUI) tools for building, editing, and observ-
ing fuzzy inference systems in the MATLAB® Fuzzy Logic Toolbox: the FIS Editor, the 
Membership Function Editor, the Rule Editor, the Rule Viewer and the Surface Viewer. 
The FIS Editor handles the high-level issues for the system; e.g., number of inputs, out-
puts and names. The Membership Function Editor is used to define the shapes of the 
membership functions associated with each variable. The Rule Editor is used for editing 
the rules in the fuzzy knowledge base, which describes defines the knowledge of the 
application (control knowledge in the case of fuzzy control). The Rule Viewer and the 
Surface Viewer are used for observing (not editing) the designed FIS. Try the example on 
tipping in a restaurant, by clicking on the file menu and loading FIS from disk. The tipper.
fis is located at: 
/Matlabr12/toolbox/fuzzy/fuzzydemos/tipper.fis

 1. FIS Editor

  The FIS Editor displays general information about a fuzzy inference system. 
Double click on an icon to open and, carry out editing related that particular item, 
and save the results. 

 2. Membership Function Editor

  The Membership Function Editor shares some features with the FIS Editor. It is a 
menu driven interface, which allows the user to open/display and edit the mem-
bership functions for the entire fuzzy inference system; specifically the member-
ship functions of inputs and outputs. 

 3. Rule Editor

  The Rule Editor contains an editable text field for displaying and editing rules. It 
also has some landmarks similar to those in the FIS Editor and the Membership 
Function Editor, including the menu bar and the status line. The pop-up menu 
Format is available from the pull-down menu Options in the top menu bar. This 
is used to set the format for the display.
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 4. Rule Viewer

  The Rule Viewer displays a roadmap of the entire fuzzy inference process. It is 
based on the fuzzy inference diagram. The user will see a single figure window 
with seven small plots nested in it. The two small plots across the top of the figure 
represent the antecedent and the consequent of the first rule. Each rule is a row of 
plots, and each column is a variable.

 5. Surface Viewer

  This allows the user to view the overall decision-making surface (the control sur-
face, as discussed in Chapter 11). This is a nonfuzzy representation of the fuzzy 
application, and is analogous to a look-up table albeit continuous.

b.4.2 Command line Driven FiS Design

A predesigned FIS may be loaded into the MATLAB® workspace by typing:

>> myfis = readfis(‘name_of_file.fis’)

Typing the showfis(myfis) command will enable us to see the details of the FIS. Use the 
getfis command to access information of the loaded FIS. For example,

>> getfis(myfis)
>> getfis(myfis, ‘Inlabels’)
>> getfis(myfis, ‘input’, 1)
>> getfis(myfis, ‘output’, 1)

The command setfis may be used to modify any property of an FIS. For example,

>> setfis(myfis, ‘name’, ‘new_name’);

The following three functions are used to display the high-level view of a fuzzy infer-
ence system from the command line:

>> plotfis(myfis)
>> plotmf(myfis, ‘input’, input_number) 

 or plotmf(myfis, ‘output’, output_number)
>> gensuf(myfis)

To evaluate the output of a fuzzy system for a given input, we use the function:

>> evalfis([input matrix], myfis)

For example, evalfis([1 1], myfis) is used for single input evaluation, and 
evalfis([1 1; 2 3] myfis) for multiple input evaluation.

Note that we may directly edit a previously saved .fis file, besides manipulating a fuzzy 
inference system from the toolbox GUI or from the MATLAB workspace through the com-
mand line. 

b.4.3 Practical Stand-alone implementation in C

The MATLAB® Fuzzy Logic Toolbox allows you to run your own stand-alone C programs 
directly, without the need for Simulink®. This is made possible by a stand-alone Fuzzy 
Inference Engine that reads the fuzzy systems saved from a MATLAB session. Since the C 
source code is provided, you can customize the stand-alone engine to build fuzzy infer-
ence into your own code. This procedure is outlined in Figure B.9.
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Figure b.9
Target implementation of a fuzzy system.
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B.5 LabVIEW®†

LabVIEW or Laboratory Virtual Engineering Workbench is a product of National 
Instruments. It is a software development environment for data acquisition, instrument 
control, image acquisition, motion control, and presentation. LabVIEW is a complied 
graphical environment, which allows the user to create programs graphically through 
wired icons similar to creating a flowchart.

b.5.1 introduction

LabVIEW® is a general programming language like high-level programming languages 
such as C or Basic, but LabVIEW is a higher-level. LabVIEW programs are called virtual 
instruments (VIs) which use icons to represent subroutines. It is similar to flow charting 
codes as you write them. The LabVIEW development environment uses the graphical pro-
gramming language G.

b.5.2 Some Key Concepts

Block Diagram  Pictorial description or representation of a program or algorithm. In 
a G program, the block diagram consists of executable icons called 
nodes and wires that carry data between the nodes. 

G programming  G is a convenient graphical data flow programming language on 
which LabVIEW® is based. G simplifies scientific computation, 
process monitoring and control, and applications of testing and 
measurement.

Control  Front panel object such as a knob, push button, or dial for entering 
data to a VI interactively or by programming.

Control terminal  Terminal linked to a control on the front panel, through which input 
data from the front panel passes to the block diagram.

Front panel  Interactive user interface of a VI. The front panel appearance imi-
tates physical instruments, such as oscilloscopes and multimeters.

Indicator  Front panel object that displays output, such as a graph or turning 
on an LED.

Waveform chart Indicator that plots data points at a certain rate.
While loop  Loop structure that repeats a code section until a given condition is 

met. It is comparable to a Do loop or a Repeat-Until in conventional 
programming languages.

Wire Data path between nodes.

b.5.3 Working with labVieW®

As a software centered system, LabVIEW® resides in a desktop computer, laptop or PXI as 
an application where it acts as a set VIs, providing the functionality of traditional hardware 
instruments such as oscilloscopes. Comparing to physical instruments with fixed func-
tions, LabVIEW VIs are flexible and can easily be reconfigured to different applications.  

† For details see LabVIEW User Manual Glossary and G programming Reference Manual Glossary, which 
are available online at http://www.ni.com/pdf/manuals/3.2.0999b.pdf and http://www.ni.com/pdf/
manuals/3.2.12.96b.pdf, respectively.
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It is able to interface with various hardware devices such as GPIB, data acquisition mod-
ules, distributed I/O, image acquisition, and motion control, making it a modular solution. 
This utility is shown in Figure B.10.

B.5.3.1 Front Panel

Upon launching LabVIEW®, you will be able to create or open an existing VI where the lay-
out of the GUI can be designed. Figure B.11 shows the front panel of the simple alarm slide 
control (alarmsld.lib) example included with LabVIEW suite of examples. This is the first 
phase in developing a VI. Buttons, indicators, I/O, and dialogs are placed appropriately. 
These control components are selected from the “Controls Palette,” which contains a list of 
prebuilt library or user-customized components.

A component is selected from the controls palette by left-clicking the mouse on the par-
ticular control icon, and can be placed on the front panel by left-clicking again. Then the 
component can be resized, reshaped or moved to any desired position. A component prop-
erty such as visibility, format, precision, labels, data range, or action can be changed by 

Desktop computer
Laptop
PXI

LabVIEW

GPIB
Modular instrumentation
Data acquisition
Distributed I/O
Image acquisition
Motion control

Physical
test system

Se
ns

or
s

Figure b.10
Modular solution of LabVIEW.

Figure b.11
Front panel of the alarm slide control example.
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right-clicking, with the cursor placed anywhere on the selected component, to bring up 
the pop-up menu.

B.5.3.2 Block Diagrams

After designing the GUI in the front panel, the VI has to be programmed graphically 
through the block diagram window in order to implement the intended functionality of 
the VI. The block diagram window can be brought forward by clicking on the “Window” 
pull menu and selecting “Show Diagram.” For every control component created on the 
front panel, there is a corresponding terminal automatically created in the block diagram 
window. Figure B.12. shows the block diagram for the alarm slide control example pro-
vided with LabVIEW®.

The terminal is labeled automatically according to the data type of each control. For 
example, the stop button has a terminal labeled TF, which is a Boolean type. The verti-
cal level indicator has a DBL type terminal, indicating double-precision number. Other 
common controls with a DBL terminal include various numeric indicators, sliders, and 
graphs.

LabVIEW uses the G-programming language to implement the functionality of a VI. It 
provides an extensive library of basic conditional and looping structures, mathematical 
operators, Boolean operators, comparison operators, and more advanced analysis and con-
ditioning tools, provided through the Functions Palette. A function may be placed on the 
block diagram window similar to how a control component is placed on the front panel. 
Depending on the required flow of execution, they are then wired together using the con-
nect wire tool in the tools palette. In order to wire two terminals together, first click on the 
connect wire icon in the tools palette, then move the cursor to the input-output hotspot of 
one terminal, left-click to make the connection, and then move the cursor to the output-
input hotspot of the other terminal and left-click again to complete the connection. The 
corresponding control component on the front panel can be selected by double clicking on 
the terminal block.

The general flow of execution is to first acquire the data, then analyze, followed by the 
presentation of results. The terminals and functional components are wired in such a way 
that data flows from the sources (e.g., data acquisition) to the sinks (e.g., presentation). 

Figure b.12
Block diagram of the alarm slide control example.
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LabVIEW executes its G-programming code in data flow manner, executing an icon as 
data becomes available to it through connecting wires.

The dice terminal is a random number generator and its output is multiplied by a con-
stant using the multiplier operator (see Figure B.12.). The multiplication result is connected 
to the input of the alarm slide, which will show up as the level in the vertical indicator 
on the front panel during VI execution. The gray box surrounding the terminals is the 
while loop in which all the flow within the gray box will run continuously until the loop 
is terminated by the stop button with the corresponding Boolean terminal. When the stop 
terminal is true, the while loop terminates upon reading a false through the not operator. 
The wait terminal (watch icon) controls the speed of the while loop. The wait terminal 
input is given in milliseconds. In the figure, the loop runs at an interval of one second 
since a constant of 1000 is wired to the wait terminal. In order to run the VI, left-click on 
the arrow icon on the top rows of icons or click on “Operate” and then select “Run.” No 
compilation is required.

Note the remove broken wire command found in the edit pull-down menu. This com-
mand cleans up the block diagram of any unwanted or incomplete wiring. The debug-
ging pop-up window that appears when an erroneous VI is executed is very helpful in 
troubleshooting of the VI. Double-clicking on the items in the errors list will automatically 
highlight the problematic areas or wires or terminals in the diagram.

B.5.3.3 Tools Palette

LabVIEW® has three main floating palettes for creating VIs. They are the tools palette, 
controls palette and functions palette. The tools palette, shown in Figure B.13., is the gen-
eral editing palette with tools for editing components in the front panel and block dia-
gram panel, modifying the position, shape and size of components, labeling, wiring of 
terminals in the block diagram panel, debugging, and coloring. When manipulating the 
front panel and the block diagram panel, note which tool icon is selected. For example, 
the values of a control or terminal cannot be selected or edited when the positioning icon 
is selected.

Operate value

Connect wire

Set/Clear breakpoint

Probe data

Set color

Edit text

Scroll window
Object shortcut menu

Get color

Position/size/select

Figure b.13
LabVIEW tools palette. 
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B.5.3.4 Controls Palette

Figure B.14 shows the controls palette, which contains the pre-built and user-defined 
 controls to create a GUI. This palette will be available when the front panel is selected. If 
it is not showing, click on the “Window” pull-down menu and select the “Show Controls 
Palette” option. The figure shows the main group of top-level components available in its 
pre-built library. Clicking on the appropriate top- level icons will bring up the subpalettes 
of the available controls and indicators. To go back to the top-level icons, click on the up 
arrow icon on the top-left of the controls palette.

B.5.3.5 Functions Palette

When the block diagram panel is selected, the functions palette is shown as in Figure 
B.15, enabling you to program the VI. The functions palette contains a complete library 
of necessary operations for developing the functionality of the VI. Similar to the controls 
palette, the top-level icons show the grouping of different sub-functions available for the 
programmer. Several commonly used groups are indicated below:

Structures: The structures icon consists of the usual programming language •	
sequences, conditional statements and conditional loops. These structures are in 
the form of boxes where the terminals within the boxes are executed when the 
statements or loops are invoked. In addition, there is a formula node where cus-
tom text-based formulas can be included if you prefer the traditional text-based 
equations. There are also variable declaration nodes where local and global vari-
ables can be declared.

Previous level

Numeric

Array and cluster

Select a control

Ring and enum

String & path

Graph
List and table

I/O

Boolean

Refnum

Classic controls
ActiveX

User controls

Dailog controls

Decorations

Figure b.14
 LabVIEW controls palette.
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Numeric: The elementary operators such as summation, subtraction, multiplica-•	
tion, division, and power, are grouped under this icon.
Boolean: This icon contains the Boolean operators required for logic •	
manipulation.

Array: The array grouping consists of tools for array manipulation.•	

Comparison: Operators for numerical comparison, which provide Boolean  outputs, •	
are found under this icon.
Analyze: This icons contains the more advanced analysis tools such as FFT spec-•	
trum, power spectrum, filters, triggering, and waveform generation.
Mathematics: Under this icon, the tools for mathematical manipulation such as •	
calculus, statistics and probability, linear algebra, optimization, and numeric 
functions are found.

B.6 LabVIEW® Sound and Vibration Tools

b.6.1 Sound and Vibration Toolkit

This section introduces the capabilities of the LabVIEW Sound and Vibration Toolkit (SVT). 
In particular, data can be simulated using the VIs located on the Generation palette as well 
as with other VIs, and can be analyzed using various function tools. 

Previous level

Structure

String

Comparison

Boolean

Cluster
Array

Time and dialog

Numeric

File I/O
Waveform

Analyze

User libraries

Data Acquisition

Instrument I/O

Communication

Tutorial

Select a VI

Motion and vision
Mathematics

Application control
Graphics and sound

Report generation
Advanced

Figure b.15
LabVIEW functions palette.
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b.6.2 Signal acquisition and Simulation

Data may be obtained through a data acquisition (DAQ) device such as the National 
Instruments (NI) PXI-4461 or may be simulated by generating a VI of LabVIEW®. The NI 
PXI-4461 employs both digital and analog low-pass filters to provide antialiasing. Digital 
filtering of a square wave signal to remove aliasing is illustrated in Figure B.16.

B.6.2.1 Integration

The SVT contains the following integration VIs:

SVT Integration VI located on the Integration palette for time-domain integration•	
SVT Integration (frequency) VI located on the Frequency Analysis»Extended •	
Measurements palette for frequency-domain integration

B.6.2.2 Vibration-Level Measurements

Vibration-level measurements can be made by using the Vibration Level VIs located on the 
Vibration Level palette. In particular, the following measurements can be made:

 1. Root Mean Square (RMS) Level.
 2.. Peak Level.
 3.. Crest Factor (the ratio: peak value/RMS value).

Figure b.16
Removal of aliasing through digital filtering.
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B.6.2.3 Frequency Analysis

The Frequency Analysis VIs located on the Frequency Analysis palette may be used for 
windowing, averaging, and performing frequency-domain analysis. This is based on  
the discrete Fourier transform (DFT), specifically using FFT. The frequency resolution of 
the results can be improved by zooming into a required spectral region to observe the 
details of that spectral region. The use of the Zoom FFT VI for this purpose is illustrated 
in Figure B.17a. The resulted power spectrum is shown in Figure B.17b.

B.6.2.4 Transient Analysis

Transient analysis of a signal may be performed using the Transient Analysis VIs located 
on the Transient Analysis palette. 1. Use the STFT for signals in which the frequency con-
tent changes relatively slowly with time; 2.. Use the shock response spectrum (SRS) for 
shock waves. Short-time Fourier transform (STFT) is carried out on sliding short inter-
vals (sliding window) of a transient signal, and presented as the spectrum evolves with 
time. In rotating machine where the rotating speed is acquired simultaneously with the 
signal of interest, the STFT VIs can provide the frequency information as a function of 

Figure b.17
(a) The use of the zoom FFT VI. (b) The power spectrum measured using zoom FFT.
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Figure b.18
(a) Generation of an STFT waterfall display. (b) A waterfall display.

the rotational speed. These results are typically displayed on a waterfall display or on a 
color map. Generation of a waterfall display is shown in Figure B.18a. A generated result 
is shown in Figure B.18b.

76868.indb   727 7/8/09   5:21:31 PM



This page intentionally left blank 



729

Appendix C: Review of Linear Algebra

Linear algebra, the algebra of sets, vectors, and matrices, is useful in the study of control 
systems in general and the state-space approach in particular. In practical engineering 
systems, interactions among various components are inevitable. There are many response 
variables associated with many excitations. Then, it is convenient to consider all excita-
tions (inputs) simultaneously as a single variable and also all responses (outputs) as a 
single variable. Use of linear algebra makes the analysis of such a system convenient. The 
subject of linear algebra is complex and is based on a rigorous mathematical foundation. 
In this appendix we will review the basics of vectors and matrices.

C.1 Vectors and Matrices

In the analysis of control systems, vectors and matrices will be useful in both time and 
frequency domains. First, consider the time domain formulation of a mechanical system. 
For a single-degree-of-freedom (single-DoF) system with a single forcing excitation f(t) and 
a corresponding single displacement response y, the dynamic equation would be

 my cy ky f t + + = ( )  (C.1)

In this single-DoF case, the quantities f, y, m, c, and k are scalars. If the system has n DoF, 
with excitation forces f1(t), f2.(t), …, fn(t) and associated displacement responses y1, y2., …, yn, 
the equations of motion may be expressed as

 My Cy Ky f + + = ( )t  (C.2.)

in which:

y =



















=

y

y

yn

1

2.


displacement vector (nth order column vector)

f =



















=

f

f

fn

1

2.


forcing excitation vector (nth order column vector)
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M =

















m m m

m m m

m m m

n

n

n n nn

11 12. 1

2.1 2.2. 2.

1 2.

…

…



…




= mass matrix (n × n square matrix)

C =

















c c c

c c c

c c c

n

n

n n nn

11 12. 1

2.1 2.2. 2.

1 2.

…

…



…




= damping matrix (n × n square matrix)

K

k k k

k k k

k k k

n

n

n n nn

=

















11 12. 1

2.1 2.2. 2.

1 2.

…

…



…




= stiffness matrix (n × n square matrix)

In this manner, vectors and matrices are introduced into the formulation of a multiDoF 
mechanical system. Further vector–matrix concepts will enter into the picture in subse-
quent analysis of the system; for example, in modal analysis.

Next consider the frequency-domain formulation. In the single-input–single-output 
(SISO) case, the system equation may be given as

 y = Gu (C.3.)

in which:

u = frequency spectrum (Fourier spectrum) of the forcing excitation (input)
y = frequency spectrum (Fourier spectrum) of the response (output)
G = frequency transfer function (frequency response function) of the system.

The quantities u, y and G are scalars because each one is a single quantity, and not a col-
lection of several quantities.

Next, consider a multiinput–multioutput (MIMO) system having two excitations u1and 
u2., and two responses y1 and y2.; each yi now depends on both u1 and u2.. It follows that we 
need four transfer functions to represent all the excitation-response relationships that exist 
in this system. We use the four transfer functions (G11, G12. G2.1 and G2.2.). For example, the 
transfer function G12. relates the excitation u2. to the response y1. The associated two equa-
tions that govern the system are:

 
y G u G u

y G u G u

1 11 1 12. 2.

2. 2.1 1 2.2. 2.

= +

= +
 (C.4)

Instead of considering the two excitations (two inputs) as two separate quantities, we can 
consider them as a single “vector” u having the two components u1 and u2.. As before, we 
can write this as a column consisting of the two elements:

 u = 







u

u
1

2.
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In this case we have a “column vector.” Alternately, we can write a “row vector” as: 

 u = [u1,u2.]

But, the column vector representation is more common. 
Similarly, we can express the two outputs y1 and y2. as a vector y. Consequently, we have 

the column vector:

 y =








y

y
1

2.

or the row vector: y = [y1, y2.] 
It should be kept in mind that the order in which the components (or elements) are given 

is important since the vector [u1, u2.] is not equal to the vector [u2., u1]. In other words, a vec-
tor is an “ordered” collection of quantities. 

Summarizing, we can express a collection of quantities, in an orderly manner, as a single 
vector. Each quantity in the vector is known as a component or an element of the vector. 
What each component means will depend on the particular situation. For example, in a 
dynamic system it may represent a quantity such as voltage, current, force, velocity, pres-
sure, flow rate, temperature, or heat transfer rate. The number of components (elements) in 
a vector is called the order, or dimension of the vector.

Next let us introduce the concept of a matrix using the frequency domain example given 
above. Note that we needed four transfer functions to relate the two excitations to the two 
responses. Instead of considering these four quantities separately we can express them 
as a single matrix G having four elements. Specifically, the transfer function matrix for the 
present example is: 

 G = 







G G

G G
11 12.

2.1 2.2.

This matrix has two rows and two columns. Hence the size or order of the matrix is  
2. × 2.. Since the number of rows is equal to the number of columns in this example, we have 
a square matrix. If the number of rows is not equal to the number of columns, we have a 
rectangular matrix. Actually, we can interpret a matrix as a collection of vectors. Hence, in 
the previous example, the matrix G is an assembly of the two column vectors

 
G

G
11

2.1







  and 

G

G
12.

2.2.









or, alternatively, an assembly of the two row vectors: [G11, G12.] and [G2.1, G2.2.].

C.2 Vector–Matrix Algebra

The advantage of representing the excitations and the responses of a control system 
as the vectors u and y, and the transfer functions as the matrix G is clear from the 
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fact that the excitation-response (input–output) equations can be expressed as the single 
equation

 y = Gu (C.5)

instead of the collection of scalar equations (Equation C.4).
Hence the response vector y is obtained by “premultiplying” the excitation vector u by 

the transfer function matrix G. Of course, certain rules of vector–matrix multiplication 
have to be agreed upon in order that this single equation is consistent with the two scalar 
equations given by Equation C.4. Also, we have to agree upon rules for the addition of vec-
tors or matrices.

A vector is a special case of a matrix. Specifically, a third-order column vector is a matrix 
having three rows and one column. Hence it is a 3. × 1 matrix. Similarly, a third-order row 
vector is a matrix having one row and three columns. Accordingly, it is a 1 × 3. matrix. It 
follows that we only need to know matrix algebra, and the vector algebra will follow from 
the results for matrices.

C.2.1 Matrix addition and Subtraction

Only matrices of the same size can be added. The result (sum) will also be a matrix of  
the same size. In matrix addition, we add the corresponding elements (i.e., the elements at 
the same position) in the two matrices, and write the results at the corresponding places 
in the resulting matrix.

As an example, consider the 2. × 3. matrix: A =
-

-













1 0 3.

2. 6 2.

and a second matrix: B =
-

-













2. 1 5

0 3. 2.

The sum of these two matrices is given by: A B+ =
-











1 1 2.

2. 3. 0

The order in which the addition is done is immaterial. Hence:

 A + B = B + A (C.6)

In other words, matrix addition is commutative.
Matrix subtraction is defined just like matrix addition, except the corresponding ele-

ments are subtracted. An example is given below:

 
-

-
















-

-
-
















=

-

-

1
3.
4

2.
0
1

4
2.
3.

2.
1

0

5
1
1

00
1
1
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C.2.2 Null Matrix

The null matrix is a matrix whose elements are all zeros. Hence when we add a null matrix 
to an arbitrary matrix the result is equal to the original matrix. We can define a null vector 
in a similar manner. We can write

 A + 0 = A (C.7)

As an example, the 2. × 2. null matrix is:

 
0 0
0 0








C.2.3 Matrix Multiplication

Consider the product AB of the two matrices A and B. Let us write this as:

 C = AB (C.8)

We say that B is premultiplied by A or, equivalently, A is postmultiplied by B. For this multi-
plication to be possible, the number of columns in A has to be equal to the number of rows 
in B. Then, the number of rows of the product matrix C is equal to the number of rows in 
A, and the number of columns in C is equal to the number of columns in B.

The actual multiplication is done by multiplying the elements in a given row (say the ith 
row) of A by the corresponding elements in a given column (say the, jth column) of B and 
summing these products. The result is the element cij of the product matrix C. Note that cij 
denotes the element that is common to the ith row and the jth column of matrix C. So, we 
have:

 c a bij

k

ik kj=∑  (C.9)

As an example, suppose:

 A =
-

-







1 2.
3. 3.

1
4

; B =
-

-
-

















1
2.
5

1
3.
3.

2.
4
1

4
2.
0

Note that the number of columns in A is equal to three and the number of rows in B is also 
equal to three. Hence we can perform the premultiplication of B by A. For example:

 c11 = 1 × 1 + 2. × 2. + (- 1) × 5 = 0

 c12. = 1 × (- 1) + 2. × 3. + (- 1) × (- 3.) = 8
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 c13. = 1 × 2. + 2. × (- 4) + (- 1) × 1 = - 7

 c14 = 1 × 4 + 2. × 2. + (–1) × 0 = 8

 c2.1 = 3. × 1 + (- 3.) × 2. + 4 × 5 = 17

 c2.2. = 3. × (- 1) + (- 3.) × 3. + 4 × (- 3.) = –2.4

and so on. The product matrix is: 

 C =
-

-








0 8 7 8
17 2.4 2.2. 6

It should be noted that both products AB and BA are not always defined, and even when 
they are defined, the two results are not equal in general. Unless both A and B are square 
matrices of the same order, the two product matrices will not be of the same order.

Summarizing, matrix multiplication is not commutative:

 AB ≠ BA (C.10)

C.2.4 identity Matrix

An identity matrix (or unity matrix) is a square matrix whose diagonal elements are all 
equal to 1 and all the remaining elements are zeros. This matrix is denoted by I. For exam-
ple, the third-order identity matrix is:

 I =
















1
0
0

0
1
0

0
0
1

It is easy to see that when any matrix is multiplied by an identity matrix (provided, of 
course, that the multiplication is possible) the product is equal to the original matrix. 
Thus

 A I = I A = A (C.11)

C.3 Matrix Inverse

An operation similar to scalar division can be defined in terms of the inverse of a matrix. A 
proper inverse is defined only for a square matrix, and even for a square matrix, an inverse 
might not exist. The inverse of a matrix is defined as follows:

Suppose that a square matrix A has the inverse B. Then these must satisfy the equation:

 AB = I (C.12.)
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or, equivalently

 BA = I (C.13.)

where I is the identity matrix, as defined before.
The inverse of A is denoted by A- 1. The inverse exists for a matrix if and only if (iff) 

the determinant of the matrix is nonzero. Such matrices are termed nonsingular. We shall 
discuss the determinant in a later subsection of this Appendix. But, before explaining a 
method for determining the inverse of a matrix let us verify that: 

 
2.
1

1
1







 is the inverse of 

1
1

1
2.-
-








To show this we simply multiply the two matrices and show that the product is the second 
order unity matrix. Specifically, 

 
1
1

1
2.

2.
1

1
1

1
0

0
1-

-












 =









or

 2.
1

1
1

1
1

1
2.

1
0

0
1







 -

-





 =









C.3.1 Matrix Transpose

The transpose of a matrix is obtained by simply interchanging the rows and the columns 
of the matrix. The transpose of A is denoted by AT.

For example, the transpose of the 2. × 3. matrix: A =
-

-







1
2.

2.
2.

3.
0

 is the 3. × 2. matrix: AT = -
-















1
2.
3.

2.
2.
0

Note: The first row of the original matrix has become the first column of the transposed 
matrix, and the second row of the original matrix has become the second column of the 
transposed matrix.

If AT = A then we say that the matrix A is symmetric. Another useful result on the matrix 
transpose is expressed by 

 (AB)T = BT AT (C.14)
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It follows that the transpose of a matrix product is equal to the product of the transposed 
matrices, taken in the reverse order.

C.3.2 Trace of a Matrix

The trace of a square matrix is given by the sum of the diagonal elements. The trace of 
matrix A is denoted by tr(A).

 tr( )A a=∑
i

ii  (C.15)

For example, the trace of the matrix: A =
-

-
-

















2.
4
1

3.
4

0

0
1
3.

is given by: tr(A) = (- 2.) + (- 4) + 3. = - 3..

C.3.3 Determinant of a Matrix

The determinant is defined only for a square matrix. It is a scalar value computed from the 
elements of the matrix. The determinant of a matrix A is denoted by det(A) or |A|.

Instead of giving a complex mathematical formula for the determinant of a general 
matrix in terms of the elements of the matrix, we now explain a way to compute the 
determinant.

First consider the 2. × 2. matrix: A = 







a

a

a

a
11

2.1

12.

2.2.

Its determinant is given by: det(A) = a11a2.2. – a12.a2.1

Next consider the 3. × 3. matrix: A =
















a

a

a

a

a

a

a

a

a

11

2.1

3.1

12.

2.2.

3.2.

13.

2.3.

3.3.

Its determinant can be expressed as: det(A) = a11M11 – a12.M12. + a13.M13.

where, the minors of the associated matrix elements are defined as:

 M
a a

a a11
2.2. 2.3.

3.2. 3.3.

= 





det ; M

a a

a a12.
2.1 2.2.

3.1 3.2.

= 





det ; M

a a

a a13.
2.1 2.2.

3.1 3.2.

= 





det

Note that Mij is the determinant of the matrix obtained by deleting the ith row and the jth 
column of the original matrix. The quantity Mij is known as the minor of the element aij 
of the matrix A. If we attach a proper sign to the minor depending on the position of the 
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corresponding matrix element, we have a quantity known as the cofactor. Specifically, the 
cofactor Cij corresponding to the minor Mij is given by 

 Cij = (- 1)i + j Mij (C.16)

Hence the determinant of the 3. × 3. matrix may be given by: 

 det(A) = a11C11 + a12. + C12. + a13. C13.

In the two formulas given above for computing the determinant of a 3. × 3. matrix, we have 
expanded along the first row of the matrix. We get the same answer, however, if we expand 
along any row or any column. Specifically, when expanded along the ith row we have:

 det(A) = ai1Ci1 + ai2.Ci2. + ai3. Ci3.

Similarly, if we expand along the jth column we have:

 det(A) = a1jC1j + a2.j C2.j + a3.j C3.j

These ideas of computing a determinant can be easily extended to 4 × 4 and higher-order 
matrices in a straightforward manner. Hence, we can write

 det( )A = =∑ ∑
j

ij ij

i

ij ija C a C  (C.17)

C.3.4 adjoint of a Matrix

The adjoint of a matrix is the transponse of the matrix whose elements are the cofactors of 
the corresponding elements of the original matrix. The adjoint of matrix A is denoted by 
adj(A).

As an example, in the 3. × 3. case we have:

 adj( )A =















C

C

C

C

C

C

C

C

C

11

2.1

3.1

12.

2.2.

3.2.

13.

2.3.

3.3. 

T

=
















C

C

C

C

C

C

C

C

C

11

12.

13.

2.1

2.2.

2.3.

3.1

3.2.

3.3.

In particular, it is easily seen that the adjoint of the matrix: A =
-















1
0
1

2.

3.
1

1
2.
1

is given by: adj(A) = 
1
3.

7

2.

2.
2.

3.
1
3.

-
-

-















T

 

Accordingly we have: adj( )A =
-

-
-

















1
2.
3.

3.
2.
1

7
2.
3.
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Hence, in general:

 adj(A) = [Cij]T (C.18)

C.3.5 inverse of a Matrix

At this juncture it is appropriate to give a formula for the inverse of a square matrix. 
Specifically :

 A
A
A

- =1 adj( )
det( )

 (C.19)

Hence in the 3. × 3. matrix example given before, since we have already determined the 
adjoint, it remains only to compute the determinant in order to obtain the inverse. Now 
expanding along the first row of the matrix, the determinant is given by 

 det(A) = 1 × 1 + 2. × 2. + (–1) × (–3.) = 8

Accordingly, the inverse is given by: 

 A- =
-

-
-

















1 1
8

1
2.
3.

3.
2.
1

7
2.
3.

For two square matrices A and B we have: 

 (AB)- 1 = B- 1 A- 1 (C.2.0)

As a final note, if the determinant of a matrix is zero, the matrix does not have an inverse. 
Then we say that the matrix is singular. Some important matrix properties are summarized 
in Box C.1.

BOx C.1 SUMMARy OF MATRIx PROPERTIES

Addition: Am × n + Bm × n = Cm × n
Multiplication: Am × n + Bn × r = Cm × r
Identity: AI = IA = A ⇒ I is the identity matrix
Note: AB = 0  A = 0 or B = 0 in general
Transposition: CT = (AB)T = BT AT

Inverse: AP = I = PA ⇒ A = P - 1 and P = A- 1

 (AB)- 1 = B- 1 A- 1

Commutativity: AB ≠ BA in general
Associativity: (AB)C = A(BC)
Distributivity: C(A + B) = CA + CB
Distributivity: (A + B)D = AD + BD
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C.4 Vector Spaces

C.4.1 Field (F)

Consider a set of scalars.
If for any a and b from the set, a + b and a b are also elements in the set

and if:

 1. a + b = b  + a and a b = ba (Commutativity)
 2.. (a  + b ) + g   = a  + (b  + g ) and (a b )g   = a (bg ) (Associativity)
 3.. a (b + g ) = a b + ag  (Distributivity)

are satisfied,
and if:

 1. Identity elements 0 and 1 exist in the set such that a + 0 = a and 1a = a
 2.. Inverse elements exist in the set such that a + (- a) = 0

and a ⋅ a  - 1 = 1
then, the set is a field.

Example: The set of real numbers.

C.4.2 Vector Space (L)

Properties:

 1. Vector addition (x + y) and scalar multiplication (a x) are defined.
 2.. Commutativity: x + y = y + x
  Associativity: (x + y) + z = x + (y + z)
  are satisfied.
 3.. Unique null vector 0 and negation (- x) exist such that x + 0 = x

 x + (- x) = 0.

 4. Scalar multiplication satisfies

a (b x) = (a b)x (Associativity)

 
a a b
a b a b

( )
( )

x y x y

x x x

+ = +
+ = +





 (Distribuitivity)

1x = x, 0x = 0.
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Special Case: Vector space Ln has vectors with n elements from the field F.

 Consider x = ⋅
⋅























x

x

xn

1

2.

, y = ⋅
⋅























y

y

yn

1

2.

Then

 x y+ =

+
⋅
⋅
⋅
+























x y

x yn n

1 1

 = y + x and a

a

a

x =
⋅
⋅
⋅























x

xn

1

C.4.3 Subspace S of L

 1. If x and y are in S then x + y is also in S.

 2.. If x is in S and a is in F then a x is also in S.

C.4.4 linear Dependence

Consider the set of vectors: x1,x2.,…,xn

They are linearly independent if any one of these vectors cannot be expressed as a linear 
combination of one or more remaining vectors.

Necessary and sufficient condition for linear independence:

  a 1x1 + a 2.x2. + …a nxn = 0 (C.2.1)

gives a  = 0 (trivial solution) as the only solution.

Example: x1

1
2.
3.

=















; x2.

2.
1

1
= -















; x3.

5
0
5

=
















These vectors are not linearly independent because, x1 + 2.x2. = x3..

C.4.5 bases and Dimension of a Vector Space

 1. If a set of vectors can be combined to form any vector in L then that set of vectors 
is said to span the vector space L (i.e., a generating system of vectors).

 2.. If the spanning vectors are all linearly independent, then this set of vectors is a 
basis for that vector space.

 3.. The number of vectors in the basis = dimension of the vector space.

76868.indb   740 7/8/09   5:21:48 PM



Appendix C: Review of Linear Algebra 741

Note: Dimension of a vector space is not necessarily the order of the vectors.
Example: Consider two intersecting third-order vectors. The will form a basis for the 

plane (two dimensional) that contains the two vectors. Hence, the dimension of the vector 
space = 2., but the order of each vector in the basis = 3..

Note: Ln is spanned by n linearly independent vectors⇒dim(Ln) = n

 Example:

1
0
0

0

⋅
⋅



























, 

0
1
0

0

⋅
⋅



























, …, 

0
0

0

1

⋅
⋅



























C.4.6 inner Product

 (x,y) = yH x (C.2.2.)

where “H” denotes the hermitian transpose (i.e., complex conjugate and transpose). Hence  
yH = (y*)T where ( )* denotes complex conjugation.

Note:

 1. (x,x) ≥ 0 and (x,x) = 0 iff x = 0
 2.. (x,y) = (y,x)* 
 3.. (l x,y) = l(x,y)
  (x,ly) = l *(x,y) 
 4. (x,y + z) = (x,y) + (x,z) 

C.4.7 Norm

Properties:
||x||≥ 0 and ||x|| = 0 iff x = 0
||l x|| = |l|||x|| for any scalar l
||x + y|| ≤ ||x|| + ||y||

Example: Euclidean norm: x x x= =










=
∑H

i

i

n

x2.

1

1 2./

 (C.2.3.)

Unit Vector: ||x|| = 1

Normalization: 
x
x

x= ˆ

Angle Between Vectors: We have cosq =  ( )
( ˆ ˆ )

x y
x y

x y
,

,=  (C.2.4)
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where q is the angle between x and y.

Orthogonal Vectors: iff (x,y) = 0 (C.2.5)

Note: n orthogonal vectors in Ln are linearly independent and span Ln, and form a basis  
for Ln

C.4.8 gram–Schmidt Orthogonalization

Given a set of vectors x1,x2.,…,xn that are linearly independent in Ln, we construct a set of 
orthonormal (orthogonal and normalized) vectors ˆ ˆ , ˆy y y1 2., … n  which are linear combina-
tions of x̂i

Start ˆ ˆy x
x
x1 1

1

1

= =

Then y x x y yi i

j

i

i j j= -
=

-

∑
1

1

( , ˆ ) ˆ  for i = 1,2., 3., …,n

Normalize yi to produce ŷi .

C.4.9 Modified gram–Schmidt Procedure

In each step compute new vectors that are orthogonal to the just-computed vector.

Step 1: ŷ
x
x1

1

1

= as before.

Then x x y x yi i i
( ) ( ˆ , ) ˆ1

1 1= -  for i = 1,2., 3., …,n

 ˆ
( )

( )y
x
xi

i

i

=
1

1 for i = 2., 3., …n

and x x y x yi i i
( ) ( ) ( )( ˆ , ) ˆ2. 1

2.
1

2.= - , i = 3.,4,…, n and so on.

C.5 Determinants

Now, let us address several analytical issues of the determinant of a square matrix. 
Consider the matrix:

 A =

⋅ ⋅
⋅

⋅
⋅ ⋅





















a a

a a

n

n nn

11 1

1
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Minor of aij = Mij = determinant of matrix formed by deleting the ith row and the jth col-
umn of the original matrix.

Cofactor of aij = Cij = (- 1)i + jMij

cof(A) = cofactor matrix of A
adj(A) = adjoint A = (cof A)T

C.5.1 Properties of Determinant of a Matrix

 1. Interchange two rows (columns) ⇒ Determinant sign changes.
 2.. Multiply one row (column) by a  ⇒ a det ().
 3.. Add a [a × row (column)] to a second row (column) ⇒ determinant unchanged.
 4. Identical rows (columns) ⇒ zero determinant.
 5. For two square matrices A and B, det(AB) = det(A) det(B).

C.5.2 rank of a Matrix

Rank A = number of linearly independent columns = number of linearly independent  
rows = dim (column space) = dim (row space)

Here “dim” denotes the “dimension of.”

C.6 System of Linear Equations

Consider the set of linear algebraic equations:

 

a x a x a x c

a x a x a x c
n n

n n

11 1 12. 2. 1 1

2.1 1 2.2. 2. 2.

+ + + =
+ + + =



 2.2.

1 1 2. 2.



a x a x a x cm m mn n m+ + + =

We need to solve for x1,x2.,…,xn.
This problem can be expressed in the vector–matrix form:

 Am × nxn = cm B = [A,c] 
Solution exists iff rank [A, c] = rank [A]
Two cases can be considered:

Case 1: If m ≥ n and rank [A] = n ⇒ unique solution for x.
Case 2.: If m ≥ n and rank [A] = m ⇒ infinite number of solutions for x.

 x = AH(AAH) - 1C ⇐ minimum norm form
Specifically, out of the infinite possibilities, this is the solution that minimizes the norm 

xHx.
Note: The superscript “H” denotes the “hermitian transpose,” which is the transpose of 

the complex conjugate of the matrix:

Example: A =
+ +
- - -









1 2. 3. 6
3. 5 1 2.

j j

j j
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Then AH

j j

j

j

=
- +
-

- +

















1 3.
2. 3. 5

6 1 2.

If the matrix is real, its hermitian transpose is simply the ordinary transpose.
In general if rank [A] ≤ n ⇒ infinite number of solutions.
The space formed by solutions Ax = 0 ⇒ is called the null space
dim (null space) = n - k where rank [A] = k.

C.7 Quadratic Forms

Consider a vecor x and a square matrix A. Then the function Q(x) = (x, Ax) is called a qua-
dratic form. For a real vector x and a real and symmetric matrix A:

 Q(x) = xTAx

Positive Definite Matrix: If (x, Ax) > 0 for all x ≠ 0, then A is said to be a positive definite 
matrix. Also, the corresponding quadratic form is also said to be positive definite.

Positive Semidefinite Matrix: If (x, Ax) ≥ 0 for all x ≠ 0, then A is said to be a positive 
semidefinite matrix. Note that in this case the quadratic form can assume a zero value for a 
nonzero x. Also, the corresponding quadratic form is also said to be positive semidefinite.

Negative Definite Matrix: If (x, Ax) < 0 for all x ≠ 0, then A is said to be a negative definite 
matrix. Also, the corresponding quadratic form is also said to be negative definite.

Negative Semidefinite Matrix: If (x, Ax) ≤ 0 for all x ≠ 0, then A is said to be a nega-
tive semidefinite matrix. Note that in this case the quadratic form can assume a zero 
value for a nonzero x. Also, the corresponding quadratic form is also said to be negative 
semidefinite.

Note: If A is positive definite, then - A is negative definite. If A is positive semidefinite, 
then - A is negative semidefinite.

Principal Minors: Consider the matrix:

 A =

…
…

…

















a a a

a a a

a a a

n

n

n n nn

11 12. 1

2.1 2.2. 2.

1 2.

 


Its principal minors are the determinants of the various matrices along the principal diag-
onal, as given by:

  ∆1 = a11, ∆2.  = det
a a

a a
11 12.

2.1 2.2.







 , ∆3.  = det

a

a

a

a

a

a

a

a

a

11

2.1

3.1

12.

2.2.

3.2.

13.

2.3.

3.3.

















, and so on.

Sylvester’s Theorem: A matrix is positive if definite if all its principal minors are 
positive.
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C.8 Matrix Eigenvalue Problem

C.8.1 Characteristic Polynomial

Consider a square matrix A. The polynomial: ∆(s) = det[sI - A] is called the characteristic 
polynomial of A.

C.8.2 Characteristic equation

The polynomial equation: ∆(s) = det[sI - A] = 0 is called the characteristic equation of the 
square matrix A.

C.8.3 eigenvalues

The roots of the characteristic equation of a square matrix A are the eigenvalues of A. For 
an n × n matrix, there will be n eigenvalues.

C.8.4 eigenvectors

The eigenvalue problem of a square matrix A is given by: Av = l v
where, the objective is to solve for l and the corresponding nontrivial (i.e., nonzero) solu-
tions for v. The problem can be expressed as:

 (l I - A)v = 0

Note: If v is a solution of this equation, then any multiple av of it is also a solution. Hence, 
an eigenvector is arbitrary up to a multiplication factor.

For a nontrivial (i.e., nonzero) solution to be possible for v, one must have

 det[l I - A] = 0

Since this is the characteristic equation of A, as defined above, it is clear that the roots of l 
are the eigenvalues of A. The corresponding solutions for v are the eigenvectors of A. For 
an n × n matrix, there will be n eigenvalues and n corresponding eigenvectors.

C.9 Matrix Transformations

C.9.1 Similarity Transformation

Consider a square matrix A and a nonsingular (and square) matrix T. Then, the matrix 
obtained according to:

 B = T - 1AT
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is the similarity transformation of A by T. The transformed matrix B has the same eigen-
values as the original matrix A. Also, A and B are said to be similar.

C.9.2 Orthogonal Transformation

Consider a square matrix A and another square matrix T. Then, the matrix obtained 
according to:

 B = T TAT

is the orthogonal transformation of A by T.
If T - 1 = T T  then the matrix T is said to be an orthogonal matrix. In this case, the similarity 

transformation and the orthogonal transformation become identical.

C.10 Matrix Exponential

The matrix exponential is given by the infinite series:

 exp(At) = I + At + 1
2.

2.

!
A t2. + … (C.2.6)

exactly like the scalar exponential:

 exp(l t) = 1 + l t +  1
2.

2.

!
l t2. + … (C.2.7)

The matrix exponential maybe determined by reducing the infinite series given in 
Equation C.2.6 into a finite matrix polynomial of order n - 1 (where, A is n×n) by using the 
Cayley-Hamilton theorem. 

Cayley–Hamilton Theorem: This theorem states that a matrix satisfies its own charac-
teristic equation. The characteristic polynomial of A can be expressed as:

 ∆ = - = + + +-
-( ) det( )l l l lA I a a an

n
n

n
1

1
0  (C.2.8)

in which det( ) denotes determinant. The notation:

  ∆(A) = an An + an-1 An - 1 + … + a0I (C.2.9)

is used. Then, by the Cayley–Hamilton theorem, we have:

 0 = an An + an-1 An - 1 + … + a0I (C.3.0)
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C.10.1 Computation of Matrix exponential

Using Cayley–Hamilton theorem, we can obtain a finite polynomial expansion for exp(At). 
First we express Equations C.2.6 and C.2.7 as:

 exp(At) = S(A) ⋅ ∆ (A) + an–1 An–1 + an–2. An–2. + … + a 0 I (C.3.1)

 exp(l t) = S(l). ∆(l) + an–1ln–1 + an–2.ln–2. + … +  a 0 (C.3.2.)

in which S(.) is an appropriate infinite series, which is the result of dividing the exponen-
tial (infinite) series by the characteristic polynomial ∆(.). 

Next, since ∆(A) = 0 by the Cayley–Hamilton theorem, Equation C.3.1 becomes:

 exp(At) = a n–1An–1 + a n–2.An–2. + … + a 0 I (C.3.3.)

Now it is just a matter of determining the coefficients a 0,a 1,…,a n - 1, which are functions 
of time. This is done as follows. If l 1,l 2.,…,l n are the eigenvalues of A, however, then, by 
definition:

  ∆(l i) = det (A – l iI) = 0  for  i = 1,2.,…,n (C.3.4)

Thus, from Equation C.3.2., we obtain:

 exp( ) , ,l a l a l ai n i
n

n i
nt i= + + + =-

-
-

-
1

1
2.

2.
0 1 2. …for ,,n  (C.3.5)

If the eigenvalues are all distinct, Equation C.3.5 represents a set of n independent alge-
braic equations from which the n unknowns a 0,a 1,…,a n-1 could be determined. If some 
eigenvalues are repeated, the derivatives of the corresponding equations (Equation C.3.5) 
have to be used as well.
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Index

A

Acceleration error constant, 3.03.–3.04
Accumulator, 2.7; see also Fluid elements
Active suspension systems, 2.
Actuators, 2.76–2.77
Airbag deployment systems, 2.
Aircraft

complex control system, 2.
roll motion control loop, 443.

Amplifiers
active devices, 12.8
decoupling effect, 12.9
dynamic interactions, 12.9
impedance characteristics, 12.9
linear graph representation

dependent source, 12.9
modulated source, 12.9

loading effects, 12.9
T-type and A-type amplifier, 12.9

Analog controllers, 5
Analog-to-digital converter (ADC), 2.82.
Analytical model, 11

advantages of, 14
development, 3.9

I/O models, 40
state-space models, 40–43.
steps for, 40
time-invariant systems, 45–47

dynamic behavior of system,  
prediction of, 14

energy approach, 17–18
equivalence of natural frequency, 17–18
time-domain and frequency domain, 14–15
types of, 14–15

Angular momentum, 105
Angular velocity, 106
Antialiasing filter

control cycle time, 452.
filter cutoff frequency, 450
frequency spectrum, 450
half-power bandwidth, 452.
static gain, 452.

Antilock braking systems (ABS), 2.
Argand plot, see Nyquist diagram
Armature-controlled dc motor, 92.

open-loop block diagram, 63.9
Asian dessert oven model, 13.6

linear graph of, 13.7
Assembly robot, 3.15
A-Type element, 2.0; see also Fluid elements

A-type source, 101
linear graph representation of, 102.
two systems connected in parallel, 103.

A-type transfer functions, 179
Automated fish cutting machine positioning 

system, 2.63.
Automated ground transit system, 2.
Automated guided vehicles (AGVs), 2.
Automobile

heave motion of, 13.9–140
motor-compressor unit, model of, 141

Auxiliary variables, 40, 115, 192.
auxiliary equation, 2.06

zero-row problem, 3.3.3.
in state-space shell, 117

B

Beat phenomenon, 2.3.8
Bilinear transformation, 475
Biot number, 3.7
Bode diagram (Bode Plot), 161–162.

compensator design, 3.83.
MATLAB® code, 3.81
slope-phase relationship, 3.75

minimum-phase system, 3.76
nonminimum-phase systems, 3.76

using asymptotes
angular frequency, 3.74
bandwidth, 3.74
break frequency/corner frequency, 3.74
cyclic frequency, 3.74
of dc motor transfer function, 3.75
factors of octaves and decades, 3.73.
and phase curve of loop transfer 

function, 3.80
power/energy, 3.74

Bond graphs, 13.
Book organization, 7–8
Bounded-input bounded-output (BIBO) 

stability and bounded-input 
bounded-state (BIBS) stability, 509

Braking torque, 87
Bulk modulus effect of liquids, 2.8
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C

Carriage inverted pendulum, 540
Cascade connection of devices

across variables, 606
input impedance, 606
mobility, 606
output impedance, 605
through variables, 606

Cascade (series) connection, 190
Cauchy’s theorem, 3.85
Causality, 2.07–2.08
Cayley-Hamilton theorem, 746–747
Central processor, 447
Centroid, subregions and critical points for 

calculation, 592.
Charge-coupled device (CCD) camera, 2.81

data acquisition (DAQ) board, 2.82.
Chip refiner, block diagram of plate 

positioning control system, 451
Closed-loop system, 52.6

closed-loop, discrete transfer function 
models, 480

closed-loop control, 2.77
Communication protocol, 2.84
Commutator wiring, 63.2.
Compatibility equations, 3.9
Compensator design in frequency domain, 414

design using root locus
angle condition and magnitude 

condition, 43.2.
dc gain, 43.3.
design region, 42.8
dominant poles, 42.8
error constant, 42.7
lag compensator, 43.1–43.2.
lead compensator, 42.8–42.9
magnitude condition, 43.5
steps in, 42.7–42.8

lag compensation
Bode diagram of, 42.1, 42.5
crossing frequency, 42.1
crossover frequency, 42.2.
design specifications in, 42.3.
design steps for, 42.0–42.1
lag compensator, 42.0
slope at crossover, 42.2.
steady-state error specification, 42.1
velocity servo, 42.4

lead compensation, 415
design steps for, 417
frequency transfer function, 416
lead compensator, 416, 471

Nyquist and Bode diagrams, 416
Complex numbers, 3.60

in quadrants, 3.61
Computers

computed-input control, 2.75
computer-controlled inverted pendulum, 

601–602.
computer-numerical control (CNC), 

machine tools, 2.
as control devices

digital control, 6
Computer simulation

Simulink®, 2.54
blocks and lines, elements in, 2.55
model of simulation block diagram, 

2.56–2.57
running simulation, 2.56
Simulink® Library Browser, 2.55

trapezoidal rule, 2.53.
Computer software tools

Fuzzy Logic Toolbox
command line driven FIS design, 717
graphical editors, 716–717
stand-alone C programs, 717
target implementation of, 718

LabVIEW, G programming, 719
MATLAB®, 695–700
modern control

inverted pendulum, pole placement, 
712.–715

linear quadratic regulator (LQR), 711
Gaussian (LQG) controller, 715
pole placement, 708–711

root locus design, 708
Simulink®, 695
Ziegler–Nichols tuning, 703.–707

Constant gain blocks, 191
Constitutive equations/physical laws, 3.9
Continuity equations, 3.9
Continuous-parameter models, 16
Continuous-time model, 15
Control algorithm, 447
Control bandwidth, 451
Control experiments using LabVIEW

automated positioning platform, 674
with gear transmission, 668
piezoelectric sensor and charge amplifier, 670
process control

block diagram, 663.–665
control valve, 660
front panel, 661–662.
ON/OFF and proportional control 

strategies, 660
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ON/OFF control algorithm, 662.
proportional control algorithm, 662.
two-tank system, 660

signal conditioning system for LVDT, 668
tank level display

block diagram, 656–660
front panel, 654–655

Controllers
design, 409

equations, 414
finite zero, 413.
frequency-domain design, 411
by pole placement, 52.9, 53.4–53.5
proportional plus derivative (PD/PPD) 

error control, 412.
specifications, 410–411
time-domain design, 411

tuning, 43.6
quarter decay ratio, 43.7
reaction curve method, 43.7–43.9
three mode (PID) controllers, 43.7
ultimate response method, 43.9

Control system instrumentation
actuators, 603.
cascade connection devices

across variables, 606
input impedance, 606
mobility, 606
output impedance, 605
through variables, 606

component interconnection
analog-to-digital conversion (ADC), 605
cascade connection, 605–607
electrical loading, 605
impedance, 605
impedance-matching amplifiers, 605
loading effect, 605
mechanical loading, 605

DC tachometer
commutator device, 614
electromagnetic induction, 613.
electronic commutation, 614
velocity sensor, 613.

digital transducers
quantization error, 616

impedance matching amplifiers
conjugate matching, 607
impedance transformer, 607
loading errors, 607
operational amplifiers, 607

instrumentation, 604
differential amplifier, 609
differential gain, 610

instrumented feedback control system, 
604

motion sensors, 610
linear-variable differential transformer 

(LVDT), 611
operational amplifier, 607

dual in-line package (DIP)/V package, 
608

op-amp, 608–609
Quad package, 608
T package, 608

optical encoder
direction of rotation, 619
light-emitting diodes (LEDs), 618
offset from, 619
quadrature signal, 619
quarter-pitch, 619

piezoelectric accelerometer/crystal 
accelerometer, 614

cross-sensitivity, 616
sensitivity, 615
useful frequency range, 615

sensors, 603.
shaft encoders

absolute encoder/whole-word encoder, 
617–618

incremental encoder, 617
signal conditioning

carrier frequency, 612.
demodulation, 612.

stepper motors
driver, 62.0
hybrid stepper motor, 62.0
indexer, 62.0
microstepping, 619–62.0
motor-drive system, 62.2.
multiple-stack stepper motors, 62.0
permanent-magnet (PM) stepper motor, 

62.0
power supply, 62.2.
pulse missing, 62.0
single-stack stepper motor, 62.0
switching amplifiers, 62.2.
translator, 62.1
two-stack stepper motor, 62.1
variable reluctance (VR) stepper motor, 

62.0
transmission device, 603.

Control systems
actuators, 2.77
analog controllers, 5–6
analytical model

performance specifications, 4

76868.indb   751 7/8/09   5:22:04 PM



752 Index

application areas
in civil engineering, 4
computer industry, 4
home security systems and robots, 2.
humanoid robot, 3.
manufacturing (production) 

engineering, 2.
medical and healthcare, 2.
modern office environment, 2.
space applications, 4
transportation, 2.
vacuum cleaners and robots, 2.

bandwidth design, 454–455
closed loop control, 2.71
compensator design

building system model, 700
lead and lag compensators, 703.
SISO design tool, 700–702.

complex control system, aircraft, 2.
control engineering, history of, 5

landmark developments, 6
control engineers, 1
control law, 2.76, 2.93.
controller, 2.71
control loop

proportional plus integral (PI)  
control, 481

design, 566
objectives, 4

digital control, 2.71–2.72.
dynamic model

model-based control, 4
feedback control system, 2.71
forward (cascade) compensation, 418
inputs, command signals, 2.71
MATLAB® code, 566–568
nonunity feedback, 3.68
performance characteristics

cross sensitivity/dynamic coupling, 
2.85

input sensitivity, 2.85
sensitivity and robustness, 2.85
specifications for, 2.86
speed of response/bandwidth, 2.85
stability, 2.85
steady-state error (accuracy), 2.85

phase margin, 418
plant/process, 2.71

command signals and controller, 1
sensors and transducers, feedback 

control, 1
reference model

model-referenced adaptive control, 4

schemes, 2.91
automatic reset, 2.94
integral control, 2.94
manual reset, 2.93.
presence of offset, 2.93.
reaction curve, 2.92.
reset control, 2.94

sensitivity, 3.09
parameter change, 3.10–3.11

sensors and transducers, 2.71
steady-state error specification, 418
structure, 2.71
supervisory control, 2.84
three-layer hierarchical control system, 2.84
time-domain design

performance specifications, 2.86–2.87
Conveyor unit with intermittent motion, 62.6
Convolution integral, 2.2.2., 2.60

physically realizable systems, 2.2.1
Critically damped motion

damping ratio, 2.3.0
repeated roots, 2.3.0

Cruise control systems, 2.
percentage grade, 3.12.
stalling condition, 3.13.

Current amplifier, 12.9; see also Amplifiers

D

D’Alembert’s principle, 48
Damped oscillator

characteristic equation, 2.2.7
damped simple oscillator, 2.68, 3.63.–3.66
damping ratio, 2.2.7
eigenvalues/poles, 2.2.7
forced response, 2.3.2.
free (natural) response, 2.3.1–2.3.2.
impulse response, 2.3.2.–2.3.4
integration constants, 2.2.7
particular solution, 2.40
peak magnitude

relative stability, 3.65
repeated roots, 2.2.7–2.2.8
steady-state response, 2.3.6
step response, 2.3.4–2.3.5
undetermined coefficients, 2.40
unit step response, 2.3.6
zero initial conditions, 2.3.4

DC motor, 63.0
armature

controlled dc motor, 13.1
current, 13.0
leakage inductance, 13.1
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winding resistance, 13.1
back-electromotive force (back e.m.f), 13.0
brushless

electronic switching, 63.3.
permanent-magnet rotors, 63.3.

commutation plane, 63.3.
control of

armature-controlled, 63.9
characteristic polynomial, 640
principle of superposition, 640
servoing, 63.8
servomotors/servoactuators, 63.8

control system components
interface board, 645
multi-axis card, 645

dc gain, 42.4
drive amplifier selection, 651

continuous operation, 652.
peak operation, 652.

driver
interface (I/O) card, 644
servoamplifier, 644

drive system
linear amplifier, 646
PWM amplifier, 646
torque amplifier, 646
velocity amplifier, 646

duty cycle, 647
electrical damping, 63.2.
electro-mechanical transformer, 13.0
equations

armature current, 63.4
armature (rotor) circuit, 63.5
back e.m.f., 63.4
eddy current effects, 63.5
equivalent circuit, 63.4
field current, 63.4
mutual inductance, 63.5

experimental model
electrical damping constant, 63.7
linearized experimental model, 63.7
voltage gain, 63.8

feedback control, 642.
position feedback with PID control, 644
position plus velocity feedback, 643.
velocity feedback, 643.

field-controlled, 3.2.5
open-loop block diagram, 641

field current, 13.0
flux density, 63.1
fractional slip, 94
Lenz’s law, 63.2.
linear amplifier, 675

load, 653.
Lorentz’s law, 63.1
motor sizing

inertia matching, 651
for load, 651
load torque, 650

open-loop digital control, 477
operating principle, 63.1
operating region, 650
PID control of position, 644
pulse-width modulation (PWM), 647
rotor and stator

hysteresis, 63.2.
laminated construction, 63.2.
laminated cylinder, 63.2.
rotor windings (armature windings), 63.2.

selection
considerations, 649
electrical data, 649
mechanical data, 648–649

servomotor block diagram, 3.43.
steady-state characteristics

compound-wound motor, 63.6
series-wound motor, 63.6
shunt-wound motor, 63.6
starting torque, 63.6

time constants
electrical and mechanical, 640

torque-speed characteristic curves, 63.6
voltage and frequency control, 94–95
windings, 87

DC tachometer
commutator device, 614
electromagnetic induction, 613.
electronic commutation, 614

switching transients, 614
velocity sensor, 613.

Deadband nonlinear phenomena, 90
Deadbeat controller, 482.
Delay time, 2.87
Derivative operator, 2.06
Derivative time constant, 2.94
Determinants, 742.

cofactor matrix, 743.
rank of matrix, 743.

Deterministic model, 15
Difference equations, 458
Digital compensation

causality requirement
physical realizability, 473.–474

compensation algorithm, 467
computer implementation

hardware digital controller, 475
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software-based digital control, 476
three-point controller, 475

difference equation, 472.
digital compensator, 468, 471

direct synthesis, 473.
discrete compensator, 469–471
hold operation

first and second order hold, 469
zero-order hold, 468

stability analysis using bilinear 
transformation

bilinear transformation, 474
stability region, 474
unit circle, 474

Digital control system
advantages, 449
components, 448–449
computer-based control system, 447
control cycle time, 455
conventional sampling of feedback sensor 

signals, 455
digital feedback control system, 448
logic circuitry, 447
mechanical positioning application, 453.
signal sampling and control bandwidth, 

449
z-transform

difference equations, 456
discrete transfer functions, 456
dynamic range and resolution, 456
quantization error, 456
sampled data, 456
sampling period, 456

Digital-to-analog conversion (DAC), 2.82.
Digital transducers

counter, 616
input-output (I/O) card, 617
power, 616
quantization error, 616

Dirac delta function, 2.19
Direct digital control (DDC)

controllers, 2.83.
loops, 2.78

Discrete final value theorem, 464
Discrete models

stability, 464
region, 465

steady-state value, 465
sequence, 466

Discrete-time integrator and differentiator, 472.
Discrete-time model, 15, 459
Discrete transfer functions, 460

model, 15

Distributed/continuous-parameter model, 
15–17

Distributed control system (DSC), 2.80
hierarchical control, 2.83.

Drive system, 455
D-Type element, 2.0; see also Fluid elements
Dynamic absorber, 2.14
Dynamic inertia, 163.
Dynamic system

cause-effect/causal relationship, 11
characteristic equation, 2.05
complexity, 13.
dynamic-testing system, 12.0
examples, 13.
neuroelectric pulses, 54
nomenclature, 12.
pipeline segment, 46
state variables, 12.
superposition principle, 15–16
time and space coordinates, 17

E

eAt computing methods
Cayley Hamilton theorem, 488
Laplace transform method, 487
matrix element evaluation, 487–488
modal transformation method, 487

Eigenvalues, 2.00
Electrical damping constant, 73.
Electrical systems

capacitor element
electrostatic energy, 2.4–2.5

conservation of charge, 109
current balance, 109
electric heating system, 3.14
inductor element

electromagnetic energy, 2.5–2.6
input/source elements

current source, 2.4
voltage source, 2.3.–2.4

Kirchoff’s current law, 109
Ohm’s law, 2.6

single-port electrical elements linear-graph 
representation, 101

Electrodynamic shakers
lever arm, 119
linear graph of, 12.1
pitch circle radius, 119

Electro-magnetic damping, 89
Electro-mechanical analogy, 2.2.5
Electro-mechanical coupling, 73.
Elevator model, 79
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Equilibrium equations, see Continuity 
equations

Euler’s method, 2.53.
Excitation system, dynamic interactions in test 

object, 14
Experimental modeling, 13.

F

Factored-transfer-function method, 195–198
Factory robots, 2.
Feedback control system, 2.72., 3.3.7

adaptive control system, 571
armature circuit, 142.
automatic reset (integral control), 2.99
feedback transfer function, 3.2.7
with feedforward compensation, 3.2.4
machine tool, 2.98
process control, 2.77
with unity feedback, 2.92., 3.67

Feedback linearization technique (FLT), 569
Feedforward control, 2.72.

feedforward compensator, 2.75
input gain matrix, 43.
steps of block diagram reduction, 2.75
with feedback, 2.73.

Fieldbus/Industrial Ethernet, 2.80
Final value theorem (FVT), 2.97, 419
First-order systems

model identification/experimental 
modeling, 2.2.4

pole locations, 2.2.3.
step response, 2.43.–2.44

Fish processing machine, 2.81
Flexible manufacturing facility, 3.15
Fluid elements

constitutive equations, 2.7–2.8
fluid capacitance

compressibility, 2.8
flexibility of container, 2.8, 3.0
gravity head of fluid column, 2.8, 3.0–3.1

fluid capacitor/accumulator, 2.7
fluid inertor, 2.7, 3.1–3.2.
fluid resistor, 2.7

dynamic and kinematic viscosity, 3.2.
input/source elements

flow source, 2.7
pressure source, 2.6

pressure and volume flow rate, 2.6
Fluid pump impeller moment of inertia, 2.67
Flushing tank of toilet, 144

flapper valve, 145
Force amplifier, 12.9; see also Amplifiers

Force and current source, 101; see also T-Type 
element

Force-current analogy, 3.8, 179
Forced response

bounded-input-bounded-output (BIBO), 2.3.9
concepts, 2.3.7

Force transmissibility, 163., 170–171
Forward rectangular rule of integration, 472.
Fourier transform, 151

angular frequency variable, 152.
conversion from Laplace, 152.
cyclic frequency variable, 152.
Fourier operator, 691
Fourier spectrum

frequency-response function/frequency 
transfer function, 692.–693.

inverse transform, 691
one-sided spectrum, 692.
two-sided spectrum, 692.

one-sided Fourier transform, 152.
Free body diagram, 75
Free integrator, 418
Frequency creation nonlinear phenomena, 90
Frequency domain models, 13., 15

angular frequency variable, 160
Bode and Nyquist diagrams, 161–162.

complex conjugation, 161
decades, 161
decibels, 161
experimental modeling, 161
model identification, 161
sine-sweep/sine-dwell excitation, 161

cyclic frequency variable, 160
frequency transfer function/frequency 

response function
harmonic input frequency, 160
harmonic/sinusoidal input, 159
magnitude (gain), 160
phase angle, 160
phase lead, 160

Frequency-response function/frequency 
transfer function

angular frequency, 692.
cyclic frequency, 692.
impulse-response function, 692.
magnitude, 693.
phase angle, 693.

Frobenius’ theorem, 509–510
Fuzzy logic control, 577

approximate reasoning, 578
basics, 585–586
characteristic function, 579
composition operator, 578
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expert systems/knowledge systems, 578
extensions to fuzzy decision making, 

584–585
fuzzy knowledge base of comfort controller, 

588
fuzzy set, 579
hardware fuzzy processors (fuzzy chips), 

587
intelligent control, 578
knowledge base, 578
learning and self-organization, 587
logic, 578
logical operations

complement (negation, NOT), 580
compositional rule of inference, 583.–584
implication (If-Then), 582.
intersection (conjunction, AND), 581
union (disjunction, OR), 580–581

MATLAB® Fuzzy Logic Toolbox, 589
possibility function, 579
sets and membership functions, 579
structure of direct fuzzy controller, 587
surface, 589

G

Gram–Schmidt orthogonalization
orthonormal (orthogonal and normalized), 

742.
Ground-based two-degree-of-freedom 

oscillator, 184–185
Grouping like-derivatives method, 194–195
Gyrator, 105–106
Gyroscope, 105

H

Half-power bandwidth, 3.65
Hand-doorknob system, 13.1
Hard-disk drive (HDD) unit of computer, 4–5
Hardware device, 447

hardware-based digital controllers, 6
Harmonic excitation

frequency response, 2.3.6
Heat treatment of package of silicon, 61
Heavy spring

analytical representation, 18
energy approach

elastic potential, 17
gravitational potential, 17
kinetic, 17

equivalence of natural frequency, 17–19
kinetic energy equivalence, 18

uniform heavy spring, 18
Homogeneous solution

characteristic equation, 2.18
characteristic polynomial, 2.18
eigenvalues, 2.18
repeated poles, 2.18

Household heating system
furnace and radiator, 60
specific heat, 60

Humanoid robot, 3.
Hybrid models, 14
Hydraulic systems, conservation of matter, 109
Hysteresis nonlinear phenomena, 89

I

Ideal force source, 102.
Idealized self-regulating process, 43.8
Ideal velocity source, 102.
Impedance matching amplifiers

conjugate matching, 607
impedance transformer, 607
loading errors, 607
operational amplifiers, 607

Impulse response function, unit impulse, 2.19
Induction motor

centrifugal pump, 94
gear efficiency, 70
line frequency, 71
magnetic torque, 69
no-load speed, 71
phase voltage, 71
rotating magnetic field, 71
starting torque, 71
torque-speed characteristic curve, 71
voltage and frequency control, 69

Industrial plant network, 2.80
Input distribution matrix, 43.
Input/output models, 40
Input vector, 43.
Integral time constant, 2.94
Integration blocks, 191
Intelligent mechatronic (electromechanical) 

system (IMS), 2.83.–2.84
hierarchical control/communications 

structure, 2.85
Intelligent vehicular highway systems  

(IVHS), 2., 6
Interconnection laws

A-type and T-type transfer functions, 
165–166

electrical impedance and admittance, 
164–165
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mechanical impedance and mobility, 164
series and parallel connections, 164

Inverse dynamics approach, 2.74–2.75
Inverse model, 2.74–2.75
Iron butcher, 2.81

head-cutting machine
lead screw and nut arrangement, 2.62.

J

Jordan canonical form, 2.00
Jordan matrix, 487
Jump nonlinear phenomena, 90

K

Kalman filter and gain matrix, 576
Kirchhoff’s current and voltage laws, 3.9
Knowledge-based decision making, 2.84
Knowledge-based intelligent control, 578

L

LabVIEW
block diagrams, 72.1–72.2.
controls palette, 72.3.
front panel, 72.0–72.1
functions palette, 72.3.–72.4
G programming, 719
modular solution, 72.0
signal acquisition, 72.5

frequency analysis, 72.6
transient analysis, 72.6

sound and vibration toolkit, 72.4–72.5
tools palette, 72.2.–72.3.

Lag compensation
Bode diagram of, 42.1, 42.5
crossing frequency, 42.1
crossover frequency, 42.2.
design

specifications in, 42.3.
steps for, 42.0–42.1

lag compensator, 42.0
slope at crossover, 42.2.
steady-state error specification, 42.1
velocity servo, 42.4

Laplace transform
conversion to Fourier, 151
derivative operator, 151
impulse input, 688
initial condition (IC), 150, 2.43.
integration by parts, 681
integration operator, 151

inverse Laplace operator, 678
inverse Laplace transform, 150
Laplace domain, 149, 2.43.

s-domain/complex frequency domain, 150
Laplace domain/s-domain, 677
Laplace equation, 3.7
Laplace operator, 150, 678
Laplace plane (s-plane), 678
Laplace variable, 150
partial fractions, 686
RC circuit, 684
response analysis, 682.
response using, 2.41
step input, 687
step response using, 2.42.–2.43.
of time derivative, 150
of time integral, 151
transfer function

convolution integral, 689
impulse-response function, 690
physical realizability, 690

Large-scale integration (LSI) technology 
microprocessors, 6

L-C-R Electrical circuit, 109–110
Lead compensation, 415

design steps, 417
frequency transfer function, 416
lead compensator, 416, 471
Nyquist and Bode diagrams, 416

Lenz’s law, 13.0, 63.2.
Limit cycle nonlinear phenomena, 90
Linear algebra

matrices
damping matrix, 73.0
mass matrix, 73.0
properties, 73.8
stiffness matrix, 73.0
transfer function matrix, 73.1

vectors
column vector, 73.1
component/element, 73.1
displacement vector, 72.9
forcing excitation vector, 72.9
order/dimension, 73.1
single vector, 73.0

Linear equations
hermitian transpose, 743.–744
minimum norm form, 743.

Linear graph
compatibility equations, 107–109
constitutive equations, 107
continuity (node) equations, 107, 109–110
dissipation, 99
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elements
inertia, 100
inputs, source elements, 101
interactions between systems, 102.
rotary elements, 100
single energy port, 100
single-port elements, 100–101
translatory mechanical elements, 100
uncoupled subsystems, 102.

energy transfer, 99
nodes and loops, 108
oriented branch, 98
point of action, 98
point of reference, 98
power

flow, 98
variable, 97

rate of energy transfer (power), 99
series and parallel connections, 110, 111
state models, 110

state-space shell, 112.
steps of obtaining, 112.
system order, 111
topological result, 113.–114

stored energy, 99
thermal systems

capacitance, 13.5
energy, 13.4
heat transfer (flow) rate, 13.4
resistance, 13.4
temperature, 13.4

through variables and across variables, 97
two-port element

gear wheels, 103.
gyrator, 105–106
lever and pulley, 103.
transformer, 102.–104

work done, 99
Linearization, 63.

linearization using experimental operating 
curves

motor control, 88–89
torque-speed curves of motors, 87–88

operating point, 64–65
local linearization, 66
steady state, reference condition, 66

variables, 66
Linear models, 13., 15

interchangeability, 16
linear systems stability, 509
principle of superposition, 16

Linear multivariable feedback  
control system, 577

Linear quadratic Gaussian (LQG) control, 576
Linear quadratic regulator (LQR), 563.

boundary conditions, 561–562.
Euler equations, 560–561
infinite-time LQR, 562.
response under, 568
state feedback controller, 711

Linear time-invariant model by input-output 
differential equation, 2.17

Liquid level control system, 590
Logarithm transform, 149
Loop equations, see Compatibility equations
Lorentz’s law, 13.0
Lumped-parameter model, 15

approximation for heavy spring, 18
of distributed system, 16–17
lumped elements and analogies

across variables and through  
variables, 10, 2.0

electrical systems, 2.3.–2.6
fluid elements, 2.6–3.2.
mechanical elements, 2.0–2.1
natural oscillations, 3.7–3.8
thermal elements, 3.2.–3.7

multidegree of freedom lumped-parameter 
models, 19

natural frequency, 19
Lyapunov method

linearized system, 510
direct method, 513.
equations, 515–516

M

Machining centers, 2.
Massachusetts Institute of Technology, 403.
Mass-spring-damper system, 162.–163.

ground, reference point, 108
inertia force, 108

MATLAB® Code
arithmetic operations, 696
arrays, 697–698
Fuzzy Logic Toolbox, 716–718
linear algebra, 698–699
mathematical computations, 695
mathematical functions, 696
M-files, 699–700
relational and logical operations, 698

Matrix eigenvalue problem
characteristic polynomial and equation, 

745
eigenvalues, 745
eigenvectors, 745
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Matrix exponential, 746
Cayley-Hamilton theorem, 746–747

Matrix inverse, 73.4
adjoint, 73.7–73.8
determinant, 73.5

cofactor, 73.7
minor, 73.6

inverse, 73.8
matrix transpose, 73.5

symmetric, 73.5
nonsingular, 73.5
trace

diagonal elements, 73.6
Matrix transformations

orthogonal transformation, 746
similarity transformation, 745–746

Maxwell’s principle of reciprocity, 170
Mechanical oscillator

characteristic polynomial, 168
impedance circuit, 168
impedance function, 169
mechanical circuit representation, 167–168
physical realizability, 167

Mechanical system
damping constant, 73.
damping (dissipation) element

D-type element, 2.3.
linear viscous damper/dashpot, 2.3.

dependent variable, 2.1
device

feedback control of unconstrained 
motion, 3.48

equilibrium equation, 109
force

balance, 109
source, input elements, 2.0

impedance, 163.
mass (inertia) element, 2.2.

Newton’s second law, 2.1
physical law, constitutive equation, 2.1

models, 45
motor, 89
Newton’s third law, 109
nonlinear mechanical system, 91
shock absorber, 116
single-port mechanical elements and 

linear-graph representation, 100
spring (stiffness) element

Hooke’s law, 2.2.
potential energy, 2.2.–2.3.

translatory, 48
velocity source, 2.1

Mechanical transfer functions, 163.

Mechatronic systems, 12.8
Metallurgical heat treatment process,  

600–601
Micro-electromechanical (MEMS) sensors in 

vehicles, 670
Micromachining systems, 2.
Mobility, 163.

parameter, 106
Modal control, 52.8

closed-loop (controlled) system, 52.9
feedback gain matrix, 52.9
model-based control, 14
uncontrolled (open-loop) system, 52.9

Model
identification, 11, 13.

time constant, 2.2.4
model-based nonlinear feedback control 

system structure, 570
model-referenced adaptive control (MRAC) 

technique, 571
controller, 572.

types, 13.–14
Modern control techniques

controllability and observability
companion form, 52.5
criteria for, 518
feedback control implication, 52.5
minimum (irreducible) realizations, 

52.1–52.2.
pole-zero cancellation, 52.0–52.1
proof, 519–52.0
state feedback, 52.6

electrical circuit, 491
H∞ control, 576
intelligent control, 484
linear quadratic Gaussian (LQG) control, 

574–575
modal control, 483.
modal response

advantages, 497
eigenvectors, 496
state response, 497

nonlinear feedback control, 569
optimal control, 483.
optimization through calculus of variations, 

544–545
boundary (final) conditions, 559
cost function, function of end state, 

555–556
Euler equation, 545–546
extension to vector problem, 556–557
Hamiltonian formulation, 559
optimal control problem, 557–558
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Pontryagin’s maximum/minimum 
principle, 559–560

output response
transfer function matrix, 495

sliding mode control, 573.–574
stabilizability, 52.7
time response

Laplace transform method, 494–495
scalar problem, 484–485
state-space model, 486

time-varying systems, 501–503.
Modified gram–schmidt procedure, 742.
Modified rise time, 2.87
Motion

controllers, 117
transmissibility, 163., 171

Multi-domain systems, 12.8
multidomain/mixed system, 12.

Multi-functional devices, 13.4
Multi-input-multi-output (MIMO) system, 40, 

73.0
multivariable systems, 410

N

NASA’s Mars exploration Rover, mobile 
robots, 4

Natural gas home heating system, 2.74
Natural oscillations, 3.7–3.8
Network hardware architecture, 2.83.
Nichols chart

closed-loop frequency response, 3.99
graphical tools for closed-loop frequency 

response, 3.94–3.95
M and N circles, 3.98

Node equations, see Continuity equations
No-load speed and zero torque, 87
Nonlinear devices and systems

characteristic curve, 91
static and dynamic nonlinearity, 63.

Nonlinear electrical elements
across and through variables, 85
capacitor

nonlinear constitutive equation, 85–86
inductor

flux linkage, 86
inductance, 86
nonlinear constitutive equation, 86

resistor
nonlinear resistor, 86
Ohm’s law, 86
resistance, 86

Nonlinear mechanical system, 511

Nonlinear model, 15
Nonlinear state-space models, 66

dynamic range, 67
equilibrium state, 67
reduction, 68–69

Norton equivalent circuit, 176–178
linear graph, 180
short-circuit current, 178

Null space, 744
Numerical model, 11
Nyquist diagram, 161–162.

complex conjugation, 3.86
generation of, 3.85
MATLAB® code, 3.81

Nyquist stability criterion, 3.85
clockwise encirclement, 3.86
degree of stability/stability margin, 3.87
gain margin, 3.86
loop poles on imaginary axis, 3.87
M and N circles, 3.95–3.97
negative frequencies, 3.88
steps for applying, 3.87

O

On-off (bang-bang) control, 2.93.
Open-loop system, 52.6

control, 2.77
system, 2.72.

Operating bandwidth, 452.
Operational amplifiers (opamps), 12.9; see also 

Amplifiers
Optical encoder, 453.
Orthogonal vectors, 742.
Oscillator with support motion

linear graph, 183.
reciprocity property, 169

Output/measurement gain matrix, 43.
Output vector, 43.
Overdamped motion, 2.2.9–2.3.0
Overhead tank pumping system, 95

P

Paint pumping model in automobile plant, 
68–69

Paper winding mechanism, 3.07
Parallel branches, 179, 190
Partial-fraction method, 198–2.00
Particular solution

method of undetermined coefficients, 2.19
particular integral, 2.2.0

Path equations, see Compatibility equations
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Peak magnitude, 2.87
Peak time, 2.87
Percentage overshoot, 2.87–2.89

damping specification, 2.91
Perfect/ideal gas

adiabatic case, 2.9–3.0
gas law, 2.9
isothermal case, 2.9

Photodiode-detector in optical encoder, 673.
Physical realizability, 2.08

numerator and denominator orders, 2.07
Piezoelectric/crystal accelerometer

charge amplifier, 616
cross-sensitivity, 616
sensitivity, 615
useful frequency range, 615

Piezoelectric device, 13.4
Pipeline segment

mode shapes, 501
torsional dynamic model, 499–500

s-Plane
circuit analysis

capacitor, 693.
inductor, 694
reactance, 693.
RLC circuit, 693.

complex-conjugate poles, 463.
design

boundary, 3.07
region, 3.06
specification, 2.92.

Laplace and Fourier transforms, 
interpretation, 693.

performance specification, 3.05–3.06
pole location and response, 3.3.1
unit circle, 463.

Polar plot, see Nyquist diagram
Pole placement

closed-loop poles at open-loop poles, 53.9
multiinput case, 53.4–53.5
with output feedback, 542.
procedure, 53.6–53.7
repeated poles, 53.8

Pontryagin’s maximum/minimum principle, 
559–560

Position error constant, 3.02.
Position feedback control system, 2.95
Position servo system, 43.4
Potentiometer, 142.
PPD position servo block diagram, 412.
Pressure amplifier, 12.9; see also Amplifiers
Pressure regulated liquid jet system

discharge coefficient, 58–59

nozzle, 58
Primary loops, 107–109
Principle of superposition, 191–192., 2.17, 2.76
Principle of virtual work, 91
Product testing, 14
Programmability, 447
Programmable logic controller (PLC)

continuous-state control, 2.77
discrete-state control, 2.77
hardware, 2.78–2.79
representation of, 2.79
sequential control, 3.15
time sequencing, 2.78
two-state (on-off) actions, 2.78

Proportional controller, 2.95
Proportional gain, 2.94, 2.96
Proportional plus integral (PI) control, 2.99
Pulse response function, 466

unit pulse and unit impulse, 467

Q

Q-Factor, 3.66–3.67
Quadratic forms

negative definite matrix, 744
negative semidefinite matrix, 744
positive definite matrix, 744
positive semidefinite matrix, 744
principal minors, 744
Sylvester’s theorem, 744

R

Rack-and-pinion device, 12.3.
Random/stochastic model, 15
Rapid and virtual prototyping systems, 2.
Reaction curve method

dead/delay time, 43.7
lag time, 43.7
self-regulating, 43.7
transfer function, 43.8
Ziegler–Nichols method, 43.8–43.9

Read/write head of disk drive unit, 2.13.
Real-time control and sampling rates, 6
Receptance (dynamic flexibility/compliance),  

163.
Regulator-type control system, 2.91
Relative stability

dominant pole, 3.3.5
left hand plane (LHP), 3.3.5
stability margin, 3.3.5

Relative stability specification, 3.94
Remote center compliance (RCC) device, 403.
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Repeated eigenvalues/repeated poles,  
197, 2.00

Resonance
resonant peak and resonant frequency, 3.61

Response analysis, 2.17, 682.
damping ratio, 2.48
initial conditions for step response, 2.45–2.46
input-output differential equation, 2.48
Kirchhoff’s current and voltage laws, 2.47
Laplace transform pairs, 683.
Laplace transform relations, 684
natural frequency, 2.48

Rigid body modes, 2.05–2.06
Rise time, 2.87
Robot

robotic sewing system, 12.3.–12.4
linear graph, 12.5
Simulink model, 2.58–2.59

servo loop, 672.
workpiece interaction model, 404

Room comfort control system, 588
Root locus method, 3.3.6

closed-loop transfer function, 3.3.7
complex numbers, 3.3.8

magnitude, 3.3.9
phase angle, 3.3.9

feedback transfer function, 3.3.7
forward transfer function, 3.3.7
lag compensator, 3.50
lead compensator, 3.51
loop transfer function, 3.3.7
plot obtained using MATLAB®, 3.52., 

3.54–3.56
poles, 3.3.7

marginally stable, 3.42.
pole-zero form, 3.3.8

root loci for, 3.50
rules

approach angle, 3.41
asymptotes, 3.40
break-in points and breakaway points, 

3.40
departure angle, 3.41
magnitude condition, 3.40
phase angle condition, 3.40
repeated (multiple) poles, 3.40

rules for plotting
monic polynomials, 3.3.8
physically realizable systems, 3.3.8
ratio-of-polynomials form, 3.3.8

sign of discriminant, 3.49
steps of sketching, 3.43.
for system with

P control, 3.46
PD control, 3.46
PI control, 3.46

variable parameter in, 3.56
zeros, roots, 3.3.7

Rotary-motion system with gear transmission, 
118

Rotatory positioning system,  
electro-mechanical model, 146

Rotor with motor and fluid coupling, 498
Routh–Hurwitz stability criterion, 3.3.1, 3.83., 

400
cross-multiplying elements, 3.3.2.
Routh array, 3.3.2.
Routh test, 3.3.2.

Rubber buffing machine, 2.00–2.02.
Runge-Kutta method, 2.53.

S

Saturation nonlinear phenomena, 89
Second-order systems

characteristic polynomial, 2.45
damped natural frequency, 2.45
step response, 2.44
undamped oscillator, 2.2.5
zero-state response, 2.45

Self-aligning bearings, 2.01
Series branches, 179
Servomechanism-type control system, 2.91
Servo system for positioning mechanical  

load, 3.14
Settling time, 2.87
Shannon’s sampling theorem, 450
Short-time Fourier transform (STFT), 72.6

waterfall display, 72.7
Signal sampling and control bandwidth, 449

aliasing distortion, 450
antialiasing filter, 450
Nyquist frequency, 450
sample step, 450
sampling rate, 450
sampling theorem, 450

Simple oscillator/mass-spring-damper, 2.2.5
characteristic equation, 2.42.
damping ratio, 155
dynamic delay, 155
harmonic response, 2.42.
model

characteristic equation, 2.89
complex pole pair, 2.90
damping ratio, 2.88
phase angle, 2.90

76868.indb   762 7/8/09   5:22:06 PM



Index 763

poles/eigenvalues, 2.89
steady-state error, 2.89
steady-state value, 2.89
time constant, 2.90
undamped and damped natural 

frequency, 2.88
output gain matrix/measurement matrix, 156
phase lag, 2.42.
simple oscillator, 2.13.
Simulink® model, 2.68–2.69
static equilibrium position, 154
steady-state response, 2.42.
undamped natural frequency, 155

Simulation block diagrams, 191
Simulink®, 695
Single-degree-of-freedom (single-DoF) system, 

171–173.
robot model, 142.
scalars, 72.9

Single-input single-output (SISO)
case, 73.0
systems, 410

Single-link robotic manipulator
digitization speed, 477
low pass filter, 477

Skytrain high-speed ground transit system, 3.
Sliding mode control, 573.–575
Software device, 447

software-based digital controllers, 6
Solar panels

photovoltaic cells and solar energy, 53.
solar-powered house, 53.

Spacecraft coordinate system, 82.–85
Speed control system, 42.4
Speed versus torque curves of motors, 87
Spinning top, 105
Spring-damper systems with force source 

and linear graphs, 111
Spring-loaded accumulator, 57
Stability analysis in frequency domain, 3.58

frequency transfer function/frequency 
response function, 3.60

magnitude, 3.60
phase angle, 3.60
response to harmonic input, 3.59

Stability analysis of linear time-invariant (LTI) 
systems

characteristic equation, 3.3.0
complex conjugates, 3.3.0
dependence of natural response on system 

poles, 3.3.1
eigenvalues/poles, 3.3.0
homogeneous equation, 3.2.9

homogeneous solution for initial-condition 
excitation, 3.3.0

repeated poles, 3.3.1
Stability margin

(1,0) condition, 3.67
phase and gain margins, 3.69

amplitude stabilization, 3.83.
Bode plot, 3.70
cases of, 3.83.
crossing/crossover frequency, 3.69–3.70
damping ratio, 3.72.–3.73.
Nyquist diagram, 3.70–3.71
operating bandwidth, 3.83.
time delays, 3.84

Stability of system
asymptotic stability, 2.2.2.
marginal stability, 2.2.3.

Stalling torque, 87
Starting torque, 87
State-space models, 13.

algebraic output equations, 42.
block diagram for

active feedback paths, 189
feedback control system, 189
feedforward path, 189
natural feedback paths, 189
summing junction, 189

causality property, 41
companion form, 194
development, 47
dual, 195
I/O models, 50
linear state equations, 42.–43.
memory of, 42.
state equations, 42.
state trajectory, 41

State-transition matrix, 486–487
properties, 503.

State variables, 12.
State vector, 43.
Stationary system, 68; see also Time-invariant 

model
Steady-state error and integral control

dc gain, 2.96
manual reset, 2.97
presence of offset, 2.96
proportional control, 2.96
reset windup, 2.99
steady-state error, 2.96

Steel rolling mill
automatic gage control (AGC), 59
control system block diagram, 42.9

Stefan–Boltzman constant, 3.5
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Stepper motors; see also Control system 
instrumentation

data for motor selection, 62.7
driver, 62.0
equivalent moment of inertia, 

determination of, 62.8
gear unit, 63.0
hybrid stepper motor, 62.0
indexer, 62.0
microstepping, 619–62.0
motor-drive system, 62.2.
multiple-stack stepper motors, 62.0
performance curves, 62.8
permanent-magnet (PM) stepper motor, 62.0
power supply, 62.2.
pulse missing, 62.0
selection based on

detent torque, 62.4
holding torque, 62.4
no-load speed, 62.3.
process, 62.5
pull-in region, 62.4
pull-out curve, 62.3.
pull-out torque, 62.3.
residual torque, 62.4
rotor moment of inertia, 62.6
slew curve, 62.4
slew speed, 62.4
speed-torque characteristics, 62.3.
stand-still torque, 62.4
start-stop curve/pull-in curve, 62.4
static holding torque, 62.5
step angle, 62.5
stepping rate curve, 62.5
torque characteristics, 62.3.

single-stack stepper motor, 62.0
switching amplifiers, 62.2.
translator, 62.1
two-stack stepper motor, 62.1
variablereluctance (VR) stepper motor, 62.0

Step-response curve, 2.88
Sugeno model, 584
Superposition method, 192.
Sylvester’s theorem, 744

for positive definiteness, 517
Synchronous speed, 87
Synchro transformer, 3.04
System

asymptotically stable system
free response of, 515

collection of components
inputs and outputs, 12.
system boundary, 12.

eigenvalues, 505
equilibrium

sense of Lyapunov, 508–509
error constants, 3.01
generalized eigenvectors, 505
identification, 11, 13.
matrix, 43.

constant, 486
resonance and resonant frequency, 2.3.9
response concpets

free and response, 2.2.0
impulse-response function, 2.2.0
initial condition, 2.2.0
unit pulse, 2.2.0
zero-input and zero-state response, 2.2.0

stability
eigenvectors, 503.–504
Jordan blocks and modal response, 508
linear systems, 503.
from modal response for repeated 

eigenvalues, 507–508
transformation, 504

type number and error constants
error signal, 3.00
robustness, 3.01, 3.05
steady-state error, 3.01
Type 0 system, 3.01
Type 1 system, 3.01
unit parabola, 3.01
unit ramp, 3.01
unit step, 3.01

with uncontrollable mode, 52.4
virtual displacement in equilibrium, 92.

s–z mapping, 462.–463.

T

Tacho-feedback control, 2.95
Tacho gain, 2.96
Takagi-Sugeno-Kang (TSK) model, 584
Taylor series approximation, 63.
Taylor series expansion, 2.04
Terminal device, 403.
Thermal systems

conservation of energy, 109
constitutive equations, 3.2.–3.3.
electro-thermal analogy, 60
heat and temperature sources, 3.2.
heat transfer (flow) rate, 3.2.
temperature, 3.2.
thermal capacitor, 3.2.–3.3.
thermal resistor

conduction, 3.3.–3.4
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natural and forced conventions, 3.5
radiation, 3.5–3.6

Thevenin’s theorem for electrical circuits, 180
equivalent circuit, 176, 183.
equivalent impedance, 177–178
linear graph, 180
mechanical circuits, 188–189
open-circuit voltage, 177–178
Thevenin resistance, 177

Third-order forward transfer function, 3.2.6
Three dimensional conduction, 3.6
Three-mode controllers, 2.94
Three-term controllers, see Three-mode 

controllers
Time-domain model, 15
Time-invariant model, 15

stationary/autonomous, 45
Time-varying model, 15
Torque-speed curves of dc motors

compound-wound, 87
series-wound, 87
shunt-wound, 87
steady-state operating curves, 88

Transfer function, 152.
characteristic equation, 153.
characteristic polynomial, 153.
convolution integral, 689
derivative operator, 166
electro-mechanical systems

damping constant, 162.
natural frequency, 162.
resonance, 163.
significance, 162.

impulse-response function, 690
Laplace operator, 166
mechanical transfer functions, 163.–164
models, 149

Laplace domain, 13., 15
physical realizability, 153., 690
transfer-function matrix

multi-input multi-output (MIMO) 
system, 153.–154

Transform techniques
Laplace transform

Laplace domain/s-domain, 677
Laplace operator, 678

Transmissibility function, 173.
Transmitter, 2.77
T-Type element, 2.0; see also Fluid elements

T-Type source, 101
linear graph representation, 102.
series connected systems, 103.

T-type transfer functions, 179

Two-car train, 2.63.–2.64
Two-degree-of-freedom systems, 173.–175

with support motion, 187
Two-link robotic manipulator, 599
Two-tank fluid system, 143.

two-tank fluid flow system experimental 
setup, 655

U

Ultimate response method, 43.7
integral and derivative control actions, 43.9
integral rate, 43.9
integral time constant, 43.9
ultimate gain and ultimate period, 43.9
Ziegler–Nichols controller settings, 43.9

Uncompensated speed control system block 
diagram, 444

Uncompensated system, design region and 
root locus, 43.0

Undamped oscillator, 3.62.
amplitude, 2.2.6
angular frequency, 2.2.6
cyclic frequency, 2.2.6
electro-mechanical analogy, 2.2.5
frequency, 2.2.6
initial conditions, 2.2.6
magnitude and phase plots, 3.63.
phase angle, 2.2.6
phase lead, 2.2.6
phasor representation, 2.2.6
resonant condition, 2.3.8
undamped natural frequency, 2.2.5

Underdamped motion
asymptotic stability, 2.2.9
damped natural frequency, 2.2.8

Unit vector, 741
Unity feedback, 2.92.
Universal model, 13.

V

Vander Pol equation, 513.
Vector-matrix algebra, 73.1

identity matrix, 73.4
matrix addition

commutativity, 73.2.
matrix multiplication

postmultiplication, 73.3.
premultiplication, 73.3.
product matrix, 73.4

matrix subtraction, 73.2.
null matrix, 73.3.
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Vectors
field

associativity, 73.9
commutativity, 73.9
distributivity, 73.9
identity elements, 73.9
inverse elements, 73.9

Vector space, 73.9
bases and dimension

linearly independent vectors, 741
span, 740

inner product
hermitian transpose/complex conjugate, 

741
linear dependence, 740
norm

angle between vectors, 741
Euclidean norm, 741
normalization, 741
orthogonal vectors, 742.
unit vector, 741

subspace, 740
Vehicle model with suspension system

heave and pitch, 157
Velocity

error constant, 3.02.–3.03.
source, 2.67
voltage source, 101 (see also A-Type element)

Ventilation system with motor-fan, 93.
Vibration-suppression device, 115
Vibration-test system, 479

Video-streaming server, 2.83.
Voltage amplifier, 12.9; see also Amplifiers

W

Welding robot, 3.15
Wood cutting machine, input-output 

differential equation, 74
Workcell for turbine blade production, 3.15

Z

Zero coefficient problem, 3.3.4
Zero-row problem (auxiliary equation)

marginally stable system, 3.3.3.
Ziegler–Nichols tuning, 43.6–440

proportional control, 703.–704
PI control, 705–707
PID control, 707

z-Transform, 470
difference equations, 458
discrete-time model, 459
discrete transfer functions, 456, 460
infinite sequence of data, 457
properties, 462.
quantization error, 456
sampled data, 456
sampling period, 456
single-input single-output discrete model, 459
s–z mapping, 462.–463.
time delay, 461
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